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A Simple Numerical Model of the Dynamics
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by Cirilo Pablo Lagos
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ABSTRACT

A dynamically consistent set of simplified equations applicable to
large-scale motion in the thermosphere is rigorously developed from the
Navier-Stokes equationrs. The simplifications are justified by means of a
scale analysis. These equations form a basis of the dynamics of the ther-
mosphere. Sources and sinks of energy are discussed and analytic solu-
tions of the heat conduction equation are obtained, using a Green's function
technique.

The diurnal pattern of heating and the accompanying structural
changes in the thermosphere is first studied in a numerical model depend-
ing only upon altitude and time. The energy sources are taken to be solar
heating, radiation cooling and conduction. No explicit account is taken of
horizontal variation and horizontal motion in the model. Comparison of
model structure with the observed structure of the thermosphere points
to the existence of large-scale poleward transport of heat by horizontal
motion in the thermosphere. The transport is required in middle and
high latitudes at equinox and at all latitudes in the winter hemisphere near
the solstice.

When explicit account is taken of the horizontal variation and the
equations of motion are included, a dynamical model of the thermosphere
is obtained. The full set of equations are discussed. A two dimensional
model, allowing no latitudinal variation, is used to study the effect of
horizontal motion on the phase and amplitude of the diurnal temperature
oscillation. Under these conditions the computations indicate: 1) Hori-
zontal energy transport by advective processes can not modify the phase
of the diurnal temperature oscillation; 2) Adiabatic heating and cooling
by vertical motion provide a heat source in the thermosphere. With ver-
tical motions included, the calculated maximum temperature shifts from
about 1800 local time, as calculated from the one dimensional model, to
about 1400 local time, as is observed.

Thesis Supervisor: Reginald E. Newell
Title: Associate Professor of Meteorology
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1. INTRODUCTION

1. 1 Problem Background

1. 1. 1 The thermosphere

Physical considerations: The region of the atmosphere above the

mesopause, where the temperature increases with altitude, is called the

thermosphere. In contrast with the region below, it is characterized by

a large diurnal variation of temperature and by atomic and molecular pro-

cesses giving rise to such interesting phenomena as the airglow, aurorae

and the ionosphere. Solar radiation of wavelengths less then 1750 Ao is

absorbed in the thermosphere and in the region above about 100 km., the

heat generated by the absorption of radiation is distributed in the vertical

by molecular conduction. The vertical distribution of atmospheric con-

stituents above about 100 km. is governed by molecular diffusion.

Dynamical considerations: As a result of the large diurnal variation

in the heating of the thermosphere, a horizontal pressure gradient is created.

This external forcing excites the thermosphere into motion . When motion

is so brought about, transport of heat, momentum and mass becomes impor-

tant. Generation, conversion and dissipation of potential and kinetic energy

then take place, and we no longer can isolate the thermodynamics from the

dynamics of the region.

It is now our task to combine physical and dynamical principles into a

consistent mathematical theory capable of describing the over-all behavior

of the thermosphere.
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1. 1. 2 Observed physical state of the thermosphere

The thermospheric quantities usually considered are temperature,

density, pressure and composition. Investigations have concentrated on

determining the space and time variations of these observable parameters,

the properties of the incoming solar radiation and the interaction thereof.

Several techniques, the latest being rockets and satellites, have been used

for measuring the composition and structure of the thermosphere.

Rocket flights have been used for measurement of the vertical distri-

bution of molecular oxygen (see e. g. Jursa et al., 1965), vertical distribu-

tion of molecular weight and ratio of 77 (0) / 7(O) (see e.g. Schaefer,

1963; Pokhunkov, 1963a, b, c), and density distribution (see e. g. Faire and

Champion, 1966).

Most of the information concerning the properties of the thermosphere

above 200 km. has been derived from the determination of density from satel-

lite observations (Jacchia, 1965; Jacchia and Slowey, 1966; King-Hele, 1966;

Anderson and Francis, 1966; Reber, 1967; Jacobs, 1967). The analysis of

the density data obtained from several satellites have revealed the existence

of four major types of variation in the physical properties of the thermosphere,

they are:

a) Diurnal variation: the diurnal variation in density reaches its max-

imum around 14 hours local time and minimum around 4 a. m. local time.

b) Variation with geomagnetic activity: Variation in geomagnetic

activity is correlated with density fluctuations. The correlation of the density
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or temperature variation with the planetary index Kp, or with the planetary

geomagnetic index ap is non linear. The perturbations in the thermo-

sphereie. density lag behind the geomagnetic disturbance by about 6. 7 hours

(Jacchia et . al., 1967), depending on latitude.

c) Semi-annual variation: A semi-annual effect in satellite orbital

decay data has been found by Paetzold and Zschorner (1961). They interpre-

ted this effect to be a world-wide semi-annual density variation in the thermo-

sphere. The origin of this behavior is still unknown, Anderson (1966) has

indicated that this effect is correlated with the difference in latitude be-

tween satellite perigee and the subsolar point, and that this behavior might

be due only to the existence of the seasonal and latitudinal variation in den-

sity.

d) Variation with solar cycle: two types of density fluctuations have

been found, namely, the 27 day variation and the 11 year sun-spot cycle. A

good correlation exists between density fluctuations and the solar flux in the

10. 7 cm. radio emission. The solar decimeter radiation is an indication of

the changes in the EUV radiation which in turn is the cause of the thermo-

spheric variation.

Spatial and temporal variations of other parameters in the upper-at

mosphere have been obtained from the density measurements by means of at-

mospheric models.

1. 1. 3 Previous investigations

A time dependent model of the thermosphere has been developed by
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Harris and Priester (1962, 1965) by solving numerically the one dimensional

heat conduction equation. In addition to the heat source provided by the ab-

sorption of the extreme ultraviolet solar radiation, they included an ad hoc

variable heat source in order to obtain agreement between the calculated and

observed densities. This model has been incorporated in the Cospar Inter-

national Reference Atmosphere (CIRA 1965) and is often referred to as the

quasi-static model. A further discussion of this model will be given in sec-

tion 4. 2.

Another numerical model for the thermosphere has been constructed

by Mahoney (1966). The model is similar in many respects to that of Harris

and Priester. Mahoney has also corsidered latitudinal effects . We leave

further discussion to section 4. 2.

The need for considering possible dynamical effects in the general be-

haviour of the thermosphere has been realized only quite recently. A few

attempts to estimate the magnitude of the horizontal motion in the thermo-

sphere have appeared within the last year or so (Geisler, 1966; Lindzen, 1966,

1967). More recently Volland (1966) has considered qualitatively the effect of

the zonal wind system in the thermodynamic equation. He has used a simple

two-dimensional dynamical model for this purpose. Following Mahoney (1966)

and Lindzen (1966), he has also suggested that a zonal wind of the order 200

m sec - can ha r 1i "pcond heat source" needed in the model of Harris

and Priester, thus shiftingthe phase and the amplitude of the calculated temper-

ature and density in agreement with observations.
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1. 2 Statement of Purpose

The object of this investigation is to formulate a model describing the

dynamics of large-scale motion in the thermosphere which results from the

thermally-driven diurnal oscillation. We shall also examine various sources

of energy in the system (e. g. vertical and horizontal advection) which may

account for the second heat source proposed by Harris and Priester.

A qualitative analysis of the relative importance of each term in the

hydrodynamic and thermodynamic equations will be presented. A simple

mathematically consistent system of equations involving the most important

terms will be derived. The set of equations are capable of describing the

principal features of interest.

For two special cases the system of equations are solved numerically.

The first case describes a thermospheric model which depends. on height and

time only. The characteristics of this modelhavebeen reported in full by Ma-

honey (1966). Here we extend the calculations to investigate the seasonal and

latitudinal variations of the heating rates and the thermospheric structure. In

the second case we explicitly allow horizontal variability. The solutions are

referred.to as a two-dimensional dynamical model. Vertical and longitudinal

wind profiles are obtained. Special attention is given to the diurnal tempera-

ture variation and the role played by the vertical and horizontal motion in the

energy balance of the thermosphere.

For many practical purposes the temperature behavior in the thermo-

sphere can be described quite well with a simple time-dependent heat conduc-

tion equation with sources and sinks. Under certain assumptions about the
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temperature dependence of the thermal conductivity, it is possible to ob-

tain an expression for the temperature in closed form, in terms of a

Green's function.

The Green's function for the heat conduction equation is derived for

several cases, each characterized by an assumed form of the ratio of ther-

mal conductivity to scale height.

It is shown how these results may be used for guidance in the solu-

tions of the simple hydrodynamic and thermodynamic equations.

1. 3 Outline of Thesis Content

In chapter 2 we present the mathematical formulation for the dynam-

ics of the thermosphere. The Navier-Stokes equations, extended to take in-

to account the coriolis force and the ion drag are reduced to a simpler set of

equations by means of scale analysis. Scale analysis of the ion drag, viscous

stresses, heat conduction and radiational heating rates are explicitly consid-

ered. The solutions are assumed to be represented by a power series in the

Rossby number and zero order equations describing large-scale wave distur-

bances in the thermosphere, are derived. The expansion can easily be used

to obtain higher order approximations.

In chapter 3, approximate analytical solutions of the time dependent

heat conduction equation are obtained and discussed.

In chapter 4, the one dimensional numerical model is described and

the variability of the thermospheric parameters with season and latitude are

considered.
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In chapter 5 a two-dimensional numerical model is developed using

a highly truncated Fourier expansion. Solutions for the motion and temper-

ature fields are presented.

In chapter 6, the main results obtained from the present study are

summarized. Suggestions for further research are also presented.
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2. FORMULATION OF THE EQUATIONS GOVERNING PLANETARY TIDAL
MOTION IN THE THERMOSPHERE

2. 1 The Hydrodynamic and Thermodynamic Equations

The purpose of this chapter is to derive systematically a consistent

set of hydrodynamic and thermodynamic equations applicable to the thermo-

sphere. Starting with the complete Navier-Stokes equations, several approxi-

mations and assumptions will be needed to obtain the final system capable of

describing the features of principal interest. Some of these approximations

are quite realistic, while others eliminate some physical effects which may be

important to the complete understanding of the dynamical processes, but do

not appear to change the physical picture.

2. 1. 1 Physical and scaling assumptions

The governing system of equations is obtained by allowing the following

assumptions:

a) Hydrostatic balance occurs. The large scale atmospheric motions of

the thermosphere exist in hydrostatic balance and a simple scale analysis suffices

to show that this is so.

b) The spherical geometry of the earth's atmosphere may be approxi-

mated by a tangential plane, that is, the problem can be formulated in a carte-

sian coordinate system.

C) tlhe gravity force g is cornIant.

d) No interactions between the ionospheric plasma and the neutral at-

mosphere are considered; however the force experienced by the neutral air in

moving through the ionized constituent, the so-called ion-drag, is taken into
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account.

The method of scale analysis described below is based on the exis-

tence of well defined space and time scale of the thermospheric disturbance

to be described by the equations. Consequently it is assumed that all depen-

dent variables, the temperature for example, are confined to a known range

of variation.

One of the most striking features of the observed large scale atmo-

spheric motion in the lower atmosphere is its geostrophic nature. Geostro-

phic motion occurs when the pressure gradient force is nearly balanced by

the component of the coriolis force in a horizontal plane. Both inertial and

viscous forces are generally assumed to be of higher order in the perturba-

tion equations. Furthermore diabatic heating is neglected to a first approxi-

mation. These approximations are .onsistent with the observed dynamical

behaviour of the lower atmosphere. In the case of the upper atmosphere these

approximations no longer hold. Above the mesopause inertial forces, ion drag,

heat conduction and viscous dissipation become very important for describing

the expected motions. Heating rates due to the absorption of EUV solar radia-

tion and cooling rates due to atomic oxygen radiation are of basic importance.

The order of magnitude of all of these terms is as large as the other terms in

the hydrodynamic and thermodynamic equations, and the resultant motions

must reflect the consequence of these additional physical processes.

When viscocity, heat conduction, energy sources, and ion drag are con-

sidered -- and they must be taken into account together if we are interested in
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the general circulation of the thermosphere--the problem becomes much more

complicated. Several approaches are available for solving the problem

stad above, and the course we are going to take is as follows: starting

with the Navier-Stokes equations, we define characteristic space and time

scales and transform the dimensional equations to their equivalent non-di-

mensional system.. Next, we assume that the solution can be expanded in a

power series of a small parameter and then obtain a sequence of equations

for the various order terms.

The present nondimensional analysis is an extension of similar studies

used in dynamical meteorology (Charney, 1947; Burger, 1958; Charney and

Stern, 1962; Phillips, 1963 and Pedlosky, 1964), and in the theory of rota-

ting fluids (Greenspan, 1964).

2. 1. 2 Unscaled equations

Based upon the physical assumptions made above, the general equa-

tions of momentum and energy conservation relative to a rotating system in

an xl, x2 , x 3 cartesian co-ordinate system are obtained from the Navier-

Stokes equations (cf. Schlichting, 1962) extended to take into account the cor-

iolis force and the ion drag. This system may be written

(2. , 1) - -OW =

1 2 f r d +11

dt



1 =- Rjf

where

d +
dt dt

In these equations and definitions, equati

(2. 2) is the equation of continuity, (2. 3) i

(2. 4) is the equation of state;

S= UJL +VJ WI ( , J

.2 3

V

on (2. 1) is the equation of momentum,

.s the equation of thermal energy and

and K. are in east, north and upward

directions

t

T

g

cp

respectively)

= time

= thermodynamic pressure

= Kelvin temperature

acceleration of grIavity

= density

= specific heat at constant pressure

= viscous dissipation function

= viscous stress tensor under the St

= velocity divergency,.

= vector having components (0, 0, 1)

okes hypothesis

(2.4)

-20-
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1/2 2
K thermal conductivity ( = 8(Z)T ; B( O ) = 3. 6x 10 2

8 (02, N2 ) 1.8x10 2)

= dynamic viscocity coefficient ( = A () )

= ion drag

f. = ion density

. = ion-neutral collision frequency

Vi  = x i component of ion velocity

Q = non-adiabatic heating rate per unit mass

qSR = heating rate due to solar absorption

lR = cooling rate due to infrared radiation

R = gas constant (R = R*/M, where R* is the Universal gas con-

stant and M is the mean molecular weight.)

= the rate of rotation of the earth

S = 5 ACf- v

Cv = specific heat at constant volume

2. 2 Scale Analysis

2. 2. 1 General remarks

The basic plan of this section is as follows: given a set of dimensional

equations that characterize a general class of large scale thermospheric mo-

tions, we construct a set of nondimensional parameters, i. e. the Rossby num-

ber, Ro , Taylor number, 7 , etc. We assume an asymptotic solution to the

system, expand each dependent variable in a power series in Ro and then insert

1 _____1~---~.11-1~
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these expansions into thb nondimensional governing equations. We require

the equations to be satisfied for all sufficiently small but finite values of Ro.

This leads to an ordered set of equations. The simplest system is obtained

from the zero order in Rossby number. Higher order systems, which may

be of interest in some specific problems, can be easily written down follow-

ing the same procedure.

Since we are interested in the thermospheric disturbance associated

with the diurnal oscillation of the temperature and density, the global hori-

zontal length scale will be characterized by the wave length of the distur-

bance. Let us take this scale, denoted by L , to be 107 meters. The

wave disturbance is characterized by its periodicity in time and we shall

choose for the time scale this oscillation tinrre , where JL is the rate

of rotation of the earth.

Let U represent a typical horizontal velocity scale, and let H s,

the horizontal and time average scale height, represent the characteristic

vertical scale. Define the nondimensional parameter Ro, the Rossby num-

ber, by R o = U/./ L . This parameter will be a measure of the magnitude

of the non linear terms. With the assumption of hydrostatic balance the third

component of the momentum equation (2. 1) reduces to

(2.5)?0

2. 2. 2 Scaled equations

The scale arguments can be presented in a most convenient form if we

introduce a special coordinate system. In place of x3, let us use the logarithm

_)_X1--- l---^~_l~__1~--- ~-
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of pressure as the vertical coordinate (Eliassen,

(2. 6)
= - Ln P

where lt = x 10 - 2 mb. at 80 km., is the reference level. Z is related to the

actual height h(h - x 3 ) and the geopotential height J = gh, by the ideal gas law

and the hydrostatic relation (2. 5)

(2.7) RT =

£ =- ~Is d

It must be noticed that the above definition of Z is equivalent to

(2.8) Z =

that is, Z is approximately equal to the ratio of the actual height to the scale

height H = RT

g
The advantage of using Z is that further simplications are possible when

the motion is hydrostatic (cf. Phillip s, 1963): If j represents x, y, or t, then

(2.9)

33-- (. h
where the subscripts indicate differentiation at constant h, Z or 5

The Z-velocity, denoted by Z is related to the vertical velocity w by

(2.10)
RY, i

k ) -4+

- *)z

Using equations (2. 7), (2. 9), and (2. 10), the continuity equation (2. 2)

can be rewritten in a simple and convenient form,

(x

Similarly, the thermal energy equation (2. 3) can be rewritten

qz

1949)

(2.11)

P=/P

a~P )h I

(;Idt).F

3Y

i _ __ A_ f

-)Z
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(2.12) + )

zf

where = R/c .
P

2. 2. 2. 1 The nondimensional Navier-Stokes equations

Using the scaling parameter defined above and with the notation used

by Charney and Stern (1962) and Phillips (1963), the variables in equations

(2. 1), (2. 11) and (2. 12) will be made nondimensional in the following manner:

Introduce nondimensional (primed) quantities by assuming

(x, y) = L (x', y')

(u, v) =U (u', v')

Z = U W'

w =U c Wt

(2.13)
H =H s ( 1 + Ro H'(xy1 Z, t'))

f = fs (1 + Ro f(x', y',Z,t'))

= I-1 t,
t =Jl. t'

where

(2.14) HS -O . L

The geopotential may be expressed in the convenient form:

(2.15) Os A J UL (x;r:Lt' Z

In the definitions given here a subscript s denotes quantities which depend only

on Z and which define a basic state, e. g. a standard atmosphere, while the

prime quantities are the deviation from this mean.

)_I ̂  _llf~_XL~~l~e_ III_ ^_ _~ LnI~__;_YL
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We define the nondimensional static stability S by

S (,vH, JH
(5 L)Z d Z )

ie equations (2. 1), (2. 11), and (2. 12) are made no

ig set of equations result:

1 X j Y 1 z

+ .(

X1 x

+ c _ _.

J Yf

-- + -W -

+ws

R,(jx+a~a +

(2.18)

(2.19) b-

,ndimensional the

(2.16)

When th

followir

(2.17)

-Du

Z L

C)zU
+ rL U

+ 2 .U sir 5

JF
J? U

z ./? u -

The primes have here been dropped from the nondimensional variables.

Here - , - and -- are at constant Z. In equation (2. 20) the dissipation
J Y Y d t

function has been neglected for simplicity. is the latitude. The terms

Dx and Dy are the x and y components of the ion drag. Similarly, F x and Fy

are the x and y components of the viscous stresses. The term Q r stands for

(2.21) Q,, = , + +

where cjv is the conductivity heating rate. All these quantities remain to

be expressed in convenient nondimensional form.

2. 2. 2. 2 Scale analysis of the ion drag

A simplified analysis of the ion drag term may be given as follows: the

4

~ '"I------
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equation of motion for the ions is approximately given by (Fejer, 1965).

(2.22) 1 - , , ( -V) _ z .dt
where

(2.23) A - ~+).)t

and

V i  = Velocity of ions

= ion density

= ion-neutral collision frequency

Pi = ion partial pressure

?,- = ion charge

m i  = ion mass

E = electric field

S = magnetic field

g = acceleration of gravity

Several terms can be neglected in (2. 22) and (2. 23) for the region of

interest, such as f , grad Pi and E . Further simplication is made

by neglecting the nonlinear terms and considering all other quantities as con-

stant. Under these assumptions equation (2. 22) may be solved for Vi  . A

time scale of 0(1) is assumed. Noticing that the relation I1 -A C holds

over the range of altitude where ion drag makes an appreciable contribution,

the expression for Vi (Geisler, 1966; Lindzen, 1967) is

(2.24) , ( 1.- , )

(2.25)1 +,

__II~-IYIC ~-XILIII~-LII- ~P~lll~lL3------
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(2.26) f I - - ) S Y 7I
I 4-

(2.27) W.
-"

where

Ni  = ion number density

I = dip angle

In the F-region where the ion-drag may have its largest effect, the

ratio of the ion to neutral particle mass is of order unity. As a result, ffe /
may be replaced by Ni/N where N is the neutral number density.

The term D in (2. 1) can now be rewritten as

(2.28) 3N Z- ..

Define the nondimensional pararpeters

(2,29)

Hence the ion drag term becomes

(2. 30) a p '

(2.31) _Y - W z

2. 2. 2. 3 Scale analysis of the viscous stresses

The x-component of the viscous stress F x can be written in the (x, y, Z)

co-ordinate system as
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(2.32) F )
5' L~LJX

++ ) e
H 1) z Ir

where

(2.33)

and the relation

has been used.

d;v U

2-
3

( V I

H az

*1---
HJ ~

I

be a characteristic dynamic viscosity,

a characteristic kinematic viscocity,

Define the nondimensional parameter Y by
2L

= -- which may be

identified as the Taylor number,

When the variables in (2. 32) are made nondimensional, the resultant

expression for F x and hence the last term in the R. H. S.

(2.34)
A U

+ a, ±-
jya

of (2. 17) is

L ) Kg\'1N_ rKZ.
L d)}I

wVV

Similarly the last term in the R. H. S. of (2. 18) is

(2.35)
1 ~zI)H)Z

+ __-

The primes have here been dropped from the nondimensional variables.

L 0t1--
J Y ( yd+da Ur

Let/ca and fcEL

N& ')

0) 4

' 
Lt

L & s
) 2: L

tr
)X 

I

OY -1a

o-Itff)I yI a

Li v WL H Iz
TZ H: d

j Lr
j -4
d x
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2. 2. 2. 4 Scale analysis of the heat conduction

The net rate of heating is expressed by

(2.36) LWer co, St

and hence the R. H. S. of (2. 20) becomes

(2.37) JR2. tC -
JR 0

where

(2.38)

IR

+ R
-y Q2

use of (2. 7) has been made to express T in terms of 6 (x, y, Z, t). Since

= # (z) + J UL (S,?z), (2. 38) is transformed to

fi d ±
fR H dz HdZ /i c? Z

L ; K + K
fR -Ax dx 4X ; y

+
H z H JZ Z

We introduce a characteristic thermal conductivity K, a characteristic

thermal diffusivity 9 , given by

parameters

(2.40)

C, fs
and the nondimensional

6 and 6 by

.7 PL, 62...

We shall find convenient, below, to define the nondimensional parameter

.- LLsR \H dZ ' ) dz

When equation (2. 39) is made nondimensional, the first term in the R.

H. S. of (2. 37) becomes

S fJr ax Y Y H JZ H z

(2.39)
4 C *w

7T by

(2.41)

i70 ~K ~3~83
JZ UR
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R u 2 g a ULR
nELa

where again we have dropped the primes from the nondimensional variables.

2.2.2.5 Scale analysis of the radiational heating rate

The second term in the R. H. S.

q1letting

and defining

(2.43)

where

R

of (2. 37) is made nondimensional by

-5 9+#9

8 4 4 9;.12LU

*= J?. )
SR IT

.1
I

is the nondimensional radiational heating variable. Hence R* V
.1 L4

2. 2. 3 The perturbation expansion in the Rossby number

The system (2. 17) - (2. 20) can now be summarized as

(2.44) A)
4 t

R, I fwuaft LW
~ ~\d4) IV

+ wa__

( JU

- Zirs" S 0

+
0) ~Y

4* -
JX

(9

H S rrkY + 4 5-wi

-fJA
r ---

-W

(2.42)
I d
- dZf

(,IV

CJ

H r)Z

qct

L+ J

-P

S+ V -

(2.45)

(2.46)

.
1. -ley

H c Z
~ LT

S;d

H dx

L ,a C)
H TZ)C) Z a(-T4. 1

Jx d

- . ,
Sax

au
) Ut a Hs

ON Z L5

+ Re(A

3 (J x

+ +
Q f a+ R. 3 ax
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(2.47) L Z e-iC Z _ __Z ±
_ K d +

(- + R4U. ) i? jZ H Z -

Now for problems which deal with large scale wave disturbances or

small amplitude tidal motion in the thermosphere, the following relations

hold for the parameter defined above (cf. section 2. 2. 5).
-I

(2.48) Ro <41 4Z <c 1 77 L I

4tO)0 1

s o,, 5 oct), c_)

All other symbols are at most of order of unity.

Under these conditions it is possible to expand the dependent variables

in the following manner.

Let be anyone of the variables u, v, w, orR and write

(2.49) o -

Introduce this expansion into the system (2. 44)-(2. 47) and require

that the equation be satisfied separately for each power of Ro .

2. 2. 4 The nonhomogeneous zero order system

Entering the formal expansion, we obtain a sequence of ordered equa-

tions.

The zero order equation is

(2.50) a _ ..s, ± In+ 0 o
- Z



(2.51) t 40 - 113

(2. 52) t z o

(2.53) _ _ Ca 6 Z

Although higher order systems are easily written down, we shall

only consider the above system here. For many of the problems in the

region of interest the higher order system will be of little interest.

The equations (2. 50)-(2. 53) together with appropriate boundary con-

ditions form a complete system. The essential feature of the system is con-

tained in equation (2. 53), where the vertical velocity term is seen to be of the

same order as the other terms in the equation and cannot therefore be neg-

lected. The vertical motion appearing in the equation (2. 53) is the adiabatic

component associated with the positive and negative divergence of the horizon-

tal motion field. The vertical mass flow due to the nonadiabatic heating and

cooling is implicitly taken into account in the system which of course is the

advantage of using the log of pressure as the vertical coordinate.

Several other properties of this set of equations should be noted:

1) The system (2. 50)-(2. 53) is considerably simpler than the general

equations (2. 1)-(2. 4). Indeed, many problems in the dynamics of the upper

atmosphere would be analytically intractable without the use of some such

approximation.

2) The method of simplification which was employed in this section

lead to sets of ordered equations. The system we have selected for our

_ I 1__/1_1__~~~ 1~-- ---1~--~.~1- 1.-_;~.111.~--* -^~- ---m_
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purpose occurs to the zero order in Ro , the Rossby number. Since the sys-

tem occurs uniformly to the order of Ro , we have obtained a dynamically

consistent set of simplified equations applicable to all large scale thermo-

spheric motions.

3) The system (2. 50)-(2. 53) has the dependent variables u, v, w and

The four equations together with appropriate boundary conditions

form a mathematically closed system.

4) When we consider the momentum equations, the present analysis

allows us to see clearly which terms are important. Previous investigations

of the momentum balance in the thermosphere have omitted the coriolis force

(Lindzen, 1966, 1967), the ion drag'(Lindzen 1966) or the inertial force

(Geisler 1966).

5) In the equation of momentum the geopotential gradient is the driving

force for the thermospheric wave disturbance., The geopotential gradient is

the result of the diurnal oscillation of temperature. Balance between the

forcing term and viscocity, ion drag, inertia and coriolis force must occur at

all levels. At lower altitudes the balance takes place between the forcing, in-

ertia and coriolis term. This region may be called the inviscid domain. In

the altitude range between about 150 km. to 300 km. all terms have the same

order of magnitude. Above about 300 km. the dissipative effect of the visco-

city and the ion drag becomes dominant. Still further up in the thermosphere

the only term balancing the geopotential gradient is the viscocity. (cf. table 2.)

6) The important role played by the vertical velocity and the static
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stability in the thermodynamic equation should be emphasized here. The

fact that horizontal advective terms are not present is consistent with the

momentum equation. The nonlinear advective terms are of higher order and

are therefore smaller in magnitude than the terms that we have retained in

our system. The fact that vertical velocity is important is a significant re-

sult. Without some such analysis it might appear that horizontal advection

would be more important in the energy balance of the upper atmosphere and

indeed it has been thought that the only process which could account for the

second heat source (other than corpuscular radiation) postulated by Harris

and Priester (1962, 1965) was the energy transport by horizontal advection.

It now appears more naturally that the second heat source may be due to the

vertical velocity with the corresponding adiabatic heating and cooling of the

thermosphere. This will be seen to be the case for a simple numerical mo-

del to be described below.

Further information about the relative importance of each term in the

momentum and thermodynamic equations can be obtained from table 2. and

equations (2. 50)-(2. 53). For example, if we wish to examine the role played

by the heating due to the vertical velocity and heating due to conduction, we

only need to compare the magnitude of S and 6 in table 2. In this way we

find that below about 250 km. adiabatic heating is larger than the heating by

conduction, whereas above this level, the latter are much larger than the

former.

~__ __j__U__~__1_II______I
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2. 2. 5 Numerical values for the parameters

From our physical assumptions stated above we may summarize the

characteristic length and time scale for the system.

L = horizontal scale rV 10 meters

H, = vertical scale r. 60 km.

UL = horizontal velocity -,o 100 m sec-

-I
. = time scale N 1 day

R = Rossby numer # 0. 1

-4 -1 -1
= characteristic dynamic viscocity e- 5. 5x 10 g(xn- sec )

S2
= characteristic kinematic viscocity v 106 m sec-1

1 = characteristic thermal conductivity /v 104erg cm-lsec-ldeg - I

T = Taylor numer r 1.4 x 104

2 = (H/ L )2 /- 3,6 x 10-

6 = thermal diffusivity rv 2. 5 x 10-4

S = static stability r%.- 0. 5

= ratio defined by equation (2. 41) (' 2 x 10-3

= ion drag ' 1. 5 night
7.0 day

The values presented above are taken to be characteristic and therefore con-

stant for the purpose of the scale analysis; however, most of them have a large

variability with altitude and temperature. The magnitude of these parameters at

a given height iS a measure of the relative importancc of each term in th equa-

tion for that particular altitude. Hence, it is convenient to know the range of

variability of these nondimensional parameters.
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Tables 1 and 2 indicate the variation of the parameters with altitude

and with speed. The values of the dynamic and kinematic viscocity, the Tay-

lor number, the thermal conductivity, thermal diffusivity, 7r, and the static

stability have been obtained from the model result described in chapter 4.

The quantities such as ion concentration, collision frequency needed for the

calculation of the ion drag coefficient have been obtained from the calculation

of Hanson (1961) and interpolated to the mean of the sunspot cycle.

Table 1.

Rossby number as . function of speed

U(m sec -1) 10 50 100 200 400

Rn 0. 014 0. 069 0. 137 0. 274 0. 550

The values of 3 presented in table 2. re.present an upper limit and

depend largely on the ionization profile.

2. 3 Boundary Conditions

In order to uniquely define solutions to (2. 50)-(2. 53) boundary condi-

tions must be specified. The treatment of the lower boundary condition should

be given special attention since this boundary is not rigid but open. Any

mathematical model should be able to take into account the interaction between

the lower atmosphere and the thermosphere. In particular, sources of energy

in the lower atmosphere that might force the thermosphere into motion must

be carefully considered. This includes, for example, transmission of energy

.r*-cc~ r*rutii u~ur-^- -*~rix . L1- -_u~-^*r.- -lr~-- ----I-^l--lll-IYsl



Table 2:
Nondimensional Parameter as a Function of Altitude

Night Day

0. 006 0.38

0. 025 2. 60

1.70 7. 60

2.10 7.30

1. 50 5.20

-1

3. 24 x 10- 9

-6
7. 35 x 10-6

9. x 10-5

8. 26x10-4

2. 34x 10-3

-1

1. 67 x 103

2. 30 x 102

1. 70 x 10 2

1. 40 x 102

1. 20 x 102

0. 009

0.39

2. 60

16.00

34. 00

S

0. 177

0. 820

0. 940

1. 080

1. 120

4 1

5. 70x10 9

1. 22 x 10 - 5

1. 44 x 10 - 4

1. 27 x 10- 3

1.43 x 10-3

Height
(Km)

100

200

300

400

500

2

0. 016

0. 650

4. 200

24. 800

50. 000
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through the lower boundary by, vertically propagating gravity and Rossby

waves and tides.

To a first approximation, these possible effects might be included in the

lower boundary condition. At present, however, their inclusion is somewhat

involved, mainly because the parameters describing these processes are not

accurately known.

The selection of our boundary conditions is therefore somewhat arbi-

trary, many possibilities being present. We might specify values of the hor-

izontal wind, the vertical velocity, the temperature or the temperature gra-

dient at the lower or upper boundary or we might assume a rigid horizontal

boundary at the bottom or the top. We might also assume an open boundary

or try a free surface upon which the pressure is zero.

If we fix the lower boundary (the reference level) at 80 km. which is

about the height of the mesopause, and the upper boundary at infinity, it

seems most reasonable to apply a radiation condition at the lower boundary

and require the condition of no flux of heat, momentum and mass at infinity.

The radiation condition require that upward propagation of energy through the

open boundary must be taken to be zero.

Since We are using a cartesian coordinate system, certain artificial

boundary conditions must arise at those values of Y where we choose to limit

the system. We could express the absence of an interaction between the re-

gions outside and inside the boundary by having no energy flux across the

boundaries, or we could erect vertical walls at Y = L to form a horizontal

bounded system. In the latter case the lateral boundary condition is = 0

at Y = t L.
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Since we are considering the behaviour of the disturbance right around

the earth, it will suffice to assume that all variables are periodic in x. Fin-

ally, an initial condition must be specfied. This condition may be specified

on 7 , or may set z equal to zero at the initial time.
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3. ANALYTICAL SOLUTION TO THE TIME DEPENDENT HEAT CONDUCTION
EQUATION

3. 1 Derivation of the One Dimensional System

This section examines the possibility of obtaining expressions for the

temperature in closed form. For many practical purposes the physical proper-

ties of the thermosphere can be described by the equation of thermal energy

together with the ideal gas law and the hydrostatic equation. When no hori-

zontal variability is allowed, the equation of thermal energy reduces to a sim-

ple heat conduction equation with sources and sinks. To obtain an analytic so-

lution to this equation, some assumption regarding the thermal conductivity is

required. If the ratio of the thermal conductivity to the scale height is assumed

to be constant or to depend only on height, then the heat conduction equation.

has analytic solutions. The expression so obtained describes the diurnal

temperature variation due to solar heating, radiational cooling and conduction.

Analytic solutions are obtained in terms of a Green's function for var-

ious boundary conditions and for several cases of the ratio of the thermal con-

ductivity to the scale height. From these solutions one can ascertain more

clearly the physical processes involved in the problem and in particular un-

derstand the effects of the boundary condition on the general solutions. Fur-

thermore, the method presented here for the simple cases allows us to gen-

eralize to more complex situations where a different type of thermal conduc-

tivity change has to be considered.

When no horizontal variability is allowed, the system (2. 50)-(2. 53) re-

duces to (in dimensional units)

(3.1) 0
Zt
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where Z: =- L 7Np
" Zz = -t

and all other terms have been defined in section (2. 2).

Equation (3. 1) has the solution Z proportional to , but the

constant of proportionality must be zero since we require no mass flow at

infinity. Therefore, the equations (3. 1) and (3. 2) reduce to the heat con-

duction equation, namely

(3.3) C T

since f - $
(3.4)

4dt

-.Z
and P ='o e , (3. 3) may be written as

2 /1<
e - -

c)Z H

where

/ TP
Equations (3. 4) can be further simplified by making the following

formation

(3.5)

with the result

-Z
=- e

ZbT(3.6)

_ _/^~1_1_1_ 1_ _~~_~_ 1 ^~

13Z
(3. 2) C - + tZ C. P

!

3 1-)

Ab o

sP
34

14 '1
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3. 2 Green's Function for Finite Domain

3. 2. 1 Case 1.

(3.7)

K = o = constant
H

Under this condition equation (3. 6) simply becomes

21 - fQ.,)

where 2
a /i f Yt =Q/ r

It is possible to solve this inhomogeneous and initial-value problem in

terms of a Green's function which satisfies homogeneous boundary conditions

and a causality condition:

(3. 8) G (, , ') 4 '

We take G to satisfy the equation:

(3. 9)GC

The point-source forcing may be interpreted as a unit heat impulse introduced

at the time t', and G is considered to represent the resulting transient tem-

perature. The function G gives the temperature at a fut fie time for any other

point of the domain, thus describing the manner in which heat is conducted

away from its initial position. The Green's function satisfying (3. 9)cpends

only on the difference in coordinates ( 1~') and time (t - t').

To find the solution of (3. 7), we proceed as follows:

write (3. 7) and (3. 9) in the form

where
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(3.79) z(T ,')

where the sign of the term involving the time derivative in (3. 9) has been

changed, since the function G satisfies the reciprocity condition

(3.10) z(, ;

Multiplying (3. 7) by G and (3. 9) by T, subtracting the two equations

and integrating over space and time from 0 to t , we obtain:

(3 .01 ) a ''c d s o T IC) I- " t

ftJd TfJ To + G j JY
0

Applying Green',L theorem to the first integral and performing the integration

of the second integral, we obtain,

(3.12) T(,,) jC1 ,"'.') t d, )

[6+T T.L J. J2 T

The first integral in R. H. S. of (3. 12) represents the effect of the

forcing function (heating and cooling rates). The second integral represents

the effect of the boundary conditions, and the last integral takes into account

the initial distribution of temperature.

The Green's function for our bounded domain may be obtained by using

eigenfunction expansion.

For simplicity we require here that the temperature gradient vanishes

at the boundaries; that is, we impose the condition of vanishing heat flux at in-
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finity and at the mesopause. These conditions can be expressed in our co-

ordinate system as

(3.13) -0

We take as an initial condition

T7 O )

The solution of the scalar Helmhotz equation

d
( +

in the interval (0, 1), in which Y, satisfies a homogeneous boundary con-

dition, namely

(3.16) C1iY
- 0o * A

/

is given by

(3.17) Yn
with Y IT

Since the functions

(3.18)

Cos ~771

I 1 = 1, 2 . .

Y form a complete set

f) Y"Yd
we may expand the Green's function in terms of them.

Let then

(3.19) G (', , tt') Av ( t,') YP, (

Introducing this expansion into (3. 9), we obtain the first order differential

(3.14)

(3. 15)

d Yn
aC/

= O

Y a-

0tm
T --VP

= K



-45-

equation for An:

(3.20)
C 1An

At

with solution

A, =(a
L-)PP U(t - )

where u ( t-t' ) is the step function defined by

4 ( (t- )

G(T; L t')

4 t'

C C )
u(t-t)

vi

cosn rr t os r '

and the solution of the one dimensional heat conduction equation (3. 7) with

boundary

(3.24)

condition (3. 13) and initial condition (3. 14) is given by
t + -).- , ,tt-t. V)c,-

e
I\

ds5 ~(1,c)
coa s rT cos n '

07 0

Sn

rtJ o
TJ- ( ') c os n cos n r '

3. 2. 2 Case 2.

= constant

Under this assumption equation (3. 6) reduces to

C a )T(tt)
__j t

(3.25)

The equation satisfied by the Green's function now becomes

(3.26)

- ~f(T4 ~ ) 6U~L')ST 4!-

(3.21)

,r( - ' )

(3.22)

Hence

(3.23)

c>
i

0C
2

ct2
___
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Let us consider the same boundary and initial conditions as (3. 13) and

(3. 14). Note that we could use any type of boundary condition since the general

expression for the temperature given by (3. 12) allows us to specify this condi-

tion easily.

We require the solution of the scalar equation

(3.27) J- Y=

with homogeneous boundary conditions. Equation (3. 27) can be identified as

Bessel's equation with general solution.

(3.28) Y. = Z o ( 2 A ' )

where

(3.29) Z (x)= c, o (x) + Cz YO (X)

To satisfy our boundary condition at 3 =0, we require

(3.30) Y, C J (2 X ,/)

where the characteristic values of nare determined as

tion

(3.31) ','(.,,) (. o

Green'

(3.32)

Since the function (3. 30) fornsa complete set, we

s function in terms of them

G J

c2 = 0, hence

the roots of the equa-

may expand the

- (2 X, ,')

Following the same procedure as in section (3. 2. 1) we obtain the ex-

pression for the Green's function

(3.33) X ,C "'X

i _ Ir~ ~~r~ I__(^^_;__ ____1I~II_ _X_ II-~~PII~-IIII .l.l--CI~---~~
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and the solution of the heat conduction equation (3. 25) with boundary condition

(3. 13) and initial condition (3. 14) is 2

(3.34) T(Tt ) (*- t') -- ))_
e TO To

,"

3. 2. 3 Case 3.

K = Ko H(Po) 12
H H H(P )

This condition assumes that t the ratio of the thermal conductivity to

the scale height can be expressed in terms of its value at some reference

level times the square root of the ratio of the scale height at the reference

level to the scale height at any other position.

Let

(3.35)

Then equation (3. 6) reduces to

(3.36) rA..fry;y 4 3 .

Now the variability of

above about 150 km. Ir z I

to the case 2. discussed above.

] T(, t) -
)

in the thermosphere is negligible,

Hence equation (3. 36) becomes identical

_*_XI~ ~Y~I1___ -.I1-1I_1 C~-l_^.______^^^_^~_^_IJ--l

K' o - ro
HO

- f :, i )

;
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3. 2. 4 Case 4.

mn-i
= constant

In this case we can write equation (3. 6) in the form

2 4 t t) - _ (T t)

To solve (3. 37) we need to find the Green's function for the equation,

just as we did above. The Green's function will satisfy the equation

(3.38)

Consider again the same boundary condition (3. 13) and initial condi-

tion (3. 14). The solution of the scalar equation

(3.39)

with homogeneous boundary conditions is obtained in terms of the Bessel's

function

7 Z ( °)(3.40)

where
2

and the characteristic values

tion

(3.41)

k p, are determined as the roots of the equa-

) ?2 i

To obtain the Green's function, we again expand G in terms of

substituting this exp

(3.42) 60,~-(LLr)

ansion in (3. 38). Weobtain

CL, 2F

i- r 'I

S1 (- / %All

, t) is readily obtained as:

"2
(3.37)

(3. 40),

II~I~-- -U~~.C~l--- ,... -II~-_h-.- II~UILII-111.1~ 111~---- I~CVLL

b a, G(r.T1 tt')

b Z0

and the solution for T ( f
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t "-m L:I!- M

(3. 43) "(t L)d .'_t) e! d _

So( 5 ) + '

3.'3 Green's Function for an Infinite Domain

Case K = ; = constant
H

Next we shall consider the case in which the domain is extended from

+ oo to - o . We may assume again the same boundary conditions as in

section (3. 2), that is, the heat flux vanishes far away from the region of in-

terest. In our transformed coordinate system these conditions imply

(3.44) ;j =

The initial condition may be expressed as T ( ) (- )

In similar manner to case 1, section (3. 2), the heat conduction equation

(3. 6) reduces to

(3.45) a' a T(T,) -- - f )

Likewise, the Green's function satisfies the equation

(3. 4,) - c--G(,t ,t') - - ( '') (**')

In this case the Green's function, the temperature at 5 at the time t

due to the instantaneous point source at at time t', is provided by the method

of images and is given by (cf. Morse and Feshbach, 1953)

(3.47) ( t) - I (t- ')
-a ~V (tt') e

~11 ^**I_1 L/~~~ ~___ ___l_ _l;ll~m~
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Hence the temperature at ' at time t is given by

(3.48) -(,)_- ' €/'t.. d T'(St)'>.k e S £. -

This method may be extended easily to obtain solutions to the

heat conduction equation for a variety of conditions on K , as well as to
I H

any type of boundary conditions as was stated above. The nature and physical

interpretation of the solution can be obtained when the sources of heat are

specified.

So far it has been assumed that the source function is known. Actu-

ally the heating and cooling rates depend onthe thermospheric structure and

therefore they must be calculated simultaneously. However, the results of

the numerical computation indicate that the change in the cooling rates are

negligible and therefore easily expressed in closed form. Likewise, the

heating rates could be modeled by some simple smooth function which fits

the observational data or the :numerically computed values.

Without loss of generality a simpler physical interpretation of the

gross features of the solution might be obtained by assuming a source of

the form Q( , t) = ( ( ) (t), the temperature distribution is

then evaluated from G and the appropriate initial and boundary conditions.

An immediate extension of the method described above to the dynamical

system would be, for example, to make a decoupling approximation of the

__T-_l~-- -~ ^ ----- -- -~II



dynamic and heat energy equations. Several simple analytical solutions

* could be then discussed. The horizontal momentum equations are com-

pletely analogous to the heat conduction equation (except for one or two

linear terms which may be included with no difficulty), and therefore the

technique described above can similarly be applied. These possibilities

will be discussed to some extent in chapter 6.

The approximate analytical solutions presented above greatly

facilitate the physical understanding and are easy to manipulate.
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4. NUMERICAL SOLUTION TO THE TIME DEPENDENT HEAT CONDUCTION
EQUATION WITH SOURCES AND SINKS.

4. 1 General Remarks

The preceeding section has raised the following questions which require

the analysis of radiative heating and cooling in the thermosphere:

What is the variability and distribution of the solar heating and infrared

cooling over the globe throughout the day and seasons?

How do these changes in the heating and cooling rates influence the tem-

perature and density distribution over the globe?

The amplitude of heating sources depends on the atmospheric density

which in turn depend on the sources. Therefore, any study of the heating

rates should be made simultaneously with study of the distribution and changes

in the atmospheric density.

To answer the above questions a simplified model for the thermosphere

with only vertical variability will be considered. This approach is designated

as the one dimensional model. With this simplification the hydrodynamic and

thermodynamic equations reduce to the time dependent heat conduction equation.

The solution to this equation together with that of the hydrostatic equation con-

stitute the so-called "quasi-static mode],"

The quasi-static model allows time variability as well as vertical mo-

tion associated with nonadiabatic heating, that is, motion that arise by expan-

ding and contracting the thermosphere when the medium is heated by solar

radiation.



In order to deal with a realistic description of the interaction between

the energy sources and atmospheric density, numerical techniques must re-

place the analytical methods. We also recall that in order to obtain an ana-

lytical solution to the heat conduction equation in chapter 3, we had to linear-

ize the system by assuming some simple model for the dependence of the ra-

tio of the thermal conductivity to the scale height. The use of numerical

techniques to solve this problem lacks the elegance of purely analytical

treatment; however, this will be compensated by the fact that the solution

will correspond more closely to reality.

A summary of various modeling studies describing energy sources

and structural changes in the thermosphere is presented in the next section;

a discussion of the results of the model calculation regarding the amplitude

and phase of the temperature and density appears next; and in section (4. 2. 4)

we investigate the horizontal variability of the properties of the thermosphere

when changes in season are also included.

4. 2 A Modeling Study of the Structure of the Thermosphere

4. 2. 1 Description of various models

The original idea postulated by Spitzer (1949) regarding the impor-

tance of molecular conduction of heat in the energy balance of the thermo-

sphere was developed both qualitatively and quantitatively by Bates (1951)

and Nicolet (1960, 1961). Nicolets calculation for examiple predicted the

existence of a thermopause above which the atmosphere is isothermal. Based

-5 -
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on tBates' estimates, Johnson (1956, 1958) computed the vertical tem-

perature distribution for steady-state conditions. Further calculations

were also performed by Hunt and Van Zandt (1961).

The first numerical model describing the time dependence of the

structure of the thermosphere was carried out by Harris and Priester

(1962, 1965), in the region between 120 and 2000 km., and more recently

Mahoney (1966) has developed another numetical model which uses more

extensive data for the calculation of the heating rates.

Both Harris and Priester's and Mahoney's models allow variability

in altitude and time only, and are representative of equinox conditions.

Both models compute the total heating rates and the subsequent structural

changes at each time step. The model of Harris and Priester employs geo-

metrical altitude as the vertical coordinate. Boundary conditions are speci-

fied at 120 km. A time interval of 15 minutes and a vertical resolution of

1 km. were used.

Mahoney's calculations are referred to surfaces of constant pressure

which allows a larger grid spacing. Time steps of two hours are used. Boun-

dary conditions are specified at 80 km. The model extends from 80 to 500 km.

A more detailed description of the latter model will be given after a discussion

of the main results of these two models.

The results of Harris and Priester's calculations when the energy

sources are due solely to ultraviolet solar radiation, do not agree with the

results of satellite observations in two ways: First the calculations yield a



diurnal maximum of temperature and density at 17 hours local time, not at

14 hours local time as is observed. Second, if the incident flux is adjusted

to give the observed average temperature, the calculations predict a diurnal

variability which is large compared to the observed amplitude. Harris and

Priester have proposed a "second heat sources"' with the proper characteris-

tics to reconcile the results of their computations with observations. They

attribute this second heat source to solar corpuscular radiation or its "steadg'

component, the solar wind. They give no explanation, however, for the as-

sumed time dependence of the second heat source, nor do they specify the

space dependence.

The results of Mahoney's calculation indicate that the amplitude of the

computed diurnal temperature and density variation is related to the choice of

latitude and of the absorption cross section. His model can yield reasonable

thermospheric structure only for a limited range of the various atmospheric

parameters. However, the phase of the computed temperature variation is

not sensitive to changes in the model parameters, and he finds that the maxi-

mum temperature occurs around 18 hours local time. He has also suggested

that horizontal energy transport must be included in order to improve the

model calculation so as to achieve the phase relationship deduced from satel-

lite data. -

It should be pointed out here that both Priester and Harris, and Mahoney

have included in their models the effect of the vertical motion associated with

nonadiabatic heating, however, the subsidence heating and the effect of the



vertical velocity associated with the positive and negative divergence of the

horizontal wind field have been neglected. These effects will be discussed

in section 5. 2.

It should be worth while to mention here that when the time dependence

of the heat conduction equation is neglected the model reduces to the descrip-

tion of an equilibrium state. The solution of these equations is commonly re-

ferred to as "The Mean Atmosphere. " The model characterizing the proper-

ties of the thermospheric structure is then called a "static model, " or a

"steady-state" model. However, at high altitudes--i. e. above the thermo-

pause--the densities have a large diurnal variability and therefore, a mean

reference atmosphere has little meaning. Nevertheless, the static models:

have provided much useful information concerning the properties of the upper

atmosphere. The construction of the static models have been undertaken by

many investigators and the results are widely used. The major contributors

to this important task are Nicolet (1960, 1961), Chapman (1961), Bates (1951),

Mange (1955, 1957, 1961), :Johnson (1956, 1958), and Jacchia (1960, 1961)

among others.

Radiative sources and sinks of energy and heat conduction are impor-

tant mechanisms in the thermosphere and only by the consideration of these

processes can the structure of the upper atmosphere be adequately described.

Absorption of solar ultraviolet radiation is the main energy source; it

is present only in the daytime and, although energy loss by radiation is smal-

ler and less important in the upper thermosphere, it is significant in the lower



thermosphere throughout the day and night. Vertical conduction of heat is

also important in the heat balance of the thermosphere. During the night

when the sun is absent the vertical heat flux is mainly controlled by con-

duction.

4. 2. 2 Calculations of the energy sources and the structure
of the thermosphere

The basic model and the computational scheme used to calculate the

energy sources and the structural changes of the thermosphere is described

in full by Harris and Priester (1962, 1965) and Mahoney (1966), so it is un-

necessary to repeat it here.

In the present work the numerical model of Mahoney will be adopted

and only a brief summary of the basic principles will be presented here.

The governing equation describes heat conduction with energy sources in an

atmosphere composed of 0, 02 and N 2 , and extending from 80 to about 500

km. All calculations are referred to 15 surfaces of constant pressure and

no explicit horizontal variability is permitted in the model. The pressure

changes by a factor of e, 2. 718, between adjoining standard surfaces, and

the height of the lowest surface labelled surface 1 is fixed at 80 km. 02 and

N2 are assumed to be perfectly mixed between 80 and approximately 105 km.,

and the vertical distribution of 0 in that region is specified in a manner so

that the effects of the photo-dissociative production and the subsequent ver-

tical diffusion of 0 are taken into account. Diffusive equilibrium is specified

for all three constituents above 105 km.

When no horizontal variability is permitted in the model we saw, in
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section (3. 1) that the hydrodynamic and thermodynamic equations reduce to

the simple form (cf. equation (3. 2)).

(4.1) Cf ror - +

where T = T (Z, t) = temperature, (deg. K).

-1 -1
Cp = specific heat at constant pressure (ergs gm deg )

?TOT) s q , .o= total and individual heating rates per

unit mass (ergs gm-lsec-1

It is assumed that the heating due to the absorption of solar radiation

( qJR ) is accomplished by the portion of the solar spectrum for which

1775 A > X > 30 Ao; this part of the spectrum is divided into 32 wavelength

bands, and absorption coefficients for N2 , O and 02 for each of the bands are

specified. The solar heating at level k due to the flux in wavelength interval

Sis calculated as

(4.2) (C V F, o U 32 (R) M; b L
Y 

izi 
, ) -2where F, () = solar flux in interval t outside the atmosphere (ergs cm - 2

sec-1

6 = efficiency factor for solar heating,

Ti = number density of ith constituent ; (0, 02 and N 2 ) at level K(cm-,

n = total number density at level K,

= absorption cross-section in interval for ithconstituent (cm 2 gm-l),

S= gram-mlc ular weight or ith constituent (gm),
..-

,.h

0I = mean molecular weight at level K (gm)
K

absorption path length for ith'constituent above level K.

'p
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The total solar heating at level k is computed as the sum of the contributions

from all 32 wavelength bands. Solar energy flux data corresponding to aver-

age values of solar activity were used (Hinteregger et al., 1965) and the heat-

ing efficiency 6 was set equal to 0. 60 for N 1200Ao and 0. 10 for > 1200Ao.

The heat loss ( Q, ) is due primarily to the radiation of atomic oxy-

gen at 63o . Its magnitude is quite small compared to the heat gain by EUV

radiation in the region above 150 km. However, below this altitude, it has an

important role in determinfrig the temperature distribution.

The radiational cooling rate at level k is calculated according to the

form suggested by Bates (1951) and used by Harris and Priester (1962):

(4.3) *K .(I)x O _._ _ _ _ _

S- (0) X 10 /.61 f-p (-2 2 ?/-TK )

1+ - o ,0.6 ex(-22 /T -) 4. 0.Z e x zp(-.31/T)

-1 -1
ergs gm sec

where 5 = total mass density at level k (gm cm-3).

The conduction heating at level k is calculated as

(4.4) K

-K

where H = mean scale height at level k (cm)

K= coefficient of heat conduction averaged according to concentration

-1 -1 -1
of the constituents (erg cm deg sec ).

Equations (4. 2)-(4. 4) for the individual heating rates are substituted

into equation (4. 1); the resulting equation is a parabolic equation for T =

T(Z, t). This equation is integrated numerically with the aid of an implicit



scheme (which is required for computational stability), and the new temper-

ature at each of the standard pressure levels is calculated every time step

because these changes influence the calculation of the heating rates. Thus

the data available at the end of each time step include the temperatures and

heights of the 15 constant pressure surfaces, the individual and total mass

and number densities, the individual and mean scale heights, the mixing

ratios for the constituents, and the individual and net heating rates.

4. 3 Seasonal and Latitudinal Variation of the Temperature and Density in
the Thermosphere.

4. 3. 1 Description of experiments

In this section the horizontal variability of the thermospheric struc-

ture is investigated when changes in season and latitude are permitted in the

model. Mahoney's calculation for the equinox case is extended and a new set

of calculations representing solstice condition in both hemispheres are ob-

tained.

During the first solstice calculations the initial temperature profiles

from the equinox cases were used; however, several model days elapsed be-

fore the solutions converged. Subsequently, initial temperature values which

could converge rapidly toward diurnally repeating solutions were chosen.

(Convergence toward a diurnal cyclical state is taken as the criterion for

true solutions). Two hour time steps were used throughout the experiments

until nearly cyclical solutiorswere achieved; then final data were obtained

using one hour time steps. Because of the larger number of model days
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Table 3
Results of Numerical Experiments According to Model

See Text for Identification of Terms
Equinox

Calculation.

15
T1 (0600)

(OK)

967. 9
749.0

1420. O0
1066. 6
967. 9

N
(days)

9
5

12
3
9

TF (0600)
(OK)

640.7
799. 5
968. 8

1069. 6
1097.1

(same as in northern hemisphere)

June Solstice

15
Tj (0600)

(OK)

985. 8
1370.0
1042. 9
1092. 1
1090.2
969. 3
754. 8
467.0
664. 4

N
(days)

9
5

10
6
3
6
8
5
9

TF 15(0600)
(oK)

1533. 9
1514. 4
1370.0
1153. 9
1064. 3
855. 6
607. 7
381.0
211. 6

LAT
(deg)

60N
45N
30N
15N

0
15S
30S
45S
60S

Cony
(%)

1. 5
0

0.1
0. 1
0. 4

1.59
1.54
1.49
1.46
1.45

LAT
(deg)

60N
45N
30N
15N
0

15S
30S
45S
60S

Cony
(%)

1.8
0. 7
0.7
0. 5
0. 8
1.0
1.5
2. 2
4. 3

1.27
1.32
1.37
1.44
1.46
1.52
1. 65
1.77
1. 63

L~---~- IIY-- ~^-r~~-rr*l~ l^- rloa~-- -a -- -rr~---ir -~y^~ur.?~-uux-----r~yn~-,
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needed to obtain true solutions at 60 latitude, no experiments were carried

0
out for latitudes larger than 60

15
A survey of the numerical experiments is shown in Table 3. T 1

(0600)and TF 15(0600) represent the temperature of level 15 at 0600 hours

during the initial and final model day of each calculation. As discussed be-

low T 1 5 represents the temperature above the thermopause. N is the num-

ber of model days needed in the experiment to obtain cyclical solutions. "Conv"

is a measure of the convergence toward a cyclical state for the model defined

as 15 r

COny - 17TST DAooo) REVIoUS DA(00 x oo
-1 (0600)

The last column in table 3 indicates the calculated ratio of the maximum to

the minimum temperature (R) for the last model day at level 15 at each latitude.

4. 3. 2 Model results for heating rates

This section includes the distribution and changes of the energy gain

and loss according to the model calculation. Only a small sample is presented

here.

Once the structure of the thermosphere is known, the heating and cool-

ing rates are computed for each level in the model every time step. The inves-

tigation of seasonal and latitudinal variation of the heating rates is accom-

plished by allowing seasonal and latitudinal dependence in the absorption path

length for each constituent. The absorption path length is a function of the in-

tegrated density above a given altitude as well as of the solar zenith angle (Y').

The solar zenith angle dependence takes into account the unequal solar radia-

x~l-ir.-- r~xu - -I~ -~i - -- -s~u~ip~ ^^~'^O~WI



tion distribution in the earth's atmosphere and is related to the solar

declination ( a ), latitude ( ), and the hour angle (h) by the equation

(4.5) c os V'= s in s jw 5P + c os i c os /O co h

Thus the response of the model thermospher e to lengthened (long summer

days) and shortened (long winter nights) periods of solar radiation and the

subsequent heating rate changes are studied.

Figures 1 and 2 illustrate the vertical profile of the heating and

cooling rates for several latitudes for equinox and solstice conditions.

Very little seasonal change occurs in low latitudes, however, in iniddle

and higher latitudes the seasonal variability is important. The seasonal

changes in general occur in the region between 100 and 300 km. Figure

I shows also that the heating and cooling rates in the winter season have

larger values than in the equinox and summer season. These differences

generally tdke place in the altitude range of 150 and 250 km.

This paradoxical behavior is understood if we consider the varia-

bility of the heating rate with density and absorption path length (see equa-

tion 4. 2). When seasonal changes are examined, the density at a certain

height is greater in summer than in winter. Similarly the absorption path

length is larger in the summer than in winter. These differences increase

with latitude. Consequently the heating rate at a constant altitude becomes

smaller in summiier than in winter. We could also say that the heating rate

remains approximately constant along a surface of constant density. Hence,

it becomes evident from figure 12 why the heating rates have the nature des-

cribed above. A similar argument applies to cooling rates.
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HEATING AND COOLING RATES AT 12:00 LOCAL TIME

tI0 10 10' I 10 10'

HEATING "K/DAY COOLING OK/DAY

Figure 1: Vertical distribution of heating rates by absorption of
'EUV Solar radiation for several latitudes and seasons; and cooling
rates by long wave radiation emitted by O at 1200 local time.
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HEATING BY RADIATION K/DAY AT 0600 U.T.
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COOLING BY RADIATION 0K/DAY AT 0600 U.T.
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Figure 2: Longitudinal cross-section of heating and cooling
rates at 0600 universal time.
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We must keep in mind that the results discussed above are somewhat

unrealistic since no horizontal transport of mass has been allowed in the mo-

del calculations. When horizontal motion takes place and the mass transport

is not sufficient to over come the seasonal effect, the discussion above might

be expected to apply with reduced differences. This is supported by denfty

measurements, including variations with latitude and season. May (1963)

and Anderson (1966a, 1966b) have reported the existence of large density

variability with latitude. This will be discussed in section (4. 3. 4).

Figure 2 shows the variability of heating and cooling rates with longi-

tude or with local time. As pointed out by Mahoney (1966) there is very little

variation of cooling rates with local time.

In the region above 150 km. the magnitude of the cooling rate is about

ten per cent of the magnitude of the heating rate; however, below this altitude

both are equally important.

4. 3. 3 Model results of temperature variation

This section contains a survey of the computed variability of tempera-

ture in the thermosphere as a function of altitude, local time, latitude and

season.

We have stressed above that the temperature distribution in the thermo-

sphere is governed mainly by heat conduction and by absorption of the incident

EUV solar radiation. Any change in the source input leads to changes in the

temperature field and therefore it is important to know the kind of variations

we would expect in the atmospheric properties when the sources undergo sea-



Figure 3: Diurnal and seasonal temperature variability with
altitude at 15 and 45 deg. latitude according to the model calculations.
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sonal and latitudinal changes.

Figures 3 and 4 illustrate the computed vertical temperature pro-

files for low, mid and high-latitude cases. The altitude scales in these

figures, as well as in figures 8, 10, and 11 are presented in both geo-

metr-ic and geopotential height units. Geopotential heights, based upon a

reference level of 80 km., are used in the model calculations. Tempera-

ture profiles in figures 3 and 4 correspond to 0600 and 1800 hours local

time; these are approximately the time of minimum and maximum tem-

peratures for all calculations except those corresponding to the high lati-

tude winter and summer cases. f ,/ c

Figures 3 and 4 illustrate tha region of rapidly increasing

temperature between approximately 100 and 200 km. in all cases. The

thermopause (i. e. the base of the isothermal region) is directly related to

the temperature in that region, low temperature structure corresponding

to low thermopause heights, and vice versa. The magnitude of diurnal

temperature variability as measured by the difference between the 1800

and 0600 temperature profiles, decreases as latitude increases. At the

lower latitudes the amplitude of diurnal temperature variability is signi-

ficantly larger than the amplitude of seasonal variability; however season-

al variability dominates diurnal variability at middle and higher latitudes.

The temperature difference between the summer and equinox cases

for the highest level of the model is 200K at the equator and about 7000K at

0
45 latitude at 0600 hours. The corresponding values for the difference be-

-.LIUII1 ( I~-iYIII~ LIII*-L~-L-_-I~I-Y _-^ii( I-llii-l
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Figure 5: Latitudinal variability of temperature for four of

the constant pressure surfaces used in the model calculations, for the

equinox case. Profiles are presented for 0600 and 1800 hours local time.
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Figure 6: Same as Figure 5, but for the June solstice case.
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O O
tween the winter and equinox cases are 20 K at the equator and about 410 K

at 450 latitude.

Figure 5 shows the temperature distribution with latitude at the equi-

noxes for 0600 hours and 1800 hours local time. The distribution has been

plotted only for model levels 4, 8, 10 and 15. Below level 5 the temperature

distribution has very small variation with latitude. Above level 5 the tendency

for the latitudinal variability increases with increasing altitude.

The temperature gradient along the meridional circles is negative

and its magnitude increases as the latitude increases. This result suggests

O o
that the transport of energy across the latitude circles between 0 and 30

latitude is small, but at higher latitudes the meridional transport of energy

is increasingly important.

The distribution of temperature with latitude for the same four model

levels at the June solstice time is shown in figure 6. In the summer hemi-

sphere temperature increases poleward; the meridional temperature gra-

dient is positive and its magnitude remains almost constant from the equa-

0
tor up to 45 latitude where the gradient changes sign slowly. In the winter

hemisphere temperature decreases monotonically from the equator to the

pole. The meridional temperature gradient is steeper at solstice than at

the equinoxes throughout the winter hemisphere.

The calculated temperatures at high latitudes in the winter hemisphere

are much lower than those observed for this region (jacchia, 1965). This

result suggests that energy transport toward the winter pole, caused by



Figure 7: Latitudinal cross-section of temperature for
local midnight and noon, according to the model calcu-
lations.
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Figure 8: Same as figure 7, but for 0600 and 1800 hours
local time.
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horizontal conduction and h enermtal and mean meridional ver43i l advec-

,t.ier, is the dominant energy source for the entire region poleward of 45

latitude.

Figures 5 and 6 imply that at equinox the dependence of the tempera-

ture distribution on the solar zenith angle is small in low latitudes, but sig-

nificant at middle and higher latitudes. In the winter the solar zenith angle

dependence is reinforced by the effect of shorter days, leading to a very

low temperature structure. In the summer the effect of continuous heating

of the atmosphere by the sun due to longer days is predominant in low and

middle latitudes, but in higher latitudes the effect of large zenith angle re-
e-4

duces the 7t heating rate$. The turning point at 45 latitude during the sum-

mer is a consequence of these two effects. Thus in higher latitudes even

when the solar heating persists for longer periods the calculated tempera-

0
tures do not increase poleward of 45 latitude.

A more detailed illustration of the latitude dependence of the calcu-

lated model temperatures at the June solstice appears in figures 7 and 8.

Figure 7 contains an analysis of the temperature field at local noon and

midnight for the entire range of latitude and altitude employed in the study,

and figure 8 contains a similar analysis for 0600 and 1800 hours local time.

The calculated temperature profiles at noon and midnight are gen-

erally similar. The temperature maximum at approximately 45 latitude

in the summer hemisphere is indicated, and the low thermopause heights

in the winter hemisphere are also shown.

The temperature profiles for 0600 and 1800 hours, shown in figure



8 differ significantly from one another; the difference between the two pro-

files is an approximate measure of the amplitude of diurnal temperature

variation. This amplitude is approximately 4000K above 300 kilometers

everywhere in the summer hemisphere; in the winter hemisphere the am-

plitude decreases with increasing latitude, reaching approximately 1000K

at 450latitude.

Because molecular heat conductivity is inversely proportional to mass

density, the vertical temperature gradient in the model atmosphere (and in

the real atmosphere) decreases as altitude increases. The model calcula-

tion\ ndicate that the vertical temperature gradient is always negligible be-

tween model levels 13 and 15; therefore the horizontal temperature distri-

bution at any of these levels is representative of the temperature distribu-

tion above the thermopause in the real atmosphere.

The global temperature distributions calculated for level 15 at equi-

nox and at solstice are shown in figure 9. These model results can be com-

pared to similar data deduced from satellite drag observations by Jacchia

(1965). At equinox the calculated temperature distribution is necessarily

symmetric around the equator, and th- maximum tempraur a each lati-

tude occurs about one half hour before sunset. As noted previously by Harris

and Priester (1962, 1965), some other energy source or energy transfer pro-

cess must act to bring the time of maximum temperature back to approximately

1400 hours local time, as indicated by the satellite observations (Jacchia, 1965).

The lower diagram in figure 9 again indicates that the maximum cal-



Figure 9: Horizontal mapping of the temperature field for
the highest constant pressure level in the model calculations. Profiles
correspond to the equinox and June solstice cases.
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culated temperature in the summer hemisphere occurs at about 45 0 latitude,

instead of the latitude of the sub-solar point. Recently Jacchia and Slowey

(1966) have reported a better fit for the satellite density data when the di-

urnal bulge, the region of higher temperature, is centered on the equator,

rather than at the latitude of the sub-solar point. In the winter hemisphere

the daily maximum temperatures occur at successively earlier times as

latitude increases; this change follows the change in the local time of sunset.

Jacchia (1965) has also investigated the amplitude of diurnal temper-

ature variability in the region of above the thermopause, and he has found

that the ratio of daily maximum to minimum temperature remains very

near 1. 3 independent of latitude and season. Similar data from the model

calculations appear in table 3, which is discussed in section (4. 3. 1). The

calculated ratios are generally larger; the values range from 1. 45 to 1. 59

at equinox and 1, 27 to 1. 77 at solstice.

Newell (1966) has suggested that horizontal energy transport due to

tidal motions would reduce the range of temperature variability produced

by the EUV heating. From scale analysis it would seem that most-of the .

rather than tides. The difference between the calculated and observed ratios

is a measure of the magnitude of horizontal transport needed to bring the

calculated and observed temperature structure into agreement. Where the

calculated temperature ratios are significantly larger than 1. 3, larger energy



transports are required (e. g., transport from equator-to-pole at equi-

O
noxes and south of 30 N latitude at the June solstice). Where the calcula-

ted maximum to minimum temperature ratio is about 1. 3, little horizontal

o
energy transport is required (e. g., near 45 N latitude at the June solstice).

The pressure and mean heights corresponding to the model levels 1 to 15

are presented in table 4. The numbers have been printed in exponential

notation; for example E04 following a number indicates that the number

should be multiplied by 104

4. 3. 4 Model results of density variation

Most of the properties of the thermospheric structure known up to

this date have been inferred from theoretical considerations and direct

measurement of density. Determination and further analysis of vertical

density profiles and their variations are presently the basic material for

the understanding of the physics of the upper atmosphere.

Available information of the atmospheric structure in the region be-

tween 80 and 200 km. comes from rocket measurements and for heights

greater than 150 km. the observational material consists of densities de-

termined from atmospheric drag on artificial satellites. Thus calculations

of density variability from theoretical models are suitable for comparison

with observational data. In this section a small sample of computed density

variability is presented.

Because of the relationship between density and temperature, all that

we have said about the temperature changes also applies to density variations.



Figure 10: Diurnal and seasonal density variability at
15 and 45 deg latitude according to the model calculations.
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Figures 10 and 11 illustrate the density variability as a function of altitude

calculated by the model for various times of day, seasons and latitudes.

Relatively little seasonal variability occurs in the vertical density profiles

at 0 and 15 latitude, but seasonal variability becomes important at 300

latitude and at higher latitudes the seasonal variability is much more im-

portant than the diurnal variability. Figure 12 is a sample of the meridi-

onal density cross section at 1200 hours local time for the equinox and

solstice conditions. The meridional density gradient implied by the re-

sult shown in figure 12 is significant at all times for latitudes higher than

300at the equinoxes. At solstice the meridional density gradient is much

too large at all times, particularly in the winter hemisphere. If horizontal

and vertical motion were allowed in the model calculation, the calculated

density profiles would be different, reflecting the effect of horizontal and

vertical mass transfer, It is expected, however, that even when motion is

included inthe model the calculated density profiles would indicate a marked

meridional density gradient.

May (1964), after analysing data from the Discoverer series of

satellites has reported the existency of a significant latitudinal variation in

density. He found that the density at a constant altitude is a function of lati-

tude and is about 30 per cent smaller at the poles than at the equator. More

recently Anderson (1966a, 1966b) has shown that this is the case and based

on this fact he gives a qualitative explanation for the semi-annual effect

appearing in satellite orbital decay data. Furthermore his analyses indicate

that the latitudinal density variation is more important in the winter hemisphere.
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5. A TWO DIMENSIONAL NUMERICAL MODEL OF THE DYNAMICS OF
THE THERMOSPHERE

5. 1 Construction of the Model

The results of the previous sections indicate the desirability of a

complete dynamical study of the thermosphere. Large-scale transport

processes are important and must be included in the study for a better

understanding of the physics of the upper atmosphere. For a full study

of the equations of heat energy, momentum and mass there must be an

allowance for horizontal variability in the model. When the sources of

energy, momentum and mass are specified or calculated, a complete in-

vestigation of the dynamics and general circulation of the thermosphere

can be carried out. When the mean state and the short and long time

variation of the temperature and wind fields are known, the following

topics may be considered in detail:

a) The role of vertical transport of energy and angular momen-

tum in the thermosphere.

b) Meridional transport of energy, angular momentum and mass in

the thermosphere.

c) The generation and conversion of zonal and eddy kinetic and po-

tential energy in the thermosphere.

d) Large scale eddy processes in the thermosphere.

e) The effect of the wind system on the ionized component of the

upper atmosphere.



The main purpose of this chapter is to investigate the role of the

vertical and horizontal motion in determining the structure of the thermo-

sphere and its variation, and specifically to investigate whether the inclu-

sion in the model of the subsidence of heat and vertical advection of heat

can bring into agreement the calculated and observed amplitude and phase

of the diurnal temperature and density variation.

To carry out this task we shall simplify the dynamical equation de-

rived in chapter 2 and solve by numerical techniques. It is hoped that the

highly simplified model will provide the basis for a more complete study

of the general features of the thermospheric dynamics.

5. 1. 1 Simplification of the dynamical equations.

The method used in this section for the simplification of the hydro-

dynamic and thermodynamic equations consists of omitting certain terms

which are of secondary importance according to some criteria, or terms

whose omission will facilitate at first mathematical or numerical calcu-

lation. In doing so we may expect to gain some insight concerning the

relative importance of the terms retained and omitted.

The criterion for determining the order of magnitude of each term

in the equation is the scale analysis developed in chapter 2. By neglecting

certain terms we may decouple various physical processes while retaining

the desired phenomenological features.

Dependent variables are expanded in a series of orthogonal functions.

A suitable set for such a spectral expansion is a Fourier Series. The set



of coefficients of these eigenfunctions becomes the new dependent variable.

This set is capable of representing the features of principal interest.

The simplified two dimensional model, which is an extension of

the model described in section (4. 2), is obtained with the following initial

assumptions: 1) only a latitudinal plane is considered, with V'= 0 and

S= 0; and 2) any interaction between the ionized and neutral constit-

uents in the thermosphere is neglected, which amounts to the omission of

the ion drag term in the horizontal momentum equation. Under these con-

ditions the governing equations (2. 50)-(2. 53) in (x, Z, t) coordinates reduce

to (in dimensional units)

(5.1)L I
t H 3Z j ZJ

(5.2) + - Z:

(5.3) c ii+zS .f UL +

where $ +

According to our scale analysis the term underlined is approximately

an order of mag i.r d less than the rest of the terms in equation (5. 3). How-

ever, it will be included in the system to investigate to what extent its effect

may have on the amplitude and phase of the diurnal temperature and density

variation. Calculations have been carried out with and without this term,

and these will be discussed below.

- 81 f-
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5. 1. 2 Equations in the domain of wave number

We next express each of the dependent variables in the latitudinal

plane with horizontal scale L in terms of a Fourier expansion of the

general form

(5.4) bf a (ZL) s ,*n x bn(Z t) cosXXj

where a n and b n are the Fourier coefficients, dependent upon Z and t and

,. 27~/lL. For a boundary condition / is taken to be periodic with

wave length L in X.

With the use of the relations presented in appendix A, we may now

transform the governing equations (5. 1)-(5. 3) from the space domain to

the domain of wave number.

The final step in the simplification process is the truncation of the

spectral expansion (5. 4) such that only a finite number of coefficients an

and bn will be retained..

The selection of the truncated set is closely related to the physical

process we want to investigate. If only low wavenumber terms are re-

tained only large-scale features will be retained in the model.

Our main interest is the observed diurnal variation of the thermo-

sphere, which may be considered to be a planetary scale disturbance.

Therefore, we shall restrict ourselves to keep /in the system only the

mean zonal co.ponnt and the lowest wave number disturbance.

The simple dynamical system is therefore formed by retaining only

those three terms for which q? assumes the value of 0 and 1. The depen-



dent variable $ in (5. 4) then takes the simple form

(5.5) (,(x,t) -Z(z ) r Lz, )s; Xx Z- t) Cos Ax

where
Yv, = bo/ 2

The first term in R. H. S. of (5. 5) represents the mean zonal com-

ponent, the remaining terms represent disturbances superposed on the

zonal component and together they depict a disturbance of a single wave

number.

The basic equations obtained by.substitution of (5. 5) directly into

(5. 1)-(5. 3) are presented in appendix B. Here we display only the relevant

equation for the equation of heat energy,

(5. 6) c Ko 7i O K.
S 2  + .o ,,H Z T7 He,

(5H ,

P-S C o/-l UC -

2.

(5.8) C 2 E 2 iL L
5H Z Moc-7 g 3Z H

CP U'aT - <PZ ZC RKZ7 Q,.
JZ M



5. 1. 3 Method of numerical solution

Equations (5. 6)-(5. 8) together with equations (B. 4)-(B. 6) are a set

of nonlinear differential equations and must be converted into a set of alge-

braic equations by replacing vertical and time derivatives by finite differ-

ences. To avoid the problem of computational instability that may arise,

an implicit scheme for the finite difference approximations has been

adopted (Crank and Nicholson, 1947).

Let us define the symbol My; ( - 5,A to indicate the

value of Y" at level n and time step m. The time derivatives are

evaluated as simple forward differences in time

(5.9)

where At is a measure of the time step and the superscript denotes the

ith component in (5. 5) (i. e. / ": ). The vertical differencing has a

spacing of 4Z = 1/2 for the second derivative and AZ = 1 for the first

derivatives. Thus

(5.10) 2) 9,, +( 

___ -, n I '' n , -

In order to evaluate the vertical derivatives at the top and bottom of

the model, boundary conditions must be specified at the boundary surfaces.

The boundary conditions should be prescribed in accordance with section 2. 3.

The homogeneous boundary conditions applied as Z 0 and Z 0', are
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(5. 1) Z-Ao

Z -a

which implies the

daries, and

fact of no

fact of no flux

S Wr eT

of heat and momentum through the boun-

(5.13) , / = Z

which implies the fact of no flux of mass at infinity. Since the finite differ-

ence approximations can not be carried out to infinity, the above boundary

conditions have been applied at level zero and level 16 of the model calcu-

lation. Similar boundary conditions have been also applied for f 4 ~, ~

and A in the finite difference scheme. These boundary conditions are

weak, especially the lower boundary condition, however, we shall assume it to

be sufficient for the present investigation. A more detailed specification of

the boundary conditions must follow this study.

The zonal component of the horizontal momentum equation is eval-

uated at level n and time step m from (B. 5) for i = S

(5.14) 1 c

- +;nm n

with similar expressions for i = 0 and C.

The heat equation is evaluated at level n and time step m from (5. 7)

for i =

(5.15) (CP)n -
"n

K,m (I 5
0'("1

r?,m/4nt~z +

4T I



Cfx(p, L Y)) - R( ) Z'70S(cp) m () M nUm C P, Zn , 4Z ZM M

with similar expressions for i = 0 and C.

Through mathematical manipulations, each equation (i. e. eq. (5. 14)

and the corresponding for i = 0 and c ) is transformed to a system of simul-

taneous equations which must be solved for L n,, ,E; . The system of

equations may be written as the matrix equation

(5.16) Aji(U) J"B "

t4) , t I K !E S

where the dummy subscripts j and K both refer to level number, and

(UN, t -(nI . All quantities except the new

zonal wind (( i) are evaluated at the initial time m. (U ) is ob

tained from

(5.17) (UN) A B

the elements of AjK are zero except those along the main diagonal and the

-two adjoining inferior diagonals:

(5. 18) "j, t • J-"~ ~ = i-= " i,,j

t
,aL"

(5.19) A6 t
OW /

0U

Y di "

'Itr j~ p

The element of are:

(5.20) -(Ur) -cF'u t-.zCu+(uI)are"

SJ-J *I, j(u.7 _ ,
UZ -ts rv)

-90-
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where

(5.21) : s

The system of simultaneous equations for the temperature T are ob-

tained following the same procedure as described above for UL, however,

here To, T s, and Tc are coupled in the system of equations and therefore

they must be solved simultaneously. With the following notation: ( TM =0(TM)

for I ! k 15; (TiNs .(TN) for /C 6 K t 30 and (T7Nc)  (T7v)

for 31 £- k 5 115 , the system of equations may be written in matrix form,

(5.22) AjK (TN ) )' . .

The matrix AK may be written as

&AiK C, O-k' ' C
- I-

o

where O.jK, , j and -, k have the same general form, except for

0
the superscript in the variables. The elements of ., , for example, are

zero except those along the main diagonal and the two adjoining inferior

diagonals:

_ ,t:" K/ Ku,K
(5. 24) aj o 0

(5. 25) -jJ 0 - H6)2
a - IJ.

__X __I__I__~_~___I~ _X~rll~ __ __I/ II/_~~_



aJ, A
0

o ,H 

,,,

The elements of bjKi, C, 4dK and e.y are zero except

those along the adjoining inferior diagonals:

(5.27)

(5.28)

(5.29)

(5.30)

(5.31)

(5.32)

(5.33)

(5.34)

.5
Zi

(A6) "Z

CjJ- I

cJj, J-1

e , J I
eiy-l

'P

i

- f

(at)

At)
4

Zj

Z

* C
Zj

Z.

The elements of 8i are:
o

e-s =. - 4 " x.1~, J~ _
S CT
J TJ

c-- 2 * S - ---- S 5
A J J 

* "C(
SZ .

.9.~
*0

7C

I -

"°}
z S-,, - T , ,

2 

* . 0

J J
(C., .

o C

(5.26)
Ki

o
K,- 1 ) 1

(5. 35)

" 5

R zM(cp.
FI(Cp).

5
Ti.J

(5.36)

M,(c,, .

=a~

c

J

I5-

t4Le

i J

- (t)

' (4' k

JJI



(5.3 ) Zj 8j +- 1 2 4 P"

S -. 3u 2 (J Mo 3'

(2XU7 '--') (SR 31 iJi T

where

Now the temperature at the new time is obtained from

(5. 39) T N) -- A
J-I

Two assumptions that simplify the computational scheme have been

used: 1) the quantities/ e/ and K/// change slowly in time and hence

the vertical derivative can be evaluated at the initial time only; and 2) .///

and /// depend on T o only and consequently K , for example, can be re-

placed by K/H o

Given an initial condition for Ti and Ui, all quantities in the model are

evaluated at level n and time m using equations (2. 8) and (5. 5). The zonal

wind at fime step m + 1 is calculated next. The vertical motion is obtained

from the continuity equation and the temperature at the new time is calculated

if the heating and cooling rates are known. The same procedure is then re-

peated over again.

5. 1. 4 Solar heating and radiational cooling rates

The heating and cooling rates are specified in the model calculation.

These are obtained from a detailed study of the energy sources in the ther-

mosphere carried out by Mahoney (1966). The one dimensional model re-



270 270- Le I
IF Level 15

Level 10

ro I O -
2 Level e 0

S- Level 8

O O

0" 60" w"o 0 240 3000 360" 96 60" 120" 180" 2400 300" 360"
LONGITUDE LO NGITUDE

590 -45

1800U.T.45 2400U.T.

Level 15 Leve
360 - 360 -

40270 - 270 -
E 9

Level 10 Level 10

180 180-.00

Level 8 Level 0

27 0 0- Level 6SLeve 6

S-90
.90 1 BT, 240" 3006 36000' 60* 120' 180 240 3 60 24 30 36

LONGITUDE LONGITUDE

Figure 13: Longitudinal variability of heating plus cooling rates for four of the constant
.pressure surfaces used in the model calculations for 0600, 1200, 1800 and 0000 hours
universal time.



sults for heating and cooling rates has been summarized in section 4. 3. 2.

0
The heating and cooling rates corresponding to 30 latitude for the equinox

condition have been decomposed into the form of equation (5. 5) by the

method of harmonic analysis, and used as input data for the two-dimen-

sional model.

Figure 13 shows the result of this analysis. In this figure the vari-

ability of the energy source ( f- R ) with longitude and time for levels

6, 8, 10 and 15 is presented.

5. 2 Results of the Model Calculations

5. 2. 1 General description of the model calculations

The main purpose of this section is to evaluate the capability of the

simple dynamical system selected for characterizing the features that were

intended to be desci-ibed. The questions that may be asked are: starting with

a thermosphere at rest and given an externally driven thermal force, what

sort of motions appear as a natural consequence of governing physical laws ?

What effect does this motion have on the thermal structure of the thermosphere?

By specifying the temperature field and assuming the region is at

rest, the structure of the thermosphere and the motion field for future times

are calculated. One would expect that eventually some sort of quasi-equili-

brium would be reached, in which the heat from the sun would be balanced

by some dissipational effect (c. g. molecular viscosity and airglow). All of

the results presented below correspond to 30 degrees latitude at equinox.
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The initial temperature field was taken from the one dimensional model

result, which had about the right amplitude, but with phase lagging by

about four hours. The time step was set to two hours (the finite difference

scheme allows us to take any value for the time step without the problem

of computational instability). The longitudinal temperature profile was

selected for reference. Convergence toward a longitudinal cyclical

state is taken as the criterion for physical meaningful solutions, since

the observed behavior indicates that this is the case.

The result of this calculation is presented in figure 14; several

comments may be given here: 1) the presence of wind system certainly

can affect the temperature field; and 2) after one model day the phase of

the diurnal maximum temperature has shifted to about 14 hour local time,

however, the amplitude is too large. The amplitude still was increasing

when the number of time steps was continued.

In the following calculations first the values of both u and Z then only

u and then only Z were set consecutively equal to zero, in the thermody-

namic equation. It was realized immediately that the cause of the chan-

ges in the temperature was the term involving the vertical velocity. Next,

we introduced a factor 6 which premultiplies the term involving the verti-

cal velocity in the thermodynamic equation. Fig. 14 is then obtained with

E = 1. 0. The results of the temperature field with E = 1. O0 imply

that E should be smaller than 1. The introduction of 6 in the model

is due to the fact that computation of Z from the continuity equation neglec-
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Figure 15: Same as figure 14, but for model calculations with E = 0. 75.



LONGITUDINAL TEMPERATURE PROFILE AT 0600 U.T.

LONGITUDE

Figure 16: Same as figure 14, but for model calculations with - 6 = 0. 5
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.The energy transported by the horizontal advection is negligible.

Results of calculations with E = 0 indicate no change from the initial

condition, in the temperature field. Nevertheless the calculations have

been carried out including this term. The temporal variation in the mo-

del has as reference the Greenwich meridian time (U. T.).

The result of the temperature field for 6 = 0. 75 is shown in fig-

ure 15. Again the phase of the maximum temperature has shifted to

about 15 hours local time after one model day. The amplitude of the

temperature was still increasing after model day 2. Similar results are

presented in figure 16 and 17 but for ~ = 0. 5 and E = 0. 25 respectively.

In figure 16 the phase has shifted to about 14 hours local time, by the

third model day. After several model days, the solution did not converge

and the amplitude continued increasing although very slowly. Figure 17

further indicates that even when the amplitude continues to increase, the

phase of the maximum temperature remains at about 14 hour local time.

Figure 18 summarizes the above results. It depicts the temper-

ature variability for level 15 for the cases discussed above.

5. 2. 2 Model results for temperature variability

A sample of computed temperature variability is presented here.

Figure 19 illustrates the longitudinal temperature cross-section at

0600 U. T. In this figure the initial temperature distribution is compared

with the model calculation for = 0. 25 for model day 4. The influ-

ence of the initial condition on the model calculation disappears in a few
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LONGITUDOE- TEMPERATURE PROFILES AT 0600U.T. FOR LEVEL 15

LONGITUDE

Figure 18: A comparison of initial and calculated temperature
variability at 0600 hours universal time for the highest constant
pressure level in the model calculations. (a) For E = 1; (b) for &
= 0. 75; (c) for E = 0. 5; and (d) for E. = 0. 25.
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time steps, the model then adjusts itself by reproducing the diurnal pattern.

The large temperature gradient between about 100 km. and 200 km. is also

present. Maximum temperature occurs at about 14 hours local time, thus

reflecting the effect of adiabatic heating and cooling as mentioned in sec-

tion 5. 2. 1. The amplitude of the diurnal temperature oscillation is about

the same as the one dimensional model results.

Figure 19 shows that below about 180 km. the diurnal variation is

very small, but above this altitude diurnal variability becomes quite large.

Figure 20 illustrate the longitudinal temperature cross-section for

model calculation with & = 0. 5. The temperature distribution corres-

ponds to model day 2. This figure indicates different stages of the behav-

ior of the temperature field. The figure shows the cross-section at ini-

tial time, 1400 hours, 2200 hours and 0600 hours U. T.

In general, the model reproduces reasonable temperature distribu-

tions with altitude, longitude and time. Apart from the fact that the ampli-

tude of the temperature oscillation increases with time, as a consequence

of the intensification of the vertical velocity, the model results indicate

that the adiabatic heating and cooling play an important role in the energy

balance of the thermosphere. The adiabatic heating and cooling by verti-

cal motion acts exactly as the second heat source of Harris and Priester,

providing heating in the late morning and cooling in the late afternoon. The

values of the vertical velocity computed from the present model are of course
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a crude approximation in two respects: 1) horizontal motion in the north-

south direction has not been included in the model; and 2) the effects of

the coriolis force and the ion drag have been neglected in the calculation

of the zonal wind component. Allowance for these factors might modulate

the magnitude and the space and time variation of the vertical velocity, and

thus eliminate its growth with time.

5. 2. 3 Model results for winds in the thermosphere

The solution of the zonal component of the momentum equation, when

only inertial force, molecular viscocity and the geopotential gradient are pre

sent in the momentum balance, is given below..

At an initial time, the thermosphere is assumed to be at rest. Solu-

tions with various other initial conditions were also obtained, but the resul-

tant motions were found to be independent of the initial values.

The resulting wind system is made up of only two components, namely,

U1 and U 2 . If Uo is set equal to zero initially, then Uo is equal to zero at

all times. This is because the driving force (ho), which is the mean zonal

component of the geopotential height, has zero gradient. When initial

values are specified on Uo , the molecular viscocity dissipates it within a

few time steps. That is, the model can not reproduce a mean zonal wind.

The results of the winds in the thermosphere in absence of mean flow are

summarized in figures 21 - 24.

Figure 21 shows the longitudinal zonal wind cross-section for the

model calculation with = 0. 25 at 0600 Universal Time. The top dia-
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gram is for model day 1 and the bottom diagram for model day 4. The

intensification of the zonal wind component from the initial time to day

4 throughout the region can be seen from this figure. The largest mag-

nitude is about 214 m sec- . The bottom diagram in figure 21 indicates

the development of a west-east and east-west jet at 0600 hours and 1800

hours local time, respectively, at about 180 km. altitude.

Figure 22 is the same as figure 21, but for e = 0. 5 at different

times of the day. The upper left diagram in figure 22 shows the result of

the model calculation at time step 1 with zero initial condition. -The lar-

gest magnitude of the wind is around 90 m sec- 1 and occurs above 500 km.

altitude at about 1200 hours and 24 hours local time. The remaining dia-

grams in figure 22 shows the development of the wind field during the mo-

del day 2.

Figure 23 illustrates the zonal wind component as a function of alti-

tude at various times of day. The, model results correspond to = 0. 25.

During the first three days the amplitude of the velocity oscillation did not

change much; the largest value is about 100 m sec-1. At the 4th day, how-

ever, the magnitude of the velocity profile has increased and the maximum

value is of the order of 200 m sec1.

The results presented in figure 23 can be compared with similar

wind profiles obtained by Lindzen (1967). Lindzen has included the ion

drag term in the zonal component of the momentum equation. He shows that

the profile of the wind amplitude largely depends on the ionization distribu-
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tion. When he did not include the ion

wind above 400 km. is around 800 m.

large as the magnitude reported here.

present model, the speed of the zonal

sec.-1

drag term, the magnitude of the zonal

-1sec.-. This value is four times as

If ion drag had been included in the

wind would be smaller than 200 m.

The results of the model calculation for the vertical motion is dis-

played in figure 24. This figure depicts the distribution of vertical velo-

city with altitude for various times of day. Here C -" P . The re-

sults correspond to the model calculation with £ = 0. 5. The

figure roughly indicates the regions of adiabatic heating and cooling.

For example, for this day, there is adiabatic heating throughout the ther-

mosphere in the period between 0800 hours and 1400 hours local time,

adiabatic cooling throughout the region from about 2000 hours to 0200 hours

local time and a combination of heating and cooling at other times at differ-

ent levels.
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6. GENERAL DISCUSSION AND CONCLUSION

The object-of this investigation has been to provide a rational basis

for understanding the dynamics of the thermosphere. The study was pri-

marily intended to describe the large-scale forced motion resulting from

the diurnal heating in the thermosphere. It is to be considered as the

initial step toward a more complete development of the theory of thermo-

spheric motions by means of analytical and numerical methods.

The use of nondimensionalization has become a powerful procedure

in modern meteorology and is being used extensively in many related sci-

ences. Here the method has provided a way of simplifying the general

equations which otherwise would be mathematically untractable to a set of

equations capable of describing many features of interest.

If our interest were to study smaller scale thermospheric motions,

the same method described in chapter 2 could be used with different char-

acteristic scale parameters. In general, the formulation of a more elabor-

ate tidal theory should follow along these lines.

The results presented in section (2. 2. 5) (cf. table 2) could be used

to approximately obutain analytical solutions of the system of e quations (5. 50)

to (5. 53) in certain regions of the thermosphere. For example, in the alti-

tude range of 80 to 150 km. the effect of viscocity and heat conduction can

be neglected in the equations. Theories such as developed in dynamical

meteorology might then be used to obtain the resultant temperature and

wind fields. Likewise, above about 350 km., coriolis forces and inertial



forces might be neglected.

The general method used in chapter 3 to obtain solutions of the

transient heat conduction equation could be extended and applied to sev-

eral other similar problems. As an example, consider the problem of

obtaining an approximate analytical solution to the momentum equations

(6.1) +1h f h I C"

If and - are known and if (coefficient of ion drag

term) is assumed to be constant, then it is possible to obtain approximate

analytical solutions.

With the transformation of the vertical coordinate from Z to

(cf. section 3. 1) equations (6. 1) and (6, 2) reduce to

(6.3) 1_ + bu-C a 

(6.4) t - + o

where

(6. 5) 44 /

C (f/S)3

A single equation in the variable w = u + iv can be obtained by multi-

plying all terms in equation (6. 4) by i and adding both equations:



- ) -,_ (b -,C o( -

Equation (6. 6) is further transformed into a form similar to that of the

heat conduction equation obtained in section (3. 1) (cf. equation 3. 6)

(6.7) -aw

by the substitution

(6.8) w .

where b-

(6. 9) e f+ 8

Solutions of equation (6. 7) are now readily obtained in terms of Green's

function for the cases discussed in section (3. 2) and (3. 3) for various

assumed types of dependenc of the ratio / in the vertical coordinate.

Lindzen (1967) has obtained numerical solutions of the zonal com-

ponent of the momentum equation neglecting the coriolis force and using

the equivalent forcing of )b / K derived from the Harris and Priester

(1964) model atmosphere. An equation equivalent to (6. 7) for the zonal

component when the corioilis term is neglected is

(6. 10) -_ g -

where

(6.11) 4 C U



and

(6.12) x - Fo d

Solution of equation (6. 10) is again easily obtained following the same

procedure as outlined above. An analytical solution of (6. 10) would then

be of interest in order to see the accuracy of the approximations. Like-

wise it is important to evaluate the integrals in the analytical solution of

the equations described in chapter 3. This can be carried out first by

assuming a simple form of the source function (heating and cooling rates)

and comparing the different approximations obtained by the assumptions

of K/H with numerical results.

One obvious fault of the two dimensional model is the neglect of

the coriolis force and the ion drag in the momentum equation, but even so,

the model has yielded many interesting results. To obtain physically more

realistic situations, these terms must be included.

It would be very important to derive the energy balance equations

in the thermosphere and investigate the energy budget of the region. A

first step in this direction has been made recently (Newell, 1966b). Such

a study is required to establish whether sources and sinks of energy other

than those employed in the present model are of importance to the dynami-

cal behavior of the thermosphere.

The principal conclusions, which the analysis presented in the pre-

ceding chapter has made possible, may be enumerated as follows:



1) Scale analysis considerations of global scale diurnal motions

indicate:

a) nonlinear advective terms in the momentum and ther-

modynamic equations can be neglected only if the magnitude of the zonal

wind component is smaller than 200 m sec - 1 i. e. Ro (u < 200) 4# 0. 274

(see table 1).

b) adiabatic heating and cooling have the same order of mag-

nitude as other terms in the thermodynamic equation and therefore cannot

be neglected.

c) as shown previously (Geisler, 1966; Volland, 1966;

Lindzen, 1967), ion drag plays an important role in the momentum balance

above 150 km.

2) Approximate analytical solution of the general heat conduction

equation can be obtained for several assumptions about the dependence of

K/H upon altitude.

3) Horizontal energy transport across latitude circles must occur

at all levels above about 120 km. in the thermosphere. At or near the time

of equinox, poleward energy transport must occur in middle and high lati-

tudes in both hemispheres. At the time of solstice a marked poleward

transport must occur throughout the winter hemisphere; the required hor-

izontal transport in the summer hemisphere is much smaller.

4) The model results are reasonably representative of the variation

of thermospheric temperature and density as indicated by the available
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satellite and rocket data. In particular, the computed diurnal variability

of temperature and density is small below 200 km., and it increases with

altitude above that level.

5) Horizontal energy transport by advective processes cannot

modify the phase of the diurnal temperature and density oscillation.

6) Adiabatic heating and cooling by vertical motion act as a second

heat source in the thermosphere. The vertical motion responsible for this

is associated with the positive and negative divergence of the horizontal

wind system. When this vertical motion is included in the model calcu-

lation, the maximum temperature occurs at about 1400 hours local time.

The full three-dimensional dynamical model needs to be considered to

strengthen this conclusion, since the meridional component of horizontal

motion would be expected to modify the field of vertical motion in some way.

However, because the meridional component of motion will be of the same

order as the zonal component, it is not likely to advect sufficient heat to

affect the phase of the temperature oscillation.



APPENDIX A

Basic Concepts of Fourier Analysis

A summary of basic concepts of Fourier analysis is presented below

( cf. Saltzman, 1957; Apostol, 1960). Let f( x) be any real, single-valued

function and piecewise differentiable in the interval (a, b). Let S = { x )

(X) (L~ ... be an orthonormal set on (a, b). Then f(x) may be expressed

as a linear combination of elements of S. Such an expansion is written in the

form

(A. 1) X)(x - - C (x)

where

(A. 2)

n)o

the numbers Co, C,, C2 , ..... are given by the following formulas:

f (.) (X) C1 X

where d (x) denotes the complex conjugate of (x)

The series in (A. 1) is called the Fourier series of f relative to the

system S and the numbers C C,, Ca .... are called the Fourier coeffi-

cients of f relative to S.

When S is the particular ortihonormal set of trigonometric functions de-

fined on the interval ( 0 2 ~7T ), the series is called simply the Fourier series

generated by f. In this case we write (4. 1) in the form

the coefficients being given by the following formulae:
1rr 9r

(A. 4) On 2. -OS fr 4xrrj( f(K) fin 7)x C f(x)c n )e9
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The Fourier series generated by f in (A. 3) can be also expressed

in terms of complex exponentials which may be written as follows:

(A. 5) T fC) e e f e

The formulas (A. 2) for the coefficients now become

(A. 6) CO, - #(n =a, t

For the purposes of the discussion in section (5. 1), we shall con-

sider the Fourier representation of thermospheric quantities specified

along a given latitude in our cartesian system. Thus, in the above, x

is taken as longitude, and n is the wave number.

The quantity Cy is the representation of f(x) in the domain of wave

number and is called the spectral function of f. The set of equations, (A. 1)

and (A. 2) is often referred to as a Fourier Transform pair.

Consider for simplicity the set of equations (A. 5) and (A. 6); we

may write the Fourier transform pairs for the derivatives of f(x, y, Z, t) as

follows:

(A. 7) iCe
=- -o

and

(A. 8)

(A. 9)

and

(A. 10)

P Cnxe d2 )xo

--LPn
2 r

47 ode, n

C n
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where may be y, Z or t.

Next, we consider the product of

spectral functions defined by (A. 6) are

these functions, we may write
2 r

(A. ~1 ~17a

or

(A. 12)

JIll

a e dkD ~~~rj-r

two functions,

C, and d c,

2/?

-c
n'Ji"= dm

f(x) and g(x),

respectively.

Jf

f~ f (X)

whose

For

iX] - ne ed

,:(n-rn)
e C

C. -0

Here we have assumed that g(x) is uniformly convergent, so that the order of

integration and summation may be interchanged.

Expression (A. 12) gives the spectral function for the product of two

dependent variables. As a special case, we may obtain Parseval's Formula

by setting n = 0 in (A. 12)

(A. 13) 0thJr )$S()cL mC

and if f = g, we have
2jr

(A. 14) )

For the set of equations (A. 3) and (A.

(A. 15) F t

f be +o

. r

4) we have,

a a
I

rb,)
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APPENDIX B

Equations in the Domain of Wave Number

The two dimensional set of dynamical equations is

+ h 2u Z e 1 i U J

+ a I _ = 0

J 7 -

a JTz c/d d -K;-crd e -r' 7jCw Z Q!
M C+

- cP _T-'
'YSR 4 iiO

The dependent variables U, Z, and T are expanded in the form

S(x, Z, t) - (Z. ) t I (Z, t)5 " x f ( 0t) cos >(B. 4)

however, the dependent variables P/H , I/y and / are expressed

by their zonal average. This is not an important inconsistency in the com-

putational scheme because A7/I and KA/ vary only slowly in x, and

because ' /' is simply equal to /

Using the relation given in appendix A, the set of equations (B. I)-

(B. 3) is transformed from the space domain to the domain of wave number.

By equating like coefficients the system (B. I)- (B. 3) takes the form:

o (A _,o Ya. °aLo V )(B.5) + -0
j t foHez 2-+.9k dZJ

as 9h
_ - -'4 + Js yc

~t ~HZ dZ S/-t )ZdZ ( Ho
(B. 6)

(B. 1)

(B. 2)

(B. 3)

a

Ce
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