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This thesis is divided into two main parts concerned
with two methods for isolating higher modes. The first is
a technique which depends on the group velocity character-
istics of the modes; it is applied to long-period Love
waves generated by an earthquake and the higher modes iso-
lated. Phase velocity dispersion curves are plotted and
compared with models derived from fundamental mode studies.

In Part II a technique depending on the phase velocity
dispersion characteristics is investigated, and results of
a model study to isolate "LeaKy" modes are shown. The
possibility of extending the method to non-uniform arrays
is discussed with a view to its application to earth studies,
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range of applicability discussed.
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I. INTRODUCT ION

Seismic surface wave data from earthquakes have proved

a useful tool in the study of the velocity distribution in

the crust and upper mantle. The depth of penetration of

these waves is dependent on the wavelength and, corres-

pondingly, on the period. For crustal studies down to 50

km surface waves io the period range 50 sees and lower are

most useful, while for upper mantle studies the period range

50 - 1000 sees is utilized.

The procedure to determine phase velocities is to

isolate a particular mode at two locations and measure the

phase change of each frequency; this is related in a known

way to phase velocity. A technique often used which has

the advantage that it is independent of seismometer distor-

tion is to pick the traces up at one location as the dis-

turbance propagates over the great circle path connecting

the station and the epicenter of the event. The error in

the exact location and configuration of the source can be

avoided by taking pairs of events such as G1 - G3 , G2 - G ,



R1  R 3 , etc., in which case the distance is exactly the

length of the great circle path and the phase velocity, as

derived in Appendix A, is

where Ax12 is the great circle length

At 1 2 is the time difference between the two windows

012(f) is the phase difference in circular units

-1/2 is introduced because of the T7/2 phase shift

per polar passage (Brune, Nafe and Alsop, 1961)

N is an integer which must be introduced since phases

are multivalued functions.

In order to determine N the phase velocity must be known at

at least one frequency to reasonable accuracy. Once this

value is fixed the phase differences over all frequencies

can be incremented relative to it so as to make them smoothly

varying functions of frequency (Toks5z and Ben-Menahem, 1963).



Once the experimental dispersion curve is determined

it can be compared with a theoretical curve for a multi-

layered model and the model parameters adjusted to agree

with the experimental curves (Takeuchi, Dorman and Sato,

1964). Programs to calculate such dispersion curves exist;

these are based on Haskell's matrix iteration method (Has-

kell, 1953) with corrections for sphericity (Alterman et al.,

1961) and a small correction for gravity. On the other hand,

sphericity can be treated by reformulating the problem in

terms of the resonant vibrations of a spherical earth (Alsop,

1963).

No mention has been made of the technique for isolating

modes; most of the studies undertaken so far have been for

fundamental modes with the higher modes ignored, This approx-

imation is adequate for shallow focus earthquakes in which

the higher modes are relatively unexcited. On the basis

of these studies various earth models have been proposed,

two of which are shown in Figure 2.
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This thesis will investigate the possibility of using

higher modes for earth studies; the effort will be concen-

trated in comparing two filtering techniques to separate

higher modes from the predominant fundamental mode.

Higher modes, if properly isolated, can prove a very

useful tool for studying the earth's velocity structure

(Anderson and ToksB, 1963; Kovach and Anderson, 1964).

Not only do they provide a means of checking on the models

derived from fundamental mode studies, but also, because

of their deeper sampling ability, they should give more

reliable results at depth. This fact is illustrated in

Figure 1, where relative displacements with depth are shown

for the first three Love modes at a period of 50 seconds

for the oceanic model shown in Figure 2 (Harkrider, 1966).

The displacement is relative to that at zero depth for each

mode; in absolute terms the displacements for the fundamental

mode are an order of magnitude greater than those for the

higher modes. Higher modes are also useful for investigating



the low-velocity zone; over certain period ranges the lobes

of the higher modes are effectively trapped in the low-

velocity zone and this is responsible for channel waves often

observed.

Group and phase velocity dispersion curves for fund-

amental and higher Love modes for an oceanic and shield

model (Toksz and Anderson, 1965; Harkrider, 1966) are shown

in Figure 3. On the basis of arrival alone (group velocity)

mode separation is not possible, particularly in the period

range up to 70 seconds, without some special filtering

technique.

In Part II of this thesis a filtering technique devel-

oped by Pilant (1963) is used to effect mode separatbn.

The principle is that a varying band pass filter is applied

to the seismic trace in such a way that the pass band is

modeled around the dispersion curve of the particular mode

of interest. The technique has already been applied by

Toksbz and Anderson (1966) to separate interfering phases

of fundamental modes.



This method is not suitable in the frequency range

in which the group velocity curves for different modes

cross, and in Part III another filtering technique is

investigated which depends on the phase velocity character-

istics of the modes; these, as shown in Figures 6 and 7, are

more separated. In this case the principle is that signals

from an array are processed by convolving each with an

appropriate two-point operator and summing; the net effect

is to pass a certain band of phase velocities.



II. GROUP VELOCITY FILTERING FOR MODE SEPARATION

In this chapter a mode separation technique developed

by Pilant (1963) is used to isolate higher modes from long-

period (40 - 400 sees) surface wave Love data. The tech-

nique is incorporated in a computer program and used on

digital data. Different frequency pass bands are applied

between specified group velocity (time) arrivals in such a

way that the pass band is modeled around the particular

mode to be isolated. Figure 3 shows theoretical group vel-

ocity curves of an oceanic and shield model (Toksdz and

Anderson, 1965; Harkrider, 1966) for fundamental and higher

Love modes; around these are modeled suitable time-varying

frequency pass bands which will effect mode separation.

Appendix B discusses some of the more pertinent details

of the "Sliding" Filter program. For higher mode studies

the input traces must be truncated before the arrival of

the fundamental mode in the frequency range at which it

would be passed by the filtering process. This technique



is applied to data from an event recorded in 1960 and sus-

pected of being relatively rich in higher harmonics, and its

ability to isolate these higher modes is investigated.

An event was recorded by long-period instruments at

Pasadena on June 12, 1960; the C.G.S. gave its location and

origin time as 36*S, 98°W; 7h 19' 43" G.M.T. The great

circle path appropriate to the event is shown in Figure 4,

and it is suspected of having dispersion characteristics

somewhere between those of the oceanic and shield model

shown in Figure I (ToksSz and Anderson, 1965).

A total of three phases are digitized; the specifications

for these are given in Table I and the traces are shown in

Figure 5a. These horizontal, E-W records contain, as well as

Love waves, residual Rayleigh disturbances which are the pro-

jections of the longitudinal Rayleigh motion in the E-W dir-

ection. For the purposes of this analysis the Rayleigh

components in all the E-W records were assumed to be small.

This is justified as the great circle path for the event

passes through Pasadenaclose to the N-S direction (azimuth



163°), so that the component of longitudinal Rayleigh

motion in the E-W direction is small.

Figure 3 shows the varying band pass filters applied

to appropriate records to separate the fundamental, first

and second higher Love surface wave modes. In applying the

filtering program described in Appendix B it is seen that

sufficient frequency rejection is obtained with filters of

length 360 sees (120 points for data digitized at three-

second intervals). With filters of this length the criter-

ion for over 75% rejection discussed in Appendix B is sat-

isfied for frequencies 0.0015 c.p.s. outside the specified

pass band, and it is observed from Figure 3 that on the

basis of this criterion the higher modes are sufficiently

separated. The corresponding traces filtered to isolate

the fundamental, first and second higher Love modes are

shown in Figures 5b and Sc.

Phase velocities can be found without including the

error in source location only for the pair G1 - G3 ; this
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error is expected from travel time calculation to be fairly

substantial and of the order of 1° to 30 (100 - 300 kin).

Thus, if all the records are to be utilized, it is first

necessary to correct for it. This is done by computing

phase velocity dispersion curves for the fundamental Love

mode determined by using the pairs of events G1 - G3,

G ° r, G2 01 and equation (A.3) derived in Appendix A,

with the appropriate factor 1/2 or 1/4, depending on the

pair of phases used.

For the pair G_ - G \x is the great circle path

which is known to high accuracy (40015 kin). The correspond-

ing values of Ax from the pairs GI o G2, G2 - G3 are ad-

justed so that they agree with the dispersion curves found

from the pair G G, over a reasonably large range of

periods. On this basis it is possible to assign an epi-

central correction.) but such a method of correcting for

the epicentre has a number of errors. Firstly, it assumes

that the source radiates symmetrically. Secondly, the

pairs of events G1 - G3, G2 - G3; G1 - G2 sample the
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earth in different ways, so that the dispersion curves

should be slightly different. Nevertheless, this method

of correction is adopted since it is the simplest. The

assumption of source symmetry does not justify a more

detailed approach in which paths are analysed in terms of

oceanic and continental components to determine dispersion

curves. An epicentral correction of 180 km away from Pasa-

dena is used and the results of dispersion calculations from

the three sets of traces shown in Table IIa; the dispersion

curves are drawn in Figure 6 and compared with those for

the oceanic and shield model. Agreement is good in the

period range 100 - 300 seconds; below 100 seconds no agree-

ment is expected or found, since it is the region where the

higher modes are included together with the fundamental (see

Figure 3). Using the corrected epicentral distances the

group velocity arrivals at which the band pass filters jump

are determined to a greater accuracy, although this is not

so critical, since the group velocity curves are steep in

this region. In isolating higher modes the input traces
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are truncated at appropriate group velocity arrivals so

that the fundamental mode is not included. This is done

partly by observing the traces and partly from what is

expected on the basis of theoretical group velocity curves

(Figure 3). Observation often shows the onset of another

mode by the peculiar inflection of the trace; this is

observed for G1 at 07 b 50 ' 40" (see Figure 5a). The results

of filtering using the parameters shown in Figure 3 are the

fundamental and higher mode traces drawn in Figures 5. With

the assumption that the part of the mode within each time

gate is transient, no limitation is placed on frequency

sampling (see Appendix D). Fourier transforms of the traces

are derived by a Fourier analysis program using the trapezoid

rule (Alexander, 1963).

With test values for phase velocities from the theoret-

ical dispersion curves for each of the modes, the appropriate

value of N in equation (A.3) : determined. The phases (f)

and (f) are incremented to make them smoothly varying

functions of frequency. The above procedure is all incor-
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porated in a program written to determine phase velocities

over the whole range of periods using equation (A.3) with

the factor 1/2 for the set G1 - G3 and 1/4 for the sets

G1 0 G2 , G2 " G3 . A check must be made before the results

are accepted that the phases p(f) and A(f) are not

incremented in regions of instabilities and that the modes

have appreciable amplitudes at the frequencies accepted.

The results of the higher mode phase velocity determinations

are shown in Table II and plotted in Figure 7, where they

are compared with the dispersion curves appropriate to the

oceanic and shield model (Harkrider, 1966).

The fundamental Love mode study indicates that an

earth model of approximately the shield type is appropriate

and this is borne out by the higher mode dispersion curves

at periods below 140 and 70 seconds for the first and second

higher modes respectively. However, at longer periods both

dispersion curves diverge appreciably from this model.

The distributions derived from fundamental mode studies

are not too reliable at great depths because the sampling



characteristic of the fundamental mode gives much more

weight to shallow depths. The results of the higher mode

study seem to indicate that at large depths the shear

velocities of the oceanic and shield model are too small

by a few tenths of a km/sec. Higher modes have maxima in

displacement at a depthsof approximately 500 - 700 km in

the period range of 160 and 90 seconds for the first and

second modes respectively (Harkrider, 1966) and this is the

region in which a correction has to be made.

The scatter of results for different pairs is expected

because the paths are different, but is also in part due to

the asymmetric value of the source and the method of estim-

ating the epicentral correction. These facts lead one to

place the most reliance on the G1  G C3 measurements which

are accurate. There is some doubt about the validity of the

second higher mode results, as no account has been taken of

the third higher mode, which is assumed to be unexcited.

Provided that the modes are sufficiently uncontaminated

the only appreciable error in phase velocity as determined

140.
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from equation (A.3) for the set G1 - G3 is the phase differ-

ence A 12 ().This depends on the method of computing the

Fourier transform and the assumption of pulse transience

within the time gate used. However, the major term in the

denominator of equation (A.3) is AT 1 2 - 8760. Provided

that the integer value N is correct, the error in h 1012)

is unlikely to be more than 0.1; this at a period of 100

seconds would give an error of 1/10% in the phase velocity

and make the results accurate to at least the second decimal

place.
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IIIll. MODE SEPARATION BY PHASE VELOCITY FILTERING

The need to go into some other technique of filtering

in the range where the group velocity curves intersect was

indicated in the introduction. In this section the tech-

nique of phase velocity filtering is investigated, first

for a uniformly spaced array for which the results of a model

study indicate that this technique is quite effective in

separating "leaky modes" from the more predominant Rayleigh

modes. The possibility of extending it to non-uniform arrays

is discussed; this is the part which is of particular inter-

est to real earth studies since at present a uniform array

of large enough aperture for mantle studies does not exist.

The problem of non-uniformity of response of each of the

elements in the array is an obstacle in this type of fil-

tering system and its effect must be considered.

Phase Velocity Filtering with Uniformly Spaced Array

Phase velocity filtering is effected by convolving

each one of a set of digitized traces from a uniform linear
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array with an appropriate two-point operator in the time

domain which determines the particular range of phase

velocities passed. The theoretical justification and the

restrictions of the technique are derived in Appendix C.

This procedure is applied to a model study to isolate

"leaky" modes from the Rayleigh modes.

The model used is shown in Figure 8; one of its

features irrelevant to the present study is that the

brass-steel interface is sloping; however, the tilt over

the range of values for which data are taken is small

enough that it is a good approximation to assign an average

thickness (Kuo, 1963).

Disturbances in the model are excited by a piezo-

electric source crystal attached to the top of the brass

layer; these acoustical vibrations are picked up by another

crystal touching the side of the model and are fed into a

digitizer.

The disturbances propagating through the model can be

analysed in terms of modes; theoretical dispersion curves
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for a model with a 4-cm brass layer are shown in Figure 9.

It is necessary to attenuate the Rayleigh modes and for

this phase velocity filtering is applied between 3.3 mm/~sec

and 10 mm/psec. With space sampling at 10 mm and time

sampling at 1 psec, this would be equivalent to setting

the parameters Cg 1/3, C2 =1 in equation (C.6). The

appropriate convolution operators are shown in Figure 10

and the corresponding double Fourier transform in Figure 11.

A series of 24 traces at 10 mm separations are digit-

ized, at a depth of 40 mm, in order that the fundamental

Rayleigh mode, which at the surface would be an order of

magnitude greater than the other modes, would be comparable

to them. The convolution process is applied to the first

and last twelve traces to generate two filtered traces

separated by 120 mmo One such set of filtered and unfil-

tered traces is shown in Figure 12. The enhancement of

the earlier portion of the trace with the "leaky" modes

compared to the later part is observed. The disturbance
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after the fundamental Rayleigh mode consists mainly of flex-

ural waves which are of no interest to this investigationo

The method used to determine phase velocities is descri-

bed in Appendix A. The number of correlation lags taken to

compute the transfer function depends on the noise content of

the trace; in general, any trace can be divided into signal

and noise

p( = Si( 4) r- L( (2)

Noise consists of a random component uncorrelated to the

signal and a component which is in some way correlated to the

signal; in the case of the model study, reflections from the

sides and bottom of the model are examples of the latter,

The correlations are

(3)

->§, (±pa _n (Ltt -1r 1 (N) 4- niS (La)
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and similarly

In both cases it is the first terms only that are of inter-

est and over a certain range of correlation lags these pre-

dominate. Noise uncorrelated to the signal contributes only

through the term nnl (tN). In this model study this

consists of digitiz&tion noise and electrical pickup, and

should be small compared with other terms. Coherent noise

cntibutes through t h- terms i (tiN ) and is largest at

greater lags.

A time gate from the first P break to the Rayleigh

break is used for each of the filtered traces. In this

region are included the "leaky" modes and part of the higher

Rayleigh modes which begin at the first shear break; the

latter have been attenuated by phase velocity filtering.

The two filtered traces are fed into a package program to

calculate phase velocities by the method described in
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Appendix A. On the assumption that the distinct disturb-

ances between 50 - 100usecs and 100 - 150 Psecs observed

on the filtered trace in Figure 12 represent different

modes, fifty lags are taken in the correlations to compute

the transfer function. These would include most of the

information from these "hypothesized" distinct modes and,

hopefully, minimize the coherent noise while including

most of the information from the modes.

The experimental phase velocities derived are shown

in Figure 13 and compared with those computed theoretically.

Various possibilities exist for phase velocities, since the

phases are multivalued functions, and by a more detailed

study of the excitation functions for the various modes it

is possible to interpret the range of frequencies in which

each curve is valid. A detailed investigation of the results

of the model study is left to the end of this section.

Phase Velocity Filtering with a Non-Uniform Array

The fact that uniform arrays of large enough apertures

do not exist necessitates an investigation of the applica-

bility of this technique to non-uniform arrays.
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Phase velocity filtering should prove useful in the

period range below 50 sec, where group velocity curves for

surface wave modes intersect, requiring arrays of dimen-

sions of the order of 400 -500 km. At present the only

array that comes near to meeting these requirements is

LASA, which is shown in Figure 14a; the array consists of

21 sub-arrays covering an area of radius 100 km, each con-

taining 25 seismometers spread over a circular region of

radius 3 - 5 km. A possible linear array that can be con-

structed from LASA which is symmetrical about its center

is shown in Figure 14b, One seismometer from each of the

sub-arrays numbered is projected in a NE direction; the par-

ticular seismometer is chosen so that the separation between

them is close to 10 km. The linear array formed in this

way is equivalent to a 10-point uniform array with two

locations symmetrical about the center missing. The appro=

priate space domain sampling operator is

0

Z [ S) S mxj - F(+A4x) (5)
car 0



where M is 5 and represents the delta function. The

complex Fourier transform of this function is shown in

Figure 15 and is

SI(a Tko) - Cos ( 7 ) (6)stN rr )

where the first term represents a finite symmetrical uniform

linear array of 10 points and the second term the effect of

two missing locations. The frequency-wave number character-

istics of this system are obtained by convolving the char-

acteristics of the exact phase velocity filter with equation

(6) over dimensionless wave number. Phase velocity filter-

ing should be effective in the wavelength range 10 - 50 km;

10 km is the lower limit set by aliasing and 50 km the upper

limit due to the finiteness of the array; this would corres-

pond to periods in the range 2 - 10 see for surface waves.

In order that two-point time domain filtering be applied

the following conditions are imposed on the parameters C1

and C2 in equation (C.6) (Appendix C):

= /N ; C = /(N2) )r V(N -6))or 1/(N+1 0) 91.c,

23.
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where N is an)integer

As an example, consider the case x * 10 km, t

.15 sec, N = 16. The cutoff phase velocities for the fil-

tering process are, taking C2  /P, 1 /(NP2):

lower cutoff =(~ 3.723 km/sec

upper cutoff (-a ) = 4.444 km/sec

For an event not in the NE direction it is necessary

to take projections of the linear array in the direction of

the event, resulting in smaller overall dimensions. On the

other hand, many other suitable linear array systems can be

constructed from LASA and it is necessary to investigate

the possibilities open for each event.

In a region containing a high density of stations, for

example the United States, it is always possible to construct

24.
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a linear array for which the stations are separated by some

integral multiple of a finite distance A x and the missing

locations (if they are symmetrically placed) can be treated

as in the LASA example. In general, the appropriate space

sampling operator is

0

which has a Fourier transform of

5 W C rzj ( ] - coss r(2Cn+r (8)

The larger the number of missing locations Ni , the less

effective the process becomes for phase velocity filtering.

The requirement for the system to be symmetrical about

some origin is so that no imaginary terms occur in the complex

Fourier transform of equation (7), which in real terms is

equivalent to requiring both cosine and sine transforms.

This would tend to make the system ineffective for simple

phase velocity filtering, so that a symmetrical system

seems necessary.
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In the period range up to 10 see phase velocities are

relatively well separated (Anderson and Toksbz, 1963; Kovach

and Anderson, 19641 and phase velocity filtering using the

array discussed above, together with frequency filtering,

should be effective in isolating some portions of the higher

modes; whereas on the basis of group velocity it would not

be possible in this period range. The possibility of isol-

ating higher modes from the fundamental mode when the record

contains both seems more remote, since the amplitude of the

fundamental mode may be an order of magnitude greater than

the higher modes, and this would require rejection capabil-

ities for the filter of -40 dbp (99% amplitude) in the region

of the fundamental mode. It seems, therefore, that the tech-

nique would be more useful to separate interfering higher

modes from each other.

Discussion of Results of IModel Study

The results of the model study indicate good agreement

for the PL23 mode in the frequency range 90 - 140 kc; for

the PL24 mode the results are poor while for the PL22 mode

they are bad.
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The source spectrum, Figure 16, shows that excitation

is predominantly in the frequency range 50 - 250 kc, which

may be why the results are poor for the PL22 mode. A lim-

ited number of lags are used in computing the transfer

function so it is necessary to look for agreement in the

region in which group velocity curves (Figure 17) have

maxima and minima and are relatively undispersed, that is,

between 2 xm/psec and 4 mm/psec. Also, with the time gate

cut at the first Rayleigh break (1.97 mm/psec), parts of the

group velocity minima for the "leaky" modes are cut out.

Previous studies (Laster et al., 1962) have shown that

there is substantial correlation between excitation minima,

attenuation minima and group velocity maxima; the latter

two points are shown in Figures 17 and 18. For "leaky"

modes at sufficient distance from the source it is atten-

uation that determines the amplitudes of the modes. On

the basis of this alone it would seem that in the region

120 kc - 140 kc the PL24 mode would predominate over the

PL23 mode; however, the method of computation does not "see"
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the well-dispersed PL24 mode in this frequency range. The

anomalous nature of the group velocity for the PL24 mode

above 140 kc explains why agreement for this mode is not

so good, as well as the fact that no account has been taken

of higher PL modes.
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IV. APPLICATION OF THE TWO TECHNIQUES

FOR EARTH STUDIES

On the basis of the results of the two studies under-

taken and described in Parts II and III of this thesis, the

two methods of mode separation are shown to be quite effect-

ive. The group velocity technique is much easier to imple-

ment, requiring only one station, and hence is free from

errors associated with the reproducibility of seismometers.

The method will prove to be useful for higher Love and Ray-

leigh modes above 40 - 50 seconds period for which the group

velocity dispersion curves are sufficiently well separated

(Anderson and Toksbz, 1963; Kovach and Anderson, 1964). If

dispersion curves are required at lower periods, phase vel-

ocity filtering will prove useful, particularly for the first

few higher modes. However, fundamental mode studies give a

fairly accurate picture of the velocity distribution in the

upper mantle down to 300 - 400 km, so that in higher mode

studies interest will be focused on longer periods which

sample the earth at greater depths. Group velocity filtering
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techniques are sufficiently adequate at long periods and

it seems unlikely that the more difficult phase velocity

filtering will be used for such studies, particularly

considering the large dimensions required for arrays.

This latter technique is more useful for crustal studies

over regional paths and may be extended if sufficiently

large arrays are found to study the low velocity zone.

Part III has already indicated the possibility of

errors in the models derived from fundamental mode studies

at depths of 500 - 700 km, and more work needs to be done

in this area.
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APPENDIX A

Method of Computation of Phase Velocities

Consider two disturbances pl(t), p 2 (t) at locations

X1, x2 ; each has a complex Fourier transform Pl(f), P 2 (f)

such that

(A.1)

p2 () (J7 Fj ) QjIrT ff

where

(A.2)

A.GE P2 f)7 =2wr W1b 2rrf (YcC f) K)
The terms tl, t2 are necessary to relate the two time scales

t, t' so that t to t'2 t C(f) is the phase velocity

at a frequency f and N1, N2 are integers, necessary since
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phases are multivalued functions. Subtracting equations

(A.2) gives

c(f)= X- (A3)

In part I the method used to compute phase velocities

is to directly take the Fourier transform of two traces,

determine an appropriate value for the integer N from a

previous knowledge of several dispersion points, and use

equation (A.3), A 1/4 term is added for each extra polar

passage one of the paths describes over the other (Brune,

Nafe and Alsop, 1961). This is an adequate procedure when

noise can be ignored, which is not considered to be the case

in the model study for which a different technique is used.

In the model study the phase change appropriate to each

frequency is determined from the time domain transfer funct-

ion T(tN) which, when convolved with p,(t) gives p2 (t); this

transfer function is determined on the basis of a mean square

error criterion. The convolution process gives:
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Taking Fourier transforms of both sides of equation (A.4):

P (i) = ( f) P,(f)
(A.5)

where H(f) is the Fourier transform of T(tN,). ARG H(f) is

close to 2 if P2(f) is close to P2 (f). The mean

square error criterion ensures this since it requires that

5E (&.)- , 0) o (A,6)

Applying the results obtained from Lee (1960) to the digital

case gives
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where

(A.8)

N'
Equation (A.7) is valid for all values of tN since, unlike

the case dealt with by Lee, the filter T(tN) is realizable

for all values of tN, o If a total of N lags are computed

for the correlation then at the most N filter coefficients

can be formed from the N equations (A.7).



APPENDIX B

"Slidin , Filter Program by Pilant

This program was written by WL., Pilant (1963) and

part of it modified by MN. Tokstz. The program takes

consecutive portions of a digital record and filters each

with a specified frequency pass band. Starting with an

initial low cut EPS1 and high cut EPS2 these are incre-

mented at each jump by amounts DELl and DEL2 which are

constant; the former is limited to positive values. This

filtering is carried out in the time domain by convolving

ech portion of the digital trace with an appropriate time

domain filter. For a pass band between fl1 and f2 this is

ST -5 (2-r Sli2[ (-F)l (B.1)
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T is a time factor to make the right-hand side dimension-

less, The function given by equation (B.1) is sampled by

a digital smoothing operator

c(t sitv ( h /Tr LINiO (.2)

where I is an integer that has values between -N and N,

This smoothing operator is more useful than simple truncation

which introduces a substantial amount of higher harmonics.

The actual frequency characteristics of the finite smoothed

time domain operator are obtained by convolving the Fourier

transforms of equations (B.1) and (B.2). The Fourier trans-

forms of equation (B.2) for various lengths of the filter

operator are shown in Figure 19. The convolution process

has the effect of extending the range of the frequency pass

band; the one-quarter width of the main lobe of each of

these smoothing operators shown by arrows in Figure 19 will

determine the frequency beyond the specified pass band at

which rejection is over 75% of that at the center; this is

chosen as the criterion for good rejection.
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The two bases for deciding on the length of the filter

operator used which is a constant for the program are-

1) sufficient frequency rejection is obtained for

other modes;

2) the length of the filter operator is not so large

that the cDnvolution process introduces other modes.

Looking at the group velocity curves for Love modes

(Figure 3), it is seen that the second criterion is satis-

fied for all phases because of the steepness of the disper-

sion curves in the range of frequencies of interest, provided

that when the higher modes are isolated the input trace is

truncated before the arrival of the fundamental mode. It

will therefore be more important to ensure that there is

sufficient frequency rejection.
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APPENDIX C

Derivation of Two-Point Operators

for Phase Velocity Filtering

The problem is to develop a set of one-dimensional

space and time filter operators which will have the effect

of attenuating all phase velocities outside a certain range.

The two-point system is derived in a paper by Foster, Seng-

bush and Watson (1964) using a statistical technique. The

approach adopted here will be essentially the same as that

used in a paper by Embree et al. (1963) on the "pie-slice"

process.

Suppose that it is required to pass phase velocities

in the range c' x/At where c l  c' < c2 ; the appropriate

space-time operators are found by performing the complexdou (1 e

Fourier transform

( f/ & 2 e ( ))df 1)

~~_~~_ _ ___
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x and h t are the sampling distance and time; ? = fAt,

k 'kAx where f and k are frequency and wave number, In-

order to make the problem symmetrical the following changes

of variable are made:

C 2 C, C(

k~+ -- U
and hence equation (C.I) becomes

-x) frif &At(t ,f4 3 rt L/x& (3)

For a digital system in which time and space are

sampled at increments At and A x the frequency-wave number

characteristics are periodic over the interval -1/2 4

k <+1/2 (see Appendix D), so that the frequency integral

is only taken over the range t1/2; furthermore, let

&Xm= % +-k) Ax
- M, N' are integersrV'-Q &



The necessity for xM not to be zero is revealed as the

derivation progresses. Equation (C.3) becomes

and since sin 2Tr (/c)(m + 1/2) is an odd function of f,

ih(d xM) 2I J V[2 (rUm+D SIji1rf(N't i d5

--- r co& r C

_i-P _____+- SN - -LEI (C.4)

In order that the expression inside the sine term be an

integer, let c w 1/p where p is an odd integer. Then the

set of operators given by equation (C.4) has non-zero values

only when N' = -p(M + 1/2) - 1/2, p(M + 1/2) - 1/2; when the

values are t+i/( rr(M + 1/2)) respectively, The fact that

43.



the operators are imaginary implies that in the original

Fourier double integral, equation (C.I), the sine trans-

form is the only part that contributes. The original phase

velocity filtering is obtained by making the following

changes of variable:

N IV+ \ 1 1(C.5

corresponding to t' - t + n ( 1+ ) x/hx, with the

1 2 C c
requirement that l/2g- + L ) be anAn teger so that the

time shifts correspond to multiples of the sampling interval

t. Thus the conditions imposed on the two-point time

domain sampling process are, from (C.2) and (C.5),

( L) -) p (odd integer)

(c.6)

- ± + - (von integer)

In the frequency wave number domain the required rejection

is obtained by multiplying the filter set with the trace

44.
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set; in the space-time domain this is equivalent to a double

convolution (Lee, 1960) and for the digital case the filtered

traces are

PO(x ) I') = 5 (n-' -) Y, L ) (c. 7)

where po (xM' tN) refers to output trace at xM  MAx,

Pi (X H-M tN-N,) refers to input trace at XM'.M

(M - M' + 1/2)Lx, and h(xM,, tN,) is the set of two-point

time domain operators. The filtered trace corresponding

to the center of the array at x - 0 is given by putting

M = 0 in equation (C.7), to give

Po(X. ) Pl(o- Z N-)(x N) (C.8)

where

hN') r (M ( D

TF(&I)()



46.

One point should be noted, that the time reference for

the output trace tN is not the same as that for the input

trace, causing constant phase shifts in the frequency com-

ponents. However, in deriving phase velocities only phase

changes for each frequency component are considered, so

that this shift is not important.

The above analysis is so far exact; the only condition

imposed now is that the number of space samples be limited

to 2M, multiplying the exact set of operators by a finite

series of periodic impulses

U(X 2 )S~ x- v~b) (C.9)0

which in the wave number domain is equivalent to convolving

the Fourier transform of the operators with the Fourier trans-

form of equation (C,9), which is

MCo (. 10)
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This function is shown in Figure 15 for M = 4. For wave-

lengths of the order of the dimensions of the array for

which k = 1/2(m+l) the phase velocities passed are no

longer defined by the operators, since the finite array

is not able to resolve wavelengths of this magnitude.



APPENDIX D

Aliasing and Averaging Effect

of Finite Digital Sampling

-L -I 0 -J +2 rj

A finite digital system can be treated as a set N of

equi-spaced unit impulses.

To make the time domain operators symmetrical so that

the complex Fourier transform is real, a symmetrical set of

impulses at negative times are added; these do not affect

the analysis as the disturbance is zero outside the positive

time region. The Fourier transform of such a set of impulses

is

0 r i -- N

48.
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(--/

- IN [v (Z2 N+ ) Tj (D,1)
S) N E-f AT]

Equation (D.l) is drawn in Figure 20 for N = 4. The effect

of finite digital sampling on a signal is to convolve its

Fourier transform with equation (D.l) which is periodic

over the interval 1/aT. Negative frequencies have no

physical meaning but are used to make the function symmet-

rical so that in that in taking the complex Fourier transform only

the real cosine part contributes, Since real traces have

zero amplitude in the negative frequency range, the effect

of digital sampling is to restrict measurements to the freq-

uency range zero to 1/AT.

Finite sampling introduces small side lobes and a

central peak of half-width 1/(2N+1)A T, effectively res-

tricting the useful sampling frequency to a minimum



1/(2N+1) T for signals that extend beyond the range of

sampling0  However, for a transient signal wholly within

this range of sampling no such restriction is imposed; it

is this second assumption which is made for all experimental

data.

Finally, the above analysis can be extended in an

exactly similar fashion to space sampling, and the results

derived are very similar with wave number and A x replacing

frequency and AT. In this case negative wave numbers have

a real meaning and refer to direction of propagation of the

disturbance in one dimension,

509
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TABLE I

Description of Event and Recorded Traces

Oigin time: June 12, 1960; 07h 19' 43"

Approximate location of epicentre: 36*S, 98W

ratgnitude: 6j

Instrument: free period of pendulum = 80"

free period of galvanometer m 90"

PHASE GI G2 G3

Arrival time 0 7h 47' 00" 09h 10' 00" 10 13' 00"

Distance to Pasadena

'Uncorrected

Corrected

8045 km

8225 km

31960 km
31780 km

I I

Length of trace

Number of points

Digitization interval

16'
321

3"

20'

401

3"

48060 km
48240 km

17'

341

3"

i
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TABLE ila

Phase Velocities for Fundamental Love Mode

Period I Phase Vetociby
(seconds) GI - G3 1 02 -3 G1 - G2

333.33

285.71

250.00

222.22

200.00

181.82

166.67

153.85

142.86

133.33

125.00

117.65

111.11

105.26

100.00

90.91

80. 00

68.97

60.61

52.63

44.44

5.295

5.148

5.044

4.962

4.892

4.840

4.799

4.764

4.733

4.705

4.681

4.661

4.642

4.629

4.619

4.599

4.570

4.541

4.511

4.479

4.468

5,322

5.161

5.061

4,974

4.889

4.829

4.789

4,757

4.727
4.699

4.675

4.655

4,638

4.628

4.627

4.617

4.629

4.609

4.596

4.593

4.649

5.275

5.138

5.031

4.951

4.893

4.845

4.803

4.767

4.736

4.708

4.683
4.662

4.643

4.627

4.612

4.584

4.529

4.493

4.452

4.402

4.347

--I
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TABLE lib

Phase Velocities for First Righer Love Mode

Period
(seconds)

173.91

166.67

160.00

153.85

148.15

142.86

137.93

133.33

129.03

125.00
121.21

117.65

111.11

105.26

100.,00

95. 24

901.91

85.11

75.47

G1 - G3

6.559

6.434

6.325

6.228

6.141

6.063

5.992

5.928

5.869

5.814

5.764

5.718

5.634

5.561

5.494

5.428

5.370
5.303

5.189

Phase Velocity
G2 - G3

6.585

6.427

6.,303

6.200

6.104

6.021

5.948

5.881

5.821

5.766

5.716

5.670

5.591

5.525

5.461

5.385

5.318

5.246

5.109

G1 - G2

6.540

6.438

6.338

6.248

6.165

6.090

6.022

5.959

5.901

5.847

5.797

5.750

5.663

5.584

5.515

5.456

5.406

5.342

5.244

--

-"------"I

I -
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TABLE Ile

Phase Velocities for Second Higher Love Mode

Period Phase Velocity
(seconds) Gl - G3 G2 - G3 G1 - G2

95.24 6.625 6,839 6.435

90.91 6.478 6.623 6.331

86. 96 6.349 6.442 6.238

83.33 6.235 6.294 6.147

80,00 6.134 6.168 6.063

74.07 5.964 5.975 5. 909

68.97 5,826 5.836 5.773

64.52 5.709 5.699 5.671

58.82 5.563 5.513 5,553

54.05 5.452 5.358 5,475

50.00 5.357 5.247 5.391

45.45 5,255 5.157 5.282

40.82 5.153 5.069 5,171
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FIGURE 2

SHEAR VELOCITY WITH DEPTH FOR AN OCEANIC AND SHIELD MODEL
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FIGURE 3

SLIDING FILTERS FOR LOVE MODES.
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GREAT CIRCLE PATH FOR EVENT
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DISPERSION CURVE FOR ' 0)i.MODEL WITH 4-CM BRASS LAYER
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TWO POINT OPERATOR SET USED FOR PHASE VELOCITY FILTERING
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FREQUENCY-WIV'TE NUMBER RESPONSE FOR 12-CANrEL 'iTO-PON T OPERATOR SET
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DISPERSION CURVES FROM A 50-POINT FILTER OPERATOR
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FIGURE 14
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FOURIER TRANSFORM OF SAMPLING
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FIGURE 16

SOURCE PULSE GENERATED BY PIEZOELECTRIC CRYSTAL
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FIGURE 17

THEORETICAL GROUP VELOCITY FOR PL MODES
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FOURIER TRANSFORM OF SMOOTHING OPERATOR
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