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Abstract

In this thesis, I study the time-varying behavior of a ventilated thermocline with basin scales

at annual and decadal time scales. The variability is forced by three external forcings: the wind

stress (chapter 3), the surface heat flux (chapter 4) and the upwelling along the eastern boundary

(chapter 5). It is found that the thermocline variability is forced mainly by wind in a shadow zone
while mainly by surface buoyancy flux in a ventilated zone.

A two-layer planetary geostrophic model is developed (chapter 2) to simulate a thermocline.

The model includes some novel physical mechanisms. Most importantly, it captures the essential

feature of subduction; it also is able to account for a time-varying surface temperature. The
equation for the interface is a quasi-linear equation, which can be solved analytically by the method
of characteristics.

The effect of a varying Ekman pumping is investigated. In a shadow zone, it is found that
the driving due to the Ekman pumping is mainly balanced by the propagation of planetary waves.
However, in a ventilated zone, the cold advection of subducted water plays the essential role in op-
posing the Ekman pumping. The different dynamics also results in different thermocline variability

between the two zones. After a change of Ekman pumping, in the shadow zone, since the baroclinic

Rossby wave responds to a changing Ekman pumping slowly (in years to decades), an imbalance

arises between the Rossby wave and the Ekman pumping, which then excites thermocline variabil-

ity. However, in the ventilated zone, both the advection and the Ekman pumping vary rapidly after
a barotropic process (about one week) to reach a new steady balance, leaving little thermocline
variability. In addition, the evolution of the thermocline and circulation are also discussed.

Furthermore, with a periodic Ekman pumping, it is found that linear solutions are approximate
the fully nonlinear solution well, particularly for annual forcings. However, the linear disturbance is
strongly affected by the basic thermocline structure and circulation. The divergent group velocity
field, which is mainly caused by the divergent Sverdrup flow field, produces a decay effect on

disturbances. The mean thermocline structure also strongly affects the relative importance of the

local Ekman pumping and remote Rossby waves. As a result, in a shadow zone, local response

dominates for a shallow interface while the remote Rossby wave dominates for a deep interface.

With a strong decadal forcing, the nonlinearity becomes important in the shadow zone, particularly

in the western part. The time-mean thermocline which results, becomes shallower than the steady

thermocline under the mean Ekman pumping.



Then, we investigate the effect on the permanent thermocline by a moving outcrop line, which

simulates the effect of a varying surface heat flux. The two layer model is modified by adding an

(essentially passive) mixed layer atop. The outcrop line and the mixed layer depth are specified. It is

found that, opposite to a surface wind stress, a surface buoyancy flux causes strong variability in the

ventilated zone through subducted water while it affects the shadow zone very little. Furthermore,

two regimes of buoyancy-forced solution are found. When the outcrop line moves slowly, the

solutions are non-entrainment solutions. For these solutions, the surface heat flux is mainly balanced

by the horizontal advection. The mixed layer is never entrained. The time-mean thermocline is

close to the steady thermocline with the time-mean outcrop line. When the outcrop line moves

southward rapidly during the cooling season, the solutions become entrainment solutions. Now,

deep vertical convection must occur, because the horizontal advection in the permanent thermocline

is no longer strong enough to balance the surface cooling. The mixed layer penetrates rapidly such

that water mass is entrained into the mixed layer through the bottom. The time-mean thermocline

resembles the steady thermocline with the early spring mixed layer, as suggested by Stommel

(1979). The local variability in the permanent thermocline is most efficiently produced by decadal

forcings.

Finally, two issues about the waves radiating from the eastern boundary are discussed. The

first is the penetration of planetary waves across the southern boundary of a subtropical gyre. We

find that the wave penetration across the southern boundary is substantially changed by the zonal

variation of the thermocline structure. The zonal variation alters both the effective P and the wave

front orientation. As a result, the wave penetration differs for interfaces at different depths. For

an interface near the surface, part of the waves penetrate into the equatorial region. For middle

depths, most waves will be trapped within the subtropical gyre. In contrast, for deep depths, all

waves penetrate southward.

The second issue of the eastern boundary waves mainly concerns with the breaking of planetary

waves in the presence of an Ekman pumping and the associated two-dimensional mean flow. It is

found that the breaking is affected significantly by an Ekman pumping and the associated mean

flow. With an Ekman pumping, downwelling breaking is suppressed and the breaking time is

delayed; upwelling breaking is enhanced and their times are shortened. The breaking times and

positions are mainly determined by the maximum vertical perturbation speed while the intensity of

the breaking front mainly depends on the amplitude of the perturbation. The intensity of a breaking

front increases with the amplitude of the forcing, but decreases with the distance from the eastern

boundary. The orientation of a breaking front is overall in northeast-southwest ( x , -1/f2).
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Chapter 1
Introduction

1 Motivation

Recently, knowledge about steady thermocline circulation has been substantially improved by the

potential vorticity homogenization theory (Rhines and Young, 1981) and the ventilated thermocline

theory (Luyten, Pedlosky and Stommel, 1983). Relatively little progress has been made towards

understanding time-dependent thermocline circulation.

On the other hand, observations show that there is strong variability in the surface wind and

surface heat flux. In addition, strong variability is also observed along the eastern boundary region.

For example, Fig.1.1 presents a recent estimate of the annual cycle of the Ekman pumping volume

integrated along a latitude belt in the Pacific (Levitus, 1988). One sees that the strength of the

annual surface Ekman pumping changes more than 50 percent from its mean. Qiu and Joyce (1991)

also show that, at interannual time scales (about 4 years), in the subtropical North Pacific, the

intensity of the wind stress exhibits variation of about 20 percent from its mean (see Fig.1.2).

The annual surface heat flux changes significantly as well. The resulting mixed layer depth in

the northern part of a subtropical gyre varies from 25 meters in summer (see the North Atlantic

and North Pacific in Fig.1.3b) to more than 200 meters in winter (Fig.1.3a) (Levitus, 1982). At

the same time, the surface density also varies substantially. Fig.1.3c and d (from Levitus, 1982)

present the surface density of the world ocean in spring and fall respectively. The dot-connected

lines mark the 24 ot in the North Pacific and the 26 at in the North Atlantic. Both isolines vary

from about 25 N ° to 50 NO from spring to fall. This north-south migration distance is about the

width of the subtropical gyres in both oceans.

Finally, interannual variability of isopycnals along the eastern boundary has been observed.

Kessler (in section 4b, 1989) has reported about a +15 meters anomaly of the 201C isotherm

along the eastern boundary of the tropic and subtropical North Pacific (Fig.1.4). Near the eastern

boundary in middle and high latitudes (at the ocean Station P at 50°N, 145*W), Tabara et. al
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Figure 1.1: The annual variation of the Pacific Ocean zonally integrated vertical Ekman volume flux
(106m 3 s - 1) at the base of the Ekman layer per one-degree latitude belt as a function of month and latitude.
Shading indicates a negative flux (downward ). (After Levitus, 1988, Fig. 6)
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Figure 1.2: The interannual variation of wind stress curl. Time series of the wind stress curl intensity over
the tropical (solid line) and the subtropical (dashed line) ocean gyres. In the calculation, the solid (dashed)
line in the figure is obtained by integrating the positive (negative) wind stress curl values in the region of
0* - 20*N (100 - 300N) based on the low-pass filtered FSU wind data. Units in 4 x 103N/m (After Qiu and
Joyce, 1991).

%ft.

c'0~7a~--T~7~10



60 ' So ('s0

300

90"S6/1 "- 9"SO 30" R 0""02I, . 15030" ---'50oo 30"It so*

is toor

-/: $O,, :0 ,30"

-- -_- d -A , 0 Eq.0 qs i0s

O' 3 0 E 60 90 1206:P C0 0 30 0

so 30t__23) 30*

0w - soo*0

0. 30*E 60" 90- 120" 150"1 180" 150"W 120* 90' 60' 30'W Oe

Figure 1.3: The mixed layer depths based on a temperature criterion of 0.50C' for (a) March and (b) Septem-
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Figure 1.3: The niixed layer depths based on a temperature criterion of 0-5*C for (a) March and (b) Septem-
ber. (after Levitis, 1982). To be continued.
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Figure.1.4: The interannual anomalies of 20 0C depth (m) along the American coast. Contours

are given at +2, 5, 10, 15 and 20 m, with positive (deep) anomalies solid, negative (shallow)

anolalies dashed. (After Kessler, 1989).
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(1986) have found variability of isopycnals of about +10 meters at the annual period and about

+50 meters at interannual periods (about 5 years) (Fig.1.5). Under such a strong variability in

the external forcing, one naturally wonders how the ocean responds to the variable forcing; what

the main physical mechanisms are behind the thermocline evolution; what the relation is between

the time-mean circulation and the thermocline predicted by a steady thermocline theory with the

time-mean forcing. This thesis is an attempt towards understanding the physics of the time-varying

oceanic circulation. We choose to concentrate on basin scale variability with short climate time

scales (years to decades).

To highlight the basic physics, a simple theoretical model is developed in chapter 2. The effect

of a variable wind forcing is discussed in chapter 3 and the variability caused by a variable surface

heat flux is investigated in chapter 4. In chapter 5, we will study some dynamic aspects relevant

to upwelling and downwelling along the eastern boundary.

Theoretically, there are several difficulties in the problem of the externally forced basin-scale

thermocline circulation. One is the strong nonlinearity caused by the advection of the density field,

which also occurs in the study of steady general oceanic circulations. Another arises from the lateral

boundaries. Within the geometry of an ocean basin, the basic flows are no longer one dimensional.

Therefore, classical theories for disturbances in the presence of a parallel flow can not be applied

directly to the study here. In addition, as far as a variable surface heat flux is concerned, there is an

extra difficulty. Because the varying surface heat flux causes a strong variation of the mixed layer

or a seasonal thermocline, the the thermocline is closely coupled with a mixed layer (Woods, 1985),

which is strongly turbulent and whose dynamics is not well understood, particularly at interannual

time scales.

Finally, it should be pointed out that the variability of a basin scale circulation can also be

affected by the eddies produced by instabilities of the basic circulation. Recent numerical studies

(Cox,1985; Cox,1987) suggest that these eddies are important for the transport of physical quantities

on the basin scale circulation. This effect will not be considered in the thesis.

_I~ih LXC_ 1II __ _l ~UL~ _I~i-_ll-im



-00-

E
"i

110+

Figure 1.5: The amplitudes of annual and interannual variations. Depth (m) of isopycnal surfaces (at =
26.0 - 27.6) for Station P. The heavy straight dashed and light lines represent, respectively, the means
and standard deviations. The heavy lines through the data points denote monthly means. The values for
ot = 27.6) are based on hydrographic-cast data only, whereas the others are based on STD data as well.
"Annual" cycle has not been removed from the dataset. (after Tabara et.al., 1986).
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2 Observations of Annual and Interannual Variability

Observing annual and interannual variability in the basin scale has remained to be an extraordinar-

ily difficult task for oceanographers (Wunsch, 1991). Nevertheless, in the last decade or so, great

efforts have been made towards observing annual and interannual variability. Preliminary results

are encouraging, which at least give us a sense of the long-term variability of the thermocline. Most

of the data analyzed so far were adopted from XBT or hydrographic (CTD) surveys in the North

Pacific and the North Atlantic. Annual and interannual signals have been clearly identified in most

of the studies. Regarding these observations, we will concern ourselves with the observations pos-

sibly relevant to the thesis. The questions that we are interested in are as follows: a) How strong

are these long-term signals? b) Is there any evidence of baroclinic Rossby waves? What are their

space and time scales? d) What are the energy sources and generating mechanisms for the observed

anomalies?

Amplitude

In mid-latitudes, annual variations are clear in the upper 500 m, with the strongest anomalies

occurring in the upper 200 m (Emery et al, 1984). The latter anomalies are mainly caused by

the seasonal thermocline. At a depth of about 300 m, typical annual vertical displacements of

isopycnal surfaces (or isothermal surfaces) have maximum amplitude of about +10 meters, with

the corresponding steric sea level changes of +1 cm to +2 cm (e.g. Kang and Magaard,1980; Price

and Magaard, 1983; White and Saur, 1981). Fig.1.5 (from Tabara et. al, 1986) shows an example of

time series of isopycnals in the Northeastern Pacific (Station P). The annual signal can be clearly

seen in the upper 300 meters of the ocean. Observations also demonstrate that the amplitude

usually is stronger in the western part of the ocean than in the central and eastern part of the

ocean (Talley and White, 1987).

Interannual variations of isopycnals can often reach +50 meters in the main thermocline, with

equivalent steric sea level changes of about + 5 cm (White and Tabara,1987; Tabara et. al,1986;

White,1983; Talley and White, 1987; Roemmich and Wunsch,1984; Qiu and Joyce,1991). Differing

from the rapid vertical decay of annual signals, interannual anomalies extend deeper than the
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bottom of the thermocline ( greater than 1500 meters) as shown in Fig.1.5. Thus, within and

below the middle and lower thermocline, interannual variability is much stronger than the annual

one (Tabara et. al,1986;Roden, 1977). Spatially, interannual variations change in a fashion similar

to annual variations; i.e., they are stronger in the western part than in the central and eastern part.

Annual and interannual variability of the eighteen degree water in the North Atlantic has also been

observed. It was found that the interannual variation is much stronger than the annual variation.

This feature can be identified in Fig.1.6 (Talley and Raymer, 1982).

Rossby waves, space and time scales

Most studies of the long-term anomalies have concentrated on identifying baroclinic Rossby

waves. Westward propagation of disturbances is salient in most observations except in the Kuroshio

extension and the North Atlantic Current. In the southern part of subtropical gyres (roughly south

of 30 0 N), baroclinic Rossby waves have been clearly identified at annual as well as interannual

periods in both the North Pacific and North Atlantic. For instance, annual Rossby waves of the

first baroclinic mode have been found in the southern part of the Eastern North Pacific (e.g. White

and Saur,1981;Kessler,1989). Kang and Magaard ( 1980) also found annual Rossby waves in the

northern part of the North Pacific. The annual Rossby waves are found to account for more than

fifty percent of the total annual variability. Their zonal wave lengths range from 300 km to 1500 km;

their westward propagation speeds vary from 1 cms - 1 to 5 cms- 1 . Usually the waves propagate

their phase towards the northwest, implying a radiation of energy southwestward. Nevertheless,

interannual baroclinic Rossby waves are observed clearly only in the southern parts of both the

North Pacific and the North Atlantic (Price and Magaard,1980; 1986; White and Saur, 1983).

Spectral analyses show peaks at about 10 years and 6 years. The dominant wavelengths vary from

1500 km to 3000 km.

For baroclinic Rossby waves, although analyses about wave amplitudes and wave vectors often

agree with each other, analyses of wave phases have reached two totally opposite conclusions. Some

analyses show that the phase increases in randomness westward (e.g. Kang and Magaard,1980),

while others claim to have found deterministic phases ( e.g.,White and Saur,1983; White and

Tabara, 1987). At this stage, it seems unclear which statement is correct.
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Fig.1.6 (a) Potential vorticity, (b) potential temperature, (c) salinity and (d) potential density
of the Eighteen Degree Water core at the Panulirus station, plotted against time. Monthly
and yearly averaged heat fluxes from a subset of Marsden Square 115 are plotted through
1972. The core is defined as the vertical potential vorticity minimum. From 1954 to 1958, the
Eighteen Degree Water had potential temperature, salinity and density near 18'C, 36.5.
and 26.4 mg cm t . The potential density increased slightly by 1964 and then increased more
systematically to 26.6 mg cm"' until 1972. Potential temperature remained nearly uiiform
through 1958 and then decreased to 17.9C in 1964 to 17.1'C in 1972. Salinity increased
from 36.5%. in 1954-1953 to almost 36.6%. in the 1960s to a low of 36.4%. in 1972. The
new Eighteen Degree Water of 1977-1978 had the characteristics of that in the 1950s:
18.1 C, 36.5% and 26.4 mg cm:-. (after Talley and Raymer, 1982).

U*TP~YI-----O--- .~_I-~L-(--^l__rm LI

L - - --

--

"~'j



In contrast to the clear interannual Rossby wave signals in the southern part of the two sub-

tropical gyres, in the northern part (north of 300N), interannual Rossby waves are not found in the

North Pacific (Price and Magaard,1980; White and Saur,1983), and are found to be very weak in

the North Atlantic (Price and Magaard,1986). The difference in the dynamics between the northern

and the southern part of subtropical gyres has also been found in some earlier observations. For

example, at the annual frequency, in both the North Pacific and the North Atlantic, Gill and Niiler

(1973) found that in the southern parts of the Subtropical gyres, the baroclinic response dominates.

In other words, the velocity variability is mainly caused by density (or isopycnal) anomaly. In the

northern parts, however, the barotropic response dominates without resorting to the temporal vari-

ation of the density field. This seems to be consistent with the Rossby wave analysis, because

strong baroclinic Rossby waves should produce strong baroclinic responses in the southern parts of

the subtropical gyres. Later, we will return to the physical implication of this difference between

the northern and the southern part.

The space and time scales of the variability can be seen in Fig.1.7 (from Talley and White,

1987). In the eastern parts of the North Pacific, energy spectra appear red subject to both time

and space. Most energy is in planetary space scales and interannual time scales. For example,

in the two right panels, the energy peaks have space scales longer than 3000 km and time scale

longer than 6 years. This suggests that a low frequency, planetary wave model, as will be adopted

in the thesis, might be valid in the eastern parts of the subtropical gyres. In the western region,

disturbances tend to have a broad peak at shorter wave lengths and periods, implying different

generating mechanisms such as local instabilities.

There is also evidence about the long-term variation of the background flow field (basin scale).

For example, the geostrophic transport (relative to 1000 db) of the North Equatorial Current in the

North Pacific deviates from its mean about 50 percent at annual (Meyers, 1975) and about 25 per-

cent at interannual time scales (Qiu and Joyce, 1991). The baroclinic transport of the Subtropical

gyre in the North Pacific and the Kuroshio current also exhibit strong long-term variability (e.g.

White, 1977; He and White, 1987). There is even speculation about the existence of interannual

oscillations between the two subtropical gyres in the two hemispheres (Wyrtki and Wenzel,1984).
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Figure 1.7: Frequency-zonal wavenumber (w/k) spectra of anomalous 300 m temperature for the western
(left panels) and eastern (right panels) mid-latitude North Pacific. Zonal wavelength is shown only to 2*
although the Nyquist wavelength is 10. (The effective Nyquist wavelength is between 3* and 4.) Contour
intervals are the 90 percent confidence intervals starting with a value slightly below the spectral maximum.
The area within the first two contour levels below the maximum is shaded and the area within the third
contour level is hatched. (After Talley and White, 1987).
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Energy sources and generating mechanisms

This is one of the most important aspects of the study of the long-term variability. In the

northwestern region, it seems to us reasonable that the variability is closely associated with the

dynamics of the western boundary currents or the strongly variable surface buoyancy flux there. In

other regions, the generating mechanisms are unclear. Classical explanations attribute the annual

thermocline variability to the local Ekman pumping (Veronis and Stommel,1956; Gill and Niiler,

1973; Meyers, 1975). However, later studies show that this mechanism is not able to explain the

observations satisfactorily (White, 1977,1978). For example, in a large area, the predicted field is

poorly correlated with the observations; the amplitude is badly underpredicted. A linear model

incorporating both the local Ekman pumping and the remote Rossby wave radiation from eastern

boundaries improves the results substantially, particularly in the southern part of the subtropical

gyres (e.g., Kang and Magaard,1980; White and Saur,1981; 1983; Kessler,1989).

However, as discussed earlier, in the northern part of the subtropic gyres, interannual Rossby

waves are not evident. Therefore, a model with a local Ekman pumping and baroclinic Rossby

waves may fail in these regions. So far, the reason for the lack of interannual baroclinic Rossby

wave signals in the northern part of subtropical gyres is not understood. It seems to me that the

difference between the northern part and the southern part of a subtropical gyre suggests different

dynamics. The reason is that the data for the interannual variability are taken in the upper ocean

(shallower than 500 meters). On the other hand, it is known that in the northern part of subtropic

gyres, the mixed layer can penetrate very deep (deeper than 200 meters) in winter. One would

imagine that the surface heat flux could contribute significantly to the observed signals. We will

concern ourselves with this issue in the thesis.

Nonlinearity

The nonlinearity of the Rossby wave may also be important. Observations on the interannual

variation found large amplitudes of variations on an isopycnal ( +50m). Using a decorrelation scale

of 1000 km and a reduced gravity of 7 1 cm/s 2 , one can calculate the corresponding anomalous

velocity as v , 7y-h/lf = 1 cm/s. This velocity is comparable to the speed of baroclinic Rossby

waves. Therefore, nonlinearity might be expected to play an important role.
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3 Review of Earlier Theories

Effects of Ekman pumping

Classical theories of oceanic variability have emphasized the role of Ekman pumping. Using

a linear quasi-geostrophic model, Anderson and Gill (1975) studied the response of the ocean

to a sudden change in wind field. They found that baroclinic Rossby waves are excited along

the eastern boundary and propagate westward. The interior Sverdrup flow is realized after long

baroclinic Rossby waves pass by. However, Charney and Flierl (1981) pointed out that in a linear,

inviscid model, the final Sverdrup flow is confined to the surface singularly, leaving the subsurface

fluid undisturbed. This is inconsistent with the observations.

The effect of the spatially varying mean thermocline structure has also been investigated, mostly

in a 1 layer model. Anderson and Killworth (1979) found that in a subtropical gyre, the downward

Ekman pumping increases the mean thermocline depth. As a result, the Rossby wave, whose speed

increases with thermocline depth, accelerates westward. Cheng and Philander (1989) have studied

the effect of a meridional variation of the mean thermocline. They found that a westward baroclinic

flow tends to sweep disturbances westward while an eastward mean flow deflects waves towards the

equator. Since the thermocline structure in the subtropical gyre is more complicated than zonal

baroclinic jets, we might expect that the basic thermocline structure influences the Rossby waves

significantly.

The effect of an annual periodic Ekman pumping has recently been investigated by Dewar

(1989) in a quasi-geostrophic model. He found a time-mean circulation with some micro-gyres in

the otherwise motionless shadow zone. These gyres are produced by the interaction between the

barotropic and baroclinic flows; the former refers to the vertically averaged flow which is determined

by the Ekman pumping through the Sverdrup relation while the latter is the veolcity component

due to the vertical shear. Dewar's work is limited to the annual frequency. Moreover, his quasi-

geostrophic model can not take into account ventilation. As a result, his result is restricted to the

shadow zone and can not be extended to the ventilated zone.
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These previous works have recognized two mechanisms for the thermocline variability: the local

Ekman pumping and the planetary waves radiating from the eastern boundary. However, the works

lack some important dynamics. One is the effect of a barotropic flow and thermocline structure.

Most of the previous work have concentrated on either the local response or the linear Rossby

wave in the absence of a mean thermocline circulation (e.g., Veronis and Stommel, 1956; Gill and

Niiler, 1975; Gill and Anderson,1975). The effect of a shear flow has also been considered (e.g.,

Cheng and Philander,1989; Killworth,1979). However, these models do not include a barotropic

mean flow, or a Sverdrup flow. Because the wave speed of a baroclinic planetary wave in the

mid-latitude is comparable to that of the Sverdrup mean flow, we should expect that the mean

flow has a strong influence on the planetary waves and the thermocline circulation. Indeed, in

both of the two recent steady thermocline theories (Rhines and Young, 1982; Luyten et.al., 1983),

the barotropic mean flow plays the crucial role. Without a mean barotropic flow, there will be

neither a Rhines-Young pool (Dewar et. al, 1984; Dewar, 1989) nor a ventilated zone. In addition,

the observed mean thermocline structure varies significantly in space (Emery et.al., 1984). Thus,

the effect of the mean thermocline may become significant, too. In this thesis, the mean flow and

thermocline structure will be considered and will be seen to play crucial roles.

The other part of the physics is even more fundamental because it addresses a new mechanism

for the thermocline variability-- the ventilation and the associated advection effect. None of

the previous work on time-varying thermocline has included the subduction effect. Hence, they

could not study the temporal behavior of a ventilated thermocline. The subduction effect will be

emphasized and investigated in detail in this thesis.

Variable surface heat flux

The importance of a varying surface heat flux on the thermocline has been recognized in recent

years. Stommel (1979) first pointed out that it is the water subducted from the rising mixed layer

during early spring that forms the permanent thermocline. Woods (1985) further pointed out that

the upper part of the ocean responds to a varying surface heat flux through a complicated coupling

between the mixed layer and the thermocline. During the cooling season when the mixed layer

penetrates rapidly, some water is entrained from the thermocline into the mixed layer. On the



other hand, when the heating starts and the mixed layer retreats, water is detrained from the

mixed layer to the thermocline.

However, so far, the study on the effect of variable surface heat flux has mainly based on physical

speculation and has been descriptive. There has been no theory which is developed from rigorous

physical equations and which is able to study the physical process in a quantitative way. Indeed,

even in steady thermocline models, the effect of a surface heat flux has only be studied implicitly

and partially ( they either have no mixed layer or their mixed layer models are essentially passive)

(e.g. Luyten, et.al., 1983; Huang, 1986; Pedlosky et.al., 1984; Pedlosky and Robins, 1991; Marshall

and Nurser, 1991). The major difficulty lies in the coupling between a mixed layer and a ventilated

thermocline. In this thesis, we will attempt to study the effect of a variable surface heat flux on

the permanent thermocline.

Waves from the eastern boundary

Observations also showed variability of isopycnals along the eastern boundary (e.g. section 4B

of Kessler, 1989). These variability can be caused either by wind forcings and buoyancy forcings

along the eastern boundary, or by Kelvin waves from the equator. It has been argued theoretically

that the Rossby waves forced by annual upwelling on the eastern boundary are more efficient than

the interior annual wind stress in producing oceanic variability (Anderson and Killworth, 1979).

The impact of eastern boundary Rossby waves on the interior ocean is profound. One issue

concerns the penetration of waves across the southern boundary of a subtropical gyre, which is

related to the equatorial and extra-equatorial interaction. With an basic ocean at rest, Schopf et. al

(1981) demonstrated that waves generated in the extra-equatorial region along the eastern boundary

can penetrate into the equatorial region, causing strong variability. This occurs because the Rossby

wave speed increases rapidly towards the equator with the decrease of the Coriolis parameter f

(the long Rossby wave speed is proportional to C , 1/f2). They called this phenomenon the

P-dispersion. In more realistic situation, however, it is still controversial if the planetary wave can

penetrate to the equator. Indeed, as demonstrated by Cheng and Philander (1989), the wave rays

can be substantially distorted by mean baroclinic jets.
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So far, the effect of the zonal variation of the basic state stratification has not been noted. This

variation may be particularly important in the vicinity of the southern boundary of a subtropical

gyre. The reason is that in those regions (about 15"N), using observations, Emery et. al (1984)

have shown that the internal deformation radius almost doubles from the eastern to the western

sides in both the North Pacific and North Atlantic. This implies about a four times increase of

long Rossby wave speed from the east to the west because C , (radius)2. This thesis will pay

particular attention to the zonal variation of the basic state on the wave penetration.

The other aspect that will be studied is the breaking of nonlinear planetary waves, which is

related to large scale frontal structures. It has been shown theoretically that under an annual

upwelling in the eastern boundary (Anderson and Killworth,1979) or a strong local anomalous

thermal forcing (Dewar, 1987), planetary waves may break within the subtropical gyre. A more

detailed investigation, particularly in the presence of Ekman pumping and a mean Sverdrup flow,

is needed.

4 Novel Physical Mechanisms in the Thesis

As seen in the review, previous works have left several key elements not understood for the time-

varying thermocline. These elements will be studied in detail in the thesis and are summarized in

the following. The most important two dynamical features are:

a) The variable surface heat flux: This will be investigated in chapter 4. It will be shown that,

as the wind stress does, the surface heat flux may play an important role in forcing variability in the

ocean. Yet, the two mechanism have completely different natures and result in different variability

in different regions.

b) The subduction effect: In chapter 3 and 4 of the thesis, we will see that the subduction effect

is essential for suppressing the local Ekman pumping variability within a ventilated zone. On the

other hand, the advection may help the surface heat flux to produce strong thermocline variability

at interannual periods .

In addition, there are some other aspects to be explored. c) The barotropic flow and basic

thermocline structure; the former refers to the vertically averaged flow ( determined by the surface
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wind from the Sverdrup relation) while the latter refers to the steady thermocline structure forced

by the time-mean Ekman pumping. This effect is included in all the case studies. It will be seen

that both the mean flow and the thermocline structure are important in determining regions of

different dynamics and variability. They also significantly affect the behavior of perturbations such

as the propagation, the amplitude and the breaking. d) The response on decadal time scales: Most

of the earlier works investigated the annual forcing. For the purpose of climate change, in the thesis,

we will consider time scales from annual to inter-decadal. e) The nonlinear interaction: Here, by

nonlinear interaction, we refer to both the nonlinear planetary wave and the interaction between

the barotropic and baroclinic flows. Previous studies have concentrated either on the nonlinear

Rossby wave (e.g. Anderson and Killworth, 1979) or on the interaction between the barotropic and

baroclinic modes (Dewar, 1989). In this thesis, we will combine them together. In chapter 5, we

will see that an Ekman pumping and the associated mean flow affect the planetary wave breaking

significantly. f) The dynamics at different depths: To date, few works have examined the different

dynamics on isopycnals at different depths. Here, we are going to pay attention to this aspect. The

model we are going to use is a two-layer model, which is too crude a representation in the vertical

direction (see §2.6). Nevertheless, the study may suggest that, on interfaces at different depths, the

wave propagation varies substantially (chapter 3) and the wave breaking might differ dramatically

(chapter 5).

5 Overview of the Thesis

This thesis investigates some basic aspects of the time-dependent thermocline on annual and decadal

time and basin spatial scales. The temporal variation is forced by varying external forces: the

surface wind stress, the surface heat flux and the eastern boundary upwelling. We tend to focus

on the basic physics for the time-varying ventilated thermocline. The main body of the thesis is

organized in four chapters, which are
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Ch.2. The Model, its Physics and Characteristic Solutions

Ch.3. Thermocline Forced by Varying Ekman Pumping

Ch.4. Thermocline Forced by Varying Surface Temperature

Ch.5. Propagation and Breaking of Planetary Waves Radiating From the Eastern Boundary

Chapter 2 introduces the basic model of the thesis-- a two-layer planetary geostrophic model.

The governing equation for the baroclinic mode is derived as a quasi-linear equation which is

solved analytically by the method of characteristics. Characteristic solutions are derived. For the

thermocline variability, this model has three mechanisms: Ekman pumping, baroclinic Rossby wave

and density advection. As an example, the steady thermocline case is investigated to illustrate the

different nature of the dynamic balance between a ventilated zone and a shadow zone. Later, this

fact will be seen crucial for explaining thermocline variability. The limitation of the model is also

discussed at the end.

In chapter 3, we investigate the evolution of the thermocline under a variable Ekman pumping.

To highlight the physics, we first study a simpler case, in which the Ekman pumping is suddenly

increased (spin-up) or decreased (spin-down). It is found that the dynamics of a ventilated zone

differs substantially from a shadow zone. In the shadow zone, the Ekman pumping is mainly

opposed by the Rossby wave, which is in accordance with previous studies. After a rapid change

of the Ekman pumping, the baroclinic Rossby wave evolves at a much slower time scale (years to

decades). This creates a great imbalance in forcings and results in a strong thermocline variability.

However, in the ventilated zone, instead of the Rossby wave, (cold) density advection plays the

essential role in balancing the driving Ekman pumping on the surface. When the Ekman pumping

changes rapidly, the cold advection also varies rapidly at the time scale of barotropic Rossby waves

(about one week) to achieve a new steady balance, leaving little thermocline variability. In addition

to the above dynamics, the development of the thermocline circulation is also interesting. The

evolution differs dramatically between a spin-up and a spin-down. For example, with a change in

the Ekman pumping field, the lower layer fluid in the shadow zone is no longer motionless. During



a spin-up, the lower layer water moves southward and the circulation is an anticyclonic gyre. In

contrast, during a spin-down, the water moves northward and the lower layer circulation consists

of two counter-rotating gyres: an anticyclonic gyre to the north and a cyclonic gyre to the south.

Then, a periodic Ekman pumping is adopted to simulate a variable Ekman pumping more

realistically. The features found in the spin-up and spin-down also exist in the periodic Ekman

pumping case, with the seasons of an increasing and a decreasing Ekman pumping resembling the

spin-up and spin-down respectively. This is so particularly for annual forcings (i.e. with periods

comparable to one year). Therefore, under a varying Ekman pumping, the thermocline variability

is much stronger in the shadow zone than in the ventilated zone. The direction of the lower layer

circulation in the shadow zone oscillates southward and northward.

Furthermore, it is found that for annual forcings, the disturbance is essentially linear. Never-

theless, the linear perturbation is influenced substantially by the basic state thermocline structure.

In the ventilated zone, the advection due to the subducted water has the same importance as the

local response and they tend to cancel each other. In the shadow zone, if the interface is shallower,

local responses dominate; if the interface is deep, remote Rossby waves dominate.

For a strong decadal forcing, the nonlinearity is still weak in the eastern part of the shadow

zone but is no longer negligible in the western part of the shadow zone. The time-mean thermocline

in the shadow zone is always shallower than the steady thermocline under the time-mean Ekman

pumping. The difference may be significant, especially in the western part of a shadow zone. This

shallower mean thermocline is mainly caused by the nonlinear Rossby wave. The accompanying

mean flow in the shadow zone is southward.

In chapter 4, we consider the variability relevant to a varying surface buoyancy flux. As a

first step, here in the thesis, we simulate the effect of a periodic surface buoyancy flux by specify-

ing a periodically moving outcrop line in a ventilated thermocline. Under this simulated surface

buoyancy flux, the thermocline variability is in sharp contrast to that forced by the surface wind

stress previously discussed in chapter 3. Now, the thermocline in the ventilated zone has a strong

variability while the thermocline in the shadow zone exhibits weak variation.



Furthermore, the variability in the ventilated zone has two different regimes. When the outcrop

line moves slowly (under a weak cooling), the thermocline variability is dominated by horizontal

density advection ( i.e. the advection of the interface). Even without a varying mixed layer, the

solution remains gravitationally stable. Waters always detrain into the permanent thermocline.

Therefore, this regime of solution is called the non-entrainment solution. For a non-entrainment

solution, the time-mean thermocline resembles the steady thermocline with the time-mean outcrop

line.

When the southward speed of the outcrop line is faster than the particle speed (under a strong

cooling) during part of a cycle, a solution without a varying mixed layer depth breaks down due

to gravitational instability. This implies that horizontal advection is no longer strong enough and

cold vertical convection must occur to balance the strong anomalous surface cooling. Therefore,

an (essentially passive) time-dependent mixed layer is superposed on the two-layer thermocline

model with the outcrop line and the mixed layer depth specified. Then, we find another regime of

solution called the entrainment solution. The solution is so named because when the outcrop line

moves faster than the particle speed, waters must be entrained from the permanent thermocline

into the mixed layer in order to assure the stable thermocline structure. During the entraining, a

fast penetration of the mixed layer must occur. In contrast to the non-entrainment solution, the

time-mean profile of an entrainment solution is close to the steady thermocline with the outcrop

line and mixed layer depth at early spring position (or when the mixed layer is deepest). During one

cycle of the evolution of an entrainment solution, there are three stages: the seasonally subducting

stage, the entraining stage and the subducting stage. Waters subducted during the seasonally

subducting stage will be re-entrained in the following entraining stage as high potential vorticity

waters to form the seasonal thermocline. The water subducted during the subducting stage has

a lower potential vorticity and establishes the permanent thermocline. The local variability of

permanent thermocline is most efficiently produced by interannual and decadal forcings. At annual

frequency, there is very little water subducted into the permanent thermocline each year, causing

weak variability.



In chapter 5, we examine the behavior of planetary waves radiating from the eastern boundary

in the presence of an external Ekman pumping and the associated mean flow. Two issues will be

addressed. The first is how planetary waves originating within the subtropical gyre propagate, in

particularly, whether these waves penetrate across the southern boundary of the subtropical gyre

into the tropics ? In this issue, the role of the zonal variation of the mean thermocline is emphasized

in changing the wave front propagation and effective P ( potential vorticity gradient), which further

determines the wave penetration across a southern boundary. The result is that the penetration

for an interface at different depth differs significantly.

The other issue in chapter 5 deals with the breaking of nonlinear planetary waves forced by an

upwelling or a downwelling at the eastern boundary. We are interested in the effect of an Ekman

pumping and a mean flow on the breaking of planetary waves. In particular, when and where does

breaking occur ? Furthermore, what are the structures of breaking fronts? It is found that the

planetary wave breaking is affected significantly by an Ekman pumping and the associated mean

flow. In the presence of an Ekman pumping, the breaking of disturbances caused by a downwelling

is suppressed and the breaking time is delayed. To the contrary, the breaking caused by an upwelling

is enhanced and their times are shortened. The breaking of annual and interannual disturbances

will be significantly altered.

In short, chapter 2 develops the model for the thesis. Chapter 3 discusses the effect of a

variable Ekman pumping while chapter 4 studies the effect of variable surface heat flux. Chapter

5 investigates two issues related to planetary waves radiating from the eastern boundary.
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Chapter 2
The Model, Its Physics and Characteristic Solutions

1 The Model and Basic Equations

In this thesis, we adopt the perhaps simplest ventilated thermocline model which allows subduction- -a

two-layer, ideal fluid, planetary geostrophic model. The three dimensional geometry of the model

is displayed in Fig.2.1a. pi and P2 represent the densities of the upper and lower layer respectively.

h is the thickness of the upper layer while H is the total depth. A downward Ekman pumping

w,(z, y, t) is imposed on the top. The top-plane view of the model is shown in Fig.2.1b, where

for convenience the meridional coordinate is chosen as the Coriolis parameter f = 2f1sinO, with

0 being the latitude. The northern and southern boundaries of a subtropical gyre where Ekman

pumping vanishes are located at f, and f,. The lower layer outcrops at f,. The eastern and western

boundaries are set at z, = 0 and z, < 0.

The difference between the present model and the layered model used in classical ventilated

thermocline theory (Luyten et.al., 1983) lies on the bottom. Now, instead of using a motionless

abyss, we use a rigid and flat bottom

H = constant. (1.1)

The flat bottom is adopted in the thesis mainly for simplicity. Later, we will see that this model

has the advantage of being relatively simple and analytically tractable. Most importantly, it still

captures the essential feature of a ventilated thermocline by allowing fluid to subduct. However,

we should point out that for the application to the real ocean, in our mind, the bottom of the

model ocean is the bottom of the main thermocline, or the depth where the direct wind-driven gyre

penetrates. This imagined bottom is neither rigid nor flat. Thus, this flat bottom is very artificial.

However, qualitatively, this flat bottom will not change our conclusions. For more details, the

reader should refer to section 6 at the end of this chapter.
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Fig.2.1: The geometry of the model. a) the three dimensional prospective view. b) the top-plane view. Notations are explained in the text.



Now we derive the governing equation. For a gyre-scale circulation, the hydrostatic balance

yields the dynamic pressures in both layers as

Pi = Po7, P2 = p0o7(- h), (1.2a)

Here, po is the mean density and 7 = g(P2 - Pl)/Po is the reduced gravity. 7 is the elevation

equivalent to the upper layer pressure such that Po7r? = Pourface + Pog where ( is the surface

elevation. Implicitly, it has been assumed that (P2 - PI)/Po < 1. Using planetary geostrophic

approximation, the momentum equations are simply the geostrophic balance in each layer.

v, = px/pof, u,n = -pny/pof, n = 1, 2. (1.2b)

In addition, we have the Sverdrup relation and the potential vorticity conservation (in this thesis,

the potential vorticity always refers to that of the bottom layer):

[vih +v 2(H - h)] = fw,, (1.2c)

(Ot+ 2 V)q = 0, where q= (1.2d)

(1.2c,d) can also be replaced by the mass conservation equation of both layers.

Using (1.1) and (1.2a,b), the Sverdrup relation (1.2c) can be integrated as

[2H? + (H - h)2  -- j wedz.

On the other hand, using (1.2a,b) and the geostrophic balance for the barotropic velocity V5B =

(UB, VB), we have

o p ) e)=2H 2- (-[2 + ( -h)],, [2 + ( - h)2.).

The barotropic pressure pB is then identified as

PB = (-[2H7 + (H - h)2]. (1.3a)

The above Sverdrup relation can be rewritten in terms of pa as

Po7 D2
PB = + PBE (1.3b)

2H



where

2 = f2 )d; PBE = PB = P [2HT, + (H - h) 2 ]. (1.3c)
7 P o 2H

where T7, = Ti I=0o, h, = h I==o. (1.3b) states explicitly that the barotropic mode is determined

instantaneously by the Ekman pumping at any time. This occurs because the fast barotropic Rossby

wave (with a time scale of about one week) has been filtered out by the Sverdrup relation (for a

more rigorous derivation, see Dewar, 1989). In other words, in our model, the adjustment time for

a barotropic process is infinitesimal. This assumption is reasonable because we are interested in

annual and decadal time scales.

For the baroclinic mode, from the definition of PB in (1.3a), we have

7 - h = Bl/(Po7) - (H - h)'/2H - h = pBl(Po) - (H2 + h2)/2H.

By virtue of (1.la,b), we obtain the velocities in layer two as (u 2, v2) = x V[pB/(Po7) - (H 2 +

h2)/(2H)]. Substituting these velocities into (1.2d) and noticing (1.1) yield the evolution equation

for the baroclinic mode

ht + V'h, + [UB + C(h)]h, = -(1 - )We, (1.4a)

Here, uB,vB and C(h) are barotropic velocities and the speed of the non-dispersive Rossby wave,

respectively,

, t) + (H - h)V 1 (po7D2 + 2HpBE) f
(uP, PB) =2Hfpo I= [H ,

H fPo 2Hfpoo Hp
P7 (H - h)C(h) = S-h(H-h) (1.4b)

f 2H

where the barotropic flow in (1.4d) is completely determined by the Sverdrup relation in (1.3b).

Since the continuity equation gives -V - B = w./H, (1.4a) can also be put in the conservation

form

ht + (vah)y + (fUsh), + C(h)h, = -w,. (1.4c)

The evolution equation (1.4a) is a quasilinear equation. The characteristics are simply the group

velocities of baroclinic planetary waves in the presence of a barotropic mean flow. This equation has



been derived by Rhines (1986) and Dewar (1987). This set of equations can be easily generalized

to the case with a rigid bottom varying in y direction and with an internal entrainment flux.

Now, we non-dimensionalize the equations. For convenience, the meridional coordinate will be

chosen as the Coriolis parameter f. Superscripting a dimensional quantity by a star, we have the

non-dimensional quantities:

f* P* t* * h* 77* w* pf = p = t =- -- h =-, w= -= (1.5a)

where p stands for any pressure. In (1.5a), W, f,, Po, H represent respectively the typical Ekman

pumping velocity, the Coriolis parameter at the northern boundary of the subtropical gyre, the mean

/3 value in a subtropical gyre and the total depth. In addition, Tw = H/ W, - = 2cms- 2 , L =

CGH x Tw, and CPH = 00 x L2 , L2 = 7H/ f with LD and CPH being the deformation radius and

the typical mid-latitude Rossby wave speed. Tw is then the advective time scale for a particle to sink

to the bottom of the main thermocline and L is the zonal scale across which a mid-latitude planetary

wave travels in one advective time scale. If we choose the parameters as W = 10 - 4 cm/s, f, =

2j7sin(450) = 10-4s - 1, H = 800 m, 3o = A4icos(35o) = 1.87 x 10-13s-'cm-, it follows

that

Tw . 27 years, L 16000 kin, COH 2.1 cms - 1, LD ^ 38 km. (1.5b)

The time and spatial scales are sensitive to the choice of the total depth H, especially the horizontal

length L which is proportional to the square of H. This sensitivity is noticeable because the bottom

of the thermocline varies greatly from middle latitudes to lower latitudes. Therefore, the horizontal

scale should vary accordingly. The values in (1.5b) are proper for mid-latitudes. In lower latitudes,

H is 300 m, giving much shorter time and spatial scales than in (1.5b)

Tw - 10 years, L - 2250 km. (1.5c)

The non-dimensional width of the Pacific (say about 20000 km in lower latitudes) is about 1.2

with (1.5b), but it becomes 8.8 with (1.5c).

The non-dimensional form for the Sverdrup relation (1.3b) is now

D 2

PB = - + PBE, (1.6a)



where

D 2 (x, f, t) = 2 f we(, f, t)dx, PB = 77 + (1 h) PBE = PB =o. (1.6b)

The baroclinic evolution equation (1.4a) becomes

ht + v -Vh + C(h)h, = -(1 -h)we. (1.7a)

where

PB = 1 df PB = h(1 - h)u [D'+ PBE]f, B( ) = = fw, C(h) = (1.7b)f 2f dt f

For simplicity, in (1.6) and (1.7), we have chosen an exact -plane such that f = f, + 3oy where

f, is the mean latitude of a subtropical gyre. 1 The non-dimensional / = 1. (1.7a) is the basic

equation of the thesis.

2 Physical Interpretation of the Evolution Equation

One striking feature suggested by (1.7a) (or (1.4a)) is that the baroclinic field is determined com-

pletely by the evolution of the first baroclinic mode propagating in the known barotropic mean flow.

This phenomenon is caused by the decoupling of the first baroclinic mode from other modes and is

satisfied only in the two-layer PG model with a flat bottom. In fact, the two-layer system filters out

other baroclinic modes and prohibits baroclinic mode-mode interactions. The planetary geostrophic

approximation neglects relative vorticity. Thus, the barotropic mode is completely determined by

the Ekman pumping and is therefore independent of the baroclinic evolution. The flat bottom

(actually, a meridional variation of the bottom could also be allowed) will not force topographic

waves which otherwise would interact with the first baroclinic mode. Any one of the above three

mechanisms will result in equations with Jacobian form coupling terms between different modes.

Another question closely relevant to the discussion above is : in the evolution equation (1.7a)

(or (1.4a)), why there is neither the baroclinic advection nor the potential vorticity field altered by

'This exact 3 plane differs from the standard 0 plane often used in quasi-geostrophic theory. In the latter case,
f is taken to be a constant except when being differentiated. One direct difference between the standard 3 plane
and exact. 3 plane is on the long Rossby wave speed C . 1/f 2 . In a standard j plane, the wave speed is constant
because f = f,. = constant. But in an exact 0 plane, the wave speed increases rapidly towards the equator because
c ~ 1/(fm + oY) 2 .



the mean baroclinic thermocline structure ? This occurs because of the non-Doppler shift effect of

planetary waves (Held, 1983; Cheng and Philander, 1989).

The physics behind (1.7a) (or (1.4a)) can be made clear as follows. First, we rewrite (1.4a) as

h
ht = -vB - Vh - Ch, - (1 - H)we(f), (2.1)

The right-hand side terms in order will be called the density advection, the Rossby wave and the

effective local Ekman pumping. The corresponding energy equation is

Pt = -VB - VP - CP, - (1- h)hwe(f),

where P = h2 /2 is the available potential energy; -v -VP is the energy advection by the barotropic

flow; -CP, is the energy radiated by Rossby waves and -(1- ')hwe(f) is the rate of work done by

the effective local Ekman pumping. The dynamic effects of these three mechanisms are illustrated

below.

The effective local Ekman pumping -(1 - h)we(f), roughly speaking, consists of two parts:

the surface Ekman pumping -we and the divergent Ekman pumping mass flux in the upper layer

-4w, = hV v7 , as shown schematically in Fig.2.2a. Since the later part of mass input diverges

in the upper layer before it reaches the interface, it will not affect the evolution of the interface.

As a result, the surface Ekman pumping effective to influence the interface is the remaining part

-we - (-hwe/H) = -(1 - )we(f). This effective Ekman pumping is still downward but weaker

than the surface Ekman pumping. The response is a deepening of the interface ht > 0 as stated

in (2.1). From the energy viewpoint, the local Ekman pumping is an external energy source which

forces lighter fluid to descend. Hereafter, without confusion, the effective local Ekman pumping is

simply called Ekman pumping.

The Rossby wave mechanism -Ch, is caused by the westward propagation of a planetary wave.

In a subtropical gyre, an isopycnal usually deepens westward, i.e. h, < 0 on the gyre scale. Thus,

the westward propagation of a Rossby wave produces a local ascent of the interface, i.e. ht < 0 as

observed from (2.1) (Fig.2.2b). In other words, a Rossby wave locally transports available potential

energy westward.
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Fig.2.2: A schematic figure for each dynamic mechanism in the the present model. a) The effective Ekman pumping, which tends to deepen the interface. b)
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The term -v -Vh is called the density advection because in a two-layer model, the advection of

the interface h is the analogy of a density advection. Here, a dense fluid advection (cold advection )

-vB Vh < 0 is simulated by an excess lower layer fluid advection. This advection locally produces

a thicker lower layer (ht < 0), which implies a local reduction of heat storage or energy. The

opposite occurs for a light fluid advection (warm advection)(see Fig.2.2c).

Hence, the Ekman pumping provides the driving force for the thermocline circulation. In

balancing this driving to achieve a steady state, either a Rossby wave or a cold advection has to

function. This will be seen clearly in the next section.

Finally, it is interesting to see a relation between the density advection and the O-spiral which

is a measure of the vertical velocity shear. In the light of (1.2a,b) and (1.4c), one obtains

-. (v X v" ) = - Vh (2.2)

This relation means that a -spiral structure (. -(v x V2) < 0) corresponds to a cold advection while

an anti-P-spiral structure (k. (v x v2) > 0) gives a warm advection. This relation between density

advection and vertical shear can be easily proven in a continuously stratified model even in the

presence of temporal variations. Therefore, the observed /-spiral in the interior mean thermocline

in the subtropical gyre (Stommel and Schott, 1977) implies a mean southward cold advection there,

which is consistent with our intuition.

3 The Dynamics of a Steady Ventilated Thermocline

Before we analyze a time-dependent thermocline, it is helpful to briefly discuss a steady ventilated

thermocline in our two-layer model. For simplicity, we only consider the case in which both the

Ekman pumping we and outcrop line fo are zonal. In addition, as in the classical LPS model

(Luyten et. al,1983), we assume that there is no mass flux into the eastern boundary in each layer,

i.e. Plf 1z=o = P2 I==o = 0. From (1.2a), this means 77, = constant, he = he(fo) = 0. Thus,

we = W1(f), fo = constant, 7 = constant, h, = 0. (3.1)

Following Luyten et. al (1983), we derive the solution. In the ventilated zone, the steady form

of potential vorticity conservation (1.2d) and the geostrophic balance (1.2b) give f/(1 - h) = Q(p2).



Along the outcrop line, this becomes Q(p2) = fo = constant. Thus, we have the solution for the

ventilated zone as

f-h = = constant, or h = 1 - f/fo. (3.2)
1-h

In the shadow zone, vi = 0. With the aid of (1.2a,b), this means p2 = 7 - h = constant. Using the

Sverdrup relation (1.3b), we have the shadow zone solution

h2 = D2 = 2f 2 w1 2. (3.3)

The shadow zone boundary will be denoted by B 1. The continuity of the solution (3.2) and (3.3)

along B 1 gives the expression for B 1 as

(1- )2i-f= (3.4)XB1(f) = 21(().

Now, we analyze the dynamic balance for the steady solution (3.2) and (3.3). In the steady

case, equation (1.7a) degenerates to

v B. Vh + Ch, = -(1 - h)we. (3.5)

In the ventilated zone, the solution (3.2) has no zonal slope h, = 0. Thus, in the ventilated zone,

the Rossby wave term vanishes Ch, = 0 and the dynamic balance is achieved between the cold

advection energy sink and the Ekman pumping energy source, i.e.

vB . Vh = -(1 - h)w, > 0. (3.6)

Rossby waves play no role in the dynamic balance in the ventilated zone here. The cold advection

in (3.6) also means a P-spiral velocity shear in the ventilated zone.

In contrast, in the shadow zone, v = 0 and (2.2) yields -vb • Vh = 0. Therefore, the dynamic

balance is such that all the energy input from the Ekman pumping is transported westward by

planetary waves, i.e.

Ch, = -(1- h)w, > 0. (3.7)

This simple example illustrates the intrinsic dynamic difference between a ventilated zone and

a shadow zone. The Ekman pumping is important for both regions as the driving mechanism.
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However, in balancing this driving, the ventilated zone is dominated by density advection while the

shadow zone is controlled by planetary waves. Intuitively, this difference of dynamics in the two

zones is sensible. In a ventilated zone, the subduction of waters play a crucial role. Thus, advection

is important. In a shadow zone, however, there is no motion except in the surface layer. Thus,

advection is not crucial.

As far as time variability is concerned, the dynamic balances (3.6) and (3.7) have completely

different nature and may result in totally different variability. For instance, we consider the case

in which the wind stress suddenly changes. Let's tentatively analyze the dynamics balance in the

two zones. In the ventilated zone, both the Ekman pumping -(1 - h)we and the density advection

VB .Vh vary rapidly after a barotropic Rossby time scale (in our model, this time is zero). Therefore,

a new steady dynamics balance (3.6) may be rapidly achieved. This may imply little variability of

the interface. In the shadow zone, the situation is totally different. The baroclinic Rossby wave

C(h)h, varies only after a slow baroclinic Rossby wave time scale while the Ekman pumping has

been changed rapidly right after the change of the wind stress. Therefore, the steady balance

(3.7) can not be maintained any more. An imbalance in the steady dynamic balance is produced,

which may excite strong temporal variability of the interface. Consequently, in responding to this

changing wind, one may speculate that there is little variability in the ventilated zone but there is

a strong variability in the shadow zone. In chapter 3, this will be proven is indeed the case.

Finally, one notices that the ventilated zone solution (3.2) is peculiar because of its uniform

potential vorticity f/(1 - h) = fo = constant. This uniform potential vorticity is an artificial

feature of our model. Indeed, it is the flat bottom, together with a zonal outcrop line, that

produces a constant subduction potential vorticity fo along the outcrop line and in turn the uniform

potential vorticity in the whole ventilated zone. The absence of Rossby waves is caused by this

uniform potential vorticity because there is no background potential vorticity gradient to provide

the restoring mechanism for a Rossby wave. If the outcrop line depends on latitude, the potential

vorticity along the outcrop line would not be uniform. Thus, the potential vorticity in the lower

layer would not be uniform and Rossby waves may appear in the ventilated zone. For a more

general model or even the real ocean, the potential vorticity in a ventilated zone is definitely not



uniform. One naturally wonders whether the different dynamic natures between the two zones still

exist. I speculate that qualitatively this is still true. In fact, in observations (e.g. Keffer,1985;

Talley, 1988), numerical models (Cox and Bryan, 1984; Cox, 1985, 1987) and theories with more

complex models (e.g. Luyten et. al,1983; Pedlosky and Young, 1983; Liu et. al,1991), it has been

observed that the potential vorticity in a ventilated zone, although not uniform, is much more

uniform than that in a shadow zone. This suggests that the planetary wave activity would be much

weaker in a ventilated zone than that in a shadow zone. For a more detailed discussion, the reader

should refer to section 6 of this chapter.

4 Characteristic Equations

Now, we return to the time-dependent evolution. We want to solve (1.7a) by the method of

characteristics. The characteristic equations for (1.7a) are given by

dt 1 
(4.1a)

ds
dfd- =  fwe,(z, f, t) (4.1b)

dh
d - -(1 - h)we(, f, t) (4.1c)

dx 1 [D2(X, ft) + pBE(ft)]f h(1- (4.d)
da - 2f f 2

where s is the variable along a characteristic. The initial condition for characteristics in (4.1) is

(t, f, z, h) 19=o = [ti, fi, i, hi(xi, fi, ti)]. (4.2)

This is different from the real time initial condition at t = 0 with h(z, f, t) It=o. (4.1) is a set of

ordinary differential equations. A simple case occurs when the Ekman pumping is independent of

longitude, i.e. we = w,(f, t). In this case, this set of equations can be solved one by one: (4.1a) for

t, (4.1b) for f, (4.1c) for h and finally (4.1d) for z. In addition, for a general Ekman pumping, the

division of (4.1b) and (4.1c) yields

d ( ) = 0, or (4.3)
d l -h 1-h 1-hi

This is just the conservation of potential vorticity (1.2d) represented in the characteristic coordinate.



Here, for simplicity, we adopt the eastern boundary condition that there is no barotropic zonal

transport into the eastern boundary (Pedlosky, 1983). Hence, it follows that

-1
UB l=o= -OfBE = 0 (4.4)

f

The simplest interface structure to satisfy this eastern boundary condition is he = 0 as is the case

in Luyten et al.(1983). However, the eastern boundary condition (4.4) allows any h,(f, t) once the

corresponding ,7e(f, t) makes pBE in (1.6b) spatially constant.

Thus, for a zonally independent Ekman pumping and a zero barotropic transport into the

eastern boundary (4.4), using (4.3) to replace the h equation (4.1c) and noticing D2 in (1.6b), (4.1)

can be simplified as

t = ti + s, (4.5a)

df- fWe (f, t), (4.5b)

SA (4.5c)
1 -h 1 - hi

dzx a h(1 - h)
s[ffwe(f,t)l f2  (4.5)ds f f2 (4.5d)

Now, the x equation is a linear equation since f and h are solved from (4.5b,c)

An example

Here, we consider a special but useful case of spin-up or spin-down. Before an initial time, say,

t = 0, we assume that the thermocline is a steady thermocline under an old Ekman pumping wl(f)

(as in the example in last section of (3.1)). Then, the Ekman pumping is changed abruptly to a

new Ekman pumping w2, i.e.

Ueft- wl(f) if t <0 (46)
w2(f) if t 0_ 0

With (4.6), we can integrate (4.5b) to yield

fI dff. W(f) (4.7)
s f w (f)"

This equation can then be used to replace (4.5b). In addition, the differential form of (4.7) is

ds = df/fw2(f). This allows us to use f to replace s as the characteristic variable. Substituting



this into (4.5d) and noticing (4.5c), the x equation (4.5d) can be written as an differential equation

for the new characteristic variable f

d[f 2 w 2(f)x] 1 - hi
-- h

df fi

Using the initial conditions (4.2) and using (4.5c) again for the h, this can be integrated explicitly.

Eventually, we end up with the characteristic equations

t = t+ s, t > 0 (4.8a)

f = f(f, s), (4.8b)

f fif A (4.8c)
1 - h 1 - hi'

f; W2(fi) h2 - h-S f W2(fi)Xi + - hi  (4.8d)f 2w2(f) 2f 2 w 2 (f)"

Here, for later convenience, s in (4.7) (or (4.5b) under (4.6)) has been replaced by f in (4.8b),

which is determined implicitly by (4.7) as

S (A,s) df
A fw2(f)

In other words, f is the f solution (4.7) in the characteristic coordinate. (4.8b) can also be replaced

by the inverse function fi

f = i(f, s). (4.8e)

which satisfies f j[fi(f,s),s]. For illustration, here, we present two examples of the / char-

acteristic solution, which will be frequently used in the rest of the thesis. The first is a spatially

uniform Ekman pumping

we(f) = Wo, (4.9a)

where Wo < 0 is a constant. (4.7) then gives the I and fi as:

f = fieWo and i = fe - W ' . (4.9b)
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The second is a parabolic Ekman pumping

we(f) = Wo(1 - f)(f - fs), where f, = 1 (4.10a)

This will be adopted to study an entire subtropical gyre for the spin-up problem. Its f function is

implicitly determined by

1 p[f,( - f,)Wos]. (4.10b)
( W1-.)f exPfb

(4.8a-d) are essentially a set of algebraic equations. When the initial condition (4.2) is specified,

(4.8) can be solved. After solving for h from this set of equations, the non-dimensional pressures

are readily obtained from the non-dimensional form of (1.1a) and the Sverdrup relation (1.6b)

p, = 7 = h + (D' - h')/2, p 2 = 77 - h = (D - h2 )/2. (4.11)

Here a spatial constant pBE has been neglected due to (4.4). Then, the velocities is determined by

the non-dimensional form of (1.2b) as

(u, vn) = -(-Pnf,pn), n = 1,2 (4.12)

It should be pointed out that (4.8) can actually be used cases other than spin-up and spin-down.

If we set w = w 2 , the Ekman pumping remains unchanged. (4.8) is also for a steady thermocline.

Moreover, in spite of the special form of Ekman pumping in (4.6), (4.8) still allows a moving outcrop

line fo(t) as well as upwelling and downwelling along the eastern boundary he(t). Thus, this system

contains a rich variety of time variability. Indeed, (4.8) are the main characteristic equations for

the thesis. It is used in chapter 3 (section 2) for the spin-up problem; it is used in chapter 4 to

study the effect of a moving outcrop line, which simulates a varying surface temperature; it is used

in chapter 5 for studing perturbations caused by eastern boundary upwelling and downwelling. For

a periodically varying Ekman pumping in section 3 and 4 of chapter 3, (4.8) is no longer valid and

therefore other approaches will be adopted.

5 Characteristic Solutions

With the characteristic equations in (4.8), for the entire gyre, solutions at different times can be

derived. Suppose we want to derive the solution at the time t = T. The solution is formed by



characteristics starting from the eastern boundary, the outcrop line and the initial time t = 0

plane. Different zones will be determined by characteristics coming from different starting points.

We start with the part of the solution established by the characteristics originating from the eastern

boundary.

The new shadow zone

For the part of the solution due to characteristics from the eastern boundary, each characteristic

curve must start at a time ti before T on the eastern boundary, i.e. 0 < ti < T, Xi = X, = 0. In

the (ti, xi, fi) space, one example characteristic line is shown schematically in Fig.2.3a by the thick,

dark arrow. This characteristic curve starts from the surface 0 < ti < T, xi = x, and ends on the

plane ti = T. If the interface depth at the eastern boundary is

h Ix=o= he(f, t), (5.1a)

we have the initial condition for the characteristics

Zi = O, hi = he(fi, ti), O < ti < T, f, < fi < fo. (5.1b)

In particular, for the special case

he = 0, (5.1c)

the characteristic solution (denoted by h,) established by the initial characteristic surface (5.1b,c)

is obtained from (4.8) as:

t = ti+s, (5.2a)

f = f(s, fi), (5.2b)

h = 0 < s < T- ti, (5.2c)

h2
X = 2f 2  (f) (5.2d)

2f2ws(f)

(5.2d) immediately gives an explicit solution he = /2f 2 w (f)z. This is the same as the steady

shadow zone solution in (3.3) except for a new Ekman pumping w 2 . Therefore, the solution in (5.2)

is called the new shadow zone solution.
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Figure 2.3: Schematic figures for characteristics and the wave fronts. (a) shows the new shadow zone. The
thick, dark arrow represents a typical characteristic line originating from the eastern boundary and form the
new shadow. t = 0 and t = T are the initial and end times. The dashed lines are the boundaries of the
isopycnal (the outcrop line, the eastern boundary and the western boundary). Two groups of characteristics
are also drawn with thin arrowed curves. The first group initiates from the eastern boundary z, at the
initial time and form the front zF later. The second group starts from the corner (z,, f.) at times after the
initial time 0 < ti < T and form the new new shadow zone boundary B2 . (The characteristics for the new
ventilated zone and for the original ventilated and shadow zone are not presented here). b) The wave fronts
and the associated characteristics in the (ti, zi, fi) characteristic space. Four groups of characteristics are
drawn. The first group start from the eastern boundary zj = z, at the initial time ti = 0 and form zF, which
separates the new shadow zone and the original shadow zone. The second group start from the outcrop line
f, at the initial time ti = 0 and form fF, which separates the new ventilated zone and the original ventilated
zone. The third group start from the corner (zi, fi) = (z,, fo) at times after the initial time 0 < t < T and
form the new shadow zone boundary B2, which separates the new ventilated zone and the new shadow zone.
The last group start from the old shadow zone boundary B1 at the initial time ti = 0 and form the internal
front B, which separates the original ventilated and shadow zone.



However, different from the steady case in (3.3), at a finite time, the solution (5.2) is valid only

behind (to the east of) the earliest wave front which is established by the characteristics starting

at the beginning time t = 0. This wave front will be denoted by XF and is shown schematically

in Fig.3.1a. In the figure, the characteristics (thin arrowed curves) forming zF start from the line

ti = 0 and xi = 0, and end on the XF at ti = T. To show the wave front and the associated

characteristics more clearly, Fig.2.3b is plotted which shows wave front XF (and other wave fronts

which will be discussed later) and the associated characteristics in the whole (ti, zi, fi) space (for

0 < ti < T). This includes the part of the space in Fig.2.3a near the eastern boundary. The initial

condition of zF is derived by substituting ti = 0 into (5.1b). For the special eastern boundary

(5.1c), the XF is obtained in (5.2) by letting ti = 0:

(1- f ]2
zF(f,t)= 2f 2 (f,t) (5.3)2f2w2(f) I

where the inverse fi function in (4.8e) has been used. This is a planetary wave front in the presence

of a Sverdrup flow. It propagates westward at the characteristic speed dx/dt = us + C(h). 1 As

time goes on, XF propagates, behind which the new shadow zone is expanded. The expansion can

be seen in Fig.2.3a or b on succeeding ti planes. More clearly, the evolution is seen in the top

view in Fig.2.4. At the initial time t = 0 (Fig.2.4a), zF has not propagated yet. There is no new

shadow zone. The gyre is filled with the initial steady ventilated thermocline (hi, as in (3.2) and

hi, as in (3.3)). Later (in Fig.2.4b), XF advances westward and near the eastern boundary a new

shadow zone has been established. Even later (in Fig.2.4c), the xF reaches further west and the

new shadow zone is greatly expanded.

In addition, similar to the steady case of (3.4), to the north of the new shadow zone, there is a

new shadow zone boundary B 2 . This B 2 is formed by the characteristics (also shown as thin arrows

in Fig.2.3a,b) starting from the line zi = 0, fi = fo and 0 < ti < T. The equation for B 2 is then

readily obtained from (5.2) as

(1 _ 1)2
XB2(f) = f. (5.4)

2f 21w2(f)

1 With the special eastern boundary condition (5.1c), at the southern boundary f., zp is always stagnant on the
eastern boundary. Detailed discussion about the behavior of zp will be given in appendix B of chapter 5.
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Figure 2.4: The schematic top-view of the evolution of the zone boundaries at succeeding times. (a) The
initial time t=O. The gyre is occupied by the old steady ventilated thermocline. (b) At a later time, zm and
fp have advanced westward and southward respectively, establishing a new shadow zone near the eastern
boundary and a new shadow zone near the outcrop line. The original ventilated zone and shadow zone have
shrunk. (c) At an even later time, the new ventilated zone and the new shadow zone have occupied almost

all the basin except in the southwest corner. A new ventilated thermocline is almost established over the

whole basin.
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This is the same as the old shadow zone boundary B 1 in the steady circulation (see (3.4)) except

with a new Ekman pumping w 2.

It should be noticed that for a general eastern boundary condition (5.1a), the solution in (5.2)

may not be a true shadow zone, i.e. the lower layer fluid may be in motion. In fact, if Off he, 0, there

is an eastern boundary ventilation in this region. In this case each layer will have a non-vanishing

zonal transport on the eastern boundary although there is no barotropic transport (Pedlosky,

1983). If Othe i 0, there will be upwelling or downwelling along the eastern boundary (Anderson

and Killworth, 1979). The lower layer fluid will be forced to move, too. This case will be studied in

detail in chapter 5. Nevertheless, without confusion, we will still use the name new shadow zone.

The new ventilated zone

Similar to the new shadow zone, there is another group of characteristics originating from the

outcrop line fo at 0 < ti < T (the figure similar to Fig.2.3a is not presented). In general, the

outcrop line can take the form

fo = fo (, t). (5.5a)

The initial surface for characteristics is:

fi = fo(zi,ti), hj = O, 0 < ti < T, z, < zi < 0. (5.5b)

Particularly for the special case with a steady and zonal outcrop line

fo = constant, (5.5c)

the solution (h,) is derived by substituting (5.5b,c) into (4.8):

t = ti+s, (5.6a)

f = .[f, s] (5.6b)

h, = 1 -,s < T - ti, (5.6c)
fo

f 2 uW2(fo) hz = f2w2(f)zi + (5.6d)
f 2W2(f) 2f 2 u2(f)

(5.6c) is already an explicit solution which is the same as the steady ventilated zone in (3.2) with

the new boundary B 2 in (5.4) on the eastern flank. Therefore, solution (5.6) is called the new

ventilated zone solution.



In the time-varying case, similarly to the new shadow zone discussed above, the new ventilated

zone is established after the passing of the earliest wave front fF, which starts from the outcrop

line fo at the beginning ti = 0 and which advances southward. fF is then formed by a part of

characteristics in (5.5b) with tj = 0 ( the line with ti = 0, fi = fo in Fig.2.3b ). These characteristics

and fF are also shown in Fig.2.3b. In the case of (5.5c), substituting ti = 0 into (5.6b), this wave

front can be derived as

fF(t) = f(fo, t). (5.7)

For instance, a uniform Ekman pumping in (4.9) has fF(t) = foewot . In general, an fF advances

southward at the characteristic speed (in our model, this is also the Sverdrup velocity) df/dt =

vB = fw 2 . As time goes on, fF travels more south, and thus the new ventilated zone is expanded.

The expansion can be seen in Fig.2.4 at succeeding times.

It should be recognized that with a general form of outcrop line (5.5a), the solution in the new

ventilated zone could be much more complicated than (5.6c). The whole chapter 4 will be devoted

to the case with a moving outcrop line fo = fo(t), which simulates a surface variable heat flux. In

that case, the flow in the new ventilated zone varies with time.

The newly formed ventilated zone (h,) and shadow zone (h,) are due to information coming from

the boundaries of the gyre. Therefore, they are boundary value solutions for the partial differential

equation (1.7a). The Ekman pumping (4.6) is steady after the initial time. The boundary conditions

he or fo are also steady ( (5.1c) and (5.5c)). Thus, the solutions (5.2) and (5.6) are steady.

The original ventilated zone and original shadow zone

From Fig.2.4, we see that, at each time, before the arrival of the wave front fF and zF, the

gyre is occupied by some other solution. This solution is due to the real time initial value (at

t = 0) and is formed by the characteristics starting from the plane with ti = 0 and within the gyre

X, < Zi < X,, f, < fi < fo (the figure similar to Fig.2.3a is not presented). Thus, the initial surface

for the characteristics is

ti = 0, hi = hi(zi, fi), xw < zi < 0, f, < fi < fo. (5.8)



Furthermore, initially at time t = 0, there are two different zones in the gyre (see Fig.2.4a): the

old ventilated zone in (3.2) and the old shadow zone in (3.3), which are denoted respectively by

hi = hi,(, f) = 1 - for Xi < zBl(fi), (5.9)

and

hi = h~,(xi, fi) = fi~2w(fz f , for Xi > XB1(fi). (5.10)

The solution obtained from (5.8), (5.9) and (4.8) will be named the original ventilated zone (h,,)

t = 8, (5.11a)

The solution derived fro

f = (fi, s), (5.1

h, = - h,(x, fi)]-, 0 < s < T, (5.1

f2 W 2 (fi) h 2 - h (5.1
S ) (z + - (5.1

f 2w2(f) 2f 2 w2(f)

m (5.8), (5.10) and (4.8) will be called the original shadow zone (h,,)

Ib)

.1c)

Id)

t = 8,

f = j(f,,),
ho, = - [ - ht(,(, f)]-,

f, w2(fi) h2 - h?
= -X i + .Is

f2'w2(f) 2f2W2(f)

(5.12a)

(5.12b)

(5.12c)

(5.12d)

O < s <T,

The boundary between h,, and h,,, denoted by B, is at the old shadow zone boundary z = zXB(f)

(see (3.4)). Later, B evolves with time. The B and the associated characteristics are illustrated

schematically in Fig.2.3b. After using the initial curve z = ZEl(fi), B is derived from (5.11) or

(5.12) as

(1 -)2-- (1 )2)
xz(f, t) = 2f2Wz(f)

(5.13)

where 6(fi) - 1 - 12O. B varies with time. It forms an internal wave front starting on B 1, as

opposed to a boundary wave front XF or fF. As shown schematically in Fig.2.4, initially, the h~, (or

hi,, at t = 0) and h,, (or hi, at t = 0) occupies the whole gyre. Later, zF propagates westward and



fF advances southward, the new shadow zone and the new ventilated zone are expanded. At the

same time, the original ventilated zone and the original shadow zone shrink. At the last time shown

in Fig.2.4c, the new shadow zone and the new ventilated zone have occupied almost all the gyre

except the southwestern corner. A new ventilated thermocline is almost established. Eventually,

the new shadow zone and ventilated zone will overtake the entire gyre, establishing a new ventilated

thermocline.

6 Remarks on the Limitations of the Model

Our model has the advantage of being relatively simple and analytically tractable. Most impor-

tantly, it captures the essential feature of a ventilated thermocline by allowing fluid to subduct. In

fact, this model is perhaps the simplest model to take into account ventilation effect.

However, we are fully aware of the limitations of the model. As in most previous thermocline

theories, we have assumed that the Ekman pumping and the outcrop line do not depend on longi-

tude. The western boundary currents are passive in the sense that they do not directly affect the

thermocline in the interior. Finally, there are two important and perhaps serious presumptions.

The first is the rigid and flat bottom. The second is the two layer representation of a continu-

ously stratified thermocline. Since they have important impact on our model dynamics and on the

interpretation of our model results, these two assumptions deserve more attention.

The rigid and flat bottom

The flat bottom assumption is adopted here mainly for simplicity. Particularly in the time-

dependent problem, this rigid bottom filters a second baroclinic mode. As a result, there is no

baroclinic mode-mode interaction. Furthermore, a flat bottom does not excite topographic Rossby

waves which would otherwise interact with the baroclinic mode. These points have been illustrated

at the beginning of section 2.

One artificial feature related to the flat bottom is a uniform potential vorticity in the ventilated

zone provided that a zonal outcrop line is also imposed. This occurs because the subduction poten-

tial vorticity along the outcrop line now is a constant, i.e. qsubduction = f/(H - h) If=o=constant=

fo/H = constant. Then, with the flat bottom, this uniform potential vorticity results in the ab-



sence of zonal slope of the interface i.e. h, = 0. This in turn yields an important dynamic result:

the absence of baroclinic Rossby wave (C(h)h,, = 0) in the ventilated zone. Consequently, the

advection dominates and the dynamic balance is (see (3.6))

h
V - Vh = -(1 - )we. (6.1)

This is in sharp contrast to the dynamic balance in the shadow zone (see (3.7))

h
Ch, = -(1 - H)e. (6.2)

where the baroclinic Rossby wave dominates. As speculated at the end of section 3 and as will be

proven in later chapters, the difference between the dynamic balance (6.1) and (6.2) will result in

totally different variability in the ventilated zone and the shadow zone.

If in the flat bottom model the outcrop line is not zonal, or if we have a 21 layer model, the sub-

duction potential vorticity usually will not be a constant, because qsubduction = fo(x)/H[z, fo(z)] i

constant. Therefore, the potential vorticity in the ventilated zone is no longer uniform and the

dynamic balance (6.1) should be replaced by (see (3.5)) 1

h
- Vh + Ch, = -(1 - )w,. (6.3)

Furthermore, in a more realistic model or the real ocean, the potential vorticity in the ventilated

zone is obviously not uniform. One would ask: Do the density advection and the Rossby wave still

dominate in the ventilated zone and in the shadow zone respectively ?

We speculate that, qualitatively, the answer is " yes". We have several reasons. The first

reason uses the dynamic balance of (6.3) and applies only to a two layer flat bottom (with a tilting

outcrop line) or to a 24 layer model (see footnote [1]). In either case, the shadow zone dynamic

balance is the same as in (6.2). This is so because v' = 0 and then (2.2) shows that -v' - Vh = 0.

In the ventilated zone, however, the non-uniform potential vorticity results in the presence of the

Rossby wave term. The dynamic balance (6.1) is no longer valid and should be replaced by (6.3).
1More precisely, instead of being (6.1), the steady dynamics balance equation should take the form v'. V(H-h)+

C(H - h), = (1 - , )we. This equation is valid for both the flat. bottom two-layer model (it degenerates to (6.3) with
a flat bottom) and a 21 layer model. For a 21 layer model, this equation is derived by the subtraction of equations
(lla) and (1 lb) of Luyten and Stommel (1986). For a uniform potential vorticity, (H-h), = 0. This balance becomes

-V(H - h) = (I - 4)w,. On the other hand, in the shadow zone, the balance becomes C(H - h), = (1 - 7)wY .

~ __



Nevertheless, a cold advection (-v . Vh < 0) cancels part of the Ekman pumping. Therefore, the

Rossby wave term only needs to balance the remaining part of the Ekman pumping, as opposed

to balancing the total Ekman pumping in the shadow zone. Hence, we conclude that the Rossby

wave effect is always more important in a shadow zone than in a ventilated zone. From another

viewpoint, in the ventilated zone, we usually have vBhf ' uBh, and both do not cancel each other.

Therefore, 'iB - Vh ; O(uBh,). Thus, the ratio between the advection and the Rossby wave is

vi • Vh uBh, u
Ch, Ch, C

Since C is finite while uB , x (see (1.4c) and notice D 2 , x there) and increases towards the west,

we should expect that the ratio becomes larger westward. Thus, in the western part, the advection

effect should eventually dominate.

The second reason relies on the potential vorticity gradient. In fact, the activity of the Rossby

wave is related to the background potential vorticity gradient. A more uniform background poten-

tial vorticity implies a weaker restoring mechanism for the Rossby wave or a weaker Rossby wave

activity. Thus, the question of the relative importance of the advection and the Rossby wave may

be put in another way: Is the potential vorticity gradient in the ventilated zone still much weaker

than that in the shadow zone?

The first support comes from observations (e.g. Keffer, 1985; Talley ,1988) and numerical

modellings (e.g. Cox and Bryan, 1984; Cox, 1985;1987). Their results all show that, on outcropped

isopycnals, the potential vorticity is much more uniform in the ventilated zone than that in the

shadow zone, the latter zone being located near the eastern boundary and southern boundary of

the subtropical gyre. Second, a much more uniform potential vorticity in the ventilated zone is

also found in other more complicated steady circulation models. For instance, in a 3 model, this

feature exists both in the classical LPS solution (two outcropped layer and one surface layer) (see

Luyten et. al, 1983) and a coupled Rhines-Young pool and a ventilated thermocline solution (one

unventilated layer, one outcropped layer and one surface layer) (see Pedlosky and Young, 1983; Liu

et. al, 1991).

Finally, in a two-layer or a 2 layer model, we can also analyze the potential vorticity structure

in more detail. Supposing a tilted outcrop line fo(z), the amplitude of the spatial variation of



potential vorticity in the ventilated is the same as that of the subduction potential vorticity on the

outcrop line, i.e.

fo(Ztn) fo(Xe)A".z. = Aqsubductin = -- .fo() (6.4)
H(2x,, fo) H(xe, fo)

On the other hand, the potential vorticity range in the shadow zone is decided on the eastern

boundary

Aq.z. = f e)- (6.5)
H(xe, fo)

where f, is the latitude of the southern boundary of the subtropical gyre. If the zonal variation of

H is small (or flat), it is clear that the condition for Aq,.. Aq,.z. is

Aq,.z. fo(~w) - fo(xe) (6.6)
Aqs.z. fo(x,) - f

This means that the outcrop line has to tilt across the whole meridional extent of the isopycnal

in the subtropical gyre. This requires a zonal slope too strong for most observed outcrop lines

within a subtropical gyre in early spring, particularly in the Pacific ( see Fig.1.3b of chapter 1).

Furthermore, if the effect of the variation of H is included, the ratio in (6.6) will be reduced

further, giving an even more uniform potential vorticity in the ventilated zone. This is so because a

winter outcrop line in a subtropical gyre usually tilts (but not strongly) in the northwest-southeast

direction (in the northern hemisphere) i.e. fo(z,) > fo(ze) (see observation in Fig.1.3b of chapter

1, particularly in the North Atlantic. Some theories have been given to explain this tilt by Pedlosky

et. al, 1984). On the other hand, in the subtropical gyre, the thermocline depth deepens westward,

i.e. H(z,, fo) > H(z,, f,). As a result, the deeper H(xz, fo) cancels part of the large fo(zw) and

the potential vorticity variation in the ventilated zone (see (6.4)) is reduced.

With the above reasoning, in general cases, we speculate: it is qualitatively true that the density

advection dominates in the ventilated zone while the Rossby wave effect dominates in the shadow

zone.

The two layer representation of the thermocline

The two layer model is a very crude representation in the vertical direction. It is unclear to us

how exactly this representation corresponds to a continuously stratified thermocline. This gives us

some difficulty in interpreting some of our model results. Those results show that different dynamic



properties occur on different depths of interfaces (or different upper layer thickness ) in our model.

Does this imply that the properties also vary on isopycnals with different depths in a continuously

stratified thermocline ? We do not know !

Nevertheless, we tend to think of different depths of interface in two ways, although we recognize

that neither of them is satisfactory. The first comes from intuition (although this intuition may

very well be wrong!). We think of an interface as an isopycnal at the same depth in a continuously

stratified thermocline. It seems to us that this analogy should hold to some extent. For example,

a deeper interface is less affected by the surface Ekman pumping than a shallower one. This is

consistent with the fact that in a continuously stratified thermocline, a deeper isopycnal is also less

affected by the surface Ekman pumping than a shallower one. On the other hand, we know that

stratification would change the above conclusion. A stable stratification tends to make the effect

of surface Ekman pumping decay more rapidly with depth. Does this imply that an interface at

certain depth resembles more to an isopycnal at an shallower depth ?

The second analogy is to relate h and H - h to the equivalent depths of the first baroclinic mode

in a continuously stratified ocean. For example, if h(xe) = 0.5H, we infer that the stratification

along the eastern boundary is a constant Brunt-Vaisala frequency N. Similarly, a shallow interface

h < H - h implies a stratification stronger in the upper thermocline. However, our model is

a planetary geostrophic model in which one interface could vary substantially spatially. This

presents some difficulties for the stratification analogy, which is usually used in the case with no

spatial variation in the direction of wave propagation (or with a much larger spatial scale than that

of disturbances). Even worse is the case with outcropping. This is because the N at the bottom of

an outcrop line is usually finite in a continuous model. But the stratification analogy may imply a

very stable (N -* oo) stratification near the outcrop line because h/(H - h) - 0.

In any case, we do not know the exact correspondence. Therefore, we do have difficulty in

applying some of our model results to a more complex model or the real ocean.
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Chapter 3
Thermocline Forced by Varying Ekman Pumping

1 Introduction

Classical theories on low frequency oceanic variability have emphasized the role of Ekman pumping

(e.g., Veronis and Stommel, 1956; Gill and Niiler, 1975; Gill and Anderson, 1975). Two important

mechanisms for the thermocline variability have been found: the local Ekman pumping and the

Rossby waves excited at the eastern boundary. In spite of progress already made, there are still

several obvious questions to be addressed.

First of all, some important aspects on the Ekman pumping and Rossby wave have not been

fully explored. One example is the effect of mean flow and thermocline structure. Most of the

previous works have concentrated on the local response or the linear Rossby wave in the absence

of a mean thermocline circulation. However, the wave speed of a baroclinic planetary wave in

the mid-latitude is comparable to that of the Sverdrup mean flow. In addition, the observed mean

thermocline structure varies significantly in space. Thus, we may expect significant influence arising

from the mean flow and thermocline. Indeed, preliminary studies on waves in the presence of a

zonal baroclinic flow have shown that the Rossby wave propagation could be changed substantially

(e.g. Anderson and Killworth, 1979; Cheng and Philander, 1989). Here, we will further explore

the thermocline variability in the presence of a two-dimensional flow and thermocline structure.

In particular, we are interested in the relative importance of the local Ekman pumping and the

Rossby waves radiating from the eastern boundary, which has been a recent concern. Classical

works claimed the local Ekman pumping to be the main driving mechanism for the variability (e.g.

Gill and Niiler, 1975; Roden, 1976). However, recent studies show that the local Ekman pumping

produces a poor phase correlation with the observation and underestimates the amplitude of the

variability badly (e.g., White and Saur, 1983; Kessler, 1989). Instead, a model incorporating Rossby

waves improves the results substantially in the southern part of subtropical North Pacific. Here,



we will explore this problem from a theoretical viewpoint with the emphasis on the role of the

thermocline structure.

In addition, the nonlinearity of Rossby waves and the interaction between the barotropic and

baroclinic flows have not been studied extensively. One concern is the time-mean thermocline

structure. Using a quasi-geostrophic model with an annual frequency, Dewar (1989) has found

some time-mean micro-gyres in the otherwise motionless shadow zone. Now, we will extend the

study to a planetary geostrophic model and decadal time scales. We would ask: under a periodic

Ekman pumping, how does the time-mean thermocline differ from the steady thermocline forced

by the time-mean Ekman pumping ?

More fundamentally, besides the two mechanisms mentioned above, is there any other mecha-

nism important for the thermocline variability? We will find that one crucial mechanism, which

has not been realized and studied in previous theoretical works, is the ventilation effect and the

advection due to the subducted waters. Indeed, none of the previous work on time-varying ther-

mocline has included the subduction effect. Hence, they could not study the temporal behavior

of a ventilated thermocline. Here, we would ask the following questions: How does a ventilated

thermocline evolve in response to a varying wind ? What are the main dynamic mechanisms behind

the evolution ?

The two-layer planetary geostrophic model developed in chapter 2 will be adopted. This model

includes the ventilation and advection as shown in chapter 2. We will also consider both annual

and decadal forcings.

First, to highlight the physics, in section 2, we study a simple case, in which the Ekman is

suddenly increased (spin-up) or decreased (spin-down). It will be found that the dynamics in the

shadow zone is dominated by the Rossby wave and the Ekman pumping, which is qualitatively

in accordance with previous studies. After a sudden change in the surface Ekman pumping, the

baroclinic Rossby wave has not developed because of its much longer time scale (years to decades).

Therefore, an imbalance is produced between the two mechanisms and yields a strong thermocline

variability. However, in the ventilated zone, the dynamics is totally different. Now, the advection

due to the subducted waters opposes the Ekman pumping, while Rossby waves play no significant



role. The resulted variability also differs dramatically from that in the shadow zone. Now, after

a change of the wind field, the Ekman pumping and the cold advection both vary rapidly at the

time scale of barotropic Rossby waves (about one week) to achieve a new steady balance, leaving

little thermocline variability. In addition, the evolution of the structure and circulation of the

thermocline is also discussed.

Then, a periodic Ekman pumping is adopted in section 3 and 4 to simulate an annual or

decadal Ekman pumping more realistically. The features of thermocline variability found in the

spin-up and spin-down also exist in the periodic Ekman pumping case, with the seasons of an

increasing and a decreasing Ekman pumping resembling the spin-up and spin-down respectively.

Furthermore, in section 3, it is found that for annual or weak decadal forcings, the disturbance is

essentially linear. Nevertheless, the linear perturbation is influenced substantially by the basic state

thermocline structure. In particular, in the shadow zone, if the interface is shallow, local response

dominates; if the interface is deep, remote Rossby waves are more important. Section 4 investigates

the thermocline variability under a strong decadal forcing. It is found that the nonlinearity is still

weak in the eastern part of the shadow zone but is no longer negligible in the western part of the

shadow zone. The time-mean thermocline in the shadow zone is always shallower than the steady

thermocline under the time-mean Ekman pumping. The difference may be significant, especially

in the western part of a shadow zone. The physical mechanism for this time mean thermocline

structure is also explored. Finally, in section 5, we discuss some other properties of thermocline

variability.

2 Spin-Up and Spin-Down of a Ventilated Thermocline

To highlight the physics behind the thermocline variability, we first discuss a simple but illustrative

example--the spin-up and spin-down of a ventilated thermocline.

As discussed in section 5 of chapter 2, after an abrupt change of the Ekman pumping from

an old Ekman pumping (say wl(f)) to a new one (say w2(f)), the solution over the gyre will be

established by characteristics originating from the eastern boundary, the outcrop line and the initial

time plane (it will be helpful for the reader to recall Fig.2.3 of chapter 2). The part of the solution



formed by characteristics from the eastern boundary is the new shadow zone (see (5.2d) of chapter

2)

h = 2f 2 w2(f). (2.1)

Here, we have chosen an eastern boundary at x = 0 and an eastern boundary interface depth

he = 0. This part of solution is established after the passing by of the earliest eastern boundary

wave front zF and is bounded to the northwest by the new shadow zone boundary B 2 . To remind

the reader, XF is formed by characteristics starting from the eastern boundary xi = 0 at the earliest

spin-up time ti = 0, while B 2 is established by characteristics eminating from the eastern boundary

at the latitude of the outcorp line (xi, fi) = (0, fo) after the spin-up ti > 0 (see (5.3) and (5.4) of

chapter 2 for zF and B 2 respectively). Another part of the solution is established by characteristics

starting from the outcrop line. This is the new ventilated zone solution

h, =1 (2.2)
fo

where a zonal outcrop line fo = constant is adopted. This solution is bounded to its east by the

new shadow zone boundary B2 and is establised after the earliset outcrop line wave front fF. To

reminder the reader again, fF is formed by characteristics starting from the outcrop line fi = fo

at the initial time ti = 0 ( see (5.7) of chapter 2). The thermocline in the new shadow zone (2.1)

and ventilated zone (2.2) are steady. Eventually, we should expect (2.1) and (2.2) be established

all over the gyre to form a new steady ventilated thermocline under w 2 .

However, at a finite time, in places where zF and fF have not swept across, the thermocline

is undergoing transient adjustment. The solutions over there are the original ventilated zone and

shadow zone, which are established by characteristics starting from the initial time plane ti = 0.

The characteristics originating at ti = 0 from the before-spin-up ventilated zone hi,, = 1 - filf,

will form the original ventilated zone ho, = 1 - (1 - hi,)f/fi (see (5.9) and (5.11) of chapter 2).

Substituting the initial condition into the ho, gives the explicit solution

h = 1 (2.3)
fo

This solution is bounded to the north by fF and to the east by the internal wave front B, which is

formed by the characteristics starting at the initial time ti = 0 on the before-spin-up shadow zone
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boundary (see (5.13) of chapter 2). Surprisingly, (2.3) shows that ho, is independent of time. In fact,

the structure of ho, is exactly the same as the initial ventilated zone hi, and the new ventilated zone

(2.2). This peculiar feature is due to the flat bottom model and the zonal outcrop line, which cause

a uniform subduction potential vorticity independent of time (q = f/(1 - h) If=f.= fo = constant

) and produce a uniform potential vorticity in the ventilated zone.

Finally, south of the internal wave front B is the original shadow zone, for which characteristics

start at the initial time ti = 0 from the before-spin-up shadow zone. The parametric solution has

been derived in (5.12) in chapter 2. To derive the explicit solution, use of hi, = 1 - (1 - hos)fi/f

and zi = h? /[2ffwj(fi)] from (5.12c) and (5.10) in chapter 2. (5.12d) of chapter 2 gives

2f 2 W(f)Z = -[I - W(,)/W1()][1 - (1 - ho)/f]2 - h.os

This is a quadratic equation for ho, because fi is a function of f, t only (see (4.8e) of chapter 2).

We can put this in the standard form as

G(x - zo) = (ho, - ho)2, (2.4a)

where

212f2 w 2 (f) (-1)6 (I- 1)26 (2.4b)
65(2 - 6) ' 12 - 6 ' Z 2f 2w2(f)(12 - 6)

6(f,t) - 6(1)= 1 I(f, t) -- < 1 (2.4c)
w1(/,' A

ho, is bounded to the west by the eastern boundary wave front zF and to the east by the internal

wave front B, i.e.

zg(f, t) < < zF(f, t). (2.4d)

(2.4a,b,c) gives a parabolic zonal profile with G as the curvature and (zo, ho) as the nose. The

physical ho, part of solution is only the section between as and XF as indicated in (2.4d). (2.1)-(2.4)

give the explicit solution over the entire gyre.

2.1 Thermocline Evolution

We first consider the evolution of a zonal profile. Along a given latitude f, before the arrival of fF,

a zonal profile consists of three parts: a flat and unchanged ho, of (2.3) to the west of B, a steady



parabolic h, in (2.1) to the east of xF and a changing parabolic h,, of (2.4) in the middle. When

fF reaches this latitude at the time tF satisfying

fF[tF(f)] = f, (2.5)

B and XF merges i.e. Xz = ZF (this can be proven by letting fi = fo in equations (5.3) and

(5.7) of chapter 2). Therefore, the transient middle part of ho, diminishes. At the same time, the

western side is replaced by the new ventilated zone (2.2). Later, a steady circulation is established

on this latitude with the varying B replaced by the new steady B 2. Schematic figures for a spin-up

and a spin-down process are respectively given in Fig.3.1a and Fig.3.1b. h,, is the only part whose

structure varies with time and therefore deserves a detailed discussion. In (2.4), we see that the only

time dependency comes from the initial latitude (for characteristics) i(f, t). As time evolves, the

characteristics to reach a fixed latitude f will come from a more northern initial latitude because of

the southward characteristic speed df/ds = vs < 0. Thus, fi increases with time or Otfi(f, t) > 0.

We will examining how the increase of fi affects the parabola in (2.4) during a spin-up or a spin-

down. First, in (2.4), fi increases and then I decreases with time. For simplicity, wl(f) and w 2 (f)

are assumed to possess the same spatial structure and thus in (2.4c) 6 = constant. On the whole

interface it follows that

w2 (fi) _ w 2(f) _ W 2  stant > 1 for spin - up (2.6)
w(i) -wil(f) - , W < 1 for spin - down

where W1 and W2 represent the strength of Ekman pumpings.

In a spin-up process, (2.4b,c) and (2.6) give -oo < 6 < 0, G < 0, he > 0, zo < 0 for all times

t > 0. Thus, a parabola must have its nose pointing towards the east because G > 0. Besides, the

nose (zo, ho) is above the shadow zone profile for that h,(f, zo)/ho(f) = 11 - 126 - 1 > 1. The h.,

part of parabola always bulges downward, as does the initial steady state, and does not include its

nose as drawn in Fig.3.1a (t = tl profile). (The dashed line is drawn mainly for the illustration of

the position of the nose and is not the physical part of the ho, solution.) The thermocline simply

keeps deepening in h,, part until it reaches the local depth of the new steady shadow zone or

ventilated zone. On the latitude f, this transient process continues until the arrival of fF at t = tF.



at f = f*
0 < t1< t2 = tF, = XF, X= xB

at f=f
x 0 < t< r < t2 < 

Figure 3.1: Schematic figures for the evolution of zonal profiles and the positions of zF (black diamond),
aB (black cross) and the nose of the parabola (black dot). The dashed lines are the parabola which do not

belong to the physical solution. They are drawn only for illustration of the nose of the parabola. (a) Spin-up.

tF is the time for f, to arrive at this latitude as defined in (4.5). (b) Spin-down. In (b), it is assumed that

the breaking occurs before the arrival of f., i.e. tb < tF (see (4.8) for tb).
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However, the evolution in a spin-down is more complex. Now (2.4c) and (2.6) suggest 0 < 6 < 1.

As time evolves, in (2.4c), I starts from 1 to decrease. Initially, I % 1 thus 12 - 6 > 0. (2.4b,c) show

that xt > 0, h0 < 0, G < 0. We will call this stage the initial stage. Now, the h,, part of parabola

bulges downward and does not include its nose as shown in Fig.3.1b (the tl profile). Later, I may

continue to decrease such that 12 - 6 = 0 is reached at the transient time t, satisfying

2[f, tr(f)] - 6 0. (2.7)

Now, (2.4b) indicates that G = co or the parabola degenerates to a straight line which deepens

westward, as shown in Fig.3.1b. The initial stage is over and we will call the following stage the

transient stage. Now, 12 - 6 < 0. (2.4b,c) indicate that both the curvature and nose change sign

such that G < 0, xo < 0, ho > 0. Thus, the parabola should have its nose pointing towards the

west. Since immediately after t,, (2.4b) and (2.7) shows that the nose is very deep and west (i.e.

zo - -0o, h0 -- oo), the physical part of h,, in (2.4a) does not include its nose. Therefore, a typical

section during the transient stage is shown as the t 2 profile in Fig.3.1b. Later, as fi increases and

I decreases further, the nose moves upward and eastward (or h0 and I o I is reduced). Eventually,

it may occur that X0 = sB and h0 = h,, at the time tb such that

o[f, tb(f)] - B[f, tb(f)], and ho[f,tb(f)] - ho[f, tb(f)]. (2.8)

(These two equations can be proven to occur simultaneously. So they give the same tb.) Now, the

nose is on the western edge of h, (i.e. on B) and the interface is vertical there as shown in Fig.3.1b.

This is the marginal gravitational stability state and thus tb is the first breaking time. After tb,

the ho, solution (2.4) becomes gravitationally unstable on its western side. Thus, on the western

side, (2.4) is no longer a physical solution. The solution enters the breaking stage. The breaking

is caused by the steepening due to the nonlinear planetary wave C(h) , h(1 - h) (Anderson and

Killworth, 1979; Dewar, 1987). Therefore, in principle, the evolution during a spin-down may differ

significantly from that of a spin-up where breaking can never occur.

Nevertheless, it should be pointed out that the breaking for a spin-down will not occur in an

ocean with a realistic width. This is mainly due to the very gentle slope of the thermocline. It takes

a very long time (t > 0(1)) for the nonlinear steepening to function. By that time, the Rossby

-I~_-L~--LIII~-I-e_.



wave has propagated far away from the eastern boundary and the breaking position zo[f, tb(f)] is

well beyond the western boundary. Detailed calculation is not presented here. One may think that

the breaking may occur if the perturbation is very localized. We speculate that this is the case.

Indeed, in a later chapter 5, we will present some examples of breaking of planetary waves forced

at the eastern boundary.

2.2 Circulation Evolution

Now, we analyze the two dimensional structure of the thermocline and circulation, with the em-

phasis on the lower layer circulation. Fig.3.2 displays a spin-up, where a parabolic Ekman pumping

in (4.10) of chapter 2 is used with the maximum wl and w2 being -0.5 and -1.5 respectively. Before

the spin-up at t = 0-, the initial state is the steady thermocline under wl, in which the lower

layer is motionless in the shadow zone. The circulation immediately after the spin-up t = 0+ is

shown in Fig.3.2a. Wave fronts XF, fF and B have not moved yet (dot-connected lines in each

panel). The interface (solid lines in the upper panel) remains unchanged because baroclinic waves

and advection have not developed yet. However, barotropic waves have passed across the basin

and an enhanced new Sverdrup flow vB = fw 2 has been established (dashed lines in the upper

panel). This increased barotropic flow then intensifies the anticyclonic gyres in both layers (upper

and lower layer pressures are in solid and dashed lines respectively in the middle panel). In the

shadow zone, the lower layer waters are no longer motionless. They start to move southward (the

lower layer flow in the shadow zone is more clearly shown in solid lines in the lower panel). These

waters penetrate towards the lower q2 = f/(1 - h) isolines (dashed lines in the lower panel). The

penetration implies a positive lower layer potential vorticity (q2) advection (-v2 . V( ) > 0),

which must produce a local increase of q2, i.e. a local deepening of the upper layer thickness.

Physically, with a spin-up, the anomalous Ekman pumping is downward, i.e. Aw = w2 - wl < 0.

After the barotropic adjustment, this downward Aw, compresses the planetary vortex tube and

produces an additional barotropic southward flow all over the basin. Therefore, the anticyclonic

gyre is intensified in both layers. In particular, in the shadow zone where layer two waters were at

rest before the spin-up, now waters move southward.
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The succeeding baroclinic development is plotted in Fig.3.2b,c. Fig.3.2b illustrates a later time

t = 0.25. Compared with Fig.3.2a, now the upper layer has deepened while the barotropic flow

remains unchanged (upper panel). The associated anticyclonic thermal wind intensifies the upper

layer flow and reduces the lower layer flow (middle panel). There is always flow penetrating from

the original ventilated zone to the original shadow zone (lower panel). The flow tends to push

old waters in the original shadow zone further south-westward and to replace part of the waters.

The boundary wave front zF radiates westward and catches the newly replaced water as well as

the remaining water in the original shadow zone to establish a smaller new shadow zone. On the

other hand, the advection front fF advances southward. Accompanied by a stronger subducted

flow caused by the stronger w 2, fF builds up a larger new ventilated zone. The internal front

B migrates slightly eastward to expand the original ventilated zone due to the increased Ekman

pumping.

Fig.3.2c is for an even later time t = 0.5. The upper layer further deepens in the original

shadow zone (upper panel). XF and fF continue to propagate to enlarge the new shadow zone and

ventilated zone respectively, at the expense of the original shadow zone and ventilated zone. The

new ventilated thermocline is almost established over the gyre except in the southwestern corner.

In the new shadow zone, the lower layer is again at rest. If the time is long enough, one can imagine

that the new ventilated thermocline will be established over the entire gyre.

The opposite spin-down process is shown in Fig.3.3. Before the spin-down (t = 0-), the initial

state is similar to the final state of the previous spin-up in Fig.3.2c (except in the southwestern

corner). After the spin-down at t = 0+ in Fig.3.3a, compared with the initial stage, the interface

remains unchanged. But, the anticyclonic barotropic circulation is reduced (upper panel); so are the

anticyclonic gyres in both layer (middle panel). Moreover, a cyclonic gyre emerges in the southern

part, which includes a northward branch of flow in the original shadow zone and a south-westward

return flow in the original ventilated zone (the dashed lines in the middle panel, or more clearly

the solid lines in the lower panel.) As a result, there are two counter-rotating gyres in the lower

layer. Its physics is opposite to the spin-up case. Now the anomalous Ekman pumping is upward,

i.e. Aw, = w2 - W1 > 0. Thus, the stretching of planetary vortex tube produces an additional
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barotropic northward flow, which tends to reduce the anticyclonic gyre. In the shadow zone where

the water was motionless before, now the water starts to move northward and therefore creates a

cyclonic gyre.

In addition, the barotropic physics discussed above suggests that in the lower layer, the rela-

tive strength between the motion in the original ventilated zone and the original shadow zone is

proportional to: v2o/V20os (W2 - wI)/w 2 . Since in a spin-up, W2 < wI < 0 while in a spin-down

0 > w2 > wl, it follows that v 2 o/v 20 , is larger in a spin-down than in the opposite spin-up. In

other words, in a spin-down, the two counter-rotating gyres may be of comparable strength (once

the spin-down is not too weak), while in a spin-up, the motion in the shadow zone is always weak

compared with the ventilated zone. This feature can be observed in the middle and lower panels

of Fig.3.3a and Fig.3.2a.

Fig.3.3b,c show the following baroclinic evolution. The interface becomes shallow while the

barotropic flow remains unchanged (upper panels). The shallowing thermocline causes a weaker

thermal wind, implying a weakening upper layer flow (middle panels). The XF advances westward

and expands the new shadow zone. The extra waters for the expanded shadow zone mostly come

from the western boundary inflow through the northward lower layer flow in the south. The fF front

progresses slowly with a weaker subducted flow. The established new ventilated zone is smaller

because the amount of subducted water is less than that going out to the western boundary. The

much slower XF and fF (than that in Fig.3.2) are primarily caused by the much reduced barotropic

velocity. Now B moves slightly westward to increase the original shadow zone due to the weakened

Ekman pumping. In the lower layer (lower panels), in contrast to the spin-up, now there is always

flow penetrating from the original shadow zone to the original ventilated zone, pushing waters

northward. After entering the original ventilated zone, the waters turn back south-west. This

penetrated water accelerates the water going out to the western boundary in the original ventilated

zone.

In the limit of a complete spin-down w 2 = 0, after the fast barotropic adjustment, a cyclonic

gyre fills out the whole basin to compensate the anticyclonic mass transport in the upper layer,

resulting a zero Sverdrup flow. Then, during the slow baroclinic evolution, the thermocline evolves



as a giant purely baroclinic Rossby wave packet with the transports in each layer compensated.

This packet propagates westward to cause the thermocline shallowing and deforms after meeting

the western boundary.

It is interesting to see the resemblance between the flow pattern in the spin-down case (Fig.3.3)

and that driven by a steady warm interface entrainment w* > 0 (Luyten and Stommel,1986; Ped-

losky,1986). Physically, this is because in the spin-down case, the shallowing of interface produces

an upward velocity (in the shadow zone, advection is usually less important, as seen later) just like

an upward entrainment velocity (w(-h) = - + w* -Oth + w*.) Therefore, there is a stretching

on the planetary vorticity. Similarly, the flow pattern in a spin-up process resembles that caused

by a cold entrainment.

2.3 Dynamic balances and mechanisms

According to the zones formed by characteristics (h,, hs, ho,, hos), the dynamic balances in each

zone are as follows. In a new ventilated zone, the subducted water produces a strong cold advection

to balance the Ekman pumping deepening ('-B.Vh = -(1-h)we). In a new shadow zone, the eastern

boundary Rossby wave balances the Ekman pumping (C(h)h, = -(1- h)w,). These two zones are

like the steady thermocline case (see (3.6) and (3.7) of chapter 2). In an original ventilated zone,

the rapidly varying cold advection dominantly balances the new Ekman pumping, leaving little

variability (in the special case of (2.2), there is no variability), i.e. ht = -B . Vh - (1 - h)w, =

0. In the original shadow zone, the dynamic balance is more complicated. Over most of the

region, the density advection plays a secondary role. This can be observed in the upper panels of

Fig.3.2 and Fig.3.3, where the barotropic flows are almost parallel to h in the original shadow zone.

Nevertheless, in a spin-up, there may be a strong warm advection in the south-western corner of

the basin. In contrast, in a spin-down, the density advection is always negligible. In the limiting

complete spin-down case, V'B = 0 and thus there is no density advection anywhere. 1

'Under a general Ekman pumping, the sign of the advection is such that: in a spin-up, it is a cold advection (#
spiral) in the northern and a warm advection (anti-P spiral) in the southern part of a subtropical gyre. Thus, in
the south, the warm advection enhances the deepening due to the Eknman pumping; in the north, the cold advection
cancels part of the Ekman pumping deepening. The opposite occurs during a spin-down, i.e. there is a cold advection
in the southern part while a warm advection in the northern part. A detailed discussion is not presented here.



Local dynamics

So far, the dynamic balances are discussed according to zones formed by characteristics. The

sizes of these zones vary with characteristics. Hereafter, we study the local dynamics (i.e. at a

fixed location). This approach will help us to gain a better insight into the dynamics from a more

conventional viewpoint.

Before going into further detail, we should realize that in the presence of a time-dependent

Ekman pumping we(t, z, f), an instantaneous ventilated zone and a shadow zone will vary in their

sizes. Therefore, a ventilated zone at one time may be invaded by a shadow zone later and vice versa.

Hence, unlike the case for a steady Ekman pumping, it is no longer proper to divide an isopycnal

only into a ventilated zone and a shadow zone. Now, it is proper to define the ventilated zone as the

instantaneous ventilated zone under the weakest Ekman pumping (we),in (the minimum is taken

for t > 0), and to define the shadow zone as the instantaneous shadow zone under the strongest

Ekman pumping (we)maz. This ventilated zone will not be invaded by any instantaneous shadow

zone, and vice versa. Besides, there is a third buffer region, known as the alternative zone, between

the ventilated zone and the shadow zone. The alternative zone is occupied by an instantaneous

ventilated zone and shadow zone alternatively. Denoting the shadow zone boundaries B under

(we)maz and (w,)min as Bma, and Bmin respectively (see (3.3) or (4.3)), the above three zones can

be expressed as:

Shadow Zone : z, ma < z, (2.9a)

Alternative Zone : Bmin < z < zBma , (2.9b)

Ventilated Zone : a < zBmin. (2.9c)

Fig.3.4g displays schematically the three zones. The local dynamics in each zones is also plotted

in Fig.3.4 and will be examined as follows. The key for the evolution is that the density advection

changes rapidly (or barotropically) with the Ekman pumping, while the Rossby wave changes slowly

(baroclinically).

The local dynamics in the shadow zone
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An example of the shadow zone dynamics is shown in Fig.3.4e,f., in which, the evolution of the

four dynamic terms: the effective Ekman pumping, the Rossby wave, the density advection and

the vertical velocity at the interface, are depicted at the location (x, f) = (-0.5, 0.35). These four

quantities can be proven to be related by

WIl=-h = -[tht + V- .Vh] -[ht + vB - Vh] = Chx + (1 - h)we. (2.10)

Here, we have used (1.7a) and v2 = 'E - h-T, vT = Vh x k/f. Fig.3.4e shows the spin-up in

Fig.3.2 and Fig.3.4f shows the spin-down in Fig.3.3. Thus, Fig.3.4e and f can be thought as a cycle

with one spin-up and one spin-down. The arrival of each wave front is also marked on the top

of the figures. Before the spin-up, the weaker Ekman pumping is balanced by the Rossby wave

from the eastern boundary to maintain the old steady shadow zone with no vertical velocity at

the interface ( as shown in the final time of Fig.3.4f). After the spin-up, the Ekman pumping is

suddenly increased while the baroclinic process (the Rossby wave) has not developed yet ( Fig.3.3e).

The excess Ekman pumping then forces a downward vertical velocity barotropically (through the

barotropical divergence field), which in turn compresses the planetary vortex tube to make the

originally motionless lower layer flow move southward. This location now is in the original shadow

zone where the downward velocity starts to deepen the upper layer. This deepening suppresses

the effective Ekman pumping, but causes an increase of the Rossby wave effect (both h and h.

increase). Therefore, the difference between the two mechanisms decreases monotonically. (2.10)

then means that the vertical velocity is reduced, so is the lower layer southward flow and the local

deepening. This baroclinic process continues until the difference between the Ekman pumping and

Rossby wave vanishes at about t 0.3, which is also the time when the newly excited eastern

boundary Rossby wave (ZF) just reaches this location. Accordingly, the vertical velocity vanishes

and the a steady state is achieved. Afterwards, the eastern boundary Rossby wave begins to balance

the Ekman pumping to maintain the new shadow zone. The warm advection develops to about

one-third of the vertical velocity at about t - 0.2, contributing a significant part of the vertical

velocity. Later, it decays with time because of eastern boundary waves.

The above steady shadow zone continues until the spin-down occurs in Fig.3.4f. A sudden

decrease of the Ekman pumping takes place barotropically but the Rossby wave term has not



changed yet. Therefore, the excess Rossby wave term begins to produce an upward velocity at

the interface, which forces a northward flow in the lower layer. Since the advection is initially

zero, this upward velocity mostly consists of a local shallowing. This location is once again in

original shadow zone. The subsequent baroclinic process is opposite to the spin-up above. The

shallowing increases the effective Ekman pumping, but decreases the Rossby wave effect and causes

a weakening baroclinic thermal wind. Until about t a 0.7, a new balance is reached between the

both mechanisms. The Rossby waves generated along the eastern boundary due to the spin-down

also has just reached this point. Later, these waves balance the Ekman pumping and thus sustain

the new steady shadow zone. Different from the spin-up, the advection is a cold advection and

remains weak.

The local dynamics in the ventilated zone

Fig.3.4a,b give an example in the ventilated zone at the point (z, f) = (-0.5,0.85). The

dynamics differs dramatically from that in the shadow zone. Before the spin-up, the cold advection

balances the Ekman pumping to maintain the old ventilated zone. A strong downward velocity

exists to force a southward motion in the lower layer. However, there is no local variability because

the downward velocity solely consists of the advection w(-h) = -v'2  Vh (see (2.10)). In other

words, the warm vertical advection balances the cold horizontal advection. After the spin-up, the

position is in an original ventilated zone. Both the Ekman pumping and the cold advection endures

a barotropic response and thus are increased linearly by the same amount. Consequently, a new

balance is reached without any local baroclinic variability. In the present case with a flat bottom

and a zonal profile, there is no baroclinic Rossby wave after the barotropic response. The wave

front fF from the outcrop line arrives at this location earlier than t x 0.1, which brings the newly

subducted cold water. Later on, a new ventilated zone is achieved between this new cold advection

and the Ekman pumping. The spin-down in Fig.3.4b can be similarly discussed. It should be noted

that for a more general case such as a tilted outcrop line, Rossby wave activities would enter. The

original ventilated zone and the new ventilated zone will be different from each other. Therefore,

there will be some baroclinic evolution. Nevertheless, the advective nature of the ventilated zone



(see section 6 of chapter 2) suggests that the dominant balance is still between the cold advection

and the Ekman pumping.

Similar analysis applies to the alternative zone, but is not presented here (see Fig.3.4c.d). Now,

the internal wave front B can abruptly shut off the Rossby wave or the advection when B passes

through one location. One can find that the alternative zone is controlled by the advection and

Rossby wave alternatively. Both the thermocline and circulation vary dramatically. Nevertheless,

the size of the alternative zone is usually smaller than the other two (see Fig.3.2 and Fig.3.3).

In summary, we see the intrinsic dynamic difference between the ventilated zone and the shadow

zone. In a ventilated zone, the advection plays a crucial rule. The advection varies rapidly with the

Ekman pumping to achieve a new steady balance, leaving little thermocline variability. However,

in the shadow zone, the baroclinic Rossby wave evolves slowly (or baroclinically) while the Ekman

pumping has changed rapidly. This mismatch of time scales produces an imbalance in the steady

dynamic balance and therefore results in strong thermocline variability. In addition, the circulation

also changes significantly. For instance, in the shadow zone, the lower layer is no longer motionless.

The flow in the lower layer there changes its direction from a southward flow in a spin-up to a

northward flow in a spin-down. Later, this will also be seen during a periodic Ekman pumping

case, with the increasing and decreasing Ekman seasons corresponding respectively to spin-up and

spin-down.

3 Periodic Ekman Pumping: I. Linear Theory

From this section, we investigate thermocline variability under a periodic Ekman pumping. First,

in this section, we study the linear theory. Later, it will be shown that with an annual forcing or a

weak decadal forcing, the linear solution approximates the fully nonlinear solution excellently. The

linear theory here highlights the physics of planetary wave propagation in the presence of a basic

ventilated thermocline. One issue we are particularly interested in is the relative importance of the

local Ekman pumping and remote eastern boundary waves.



The two-layer model gives the non-dimensional equation governing the upper layer thickness as

(see (1.7b) of chapter 2):

ht + V - (-h) + C(h)h, = -we. (3.1)

with the barotropic velocity (us, VB) = [-(f 2w,)fz/f, fw] and the planetary wave speed C(h) =

-h(1 - h)/f 2 . The periodic Ekman pumping is assumed of the form:

we(f, t) = wo(f) + awl(f, t). (3.2a)

Here the perturbation forcing wl is periodic in time with a period T and has a zero mean. wo

is the time-mean Ekman pumping

wo(f) =< we(f,t) >~ 0(1), where < >= dt. (3.2b)

Further, the perturbation Ekman pumping is chosen to be

wl = wo(f)g(t), where g(t) = sinwt. (3.2c)

Therefore, a represents the strength of the perturbation forcing. With (3.2c), the total Ekman

pumping we = wo(f)(1+a sinwt) varies in its intensity but not its position. w is the non-dimensional

frequency of the forcing. For a mean thermocline depth H = 600 m, the dimensional time scale

T, = H/W (see (1.5a) of chapter 2) is about 20 years. This gives the dimensionless frequencies:

annual : w - 100, decadal : w - 10. In physical terms, at an annual frequency, it takes a

planetary wave several periods to cross the ocean basin, while at a decadal frequency it takes a

planetary wave less than or about one period to reach the western boundary.

3.1 The Linear Solution

With weak perturbation a < 1, h can be expanded as

h = ho + ahl + a2 h2 + ..... (3.3)

If the barotropic velocity is decomposed into the time-mean component fBo and the perturbation

component i 1fa , the Sverdrup relation and the Ekman pumping (3.2a) require that

= v' o + av il; V*Bso = -wo, V *i1 = -w 1 . (3.4)



The basic state

Substituting (3.2a),(3.3) and (3.4) into (3.1), at the leading order, we obtain the basic state

equation:

V . (v-oho) + C(ho)hox = -wo. (3.5)

This gives the steady LPS thermocline (Luyten et.al.,1983). (3.5) has been solved in (4.8b,c,d) of

chapter 2 (using wl = w2 ). The characteristic solution for the basic state is

= f-7-, or f= f(s,fi), (3.6a)

f = fi (3.6b)
1 - he 1 - hi'

2f 2 wo(f)z = 2fj2 wo(fi)xz + h2 - hf. (3.6c)

For simplicity, we will adopt: a zonal outcrop line at f = fo, a meridional eastern boundary at

a = 0 and a flat interface at the eastern boundary he(f) = H,. On an unventilated interface

(H, > 0), the interface depth at the northern boundary of the subtropical gyre (f, = 1) is also

H,. A Rhines-Young pool exists west of the shadow zone (Rhines and Young,1982; Pedlosky

and Young,1983). Hence, in the ventilated zone (for ventilated interfaces) or the pool zone (for

unventilated interfaces), the initial conditions for characteristics are fi = fo, hi = H,. The solution

is derived from (3.6b) directly as

ho = 1- (1 - H,) , for x < xbo(f); in V.Z.(if H, = 0) or P.Z.(if H, > 0). (3.7a)
fo

In the shadow zone, the initial condition is xi = 0, hi = H,. (3.6c) yields the solution

h = H , + 2f 2 wo(f)z, for z > zbo(f) in S.Z. (3.7b)

Here zta is the shadow zone boundary of the basic thermocline and is formed by the characteristics

initiating from the corner zi = 0, fi = fo, i.e.

ow(f) = 12 fo() (3.7c)
2f2uwo(f)

(3.7) are generalized solutions for the steady thermocline with a non-vanishing h,(f) = H, =

constant (compared with the case of he = 0 in (3.2), (3.3) and (3.4) in chapter 2). Finally, we



discuss the characteristics. This turns out to be necessary in deriving explicit solutions at higher

orders. Through any point (x,f), we can trace the characteristic curve back to its initial position

(xi, fi) (on the outcrop line or eastern boundary). By virtue of (3.6b,c), the initial position can be

calculated explicitly as

fi = F(z, f) f 1 , (3.8a)
1 - ho(z, f),

2f 2 wo(f)X - h2(z, f) + H (3.8b)Xi = Xi(X, f) = (3.8b)2F 2(z, f)wo(Fi)

where ho is determined in (3.7). Between (z, f) and its initial position (xi, fi), the distance along

the characteristic coordinate can be derived from (3.6a) and (3.8a) explicitly as

fI df
s = S(x, f) = (,f) f (3.8c)

Indeed, for the steady basic thermocline, the characteristics are isolines of potential vorticity. In

the ventilated zone, they are also the streamlines.

The equation for linear disturbances: a decaying effect

To obtain the linear solution, we first derive its governing equation at the next order from (3.1)

and (3.3).

hit + vBo . Vhl + C(ho)hl, - phi = -(1 - ho)wl - .B1 Vho, (3.9a)

where

SPa + PR, P = -V. B0, R = -V. (ho)= - C(ho) (1- 2 ho) . (3.9b)

Since we only consider the forced response after the initial adjustment, the initial conditions for

characteristics start either from the outcrop line (for the ventilated zone) or from the eastern

boundary (for the shadow zone), i.e.

hli = O, fi = fo in V.Z. or P.Z.; h1i = 0, zi = 0 in S.Z. (3.9c)

The two terms on the right hand side of (3.9a) are the perturbation Ekman pumping and the

advection of perturbation velocity on the mean thermocline, respectively. The left hand side has

the same characteristics or wave rays as the basic state in (3.5). Hence, linear waves propagate along



the basic state characteristics (3.8). This occurs because for weak perturbations, the alteration of

characteristics due to nonlinearity is small. However, if the perturbation becomes strong, the

characteristics may be changed substantially due to either the barotropic-baroclinic interaction

(vB . Vh) or nonlinear Rossby wave velocity (C(h)). These nonlinear effects will be discussed in

the next section.

The most interesting feature in (3.9a) is the term -phl, which is caused by the divergence of

the characteristic velocity as shown in (3.9b). Note (3.7a) in the ventilated (or pool) zone, (3.9b)

yields 'R = 0. This leads to

t = 1a = -V B = wo < 0 in V.Z. or P.Z. (3.10a)

where we have used the Sverdrup relation for the basic state in (3.4). In the shadow zone, noting

(3.7b) and (3.9b), we have pR = wo( - 2). Combining this with (3.10a), we obtain

1 wo
P = /a + AR = wo + wo( - 2) = O(1 - ho)< 0. (3.10b)

he ho

Therefore, pt < 0 always holds. This, as suggested by (3.9a), will make a disturbance decay along a

characteristic line. Physically, this occurs because, with an approximate energy flux conservation,

a divergent group velocity field A = -V - (i's + d) < 0 (see (3.9b)) implies that the energy of waves

should decrease downstream. (3.10a,b) show that this divergent group velocity is mainly caused

by the divergent barotropic flow field. Nevertheless, on shallow interfaces (ho - 0), the Rossby

wave velocity field has a dominant divergence and imposes a strong decay effect on disturbances

(JaR -I' --+ oo). This occurs because of the rapid deepening of the basic thermocline near the

eastern boundary on shallow interfaces.

The characteristic equations for (3.9a) are

= , (3.11a)

df = fwo(f), 
(3.11b)

dx [fwo(f)] ho(1 - ho)
= fwo()f - 2  , (3.11c)

dh1 = Ihl - (1 - ho)wl - B1 " Vho, (3.11d)
ds V



where ho(x, f) is given in (3.7a,b) and p is given in (3.10a,b). (3.11a,b,c) have been solved in

the basic state as in (3.6) (or (3.8)). Therefore, the linear wave can be obtained from the linear

ordinary differential equation (3.11d) alone.

The linear solution

In the absence of a mean Ekman pumping, the basic state is at rest over the whole gyre. With

an Ekman pumping, the first significant change is the creation of a ventilated zone in the basic

thermocline structure. In this zone, the advection of the subducted waters dominates while Rossby

wave activity is weak. Indeed, using Sverdrup relation VB1 = fwl and (3.7a), the perturbation

forcing on the right hand of (3.9a) becomes -(1 - ho)wl - VBO .Vho = 0 for z < xbo. This zero

perturbation forcing, together with the zero boundary condition in (3.9c), yields no thermocline

variability in the ventilated zone, 1 i.e. hi = 0 for x < b0o. This reflects the fact that in the

ventilated zone, the perturbation Ekman pumping is exactly balanced by the perturbation density

advection. It should be noted that the conclusion also applies to the pool zone on an unventilated

interface because of the dominant advection there.

In the following, we will focus on the variability in the shadow zone. In the shadow zone, if the

Ekman pumping (3.2c) is adopted, we find that the perturbation density advection vanishes, i.e.

VB1- Vho = g(t)iBo . Vho = 0, where we have used (3.7b). The remaining perturbation forcing is

the perturbation Ekman pumping

- (1 - ho)wl = -(1 - ho)wo(f)g(t). (3.12)

If ds = df/fwo(f) in (3.11b) is used, the solution to (3.11d) is represented in the characteristic

coordinate as

S = h(, ) = -(--)( ) g(ti + 3)(3, fi)wo(f)ho(3, fi)d3, (3.13)

where f is given in (3.6a). h0 is the h solution in the characteristic coordinate, which can be derived

from (3.6a,b) as

ho(s, fi) = 1 - (1 - H,) ' fI )  (3.14)

'With a general Ekman pumping we(z, f, t), the absence of variability is also true once the outcrop line is zonal.
But, I can not prove it in this linear equation. In a nonlinear case, it is very easy to prove. See discussion about
equation (4.5) in the next section.



where he = H, has been used.

If (3.8) is used, (3.13) can be expressed explicitly in (z, f) coordinate as

1 1 - ho s(a,f)
S= hi(, f, t) = -(-) ( ) g(t - S(x, f) + j)f(, F)wo(f)ho(j, Fi)di, (3.15)

where ti = t - s = t - S(x, f) has been used. In (3.15), the first factor - is caused by the

decaying effect due to the divergent characteristic velocity field. Indeed, using (3.7b), (3.14) and

ds = df / f wo(f) (from (3.11b)), we have

[ [ f f (f)df hi
ep- yd] = ep - (3.16)

0 , wo(f) ho

Along a characteristic line, hi is fixed while ho deepens. Therefore, (3.16) represents the decaying

factor. The second factor, however, remains unchanged along a characteristic line because of

potential vorticity conservation (3.11c).

The linear solution (3.15) (or (3.13)) is derived for weak perturbations a < 1. However, we

will find that for an annual frequency, (3.15) agrees with the fully nonlinear solution excellently

even with a strong forcing a , 1. This point will be elaborated in the next section. For the time

being, for the comparison between a linear solution and a nonlinear solution, it suffices to show

an example. Fig.3.5 displays one example of some instantaneous zonal sections under a strong

annual forcing (w = 50, a = 0.5). (The amplitude a = 0.5 has been observed for real annual Ekman

pumping field (Levitus, 1988). In Fig.3.5a, two instantaneous h profiles (solid lines) on September

(wt = 0) and March (wt = 1800) are shown on the interface with H. = 0. It is seen that the

variability is weak. In Fig.3.5b, the perturbations Dh = h - ho of Fig.3.5a are shown (ho is the

steady thermocline under the time-mean Ekman pumping w0 or ho is the basic state in (3.7)).

The linear solutions (in dot lines) approximate the nonlinear solution (in solid lines) excellently. (

The nonlinear solutions will be derived in the next section.) Other figures in Fig.3.5 are similar to

Fig.3.5a,b, except for deeper interfaces (with He = 0.1 in Fig.3.5c,d and H, = 0.6 in Fig.3.5e,f).

3.2 Thermocline Evolution: Local or Remote Response ?

Now, we analyze the thermocline evolution. To have a better understanding of the linear response,

we first derive an approximate expression for the linear wave in (3.15). Integrating the characteristic
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form of solution in (3.13) by parts and using (3.8) (see appendix A), we obtain an approximate

solution to (3.15) at 1/w order as (for w > 1)

hi= (1 - h)w [coswt - A cos(wt - f)] + O( ) (3.17a)

where A and P are functions of x and f:

H,Fwo(Fi)A = 3  I = w(t - ti) = wS(Z, f). (3.17b)
hofwo(f) '

Here, Fi, ho and S are given in (3.8b), (3.7b) and (3.8c) respectively. The solution is good for

high frequency when the interface is not very close to the surface (see appendix A, where a solution

accurate to 1/w 2 is derived). The first term in (3.17a) is the local response, which lags the forcing

(3.2c) by 900 in phase. The amplitude is

a(1 - ho)wo(f) (3.18)
A hla l (3.18)

This means that the local response decreases westward because the basic state thermocline deepens

westward. This in turn weakens the effective Ekman pumping because the interface is further away

from the surface towards the west. In comparison, the special case without a mean Ekman pumping

has a flat basic thermocline interface and therefore the local response does not vary along a latitude.

The second term in (3.17a) is the Rossby wave which is forced mainly along the eastern bound-

ary, where A = 1 ( because F = f, ho, = H,) and therefore the eastern boundary condition (3.9c)

is satisfied. The presence of a mean Ekman pumping changes the boundary wave significantly in

both its amplitude and phase. The mean Ekman pumping creates a ventilated zone which inhibits

the invasion of boundary waves.

The wave amplitude decreases along a wave ray due to the divergent group velocity field. In

fact, in (3.17a), we have the wave amplitude as

a(l - ho)wo(f) H, Fi wo(Fi) (1 - h)awo(F), (3.19
Ahwave = exp(- ds), (3.19)w h f wo(f) w Jo

where we have used hi = H, and (3.16). (3.19) illustrates the physics of the boundary wave

elegantly. The boundary wave is excited along the eastern boundary by the perturbation forcing

(1- hi)awo(Fi) = (1- h)wl (see (3.12)). This forcing produces a local amplitude (1- h)awo(F)/w,



which decays according to exp(- f ' ds) = hi/ho along a characteristic line due to the divergent

group velocity field. For a shallow interface (H, <K 1), the decaying effect is especially strong near

the eastern boundary (see discussion after (3.10b)).

The phase 4 of the free wave is also changed substantially. For example, without an Ekman

pumping, the phase is always in a 3 dispersion orientation 4 ~ 1/ Xf 2 (Schopf et. al, 1981). But,

with an Ekman pumping, near the southern boundary of a subtropical gyre, the wave front varies

from an 3 dispersion (northeast-southwest) to an northwest-southeast orientation. More details

will be given in section 2 of chapter 5. Here, we only need to remember that (3.17b) implies that

the 4 is approximated at the leading order by S(x, f) (which is the wave front during a spin-up or

spin-down as shown in last section).

Local or remote responses ?

Now, we turn to our fundamental question concerning thermocline variability: whether the

disturbance is caused by a local response or a remote response. Under a local response, an interface

is simply forced by the perturbation Ekman pumping to move up and down with a phase lag of

900 to the forcing. On the other hand, remote responses have two mechanisms: the advection due

to remotely subducted waters at the outcrop line and the eastern boundary Rossby waves.

In a ventilated zone, we have seen that the local response is as important as the remote ad-

vection and both tend to balance each other. This cancellation results in the absence of baroclinic

variability.

In a shadow zone, the density advection is weak. The question then becomes the classical

question: which is more important, the local response or the eastern boundary wave ? The solution

(3.17a) consists of a local response and a remote response. The remote response is mainly caused

by the eastern boundary waves. A represents the relative magnitude of the boundary wave with

respect to the local response. A < 1 gives a local response domination while A > 1 a boundary

wave domination. In the absence of a mean Ekman pumping, (3.9a) degenerates to

athl + C(H,)hl, = -(1 - H,)wl.



where C(H,) = -H,(1-H,)/f 2 is independent of z. The solution satisfying the boundary condition

in (3.9c) is easily solve as

hi =(1 [cos(wt)- cos(wt - W )
w C(H,)

This suggests that A = 1. (This can also be obtained as the limit of wo -+ 0 in (3.17b).) Thus,

the local response has the same magnitude as the boundary wave, or both are equally important.

Physically, at the eastern boundary, to cancel the local response and satisfy the eastern boundary

condition, the amplitude of the Rossby wave must be the same as the local response. Without a

mean Ekman pumping, the thermocline is flat. Thus, towards the interior, both the local response

and the Rossby wave will remain their magnitude. Thus, the amplitudes are the same over the

entire basin.

However, with a mean circulation, it will be seen that the above conclusion is no longer true.

Fig.3.6a,b display two examples of A (solid lines) and the boundary wave phase P (dashed lines)

with an annual frequency w = 50. The Ekman pumping takes the form w(f) = We(1 - f)(f - f,).

The solution accurate to 1/w 2 in appendix A is used. Fig.3.6a is on a shallow interface (H, = 0.1)

while Fig.3.6b is on a deep interface (H, = 0.5). Two features are salient. First, local responses

tend to dominate on the shallow interface while boundary waves dominate on the deep interface.

Secondly, local responses are stronger in the northern part of an interface while boundary waves

are stronger in the southern part. These two features are also clear in Fig.3.6c,d where the forcing

has a decadal frequency w = 5.

Physically, we can understand the two features from (3.18) and (3.19). First, we note that to

satisfy the eastern boundary condition, the amplitudes of both the local response and the remote

Rossby wave must equal along the eastern boundary or A = 1. Furthermore, with an Ekman

pumping, the mean thermocline depth deepens westward as shown by (3.7b). Therefore, (3.18)

states that the local response decays westward. On the other hand, (3.19) states that the Rossby

wave amplitude also decays towards the west because of the divergent group veolcity field. There-

fore, the relative importance of the local and Rossby wave responses depends on which decays less

rapidly towards the interior. (3.10b) says that near the surface, the divergent group veolcity is very

strong (because of the strong divergent Rossby wave speed C 1/ho), which implies a rapid decay
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of the Rossby wave amplitude (3.19). Therefore, local response dominates near the surface. On

the contray, for a deep interface, the divergent group veolcity is weak as discussed in (3.10b), the

Rossby wave response dominates.

In addition, a Rossby wave is produced at latitude Fi and then propagates southward, requiring

F > f . In the northern part, the local Ekman pumping wo(f) is stronger than the Ekman pumping

wo(Fi) that generates boundary waves along the eastern boundary. Therefore, the local response

tends to be stronger. The opposite occurs in the southern part. Particularly, near the southern

boundary, where local Ekman pumping vanishes wo(f) --+ 0, the boundary waves are forced in

the middle of the gyre where wo(Fi) is finite. Thus, wo(Fi)/wo(f) --+ oo, implying a dominant

boundary wave effect.

Variability of thermocline structure and circulation

Fig.3.7a depicts the disturbance ahl under an strong annual frequency a = 0.5, w = 50 on

September (wt = 0), December (wt = 900), March (wt = 1800) and June (wt = 2700). The eastern

boundary depth is H, = 0.1 (as in Fig.3.6a). It is seen that the disturbance reaches about maximum

on March while it reaches the negative maximum on September, which is typical for local response

dominance. The maximum amplitude is about 0.01, corresponding to a dimensional depth of about

6 meters (if the total depth H = 600 meters). Fig.3.8 displays ahl with a weak decadal forcing

w = 5, a = 0.05 (corresponding to Fig.3.6c). A positive (negative) Rossby wave anomaly is formed

near the eastern boundary during winter (summer). Then, the anomaly propagates and intensifies

westward to occupy the interior during fall ( spring).

Lastly, we observe the variability of the circulation. Fig.3.7b,c illustrate the upper and lower

layer circulation for the thermocline disturbance in Fig.3.7a. The upper layer circulation remains

to be an anticyclonic gyre. This gyre reaches its maximum strength in the winter and its minimum

in the summer. The lower layer is more interesting. A penetration of water towards the shadow

zone appears in the winter, similar to a spin-up process in section 2 (Fig.3.2). In contrast, in the

summer, the lower layer exhibits a northward flow and a cyclonic gyre in the shadow zone while

the anticyclonic gyre is confined in the northern part of the ventilated zone. This agrees with the

circulation during a spin-down process in section 2 (Fig.3.3). The physics has also been explained
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in detail there. The change of circulation is mainly caused by the barotropic response. The wavy

structure is barely seen, consistent with the weak thermocline variability.

To summarize, the mean thermocline structure influences disturbances significantly. The di-

vergent group velocity results in a decay of Rossby waves. In addition, the thermocline variability

is dominated by local response on shallow interfaces but is dominated by Rossby waves on deeper

interfaces. Finally, the lower layer water in the shadow zone is no longer motionless. The direction

of the circulation oscillates northward and southward.

4 Periodic Ekman Pumping: II. Nonlinear Theory

Now, we investigate the nonlinear thermocline. A comparison between linear and nonlinear solu-

tions will be carried out. It will be seen that under a strong decadal forcing, linear solutions fail

to represent some important features of the nonlinear solution. Finally, we analyze the time-mean

structure of the nonlinear thermocline.

4.1 The Nonlinear Solution

Following the approach in section 2 of chapter 2, we seek solutions of the nonlinear equation (3.1).

With the Ekman pumping in (3.2c), the characteristic equations of (3.1) can be solved to yield

parametric solutions:

t = t + s, (4.1a)

f - - a(cos t - cos Wt), or f = (s, ti, fi). (4.1b)

Ifwo(f) w

f fi
- h or h = h(, t, f) (4.1c)1- h 1-hi

axf 2wo(f) = zXf2wo(f) - (h 0wo(j)ds

or = (s, ti, fi, i). (4.1d)

Again, here the hatted quantities represent the solution in the characteristic coordinate. For forced

solutions, the initial conditions for characteristics in the ventilated (or pool) zone and shadow zone

are respectively

fi = fo, hi = H, in the V.Z. (f, < 1) or P.Z.(fo = 1), (4.2a)



zi = O, hi = H, in the S.Z. (4.2b)

An example is the case with wo(f) = Wo/f. Most nonlinear solutions in this chapter have

this Ekman pumping (the only exception is Fig.3.11), because this Ekman pumping enables us to

integrate (4.1b,d) explicityly as

f = f + Wo[s - -(cos wt - cos wt)], (4.3a)

f = z - )+ (1+ -h) 2 WOcot as (sin sin )]. (4.3b)
f= fj2 2 w wti - :;2 Wtw)]. (4.3b)

1 In principle, from (4.1) and (4.2), one should be able to obtain an explicit solution of the form

h = h(z, f, t). (4.4)

We can prove that the general solution (4.4) possesses the primary period T = 2 (the proof

is not presented here). This periodicity ensures that the primary frequency w is the lowest non-

zero frequency of the forced thermocline. In other words, no subharmonics will be produced except

perhaps the time-mean component. Mathematically, now, a Fourier series can be used to decompose

the time series of the nonlinear thermocline solution.

Now, we derive solutions in the ventilated (or pool) zone and shadow zone. In the ventilated

(or pool) zone, (4.1c) and (4.2a) yield the solution

foh = 1 - (1- H.)T, a <zb(f, t). (4.5)

The ventilated (or pool) zone is a uniform potential vorticity pool with the constant potential

vorticity fo/(1 - H.). Therefore, no matter how strong and what pattern the Ekman pumping

w,(z, f, t) is, there is no thermocline variability. ( This has been discussed in section 2 for spin-up

and spin-down and in the last section for linear waves.) This is so because only the potential

vorticity conservation is used in (4.5). Under a zonal outcrop line (and a constant interface depth

H, > 0 at the northern boundary when fo = f,,), the potential vorticity is always uniform. Thus,

there is no variability.

1This Ekman pumping resuinbles the middle part of a subtropic gyre fairly well, although it obviously fails to
represent the region near the southern and northern boundaries simply for that it does not have the two boundaries.
Therefore, this Ekman pumping is frequently used to study the variability along zonal sections resumbling those in
the middle part of a subtropical gyre.



In the shadow zone, (4.1) and (4.2b) yield

t = ti+s, (4.6a)

f = f(s, t, f), (4.6b)

h = 1 - (1 - (4.6c)

X 2 wo() = [1- (1 - H,) ]jwo()ds, z > xb(f,t). (4.6d)

In (4.5) and (4.6), Xb is the shadow zone boundary which is formed by characteristics initiating

from (0, fo) at successive times. ab varies with time and is determined parametrically from (4.6b,d)

as

1 - Hs t-ti
S= !(t - ti, tifo), b = 1 - (1- Hs)(]wo(j)ds. (4.7)

lof wo(fb) jo

As has been seen in section 2, this shadow zone boundary sweeps back and forth as the Ekman

pumping varies. Two examples of (4.7) are presented in Fig.3.9a and c. Follow (2.9), the region

where Xb passes through is called the alternative zone. Fig.3.9a shows that the annual forcing case

has a very narrow alternative zone, even with a strong perturbation (a=0.5). This occurs because

the shadow zone boundary is mainly controlled by the baroclinic Rossby waves, which develops

very little within one annual period. Even with a strong decadal period in Fig.3.9c, the alternative

zone is not large, although it could occupy a fairly large portion of a zonal section in the southern

part of a gyre. However, it is interesting to see that the wave rays (or the characteristics) starting

at different times vary much more strongly than the ab itself, as shown in Fig.3.9b,d. The shadow

zone boundary of the steady thermocline under the time-mean Ekman pumping is zbo ((4.8)), which

is the dashed line in Fig.3.9a,c. One sees that 'b oscillates about zbo. But, it should be pointed

out that the time-mean zb usually is not zbo0

4.2 Time-Mean Thermocline

Thermocline equation (3.1) includes two nonlinear effects: the interaction between the barotropic

and baroclinic flows ( iB Vh) and the nonlinear Rossby wave effect (C(h)). The former has been

studied by Dewar (1989) in a QG model under an annual forcing, while the latter was first explored

by Anderson and Killworth (1980) in an 1 layer model. Under a periodic Ekman pumping, one
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x=0,f=0.25 in the shadow zone (H, = 0.3). c) the same as a) except for w = 5. d) the same as b) except for

w = 5.



should expect a time-mean thermocline < h > differing from the steady thermocline ho that is

forced by the time-mean Ekman pumping < w, >= wo. (Without confusion, hereafter, this steady

thermocline is simply called the steady thermocline.) Here, we will investigate the time-mean

thermocline.

With a strong annual forcing (see the example in Fig.3.5), one has seen that the instantaneous

disturbance Dh = h - ho is at the order of a/w, i.e.

Dh 5 O(-). (4.8)

The non-dimensional maximum is about 0.01, which corresponds to a dimensional depth of about 6

meters (if the total depth is about 600 meters). In addition, the time-mean disturbance < Dh >=<

h - ho >=< h > -ho (dot-connected lines in Fig.3.5: b,d,f) is not zero. The mean disturbance is

no larger than a2 /w, or

a 2

< Dh >< O(-). (4.9)

The non-dimensional maximum is less than 0.001 or a dimensional depth of less than about 0.6

meter. Thus, < Dh > is small compared with the instantaneous disturbance Dh for either a

high frequency or a weak decadal frequency forcing a < 1. Nevertheless, it is interesting to

observe a slightly negative < Dh > component along the whole section, implying a shallower mean

thermocline than the steady one. At a decadal frequency, if the forcing amplitude becomes strong,

(4.9) and (4.10) suggest that < Dh > may increase rapidly compared with Dh. This phenomenon

is seen clearly in Fig.3.10 which plots an example at the latitude f = 0.3 with a strong decadal

forcing w = 5, a = 0.5, the Ekman pumping w, = Wo/f is used. Fig.3.10b shows an ventilated

case (H, = 0). One sees that < Dh > can reach about one-third of Dh. Besides, a salient feature

is the strong negative < Dh > along the whole zonal section. A common character of ventilated

interfaces (in Fig.3.5b and Fig.3.10b) is that < Dh > achieves its maximum amplitude in the

alternative zone, which is located in the western flank of the shadow zone. Fig.3.10gk show two

unventilated interfaces with H, = 0.1 and H, = 0.6 respectively. One sees that even on unventilated

interfaces, < Dh > still reaches its maximum in the western shadow zone. In Fig.3.10, the non-

dimensional maximum < Dh > ranges from -0.02 to -0.04 at different depths, corresponding to a
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dimensional mean deviation of -12 to -24 meters. In addition, in the region where < Dh > is strong,

the linear solution deviates from the nonlinear solution significantly. In contrast, in the eastern

part of shadow zone where < Dh > is always weak, the linear solution resembles its nonlinear

solution well in all the cases.

Some time series of local interface variations and their Fourier components are also shown.

Fig.3.10e is located in the eastern part of the shadow zone of the ventilated interface in Fig.3.10a,b.

The number on the abscissa n corresponds to the frequency nw. The primary component (with the

primary frequency w) dominates while other components are negligible. Fig.3.10i,m give another

two examples in the eastern shadow zone. Their Fourier components are similar to Fig.3.10e. A

strikingly different behavior appears in the alternative zone on a ventilated interface ( Fig.3.10c,d)

and (somewhat less strikingly) in the western part of the shadow zone (Fig.3.10h,l). Now, both the

time-mean component and the second superharmonics (with frequency 2w) become rather strong.

In addition, observing all the Fourier components of these time series, one sees that the time-mean

component is about the same magnitude as the second superharmonic component while other higher

superharmonics are negligible.

With a strong decadal forcing (w = 5, a = 0.5), Fig.3.11a displays the horizontal structure of

the time-mean thermocline disturbance < Dh > for a parabolic form wo(f) = Wo(1 - f)(f - fs) of

Ekman pumping on a ventilated interface. The solution is found by first solving the characteristic

equations in (4.1) using the 4th-order Runge-Kutta method at each time. Then the solution is

mapped objectively on to regular grids. Finally, the time-mean is carried out at each grid point.

One sees that < Dh > has a negative component within the entire shadow zone. The strongest

mean deviation occurs within the alternative zone. The non-dimensional maximum mean deviation

is about -0.03 or dimensionally -18 meters. The instantaneous patterns in four seasons (not shown)

are similar to that in Fig.3.8 except now the alternative zone is much larger. Using this time-mean

thermocline, the corresponding lower layer pressure (or streamfunction) is shown in Fig.3.11b.

There is a strong southward flow in the alternative zone, which weakens towards the eastern shadow

zone. This southward mean flow corresponds to a mean vertical downwelling inside the shadow
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zone (not shown). As a result, in the time-mean thermocline, the lower layer fluid in the shadow

zone is no longer motionless. Instead, it has a mean southward flow.

In comparison, an annual forcing produces a very different < Dh > as shown in Fig.3.11c. The

mean disturbance is much weaker (note the different contour intervals) than the decadal case in

Fig.3.11a. The dimensional maximum value is about +1 meters. In addition, the pattern exhibits

alternative highs and lows. In the mean lower layer pressure in Fig.3.11d, these highs and lows

correspond to some micro-gyres, as found by Dewar (1989). In the previous example in Fig.3.5a,

these alternative highs and lows are also obvious on the mean zonal profile (dot-connected line).

4.3 Mechanisms for the Mean Thermocline

Now we analyze the mechanism for the time-mean thermocline structure. It turns out that in

different regions and for different frequencies, the mechanisms are different. We will concentrate

on the shadow zone for low frequency cases.

In the shadow zone (east of the alternative zone on a ventilated interface, or the whole unven-

tilated zone), the main mechanism is the nonlinearity of the Rossby wave that is to be explained

in the following. Consider an even simpler model--a 1 layer model. The upper layer depth is

determined by

ht + C(h)h, = -w,(f, t), where C(h) = -h/f 2 . (4.10)

The only nonlinear effect in this model is the nonlinear Rossby wave. It can be proven that the

solution in (4.10) is periodic if we(f, t) is periodic in time. Thus, averaging (4.10) over one period

and then integrating it along the x direction, we obtain the energy equation:

< h2 >= h2 (4.11)

where ho is the steady thermocline (as in (3.7b)) forced by the time-mean Ekman pumping <

w,(f, t) >= wo(f). Decomposing the thermocline into h =< h > +h', where h' is the perturbation

with a zero mean, (4.11) becomes

< h >2 + < h >2= h, or <h>2 = h-h< '> < ho . (4.12)



This states that the mean thermocline is always shallower than the steady thermocline. Physically,

(4.11) and (4.12) suggest that part of the input mean available potential energy leaks away as

disturbance potential energy due to the nonlinear Rossby wave.

The above argument also applies to our two-layer model if the forcing frequency is low. Indeed,

when the forcing frequency approaches zero, both the local variability (ht) and density advection

(vi- Vh) should diminish (when w = 0, both of them vanish exactly in the shadow zone). Thus,

the major dynamic balance of (4.1) degenerates to C(h)h, -(1 - h)w,(f,t), where C(h) =

-h(1 - h)/f 2 . This dynamic balance leads to the energy equation similar to (4.12):

h2  2f2 we(f, t)x + H ,' for very low frequency. (4.13)

This is the Sverdrup relation with the time as a parameter. Averaging (4.13) will give rise to the

same relation as (4.11) or (4.12). With the Ekman pumping in (3.2), we can estimate the mean

deviation < Dh >.

< Dh > < h > -ho =< /2f2wo(f)(1 + a sint) + H, > - 2f 2wo(f) + H,

H2
-ho < 1 - +a(1- )sinwt > <0, for 0 < a < 1. (4.14a)

0For a weak forcing a < 1, (4.14a) can be approximated as

< Dh >w -- (1- )oo (4.14b)

First of all, (4.14b) shows that < Dh > decreases as H, decreases. This agrees with the examples in

Fig.3.5 and Fig.3.10. Physically, this is because as the interface gets deep, the effective perturbation

Ekman pumping weakens. Quantitatively, in Fig.3.10 or Fig.3.11a (a = 0.5, ho - 500 meters and

H,/ho < 1), this gives about 10 meters (or a non-dimensional value 0.017), agreeing with the

maximum < Dh > in the shadow zone (not in the alternative zone!). In fact, calculations show

that (4.14b) gives a good approximation to (4.14a) until a = 1. Therefore, in a shadow zone, the

time-mean disturbance seems to have the upper bound at low frequency (by letting a -- 1 and

H. - 0)

< Dh > 1<D < 0(1 
(4.15)

ho 16
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In the second place, since ho deepens westward, (4.14b) suggests that < Dh > also increases

westward. In the eastern part of the shadow zone, this westward increasing mean deviation can

be observed clearly in Fig.3.10b,gk. However, < Dh > increases towards the west only to about a

quarter of the wave length as seen in Fig.3.10b,g,k. This differs from (4.14) because (4.14) is valid

only when w -+ 0 (then the wave length goes to infinity).

With a high frequency, the advection term becomes dominate, which is response for the micro

gyres in the mean thermocline. In the alternative zone, the alternating between the Rossby wave

and cold advection is very efficient in producing a very shallow mean thermocline. For details, the

reader should refer to appendix B.

Lastly, we point out that (4.13) (or (B.1) for high frequency case) shows that the time-mean

component has the same amplitude as the second harmonics, which has been seen in the previous

example Fig.3.10c,d,e,h,i,l,m. This spectrum is characterized by both a rapid rise and decrease of

the local interface variability.

5 Thermocline Variability Under a Variable Ekman Pumping

Now, we further investigate the variability at different frequency and amplitude of forcing. In

particular, we are interested in how important the nonlinear effect is. Visually, the examples in

Fig.3.5 indicate that the linear solutions are able to represent the nonlinear solutions excellently

along the whole zonal section in cases with a strong annual forcing. If the amplitude of the decadal

forcing becomes strong, Fig.3.10 illustrates that the linear solution still approximates the nonlinear

solution well in the eastern part of the shadow zone, but it fails in the western part of the shadow

zone and the alternative zone.

As a further step to study the variability and its nonlinearity under different amplitude and

frequency of forcing, we study the variability of the zonally integrated interface disturbance

j Dhdx, (5.1)

where zb is the instantaneous shadow zone boundary in (4.7). Subject to various forcing amplitudes

a and frequencies w, for the zonally averaged variability (5.1), the amplitude and phase of the
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primary component, the amplitude of the time-mean component and the ratio between the time-

mean component and the primary component are depicted respectively in Fig.3.12a,b,c and d.

The Ekman pumping is chosen to be we = Wolf. Qualitatively, the amplitudes of the primary

component in Fig.3.12a agree with the linear solutions (3.17) or (A.1). For high frequencies (higher

than decadal), their amplitudes are proportional to A (straight lines in the w - a plane passing

through the origin) and their phases are about 900, reflecting properties of local responses (note

that in Fig.3.12, the interface is a shallow ventilated interface.) As frequencies approach zero, the

amplitudes approach finite limits and the phases decreases with frequency. It is impressive that

the phase depends little on the forcing amplitude a, especially for high frequencies. This suggests

the dominant linear nature of the response.

To analyze the nonlinearity quantitatively, we decompose the time series in (5.1) into a Fourier

series fob Dhdx/zb = E=oA, sin(nwt - 0). Then, we can judge the importance of the nonlinearity

by the power ratio between the sum of all sub and superharmonics, which are generated by nonlin-

earity, and the primary component P,atio = (En01A'/A2)1. Since we have seen that the powers of

the second superharmonics A 2 and the time-mean component Ao are about the same while other

components are negligible, the power ratio can be approximated as

Pratio - 2Ao/A1. (5.2)

The Ao and A1 have been shown in Fig.3.12a and c. The ratio Ao/A 1 is shown in Fig.3.12d. The

contour Ao/A 1 = 0.05 (heavy solid line on Fig.3.12d) can be taken as the criterion for Pratio = 0.1

in the w - a plane. Below this line the power ratio is less than 0.1 and the total power of the

nonlinearly generated harmonics is one order less than that of the primary component. In other

words, nonlinearity is negligible. This regime is the linear regime and mainly consists of weak

decadal forcing and strong annual forcings (e.g.,Fig.3.5). Above the Pratio = 0.1 line, the nonlinearly

generated components are no longer negligible. The regime consists of strong decadal forcing and

is called the nonlinear regime. ( It is perhaps more proper to call it as weakly nonlinear regime

because the nonlinearity is not dominant). Fig.3.10 is an example of this nonlinear regime. For

the parameters w = 5, a = 0.5 in Fig.3.10, we find from Fig.3.12d that Ao/Al = 0.17. (5.2) then

suggests that Patio ; 0.34. This means that about 30 percent of the energy of this decadal forcing
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Figure 3.12: For the zonally integrated disturbance (5.1). The amplitude and phase of the primary compo-
nent, the amplitude of the time-mean component, the amplitude ratio between the time-mean component
and the primary component, with respect to different forcing amplitude a and frequency w. The Ekman
pumping takes the form in Fig.3.5. H, = 0 is adopted. a)the primary component A1. b) the phase of
the primary component in the form of sin(wt - phase). c)the time-mean component A0 . d) the ratio of
time-mean component to the primary component Ao/A 1 .
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is transferred nonlinearly to the time-mean and higher components. It should be born in mind

that the zonally averaged disturbance (5.1) underestimates the maximum local nonlinearity in the

western shadow zone or the alternative zone.

6 Summary

A two-layer planetary geostrophic model is used to investigate the thermocline variability under

a variable Ekman pumping. This model includes a two-dimensional mean flow and thermocline

structure. The effect of ventilation and advection is particularly emphasized in the ventilated zone.

The analysis includes both annual and decadal forcings.

To highlight the physics, we first study a simpler case of spin-up and spin-down. It is found that

the dynamics between a ventilated zone and a shadow zone differs substantially. In the ventilated

zone, the cold advection balances the Ekman pumping, while in the shadow zone the Rossby wave

opposes the Ekman pumping. After a change of the wind field, in the ventilated zone, the Ekman

pumping and the cold advection vary rapidly at the time scale of barotropic Rossby waves (about

one week) to achieve a new steady balance, leaving little thermocline variability. However, in the

shadow zone, the Ekman pumping still changes rapidly, but the baroclinic Rossby wave evolves at a

much slower time scale (years to decades). This creates a great imbalance in forcings and results in

a strong thermocline variability. In addition, the development of the thermocline circulation is also

interesting. The evolution differs dramatically between a spin-up and a spin-down. For example,

with a change in the Ekman pumping field, the lower layer fluid in the shadow zone is no longer

motionless. After a spin-up, the lower layer water moves southward because of the compression on

planetary vortex tubes by the downward anomalous Ekman pumping. The associated circulation

is an anticyclonic gyre. In contrast, during a spin-down, the water moves northward because of

the stretching of planetary vortex tubes by the upward anomalous Ekman pumping. The lower

layer circulation now consists of two counter-rotating gyres: an anticyclonic gyre to the north and

a cyclonic gyre to the south.

Then, a periodic Ekman pumping is adopted to simulate a variable Ekman pumping more

realistically. The features found in the spin-up and spin-down also exist in the periodic Ekman
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pumping case, with the seasons of an increasing and a decreasing Ekman pumping resembling the

spin-up and spin-down respectively. This is so particularly for annual forcings (i.e. with periods

comparable to one year). Therefore, under a varying Ekman pumping, the thermocline variability

is much stronger in the shadow zone than in the ventilated zone. The direction of the lower layer

circulation in the shadow zone oscillates southward and northward.

Furthermore, it is somewhat surprising to see that for strong annual forcings with perturbation

Ekman pumping comparable to the mean Ekman pumping, the disturbance is essentially linear.

Even under a strong decadal forcing, the linear solution still approximate the nonlinear solution

very well in the eastern part of the shadow zone. Nevertheless, the linear perturbation is influenced

substantially by the basic state thermocline structure. The mean thermocline structure results in

a divergent group velocity field. This in turn produces a decay effect on Rossby waves. In the

ventilated zone, the advection due to the subducted water has the same importance as the local

response and they tend to cancel each other. In the shadow zone, if the interface is shallower, local

responses dominate, because the effective Ekman pumping is stronger and the Rossby wave energy

flux is weaker. On the other hand, if the interface is deep, remote Rossby waves dominate, because

the effective Ekman pumping diminishes while the barotropic flow supports a finite wave energy

flux.

For a strong decadal forcing, the nonlinearity is still weak in the eastern part of the shadow

zone but is no longer negligible in the western part of the shadow zone. The maximum nonlinearity

occurs about one quarter of wave length from the eastern boundary. The time-mean thermocline

in the shadow zone is always shallower than the steady thermocline under the time-mean Ekman

pumping. The difference may be significant, especially in the western part of a shadow zone. This

shallower mean thermocline is mainly caused by the nonlinear Rossby wave. The mean lower layer

flow in the shadow zone is no longer at rest. Instead, it is southward.

We should point out some limits of the above theory. First, the eastern boundary interface

depths are fixed in this chapter. This is part of the reason why the nonlinearity is always weak in

the eastern part of the shadow zone. In fact, as will be shown in chapter 5, if we have a disturbance
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along the eastern boundary, the nonlinearity may become very strong. The nonlinear steepening

of the Rossby wave will cause breaking of interface waves.

Second, the unchanged ventilated zone is caused by the zonal outcrop line and the flat bottom.

Nevertheless, the dominant subduction physics in the ventilated zone seems to suggest that the

derived conclusion is qualitatively correct even for general cases (see section 6 of chapter 2).

Finally, the quiescent ventilated zone has not taken into account the surface buoyancy variability.

In fact, it will be shown in chapter 4 that the surface buoyancy variability may cause strong

thermocline variability in the ventilated zone but it affects the shadow zone slightly.

Much further work remains to be done even within this simple model. For example, a non-

zonal outcrop line may provide a better understanding of the variability in the original ventilated

zone. A north-south bottom slope may be included to simulate the bottom of the thermocline more

realistically. In addition, it is interesting to study a stochastic Ekman pumping. A further step

would be to study a two-and-a-half-layer model.
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A The Approximate Linear Solution at 1/w2 Order

Here, we derive an approximate expression for the linear wave in (3.15) (or (3.13)) accurate to

1/w 2 . Noting the g in (3.2c), along characteristics (therefore fi, ti are constants), we can integrate

(3.13) by part to yield

hho f fwo(f)hod[cosw(ti + J)]
ho W 1L 1 - hi W(!) cos w(tj + s) - cosw(ti + s)d[fwo(f)ho}
ho 0 o

1 1- h (-1
o ( ) jfwo(f)hocos w(ti + s) - fiwo(fi)Hcos to

ho f W

-- + df d f ho+dho
S W(/)o +/w ds ds /o(]) d[sinw(t + s)]

Here, we have used f, ho I8=o= fi, H, (see (3.6b,c)) In the last equality, the first two terms give

the O(11w) solution in (3.17) if we use ti = t - s and (3.8a,c). For the O(1/w2 ) solution, we first

subtitute the characteristic equations for the basic state (3.5)

df
ds

dhodh- = -(1 - ho)wo
da

into the integral of the last equality. Then, we integrate it by part again. Using ti = t - s and

(3.8a,c), we obtain

(A.la)(1- ho)wo(f) 1hi ( [cos wt - A cos(wt - )1] + 0( )hi =

where A and I are functions of x and f:

A = o +( 1 2 1
\ wao wao

cos()= (cos - +bl sin) ao'

ao H,Fwo(F)
ao= hofwo(f)

a= - [(2 - h)wo() + fwo(f)] ,
ho

/ a1  12o -
(wao  wao c 1

sin() = (sin - al bl cos ) a0

wa o  wa o  "A"

0 = w(t - ti) = wS(z, f),

b1 = wo(Fi) (2- 1 )o(f) + fwof (f)]
fwo(f) ho
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Here, Fi, ho and S are given in (3.8a), (3.7b) and (3.8c), respectively. (A.1) gives the approximation

of (3.15) accurate to O(1/w 2 ). Neglecting the second order terms (set al = bl = 0), (A.1) becomes

(3.17). (A.1) can be expected to be valid for frequencies higher than decadal ones (w > 1). The

second order correction (due to al and bl) is very important for shallow interfaces (H, < 1).

Indeed, when 1/who - 1/wH, > 1, the second order correction becomes comparable to the first

order. For the special form of Ekman pumping wo(f) = Wo/f, where Wo is a negative constant.

The second order solution in (A.1) is the exact linear solution (3.15). On shallow interfaces, the

failure of the first order solution in (3.17) is seen below. If H, - 0, we have A ao -- 0. The

solution is a purely forced response which fails to satisfy the eastern boundary condition (3.9c).

B More About the Mechanism for the Time-Mean Thermocline

Alternative zone

In the alternative zone of a ventilated interface, the mean thermocline is much shallower than

the steady thermocline. In order to understand the physics, it is illuminating to observe and discuss

the time series in Fig.3.10d which is located east of the steady shadow zone boundary xbo in (3.7c).

In the half period from September (wt = 0) to March (wt = 1800), 1 the interface depth initially

deepens because the increased effective Ekman pumping can not be balanced by the Rossby wave.

During this deepening half cycle, the ventilated zone is also expanding. When the ventilated zone

expands to this location, the deepening is stopped abruptly. This is because the strong invasion

of cold advection of the ventilated zone successfully balances the effective Ekman pumping. Under

the intensifying Ekman pumping, it is this invading cold advection that prevents the interface

from further descending. The interface stays at the same depth until the other half cycle when

the ventilated zone retreats and the strong cold advection vanishes. Then, the weakening Ekman

pumping forces the interface to rise to its minimum depth continuously. Hence, during one period,

the deepening of the interface is suddenly stopped by the advection while the shallowing of the

interface is not. In this way, averaged over one period, the interface has a shallower depth than

that without the invasion of the cold advection. Therefore, it is the alteration of the two different
1This lags the wind forcing (3.2c) by 90*, because on this near surface interface, local response dominates (see

discussion in last section on linear waves)
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mechanisms (the cold advection and the Rossby wave) that causes a shallower mean thermocline.

The former is efficient in balancing the anomalous Ekman pumping while the latter is not. Fig.3.10g

is located west of xbo. The time series can be similarly explained. As a result, east of xbo, the

invading subduction water prohibits the thermocline deepening in the winter half year to produce

a shallower mean thermocline. West of Xbo, the invasion of the Rossby wave during the summer

half year allows the thermocline to respond to the local Ekman pumping and shallows, also causing

a shallower mean thermocline.

Shadow Zone (High Frequency Case)

Compared with the decadal forcing case, the annual case exhibits substantially different time-

mean thermocline structure as shown in Fig.3.5 and Fig.3.11c,d. This is because now the interaction

between the barotropic and baroclinic flows becomes the dominant nonlinear effect. We can analyze

the high frequency case through the weakly nonlinear theory. Inserting (3.3), (3.4) into (3.1), at

O(a2 ) order, we have

1 dC
hi t + VBo " Vhi + C(ho)hx, - phi = -V " (iBlhl)- ( d-h),. (B.1)

where it is defined in (3.9b). On the right hand, the first term is the barotropic-baroclinic interaction

while the second term is due to the nonlinear Rossby wave. For simplicity, in the following analysis,

the hi solution is approximated to 0(1) < 1 order in (3.17). < Dhbb > and < DhRSsby > will

be used to denote the part of the time-mean h2 forced by the barotropic-baroclinic interaction and

nonlinear Rossby wave respectively. After some tedious algebra, and solving the equation (B.1), at

the lowest order of 0(1), we obtain

a2 (1 - H,)Hs a
< Dhb >"w h [w0(f) - w0o(Fi)] sin , O(-), (B.2a)

2w ho W

< Dh >Rossby~ ~) 2[1 cos ~ + 72] 0(a 2  (B.2b)

Here Fi, ho, P are determined in (3.8a), (3.7b) (3.17b). 71 and 72 are functions of Fi, ho and f.

(B.2) shows clearly that the barotropic-baroclinic interaction is much stronger than the nonlinear

Rossby wave effect in producing the time-mean component. Since < Dhbb > depends on sin P, we

should expect to see a wavy structure in < Dh > field as shown in Fig.3.5b,d,e and Fig.3.11c,d. In
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the figure, the time-mean deviation is very weak (about 1 meters) for an annual forcing. Dewar's

result seems to over-estimate this mean deviation.

It is noteworthy that in (B.2) < Dh >bb depends on the meridional gradient of the Ekman

pumping. If the Ekman pumping is uniform in space, i,e, wo(f) = Wo, it holds that < Dhh >= 0

at O(a 2/w). 1 Hence, in a subtropical gyre, the time-mean deviation < Dh > will be relatively

weak in the middle of the gyre (more precisely, in the region near the characteristics starting near

the middle of the gyre at the eastern boundary).

1In the QG model of Dewar (1989), for w.(f) = const., it can be shown exactly that the mean disturbance
< Dh >= 0 for any amplitude and frequency of forcing.
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Chapter 4
Thermocline Forced by Varying Surface Temperature

1 Introduction

Just as surface wind stress does, annual and decadal variabilities of surface buoyancy flux may also

force variability in the permanent thermocline. In this chapter, we attempt to investigate the effect

of an annual or decadal surface buoyancy flux on the permanent thermocline.

One difficulty in dealing with a variable surface heat flux arises from the fact that the surface

buoyancy flux influences the permanent thermocline through a mixed layer. Therefore, it is equally

crucial to consider the dynamics of both the mixed layer and the thermocline on annual and decadal

time scales. A deeper mixed layer can store more heat and therefore reduces the anomalous heat

flux affecting the permanent thermocline. Hence, with a given surface buoyancy flux, the variability

in the permanent thermocline depends heavily on the coupling between the mixed layer and the

thermocline.

Recently, the study of the coupling between the mixed layer and thermocline has concentrated

on steady cases. Either the mixed layer is essentially passive (i.e. with the density and depth

specified) (e.g. Pedlosky, et.al.,1984; Huang, 1989; Wang, 1990; Pedlosky and Robbins, 1991) or

the thermocline is somewhat specified (e.g. Marshal and Nurser, 1991). The effect of a sloping

mixed layer depth has been emphasized as important in enhancing the ventilation effect. So far,

there has been no theory studying a time-dependent coupling.

In this chapter, as a first step to understand the coupling between a time-varying mixed layer

and the permanent thermocline, the surface buoyancy flux variation is represented by a variable

surface temperature or density (if we neglect the effect of salinity), which in a two-layer model, is

equivalent to a moving outcrop line. To simulate an annual or decadal cycle, a periodically moving

outcrop line will be used.

First, a two-layer planetary geostrophic model is used in section 2 to investigate the case of a

slowly moving outcrop line. Gravitationally stable solutions will be found. For these solutions, the
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horizontal buoyancy advection is strong enough to balance the surface buoyancy flux anomaly, and

therefore no convection develops. All the water subducts from the mixed layer into the thermocline

and there is no entrainment occurring. Thus, these solutions will be called nonentrainment solu-

tions. However, when the outcrop line moves southward faster than the particles near the surface,

all solutions in the two-layer model become gravitationally unstable, implying the occurrence of

deep convection.

To obtain stable solutions under the fast outcrop line, the two-layer model is modified in section

3 by placing a mixed layer on the top. For simplicity, we will adopt an essentially passive mixed

layer by specifying the outcrop line, the depth and the density structure of the mixed layer. But,

the velocity in the mixed layer is coupled with the thermocline below. The system can be solved

analytically by the method of characteristics.

Section 4 is the core of the whole chapter. A general approach is developed to obtain stable

solutions. It will be shown that, for a fast moving outcrop line, a stable solution must have entrain-

ment into the mixed layer. Thus, these solutions will be called entrainment solutions. In addition,

a convective scheme is used to entrain waters left behind the outcrop line into the mixed layer.

In this way, stable entrainment solutions can be obtained. We will also discuss some interesting

features of the entrainment solution, which differ significantly from those of the nonentrainment

solution. Furthermore, since in the convective scheme, the depth of a mixed layer during one part

of a cycle must be determined by the mixed layer depth during another part of the cycle, the mixed

layer depth in general can not be arbitrarily specified during the whole period. It will be shown

that there are three stages during one cycle: the entraining stage when the mixed layer deepens

rapidly to entrain the permanent thermocline; the seasonally subducting stage during which the

subducted waters prepare to be reentrained by the next entraining stage and form the water for

the seasonal thermocline water; the subducting stage in which the subducted waters will never be

reentrained and thus form the permanent thermocline water.

Our major question is answered in section 5. It is seen that the thermocline variability is deter-

mined by the difference of the maximum and minimum subduction potential vorticities during the

subducting stage. For both very low and high frequency forcings, the response tends to be inde-
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pendent of frequency. In sharp contrast, for interannual and decadal flux anomalies, the variability

increases dramatically with period, implying that a decadal buoyancy forcing is efficient in forcing

the permanent thermocline variability.

Lastly, the mixed layer deserves a further remark in its own right. Traditionally, the seasonal

thermocline has been investigated with a 1-D model (Turner and Kraus, 1967; Kraus and Turner,

1967; Warren,1972; Gill and Turner,1976; Niiler and Kraus,1977). However, in the area where the

net annual buoyancy flux is large, a 1-D model is probably no longer valid. Particularly in regions

with net surface cooling in a 1-D model, either the convection has to penetrate deeper and deeper

or the surface temperature has to get colder and colder, because there is no other mechanism to

balance this net buoyancy loss on the surface. Thus, on climate time scales, the locally unbalanced

net heat flux should be balanced by horizontal advection (Woods, 1985). Accordingly, in order to

study the surface buoyancy effect on the basin scale circulation at interannual time scales, it is

essential to include horizontal advection. The importance of advection in the coupling between the

seasonal thermocline and permanent thermocline has been noted (Woods,1985). Since this chapter

concentrates on climate scale variation, it is crucial to include the horizontal advection. This is

indeed the case in our model, although the mixed layer in our model is crude and essentially passive.

It turns out that our results may have important implications on the dynamics of the mixed layer.

2 Slow Outcrop Line Case: Nonentrainment Solutions

2.1 The Nonentrainment Solution

We start with the case of a slowly moving outcrop line and try to find solutions with gravitational

stability. A two-layer planetary geostrophic model with a flat bottom is adopted. The upper layer

depth h is governed by a quasi-linear equation, whose dimensionless form assumes (see (1.7a) of

chapter 2)

ht + v~ . Vh + C(h)hx = -(1 - h)we (2.1)

where 11B = (UB, VB) = [_(f 2 fo' wed)f/f, fwe] is the barotropic velocity and C(h) = -h(1-h)/f 2

is the planetary wave speed. The Ekman pumping will be set steady throughout this chapter

because our focus is on a variable surface buoyancy flux. With a zonally independent Ekman
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pumping we = we(f), the characteristic equations of (2.1) are solved as (see (4.8) of chapter 2)

t = ti+s, (2.2a)

a = - , or f= (s, f;) (2.2b)
S VfiB

S f (2.2c)
1-h 1 - hi'

2f 2We(f)X = 2fi2w(fi)xi + h2 - h? (2.2d)

where / represents the f solution in the characteristic coordinate. (2.2) gives solutions in different

regions if the initial conditions for characteristics (ti, fi, hi, ri) starts from different places. (see

section 5 of chapter 2 for a detailed discussion).

Sea surface density will change if there is a temporal anomaly in surface buoyancy flux. In our

layered model, the variation of sea surface density is simulated by the motion of an outcrop line.

For simplicity, we adopt a zonal outcrop line varying with time, i.e. h If=fo= 0 and

fo = fo(t). (2.3)

We will study periodically forced solutions after the initial adjustment. Thus, characteristics for

the solution in the gyre start either from the outcrop line or the eastern boundary.

Ventilated zone

If we want to derive a solution at a time t over an entire gyre, all characteristics must start

before this time, i.e. ti _ t. Thus, with (2.3), characteristics originating from the outcrop line have

the initial conditions

f; = fo(ti), hi = O. ti < t (2.4)

Substitution of (2.4) into (2.2a,b,c) yields the characteristic solution in its parametric form

f = A[t-t, fo(ti)] f*(t, ti), for ti < t (2.5a)

h = 1- f*(tt) h*(t, t) (2.5b)
fo(ti)

In the special case when the outcrop line in (2.3) is steady, (2.5) gives an explicit solution h =

1 - f/ fo, which is the same as the steady ventilated zone (see (3.2) or (5.6) of chapter 2 ). Thus,
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hereafter, for convenience, the solution (2.5) will be called the ventilated zone solution even with a

moving outcrop line (2.3).

(2.5) is independent of x. This means that the potential vorticity (in this chapter, potential

vorticity always refers to that in the bottom layer) is uniform on a latitude circle. However, unlike

the steady zonal outcrop line case in the previous chapter 3, the potential vorticity now can vary

significantly with latitude. Therefore, the ventilated zone is no longer a uniform potential vorticity

pool.

The physics of the parameteric solutions f*(t, ti) and h*(t, ti) in (2.5) can be made clear as

follows. At a time t, a lower layer water column at a latitude f was subducted from the outcrop

line at a previous time ti, i.e.

ti = r(f, t) < t where f = f*[t,7(f,t)]. (2.5c)

The interface depth at this latitude is h = h*[t, r(f, t)] = h(f, t). Therefore, this water column

always remembers its subduction time r(f, t). It is important to notice that the subduction time

is independent of the thermocline structure h in (2.5b). In fact, r is determined by the f in (2.5a),

which is derived from the f characteristic equation df/ds = fwe. This equation is solely determined

by the Ekman pumping and independent of h. Hence, during the evolution, each water column in

the lower layer remembers its subduction time and then can be labeled by the time according to

(2.5a) or (2.5c) (not (2.5b)!). In particular, at the latitude of the outcrop line f = fo(t), the water

column is subducted at the present time ti = t. In (2.5c), this suggests the identity t r[fo(t), t].

Fig.4.1a,b demonstrate schematically how a water column is determined at latitude f = F and

time t. Since all subductions occur before the present time t, the subduction time 7 terminates at

-r = t in Fig.4.1a. In this case, the outcrop line moves so slowly such that its southward velocity

is never faster than the particle velocity or 0 > fo > VB(fo). Therefore, no water column will

be overtaken by a water column subducted later. In other words, at any time, the more north a

water column is located, the later will be its subduction time; or equivalently, the -r(f, t) increases

monotonically with latitude as shown in Fig.4.1a. Therefore, at each latitude F, the water column

has a single subduction time r(F, t). The labeling is done as follows. First, we find the subduction

time for the water at f = F from (2.5c) or (2.5a) as r = r(F, t) as shown in Fig.4.1a. Then, at F,
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VB [ fo(t) ] < fo(t)

------------

fo(t)

C

VB[ fo(t) ]> fo(t)

tp(t)

i

(F,t)

(fot)

fo(t)
%- p

F fo(t)

Figure 4.1: The schematic figure showing how the interface solution is determined and labeled by the subduc-

tion time r(f, t) at a given time t. (a) and (b): Slow outcrop line case. (a) shows r as a monotonic function

of f because later water can not catch up with an earlier subducted water. r is single-valued. (b) shows the

h* profile, which is labeled by the subduction time according to (a). The h profile is stable. (c) and (d):

Fast outcrop line case (during entraining stage): Now, because a later subducted water catches up with an

earlier subducted water in (d), r is double-valued in (c), with the later branch r+ and the early branch r-.

Corresponding to the double value r function, the solution is unstable. Also shown schematically is the rp(t)

function mapping, which gives the corresponding seasonally subducting time and determines the convective

scheme used in (4.9a).
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we find the depth of the interface from (2.5b) as h = h* [t, r(F, t)]. Thus, at F, the water column

has an interface at h* and can be labeled by r(F, t) as shown in Fig.4.1b.

Shadow zone

The solution (2.5) only occupies part of the basin. In the other part of the gyre, the solution

is established by characteristics starting from the eastern boundary. For an eastern boundary at

X = 0, the initial conditions for these characteristics are xz = 0, hi = h,(fi, ti) = 0, when fi < fo(ti)

and ti < t. Here, for convenience, the depth of the eastern boundary interface has been set zero.

Thus, (2.2) gives the solution

h 2 = 2f 2 We(f)X when z > xb(f, t). (2.6)

This is the same as the steady shadow zone (see (3.3) or (5.2d) in chapter 2) except now the

shadow zone boundary Xb varies with time. Therefore, the solution will still be called the shadow

zone solution. The resemblance between (2.6) and the steady shadow zone is not surprising because

the shadow zone does not feel the motion of the outcrop line except in the most western part where

the characteristics starting from the outcrop line along the eastern boundary arrive. The varying

shadow zone boundary has the initial condition for characteristics as zi = 0, fi = fo(ti), hi = 0.

Thus, (2.2) gives the parametric form of zb

z (t, ti) - (h*)2/2(f*)2W,(f*) (2.7)

where f*, h* are given in (2.5a,b).

Examples

(2.5), (2.6) and (2.7) form the solution in the entire gyre. As an example, we take a spatially

uniform Ekman pumping

we(f) = Wo = constant < 0. (2.8)

(This Ekman pumping function will be used for all the calculations in this chapter.) With (2.8),

(2.2b) gives the f characteristic solution

f = fieWo = (s, fi). (2.9)
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With an outcrop line fo(t), the parametric solution in the ventilated zone is derived from (2.9) and

(2.5a,b) as

f = f*(t, ti) = fo(t )ewo(tt-) (2.10a)

h = h*(t, ti) = 1 - ewo(t-t ' ) (2.10b)

In the rest of the chapter, the outcrop line is assumed an oscillating one with the form

fo(t) = f,(1 + a cos wt), 0 < a < 1, (2.11a)

where fg is the mean position of fo(t) and afg is the amplitude of the oscillation. The most northern

and southern latitudes of the outcrop line are respectively

fomax = fg(1 + a) and fomin = fg(1 - a). (2.11b)

which are reached by fo at the times

2nr
t = p, and t = p, + - where n is an integer. (2.11c)

In the annual period case, these two times correspond to about September and March, (for the

sea surface temperature lags the surface heat flux about 900 in phase). For a thermocline depth

of about 600 meters, the dimensional time scale is T = H/W, 20 years, where we have used

a typical vertical velocity of We , 10-4cns- 1 . Therefore, a nondimensional annual frequency is

about w ; 100 while a decadal frequency is about w - 10 (see the definition of scaling vairables

in (1.5a) of chapter 2). Without confusion, the twelve months will still be used to refer to relative

times in the oscillation even for periods other than the annual period.

Fig.4.2 displays an example of weak decadal forcing, with Wo = -1 in (2.8) and fg = 0.7,w =

5, a = 0.19 in (2.11a). Along x = -1, the meridional profiles at wt = 0, r/2,7r and 37r/2, cor-

responding to "September", "December", "March" and "June", are presented in Fig.4.2a-d. The

northern part that deepens southward is the ventilated zone while the southern part that shallows

southward is the shadow zone. Several features are interesting. First, the interface slope near the
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surface Of h is small at "September" (Fig.4.2a), implying a strong stratification. As the outcrop

line moves southward due to cooling, the slope steepens but remains stable (Fig.4.2b) with the

maximum slope (or a minimum stratification) achieved a little before "March". Later, the outcrop

line returns northward due to heating. The thermocline responds with a quick decrease in the

slope (Fig.4.2c.d). The second feature is the relation between the time-mean thermocline profile

and some steady thermocline profiles. In Fig.4.2e, the time-mean interface < h > is depicted as

the dot-connected line while the short and long dashed lines respectively draw the steady LPS so-

lutions with fo at the time-mean position ( fg) and southernmost position (fo,n) ("March"). It is

seen that the time-mean profile is very close to the steady thermocline with the mean outcrop line

(except in the very northern part). Third, the variability in the permanent thermocline is strong

as shown by a local time series of h in Fig.4.2 f. Although the outcrop line (2.11a) is harmonic,

the interface variation is not ! It has a relatively slow deepening and a rapid rise and therefore

possesses strong superharmonics in the power spectrum (or Fourier series) of the h time series as

presented Fig.4.2g. This power spectrum differs significantly from that produced by a wind forcing.

In the wind forcing case in section 4 of chapter 3, the time-mean component is comparable to the

second superharmonic and other higher superharmonics are negligible (see Fig.3.10 in chapter 3).

In contrast, now, the time-mean component is smaller than most superharmonics ( Fig.4.2g).

The above features are also observed clearly in Fig.4.3a, where the zonal profiles are displayed.

Furthermore, the shadow zone boundary zb at four seasons are drawn in Fig.4.3b. In the region

where zB sweeps through, the shadow zone and ventilated zone dominates alternatively. A similar

phenomenon has been seen with a variable wind forcing in the alternative zone.

The solution above is an example of nonentrainment solution, which exists in the absence

of a variable mixed layer depth and remains stable. It is so named because of the absence of

entrainment, as will be shown later. However, if the amplitude or frequency increases further (so

that jo increases), the solution may exhibits gravitational instability. Fig.4.4a-d shows a solution

with the same frequency as that in Fig.4.2 and Fig.4.3 but with a larger amplitude of a = 0.4 (the

shadow zone part of the solution is not shown in Fig.4.4). One sees that during "winter" when the

outcrop line moves southward rapidly, the solution becomes gravitationally unstable. Later, a bulb
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of unstable water later is advected downward by the downward vertical velocity, and southward by

the Sverdrup flow. An annual frequency case is shown in Fig.4.4e-h. The profile has many more

unstable pulses of waters because of the higher frequency. The two solutions are not physically

valid because of the gravitational instability. Later sections of the chapter is devoted to find stable

solutions under fast outcrop lines such as those in Fig.4.4. But, first, we study the criterion for the

breakdown of nonentrainment solution.

2.2 The Criterion for the Breakdown of Nonentrainment Solutions

Obviously, a gravitationally stable solution must have a stable slope of interface

Ofh < 0 everywhere (2.12a)

Inside the ventilated zone of our two-layer model, when the potential vorticity does not vary along

a latitude, it holds that Oh = 0 or Ch, = 0 in (2.1) south of the outcrop line. Thus, there is no

Rossby wave effect and the associated nonlinear steepening effect. Therefore, it seems to me that

gravitational instability can only be caused on the outcrop line. (This has been seen true in all the

experiments. But, I am not able to prove it mathematically.) Thus (2.12a) is equivalent to

O h If=f.o(t)=< 0 for all t (2.12b)

This slope can be derived from the mass balance of the upper layer near the outcrop line. Let's

take a small volume near the outcrop line in the upper layer with a 6f length on its top and a 6h

thickness on its southern side. -we 6 f is the downward mass flux from the top and (vB - jo)6h is

the southward mass flux through the southern side (since the outcrop line is moving with the speed

I, the mass flux through the southern side is caused by the relative velocity vB - J,). Noticing

the absence of mass flux across the interface on the northern and bottom side, the mass balance

for the small volume is then

- webf = [vB(fo) - f0 ]6h near f,, (2.13a)

where fo = df(t)/dt. (2.13a) is equivlent to

Oh -w (2.13)

Of V (fo) - o2.13b)
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This slope can also be derived mathematically as in appendix B. With the aid of (2.13b), (2.12b)

becomes

Ofh If=f.= (fo) < 0 (2.14)
VB(f) -- o -

In a subtropical gyre, we < 0. Thus, when the outcrop line remains slower than the southward

barotropic flow vB - fo < 0, the slope (2.14) is always stable, implying the absence of convection

or entrainment. Thus, these solutions will be called nonentrainment solutions or

nonentrainment solution: vB[fo(t)] - fo(t) _ 0 for all t. (2.15)

For a nonentrainment solution, a subducted water column will never be caught by water sub-

ducted later. Thus, the more north a water column is located, the later is its subduction time.

In other words, the water column of layer two at a latitude f consists solely of the water injected

from the outcrop line at the time r(f, t) (see Fig.4.1b). This suggests that the subduction time r

is single-valued with respect to f, as depicted schemetically in Fig.4.1a. This can also be proven

mathematically. With the aid of (2.5a) and (2.2a,b), we have

Sf'(t,ti) df
t - ti = f

Differentiating this equation with respect to ti yields

f* It fed - VB() [vB(fo) - lo]. (2.16)f* It (ized fo)

Therefore, if ve - I < 0 always holds as in (2.15), Ot, f* > 0 is always true. From (2.5c) we also have

Ofr = 1/Otf* > 0. Thus the subduction time increases monotonically with latitude. Condition

(2.15) is marginally satisfied by the solution in Fig.4.2 and Fig.4.3.

If (2.15) is violated, the solution will exhibits a unstable slope as shown in examples of Fig.4.4,

implying the occurence of cold convection or entrainment. The solutions will then be called an

entrainment solution i.e.

entrainment solution: VB[fo(t)] - jo(t) > 0 at some t. (2.17)

The two examples in Fig.4.4 can be checked to satisfy (2.17). For an entrainment solution, at a

time when the southward speed of the outcrop line is faster than the particle speed, newly injected
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waters will catch up with previously injected waters left behind (north of) the outcrop line. (2.16)

shows that now ,t f* < 0 or Ofr < 0. Thus, 9 r changes sign and r has a double-value at latitudes

north of the outcrop line. This case is shown schematically in Fig.4.1c,d. We will denote the later

and earlier branches of 7 as 7+ and r- respectively (Fig.4.1c). Correspondingly in Fig.4.1d, a

water column subducted at r+(F, t) now overlies on the water column subducted at an earlier time

7- (F, t), implying a gravitationally unstable solution as shown in (2.14). 1

The unstable structure suggests the occurence of cold convection near the surface. The physics

can be understood as follows. First of all, intuitively, one may think that a slow outcrop line in

(2.15) is produced by a weak surface cooling (in the cooling period) while a fast outcrop line in

(2.17) is forced by a strong surface cooling. This is indeed the case as illustrated in appendix A.

Now, we consider an ideal fluid thermocline. If we impose a temporal surface cooling uniformly over

the surface in the whole gyre, the surface temperature, and then the temperature of the whole water

column, should decrease. If the stratification is stable, in a subtropical gyre, the downward vertical

velocity always tends to warm the water column. Thus, the only mechanism to balance the surface

cooling is a cold horizontal advection. This is the case of a nonentrainment solution. However,

the horizontal cold advection can not grow very strong simply because there is no frontogensis

mechanism under the uniform surface cooling. Therefore, if the surface cooling is too strong, the

horizontal cold advection may not be able to balance the cooling. On the other hand, the downward

vertical velocity is still forced by the surface Ekman pumping. Thus, the only way to balance the

strong surface cooling is to have a unstable stratification near the surface which, together with the

downward velocity, tends to cool the water column. This is the case of entrainment solution (see

examples in Fig.4.1c,d and Fig.4.4). Of course, these unstable solution are not physically valid.

Indeed, the unstable stratification implies a cold advection near the surface.

1Although the subduction time does not vary with latitude monotonically any more. the subduction time always
increases as the interface shallows as shown in Fig.4.1d. This occurs because as a subducted water column moves

southward. the potential vorticity conservation requires that thickness of a layer two water column 1 - h shrinks

or the interface h increases. This can be proven here. From the h characteristic equation for (2.1), we have ,=

-(1 - h)w, > 0. At a fixed t, noticing (2.2a) and (2.5b), we then have Oth* = -(1 - h*)w, > o.
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3 A Thermocline Model With a Time-Dependent Mixed Layer
Depth

For an outcrop line moving southward rapidly, we have seen that the solution derived from (2.1)

becomes gravitationally unstable, implying deep cold convection. This mechanism is not included

in the ideal fluid thermocline model (2.1). To develop a model accounting for convection, in our

oceanic context, one proper way is to add a mixed layer onto the thermocline. As shown in Fig.4.5

our improved model has a mixed layer atop the two-layer ideal fluid thermocline. The density

Pm(z, f, t) in the mixed layer satisfies gravitational stability and equals the upper layer density at

the outcrop line, i.e.

Pm : P2 for f > fo; Pm P fo f < fo f < f; Pm(z, f,t) If=o(t) p. (3.1)

hm(z, f, t) is the mixed layer depth; P, and h1 represent the density and thickness of the upper

layer respectively; p2 and h2 = H - hm - h, are the density and thickness of the bottom layer

respectively.

To derive the equations, we start with dimensional quantities. Integrating hydrodynamic equa-

tion in each layer, the dynamic pressure in each layer is obtained as

Pm PmP M7 + (3.2a)
Pm Po
Pi _ = 79 - 7mhm (3.2b)
P1 Po
P2 P2P 2 = y(9 - h) - 7rhm (3.2c)
P2 Po

Here 77 is the equivalent elevation near the surface (see (1.2a) of chapter 2), po is the mean density

and

h = hm + hi, h + h2 = H, 0 < 7m(z, f, t) = P1 - Pm( f, t) p2 - p g = constant. (3.3)
Po Po

In the mixed layer pressure (3.2a), the first term is due to the pressure near the surface while the

second term relates to the geostrophic vertical shear. The outcropping condition is hi If=fo= 0, or

h If=f,= hm. (3.4)
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Bo Bo

Figure 4.5: The schematic figure of the model with one mixed layer and two ideal fluid layers. The model
takes the thickness of the Ekman layer zero.
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As a first step to study the effect of a variable surface heat flux, we specify the mixed layer density

(, 1,i) and depth (hm) in this chapter, while we leave the mixed layer velocity coupled with the

thermocline through the pressure. The momentum equation in each layer gives the geostrophic

balance

1 1 1
(um, Vm) = (-Pmy,Pm,), (u 1, )- (-ly7,pl), (u 2 , v2 ) = (-pzy, p2). (3.5)

fPo fPo fPo

The remaining unknowns are 77 and h, which can be derived from the Sverdrup relation and potential

vorticity conservation in the bottom layer. Now, the barotropic velocity is

fShU ,dz + hlaf + h2 2 1
H =- VB = f x VpB. (3.6a)
H fPo

Then, the barotropic pressure can be found from geostrophic balance as well as (3.4) and(3.5) as

PB = Po [2H(7 7 - 7 mhm) + 7 ,mh + 7 (H - h) 2 ]. (3.6b)
2Hy

Now, the Sverdrup relation is j(foh vmdz + hlvl + h2v 2 ) = fw,. Using (3.2), (3.5) and (3.6b),

and assuming a flat bottom H = constant, the Sverdrup relation can be integrated explicitly as

poTD2

PB = +D2 PBE (3.6c)
2H

where

2f 2W,eD- , PBE = PB IW=o, (3.6d)

In the remainder of the chapter, a vanishing barotropic transport into the eastern boundary is

assumed, i.e.

PBE = 0. (3.6e)

The potential vorticity conservation in the bottom layer is (Ot + 2 . V)[f/(H - h)] = 0. Substitution

of (3.5) and (3.6) into this equation yields the equation for the depth h = h, + hi as

ht YE h2- 1 2)2 )hz h
ht + B - Vh - J( 7 hm , h) - (1 - )(7,mh + h) = -(1- )w. (3.7)

Hereafter, the y coordinate will be changed to an f coordinate. Nondimensionalizing quantities

similarly to (1.5a) in chapter 2 with the additional dimensionless quantities 7,m = 7/7*, hm =
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h*/H (where * refers to dimensional quantities), (3.6) and (3.7) can be put in the dimensionless

forms:

D2

PB = 2-, (3.8a)

D2 = 2f 2 WX, PB = [2(7 - 7 mhm) + 7 mh + (1 - h) 2]; (3.8b)
D
2

and

ht + B Vh - 1J(7mh 2 h) - (1 - h)(mhn + h ) = -(1 - h)w . (3.9)

Here, by virtue of (3.6), the barotropic velocities are found to be UB = -(f 2w,)f z/f and VB = fW,,

which are the same as the two-layer case in (2.1). In our mixed layer, hm, 7m are specified. Thus,

(3.9) is a quasi-linear equation, which is the same as (2.1) except with an additional effect arising

from the thermal wind in the mixed layer. Division of the f and h characteristic equations yields

the potential vorticity conservation along a characteristic line as

d f f f(
( ) = 0 or f A (3.10)ds7 1- 0h 1- h 1-hi*

For simplicity, a special mixed layer is adopted such that its density and depth are zonally inde-

pendent, i.e., 8,7m = &,hm = 0. Thus, (3.9) reduces to

1 h( - h)ht + h + [ (7mh) ]h, = -(1 - h)w,. (3.11)

Using (3.10) to replace the h characteristic equation, the characteristic equations for (3.11) take

the forms

dt
- = 1 (3.12a)
ds

a = J , or f = (s, f) (3.12b)

f Ai * (3.12c)1- h 1 - hi'
d 1 f h(1 - h)

Su +2 . (3.12d)

These are the same as (2.2) except with the x equation. The z equation is changed by the zonal

thermal wind which is produced by the meridional variation of the mixed layer.
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In the rest of the chapter, we concentrate on meridional profiles inside the ventilated zone. For

a zonal outcrop line 8,fo = 0, (3.12a,b,c) show that the h solution is independent of z. This is

also related to the fact that now the potential vorticity does not vary in zonal direction inside the

ventilated zone or h, = 0. Then (3.11) becomes

ht + vBhf = -(1 - h)we in the ventilated zone, f < fo(t) (3.13)

(3.13), with the outcropping condition (3.4), gives the simplest model accounting for subduction

under a variable mixed layer depth. In (3.13), we see that the horizontal buoyancy advection in

the thermocline is simple. The flow field is known from the Sverdrup relation and therefore is

independent of the buoyancy effect. As a result, our problem is greatly simplified.

4 Fast Outcrop Line Case: Entrainment Solutions

4.1 Derivation of the Solution

Now, we present the core material of the chapter-- a general approach to obtain gravitation-

ally stable entrainment solutions from (3.13). Our goal is to find variability in the permanent

thermocline under both a moving outcrop line and a variable mixed layer depth.

We only consider the solution in the ventilated zone, which is established by characteristics

originating from the outcrop line. Noticing (2.3) and (3.13b), the initial conditions are

fi = fo(ti), hi = hm[fo(ti), ti] E Hm(ti). (4.1)

Here Hm is the depth of the mixed layer under the outcrop line. Substituting (4.1) into (3.12a,b,c)

yields the solution in the ventilated zone as

f = [t - ti, fo(ti)] - f*(t, ti) (4.2a)

f *(t, ti)_h = 1-[1- Hm(t)]f(ti) h*(t, ti) (4.2b)
fo(ti)

(4.2) is the generalized solution of (2.5). Its physics can also be explained similarly to that of (2.5).

That is: each water column remembers its subduction time

ti = r(f, t) < t, where f f* [t,r(f,t)] (4.2c)
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Since (4.2a) is exactly the same as (2.5a), the subduction (4.2c) is the same as (2.5c).

(4.2a,b) give the parameteric solution for (3.13). However, the solution may not be gravitation-

ally stable for an arbitrarily specified fo(t) and Hm(t). One example we have seen is the case with

a vanishing mixed layer depth H,(t) = 0 (now (3.12) degenerates to (2.1)). For this case, if the

outcrop line moves southward faster than the particle velocity fo < vB < 0, the solution becomes

unstable as shown by examples in Fig.4.4 and in equation (2.13b). Therefore, we need to find some

constraints on the depth of the mixed layer, under which the solution (4.2) will always be stable.

The necessity for these constraints is not totally surprising. This is because the mixed layer here is

partially coupled with the thermocline through pressure. Consequently, the behavior and structure

of the mixed layer can not be specified completely arbitrarily.

A stable slope: restraining the penetration of the mixed layer

First of all, it is obvious that a stable solution must have a stable slope all the time in the gyre,

i.e.

Ofh < 0 everywhere; (4.3)

Using argument similar to that for (2.12b), (4.3) seems to be equivalent to a stable slope at the

outcrop line Of h If=fo. Similar to (2.13), this slope can also be derived by the mass balance of layer

one near the outcrop line as

- wM6f = [VB(fo) - jo]h, (4.4a)

or

-w*
81 h I1y=f(t= m (4.4b)

VB[fo(t)] - fo(t)
where w* is the mass entrainment velocity at the bottom of the mixed layer near the outcrop line.

From continuity equation, we have w* as

dH,Wm = + w,, (4.4c)
dt

where wm = w Iz=-H, is the vertical velocity at the bottom of the mixed layer at the outcrop line

and can be proven to be (see appendix B)

wm = (1- Hm)we(fo) (4.4d)
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With a vanishing Hm = 0, (4.4c,d) show that w* = w,. Thus, (4.4a,b) degenerate to (2.13a,b).

Hence, the stable slope (4.3) requires iyh If=fo(t)= -w* /[vB(fo) - o] 0, for all t. or:

0 > wm* when vB(fo) - o < 0, (4.5a)

0 < wm when vB(fo)- o > 0 (4.5b)

(4.5a) states that, when the outcrop line moves southward less rapidly than the particle, water mass

subducts from the mixed layer into the thermocline. On the other hand, (4.5b) says that during

the time interval when the outcrop line moves southward more rapidly than the particle, the mixed

layer must be entrained from the thermocline below. The time interval in (4.5b) is therefore called

the entraining stage. For a periodically moving outcrop line in (2.11), the entraining stage is

entraining stage : rn < t < r . (4.6a)

where pn 5< rn, n < pn+l with pn = 2nr/w. 1 Here n refers to the entraining stage during the

nth period; rT" is the initial entraining time when the outcrop line just catches up the barotropic

velocity; r2n is the final entraining time when the outcrop line is overtaken by the barotropic velocity,

i.e.

d d
vB[fo(t)] - 1o(t)] It=r ,= 0; and d[vVB(fo) - fo] It=r> 0; d [VB(fo) - fo] It=r2< 0. (4.6b)

It is important to remember that the entraining stage defined here is independent of the structure of

the solution because the subduction time in (2.5c) (or (4.2c)) is only determined by the f equation

(2.5a) (or (4.2a)). Now the physics for nonentrainment solution and entrainment solution as defined

in (2.15) and (2.17) becomes clear. As stated in (4.5a,b), an entrainment solution has an entraining

stage during which water is entrained into the mixed layer; a nonentrainment solution has no

entraining stage and therefore water always subducts from the mixed layer into the thermocline .

(4.5) can be written as constraints on the mixed layer depth. Noticing (4.4c,d), we can rewrite

(4.5a,b) as

dHm
- > w,, when VB(fo) - o < 0, (nonentraining) (4.7a)dt
dHm

- < wn, when vB(fo)- fo > O, (entraining) (4.7b)

1Obviously, an entraining stage occurs only during the half period when the outcrop line moves southward.
Therefore, (4.6a) can be narrowed to p, 5 7,n < t < r2T pn + m.

132



With wm = (1 - Hm)we < 0, (4.7a) says that outside the entraining stage, the mixed layer depth

either descends slowly or ascends at whatever speed. (4.7b) states that during the entraining stage,

the mixed layer must penetrate rapidly. Considering that the dynamics of the present mixed layer

differs significantly from that of a 1-D model (e.g., Kraus and Turner,1967; Turner and Kraus,

1967), it is interesting to see that the behavior of the mixed layer required by (4.7) is qualitatively

consistent with that of a seasonal thermocline predicted from a 1-D model. For example, a sharp

rise of the mixed layer during the heating season is allowed in (4.7a); a strong penetration during

the cooling season is required by (4.7b).

A convection scheme: determing the mixed layer depth during the entraining stage

At a first sight, the stable slope (4.3) (or (4.5) or (4.7)) guarantees a physical solution. But,

it does not! The problem arises during an entraining stage (4.6). Now, the outcrop line moves

southward faster than the particle. The waters subducted during this stage (with t = r satisfying

(4.6)) are always left behind the outcrop line, no matter whether (4.3) is satisfied or not (Note

that (4.6) is independent of the solution structure). This mass of water would create gravitational

instability in the water column north of the outcrop line (see the schematic example in Fig.4.1d).

To overcome the instability, physically, we should have a scheme to allow the unstable part of water

to be entrained into the mixed layer. Here, we adopt a convective scheme which simply cuts off this

part of unstable water. This scheme is illustrated schematically in Fig.4.6. where the adjustment

time interval At is assumed to be finite. After each time step, a unstable "bulb" is produced if

the mixed layer depth is not proper ( say, to remain unchanged ). Then, we lower the mixed layer

to the stable part of the thermocline at the latitude of the outcrop line. The unstable "bulb" is

then cut off and is no longer a part of our solution. Physically, after this "bulb" is entrained into

the mixed layer, it is well-mixed within the mixed layer and can never be identified as an entity.

In other words, after the entrainment, the unstable part of water loses memory of its subduction

time because it is well-mixed with waters subducted at other times. If the time step becomes

infinitesimal, these unstable bulbs will be squeezed, each having a zero volume. Consequently, our

solution will have no unstable volume at any time. One should notice that this convective scheme is

somewhat artificial. It says that the mixed layer entrains from below without changing its density
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The Convection Scheme

h

f

Figure 4.6: The schematic figure of the convective scheme with a finite adjustment time interval. After each

time, if the mixed layer remains unchanged, a "bulb" of unstable water is produced. Our convection scheme

will allow the mixed layer to descend under the outcrop line such that the "bulb" is cut off.
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(or the outcrop line). In our model, we are forced to do so because our outcrop line is specified and

therefore can not be altered.

The key for the above convection scheme is, at any entrainment time t, to find the stable

thermocline depth below the outcrop line. Then, we lower the new mixed layer to this depth. The

water column under this thermocline must have subducted at a previous time, say, denoted by

rp(t) (< t). From the subduction time function r(f, t) (in (2.5c) or (4.5c)), this corresponding

rp(t) can be found as follows. During an entraining stage, north of the outcrop line, r(f, t) has

double values : a later subduction time at the branch r+(f, t) and an earlier one at the branch

r-(f,t) (see Fig.4.1c,d and discussion after (2.16) and (2.17)). In particular, at the outcrop line

fo(t), r+(fo, t) - t gives the present subduction time while

r7(t) = r-[fo(t), t] (4.8)

yields the corresponding previous subduction time, at which the injected water now arrives at f,(t).

This rp mapping is shown schematically in Fig.4.1c. By virtue of (4.8), the stable thermocline

depth with the subduction time rp(t) is found from (4.2b) as h*[t, rp(t)] (see Fig.4.1d). Hence, our

convective scheme requires a mixed layer depth

Hm(t) = h*[t, r,(t)] during entraining stages. (4.9a)

Outside the entraining stage, this convection scheme does not impose constraint on the mixed layer

depth. Thus, the stable slope (4.3) still needs to be satisfied, or

I Hm(t) = Itm(t) outside entraining stages. (4.9b)

Here ftm satisfies (4.7a). All the corresponding previous subduction times rp(t) such that t is

during an entraining stage (-r{ < t < rn) form a new stage during which all the subducted waters

will be reentrained in the following entraining stage (rr, rn). In other words, waters subducted

during the new stage only establishes the seasonal thermocline and can never enter the permanent

thermocline as an identifible entity. This stage is therefore called the seasonally subducting stage.

The first entraining time rr entrains the water just subducted or rp(rn) = -r{, while the last
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entraining time r2n entrains the earliest seasonally subducting water at the time

7 _- 7p (72). (4.10)

Hence, we have

seasonally subducting stage: ron < t < r1. (4.11)

In contrast, waters subducted earlier than the seasonally subducting stage will never be entrained by

the mixed layer and therefore enter the permanent thermocline. This stage is called the permanently

subducting stage or simply subducting stage, which is represented as

subducting stage: r- - 1 < t < ro. (4.12)

It is the waters subducted during this stage that create the permanent thermocline. Consequently,

the variability in the permanent thermocline is completely determined by waters subducted during

the subducting stage. Like the entraining stage, the subducting and seasonally subducting stages

are also independent of the solution h because they are ultimately determined only by the f solution

(5.2a).

As a result, one period can be divided into three stages: the seasonally subducting stage, the

entraining stage and the subducting stage. The waters injected in the seasonally subducting stage

will be reentrained during the following entraining stage. In contrast, the waters subducted during

the subducting stage provide water mass for the permanent thermocline. The mixed layer depth

during both the subducting and the seasonally subducting stages must satisfy the stable slope

condition (4.7a), which then, together with the convective scheme (4.9a) yields the mixed layer

depth during the following entraining stage.

A schematic example: how to determine the solution

To have a better understanding of the physics of the three stages and the convective scheme, we

investigate the thermocline evolution during one period as shown schematically in Fig.4.7. Outside

the entraining stage in (4.9b), we take

Itm(t) = Hmin = constant, subducting and seasonally subducting stages. (4.13)
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Figure 4.7: The schematic figure of showing how to determine an entrainment solution in one cycle. The

seasonally subducting stage, entraining stage and subducting stage are drawn respectively in dashed lines,

dotted lines and solid lines. (a), (c) and (e): show the subduction time r as function of latitude f at different

times in three stages. The times for different stages are also marked on the r axis in (a),(c) and (e). (b),
(d) and (f) show the h* profiles corresponding to (a),(c) and (e) respectively. After one cycle, a big pulse of

water is subducted into the thermocline, part of which will be reentrained during the next entraining stage.

(see the text for a full discussion)
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which obviously satisfies (4.7a) or a stable slope (4.3). Fig.4.7a shows some time sections of the

subduction time r in (4.2c) as a function of f (similar to Fig.4.1a), while the corresponding sections

of h* are depicted in Fig.4.7b. The dashed lines, dotted lines and solid lines respectively represent

the part of 7 and h* for waters subducting during the seasonally subducting stage, the entraining

stage and subducting stage. These stages are marked on the time axis in Fig.4.7a,c,e. Since we

concentrate on the nth period, only the part after rn- 1 will be considered as drawn in Fig.4.7a,c,e.

Curve 1 occurs at September and consists of waters from the n-lth subducting stage and part of

the n-lth seasonally subducting stage. Similar to Fig.4.1a,b, r increases monotonically northward.

This reflects the fact that during the seasonally subducting stage and subducting stage, no water

column will be overtaken by later subducting waters. Correspondingly, the h* profile is stable.

Curve 2 is at the last moment of seasonally subducting stage and is qualitatively the same as curve

1, except that curve 2 is south of curve 1 at each subduction time r, reflecting the southward

advection due to vB < 0. Since the mixed layer remains at Im = Hin according to (4.13), (4.7a)

or (4.5a) says that there is no entrainment so far.

Fig.4.7c,d show time sections during the following entraining stage and therefore are similar

to Fig.4.1c,d. Curve 3 is at a time during the entraining stage. Part of the r profile has been

left north of the outcrop line, because during the n-lth entraining stage, the outcrop line advances

southward faster than the particles. According to our convective scheme (4.9a), the mixed layer

depth is deepened to the thermocline depth which has developed from the water subducted at the

corresponding seasonally subducting water at rp(t). Since this convection scheme is carried out

from the first entraining time with infinitesimal time interval, the unstable "bulb" is squeezed such

that the unstable "bulb" has a zero volume, as opposed to a finite volume in Fig.4.6. Curve 4

occurs at the last entraining moment rz" and the mixed layer has captured all the water injected

during the entire previous seasonally subducting stage. The mixed layer now achieves its deepest

depth.

In the following time, the subducting stage starts as shown in Fig.4.7e,f. Curve 5 is at the time

when the outcrop line reaches the southernmost position. South of the outcrop line, a small pulse

of water (the water column shaded with grey in Fig.4.7f) is seen subducted south of the outcrop
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line and under the mixed layer. This occurs because these waters are subducted after the last

entraining time and thus moves southward faster than the outcrop line. This pulse of waters will

not be captured by the following entraining stage because the outcrop line now is moving northward

and it will come back after another period. The mixed layer suddenly (or discontinuously) rises

from its deepest depth to its shallowest depth Hmin due to (4.13). This abrupt ascent of Hm in

turn produces a sharp jump of interface in front of the subducted water pulse. Curve 6 and 7 occur

respectively at the last subducting time and the next September with more waters subducted while

the mixed layer remains unchanged due to (4.13). One cycle is completed.

4.2 Entrainment Solutions

To see how the convective scheme overcomes instability, we choose to present two examples of

entrainment solutions with the outcrop lines used in the two unstable examples in Fig.4.4. To

simulate the rapid rise of a mixed layer during early spring more realistically, instead of using

(4.13), we will adopt a parabolically ascending mixed layer during the subducting stage. Thus,

flm(t) = Hmi, = constant. seasonally subducting stage (4.14a)

Im(t) = Hm('2) - [Hm 2) - Hmin] -n+ nr subducting stage. (4.14b)

The minimum mixed layer depth is set to be Hmin = 0.1, i.e. one-tenth of the total depth. The

mixed layer is then determined by (4.9a,b) and (4.14). Fig.4.8 presents an example under a strong

decadal forcing w = 5, a = 0.4 (the same as in Fig.4.4a-d). Fig.4.8a-d show the meridional sections

in four seasons. Solid lines are the physical solutions while dotted lines are the unstable part

(with zero volume) of the solution after the use of the convection scheme (4.9a). In "September"

(Fig.4.8a), the mixed layer depth is at the minimum depth. During the following cooling season, the

outcrop line accelerates southward and soon catches up with the particle. In "December" (Fig.4.8b),

the entraining stage has occurred for a rather long time and part of the seasonally subducted waters

have been reentrained into the mixed layer (the newly formed dotted line). In "March" (Fig.4.8c),

the outcrop line arrives at the southernmost position. The entraining stage has finished and the

subducting stage has started for a while. More waters have been reentrained into the mixed layer.

In addition, a small amount of water (barely seen in the figure. The counterpart in the schematic
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example of Fig.4.7 is the water column shaded with grey in Fig.4.7f) has subducted south of fo

below the mixed layer and will never be caught by the outcrop line. In "June" (Fig.4.8d), a big

pulse of subducted water is formed partly because of the subduction left behind by the northward

moving outcrop line and partly because of the southward advection of the already subducted water.

In this way, a big pulse of water, which is mainly formed during the rather long subducting stage,

is injected into the permanent thermocline. This big pulse of water is advected southward and

downward. Later, part of the water will be reentrainend in the next entraining stage (-r+', rjn+l).

The evolution of the mixed layer depth and subduction potential vorticity q, = fo/[1 - H,(t)]

are shown in Fig.4.8f. In the figure, the H, in the subducting stage is given by (4.14b); the Hm

in the seasonally subducting stage (later than rn+1 and before r-1) is taken from (4.14a); the Hm

in the entraining stage is given by the convection scheme (4.9a). The potential vorticity shown

in Fig.4.8f indicates that the water subducted during the subducting stage has a lower potential

vorticity while the water entrained into the mixed layer has a higher potential vorticity. Physically,

this occurs because the subducted water comes from the mixed layer where water mass is well-

mixed and has very small potential vorticity. In contrast, the entrained water comes from the

water which was heated in the seasonally subducting season with a strong stratification. Therefore,

the seasonal thermocline acts as a source of lower potential vorticity to the permanent thermocline

in the subducting stage while a sink of higher potential vorticity waters during the entraining stage

(Woods,1985).

Fig.4.8e compares the time-mean profile (dot-connected lines) with that derived from the steady

LPS model with the outcrop line and mixed layer depth respectively as the time-mean ones (short

dash line), and at the time r2n when the mixed layer reaches the deepest (long dash line). It is seen

that the time-mean profile is close to the steady thermocline with the early spring outcrop line

and mixed layer depth. This phenomenon has been suggested by Stommel (1979). This is in sharp

contrast to the nonentrainment solution if one compares the present Fig.4.8e with Fig.4.2e, where

the time-mean thermocline is close to the steady thermocline with the time-mean outcrop line.

A local variation of the interface in the permanent thermocline (south of fomin) is shown in

Fig.4.8g. Similar to the nonentrainment solution in Fig.4.2f, the interface deepens slowly and rises
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abruptly, although the outcrop line (2.11) is harmonic. The oscillation is somewhat close to the

local depth of the steady thermocline with the winter mixed layer (long dashed line).

If the forcing frequency is increased, the speed of fo increases. But vB is still the same. Thus, fo

catches up with vB sooner after September and the entraining stage is enlongated. As a result, more

subducted water will be entrained into the thermocline and less water is left to subduct into the

permanent thermocline. This is shown in Fig.4.9 with an annual frequency forcing (w = 50, a = 0.4

in (2.11)) (same as Fig.4.4e-h). Qualitatively, Fig.4.9 is similar to the lower frequency case in

Fig.4.8. However, there are some important quantitative differences. First, as we expect, with

a much higher frequency, much more subducted waters are reentrained into the mixed layer (the

dotted lines in Fig.4.9a-d). Each year, only a small pulse of water subducts into the permanent

thermocline, resulting a very wavy permanent thermocline structure. Each wave pattern represents

waters subducted during one subducting stage of one year. The smaller amount of subducted water

than that in Fig.4.8 is consistent with a much shorter subducting stage (about 1 month) (Fig.4.9f)

than that in Fig.4.8f (about 5 months). (Here we compare the relative time normalized by the

period). Second, Fig.4.9e shows that the time-mean thermocline almost coincides with the steady

thermocline with the winter fo and Hm (actually at r - which is almost March). In Fig.4.9g, we

also see that the thermocline oscillates very closely around the steady thermocline with the winter

fo, Hm. All these suggest that for a higher frequency, Stommel's (1979) conjecture becomes more

correct. Lastly, Fig.4.9g shows that the thermocline variability in this annual forcing case is much

weaker than that in the decadal forcing case in Fig.4.8g.

Finally, it should be pointed out that the shadow zone thermocline should behavior similarly

to that in the nonentrainment solution case. That is: the thermocline remains unchanged except

in the western flank of the shadow zone where zB(f, t) sweeps through (as in Fig.4.2 and Fig.4.3).

5 Thermocline Variability due to Varying Surface Temperature

Now we come to our central issue: what is the thermocline variability in response to an anomalous

surface buoyancy flux or a moving outcrop line ? Since our model is not fully coupled, there are an

infinite number of solutions. We will choose the solution with the mixed layer depth specified by
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(4.14) because this mixed layer depth variation seems to resemble the observations well as seen in

Fig.4.8f and Fig.4.9f (at least for the annual frequency case. See, for instance, Kraus and Turner

(1967) and Turner and Kraus (1967). )

The magnitude of local variability can be easily derived in terms of potential vorticity because

of the fixed bottom in our model. In fact, q = f/(1 - h) immediately gives h(f, tl) - h(f, t 2 ) =

- f[1/q(f, t 2 ) - 1/q(f, tl)]. Hereafter, we concentrate on the permanent thermocline 1 i.e. south of

fomin = min[fo(t)] (5.1)

The potential vorticity is conserved in the permanent thermocline and is therefore determined

by waters subducted during the subducting stage. Therefore, the magnitude of variability in the

permanent thermocline is

1 1
dh < Dh = f[ ], (5.2)

qmin qmaw

where qmi and qa, are minimum and maximum subduction potential vorticities q8 = fo/(l - Hm)

during the subducting stage. (5.2) suggests that the variability decreases with latitude. This occurs

because at lower latitudes there is less planetary vorticity available to alter the stratification.

Besides, the variability depends on the difference of subducted potential vorticities. Thus, a uniform

potential vorticity in the permanent thermocline will produce no thermocline variability. 2

Using the outcrop line in (2.11) and the mixed layer depth according to (4.9) and (4.14), with

respect to the forcing amplitude a and frequency w, we have calculated qs,, in and Dh/f =

1 in Fig.4.10a,b and c respectively. First of all, in the parametric plane (w, a), one

sees a critical boundary separating the slow outcrop line regime (small frequency or amplitude

) from the fast outcrop line regime. This is the criterion dividing the nonentrainment solution

(2.15) from the entrainment solution (2.17) (i.e. these w, a make vB - ,o just realizable at a single

time). In the nonentrainment regime, q,, 31i~ and Dh/f are independent of frequency, because

'The permanent thermnocline should be the region where the potential vorticity of each water column is always
conserved. This requires that the water particle is not exposed to the mixed layer. Hence. in our model, the permanent
thermocline will refer to the region south of the southernmost position of the outcrop line, i.e. f < "min = min{fo},

where the potential vorticity of a layer two water columin is conserved. In contrast, north of fn, as a water column
moves, its potential vorticity will be changed by the variation of the mixed layer depth.

'This conclusion holds exactly in the rigid and flat bottom model here. If the bottom varies with time, even with
a uniform potential vorticity, thermocline variability may exist.
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nonentrainment solutions have neither an entraining stage nor a seasonally subducting stage. Thus,

the maximum and minimum subduction potential vorticities during the subducting stage are also

those in the whole cycle, i.e.

fomax fg(l + a) * fomin fg(l - a)
q = ma 1 - Hmin 1 - H'mi 1 - Hmin (5.3)

where (2.11a,b) have been used. Therefore, both qma and qmS, are independent of frequency.

The variability which results (5.2) is independent of frequency, too. In contrast, the variability of

most entrainment solution (in Fig.4.10c) decreases with an increasing frequency. This gives an-

other important difference between the thermocline variability of nonentrainment and entrainment

solutions.

It can also be seen in Fig.4.10b that, even in the entrainment regime, the minimum subduction

potential vorticity q3in depends very weakly on frequency. In fact, if we use (4.13) in the subducting

stage to replace (4.14b), we can show easily that qmi, is the same as in (5.3) and therefore is

independent of frequency at all. Therefore, the frequency dependency of the variability Dh is

mainly caused by q,-,. Roughly speaking, this is so because for different frequency, q i, usually

occurs at about March but qa,. varies at very different times. Thus, the planetary vorticity for

qsa, changes very much with frequency.

Now we concentrate on the thermocline variability. The local variability at a latitude f can

be derived from multiplying the values in Fig.4.10c by f. It is seen that towards both high and

low frequencies, the variability tends to be independent of frequencies. But, in the transition

regime between nonentrainment solutions and entrainment solutions (actually, this is the part of

entrainment solutions near the nonentrainment solution), the variability (first increases slightly

and then) decreases rapidly towards high frequencies. On the other hand, the frequencies for

this transition regime usually occur for about decadal frequencies (w , 10) unless the forcing

amplitude a is very large (say, a > 0.5) or very small (say, a < 0.05). Thus, we conclude that

decadal frequency forcing is the most efficient in forcing variabilities in the ventilated zone. This

feature differs substantially from the wind forcing case of chapter 3, especially at high frequencies.

In Fig.3.13 of chapter 3, we see that at high frequencies, the response tends to be linear, i.e.

Dh , a/w, where the strongest frequency dependency of the variability also occurs.
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Finally, one should be cautious in using Fig.4.10c, because at each different amplitude a, the

range of f for the permanent thermocline is different. In fact, the northern bound of the permanent

thermocline is the southernmost outcrop latitude (5.1) (noting (2.11a,b))

omin = fg(1 - a). (5.4)

For a larger amplitude a, the possible f,i,, decreases. As a -+ 1, the minimum potential vorticity

in (5.3) approaches zero. Thus, although the variability in Fig.4.10c approaches infinity near

a = 1, this infinity can never be achieved because then there is no permanent thermocline region

, i.e.fo,i, = 0. We can calculate the maximum variability with different forcings (at latitude

f = f,(1 - a)) as

dhmaz = fg(1 - a) x Dh/f. (5.5)

The results are plotted in Fig.4.10d. The most striking feature is that at higher frequencies, the

maximum variability approaches a finite value at strong amplitude (a -+ 1). Above decadal fre-

quency, the maximum variability is almost amplitude independent and decreases with an increasing

frequency. Therefore, towards high frequency, no matter how strong the forcing is, the maximum

variability tends to decrease rapidly. This is in sharp contrast with the lower frequency case when

the maximum variability is almost frequency independent. Thus, Dhma is insensitive to frequency

at lower frequency but decreases rapidly with frequency at high frequency. This fact, from another

angle, suggests that a decadal buoyancy forcing (in the transition regime) is the most efficient in

producing variability in the permanent thermocline.

6 Summary

In this chapter, the effect of a periodically varying surface buoyancy flux is examined in a simple

model including an (essentially passive) mixed layer and two ideal fluid layers. The outcrop line

is specified during the whole cycle while the mixed layer depth is specified only during part of the

cycle. Some important results are found. First of all, in contrast to the surface wind stress, the

surface buoyancy flux causes strong variability in the ventilated zone while it affects the shadow

zone very little.
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Second, there are two types of buoyancy forced solutions: the nonentrainment solution and

entrainment solution. A nonentrainment solution occurs when the southward speed of an outcrop

line is always slower than the partial velocity, which takes place under a weak surface cooling. The

surface cooling is mainly balanced by the horizontal advection in the permanent thermocline. The

mixed layer depth varies little and the mixed layer is never entrained. The time-mean profile is

close to the steady thermocline with the time-mean outcrop line. The variability in the permanent

thermocline is independent of frequency.

An entrainment solution occurs when the outcrop line moves southward faster than the particle

during part of the period, when the horizontal advection in the permanent thermocline is no longer

strong enough to balance the surface cooling. Deep cold convection must occur. The mixed layer

penetrates rapidly such that water mass is entrained into the mixed layer through the bottom.

The local variability of permanent thermocline is most efficiently produced by decadal forcings. At

annual frequency, there is very little waters subducted into the permanent thermocline each year,

causing weak variability. The time-mean thermocline resembles the steady thermocline with the

early spring mixed layer.

Furthermore, for a nonentrainment solution, water always subducts into the permanent thermo-

cline. However, for an entrainment solution, there are three stages during one period: the seasonally

subducting stage, the entraining stage and the subducting stage. Waters subducted during the sea-

sonally subducting stage will be reentrained in the following entraining stage as high potential

vorticity waters to form the seasonal thermocline. The waters subducted during the subducting

stage have a lower potential vorticity and establish the permanent thermocline.

For a clear comparison, the above properties of nonentrainment and entrainment solutions are

listed in the following table.

148



Table 1: The comparison between nonentrainment and entrainment solutions:

forcing weak cooling strong cooling

dynamics advection , cooling advection+ convection , cooling

entrainment detraining (wm < 0) entraining(w* < 0)+detraining(wm > 0)

Pm(t) or (fo(t)) Jo > VB all the time fo < vB sometimes

hm(t) weak variation strong variation

mean structure < h > h (mean fo, hm) < h >^ h (winter fo, hm)

variability (6h(t)) independent of w strongly dependent on w

The most important further work is to couple an active mixed layer with the permanent ther-

mocline. A model with a further step of coupling is presented at the end of appendix A. More

realistic models, such as a coupled mixed layer and a two-and-a-half-layer ideal fluid thermocline

model, are also needed to further investigate the effect of the surface buoyancy effect.
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A The Motion of the Outcrop Line and Surface Buoyancy Flux

The thermocline dynamic equation in the mixed layer takes the form

(ao + m. V)pm + oa(w'p') = 0. (A.1)

where w'p' is the vertical turbulent buoyancy flux. It is important to notice that we have included

the horizontal advection in the equation. After noting (3.2a) and (3.5), the surface velocity (after

nondimensionalization) is
z-. 1-.

Ms =V m - x Vm = -k x V77. (A.2)
I f

Furthermore, (A.2) enable us to write (A.1) as

(at + ms - V)pm + z(w'p') = 0, (A.3)

where we have used 7m = (Pl - Pm)g/Po. Integrating the equation through the mixed layer, we

have

hm(Ot + Vms " V)pm = -(Bo - Bm) (A.4)

where Bo = w'p' Iz=o and B, = w'p' Z=-h,. are buoyancy fluxes at the surface and bottom of

the mixed layer respectively. (A.4) relates the mixed layer temperature with the buoyancy fluxes.

However, since Bm is introduced as a new unknown, this relation does not close the system. But,

it does provide us a better understanding. In our layered system, it is instructive to take a special

surface density structure to derive the relation between the outcrop line and the buoyancy fluxes.

We assume the form of p,(z, f, t) is such that the reduced gravity in (3.3) is that

7m(z, f, t) = -r(o) where 0 = f - fo(z, t),

where r, is an given function satisfying Of rm = dr > 0. This gives a northward increasing

surface density. Thus, (A.4) becomes the equation governing the outcrop line

Bo - B(
(t + ums,)fo(, t) - vms = (A.5)

On the other hand, equation (3.9) suggests that the meridional characteristic speed is

Vc B = V h (A.6)
2f
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Thus, with (A.1), (A.6) and (3.8), (A.5) can be put in the following form:

D Bo - B 1 (1- h)2

-fo - vC = + [7,mhm - 2 ]. (A.7)
Dt hmifim f 2

where -fo = (Ot + ums&x)fo(x, t) gives the speed of the outcrop line. If Bo, B,, m,7h, and fo are

independent of x, in a ventilated zone (A.7) is simplified to

B -B
fo(t) - VB = - hm (A.8)

hArm(.)

where we have used v, = vB from (A.6). In addition, we have used the fact that in the ventilated

zone, with a flat bottom as in our model here, a zonal outcrop line gives a ventilated zone without

zonal variation of potential vorticity, which means that h, = 0. (A.8) relates the motion of

the outcrop line to the buoyancy fluxes at the top and bottom of the mixed layer. Thus, the

nonentrainment solution and entrainment solution in (2.15) and (2.17) becomes

nonentrainment solution : Bo - B > 0, all the time (A.9a)

entrainment solution : Bo - Bm < 0, at some time. (A.9b)

On the other hand, in a penetrative mixed layer model (e.g.,Kraus and Turner, 1967; Turner

and Kraus, 1967; Gill and Turner, 1976), there is a downward buoyancy entrainment during the

deepening season while there is no buoyancy entrainment during the shallowing season, i.e.

dh
Bm < 0 if -m > 0 (A.10a)

dt
dh,

B, = 0 if m < 0, (A.10b)
dt

From (A.9) and (A.10), we conclude that a strong surface cooling (Bo < Bm < 0) results entrain-

ment solution vB - f, > 0 while a weak surface cooling (Bo > Bm 0) results in nonentrainment

solution.

B The Mathematical Derivation of &fh lf=f.

Differentiating (4.2b) with respect to tj yields

1 dH,
O,th* = [f*fo - (1 - Hm)(f' fo - fof')], (B.1)

fo dt
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where f* is given in (2.16). Thus, with (2.16) and using fo = f* at ti = t and VB = fuwe, we obtain

,h I h* I + We(fo)(1 - Hm) (B.2)
Ofh =I(s) f* It,=t= (B.2)

tif* -[vg(fo) - f0]

The entrainment velocity at the bottom of the mixed layer at the outcrop line is

dH
w* = + Wm (B.3)

dt

where where w, = w If=f,,z=-H, is the vertical velocity at the bottom of the mixed layer. This

vertical velocity can be proven to be

wm = (1- Hm)we(fo) (B.4)

Indeed, since in (3.11) we assumed that the density in the mixed layer is zonally independent,

the meridional velocity in the mixed layer is barotropic. Moreover, in (4.1) or the solution (4.2),

we have adopted a zonal outcrop line and a zonally independent mixed layer depth. Thus, in

the ventilated zone, it holds that ,h = 8,hm = O=7m = 0. Consequently, in all the layers, the

meridional velocities is barotropic, i.e. vm = V = v2 = VB. Integrating the vorticity equation of the

mixed layer vm = fw, from the bottom to the top of the mixed layer, we have HmVB = Hmv =

fw, - fw(-Hm). Using the Sverdrup relation VB = fwe, we obtain (B.4). (B.3) and (B.4) then

give

dHmWm= + ( 1 - H,)w,. (B.5)

Thus, (B.2) becomes
w*

Ofh |l=fo= m (B.6)
-[vs(fo)- ]
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Chapter 5
Propagation and Breaking of Planetary Waves

Radiating from the Eastern Boundary

1 Introduction

In both observations and theories, planetary waves radiating from the eastern boundary have been

found to have a profound impact on the interior thermocline variability (e.g., Anderson and Gill,

1975; Kang and Magaard,1980; White and Saur,1981; Kessler, 1989; also see chapter 3 of the

thesis). These planetary waves may be excited by a varying wind stress or buoyancy flux near the

eastern boundary as well as vertical migration of isopycnal on the eastern boundary. In the latter

case, the vertical displacement could be caused either by the variable along shore wind or by a

Kelvin wave from the equator. In this chapter, we concentrate on two issues relevant to the eastern

boundary waves.

1.1 Planetary Wave Penetration across a Gyre Boundary

The first issue concerns the penetration of Rossby waves across the southern boundary of a sub-

tropical gyre. This cross-gyre wave behavior is important for the understanding of the interaction

between the middle latitude and the equatorial regions. Schopf et.al. (1981) pointed out that

linear Rossby waves forced along the eastern boundary, in the absence of a mean flow, are able

to penetrate to the equator to create large equatorial variability because of the increase of zonal

Rossby wave speed towards the equator. In the presence of a zonal mean flow, Cheng and Philander

(1989) found that a westward mean flow tends to sweep disturbances westward before they reach

the equator, while an eastward mean flow can deflect Rossby waves more equatorward.

However, previous studies lack one physical factor: the zonal variation of the mean thermocline

structure. On the other hand, observations have shown that, near 150N (which is approximately

the southern boundary of mean subtropical gyres), the mean internal Rossby radius of the first

baroclinic mode almost doubles its value from the eastern sides to the western sides in both the
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North Pacific and the North Atlantic ( Emery et. al.,1984). This implies a four times increase of

the planetary wave speed across the ocean. Therefore, the zonal variation of the mean thermo-

cline structure may be important in affecting wave penetration near the southern boundary of a

subtropical gyre.

In section 2, a two-layer model is used to investigate the effect of this factor on the propagation

of planetary waves, particularly in the vicinity of the southern boundary of a subtropical gyre.

First, we find that the meridional group velocity near the southern boundary is mainly determined

by the orientation of the wave and the gradient of background potential vorticity. Then, we discuss

how these two factors vary along a southern boundary due to the variation of the basic thermocline

structure. Then, we find that the wave penetration is changed substantially due to the zonal

variation of the basic state. For our model thermocline, the penetration of waves differs dramatically

for interfaces at different depths.

1.2 Planetary Wave Breaking

The second issue addresses the breaking of planetary waves. Although we only consider the breaking

of waves forced by upwelling and downwelling at the eastern boundary, the results may also apply

to more general cases.

Generally, breaking can create large scale density frontal structures and baroclinic jets in the

ocean, which will also be potential regions for baroclinic instability. There have been some obser-

vations of large scale fronts. The Subarctic Front and Subtropical Front in the North Pacific are

two examples (Roden,1976; Roden, 1980; Levine, and White, 1981; Niiler et. al.,1984). There is

also evidence of large scale frontal structures and baroclinic jets in the North Atlantic (McWilliams

et.al, 1983). Vertically, some large scale fronts can extend through the main thermocline. Although

these fronts seem to possess clear time-mean frontal structures, more detailed observations indicate

that each front has strong temporal variabilities and finer frontal structures.

So far, the physical mechanisms for these large scale fronts are not well understood. Roden

(1976) proposed that the confluence of Ekman flux is responsible for the Subtropical front in the

North Pacific. Cushman-Roisin (1984) argued that the main mechanism is the external thermal
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forcing that creates large scale fronts through the vertical advection. Here, it is suggested that the

breaking of planetary waves may provide another mechanism. These waves may be forced by local

wind or buoyancy flux as well as disturbance at the eastern boundary. Although the wave breaking

mechanism may not be crucial for the mean structure, it may be important for the temporal and

finer frontal structures within the mean front.

In the presence of a mean flow and an Ekman pumping, the breaking of planetary waves has

hardly been studied except for some special cases (Anderson and Killworth 1980; Dewar 1987). The

main difficulty lies in both the mean flow field and the two-dimensional structure. There are no

general theories dealing with temporal two-dimensional fronts. In section 3 and 4, we will examine

some basic aspects of wave breaking, such as when and where a breaking occurs. For simplicity,

the waves are considered to be generated along the eastern boundary by the vertical displacements

of isopycnals, which have been observed to have large amplitudes (Tabara et. al, 1986; section 4B

of Kessler, 1989). We hope that the results here will shed light on wave breaking due to other

mechanisms such as a diabatic cooling or a localized Ekman pumping anomaly.

A two-layer planetary geostrophic model is used to study the occurrence of breaking. There

are two types of breaking to be studied: the downwelling breaking which is caused by lowering

the interface at the eastern boundary, and the upwelling breaking which is forced by lifting the

interface. Since a deepening of the interface at the eastern boundary causes the interface shoaling

towards the west and produces a northward thermal wind, it is intuitive that a deepening breaking

front will be accompanied by a northward thermal wind jet. Similarly, a shallowing breaking front

is accompanied by a southward thermal wind jet.

First, in section 3, we review and further explore the breaking of a free wave. By virtue of

analytical solutions, an approach is developed to calculate the first breaking time and position. In

addition, the discussion of the free wave breaking will help us to understand later cases with Ekman

pumping and the associated mean circulation. In section 4, we further investigate the effect of an

Ekman pumping on the breaking of planetary waves. It is found that Ekman pumping changes the

breaking time, position and intensity significantly. Compared with the free wave case, downwelling

breaking is suppressed and the breaking time is delayed, while upwelling breaking is enhanced and
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the breaking time is shortened. A downwelling breaking front occurs only for an interface near

the surface while an upwelling breaking front takes place for interfaces from the bottom to the

upper model thermocline. A breaking front tends to tilt northeast-southwest and the intensity of

a breaking front tends to be stronger towards the north.

1.3 The Model

The model is the two-layer, planetary geostrophic model with a flat bottom, which has been devel-

oped in chapter 2. All notation in this chapter is the same as in chapter 2. Details of the model

have been presented in section 1 of chapter 2.

The nondimensional form of the governing equation for the interface is derived in (1.7a) of

chapter 2 as

ht + VBhf + (uB + C)h, = -(1 - h)w,. (1.1)

Here UB = -X(f 2 We(f))f/f + UBE, VB = fwe are barotropic velocities while the planetary wave

speed is C = -h(1 - h)/f 2 , where UBE is the barotropic velocity at the eastern boundary and will

be assumed zero hereafter. The characteristic equations for (1.1) are

dtS= 1 (1.2a)
ds
f = v (1.2b)
ds
dh
d -(1 - h)we(, f, t) (1.2c)

dz h(1 - h)
da U u(Z f, t) - 2  (1.2d)

The solution affected by eastern boundary waves should have initial conditions for characteristics

starting only from the eastern boundary. If disturbances are generated along the eastern boundary

X = 0 by the interface depth he(f, t) at time ti and on latitude fi, we have the initial conditions

zi = 0, hi = he(fi, ti). In gneral, a planetary wave can be excited at the eastern boundary if either

the Ekman pumping changes or the eastern boundary upwelling occurs. For simplicity, here we

only consider the waves forced by eastern boundary upwelling Othe 5 0. Therefore, the Ekman

pumping is assumed of a steady form w,(f). (If the Ekman pumping varies with time, the waves

will have a more complex sturcture. We will return to this point at the end of the section.) With
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the Ekman pumping, the characteristic equations (1.2) have been integrated explicitly in (4.7) and

(4.8) of chapter 2 as

t = ti + s, (1.3a)

s = f or f = f(fi, S) (1.3b)
fW(f) '

h = 1 -[1- h(fi, t)] (1.3c)

h = 2 - (1.3d)
2f2we(f)"

where the j is the characteristic solution for f. In the special case with he = 0, this solution is the

shadow zone (5.2) in the classic LPS ventilated thermocline. In general, the lower layer pressure

is P2 = (D 2 - h2)/2 = he(fi, ti)2 /2 (see (4.11) of chapter 2), where we have used (1.3d) and D 2 =

2f 2 w 2(f)x. The fi and ti can be solved from (1.3a,b,c) as functions of f and t. Therefore, if the

eastern boundary interface depth varies with latitude or time, it usually holds that i 2  Vp2 0,

implying a moving lower layer or an eastern boundary ventilation (Pedlosky, 1983). Nevertheless,

without confusion, this solution is still called the shadow zone solution. (1.3) gives the basic solution

for this chapter.

If an interface outcrops within a subtropical gyre at latitude fo (steady with time), the shadow

zone extends westward to meet the ventilated zone on the shadow zone boundary B 2 . B 2 is

formed by the characteristics starting from (z, f) = (0, fo) and therefore is obtained by setting

Zi = 0, fi = fo, he(fo,, t) = 0 into (1.3c,d). Then, substituting (1.3c) into (1.3d) gives

B2 (1 - f /fo) (1.4)
2f2We(f)

For an unventilated interface, h,(f,, t) > 0 (where f,, is the northern boundary of a subtropical

gyre), the shadow zone becomes adjacent to the pool zone on the western side (Pedlosky and Young,

1983). The boundary is determined by setting zi = 0, fi = fn in (1.3b), then eliminating s from

(1.3b) by using (1.3a) and substituting (1.3c) into (1.3d) to yield parametric solutions

{1 - [1 - he(fn,ti)]f}2 - h t(1.5)
f = j(fn, t - ti), aB2 = 2f 2W,( I f) - e (1.5)

2f 2 wc(f)

The disturbance starts from the eastern boundary at a time, say ti = Ti, propagates to form a

wave front zF. This can be derived as follows: first, we derive the inverse function of f as (f, s)
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such that f - ![ji(f, s), s]. Then, we substitute ti = Ti and s = t - ti into ji and (1.3c) to derive

i(f, t - Ti) and h = 1 - [1 - h,(fi, t - Ti)]f/ji. Lastly, substituting the fi and h into (1.3d) to

yield

1 - [1 - He(f)]} - H )
XF(f, t) = f (1.6)

2f 2we(f)

where /i = Ai(f, t - Ti) and He(f) = he[ji(f, T), Ti].

Finally, one should bear in mind that although it is derived for a steady Ekman pumping we

under a varying eastern boundary interface, this wave front also applies for more general cases.

Indeed, (1.6) is exactly the same wave front as that excited by a spin-up (or spin-down) from an

arbitrary old Ekman pumping (t < Ti) to the new Ekman pumping we at t = Ti provided that

the eastern boundary stays steady at He(f) (note that the derivation of (1.6) is independent of the

Ekman pumping before Ti at all). In addition, for a periodic Ekman pumping, we have seen in

chapter 3 (see (3.17) or (A.1) there) that a wave front excited along the eastern boundary can be

well-approximated by (1.6). This is true particularly for frequencies higher than decadal.

2 Planetary Wave Penetration Across a Gyre Boundary

In this section, we study the penetration of planetary waves across the southern boundary f, of

a subtropical gyre in the presence of a mean thermocline, whose structure varies in both zonal

and meridional directions. Since the penetration of waves can be inferred from the group velocity,

we begin with re-examining the group velocity of planetary waves with particular attention to the

meridional group velocity near f,. We will concentrate on the first mode of baroclinic Rossby waves

with spatial scales much longer than the deformation radius, i.e.

L > LD = ~7/fj 30 km. (2.1)

In this section, we start with dimensional quantities.
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2.1 The Group Velocity

In the absence of mean flow, the group velocity of a long linear Rossby wave satisfying (2.1) has

the approximate form

Cg, = C(1 + o[(K 2L,)]), C9 = -2klLC[1 + o(K 2 L )]. (2.2)

Here, k, I are the wavenumbers in x and y direction respectively; K 2 = k 2 +12 and C = -3Lj2. One

sees that the meridional group velocity is one order (K 2L L < 1) smaller than the zonal one. On

the other hand, in the presence of both barotropic and baroclinic structures, the evolution equation

(1.1) suggests that at the lowest order, the group velocity takes the form

Cg uB + C, Cg vBs. (2.3)

Here, at the lowest order, both the zonal and meridional baroclinic flows have been canceled by

their accompaning pseudo-,3 effect. Combining (2.2) with (2.3), we may expect a group velocity

accurate to the first order as

Cga, (UB + C)(1 + o[(K 2 L2)]), Cgy' (vy - 2klL2C)[1 + o(K 2L)]. (2.4)

In (2.4), the barotropic meridional advection will dominate the meridional group velocity ( as shown

in (2.3)), provided that O(VB) > O(klL 2C) or

L 2 > L x LD 2 (2.5)

For a typical vB ' 1 cm3- 1 , (2.5) requires that L 2 > (30 km) 2 . Even for a vB ' 0.1 cm8- 1 , (2.5)

still needs only L 2 2 (100 km) 2. These conditions are satisfied by the long waves in (2.1). As

a result, within a subtropical gyre, the meridional group velocity is dominated by the Sverdrup

advection. Thus, wave energy will be swept southward along the ray path in (2.3).

However, the above analysis fails in the vicinity of f, where vE vanishes. Instead, the group

velocity should be at the order of Cg, usB + C, C, ~ -2klLC. A more detailed analysis shows

that at the lowest order, we have in shadow zone (see (A.19) in appendix A)

C,, ~ usB + C, Cgy ~ 2kAi p2, for O( ') < 1. (2.6a)
1,
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Here, the effective j is

= 3RlyR 2y/(Rly + R 2 )2 , (2.6b)

and R 1 = h/f = 1/Q1, R 2 = (H - h)/f = 1/Q2, A1 = hl/f 2  A2 = h/f(H - h)/f 2 . The derivation

has allowed both the zonal and meridional variation of the quantities in the basic state, such as

Qly, Q2yx, usB. As has been noticed by Cheng and Philander (1989) in an one-and-a-half-layer

model, the effect of the baroclinic structure (in R 1, R 2 ) on the background potential vorticity

gradient exists in Cgy but not in C,,. (2.6). This suggests that near a southern boundary, the

baroclinic structure does not substantially influence the wave propagation in the zonal direction

(at order 1), but it does strongly affect the wave propagation in the meridional direction (at the

K 2 L'D << 1 order) .

According to (2.6a), the meridional group velocity is determined by two factors: the wave front

orientation (kl) and the effective /. If there is no zonal variation of the basic state, kl and p will

not vary along a latitude, in particular along the southern boundary. This implies that Cgy remains

the same along the southern boundary, and thus either all waves penetrate equatorward (Cgy < 0)

or all waves are trapped within the subtropic gyre (Cg, > 0). However, the basic thermocline could

vary substantially in the zonal direction. This variation may change the sign of kl and 3 along the

southern boundary and in turn change the sign of Cg,. The resulted wave penetration may exhibit

a complex scenario. This is the novel point that we are going to explore.

2.2 The Zonal Variation of P and kl

Now, nondimensional quantities will be used (after (1.5a) of chapter 2). We first consider the p. A

flat eastern boundary interface depth

he = H. (2.7)

will be adopted because we are concentrated on the region near f,, where observations show that

(2.7) is a reasonable approximation. The steady LPS shadow zone solution can be derived from

(1.3) as

h= 2f 2 e(f)X + H 2 , (2.8)
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which will be taken as the basic state. The Ekman pumping near the southern boundary is ap-

proximated by a linear Ekman pumping

we(f) = We(f - fs), We = constant < 0. (2.9)

Substituting (2.8) and (2.9) into (2.6b), we have the effective / as

H 2  H,(1 - H,)
QlyQ2y -(W x - )[Wez + ], when f --+ f,. (2.10)

Near the eastern boundary (z -- 0), (2.10) shows /3 Ha(1 - H,)/f 6 > 0, which is the same sign

as 3. But far away from the eastern boundary (z -+ -oo), (2.10) states that / ~ -(WX) 2 < 0,

which is the opposite sign to the P. The critical position for 3 to change sign is obtained by setting

f = 0 in (2.10) as 1

XC = H,2 /(f We). (2.11a)

Thus, we see that / is altered substantially by the zonal variation of the basic thermocline structure.

Since the effect of the surface Ekman pumping on the thermocline accumulates westward, the effect

of the thermocline on / also accumulates westward. Consequently,/3 changes its sign far away from

the eastern boundary as discussed above. In addition, one sees that x, increases rapidly with the

depth H,. This is sensible because closer to the surface, the thermocline is more severely distorted

by the Ekman pumping and therefore the thermocline will change the P more significantly. At the

singular case with H, = 0, the 3 is changed the most. Now, xz = 0; p becomes negative along the

whole southern boundary. If, on the other hand, the depth is so deep that z is beyond the western

boundary, zc will not appear within the basin. Then, we have P > 0 along the whole southern

boundary. Assuming z, 0 O(1), the deepest depth for xz to occur within the basin is derived by

substituting (2.11a) into -1 , z, < ze < 0 as

Hc = Is i- We. I(2.11b)

'It is interesting to note that this position (which occurs for - Of(f/h) = 0 ) is the position where the zonal
velocity equals the local Rossby wave speed on the southern boundary, or us(z,, f.) = C[h(z, f.)]. (This is different
from the Rossby repellor on the northern boundary with uB((repellor),f,,) + C[h(z(repellor),A,)] = 0.) The

physical implication is not clear to ime yet.
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The dimensional form of this depth is (see (1.5a) of chapter 2)

He = Ifs ( f lf=f L , (2.11c)

where LT, = z, I is the width of the basin. Thus, Hc varies with the width of the basin and the

gradient of Ekman pumping.

Secondly, we briefly discuss the zonal variation of kl. A fuller discussion is left in appendix B

of this chapter. Since the thermocline varies in both z and y direction, it is difficult to calculat

the local k and I directly. Instead, we will infer the sign of kl from the orientation of a wave front

XF (in (1.6)) near the southern boundary. A wave front with a northeast-southwest orientation

implies kl < 0, which will be called a 3 dispersion tendency as in Schopf et. al (1981). A front with

a northwest-southeast orientation implies kl > 0 , which, for convenience, will be called an anti-f

dispersion tendency.

From (1.2d) (this is nondimensional) , one sees that the propagation of a wave front is determined

by the competition among three factors: the linear 3 dispersion (1/f2), the stratification of the

basic thermocline (h(1 - h)) and the zonal barotropic flow (UB). The linear 1 dispersion always

tends to build up a 3 dispersion tendency since 1/f 2 increases rapidly equatorward. Therefore, if

there is no zonal variation of the stratification and the basic flow, a wave front always exhibits a

linear 3 dispersion tendency (Schopf et. al, 1981) .

However, with a basic thermocline, both h(H - h) and uB are changing zonally. The change of h

may provide anti-f dispersion mechanism because h shoals towards f,. Indeed, since Oy[h(1 - h)] =

(1 - 2h)hf, it follows that for interfaces in the upper model thermocline h < 0.5, the stratification

factor offers an anti-f3 dispersion mechanism. (The opposite occurs for h > 0.5). As for us, it

usually exhibits a cyclonic shear near f,, i.e.,fuB If=f, < 0 (This can be varified with the Ekman

pumping (2.9)). Therefore also offers an anti-f3 dispersion mechanism.

If a wave front exhibits a 3 dispersion depends on which mechanism is more important. On the

one hand, the linear 3 dispersion effect is independent of zonal position. On the other hand, assume

a flat h, as in (2.7), the effect due to the stratification (8a h(1 - h) , h1 ) starts from zero along the

eastern boundary and increases rapidly westward primarily because of the westward accumulation

of the Ekman pumping effect on the thermocline structure. The zonal flow also starts from a zero
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shear along the eastern boundary and increases linearly with distance westward since uB , x. As

a result, when a wave front propagates westward, it first exhibits a P dispersion tendency because

of the linear p dispersion. As the front advances westward, the anti-p dispersion effect due to the

stratification and zonal flow increases rapidly. Eventually, the wave front will change its orientation

to an anti-3 dispersion tendency.

If we use (2.7),(2.8) and (2.9), we can calculate the slope of the wave front xF from (1.6). Near

the eastern boundary, we will find a P dispersion ( yazF > 0); away from the eastern boundary,

we will find an anti-3 dispersion (yazF < 0). The critical position for the wave front to change its

orientation can be found as (see (B.4b) of appendix B)

x = 4x,, (2.12)

where x, is given in (2.11a).

2.3 The Wave Penetration

With the above zonal variation of kl and /, a southern boundary is divided into three parts, in each

of which the wave penetration differs from its neighbors. This is illustrated schematically in Fig.5.1.

Near the eastern boundary where ze < a < 0, the P dispersion tendency (kl < 0) and the positive

produces a southward wave penetration (Cgy < 0). West of this region where 4z~ < x < z, the

3 dispersion tendency remains but the 3 becomes negative. Therefore, the wave energy penetrates

northward (Cy, > 0). Further west, the d remains negative but the wave front changes to an anti-3

dispersion (kl > 0). Waves again radiate equatorward.

Since ze depends on the depth of the interface, the wave penetration region (determined by xz

) will be different on interfaces at different depths. In a basin with a finite zonal width z, ~ -1,

according to wave penetration behavior, interfaces can be divided into three categories: (in non-

dimensional form)

shallow : 0 < H, < 0.5H,, middle: 0.5H, < H, < H, deep : He < H. < 1. (2.13)

where He is determined in (2.11b). Fig.5.2 presents a schematic figure for the wave penetration

of the three different groups of interfaces (for the sake of simplicity, the wave rays have not been
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Figure 5.1: The schematic figure showing the wave propagation, the zonal variation of the effective 0 and

the inferred wave energy penetration along the southern boundary of a subtropic gyre for an infinitely long

basin. zx is determined in (2.11a). See the text for a detailed discussion. Note that the relative orientation

of the wave vector (blank arrow) and group volocity (black arrow) is drawn arbitrarily.
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Figure 5.2: A schematic figure showing the Rossby wave penetration across the southern boundary of a

subtropical gyre at different depths. The definition for shallow, middle, deep interfaces as well as z are

given in (2.11a,b) respectively.
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drawn smoothly on 4xz and xz.) On a shallow interface, it holds that z, < 4zx. Thus, all the three

regions exist. On a middle interface, one has 4x, < z, < z. The westernmost region is beyond

the western boundary. On a deep interface where z, < z,, only the easternmost region appears

within the basin. Hence, on deep interfaces we have full penetration, i.e. all energy penetrates

into tropics along the whole southern boundary. In contrast, an interface in the middle depth has

no penetration, i.e. little energy can be carried from the subtropical gyre into the tropics. (Some

disturbances originating from the tropics may even penetrate into the subtropical gyre). A shallow

interface presents an intermediate case of partial penetration, i.e. part of the wave energy radiates

equatorward in the western part of the ocean. The full penetration for a deep interface seems

sensible because a deep interface is distorted very little by the surface Ekman pumping. Thus,

waves are affected by the zonal variation of thermocline very little and the linear P dispersion

dominates as in Schopf et. al. However, the partial penetration for a near surface interface and the

no penetration for middle depths are not intuitive.

For the dimensional critical depth in (2.6c), we adopt the typical dimensional quantities of

a subtropical gyre We = 10-4cm/s, fn = 2flsin(450) = 10-4s-1, = 2cms_ 2 , o =

2a cos(350) = 1.87 x 10-i's-' cm -1 . Further, if we take f, at 150, and the slope as' Ofw,

1 cma-1/2S[sin(300) - sin(150)], for the Pacific with L, ,; 15000 kin, we have H, ; 220 m. For

the Atlantic with L, - 6000 km, we have Hc - 140 m.

To summarize, the zonal variation of the thermocline structure may play a crucial role near the

southern boundary in altering the wave penetration across the gyre boundary. This zonal variation

causes zonal variations in both the wave front orientation and the gradient of background potential

vorticity. Consequently, for interfaces at different depths, the wave penetration near the southern

boundary will be changed dramatically.

3 Planetary Wave Breaking: I. No Ekman Pumping

Now, we turn to the second topic of this chapter: the breaking of planetary waves forced by

vertical displacement of interfaces at the eastern boundary. First of all, free waves (i.e. we = 0)

are investigated in this section. The approach developed here will also be applied to later sections.
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For simplicity, the eastern boundary interface is chosen to be flat and to vary temporally, i.e.

he = he(t). (3.1)

After using this as the initial conditions for characteristics hi = h,(ti), the parametric solution for

a free wave is readily derived from (1.2) with we = 0

he(ti)[1 - he(ti)](t- ti), (3.2a)
2= (t - ti), (3.2a)f2

h = he(ti) (3.2b)

where f = fi has been used. Hereafter, unless otherwise specified, at the eastern boundary,

interfaces are chosen to move vertically at a constant speed p, with the initial depth H, and the

final depth He 1 , which satisfy 0 < He, He 1 < 1, i.e.

he(t) He + pt if 0 < t < T =- (He - He)/p > O (3.3)
He1  ift > T

A downwelling is represented by a p > 0 and He < Hex, while an upwelling is represented by

a p < 0 and He > He,. The observed maximum speeds of interfaces varying at annual and

interannual scales are no more than twice the typical Ekman pumping speed, i.e. I p 1 2. In fact,

a typical dimensional Ekman speed is w* , 0.5 x 10-4ms-1 , 15 meters/year. Observations show

that the maximum amplitude of interface variation is below 15 meters for annual variation and

below 90 meters for interannual variation (say with period longer than 6 years) (e.g., Tabara et. al,

1986). The corresponding dimensional speed is then p* , 15 meters/0.5 x year - 90 meters/0.5 x

(6 years) , 2w*. Since the non-dimensional p = p*/w*, annual and interannual variability has the

non-dimensional speed range of I p I< 2 O0(1).

3.1 The Approach

After the eastern boundary perturbation (3.3), a perturbation wave is radiated from the eastern

boundary. This wave may break because of the nonlinear steepening C , h(1 - h). We are going

to derive the first breaking time and positions. In order to generalize the approach here to later

cases, the parametric solution (3.2) is put in a more general form

Z = Z(t,ft 2 ), 0 < ti < T, (3.4a)
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h = h(t, f, t). (3.4b)

Physically, (3.4) says that at a time t and a latitude f, the disturbance excited along the eastern

boundary at ti reaches the zonal position x(t, f, ti). The disturbed interface now is h(t, f, ti).

Indeed, (3.4a) is also the equation for the wave front Xp that leaves the eastern boundary at t = ti

(see (1.6)). On a fixed latitude f, a breaking time tb occurs when the zonal profile is vertical, i.e.

hX If,tb= 0. In (3.4), this is equivalent to

o9,tz = 0. (3.5)

Breaking times are then obtained from (3.4a) and (3.5) as

tb = tb(ti, f) with tb > ti. (3.6)

The physical meaning of (3.6) is clear. Along the latitude f, the interface becomes vertical at time

tb on the wave front XF that leaves the eastern boundary at t = ti. The first breaking time to on

the latitude f is the minimum of the family of breaking times in (3.6), i.e.

the first breaking time : to = min{tb}ti[o,T]. (3.7a)

The first breaking position xo and depth ho are then obtained by substituting (3.7a) into (3.4a,b)

as

0 = Z(to, f, tio), ho = h(to, f, tio), (3.7b)

where tio is the initial time ti at which tb reaches its minimum as in (3.7a). Mathematically, the

above method is equivalent to deriving the envelope of the family of characteristics in (3.4a) as in

classical methods.

3.2 Free Wave Breaking

Substituting the free wave solution (3.2) and the eastern boundary perturbation (3.3) into (3.5)

yields the breaking time

tb = t + ,(ti)] for 0 < ti < T. (3.8)
p[l - 2he(ti)]

168



Differentiating (3.8) gives Ot,tb = 2[1 + he(1 - he)/(1 - 2he) 2] > 0. This means that a disturbance

excited later will break later. Hence the first breaking time occurs at the earliest disturbance wave

front with t2 = 0. With the aid of (3.3) and (3.8), the first breaking time takes the form

to = tb He(1 - He)

p(1 - 2He)

The corresponding breaking distance to is obtained by substituting (3.9) into (3.2a), and by using

ti = 0 in (3.3),

S= (1 - to. (3.10)

It is interesting to see that the first breaking time and position are independent of the disturbance

amplitude Hj1 - He (no He1 dependence in (3.9) and (3.10)). Hence, the occurrence of breaking

is determined only by the speed and depth of the perturbation along the eastern boundary. For

eastern boundary conditions more general than (3.3), calculation of some examples also show that

the first breaking time and position are mainly determined by the depth and maximum speed of

the perturbation.

To study the breaking in more detail, we plot the to and xo against the speed and depth in

Fig.5.3. As a function of -1/p and H,, Figure 5.3a displays to, which is independent of f as

seen in (3.9). The speed range for the observed annual and interannual variation ( I p 15 2) are

also marked on the top. A shallowing has -1/p > 0 on the right half plane and a deepening has

-1/p < 0 on the left half. The nonbreaking region is hatched. It is seen from Fig.5.3a that at the

fast speed I p 1= 2, breaking events occur within about one advective time to < 0(1) for interfaces

at most depths. Furthermore, Fig.5.3b,c,d give the corresponding zo at latitudes f = 0.3, 0.6, 0.9

respectively. Fig.5.3b,c,d indicate that most of the breaking is realized within the basin I xo < 0(1).

For a slower speed p, the He range for breaking gets smaller and breaking tends to be trapped on

interfaces near the surface and bottom. If the speed is very slow, i.e. p -+ 0, we have zo -- -oo.

Thus, breaking will not take place within a finite basin although in principle it may occur in an

ocean unbounded to the west.

As we have seen in Fig.5.3, breaking occurs rapidly for an interface near the surface or bottom,

but breaking occurs very late for an interface near the middle depth. This can be explained as
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Figure 5.3: The first breaking times and positions for free waves. The horizontal axis is -i/p and the vertical
axis is H,. Hatched regions are parameters no breaking will occur even in an unbounded ocean. The to > 1
and zo < -1 contours are not drawn, where the breaking is unlikely to take place within a basin of a realistic
width. a) the first breaking time. The observed maximum annual and interannual forcing speeds are marked
on the top. The black squares mark the parameters later used in Fig.5.5. b) the first breaking position at
f = 0.3. c) the first breaking position at f = 0.6. d) the first breaking position at f = 0.9.
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follows. Under a perturbation 6h, the local Rossby wave speed is expanded around the mean local

depth ho as

C(h) = C(ho) + OhoC(ho)6h,

The first term is the local linear Rossby wave speed while the second term represents the effect of

nonlinear steepening. Thus, the intensity of the nonlinear steepening can be measured by

A= h, C(ho)6h (1 - 2ho)6h

C(ho) ho(1 - ho)

For an interfaces near the surface (ho - 0) or bottom (ho - 1), it holds that A -- oo, implying a

strong nonlinear steepening. On the other hand, for an interface near the middle depth (ho -+ 0.5),

A -- 0, suggesting a very weak nonlinear steepening.

In addition, in order to compare with later cases with Ekman pumping, several features are

noteworthy in Fig.5.3. a) For a breaking to occur, the result of a shallowing p < 0 at the eastern

boundary interface depth He is equivalent to the opposite deepening -p > 0 at the depth 1 - H,

( as reflected about the mid-depth He = 0.5). In particular, a downwelling causes breaking only

when He < 0.5 while an upwelling causes breaking only for H, > 0.5. b) Both to and xo vary

monotonically with either He or p. Thus, for a faster speed p, or a interface closer to the top (when

p < 0) or the bottom (when p > 0) of the model ocean, the breaking occurs earlier and closer to

the eastern boundary. For the special case He = 0 (when p < 0) or He = 1 (when p > 0), breaking

occurs immediately at the eastern boundary, while for He = 0.5 no breaking will occur at all.

Lastly, it will be seen helpful to introduce a way of judging, directly from Fig.5.3a, if the first

breaking time is at the initial front ti = 0. Take the downwelling breaking as an example. In

Fig.5.3a, at a fixed downwelling speed p > 0, to increases with He. This implies that to must

occur on the initial ti = 0 front. The reasoning is as follows. Examining the breaking times in

(3.8), one sees that the first term on the right-hand side ( ti) increases with ti. The second term

h,(ti)[1- he(ti)]/p[1 - 2he(ti)] has the same form as the to in (3.9) except with He replaced by h,.

Hence, an increase of to with He in Fig.5.3a means an increase of the second term with (he and

then) ti (note Otihe = p > 0). As a result, tb in (3.8) increases with ti, which is consistent with the
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earlier analytical calculation that Otftb > 0. Accordingly, the first breaking time is on the earliest

wave front ti = 0.

3.3 Structures and Amplitudes of Breaking Fronts

We start with examining the evolution of zonal profiles. A schematic figure of a zonal profile due

to a deepening p > 0 at a time t is shown in Fig.5.4a. There are three parts on a typical zonal

profile. The western part is the old (before-perturbation) shadow zone (now, in the absence of

an Ekman pumping, the whole gyre is filled with a shadow zone in which the thermocline is flat

!) which has not been affected by an eastern boundary disturbance. Behind the old shadow zone

is the disturbance part forced by lowering the interface along the eastern boundary. Before the

perturbation stops (t < T), only these two parts exist. After the perturbation stops ( t > T), there

will be a third part that is the new (after perturbation) shadow zone established near the eastern

boundary. The initial (ti = 0) and end (ti = T) disturbance wave front ZF are marked in Fig.5.4a.

Before breaking, an earlier wave front is always west of a later wave front. At the first breaking

time, a later wave front catches up with an earlier one. The interface becomes vertical at a first

breaking position xo (this case is not shown in Fig.5.4a). Fig.5.5. plots some examples of evolution

of zonal profiles at f = 0.6 calculated from (3.2a,b) and (3.3). In all figures, the eastern boundary

interface varies at an amplitude 6 h, = 0.2. 1

Fig.5.5a-e illustrate the evolution for the fastest possible annual and interannual speed I p 1= 2.

The value of to and zo in each figure are found from Fig.5.3a,c (black squares) and are written in

each figure. In each figure, the solid lines are the t = 1 zonal profiles while the dashed lines indicate

the disturbance profiles at earlier times. Fig.5.5a depicts a downwelling case with a very shallow

interface He = 0.1. One sees that a strong overturning has appeared on the first disturbance profile

at t = 0.2. In fact, the wave has already broken long before t = 0.2, at t = 0.06. After the

first breaking time, the solution in (3.2) is no longer valid because of the gravitational instability.

Smaller scale process such as friction or relative vorticity will enter. (The fast breaking for shallow

1 This is too large for observations. For H = 800 m, the dimensional 6h, is about 160 rm.It is chosen only for

clarity of the figures. In any case, for (3.3), this large amplitude does not change the first breaking times and positions

because (3.9) indicates that to (and :o) depends only on the initial depth H, or independent of H.
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Figure 5.4: The schematic figure of a zonal profile for a downwelling eastern boundary displacement and its

associated wave fronts. The solid lines are the zonal profile and the dashed lines represent the continuation

of the two shadow zone profiles. a) Free wave zonal profile, b) the two-dimensional structure of the breaking

front confined by the initial and last wave fronts. The black arrows indicate the thermal wind jet i.e.

v7 = vj - v2'. c) Zonal profile with Ekman pumping. The amplitude of the maximum breaking fronts are

also shown schematically.
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Figure 5.5 Zonal profile evolution for free waves. The eastern boundary interface moves at a constant speed

p and the amplitude I H.1 - H. 1= 0.2. a)p = 2, He = 0.1. b)p = -2, H. = 0.9. c)p = 2, H, = 0.3.

d)p = -2, H. = 0.7. e)p = -2, H, = 0.5. f)p = 1, H. = 0.1. The profiles are all at t=0.2,0.4,0.6,0.8 and 1.
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interfaces near the eastern boundary has been pointed out by Anderson and Killworth (1980).)

Fig.5.5b shows the upwelling case opposite to Fig.5.5a. The profile is a mirror imagine of Fig.5.5a

with respect to H = 0.5. The to and x0 are the same as in Fig.5.5a.

If the downwelling disturbance in Fig.5.5a starts at a deeper depth He = 0.3, Fig.5.5c indicates

that the overturning has not appeared on the t = 0.2 profile yet. In fact, both to and xo are delayed

more then five times. Relative to the shallower case Fig.5.5a, the breaking now takes place far away

from the eastern boundary. Fig.5.5d is the upwelling breaking opposite to Fig.5.5c which has the

same to and xo. Fig.5.5e illustrates a shallowing perturbation forced by the same speed as that in

Fig.5.5b,d but for He = 0.5. One sees that breaking will not occur. The last example is Fig.5.5f

where the deepening speed in Fig.5.5a is reduced by a half to p = 1. (3.8) shows that the first

breaking time will be twice that in Fig.5.5a. The evolution is shown in Fig.5.5f.

The reason for downwelling breaking on H < 0.5 and upwelling on H > 0.5 is simple. De-

scending he causes the disturbance profile to shallow westward. If h < 0.5, the local Rossby wave

speed C(h) is slower on the western side because C(h) , h(1 - h) reaches its maximum at h = 0.5.

Therefore, a later disturbance on the eastern side will travel faster to catch up with a previous

disturbance, causing a downwelling breaking. Ascending he is the opposite.

The flow field is entirely different between a downwelling breaking front and an upwelling

breaking front. A downwelling breaking must produce a northward thermal wind jet along the

breaking front, as drawn schematically in Fig.5.4a, while an upwelling breaking a southward thermal

wind jet.

The two-dimensional structure of the breaking front is simply the linear / dispersion shape

z - 1/f2. This is because the first breaking time (3.9) is independent of latitude. So the only

f dependency for the breaking position (3.10) is the 1/f 2 factor. A schematic figure of the two-

dimensional (before breaking) disturbance structure (bounded by the initial and final disturbance

front (1.6) at ti = 0 and ti = T ) is given in Fig.5.4b. Later, when the breaking occurs, the breaking

front will be sandwiched by the initial and final disturbance front. The section latitude f = f,, of

Fig.5.4a is marked on Fig.5.4b.
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Although the amplitude of the breaking front is beyond the scope of our model, some preliminary

results can still be obtained. We see that the disturbance is vertically bounded by the interfaces of

the old and the new shadow zone

hold shadow zone = He, hnew shadow zone = Hel (3.11)

Therefore, we can estimate the upperbound of the intensity of the breaking front as

the intensity of the front Ij hold shadow zone - hnew shadow zone 1=1 He - He (3.12)

This shows that the intensity of a breaking front is determined by the amplitude of the perturbation

(although we have seen in (3.9) and (3.10) that the occurrence of a breaking is independent of the

amplitude of the perturbation). Furthermore, in the absence of an Ekman pumping, (3.11) states

that the shadow zone thermocline is flat. Thus, (3.12) suggests that the intensity of the breaking

front is the same everywhere on the front.

The eastern boundary perturbation (3.3) is very special because it has an infinite acceleration

and deceleration at the beginning and end, respectively. A more realistic example of the eastern

boundary perturbation is probably a periodic one such that

he(t) = 0 .5[H, + He 1 + (He - Hel)cos(wt)] (3.13)
He,

Some disturbance profiles under (3.13) are presented in Fig.5.6, where the maximum speed of

he resembles the magnitude of the speed of strong annual and interannual periodic variabilities

(maxz( dh,/dt 1) = 2.) In all the cases, the breaking occurs quickly near the eastern boundary.

These figures are to be compared with later cases with an Ekman pumping. It will be seen in the

next section that in the presence of an Ekman pumping, significant changes will happen.

Finally, it should be pointed out that the breaking of waves on the initial wave front ti = 0 is

due to the peculiar vertical motion (3.3) at the eastern boundary where he has a constant speed. 1
1For a general eastern boundary h,(t), breaking times in (3.8) has to be replaced by tb = t + h.(ti)[1 -
(t)]/[ ( - 2h)], Thus, Ot = 2 + {[2(~) - t ( 1 - 2h,)]h,(1 - h,)}/[((1 - 2hh,]. Whe has

a strong positive acceleration, it is possible that t itb < 0. As a result. the first breaking time may occur after the
earliest wave front. For the perturbation (3.13) (if we use only the half period from 0 to T = i/w). t It=o= 0
indicates that tb(ti = 0) = oo. Thus, the initial wave front can not be the first breaking time. Similarly, the first
breaking does not occur on ti = T wave front either.
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Figure 5.6: Zonal profiles at t = 1 for free waves with periodic eastern boundary condition in (3.11) with
the amplitude 0.2. a) maz(d) = 2, H, = 0.1. b)maz(-) = 2, H, = 0.9, c) maz(-) = 2, H, = 0.5, d)
maz(t) = 1, H, = 0.1.
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4 Planetary Wave Breaking: II. With Ekman Pumping

In the presence of an Ekman pumping, there will be both a two-dimensional barotropic flow and

an external forcing. There is no general approach and conclusion about the wave breaking in the

presence of a two dimensional flow. Nevertheless, the analytical solutions (1.3) make it possible to

examine the breaking condition. To understand the basic effect of an Ekman pumping on breaking,

the simplest situation--a spatially uniform Ekman pumping, is examined. The Ekman pumping

and its i characteristic solution can be derived from (1.3b) as (or see (4.9) of chapter 2)

W(f) = We, A(f, s) = f e-w.. (4.1)

4.1 Forced Wave Breaking

After substituting (4.1) into (1.3), the solutions with t2 as a parameter are obtained as

{1 - [1 - he(ti)jeW,(t-t)}2 - he(ti) 2 = (t, f, t). (4.2a)
S- -(t, f, ti). (4.2a)

2f2We

h = 1 - [1 - h,(ti)]ew,(t- t ' ) = h(t, f, ti), (4.2b)

Similar to the free wave case, taking the eastern boundary perturbation as the linearly varying he

in (3.3), the breaking time is determined by setting Otz = 0 as

1 W (4.3a)
tb = ti + In[J(h,. )], (4.3a)

1 W
or p(tb - ti) = 1In[J(h,,--)] (4.3b)

-. pp

where (1 - h)J 2 - J + = 0 (4.3c)

For a physically valid breaking time tb - ti > 0, it is required that 0 < J < 1. J is readily solved

from (4.3c) as

J+ 2(1- h4) - he) (4.3d)
2(1 - he) - 1 + (1 - h,)-

The sign is chosen such that tb gives the minimum and positive tb - ti if available. The free wave

limit (3.8) can be recovered from (4.3b) in the limit & -- 0.
P
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It will be shown soon that the first breaking time occurs at the initial wave front ti = 0.

Therefore, from (4.3b) and (3.3) the first breaking time satisfies

1 W
pto = In[J(He,, )1. (4.4)

p pP

The corresponding position is obtained by substituting (4.4) into (4.2a) as

= [1 - (1 - He)eWe to] - H} (45)zo =2 (4.5)
2f2We

As in the free wave case of (3.9) and (3.10), the first breaking time and position are independent of

the amplitude of the perturbation He 1 - He. Thus, the occurrence of breaking is determined only

by the speed and depth of the perturbation.

With we = -1, to and zo are plotted in Fig.5.7 which is arranged similarly to Fig.5.3. to is

independent of f and is displayed in Fig.5.7a. One sees that to increases monotonically with He

for deepening and decreases monotonically with He for shallowing. Using the argument similar to

that for free waves (at the end of subsection 3.2), we know that the first breaking time must occur

on the initial wave front ti = 0.

The most striking difference between Fig.5.7a and the free wave case of Fig.5.3a is that to is not

symmetrical at all with respect to the center point (-l/p, He) = (0, 0.5), particularly for perturba-

tion speed comparable or slower than the Ekman pumping speed (p 0(1)) which is just the speed

of interest for annual and interannual variations. In comparison with the free wave in Fig.5.3a, the

upwelling breaking time is shortened and its parameter domain is substantially enlarged. On the

contrary, the downwelling breaking time is delayed and its domain is severely reduced. Hence,

imposing an Ekman pumping will enhance upwelling breaking but suppress downwelling breaking.

In more detail, the upwelling breaking now occurs for interfaces from the top to the bottom

of the model ocean. At a fixed ascending speed p, the first breaking time increases monotonically

from 0 to oo, as He varies from 0 to 1 (as opposed to varying from 0 to 0.5 as in the free wave

case.) Especially, near or slightly above the middle depth He - or < 0.5, if a shallowing is faster

than or comparable to the Ekman pumping (p < 0(1)), an upwelling breaking occurs within an

advective time (to < 0(1)). This is in sharp contrast to the free wave case where no upwelling

breaking occurs at all if He < 0.5 (see Fig.5.3a near He = 0.5 for shallowing) The implication is
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Figure 5.7: The first breaking times and positions with an uniform Ekman pumping we(f) = W = -1. The

parameters in each figure correspond that in Fig.5.3. a)for to. b)zo at f=0.3. c)zo at f=0.6. d)zo at f=0.9.

In comparison with the free wave case in Fig.5.3, the downwelling breaking domain is severely reduced while

the upwelling breaking domain is greatly enhanced (see the text for a full discussion).
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that for interfaces near and above the middle depth, an upwelling breaking is qualitatively changed

from nonbreaking to breaking.

In contrast to an upwelling breaking, for a downwelling breaking, fast downwelling (p > 1)

is similar to the free wave case. However, a qualitative difference from the free wave appears for

descending speed comparable or slower than the Ekman pumping. In the parametric plane, there

is a (internal) marginal curve given by the dotted line (rj see Fig.5.7) on the edge of downwelling

breaking domain. This curve is marked by We/p = -(1 - 2He)2 /(1 - He) which is derived by

substituting ti = 0 and (3.3) into (4.3d) and then setting the ()1/2 in (4.3d) zero. ( As far as the J

value is concerned, rj divides the complex conjugates of J on the left from the real J on the right.)

On rj, the breaking time is finite. In fact, at each depth, ri gives a cutoff (or slowest descending)

speed

pc(He) = -We(1 - He)/(1 - 2He)2 > 0. (4.6)

For a descending speed slower than Pc, downwelling breaking will not occur. The minimum speed

of p, in (4.6) is

min{pc} = -We

implying no downwelling breaking at all depths if the downwelling speed is slower than the surface

Ekman pumping ( p < -we). As He deepens from 0 to 0.5, rj varies from We/p = -1 to We/p = 0

and the associated cutoff speed (4.6) increases from -we to oo. Thus, away from the surface the

cutoff speed increases and breaking becomes less likely to take place.

Physically, it is hard to understand exactly how and why the breaking conditions are altered,

partly because the effect of the mean flow is coupled with that of the external Ekman pumping.

Nevertheless, a rudimentary explanation is presented. Relative to a water parcel forced downward

( by the surface Ekman pumping) with a speed w < 0, a upwelling he at an ascending speed p < 0

has a stronger ascending speed p + w < p < 0. In other words, relative to the water particle, the

upwelling speed is enhanced, which in turn results in a stronger upwelling breaking tendency and

an earlier breaking time. However, with respect to this downward particle, a descending he at the

speed p > 0 has a relatively weaker descending speed p+w < p > 0. Especially, when the descending

is slower than the downward speed of the particle 0 < p + w < p, he moves upward relative to
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that particle. As a result, downwelling breaking will not occur. This offers an explanation why

downwelling breaking abruptly disappears when p < -w,.

In a basin with a finite zonal extent, a breaking occurs only when the zo is within the basin. zo

derived from (4.5) is drawn in Fig.5.7b,c,d at latitudes f = 0.3, 0.6, 0.9 respectively. Similar to to,

here xo differs substantially from the free wave case, especially away from the southern boundary

in Fig.5.7c,d, where the breaking positions xo are much closer to the eastern boundary.

In summary, for annual and interannual variations, downwelling breaking is severely suppressed

and the breaking time is delayed. Abruptly, for descending speeds slower than the Ekman pumping,

there will be no downwelling breaking. In addition, downwelling breaking tends to be trapped on

interfaces near the surface. On the contrary, upwelling breaking is greatly enhanced and the

breaking times are shortened. Shallowing breaking even appears on interfaces within the upper

half ocean. 1

4.2 Structures and Amplitudes of Breaking Fronts

In the presence of an Ekman pumping, (1.3d) shows that a steady shadow zone interface deepens

westward as

h = 2f2  e(f)Z + He. (4.7)

Here, we have assumed a flat he = He. Schematically, a zonal profile after an eastern boundary

disturbance is shown as in Fig.5.4c. This differs from the free wave case in Fig.5.4a in that now

the disturbance is advected downward as it advances westward.

Fig.5.8 demonstrates some examples of evolution of zonal profiles at f = 0.6. The parameters

in Fig.5.8a-f correspond to that in Fig.5.5a-f respectively except now with an Ekman pumping

'In the presence of a spatially varying Ekman pumping, we can also study the breaking. A detailed discussion
is not presented here. We only briefly describe the conclusions. The breaking in the northern part of a subtropical
gyre is similar to the free wave breaking case in section 3. On the contrary, the breaking in the southern part of
a subtropical gyre is similar to the uniform Ekian pumping case studied above. Physically, this difference occurs
because of the southward mean flow. In our model, the southward mean flow carries the effect of the Ekman pumping
southward. In the northern part of a subtropical gyre, there is very little wave energy coming from the north which
in turn results in a breaking similar to a free wave case. But, in the southern part. much wave energy arrives from
the northern and middle of the basin and therefore the influence of the Ekman pumping is stronger. In addition.
within each half basin, near the middle of the basin, the breaking is more similar to a iniform Eknian pumping case
conlpared with the breaking occurring near the gyre boundaries. The physics is simple. Near the middle of the gyre,
the magnitude of the Ekman pumping is stronger.
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Figure 5.8: Zonal profile evolution for waves in the presence of a uniform Ekman pumping w, = 1. The

eastern boundary condition is the same as in Fig.5.5. Parameters in Fig.5.8a-f correspond to those in Fig.5.5a-

f. a)p = 2, H, = 0.1. b)p = -2, He, = 0.9. c)p = 2, He, = 0.3. d)p = -2, H, = 0.T. e)p = -2, H. = 0.5.

f)p = 1, He = 0.1. The profiles are all at t=0.2,0.4,0.6,0.8 and 1.
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we = -1. For the strong annual and interannual deepening on a shallow interface with He = 0.1,

comparing Fig.5.8a with the free wave case in Fig.5.5a, one sees that the first breaking time and

position are delayed about three times. Yet, the opposite upwelling breaking in Fig.5.8b has to

and xo only slightly earlier than the free wave case in Fig.5.5b. A dramatic change occurs if the

interface is deeper, say He = 0.3 as in Fig.5.8c, or the deepening speed is reduced, say by a half,

as in Fig.5.8f, now downwelling breaking does not occur even in an unbounded ocean while the

free wave in Fig.5.5c or Fig.5.5f breaks early in the eastern part of the basin. These two cases are

located in the parameter plane in the non-breaking domain (the hatched region in Fig.5.7a,c). The

opposite upwelling case to Fig.5.8c is shown in Fig.5.8d. The first breaking time and position are

shortened about 40 percent than the free wave in Fig.5.5d. If the interface starts further up within

the upper half ocean, a significant change appears for the upwelling breaking. Although the free

wave in Fig.5.5e will not break, upwelling breaking will take place in the presence of an Ekman

pumping as shown in Fig.5.8e. Combining Fig.5.8e with Fig.5.8c, one can imagine an interesting

phenomenon. Under a periodic he forcing, the disturbance will create a upwelling breaking front on

an interface in the upper half ocean where otherwise a downwelling breaking front will be expected

in the absence of an Ekman pumping, as can be seen in comparison of Fig.5.9b and Fig.5.6b.

Fig.5.9 presents some zonal profiles with the periodic he (3.13) ( the same as in Fig.5.6 except

with we = -1 now). For a near surface interface starting on the eastern boundary at H = 0.1, it

is seen in Fig.5.9a that a downwelling breaking front is formed rapidly in the eastern part of the

ocean, implying a northward thermal wind jet there. However, if the initial depth He, is lowered

to He = 0.3, an upwelling breaking front is developed in the middle part of the ocean, implying a

southward thermal wind jet. A further deeper disturbance (in the deeper half ocean) in Fig.5.9c

demonstrates that a strong upwelling breaking front is established more rapidly than in Fig.5.9b.

The final example of Fig.5.9d is also interesting, in which the moving speed of he is reduced by

a half from that in Fig.5.9a. It is seen that neither downwelling breaking nor upwelling breaking

occurs. In contrast to the free wave case in Fig.5.6d where a downwelling breaking takes place

quickly.
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Figure 5.9: Zonal profile for waves in the presence of a uniform Ekman pumping we = -1. The eastern

boundary condition is the same as in Fig.5.6. Parameters in Fig.5.9a-d correspond to that in Fig.5.6a-d.
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Another difference from the free wave case is that all the disturbances now slide down along

the steady shadow zone thermocline because of the downward Ekman pumping (Fig.5.8, Fig.5.9).

This vertical propagation provides another explanation for the suppressed downwelling breaking

and enhanced upwelling breaking. Initially, a deepening disturbance starting at h , He < 0.5 will

of course create a downwelling breaking tendency (i.e. a westward shoaling interface) that can only

break for h < 0.5. Its profile is becoming steeper due to the nonlinear steepening. However, the

disturbance also propagates downward. The perturbation may penetrate to the deeper half ocean

(h > 0.5 ) before breaking. After it descends to the lower half ocean, the perturbation with the

downwelling breaking tendency (shoaling towards the west) will never break. A similar argument

applies to a disturbance forced by a shallowing.

The structure of the breaking front can also be estimated according to (3.12). Now, the old and

the new shadow zone are (see (4.1)) hold shadow zone = V2 f2we(f)x + H2 and hnew shadow zone =

2f2 iwe(f)X + H . As a result, we can have the upper bound for the amplitude of a breaking

front occurring at a = zo, f = fo as

Ah <1 hold shadow zone - hnew shadow zone H2 - H (48)
2 foe(fo)xo + H + 2fjte(f0 )x0 + H 1  (

It is seen that this upper bound is determined by two factors: the amplitude of the initial dis-

placement He1 - He and the distance from the eastern boundary x0. The upper bound increases

with the initial amplitude and decreases westward monotonically. The zonal decay is related to

the strength of the Ekman pumping (we(f)). The stronger the Ekman pumping is, the faster the

decay is. In the absence of Ekman pumping, there is no zonal decay, as has been seen in the free

wave case (Fig.5.4a, Fig.5.5 and Fig.5.6.) 1 The upper bound in (4.8) only gives a local upper

bound and prohibits any direct estimate on the amplitude of a breaking front. Nevertheless, it

still seems reasonable to speculate that the amplitude of breaking fronts will increase with initial

amplitude and decrease away from the eastern boundary. Two important deductions immediately

come out. One is that breaking fronts occurring far away from the eastern boundary usually are
1This tpper bound actually applies to non-breaking waves too. Therefore, a disturbance tends to decrease its

aniplitude a.s it propagates westward and downward. This has been explained in section 3 of chapter 3. The physical
miechanisnm for this decay is a divergent group velocity field.
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weak. The other is that: although both an interannual variation and an annual variation with

the same maximum speed have comparable first breaking time and positions (see discuss following

(4.5)), the interannual variation will create a stronger breaking front than the annual variation,

because of the larger amplitude of the interannual variation. In other words, the occurrence of the

breaking (the breaking time and position) is mainly determined by the maximum vertical speed of

the disturbance, while the intensity of the breaking front mainly depends on the amplitude of the

disturbance.

Finally, we show that in the presence of mean flows, the breaking positions are also changed

qualitatively. Re-examining the free wave in Fig.5.3 or (3.2), one sees that an infinite breaking

time must take place at an position infinitely westward away from the eastern boundary (and thus

beyond the basin). Therefore, free waves break only for those with to 5 0(1) (so that xo K 0(1)).

But now in Fig.5.7, breaking positions are finite even for breaking times approaching infinity (on

the shallowing half plane near He - 0 in Fig.5.7a-d). Particularly on the high latitude case in

Fig.5.7d, the breaking positions are close to the eastern boundary (xo K 0.6) no matter how long

the breaking time is.

These finite breaking positions are caused by the two-dimensional barotropic flow field, which

tends to carry wave energy southward while they propagate westward. In fact, in the thermocline,

it is this mean flow field that causes the different zones (pool zone, ventilated zone and shadow

zone). Waves forced along the eastern boundary can only propagate in the shadow zone which is

bounded to the west by B 2 (see (1.4) or (1.5)). Since B 2 extends south-westward, it is closer to the

eastern boundary to the north. In fact, with the aid of (4.4), (4.5) says that a breaking position

exhibits a linear 3 dispersion shape as is the case for the free wave. Therefore, breaking fronts

occur closer to the eastern boundary in the north than in the south. Noting the westward decay

of breaking front intensity discussed in (4.8), we come to another important conclusion: breaking

fronts, if any, are usually stronger towards the north.
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5 Summary

Two issues about the waves radiating from the eastern boundary have been investigated. The first

addresses the penetration of planetary waves across the southern boundary of a subtropical gyre;

the second relates to the breaking of planetary waves.

In the first part of this chapter, we see that the wave penetration across the southern boundary

of a subtropical gyre is substantially changed by the zonal variation of the thermocline structure.

The zonal variation of the basic thermocline alters both the effective 3 and the wave orientation kl

substantially. Consequently, across a southern boundary, the wave penetration differs for different

depths. For an interface near the surface with the eastern boundary depth of H, satisfying 0 <

H, < 0.5He, part of the waves penetrate into the equatorial region. For the middle depths of

0.5He < H, < He, most waves will be trapped within the subtropical gyre. In contrast, for the

deeper depths with 2He < H,, all waves penetrate southward. (Here Hc 1 220 meters for a model

ocean with the width of the Pacific, and Hc 140 meters for the width of the Atlantic.)

In the second part of the chapter, the breaking of planetary waves are discussed. We first

discussed the free wave breaking. It is found that downwelling breaking occurs for an interface in

the upper model ocean (h < 0.5H) while upwelling breaking takes place in the deeper model ocean

(h > 0.5H). All breaking fronts tilt northeast-southwest (/3 dispersion ). The occurrence of the

breaking (or the first breaking time) is mainly determined by the speed of the vertical displacement

while the strength of the breaking front depends heavily on the amplitude of the disturbance. The

intensity of a breaking front or the accompanying thermal wind jet is the same everywhere along

the front. For annual and interannual variations along the eastern boundary, breaking can take

place within a basin of a realistic width.

Then, the breaking under an Ekman pumping is considered. It is found that the planetary

wave breaking is affected significantly by an Ekman pumping and the associated mean flow. In the

presence of an Ekman pumping, downwelling breaking, which is caused by an eastern boundary

downwelling, is suppressed and the breaking time is delayed; upwelling breaking, which is caused by

an eastern boundary upwelling, is enhanced and their times are shortened. The breaking of annual
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and interannual disturbances will be significantly altered. In particularly, downwelling breaking

will not occur except for interfaces near the surface.

The breaking times and positions are mainly determined by the maximum vertical perturbation

speed while the intensity of the breaking front mainly depends on the amplitude of the perturbation.

The intensity of a breaking front increases with the amplitude of the forcing, but decreases with

the distance from the eastern boundary. The position of breaking fronts are shortened significantly

by the two-dimensional mean flow in the northern part. On the other hand, the orientation of

a breaking front is overall consistent with the P dispersion tendency. (This is not valid near the

southern boundary of a subtropical gyre because a uniform Ekman pumping is used in section 4).

Thus, the intensity of a front becomes stronger towards the north.

One should be cautious in applying the theory here to a continuously stratified thermocline.

This because we are not sure what in a continuous model an interface in our two-layer model exactly

corresponds to (see section 6 of chapter 2).
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A Long Rossby Waves in a Two-layer PG Model

In this appendix, we derive the Rossby wave group velocity (2.6) near the southern boundary of a

subtropical gyre in the presence of zonal and meridional variations of the mean thermocline. In a

two-layer model, the governing equations are

(a + vi. V)u - fv 1 = -Pl, (A.la)

(at + vti V)v + ful = -Ply, (A.lb)

Othl + V (vJhl) = -we,, (A.lc)

(1t + V .V)u 2 - f 2 = -pz, (A.ld)

(at + V V)v 2 + fu 2  = -P2y, (A.le)

Oth 2 + V (vh2) = 0. (A.lf)

Here,

hi + h2 = H = constant, pi - P2 = - 7 h l , (A.lg)

where a flat bottom is adopted and - is the reduced gravity. After neglecting momentum advection,

the LPS solution is derived from the steady form of (A.1). The upper layer satisfies

fV = Pi, fUl = -Ply, V (VIH 1 ) = -we, (A.2a)

where upper case letters are used for the steady basic state. In the vicinity of the southern boundary

of a subtropical gyre, a shadow zone prevails and the lower layer basic state is motionless. Thus

U2 =V 2 =0, H +H 2 =H, P1 -P 2 = -7H 1. (A.2b)

Small perturbations on this basic state are h* = h, - H,, n = 1, 2 where h < H,. Omitting

the stars for the perturbations, the linearized equations for the disturbances are then derived from

(A.1) and (A.2) as

Ditul + viV .f - fv 1 = -P1,, (A.3a)

Dltvl + tJV - i + ful = -ply, (A.3b)
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D u h l + V ( JH 1 ) = hlwe/H1, (A.3c)

D2t2 - f2 = -P2x, (A.3d)

D 2tv 2 + fu2 = -P2y, (A.3e)

D 2th2 + V-(v'H 2 ) = 0. (A.3f)

where

Dut (t + Vt -V), D2t = Ot, and hi + h 2 = 0, p - p2 = -7 hl . (A.3g)

Also, we have used V - V, = w,/H 1 in (A.3c). Cross-differentiating (A.3d,e), we obtain

Ottu2 + f2u2 = -P2t - fP2y, (A.4a)

OttV2 + f 2v 2 = P2x - P2yt (A.4b)

For lower frequencies concerned here, the ratio of the first term on the RHS to the second term is

(wlf)2 < 1. (A.5)

Therefore, the first terms in (A.4a,b) are neglected to yield

f 2u 2 = -P2t - fP2y, (A.6a)

f 2v2 = P2 - P2yt (A.6b)

This approximation is called geostrophic momentum approximation by Cheng and Philander (1989)

in the context of an one-and-a-half-layer model. The upper layer is more complicated due to the

mean flow. For the planetary scale basic state, we have

f > o U1 , 8XV 1. (A.7)

In addition, we assume that the spatial scales of waves are much shorter than the basic state, which

is necessary for WKB wave theory. Thus,

&U1  &V Lujav <, 1. (A.8)
Ula V1 ,& Lmean
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This assumption is valid for planetary waves below decadal periods. In the light of (A.7) and (A.8),

the upper layer perturbation momentum equations (A.3a,b) can be rewritten as

Ditul - fvl = -px, (A.9a)

Dltvl + ful = -Ply. (A.9b)

Similar to the lower layer in (A.6), for disturbances with low frequencies and large scales

(w/f)2 , (u/fL) <K 1, (A.10)

The geostrophic momentum approximation simplifies (A.9) as

f 2 u1 = -Dtpi. - fPly, (A.lla)

f v1 = p- - Dltply (A.11b)

Substituting (A.6) into (A.3f), and substituting (A.11) into (A.3c), we obtain the equations for

the upper and lower layer respectively

Dnth, + J[p, 1/Q] - V . [DtVPn/fQn] = sn, n = 1,2, (A.12)

where sl = hlwe/H, s 2 = 0 and Q, = f/H, represents the basic state potential vorticity in

each layer. Furthermore, the WKB assumption in (A.8) ensures that the third term on the LHS in

(A.12) can be approximated as

V - [DtVPn/ fQ,] DnV2pn/ Qn. (A.13)

On the other hand, near the southern boundary,

V - O, ,H1 0o, we , O. (A.14)

With the aid of (A.13),(A.14) and (A.3g), the equations in (A.12) reduce to a closed set in the

following

(Ot + UOz)hi = -plx(1/Q1), - (1Ot + UI&=)pl/(1fQ1), (A.15a)

Othl + 7(1/Q2 )hz + 7V 2 hltl(fQ2) = plx(1/Q 2 )y + V 2plt/(fQ2). (A.15b)
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Assuming the waves of the form (hi,pi) = (h, p)ei(kx + y-Wt) and by virtue of (A.15), the wave

speed cp = w/k satisfies:

Ac2 + Bcp + C = 0, c = w/k, (A.16a)

A = K 2 -(A1 + A2 ) + K2 A1 A21]/ 7 , (A.16b)

B = -[(1/Ql), + (1/Q2),] + K2 [Aj(1/Q 2), + A2 (1/Ql)y

+ U1 (A1 + A2 )/ 7 ] - U1A 1A2K 4 / 7 , (A.16c)

C = [y(1/Q1)y + U1](1/Q 2 )y - K 2'AiU(1/Q 2 )y. (A.16d)

where K 2 = k 2 + 12 and An = 7/(fQ,) = yH,/ f2. Therefore, the dispersion relation is

(cp) + = [-B + V/B2 - 4AC]/(2A). (A.17)

At the long wave limit K 2 -+ 0, (A.16) indicates that B > 0. Thus, "+" sign is adopted for

baroclinic mode which is finite at the long wave limit. For waves much longer than the deformation

radius (long Rossby waves),

K 2 (A1 + A2 ) < 1. (A.18)

tedious algebraic manipulations give rise to the dispersion relation approximated to the second

order as

Cp = Cgo + K 2 c 1l + O{[K 2 (A + A2)]2 }, (A.19a)

where

Cgo = us - 37 H 1 (1 - l)/f2, UB = HIU1/H, (A.19b)
H

Cgl = AiA2 p(1/Ql),(1/Q 2 ),/[(1/Q 1 + 1/Q2)Y] 2 . (A.19c)

Here, Cgo gives the non-dispersive part of the wave speed while c. 1 the dispersive part. For long

waves, the dispersion effect is weak and thus appears in the second order. However, it is this weak

dispersion that causes the meridional group velocity of long Rossby waves.

In the QG limit where the depths Hi, of the basic state have small deviations, the potential

vorticities of the basic state is approximated as Qn= H- f- [1 - f ]. Accordingly,
H. (l+ -l Y)  

I"

Q,, ~ [P + -]. It can be shown that (A.19) approaches the long wave limit ( to the second

order ) directly derived from QG equation (e.q. section 11 of chapter 7 in Pedlosky, 1986).
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B Propagation of Eastern Boundary Wave Fronts Near the

Southern Boundary

As seen in equation (2.6a), the wave front orientation near the southern boundary is essential for

the wave penetration across the boundary. For convenience, we will study the eastern boundary

wave front (1.6), which is generated by a spin-up (or spin-down). The results also apply to more

general cases as discussed below (1.6).

Examples

First, we present some examples of wave front (1.6) in Fig.5.10, where the Ekman pumping is

taken to be

we(f) = We(1 - f)(f - fa). (B.1)

with the maximum w,(f) = -1 achieved at the middle of the gyre f = 0.5(f, + f.). The eastern

boundary interface first linearly deepens towards the south and then remains flat

he( f)(fo- f) if fo _ f _ (fo + f,)/2 (B.2)
H, if (fo + f,)/2 > f > f,

In Fig.5.10a,b and c, H, is respectively 0, 0.1 and 0.2. Near the southern boundary, the wave front

orientation varies and differs from each. In the shallowest case of Fig.5.10a, an anti-3 dispersion

tendency emerges at the beginning and intensifies as the front propagates westward. If the depth

is slightly deeper, Fig.5.10b shows that a P dispersion tendency initially appears and then rapidly

changes to an anti-P dispersion. Afterwards, the anti-/3 dispersion intensifies similar to that in

Fig.5.10a. If the layer depth is even deeper, Fig.5.10c shows that the initial 3 dispersion orientation

persists for a long time before it changes to an anti-O tendency. These figures suggest that a wave

front initially exhibits a / dispersion orientation and later reverses the tendency. If the layer depth

is very shallow, the time for reversing tendency is very short and the position is very close to the

eastern boundary. On the contrary, as the layer depth gets deeper, the time for reversing tendency

is delayed and the position is further away from the eastern boundary.

The reversing time and position can be estimated as follows. Since we are concentrated on the

southern boundary, he is taken to be flat such that he = H,. The linear Ekman pumping (2.9) is
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Figure 5.10: Wave front propagation in the presence of different eastern boundary condition. The parabolic
Ekman pumping is w,(f) = We(f, - f)(f - f,), where the maximum Ekman pumping is -1, f, = 1 and
f, = 0.3. All left panels are wave fronts. Solid lines are eastern boundary wave fronts zF and the dashed
lines are outcrop line wave fronts fp. The right panels are profiles of barotropic zonal flow us. a) Singular
eastern boundary condition h, = H = 0. At the southern boundary, the wave front is stagnant. An anti-P
dispersion tendency occurs from the beginning. b)H, = 0.1. c)H, = 0.2. In b) and c), the eastern boundary
condition (2.4) is used. The wave fronts first exhibit a 3-dispersion tendency. Later, an anti-a dispersion
tendency emerges. Western boundaries are set at z, = -2.
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used. The fi characteristic solution (the inverse of j in (1.3b)) is derived as

fi(f, s) = f,/[1 - (1 - fe-W'a*.]. (B.3)f

Substituting these functions into (1.6) and differentiating it yields the slope of the wave front at f,

as

OfXF lf=f.= -X[e-f-wt - 1 - H,(3 + e-fwet)],

where X = -(e-fWet - 1)(1 - Hs)/(2Wef:) > 0. Initially -f,Wet < 1, the slope indicates that

BO9 F If=f 4H, > 0. This is the initial P dispersion tendency. Later on, when -f,Wet -- oo, it

follows that Ofzf If=f - -oo, which is the ultimate strong anti-/ dispersion. The reversing time

occurs when Of XF I =f,= 0, at

- 1 ( 3H, + 1) (B.4a)
treverse = In . (B.4a)

Inserting (B.4a), (B.3) and (2.9) into (1.6) yields the position of the wave front at the reversing

time as

rever,,, = XF(ft,eve,,) If-f.= 4H2/(f3 We). (B.4b)

In particular, if H, = 0, we have tre,,verse = e,,vere = 0, i.e. the anti-/3 dispersion starts from the

beginning. 1

Physical mechanism for the evolution of the wave front

Physically, the x equation (1.2d)

dz h(1 - h) (B5)

ds f2

indicates that the propagation of a wave front is determined by the competition among three

mechanisms: the linear p dispersion (f- 2 ), the stratification (h(1 - h)) and the zonal barotropic

flow (UB). Here we only concentrate on the vicinity of the southern boundary.

First, the linear p dispersion always builds up a/3 dispersion tendency. Second, the meridional

variation of stratification induces an anti-/ dispersion on the part of interface in the upper half

SIn fact, when h, = 0, we can prove from (1.2) that dz/ds' I f = f.,z = 0 = 0 for n = 0, 1, 2.... Therefore. zp is
stagnant at. the southern boundary. This always gives an anti-3 dispersion tendency because away from the southern
boundary d'z/ds' = w, I.=o /f 2 < 0 although dzldsjmidz = 0 = 0.
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ocean (h < 0.5), but does the opposite for the deeper half ocean. This is because, towards the

southern boundary, an interface shoals (h1 > 0) due to the decreased Ekman pumping ( assuming

that he is flat there). Since Ofh(1 - h) = (1 - 2h)hf, it follows that for interfaces in the upper

half ocean, the induced equivalent depth h(1 - h) and in turn the Rossby wave speed decreases

southward. The opposite occurs for the deeper half ocean (h > 0.5). Last, the barotropic zonal

velocity is also able to change the wave front orientation through the shear. For a subtropical gyre,

the zonal velocity usually achieves its maximum westward velocity north of the southern boundary

and therefore possesses a cyclonic shear on the southern boundary. One example of UB profile has

been presented on the right panels of Fig.5.10a,b,c. This cyclonic shear near the southern boundary

is in favor of an anti-O dispersion.

Initially, (near x = 0), both the stratification variation and UB are weak, for non-vanishing H,,

the wave front exhibits the linear P dispersion effect. This can be clearly seen in (B.5) because

dz he (1- h,)

ds f2

Subsequently, both the meridional variation of stratification and the velocity shear grow rapidly in

x and become the two dominant mechanisms for the wave front. ( It can be easily proven from the

solution (1.3) that I hf 1, I ua I oo as x - -oo.) For h < 0.5, the two effects enhances each other

and quickly overcome the initial linear P dispersion effect to produce a strong anti- dispersion.

For h > 0.5, however, these two effects are opposite. It turns out now that the shear effect is

slightly larger than the stratification effect and therefore suppresses the initial linear / dispersion

to slowly produce a weak anti-/3 dispersion. In short, initially a wave front exhibits a / dispersion

due to the linear p dispersion C - 1/f 2. Later, the zonal variation of the thermocline structure

and mean flow grows to overcome the linear p dispersion and eventually reverse the tendency to

an anti-P dispersion.

Finally, one may notice that throughout the above study, we have assumed a meridional eastern

boundary and a flat isopycnal he near the southern boundary. However, both assumptions may

not be true. A northwest-southeast eastern boundary, as in the real North Pacific, or a southward

shallowing eastern boundary isopycnal depth will enhance the anti-P3 dispersion tendency.
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Chapter 6
Conclusions

1 Summary and Discussion

In this thesis, we have investigated some basic aspects of a time-dependent ventilated thermocline.

The variability considered here is produced by three external forcings: the wind stress (chapter 3),

the surface heat flux (chapter 4) and the upwelling along the eastern boundary (chapter 5). The

spatial scale that we are interested in is the basin scale while the time scale extends from years to

decades.

A two-layer planetary geostrophic model is developed in chapter 2 to simulate a thermocline.

The model includes some novel physics which have not been previously fully explored. Above all,

it captures the essential feature of ventilation and it is able to account for a time-varying surface

temperature. In addition, the model considers the two-dimensional mean flow and thermocline

structure; it includes the interaction between the barotropic and baroclinic flows as well as nonlinear

Rossby waves; it can also be used to study both annual and decadal forcings. The governing

equation is a quasi-linear equation, whose solution can be obtained analytically.

In chapter 3, the effect of a varying wind stress is investigated. Through the study of simple

spin-up and spin-down cases, we find that in a shadow zone, the deepening due to the Ekman

pumping is mainly balanced by the shallowing due to the westward propagation of planetary waves

from the eastern boundary. This is qualitatively in accordance with previous studies. But, in a

ventilated zone, the cold advection of subducted water plays the essential role in opposing the

Ekman pumping. The very different dynamics also results in very different thermocline variability

between the two zones. After a change of Ekman pumping, in the shadow zone, since the baroclinic

Rossby wave responds to a changing Ekman pumping slowly (in years to decades), an imbalance

emerges between the Rossby wave term and the Ekman pumping, which in turn excites a strong

local thermocline variability. However, in the ventilated zone, both the advection and the Ekman
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pumping vary rapidly after a barotropic process (about one week) to reach a new steady balance,

leaving little thermocline variability.

The evolution of the thermocline also exhibits interesting features. For instance, in a shadow

zone, the lower layer is no longer motionless. Instead, when the Ekman pumping intensifies, the

lower layer water moves southward in the shadow zone because of the compression of planetary

vortex tubes by the anomalous downward Ekman pumping. The associated lower layer circulation

consists solely of an anticyclonic gyre. In contrast, when the Ekman pumping weakens, the lower

layer water flows towards the north in the shadow zone due to the stretching of planetary vortex

tubes by the anomalous upward Ekman pumping. The associated circulation is therefore composed

of two counter-rotating gyres with an anticyclonic gyre to the north and a cyclonic gyre to the

south.

Furthermore, for a strongly variable Ekman pumping (with the perturbation comparable to the

mean), it is somewhat surprising to find that linear solutions are able to approximate the fully

nonlinear solution well, particularly for annual forcings. However, the linear solution is strongly

influenced by the basic thermocline structure and circulation. The divergent group velocity field,

which is mainly caused by the divergent Sverdrup flow field in a subtropical gyre, produces a decay

effect on disturbances. The mean thermocline structure also strongly affects the relative importance

of the local Ekman pumping and remote Rossby waves. In a shadow zone, local response dominates

for a shallow interface, because the effective Ekman pumping is strong and the Rossby wave energy

flux is weak. On the contrary, the remote Rossby wave dominates for a deep interface, because the

effective Ekman pumping diminishes while the Sverdrup flow still supports a finite Rossby wave

energy flux.

In a shadow zone, with a strong decadal forcing, the nonlinearity becomes important, particu-

larly in the western part. The time-mean thermocline which results, becomes shallower than the

steady thermocline under the time-mean Ekman pumping. Rather than being zero, now the mean

flow is southward. This mean thermocline structure and circulation are mainly caused by nonlinear

Rossby waves. For a strong annual forcing, the mean flow in the shadow zone exhibits micro gyres
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due to the interaction between the barotropic and baroclinic flows, as found by Dewar (1989). But,

the magnitude is very weak.

Chapter 4 investigates the effect on the permanent thermocline by a periodically varying surface

temperature or outcrop line, which is presumably caused by a varying surface heat flux. The two

layer model is modified by adding an (essentially passive) mixed layer above. The outcrop line

is specified during the whole cycle while the mixed layer depth can only be specified during part

of the cycle. Some important results are found. First of all, opposite to a surface wind stress,

a surface buoyancy flux causes strong variability in the ventilated zone through subducted water

while it affects the shadow zone very little.

Secondly, there are two types of buoyancy forced solutions: the non-entrainment solution and

entrainment solution. When the outcrop line moves slowly (always less fast than the southward

particles) during a strong cooling season, the solutions are non-entrainment solutions. For these

solutions, the surface heat flux is mainly balanced by the horizontal advection in the permanent

thermocline. The mixed layer depth varies very little such that the mixed layer is never entrained.

The time-mean profile is close to the steady thermocline with the time-mean outcrop line. When

the outcrop line moves southward faster than the particles during part of a period, the solutions

become gravitationally unstable near the outcrop line if the mixed layer depth remains unchanged.

To overcome the instability, by deepening the mixed layer depth properly, a convective scheme is

developed to entrain the unstable water into the mixed layer and assure the stablity of solutions.

The solutions obtained are therefore entrainment solutions. Now, deep vertical convection must

occur, because the horizontal advection in the permanent thermocline is no longer strong enough

to balance the surface cooling. The mixed layer penetrates rapidly such that water mass is en-

trained into the mixed layer through the bottom. The time-mean thermocline resembles the steady

thermocline with the early spring mixed layer, which supports the suggestion of Stommel (1979).

According to subduction processes, one period is divided into three stages: the seasonally

subducting stage, the entraining stage and the subducting stage. Water subducted during the sea-

sonally subducting stage will be re-entrained in the following entraining stage to form the seasonal

thermocline. This water has a high potential vorticity because it is formed during the heating
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season and therefore possesses strong stratification. The water subducted during the subducting

stage will never be re-entrained into the mixed layer and therefore establishes the permanent ther-

mocline. The water has a low potential vorticity which has been built up previously in the mixed

layer by mixing (see Woods, 1985). In particular, if the outcrop line moves slowly to force a nonen-

trainment solution, only the subducting stage exists. Therefore, water always subducts to influence

the permanent thermocline.

The local variability in the permanent thermocline is caused by the potential vorticity anomaly

of the waters subducted during a subducting stage. With a harmonic migration of the outcrop line,

the local interface exhibits a rapid rise and a slow descent, implying a rapid build-up and a slow

destruction of the stratification. The variability is most efficiently produced by decadal forcings.

At annual frequency, there is very little water subducted into the permanent thermocline each year,

causing weak variability.

Finally, in chapter 5, two issues about the waves radiating from the eastern boundary have

been investigated. The first is the penetration of planetary waves across the southern boundary of

a subtropical gyre; the second mainly concerns with the breaking of planetary waves in the presence

of an Ekman pumping and the associated two-dimensional mean flow.

For the first issue, we find that the wave penetration across the southern boundary of a sub-

tropical gyre is substantially changed by the zonal variation of the thermocline structure. First,

we show that the meridional group velocity at the southern boundary is determined mainly by

the effective p and wave orientation. Then, we see that the zonal variation of the basic thermo-

cline could substantially alter both the effective 5 and the wave orientation. The result is that,

across a southern boundary, the wave penetration differs for interfaces at different depths. For

an interface near the surface with the interface depth H, along the eastern boundary satisfying

0 < H, < 0.5H,, part of the waves penetrate into the equatorial region. Here H, is a critical depth

determined mainly by the width of the basin and the meridional gradient of the Ekman pumping

along the southern boundary. For the middle depths of 0.5H, < H, < H,, most waves will be

trapped within the subtropical gyre. In contrast, for the deeper depths with 2H, < H,, all waves

penetrate southward. (Here H, - 220 meters for a model ocean with the width of the Pacific, and

202



H, 1 140 meters for the width of the Atlantic.) In the deep interface case, one may think that the

thermocline structure is distorted by the surface Ekman pumping very little. Therefore, the wave

propagation is similar to the case without a mean thermocline (Schopf et. al, 1981). However, the

shallow and middle depths cases are not intuitive.

For the second issue, the breaking of planetary waves are discussed with emphasis on the effect of

Ekman pumping and the associated flow on breaking. It is found that the planetary wave breaking

is affected significantly by an Ekman pumping and the associated mean flow. In the presence of an

Ekman pumping, downwelling breaking is suppressed and the breaking time is delayed; upwelling

breaking is enhanced and their times are shortened. The breaking of annual and interannual

disturbances will be significantly altered. In particular, downwelling breaking will not occur except

for interfaces near the surface. The breaking times and positions are mainly determined by the

maximum vertical perturbation speed while the intensity of the breaking front mainly depends on

the amplitude of the perturbation. The intensity of a breaking front increases with the amplitude

of the forcing, but decreases with the distance from the eastern boundary. The position of breaking

fronts are shortened significantly by the two-dimensional mean flow in the northern part. On the

other hand, the orientation of a breaking front is consistent overall with the ~ dispersion tendency

(away from the southern boundary of a subtropical gyre).

In short, the variable Ekman pumping dominates the variability in the shadow zone, where the

eastern boundary Rossby waves balances the local Ekman pumping to achieve the dynamic balance.

On the other hand, the variable surface heat flux dominates the variability in the ventilated zone,

where the advection due to the subducted water is a major mechanism to balance the surface

heat flux. With a strong cooling, the vertical convection also becomes crucial. In addition, for a

variable Ekman pumping, the variability is mainly linear with the disturbance being substantially

influenced by the basic thermocline structure. However, for a variable surface temperature or

eastern boundary upwelling (or downwelling), the response may present salient nonlinear features.
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2 Relevance to Observations

So far, the observations are too poor to allow a comprehensive comparison with the theory here.

Nevertheless, some observations available are consistent with the theory.

Thermocline variability in the northern part of a subtropical gyre

Analyses on observations have indicated that the annual response in the northern part of the

subtropical gyres in both the North Pacific and the North Atlantic is mainly barotropic while in

the southern part the response is mainly baroclinic (Gill and Niiler,1973). Later, observations

(Price and Magaard, 1980;1986; White and Saur, 1983) found no signals and very weak signals

of interannual baroclinic Rossby waves in the northern part of the subtropic gyre in the North

Pacific and the North Atlantic, respectively. In contrast, in the southern parts of the subtropical

gyres in both oceans, clear baroclinic Rossby wave signals are identified at annual and interannual

frequencies.

These observations are consistent with the theory in chapter 3 about the effect of a varying

Ekman pumping. The thermocline in the northern part of a subtropical gyre is mainly occupied by

a ventilated zone, where the advection from the subducted water tends to balance the local Ekman

pumping. As a result, little baroclinic Rossby wave exists. On the contrary, the thermocline in the

southern part of a subtropical gyre is mostly occupied by a shadow zone, where advection plays little

role. Baroclinic Rossby waves and local Ekman pumping dominate the response. Consequently, the

activity of baroclinic waves is strong. Therefore, the different dynamic balance between a ventilated

zone and a shadow zone, as found in chapter 3, may offer an explanation for the lack of baroclinic

signals in the northern parts of the subtropical gyres. Furthermore, in chapter 4 which considers the

effect of a varying surface temperature, we see that at interannual time scales, the variable surface

heat flux is able to force strong baroclinic variability in the ventilated zone through the advection

of the subducted waters from the mixed layer. This suggests that the variability in the northern

part of a subtropical gyre may be forced primarily by the surface heat flux through subduction,

rather than by the local Ekman pumping and Rossby waves.
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If should be noticed that the / dispersion effect may also be a mechanism for the lack of

baroclinic signals in the northern part of a subtropical gyre. This is so because the 3 dispersion

effect make eastern boundary Rossby waves radiate southward. It seems to me that for annual

waves, the 3 dispersion effect is probably important, becasue of the relatively short wave length.

For interannual or decadal waves, the wave length is long. The scaling analysis in section 2 of

chapter 5 ( see Eq. (2.5)) shows that in a subtropical gyre, the southward advection may be more

important than the effect of 3 dispersion. Therefore, our results here seem to be applicable. In

other words, now the southward advection is the main mechanism for the lack of baroclinic signals

in the northern part of a subtropical gyre. Mode water variability

The mode water is believed to be formed mainly by subduction in response to strong surface

cooling in the northwestern part of a subtropical gyre (McCartney, 1982). Therefore, it is a good

example to test the theory about the effect of surface heat flux. Talley and Raymer (1982) found

that the eighteen degree mode water in the North Atlantic does have small pulses of potential

vorticity at the annual period. In addition, the mode water has been observed to be not very

sensitive to the strong surface annual heat flux variation. Relatively significant changes arise at

interannual time scales. These observations are in accordance with the theory in chapter 4.

The frontal structures

There have been some observations of planetary frontal structures. The Subtropical Front is

trapped near the surface and is accompanied by a northward baroclinic jet. The front found by

McWilliams et. al (1983) extends very deep and is accompanied by a southward baroclinic jet. These

are consistent with our theory in chapter 5. A downwelling breaking front, which is accompanied

by a northward thermal wind jet, is trapped near the surface. A upwelling breaking front, which

is accompanied by a southward thermal wind jet, can extend very deep. All observed fronts have

slopes consistent with 3 dispersion tendency i.e. northeast-southwest. Finally, one should note

that without a statistically steady eastern boundary (or localized wind or diabatic ) forcing, it

is unlikely that the temporal breaking phenomena discussed here are mainly responsible for the

observed statistically stationary fronts such as the Subtropical Front. However, it is possible that

some temporal behavior and finer structures observed within these mean fronts are produced by
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the breaking of (more general) planetary waves which are caused not only by the eastern boundary

upwelling or downwelling but also by local wind or buoyancy flux. The breaking can be caused

mainly by the nonlinear steepening of a Rossby wave, which propagates in the presence of a smooth

thermocline, as discussed in chapter 5. It is also possible that a breaking is produced by another

mechanism which is not investigated in the thesis. That is the effect on nonlinear Rossby waves

by the mean thermocline structure associated with a mean frontal structure (which is formed by

some other mechanisms.) In this case, the breaking occurs because the rapid spatial variation of

the basic thermocline may produce a strong variation of local Rossby wave speed within the mean

front, which in turn causes breaking of the nonlinear Rossby waves.

3 Future Work

Much work is needed for a better understanding of the time-varying thermocline. One of the

most important is to couple an active mixed layer with the permanent thermocline. This work is

difficult but challenging because the mixed layer dynamics is not fully understood, particularly at

interannual and decadal climate scales.

In addition, a two-and-a-half-layer thermocline model is particularly attractive to eliminate

artificial features due to the flat bottom in both the wind forcing and surface buoyancy forcing

cases.

It has been emphasized in the thesis that the thermocline variability differs dramatically between

a shadow zone and a ventilated zone. In a shadow zone, Ekman pumping and Rossby waves

dominate, while in a ventilated zone, surface buoyancy flux and advection dominate. It is important

to test this conclusion in the presence of a more complex thermocline structure. This test is

difficult for observations. One reason is that it is diffcult to separate the variability caused by the

Ekman pumping from that caused by the surface buoyancy flux. (There may be other mechanisms.)

However, a general circulation model seems to be very proper for the test. We can carry experiments

by varying only the Ekman pumping to test the variability caused by the Ekman pumping. In this

case, the theory here says that the thermocline variability in the shadow zone should be stronger

than in the ventilated zone. We can also vary only the surface buoyancy flux to test the variability
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produced by the surface buoyancy flux. In this case, the theory here suggests that the variability is

stronger in a ventilated zone than in a shadow zone. In particular, a coarse grid model is perhaps

enough because our theory does not take into account the effect of eddies and instabilities.
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