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ABSTRACT

A detailed study of the flow regimes and internal tempera-

ture structure at 16 points in the convecting fluid in a

rotating annulus of liquid with a gap width of 15.28 cm. has

been made. The results have been analyzed with respect to the

position of the regimes of flow on a 7T4 versus 15 diagram and

the internal parameters of the fluid determined from the

temperature structure. The primary emphasis of the study was

placed on the temperature structure of the regular wave regime.

The results indicate that the value of 7 at the

transition from the symmetric flow to the regular wave regime

is 3.746 1 0.360 for 2.750 x 107 4 IT 5 4 9.721 x 107. The

value of has a slight tendency to increase with increasing

T5. The vacillating flow did not occur until T 5 was greater

than 1.737 x 109,and the irregular flow did not occur until

TV5 was greater than 7.259 x 109.

The vertical stability of the fluid increases with

increasing rotation rate in the symmetric regime and remains

almost constant within the wave regime. The value of the Sady

number exceeds the critical value for the observed wave number

at several experimental points in the wave regime and always at

the transition between the symmetric regime and the wave regime.

The observed value of the wave number is seldom the wave number

with the theoretical maximum growth rate as determined from

Eady's theory.

The radial available potential energy of the fluid

increases with increasing rotation rate in the symmetric,



vacillating and irregular regimes. This value decreases with

increasing rotation rate in the wave regimewhile the value of

the zonal available potential energy increases. The total

available potential energy increases with increasing rotation

rate in the symmetric, vacillating and irregular regimes,while

it is almost constant within the wave regime.

The maximum wave amplitude in the regular wave regime

generally occurs in the upper half of the fluid,while the

maximum amplitude of the disturbance in the vacillating and

irregular regime is more likely to occur in the lower half of

the fluid. The radially averaged phase of the regular waves in

the upper half of the fluid leads that in the lower halfand

the vertical difference in phase tends to decrease with increasing

rotation rate. The phase period of the disturbance increases

in the wave regime and increases more rapidly in the vacillating

regime with increasing rotation rate. The periods of the

disturbance in the irregular regime are more characteristic of

that in the wave regime than in the vacillating regime except

that the disturbance has at least two distinct and significant

components.
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CHAPTER I

INTRODUCTION

The annulus experiments deal with the study of the thermal

convection occurring in a fluid in the annular region between

two concentric uniformly rotating cylinders which are maintained

at different but constant temperatures. The resulting flow

exhibits at least four distinct patterns whose presence depends

on the rotation rate of the apparatus and the impressed tempera-

ture difference. These flow patterns are indicated in Figure 1.

The flow is axisymmetric for low impressed temperature differences

and/or low rotation rates. At higher rotation rates a regular

wave pattern appears in the form of a jet with a large cross

stream temperature gradient which progresses from the inner to

the outer cylinder with a wave numberm. The wave number tends

to increase with increasing rotation rate. Vacillation appears

at higher rotation rates as a quasi-periodic oscillation in

either the wave amplitude or wave shape. At even higher rotation

rates the flow appears to be nonperiodic or irregular.

Previous experimental and theoretical results have indicated

that the regular wave regime is probably due to the baroclinic

instability of the basic axisymmetric flow. This type of

instability was first discussed in relation to the long waves

and cyclones in the atmosphere and the production of the kinetic

energy of the atmospheric motions, Charney (1948) and Eady

(1949). RecentlySchulman (1967) has discussed the problem of

baroclinic instability in the mid ocean circulation. Consequently,

a quantitative study of the interior structure of the less



complex laboratory experiment could lead to some valuable insight

into the nature of these processes in the oceans and the atmos-

phere. This paper presents the results of temperature measure-

ments at 16 positions within the convecting fluid of the annulus.

The experimental apparatus, shown schematically in Figure

2, consists of two concentric cylinders of radius a, and b which

are maintained at the temperatures Ta and Tb, respectively. The

annular region thus formed is filled to a depth$ dwith a fluid c4ensi

e' kinetic viscosityV and thermal conductivity(. The apparatus

is mounted on a turntable with a variable but steady rotation

rateA. A complete list of the experimental parameters which

define the convecting fluid are listed in Table.la.oodI Tc,

Fowlis and Hide (1966) have reported results from their own

and previous experiments which indicate that the transition from

the axisymmetric flow to the regular wave regiwe is best

characterized by a plot of 77, '.1 5 .where

77 _.. ;/ 1.2

, : CaeC(4-eCT)ffor T>T4 ,, and indicates the average

value. The position of the various regimes can then be plotted

as in Figure 3. Since the present study is more concerned with

the interior structure of the fluid than with the position of

the general transition curves, it was found convenient to intro-

duce a different set of nondimensional parameters. These are

the Grashof number:

S -g- 1.3

___iYYI__IE________ YLIL~-~---t-_^II



-3-

and the Ekman number based on the horizontal length scale or

an inverse taylor number;

This choice of parameters has the advantage in that for fixed

values of T=Tj-T ,, the variation of E with respect to a change

in rotation rate is parallel' to lines of constant G. The

disadvantage is that the position of the flow regimes will not

necessarily be independent of the other parameters- of the ex-

periment as in the TT vs! 7_k-diagram. The data in this-
1

paper will generally be presented in terms of G2 *and E"

The following parameters determined by the internal structure

of the flow will also be used in this presentation.! A non-

dimensional measure of the vertical temperature difference is

given by C5.UT he-

In a similar manner, the nondimensional radial : temperature

gradient cYr is:

Uv Y~ -~ -.1 T 1.6

where the over bar indicates a volume average of the quantity

over the fluid volume not contained within the boundary layers.

Using these values, a Rossby number using the thermal wind

equation for a horizontal velocity scale, can be written as

C) _ Frii/nd~j/6~~

where dis the coefficient of thermal expansion:

_~~~~I___II__ _IXI~ _~__~ L1_ ^_~_*_ i~_ll _I ___



The Eady number or the ratio of the square of the Vais'all* Brunt

frequency to the square of the inertial period times an aspect

ratio is:

The main distinction between this work and the previous

experimental work is that the experiment was performed on an

annulus with a much larger gap width. (b-a) than used previously.

This means that the viscous boundary layers in the apparatus

are much thinner in relation to (b-a) and .consequently)the

viscous effects should be less. The second distinction is that

simultaneous temperature measurements have been made at 16

different points in the fluid throughout the range of the

experiment. The position of the experimental points are plotted

i4 a T4 versus IT5 diagram in Figure 4 and in a plot of G2 versus

E-1 in Figure 5. The range of the experiment covers 0.4662 x

104. G240.9765 x 104 and 0.0 k- E 14 0.9319 x 105, corresponding

to 2.38 A 6 ' 9.86 OC and 0.0 4XL. . 8 46 sec'l.

The results have been analyzed with respect to the tran-

sition lines at the large values of -TT, the mean temperature

structure of the flow, the amplitude and position of the wave

disturbance, the frequency content of the disturbance and the

cospectrum amplitude, coherence and phase of the disturbance.

These results indicate that:

1. The mean value of -7y at the transition between the
symmetric flow and the regular wave regime is 7f4 = 3.746
± 0.360 for 2.750 x 107 T5 :6 9.721 x 107. The value of
IT 4t has a slight but not significant tendency to increase
with increasing IT5

2. The vacillating flow did not occur in this range of

--rarap-rr-r~----a- ~I- i -~- IX~L"i~ Li--^Xnuurer^---+rtrrrix
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154 until 1T > 1.737 x 109. The irregular flow did not
occur under these conditions until Tf5 > 7.259 x 109.

3. The nondimensional vertical temperature gradient, Og ,
increases to a maximum value in the symmetric regime just
at the transition to the regular wave regime. The value of
'O-is either constant, or it decreases slightly with
increasing E- 1 in the wave regime.
4. The value of the Eady number as defined above exceeds
the maximum critical value for instability of the wave number
occuring at the transition between the symmetric regime
to the regular wave regime and also at a few selected points
within the wave regime. The observed value of the wave
number is seldom the wave number with the theoretical
maximum rate of growth as determined from Eady's theory.

5. The total available potential energy per unit volume
of the fluid increases rapidly with increasing E-1 in the
symmetric flow. This value drops discontinuously at the
transition between the symmetric regime and the regular
wave regime. It has a slight tendency to decrease within
the wave regime with increasing E-1. It increases again
with increasing E" 1 in the vacillating and irregular re-
gimes. The radial available potential energy per unit
volume behaves in the same way except within the wave
regime, where it decreases with increasing E31o The zonal
available potential energy per unit volume increases with
increasing E" I in the regular wave, vacillating, and
irregular regimes.

6. The position of the wave' disturbance occurs near the
upper surface of the fluid near the cold wall at a point
in the wave regime just beyond the transition from the
symmetric flow. This disturbance broadens and progresses
deeper into the fluid as E1 increases in this regime, For
the vacillating and irregular regime points, the disturbance
is significantly more concentrated in the lower half of the
fluid.

7. The radially averaged phase of the wave with respect to
the radially averaged phase at the mid depth of the fluid
leads in the upper half of the annulus and lags in the lower
half. The maximum phase lead of lag occurs at the mid
region of the respective layers. The vertical variation of
the radially averaged phase tends to decrease with increasing
E1 in the wave regime.

8. The phase period of the waves with respect to the
rotating annulus tends to increase in the wave regime with
increasing E' . The period of the vacillation cycle increases
rapidly with increasing E-1. The periods of oscillation in
the irregular flow are more characteristic of that in the
regular wave regime. However, the oscillations are much
less coherent,.and there is an indication that there are at
l.ast two disturbances with slightly different frequencies.

1. The amplitude and phase of the wave as used in this text
always refers to the amplitude and phase of the temperature
wave in the convecting fluid
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A major portion of the work involved in the presentation

was the design of modifications to and consequent construction

of the large 42 inch rotating annulus in the Rotating Fluid

Dynamics Laboratory. This paper presents a synopsis of previous

experimental, numerical and theoretical work related to the

annulus. The synopsis leads to a description of the apparatus

and the experimental procedure followed by a presentation and

interpretation of the results. The report is concluded with a

summary of the results and some suggestions for future work.

This work is supplemented by two appendices, the first describes

the apparatus in greater detail than presented in the main text,

and the second describes the methods of calculations employed

in obtaining the results.



Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Surface patterns of the convective flow in the
annulus. Reproduced and quoted with permission
of Prof. R. Hide ri d (" .r i,

Schematic of basic apparatus v .
Reproduced with permission of Prof. R. Hide from
Fowlis and Hide (1965).

T-fi versus rrT plot of previous experimental
points "illus rating the positions of the upper
symmetrical (A), steady waves (B), irregular (C)
and lower symmetrical (D) flow regimes in a
typical r gime diagram. I , ( gd 0/1)/
(~c.(b-a) ) and -W JL2(b-a) /?/ d (see Table
0). The heavy full lines are drawn through the
middle of the transition regions; the length of
the bar on each experimental point indicates the
width of the region, and the number(s) indicate(s)
the wave number(s) at the transition. Along each
of the heavy broken lines, the indicated wave
number occurred with maximum frequency. Each of
the diagonal full lines sloping from upper left to
lower right corresponds to a constant value of
I4T = Tb-Ta. Experimental details:-a = 3.48 cm,
b= 6.Q2 cm, d = 10.0 cm, T = 2Q.0C, " = 1.01 X
102 cm2 sec -1 , p = 0.998 gm cm-l; liquid used--
water; upper surface-- ree. l = 0.535, T 2 =
3.94, TT = 4.8 X 104 to 1.2 X 10- , T = 7.19,
f7 = 3. X 10- to 8.54 X 10 - , '1 8 = 1.1 X
106 to 3.46 X 108.,, Reproduced and quoted with
permission of Prof. R. Hide from Fowlis and Hide
(1965).

V versus Ti5 plot of the experimental points for
th s study.

G2 versus E-1 plot of the experimental points for
this study.
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(a) and (b) - symmetrical; (c), (d),(e),(f)- steady waves; (g) - vacillation; (h) - irregular

(After R. Hide, Ph.D. dissertation, 1953, Cambridge; also 1958, Philos. Trans. Royal Soc.

Lond. 250 A, 441-478).
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TABLE I a

Specification of System

Definition of Symbols

Units Definition

(1) (r, e, z)

(2)

cm, rad, cm

see

(3) g = (0, 0, -g)

(4)WA= (0, 0,L.)

(5) a, b

(6)

(7) T = T(r, e,

(8) C= (T)

(9) 19 = (T)

(10) =V(T)

(11) c = c(T)

(12) 9= (T)

(13) / = (T)

(14) T a, T b

z, t)

gm

cm sec - 2

rad sec-I
tad sec

cm, cm

cm

oC or OK

-3gm cm

cm- sec'l

cm2 sec-1

erg gm-1 (Co)l

erg cm- 1 sec-1(Co)-l

2
cm sec

OC or OK

cylindrical polar coor-
dinates of general point
P (see Figure 1)

time

acceleration of gravity;
taken as 980 cm sec

uniform angular velocity
of rotation of apparatus

a4 r/b is horizontal
extent of liquid in
convection chamber

volu e of liqui is
(b - a2)d cm; xq

temperature at point P
and time t

density of liquid at
temperature T

coefficient of viscosity
of liquid (usually
strongly dependent on T)

kinematic viscosity, j/C

specific heat of liquid
(depends only weakly on T)

thermal conductivity of
liquid (depends weakly
on T)

-l thermometric conductivity

T(r = a, a , z; t),

Symbol



Definition

(15) T oC or OK

(16) /1 T

(17) _Ze

(18) -

(19) V
(20)

(21) U

(22) '

(23) LAK

(24) La

(2 ) .

(26) )4o

(27) )CI

(28) , u

Co

gm cm
-3

gm cm

cm2 sec-1

cm2 sec 1I

erg gm-1 (CO)-1

cm2 sec -1

cm2 sec -1

erg gm-1 (Co ) i

erg cm-1 sec'1 (CO)-1

erg cm-1 sec - 1 (Co) I

erg cm-1 sec'
" (Co)'1

erg cm-1 sec - 1 (Co)1

(29) S(T) dyne cm-1

dyne am-1
dyne cm

(14) Cont.

S(T a) - S(T b)

Symbol Units

T(r = b,O , z, t); each
held substantially uniform
and constant in typical
experiment

(Ta + T b)

(T b T a )

e(T a) - <(T b )

(e (T a) + C(T b)3 /2

S(T a) + Vr(T b)3/2

K(T a ) + K(T b)/2

c(T a) + o(T b)/2

Y(T a) - (T b)

K(T a) - K(T b)

c(T a) - c(T b)

thermal conductivity of
inner cylinder

thermal conductivity of
outer cylinder

thermal conductivity of
base of convection chamber

effective thermal con-
ductivity of region in
contact with upper surface
of convecting liquid

surface tension at free
upper surface of fluid in
contact with air

(30) 6s



TABLE I b*

External Dimensionless Parameters

Measuring Independent Variables

Definition Symbol Definition

L6 /C

dC1 / -.

.. (L#16 4;)/ ;L t

Sci3e / ie -j-0L 6 -

Tx<> / c,'
TsT

AT/ -

iT,'4

as)

41S /- (.Tb t,
xc~m s

.Tables la and Ib were reproduced with permission of R. Hide,

from Fowlis and Hide (1965).

Symbol

.T

TT2

iT7

,~;_ ~. __I~,_ ~_~~_ ___ _ _ ~_~ ~ -L.~L _ ___

1712

41 ;I (i -Qjp -L

/ We

C T ~~ ~tc~
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CHAPTER II

REVIEW OF PREVIOUS WORK

Previous experimental results.

The transition from the upper symmetrical regime (A), Figure

3,to the regular wave regime (B), Figure 3, is generally quite

well defined. Hide (1953, 1958) found that in the range of 106 e_

1T5 1.3 x 107 the critical value of IT4 is TT = 1.58 ± 0.05
(standard error) where the flow was always symmetric for'T4 T ;
1T4*. Subsequent work by Smith (1958), Hide (1953) and Fowlis

and Hide (1965) indicate that ? varies rapidly with -T5 for

1.85 ± 0.08 x lo05L/ F5  106 and that the flow is always symmetric

for all values of 7TT 1* whereIT = 1.85 ± 0.08 x 105

(standard error). Lambert and Snyder (1966) have further found

tpat when the aspect ratio iT2 = d/& -a is varied over the range

2 L 2FZ-27 the critical value of T4 also depends slightly onT% 2

The lower transition from the symmetrical regime (D), Figure

3, to the wave regime (B) was first discovered with very low

heating rates by Fultz, et al. (1959). Fowlis and Hide (1965)

have since found that this transition for 15 > 2115 obeys the

equation "

Tr, TT[ 1 - t.o 0.o'-G) Lo+0C (, ' ) 0 .30

(standard errors)

The wave numbers Ma, Mc, and Md at the transition from the

regime A. to B,C to B, and D to B have been noted by Hide

(1953, 1958), Fultz, et al. (1959), and Fowlis and Hide (1965).

These results .indicated that the wave number is not a unique

function of the non-dimensional parameters. However, there does
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exist a value of- 4(m) for which M is the most likely wave

number. The variations of ' 4 (m) have been stated succinctly

by Fowlis and Hide (1965) and appear below.

"Conclusion 4. TO4(m) decreases with increasing m, the
variation with IT of the probability of m waves occurring
being roughly syietrical about TF4 = T 4(m).

WhenIT exceeds 2TVj, -,T (m) is independent of 1T5
except ierhaps at thd larg st values of m (see Fig. 3).

Conclusion 5. When T5 is less than about 2 T*, the de-
pendence of 7T ,(m) on Is evidently more coplicated
than when 7 E xceeds 27j5. (These complications have yet
to be examin d thoroughly.)

Conclusion 6. Within the limitations imposed on m by the
fact that this quantity must be an integer, the quantity

depends mainly on - 2 TT ; moreover, when WT2Tr 5 exceeds
about 3 x 100 this depe9dence is weak, CrA having a vague of.
between 0.2 and 0.3. When Ir27Tf is less than 3 x 10 , cro
increases with decreasing Tr2 ~-T 5  a variation due largely,
though perhaps not entirely, to the dependence of TT4
(A,B) onTT 5 .

Conclusion 7. Except at the highest values ofJI, when a
slow increase of mc with decreasing TT4 occurs (see Fig.
3), the quantity me is independent offT j; the dependence
of mc on the other parameters of the problem may be
summarized by the statement that

is equal to about 0.7.

Conclusion 8. The quantity

depends on TF2Tc, this variation being largely associated
with the form of the transitional curve for the lower
symmetrical regime. 0)

Results of experiments designed specifically for the study

of the heat transfer indicate the following for the t.1ssed+

number N. (Bowden (1961), Hide, et al. (1961), Bowden and Eden

(1965).)
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a. N is greater for a rigid lid than for a free surface

b. N varies between 9 and 3

c. In the axisymmetric regime N decreases with increasing

-L and decreasing AT until the transition to the regular

wave regime is reached where N increases abruptly by

approximately 20%.

d. N is nearly independent of d in both the symmetric and

regular wave regimes.

e. There is no strong dependence of N on4.in the wave

regime.

Smith (1957) has made detailed temperature measurements at

two parameter points in the symmetric regime and three parameter

points in the wave regime for values of 1.49 x 106 4. 1T511l.80 x

107, T 2 = 3.28 and AT approximately 20*C. These results when

ocombined with results from four temperature probes at other

values of T4, TT5 indicate that the slope of the isotherms /Cy

is proportional toJL2/cr-AT in the symmetric regime and

proportional to AT OVa 2 in the wave regime. The vertical

temperature differences for these experiments is always greater

than the horizontal temperature difference by a factor of two

or more. Bowden and Eden (1965) indicate the same type of

temperature dependence for the symmetric regime.

The temperature structure of the side wall boundary layers

ha So been examined by Bowden and Eden (1965) and Eden and

Piacsek (1967). These measurements indicate that there is a

region with very strong horizontal temperature gradients near

each wall and as rotation increases this region concentrates



nearer to the lower part of the hot wall and the upper part of

the cold wall. This indicates that the heat source has been

lowered and the heat sink raised. Outside this region the

isotherms reverse direction forming a hump and then reverse

direction again entering the interior region, ,:. sloping up-

wards towards the cold wall. The amplitude of the hump increases

with height on the hot wall and decreases with height on the

cold wall.

Hide (1953, 1958) and Smith's (1957) results also indicate 6a+

the wave jet is a region of very strong cross stream tempera-

ture gradients with a zonal velocity which roughly satisfies the

thermal wind equation. Thus, it flows in opposite directions

at the upper and lower surfaces. The width of the stream

increases with the square root of the impressed temperature

Oifference and decreases with increased rotation Smith (1957).

Smith (1957) also noted a discontinuous phase lag of 1/3 to 1/2

the wave length between the lower and upper portion of the wave

at the mid layer of the fluid.

Detailed temperature measurements at one point in the wave

regime in a dishpan type annulus have been made by Riehl and

Fultz (1957, 1958). The results of the geostrophically computed

velocities indicate that the waves are quasi-geostrophic and

tend to carry warm water upwards and cold water down.

Related experiments using modified annulli may also increase

the understanding of these regimes. Specifically, Fultz, et al.

(1964) have imposed an independent vertical temperature difference

in an annulus and consequently, showed that the transition value of

"T4 decreases with increased vertical stability, all other factors
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being constant. Also, Lambert and Snyder (1966) have shown

that the effect of an impressed horizontal shear on the annulus

regime is to increase the stability of the symmetric flow.

Previous numerical and theoretical results.

The theoretical work has concentrated mainly on determining

the structure of the symmetric regime and the stability of this

flow with respect to small amplitude wave disturbances. In

order to facilitate a discussion of these processes the relevant

equations for the hydrodynamic flow in the annulus are presented

below. Thtsewill be followed by a discussion of the numerical

experiments and the analytic theories for the symmetric regime.

Then, a discussion of the theoretical work on the wave regime

will be presented.

The equation of motion for the flow in an annulus can be

written in cylindrical polar coordinates as:

+ + + =- + ? +(V 2V+1 ; - ) 2,2

-
LAX- 2.3

- = ~L - aT -T o))
Y.-- --L  - +- o 2,6

where O
r
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and 2 .

and u, v, and w are the components of velocity #n the j 8, nJ d

directions, respectively.

In the case of steady axisymmetric flow, the problem is

reduced to that of finding a solution to the 6 component of the

vorticity equation, the zonal momentum equation and the tem-

perature equation. The continuity equation can be satisfied

identically with the use of a stream function Y such that

Yo e

These equations are respectively:

+

Y % rr L - V T ;-.9,

where 1 *9

1 r 1

and the & component of the vorticity is:

A further simplification can be introduced when the

horizontal length scale of the annulus Le.(b - a) is much

smaller than the mean radius ? = b (b + a). The equations can
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then be written in equivalent cartesian form by letting x =

:Y- a and y = r as;

(il Z 2010S x - " Tx +Av '

17.A - ev7 =2 2.11

- T. T .2.12

where 2,

and terms of order V/Y have been neglected with respect to

terms of order /L . The stream function is now defined as;

-w= WY

These latter approximations are certainly valid in the side

wall boundary layers where / is of order 10-2 and they are

also used without a large loss in accuracy in most of the

analytical theories for the interior flow.

The numerical experiments of Piacsek (1966) and Williams

(1966) have solved the complete set of Equations 2.7, 2.8, and

2.9, for the temperature distribution, zonal velocity and stream

functions. The results also indicate the main balance in these

equations occurring in the boundary layers and the interior flow.

These studies indicate that the boundary layer thickness

tends to increase with increasing height on the warm cylinder

and decrease on the cold. They are distinguished by two regions,

one near the wall where the conduction of heat from the wall is

balanced by the vertical convection, and one further out from
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the wall where horizontal and vertical convection balance. The

isotherms leaving the warm wall rise sharply and reach a maximum

in height within the boundary layer. This forms a small hump

in the temperature structure near the wall. The amplitude of

this hump is largest at zero rotation rate and tends to increase

with height on the warm cylinder and decrease with height on

the cold cylinder. It also tends to decrease with increasing

rotation rate.

In the case of a free upper surface, Piacsek (1966) and

Williams (1966) both indicate that the upper region of fluid near

the warm wall is almost isothermal. The flow is a basic Hadley

type meridional circulation which releases potential energy by

flowing at a small angle across the isotherms. A narrow

secondary meridional circulation forms near the cold boundary

~all but tends to decrease in strength as the rotation rate and/

or temperature difference is increased. The zonal velocity has

a maximum occurring at or near the free surface near the inner

wall. The value of the zonal velocity at any height

occurs on a conical surface sloping upwards towardsthe inner

cylinder. There is a marked agsymmetric variation with depth

for both the temperature field and the meridional and zonal

velocity fields, due mainly to the fact that the free surface

cannot support the same convective mass and heat transport as

the rigid lower surface. The fields are much more symmetric:'. ,

for a rigid surface, except that at large values of T there is

still a region of isothermal fluid near the upper surface of

the warm cylinder.



Piacsek (1966) has computed the interior parameters of the

flow and found that the Rossby number of the zonal flow varied

for 0.15 to 0.30 as the rotation rate increased. OT varied

from 0.8 to 0.76 in the symmetric flow as rotation increased and

reached a value of 0.55 when the symmetric solution obtained

would probably have been unstable. cb varied from 0.06 to 0.22

in the symmetric regime as the rotation increased and reached

a value of 0.42 at the possible unstable solution.

These experiments indicate that the main balance in the

interior is between the bouyancy term and coriolis term.

Further, the meridional circulation and the heat transport

occur:' mainly in the boundary layers except for the presence of

an inertial circulation flowing upwards across the upper region

of the annulus in the case of an upper free surface. The net

result of increasing LT or decreasing JA is to increase the

meridional circulation. The Nusselt number decreases with

increasing rotation rate and is larger for the annulus with a

rigid lid.

The results at low heating rates by Williams (1966)

corresponding to the lower and middle symmetrical regimes indi-

cate that the isotherms are almost vertical in the interior.

Here, a secondary meridional cell forms near the boundary layers

and the cells are asymmetrical in ( being very slightly lower

on the warm cylinder. The interior velocity field is viscously

driven through the boundary layers and the heat transfer is

largely by conduction.

Robinson (1959) has found an analytical solution for the

flow in the lower symmetric regime with a rigid upper and lower
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surface by assuming that the temperature field is determined by

thermal conduction. Hunter (1966) has corrected this result by

carefully matching the boundary layer flux to that in the

vertical boundary layer. Hunter has also extended the results

to the case of a free upper surface and solved for the first

order correction associated with a small additional convective

temperature balance for a rigid upper and lower surface.

The horizontal boundary layers on the rigid surface are

Ekman layers with a thickness given by g = (/,-) The interior

zonal velocity has a linear vertical shear and is zero at the

midlayer~ -= . The flux through the Ekman layer is closed by

the side wall boundary layers which for two rigid surfaces are

Stewartson layers with a single structure of order El/3. The

meridional circulation occurs in the boundary layers. An

estimate for the Nusselt number when small convection effects

are considered is given as:

N - 1 = 1 0.136 a P2 2 2 d

32 d (b-a)

for d

When the upper surface is free the Ekman boundary layer

associated with it is weakened and can only support a mass flux

of order E times that occurring in the rigid surface case

(Hide 1964b). This complicates the analysis of the side wall

boundaries and they now have a double structure comparable to

the Stewartson layers of order E1/3 and E1/ 4,. As in the case

of the rigid upper surface the meridional circulation occurs

mainly in the boundary layer.



Hide (1967) has indicated how the Nusselt number and vertical

temperature contrast (proportional to O) will vary tInthe

symmetric regime. He derives the results for a free upper and

lower surface (usf/Lsf), a free upper surface and rigid lower

surface (usf/lsr) and a rigid upper and lower surface (usr/

lsr). These are considered for either a large Peclet number

(UL/) indicative of convection dominated flow as in the upper

symmetric regime3 or a small Peclet number or conduction dominated

flow as in the case of the lower symmetric regime. The method

of approach is to assume an appropriate temperature distribution

and realize that most of the convective heat transfer occurs

via the meridional circulation in the boundary layers.

Under these conditions the results for the case of both

surfaces rigid and low Peclet number predict that

and N 1 (Y/A)2

where = d
, and Y 1/8T 4 P S/ ,

and P = /)

The results for a free upper surface and rigid lower surface or

a free upper and lower surface are:

O =Y d/S

N- 1 = 2(Y// - )2

In the case of a high Peclet number with both bounding

surfaces rigid, the additional assumption is used that most of
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the heat is conducted to or from the fluid near the lower part

of the warm wall or the upper part of the cold wall, respectively.

The results indicate that a reasonable estimate of Z and N

will be:

S= 2/3 (1 (y/2)l (1 +(4/3)9 )

N = (1 - ) (1 + CY/ 2 )

These are the "agnostic" values of Cd and N recorded by Hide(' 1t (7)

determined by setting the small correction factors occurring in

the original expression to zero. Since the case for high

F)eclet numbers with an upper free surface must have some form

of inertial boundary layer to complete the circulation and

convective heat transfer, it could not be readily solved in

this manner.

McIntyre (1967) has presented a scaling analysis for the

upper symmetric regime and a similarity solution for the

boundary layers in the case of rigid upper and lower surfaces.

The scaling assumptions are that IT P, P, - and b/a are all

of order unity; P is much greater than 1, "

there are single scale thicknesses for each of the vertical and

horizontal boundaries; thermal convection is as important as

conduction in the boundary layers; and the meridional velocitiCs

in the boundary layer are at least as large as those in the

interior. The relevant equations are then Equations 2.7, 2.8,

and 2.9 with the additional assumption of the boundary layer

approximation.

Under these conditions the primary balance in the side wall

boundary layers is between the viscous torque V O~)y and the
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bouyancy torque (See Equation 2.10) g c Ty. This coupled with

the assertion that the horizontal conductive and vertical

convective heat transports must also balance, i.e.:

WT = Trr

gives a scale factor of:

gdLAT

for the side wall boundary layers. The reason for the hump in
-LJ e

the isotherms (See page 10) can be found by integrating Equation.

S& from the side wall to the edge of the boundary layer at

r = r, i.e.:

= cgL (T - T (rLJ) t

Thus, since the vertical velocity has maximum value within the

boundary layer on the warm wall, the temperature must have a

minimum value between the wall and the edge of the boundary

layer. The upper and lower boundary layers are non-divergent

Ekman layers which carry the total mass flux from the side

boundaries.

The scaling on the interior equations indicates that the

zonal velocity is determined by the thermal wind equation.

A further result of the scaling is that the meridional velocities

(u, w) in the interior are viscously controlled and are smaller

than in the boundary layers. This also means that both the
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convective and conductive transport in the heat equation are

important in the interior flow.

The solution to the side boundary layer equations leads

to certain restrictions on the temperature distribution at the

edge of the layer. The form of the temperature distribution

just outside these layers is:

T1 (&)= 4/(71--2)

where BI =yl /0.36 and I is the volume flux per radian in

the boundary layer. A similar form is valid for the dependence

near the hot wall. Since the Ekman layer flux U is related to

the zonal velocity at the edge of the boundary layer, /I must

also be related to the interior temperature field through the

thermal wind equation. The small meridional velocities in the

ipterior help maintain the zonal flow against viscous dissipation

and also maintain the temperature field necessary for the thermal

wind against conductive dissipation. The largest discrepancy

between this theory and the numerical models appears to be in

the condition of zero entrainment in the side boundary layers.

The wave regime was initially proposed by Lorenz (1953) to

be the result of an instability in the axisymmetric zonal flow.

Under this assumption the symmetric flow is always a possible

mathematical solution to the equations of motion but it may be

unstable such that it would not exist in the physical experiments.

This instability is baroclinic since the energy for its growth

is derived from the potential energy of the fluid. The original

studies of this process were made independently by Charney

(1947) and Eady (1949) in an effort to understand the nature of
P
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the long waves and cyclones in the atmosphere. Eady's study is

more relevant to the annulus due to the neglect of the variation

of the coriolis parameter. For this reason it is reviewed below.

The relevant equation is the inviscid and non-conductive

parts of Equations 2.1 to 2.6. With the assumption for the

annulus that 2(b-a)/(b+a) ( 1 and the consequent introduction

of cartesian coordinates,with the- boussinesq approximation, these

are: C + i LO -2 r = - - )Pare: + -x 2.13

-V + .__ +V, _ .LOx

TX iIO + PT 2.15

a ax y a 2.16

_ - av 0 2.17

where contrary to the previous case discussed on page 10we

have set X = re y = b - r so that y goes from zero at the outer

wall to aee at the inner wall. This is the form in which the

experimental results will be presented. Liis now the zonal

velocity. These can be scaled by setting

(x, :) = (b - a) (X -, y.)

T = AT T = (Tb- Ta) TI

t= (b-a) tl

The horizontal velocity U can then be scaled on the basis of



the thermal wind, i.e.

2 ( H d.

where LH= 09 AT= The Rossby number is then

Ro =  T-T d 2,18

where G in this equation corresponds to O in Equation 1.7.

The Eady number is the same as in Equation 1.8.

2.19

B = g OL o h T d
4_nr (b-a)2

Eady considered the problem of baroclinic instability

under the conditions:

a. Both viscous and conductive effects are negligible.
b. The flow is quasi-geostrophic so that Ro dcI.,
c. The basic flow has uniform vertical and radial

temperature gradients.
d. The slope of the isotherms is of the order of the

Rossby number, or 6/YRo
e. The wave amplitude is small enough so that a

perturbation theory can be applied.

The basic symmetric state is then given as:

To = -/y + B/R o  2.20

where -/ is a parameter of order unity. The first order

geostrophic velocity field is then:

Uo = " . 2o21

Using the above assumption and the basic first order state,

the quasi-geostrophic equation for the flow can be found by

expanding the variables, u, v, w, T'and i, in the scaled set of
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equations derived from Equations 2.13 to 2.17,in powers of

Rossby number and equating terms of equal order. This is to

rs+ order in Ro letting T1 = z,. u =- y and v = .X

4-A +4- ( -' ) o 2.22

where the primes have been dropped from the scaled variables.

The boundary condition of w = 0 at z = 0, 1 is:

S ) - 2.23

and the boundary condition . v = 0 at y = 0, 1 iS:

x = 0 at y = 0, 1 2.24

The more general case of these equations for the atmosphere has

been derived by Charney and Stern (1962) and Pedlosky (1964).

To test for the stability we seek a solution of the form

= Re (Z) e sn (nr-) 2.25

Any solution with Im (kc)> 0 will grow exponentially with time

and thus constitute an unstable condition. The boundary

condition at y = 0, 1 is c letically satisfied. The boundary

condition at z = 0, 1 leads to a quadratic equation for C whose

roots are: 2.26

kc = k k (( /2-tank r/2)( ~/2-coth /2))

Thus, kc has a positive imaginary part when coth r/2 > d/2 or

L 4 where lbC=2coth fa= 2.399

This implies that the flow will be unstable for all wave numbers



k Lkn when

B (k 2 + 2 n 2 ) 5.73 2.27

Marginal stability will occur for k = 0, n = 1 when Be =

0.581. Thus all wave numbers are stable if B>)B. This

condition, when applied to the annulus results indicates that

if

vT = OzAT = 2/3AT

then the flow should be stable for all values of 14 L ZT 4c when

Ti4c = 6 x B0 = 3.5. This, of course, will only apply when the

flow can be considered inviscid and is most likely to occur when

E 44 or equivalently for large gap widths.

There is a vertical phase variation implicit in the

solution for when Im (C)> 0. In this case b (z) can be
rewritten in the polar form as:

)o(z)= ( e )

where O(z) = (sinh (ez)- (Re(c) coshbz )2 +

( I(c) cosh (226) )

and ) (z) = tan1-' - I(~c) cos z)/(sinh(z)

Re(c) cosh(z)

These vertical phase variations for the pressure, / , and tempera-

ture Yz have been calculated by Eady and are indicated in

Figure 6a. This indicates that the temperature at the upper



surface should lead to that at the bottom.

The kinematics of these waves indicate that the colder

fluid flowing towards the wa m boundary descends and, converse Irue

for the warm fluid. Thus, the waves carry heat upwards and

maintain themselves at the expense of the potential energy of

the flow. Since there is no horizontal shear in the basic

velocity state, no kinetic energy is converted from the basic

state.

A solution to the second order problem by Pedlosky (1966)

indicates how the instability initially affects the basic sym-

metric state. Under the above assumption we can write:

Y o + Ro 1 + Ro2 2

where 'o = B/Ro z2/2 - .yz and j1 is the solution to Eady's

poblem. The equation for P2 is then

S-1 ~ 2.31

where J is the Jacobian with respect to x and y and is equal to

zero)since W1 is the solution to Equation 2.22. The boundary

conditions are then: v = 0 or '2x =0 at y = 0, 1 and w = 0 at

z = 0, 1

2 2z > Y-2x = -j ( 1ll Ylz)

The solution to this problem which modifies the basic state with

the previous solution for and initial conditions of ?-2 = 0

at t = 0 is:

-25-
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The changes to the initial temperature and velocity

distribution are indicated in Figure 6c. The absolute magni-

tude of the zonal flow is decreased in the center and increased

near the edges of the channel for z = 0, and 1. The vertical

shear is similarly decreased in the center and increased near

the edges. These effects, in turn, mean that the horizontal

slope of ~initial isotherms must decrease in the center and

increase near the edges.

Davis (1956) has obtained a solution ~t the quasi-

geostrophic equation in an annular region with the curvature

oterm retained. The basic state is assumed as:

T Z + T 2

d (be-ad)

The stability criteria is then given as:

d2 - (1 + RoC) 2 4 (2.399)2

where sm is the s'th zero of the equation:

Jm (yb) Ym (ba) - Jm ( /a) Ym ( b) = 0

d and C = (b-a)

b-a -(b+a)

The first zero is obtained by asymptotic expansion as:

Im IT (1+ (4m2 -1)(b-a)
2 +

-. Tn2 ab
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Thus, the criteria is:

B (l+ RoC) 2 (1+ (4,2-1) (b-a) 2 + ) 0.58. .3,
8 2ab

This reduces to the Eady criterion when the curvature term, c,

is small.

Several authors have tried to ascertain the manner in which

viscous forces modify these results. Kuo (1956 a, b, 1957) has

considered the case with the conductive terms replaced by a

spatial heating function and the viscous terms treated as pro-

portional to the velocity. These assumptions eliminate the

possibility of boundary layer formations. Howeverythe qualitative

results do predict the correct form of the stability curve.

Barcilon (1964) has solved the Eady problem for the annulus

with the neglect of the horizontal boundaries or a rigid upper

and lower surface. In a similar manner Brindley (1960) has

extended Davies' solution in cylindrical coordinates for the

case of a free upper surface and a rigid lower surface. In each

case the horizontal boundary layer is either a rigid surface

Ekman layer or a free surface Ekman layer. Thus, the boundary

layer problem can be reduced to that of finding the interior

solution which has the correct vertical velocity prescribed by

these layers; i.e., the vertical velocity at the upper and lower

boundaries are:

w = - k . ki (Vx\) rigid surface

w = - - (k'VXW) free surface (1,1e LA-)

where t is the normal to the surface. Hide~has used this
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approach to solve the Eady problem in cartesian coordinates with

a rigid upper and lower surface, a free upper and lower surface,

and a free upper surface and rigid lower surface.

Brindley (1960), Barc4lon (1964), and Hide (1963) obtained

the correct form for the stability curve and the approximate

wave number near the knee of the curve. However, the value of

E for the position of the knee, i.e., that point at which for

larger values of E the flow is symmetric, is an order of

magnitude larger than the experimental results. This indicates

that the side wall boundary conditions play an essential role

in the determination 'of the viscous cut off.

Since the side wall boundary layers may affect the shape of

the velocity profile in the Eady model, it is relevant to

consider the effect of introducing a small deformation in the

basic Eady velocity profile. Pedlosky (1965) has considered the

stability of the flow when the basic zonal velocity is of the

form Uo -= z + ug (y, z) where u/-l.

"The change of stability of the flow at the neutral curve
of the zero order problem depends only on that part of g
which is odd about z = and even about y = "

This has been investigated experimentally with slightly inconclu-

sive results by Lambert and Snyder (1966).

Lorenz (1962) has obtained a numerical solution for the

wave regime in the annulus with a two layer model. He employs a

simplified set of equations reduced to indicate the basic

physical processes. In this manner the nonlinear convective heat r

transport terms are retained while the angular momentum transport

terms are neglected. The heating an viscous effects are

parametorized by linear formulae acting at the boundary of the
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two fluids. Thus, the solution can demonstrate the effect of

the waves on the mean temperature field, but barotropic in-

stability and boundary layer formation are suppressed. The

results show remarkably well the qualitative structure of the

stability regime. Direct comparison with the experiments is not

feasible, however, due to the unknown parameters for the heating

and viscous effects.

The structure of the jet stream in the wave regime has

been investigated by Rogers (1959). In this case the jet is

treated as a free thermal boundary layer phenomenon. By neglect-

ing the viscosity entirely and assuming that.the heat conduction

across the stream is balanced by the convection of heat along

the stream she was able to show that:

1. The temperature difference across the stream and the
velocity along the stream both decrease in the downstream
direction,

2. There is net outflow of ascending motion on the warm
side and descending motion on the cold side of the stream

3. The width of the stream is

3 Yo = 3 8 Tr 6> (b + a) kt

where L~ is the phase speed and m is the number of lobes
of the wave.

The point of contact of this solution with the wall acts like a

discontinuity.

Davis (1959) has obtained an analytical solution to the

nonlinear heat equation under quasi-geostrophic conditions without

the boundary layer assumption. Using cylindrical coordinates

he obtains a unique wave solution by assuming a form for the

angular momentum transport and then stating that the most likely

__1~1 JI~_IIY_~ __Yill/_LMI_~-III.__Y~-
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wave to occur will be the one that carries the most heat. This

analysis is valid when the vertical temperature gradient is not

significantly larger than the horizontal temperature gradient

or equivalently in a deep annulus where

Rogers (1961) has extended this solution to include the

side wall viscous boundary conditions with the neglect of the

horizontal boundaries. The boundary layers tend to increase the

horizontal velocity of the jet at the outer walls and decrease

it at the inner wall. The equation also permitted an oscillating

solution such that the results could lead to an explanation for

the wave shape vacillation in the annulus.

Lorenz (1963) has used slightly less simplified equations

than those in Lorenz (1962) to explain the existence of vacil-

lation and nonperiodic flow in the annulus. The variables of

the two layer model are expanded in a truncated fourier series.

Further, only two modes in the cross channel direction are

allowed. The author then postulates that the Rossby circulation

of the first mode, corresponding to n = 1 in Equation 2.25 are

always possible solutions when the symnmetric flow is unstable,

but may be unstable with respect to Rossby circulations of the

second mode, ie n = 2,. The numerical solution of the resulting

set of equations indicates that as the rotation rate is increased

for a fixed .T, the symmetric flow first becomes unstable with

respect to the first mode. At slightly higher rotation rates

both the first and second modes may occur without changing their

individual shape. This is called the mixed mode. The mixed
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mode, in turn, can be unstable with respect to symmetric and

nonsymuetric vacillation. Symmztric vacillation has the

distinction of not changing the statistical properties of the

fully developed solution. Lorv -(T also finds a nonperiodic

region with more than two degrees of freedom. Further

extension is not possible without considering the interaction

of the higher modes previously eliminated.



Figure 6a.

Figure 6b.

Figure 6c.

Phase variation; Eady normal mode. (Eady 1949)

Basic state; Eady solution.

Second order convection to mean state; Eady
solution. (Pedlosky 1966)
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CHAPTER III

Description of the apparatus and the experimental procedure

The basic apparatus is shouwn schematically in Figure 2,

and in greater detail in Figure 7a. A detailed description of

the construction and operation of the apparatus is given in

Appendix 1.

The-convection chamber is the annular region between the

outer and inner cylinders of radii b = 38.445cm.1 0.Olcm.

(maximum deviation) and a = 23.105 t 0.002 cm. (maximum deviation).

These cylinders are fastened to a phenolic plate with 0 ring

seals under each cylinder. The resulting gap width (b-a) after

careful alignment is 15.280 t 0.016 cm. (maximum deviation).

The bottom of the convection chamber is formed with a 1 inch

thick plexiglas false bottom supported 15 cm. above the phenolic

base. It is flat to within 0.005 inches. Grid lines are

marked over 120 degrees on the underside of the false bottom and

three 9 inch fluorescent lights are mounted directly below to

supply lighting for dye studies. The resulting chamber is filled

with water to a depth of 15.28 cm. A plexiglas lid is placed

on the top of the cylinders, not in contact with the water, to

reduce the effects of evaporation.

The outer bath is formed by mounting a 1 inch wide by 18

inches high plexiglas cylinder with a 38 inch inside diameter

on the phenolic base outside of the out6r cylinder. The inside
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bath is the inner volume of the smaller cylinder. The top of

each bath is sealed by a 3/4 inch plexiglas top with side ring

seals. In this experiment the outer bath was always kept at a

warmer temperature than the inner bath.

A Oaake circulator model NBS maintains the temperature and

flow rate of the circulating water in each bath. The inflow

temperature is hoeld constant in time to ± 0.05C. with a flow

rate of 2.4 gallons/minute. Due to the large heat flux.in the

annulus the difference in temperature between the inflow and

outflow of the bath is about 8% of the resulting impressed

temperature difference. This drop tends to occur in the thermal

boundary layer near the lower part of the warm wall and the upper

part of the cold wall where most of the heat is extracted from

or added to the bath. Consequently, there is a vertical

variation of mean temperature in each wall. This was reduced

to some extent by directing the circulating water at the walls

and increasing the local turbulept transfer in the boundary

layer. The circulating water is forced through four porous

circulation tubs located at different heights and released such

that the maximum temperature control is applied to the lower

region of the hot wall and the upper region of the cold wall.

The temperature of each wall is monitored with 24 thermocouples,

12 of which span the 15.28 cm. height of the convection chamber.

The vertical variation of the deviation of wall temperature

from the mean wall temperature in the region of the convect-

ing fluid is shown in Figure 8. This was dotermined from an

azimuthal average of the 12 thermocouples spanning the chamber

on the outer wall for Run 34 in'the syxmetric regime where the



vertical variation should be largest. The local temperature

at each point on the wall may also vary by - 2.5% of the im-

pressed temperature difference as a wave passed that point.

The phenolic base holding the convection chamber and the

baths is mounted 4 inches above the turntable which is a 42

inch diameter by 1 inch thick ground steel plate. This plate

is supported by a 22- inch diameter ring bearing mounted on a

triangular stand with three adjustable leveling legs. A hollow

stainless steel shaft fastened to the underside of the plate

supports a Browning notched gear, the fluid slip rings and the

eight coin silver power slip rings. The turntable is driven

with a h.p. synchronous motor and a variable speed Graham

transmission. This is coupled to the table via a Browning gear

and belt system. The rotation rate of the table would be varied

over the range of 0 to 20 rpm. with a mean stability of t 0.089%

of the rotation rate.

The temperature of the convecting fluid is determined with

four vertical arrays of four thermocouples each. (See Figure-

9;. y' .) These are constructed from 5/1000 inch copper

constantan thermocouple wire. Each junction is positioned

vertically to within t 0.025 cn. of 1.04, 5.44, 9.84 and 14.24

cm. from the false bottom. The four arrays are then positioned

with the same spacing from the outer wall and separated by 600

in a counter clockwise direction from each other with decreasing

distance to the axis of rotation. Thus, the net result is an

array of 16 thermocouples, the outer edge being separated from

each vertical and horizontal boundary by 1.04 cm. with the inner

points being separated by 4.4 cm. and 600 in azimuth.



Each thermocouple is referenced to a single thermocouple

in an ice bath located on the turntable. The signals are

carried to the recording equipment via a set of 36 silver-

plated low noise level slip rings. The output from either the

wall thermocouples or the thermocouple array can be recorded on

either a four channel Beckran Dynograph type SII recorder or in

digital form on punched paper tape using a digital data

acquisition system. The recorder has a response time of 100 cps.

and a noise level of 1 uv rms. The digital data acquisition

system consists of a Sigma Cohn stepping switch, a t 4tl

circuit, a Dana D.C. data preamplifier,adigital voltmeter, and

a paper tape punch. The sampling rate is variable but in the

experiment it was generally set to sample 16 thermocouples and

three zero references every 9.8 sec. The maximum sampling time,

determined by the length of the paper tape, is two hours with

this sampling rate. The schematic of the sampling sequence is

indicated in Figure 7b. After calibration and the noise level

is considered the relative accuracy of the temperature measure-

ments is + 0.068OCfor all thermocouples except the four near the

free upper surface where the error, due to larger calibration

errors, is t 0.0850C.

Experimental procedure

The experimental data collected for each run in Figure 5

consisted of the following:

1. The moan temperature of the baths deter-mined from the
thermometers recording the temperature of the inflow and
outflow from each bath.
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2. The corresponding flow rates through each bath.

3. The mean temperature difference across the annulus de-
terminod from the moan of the difference between the 12
thermocouples in each wall.

4. The mean rotation period determined from ten periods
measured with a Beckman counter.

5. The state of the flow determined by surface observation
whon possible.

6. A Beckman chart record of at least four of the
convection chamber thermocouples.

7. A digital sample of the 16 array thermocouples and
three reference positions for at least 15 minutes in the
symmetric regime and at least the minimum of ten wave
periods or two hours in the regular wave regime, vacillating
regime or irregular regimes.

This data was collected at a set of predetermined grid

- -1points in G and E- 1 . The minimum increment in rotation rate was

set by choosing a logarithmic interval equivalent to a change

in rotation period of four sec. at the transition from the

symmetric regime to the regular wave regime with an impressed

temperature difference of g5C. This determines the values of

E- 1 . The corresponding logarithmic intervals for G were set by

choosing 9.30Coand 2.6'C as the maximum and minimum impressed

temperature differences. These limits correspond to the maximum

easily controllable temperature difference between the baths and

tho minimum temperature difference necessary to produce reliable

and meaningful thermocouple output, respectively.

In the acquisition of the data it was not possible to

maintain the impressed temperature difference at these levels

due to the variation of the Nusselt number throughout the range

of E-1 covered. Consequently, the experimental runs will be

characterized by the mean value *of T for each set of runs at
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that temperature difference. The actual values of L T ar indi-

cated in Tables IIa, IIb,and Iic, for each run. The corrosponding

mean values of aT for each set of runs are 9.12, 5.09, and

2.53 C Each set of runs will be referred to in the text by

thecharacteristic mean values. ':. Preliminary experiments

wore run for each temperature at several multiples of the

intervals in E- 1 . Data was then collected at the smaller

intervals in E-1 near the regime transition points and near some

of the wave transition points until all of the experimental

points in Figure 5 woere completed. The order in which each

point was sampled is indicated by the run number in Table IIa,

IIb, and TIc.

The experimental procedure followed was to set the inflowing

temperature for each bath to give approximately the required

impressed temperature difference between the convection chamber

walls. The mean temperature between the baths was chosen to be

as close as possible to room temperature. The apparatus was

then allowed to reach equilibrium for at least 48 hours with no

rotation. The state of the fluid atJ L= 0 was also used as a

reference check to be sure that all systems were behaving well.

The rotation rate was then changed successively to the new

experimental points. The mini~um setup time allowed betwooen

experiments was five hours, and in mo.;t cases it exceeded ten

hours in the wave regime, and was aliways groeater than 15 hours

in the synmetric regime. In all cases no data was recorded

until -'. the thermocouple output indicated on the

Beckman recorder showed no detectable variations for a period

of at least 1.5 hours.
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During the setup time the thermocouples along the diagonal

in radius and depth from the lower part of the cold wall and the

upper part of the cold wall were recorded. After Run No. 36

the average wall temperature was also recorded for at least

15 min. Just prior to the start of the digital sample. The 16

array thermocouples were then recorded with the digital data

acquisition system. The number of " waves noted on Figure 5
wax obtained from observation of the surface flow pattern made

visible with aluminum flakes. This was not possible at very

high rotation rates and/or small temperature differences because

the surface patterns were not visible.

The resulting digital data matrix was then transferred to

magnetic tape and converted to a nondimensional temperature

matrix by dividing the converted temperature differences centered

at the mean temperature of the baths by the actual impressed

temperature difference. At the same time, the mean value, and

standard deviation for each element in the array werccalculated.

Contour plots of mean temperature and standard deviation were

drawn and the values of r, Oz and available potential energy

calculated for each'run. In addition to this a calcomp plot for

each temperature vector was made in order to determine the

position and occurrence of incorrectly sampled data (which

occurred very seldom). In addition to this, time series analysis

for power spectrum, complex cospectrrum, and coherence was made

for each run in the wave, vacillating and irregular regimes for

A T L 9. l2'C and for the last six runs on FiZure 5 with AT

5. Sr09(

Some of the runs are not indicated in the results because
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no internal temrperature measuroments were made. Thus, Run

Nos. 1 through 17 were made in the process of chocking and

corrocting various mechanical and electrical problems of the

apparatus. Run Nos. 19, 43, and 57 were calibration runs for

the thermocouplos.

During some of the runs one thoremocouple was broken. When

this occurred the output of the thermocouple was replaced by a

linear interpolation between the adjacent vertical thermocouples

for each sample time. This process generally underestimates

the temperature at that point because the vertical temperature

gradient increases with decreasing height. However, the obser-

vations of the data indicate that the additional error due to

the interpolation is not greater than +2-7% of AT. Thermo-

couple T (2,2) was broken for Runs 24 to 26,and thermocouple T

(1,3) was broken during Runs 69 to 73.



Detailed schematic of apparatus.

a. reference thermocouple

b. ice bath and dewar flask

c. wall thermocouples
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Figure 7b.
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PRESETATION AND I1TERPRETATION OF T7,- RESULTS

The experimontal rosults will be discussed in three

sections. This first section formulates a description of the

temperature traces and surface flow patterns used to determine

the annulus regimes and an indication of the transition points

between the regimes. Secondly, the mean temperature structure

of the flow, the variation of the internal parameters, the

variation of wave amplitude, and the available potential energy

of the fluid will be presented. The third section will discuss

the power spectrum, cospectrum, coherence and phase of the

disturbance. In the foregoing discussion contour data from a

few selected runs, mostly at AT = 9.12 Co, are indicated as

characteristic of the basic pattern involved. Any experimental

run which is at variance with these examples will be mentioned.

A discussion of the technique used to CoLcuIcd+e the following

results is presented in Appendix 2.

The location of the experimental points is shown in

Figure 5. The experimental parameters AT, - , the state of

I -1
the flow, G2 and E are listed in Tables IIc.%Tb, andlIc

for the set of runs at 9.12 00 o, .09 Co and 2.53 Co, in order

of increasing E-1 for each set. This should facilitate

identification of the plotted points in Figure 5 with the correct

run numbers as they are referred to in the text. This table

along with the wave numbors indicated on each of the graphs

should also enable the reader to identify each point on the

graphs with the correct run numbo r.



TABLE "E a

Experimental Data for I£T = 9.120C

State a&T
o
C

31

72

32

47

34

36

39

44

46

45

35

41

42

40

37

70

38

73

71

69

s-c E-x1
sec xl0-4

8.86

8.72

8.86

9.06

9.86

9.27

9.10

9.08

9.09

9.11

9.08

9.11

9.08

9.05

9.03

9.10

9.04

9.22

9.38

9.41

0.0

0.0

0.053

0.094

0.188

0.205

0.215

0.267

0.292

0.317

0.392

0.458

0.536

0.639

0.640

0.771

1.055

1.296

1.550

1.846

Run
No.

0.0

0.0

0.266

0.468

0.942

1.028

1.077

1.338

1.462

1.587

1.968

2.298

2.697

3.187

3.211

3.916

5.290

6.566

7.867

9.319

1
G2

x10-3

9.293

9.186

9.286

9.367

9.771

9.475

9.437

9.408

9.403

9.413

9.419

9.433

9.407

9.309

9.379

9.419

9.396

9.440

9.549

9.534

2

M1"

B

8.890

3.118

0.943

0.690

0.618

0.392

0.326

0.281

0.180

0.130

0.093

0.066

0.067

0.042

0.026

0.016

0.012

0.008

I. Bcrit is the critical value of B for the obsorvod wave nzaber.

2. vi is that wave nubcer which should theoretically havo the
maximum growth rate as calculated from the obsorved value
of B.

1
Bcrit

0.415

0.415

0.357

0.357

0.260

0.260

0.260

0.305

0.305

0.305

0.223

0.260

-

3

4

5

7

8

10

12

12

15

20
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Experimental Data for

State T
OC

Run
No.

28

56

64

21

20

61

59

22

60

62

63A

24

25

26

65

63B

66

67

S

S

S

S

S

S

3

4

6

7

6

7

63

73

V

V

V

I

E-

sec "1 xl10 4

4.86

4.86

4.90

4.84

5.20

5.28

5.18

5.01

5.03

5.01

5.07

5.02

5.07

5.10

5.22

5.28

5.30

5.32

0.0

0.0

0.0

0.039

0.132

0.135

0.143

0.161

0.224

0.317

0.!.65

0.646

0.768

0.911

1.093

1.310

1.550

1.849

3.. This wave naumber was infrr - - -ed f-ro .. the phase inform. ation

obtained from the spectral nal is of -th thermocope data.

LT = 5.09

Bcrt.

0.0

0.0

0.0

0.189

0.642

0.664

0.703

0.789

1.105

1.558

2.281

3.179

3.756

4.471

5.391

6.469

7.646

9.120

1
-G2

x10

6.593

6.675

6.667

6.589

6.825

6.896

6.824

6.708

6.751

6.740

6.740

6.725

6.685

6.751

6.858

6.919

6.916

6.905

8.756

1.009

0.889

0.736

0.589

0.275

0.136

0.064

0.035

0.025

0.018

0.013

0.009

0.007

0.005

0.472

0.415

0.305

0.260

0.305

0.260

0.305

0.260

5
8

12

15

20

24

1~1 __/_Ljl~__ ~X__ _~__ I____1_ILIIII__IP_~
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Experimental Data for iYT = 2.53Co

State o T
oc _et E- I

sec - 1 x10-4

S 2.38' 0.00 0.00

x10-3

4.662

Bert. M

S 2.3 0.101 0.497 4.8 04 0.800

3 2.47 0.111 0.551 4.731 0.594 0.474 -

6 2.49 0.448 2.228 4.794 0.035 0.306 17

71 2.55 0.643 3.186 4.8 27 0.018 0.261 24

2.58 0.767 3.777 4, 8 6 7 0.013 0.306 28

V 2.62 0.917 4.524 4.897 0.010

V 2.59 1.073 5.331 4.888 0.007

q. This wave number was inferred from the phase of the wave at
the different vertical thermocouple arrays determined from a
calcomp plot of the data.

Run
No.

48

49

~--_L--_I~__L~-YiYPY
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Flow r imes

The typical temperature oscillations at thermocouple T

(3.3) in the wave regime for Runs 36, 42 and 38 with AT

9.12 CO are shown in Figure 10a. Run 36 is a four wave pattern

near the transition from the sy metric flow. The slightly

irregular wave pattern has persisted for at least 12 hours. At

higher rotation rates the wave pattern becomes much more even

as in Run 42. Run 38 denotes a regular wave pattern with some

slight irrogularities. Figure 10b indicates the typical

temperature trace from each thermocouple in the vertical array.

T (2, J) J = l, 4 for Run 38. It is obvious that the wave form

passing the upper and lower thermocouplos near the boundaries

is less regular than the interior ones. This structure also

appears in the traces from thermocouples near the cylinder walls.

There was a clearly discernable regular wave pattern on the

surface of the fluid for each of these runs. The characteristic

temperature trace in the syraetric regime consists of much

higher frequencies whose amplitudes are at least one order of

magnitude below those in Figure 10 !a, .

Figure 1Oc illustrates the temperature traces which are

more characteristic of the vacillating regime, Runs -73 and 71,

and irregular regime, Run 69. The transition betwaeen the regular

wave regime and the vacillating regime is not as clear as the

transition from the symmetric flow to the regular wave flow.

However, there is a distinct appearance of a higher frequency

oscillation in the wave pattern and an increase in the wave

period. The higher frequency oscillations are probably due to
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a wavering of the wave shape as it passes the probe. The

third trace in Figure 10c is indicative of the irreguar fow in

that there is no real discornable regular wave pattern. The

trace appears more like the results of an interaction between

several uncorrelated long waves coupled with some wavering in

each wave shape which produces tho high frequency component.

The transition from the vacillating to irregular flow is also

not as clear as from the symm etric to rogular wave flow. These

conclusions, with the exception of the wavoring, also seem to

be substantiated y the power spectru- results discussed in a

later section.

Treating the above temperature traces as characteristic

of each regime along with the observations of the free surface,

the regimes can be labelled as in Figures 4 and 5. The position

of the transition is taken as the midpoint between the two

nearest points with the different characteristics of each regime.

The three points representing the transition from the sym~etric

regime to the wave regime have a mean value of = 3.746

0.360 for 2.750x107  7 5 9.721 x 710. A line of best fit

between the three points is given ast

Log r = (-0.1977 0.9107) + (0.1000 0.1182) Log if

(standard error)

Consequently with only three points it is not significantly

different from being independent of T)5.
The transition btwe-en the rc ular wave regime and the

vacillating regime is detormined in the sar:o manner for the

three corrosponding points as'



-1, --4-

++ 0.03Log i = (-9.1111 0o.3S85) + (0.8515 0.0392) Log T

(stanard errors) for 1.737109 /T" 5 Z 3.554 x 109

This transition line indicates that points to the right

of this line have the characteristics of vacillation or irregu-

lar flow. It does not indicate that vacillation will not occur

to the left of the line, but only that this did not occur in this

series of experiments. Previous results on smaller annul'.-

indicate that vacillation may occur at several points within

the wave regime.

The transition from the vacillating to the irregular regime

is determined from only two points to be given by:

5]T = 7.259 x 109

For 2.783 x 10 - 2  4 5.040 x 10 - 2

This is significant because provious results indicated that

the irregular flow at large values of TT5 might occur at values

of T4 of order unity (see Figure 3). These results also

indicate that very high rotation rates will have to be used in

order to study the irregular flow in annu]4i. with large gap

widths. The rotation period for Run 69, for example, is 3.4 sec.

Finally, one must note that the wave numbers on Figure 5

do not increase monotonically with increasing rotation. This

has been investigated at the surrounding points near, for

examupl, Run 35, where at a at t No. 41 2, 46,

45 were taken to verify the resuit of 35. The phenomeno -appears

to be repetitie though not ne ~ arily unique since the point
~)



deterhined by Run 62 at AT ' 5,09 Co, wave nubor 7, was

found on a previous run to be 5 waves.

Interior temperature structure

In the presentation of the tino averagd data it is

implicitly assiumed that the time average has reoplaced the

azimuthal average. In this manner the averaged value of the

quantities can be plotted and contoured as if the vertical

thormocouple arrays were all in the same azimuthal position. The

implied assumption is that the temperature field is advected by

each thermocouple. This is probably troue in the wave regime

whore the phase of the wave is propagated at an apparently

uniform rate at all levels. In the sy-metric regime, the

presence of the vertical shear means that there is at least one

stationary surface which is not advocted by the probe. However,

since the main characteristic of this regime is its azimuthal

syrmetry this should not prove to be a poor assumption.

The contour plots presented here are drawn using a modified

computer program, the original of which was written by the

Geophysical Fluid Dynamics section at E.S.S.A. in Washington,

D.C. and supplied to the author by Dr. Stephon Piascek. This

program plots a given number of contours between the maximum and

minimum points in an array. This moans that some care must be

exercised in the comparison between plots of the same paramcter

because the contour intorv' .-ill vary slightlY. In order to

aid the comparison the contour : v, the mximum value, and

the minimum value of oach plot ;i the figpue are given in the



caption. Tho advantago of this display is that the structure

of each matrix is displayed cl arl oven hen the moan values

of the ra.trix vary from one run to anothor. In those p:lots the

warm outor cylinder is on the loft side of the contour plot.

The gap betwoen' the edges of each contour represents, approxi-

mately, the distance botwoon the convoetion cha~ibor boundaries

and the thermocouple array.

Figuros 11a, llb, and lbc show the contour plots of mean

temperature for DT = 9.12' Coin the synaetric regime, the wave

regime and the vacillating and irregular regimes, respectively.

They are presented in order of increasing rotation rate.

The contour interval for Figure lla changes from 0.059 at

Run 31 to 0.087 at the transition point, Run 34. This fact along

with the characteristics of the actual plots indicates that the

vertical stratification is inczeasing in this region with

increoasing rotation rate. This figure also indicates that the

radial temperature gradient is increasing with increasing

rotation rate. Further, there is an increase in the area of

relatively isothermal fluid near the uper surface of the wari

cylinder from Run 31.to Run 34. The contours of mean tempera-

ture for Run 31 with -- = 0.0 also conpoare favorably with the

results of the numerical work discussoed previously.

The isother is for Run 36 (Figure l1b) in the wave regime

have a much smaller slope than those appearing in the spymmetric

flow. This indicates that the waves have released some poten-

tial energy from the fluid. Sin-e the contour intervals are

almost the sme for each run in Figre 11b, it appears that the

vertical stability of the flow in the wave rogimae does not



Figure 10a.

Figure 10b.

Figure 10c.

Figure 11a.

Tmperature traces; wave r3g7im

SimuI. t ane ous tcmpera-ture traces; Run h2, single
vertical array.

Temperature traces; vacillating and irrogular
regimotoues.

Contours of mean temperature; symietric regime.

Min. Value Max. Value"'
Contour
Inte rval

31 Moan Temp.

47 Mean Temp.

34 Mean Temp.

Figure 11ib. Contours of moan tomperature and
deviation; wave regimoe.

standa rd

Run No.

36 Mean Temp.
Stand. Dev,

42 Mean Toemp.
Stand. Dev.

38 Mean Temp.
Stand. Dev.

Min. Value

-0.269
0.012

-0.262
0.014

-0.292
0.022

Max. Value

0.,23
0.077

0.500
0.084

0.076

Contour
Interval

0.079
0.013

0.076
0.014

0.079
0.011

Figure 11c. Contours of mean temperature and standard
deviation; vacillating and irregular regimes.

Run No.

73 Mean Temp.
Stand. Dev.

71 Mean Temp.
Stand. Dev.

69 Moan Temp.
Stand. Dev.

Min. Value'

-0,300
0.019

0.020

-0.341
0.023

Contour
Max. Value Interval

0.461
0.076
0 -070'
0.035

0.11.63
0.089

0.076
0.011

0.078
0.013

0.080

Run No.

-o.154

-0.240

-0.334

0.438

0. 449

0.059

0.069

0.087



The maximnum and miiiimum values aro the nondimensional

maximum and minirium values of temperature and standard devi-

ations determined from the nondimensional temperature defined

as:

T = (T - T5 /aT
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change very much from Run 36 to Run 38. The radial temperature

difference has a slight tendency to decrease with increasing

rotation rate.

The differences in the isotherm plots between the vacil-

lating and irregular flows in F:igure 11c are not so obvious.

There is an appearance of a larger region of isothermal fluid

near the upper region of the warm wall ~ompared to the tempera-

ture structure in the wave regime. This region tends to in-

crease with increasing rotation rate, i.e.: from Run 73 to 69.

There is also an increase in the slope of the isotherms near

the cold wall as compared to those in the wave regime. The mean

temperature structure seems to resemble that of the symmetric

flow more than that of the regular wave regime.

A discussion of the internal parameters for the runs leads

to a more quantitative interpretation of these characteristics.

In the calculation of the parameters or and cr the limits of

integration were set'at the edges of the thermocouple array.

These nondimensional estimates of the vertical and the radial

temperature differences are extended to the respective boundaries

by multiplying the result by the actual depth or gap width,

respectively, as in Equations 1.5 and 1.6. It should also be

noted that since this quantity is measured over the thermocouple

array but extended to the edges of the annulus, the sum of CU

and Osz is not necessarily less than unity.

Figures 12a, 12b, 13a and 13b show the values of z and

O for the set of runs at 9.12xCoand 5.09~4C, respectively. The

values for the set of runs at 2.53C°owere not plotted since they

are so few in number. However, they are listed in Table III.
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The estimate of the vertical temperature difference, O , tends

to increase in the symmetric regime and then decrease just

before the transition for the set of runs at 5.09CO and just

after the transition to the regular wave regime for the runs at

9.12C0 and 2.53Co* 5Z does not vary as much in the wave,

vacillating and irregular wave regimes for all the runs, and

with the exception of the three low values for the runs at 5.09CO,

it is almost constant. The mean values for 6z in the wave

regime are 0.783 + 0.026, 0.770 t 0.033 and 0.784 t 0.050 for

the runs at 9.12, 5.09, and 2.53trespectively. A least square

fit to the points in the wave regime for AT = 9.12 is:

Co = 0.983 t 0.144 - (0.046 t 0.033) log E-1. This also

indicates that 0Cl decreases very slightly with increasing

rotation rate or E-1

I The value indicative of the radial temperature difference,

Or, seems to behave in a strikingly similar manner to that of

£z for each set of runs. However, some care must be exercisedz

in the interpretation of this value becauseyif the limits of

integration were extended to the cylinder walls, 6 r would be

identically equal to 1.0. Since the edges of the thermocouple

array may be affected to some extent by the side wall boundary

layers, a more reasonable estimate of the radial temperature

difference would be the value of Ocrcalculated from the four

internal thermocouples of the array. This value of (orz is

given for each set of runs in Figures 14a, 14b, and Table III.

The value of O~ defined in this way decreases significantly

within the wave regime for each set of runs. It has a tendency

to increase within the vacillating regime and then decrease



again to the irregular regime. The net result is that while

the temperature difference across the fluid just outside the

side boundary layers remains the same, the slope of the isotherms

in the center must decrease. This is the result predicted by

the second order Eady theory.

The value of 0' can also be used to calculate the Eady

number for each of the runs. The value of B in the wave regime

for the runs at 9.10 0 is plotted in Figure 15. Since the value

of Oz tends to be rather constant in this regime, the variation

of B is dominated by the variation in S1 with E1 . A best fit

to these points is given by,

log B = (7.9789 ! 0.0823) - (2.0317 ± 0.0189) x log(E-1 )

for G 9.411 x 103

The values of the nondimensional wave number = m (b-a)
Tr (b+a)

are tabulated in Table IV. Using these values, the critical

value of the Eady number for the observed wave number can be

computed for each run number in the wave regime. The values of

Bcrit along with the wave number, mp , which should have the

maximum rate of growth for the observed value of B are contained

in Tables IIa, IIb, and IIc. These results indicate that waves

will occur when the flow is theoretically stable, i.e.: B00.581

for Runs 36, 39, 59, 22, and 49. In addition to this the value

of B also exceeds the critical value of B for the observed wave

number at Runs 44 and 45. The value of B for each of these

runs has also been calculated using the temperature difference

between T (3,4) and T (3,3), i.e. where the wave amplitude is
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a maximum. This value of B is not sufficiently smaller to

change the above results except at Run 45.

The decrease in the stability of the flow cannot be

explained with the addition of the curvature to Eadyts model.

Equation 2,32indicates that the critical value of B decreases

with increasing curvature. Further, the experimental results of

Lambert and Snyder (1966) indicate that a linear velocity shear

will also act to stabilize the flow. However, the results of

the numerical solutions indicate that the velocity in the

symmetric state, in addition to.a linear horizontal shear, may

have some component which is even about the radius = a+b
2

This effect could act to destabilize the flow so that

the waves would still develop at values of B greater than 0.581.

One further effect may be due to the fact that the measured

values of B are determined from the fully developed wave state

and not from the initial state.

The most probable wave number, i.e. thatkwith the

maximum growth rate, becomes much larger than the observed value

at higher rotation rates. This is probably the result of the

fact that while the wave number increases in a limited channels

such as the annulus, the interior viscous dissipation must

increase and act to counterbalance the larger growth rates of

these waves. Consequently, the inviscid Eady theory should not

be interpreted strictly in this range.

When the wave disturbance represents a single mode of the

Eady theory, the standard deviation of the temperature will be

a measure of the wave amplitude. These values have been

calculated for each element of the thermocouple array for each



run. Contour values have been drawn and a volume average com-

puted for the standard deviation at each run. The results for

the average value of the standard deviation at AT = 9.12C00 .are

plotted in Figure 16. This indicates that the amplitude of the

disturbance increases discontinuously at the transition between

the symmetric flow to the regular wave regime. This amplitude

has a tendency to increase within each wave number and to

increase with increasing rotation in the regular wave, vacil-

lating and irregular regimes.

Extending this interpretation, the contours of constant

standard deviation indicate the strength of the wave over the

thermocouple array. These contours are reproduced for Runs 36,

42 and 38 in Figure llb. The position of the maximum disturbance

starts for low values of E'- near the upper free surface near

the cold wall. As the rotation rate increasespthe steady state

wave amplitude becomes more centered over the upper regions of

the fluid. At even higher rotation rates, Run 38, the

disturbance is distributed much more evenly throughout the fluid.

The fact that the contour interval is less for Run 38 than for

Runs 36 and 42 strengthens this interpretation, indicating that

the wave amplitude is more uniform over the array for Run 38

than in the previous runs. A study of these contours and the

radially averaged values indicates that the maximum amplitude

of the wave generally occurs near or in the upper half of the

fluid.

The contours of constant standard deviation for the vacil-

lating and irregular regimes are indicated in Figure 11c. These

indicate that the area of the disturbance decreases in size and



Figure 12a.

Figure 12b.

Figure 13a.

Figure 13b.

Figure 14a.

Figure 14b.

Figure 15.

Figure 16.

0 0 versus E;z

z, versus E"1;

0r versus E-I;

r versus E-1;

UT = 9.12o0.

6T -S.090 .

,AT = 9.12o-

I)T 5 .090 C.

arI versus E' 1 ; AT - 9.12o0.

prI versus E'1; AT = .09 0C.,

B versus E'1 ; AT - 9.12.

Standard deviation versus E 1; /T = 9.1200.
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TALE Parameters for

Experimental Paramietrs for

State E- 1

S

S

3

61

71

61

V

V

0o.oo000

0.497

0.551

2.228

3.186

3.777

4.524

5.331

0.633

0.855

0.804

0.746

0.776

0.810

0.816

0.803

Jr

0.456

0.336

0.220

0.244

0.260

0.276

0.248

LT = 2.53C

crr, RAPE ZAPE TAPE
Central erg cm erg cm erg cmn3

0.661

0.580

0.017

0.039

0.029

0.058

0.072

0.1664

0.1023

0.0336

0.0422

0.0490

0.0571

0.0508

0.0048

0.0310

0.0402

0.0375

0.0372

0.0374

0.0430

0.1712

0.1333

0.0738

0.0797

0.0862

0.0945

0.0938

1 This wave num.ber was inferred from the phase of the wave at the
different vertical thermocouple arrays determined from a
calcomp plot of the data.

Run
No.

55

48

49

50

51

53

54

52



Values of I and

Wave
N-,u-ib e r

1

2

3

4

5

6

7

8

9

lO

11

12

13

14

15

16

17

18

19

20

21

22

TABLE U

Bcrit for the 42 Inch Annulus

0.0789

0.1579

0.2368

0.3158

0.3947

0o.4737

0.5526

0.6316

0.7105

0.7894

0.8684

0.9473

1.0263

1.1052

1.1842

1.2631

1.3421

1.4210

1.4999

1.5789

1.6573

1.7368

6 ~d - tC~)
G ~-~

Bcrit

0.5669

0.5283

0.4745

0.-.4153

0.3579

0.3062

0.2615

0.2239

0.1924

0.1663

0.1447

0.1266

0.1115

0.0987

0.0879

0.0787

0.0708

0.061 0

0.0581

0.0530

0.o484

0.0445



Wave z r A v . Berit
Number o ;- _

23 1.8157 0.0410

24 1.8947 0.0378

25 1.9736 0.0350

26 2.0526 0.0325

27 2.1315 0.0303

28 2.2104 0.0283

29 2.2894 0.0265

30 2.3683 0.0248



tends to become concentrated near the lower portion of the

fluid at the cold wall. Since the contour interval increases

from Run 73 to Run 69 it also supports this conclusion.

The volume averaged available potential energy (Lorenz

(1955)) of the fluid for each state can be determined from the

mean temperature field and the standard deviation. The Lavailable

potential energy is proportional to the variance of the tempera-

ture along a geopotential surface. This is shown in thc

Appendix II to be:

TAPES SI55 ( T -

where T(re e) T ( ), a ) - T Cre

,I is the average temperature over a geopotential surface and

Tm and em are the mean temperatures and density of the fluid,

respectively. If we assume that the time average of the thermo-

couple output is equivalent to an azimuthal average we can then

set:

T (Y%,Z ) = Tr;e;,) + TA ( r 91)

The variance along a geopotential surface is then

T- CTi -OP) T CT(Y) + T Y , 7 )

and the available potential energy per unit volume is

-I
I 7 PE = ( qV f) r o-c

Volm mc

+ 9 edC
Ay- ) L' U M C'a -1 rd~ ad
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I I
since L --by our assumption, and we

neglect- the higher order correlation with 1 by computi, ng -

from the time averaged temperature field. The first term of the

right hand side measures the radial available potential energy

per unit volume.1 This can be calculated from the time. averaged

temperature field interpolated to the geopotential surfaces..

The second term represents the zonal available potential energy

per unit volume, which can be calculated from the standard devia-

tion of the sample.

The calculated values of these quantities, along with their

sum or total available potential energy, are shoiwn in Figure. 17a

and 17b. for the runs at 9.12CO and 5.09C ,. respectively. The

values for the runs at 2.53Co are included in Table III. In

Figure 17 the radial available potential energy2 (RAPE) increases

rapidly in the symmetric regime.' The value drops abruptly at

the transition tothe wave regime and tends to decrease within

this regime. The radial potential energy also tends to decrease

within the wave numbers and increase slightly at the transition

between wave.numbers, with the exception of Runs 44 and 46, where

it increases within the wave number. This value increases again

with rotation rate in the vacillating and irregular regimes.

The line of best fit to all points in the wave regime for

RAPE with 8T 9,12C00 is:

RAPE = (0.6581 ± 0.1510) - (0.'1303 - 0.0348) log E" 1
(units: ergs/cm3)

This does indicate a significant decrease or radial available

potential energy with increasing E- .

The zonal available potential energy (ZAPE) reflects the

See following pae for footnotes 1 and 2.



1. The radial available potential energy per unit volume as
defined in this text is the available potential energy per unit
volume of the azimuthally averaged fluid. This corresponds
in the meteorological context' to the zonal available potential'
energy per unit volume. The zonal available potential energy-
per unit volume as defined in this text corresponds to the
eddy-available potential energy in the meteorological context.

2.1 The values of the radial, zonal and total available potential
energy are recorded in terms of unit volume. However, since the
volume of the array is always constant, this will not be stated
explicitly in the proceeding.

II(~ i ____YLMYr~~LI__I1__~.~- - ~.~ICIIIL - .* YLII..LI ~l)-tli--s~T* 41
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variation of the average standaid deviation in that it tends to

increase with increasing rotation rate for the wave, vacillating

and irregular regime points. The line of best fit to all points

in the wave regime for ZAPE with AT = 9.12eis;

ZAPE = (-0.3024 + 0.0867) + (0.0944 t 0.0200) log E-1

(units: ergs/cm3)

The line of best fit for the total available potential energy,

TAPE, for the wave regime under the same conditions is;

TAPE = (0.3553 + 0.1699) - (0.0357 + 0.0392) log E-1

(units: ergs/cm3 )

Thus, the total available potential energy remains almost

constant within the wave regime and increases with increasing

rotation rate for the symmetric and vacillating flows.

The same pattern is not quite as evident for the runs at

bT = 5.09 Coin Figure 1W5. However, if as indicated in Figure

17athe radial available potential energy changes within each

wave number then there are not enough samples taken for Figure

17b to indicate the variation accurately. The same argument

would hold for the runs at AT = 2.530Coin Table III where the

radial available potential energy actually shows a tendency to

increase in the wave regime.

There is no accilrate manner with which the kinetic energy

of this flow can be calculated due to a lack of some reference

level from which to integrate the thermal wind equation..

However, the fact that the slope of the isotherm in the center

of the fluid decreases with increasing rotation rate, whereas,

the value of O- defined at the edges of the thermocouple array

remains constant would indicate that the slope of the isotherms



Figure 17. Radial, zonal and total available potential
energy per unit volume; T = 9.120C.

Legend

O Lower plot; radial available potential energy
per unit volume.

0 Zonal available potential energy
per unit volume.

Upper plot;

Figure 18.

total available potential energy per
unit volume.

Radial, zonal and total available ootential
energy per unit volume; T = 5.090C.

Legend

Lower plot; radial available potential energy
per unit volume.

Zonal available potential energy
per unit volume.

Upper plot; total available potential energy
per unit volume.
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near the edges of the fluid must increase with increasing

rotation. This means that the kinetic energy of the fluid

computed from the thermal wind would increase. This process

has been shown to occur in wave amplitude vacillation by

Pfi.effer, et al. (1966), when the rotation rate of the apparatus

was constant.

Spectral analysis

Further insight into the structure of the convection in

the wave, vacillating and irregular flow can be obtained from a

time series analysis of the temperature oscillations. The

results of the analysis should indicate the frequency structure,

rmp L tUde,
teo coherence and radial and vertical phase variations of the

mode. To this end the power spectrum, complex cospectrum and

Soherence of all the thermocouples in the arraypwith respect to

thermocouple T (3,3) (see Figure 9) )have been computed for all

the runs in the regular wave, vacillating and irregular regime
AT=

for ZT - 9.12C and Runs 25, 26, 65, 63b, 66 and 67 atk5.090 C.

The computations were done using a fast Cooley Tukey Fourier

transform subroutine written by Dr. Ralph WigginsBt, MIT.

Further details of the computations are given in Appendix II.

The power spectrum results for thermocouple T(3,3) for Run

42 are shown in Figure 19. The 95% confidence level shown is

calculated using Fisher's (1929) test of significance in harmonic

analysis. This level represents the maximum amplitude one could

expect 95% of the time from a harmonic analysis of a completely

random set of data with the same standard deviation as the

actual sample (see Nowroozi, 1967). The typical power spectrum
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in the wave regime is characterized by a sharp peak at the

dominant frequency and a smaller peak near the third harmonic

of the frequency. The power spectrum curve for the vacil-

lating ,Run 71,and irregular,Run 69,flows are shown in Figure 20.

The peak power for Run 71 occurs at a much lower frequency and

has a broader peak than any in the wave regime. In the irregular

flow the power is split between two frequency components at a

higher frequency than that in the vacillating flow and one low

frequency component. Some care must be exercised in the

interpetation of the low frequency components less than 0.0087 sec'-

as these represent estimates of wave amplitudes based on waves

that occur less than 10 times in the original sample. Thus, we

cannot really state whether the low frequency component in Run

69 is real or not.

Figure 21 is a plot of the period at which the maximum power

occurs for each run at 9.1200 in the regular wave, vacillating

and irregular regimes. This indicates that the period of the

disturbance tends to increase with increasing rotation rate in

the wave regime. This increase is even more pronounced in the

vacillating regime. This is followed with a decrease in period

to the irregular regime point.

The contours of constant cospectrum amplitude at the period of

maximum power for the wave regime are shown in Figure 22.

These indicate the same characteristic variations as the contours

of the standard deviation. At low rotation rates thewavve distir-

bance is concentrated near the upper surface near the cold wall.

As the rotation rate is increased the wave disturbance moves

into the center of the fluid and broadens to cover a larger



Figure 19.

Figure 20.

Figure 21.

Power spectrum; Run 42, thermocouple T(3,3).

Power spectrum; Runs 71 and 69, thermocouple
T(3,3).

Period at maximum power versus E-1; 4T 9.120C.
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volume of the fluid. The contours of constant phase, with

respect to thermocouple T (3,3), and projected to this azimuth

using the observed wave number are also shown in Figure 22.

These indicate that the wave tends to lead near the upper

section of the warm wall and lags near the lower section of the

cold wall. There also appears to be a region of maximum lag in

the middle sections of the fluid for Runs 36 and 42. The phase

lines for Run 38 do not show this variation. There is much less

overall phase variation for Run 38 than in the other two since

the contour interval is approximately one half that of the

other two runs.

A better idea of the vertical phase variation can be

obtained from a vertical plot of the radially averag4 phase for

each run as shown in Figure 23. This plot indicates that the

ave leads in the upper half of the fluid with a maximum lead,

just above the midlayer of the fluid and it lags in the lower

section of the fluid with a maximum lag just below the midpoint

of the fluid. The difference between the maximum and minimum

phase tends to decrease with increasing rotation rate in the

wave regime. The coherence of each thermocouple at the point

of maximum power)with respect to thermocouple T (3,3) is greater

than 0.9 for all runs except for a.few isolated cases near the

boundaries of the array.

The contours of constant cospectrum amplitude for the point

of maximum power are represented along with those of constant

coherence for Runs 73, 71, and 69 in Figure 24. The contours

of the cospectrum amplitude do not represent the exact

characteristics as indicated for the contours of standard devia-



tion)since the contour intervals decrease from 7.4 x 10-5 at

Run 73 to 3.2 x 105 at Run 71 and 2.7 x 10-5 at Run 69. Thus,

it is not clear from this figure that the disturbance becomes

more concentrated in the lower region of the fluid near the

cold wall as rotation rate increases. This discrepancy occurs

because the standard deviation is an indication of the power

at all frequencies. However, the conclusion drawn from the

standard deviation amplitudes can be rejustified by considering

the contours of cospectrum amplitude for the other spectral

peak indicated in Run 69. (This contour plot not shown). This ptat

has the same characteristic contourplot as shown for Run 69 in

Figure 24. Thus, the sum of the two modes does indicate that

the disturbance has become more concentrated near the lower

section of the cold wall.

There was no obvious phase variation to the cospectrum

values for these runs which would indicate a wave number. Thus,

it was not possible to project the phase variation back to the

azimuth of thermocouple T (3,3). Further, the coherence for

these runs decreases rapidly away from the vertical thermocouple

array T (3,3))and therefore, the results of the phase variation

could not be very meaningful. The lines of constant coherence

indicate this decrease. They also indicate that the overall

coherence decreases with increasing rotation rate. This decrease

is even more pronounced than shown in the plot since the contour

intervals also increase from Run 73 to Run 69.



Figure 22. Contours of maximum
phase; Runs 36, 42,

cospectrum values and
and 38.

Run No.

36 Cospectrum
Phase

42 Cospectrum
Phase

38 Cospectrum
Phase

Min. Val.

0.00006
-2.15

0.00039
-2.04

0.00034
-1.59

Max. Val.

0.00231
1.04

0.00302
0.72

0.00142
0.006

Contour
Interval

0.00045
0.64

0.00053
0.50

0.00022
0.31

Figure 23.

Figure 24.

Average vertical phase variation; wave regime,
AT = 9.120 C.

Contours of maximum cospectrum values and
coherence; Runs 73, 71 and 69.

Run No.

73 Cospectrum
Coherence

71 Cospectrum
Coherence

69 Cospectrum
Coherence

MinJ Val.

0.00006
0.452
0.00001

0.526

0.00001
0.213

Max. Val.

0.00044
0.999

0.00018
0.999

0.0014
0.999

Contour
Interval

0.00007
0.11

0.00003
0.09

0.00003
0.16
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14.24 *

9.84

5.44 *

1.04 •

-2 +2

Run 36

14.24 *0

9.84

5.44

1.04

-2 +2
Run 45

14.24 *

9.84

5.44

1.04
F-- I

-2 +2

Run 37

-2 +2

Run 39

.-,,-

-2 +2

Run 35

/
-2 +2

Run 40

Radially

0

-2 +2

Run 44

*0/

-2 +2

Run 41

-2 +2

Run 70

-2 +2

Run 46

-2 2
Run 42

I

-2 +2
Run 38

Averaged Phase

Figure 23
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CHAPTER V

SIDE WALL BOUNDARY LAYERS AND EFFECT OF
THE THERMOCOUPLES ON THE FLUID

It has been noted previously that the side wall boundary

layer scale thickness is:

4 =yXd

go( AT

2 is of the order 0.2 cm. to 0.3 cm. for the range of these

experiments. This means that the thermocouples for most runs

are separated from the boundary by three times the boundary

layer thickness. However, some of the contours of standard

deviation showed a slight asymmetry in that the values reached

a minimum either near the upper surface of the warm wall or near

the lower region of the cold wall. For this reason, a short

series of experiments were designed to determine if the side

wall boundary layers biased the results of the previous work

significantly.

The first experiment tried to determine the temperature

variation at 1 cm. from .the bottom of the convecting fluid

with J.L= 0.0 and AT -= 8.30C? This was accomplished by moving a

single.thermocouple probe mounted in a 0.062" stainless steel

needle in 0.1 cm. increments through tho boundary layer. The

results of this experiment are indicated in Figure 25. The

amplitude of the hump on the warm wall is 0.1lO and it occurs

3 mm. from the wall. Since the boundary layers grow with

increasing vertical distance from the source or sink of heat,
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the cold wall hump occurs at a greater distance from the wall.
6

The amplitude of the hump is approximately 0.300C and it occurs

5 mm. from the wall. These measurements, since only a single

probe was used, have a relative accuracy of + 0.030

It was, of course, impossible to perform these measurements

accurately when the apparatus was rotating. Consequently,

another experiment was performed with a horizontal string of

thermocouples suspended between the two walls at 3.24 cm. depth

from the free surface of the fluid. These thermocouples were

located at 0.27, 0.45, 0.63, 0.84, 1.09, 1.34 and 1.61 cm. from

the cold wall and 0.30, 0.60, 0.83, 1.08, 1.40, 1.74, 2.08 and

2.59 cm. from the warm wall. The upper level of the fluid was

chosen since the upper region near the warm wall is where the

nonlinear effects in the boundary layer are greatest.

The experimental procedure was exactly the same as used in

recording the data from the thermocouple array. Runs were taken

with 'T set approximately at 9.12GCofor the valuesof E "1 of 0.0,

0.924 x 104, 1.587 x 104, 2.747 x 104, 6.140 x 104, and

7.665 x 104. The results for mean temperature and standard

deviation for the run with E- 1 = 2.747 x 104 are plotted in

Figure 26. The nondimensional temperature scale is twice that

of the scale in Figure 25, but the horizontal distance scale is

the same in both cases. Figure 26 indicates a region of

slightly colder temperatures at 1.74 cm. from the warm wall with

an amplitude of 0.090C. This region occurs at the same position

for all runs taken but with slightly smaller amplitudes. The

cold wall does not indicate the characteristic increase in

temperature, because it occurs too close to the wall to be
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detected by the above thermocouple array.

Because this experiment uses several probes, the relative

accuracy of the reading will be 0.07oC, and consequently,

these observed variations are just on the verge of being

significant. These experiments, although not accurate enough,

nor spaced closely enough, to indicate the structure of the

boundary layers, do, however, indicate that the preceding results

are not strongly biased by the proximity of the thermocouples

to the boundary layers.

Another consideration jsnd addition to the problem of the

- doboundary layers is how muchlthe thermocouples disturb the flow

of the fluid. When dye is placed upstream of the thermocouple

in the zonal velocity maximum of the symmetric regime, it

appears to separate slightly in the wake of the thermocouple.

This separation is laminar and does not last for more than 3 cm.

distance downstream. The local Reynolds number at this point

is less than or equal to five. The Reynolds number for all the

other thermocouples is significantly less than five. This, in

addition to the fact that no thermocouple lies in the downstream

wake of the other thermocouples, leads the investigator to

believe that the effect is not significant in the present

context of the data.



Figure 25.

Figure 26.

Side wall boundary layer temperature; -SL= 0.0,
A T = 8.300, 1 cm. from bottom.

Side wall boundary layer temperature;
-- L= 0.549 sec , AT = 8.85 0, 3.24 cm. from
top.
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CHAPTER VI

SUMMARY AND SUGGESTIONS FOR FUTURE WORK

The positions of the various convecting regimes and the

interior temperature structure of a rotating annulus of liquid

have been investigated. The principal distinctions between this

work and the previous work are the use of an annulus with a

large gap width)and also that detailed temperature measurements

were obtained in the various regimes. The results indicate that

the critical value of T4 at the transition between the upper

symmetric regime and the wave regime has a tendency to increase

slightly with increasing values of f5 for F5 - 2.75 x 107.

This result, however, was not statistically significant from

being independent of 1T in this range. The point at which the

ffow becomes irregular does not occur until high rotation rates

are reached when the gap width is large or until TF5 is greater

than 7.259 x 109.

The vertical stability of the fluid increases in the

symmetric regime and decreases slightly in the wave regime with

increasing rotation rate. When this value is used to calculate

the Eady number, it is found that B exceeds the critical value

necessary for instability. The larger values of B at the point

of instability may be due to the fact that the part of the zonal

velocity which is even about the mean radius of the gap acts to

destabilize the symmetric flow. The observed wave number,-:

generally, does not correspond to the wave number with the

theoretical maximum rate of growth. It is suggested that this

result is due to the increase of the viscous dissipation within
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the fluid as the wave number increases which in turn

decrease the growth rate of those waves with the larger wave

number.

The total available potential energy of the fluid increases

with increasing rotation rate in the symmetric, vacillating and

irregular regimes. This value is almost constant with a slight

tendency to decrease with increasing rotation in the wave regime.

The radial available potential energy decreases with increasing
in t. &4Wa. V'r r ac ' e

rotation rate. The thermal amplitude of the wave and,

consequently, the zonal available potential energy increases

with increasing rotation rate.

The position of the maximum wave amplitude in the regular

wave regime seems to be slightly more concentrated in the upper

half of the fluid. The maximum amplitude in the vacillating and

trregular flows tends to concentrate in the lower half of the

fluid. The phase of the wave in 'the regular wave regime leads

in the upper half of the fluid and lags in the lower half. The

vertical difference in the phase decreases with increasing

rotation rate.

The period of the wave tends to increase with increasing

E "1 in the wave regime, and at a much faster rate in the vacil-

lating regime. The spectrum of the oscillations in the irregular

regime appears to be split into at least two components. The

coherence in this regime tends to decrease rapidly with distance

from the thermocouple.

The results presented here lend to interesting speculation

on future experiments. It would be quite valuable to obtain

the transition line between the symmetric and regular wave



-63-

regime using an annulus with an even larger gap width. These

results would produce a more significant estimate of the

dependence of 7Y7 on 7T. Experiments with the larger gap

width would also indicate the behavior of the transition lines

from the regular wave to the vacillating regime and from the

vacillating to the irregular regimes. In the same context it

appears essential that some information be obtained for moderate

values of 7i5 using an apparatus with slightly smaller gap

widths than in the present experiment. The results of this

latter work should be combined with the previous results of

Fowlis and Hide (1965) and the present work to determine the

behavior of the transition to the irregular regime throughout

this range of 7 5T.
It would also be useful to obtain the temperature structure

of the convecting fluid when the upper surface is in contact

.with a rigid lid. Under these conditions the flow in the

symmetric regime is more symmetric in depth. The results just

outside the boundary layer could be used as a comparison to

the results obtained theoretically by McIntyre (1967). It also

appears that a more detailed study of the structure of the

boundary layer in all regimes for both a free upper surface and

a rigid upper surface should be made. This study would also

lead to more information as to how the bbundary layers affect

the flow, especially in the vacillating and the irregular regimes.

Accurate velocity measurement at various depths and radii

would lead to greater understanding as to the nature of the

stability of the symmetric flow. The measurements would have

to be spaced so that any horizontal parabolic variation of the



-64-

zonal velocity could be detected in addition to the stronger

linear horizontal shear which occurs in these experiments.

These measurements, in conjuction with the measurement of

potential energy, would also indicate the total energy balance

occurring in the annulus regimes. Angular momentum transport

and heat transport within each regime Chould also be calculated.

Finally, perhaps the most obvious experiment, is the

determination of the statistical properties of the vacillating

and irregular regimes. This study will require a long series

of samples from a much closer network of sensors than used in

the present experiment. The increase in the number of sensors

used increases the possibility that the sensor will disturb the

flow. In addition to this effect, there is the mechanical

problem of attaining the large and stable rotation rates neces-

sary to produce the irregular flow when an annulus with a large

gap width is used.
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APPENDIX 1

DESIGN AND CONSTRUCTION OF THE 42 INCH ANNULUS

Several years of previous experimental work on thermal

convection in a rotating annulus have made it desirable to

obtain accurate and detailed measurements of the thermal structure

and the velocity structure of the various convecting regimes.

In addition, the results also indicated the desirability of

obtaining the state of the flow at large values of Ekman numbers

or when the percentage of total fluid under the effect of the

viscous side wall boundary was reduced from that of previous

experiments. The former investigation can only be done when

the dimensions of the sensor used or its disturbance to the flow

are much smaller than the physical.scale of the apparatus. The

current version of the 42 inch annulus at the Rotating Fluid

Dynamics Laboratory at M.I.T. was designed with these experiments

in mind. This apparatus will be set up in the Meteorological

office at Bracknell, Berkshire in the United Kingdom, under the

direction of Dr. Raymond Hide. A prototype of the apparatus

was originally built by Dr. Fowlis. In the interest of obtaining

greater accuracy and more versatility this prototype was

redesigned and rebuilt with the exception of the turntable, the

turntable stand and the circulation units. This apparatus

conforms to the following specifications:

1. The walls of the convection chamber are concentric to
the axis of rotation within + 0.005 inches.

2. The gap width (b-a) is uniform with t 0075 inches, and
consequently a false bottom with an 0 ring seal is water-
tight so lighting can be placed below the convection chamber
and the position of the bottom varied.
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3. The turntable is level within _ 0.5 min. over the area
of the convection chamber.

4. The stability of the rotation rate of the apparatus is
- 0.089% (standard deviation).

5. The false bottom of the convection chamber is flat to
within ± 0.005 inches.

The remaining section of the appendix will describe the

design and construction of the apparatus which is shown

schematically in Figure 7A.

Turntable and drive mechanism
0.

The turntable is a ) inch flat ground steel plate with 42

inch outside diameter. This is mounted on a 22.5 inch diameter

four point contact radial and thrust ring bearing. (Kaydon

Engineering Corp. No. B-8090-l). The bearing is bolted on the

Underside to a - inch steel ring which in turn is fastened to

a welded triangular frame made of one inch square tubular steel.

The frame is supported with three steel legs with individual

leveling screws on each. When correctly mounted the edge of the

turntable runs with a vertical deviation of t 0.005 inches with

respect to the plane of rotation at a distance of 21 inches

from the axis of rotation.

A hollow stainless steel shelf is fastened underneath the

table concentric to the axis of rotation. This has been turned

at the top to 6.500 inches to support the eight coin silver

power slip rings (Airflyte Electronics Corp. part # CSR-342).

Below the slip rings, it has been turned to 6.543 inches in

order to make a positive, concentric mount for a reamed Browning

72 teeth pulley. The four channel fluid slip rings are mounted
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inside this shaft.

The table is driven by a 1 h.p. 220 volt synchronous motor

with a Graham variable speed transmission. This is coupled to

the table by an 18 or 36 notch Browning one inch pulley on the

transmission, a one inch wide Browning notched belt, and the 72

notch gear on the turntable shaft. The Graham transmission could

be modified to supply a maximum output speed of 20 rpm. as an

N30W60 series or of 48 rpm. as a N29W23 series. Experiment runs

1-56 were run with the former unit which means that the turntable

required about 1/3 the total output power of the drive.

Experiment runs 57-73 were made with the N29W23 and the turntable

required approximately one-half the total output power of the

transmission unit.

The average standard deviation calculated from 39 different

zuns was 0.086%. This includes all the standard runs of

Experiment Number 1 with the exception of four runs whose

deviations were at least three times larger than the standard

deviation of the sample. These large errors were probably due

to improper setting of the Beckman timing triggers and

associated circuitry.

Convection chamber and baths

On the top of the turntable six 3.5 x 2 x 17 inch canvas

phenolic support spacers are mounted at 60 degree intervals. A

) inch thick by 40 inch diameter phenolic plate is mounted on

top of these spacers. Each spacer is carefully shimmed so that

the top of the plate runs true in the vertical to t 0.0025 inches



and is level to within I 0.5 min. near the mounting points for

each cylinder. The copper cylinders which form the wall of the

convection chamber are fastened to this plate with six 5/16

inch stainless steel bolts. 1/8 inch Burna-N 0 rings placed in

grooves in the base plate under each cylinder serve as the seal

for each bath.

Three copper cylinders were made for the annulus so that

different gap widths could be used. These cylinders were made

from copper casting done at the Mystic Valley Foundry, Somer-

ville, Mass. The castings were carefully turned and faced by

General Ship and Engine Works, Boston, Mass. The final di-

mensions and tolerances of each of the three cylinders are given

in Table V. In this experiment only cylinders II and III were

mounted with final concentricities of ± 0.0025 inches and

1 0.005 inches, respectively. The maximum variation of the gap

width is t 0.0075 inches. It is interesting to note that

careful alignment and tightening of cylinder III actually improved

the tolerances of the gap width.

The bottom of the convection chamber is made from a

circular disk of one inch type II plexiglas. 0 ring grooves for

3/16 inch Neoprene 0 rings are milled on the inner and outer

edges to form a waterjtight seal between each cylinder. This is

supported six inches above the phenolic base by seven six inch

milled phenolic blocks. When carefully installed the vertical

deviation of the bottom with respect to the plane of rotation

is t 0.005 inches. Radial grid lines are drawn every 5 degrees

and azimuthal grid lines are drawn every 3 cm for a 120.degree



sector on the underside of the false bottom. These are covered

with diffusing paper. Three 9 inch fluorescent lights are

mounted under this sector for lighting in dye studies.

The outer boundary of the outside bath is formed with a

one inch thick-by 18 inch high and 38 inch inside diameter

plexiglas cylinder. This was faced on both top and bottom, and

the top inside edge turned to be concentric for a depth of one

inch to accommodate an 0 ring seal. The inner bath consists of

the inside volume of the inner cylinder. Both baths are then

closed with a 3/4 inch plexiglas type II lid with 1/8 inch

Burna-N 0 ring grooves on each sealing surface. The outer and

inner bath capacities of the apparatus with cylinders III and

II mounted are 28.5 gallons and 18.0 gallons, respectively.

The walls of the convection chamber are maintained at an

Almost constant temperature by circulating water through the

baths. The temperature and flow rate of the circulating water

is maintained with two Haake Circulators Type N.B.S. These

have a temperature range from 000C. to S0 C. with a setting

increment of 0.0250C. Under full normal operating conditions

the temperature of the inflowing water to each bath varies by

less than 0.10C. and has a flow rate of 2.4 gallons/minute. In

the experiment the temperature of the colder bath was maintained

below room temperature by using two coolers in parallel with

the temperature control circuit of the circulator. The mean

temperature of the baths was adjusted to room temperature.

The baths are constructed so that this water is released'

into the baths through any combination of four circulation



rings. These rings are made from - inch rolled copper tubing

with 72 1/8 inch holes drilled in them such that the circulating

water is forced directly toward the wall. The circulation

tubes are mounted 1 j inches from each wall at the heights of

i, 6, 12, and 17 inches from the phenolic base. They are sus-

pended by means of slots cut in six 1/16 inch copper fins

mounted on the bath side of each copper cylinder. Each fin

consisted of two blades where each blade extends into the bath

3 inches.

In general more heat is removed from the baths near the

bottom of the warm wall and more heat is added near the top of

the cold wall; consequently, the optimum circulation pattern is

to add the fresh fluid near the lower two circulations in the

warm bath and extract the fluid from the top of this bath. The

reverse is true for the cold bath. The bath liquid is directed

towards the wall in order to help create more turbulent boundary

layers and consequently decrease the temperature drop occurring

between the bath and the convection chamber wall.

The temperature of each wall could be monitored with 24

copper constantan thermocouples. These were constructed from

Leads and Northrup # 30-55-3 wire, threaded through clear

flexible tubing and sealed at the ends. Each thermocouple was

positioned 0.1 inch from the edge of the convection chamber

wall. The 24 thermocouples are mounted in three sets of five

vertical positions and three sets of three vertical positions.

The set of five thermocouples are mounted at 1j, 6, 9, 12 and

16W inches in height from the phenolic base and at 120 degree

intervals. The set of three thermocouples are mounted at 12,
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9, 16 inches in height and 120 degree intervals, the latter

separated from the former by 60 degrees. These thermocouples

can be read individually or the thermocouples spanning the

convection chamber can be summed so that an average temperature

difference between the warm and cold wall can be obtained.

The vertical temperature variation in the wall due to the

preferential removal of heat is indicated in Figure 8. This

is a variation of + 3% of bT. Since this effect is just the

opposite on the cold wall the deviation in the impressed

temperature difference at any one height is much less than this

variation. There is also a noticeable variation in the local

temperature of the wall as a wave lobe passes that point. This

amounts to a maximum local variation of t 2.5% of A T. The

azimuthal average of this variation is zero.

Convection chamber thermocouples

After several different methods of suspending movable

thermocouples in the bath were tried, unsuccessfully, it was

decided to use thermocouples rigidly suspended from the upper

lid and the false bottom. This allows the use of very small

thermocouple wire, thus causing a minimum disturbance to the

fluid. These thermocouples can also be positioned accurately.

This is accomplished by having four 5/16 inch reemed holes at

1.02 cm, 5.42, 9.82 and 14.22 cm from the equivalent edge of

the outer cylinder cut in the false bottom, each hole being

separated by 60 degrees in azimuth. In this way several 5/16

inch plugs with a shallow grease ring cut in each to prevent

capillary action can be used to plug up the hole and support one



-78-

end of the thermocouple array. Several such plugs were made

with 0.005 inch Omega Engineering constantan thermocouple wire

suspended from a sealed .025 inch center hole. The copper leads

were soldered to the constantan wire at 0.025 cm. scrape in the

constantan wire made at 1.02, 5.42, 9.82, 14.22 cm. from the

top of the plug. The other end of the constantan lead was

securely fastened at the top from a milled spacing block with a

0.025 inch hole for positioning. When tightened and set in

place the position of each thermocouple junction should be

known in the vertical direction by t 0.025 cm and in the radial

direction by t 0.033 cm. This uncertainty introduces a maximum

error of t 0.01200C. with an impressed temperature difference of

100C0 Oin the upper symmetrical regime near the transition.

The constantan lead from each of the convection chamber

termocouples is connected to a reference junction in an ice

bath on the turntable made from a wide mouth dewer flask filled

with ice and water. All of the readings are then relative to

this reference point, and only 17 leads are needed to obtain

the temperature of the 16 thermocouples in the bath.

The copper leads from each thermocouple and the reference

Junction are connected to either a 15 pin or a nine pin cannon

plug. These can then be connected to the cannon plugs which

lead to the 36 silver plated thermocouple slip rings. These

slip rings are connected to the recording apparatus using a

five foot patch cord. In the same manner the individual leads

or the two leads indicating the sum of the temperature differ-

ence for the wall thermocouple can be connected to the slip

rings.
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Electrical recording and measuring systems

Three different systems were used to record the thermo-

couple voltages. These are a four channel Beckman Instruments

analog recorder, a Leads and Northrup potentiometer and a digi-

tal data'system. Each system can be connected directly to the

37 lead cannon plug patch cord or to a 24 position double deck

thermocouple selector switch. The connections to the analog

recorder and digital data acquisition system are indicated in

Figure 7h.

The Beckman Instruments Dynograph type SII four channel

recorder can be used to obtain an analog record of any four

signals. A separate switching box allows an absolute reference

for each channel to be set with the digital voltmeter. The

recorder has a maximum sensitivity of 1 uv/div with a noise level

less than 1 uv. rms. The Leads and Northrup potentiometer is

generally used in connection with the selector switch for

individual thermocouple readings during calibration.

The digital data acquisition system consists of a stepping

switch and logic circuit, a preamplifier, digital voltmeter and

a paper tape punch adapter and punch. The stepping switch

(Sigma Cohn) is a twenty position triple deck switch driven by

a Sigma Cohn cycopulser unit. The upper deck is used for the

thermocouple signals while the lower deck is required to

program the logic circuit. The upper deck has been carefully

insulated and shielded, and it contains one reference zero posi-

tion on each side.

The logic circuit was designed by Mr. Don Sordillo of M.I.T.



with the use of Digital Data Corporation flip chip modules.

The circuit is shown schematically in Figure 27. The R 302 (A2)

is the flip flop unit and the W601 is the pulse conversion unit

which together signal the cycopulser to start to step the

stepping switch. This moves the switch one position withma

period of the time constant of the R 302 (A2) circuit. This is

initiated by grounding pin E of R 111 (Al) with a microswitch.

The cycle is stopped when a signal of 3 volts is applied to

pin P of the R 302 (A2). A separate logic circuit exists for

programming the digital voltmeter. It consists of the flip

flop unit R 302 (B2), a pulse shaping unit Rll (B3) and c.

conversion unit W 600 (B4). The unit is triggered at the same

time the stepping switch steps. It is programmed so that the

digital voltmeter will read the signal Zms.after the stepping

switch is positioned. T is the variable time constant of the

R 302 (B2) and was generally set at 300 ms. This read signal

can be suppressed by programming the lower deck of the stepping

switch to connect pin P of the R 302 (B2) to ground.

During the experiments the logic system was set to step

through 20 positions continuously every 9.8 seconds. Nineteen

readings were recorded consisting of one zero reference, the 16

thermocouples in the array, and two zero references. The

maximum sample time, determined by the length of the paper tape,

was approximately two hours.

Discussion of error

The maximum error due to the measurement of the dimensions

of the convection chamber occurs in the determination of the

-80-
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depth. This measurement is accurate to t 0.5% of the reading

whereas, the gap width is known to within + 0.01%. The

rotation rate is approximately constant at 4 0.089% (standard

deviation). The largest error in the determination of the

dimensionless parameters is then due to the variation of the

wall temperature which, as noted previously, can introduce an

error of + 3% of t T. In addition to this the local temperature

of the wall may vary by + 2.5% in the wave regime with a period

of the wave. This effect is also noticeable in the determination

of the average temperature difference between the walls when

six waves are present and in phase with the six sets of wall

thermocouples. The results of this measurement correspond to

an average local temperature variation of + 0.050C. This

effect was averaged out in the determination of A T and

donsequently should not strongly affect the mean results for

the dimensionless parameters.

The determination of error for the temperature measurements

has many factors and since all thermocouples were referenced

to the same ice bath thermocouple, we will only discuss the

relative accuracy of each measurement. The maximum error due

to misalignment and incorrect spacing of the thermocouple is

+ 0.01oC. The noise level of the Dana preamplifier is t 0.'5

uv or t 0.01200. The digital voltmeter which was set to read

to the nearest uv introduces a maximum round off error of

+ 0.0250C. Errors due to thermal differences across the cannon

plugs and other junctions in the stepping switch can be

estimated from the calibration results as + l.uv or + 0.025 0.

An additional error in the calibrations will occur for the four
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surface array thermocouples since the local temperature near

the surface cannot be measured accurately enough. This error

should be + 0.025oC. Thus, the maximum error for the 12

thermocouples at depths greater than 5 cm is + 0.072 and - 0.0470C.

The maximum error for the four thermocouples near the surface

is + 0.097 and - 0.0172,c. This latter error could have been

reduced simply by filling the annulus chamber with more water

during the calibration. In general the relative error will be

less than this since most results depend on a time average of

these quantities and the random errors introduced by the noise

levels of the electronics will be reduced by a factor of 1/ TFI

where N is the total number of samples taken. N is generally

greater than 100.

Suggestions for future modifications

The apparatus runs very well in its present state. However,

some additional improvements should be made. Some attempt

should be made to improve the control of the wall temperature

with the addition of several more circulation tubes in each bath.

In addition several more thermocouples should be added to each

wall in order to determine the actual temperature variation more

accurately. The inside edge of the outer bath leaks slightly

unless somesilastic sealant is used for an additional seal. This

can be stopped either by replacing the current 1/8 inch Burna-

N 0 ring with a larger and softer neoprene 0 ring, or by adding

an additional[O ring seal to the top. Finally, some modification

must be made to the turntable drive so that more stable and

larger rotation rates can be attained as necessary in the study

of the irregular regime.



Figure 27. Stepping switch logic circuit.
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TABLE 4

Wall
Inner Cylinders Thickness

O.D. (inches)

I 9.982 + 0.001

II 18.239 + 0.001

Outer Cylinder

I.D. (inches)

8.966

17.200

(inches)

.50o8

o,.520

Height

(inches)

17.997

18.000

III 31.237 30.272 t 0.008* 0.432 18.000
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APPENDIX 2

METHODS FOR THE CALCULATION OF EXTERNAL AND INTERNAL
EXPERIMENTAL PARAMETERS AVA ILABLE POTENTIAL

ENERGY AND TIME SERIES AN'LYSI

The purpose of this appendix is to define the formulae used

to compute the external experimental parameters, the internal

parameters of the flow, the potential energy of the flow and

the manner in which the time series analyses were made. All of

these calculations were done at the M.I.T. Computation Center

except for a small section which waSa done at the computation

center at the State University of New York at Albany.

The external parameters were calculated from the measured

value of the mean temperature, Tm, determined by the average of

the inflow and outflow temperatures of each bath, the mean

9otation rate,JL, computed from the mean of ten rotation

periods, the mean temperature difference, AT, which was computed

from the.,mean value of difference between the wall thermo-

couplesand the measured dimensions of the apparatus. Using

this notation, the mean density is:

Fm = 0.9976846 x (1 - 0.000232218 x (Tm - 22.5)

- 0.000005052 (Tm -22.5)2 )

to within 0.001% of the range covered in this experiment. The

mean temperature difference is given by

AT A -2.473 - 0.00625 x AE 100 2 A.2.2

where uE is the mean difference in uv of the wall thermocouples



output. This is accurate to within + 0.05% of AT over the

range of the experiment. The density difference is then

calculated by substituting Te+ A T/2 and T'i- AT/2 in r;l
-oe WO rcsaiA

equation A.2.1 and subtracting. The resulting value of L is:

Sp = 0.9976846 (0.000232218 + 0.000010104) (Tm- 22.5) A.2.3

*AT

The mean viscosity is given by

V,~= 0.01 (0.9640 - 0.0224 x (Tm - 22.0) ) A.2.4

The nondimensional parameters are calculated using these values

for the variables with g = 980 cm/sec2.

The temperature of the convecting fluid is determined from

the output of the thermocouples, E(I, J), in micro volts with

the following formula:

Temp (I,J) = 2.473 (E(I,J) - 900)/100 A.2.5

- 0o.0062 ((E(I,J) - 900)/100)2 + 22 S

The nondimensional temperatureTemp' can be written as:

Tempt (I,J) = (Temp (I,J) - Tm)/AT A.2.6

The internal parameters were generally defined in terms of

a volume average over the thermocouple array. The weight given

to each thermocouple was determined by the volume of fluid its

measurement could represent. Thus, the corner thermocouples

,v!ues were weighted with and the other edge thermocouples

were weighted with - of the weight of the interior thermo-



couples. The average defined in this way extends only to the

edge of the array. Let R(I), I = 1, 4 denote the radial

position of each vertical thermocouple array.

In this experiment (R(I), I = 1, 4) = 37.405, 33.oO5,

28.605, 24.205. Further, let the incremental distancedRanddz

be written asV T(i) :'d , (J) T. 7c 7 ,

(d R(I), I = 1, 4) = 2.2, 4.4, 4.4, 2.2

(d Z(J), J = 1, 4) = 2.2. 4.4, 4.4, 2.2

Then the volume integral of a quantity A(I,J) whose I index

represents the different radial positions and whose J index

represents the different vertical positions is:
4

Ardrdedz = 27 A(I,J) R(I) dR(I) dZ(J)-- A.2.7

where we have implicitly assumed that A(I,J) already represents

some type of equivalent azimuthal average. In this manner we

can compute the following:

T = d a-- . (Tr.)-TL , . )-: r) . "2 . 8

dR(t)
and 3 A2

7T-- = (( - c T(rri -Ter.+I) A.2.9
VoLvrme - ] I ,1=

where the volume is 13.2 xli x (R2(:f ) + R2 (if)) ie. the volume

of the thermocouple array. The Eady number and Rossby number

can then be computed from these values.

The potential energy of a stratified fluid of height d can

be written as:
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P.E. = g e(xy(x, , z; t) dT A.2.10

volume

where Z represents the height above the level surface of the

isopyonal surface of density4o,

Using the equation of state for water, the density can be

written as:

P = Lm (1 - OL(T - Tm)) A.2.11

where the subscript m indicates the volume average of that

quantity and T is the temperature at any point in the fluid.

Equation A.2.8 can be written as

PE = ) d Cm g . Volume - gBm SS (T - Tm) oL Zdt A.2.12

where the triple integral is taken over the volume of the fluid

.and dt represents the differential volume element. This integral

can be evaluated by replacing Z by the sum of the heights Zr

and Z I where Zr is the height of a geopotential surface along
Zf

which the ~ean value of terrt nd Z is the deviation

in height of the isotherm T from the surface Zr at any point on

the surface. With the assumption that the height ZI can be

expressed as a taylor series in temperature about the surface

or Z = -T I T)1 A.2.13
\azl

where T = T - T and T is the temperature at any point on
r r

the surface, Zr3 Equation A.2.9 becomes
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+ cAemg14+ Yee f o( T tT'-T)Ta) 

Since the average of T over the surface Zr is zero, the above

equation can be written as:

?P. .3 e viu- - e,,, r-T) ck , dt

A T~ A.2,.15

The first term is the potential energy of a homogeneous fluid

of density (m. The second term is a correction to the first

term due to the horizontally averaged vertical stratification.

The last term represents the potential energy due to the

inclination of the isotherms or isopyonals to the geopotential

surface.

The available potential energy of the fluid can be defined,

Lorenz (1955), as the difference between the potential energy

of present fluid state and that which would result if all the

isopycnal surfaces were made parallel to the geopotential

surfaces Ce,T' = 0). The resultant of this difference in

Equation A.2.15 is

APE = g T 2/a T1 d A.2.1

The available potential energy can be considered as the
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sum of two terms, the radial available potential energy and the

zonal available potential energy. The radial available

potential energy is:

RAPE = gpg o(T -) 2 ( T 1 dT

and the zonal available potential energy is:

ZAPE = gOm d(T )2 -T d'

where T (r,e,Zrt) = T (r,e,Zrjt) + T'' (r,e,Zrjt)

and the bar indicates a time average which is interpreted in

this experiment as equivalent to the azimuthal average.

In the calculation the surface Zr was chosen as that

geopotential surface which crosses the radial mid point of each

horizontal row of thermocouples. The value of the temperature

along this surface was interpolated from the neighboring vertical

values and the vertical temperature gradient DT was estimated
)Z

by the difference in temperature between the two vertical probes

between which the surface Zr passes. The volume average can

then be computed as previously indicated.

Spectral analysis

The power spectrum, cospectrun and coherence for each run

were obtained from a Fourier transform of the temperature matrix.

The transform of the data is computed using a subroutine

supplied and written by Dr. Ralph Wiggins of M.I.T. This

routine uses an algorithm for fast computations of 2 frequency
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estimates similar to that described in Cooley and Tukey (1965).

The power spectrum values for each frequency estimate n

are given by:

aa (n) = Fa (n) Fa (n)

where Pa (n) is the transform of the data vector, * indicates

the complex conjugate, and the subscript, a, indicates the

specific thermocouple output used. The significance of the

power spectrum level can be tested using a method proposed by

Fisher (1929). This method determines a level with a confidence

of N percent, below which all harmonic peaks would fall if

calculated from a similar set of completely random data with the

same standard deviation. Tables for the calculation of these

levels for 99, 98, 95 and 90% confidence levels are given in

Nowroozi (1967).

The complex cospectrum between two thermocouple outputs,

a and b, for each frequency estimate is:

Oab (n) = F* (n) Fb (n)

The amplitude of the cospectrum is:

b ) (n) ab (n) (ab ())

The phase, e, of the cospectrum is:

e = tan-1  ( ab (n))

Re ( ab (n))

The significance of the cospectrum values, ie, whether the

peaks relate to the same physical process or not, can be checked
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by determining if the phases of the neighboring frequencies

are in the same relationship to each other. An estimate of

the relationship is the coherency defined as:

coherency)= 1 ia L A.2. 17
gRj: 'Y = ( - -/,G, I (0

This quantity has a maximum value of unity when all the phases

over the neighboring estimates are correlated.

In this text the Fourier transform for each thermocouple

was calculated from a smoothed digital output. Each data record

X(J) was smoothed according to the formula:

x(j) = X (J-1) + - x(j) + X (J+1)

This filters out any oscillation with a period less than 20 sec.

Sixty four estimates were made for each record and the power

spectrum, cospectrum and phase calculated with reference to

thermocouple T(3,3). The significance level was estimated in

the manner indicated above. The coherency at each frequency

estimate was calculated wiht k = 2 in Equation A.2.17

X _I -- ._.
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