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ABSTRACT

We use the method of small perturbation to study the
scattered wave generated by an arbitrary three dimensional
inhomogeneous medium in the vicinity of a spherical com-
pressional source. Two models of the medium inside the
source are considered: a homogeneous solid and a fluid. It
is only when scattering occurs within a boundary layer
around the source, of radius a few times the one of the
source, that we might expect the two models to give different
results.

A spherical coordinate system is used to express the
displacement field in terms of potentials. This leads us to
a simple relation between the structure of the first order
scattered wave and the structure of the medium, namely a
given spherical harmonic of the medium parameters excited the
same harmonic of the two spheroidal potentials. Moreover,
no torsional waves (as defined in Chapter I) are generated
to that order.

Special attention is given to the cases where scattering
occurs within a wavelength and many wavelengths from the
source. In particular, in the first case, we study the con-
tribution of scattering to the anomalous SH wave which usually
seems to originate near a compressional source and the result
is applied to the Love waves from Boxcar nuclear explosion.
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CHAPTER I

Introduction

1.1 Formulation of the problem

The purpose of this paper is to study the scattered

displacement field due to an inhomogeneous distribution of

medium parameters around a compressional source. A model

of the experimental set-up is sketched below (Fig. 1)

Figure 1. Experimental set-up



The distribution of stresses on the surface of a
spherical cavity of radius "a'" is modified by the production
of an explosion in its interior.

The radius "a" is chosen such that Hooke's law is obeyed
in the medium r > a which is formed by an infinite, iso-
tropic, and inhomogeneous solid. An important assumption
implied in the preceding model is that we will not consider
the transformation of the field by the earth's surface.

Let us consider a model in which the distributions of
parameters are inhomogeneous only within a sphere of radius
re outside of which lies a homogeneous solid characterized
by (po, ﬁo, Ag)- Then, following an analysis apparently
started by Sezawa (1927), we can show that, in a spherical
coordinate system having its origin at the center of the
source cavity, a complete decamposition of the displace-
ment field in the region r > rg, can be expressed in the
following way:

Let ;w be the Fourier transform with respect to time

of the displacement field, then
> ->
s. = V¢ + VXarrw1 + VXanrrwz

where Zr is the unit vector in the radial direction and, in
standard notation (e.g. Morse and Feshback (1953)), we have

that
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(v, ‘pl,‘pz) = (Coho (kar) ,0,0)

*® n
1
- mzo(cnmhn(kur),dimhn(ksr),fimhn(ksr))

-Pﬁ(cos 8)cos md

2 2 2 .
+(e h (k r),d- h (ker), £ (kgr))

'Pﬁ(cos 8)sin mo (1.1.1)

The fields ¥ and y, are respectively called the
spheroidal compressional and shear potential whereas wl is
the torsional potential. Displacements corresponding to
wl have no radial component while those corresponding to
¥, have a radial component which dies out quickly propor-
tional to r"z. Furthermore, there is no rotation around a
radial axis associated with y,.

Let us assume that in the medium r > r. we have placed
a network of three components seismometers and thus have

o dU

obtained partial or complete information of the (cnm’ nm?

fgm) coefficients specified above. Then, the problem that
naturally arises is to find which class the parameters of
the source and the medium must belong to in order to be

consistent with the observed coefficients.

11



1.2 The parameters of the source and the medium

An explosive source has been modelled by a sudden ap-
plication of a uniform pressure since Sharpe (1942). This
is basically the initial condition that we shall use in the
present study to model the source of energy.

However, secondary seismic sources associated with
explosion have been considered in recent years in order to
explain the anomalous production of shear waves near the
source. In this respect, Geyer and Martner (1969) have
concluded, after fifteen years of field observation, that
the production of SH waves near an explosive source seems
to be the rule rather than the exception. Though a review
of the mechanisms likely to excite these SH waves will ap-
pear in a paper by Aki and Tsai (1971), let us summarize
them briefly since they bear directly on the inverse prob-
lem set up in the first section. They may be classified

into the following three categories

1. Direct effect of explosion

Here we include all the processes inside the non-
elastic domain of an explosion. Though no quantitative
estimate of their efficiency has yet been worked out, we
may expect an azimuthal asymmetry if the rocks in the im-
mediate vicinity of the shot point are inhomogeneous,

anisotropic or are set in motion along pre-existing cracks,

12



joints and faults. Even for a homogeneous isotropic
medium, the radiation asymmetry may be caused by the Taylor
instability (Wright and Carpenter 1962) or by formation of

new cracks (Kisslinger, Mateker and McEvilly, 1961).

2. Release of pre-existing stress
The explosion may have modified the pre-existing stress
distribution around the cavity. In this connection, two

different models for this process have been studied.

a. The cavity model

Due to the shock induced fracture zone created by
the explosion, the initial stress field around the source
will be relaxed so as to meet the new equilibrium configura-
tion inside the cavity. Archambeau and Sammis (1970) have
worked out the anomalous field generated by this process in
the case of the Rainier and Bilby nuclear explosion. They
found, using reasonable valués for the parameters, a good

quantitative fit with field observations.

b. Trigger model

Aki et al (1969) suggested that a fault displace-
ment triggered by the Benham explosion would explain fairly
well the structure of the seismogram obtained for that
nuclear event. Field observations near the source, after-
shock studies and long period Love wave spectra observed at

long distances, support the faulting hypothesis in that

13



-

case.

3. Scattering

It is often assumed in seismology that the earth has a
layered structure with uniform thicknesses. By symmetry;
no SH wave can be generated from a spherical compressional
source buried in such a medium. Since the assumption of
laterally homogeneous earth is obviéusly an extreme ideali-
zation especially at shallow depths, we must consider the
generation of SH waves through scattering by the laterally
inhomogeneous medium around the compressional source. In
this connection, Smith (1963) argued in favor of the mode
conversion in the elastic domain near the shot point on the
basis of observed similarity between P, SV and SH spectra
for the frequeéncy range 0.5 to 2.5 cps.

One aim of this study is to provide a quantitative
estimate of the efficiency of this process. But, in order
to do so, we must specify the distributions of parameters
in the medium. This point represents, no doubt, the core of
the difficulty in the calculation. A hint of its solution
is provided by the observation of the main compressional
wave. Indeed, in order to obtain a good zero order ap-
proximation of the main body waves, one often replaces the
real earth by a model having its average properties. Because

of the success of this modelling technique, it suggests

14



that the medium is slightly inhomogeneous and that we should
try to exploit this fact in order to gain greater flexi-
bility in the evaluation of the scattered wave. This can
be done by using the Born's approximation or method of small
perturbation. The main advantage of this technique is that
it permits us to analyze the scattered field generated by
an arbitrary structure of the medium provided this structure
does not deviate much from some given homogeneous model.
But, in order to carry out this program, we must also
specify the properties of the medium inside the source.
Indeed, a wave scattered in r > a may impinge on the source
and be scattered again depending on its properties. In
that respect we shall study two models of the source. First,
we shall discuss the case where the medium inside the source
is a homogeneous solid having the same value of the param-
eters as the medium r > r.. Incidentally, these parameters
(po,po,ko), will also be taken to represent the zero order
structure of the medium a < 1 < rp. Then, since a more
realistic model of the medium insiae the source 1is a‘fluid,
we will try to investigate in which ways does a source of

zero rigidity modify the field obtained in the first case.

1.3 Summaries of the following chapters

So, following this plan, chapter II will present a

detailed derivation of the first approximation to the

15



displacement field we obtain by using the method of small
perturbation. There, we will find it convenient to analyze
the distributions of parameters in spherical harmonics in
order to express the field as in Eq. 1.1.1. In that res-
pect, we will reach two important results. First, to the
approximation considered, no torsional waves are generated
by the inhomogeneities. But, of more consequence still,
we will show that a given pair (cJ , £7) in Bq. 1.1.1
depends only on the (n,m,c) harmonic of the medium param-
eters. For example, let us suppose that in r > r. we re-
cord a wave specified by the source, (co), together with

a scattered wave specified by the coefficients say

(c%l, f%l). Then, to the order considered, we can say that

the structure of the medium can be expressed as
' " 1 1 1
(pyu,A) = (posquxo) + (pZI(r)’UZI(r)»’AH(r))
'P%(cos 8)cos ¢ (1.3.1)

We therefore remark that this fact permits us to make
a great step in the solution of the inverse problem.

Though, in this paper, we will be mainly concerned with
the case where the seismometers are situated in the homo-
geneous region r > 1., we will briefly mention, before

closing the second chapter, how to generalize the results
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to the case where the receivers lie inside the inhomogenei-
ties.

Chapter III will be devoted to the evaluation of the
scattered wave for some particular models. But, before
going into a detailed calculation of the coefficients of
1.1.1 for a given structure, we will find it worthwhile to
study the spectrum at the low and high frequency limits. To
be more specific, we will first investigate the case where
all the inhomogeneities are concentrated near the source

i.e. such that
karf << 1 (1.3.2)

Secondly we will consider a medium formed by the first
n order spherical harmonics of the parameters, but we will
restrict their radial variation to the interior of two

spheres of radius r, and r. such that

2

2
kurf > karz >>n (1.3.3)
The interest in these particular limits stems from the
fact that, in these cases, we can expand the exact first
order scattered wave in asymptotic series in terms of the

parameters k times the radius of the scatterer. Then, we

need only to keep the dominant term in these series in order

17



to describe the main contribution to the displacement
field.

In this respect, we will reach an important result in
the case where the scattering occurs near the source. In-
deed we will show that the wave scattered by the spherical
harmonics of the rigidity of order n = 2 depends on the fre-
quency only through the spectrum of the source. Moreover,
they are partiéularly sensitive to the inhomogeneities
near the source. To give an example of this, let us consider
a model specified by 1.3.1 together with the constraint
1.3.2. Then, for that case, the coefficients of 1.1.1, to

the order considered, are

Co = G (the spectrum of the source)
: T 1
c1 =G (- 3 1 )_[.f Egl dr
21 5 1A0+2u0i a Yo 0
T 1
¢l =G(_21_ks)ff112_1.dr
21 13 o E; a Ty 0

Furthermore, we will show that this group of harmonics
(ﬁ=2) is the only one possessing such a characteristic. All
the scattered waves generated by the other harmonics of

the parameters have a low frequency cut-off. Therefore, we

18



see that these components of a given structure might prove
to be the most efficient scatterer of long waves near the
source. From that point of view, we will place some severe
constraints on the possible structure that may cause the
anomalous SH waves discussed in Section 1.2.

We will then turn our attention to the high frequency
case and examine which type of structure may generate a sub-
stantial scattered wave. In this connection we will find
it convenient to separate the displacement field in four com-
ponents: the transmitted and reflected compressional and
shear wave. In studying the first compcnent we will be lead
to consider the effect of structure varying slowly over many
wavelengths. We will then compare the scattered wave obtained
by the Born's approximation with the one we would calculate
by using the methods of geometrical optics. In our investi-
gation of the other components of the scattered waves, we
will see that if the medium has some periodic structure, then
some parts of the spectrum may be greatly enhanced relative
to others, depending on the so-called Bragg's conditions.

Finally, having obtained these results, we will be in a
better position to analyze the spectrum of a given structure
for all frequencies.

The purpose of chapter IV is twofold. First to give a
brief account of the case where the medium inside the source

is a fluid. We will see there that in practice, the

19



influence of the fluid cavity is restricted to waves scat-
tered within a boundary layer around the source, of radius
less than ten times the one of the cavity. We will then
consider the body forces equivalent and seismic moment for
the scattering process likely to contribute to the anomalous
SH signal discussed previously. In this connection, we
will try to estimate the efficiency of this process in the
case of the Boxcar nuclear explosion.
In the concluding chapter, we will discuss the possible

ways of applying and improving the following analysis.

Various appendices have been added which will permit,
it is hoped, the saving some of the time of a reader who

wants to go into the details of the calculations.

20



CHAPTER I1I
Formal Derivation of the Scattered Wave Using

The Method of Small Perturbations

2.1 Application of the method of small perturbation to the

elastic wave problem

Let
the strain dyadic

the stress dyadic

0y = &

the displacement vector

Then, Newton's law without the body force term can be writ-

ten as
p S = VT (2.1.1)

We shall assume the medium to be isotropic so that we

have the stress-strain relation

= 2uS + A|S|T (2.1.2)

=32

where
I : the unit dyadic
|S|: the trace of S = v.3

u,A: the Lamé's constants.

21



Therefore, we can rewrite Eq. 1 as

SIT + av+|S|T  (2.1.3)

vl 2Vpe+S + 2uVeS + Ures

Let us assume that within the inhomogeneous sphere (rf>r>a)

(see Fig. 1), the parameters are described by
P = pg * EPg

b= Hy + €4y

A= AO + axl
where
p U A
(e 1 , € 1 , € Tl) << (1,1,1)
Po Ho 0

The region r > e and r < a will be characterized by con-

stant parameters

(D,U,?\) = (OO,UO,AO) for r > I‘f

(pyU,A) (p ,u ,A) for r < a

With the hope that the displacement field depends analytically

22



on € as ¢ > 0 we might try the following asymptotic expan-

sion of ¢
> >
= g + S + + ...
S 0 €S1 £ s2 for r > a

So, we can rewrite Eq. 3, for r > a, as follows

2
P} > -
(Pg+erq) 3?(50+851+”)

1]

2eVu --(§ +eS +..)
1 0 1

~

+2(u0+5u1)v-(§0+s§1+..)

—

+eThp o+ ([Sy+e] 8 [+..)

—

+(hgrer IV ([Sql*e]Sql+..)

(2.1.4)

Collecting terms of the same order in €, we have for r > a

a) The zero order equation

2
] s0

Po 5;2?"2“0V'So AV

~50l~1 =0 (2.1.5)

b) The first order equation

23



0”s ~

1 . . 3 'z =

Po Tz 7 ZHeTrSy RISy 1T S
323

the displacement field must then satisfy

c) The zero order equation

Perturbation of the boundary conditions

(2.1.6)

(2.1.7)

(2.1.8)

We must also meet, at r = a, the continuity of stress

and displacement.

24



A) Continuity of stress

We must have that

2uE -8+ ATA e |SIT|
r=a
-k Fear BT,
r=a (2.1.9)

where

> \ . . . . .
a. is the unit vector in the radial direction

If we substitute the asymptotic expansion of the dis-
placement field in Eq. 9 and collect the terms of the same

order in €, we obtain

a) The zero order boundary condition on stress

-

% _ > ~_w
2u73_++Sy + ATa e[Sy

r=a

= 2u03r--§0 + AOE o

T + (2.1.10)

b) The first order boundary condition on stress

25



= 2upd -8y« agd e[Sy
X > X%
+2uoaro-sl + Aoaroo SllI e (2.1.11)

B) Continuity of displacement at r = a

Case 1. At a solid-solid interface the three com-

ponents of the displacement must be continuous, i.e.

Collecting the order in e we have that

wny

(2.1.12)

O
'
7]
(]
+

n}
1

(2.1.13)

-
[}
=
+

Case 2. At a fluid-solid interface (e.g. fluid cavity),
the normal component of the displacement must be continuous,

i.e.

26



Collecting the order in €, we have that

> - > >
a.-*s = a._°*s (2.1.14)
r °0 r=a" T 0 r=a*
and
> - > >
a_-s = a_-°s (2.1.15)
r 1 r=a r 71 r=a’

The next step, then, is to solve the set of equations
5, 6, 7, 8 subject to the boundary conditions 10, 11, 12,
13 or 10, 11, 14, 15 depending on whether we consider a solid

or a fluid cavity in r < a.

2.2 Solution of the zero order equations

We have to solve the following set of equations

For r > a

2
3 SO ~ ~ ~
Po 2 - 2p0v-so-x0v-|so|1 =0 (2.2.1)
for r < a
073 ) . a
p—s - 2u v-SO-x Ve SO|I =0 (2.2.2)
ot

subject to the boundary conditions

27



- <. _ .=
2ua Sy + Aa e[S, |1 e
r=a
2ugd_++Sy + Agd, e+ ]S, |1
0"r 0 0°r 0 r=a’ (2.2.3)
and
>- > . . .
So .= 3y . (for solid-solid interface)
r=a r=a
(2.2.4)
or
4,35 r=a_= a3, Lt (for fluid-solid interface)

(2.2.5)

Initial condition representing an explosion

Since Sharpe's (1942) model has been verified experi-
mentally to give a fair representation of the compressional
wave generated by an explosion, we will use it in order to
represent our initial condition.

It consists of specifying a uniform radial pressure on

the surface r = a, i.e.

- % >
ar..[so|1 . = T..(t)a, (2.2.6)

. .+ z
Zugape+Sy *+ Ay

The solution of this well-known problem is outlined
in Appendix I. It is shown there that if ng is the

Fourier transform of 30 with respect to time, which will

28



be expressed in the following as

then the displacement field can be written as

>

Sow = VwO (2.2.7)
and the compressional potential by can be expressed as follows

by = G hO(kar) (2.2.8)
where G is the spectrum of the source and hO(kur) is the

zero order spherical Bessel function (see Appendix I for

definition).

2.3 The first order equation

We can, now, solve the set of first order equations,

NE: (2.3.1)




for the medium r > a, and

_ 3% s
o] "—T - 2].1 V‘Sl - A Ve

I =0 (2.3.2)
3t

na

1!

inside the source, i.e. T < a

subject to the boundary conditions

-5 x ~ X
2ugapc+Sy + AqaLc e |SyI
> x > = ~
*2ugapctSy *+ Agape-[Sq[I r=a" (2.3.3)
and
§i = 31 , (for solid-solid interface) (2.3.4)
r=a r=a
or
gr’gi = 3{ 31 , (for fluid-solid interface)
r=a r=a

(2.3.5)

The inhomogeneous term in 2.3.1, which might be thought of

as a body force, denotes the fact that the main wave (i.e.

the zero order solution) is being transformed at each point
of the inhomogeneous sphere into a shear and a compres-

sional wave.
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The stress

(2R
— R

- = >
2uja Sy + A e[Sy

in the boundary condition, might be assimilated to a new
source at the surface of the cavity due to the inhomogeneous
distributions of parameters there.

In order to simplify the evaluation of the scattered

field we will split the problem into two parts:

Let

> _ > + >

51 7 511 7 S12
and

>- - + > -

S1 7 511 7 S12
where

a) gll and gil satisfy the inhomogeneous equations

with homogeneous boundary conditions, i.e., for r > a

2>
3 S]_l ~ ~ X
po—g;7- - 2uyVeSqy - A,V 511|I
243, N
TP RS0
t
+ 2u Ve Sy +VA e ST (2.3.6)
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and for r < a

222
0 3—711 2uTvS], - ATV[8], 1T = 0 (2.3.7)
t

> X - > < ™
2u ar-'S11 + A a.e 811|I .
r=a
-> x > % X
=2Uu, a_°*S + Apd,+e|Sq]1
0 “r 11 0%r 11 r=a* (2.3.8)
and
gil = 311 (for solid-solid interface) (2.3.9)
r=a r=a
or
> >- > > . . .
a,*syg o’ = a.*s;; oot (for fluid-solid interface)

(2.3.10)

In the following, I will call 311 the "body perturba-
tion" contribution to the scattered wave.
b) 312 and giz satisfy the homogeneous equations with

inhomogeneous boundary conditions, i.e.

I-=o0 (2.3.11)

for r > a

32



and 25-

0°s ~ ~
- 12 - o3
0 - 20 VeST, - A VelST, ]I =0 (2.3.12)
atZ 12 12
for r < a
subject to the boundary conditions
2u3_+e87, + ATE_.e|S1|T
r “12 T 127 pag
- = > R ~
=2ugapt+Sypthgaptt Sy, 1
*2upa e e8y + Ajapee Syl (2.3.13)
r=a
and
3] =3 (for solid-solid interface)(2.3.14)
12 .__- 12+
T=a T=a
or ‘
> - : > >
a.-s = a_-*s (for fluid-solid interface
r “12 r=a" r T12 r=g’

(2.3.15)

In the following, I will call glz the "surface pertur-
bation'" contribution to the scattered wave.

We can verify that

20 4
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and

>o
+ s

-_'9'-
1 - S11 12

by simply summing the two preceding sets of equations.

2.4 Body perturbation with a solid cavity

As a first approximation to our problem we will assume
that the medium inside the source (r < a) is a homogeneous
solid having the same value of the parameters as the medium

T > rf i.e, for r < a

(Py1,2) =(pos uo’ >\0)

The case where we have a fluid inside the cavity will
be discussed in Chapter IV and it will be shown there that
in practice the two models do not differ much quantitatively.

In this case, in order to find the body perturbation

part of the scattered wave, we have to solve

2
At & PR ST AL
0 5.2 0"°°11 0 11
2>
0°s ~ ]
=P g‘zg *2ZVup+Sy + 2uV-5,
t
+VA e+ |8 |T + ApVe 8,1 (2.4.1)
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which is valid here throughout space.

In the model just described, the boundary conditions,
eq. 2.3.8 and 2.3.9, are redundant. Indeed, we have to use
them only in the case where the medium r < a has parameters
different from (po,uo,ko). In such cases (e.g. a fluid
cavity), they permit us to determine the conditon that must
be met at r = a by a scattered wave impinging on the source

(see Fig. 2).

SCATTERING
ELEMENT

SCATTERED
WAVE

Figure 2. A wave scattered in the inhomogeneous sphere
might impinge on the cavity r < a and be

scattered again
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Taking into account the fact that the main wave has only

radial motion we can rewrite 2.4.1 in the form

2+
9 511 ™ X
DO 327—— -ZUOV S11 AOV° Sll|I
2.0
T (XO+2UO) . 2 ] 3 l. oT sr 3
P1 Po H1741) 57 r2 3T T
0 2 0
. Zaul Bsr 8%11 1 T Sr] N
or oT T oT ;7 oT T
0 2.0
7 Bul sr 3 Bkll or sr

[N

-
n
i
=
D
QI
- -
7|

(2.4.2)

Analysis of the parameters

We shall assume that at each radius r we can decompose

the inhomogeneous parameters in spherical harmonics, i.e.
(Ol,ul,ll) = (pOO(r)’UOO(r)’XOO(r))
(pnm’“nm’ nm

n
I 11 5l ) cos mé
=0

2 2 2 . m
v (oo Mpms M) Si0n mé]1Pp(cos 6)
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where
_ 2n+1 _/'7'“ .
(pn,obun,oy)\n’o) I v / (Dl,ul,ll)
Pn(cos )sin 6de6d¢

and

1 .1 .1, _ 2n+l1 (n-m)! f?“" .
(P Yom? Mam?) = 77 et J (psHysAy)cos m¢

Pﬁ(cos 8)sin & dedd¢

2 .2 ,2 _ 2n+l1 (n-m)! fT - .
COrnmoYome Aam) = 27 (nm)T J_J, (pysuysAy)sin mo

Pg(cos 8)sin 6d6dé
Since 2.4.2 is linear, its solution will be the sum
the contributions from each harmonic of the parameters.

So, let us consider a general term in our decomposition,

i.e.

1 1 1

m
(PpsHys2y) = (Prms Mom? M) €OS md P, (cos 9)

with n > 0
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The case of pure radial variation of the parameters
(i.e. n = 0) will be treated afterwards.

We can then rewrite 2.4.2 as

2>
o ! - 2y VeS,. - AnVe|S |?
0 atz 0 11 0 11
An+2U
_ om 1 (0" “¥o 1 ,,1 ]
= Pn(cos 8)cos md {['pnm( % )+2unm+xnm
2.0 1 1 2.0
.0 1 aT’s, +2 SMhm 9s . 8>‘nm 1 LRI :g
T ;7 5T T oT or ;7 3T ) °r
0 1 2.0
[ A ar°~s
d 1 r m
* 55 Pg(cos 8)cos mo {Zunm ;7 + ;%— _§?_£ }36
Pm(cos 8) s0 Al arzso
! d cos mo {2 1 r . “nm T zg
sin © LX) Mnm ;7 r3 5T ¢
(2.4.3)

Green's functions

We would like to find the solution to the equation

5238
11 5, v.38 . a.y.
Po =77 - “MpV*>11 T Yo

38 |1
3t 11

Pg(cos 6)cos mo Aa(r-ro)gr

+ gg Pﬁ(cos 8)cos mo BG(r-rO)ge
P"(cos 6) R
ST5 55 cos mo Bd(r-ro)a¢ (2.4.4)
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where 6(r-r0) is the Dirac's delta function and A, B are con-

stants.

The solution 3%1 can be expressed in the following way:

Let
11w A s11
then
R
sf1p = VK *+ VxUxa rH (2.4.5)
. where
2
A d kr
K=[- 0 J(O‘O)h(kr)
1(X0+2u07 dkuro
2 )
B(n) (n+1)r; i (ko) o
) TR+ 2u,) X1, hn(kar)] P (cos 8)cos mo
for r > T,
Ard dn_(x k,ro)
- [ i (k1)

i(k0+2u0) dkaro

2
B(n) (n+t1)ry h (k, rg) m
- j.(k.r)}] P_(cos B6)cos mo
i(AO+2u0) karo n' oo ] n

for r < Ty (2.4.6)
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and

2 .
Ar? o (k.rn)
H = [_ "0 ‘n"B0

2 . .
_ B (Jn(kero) . dJn(ksro)) bk r)].
1Ug KBrO dkBrO n'p
Pg(cos B)cos m¢ for r > T,
Arl h, (kgro)
- [ B sToul Jp (kgT)
0 B 0

2
] Bry (hn(kBrO) . dhn(kBrO)). " r)]-
1u0 kBrO dkBrO Jn -B

m
P (cos 8)cos m¢ for r < 1, (2.4.7)

The validity of these formulas may be confirmed by

checking that

1. They satisfy the wave equation in r > Ty and T < T,

2. They are radiating at « and are finite at r = 0

-
g ] i = i
3. ${1w is continuous at r = ry i.e.

28 -
1lw r6 11w r

4. They satisfy the proper jump in stress across

T =1, i.e.
0
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98
A more inductive procedure to find these Green's
functions is detailed in Appendix II.
Making use of these Green's functions, we can therefore
write the solution of eq. 2.4.3 in the following way

Let

->
“>r g

-
S11 11w

then, for r > Te

->

S11w © VP 4 vaxgrrwg

where
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B -

and

'Pﬁ(cos ®)cos mo

Thgr2ny)  tn(Ka®)
2.0
by ar.s
a nm\" 0y nm nm 5r0 ;(2)' """5'1"'6"
. 0 2 0
1 9s 1 or
P O LI T W |2 dj, (KeTo)
aro aro ETO ;g aro 0 dk oF0
0 - 2.0
Sr o Al arOsr W - (k T )
. Zu1 0" , “nm 0 n(n+1)r2 n 0
nm r2 r3 aro 0 E
0 0
(2.4.8)
P_(cos 8)cos m¢
T, hn(ksr)
2.0
T 3Tr.S
a nm\"p, nm “nm 5?0 ;g 5r0
0 2.0
1 3s 1 9T~ S .
.2 aunm Tow . aknm 1 0 T frz Jn(ke 0)
Bro Bro aro ;7 Bro 0 EB 0
0
2.0
1 1 293ras
2y A 0°r, w k ) d k,r,)
Lo S e J5 (J 0 fik(rs - )dro
r0 0 T, B 0 B0
(2.4.9)
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0
o
contained in the main wave. The jn and h  ~are the spherical

where s~ ~1s the Fourier transform of the displacement
Bessel functions as defined in AppendiX II.
The expression for wg can be somewhat simplified by

rewriting it in the following form (see Appendix III).

. 2.0
B Pg(cosej Zuim 0 Aim arOSrOw
Yo = - 3 cos m¢ hn(ksr)[__f_sr M 5T ]
o rg 0¥ Ty 0
2 In(kgTp) Tf Pg(cos 6)cos m¢
T, EE?E__—— + Ty hn(ksr)'
a
2.0
./Ef{ [ 1 (A0+2u0) ) 1 ] 5 1 arOsrow
- -p \—=———=] + 2u
a nm\" o, nmd 3T, ;g 3T,
0 :
S 1 .
. ‘[g_ (-ro‘”)][a “nm]}rz in(kgTo) dr
0L3ry\r 3T T, 0 —EE?E—"- 0
(2.4.10)
_w w
In these expressions, kB =5 - )1/2
Ho/Po

The case n = 0

When all the parameters vary only in the radial direc-

tion i.e.

(01:111, >\1) = (poo(r) »Hp0 (r), Aoo(r))
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Then, eq. 2.4.2 reads

2>
° 11 21 VoS, - AV+]8. T
Po St 0'°°11° %o 11

(2.4.11)

By following somewhat the same procedure as before

and as detailed in Appendix IV, we obtain, for r > r.

-> B
Sllw = Vv

a
2.0
3 arOsrow
T 2 Ty
3s) yrps)

BUgg  Tow 3Agg 3

+2 + 7
Bro 31’0 31’0 ;—2' 0

(2.4.12)

(karo)dr0

(2.4.13)

This completes our evaluation of the body perturbation.
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2.5 Surface perturbation

Now let us evaluate the part of the scattered wave

coming from the inhomogeneous boundary conditions.

For that, we have to solve the system of equations:

.-).
512

2-+
) 512

o
0 542

for r

ZUOV'
a
2::., Ve
a

subject to the boundary conditions:
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(2.5.2)

(2.5.3)
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Y
Kovd
. -

In order to solve this boundary value problem, we can
follow Sato's (1949) result as detailed in Appendix V.

As shown there, if we consider the general term
(py(a),up(a), A (@) = (ol (a),ul (a),Al (a))-
Pg(cos 8)cos mo for n > 0
then, the displacement field solution of 2.5.1 can be written

as follows:

Let

then for r > a

+ - > S
S1gp = V¥ VxVxa i,

where
s Pﬁ(cos 8)cos m¢
L TR+ 21,) hy (kyr)e
0 1 2.0 .
) 1 (2) asaw . xnm d0a“s )az djn(kaa)
Hnm %a ;2 - da aEaa

(2.5.5)
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and

Pg(cos B)cos m¢
Yy = - T h, (kga)-

0 1 2.0 .
oyl (a) %S 1 + ‘nm 22 Sg, ) aZJn(kBa)
Hnm s9a a2 Ja Ba

(2.5.6)

The special case where the perturbed parameters have no

angular dependence i.e.

(pq(a),uy(a),01()) = (pgp(a),upp(a),rgp(a))

can be handled in a similar way (see Appendix V).
In that case, the displacement field for r > a can be

expressed in the form

> _ s
S126 = vy (2.5.7)
where
h,(k_ 1) 0 2.0
s _ 0'%a (Z 21955, A o(a) da’s 5.
v 1(A0+2u0j POO( )Ba Wy 02 Baaw) a Jl(kaa)

a
(2.5.8)

2.6 Equivalence of a surface perturbation to a body per-

turbation

We would like to demonstrate that the formulas we
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obtain for the wave emitted at the surface r = a,(glz),
could have been obtained using the expression we have for
the body perturbation (sll)

Let us consider the following two inhomogeneous models

specified by
(ppsnpsry) = Cogn (o), hud (), 12 )P (cos 6)cos my

and

L}

21 1 1
(pgskgsng) = (For (), %> (), %02 )P (cos B)cos mo

Let us fix the relation between the two models by

Copn (™), 2upn (), a2 (00) = (ol eea), Bl (eesy, L

*(r+4))

where A is arbitrarily small (see Fig. 3).
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11 2.1
Yam Hnm

A 1

a atA

o pe=-

Figure 3. Two models differing slightly and specified

by Zu;m(r) = ]ulm(r+A) where A is very small

Since in the second model
2.1 2.1 2,1 _ A
( pnm(a), unm(a): Amn(a)) = (0’0,0)

no wave is emitted at r = a. But, we must have that

2.1 1.1

M 1.1 2 Unm

57— - Wl (r-(a*d)) + g (r+2)
and

\n 1.1 2 i

T - knmd(r-(a+A)) * 57 (r+A)
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If we substitute these expressions in the formulas 2.4.8

and 2.4.9 we obtain after passing to the 1limit A »> 0

B s B
2 1
iy teyt
and
B S B
2 1 1
Voo TVt Yy
B, 82
where ¢y © and y,” are respectively the compressional and

shear potential coming from the body perturbations of the

S
second model whereas ¥ 1 and ¢ 1 are the surface and body

perturbation of the compressional wave generated by the
S B

first model and wzl, wzl the corresponding shear potential.

This shows that the wave emitted at the surface 1is

caused by the jump in the value of the parameters that

occurs there.

2.7 Summary of the preceding results

For a compressional source acting at the surface of
a spherical cavity characterized by (po,ﬁo,lo), the dis-
placement field in the region

I'>I'f

can be given by
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> >
Sw = Vw + VXVXrarwz

where

V= GhO(kar) + ecgohg (k1)

% n

1 2 s m
+nzl mzo(ecnmcos mo+ec - sin m¢)h (k r)P_(cos 6)

and

[+ o4

n
b, = nzl mzo(efimcos m¢+ef§msin m¢)hn(k8r)Pg(cos 8)

where

GhO(kar) is the zero order solution (2.7.1)

0 2.0
9s Ann(a) 2a2%s
1 00 2.
(Zuoo(a) a7 8:“’)a iq(k a)
a

00 T T(x *Zu,)

bosy
. 0 1 0
3T, ;g 3T,
0 2.0
ou 8Sr w A arOSr ")
vy Moo Yo 00 1 0° 1,25k ryar
ar, 9T oar, _2 or 0)1(KyToldry
0 0 0 T, 0
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where 0 = 1,2, and we have assumed that

g o]

(s Agm) = (0,0) at r =

Tt
We have to remark that these formulas are valid only
when the receiver position is outside the inhomogeneities.
When this is not the case, we have to take into account of
the reflected wave generatgd outside a sphere having . for
radius the distance of the receiver to the center of the
cavity. In this case, more general formulas must be used,
as outlined in Appendix VI.
Some of the main conclusions that we can reach by
examining the preceding formulas are that the first order
scattered wave
1. does not contain any torsional vibration as
defined in Chapter I

2. Each spherical harmonic of the perturbed medium
parameters generates the same and only the same
spherical harmonic of the scattered wave.

3. The amplitude of the scattered shear wave does

not depend on the elastic parameter A.

Our next task is to evaluate the coefficients cgm,

fgm for some particular models.
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CHAPTER III
Evaluation of the Coefficients

of the Scattered Wave

3.1 Introduction

There are two classes of model for which we can use
asymptotic expansion of the spherical Bessel functions in
order to evaluate the coefficients of the scattered wave.
First there is the case where all the inhomogeneities are
within a wavelength from the source. The next section will
be devoted to that subject and the related one concerning
the anomalous production of SH waves near the source. Then,
there is the case where the scattefing occurs many wave-
lengths from the source. 1In our investigation of this sub-
ject in section 3.3, we will pay special attention to the
various resonances that might occur in such regions. But
in general, only parts of the spectrum of the scattered
wave can be analyzed through these two extreme approxima-
tions. So, in section 3.4, we will try to obtain numeri-

cally the complete spectrum for a given structure.

3.2 Scattering near the source

We would like to estimate the scattered wave generated
by the inhomogeneous distribution of material parameters

surrounding the source. To do so, let us assume that the
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radius of the inhomogeneous sphere (rf) is much smaller than

AY

a wavelength, i.e.

quf << 1 (3.2.1)

Then, in order to evaluate the coefficients (cgm,fgm)
as given in section 2.7, we can use the near field asymp-
totic expansion of the spherical Bessel functions. This
work is outlined in Appendix VII. For the term of lowest

order in kar, the results are as follows:

a) The compressional coefficients

2 2
Ao““o)kuro 2814g0k4 T

T
f
- 1 4 f (
C = p -
00 (X0+2u0) a 00 o 3 30

2

0

£ Ant2U k
o _ G K ( 0740\ *a . 8 0o
®In = TXy+70, JC Pim ““35““)'3“ * 15 HimKedTo (3.2.3)

n Tr o)
g 2'n! f u
am T %z, 0D T [0 R A0l ry" 4%
a
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b) The shear coefficients

T 2
f Ant+21u k k
£9 -6 [0 ( 0 0) + 2 B9 4y (3.2.5)
1m Wo J,  T1m\Tp, 7 E; Im "0
T o
(0 .G 6(n-1)2"n! ff k3! n-2 Mom oy
nm Ho n+ a E;-— 0 T, 0
for n > 1 (3.2.6)

where G is the spectrum of the source as defined in Appen-
dix I. Moreover, I have assumed, to calculate these co-
efficients that the value of the parameters at re is 0 (e.g.
Mon (Tg) = 0)

If we examine the frequency dependence of these co-
efficients, we remark that the ones that have the lowest
order in kr are related to the Pg(cos 8) harmonic of the

rigidity. Indeed, we have for n = 2:

fu
o _ 4 G 2m A
and
k, £ u°
o _ _ 286G B 2m
me = T — dr0 (3.2.8)

56



It is a remarkable fact that they depend on frequency
only through the spectrum of the source whereas all the
other coefficients have a low frequency cut-off. Further-
more, due to the 1/r weight in the integral, they are
particularly sensitive to the inhomogeneities near the

source.

Observations of the scattered wave in the far field and the

production of SH waves

Let us examine the low frequency end of the spectrum
of a signal observed in the far field. We remark that, in
general, we will observe two main contributions to the
displacement field. First, of course, there will be the
signal coming from the zero order solution that is the main
compressional wave. But secondly, a scattered wave caused
by the (2,n,0) harmonics of the rigidity will also con-
tribute to that part of the spectrum. Now, since this
scattered wave seems to originate near the source, its com-
pressional part will be hidden in the main wave displace-
ment field. On the other hand, arrival time difference
will permit us to distinguish its shear component. So, this
suggests to have a closer look at the observed production of
SH waves near the source: let us then examine a seismogram
obtained by Geyer and Martner, (1969), which illustrates

this phenomena.
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"Figure 4 shows a record from area D in west Texas. The
record is fromAa horizontal downhole spread with five in-
strument holes spaced 50 ft. apart. The nearest seismometer
was 850 ft. from the shothole, where a charge of 20 1b. was
shot at a depth of 227 ft which was the same depth as the
detectors. Orientation of the horizontal seismometers is
shown. There is a strong SH wave on the H, component at a
time of about 0.23 sec, and the moveout indicates a velocity of
of about 4000 ft/sec."

Now, let us try to explain this observation through
scattering near the source. If we consider the scattered

wave due to the (2,m,c) harmonics of the rigidity we obtain
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the displacement field:

cos mo
e > om o 9
= a.p 0 | [, _ .
Sw a. Z(COS ):Sj_n m¢‘ ECom 5T hz(ko‘r)+g(n) (n+1)
o h,(k,r)
fon _EL_Jim.]
T
> 3 m cos m¢1 o hz(kar)
+3a. 2 PM(cos 8) ecd A
0 96 "2 {sin m¢‘[ 2Zm T

g
e fzm Brhz(kdr)]
T 9T

m .
o2 Pz(cos 9) {~m sin mo HFCO hz(qu)
¢ ~sinb m cos mé Zm T
£9  3rh,(k,T)
2 2 7B
te =S —f ] (3.2.9)

where, in the radial component, o = 1 corresponds to

cos m¢ and ¢ = 2 to sin mé, and where
_ 1

P2 =T (3 cos 208 + 1)

= % sin 26

= % (1 - cos 20)
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In the experiment detailed above, we can assume that
the receivers are in the far field, i.e. kar >> 1. Then,
if we take the far field asymptotic ekpansion of the spherical
Bessel function h2’ we obtain for the scattered displacement

field:

ik r
cos mo o
gw = arPg(cos 8){ }(—ecgm) er
sin m¢
N BPg(cos ) (cos m¢l 5 elk r
+ a (-ef, ) =
g 26 sin m¢‘ 2m T
m . ik,r
Pz(cos ) (-m sin m¢ . e
a¢ —_SiTl-e-.— { E(‘szm) T (3.2.10)

m CoS mo

We see that in the far field, the scattered compressional
wave has motion only in the radial direction whereas the
displacement contained in the shear potential is transverse
to the direction of propagation.

Let us fix the polar axis along the vertical to the

ground®. We remark that since the shot and the receivers

* -
Remark: The choice of the polar axis must be consistent
with the system of axes used to evaluate the different
harmonics of the parameters.
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are at the same depth in the experiment of Fig. 4, we can
set © = m/2 in our formula for the displacement field. Then,
if we examine the value of the Legendre polynomials, we

must conclude that the only scattered wave likely to produce
the anomalous SH signal are related to the pair (2,2,1) and
(2,2,2) of harmonics of the rigidity. Indeed, the pair
(2,1,1) and (2,1,2) produces only vertical transverse motion
whereas (2,0,0) produces no transverse motion at 6 = /2.

It is ektremely interesting to note that this m = 2
symmetry (sin 2¢+¢8) has been consistently observed for the
radiation pattern of Love waves (constructive interference
of SH waves in the crust) from underground nuclear explosioms.
(e.g. Brune and Pomeroy (1963), Aki (1964), Toksoz et al
(1965)). But this does not permit us to conclude that
scattering is the only process explaining the production of
SH waves. Far from it, as a matter of fact, since the stress
release processes discussed in Chapter I may also give the
same radiation pattern. So; what we need then is an
estimate of the efficiency of scattering. But let us re-
serve this work to Chapter IV where we will be able to

include the influence of the fluid cavity in our discussion.

Observation of the displacement in the near field

It must be kept in mind that the preceding remarks ap-

ply only to far field measurement. Arrival time difference
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in that case, permits us to distinguish between the shear and
compressional wave. But this is not true in the near field
where strong interference between shear and compressional
wave exists. Since the production of very long waves make

it practical to set the receiver in the near field, I would
like to study the structure of the scattered wave there. It
turns out to be very different from the far field results.

So let r, the distance of the receiver be such that
karf < kar << 1, (3.2.11)

that is, ihe receiver is near the source but outside
the inhomcgeneities. In that case, we can use the near
field asymptotic expansion of the spherical Bessel function
involving the receiver position.
The motion in an arbitrary harmonic of the scattered
wave is given by:
>

> om
s arPn(cos 6){

cos mo o oh_(k,r)
; [

ec o, ——yg—e(m) (n+1)
sin m¢’ nm T

o h_(k.1)
£ _ng.___]

m
, (%) cosmp o ompkT) £
+a { :[EC +e ¢
0 06 sin mé nm T T
arhn(kBr)

or
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N Pg(cos 9) (-m sin mo) e g h (k,r)

a, —sr—a— ec
¢ sin © ln cos m¢l[j nm T

te (3.2.12)

o
fnm arhn(kBr)]
T or

But, if we keep only the leading term in h (kr) i.e.

h (kr) > -i

together with any pair (cgm,fgm) for n > ', as given in

3.2.4 and 3.2.6 then we find

In other words, the motion contained in the scattered
compressional wave interferes strongly with the motion in the
shear wave so as to cancel the displacement associated with
the leading term of each pctential.

In order to obtain the effective dominant term for the
displacement field, we must keep more terms in the asymp-
totic expansion of the potential field. More precisely,
we must keep the next lowest order term in (cgm,fgm) and
hn(kr) in their asymptotic expansion in power of krO and

kr respectively. But an equivalent and perhaps a more
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convenient procedure in this case is to work out the static

(w+0) approximation for our problem. This is detailed in

Appendix VIII.

It is shown there that if P is the zero order pres-

sure acting on the surface r = a, then the displacement

field for r > Ty can be expressed in the following way:

ny

-
Vy + Vxerarwz

where

v = -Ip'—f)’%s eco(-) z’}f}—;
AR N
+e( iéTl jéTl) sin m¢]P§ (cos 9)
ST AT SRR
+e(i§T1 + ing) sin m¢]Pﬁ(cos 6)

04

(3.2.13)

(3.2.14)

(3.2.15)



where

Co0 = 0 (in this case, we have to keep higher
order term as given in 3.2.2) (3.2.16)
3 Lf
o _ Pa” 3n(n-1) ‘0 .n-3
Com 4U0 (2n+1)(2n-Ij(XO+ZUO) Jg HomT o dr0 (3.2.17)
4o - .2a’ n(3n+s) J;fc rflar,  (3.2.18)
nm Tuy D) (Zn¥3) (0, + 200 J, Hnm*o 0 Ll
3 ~f
o _ , Pa’ 3(n-1) J[ g _n-3
£2 =+ W oraTdr 3.2.19
nm T, (2n+1)2u0 . Tm0 0 ( )
o _ _Pa’ 3(n+1) f o n-1g, (3.2.20)
&nm Tuy, Zn*1)(Za+37%, J, Yan'0 0 Ll

If we try as before to find if some harmonic of the
field has a dominant amplitude, we cannot be as conclusive
as before. Indeed, one has to take into account the fact
that as the position of the receiver approach the inhomo-
geneities, the harmonics with large n grow faster than the
ones with small n. So, they more or less compensate for
the fact that they weight less the inhomogeneities than the
smaller n harmonics. In fact, one might expect that the
different spherical harmonics of the displacement field

have an amplitude somewhat in proportion to the corresponding
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harmonic of the rigidity. Because of this; the displace-
ment field near the source has a much more complicated
structure than the one far from itl

Before closing this section; it is interesting to
remark that the motion associated with the coefficients
(cgm,féa) is such that the shear displacement is wholly
radial whereas the compressional displacement is radial and
transverse.

We therefore see that we cannot interpret the displace-
ment in the same way when we are dealing with near and far

field data.

3.3 Scattering in a region situated many wavelengths

from the source.

Let us now turn our attention to the high frequency
end of the spectrum. Once more, we can simplify the evaluation
of the coefficients of the scattered wave by ekpanding them
in asymptotic series, but this time in terms of the large
parameter* kro where r, is a radius in the scatterer space.
However, the situation is somewhat different than the low

frequency case. Indeed, if we look at a spherical Bessel

*Remark: Here, k represents either kd oT kB

66



function of order n, as given in Appendik IT, eq. 32, we
remark that we can neglect the second highest order term in

kro with respect to the first only when

kr, >> n’ (3.3.1)

This means that in practice; the harmonics representing
the finer details of the medium, i.e. having a large value
for n, cannot be adequately treated in this limit, within
our formalism. Indeed, for large n, unless we are dealing
with very high frequencies, the condition 3.3.1. constrain
us to a consideration of the inhomogeneities very far from
the source. But in that case, it is strongly suspected that
plane wave analysis might provide a better synthesis of the
result.

So let us restrict our consideration to the first
p harmonics of the parameters (i.e. n < p). Furthermore, in
order to meet 3.3.1, we will assume the medium to be in-
homogeneous only within two sphere of radius r; and 7.

in
(see Fig. 5) where the inner radius, Tine is such that

2
kr; >> p (3.3.2)
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(egskgsip)
T \
PS (Pgtepybgtenys
‘__
AO+€X])
‘_—(909U09)\0)
Fi.»»a 5. The heterogeneous region is bounded by two spheres

. X 2
of radius Tin and re where karin >> p~. The

different types of scattered wave originating from

an element of that zone are illustrated

Then, if the receiver radius is larger than Te, We obtain

the following results for the coefficients of the scattered

wave (see Appendix IX).

.\ -1 T

=G kg (1) f[. (A0+2u0)+2 9 42" ]dr

nm 2 1IA0+2uoi r Pam o )7 “Ham™ Mam 0
in

.- T Aqt2u i2k r
+ G kal £ 'pgm(‘gﬁ““g)'zugm_kgm:]e @ Odro
T Mho*2ug) Jryy 0
(3.3.3)

all n < p
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and

) T itk -k )r
PR I G 5 f[_ o (X0+2“° w202 s‘i]e ° F Odr
nm 2 (A,*2H,) nm\5 “om B T 0
0 0 L 0 0
- T i(k +k )r
G i n Jr f[- o (A0+2u0)+ 2.0 q]e a B Odr
2 (X0+2u0) ~ Pam Py Hnm@ Ty 0
in
alln <p, n>0 (3.3.4)

Arrival time consideration reveals that the first
integral in each of these coefficients represents the trans-
mitted compressional and shear wave respectively whereas
the second integrals account for the reflected scattered

waves.

The transmitted PP wave

Let us first consider a medium varying slowly over many
wavelengths. Then, due to the oscillatory character of the
exponential in three of the preceding integrals, they will
not contribute much to the displacement field. So, let us
neglect them here and consider only the transmitted PP wave.

Since fhe receiver position is in the far field, we can
write the total displacment field, to the highest order in

k r, as follows:
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n
il+e[e00+ El Zl(cim(i)ncos m¢+cim(—i)nsin me)
n= m=

P (cos e)]i (3.3.5)

Using the first integral in 3.3.3 we then obtain

ikar
> _ > e .
Sy = arG = 1+€1ka¢§ (3.3.6)
where T .
1 £ (A*ing
o = f [p (-—-—-—-—-——-) -2Uq - A ]dr (3.3.7)
ZUh*Z1p) L 1\ ey 171 0

and where e(pl,ul,ll) is the total inhomogeneous part of
each parameter contained in the spherical harmonics
characterized by n < p.

We remark that the expression we have for the scattered
wave cannot be uniformly valid for all frequencies. Indeed,
since its amplitude grows in proportion to the wave number,
eventually, for very high frequencies, the first order term
will become as large as the zero order one even for slightly
inhomogeneous medium. But, in that case, we can have re-

course to the methods of geometrical optics in order to
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to calculate the displacement field. This work is done in
Appendix X and it is shown there that, to the highest order

in kar and karO’ the displacement field can be expressed as

follows:
ik r+iek ¢
+ I I o v}
sg optics = %r T © (3.3.8)

We remark that for
eka¢ << 1

we can ekpand the exponential in Taylor's series and thus
recover the result we obtain by the method of small pertur-
bation. In other words, when the above condition is ful-
filled, there are two equivalent ways to represent the
effect of the inhomogeneities on the main wave: we can add
to it a scattered wave as in 3.3.6 or we can correct its
phase as in 3.3.8. Eventually, for very high frequencies,

only the second procedure will give an adequate result.

The other wave types

Let us assume that between Tin and re we have expanded
in Fourier series the radial part of each harmonic of the

parameters. The first term in this serie, that is
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the one connected with the average properties of the param-
eters, is the only one controlling the transmitted PP wave
recorded outside the inhomogeneities. We may therefore ask
if the remaining part of the scattered wave contains some
information on the other terms of the serie.

If we examine the second integral in 3.3.3, we remark
that for a given frequency, the periodic part of the struc-

ture having wavenumber around kl where

k1 = de
is likely to be the most efficient scatterer of reflected
P wave. In the same way, the shear component of the scat-
tered wave will be mainly excited by the terms in the
Fourier series having wave number around Kk, and k. where

k, = k 'ka for the transmitted PS wave

2 B
and

k, = k +kd for the reflected PS wave

3 B

The above relations are known as the Bragg's conditions.
In the case where a restricted number of terms in the Fourier
series of the parameters give an adequate representation of
the medium, we might expect peaks or lows in the spectral

density of the scattered wave at frequencies connected to
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the different wave number of the medium through these
Bragg's conditions.

Though the occurence of such an event may be rather
rare in nature, it might be interesting to investigate more
thoroughly when a given part of the spectrum of the
scattered wave is controlled mainly by the periodic
part of the medium connect to this frequency range through
the above condition. We will leave this work for future

research.

3.4 Calculation of the scattered field for a particular

model

In the preceding sections; we confined our attention
to the contribution to the scattered wave coming from in-
homogeneities near and far from the source in terms of
wavelength. In practice, we have to take into account the
effect of a part of the heterogeneous medium situated such
that none of the above assumptions applied. In order to
illustrate such a case, let us consider a model specified

by the following properties

P = pg for all r (3.4.1)

A= AO for all r
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M= Y for r < a
=y * %% Z = ﬁo +%% T Pg (cos 9)

for a < T LTS
(r-rp)
= ) f 0
= ug * _.E.a r, ————__rg"rf Pl(COS 8)

for rz LT T,

Mo for r > Te (3.4.1)

That is, we have that the density p and the Lamé's
constant A are constant throughout space whereas the rigidity

varies linearly along Z within a sphere of radius r, and

trend continuously towards Mo between r, and Te. (See Fig.

6).

L

In our preceding notation, we have that

eulo = %% T for a < r < ryv
(r-rg)
= Ju £
37 Ty T, Ty for Ty T < Tg (3.4.2)

So, the displacement field outside the inhomogeneities can

be written as
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Figure 6.

Contour of constant rigidity for the model
specified above, in a plane cutting the polar
axis. The drawing illustrates the case

where re = 2r2
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where we have that

£
G ¢/. .
! = Hqnk (1"‘ .
0 = I(R*Zuy) J, 107\ KT (kdr0)3 (k 1o)

. G jrfu k'(i_ 5 16i
T 2ug)J, F107a\™" KT (i r0)2
.32 . 36i _ 18 )625karo ir
(ko) (krg)?  (kyrg)’ °
(3.4.4)
and -
‘f = g‘__ff [l_k + 31 ka-k6)+1 .
10 © Ty Mol Tk, T 27\ 7 3
0 Ya B T, k ' T
8 0
5t ) St ]
; 3 3
ke kg o8 rgik g ok kg Ty
LKy kg7 (3.4.5)
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T .
N }rfu [1_.ka , 3i (ka+k8) 1,
TuyJ, 710 LT, EE ;g ké ;g
3k k- +k
9 o 3 9i o B 9
("z*s*kk)"zr(,s)* 35
k kB R g kakB kakBrO]
i(k +k,)r
e & B0 (3.4.5)

To obtain these coefficients; I have integrated by parts
the terms involving the derivative of the rigidity in 2.7.3
and 2.7.4 and I have used the form of the spherical Bessel
function given in Appendik IT, eq. 32 and 33.

We remark that since the polar distribution of the
ihhomogeneities contains only the Pg(cos 8) harmonic of
the rigidity then, in the far field; the scattered com-
pressional wave has the same polar distribution and its
displacement field is purely radial. On the other hand,
far from the source, the PS wave displacement is transverse
to the direction of propagation and with a polar distri-

bution specified by sin 6 (see Fig. 7).
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P-P

P-S
P-S

P-p

Figure 7. Polar distribution on the PP and PS wave in

the far field
The coefficient of the PP wave

Let us calculate the scattered compressional wave. We
remark that the first term in 3.4.4 is related to the trans-
mitted PP wave whereas the second term is the contribution
coming from the reflected PP wave. We see that in order to
‘calculate the effect of the inhomogeneities far from the
source, i.e., such that karo >> 1, we need only to take
into account the first term in each integral. This is the

result we obtain in 3.3.3.
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On the other hand, though the form of 3.4.4 suggests
to make a separate evaluation of the transmitted and
reflected wave, such a process is far from being convenient
when we have to take into account scattering near the source,
i.e. such that karo << 1. Indeed, in such a case, each
of these waves has a large amplitude almost exactly the
same but opposite in sign. To see that more élearly, let
us expand in Taylor's series the exponential term in the

reflected wave. We then obtain

T
f ,
- G f ( 1 4 18 )
c = - Uqnk i+ + + dr
10 1iX0+2u0) a 107a karO (kdro)s (karo)s 0

T
f X
G Jf ( 71 1 4
+ —= | oy k R(xp)-om - -
i (hg*2ug)%a 10%0, 0’°1% K. To (karo)s

18
i Ei____s.)dro (3.4.6)
To)
a 0
where
R(rg) = - gy5 itk r)? + 2o (kr)® + 352 (xrp)?

- %%S(karo)s P
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We remark that in order to calculate the effect of the

inhomogeneities situated such that kur < 1 we can use

1/k
Cin = —0 o8k ar (3.4.7)
10 }\0+2u0 a 10 T5 ®o%t0 tT

This is the equation that we have obtained in 3.2.3 and,
by inspection of R(ro), we see that a more exact calculation
will reveal only a small correction to the above values, pro-
vided karo < 1. So, from a numerical point of view, it is
better to evaluate the contribution to the scattered wave
coming from the region quO < 1 by using 3.4.7 whereas we
have to use 3.4.4 to calculate the effect of the hetero-
geneous medium outside that domain. In other words, to

summarize, we can use the following formula to calculate

€10
1/k
c = ——gz——./ﬂ . 8 k dr

£

T
G J[ .
+ u k (1+ + +
100*Zup) k107l Ky >

o

G Tf
— . 5 161
o dr, + . Jf U1k (1— -

arO)
. 2ik r
, 32 - 361 T - 18 5) e a 0 drO
kr kr kr
( o o) ( o 0) ( a 0) (3.4.8)

80



This is the procedure I have followed to evaluate this
coefficient for the model specified by 3.4.1 together with

the relation

Te = 2rg (3.4.9)
In order to describe the result, let us define @C and

Ne such that

=
Q

-in
= o ¢
€C10 G(m 3z rf) @Ce (3.4.10)

I will call . the normalized spectral density of the
scattered P wave., Figure 8 is a plot of @C against karf.

The domain between zero and one i.e.

can be wholly evaluated by using only the first integral
in 3.4.8. This is the low frequency 1limit that we have

discussed before., It should be remarked that if we keep
more terms in 3.4.7 the transition near kdrf = 1 becomes

smoother. At high frequency, i.e. for

quf > 16
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the behavior of ¢. is dominated by the first two terms in
the second integral of 3.4.8. As we have seen in section
3.3, the effect of the first term is to produce a phase
shift of the main wave. On the other hand, the second
term is equivalent to an amplitude correction to the zero
order solution.

Between these two limits, we have a transition from
one behavior to the other which depends on the details of
the model studied. For example, in our case, the minimum
at karf ~ 2.8 denotes the fact that the transmitted and
reflected wave interferes strongly at such frequency so as
to more or less cancel each other.

The phase factor'nC is plotted in Fig. 9. It should
be noted that we have constrained the value of Ne between
n/2 and -7/2 but we could have plotted an equivalent con-
tinous curve varying from zero around the origin to near

-2n for large frequencies.

The coefficient of the PS wave

The coefficient of the scattered shear wave can be
evaluated in the same way as the scattered PP wave. We
remark in 3.4.5, that the first term represents the trans-
mitted PS wave whereas the second integral is the contri-
bution coming from the reflected shear wave. Again, it 1is

inconvenient to evaluate these two integrals separately
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when we have to take into account the effect of scattering
within a wavelength from the source. Indeed, if we expand
in each of these integrals, and sum the result, we obtain

as shown in Appendix XII, the following result:

l/ka

1

2
Ho é Es dr (3.4.11)

=2 !
(]

a

This is the formula that we have obtained in 3.2.5
and, as shown in Appendix XII, we may expect that it will
give an accurate representation of the effect of the in-
homogeneities situated such that k oTo < 1.

In order to obtain the integrated effect of all the
inhomogeneities we can then use the following formula for

£10

t[m
o
J“\H
rh
=
bt
o
(3 B
Qxhgio
o
]
o

o o TO B
(_ N 3ky | 3 )+ 21 (ka'ks )_ s |
T " KK 3 35
kB kB B T, kakB kakBrO
ik -k, )r
e ° Odr0

85



T
+ & Jr fu [l_ S ¢ 31 (ka+k3)_ 1

Wo Jik 0o kg To VaZ ) o3

9 Ky 3 ) L9 (KX)o ]
(—7 o Kkg/ o F UK ) i3

B B 0 o B0

ik +k)T

e ¢ B0 ar, (3.4.12)

Again, to evaluate this expression, we will fix the
relation between the two lengths scale in our model by
3.4.9. 1In order to calculate 3.4.12, we must also specify
the reslation between the shear and compressional phase
velocity. Thié will be done here by imposing the relation

Mg = AO.
Following the compressional wave case let us define

@S and ng sucb that

-in
_ 1 ou [
10 =8 x=ms 37 Te %

ef
0" “¥g

(3.4.13)

The normalized spectral density of the scattered shear
wave, ®_, is plotted in Fig. 10 as a function of karf. Again
a smoother behavior around kurf = 1 is expected if more

terms are kept in the expansion leading to eq. 3.4.13.
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We remark that around karf = 3.8, we have a maximum
constructive interference between the transmitted and the
reflected shear wave. At high frequencies, the shear wave
spectrum decreases to zero as should be expected, since for
this frequency range, the parameter 1is slowly varying over
many wavelengths, and the transformation P to S becomes
inefficient in such a case.

The phase factor n_ is plotted in Fig. 11. It should

S
be remarked that, due to its very small value in karf < 2,
the error committed in obtaining 3.4.11 might alter the
result substantially in that domain.

To summarize the preceding results, we note that there
are basically two limits for which we might expect the
first order scattered wave to be an inadequate representation
of the scattering process. First, if the rigidity varies

greatly within the inhomogeneous sphere, a measure of which

is provided by the factor

then the first order displacement field may become as large
as the zero order one and more terms should be kept in
our expansion in terms of e. On the other hand, even if

the properties of the medium are differing slightly from
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the~homogene0us values, the frequency may be large enough
so that the first order compressional wave becomes of the
same magnitude as the zero order one. In that case, we
can apply the methods of geometrical optics to find the

solution.
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CHAPTER IV
A Fluid Cavity and the Point Forces

Equivalent for SH Wave

4,1 The coefficients of the scattered wave when the medium

inside the source is a fluid

One of the assumptions we made to deduce the preceding
results was that the medium inside the source was an homo-
geneous solid. Now, we would like to investigate what
modifications to these results must be introduced when we
have a fluid specified by (p',O;A') inside the cavity,

r < a. In that case, we can still use the zero order solu-
tion of section 2.2 since to deduce it, we need only the
average properties of the medium outside the source. Fur-
thermore, since the wavelengths observed in practice are
usually much larger than the radius of the cavity, we will
confine our results to that part of the spectrum.

In order to calculate the first order scattered wave
we can follow the general plan set-up in Chapter II. This
is aone in Appendix XII and some of the main results shown
there are as follows. First, the three conclusions -
reached at the end of Chapter II still hold when we have a
fluid inside the cavity. Furthermore, we can express the

scattered wave in the same way as we have done in section
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2.7 but here, to each coefficient found there, we must add
some correction terms due to the presence of the fluid
cavity. These new terms account for the interaction of the
reflected wave with the source and are important only when
the scattered wave is excited within a boundary layer around
the source of radius less than ten times the radius of the
cavity.

In relation to the amplitude of the scattered wave,
it is shown that there are only two groups of spherical har-
monics for which the correction terms depend on frequency
only through the spectrum of the source, namely the groups
specified by n = 0 and n = 2. The case n = 0, involving
only compressicnal wave, is treated in Appendix XII so let
us consider here the group n = 2. In that case, the co-

efficients of the scattered wave can be written as follows:

AqtU f 5
G (144 0" o >f ¢ a

u dr 4.1.1
Xg*2ug \ 5 IXgFIFu /), "om £6 7T ( )

and
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The
the same

Antu f 5
G 8 (72 ( 0 Yo ) g a
5 (22) e fa um 25 4%, (4.1.2)

coefficients (cgm,fgm) in the above expression are

as the ones we have obtained in section 2.7 whereas

the other terms are corrections due to the presence of the

fluid cavity.

As we have

within a

seen in Chapter III, if the wave is scattered

sphere centered at the origin and of radius much

smaller than a wavelength then we can use the following

. O £0 5.
asymptotic formulas for (ch,me).

o
C2m

o
me

4 G =T
- m
R f g (4.1.3)
0 0 Ya
k. & ¢

Thus we remark that provided the scattering occurs

outside a sphere of radius more than a few times the one

of the source, we can neglect the correction terms appearing
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in 4.1.1 and 4.1.2 and recover the results previously
obtained. On the other hand, it might be unwise to wholly
neglect the influence of the fluid cavity since it is
precisely the inhomogeneities very near the source that
might produce the most significant contribution to the scat-
tered wave.

Before applying the preceding results let us synthesize

them a bit more.

4.2 Point forces equivalent and seismic moment for

scatterinngf SH wave.

In order to discriminate between the different pro-
cesses occuring near the source;~it is often convenient to
find a combination of point forces giving the same far
field radiation pattern as each process. In this connec-
tion, we shall restrict our considerations to the pair of
spherical harmonics of the potentials specified by (2,2,1)
and (2,2,2) since they seem to give the dominant contri-
bution to the SH wave scattered near the source. But first,
let us consider the equivalent point force distribution for
the explosion.

In order to obtain the far field radiation pattern of
the main wave, we can use three mutually perpendicular
identical, double point force without moment. If we define

M0 as the product of force with arm length of the component
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double force, we find the relation

Ant2u
Mg(t) = 2—2 7 a’p(e) (4.2.1)
Ho
where P(t) = —Trr(t) (see Sect. 2.2) is the pressure acting

on the surface of the cavity. Here we have neglected terms

of order kya since we are concerned only in wavelengths much

longer than the radius of the cavity.

Let us now consider two force couples, each with moment
M(t), combined such as to produce a double couple without
moment and situated in the equatorial plane (o = 7m/2) as

sketched in Figure 12.

/

N

—

¢=0

Figure 12. Double couple without moment
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Then, we can show that the far field radiation pat-
tern of this combination of point force can be expressed as

follows (see e.g. White (1965))

2 .
Pz(cos 8)sin 2¢ 1 3

> T
5= d, 3 177 3t Mt 3)
p o’r
P (cos 8)sin 2¢
> 9 1 3 T
+a 2 M(t- %)
) 5 B N 24w 3t B
, Pilcos o) , i
+a ——————-3—-——-51n 2¢ M(t- %) (4.2.2)
¢ sin BpBR T 9¢ 71_ 5_ B

Let us now substitute in 3.2.10 the coefficients

(CZZ’ 22) by ( czz,F %2) and use the asymptotic form of the
former coefficients as given in 4.13 and 4.1.4. Then we
remark that, after Fourier transforming back in the time
domain, we can ekpress the (2,2,2) harmonic of the scat-

tered waves in the same form as 4.2.2. provided we let:

M(t) = My(t)n, (4.2.3)
where 2
£ “22 12A0+8u0 f 2 a3 1
Ny = [ Jr B L . FTON u - T
2 + Ho 5, 9}‘0+ o Ja 22 Ty 0
T
Antu f 5
144( 0 Ho ) J( a }
+ uy dr (4.2.4)
5 9AO+11u0 a 22 rg
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We can now combine the harmonics of the potential spe-
cified by (2,2;2) and (2;2,1) in the following way:
. . . 2 .
First we define n, by replacing Wy, in n, by “%2‘
Secondly, we consider a coordinate system, (r,e,¢1) related

to the one we used to calculate ng and Ny» (r,06,¢), by the

relation

(4.2.5)

Then, in this new coordinate system, the sum of the

displacements associated with these potentials can be ex-

pressed as 4.2.2 provided we let
M(t) = My(t) ynj+n) (4.2.6)

In order to see how we can apply these results, let

us consider a particular example.

4.3 Scattering of SH wave around the Boxcar nuclear

explosion

In order to illustrate the preceding results, we need
the detailed distribution of rigidity within wavelength
from the source. Since this information can be more easily
obtained near a source of long wavelengths, let us consider

an explosion produced on the Nevada Test Site. In particular,
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we shall choose Boxcar since the displacement field generated
by this event is well documented in the literature. Moreover,
we shall restrict our consideration to waves with period
longer than 10 secs. So we may presumably use the asymp-
totic formulas of the preceding section in order to cal-
culate the scattered wave excited within the first 10-20 kms
around the source.

Let us first briefly describe the structure of the
medium around this explosion. For this, we will follow a
paper by Orkild et al in the Memoir 110 of the Geological
Society of Ameria, which details the geological setting of

the Nevada Test Site.

Structure and rigidity distribution around the source

Boxcar was located in the Silent Canyon Caldera, a
late tertiary volcanic center, in eastern Pahute Mesa. The
wall of the buried Silent Canyon Caldera was approximately
located by a steepening of gravity contours into a 20
milligals gravity low (see Fig. 13).

Figure 14 shows an east-west cross section of Pahute
Mesa and the major rock types of the caldera. The basement
rocks are older volcanic rocks than the ones in Silent
Canyon caldera. Within the caldera, drilling and gravity
data indicate two basins: a shallow broad basin in the

eastern part and a deep basin elongated along a N20°E trend
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Figure 13. Residual gravity map of Silent Canyon Caldera,
showing outline of caldera, location of drill
holes and Boxcar, and major geologic units.

Gravity data by D.L. Healy and C.H. Miller
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in the western part. Boxcar was situated 1.17 km deep
in this latter basin, approximately 3.5 kms from the west
wall and 10 kms from the north wall of the caldera.

If we examine Fig. 14, we remark that it is diffi-
cult to infer something on lateral variation of the
rigidity within this deep basin. On the other hand, it 1is
precisely very near the source that we might expect the
scattering of SH waves to be the most efficient. So this
lack of information might cause a substantial error in our
results. But nevertheless, let us obtain a rough estimate
of the scattered SH wave likely to have been generated by
the lateral rigidity contrast between the material inside
the caldera and the surrounding older volcanic rocks. In
order to obtain an estimate of this contrast let us follow
the data of Stauder (1971)(see table I), which were obtained
by averaging the measurement of rigidity through the 4.1

kms deep exploration drill hole Y on Fig. 13 and 14.

TABLE 1
Rigidity model based on data from drill hole Y and obtained
by Carroll (1966)

Depth to layer, km u dyne/cm2
0.0 5.12x1010
0.96 ' 8.15x1010
1.33 1.01x1011
2.14 1.50x1011
5.00 3.25x1011
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We remark that the average value of the rigidity over

the first 2.5 kms is
ﬁl = 0.8x101! dyne/cm2 (4.3.1)

In the following, this is the rigidity we will take to
represent the medium inside the caldera. On the other hand,
the older volcanic rocks under the caldera have rigidity

approximately equal to

u, = 1.7x1011 dyne/cm? (4.3.2)

This is the value we will take to represent the
rigidity of the material on the west side of the western
wall of the caldera.

In our preceding analysis, we have assumed that we were
dealing with an infinite solid which obviously is not the
case here. But, in order to apply our preceding results we
will assume ihat above the ground lies a homogeneous solid
characterized by (pz,ﬁz,xz). These values will also be
taken to represent the average properties of the medium

around Boxcar.
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Model of the structure and of the distribution of rigidity

around Boxcar

Sketched in Figure 15 and 16 are the models we will

use to calculate the scattered SH wave around Boxcar.

N T N20°E

BOXCAR

Figure 15. Model of the geological map around

Boxcar

Fig. 15 is a model of the geological map detailed in Fig.
13. The line trending N20°E represents the west wall of the
Silent Canyon caldera. Boxcar was approximately at a

. distance of h3 = 3.5 kms from this boundary.
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Figure 16 . Model of the cross-section through Boxcar
trending N70W

Figure 16 is a model of the cross-section shown in Fig. 14.
The model inside the caldera is modelled by a semi-infinite
layer of thickness h1+h2 = 2.5 km and rigidity u,. We will
assume that this layer is embedded in a medium of rigidity
_uz.

For simplicity, let us choose our coordinate system
such that the polar axis is vertical to the ground whereas
the axis specified by 6 = /2 and ¢ = 0 is parallel to the
west wall of the caldera, i.e. along a N20°E direction, and
pointing towards the south. Then the spherical harmonics
of the rigidity characterized by (2,2,1) and (2,2,2) can be

written as follows
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el = au%ng(cos B)cos 2¢+su%2P§(cos 8)sin 2¢ (4.3.3)

where, in our case

8“%1 =0 for r < h3 (4.3.4)
(h,+h.)  (h3+h3) qf 2h ‘/r7-h7
5 (u,- )[1 2771 M2 ][ 3 3
~ T8y \H2TM 0T 3 2
for r > h3

and

eﬁ§2= 0 for all r

We have assumed the western wall to be somewhat curved
in order to facilitate the evaluation of the spherical
harmonics but this introduces negligible error when hl’ h,

and h3 are as specified above.

Location of the nodes in the scattered SH and Love wave

With the above data, let us investigate the direction
of the nodes in the scattered SH wave and its resulting
Love waves. In the chosen coordinate system the S motion is
proportional to sin 2¢ for the rigidity specified above so
we are expecting nodes at the azimuthal angles 0°, 90°,
180° and 270°. The node at 180° corresponds to a node in

the N20°E direction.
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Figure 17 shows the spectral density of Love wave
generated from Boxcar, plotted against the azimuthal angle
These data, averaged over the frequency band from 0.0225 to
0.0375 cps were recorded at the WWSS and Canadian stations
and equalized to an epicentral distance 2000 kms for geo-
metrical spreading. (Aki and Tsai (1971).)

Surprisingly enough, we remark that the node at N20°E
coincides exactly with one of the node predicted above.

Let us now investigate if the seismic moments agree

well with observation.

Seismic moments

Let us evaluate the quantity n, defined in the pre-
ceding section. For a radius of the source of 700 meters,
which seems adequate in the case of Boxcar (Aki and Tsai
(1970)), the correction terms due to the presence of the
fluid cavity give negligible contribution to the seismic
moment. This is mainly due to the small ratio (a/h3 ~ 0.2)
between the radius of the cavity (a) and the distance of
Boxcar to the western wall of the caldera (h3).

So, in that case we obtain
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Lfou
n1 = SZX 2 i J£ r

(4.3.5)

| e

0.05 [
) h,

Here we have assumed that Te is much larger than h3 and that

My = AZ’ Then we obtain for the model specified above:
Ny ~ 0.02 (4.3.6)

Aki and Tsai (1971) have estimated the seismic moments
of the Boxcar explosion and the SH wave generated around it.
They have restricted their consideration to long period wave
(T > 10 sec.) and, modelling the seismic moments by a step
function in time, H(t), they have obtained a good fit with

observation in the cases where they chose.

My ~ (2.5-3.0)x10%%H(t) dyne-cm
and

M(t) ~ (0.9-1.2)x10%*H(t) dyne-cnm

In our preceding notation, this means that the observed

value for nq is

ny = 0.3 to 0.4 (4.3.7)
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So we remark that the observed ratio of seismic moments
is about an order of magnitude higher than the one we cal-
culate; Does this mean that our model of the rigidity dis-
tribution was not accurate enough to calculate the scat-
tered SH wave? Or does it imply that more efficient pro-
cesses than scattering, for example release of preexisting
stress around Boxcar, have produced the observed Love wave
signal? Hopefully, future researchbwill permit us to find

the answer.
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CHAPTER V

Conclusions

5.1 Summary with suggestions for future work

In order to obtain a good zero order analysis of the
displacement field, the seismologist finds it often con-
venient to model the medium by a homogeneous solid charac-
terized by some average properties of the real earth. The
aim of this paper was to complete the above picture by cal-
culating the first order displacement field generated by an
arbitrary distribution of parameters around a compressional
source. But, in order to do so, we have not taken into
account the effect of the surface of the earth on the dis-
placement field. Thus, a more complete investigation would
include this boundary in the calculation of the zero and
first order displacement field.

If this was done, the chief question that would remain
would be to determine the accuracy of the first order scat-
tered wave obtained by the method of small perturbation.

In that respect there are mainly two directions that one
can follow in order to improve the preceding analysis.

First, as we have seen in Chapter III, the first order
scattered wave calculated by the method of small perturba-
tion is not valid for all frequencies. Indeed, for fre-

quencies high enough, the medium is slowly varying over
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many wavelengths and the scattered wave grows in proportion
to the frequency. This is due, as we have shown by using
the method of geometrical optics, to a phase correction of
the zero order solution. So, this suggests that one should
try to combine the two preceding methods in order to obtain
a uniformly valid first order scattered field over the whole
range of frequencies.

Secondly, one should investigate the class of structure
for which multiple scattering, i.e. higher order terms in
our expansion in terms of e, can be neglected in the cal-
culation of the displacement field. In this connection, it
might be worthwhile to study simple structure, for example
layered media, for which exact solutions are known and com-
pare these solutions with the ones obtained by the method
of small perturbation.

In this respect, though we have found it convenient in
this study to analyze the displacement field through a
spherical coordinate system, this choice might prove to be
a poor competitor to other systems of coordinates when
we try to synthesize the scattered field génerated by some
particular model. But, more generally, if a given structure

can be expressed as the sum of two substructures, i.e.

(pyshpsAg) = (pgaugsAy) + (opsipsdy) s
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then, as can be verified in Chapter II, the first order scat-
tered wave is just the sum of the waves generated by each
of these substructures. Therefore, we may find it convenient
to analyze part of the scattered wave in one coordinate
system and to calculate the remaining part in another system.
For example, if we are expecting that some of the main
features in the distribution of parameters can be described
by a layered structure, then it might prove convenient to
analyze its contribution to the scattered wave through a
cylindrical coordinate system whereas we can use the formulas
we have developed to calculate the wave excited by the
remaining inhomogeneities. This choice to a large extent will
be guided by the nature of the data we have obtained.

In this connection, since clearly we cannot deduce from
a finite set of measurements the complete structure of the
medium, it might prove rewarding to analyze part of the medium
through the methods we have developed but obtain only
statistical information about the remaining part. Such
attempts have already appeared in the literature (e.g.
Dunkin (1969), Karal et al (1964), Knopoff et al (1964))
and it should be interesting to connect their analysis with
the preceding one. On the other hand, it might prove a

worthwhile endeavor to examine more closely the contribution
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to the scattered wave coming from the periodic parts of a
given structure connected to a given frequency through
Bragg's conditions., Of course, if it can be shown that
for a wide class of realistic models, the scattered wave
generated through Bragg's effect gives the main contribu-
tion to the scattered displacement field, then the inverse
problem would be conéiderably simplified.

Perhaps an important application of the preceding analy-
sis will be to provide better modelling techniques for the
medium near the source. But, in that respect, we are facing
some experimental difficulties. Indeed, at least part of
the anomalous field which seems to originate near the source
is caused by the relaxation of preexisting stress around
the explosion site and part of it is due to the scattering
of elastic waves occuring say within a sphere of radius much
smaller than a wavelength. Since both of these waves are
intimately mixed-up, it is difficult to distinguish between
the two processes. Furthermore, since in the theories of stress
relaxation, the preexisting stress is the unknown parameter
that we try to determine through the observation of the ano-
malous field, we cannot remove its effect in order to model
the distributions of parameters. So it seems that in order
to determine the importance of scattering near the source,

one would have to make an independant measurement of the
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distribution of medium parameters around the source. An
attempt in that direction was made in Chapter IV, in the

case of Boxcar. It did not appear there that scattering would
be enough to explain the amplitude of Love wave generated
around this nuclear event. But, because of lack of informa-
tion, we have not considered the inhomogeneities very near

the source, which might be more impertant than the broad
structure we have considered. Hopefully, this will be done

in the near future.
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APPENDIX I

The Sharpe's Problem

Since the stress is given on the surface of the cavity

we do not need the continuity of displacement in this case.

We have to solve

2
0°s ~ x~  ox
0 x = X _

subject to the boundary condition

o

Olf'r=a = T, (t)d, (1.2)

S

. -> ~ >
Zugdyp**Sgtigdret

Since the motion will be purely radial, we then have to

solve
pg —— - (K0+2u0) 5 7 5y = 0 (1.3)
ot r
Let
oy
0 _ 0
Sr T 3T (1.4)
then we find
2
Vo Mo 1 ar? o _ (I.5)
atz Po ;7 ar 9T
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subject to the boundary condition

950  2n,s) 20y 2hg AU,
(A0+2“0) oT * T = (A0+2”0) 8rZ T 3T
r=a Tr=
= Trr(‘t) (I.6)

The general outgoing solution of eq. 5 is given by

_ (xr-a)
0 T .

1
. (*0+2“0 )7
a— USRS
Po

Using the fact that

3"F _ (-1 3"F
s o st

(n=1,2) (I.8)

the boundary condition becomes

(ot2 ‘) 1 a%r(r) , Mo arcry , MMoF(Y)
0" “¥o’ 2 2 7 —dt
o”a dt oa a

(t)

TrYr

(I.9)
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which we recognize as the equation of a damped harmonic

oscillator. If we let

u
X = %g"J& -1

and

7

<
I

then we can write the solution for F(t) as follows

t . .
F(t) =f 2 (te Y (E  din x(e-tn)ae (1.10)
and
t- () v(t-(E23y-¢r)
¥g = %f T (t)e * 7 sin x(t- (2 -t")dt!

o]

In our calculation, what we need is the Fourier transform with

respect to time of the displacement. So let

(o, Fyr Trry) <> (0 (t- (5D, F (1), Ty ()
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F e
W
lpO B T
= Gho(kar)
where
) -ik a
G = 1kaae
ik r
_-ie o
ho(kar) = ——K;?—

and Fw can be found by Fourier transforming Eq. 9.

3
Trry 2

© (Ag*2ug) (-kia”-ik, aQ+Q)
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APPENDIX II

Green's Functions

We would like to find the solution to the following

equation:

.38
v Sllw

28 - 20

P ST1w 0

il

m -
Pn(cos #)cos m¢ Aﬁ(r~10)ar

3 m
* 5m Pn(cos B)coes m¢B3(r«r0)§e
m
P_(cos 6)
n 3 >
Y= 55 cos mo Bé(r-ro)a¢
= T (I1.1)

I':iential representation

T be——— e

Let us represent F in the following form

F = vy + ngrrW1+VXVX§rrYZ (I1.2)

1
.
&
»

AP?{COS B8)cos m¢5(r»r0) =

_ oY 1 3 s ! 2
R e B R 7 |
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)
B 5w

m —
Pn(cos 8)cos m¢6(r-r0) =

oy , 1 1 T
T

=

=5

D

Pﬁ(cos 9)

B STR 9 5pc0s Med(rrg) -

oY

3T oY
STn 6 5% | 3T90

2

| NS |

SYEN. 2
T

3r sin 6 93¢

9 sin ©

If we operate eq. 5 with — 55—

substract

the results we obtain

]
it

=3
i

and using

Pﬁ(cos 8)cos mdp2 (1)
Pg(cos 8)cos mop(r)

Legendre's equation i.e.
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2
51n16 %@ sin %@ PQ(COS 6)+ khj(n+1)- —2_7_] .

sin” 6

Pg(cos 8) = 0 (11.7)

we obtain

APg(cos 8)cos m¢s(r-r,) = pt ™ (cos @)cos m¢[32 (n)(n+1)2]

(1I1.8)
8
5§‘P (cos 6)cos m¢S(r- ro)
] [ 19
= 5 Pﬂ(cos 8)cos m¢[? t ¥ —%R] (11.9)
Pm(cos ) P_(cos 6)
n d _cos m¢ §(r-1) =
sin © 0 0 sin ©
9 cosmé [2 , 1 dr ]
‘“’5@""—[?* ¥ T (11.10)
We see that it is sufficient to scolve
AS(r-1y) = £+ (n)(n+1) B (11.11)
0 or :
_ _ 2 1 5rp
Bé(r ro) =T + T S—r— (11.12)

121



Solving these equations we obtain with the

condition that

the representation is finite at r = 0 and ~,

} A(n+1)rn + n(n+1)Brn

2 = 5 for r <
(2n+1)r0 (2n+1)r0
A nr8+1 n(n+1)Br8+1
= + for r >
(2n+1)rn+1 (2n+1)rn+1
p = Ar™ . npr’” for r <
(zn+)ry™  (2n+1)rg
Argtl (n+1)Brp "}
= + for r >
zn+1) ™1 (2ne1y et

So we have the representation
F = VPﬁ(cos 8)cos m¢pl + vaxarrPﬁ(cos

Solution of equation 1.

Let
+*g _ > ->
11w = V¢+anrr¢1+vxvxarr¢2
and

- -
F = V¥+Uxa_r¥,+VxVxa 1V,
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6)cos m¢p
(11.17)
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then we can rewrite eq. 1 in the form

2

w"s (A0+2u0)v V.38 Uxyxs. & = ¥

“Po® ST1w T 110 0 11w

or

V(-pgule- (Ag*2u,)VE0-¥)

1 3 2 2 S
+[§IH‘6 55 ("Pou éy-HgV ¢1'w1)]ae

+ {' 'g'g’ ('powzcbl’UOvZ(bl'qjl)]gcb
+ Vx;

1 0 2 2 >
l&ﬁf?@'ﬁ@‘('pow 2 oV ¢2'W2)]ae

+ E %@(-90w2¢2‘“0v2¢2‘wz)];¢}

n
[ws)

So we see that it is sufficient to solve for
-p”mzi—(Rﬂ+2uO)V2© = ¥
2 2
TPguThHV ey = ¥y

2 2
TP by - Ve, =Y
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In the case we are studying we have

v Pﬂ(cos B)cos mol(r)
_ o

v, = Pn(cos 8)cos mop(r)
So we must conclude that

¢1 =0 (I1.25)
that is, no torsional waves are generated. If we let

& = Pﬁ(cos 8)cos mog(r)

¢2= Pg(cos 8)zos m¢g2(r)
and use eq. 7 we obtain

Pﬁ(cos 8)cos m¢[lz %}rz %% +[k§ _ n(n+1) ]g]
T r2

cos mdpl(r)
X0+2uo (IT1.26)

_ _ph
= Pm(cos 8)
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and

Pg(cos 8)cos m¢[%7 %?rz g?g2+[k§- Lﬂlf%ill]gz]

= - P! (cos 6) cos mé 4 (y) (I11.27)
Mo
which reduces to

1 3 _23 2 n(n+1)] _ (1)

Tz T Wg+[koc'—?— A AT (II.28)
and

1 3 .23 2 n(n+l) ] _ _ p(r)

;-z-s—i,-r '5‘1782"'{1(8 "—;2—— g)= E‘ia“ (I1.29)
These two equations can be solved by the same procedure.
Indeed let N be such that

1 3 .2 3N z_(n)(n+1)]  fm

-;—Z-Wr ﬁ-'.[ka -—-‘—-—-;-2——’ N = (S('r bo) (11.30)

Then we obtain, under the conditions that the solution be

finite at r = 0 and radiating at r »>
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* e

. e
ES

k b2
o 0 .
N(r,bo) = - —1 Jn(kabo)hn(kar) for r > bO

2
kabO
R hn(kubo)jn(kar) for r < bO

(I1.31)

where j_, k_are the spherical Bessel functions defined by

ikr n . \In
_ € . -N (n+m)! i (I1.32)
Pk = g 10 L mrmemT (Zkr)
and
hn(kr) + HniKri
jn(kr) = v (I1.33)

where the bar indicates the complex conjugate. The solution

to equation 28 is then given by

® 2(bg,Ty)
g(r,ro) = ./(.) N(r,bo) ——;-\—m— dbo (11.34)

In the same way if we let
2
kgbg

M(r,by) = - 2 i, (kgbg)h (kgr)  for T > by

= - 1 hy(kgbg)j(kgr)  FOT T < by gy gy
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then

@ p(bO’rO)
gz(r,ro) =’/;) M(I‘,bo) —--—-1—JB—-—- dbo (I1.36)

If we perform these integrations by making liberal use
of spherical Bessel function identities as they appear

for example in Morse and Feshbach (1953) then we obtain

2 rn+1
Ar} dj_ (k ry) - 2An1 : 0 i
= - - ¥ ¥
g I(%,72ig) 3K 7, n(kgr)- (2n*l) pr”

- e e e e e o D o e e

g 2ug) %eTo  (zme1)ulppr™ T
for r > r, (I1.37)
Argjn(kar) dhn(karo) . A(n+1)r"
TR Geyr
R i AR PR
for r < Ty (I1.38)
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and

. n+l
ez Ml ngrg) AT
2 0 ¥ X870 (2n+1)r™ oo,
Br2 io(k,rn)  di(k,rq)
.0y (k r)( n‘"g 0’ _ “‘n"g0 )
Yy n B ksr0 dkBr0
(n+1)Br3+1
+ forr > r (I1.39)
(2n+1)w2p0rn+1 0
. ap Jnke™) BalkeTo) o Ag?
0 1Hg kBrO (2n+1)r3w2p0
2
o0 e [t dhn(kﬁro)]
iy °n B ksr0 dksr0
n Br™
for r <r (1I1.40)
(Zn+1) rngp 0

I e

The displacement field contained in these potentials is

given by
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Ve + vaxarr¢z
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ar[Pn(cos 9)cos m¢[g% to—s
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+§6[%€ Pg(cos ©)cos mo % + %
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W2 [Pn(cos %) 5 cos mo [
oL sin © 00

'HWQ
+
|

1)g2]‘

or 7
3T gz_]

8rg2 a
5T

] (I1.41)

By substituting g and g, in the expression for the dis-

placement, the reader may verify that no contribution to the

motion comes from the underlined terms in g and gy

We can therefore neglect these terms in the expression

of the potential and we finally obtain that the displacement

solution of eq. 1 can be written as

P , -»>
§E = .+ UxVUx
™ VxVxa_TH

where X and H are given in 2.46 and 2.47.
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APPENDIX III

Transformation of Wg

We can recast the shear potential coming from the body

perturbation in a more convenient form. Indeed we have

B Pﬁ(cos 8)
wz = AT cos m¢ hn(ksr)-
2.0
rf 0*2Ho\ . 1 1] 1 "To%rgu
R R St B e
Pnm nm” nm T, 2 Jr
a Po 0 ro 0
A 0 2.0
1 39s 1 ar.s ,
. Zaunm row . SAnm 1 0 row}rz Jn(ksro)
Bro aro Bro ;g aro 0 kBrO
2.0
9T .S
1 1 0°r w
i [Zunm 9O . A nm 0 ]rZ(Jn(kBrO)
rg row rg aro 0 BrO
BrO 0

L i e B I R

If we integrate by parts the underlined terms in the inte-

gral we obtain
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APPENDIX TV

The Body Perturbation for n = 0

We would like to find the displacement field gl] in the
special case where the parameters distributions vary only

with r, i.e.

(pl’ul’xl) = CpOO(r)’UUO(r)’AOO(r))'

l.et
> = 0 > % 0
(511+51159) = (577425114510
then we havs to solve

~ o~

2 3
P 11,7 2MgV Sy, "2V B

22

11%'

Ao+ 2U t
- 1.1 0 0 \ y w >
B { p00( o )+ 2“00+”0ﬁl§r T /T '"“ar

0 2.0
91 9s [ ar“s
00 T 0 1 TW >
+ 2 5T ST ar 57 ;Z AT ar (Iv.1)

2 .8 158 1%
P ST1e 2MoVeSTy “AgVe IS8T 1T
= AS(r-rO)zr = T (IV.2)

132



Potential representation

Since vxE = 0 we can represent the body force as the

gradient of a scalar, i.e.

i
<1
e

Aa(r~rn)§ (IV.3)

T

[}

30 (IV.4)

this last equation being obtained because of the spherical
symnetry of the body force.

The solution 1is

i

C, (constant) for r < r, (IV.5)

= C2 (constant) for r > Ty, (1IV.6)

and we obtain

"IZ-C]_ = A

by integrating the equation around ry. 50 we find

¥ = CZAA for r < T, (IV.7)

C2 for r > Ty (IV.8)
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Green's function

We can write eq. 2 as

2.8
ar°~s
2.g o 1 rllw _ 9V
TPQW TSR 10 (Rp*2ug) 37 Z %Y T O (Iv.9)
Let
g . 9¢
Srllw 0T

and integrate eq. 9 with respect to r. We obtain

2
-p0w2¢-(A0+2u0) L 2. ¥+Cy (IV.10)
T

where Cs is an arbitrary constant. The solution to

g? £2 gg . kéN - - XE;§EH 8(r-by) (IV.11)

s¥ia

suhiart to the radiation condition at infinity and finite-

re35 of the field at r = 0 is

Bk b2

a 0 .
i ITTETYﬁa)JO(kabQ}hOCk@T) for r > by

N(b,,r)

2
Bkab0

i 1110+2pd) hO(kabo)jo(k@T) for r < bO
(IV.12)
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where ko,jo are the spherical Bessel function of order zero

as defined in Appendix II. So we have
T Kby
¢ i/g - (¥+C5) ETKEIZHE) jg(kbg)hy(k, r)db

2
" X b
o 0 .
ﬁ/; ~(#+C5) ey o (KaPo) T (kgt) by ((V.13)

Making use of the spherical Bessel function identities

we obtain
A 2
T, . (C,*C3)
¢ = 'jf(joq-'zu_')‘o Jl(karojhg(kar) - "‘T’"""‘w °
0
for r > Ty (IV.14)

Ar? (C.+C.)
0 A 2 73

= TN ¥70,) hy (kyrp)iq (kgr) + —— -

(IV.15)

but since

g - 99
Sr1lw or

all the constant terms in the expression of the potential do

not contribute to the motion. So we can write.
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s§1 = VK (IV.16)

where

2
Ar0

K = rorgrzigy J1KaTodho(kgT) for > 7 (IV.17)

2
Aro

* TOTzE,y M (kg T0) g (kr) for T < 7 (IV.18)

The reader may verify these formulae by the checking pro-
cess outlined in Chapter II. Making use of this Green's
function, we can therefore write that the solution of

eq. 1 for a point outside the inhomogeneity (r > rf) is

35y, = WP (IV.19)
where
T
B ] ho(kar) f Ao"'zuo 2 Y ]
v = sogemigr J, { L Poo "00™%00
2.0 0
) 1 0rg . 22700 1w
e A 3T, 9T,
2.0
3*00 1 arOsrow 2.
tar, 2 o, ) Fodi(keToldTo (1V.20)
0
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APPENDIX V

The Surface Perturbation

We have to find the scattered wave caused by the inhomo-

geneous value of the parameters around the source, i.e

. we
have to solve for r > a
o w?d o 2p & oA e]S., [T =0 v.1)
=0 12w 0 12 0 120! " ’
and for r < a
2_) - "'8_ N )
p0 Sy, ZuOV-Slz -XOV- Sl,)II = 0 (V.2)

b3
-

ubiect to *te boundary conditior= at T

= a
- ?, . '“‘__ o - .. X X
Ziga, &lzkaQar SlZm|I .
= Zughy Syt hgart 1,1
2.8 A tANEE
e B TP S A T M (V.3)
3 -2
12 __.- 12 (vV.4)
r=a r=a+

where we have set
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124

~
> X = %

3 52,5 ES

2 - ~
(512281255122512:50) > (512,:5124°5120° %120 S04

as the Fourier transform pairs. As shown in Appendix IT,

the general solution of eq. 1 and 2 can be expressed as

+ + +
312m = vy o+ anrrwl + VXUXE_ T, (V.5)
and
§i2 = gy~ o+ ngrrwi + vaXETrwé (V.6)

where the potential are solutions of

0wl (10T - Ograu VP T) = 0 (vV.7)

and

2o+ 4 - - 2.+ .-
‘poi‘l‘ (‘pl»ﬁ’#’z,wl,wz) - UOV (w_is\i}"‘,‘_vu-)l’wz) = 0 (vV.8)

We c¢an write our boundary conditi.us as follows

ds_ 35
rl2w - - rl2w s
AT AV S04 = Vg o3y * AgVrsyy
r=a
0
9s
- TW +0
12N —~ + A Ves
191 1 O p=gt
(V.9)
[1 951120 +rﬁfglg£] B! 82w , 35612w]
T 26 3 } P L] N 5T .
=3 r=a
(V.10)
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1 Srize , 3 S¢l2w
T Rin 6 0¢ 9T T )
r=a
[ Sr120 , .3 Sel2w v.11)
T sin 6 03¢ 9r T . :
r=a
and
- >
S12w) T P1z2e| (V.12)
r=a T=a

or, if we use the potential representation, the stress

conditions are

) 2
by 2 (3, 1 [_ D <in o W 1 8%,
0 3% {3r T sin © EL) 98  sin © TE

. 2u, a¢f+ : )
+1uv.vw Uo or \ or sy
J T=a
+ A
| 3y 8
E 2 : H!
[. :;:,:5"515'1 0 30 - slI]i ] \"PZ ] ) +)\OV i
35% A arzg?
e R .
- - = L (V.13)
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Ty r\T 3ot Flstaw v (AT 3m )
Tr=a
+ 2+
_ 13 (gy*+ 1 3 no 2 1 W
T 96 \9r T sin A 35 St 08 sin © 8¢2]
+ +
+ or P .
T 9_ _1_(l oy, l[ A ‘1 +%~—r _111_2_])
9r T\Tr 90 T|s1n © 3¢ r 30 .
T=a
(IV.14)
- Y, azw‘
1 qﬂ(aw L1 S8 qing 2. _1 2
¥ sin B/ 94 \3r T sin © 90 EL) sin 8 3¢7

| - 3
3 1 1 By 1[3 T 2 3 -])
T owr ?(“:‘m“v 56~ T TLoT STE T 3§ T S V1
r=a
+ 2.+
13 (aw* .1 {, o oobz 1 2V
T T sin 6 99 \or T 5in o LU 597" Y35 C Sim ® 8¢2 ]
, + 3yl
ap 301 1 syt 1[3 r Y o lp:r])
39r r\r sin 0 3¢ T|8r sin & 3¢ = 36 '1
r=a+
(V.15)
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and the continuity

of displacement reads

a}£~ + 1 [- a—sin 8 811)2 1 ° ‘1’2
or T Sin © 0 L) sin § 2
90 r=a
+ 2+
oy, 1 [_asinea‘»“z_ 1 2 ¥
or T sin 6 28 06 sin 6 2
3¢ reat
=a
(V.16)
- . oy~
19y, 11 T¥1g 2 ]
T 90 r|sin & 5¢ T 06 )
r=a
+ +
+ oTY Y
_ 19y 1[ 1 1,3 . °Y2
r 3 T rlsin® o0 5Tt 56]
r=a’ (V.17)
1 axp’+1[a r awz_ar-]
T sin © 9¢ T19T sin & 3¢ 35 TV }
r=a
+ 3y,
S SR VAR R S -]
r sin 6 3¢ T LOY s1in 6 ¢d 96 ¥y
r=a"
(V.18)
First, I would like to show that no torsional waves are

generated at the boundary r = a.

We remark that since the above conditions hold all along

the surface r = a,

we can take the derivative of them with
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respect to 9 and ¢. If we operate on eq. 15 with %@ sin 6

and on eq. 14 with %5 and subtract the results, we obtain

- 2 ¥y
5 . 3 y V1 1 3 5
oSO 55 Yy TEme L,z T T
(1[) -
r=a
+ +
2 Y
R 3 5 V1 1 3 5y "1
"5 SNV 3 T sr vt 51D 22 T osF T
+
Tr=a

(V.19)

Performing the same operation on eq. 7 and 6 respectively,

we obtain

2 -
G
9 . 9 - 1 1
IR LIS e
r=a
+ 2+
23 ginedi. 1 "
90 390 sin © 3¢2 I (V.20)

Let us consider an arbitrary harmonic of (wi,wz) solution

of eq. 8, i.e.

wi a, ,m_P:— (cos 6)cos m_¢jn-(k8r)

<
-
|

m
= bnmPn(cos 8)cos m¢kn(k6r)
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where the radial functions are chosen so as to satisfy the
radiation condition at =, and the finiteness of the field
at the origin.

If we employ Legendre's equation (see Appendix II,

eq. 7) and the orthogonality of the Legendre's polynomials

in eq. 19, 20 we obtain that

(n_,m_) = (n,m)
and
a %-r- i (kgT) =b__ S h (kgr)|
r=a o T=a (V.21)
a__j_(ksr) _=Db__h_(k,r) (v.22)
nm’n " B r=a nmn' 8 r=a+
The only solution of the two last equations being
a = b = 0

we see that the surface perturbation does not provide any
source of torsional wave. In fact, the only source terms
in our equation are contained in eq. 13.

At this point, let us consider a general term in the

expansion of our parameters, i.e.
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(py(a) 1y (a), 2y (a)) = (pp,ur , AL JPT(cos B)cos mg

forn >0

The case n = 0 will be treated later. Then eq. 13 can be

written as

21 —3?(3—1« Vot rsts [ S5 sin @ Zlgz - s ::‘i’z]
+K0V2w' - 2ug %?(g£+ + oo sin 5 [- g§ sin 6 ;gé
- s;i - ;;72] )-+onzw++2uimP§(cos 8)cos mo ;;gﬁ
+A%mPg(cos 8)cos m¢v-. 38 v.23)

The reader may verify that the source terms are orthogonal
to all the spheroidal waves (w',wz,w+,wz) except the one

which can be expressed as

w+ = Pg(cos 8)cos mo Ahn(kur)
+ m
wz = Pn(cos 8)cos m¢ Bhn(kBr)
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<
L}

Pﬁ(cos @)cos m¢ Cjn(kur)

Y, = PP (cos 0)cos m¢ Dj, (Kgr)

The choice of the radial function is guided by the
condition that the wave should be outgoing at infinity and
finite at the origin.

By replacing these functions in equations 13 to 18, and
using Legendre's equation and several spherical Bessel

function identities we finally obtain that

: - [ > s (v.24)
§12w - Vw + vaxarrwz
where
W53 = (b ,u3)
and :
2.0
s . -Pﬂ(cos 8)cos m¢ hn(kar) 1 3sgw x%m da sam).
v T(iy*2x,) Ham 53 7 3
dj_(k_ a)
a? T (V.25)
a
1 2.0
5 —Pg(cos 8)cos mo hn(kBr) , 1 asgw . A m da Saw),
by = 5T Hmm ~a PART
az jn(ksa)
EBa (V.26)
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We still have to consider the special case where the
distributions of the parameters vary only with r at the

boundary r = a, 1.e.

(91 (a) ' Hq (a), hl (a)) = (pOO (a) »Ho0 (a), AOO (a))

In that case no shear waves are generated and we need

to consider only the compressional potential.

Following the same argument as before, let

s 4 = VY~ (v.27)

-1

= Ui
12w vy 2w

with
s _ .
Y Akq (k1)
yo= Bjo(kar)
subject to the boundary conditions

e2

w

. 24 -
Zuo JO(kar) + AOV BJO(kar)

Tr=a

it

= 2 2%A h.(k T)+A V2Ah, (k 1)
Ho g;? 0o 0 0' o

0
+2u00 asrw 1 arz 0

5T *A00 ;7 T Sruw (V.28)

r=a
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and

3B o (kyT)
= 5_ Ahgy (k1) (V.29)

Solving these equations we obtain that

hy (k) aso Bazso )
Vs = T, (2“00 35— o0 2z —5— ) 2731 (ky3)

(V.30)
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APPENDIX VI
The Scattered Wave when the

Receiver is within the Inhomogeneities

When the receiver position, r, is within the inhomo-
geneous region, i.e. r < Ty, We must take into account the
wave reflected in r > re which reach the seismometer. In
that case, we must make full use of the Green's function
found in Sect. 2.4.

The displacement field at r, can then be given as
->
$, 7 VY o+ VxVxra_y,

where

Y = Gho(kar) + €C00h0(kar) + edoojo(kar)

n
+ ) zo[acimcos m¢+scimsin m¢)hn(kar)Pﬁ(cos 0)

edl cos mgred? sin mp)j (k r)Ph(cos ©)

1
nm
and
TV (egl 2 . n
by, = nzl mzo(efnmcos mp+ef sin m¢)hn(k3r)Pn(C°5 9)

© 1
) (egimcos m¢+sg§msin m¢)jn(k6r)Pﬁ(cos 6)
n=1 m=0
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where

GhO(kar) is the zero order solution (Vi.1)
0 2.0
9s Ann(2) 2a°7s
] - 1 aw 00 aw 2.
00 T TUN,*Zug) (2“00(a) R 7R )a 3y (k2)

S Y ) O M) PSR SYON L B
T * i, 1l oo\ ", 2190* 200 ;7

2.0 0
AT S as AT~ S

0 Tow apoo r0w+ UO 1 0 Ty |
3T, aT, 9T ERN ;g T f
OJl(k ro)dr (VI.2)

>\O AHO

00 T I “pog = )P 2t A =y

2.0 0 y
0TS . 9S OT ~S

0 Ty .2 auoo row . BAOO 1 0 row ;

3T, aro aro 8r0 ;g Bro
“hl(karo)dro (VI1.3)
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2.0

0 o 9a’s

com = " (zu" (a) —au . ban(8) 7 e a’ .
oa aZ 2a i(A0+2qu

. T
dJn(kaa) . 1 f _{[__po’ (_}LQ*‘ZUO)
ak_a T+ gy J, nn\" By

0
9T ~S g 9s
v250 410 ] > 1 _ 0 Te® . mm _ ToU
nm “nm Bro ;g aro Bro Sro
3nd arosg " dj (k. r,)
nm 1 0 §r2 Jan¥aTo
Bro ;g aro 0 aEarO
2.0
o g 9r.s
2 A 0°r w]
_ nm 0 nm - 0 2
[——7— Sp ot 3 TF (n)(n+1)r0 .
T 0 T 0
0 0
(k. rg)
Do 0 arg (VI.4)
o 0

T
2.0 2.0
9T.S o 93s ol 9T S
0 Tow .2 aunm 0¥ aknm 1 0 rOw}erhn(karO)
aro aro aro aro ;g aro 0 dkar
2.0
o O 3Tr,s
om0 . am 0°rjw (n) (ne1) 22 hp (k,Tq) ir
- 7~ Srow 3 or 0 KT 0
Ty 0 ro 0 o 0

(VI.S)
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g
N(zunm(a) 55— M (3) 3 I X5
LRI R
2.0
: AT ~S
1 /rg [ o ("0*2“0) 2,0 J 31 07
iuy J, nm Po nm ’810;’5 Bro
0
] ) :
2[4 (2 I InlkgTo)
0 Ty T Bro T (-0 EBrO 0
(VI.6)
2.0
or S
jf; o (A0+2u0\ g ] 3 1 r()srom
- 0 .
0 [ nmi p, ] nm 57‘0 ;—(2)- 370
30
e ToTs tan ), Pl
3T, T or, T, ilTh kT 0
(V1.7)
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APPENDIX VII
Evaluation of the Coefficients of the Scattered
Wave when the Inhomogeneities are near the Source

o] ,EG

We have to evaluate the coefficient Com? fom

as given
in Sect. 2.7, eq. 2,3,4, for the case where all the in-
homogen«ities are near the source .

Using some spherical Bessel fuuction identities we have

that
Py = Ghy(k,T) (VII.1)
o Yo VII.?2
Srw T T 'kchh] (kar) ( +2)
0
1w ,  dhy(k T) .
I - S (VIL.3)
Brgﬁ ,
1 TW _ il )
7 R T kGhy (k 7) (VII.4)
sl dh; (k. t)  k%Gh, (k. ")
3 rw . 4 2G6 et 0 Thie (VII.S)
3r T o r dk 1 r kT :
o o3
2.0
ar"s
3 1 TW _ .3
57 k>Gh, (k1) (VII.6)



so we can recast our coefficient in the following form

dh, (k a)
*U—T—y (-2ug0 (@) gr_a—" Moo (@) (K,2))

a5 (ka) s oo I (k0+2“0 c2u s
"Nl 11ty TF2ug) J, P00 BEN Y00 “00£

BHgg ) dhy (KyTo) ~(3*00
ory Jdk T AT

o 0

)ho(karo)]

2 2

aTodq (kyrgldrg (VII.7)

. dh fk a)
“am T ITX +2p ) (zunm(a) Hk

. : T
rit et e ym (1) o
3 o 1(Agter 4 P nm

+ Agm(a)ho(kaa))

au’ dh. (i r.) ax
nm 1w 0
O T
a2 S0 i) e Bt
o 0 dk ro X rZ i nm T,
_a’ 0
ENCERN
« (n) (n+ 1)k 1y -I%Qﬁ%;-dr0 (VII.8)
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. . o dhy(ka) o hy(a)y o J,(kga)
f = e -2\ kZa
nm 1y 0 ( nm E{ E nm k a ) R B a

T
f Ant2u
+ G [. o 0 0 ]
*;EE-JQ - (o2l > 02 by (k)

o
. [; dhy (kyro) hl(kuro)][ 3 “nm]§
0L dkar0 karo aro Ty
j (k rg)
kg S _~F5~—9— (VII.9)

Since, in our case, we are examining the effect of the
inhomogeneity wholly distributed within a sphere centered

at the origin and of radius Te such that

karf << 1

we can use the following near field asymptotic expansions

of the spherical Bessel functions

ho(kr) > - i? (1+ikr) (VII.10)
k/r?
hy (kr) =+ - i—_7 (14 Sy ) (VII.11)
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dhl(kr) 2i

JKT > k2r3 + term of order 1 (VII.12)
Ip Ghr) 2"n! n-1_n-1 K 2p2

kr MR CSTINN L (1" m) (VII1.13)
dJ (kr) n_, 2 2

n 2 'n! n-1 n-1{  (n+2)k"r")

dkr M (2n+1) 1T k r (n 7(2n+3) ) (VIT.14)

If we substitute these expressions in VII.7, 8, 9, and
if we keep only the lowest order term in kr, we find the
formulas detailed in 3.2.2 - 3.2.6 for the coefficients of

the scattered wave.
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APPENDIX VIII

The Static Approximation

When the inhomogeneities are near the source and the

receivers are located near them, i.e.
k re < kr <<1
a o

then we can use the static approximation to calculate the
displacement field.

So we have to solve.

3
1]
(==}

Vd

where

T = 2(ug*eu;) (SpreSy+. )+ (Agrery) (|So +eSq [+.. )1

(VIII.

Substituting eq. 2 in eq. 1 and collecting the order, we

obtain

Ve (2uySg*aglSIT) = 0 (VIII.

~ [ X £ ~ X
-Ve (2uyS1*Ag[S71T) = 2Vuy«+Sp+Tay =+ Sy |1

+217 VS +A; Ve S |1 (VIII.
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We will assume that there is a small homogeneous layer
around the surface of the cavity so that, as shown in Chap.
11, the perturbed field is wholly contained in the body
perturbations. Let P be the pressure acting on the surface

r = a, then the boundary condition is

Bsg 52
(AOQZ]'O) -gi:m ‘+‘2)\0 — = ..P

It should be noted here that, due to the different
sign conventions we use when dealing with stress and pressure,
the radial stress T . used in Appendix 1 is reclated to the

sbove pressure by the relation

= P
T .. 13
The soluticn to eq. 3 subject fo eq. & is
3
0 _ Pa
Sp =~y (VIII.6)
4u0r

If we substitute that solution in eq..4, we find

x

-V°(2u081+A0|81[I) = ZVulﬁ'SO
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The other terms vanish due to the form of the main

field.
Let us consider again an arbitrary harmonic of the rigi-

dity distributions, i.e.
1 m .
My T unm(r)Pn[cos 8)cos m¢p with n > 0 (VITI.8)

-

Then, we can write eq. 7 in the form

1 0
& P 5> o My 98y
"V'(2u081+x0|81|1) = a2 w5y P (cos 8)cos m¢
S0

> 1 T 9 m .

+392pnm ;7 5 Pn(cos 8)cos mo

N 1 52 Pﬁ(cos 8)d cos md

3 20, = T et (VIII.9)

Green's functiuns

In order to solve eq. 9 we would like to find the

Green's function solution of

~ ~ = m ->
-V~(2p08%+k0|8%]1) = As(r—rO)Pn(cos B)cos mq)ar

+B§(r-r 3 P?(cos Blcos mo ge

0} 39

m
Pn(cos )

-> .
- R 1T,
+BS(r ro) TT6 8¢COS mo a¢ (VIII.10)
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By following the step of the derivation in Appendix II,
we can see that the Green's function solution of eq. 10 is
given by the limit ¢ » 0 of eq. 37, 38, 39, 40, Appendix II,

i.e. we can express the displacement field in the following

way

% = vg rvxvd rg, (VITI.11)
where

n+l 2
g = AI‘O | [ nrz ) (n-&Z)rO]
L (2n+1)(h0+2u0)rn+1 2(Zn-1) 2({Zn+3)
n+1 2
B(n) (n+1) o [ r? T ];
(Zn+1) (hg*2ny) o+l LZ(Zm-1) ~ Z(zae3y d)

m
P (cos g)cos mp  for T > 1,

A
(g™ 2ug) (287 1)

2
(n+1)r2 . (n—l)r0 ]
2(Zn+3) = Z(Zn-1)

]
= l""i
oBl B
™

2
. B(n) (n+1) r [_ r2 . To ]l
O+ 21g) (ZnF1) 7(Zn+3) © 2(Zn-1y J4)°
0
Pg(cos 6)cos m¢ for r <1, (VIII.12)
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and

rn+1 2 r2
(A 0 [ r“ Yo ]
&2 T \TZnsDw, o+l LZ(Za-1) °~ Z(Zn+3)
n+l 2
B T0 [(n+1)r2 - (n+3)r0]IPm(cos 6)cos mo
(Zzn¥DJu, 0+ LZ(Zn-1) ~ Z(Zn*3) ¥ n

for r > r0

2

_ A rt [_ r? . 0 ]
u0(2n+1) rg 2(2n+3) 2(2n-1)

2
n 2 (n-2)r
i uo(B2n+I5 fﬁ [ Znir2n+35 * ’ZTTIT-'DQ]}PIS(COS P)cos mé
0

(VIII.13)

The reader might verify these formulas by applying the pro-
cedure outlined in Sect. 1.4, Chap. II.
Using these Green's functions, if we perform the inte-

gration of the source terms in eq. 9 we obtain that

>
§1 = Vy+VxVxa 1y, for r > rg (VIII.14)

where for r < Te
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and

where

+

+

P33

“nm dﬁm m
S8+ M) sin me]P(cos o)
1 1
a [(fnm 8 nm )
cos m
n=1 mzo ol pntl ¢
2 2
£ 8
+(r:T1 2?1) sin m¢]Pm(cos 8)

3n n-1
0*¥o unm 0

Te
Pa3 n(3n+5) Jf o .n- 1dr
Iﬁ; 12n+IFI§n+SiIXO+2uOi a *nmTo

Ts
3(n-1) o ,n- 3dr

4"0

u
(2n+1)zuo a i

3(n-1 g n 1
mn(m’)—zrﬁ; f o
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(VIII.17)

(VIII.18)

(VIII.19)

(VIII.Z20)



It should be remarked that

o = o =

Cim = f1p = 0
so that it is still the Pﬁ(cos 8) harmonic of the potential
that gives the maximum weighting of the inhomogeneities near

the source. Indeed we have in that case

3 T'e uo
o Pa®” 2 2m
a
" o pad 3 [f Hom
£9 = 4 am g (VIII.22)

2m IEE 75 L T 0

0

The case n

We still have to deal with the case where the inhomo-

geneities have a pure radial variation i.e.
My = uoo(r) (VIII.23)

In that case eq. 7 reads

Ve (20,8 +2n S, |T) = 3 . (VIII.24)
01 “0'"1 T Or OT
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Green's function

By following the same steps as Appendii IV, we find

that the Green's function solution of
-+ (21,88 +2gIS§IT) = 4 A§(r-1() (VIII.25)

is given by

5% Vg, (VIII.26)

3
Ar0

81 7~ TRy* 29, 3T

for r > T,

= A rz for r < r
(}:0"'2“0) [ 0

so that the solution of eq. 24 is given by

-
S

1=V

where for r > Te
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T
U T
1 1 00 0.3
¥y = Xo*2H, 3rJCf 2 9T, 3T, 0 dr

3 Tf oy
T, To*2ey) 3T J, " 5%, %o

3
Pa 1 4
Ti, Tg+Zig) 3¢ (Mo (re) -ugo(a))

+

I
o

since we have assumed uoo(rf) = uoo(a) = 0,
So we see that to the order considered, no scattered
field is generated by the radial variation of the param-

eter inr > Te.
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APPENDIX IX
Fvaluation of the Coefficients of the
Scattered wave when the Inhomogeneities are far from

the Source

We consider a model composed of the spherical harmonics

of the medium parameters specified by n < p. Furthermore,

we restrict their radial variation to the interior of two
spheres of radius Tin and rp such that
kre >k, »>> p2
a f a in
In this case, we can use the far field asymptotic ex-

pansion of the spherical Bessel functions appearing in VII

7, 8, 9, 1i.e.

kn(kr) M S —

ikr,..-n ikr, ..-n
1 e (1) L e (-1)
Jn(kr) > Sy

2(-1k)
Then, keeping the highest order terms in kr in VII 7, 8, 9,

we obtain the formulas detailed in 3.3.1 and 3.3.2 for the

coefficients of the scattered wave.
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APPENDIX X

Geometrical Optics Approximation

Following Karal and Keller (1959), if we substitute

in 2.1.3 a displacement field of the form

2 - Keiw(¢-t) (X.D)

where
I (dw) ™A
n=0 n

o
I

and ¢ is independent of w, we then find that, for a com-
pressional source, the phase ¢ must satisfy the eikonal

equation

o) - Po*ery
A+2u k0+2u0+ekl+52u1

Voo =

If we use the method of small perturbation to solve that

equation, i.e. we assume that
b = ¢g * €07 *

then collecting the order, we have to solve

o
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Epl 0\1"'2111)

2Vo 2V, = —-—74— —EQ (X.3)
0 1 AO+ Ho 0 (A0+2u0)2

We will assume that the phase is zero at the boundary r = a,

then because of the spherical symmetry

3 2
VooV (%) - 20 (X.4)
99"V T A0+2p0 ’
S0 1
90 2
¢g = (Xargaa) (r-a) (X.5)
Eq. 3 then reads
1/2
(28 )/ 9 epy  Ogt2up)
S0
b = L pé/z if ()\0"”2110) (2u.+1,)d
- e B S Bl
LT g ey
(X.6)

+eA -+ L.,
€
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then, since for r < r,

ik _a
. -n,1 > G O
L(w) AL = a, T e
we therefore have
gg-optics = Er(g + terms order eq?

ik r+iewdq,+...-1lwt
e ¢ 1
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APPENDIX XI
The flO Coefficient for Inhomogeneities

near the Source

If we expand in Taylor's series the exponential terms

in each of the integrals in 3.4.5 we obtain

T
£ .
_ G i o 3
f10 = T Jg “10(R1(r0) iy (‘2 ;g N )* 87,

, kK K3 K
; o _ _ay .1 C 370 03 ¢k
Tk, Lk —Z) I\ 777 7 “aB
B o k T k
B 0 B
- g~—3~7—> dr0
kaksr

(2 ko , X5, k§)+ 1 (3%, 3, 0y a9 \ar
Tk, k.2 TZ\ZTZ 7 o B) T .3.5]°70
] o k T k k kT
B 0 B a B0
(XII.1)

where
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Q’j mw.b
—

ryer = 1 (8 - )+ ik (fh - o) S
+ terms of order kir3 + e
If we examine the case where
Ao = Mo
We obtain that

Ry*R, = ir’k3(0.03) + ...

1

So, if k ry < 1, we can evaluate the effect of the in-

homogeneities by using
1/k 2
£, =8 Jf/ au 2 kB dr
10~ Uy Jy 10 5 E; 0

since the contribution from the other terms is likely to

be small.
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APPENDIX XII
The Coefficients of the Scattered wave
When We Have a Fluid Inside the

Source Cavity

In order to investigate the influence of a fluid cavity
on the zero order solution, we can follow the procedure
outlined in Chapter II. As shown there, we can first evalu-
ate the surface and body perturbation and then synthesize
these results by calculating the coefficients of the

scattered wave.

The surface perturbation

In order to find the scattered wave generated by the
inhomogeneous distribution of parameters on the surface of
the source, we can solve the equations detailed in Section
2.3. In the case where the medium inside the source is a
fluid specified by (p ,0,A") we can write the first order

boundary conditions as follows:

1) Continuity of stresses

0

9s 9S
- - rw +0 Tw -
A Ves = 2u + A,Ves +2u +A,Ves
12 p2q 1 or 1" "w "70 or 0" "12) _.*
39S
0 1 35r12 - 5 ( 812
T 06 3T T +
r=a
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and

s
0 - 1 rl2 . 3 (s¢12
T sin 0 3¢ 3t \'r

2) Continuity of the normal component of the displacement

In the region r > a, we can still express the dis-
placement field in terms of potentials by the following
relation:

> _ S > S e S

S92 = VYT o+ Vxa,ryy + VxVxa Ti5
where (¢+:WI’¢;) obey the wave equation with phase velo-
city o for ¢+ and B for wI and w;.

In the region r < a we can express the displacement
field as follows:

> - -

S12w = vy

where y obeys the wave equation with phase velocity

= o

- 1/2
)1

("
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Let us consider an arbitrary term in the decomposition

of the parameters at the boundary r = a, i.e.

1 1 1

(p1(a),uq ()21 (8)) = oz ,u A JPD(cos 6)cos mo

Then following an argument similar to the one given in

Appendix IV, we can express the potential field as follows:

We

m
Ahn(kar)Pn(cos f)cos mo

0 (no torsional waves are generated)

Bhn(ksr) Pﬂ(cos 9)cos m¢

. m
CJn(ka_r)Pn(cos B)cos mo

can calculate the coefficients A, B, C with the

boundary conditions and, since we are interested only in

the part of the spectrum where the wavelength is much

larger than the radius of the cavity i.e. ka << 1, we can

retain only the lowest order in ka in the result. These

operations give the following results:
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0 1 2.0 n-1 _n+l1
A = _(2u1 95 a0 +~Anm oa *aw) 2"n! Ky @ .
nm Ja 2 da JCZn+I) T 10X+ 2u,)
a 0 0
£(hgs1g,m)
0 1 2.0 n-1 _n+1
B = _(2 1 asaw + A 02 saw) 2%n! Eﬁf~§*——‘
"am 3a AT (Zn+1)7 Ho

gcko:UO:n)

where

n(4n2-1)(ko+2p0)

f(kospoan) =

and

Ao (2n°+1) +yy (2n°+2n+2)

n(4n2-1)(x0+zu0)

g(XO’HO’n) =

A0(2n2+1)+p0(2n2+2n+2)

The case n = 0 can be treated in a similar way and the re-

sult is the following
y° = Ah,(k.T)
0 "o

where

2.0

AOO 9a’s

k a3

9S4,
A= (2“00 5

2
a

aw )
da
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and

- Aot 2y
A0 Hughg) = g

A i
It is interesting at this point to compare these re-
sults with the ones we obtained in Section 2.5. If we
calculate the asymptotic expansion of these potentials for
ka << 1, and if we keep the lowest order in ka, we then

obtain the same result as above but with
£(A,u,m) =.g(3p,Hp,0) = a(X ,2A,,4) =1

So we see that the difference between these two models
lies within the f, g, q factors. If we examine these fac-
tors, we remark that, except for the case n = 1, the
scattered wave generated at r = a, will have a larger
amplitude when there is a fluid inside the cavity. In
order to investigate the extent of the region for which the
difference between the two models persists let us evaluate

the body perturbation.

Green's function for the body perturbation.

In order to find the Green's function solution of
eq. 2.4.4 when there is a fluid inside the cavity, let us

first consider the Green's function K found in 2.4.6 and
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rewrite it dn ‘the ‘following form

\ ¥ } Tp' 75
=[5 Ty OT0)  Ben) (ne1) hn(k“ro)ﬂ 3
U ) k7o U T2y

ih ((ﬂi sr))% (xcots ‘0}cos m¢

———— "2
[ F\W B.(n) (n+1) h Ckaro)] Tp

Z "H‘k“i“a“‘ X Ty JT(%;%21,)
'~5};nkaq“r\)’Rf1‘f(‘cos 8)cos m¢ for r > r,
Wit 6k mg) +hy (kT g T
4[ “BKE&%—D - B(n)(n+1) 280 Ui’(x + )
. 1) o0 D" “Hp
h, (k. i)
. B_“_?L_!s%;‘!(acos ‘) cos mo
Wi, (G m ) h, (k 1) s
- S0 gy ey o 2‘ 2 ] vt
umb 0 1(. 0 Uo)

itk r)
R LI ’P,;“(cos 8) cos m¢p for r < L)

Arrivall time considerations reveal that for each

domain of observeftion, we can distinguish ‘two wawes Teaching

the receiver: -‘one «wf ithem 'travells directly from 'the scatterer
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position to the receiver whereas the other must pass through
the origin before reaching the receiver. Now, when we have
a fluid inside the cavity, the incoming wave towards the
origin is transformed at the surface of the cavity such as
to meet the continuity of stresses and normal displacement
there. So, at that surface, the incoming energy is parti-
tioned into a compressional wave penetrating inside the
source and a compressional and shear wave reflected towards
infinity.

We therefore see that in order to find the Green's

function when the medium inside the source is a fluid we
can perform the following operations:

1) Separate the Green's function found in Chapter II
into the two parts specified above

2) Use the incoming wave towards the origin to find
the partition of wave at the surface of the cavity.
This result will give us an outgoing shear and
compressional wave for each of the two incoming
wave types.

3) For r > r, we can take the sum of the outgoing
compressional waves just found and add to it the
compressional wave reaching directly the receiver.
We can do the same process with the shear wave.

4) Finally, since we are interested in wavelength much
larger than the radius of the cavity, we expand
the above results in asymptotic series and keep only

the lowest order in ka.
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This is the process I have followed to calculate the

Green's functions and the results are as follows:

-

->
sllw = VK + vaxarrH

where, for r > Ty
_ pl
K Pn(cos 9)cos m¢hn(kar)

2 .
LMo YaTe)  pmyme1) 2 InlkeTo)
[ TR, 2hy) KT, TG+ Zig) "0 ~Korg

2 n' kn 1 n+1(

2
B 2™nt  .n-1 n+1/a® To
' i,(XO*‘zqu (Zn)" K 2 (;Ig)z(v+ al S)]

and

_ o
H = Pn(cos ®)cos m¢hn(k6r)

[ Ar} in(KgTg) Br (jn(kBrO) . %y (kBro))
1y kBrO iuo kBrO dker0
2
_ A n! kn 1 n+1 To
Byt % o



where

o = 2n-1
x0[2n2+1]+u0[2n2+2n+2]
2
p = n[U0(n+1) ) (n+1)n(>\0+21-10) N >\0(n+1)]
(Z2n+1) (2n+1) 2n+1
2 2 '
_ (n-1) (ZUO) (n '1)(>\0+2U0)
m n[’ 2(Zn-1) ¥ 7(Zn-1) ]
nz(n+1) : )
v = omr [2(n+1)u0—2n()\0+2u0)+2>\0]
n(nz-l) ‘
s = m ['Z]JO'II"‘Z(D.'Z) ()\O+2Llo)]

The case n 0 can be treated in a similar way and the

result is as follows
= K

->
s110)

where for r > L
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A 2
o, .
K= hO(kar)[1.'0+ Wy Jl(karo)

2 ' -

+ <

We remark that the first part of these Green's functions
-is exactly the same as the one we have obtained in Section
2.4, The other terms are corrections due to the presence of
the fluid cavity.

By expanding the above results in asymptotic series in
terms of the parameter kar0 we remark that the correction
terms are of the same order of magnitude as the first part
of the Green's function when the scatterer radius, L is
approximately the same as the radius of the cavity, a. On
the other hand, when the scattering occurs at a large dis-
tance compared to the radius of the cavity, then the cor-
rections terms can be neglected and we thus recover the
results obtained in Chapter II.

In order to see what are the effects of these correc-
tion terms, let us calculate the coefficients of the scat-

tered wave.
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The Coefficients of the scattered wave

To evaluate these coefficients, we must first integrate
the effect of the equivalent body force given in eq. 2.4.3
by using the preceding Green's functions and then add to
this result the surface perturbation. Since the correction
terms in the Green's function just described are effective
only near the source, we can calculate their contribution
to the scattered wave by using the asymptotic expansion for
small kar0 of the equivalent body force.

When the above calculations are made, we find that
the total displacement field, in a region outside the in-

homogeneities, i.e. for r > Te, can be expressed as follows:

-+ >
sw = Vy + Vxerarwz (XII.1)

where
¥ = Ghy(k,r) + edgohg(k, 1)

o]

n
+ ) Eo(adimcos m¢+edimsin m¢)hn(kar)Pﬁ(cos 9)

n=1 m=
(X11.2)

and
2 1 2 m
ggsgnmcos mé+e g sin m¢)hn(k8r)Pn(cos 0)

(XII.3)
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where

42U T
do = c..+ 8 4 3N TH2u4 32, Jrf 2 .

0
o - 9 F o
dlm - Clm C1im
a° =% 4 1 2! (B-2,n-2
" St R, T N
T
? o] an+3 : ra
zunm(“ﬁTI)z[z(n+3)P+V+—7 (2(n+1)m+$)Jdr
2 o a
n>1
g - g0 Fro
~g1m flm flm
n-1 .
O . g0, 6 2n! kﬁ a2
gnm * fam” g TZn)T Tk .
3 o (a™ 3\, rg
jgzunm(;ﬁII)H [2(n+3)p+v+ ;7(2(n+1)+5)]dr0
0

n>1

.37‘—4'4“0 a T
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(XII.5)

0

(XII.6)

(X11.7)

(XII.8)



4 g o} o .
The terms €00° Snm’ fnm are the same as the ones given
in Section 2.7. The other terms are a correction to these
values due to the presence of the fluid cavity. We note

that we have not given the ekplicit form of the terms

F o

C1m and ngm' Indeed, to calculate these coefficients, we

must keep more terms in the asymptotic expansion of the
Green's functions in powers of the small parameter, kaa.
This work will not be done in this report.

We remark that there are two special cases of interest
relative to long wave scattering near the source, i.e.
n=0 and n=2. Indeed, for each of them, the correction terms
depend on frequency only through the spectrum of the source
whereas for other values of n we have a low frequency

cut-off.

Since the case n = 2 is discussed in Chapter IV, let
us restrict our consideration here to the case n = 0.

If we examine the scattered wave produced within a
wavelength from the source, then we can use the asymptotic
expansion of c,, given in 3.2.2. But since this contribu-
tion to d00 has a low frequency cut-off, we can neglect
it compared to the correction term. We then obtain, for
the sum of the potential due to the main wave and the
scattered wave characterized by n = 0, the following

result:
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T
b = ﬁ% a®(1+eb)hy (k1)

where

- T
e (DB e,
0¥ “Hp 3 3A’+4u0 a 00 rg 0

and here we have used the notation of Appendix I.
Thus the field observed is the same as if the medium
was homogeneous, provided we define an effective pressure

and radius of the cavity such that

3
(T,..a")

- 3
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