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ABSTRACT

We use the method of small perturbation to study the
scattered wave generated by an arbitrary three dimensional
inhomogeneous medium in the vicinity of a spherical com-
pressional source. Two models of the medium inside the
source are considered: a homogeneous solid and a fluid. It
is only when scattering occurs within a boundary layer
around the source, of radius a few times the one of the
source, that we might expect the two models to give different
results.

A spherical coordinate system is used to express the
displacement field in terms of potentials. This leads us to
a simple relation between the structure of the first order
scattered wave and the structure of the medium, namely a
given spherical harmonic of the medium parameters excited the
same harmonic of the two spheroidal potentials. Moreover,
no torsional waves (as defined in Chapter I) are generated
to that order.

Special attention is given to the cases where scattering
occurs within a wavelength and many wavelengths from the
source. In particular, in the first case, we study the con-
tribution of scattering to the anomalous SH wave which usually
seems to originate near a compressional source and the result
is applied to the Love waves from Boxcar nuclear explosion.
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CHAPTER I

Introduction

1.1 Formulation of the problem

The purpose of this paper is to study the scattered

displacement field due to an inhomogeneous distribution of

medium parameters around a compressional source. A model

of the experimental set-up is sketched below (Fig. 1)

Figure 1. Experimental set-up
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The distribution of stresses on the surface of a

spherical cavity of radius "a" is modified by the production

of an explosion in its interior.

The radius "a" is chosen such that Hooke's law is obeyed

in the medium r > a which is formed by an infinite, iso-

tropic, and inhomogeneous solid. An important assumption

implied in the preceding model is that we will not consider

the transformation of the field by the earth's surface.

Let us consider a model in which the distributions of

parameters are inhomogeneous only within a sphere of radius

rf outside of which lies a homogeneous solid characterized

by (p0,' 1O' ' 0 ). Then, following an analysis apparently

started by Sezawa (1927), we can show that, in a spherical

coordinate system having its origin at the center of the

source cavity, a complete decomposition of the displace-

ment field in the region r > rf, can be expressed in the

following way:

Let s be the Fourier transform with respect to time

of the displacement field, then

S = V + Vxar r 1 + VxVxarri 2

where ar is the unit vector in the radial direction and, in

standard notation (e.g. Morse and Feshback (1953)), we have

that

~Y-F-~L-- - -- i i-;-li~iXIII~ -_ UCl~iLO-I LIIPI~- .



= (cOh 0 (kar),O,O)

00 n 1
+ (c h (k r),d h(k r) , f h (k r))

n=l m=O nm n a nm n nm

*Pm(cos e)cos mb

+(2 mh (k r),d 2 h (kr),f2 hn (ksr))

.Pm (cos 9)sin m (1.1.1)

The fields 4 and *2 are respectively called the

spheroidal compressional and shear potential whereas 1 is

the torsional potential. Displacements corresponding to

l1 have no radial component while those corresponding to

*2 have a radial component which dies out quickly propor-

tional to r-2 . Furthermore, there is no rotation around a

radial axis associated with *2.

Let us assume that in the medium r > rf we have placed

a network of three components seismometers and thus have

obtained partial or complete information of the (cnm, dnm'

fnm) coefficients specified above. Then, the problem that
nm

naturally arises is to find which class the parameters of

the source and the medium must belong to in order to be

consistent with the observed coefficients.

~~UI1I



1.2 The parameters of the source and the medium

An explosive source has been modelled by a sudden ap-

plication of a uniform pressure since Sharpe (1942). This

is basically the initial condition that we shall use in the

present study to model the source of energy.

However, secondary seismic sources associated with

explosion have been considered in recent years in order to

explain the anomalous production of shear waves near the

source. In this respect, Geyer and Martner (1969) have

concluded, after fifteen years of field observation, that

the production of SH waves near an explosive source seems

to be the rule rather than the exception. Though a review

of the mechanisms likely to excite these SH waves will ap-

pear in a paper by Aki and Tsai (1971), let us summarize

them briefly since they bear directly on the inverse prob-

lem set up in the first section. They may be classified

into the following three categories

1. Direct effect of explosion

Here we include all the processes inside the non-

elastic domain of an explosion. Though no quantitative

estimate of their efficiency has yet been worked out, we

may expect an azimuthal asymmetry if the rocks in the im-

mediate vicinity of the shot point are inhomogeneous,

anisotropic or are set in motion along pre-existing cracks,

_m _/_L_ _I I___ ~l _II__III_^ICI _~I~__.I IIYI_1~~ L



joints and faults. Even for a homogeneous isotropic

medium, the radiation asymmetry may be caused by the Taylor

instability (Wright and Carpenter 1962) or by formation of

new cracks (Kisslinger, Mateker and McEvilly, 1961).

2. Release of pre-existing stress

The explosion may have modified the pre-existing stress

distribution around the cavity. In this connection, two

different models for this process have been studied.

a. The cavity model

Due to the shock induced fracture zone created by

the explosion, the initial stress field around the source

will be relaxed so as to meet the new equilibrium configura-

tion inside the cavity. Archambeau and Sammis (1970) have

worked out the anomalous field generated by this process in

the case of the Rainier and Bilby nuclear explosion. They

found, using reasonable values for the parameters, a good

quantitative fit with field observations.

b. Trigger model

Aki et al (1969) suggested that a fault displace-

ment triggered by the Benham explosion would explain fairly

well the structure of the seismogram obtained for that

nuclear event. Field observations near the source, after-

shock studies and long period Love wave spectra observed at

long distances, support the faulting hypothesis in that

._--- -i--r~ -XLII^III ~-~1~0--~111^~-



case.

3. Scattering

It is often assumed in seismology that the earth has a

layered structure with uniform thicknesses. By symmetry,

no SH wave can be generated from a spherical compressional

source buried in such a medium. Since the assumption of

laterally homogeneous earth is obviously an extreme ideali-

zation especially at shallow depths, we must consider the

generation of SH waves through scattering by the laterally

inhomogeneous medium around the compressional source. In

this connection, Smith (1963) argued in favor of the mode

conversion in the elastic domain near the shot point on the

basis of observed similarity between P, SV and SH spectra

for the frequency range 0.5 to 2.5 cps.

One aim of this study is to provide a quantitative

estimate of the efficiency of this process. But, in order

to do so, we must specify the distributions of parameters

in the medium. This point represents, no doubt, the core of

the difficulty in the calculation. A hint of its solution

is provided by the observation of the main compressional

wave. Indeed, in order to obtain a good zero order ap-

proximation of the main body waves, one often replaces the

real earth by a model having its average properties. Because

of the success of this modelling technique, it suggests



that the medium is slightly inhomogeneous and that we should

try to exploit this fact in order to gain greater flexi-

bility in the evaluation of the scattered wave. This can

be done by using the Born's approximation or method of small

perturbation. The main advantage of this technique is that

it permits us to analyze the scattered field generated by

an arbitrary structure of the medium provided this structure

does not deviate much from some given homogeneous model.

But, in order to carry out this program, we must also

specify the properties of the medium inside the source.

Indeed, a wave scattered in r > a may impinge on the source

and be scattered again depending on its properties. In

that respect we shall study two models of the source. First,

we shall discuss the case where the medium inside the source

is a homogeneous solid having the same value of the param-

eters as the medium r > rf. Incidentally, these parameters

(p~OOX0), will also be taken to represent the zero order

structure of the medium a < r < rf. Then, since a more

realistic model of the medium inside the source is a fluid,

we will try to investigate in which ways does a source of

zero rigidity modify the field obtained in the first case.

1.3 Summaries of the following chapters

So, following this plan, chapter II will present a

detailed derivation of the first approximation to the

~II_



displacement field we obtain by using the method of small

perturbation. There, we will find it convenient to analyze

the distributions of parameters in spherical harmonics in

order to express the field as in Eq. 1.1.1. In that res-

pect, we will reach two important results. First, to the

approximation considered, no torsional waves are generated

by the inhomogeneities. But, of more consequence still,

we will show that a given pair (cm, m ) in Eq. 1.1.1

depends only on the (n,m,o) harmonic of the medium param-

eters. For example, let us suppose that in r > rf we re-

cord a wave specified by the source, (c0), together with

a scattered wave specified by the coefficients say

(c21  f21 ) . Then, to the order considered, we can say that

the structure of the medium can be expressed as

(p,.\V) = (pO' Y + (P 21(r),21(r),21(r))

'P2(cos O)cos (

We therefore remark that this fact permits us to make

a great step in the solution of the inverse problem.

Though, in this paper, we will be mainly concerned with

the case where the seismometers are situated in the homo-

geneous region r > rf, we will briefly mention, before

closing the second chapter, how to generalize the results

-i. -r~~--~--a~^--rcl-r_~- i-- I IlrrYIIP-L-XU--*L------*--~il-. - 1L~lr-I~Y ~.IIYILY~-



to the case where the receivers lie inside the inhomogenei-

ties.

Chapter III will be devoted to the evaluation of the

scattered wave for some particular models. But, before

going into a detailed calculation of the coefficients of

1.1.1 for a given structure, we will find it worthwhile to

study the spectrum at the low and high frequency limits. To

be more specific, we will first investigate the case where

all the inhomogeneities are concentrated near the source

i.e. such that

k rf << 1 (1.3.2)

Secondly we will consider a medium formed by the first

n order spherical harmonics of the parameters, but we will

restrict their radial variation to the interior of two

spheres of radius r and rf such that

k rf > k r >> n (1.3.3)

The interest in these particular limits stems from the

fact that, in these cases, we can expand the exact first

order scattered wave in asymptotic series in terms of the

parameters k times the radius of the scatterer. Then, we

need only to keep the dominant term in these series in order

~_1_1~_ __1I___1I_~ -IYLI;II-LI~--~



to describe the main contribution to the displacement

field.

In this respect, we will reach an important result in

the case where the scattering occurs near the source. In-

deed we will show that the wave scattered by the spherical

harmonics of the rigidity of order n = 2 depends on the fre-

quency only through the spectrum of the source. Moreover,

they are particularly sensitive to the inhomogeneities

near the source. To give an example of this, let us consider

a model specified by 1.3.1 together with the constraint

1.3.2. Then, for that case, the coefficients of 1.1.1, to

the order considered, are

cO = G (the spectrum of the source)

c21 = G -) r0 dr0

0 0 a 0
1 21k r
21 =G( - )f dr0

Furthermore, we will show that this group of harmonics

(n=2) is the only one possessing such a characteristic. All

the scattered waves generated by the other harmonics of

the parameters have a low frequency cut-off. Therefore, we

:~_II_~ _II~ ___~I _~_li~XI~I__Ls~



see that these components of a given structure might prove

to be the most efficient scatterer of long waves near the

source. From that point of view, we will place some severe

constraints on the possible structure that may cause the

anomalous SH waves discussed in Section 1.2.

We will then turn our attention to the high frequency

case and examine which type of structure may generate a sub-

stantial scattered wave. In this connection we will find

it convenient to separate the displacement field in four com-

ponents: the transmitted and reflected compressional and

shear wave. In studying the first component we will be lead

to consider the effect of structure varying slowly over many

wavelengths. We will then compare the scattered wave obtained

by the Born's approximation with the one we would calculate

by using the methods of geometrical optics. In our investi-

gation of the other components of the scattered waves, we

will see that if the medium has some periodic structure, then

some parts of the spectrum may be greatly enhanced relative

to others, depending on the so-called Bragg's conditions.

Finally, having obtained these results, we will be in a

better position to analyze the spectrum of a given structure

for all frequencies.

The purpose of chapter IV is twofold. First to give a

brief account of the case where the medium inside the source

is a fluid. We will see there that in practice, the

_/ _i____ ~~_~_~~ _II- -LI-LIX I~ .



influence of the fluid cavity is restricted to waves scat-

tered within a boundary layer around the source, of radius

less than ten times the one of the cavity. We will then

consider the body forces equivalent and seismic moment for

the scattering process likely to contribute to the anomalous

SH signal discussed previously. In this connection, we

will try to estimate the efficiency of this process in the

case of the Boxcar nuclear explosion.

In the concluding chapter, we will discuss the possible

ways of applying and improving the following analysis.

Various appendices have been added which will permit,

it is hoped, the saving some of the time of a reader who

wants to go into the details of the calculations.

aurm^



CHAPTER II

Formal Derivation of the Scattered Wave Using

The Method of Small Perturbations

2,1 Application of the method of small perturbation to the

elastic wave problem

Let

S: the strain dyadic

T: the stress dyadic

s: the displacement vector

Then, Newton's law without the body force term can be writ-

ten as

(2.1.1)2s =
p -2- VT

Dt

We shall assume the medium to be isotropic so that we

have the stress-strain relation

T = 2pS + XISlI

where

I : the unit dyadic

S: the trace of S V*s

P,X: the Lam6's constants.

(2.1.2)



Therefore, we can rewrite Eq. 1 as

p3-- = 2Vp..S + 2pV.S + VX. SII + Xv-IsIJ
at

(2.1.3)

Let us assume

(see Fig. 1),

that within the inhomogeneous sphere

the parameters are described by

(rf>r>a)

P = P + P1

1 = 0 + 41

0 1

where

( PPO
c -O ,'

1 9E --

The region r > rf and r < a will be characterized by con-

stant parameters

(p,P,X) = (p0' 0'X 0 )

(p,v,x) = (p ,P ,X )

for r > rf

for r < a

With the hope that the displacement field depends analytically

rc-i .-i rr*rr^~l l~isCI~-LI1--- ~ IX (I L^ .XI^. -~.
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on E as E + 0 we might try the following

sion of s

4 +sO + S s 2
+ E s 2

asymptotic

for r > a

we can rewrite Eq. for r > a, as follows

2
2 (s0+ s1Dt- .. ) = 2Vpl.-(S O + S 1 +. .)

+2(,O+cp
1

1k..)'

+(X 0 +X 1 )V. (I

Collecting terms of the same order in 6, we have for r >

a) The zero order equation

-2p 0 V* So -xoV- I So I = 0

b) The first order equation

So,

(+..)I

(2.1.4)

(2.1.5)

i

expan-

)V (SoS 1
)V-(S 0 +-S

+ Cv1. (ISOl+1

S01+61S,

2-S 0OSs
oPo- 2-at



2 s 1
P0 S-1 2

0V*S1 -XoV 1 Si

2 
0

= -Pl 2'
at

+2VpIl'S + z2i 1 V- 0

+VXl. ISO I I + X1 .v ISOI i

In the region r < a if we use the expansion

+- +- 2 -
s = s + s + Es 2+ ..

0 1 2

the displacement field must then satisfy

c) The zero order equation

2+-a s

at
-2p V-SO xv. ISOI = 0

d) The first order equation

-2P V*S1 X -v-. = 0

Perturbation of the boundary conditions

We must also meet, at r = a, the continuity of stress

and displacement.

(2.1.6)

(2.1.7)

2 -
s

P --azt
(2.1.8)



A) Continuity of

We must have that

P-a
2p a. Sr + X r=SII

r=a

= 2'a S + Xa S I
r r r=a (2.1.9)

where

a is the unit vector in the radial direction
r

If we substitute the asymptotic expansion of the dis-

placement field in Eq. 9 and collect the terms of the same

order in c, we obtain

a) The zero order boundary condition on stress

2-p a Sr S

= 2v0a r *.SO

+ X ar **ISI r=a

r=a

The first order boundary condition on

stress

(2.1.10)

stress



2p ar 1 +

= 21la
r

**S

+2p0a r

Sar ' 1I
r=a

O +xlar..*S 0 I

1 + Oar S1 r
r=a+

B) Continuity of displacement at r = a

Case 1. At a solid-solid interface the three com-

ponents of the displacement must be

= O

3- 4

s O + ES + .. ra

Collecting the order in

continuous,

+ ES

r=a

c we have that

s 
0

r=a

-1 r=a

Case 2. At a fluid-solid interface (e.g. fluid cavity),

the normal component of the displacement must be continuous,

i.e.

a r( + E41r ( 0 ,s 1 r=a
= a r*(S0 + S +

r 0 1 r=a

(2.1.11)

i.e.

r=a

(2.1.12)

(2.1.13)

I - .r.~lrr-a^---^ -;uIsuu~*yaEl--~ l^-*IC -PIP L1 - -- sll*LCIc

**S



Collecting the order in c, we have that

ar s
r=a

and

-+ +

Sar 
0 r=a

= a *sr 1 r=a

(2.1.14)

+ (2.1.15)

The next step, then, is to solve the set of equations

5, 6, 7, 8 subject to the boundary conditions 10, 11, 12,

13 or 10, 11, 14, 15 depending on whether we consider a solid

or a fluid cavity in r < a.

2.2 Solution of the zero order equations

We have to solve the following set of equations

For r > a

2s
a s
0 2  21 0 V.S0 X0v IS01I = 0
at

(2.2.1)

for r < a

2 -  -

P- 2 - 2 V 0- -V -ISO II = 0o
at

(2.2.2)

subject to the boundary conditions

ar,~ ilrylC~---- L~"~C i~i-1U"=-~ii~



2- a*..S + a ** I2 ar 0 r S0 1
r=a

= 2p0arSO + ar 0
r=a

+-
s 

r=ar=a
s

r=a

a r - - .s o

r=a r=a

(for solid-solid interface)

(2.2.4)

+ (for fluid-solid interface)

(2.2.5)

Initial condition representing an explosion

Since Sharpe's (1942) model has been verified experi-

mentally to give a fair representation of the compressional

wave generated by an explosion, we will use it in order to

represent our initial condition.

It consists of specifying a uniform radial pressure on

the surface r = a, i.e.

+aIs01
2p0a r S** + 0 a r ** I + = Trr(t)a

r=a
(2.2.6)

The solution of this well-known problem is outlined

in Appendix I. It is shown there that if s0 is the

Fourier transform of so with respect to time, which will

and

(2.2.3)



be expressed in the following as

So +- S O  ,

then the displacement field can be written as

+
OLw = Vi.1)

(2.2.7)

and the compressional potential 0 can be expressed as follows

10 = G h 0 (kar) (2.2.8)

where G is the spectrum of the source and h0 (kar) is the

zero order spherical Bessel function (see Appendix I for

definition).

2.3 The first order equation

We can, now, solve the set of first order equations,

i.e.

2-

Po a - 2o 0V*S 1-XoV'IS1lj

2+

= -Pl 2 + 2Vil *.S+2~pV*SO

x1 '* SOII

.. ~.~r^l-- -- e~--- ~~ariC^ li l-L*PI--- -C ir~

+VXl.ISol0 + (2.3.1)



for the medium r > a, and

2-+-
s

S 1 23
p ~ 2p V*S1 - V. IS I = 0 (2.3.2)

3t

inside the source, i.e. r < a

subject to the boundary conditions

2p ar *S 1 + X a r I S1I
r=a

= 2plarS0 + Xlar..ISo0 I

+2poar**S 1 + XOar* ISI
r=a (2.3.3)

and

s1
r=a

4-- Sl r + (for solid-solid interface)r=a
(2.3.4)

ar = ar s1
lr=a r=a

+ (for fluid-solid interface)

(2.3.5)

The inhomogeneous term in 2.3.1, which might be thought of

as a body force, denotes the fact that the main wave (i.e.

the zero order solution) is being transformed at each point

of the inhomogeneous sphere into a shear and a compres-

sional wave.

~ -rr~ilirt--r- Ll~iiy~~~ilpL~L-Ll"a*~.l



The stress

2pla r**SO + xla r "SO

in the boundary condition, might be assimilated to a new

source at the surface of the cavity due to the inhomogeneous

distributions

In order

field we will

of parameters there.

to simplify the evaluation of the scattered

split the problem into two parts:

Let

= Sl + s12

and
= -

-: sl + s12

where

a) S11 and Sl1 satisfy the inhomogeneous equations

with homogeneous boundary conditions, i.e., for r > a

-ov* [S1 1

2-
Ss 0

= -pl - +2V **'S

+ 2lV* SO +V1lI *SOlI

2+

POD2 2ll
at

(2.3.6)
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and for r < a

-21i V.S 1 1 - X*I~;ll

subject to the boundary conditions

2p ar Sl1 +

=2p 0 are Sll

X r 11 r=ar=a

+ Xar

= Sll
r=a

(for solid-solid interface) (2.3.9)

ar'slr=a = a ll + (for fluid-solid interface)
r=a

(2.3.10)

In the following, I will call Sll the "body pert

tion" contribution to the scattered wave.

-
b) s12 and s12 satisfy the homogeneous equations

inhomogeneous boundary conditions, i.e.

2-
s 12

P O 2 -
at

urba-

with

(2.3.11)

for r >

2--
s1

P 2
at

= 0 (2.3.7)

and

r=a

Sr=a

r=a

or

(2.3.8)

2p0oVS12 0 12 I =



- 2p V.S
1 2

- V. IS12 I = 0

for r < a

subject to the boundary conditions

-- p

r 12

=2oar* 0.S 12+

r S Iar 121I
r=a

xOar s 1121

-+2la **S

= s1 2 r=a

2 r=a

+ Isr I1 r**O0 (2.3.13)
r=a

(for solid-solid

+ 1
= arSl2 + (for

r=a

interface) (2.3.14)

fluid-solid interface

(2.3.15)

In the following, I will call s. the "surface pertur-

bation" contribution to the scattered wave.

We can verify that

s1  + s
s1 s11 + S 12

and 2--- 12
p a t 2 (2.3.12)

and

2 r=a

ar'*s I

II .



and
+-4 +- 4-

s1 = S11 + s12

by simply summing the two preceding sets of equations.

2.4 Body perturbation with a solid cavity

As a first approximation to our problem we will assume

that the medium inside the source (r < a) is a homogeneous

solid having the same value of the parameters as the medium

r > rf i.e. for r < a

(p,~',) =(PO' ~O' X0)

The case where we have a fluid inside the cavity will

be discussed in Chapter IV and it will be shown there that

in practice the two models do not differ much quantitatively.

In this case, in order to find the body perturbation

part of the scattered wave, we have to solve

2-+

PO 2S11 - XoV' 1111

2-
a so

= -pl .t 2 +2Vl** SO + 2plV*SOat

+V+1** X1 . 1~1 (2.4.1)



which is valid here throughout space.

In the model just described, the boundary conditions,

eq. 2.3.8 and 2.3.9, are redundant. Indeed, we have to use

them only in the case where the medium r < a has parameters

different from (po,o,x 0). In such cases (e.g. a fluid

cavity), they permit us to determine the conditon that must

be met at r = a by a scattered wave impinging on the source

(see Fig. 2).

SCATTERING
ELEMENT

SCATTERED
WAVE

P

Figure 2. A wave scattered in the i:nhomogeneous sphere

might impinge on the cavity r < a and be

scattered again



Taking into account the fact that the main wave has only

radial motion we can rewrite 2.4.1 in the form

2-->2s

P tO D 1 -20 0 11

=[
2 0

X0+2 0 + 2 pI+XI- r s
P I 1Jr -.2 r ar

0
1 r +

+ 2ar ar

0r
2 l r+F T r a,

2 0
1111 r +

+T [ - arr

2 7ax ar s
1 11 [1 r r 0 r 3r a6

a so
2 1 r 1 11
r sin 8 7 r a + r sin .

2 20
1 r 

r
(2.4.2)

Analysis of the parameters

We shall assume that at each radius r we can decompose

the inhomogeneous parameters in spherical harmonics, i.e.

(plO,'X ) (P 0 0 (r),p 0 0 (r),X0 0 (r))

n 1 1 1
+ 1 [(Pnmpnm Xnm ) cos m

n=l m=0O

+ (2 2 2 m(cos 6)
(Pnm' pnm' nm) in mf]Pn(

.-..ii*~lrrr--il-r--r^r~--~-r~Y -r-~- -rrrsr-r YU-~I~-1IIIII~---

x I 11
~ 07* S11I



where

2n+l 

7TrJO

Pn(cos e)sin eded¢

and

1 I x1 2n+l (n-m)! / q
nm' nm ' nm + l'l' )Cs+ m"r

Pm(cos O)sin 6 dedq

2 2 2 I2 2n+l (n-m) J f , ,)sin m
m'nm' (n+m (p,1, )sin m "

pm(cos O)sin Odedp

Since 2.4.2 is linear, its solution will be the sum of

the contributions from each harmonic of the parameters,

So, let us consider a general term in our decomposition,

i.e.

(Pl'~1'l) 1 (nm ' 1 nm) cos m Pm(cos 6)nm I nm - nmn

with n > 0

--~-;r;nur~rr~. --r~ ~-------IIPLY"- -~~

(Pn, 0 ' n, 0' Xn, 0 )



The case of pure radial variation of the parameters

(i.e. n = 0) will be treated afterwards.

We can then rewrite 2.4.2 as

2-+
s ,

PO 2Dt
2joVS0V 11 - oV Is1 1 II

pm(cos 0)cos m, [- (1 X+ 21 0 ) +nm 1pnm p nmnm

r2s0 1
.a 1 r nmr +2 nm
"9 z ar ar

r

8 m
+ a Pn(cos O)cos m4

Pm(cos 6) a
sin 6 7 cos m

as 0
r

2p1
2pnm

21 1
21nm

ax 1

nm 1+ nm
r

0
r
r

s0r

r

1
+ nm

r

1
+nm
T

r2 0

r r +ar ar

2 0arr s
ar a

ar 0
r

(2.4.3)
Green's functions

We would like to find the solution to the equation

32g11 2Ui ' - X OVtI
O 1 20 1 0 1at

= Pm(cos O)cos mm AS(r-r0)ar

S Pn(os )cos m B(r-r (2.4.4)

+ sin 8 cos mq B6(r-r )d (2.4.4)
sin e 750

X_ ~~__/1_~4__1_ ___ 11_VYWI.-II- *~-i II



where 6(r-r 0) is the Dirac's delta function and A, B are con-

stants.

The solution s 1g can be expressed in the following way:

gg ++ 11
11w 11

then

=VKs1 = VK +
Sll

2Ar0

2B(n)(n+l)r
0

0 i( o 0)

+

VxVxa rrH

djn (kr 0 )
r hn (kar)

a O

(2.4.5)

in(ka 0) hn (k r)] Pm(cos e)cos mq
k n
a 0

for r > r0

Ar2  d h (k r0)0 n a (k r)
i(X0 + 2 - 0 ) a r0 n a

B(n)(n+1)r hn(k r0)0 n(a) jn(k r )] p' (cos O)cos m4
i(0+20) ar0 a n

for r < r0
(

Let

,where

K = [-

-

.... .~~.~.-~ ii-r*~ -- ~-~pl--~ lrr~--^-- -~m-- u -slsl^-llc -Y~- -- ----rrrr*~- ~

(2.4.6)



S 2Ar 0

H = I- .

2Br0
150

Jn(k r0)
Sr0 hn(kr)

(in(k r0) djn(k r0) h (kr)]
Po pr0

pm(cos O)cos m4
n

2[ Ar0

I-0

Br201V0

for r > r 0

h n (k r0)

k r Jn(k r)

k r 0 dkr 0 n

pm(cos e)cos mn for r < r 0
(2.4.7)

The validity of these formulas may be confirmed by

checking that

1. They satisfy the wave equation in r > r0 and r < r0

2. They are radiating at o and are finite at r = 0

3. Sllg is continuous at r = r0 i.e.

+ +

r0 r0

4. They satisfy the proper jump in stress across

r = r0 i.e.

and
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- O2ar 1 Oar.I 11W

[20 ** 1S O l I]I
+ [2.0ar iN x0at " ISilI

+
r=r0

r=r 0

Pn(cos O)cos m A r

pm(cos 8)
+ L Pm (cos 6)cos me Ba+ sin cos m B

ae Pn sin - cos m B a

A more inductive procedure to find these Green's

functions is detailed in Appendix II.

Making use of these Green's functions, we can therefore

write the solution of eq. 2.4.3 in the following way

Let

1l
S11 s 110

then, for r > rf

= VpB + VXVX rP B

where



S P (cos 6)cos m4
*B i(A 0+ 0  hn (k r)i (A 0++ 2200)  1... n  a

fr fp 1 O +2, ) + 2 + 1 1 0 r° °

a nm \p nm n n m J r Or 0 r
0

a1 as0
+ 2a mr ro

0 0

0s 0Sro
r0
r 0

[ nm

a1  ar 2 os
axnm 1 O ro

0 r0

2 0
x1  ar S

S-0--ar
r0

2 djn(kr 0)
arO

in (k ro)
k dr 0a r

(2.4.8)

pm(cos e)cos mB n
21UI

U
hn(k r)

rf Dr 2 s0r[Oro s
f+ 1P 1 0 1 0 ro

nm p Po nm ia -7 5ra 00 r 00

1  as 0  1
+2 -nm ro + 3nm

00 0 fi

ar2s00 r0  2 n(k ro

S ar0 8k0

1 1 ar2s 0
2v nm 0 m 0 r 0 n(kr) d(k r)s r nn dr
S[2 r 0 rT- B 0 k6r ,dk, r 0  dr

S (2.4.9)

(2.4.9)

and



where s is the Fourier transform of the displacement

contained in the main wave. The jn and hn are the spherical

Bessel functions as defined in Appendix II.

BThe expression for 2 can be somewhat simplified by

rewriting it in the following form (see Appendix III).

2 0
S(cos) 2 1 1 Dr0sr Pn (c s e)  2pnm 0 +nm 0

i 0  cos me h (k r) S O+ m r 0
0 0

2 jn(k r 0 ) rf

r0 k r0

pm(cos e)cos m

ip0

If P1 (X0+ 2 0 1 + 21 11

fnm p nm Dr
0

O

-2r a row [

hn (kr)"

2 0ar w
0 r 0
0r

Snm12 n(kr 0)2 Jnd
r0 0 k 0 0

(2.4.10)

In these expressions, k = w(A)
( P)o/Po) /2

The case n = 0

When all the parameters vary only in the radial direc-

tion i.e.

(Pl''X1) = (p 0 0 (r),oo 0 0 (r),oo 0 0 (r))



Then, eq. 2.4.2 reads

2+ -

pO o - 2o0V*S11- X0 V-S 1 1at

O+20 +2pOO+XO r 0

=-P 0 0  +210  +21 0000  r 7 - ar

S as0  ax ar 2 s000 r + 1 r+ 2 -ar ar ar +7 Dr a r

(2.4.11)

By following somewhat the same procedure as before

and as detailed in Appendix IV, we obtain, for r > rf

S 11 (2.4.12)

where

B h0 (kr) rf 0+2 0  
.

i(X0 +210 0 a [ POO00J

a 1 0 rgW

0 O20r
as0 r 2s0

00 S 0 00 1 ... 2+2 a r0  s r 7 rar0
0 ar0  r 0

(2.4.13)

This completes our evaluation of the body perturbation.



2.5 Surface perturbation

Now let us evaluate the part of the scattered wave

coming from the

For that,

2+
3 sl2
for r >2

for r >

inhomogeneous boundary conditions.

we have to solve the system of equations:

2 0 V'S 1 2 -x 0 V* JS12 = 0

(2.5.1)

2+

P s0 2
2:V*S12- OV' 1S121 = 0

(2.5.2)for r < a

subject to the boundary conditions:

2p0ar*S12 + XOar..IS 12 -
r=a

2p 0 a r .S S1 2 + X0
a

r **1S 1 2 I

+2plar**o + a 0 I r=ar=a
(2.5.3)

with

r=a- r=a
2 ra -~12r=a

(2.5.4)



In order to solve this boundary value problem,

follow Sato's (1949) result as detailed in Appendix V.

As shown there, if we consider the general term

1 ()1 1

(Pl(a),l(a),Xl(a)) = (Pnm (a),nm(a),X nm(a))

6)cos me for n > 0

then, the displacement field solution of 2.5.1 can be written

as follows:

Let

s12w + s12

then for r > a

12ow V s + Vxvxarr*2

where

pm(cosn
O)cos m

i (X 0 +2 0 )

(211 a)2pnm(a)

0as aw
aa

h (ke r)*

2 0
aw

1
nm

aa

2 djn (k aa)
dk aa

pm(cosn

(2.5.5)

we can



Pm(cos O)cos m)n
i1

0
hn(k a)*

as2 1 Saw2 p (a) awa
(nm Da

1 2 OA 1 a s
nm aw

a

2n (k a)
a k a

The special case where the perturbed parameters have no

angular dependence i.e.

(pl(a),11(a),Xl(a)) = (p 0 0a),(a),p 0 0 (a), 0 0 (a))

can be handled in a similar way (see Appendix V).

In that case, the displacement field for r > a can be

expressed in the form

2w =ss12w = V* (2.5.7)

where

s ho(k r) as 0  
0 0 (a) aa2 0

i(X0 +2 2p 0Z (a) aw) a Sa 2.
)- 2 a J 1 (ka)

a

(2.5.8)

2.6 Equivalence of a surface perturbation to a body per-

turbation

We would like to demonstrate that the formulas we

47

and

s =
92

(2.5.6)



obtain for the wave emitted at the surface r = a,(s12 ) '
could have been obtained using the expression we have for

the body perturbation (Sll)

Let us consider the following two inhomogeneous models

specified by

(Pl'"I' h ) = l nm (r),l 1 (r),1 )pm(cos )cos mq2nm 2nm nm n

and

(P2, 2' X2 )

Let us fix

2 (r),2 nm (r), Xnm)pm(cos )cos mpnmthe relationm betweenm the two models by

the relation between the two models by

21 21 21 11 11 11(2 1 (r),2 1 (r), (r)) = (p (r+A), (r+), 1 1nm nm nm nm nm nm

*(r+A))

where A is arbitrarily small (see Fig. 3).



2 1
nm

a a+A

Two models

by 21 (r)
nm

differing

:= 1 (r+A)
nm

slightly

where A is

and specified

very small

Since in the second model

2 1( p (a),nm
21 21

nm (a), XA (a))nm nm
= (0,0,0)

no wave is emitted at r = a.

2 1
nm

Pnm 6(r-(a+A))nm

But,

1 1

+ D n

we must have that

i (r+A)

= 1 1 6 (r-(a+A))nm

1 1
1 nm

.............................
'A

Figure

and
2 1
nm

Dr

1 1
nm

Sr (r+A)



If we substitute these expressions in the formulas 2.4.8

and 2.4.9 we obtain after passing to the limit A - 0

B2  sI  B1B2  1 1

and
B 2 1 + 1
2 =2 +

B B

where 2 and J2 are respectively the compressional and

shear potential coming from the body perturbations of the
s B1 1

second model whereas * and 1 are the surface and body

perturbation of the compressional wave generated by the
s B

first model and V2 1 12 the corresponding shear potential.

This shows that the wave emitted at the surface is

caused by the jump in the value of the parameters that

occurs there.

2.7 Summary of the preceding results

For a compressional source acting at the surface of

a spherical cavity characterized by (po,O',X 0 ), the dis-

placement field in the region

r > rf

can be given by



s= Vp + VxVxrarp 2

where

9 = Gh 0 (kar) + ec 0 0 h 0 (kar)

+ I
n=l

n=l

n 1 2 m
S(ecnmCos m+ cnmsin m)h (kar)Pm(cos e)

m=O

n
SnmCos m+fnmsin m )hn (k Sr ) Pm (c o s 

6 )

m=0

Gho(kar ) is the zero order solution (2.7.1)

as0  X00 (a) la2.s0

= 1 ( + 2 00 (a) aa + a ) 2jOO = 0(+ 200(a) a a 2 a a llkaa)

rfS f

0r2s
• 1 0 r ro

0 r0 0r

as0  ar2s0
0 0  r0w 00 1 0 r2.+2 ' r 0W 1 r w rj(kar0 )dr0

+2 0  ar0  r 0 i
0

(2.7.2)

and

where

( 0 +2O)21 00 O00S[Poo ( o 2o o 1



= -(nm (a)
s0

aw
aa~

nm

a

a2s 0

am
a '

2
a

i( 20+ 0)
djn (k a)
dk a

ea

+ i( 0 + 0)

f
-1 +2pn+nm

2 0ar sa 1 r0W

ar0 r r00 0O

+2nm
+ 2-

Dro

- nm

r0

0
as

rro
ar 0

a
+ nm

0

0
0 nm

1

2 0ar s 0

r0
ro

djn(k r 0)
dk ra 0

2 o0
ars0

Sr0

(n) (n+1)r

fnm 2nm (a)
nm nm -

+ -I3 0

2 n(karo)
0 kar

so
aw

a

r

a
2 0

ar s
1 row-

r ar00

dr
0

sO  2
2p (a) aw)anm a -/10

ma (0+2O +

nm

Ss
2D r0

2r

n(k r dr 0k ro 0

a
Cnm

(2.7.3)

j (k a)
kBa

a
'nm
r0

2
r 0 (2.7.4)

nm 02p
0 )n P



where a = 1,2, and we have assumed that

(iC ,X ) = (0,0) at r = rnm nm f

We have to remark that these formulas are valid only

when the receiver position is outside the inhomogeneities.

When this is not the case, we have to take into account of

the reflected wave generated outside a sphere having for

radius the distance of the receiver to the center of the

cavity. In this case, more general formulas must be used,

as outlined in Appendix VI.

Some of the main conclusions that we can reach by

examining the preceding formulas are that the first order

scattered wave

1. does not contain any torsional vibration as

defined in Chapter I

2. Each spherical harmonic of the perturbed medium

parameters generates the same and only the same

spherical harmonic of the scattered wave.

3. The amplitude of the scattered shear wave does

not depend on the elastic parameter X.

Our next task is to evaluate the coefficients cnm,nm

fa for some particular models.
nm



CHAPTER III

Evaluation of the Coefficients

of the Scattered Wave

3.1 Introduction

There are two classes of model for which we can use

asymptotic expansion of the spherical Bessel functions in

order to evaluate the coefficients of the scattered wave.

First there is the case where all the inhomogeneities are

within a wavelength from the source. The next section will

be devoted to that subject and the related one concerning

the anomalous production of SH waves near the source. Then,

there is the case where the scattering occurs many wave-

lengths from the source. In our investigation of this sub-

ject in section 3.3, we will pay special attention to the

various resonances that might occur in such regions. But

in general, only parts of the spectrum of the scattered

wave can be analyzed through these two extreme approxima-

tions. So, in section 3.4, we will try to obtain numeri-

cally the complete spectrum for a given structure.

3.2 Scattering near the source

We would like to estimate the scattered wave generated

by the inhomogeneous distribution of material parameters

surrounding the source. To do so, let us assume that the



radius of the inhomogeneous sphere (rf) is much smaller than

a wavelength, i.e.

k rf << 1 (3.2.1)

Then, in order to evaluate the coefficients (cnm, nm)

as given in section 2.7, we can use the near field asymp-

totic expansion of the spherical Bessel functions. This

work is outlined in Appendix VII. For the term of lowest

order in k r, the results are as follows:

a) The compressional coefficients

G rf 0+2 0 k2r0  28p00ka 0/0 G o0 0 oo00o
00oo ( +o  OO 3 0

-x00k 2r0 dr0  (3.2.2)

SG +200 8cm G f a 1m p(XO+2  + 8 -Imkdro (3.2.3)

a -G. 2 nt rf ac 6n(n-1) f n-2 n-2 nm
S0drnm XO+2,p0  (2n+l') fa ka 0 rod

(3.2.4)
for n > 1



b) The shear coefficients

a f , 0 +2 0o ka
fCm G f m 0

a _ G 6(n-1)2nn! f
nm P0 (2n+1i) ' fa

k
+2 a

S 1 mdr0

kn-1

kc
1--

n-2 _nm
0 r 0 dr0

for n > 1

where G is the spectrum of the source as defined in Appen-

dix I. Moreover, I have assumed, to calculate these co-

efficients that the value of the parameters at rf is 0 (e.g.

nm(rf) = 0)

If we examine the frequency dependence of these co-

efficients, we remark that the ones that have the lowest

order in kr are related to the Pm(cos 8) harmonic of the

rigidity.

and

Indeed, we have for n = 2:

r a

2m - 0 + 2 0 f m dr 0

Sr f a

fm 5 0 m dr 0

(3.2.5)

(3.2.6)

(3.2.7)

(3.2.8)



It is a remarkable fact that they depend on frequency

only through the spectrum of the source whereas all the

other coefficients have a low frequency cut-off. Further-

more, due to the 1/r weight in the integral, they are

particularly sensitive to the inhomogeneities near the

source.

Observations of the scattered wave in the far field and the

production of SH waves

Let us examine the low frequency end of the spectrum

of a signal observed in the far field. We remark that, in

general, we will observe two main contributions to the

displacement field. First, of course, there will be the

signal coming from the zero order solution that is the main

compressional wave. But secondly, a scattered wave caused

by the (2,n,a) harmonics of the rigidity will also con-

tribute to that part of the spectrum. Now, since this

scattered wave seems to originate near the source, its com-

pressional part will be hidden in the main wave displace-

ment field. On the other hand, arrival time difference

will permit us to distinguish its shear component. So, this

suggests to have a closer look at the observed production of

SH waves near the source: let us then examine a seismogram

obtained by Geyer and Martner, (1969), which illustrates

this phenomena.



HI

H2

DETECTORS H2 SH 20 SHOT
227' DEEP H 00 _ 227' DEEP

H, 00000.---850'-----4

"Figure 4 shows a record from area D in west Texas. The

record is from a horizontal downhole spread with five in-

strument holes spaced 50 ft. apart. The nearest seismometer

was 850 ft. from the shothole, where a charge of 20 lb. was

shot at a depth of 227 ft which was the same depth as the

detectors. Orientation of the horizontal seismometers is

shown. There is a strong SH wave on the H2 component at a

time of about 0.23 sec, and the moveout indicates a velocity of

of about 4000 ft/sec."

Now, let us try to explain this observation through

scattering near the source. If we consider the scattered

wave due to the (2,m,a) harmonics of the rigidity we obtain



the displacement field:

arP 2 (cos
cos m c

sin m

fo h2(k r)
2m r

+ a m+a - P2(cos

fo rh (k
2m 2

a"

ar)

Sm(cos 0)
+a4 sine

f2m
+E 2

r

-m sin m a
c2 mm cos mQ

rh 2 (k r)
- r

where, in the radial component, = 1 corresponds to

cos mQ and a = 2 to sin mO, and where

(3 cos 20 + 1)

sin 20

(1 - cos 20)

2m Dr- h(k r)+(n) (n+l)

cos m

sin m4
E C2m

h 2 (kr)
r

h 2 (k r)
r

(3.2.9)

1
-T

3

7
3
7

P0
2

1

2
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In the experiment detailed above, we can assume that

the receivers are in the far field, i.e. kar >> 1. Then,

if we take the far field asymptotic expansion of the spherical

Bessel function h2 , we obtain for the scattered displacement

field:

ik r
S m co s m( - ac 2m  a

s = ar 2(cos e) (-ec2m r

sin mr

Pm(cos 0) -m sin m ikBr
+ 2 f e (3.2.10)+a¢ sin 6 m Cos m 2m )  r "."

m cos mQ

We see that in the far field, the scattered compressional

wave has motion only in the radial direction whereas the

displacement contained in the shear potential is transverse

to the direction of propagation.

Let us fix the polar axis along the vertical to the

ground*. We remark that since the shot and the receivers

Remark: The choice of the polar axis must be consistent
with the system of axes used to evaluate the different
harmonics of the parameters.



are at the same depth in the experiment of Fig. 4, we can

set e = w/2 in our formula for the displacement field. Then,

if we examine the value of the Legendre polynomials, we

must conclude that the only scattered wave likely to produce

the anomalous SH signal are related to the pair (2,2,1) and

(2,2,2) of harmonics of the rigidity. Indeed, the pair

(2,1,1) and (2,1,2) produces only vertical transverse motion

whereas (2,0,0) produces no transverse motion at 0 = /2.

It is extremely interesting to note that this m = 2

symmetry (sin 2p+6) has been consistently observed for the

radiation pattern of Love waves (constructive interference

of SH waves in the crust) from underground nuclear explosions.

(e.g. Brune and Pomeroy (1963), Aki (1964), Toksoz et al

(1965)). But this does not permit us to conclude that

scattering is the only process explaining the production of

SH waves. Far from it, as a matter of fact, since the stress

release processes discussed in Chapter I may also give the

same radiation pattern. So, what we need then is an

estimate of the efficiency of scattering. But let us re-

serve this work to Chapter IV where we will be able to

include the influence of the fluid cavity in our discussion.

Observation of the displacement in the near field

It must be kept in mind that the preceding remarks ap-

ply only to far field measurement. Arrival time difference



in that case, permits us to distinguish between the shear and

compressional wave. But this is not true in the near field

where strong interference between shear and compressional

wave exists. Since the production of very long waves make

it practical to set the receiver in the near field, I would

like to study the structure of the scattered wave there. It

turns out to be very different from the far field results.

So let r, the distance of the receiver be such that

k rf < k r << 1, (3.2.11)

that is, he receiver is near the source but outside

the inhoncgeneities. Inr that case, we can use the near

field asymptotic expansion of the spherical Bessel function

involving the receiver position.

The motion in an arbitrary harmonic of the scattered

wave is given by:

a cos m(s[ ah (kr)

+ m i n n

fom hn(kcar)

n (cos os hn(kar) fnm
+a C C: Cr +6

+ ar sin m n r
sin m4 t

arhn(k r)

n (k



pm(cos 8) -m sin m T h ( k r)+ n - C Cnm
+a in m cos m I r

fa arh (k r)
+ nm n 2.12)

E r , r J (3.2.12)

But, if we keep only the leading term in hn(kr) i.e.

h n(kr) -i ( 2 n) kn+lrn+l
2nn

together with any pair (ca a ) for n > as given in

3.2.4 and 3.2.6 then we find

s - 0

In other words, the motion contained in the scattered

compressional wave interferes strongly with the motion in the

shear wave so as to cancel the displacement associated with

the leading term of each potential.

In order to obtain the effective dominant term for the

displacement field, we must keep more terms in the asymp-

totic expansion of the potential field. More precisely,

we must keep the next lowest order term in (c a f ) andnm' nm

hn(kr) in their asymptotic expansion in power of kr0 and

kr respectively. But an equivalent and perhaps a more



convenient procedure in this case is to work out the static

(w-O) approximation for our problem. This is detailed in

Appendix VIII.

It is shown there that if P is the zero order pres-

sure acting on the surface r = a, then the displacement

field for r > rf can be expressed in the following way:

s = VI + VxVxrar2
SVIC + C7XVXrar

Pa 3

- OF + ECo(-)

(3.2.13)

3
Pa

4TP

1 1n I do+ I I[ ( nm + nm
no 1 [ -- n COS m
n=1 m=0 rn- r

2
+ c nmT=- d2

+ rm sin m Pm (cos e) (3.2.14)

n fl gnm nm
S n[ ( + cos m

m=O r r

2 2

n n+ sin m Pm(cos 6)
r ~rn

where

and
00

n=l

(3.2.15)



where

Co0 = 0 (in this case, we have to keep higher

order term as given in 3.2.2)

c Pa3 3n(n-1) af  rn-3dr
Cnm (2n+l)(2n-l1)(X 0 +2pO  a nri f0

3 rf
d Pa3 n(3n+5) f n-1
nm -41-0 (2n+l)(2n+3)( 0+2P0  a anm r 0 dr0O

S+ Pa3  3(n-1) fpa n-3
S(2n+) 0 a

3 r
a Pa 3(n+l) f p n-l
nm T- 0 (2n+l)(2n+3) Ja nm0 dr 0

(3.2.16)

(3.2.17)

(3.2.18)

(3.2.19)

(3.2.20)

If we try as before to find if some harmonic of the

field has a dominant amplitude, we cannot be as conclusive

as before. Indeed, one has to take into account the fact

that as the position of the receiver approach the inhomo-

geneities, the harmonics with large n grow faster than the

ones with small n. So, they more or less compensate for

the fact that they weight less the inhomogeneities than the

smaller n harmonics. In fact, one might expect that the

different spherical harmonics of the displacement field

have an amplitude somewhat in proportion to the corresponding



harmonic of the rigidity. Because of this, the displace-

ment field near the source has a much more complicated

structure than the one far from it.

Before closing this section, it is interesting to

remark that the motion associated with the coefficients

(c2m,f2m) is such that the shear displacement is wholly

radial whereas the compressional displacement is radial and

transverse.

We therefore see that we cannot interpret the displace-

ment in the same way when we are dealing with near and far

field data.

3.3 Scattering in a region situated many wavelengths

from the source.

Let us now turn our attention to the high frequency

end of the spectrum. Once more, we can simplify the evaluation

of the coefficients of the scattered wave by expanding them

in asymptotic series, but this time in terms of the large

parameter* kr0 where r0 is a radius in the scatterer space.

However, the situation is somewhat different than the low

frequency case. Indeed, if we look at a spherical Bessel

*Remark: Here, k represents either ka or k



function of order n, as given in Appendix II, eq. 32, we

remark that we can neglect the second highest order term in

kr0 with respect to the first only when

kr0 >> n 2  (3.3.1)

This means that in practice, the harmonics representing

the finer details of the medium, i.e. having a large value

for n, cannot be adequately treated in this limit, within

our formalism. Indeed, for large n, unless we are dealing

with very high frequencies, the condition 3.3.1. constrain

us to a consideration of the inhomogeneities very far from

the source. But in that case, it is strongly suspected that

plane w.ave analysis might provide a better synthesis of the

result.

So let us restrict our consideration to the first

p harmonics of the parameters (i.e. n < p). Furthermore, in

order to meet 3.3.1, we will assume the medium to be in-

homogeneous only within two sphere of radius rin and rf

(see Fig. 5) where the inner radius, r in' is such that

krin >> p2 (3.3.2)



S(PO 'O', O)
Rpp

RpS a r (pO+eP ,1 +E0 I ,

0 +~X 1)

in 
(p09 ,09 O)

The heterogeneous region is bounded by two spheres

of radius rin and rf where k rn >> p The

different tynes of scattered wave originating from

an element of that zone are illustrated

Then, if the receiver radius is larger than rf, we obtain

the following results for the coefficients of the scattered

wave (see Appendix IX).

u= G+2 a Xn _dr

cnm 7 i(X0+2 0O .' r m PO nm nm d0
in

Gk i-n r f[ (X0+20) 2 a X ]e i2k r 0
S1 I nm P0 nm nm 0

al n 0 - in

all n < p (3 3)

PS



and

CF G -n rf a 0+2p0 a I e a- 0
fnm - Zp -p O m +2P dr

nm 0 0r. n nm r0  0
in

Sr f ae i(k +k )r0G i-n  f[ a O+2pO c e e
p (" P2 + 2p dr2 ( 0 +2 0 ) nm p0  nm r0  dr0

In

all n < p, n > 0 (3.3.4)

Arrival time consideration reveals that the first

integral in each of these coefficients represents the trans-

mitted compressional and shear wave respectively whereas

the second integrals account for the reflected scattered

waves.

The transmitted PP wave

Let us first consider a medium varying slowly over many

wavelengths. Then, due to the oscillatory character of the

exponential in three of the preceding integrals, they will

not contribute much to the displacement field. So, let us

neglect them here and consider only the transmitted PP wave.

Since the receiver position is in the far field, we can

write the total displacment field, to the highest order in

k r, as follows:



ik r
+ e

s = aG G
s r r

+ 0 (cnm (i)ncos m+c 2 (-i)nsin mt)"

n=l m=l1

Pmn(cos e) (3.3.5)

Using the first integral in 3.3.3 we then obtain

ik r

= arGe l+eik&P (3.3.6)

where

2f .0) f P1 0 0+2 0 -2 ,1l] dr0 (3.3.7)
in

and where e(p1,'1,X1) is the total inhomogeneous part of

each parameter contained in the spherical harmonics

characterized by n < p.

We remark that the expression we have for the scattered

wave cannot be uniformly valid for all frequencies. Indeed,

since its amplitude grows in proportion to the wave number,

eventually, for very high frequencies, the first order term

will become as large as the zero order one even for slightly

inhomogeneous medium. But, in that case, we can have re-

course to the methods of geometrical optics in order to
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to calculate the displacement field. This work is done in

Appendix X and it is shown there that, to the highest order

in k r and kr 0, the displacement field can be expressed as

follows:

G ik r+itk a
sg optics = ar e (3.3.8)

We remark that for

eka << 1

we can expand the exponential in Taylor's series and thus

recover the result we obtain by the method of small pertur-

bation. In other words, when the above condition is ful-

filled, there are two equivalent ways to represent the

effect of the inhomogeneities on the main wave: we can add

to it a scattered wave as in 3.3.6 or we can correct its

phase as in 3.3.8. Eventually, for very high frequencies,

only the second procedure will give an adequate result.

The other wave types

Let us assume that between rin and rf we have expanded

in Fourier series the radial part of each harmonic of the

parameters. The first term in this serie, that is



the one connected with the average properties of the param-

eters, is the only one controlling the transmitted PP wave

recorded outside the inhomogeneities. We may therefore ask

if the remaining part of the scattered wave contains some

information on the other terms of the serie.

If we examine the second integral in 3.3.3, we remark

that for a given frequency, the periodic part of the struc-

ture having wavenumber around k1 where

k = 2k

is likely to be the most efficient scatterer of reflected

P wave. In the same way, the shear component of the scat-

tered wave will be mainly excited by the terms in the

Fourier series having wave number around k2 and k3 where

k2 = k -k for the transmitted PS wave

and

k3 = k +k* for the reflected PS wave

The above relations are known as the Bragg's conditions.

In the case where a restricted number of terms in the Fourier

series of the parameters give an adequate representation of

the medium, we might expect peaks or lows in the spectral

density of the scattered wave at frequencies connected to



the different wave number of the medium through these

Bragg's conditions.

Though the occurence of such an event may be rather

rare in nature, it might be interesting to investigate more

thoroughly when a given part of the spectrum of the

scattered wave is controlled mainly by the periodic

part of the medium connect to this frequency range through

the above condition. We will leave this work for future

research.

3.4 Calculation of the scattered field for a particular

model

In the preceding sections, we confined our attention

to the contribution to the scattered wave coming from in-

homogeneities near and far from the source in terms of

wavelength. In practice, we have to take into account the

effect of a part of the heterogeneous medium situated such

that none of the above assumptions applied. In order to

illustrate such a case, let us consider a model specified

by the following properties

p = p0  for all r (3.4.1)

X = X0 for all r



for r < a

- 0 + B-Z Oai o
O + 7Z O + r P1  (cos 6)

for a < r < rf

(r-rf )
= PO + ar r -rf 1P(cos o)

for r < r < r

= PO for r > rf (3.4.1)

That is, we have that the density p and the Lam's

constant X are constant throughout space whereas the rigidity

varies linearly along Z within a sphere of radius r. and

trend continuously towards O between r and rf. (See Fig.

6).

In our preceding notation, we have that

EP10 - -r for a < r < r

p ( .(r-r2)
r -r) for r < r < r (3.4.2)r r-rf f

So, the displacement field outside the inhomogeneities can

be written as

P= PO



I

Contour of constant ri

specified above, in a

axis. The drawing ill

where rf = 2r I

gidity for the model

plane cutting the polar

ustrates the case

Figure 6.



sw = Vi+VxVxrar2

+ D +O Dhl ( k r) hl(k r)
= a +arPl (cos 6) Ec r +2fl rr r r 1 10 ar 10 r

S Plj ( c o s ) hl(kr) + Ef1 0  rh l (k r)
+a EC +e c10 r r ar

(3.4.3)
where we have that

c = 2) k  i+ 1 + 4 + 18 dr 010 i(X +2ioa k' r3 d 00 a 0  (kr 0 ) (k r 0)5

rf
+ G ki 5 16i

0 O a ao 0 (k r o)

+ 32
(k 3
(k ro )

and

STf
f l o 

G  r f I 0

-I. o , 1- 0 a 11

9 3k

- 2 + k
i (k

i (k -k )r 0

36i 18 ) 21kr0

(k r O )  (kr )r

k -k

3 9i a k39

0aB a 0

dr

Lr0

(3.4.4)

(3.4.5)
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f k k +kG - [1 .k 3i 1
+ a8 rP k r0

3k .k-*+k9 a3k 3 9i a + 9

k k a r( k k k k3r

i(k +k )r0
e a dr 0  (3.4.5)

To obtain these coefficients, I have integrated by parts

the terms involving the derivative of the rigidity in 2.7.3

and 2.7.4 and I have used the form of the spherical Bessel

function given in Appendix II, eq. 32 and 33.

We remark that since the polar distribution of the

inhomogeneities contains only the P(cos ) harmonic ofinhomogeneities contains only the Pl(cos e) harmonic of

the rigidity then, in the far field, the scattered com-

pressional wave has the same polar distribution and its

displacement field is purely radial. On the other hand,

far from the source, the PS wave displacement is transverse

to the direction of propagation and with a polar distri-

bution specified by sin e (see Fig. 7).



P-P

P-P

Figure 7. Polar distribution on the PP and PS wave in

the far field
The coefficient of the PP wave

Let us calculate the scattered compressional wave. We

remark that the first term in 3.4.4 is related to the trans-

mitted PP wave whereas the second term is the contribution

coming from the reflected PP wave. We see that in order to

calculate the effect of the inhomogeneities far from the

source, i.e., such that kar 0 >> 1, we need only to take

into account the first term in each integral. This is the

result we obtain in 3.3.3.



On the other hand, though the form of 3.4.4 suggests

to make a separate evaluation of the transmitted and

reflected wave, such a process is far from being convenient

whten we have to take into account scattering near the source,

i.e. such that k r0 << 1. Indeed, in such a case, each

of these waves has a large amplitude almost exactly the

same but opposite in sign. To see that more clearly, let

us expand in Taylor's series the exponential term in the

reflected wave. We then obtain

10  G rf 1k + 4 18 drC10 i(X 0 +2i)j lk i+ (klr 0 ) 3 )f / 5 00 0 a1 a r0 (kro (k r )

+ G J 0 k R(r) -7i 1
i(X0+2 ) a ac o

18 )dr 0

(kr 0)

4

(k.r4)

(3.4.6)

R(r O )  - 66 i (kro)
R~g M3T

70 3 56i 4
+ TYS (kar 0) + IT (k ar0)

22 (kcr)5 +
3T5 (kr0

where



We remark that in order to calculate the effect of the

inhomogeneities situated such that k r0 < 1 we can use

l/k

10 0 f 10 T kadro (3.4.7)

This is the equation that we have obtained in 3.2.3 and,

by inspection of R(r0), we see that a more exact calculation

will reveal only a small correction to the above values, pro-

vided k r < 1. So, from a numerical point of view, it is

better to evaluate the contribution to the scattered wave

coming from the region k r0 < 1 by using 3.4.7 whereas we

have to use 3.4.4 to calculate the effect of the hetero-

geneous medium outside that domain. In other words, to

summarize, we can use the following formula to calculate

cl0

kG 8

cl0 XO+ O l10 T'5 kadr0

+ i(tG +2y70  1 0kia ( k + (4 + 18OT1k f ((kr 0 ) Nkr o )s

G rf i
* r0  i(X 0+2- 0 ) /kloka i k r (

0 0 (kr 0)

32 + 36i 18 2ik 0r

(k (kro (ko ) (3.48)(k0 a k 0 a 0 (3.4.8)



This is the procedure I have followed to evaluate this

coefficient for the model specified by 3.4.1 together with

the relation

rf = 2rk (3.4.9)

In order to describe the result, let us define 4c and

c such that

c 0 = G 1 P rf ce (3.4.10)

I will call Oc the normalized spectral density of the

scattered P wave. Figure 8 is a plot of 0c against kjrf.

The domain between zero and one i.e.

0 < k rf < 1

can be wholly evaluated by using only the first integral

in 3.4.8. This is the low frequency limit that we have

discussed before. It should be remarked that if we keep

more terms in 3.4.7 the transition near karf = 1 becomes

smoother. At high frequency, i.e. for

k rf > 16
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Figure 8. Normalized spectral density of the scattered P wave
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the behavior of Pc is dominated by the first two terms in

the second integral of 3.4.8. As we have seen in section

3.3, the effect of the first term is to produce a phase

shift of the main wave. On the other hand, the second

term is equivalent to an amplitude correction to the zero

order solution.

Between these two limits, we have a transition from

one behavior to the other which depends on the details of

the model studied. For example, in our case, the minimum

at k rf - 2.8 denotes the fact that the transmitted and

reflected wave interferes strongly at such frequency so as

to more or less cancel each other.

The phase factor nc is plotted in Fig. 9. It should

be noted that we have constrained the value of nc between

i/ 2 and -7/2 but we could have plotted an equivalent con-

tinous curve varying from zero around the origin to near

-2n for large frequencies.

The coefficient of the PS wave

The coefficient of the scattered shear wave can be

evaluated in the same way as the scattered PP wave. We

remark in 3.4.5, that the first term represents the trans-

mitted PS wave whereas the second integral is the contri-

bution coming from the reflected shear wave. Again, it is

inconvenient to evaluate these two integrals separately



when we have to take into account the effect of scattering

within a wavelength from the source. Indeed, if we expand

in each of these integrals, and sum the result, we obtain

as shown in Appendix XII, the following result:

(3.4.11)
/ k k 2

10 f 0 dr
l 0 a

This is the formula that we have obtained in 3.2.5

and, as shown in Appendix XII, we may expect that it will

give an accurate representation of the effect of the in-

homogeneities situated such that k r0 < 1.

In order to obtain the integrated effect of all the

inhomogeneities we can then use the following formula for

fl10

rf 2

10 f 10 dr 0

f k
+ G a

0 /ka rO a

3k

S 9 a 3 k k a'
F p

3i k -k

r 7 k 2
0

9i k-k

r k k0 aB

1

9 J
k k r

a t0

i(k -k )r0
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Sf k  
3 i k+k 1

1 a 3i a 1

10 /k 08 k r
a a 0

S+3k 9 k +k )r9 a 3 a 9

e (k+k ) dr 0  (3.4.12)

Again, to evaluate this expression, we will fix the

relation between the two lengths scale in our model by

3.4.9. In order to calculate 3.4.12, we must also specify

the relation between the shear and compressional phase

velocity. This will be done here by imposing the relation

PO = XO

Following the compressional wave case let us define

4s and ns such that

f 1 - iT l
10 f G 0 P rf 4se (3.4.13)10 X0+2 0  f s

The normalized spectral density of the scattered shear

wave, Ds, is plotted in Fig. 10 as a function of k rf. Again

a smoother behavior around k rf = 1 is expected if more

terms are kept in the expansion leading to eq. 3.4.13.
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We remark that around k rf = 3.8, we have a maximum

constructive interference between the transmitted and the

reflected shear wave. At high frequencies, the shear wave

spectrum decreases to zero as should be expected, since for

this frequency range, the parameter is slowly varying over

many wavelengths, and the transformation P to S becomes

inefficient in such a case.

The phase factor ns is plotted in Fig. 11. It should

be remarked that, due to its very small value in k r f 2,

the error committed in obtaining 3.4.11 might alter the

result substantially in that domain.

To summarize the preceding results, we note that there

are basically two limits for which we might expect the

first order scattered wave to be an inadequate representation

of the scattering process. First, if the rigidity varies

greatly within the inhomogeneous sphere, a measure of which

is provided by the factor

1 P r
A 0+2p0  r

then the first order displacement field may become as large

as the zero order one and more terms should be kept in

our expansion in terms of E. On the other hand, even if

the properties of the medium are differing slightly from



the homogeneous values, the frequency may be large enough

so that the first order compressional wave becomes of the

same magnitude as the zero order one. In that case, we

can apply the methods of geometrical optics to find the

solution.



CHAPTER IV

A Fluid Cavity and the Point Forces

Equivalent for SH Wave

4.1 The coefficients of the scattered wave' when the medium

inside the source is a fluid

One of the assumptions we made to deduce the preceding

results was that the medium inside the source was an homo-

geneous solid. Now, we would like to investigate what

modifications to these results must be introduced when we

have a fluid specified by (p-,O,X-) inside the cavity,

r < a. In that case, we can still use the zero order solu-

tion of section 2.2 since to deduce it, we need only the

average properties of the medium outside the source. Fur-

thermore, since the wavelengths observed in practice are

usually much larger than the radius of the cavity, we will

confine our results to that part of the spectrum.

In order to calculate the first order scattered wave

we can follow the general plan set-up in Chapter II. This

is done in Appendix XII and some of the main results shown

there are as follows. First, the three conclusions

reached at the end of Chapter II still hold when we have a

fluid inside the cavity. Furthermore, we can express the

scattered wave in the same way as we have done in section



2.7 but here, to each coefficient found there, we must add

some correction terms due to the presence of the fluid

cavity. These new terms account for the interaction of the

reflected wave with the source and are important only when

the scattered wave is excited within a boundary layer around

the source of radius less than ten times the radius of the

cavity.

In relation to the amplitude of the scattered wave,

it is shown that there are only two groups of spherical har-

monics for which the correction terms depend on frequency

only through the spectrum of the source, namely the groups

specified by n = 0 and n = 2. The case n = 0, involving

only compressional wave, is treated in Appendix XII so let

us consider here the group n = 2. In that case, the co-

efficients of the scattered wave can be written as follows:

Fcr U
2m 2m

rf
S12X 0 +80) r

+o+Z O'  9-k 0+14p 0 O 12m r 00 a

G 144 0 O dr (4.1.1)
0and0 0+140 2m dr0  4.1.1)

and
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f = fq
2m 2m

G k 6X04 rf 3

k Tf 5
0 k 900' 4 0  2m dr0  (4.1.2)

The coefficients (Camf m) in the above expression are

the same as the ones we have obtained in section 2.7 whereas

the other terms are corrections due to the presence of the

fluid cavity.

As we have seen in Chapter III, if the wave is scattered

within a sphere centered at the origin and of radius much

smaller than a wavelength then we can use the following

asymptotic formulas for (cm ,fam):

rf ,
ca 4 G 2m dr (4.1.3)2m T 0 - Z 0 f 0 dr 0

a 2 G k$ f 2m
2ma ' m dr (4.1.4)m0 a a r0 0

Thus we remark that provided the scattering occurs

outside a sphere of radius more than a few times the one

of the source, we can neglect the correction terms appearing



in 4.1.1 and 4.1.2 and recover the results previously

obtained. On the other hand, it might be unwise to wholly

neglect the influence of the fluid cavity since it is

precisely the inhomogeneities very near the source that

might produce the most significant contribution to the scat-

tered wave.

Before applying the preceding results let us synthesize

them a bit more.

4.2 Point forces equivalent and seismic moment for

scattering of SH wave.

In order to discriminate between the different pro-

cesses occuring near the source, it is often convenient to

find a combination of point forces giving the same far

field radiation pattern as each process. In this connec-

tion, we shall restrict our considerations to the pair of

spherical harmonics of the potentials specified by (2,2,1)

and (2,2,2) since they seem to give the dominant contri-

bution to the SH wave scattered near the source. But first,

let us consider the equivalent point force distribution for

the explosion.

In order to obtain the far field radiation pattern of

the main wave, we can use three mutually perpendicular

identical, double point force without moment. If we define

M0 as the product of force with arm length of the component



double force, we find the relation

M (t) - X0 a3 P(t) (4.2.1)
010

where P(t) = -Trr (t) (see Sect. 2.2) is the pressure acting

on the surface of the cavity. Here we have neglected terms

of order kaa since we are concerned only in wavelengths much

longer than the radius of the cavity.

Let us now consider two force couples, each with moment

M(t), combined such as to produce a double couple without

moment and situated in the equatorial plane (0 = 7/2) as

sketched in Figure 12.

6=0

F=0

Figure 12. Double couple without moment



Then, we can show that the far field radiation pat-

tern of this combination of point force can be expressed as

follows (see e.g. White (1965))

S P2(cos O)sin 22 _ 1 D r
s = ar  3 T2 T- M(t- )

S P2 (cos O)sin 241 8 r
+a M(t- )

P2(cos 6) 1 M r
+a o3 s sin 24 -i M(t- ) (4.2.2)

sin 0pg r 3

Let us now substitute in 3.2.10 the coefficients

2 2 F c2  Ff 2(c2 ,f 2 ) by (c22 22) and use the asymptotic form of the

former coefficients as given in 4.13 and 4.1.4. Then we

remark that, after Fourier transforming back in the time

domain, we can express the (2,2,2) harmonic of the scat-

tered waves in the same form as 4.2.2. provided we let:

M(t) = MO(t)n 2  (4.2.3)

where 212f 3

= E 4 d22 2  12x 0
81 0  2 a dr

+ 144(0 0 f 2 a dri (4.2.4)
0 Gfa r0



We can now combine the harmonics of the potential spe-

cified by (2,2,2) and (2,2,1) in the following way:

First we define T1 by replacing p22 in 12 by 2I2'

Secondly, we consider a coordinate system, (r,O, 1) related

to the one we used to calculate nl and r12 , (r,e,), by the

relation

1 -1 'l
= 4 + tan 2tan (4.2.5)

Then, in this new coordinate system, the sum of the

displacements associated with these potentials can be ex-

pressed as 4.2.2 provided we let

M(t) = M0 (t) + 2 (4.2.6)

In order to see how we can apply these results, let

us consider a particular example.

4.3 Scattering of SH wave around the Boxcar nuclear

explos ion

In order to illustrate the preceding results, we need

the detailed distribution of rigidity within wavelength

from the source. Since this information can be more easily

obtained near a source of long wavelengths, let us consider

an explosion produced on the Nevada Test Site. In particular,



we shall choose Boxcar since the displacement field generated

by this event is well documented in the literature. "Moreover,

we shall restrict our consideration to waves with period

longer than 10 secs. So we may presumably use the asymp-

totic formulas of the preceding section in order to cal-

culate the scattered wave excited within the first 10-20 kms

around the source.

Let us first briefly describe the structure of the

medium around this explosion. For this, we will follow a

paper by Orkild et al in the Memoir 110 of the Geological

Society of Ameria, which details the geological setting of

the Nevada Test Site.

Structure and rigidity distribution around the source

Boxcar was located in the Silent Canyon Caldera, a

late tertiary volcanic center, in eastern Pahute Mesa. The

wall of the buried Silent Canyon Caldera was approximately

located by a steepening of gravity contours into a 20

milligals gravity low (see Fig. 13).

Figure 14 shows an east-west cross section of Pahute

Mesa and the major rock types of the caldera. The basement

rocks are older volcanic rocks than the ones in Silent

Canyon caldera. Within the caldera, drilling and gravity

data indicate two basins: a shallow broad basin in the

eastern part and a deep basin elongated along a N20
0E trend
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EXPLANATION

Younger tufsond lovas

Later Otuf and lavs

Grouse Canyon Member

Earlier tuff and lovas

Coldero boundary

Drill hole

0 20000 FEET

CONTOUR INTERVAL 2 MILLIGALS

Figure 13. Residual gravity map of Silent Canyon Caldera,

showing outline of caldera, location of drill

holes and Boxcar, and major geologic units.

Gravity data by D.L. Healy and C.H. Miller
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0 2 4 6 6 0 MLES

APPROXIMATELY 2X VERTICAL EXAGGERATION

EXPLANATION

DRILL HOLE BA EARL FFS GROU I O LA F$ D, PAI
LOCATION ROCKS AND LAAS MEMBER AND LAVAS WELDED TIMBER MOUNTAIN.

ANO RE- AND THIRSTY
WORKED TUFFS CANYON
AND LAVAS TUFFS

ROCKS OF SILENT CANYON CENTER TD '
IOUMBER TUFFS AND LAVA

Figure 14. Generalized east-west cross section of Pahute

Mesa showing Silent Canyon Caldera and major

rock types. Cross-hatch shows Tub Spring

Member of Belted Range Tuff.
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in the western part. Boxcar was situated 1.17 km deep

in this latter basin, approximately 3.5 kms from the west

wall and 10 kms from the north wall of the caldera.

If we examine Fig. 14, we remark that it is diffi-

cult to infer something on lateral variation of the

rigidity within this deep basin. On the other hand, it is

precisely very near the source that we might expect the

scattering of SH waves to be the most efficient. So this

lack of information might cause a substantial error in our

results. But nevertheless, let us obtain a rough estimate

of the scattered SH wave likely to have been generated by

the lateral rigidity contrast between the material inside

the caldera and the surrounding older volcanic rocks. In

order to obtain an estimate of this contrast let us follow

the data of Stauder (1971)(see table I), which were obtained

by averaging the measurement of rigidity through the 4.1

kms deep exploration drill hole Y on Fig. 13 and 14.

TABLE I

Rigidity model based on data from drill hole Y and obtained

by Carroll (1966)

Depth to layer, km v dyne/cm 2

0.0 5.12x1010

0.96 8.15x1010

1.33 1.01x1011

2.14 1.501011

5.00 3.25x10 11
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We remark that the average value of the rigidity over

the first 2.5 kms is

Pi = 0.8x1011 dyne/cm 2  (4.3.1)

In the following, this is the rigidity we will take to

represent the medium inside the caldera. On the other hand,

the older volcanic rocks under the caldera have rigidity

approximately equal to

P2 = 1.7x1011 dyne/cm2 (4.3.2)

This is the value we will take to represent the

rigidity of the material on the west side of the western

wall of the caldera.

In our preceding analysis, we have assumed that we were

dealing with an infinite solid which obviously is not the

case here. But, in order to apply our preceding results we

will assume that above the ground lies a homogeneous solid

characterized by (p2,'2,X2). These values will also be

taken to represent the average properties of the medium

around Boxcar.
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Model of the structure and of the distribution of rigidity

around Boxcar

Sketched in Figure 15 and 16 are the models we will

use to calculate the scattered SH wave around Boxcar.

N N20 0E

3

BOXCAR

Figure 15. Model of the geological map around

Boxcar

Fig. 15 is a model of the geological map detailed in Fig.

13. The line trending N20 0E represents the west wall of the

Silent Canyon caldera. Boxcar was approximately at a

distance of h3 = 3.5 kms from this boundary.
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N70W U2 NllOE

h 3  h1

2 h BOXCAR lil

- 2
WEST WALL OF
CALDERA

Figure 16. Model of the cross-section through Boxcar

trending N70W

Figure 16 is a model of the cross-section shown in Fig. 14.

The model inside the caldera is modelled by a semi-infinite

layer of thickness hl+h 2 = 2.5 km and rigidity Pl. We will

assume that this layer is embedded in a medium of rigidity

P2'

For simplicity, let us choose our coordinate system

such that the polar axis is vertical to the ground whereas

the axis specified by 0 = 7/2 and = 0 is parallel to the

west wall of the caldera, i.e. along a N200E direction, and

pointing towards the south. Then the spherical harmonics

of the rigidity characterized by (2,2,1) and (2,2,2) can be

written as follows
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l 1 = 2 2 P 2 (cos O)cos 2+Ev 22 P2 (cos e)sin 2p (4.3.3)

where, in our case

1 - 0 for r < h (4.3.4)-21 - 3

5 [(h 2+hl) (h 2 +hl) 2h r -h 
r r

for r > h

and

222= 0 for all r

We have assumed the western wall to be somewhat curved

in order to facilitate the evaluation of the spherical

harmonics but this introduces negligible error when hl, h2

and h3 are as specified above.

Location of the nodes in the scattered SH and Love wave

With the above data, let us investigate the direction

of the nodes in the scattered SH wave and its resulting

Love waves. In the chosen coordinate system the s motion is

proportional to sin 24 for the rigidity specified above so

we are expecting nodes at the azimuthal angles 00, 900,

1800 and 270*. The node at 1800 corresponds to a node in

the N20 0E direction.
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Figure 17 shows the spectral density of Love wave

generated from Boxcar, plotted against the azimuthal angle

These data, averaged over the frequency band from 0.0225 to

0.0375 cps were recorded at the WWSS and Canadian stations

and equalized to an epicentral distance 2000 kms for geo-

metrical spreading. (Aki and Tsai (1971).)

Surprisingly enough, we remark that the node at N20 0 E

coincides exactly with one of the node predicted above.

Let us now investigate if the seismic moments agree

well with observation.

Seismic moments

Let us evaluate the quantity n1 defined in the pre-

ceding section. For a radius of the source of 700 meters,

which seems adequate in the case of Boxcar (Aki and Tsai

(1970)), the correction terms due to the presence of the

fluid cavity give negligible contribution to the seismic

moment. This is mainly due to the small ratio (a/h3 - 0.2)

between the radius of the cavity (a) and the distance of

Boxcar to the western wall of the caldera (h3).

So, in that case we obtain
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r 1
12 f22dr1 (X2 2r 2a r0  0

2-l h2+hl

0.05 2 --- (4.3.5)

Here we have assumed that rf is much larger than h3 and that

12 = 2" Then we obtain for the model specified above:

1 ~ 0.02 (4.3.6)1 -

Aki and Tsai (1971) have estimated the seismic moments

of the Boxcar explosion and the SH wave generated around it.

They have restricted their consideration to long period wave

(T > 10 sec.) and, modelling the seismic moments by a step

function in time, H(t), they have obtained a good fit with

observation in the cases where they chose.

24
M0  (2.5-3.0)x10 H(t) dyne-cm

and

M(t) - (0.9-1.2)x10 2 4 H(t) dyne-cm

In our preceding notation, this means that the observed

value for n1 is

1 - 0.3 to 0.4 (4.3.7)
1l ~
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So we remark that the observed ratio of seismic moments

is about an order of magnitude higher than the one we cal-

culate. Does this mean that our model of the rigidity dis-

tribution was not accurate enough to calculate the scat-

tered SH wave? Or does it imply that more efficient pro-

cesses than scattering, for example release of preexisting

stress around Boxcar, have produced the observed Love wave

signal? Hopefully, future research will permit us to find

the answer.
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CHAPTER V

Conclusions

5.1 Summary with suggestions for future work

In order to obtain a good zero order analysis of the

displacement field, the seismologist finds it often con-

venient to model the medium by a homogeneous solid charac-

terized by some average properties of the real earth. The

aim of this paper was to complete the above picture by cal-

culating the first order displacement field generated by an

arbitrary distribution of parameters around a compressional

source. But, in order to do so, we have not taken into

account the effect of the surface of the earth on the dis-

placement field. Thus, a more complete investigation would

include this boundary in the calculation of the zero and

first order displacement field.

If this was done, the chief question that would remain

would be to determine the accuracy of the first order scat-

tered wave obtained by the method of small perturbation.

In that respect there are mainly two directions that one

can follow in order to improve the preceding analysis.

First, as we have seen in Chapter III, the first order

scattered wave calculated by the method of small perturba-

tion is not valid for all frequencies. Indeed, for fre-

quencies high enough, the medium is slowly varying over
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many wavelengths and the scattered wave grows in proportion

to the frequency. This is due, as we have shown by using

the method of geometrical optics, to a phase correction of

the zero order solution. So, this suggests that one should

try to combine the two preceding methods in order to obtain

a uniformly valid first order scattered field over the whole

range of frequencies.

Secondly, one should investigate the class of structure

for which multiple scattering, i.e. higher order terms in

our expansion in terms of e, can be neglected in the cal-

culation of the displacement field. In this connection, it

might be worthwhile to study simple structure, for example

layered media, for which exact solutions are known and com-

pare these solutions with the ones obtained by the method

of small perturbation.

In this respect, though we have found it convenient in

this study to analyze the displacement field through a

spherical coordinate system, this choice might prove to be

a poor competitor to other systems of coordinates when

we try to synthesize the scattered field generated by some

particular model. But, more generally, if a given structure

can be expressed as the sum of two substructures, i.e.

(pl'~,)Y = ' (Palaa) + (pb',%b' b)
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then, as can be verified in Chapter II, the first order scat-

tered wave is just the sum of the waves generated by each

of these substructures. Therefore, we may find it convenient

to analyze part of the scattered wave in one coordinate

system and to calculate the remaining part in another system.

For example, if we are expecting that some of the main

features in the distribution of parameters can be described

by a layered structure, then it might prove convenient to

analyze its contribution to the scattered wave through a

cylindrical coordinate system whereas we can use the formulas

we have developed to calculate the wave excited by the

remaining inhomogeneities. This choice to a large extent will

be guided by the nature of the data we have obtained.

In this connection, since clearly we cannot deduce from

a finite set of measurements the complete structure of the

medium, it might prove rewarding to analyze part of the medium

through the methods we have developed but obtain only

statistical information about the remaining part. Such

attempts have already appeared in the literature (e.g.

Dunkin (1969), Karal et al (1964), Knopoff et al (1964))

and it should be interesting to connect their analysis with

the preceding one. On the other hand, it might prove a

worthwhile endeavor to examine more closely the contribution
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to the scattered wave coming from the periodic parts of a

given structure connected to a given frequency through

Bragg's conditions. Of course, if it can be shown that

for a wide class of realistic models, the scattered wave

generated through Bragg's effect gives the main contribu-

tion to the scattered displacement field, then the inverse

problem would be considerably simplified.

Perhaps an important application of the preceding analy-

sis will be to provide better modelling techniques for the

medium near the source. But, in that respect, we are facing

some experimental difficulties. Indeed, at least part of

the anomalous field which seems to originate near the source

is caused by the relaxation of preexisting stress around

the explosion site and part of it is due to the scattering

of elastic waves occuring say within a sphere of radius much

smaller than a wavelength. Since both of these waves are

intimately mixed-up, it is difficult to distinguish between

the two processes. Furthermore, since in the theories of stress

relaxation, the preexisting stress is the unknown parameter

that we try to determine through the observation of the ano-

malous field, we cannot remove its effect in order to model

the distributions of parameters. So it seems that in order

to determine the importance of scattering near the source,

one would have to make an independant measurement of the
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distribution of medium parameters around the source. An

attempt in that direction was made in Chapter IV, in the

case of Boxcar. It did not appear there that scattering would

be enough to explain the amplitude of Love wave generated

around this nuclear event. But, because of lack of informa-

tion, we have not considered the inhomogeneities very near

the source, which might be more important than the broad

structure we have considered. Hopefully, this will be done

in the near future.
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APPENDIX I

The Sharpe's Problem

Since the stress is given on the surface of the cavity

we do not need the continuity of displacement in this case.

We have to solve

2-
2 O ~

p0 t 2 21 0VS b 0-oV oVSojI = 0

subject to the boundary condition

(I.1)

(1.2)2 0oar 0 +O+XOar. 1S I r=a
r=a

Since the motion will be purely radial, we then have to

solve

2 -0 2 0
a2 0  ar2sr

PO -0+2 0) 1 - = 0
t -

(1.3)

Let

0o a_
r Dr

(1.4)

then we find

20 X0 +2pO 1 r2  o 0
t2  p 7 ar ar

at0 r
(1.5)
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subject to the boundary condition

as0  2N s0
r . Or

(XO+2pO) + 0 r
r=a

a 0 2 0  0O
= (X0 +2 0 ) D 2 r ar

ar r=a

= Trr(t)

The general outgoing solution of eq. 5 is given by

F(t - r-a
=0 - r

(1.6)

(1.7)

where

/ 0
+ 210 \ 2

S PO0

Using the fact that

anF - (_)n nF
rn an atn

(n=l,2) (1.8)

the boundary condition becomes

1 d2F(t) + 4 dF(t) + 4 0F (t)d2F-t-(r) ++T (t)(xO+2pO) -a 2 .. 7. dt- 3 rr
0 a dt ea a

(1.9)
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which we recognize as the equation of a damped harmonic

oscillator. If we let

= 110PO+2O

X0 +P 0

taQ
Taq-

and

then we can write the solution for F(t) as follows

F(t) a t T (t')e-v(t-t' in x(t-t')dt'
00o r

(I.10)

and

(r-a)

0 if a T (t')e
-CO

s r-a -,)
sin x(t-(r-a )-t')dt'a

In our calculation, what we need is the Fourier transform with

respect to time of the displacement. So let

( O ,FW, Trrw) - (0(t-(r a)),F(t),Trrt
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then
r-a

Fe

Sr

Gho (kar)

where

G = iF k ew

-ik a

ik r
-ie

h 0 (kr) = k r

and F can be found by Fourier transforming Eq. 9.0

F
3

3
Trr a

(X0 +2- 0 ) (-k a - ikaQ+Q)

where

k =0& a
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APPENDIX II

Green's Functions

We would like to find the solution to the following

eq uation:

P0w S 11w - 2p 0V*S - X0 V.(S ll I0 1106 0oo 11 mw

p= m(cos O)cos mt AS(r-r 0 )a r

+ pm(cos O)cos m4B6(r-ro)a6

SPm(cos L)
sin e cos m B6(r-r 0 )a

i ztil representation

Let u represent ? in tbh following form

= VT + VxarrY +VxVxarr 2

(II .1)

(11.2)

AP n(cos O)cos mn 6(r-ro)

_y 1 
Dr r sin 6

2 _2 

2 1 2
e B: szn 6 3 11"

(II.3)
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B m(cos e)cos mp6(r-r 0 ) =
n

1 iT 1[ 1 1 2+  +
r Te F sin e DQ j6 -

Pm (cos 0)n fc s m16(r-r rsin
B --s -6 -- - c s m6 ( r - r 0 - r s i n e - +

1 [3 r 2 13ri]
F -r sin e 3F s I

If we operate eq. 5 with sin0 and eq. 4 with and

substract the results we obtain

2

1- -- 1 1

5o we must conclude

S= 0

= p m(cos 0)
n

+ 1in i 3 1 0 (11.6)

that

cos m2(r)

T= pm(cos
2 11

6)cos mcp (r)

and using Legendre's equation i.e.
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1 d sin d pm (cossin 0 si an n

m (cos
n

0)+ [(n) (n+1) -

e) = 0

we obtain

e)cos m 6(r-ro) Pm(cos e)cos m L+9(n)(n+ 1)
n 19r r I

(11.8)

B- P1 (cos O)cos m46(r-ro)

- Pm(cos
= n n

Pm (cos e)B nBsin n"

0)cos m![r

a cos m (r

+ 1 9rp
r ar

Pm (cos 0)n
sin 6

a cos m4

We see that it is sufficient to solve

A6 (r-r 0 )

B6 (r-r 0 )

a
ar (n) (n+1)

- + 1 arp
r r ar

2m
sin20 S-

(11.7)

APm (cosn

(11.9)

(II.10)

(II.11)

(11.12)
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Solving these equations we obtain with the condition that

the representation is finite at r = 0 and c,

SA(n+l)rn + n(n+l)Br n

(2n+l)r 0  (2n+l)r 00 0nl~i

for r < r (11.13)

n+lA nr0

n+l
(2n+l)r

n+1
n(n+l)Br0 +

+ for r > r0
(2n+1)r

Ar n  nBrn

( 2 n+l)r 0 n (2n+l)rn

for r < r0

Ar0  (n+l)Brn+
S+ 

0  for r > r0
(2n+l)r (2n+l)r

(11.14)

(II.15)

(11.16)

So we have the representation

= VPm (cos 6)cos mqk + VxVyxrrPm(cos O)cos mp

(11.17)

Solution of equation 1.

Let

g _+
s11m V=+Vxarr 1+VxVxarr 2

= V~+VxarrlY+VxVxarrT 2

(11.18)

(11.19)
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then we can rewrite eq. 1 in the form

2-g
S0 w s11 cw (X0 +2p0 )V Vs 1 +pVxVxsl

or

V(-pOw2 - (X 0 +2i ) 2 -T)

+[ 1 2 2 
+[sin e (-P0 T - 0v  1 1 a

[ + 2 I  
2

+ Vx s 2 2 0 2 2 2 a,

+[- (-P0 2-J0
2 

2 -T 2) a

0

So we see that it is sufficient to solve for

-p 2 0 +2 0 )V 2 =

m2 2 1
-po ,-o21-0 01 = 1

2 2
-PgW 2 - i0V 2 = 2
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In the case we are studying we have

T = m (cosn O)cos mpk(r)

= 0

2 pm (cos
P2 n

O)cos mqp(r)

So we must conclude that

p1 = 0

that is, no torsional waves are generated. If we let

SP= Pm(cos O)cos mbg(r)n

2= Pm(cos 6)cos m g2 (r)

and use eq. 7 we obtain

pm (cos 6)cos m - r2 g + k2 _ n(n+l) ]g]

n ) cos mqk(r)
m= cos ) 0 2
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and

m 1 2 D 2 (n) (n+1) 1n )cos m rj- 2 -r g2+[k 2 r2 92]
Lr Lr Jr

= - pm (cos e) cos me p(r)
n 10

(11.27)

which reduces

S 2 n(n+l) (r)
sg + ka 2 g +2po

(11.28)

1 ar 2 2[k

r

n (n+1) ]

r

These two equations can be solved by the same procedure.

Indeed let N be such that

f~ a Ik~- -~] -(-0a1 - 2 ~aN k (n)(n+1) N = -0)
r r

(11.30)

Then we obtain, under the conditions that the solution be

finite at r = 0 and radiating at r + =
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kb 2
N(r,bo) = - - Jn (kabo)hn (kr)

kab2
1 hn(kabo) n(kar)

where jn, kn are the spherical Bessel

for r > b0

for r < b0

(11.31)

functions defined by

hn(kr) =

and

jn (kr) =

ikr n n )
e -n (n+m) i

Skr m! (n-m)! \

h (kr) + hnTkr )

where the bar indicates the complex conjugate. The solution

to equation 28 is then given by

fo (rb) £(b 0 ,r0 ) dbg(r,r 0 ) = 0 N(r,b0) k0+29 db0 (11.34)

In the same way if we let

k b
M(r,bo) 1 Jn(k b0 )h (k r)

k b2
1 hn(k bo)jn(k$r)

for r > b0

for r < b 0 (11.35)
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(II.36)
g 2 (r ) M(rrb) p(brg0  dbo

2 140'

If we perform these integrations by making liberal use

of spherical Bessel function identities as they appear

for example in Morse and Feshbach (1953) then we obtain

n+l
2 r

g - 0l karg ) h (k r)- (2n+1) 2 n+
i(X0+ 0) dkar0  -- -- p0r

B(n)(n+l)r hn(k r) jn(k r0) n(n+l)Brn+1

i(0 +2O) Br0 (2n+l) 2p n+l

for r > r 0
(II .37)

Ar2jn(kr) dhn(kar 0 ) An+l)r n

. . ..- a , • 2

(0+20 ) dk r 0 (2n+l)r zn 2 0

B(n)(n+l) 2. (r)
i(X 0+2 0 ) r 0J(kr)n

for r < r0

hn (kab ) B(n)(n+l)rn

- (II.38)

(11.38)
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and

2 hn(k r) jn(k r 0) Ar0 + I
= -Ar 2 0 T k r n+1 2g 2 =- 0  110 k r0 (2n+1)r w p0

Br (Jn(k r 0 ) djn(kr0))
,- 0 hn (k r ) k ro dk ril dr 0

n+1(n+l)Br 0
+ n +

(2n+1)w p0r+
for r > r

jn(k r) hn(k r 0 )
S- Ar - 0 r 0

0 0i0 k ro

Arn

(2n+1)r)" 0w
0 0

Br n h) [(kBro )  dhn(k rO)]
-O n(kr) [ k r0 dkBr 0

+ n Brn

(Zn+l) rwm P0
for r < r (11.40)

The displacement field contained in these potentials is

given by
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sll r2 V + VxVxarr42l1w ) r 20

= a [Pm(cos G)cos mq + n(n1) 2

+~ae[R Pm(cos e)cos m[ g2r ]]

m
SPn(  co s m 1 (rg2 ].

+a sin e +r r 'r (II.41)

By substituting g and g2 in the expression for the dis-

placement, the reader may verify that no contribution to the

motion comes from the underlined terms in g and g2 '

We can therefore neglect these terms in the expression

of the potential and we finally obtain that the displacement

solution of eq. 1 can be written as

VJ + VxVxa rH

wiere K an4 H are given in 2.46 and 2.47.
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APPENDIX III

Transformation of PB
2

We can recast the shear potential coming from the body

perturbation in a more convenient form. Indeed we have

Pm(cos 8)
= n P cos mo hn(k r ) *1'1O

rf 2i 1f 1 0+2 1 1 1
a '[ nm p n+2mnm 7JF -7fa 00 r0

ar 0Osr w

.1 8s 0

+ 2anm r 0
7F0 ar 0

1

8 nm

2 0
o'o j ( ~)0 r k r2 n r0

r 0 0 k r0

1
r 0

0 2 r[---- Sro- r-o - - ro- ]r-
Jn(kro)

k ro

+ dn(k rO) )dro

If we integrate by parts the underlined terms in the inte-

gral we obtain
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-pm (cosn

2p1 sO
rm r0

10

e)cos m4
h n (k r)

1

+nm

-Z
r
0

r2s 0  r f
0 r (jn lk r a

0 1 a

Pm(cos 6)cos m k

n 0  h(kr11jo

rf, ni- XO+20)
Po

0
2 o ro i m 

D2 O

r0+21p 1
nm]

2.
r 0 j(k r0 )ni dr 0
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APPENDIX IV

The Body Perturbation for n = 0

We would like to find the displacement field s1l in the

special case where the parameters distributions vary only

with r, i.e.

(pI,'lAl) = (p 0 0 (r),p 0 0 (r),1 0 0 (r)).

'. ) ++ (- 1 ,S 1 1

then we hav- to solve

-PoW S  -2p VS 0 V I I0 ~ 1 1m 11@0 1

Iet

- P 00 p0 ( + 2-S0

r2s0
r s a

0 2 0ap as aX C,0 1 r
r0 0  r + 00 1 r ++ ---- " - ar + - r- 7 r ar

r
(IV.1)

First, let us find the Green function Sll solution of

-Pow s l- 2p0V*S 1  0 (.

SA6(r-r0)ar (IV.2)
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Potential representation

Since Vx = 0 we

gradient of a scalar,

can represent the body force as the

i.e.

A5(r-r 0 )ar = V' (IV.3)

(IV.4)

this last equation being obtained because of the spherical

,y-a:,try of the body force.

fhe solution is

(IV.5)= C1 (constant) for r < r,,

= C2 (constant) for r > ro (IV.6)

and w e obtain

2- C1  A

by integrating the equation around ro. So we find

- C2C2

(IV.7)for r < r 0

for r > r 0
(IV.8)
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Green's function

We can write eq. 2 as

r

and integrate eq. 9 with respect

2 1 r2 :
-Po o-( 0+2r0 ) r r 7- =

to r. We obtain

\+C
3

where C3 is an arbitrary constant. The solution to

1 a 2 N 2 B1 a N r +k = -0+ 6(r-b 0 ) (IV.11)

-uIet to the radiation condition at infinity and finite-

Ps's of the field at r = 0 is

Bk b
N(b 0 ,r) = - a (X0 (k b)hO(k r)' z[: , 2 0 0 0 0(k for r > b 0

2Bkab0
Si(X 0 +2 b) h 0 (kjb 0 ) 0 (kor) for r < b

(IV. 12)
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where k0,j0 are the spherical Bessel function of order zero

as defined in Appendix II. So we have

2
S -(+C 3 ) i(a 0 +2 0 ) j 0 (kab 0 )h 0 (kur)db

f k b
+ -(+C 3 ) i 0 2  h 0 (kab 0 )j 0 (kr)db0  ((V.13)

2

Ar2  (C2 +C3 )
=C X 20 ) jl(kr 0 )h 0 (kar) - 2)

for r > r 0  (IV.14)

Ar A (C 2 +C3 )
TA 0+T hl(kar 0 )j 1 (kar) + 0 20

(IV.15)

but since

Srllw -

all the constant terms in the expression of the potential do

not contribute to the motion. So we can write.
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1 = VK (IV.16)

where

2Ar
K i(x 0 )+ 11J j1 0(r0)h0 (kjr) for r > r0  (IV.17)

2Ar0
= i(A0 20 ) hl(k r0)j 0 (kar) for r < r0  (IV.18)

The reader may verify these formulae by the checking pro-

cess outlined in Chapter II. Making use of this Green's

function, we can therefore write that the solution of

eq. 1 for a point outside the inhomogeneity (r > rf) is

Ill m B (IV.19)

where

B h0(kar) fr Poo +2Io +2100) 00
(0 +a 07 +2fa 00

8 1 0 row 00 row7£o" "I 9 ro + 2arosro0 r 0 0 0

ar 20
+ro0 1 rz 0  r j (kj)dr0  (IV.20)

0
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APPENDIX V

The Surface Perturbation

We have to find the scattered wave caused by the inhomo-

geneous value of the parameters around the source, i.e. we

bave to solve for r >

12-'P' s 12w0-
2 0 V.S 1 2 -x 0 V. S 2IIt = 0 (V.1)

anid for r : a

" 4 (V, 2)

subject to Ab.e boundary conditior,7 at r = a

r r 12w+0 rr

+S --ar So X K ' i ++ la I r=a

s12
r=a

= s12
r=a

wdere we have set
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(S12 S 12 s12, S 12,SO) + (S12L),S120,s!2'S12w',S0)

as the Fourier transform pairs. As shown in Appendix II,

the general solution of eq. 1 and 2 can be expressed as

- + + + + + +

s1 2w = + Vx rr1 + Vxarr 2

s12 = gy + VXarr1 + VxVxarri2

where the potential are solutions of

2-p + - +2 2 + -)

-p90O ( ,,@ - () O+2]aO)72(4 , )
= 0

+ 2 , ,(, ) - 2 *
-pwP 1*2 1' 2 0 2 1" 5 1 2)

(V.5)

(V.6)

(V.7)

(V.8)= 0

We can write our boundary condjitw.-,s as follows

21 r +- r ,2
2O r + XoV-rsl2 =a

r=a

1 Srl2, r 12
r 86 r

r = a

as
rl2w

0 T + OVsl 22w

rw -*0

S+ X r=a

(V.9)

S-rl2w + r l2w

r=a

(V.10)
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s rl2 + S 4s12w
+ - r-

r=a

1 as rl2+ a 412w
r sin + r

r12w

r :-- a

+

= s12
r=a

(V.12)

or, if we use the potential representation, the stress

coTditions are

8 t3-+ 1 a 2  1F - in

+( V*V- r
r=a

in
,--",Is " T

+ 1 + 1
r

2PO ( a + 1

2 1 2 f2: +
1 KK14 1\++0

a3r2

r=a

82

y-y])

(V.13)
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(V. 11)
r=a
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+ - r +r sOn in Li e$ -1 1i

1 1 +

1 @ 8 1 [ ~
r r sin e [ -

S+ 2 +
2 1sin e sn eM sln 71

+ +
8 1 1 8+ 1 ar$l1 a 2 ])

S(IV.14-

1 a D 2 1 2
r si 7 r r sin in e e sin e

' I 1 8 + 1 ir 2

+r r sing

+r rr s sin T T - Fi I- 's- -

r=a

2+
1 e 2 +~ oT 7, ,, .

Jr=a

r=a

(V.15)
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and the continuity of displacement reads

+ 4+3 1 a 2 1 n
+ 1 - sin e

3r r sin sin

1 1 _ 2 .
F + F+-iiV- - .W r 

r=a

+ +

1 + 1 1 1 2]
r r I Sin- D r -T-

r=a

r=a

2 +
2

r=a

(V. 16)

(V.17)

1 I 1. r 2 1
r sin r [as s in Tf- ~- 1

r sine a4 r Lr sin0 e 3e +
r=a+

(V.18)

First, I would like to show that no torsional waves are

generated at the boundary r = a.

We remark that since the above conditions hold all along

the surface r = a, we can take the derivative of them with
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respect to e and 4. If we operate on eq. 15 with sin 6

and on eq. 14 with and subtract the results, we obtain

2 1a a a 1_ 1 a a
sin r + rSa r r sin a r r

r=a

+ +

a a a 1 1 a2  a 1
Ssin e Dr r sin r-+ r r r

r=a

(V.19)

Performing the same operation on eq. 7 and 6 respectively,

we obtain

a a 1 1
sin sin

r=a

s 6 - 1 a2
-e sin -- + (V.20)

Let us consider an arbitrary harmonic of (1 1 ,1) solution

of eq. 8, i.e.

= a ,mPm (cos 6)cos m Pj (k r)

+ b Pm(cos O)cos mmk n (k r)
1nmn 42
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where the radial functions are chosen so as to satisfy the

radiation condition at o, and the finiteness of the field

at the origin.

If we employ Legendre's equation (see Appendix II,

eq. 7) and the orthogonality of the Legendre's polynomials

in eq. 19, 20 we obtain that

(n_,m_) = (n,m)

and

anm (kr) bnm i hn(k r) +anm 7- n r=a r=a (V.21)

anmJ n (kr) r=a - = bnmhn (k r) r=a (V.22)

The only solution of the two last equations being

anm = bnm = 0

we see that the surface perturbation does not provide any

source of torsional wave. In fact, the only source terms

in our equation are contained in eq. 13.

At this point, let us consider a general term in the

expansion of our parameters, i.e.
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1 1 1 m(Pl(a),pl(a),Al(a)) = (P nmnm Xnm)P (cos )cos m4

for n > 0

The case n = 0 will be treated later. Then eq. 13 can be

written as

2-o a (a2 r D r 1 [ rnrsn - D sin 0 D-

+X r=a 2 a + 1 [
+0 r=a- 0 -ar + r sin U

2-

sin O 2

Ssin eT '5

2 + 0
1 i +X V 2 ++2p nm (cos e)cos m rw

sin a2

1 m( )cos mV* m0
nm n

(V. 23)

The reader may verify that the source terms are orthogonal

to all the spheroidal waves (V,' 2 P 2) except the one

which can be expressed as

+ = Pm (cos e)cos m4 Ahn(kr)

2= Pm(cos O)cos m Bhn(k r)
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= Pn (cos O)cos m4 Cjn(kar)

2= Pm(cos O)cos m4 Djn(k r)

The choice of the radial function is guided by the

condition that the wave should be outgoing at infinity and

finite at the origin.

By replacing these functions in equations 13 to 18, and

using Legendre's equation and several spherical Bessel

function identities we finally obtain that

12 = + VxVxxarr212w : V* a r r

where

and
S-Pm(cos 6)cos m4 hn(kr) (1 aso

s 1 0  n0  1 aw

i..(- ,~o +.X 32

2 djn (k a)
dk a

-P pm (cos O)cos me h (k r) 1 as0 x
nS n aw

2 il0 a

2 n (k a)
a -k a

(V.25)

2 0

a a).

(V.26)
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Da2s 0

aa 
aw 

.
1

+nm
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We still have to consider the special case where the

distributions of the parameters vary only with r at the

boundary r = a, i.e.

(Pl(a),l(a)(a) (a)) = (p 0 0 (a),- 0 0(a), 0 0 (a))

In that case no shear waves are generated and we need

to consider only the compressional potential.

Following the same argument as before, let

1 = V!.s12w s12

= Ak0 (kr)

*- = Bj 0 (kr)

subject to the boundary conditions

2vi0 ~ J0(k r ) + X0 V Bj0 (kr)
ar r=a

ar

as0

Srm + 1+21 r +00 -Z
r"

r 2 s
ar 0-s
are rw

(V.28)

r=a
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and

aBj0 (kar)DBj= kr) Ah0 (k r) (V.29)

Solving these equations we obtain that

0 2h0(kr) s0  3a s0 aa + 1 aw 2
s- i( 0+2 0) ,00 ~ 00 aZ a . a Jl(ka)

(V.30)
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APPENDIX VI

The Scattered Wave when the

Receiver is within the Inhomogeneities

When the receiver position, r, is within the inhomo-

geneous region, i.e. r < rf, we must take into account the

wave reflected in r > rf which reach the seismometer. In

that case, we must make full use of the Green's function

found in Sect. 2.4.

The displacement field at r, can then be given as

= Vp + VxVxrarP 2

where

S= Gh 0 (kar) + ec 0 0 h 0 (kar) + Ed0 0 j 0 (kr)

00 nn 1 2 o m
+ I (EC1 cos m+Ec2 nmsin mc)hn ( k r)P n(cos 6)

n=l m=0O

n
" I(ed 1 cos mp+ed 2 sin mp)j (k r)P m(cos 6)

n=l =O nm n n

and

= (Efmcos mp+Ef2 sin mc)h (k r)P m(cos )
n2 = I (f nm n 3 n
n=l m=0

Sn 2 m
+ (Egn COs m+egnmsin mq)jn(k r)P (cos 0)

n=l m=0
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Gh0 (kar) is the zero order solution

S 1
Coo - riO77 ( 2pio (a)

0Dsa w
Ba

X 0 (a)

a

2 0
a

a
2j) 2 1(k a)a .

0 0 +2  2V0 0  00 Dr 0
POO( P0 r

+2
Dr 0

0s
r 0Q

ar0

00
n 1

r 0

2 (kr0)roj 1 (ko) dr 0

d 0 0 1-00 f T2O+2i'P

r2 s0

0 r 0

ar 0

- 0 0  +2 +r 0Poo0 + ? O00 3r 0

8900
+2 Dr0

Dr
0

as 0

ro
rr0

""00 1
Sr0 r

rhl(kar 0 ) dr 0

r 2s0

Dr 0
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where

(VI .1)

0

1
-r0

2 s0Dr 0

Dr 0

2 0
Dr 2sr0 r 0

9r 0

(VI. 2)

1
r0

(VI.3)

__

r f



0 a a2s 0

= as nm (a )  a 2
nm \ nm aa a2  a I( + 2, 0

dj (kaa) 1 r a X+ 21O
+- p cya+ i(X +2i nm P

2 0 0

r s a s0 0 0 0 0

+ DXnm 1 0sr0 r 2 djn ar2

2 0

a  a -r rs

a- -nm s o r Or (n)(n+l)r0
2 0 0 Dr 2

0 0 0

jn (karo)
k r

a 0
dr0 (VI.4)

r

da - 1 0 f

d~m 7fr

20
Sr2 s0 a 3s00 r 0  + 3nm 0_O

S+2r rar0 ar0 ar0

(X + 2 0 ) 1S2nm nm 7
0

a
nm

0ar

r r r 2dh n (k a r 0)

ar0  0 dk r 00 a 0

1

r
0

hcr 

nm 

0 )

[-0nm 0 nm r w  (n)(n+l)r rm (k dr 0

r 0 r0 0 c0
S.5)

(VI.5)
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0sSs

-2f ((a)nm

1+ 1iI ,r- --- fr
a

0
a aw\ a'-2p m(a)

(XO+2po)
nm PO

+ 2p an
nim

0

r0 r0 1 0

[-

a
tnm

1

ma 0+210\
m P0 /

0

2 r 0

0 r0

n (k ro)

- r 0O 0

0
1

r0

h (k r)
.r 0
~ 2~7r-r'

(VI. 7)
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j (k a)
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D 1
0- rr0 r 0

2 0
0 r 0o

Br 0

dr0

f

' r' C

(VI. 6)

2 0

dr
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APPENDIX VII

Evaluation of the Coefficients of the Scattered

Wave when the Inhomogeneities are near the Source

We have to evaluate the coefficient cn fn as given

io Sect. 2.7, eq. 2,3,4, for the case where all the in-

homogenrities are near the sourcb ,

Us,<ig some spherical Bessel. function identities we have

that

i0 = Gh0 (kr) (VII.1)

0 0 -k Gh (k r) (VII.2)
r cy r

0
k 2 dh 1 (k r) (VII.)

- kG d (VII.3)

S- rw - -k 2 Gho(kcr) (VII.4)
7 r a ( ar

s G dh (k r) k 2Ghi r)
r- k 2 G 1 + (VII.5)

Dr ra F dk r

2 0
S1 rw k3 Gh (k r) (VII.6)
Dr 2 5r c 1 ;
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so we can recast our coefficient in the following form

G
COO = T O -p (-2po 0 (a)

dhl (ka)

a 
-- 

- , 0 0 (a)h 01(ka))

k a 2 1(kaa) + G ra
I-Po00

S0+2Po +
P 0

2p 00 +O00

.khl(kar
0 )-2 ( O0 dh 1 (k 0)

a 0
- 00)ho(kro)

Dr0 1

2 2
kr 0j 1 (kr 0o)dro

ca G
TInm 1X0 +lOT

45

(2p (a)nm

dh

2 djn(kaa)
a

"W- , 7 [K

S:m kahl (k r 0 )

2 2 djn(karo)
*ka0 T r

a 0

+ a
0i

(k a)
d xnm (a)h (ka))

r f

--Pr ( 0+ 21p0 ) +2 p
nm P 0  nm

m ho(karo )
dh i r0 )

n- (0

2 p mhl(k 0r

k r
a o10

a h 0 (kro 0)

nm r 00

*(n)(n+l)k2r0a 0O
jn (k ro)
nkr -dr

a 0
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f _ G ( C dhl(kaa) 2 hl(ka) 2 2 n(k a)

nm 1T O 2nm dkcaa nm -- T----kc) a - -a

G Jf (XO+2O ) ]h(kr)

-1 -1nm 0 nm a r 0
0- 0

r dhl (kar 0 )
.r 0 kr0 +

hl (ka'r ) iF a
l 0kar 9 nm

-- Ta 0 00

22 n(kr 0o) dr
k. r0 -Tr dr0

(VII.9)

Since, in our case, we are examining the effect of the

inhomogeneity wholly distributed within a sphere centered

at the origin and of radius rf such that

k rf << 1

we can use the following near field asymptotic expansions

of the spherical Bessel functions

(VII.10)h 0 (kr) - - - (1+ikr)

2 2
h (kr) (1+ k r

k 2r ---
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2i2i + term of order 1
kr

Jn (kr) n k r 2 22 n. kn-1 n- ( k r
-k r I- -

djn(kr) 2nn kT1 rn-1 (n+2)k 2 r 2
(2+n+l n- 2 (2n+3)

If we substitute these expressions in VII.7,

(VII.14)

8, 9, and

if we keep only the lowest order term in kr, we find the

formulas detailed in 3.2.2 - 3.2.6 for the coefficients of

the scattered wave.
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APPENDIX VIII

The Static Approximation

When the inhomogeneities are near the source and the

receivers are located near them, i.e.

krf < k r << 1

then we can use the static approximation to calculate the

displacement field.

So we have to solve.

ViT = 0 (VIII.1)

where

T = 2 (jO+ 1) (S 0 +S 1+... )+(X 0 +~Xl)( ISO1+ I 1  .. . ) I

(VIII.2)

Substituting eq. 2 in eq. 1 and collecting the order, we

obtain

V.(20SO +X0ISOlI) = 0 (VIII .3)

-V.(2o 0Sl+ 0 S Isl i) = 2Vpl*SO0+VX1 0.ISoI

(VIII.4)
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We will assume that there is a small homogeneous layer

around the surface of the cavity so that, as shown in Chap.

II, the perturbed field is wholly contained in the body

perturbations. Let P be the pressure acting on the surface

r - n, then the boundary condition is

0 0
s s

(hO+2] 0) -- +20 F - P
r=a.

It should be noted here that, due to the different

sign conventions we use when dealing with stress and pressure,

tihe radial stress Trr used in Appendix I is rclated to the

above press ure by the relatio-

Trr

The soluticn to eq. 3 subject to eq. "S is

s0 Pa (VIII .6)

If we substitute that solution in eq..4, we find

-V*(2p 0 S1+XOjSlI) 2VV 1So
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The other terms vanish due to the form of the main

field.

Let us consider again an arbitrary harmonic of the rigi-

dity distributions, i.e.

1 Inm n e)cos m with n > 0

Then, we can write

-V*(2IPo S+Xo IS1 1I)

1 r
+a62pnm -7r

eq. 7 in the form

a 2

= ar2 ;3r

s0
r

ar pm(cos 6)cos mp

G)cos m4

+a 2 nm
p "nm

0
sr
-7
r

pm(cos 0)a cos mdj,
nsis .ln O 3 ,

Green's functions

In order to solve eq. 9 we would like to find the

Green's function solution of

-V (2V 0 S+ x0 iSgi) = A6(r-r 0 )P (cos

+B6(r-r O) -- (Cos0 7Q W,

+B6(r-r 0 )
Pm(cos 0)n
Sin 6

O)cos miar

O)cos im' ae

7T cos m a, (VIII .10)
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By following the step of the derivation in Appendix II,

we can see that the Green's function solution of eq. 10 is

given by the limit w - 0 of eq. 37, 38, 39, 40, Appendix II,

i.e. we can express the displacement field in the following

way

g = vgl+vxvxa rrg2

where Arn+ 2

0 nr

(2n+l) (X0+2~ o)rn+l

+ B(n) (n+1) '0
(2n+1) (X0+2P0  rn -

m
Pm(cos e)cos mq foi

0(

B(n)(n+l) 
rn

(X0+2po) (2n+1) rn
0

P (cos e)cos mpn

(VIII .11)

2(n 4 2 )ro

nTC+3)

+ 2 2
[ r2  0 ]i

2T L2(2n-)- 22n+)

r r > 0

2 (n-1)r
(n+1)r + 0
2 (2n+3) 2(2n-1I)

2
r 22n+)
2(2n 3) 2(2n-1)

for r < r0
(VIII .12)
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and

I A
g2 / (2n+1)0 0

B+ B
(2n+1)p

0

n+lr [2 r

n+l 2
0 (n+1)r
rn+l 2(2n-1)

2

2(2n+3)

2
(n+3)r0]2  

m
iPn (cos O)cos m2(2n+'3) n

for r > r 0

An 2
= A r r 2+

0( 2n+1) r1)n 2 (2n+3)

2
+r 0i
2 (Zn-1)

n nr2 (n-2)r 2 m

vi0 (2n+1) 'n 2(2n+3) 2(2n-l) n
0

0)cos m

(VIII.13)

The reader might verify these formulas by applying the pro-

cedure outlined in Sect. 1.4, Chap. II.

Using these Green's functions, if we perform the inte-

gration of the source terms in eq. 9 we obtain that

S+ 2 for r > r

sI = Vl+VxVxarrp 2 for r > rf (VIII.14)

where for r < rf
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1100 n c di
1 nm nm

n1 ma0 rl COS mn

2 2
e+nm rdnm ) m](cos 0)

+ rn-m, sin me Pn(co )

= n fl 1

n=1 mr r rm

2 2

r( -fZ r+ sin m ] P(cos 0)_n-I ,nr

(VIII.15)

(VIII .16)

oa Pa 3n(n-1)
nm TrOj (Z2nIz+1)(n-1) o0 +21j0

do Pa3  n(3n+5)
nm " -vi (2n+1)( n+3 (A +2P0)

rf
Sao n-3

a nr 0o dr 0

(VIII.17)

f p rn-1
ja nmr0 dr0

(VIII.18)

fo M + Pa 3 3(n-1) f f  o r n-3
nm u (2n+1)i O a nmr d r

0

a Pa 3(n-1) f r a n-1 dr
nm T" (n+l) (2n+3) r0 a nm dr 0

(VIII.19)

(VIII. 20)
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It should be remarked that

c i = 0 =
Clm lm

so that it is still the Pm(cos 8) harmonic of the potential

that gives the maximum weighting of the inhomogeneities near

the source. Indeed we have in that case

3  rf a

2m T11 0+ 0 a 0dr 0 (VIII.21)

r Pa
fa Pa 3 f 2mr

_ 2_ dr0
(VIII. 22)

The case n = 0

We still have to deal with the case where the inhomo-

geneities have a pure radial variation i.e.

1l =00(r) (VIII.23)

In that case eq. 7 reads

0
V(2 01 0 1 a 00 as

-V'(2poSI+XoISII) = ar - r- (VIII.24)
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Green's function

By following the same steps as Appendix IV, we find

that the Green's function solution of

-V*(2ii 0S + 0 S ISII) = arA6(r-r 0 ) (VIII.25)

is given by

(VIII. 26)1 = Vg1sI g

where
3

Ar3

0
91 (T10Z0)3r

A r

(x0+2-P0) -6

for r > r 0

for r < r 0

so that the solution of eq. 24 is given by

s1
sw = V4

where for r > rf
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1 1

+ Pa3  1
TP 0 (X0+Z 0)

3
Pa 1
T4170 " 0+21I0)

as
2 00OO r0  3
2 0- r 0 dr0

1 f 00 d
5r fa 4 O dr 0

4
3- (po00(rf)-O00(a))

= 0

since we have assumed oo0 (rf) = oo0 (a) = 0.

So we see that to the order considered, no scattered

field is generated by the radial variation of the param-

eter in r > r f.
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Evaluation of

Scattered wave when

APPENDIX IX

the Coefficients of the

the Inhomogeneities are far from

the Source

We consider a model composed of the spherical harmonics

of the medium parameters specified by n < p. Furthermore,

we restrict their radial variation to the interior of two

spheres of radius rin and rf such thatin an fsuhta

k rf > k rin >
af ain

In this case, we can use the far field asymptotic ex-

pansion of the spherical Bessel functions appearing in VII

7, 8, 9, i.e.

eikr M -n
kn (kr) + eikr

ikr (i) -n ikr(i -n
ne (1) e2 (-i)

Then, keeping the highest order terms in kr in VII 7, 8, 9,

we obtain the formulas detailed in 3.3.1 and 3.3.2 for the

coefficients of the scattered wave.
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APPENDIX X

Geometrical Optics Approximation

Following Karal and Keller (1959), if we substitute

in 2.1.3 a displacement field of the form

S i~( -t)s =Ae

where

= (iw)- n
n=O

(X.1)

and 4 is independent of w, we then find that, for a com-

pressional source, the phase 4 must satisfy the eikonal

equation

P0 + 1 1
VXV - P P + l +

If we use the method of small pertutbation to solve that

equation, i.e. we assume that

$ = +0 + "'

then collecting the order, we have to solve

P0
V0.V0 = 00 0 10+21i 0

(X.2)
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EP (X+2l) (X.)
2V4 0'Vc 1  O+2 -P 0  2 (X.O3)

0 0 (X0+2p0)

We will assume that the phase is zero at the boundary r = a,

then because of the spherical symmetry

2

v 0*V00  ) 0 (X.4)

so 1

0 = XO 0  (r-a) (X.5)

Eq. 3 then reads

p0 1/2 D¢1  Pl - 1 +2p,)
2( 0 O Dr 0 0 0  ( 0+20 )

so

1/2 r

2 0 3 ( 10 0) - (2 1l+Xl)dr0
(X0+20/) rin

(X.6)

To determine the amplitude, if we let

A = A +sA2 +n n n
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then, since for

ik a
weit )-n 1 G a

n arre

we therefore have

optics
Sgoptics

G 0= a (G + terms order eo + .. )
rr

ik r+iew +...-ioPt
e
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APPENDIX XI

The f10 Coefficient for Inhomogeneities

near the Source

If we expand in Taylor's series the exponential terms

in each of the integrals in 3.4.5 we obtain

k
2rf 44

G a
f 2 0 1, R 1 (r)o) + 27-10 , 0 fa 10

k

aO

3 k0

k

+3
0r%J&

3" k k)
k3

k r0

S2 -)drok k 0r

f4
G a 10 a

P a -VoR(rO+i

3
Sro

k k k 2)

( k
31 3 + 3 kk8) 9 dr0

0 a $ 0O

(XII. 1)

where
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R+R 2  ir2[k3(8 66 + 4k 2 k
1 2 4 M - 7M ) 0 M k k -~T~

+ terms Of order

4
11) 8

kr 3 + ..a

If we examine the case whete

X0 = 1O

we obtain that

R1+R2 = ir2k3(0.03) + ...

So, if k1r 0 ( 1, we can evaluate the effect of the in-

homogeneities by using

£10 l0 "a

2 k
110O 3 r dro

a

since the contribution from the other terms is likely to

be small.

170

- ----- --- rwrrrr~rrrrrr.r~- - .-.~4 LI~L~*~-~~~~~~C- LIIYlsYFYICIIOCLI- ~- e^ll~~r -~-- - - ~I~~

r , ~::T''



APPENDIX XII

The Coefficients of the Scattered wave

When We Have a Fluid Inside the

Source Cavity

In order to investigate the influence of a fluid cavity

on the zero order solution, we can follow the procedure

outlined in Chapter II. As shown there, we can first evalu-

ate the surface and body perturbation and then synthesize

these results by calculating the coefficients of the

scattered wave.

The surface perturbation

In order to find the scattered wave generated by the

inhomogeneous distribution of parameters on the surface of

the source, we can solve the equations detailed in Section

2.3. In the case where the medium inside the source is a

fluid specified by (p-,0,X-) we can write the first order

boundary conditions as follows:

1) Continuity of stresses

as asr+- rw +0 r+
X Vs"2 = 2pl Sr 0vs +2i0 r 0 Vs2 +

r=a ra

1 r12  (r 012) +
0 r e r a

r=a
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and

01 _r l 2 I

r sin ' r
r=a

2) Continuity of the normal component of the displacement

Sr 1 2
r=a

- Srl2
r=a

In the region r > a, we can still express the dis-

placement field in terms of potentials by the following

relation:

SS S S

s12w = ViS + Vxarrpl + VxVxarr 2

where (+ , ,142) obey the wave equation with phase velo-
1 + +

city a for *l and B for 4i and 2'

In the region r < a we can express the displacement

field as follows:

4- -

12w V

where i- obeys the wave equation with phase velocity

( l1/2

P
=
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Let us consider an arbitrary term in the decomposition

of the parameters at the boundary r = a, i.e.

(Pl(a),pl(a)l(a)) = (Pnm nm' nm (cos )cos m

Then following an argument similar to the one given in

Appendix IV, we can express the potential field as follows:

s = Ahn (kr)Pm(cos O)cos m4

s = 0 (no torsional waves are generated)

2 = Bh (k r) Pm(cos O)cos m

m
= Cj (k .r)P n (cos e)cos m

We can calculate the coefficients A, B, C with the

boundary conditions and, since we are interested only in

the part of the spectrum where the wavelength is much

larger than the radius of the cavity i.e. ka << 1, we can

retain only the lowest order in ka in the result. These

operations give the following results:
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0

A = -(2p aw+
nm o a

1 Da2s 0  n kn-lan+l
nm a 2 n! a

a aa (2n+ )! i(X 0 + 210 )

f(X0, 0 ,n)

D s0

B nm Daa

1a 22nn

a 3a (2n+1)a

where

f(O',p0,n) =

and

g(Xo,j 0 ,n) =

2
n(4n -1) (XO+2o)
2 2

A0 (2n +1)+-p0 (2n +2n+2)

n(4n 2-1) (0+ 2 10)

X0 (2n +1)+p 0 (2n + 2n+2)

The case n = 0 can be treated in a similar way and the re-

sult is the following

*s = Ah0(k ar)

where
as Da 2 0 k a3

A a 00 aa a
A 200 a aT a i,( 3 )(1X0+ 2110) q(l ,l o)a v 0
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and

S0+2p0q( ,o0 ) -
1 +10

It is interesting at this point to compare these re-

sults with the ones we obtained in Section 2.5. If we

calculate the asymptotic expansion of these potentials for

ka << 1, and if we keep the lowest order in ka, we then

obtain the same result as above but with

f(X,pa,n) =.g(Xo0, 0,n) = q(X-,Xo, O ) = 1

So we see that the difference between these two models

lies within the f, g, q factors. If we examine these fac-

tors, we remark that, except for the case n = 1, the

scattered wave generated at r = a, will have a larger

amplitude when there is a fluid inside the cavity. In

order to investigate the extent of the region for which the

difference between the two models persists let us evaluate

the body perturbation,

Green's function for the body perturbation.

In order to find the Green's function solution of

eq. 2.4.4 when there is a fluid inside the cavity, let us

first consider the Green's function K found in 2.4.6 and
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rewr'ite it i n t, ;following foTm

K - _ _ _ _ ) B(n ) (n+l) kn X

L( 0 2 k 0  0

*n ~a ) li ;e)cos m

+ d
I dk 7 0

I B n) (n+ l) In ka +r0)
2 kXr 0+2i 0

4n'I(k,,t);f@ (cs e)-cos m for ir > r 0

) -h (kr) l r 2

- (n)(n+l) r I+) A

irA '1:c0is WIcos MO

4..' 1hK In) %(A)1
IM0 (

ihn(k ir0T,hnCk o) __ !_ 0

* 2 i 1 OT

-~- - P~n(cos e) cos mt for r < ro

Arrival tiime ,oonsiderations reveal that for each

domain o'f dbseirvttiion, we can d-istinguish :two waves reaching

the receiver: 'one tdOf them 'trave'ls direct'ly from 'the scatterer
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position to the receiver whereas the other must pass through

the origin before reaching the receiver. Now, when we have

a fluid inside the cavity, the incoming wave towards the

origin is transformed at the surface of the cavity such as

to meet the continuity of stresses and normal displacement

there. So, at that surface, the incoming energy is parti-

tioned into a compressional wave penetrating inside the

source and a compressional and shear wave reflected towards

infinity.

We therefore see that in order to find the Green's

function when the medium inside the source is a fluid we

can perform the following operations:

1) Separate the Green's function found in Chapter II

into the two parts specified above

2) Use the incoming wave towards the origin to find

the partition of wave at the surface of the cavity.

This result will give us an outgoing shear and

compressional wave for each of the two incoming

wave types.

3) For r > r0 we can take the sum of the outgoing

compressional waves just found and add to it the

compressional wave reaching directly the receiver.

We can do the same process with the shear wave.

4) Finally, since we are interested in wavelength much

larger than the radius of the cavity, we expand

the above results in asymptotic series and keep only

the lowest order in ka.
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This is the process I have followed to calculate the

Green's functions and the results are as follows:

S11W = VK + VxVxarrH

where, for r > r0

K = Pm(cos O)cos mhn (kar)

2Ar0  djn(kar0) B(n)(n+l) r2 n(kr0

iX 10 +2J 0 ) dk r0  i(X O+ZO) 0 k r0

2
A 2nn! n-l a n+1 an (r0

i(1x 0+2 0) z ka r m
0

B 2 n k n-1 n+1 an
0 07 a - +O0 0) (zTET a rn0

and

H = pm(cos O)cos m@h (k r)n n

2 2[ Ar j(k r0) Br0 ((k r 0 ) djn(k r0
1 0  kr 0  0 0 dkr 0

2
A 2nn! n-l n+1 a+ r0

0

+ l-O (Zn)k a v+ s)
1 n nB 2 ! nl n~ raR ~ 0
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where

2n-1

X0 [2n +l]+P0 [2n +2n+2 ]

[20 ( n + 1) (n+l)n(Xo+2i O) X0 (n+l)
p = (2n+) (2n+l) n+

2 2S(n-1)2(2 0 ) + (n2-1)(X 0 +2p0)

S2(n-1) 2(2n-1)

v = 2 (n+l) [2(n+l) 0-2n(X 0 +2v 0 )+2X 0 ]

S- n(n -1)2 [20n+2(n-2)((X0 2i 0 )]

The case n - 0 can be treated in a similar way and the

The case n = 0 can be treated in a similar way and the

result is as follows

4.
s = VK
11w

where for r > r0
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2Ar
K = ho0 (kr) i(XZ'- O j 1 (kro)

2Ar0  k a -3X +2p0+3X
+ 

0

(A0 0 3 +4p 0

We remark that the first part of these Green's functions

is exactly the same as the one we have obtained in Section

2.4. The other terms are corrections due to the presence of

the fluid cavity.

By expanding the above results in asymptotic series in

terms of the parameter kar 0 we remark that the correction

terms are of the same order of magnitude as the first part

of the Green's function when the scatterer radius, ro, is

approximately the same as the radius of the cavity, a. On

the other hand, when the scattering occurs at a large dis-

tance compared to the radius of the cavity, then the cor-

rections terms can be neglected and we thus recover the

results obtained in Chapter II.

In order to see what are the effects of these correc-

tion terms, let us calculate the coefficients of the scat-

tered wave.
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The Coefficients of the scattered wave

To evaluate these coefficients, we must first integrate

the effect of the equivalent body force given in eq. 2.4.3

by using the preceding Green's functions and then add to

this result the surface perturbation. Since the correction

terms in the Green's function just described are effective

only near the source, we can calculate their contribution

to the scattered wave by using the asymptotic expansion for

small k r 0 of the equivalent body force.

When the above calculations are made, we find that

the total displacement field, in a region outside the in-

homogeneities, i.e. for r > rf, can be expressed as follows:

4 -.
s = V* + VxVxrarp 2  (XII.1)

where

- Gh0 (k r) + Ed 0 0 h 0 (kar)

0 0 n
S(d cos m+d 2 sin mp)h (k r)P (cos 0)

n=l m=On n
(XII.2)

and
n 1 2

2 (nmcos m +Egnmsin m()hn(k r)Pm(cos 6)
n=1 m=O m m n

(XII.3)
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G:

do C + FcOa1m Im lm

d ca + .
nm nm -

(XII .4)

(XII .5)

2nn!
-TL 3~~

rf

a 2V'nm( + 4 Pa [Z
0

2
r0(n+)p+v+- 2
a

(2 (n+l)m+s)

n > 1

a = a Im Ffm

S = f n+ G10
nm nm po

n+ 1 [2(n+3)p+v+

2r
-z(
a

2(n+l)+s)]dr
0
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where

4 (-3X +2p0+3 0
3 +410

r f
fa

a
1100 2

"0

dr 0

(XII .6)

(Xl11.7)

2nn
(2n) ',.

1-i

k
a

ni- 2

r

f2 pm(
n> nm

n > I (XII .8)

__II*_L______ ____UILIIVI -- IIIIIPs*YLIII_~-~i-l_--~~ .~lll^~li~L

n - 2 n - 2
k a



a faThe terms c 00, Cn' fnm are the same as the ones given00. nm nm

in Section 2.7. The other terms are a correction to these

values due to the presence of the fluid cavity. We note

that we have not given the explicit form of the terms

F c and Ffom Indeed, to calculate these coefficients, we
1m Im"

must keep more terms in the asymptotic expansion of the

Green's functions in powers of the small parameter, k a.

This work will not be done in this report.

We remark that there are two special cases of interest

relative to long wave scattering near the source, i.e.

n=O and n=2. Indeed, for each of them, the correction terms

depend on frequency only through the spectrum of the source

whereas for other values of n we have a low frequency

cut-off.

Since the case n = 2 is discussed in Chapter IV, let

us restrict our consideration here to the case n = 0.

If we examine the scattered wave produced within a

wavelength from the source, then we can use the asymptotic

expansion of c00 given in 3.2.2. But since this contribu-

tion to d00 has a low frequency cut-off, we can neglect

it compared to the correction term. We then obtain, for

the sum of the potential due to the main wave and the

scattered wave characterized by n = 0, the following

result:
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Trr 3
4= ~a (l+cb)ho(kar)

where

b X P .3X +4 f f00 2 r 0
0 0 3h +4 0  a r 00 0

and here we have used the notation of Appendix I.

Thus the field observed is the same as if the medium

was homogeneous, provided we define an effective pressure

and radius of the cavity such that

(Trr a 3 ) = rra 3 (1+Eb)eff mrr (l+b),
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