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INTRODUCTION.

Interest in equivariant immersions of homogeneous

spaces has increased with revival of interest in the

general theory of immersions. The most interesting class

of homogeneous spaces is, of course, symmetric spaces.

In this work we classify all locally symmetric homogeneous

spaces with tight (minimal absolute curvature) equivariant

immersions. We show that the class of immersions exhib-

ited by Kobayashi and Takeuchi [12] are in effect the

only tight equivariant immersions.

In a slightly different vein is the problem of finding

to what symmetric spaces can the work of Frankel [6] be

extended. One can describe Frankel's method as "Immerse

the space and examine the critical manifolds for non-

degenerate height functions." This work shows that the

extension of Frankel's results to the exceptional groups

for instance will require some modification of method.

An outline of the work follows.

CHAPTER 1. THE SECOND FUNDAMENTAL FORM.

In this chapter the second fundamental form is

calculated and used to study some classical properties of

the immersion. Although most of the results are not very

deep the (classical) machinery developed is indespensible

for the rest of the work.
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CHAPTER 2. TIGHTNESS.

We use the term tightness for what most geometers

call minimal absolute curvature to avoid confusion with

the classical meaning of minimal and because most of the

recent developments in the field have been due to topol-

ogists who introduced the term. We develop some interest-

ing properties of immersions which are tight and using

them classify all equivariant tight immersions.

CHAPTER 3. EIGENVALUES OF THE LAPLACIAN.

Using a formula of Chern-Lashof for total curvature

a weak inequality between eigenvalue of the Laplacian

and Betti numbers is proven. This formula suggests a

method for searching for tight immersions; this is borne

out by an examination of eigenvalues for R-spaces.

The Lie theory used is based on [7] and as I owe

such an enormous debt to it I do not cite it throughout

but all nonproven Lie results can be found there. For

geometric definitions [11] was my guide.

I wish to thank Professor Sigurdur Helgason for his

encouragement and many helpful suggestions.



CHAPTER 1. THE SECOND FUNDAMENTAL FORM.

§0. Introduction.

Let M be an n-dimensional manifold immersed in a

Riemannian manifold M of dimension N ; for convenience

we shall not differentiate between a point x E M and

its image in M as long as there is no danger of confu-

sion. At any point x E M the tangent space Mx has

the decomposition

I&= MX e Mx

where Mx  is the orthogonal complement of Mx with

respect to the Riemannian metric on M . A vector field

Y on an open set U c with U N M 0 has the de-

composition Y = YT + YN where (YT)x E Mx  and (YN)x E

for all x E U n M . Y is called a normal vector field

if YT = 0 and tangential if YN = .

Let Y be a vector field on M . Locally we can

extend Y to a tangential vector field, on F , also

denoted by Y . For this reason we shall talk freely

about vector fields on M when in fact we mean the exten-

sion.

Let v denote the Riemannian connection on M , then

if X and Y are vector fields on M we write at x E M

V Y = ( Y) + a (XY)



where (VY)x E MxX
and ax(X,Y) E M; 0

Theorem 0.1. (i) The vector field VY which
X

assigns to each point x E M the tangent vector (v Y)
X

is differentiable, and v Y is the Riemannian connection
X

on M given by the Riemannian structure induced from M .

(ii) The normal vector field a(X,Y) which assigns

to each point x E M the vector a (X,Y) is differentiable,

symmetric in X and Y and is bilinear over C'(M) .

Hence a(XY) depends only on Xx and Yx and is a map

Mx x Mx > Mx

Proof. This is standard, cf. [11], page 12.

Theorem 0.1 part (ii) allows us to make the following

definition.

Definition 0.1. The second fundamental form, c ,

of the immersion M -> M is the assignment to each point

x E M of the map ax given in Th. 0.1, part (ii).

Remark. Where there is no danger of confusion we

write a for ax

Let X be a vector field on M and I a normal

vector field; then we write



-(A (X)) x = the tangential component of

X x
X

Theorem 0.2. (1) The vector field A,(X) which

assigns to each x E M the vector (A (X))x is differen-

tiable and bilinear over CO(M) , hence (A (X))x depends

only on Xx and gx and gives a bilinear map

M X ;X Mx

(2) If we denote by )_
MX

Mx and by ( , )
MXM

then ( ,

the inner product on

the restriction of ( , )
MX

to Mx

is called the structure induced by M and)Mx

(A (X),Y) M = (la(X,Y))_
X M

Hence A may be regarded as a symmetric linear operator

on Mx .

Proof. Cf. [11], page 14.

Remark. When there is no danger of confusion we write

for both ( , )
Mx

and (,)M X

Definition 0.2. For E M~ , Ag will denote the

symmetric operator on Mx given in Th. 0.2. part (ii).
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Definition 0.3. If M is a Riemannian manifold

the immersion is called an isometry if the Riemannian

structure induced by M coincides with the structure

on M.

If i is RN we have further

Definition 0.4. The immersion f: M -> ]RN is

substantial if f(M) is not contained in any hyperplane

of RN

Definition 0.5. If f: M -> RN is an immersion

then the height function, ca , associated with a E3RN

is the function on M given by

cpa(x) = (f(x),a) .

Definition 0.6. If a group G acts on M and Ef

and f: M -> M is an immersion such that

f(g.x) = g.f(x)

for all g E G and x E M , then the immersion is said

to be G-equivariant.



5.

§1. The Immersion.

Let G/K be an n-dimensional, compact, irreducible

symmetric space with

Lie Algebra of G = = \ +

the standard decomposition. We shall always assume that

G/K carries the G-invariant Riemannian structure induced

by -B on , where B is the killing form on .

Let 7: G -> End(EN) be a real representation with

a non-zero K fixed vector e . (We can and will assume

that r is an orthogonal representation.) Then 7

induces a map, also denoted by 7 , from G/K into EN

by

w(gK) = r(g)e .

Lemma 1.1. The map gK -> v(g).e gives an equivariant

immersion.

Although this is well known we sketch a proof since

it is a "sine qua non" of the subject.

Proof. By the G-equivariance of the map gK -> r(g)e

we need only consider what happens at 0 (the origin of

G/K).

Given any X E we get a vector field X on EN

as follows



6.

(2f)(x) = (f(v(exp tX).x))jt=0

for all x E EN and f E C(EN)

If we also denote by 7 the corresponding representa-

tion of a simple calculation yields

x = w(X)x

where we make the usual identification of EN with its

tangent space at any point.

Now if we consider X as a vector field on G/K in

the usual manner, i.e.

(Xg)(p) = d (g(exp tX.p))It=0

all p E G/K and g E Ce(G/K) , we have

dv(X ) = Xe = w(X)e

where dr is the differential of the map r: G/K -> EN

Consider the inner product on P given by

<<X,Y>> = (w(X)e,w(Y)e)

where ( , ) is the Euclidean inner product on EN

<<, >> is K invariant so irreducibility of G/K

implies << , >> = - cB where c > 0 . But c > 0



otherwise the representation would be trivial. Q.E.D.

As of now we shall assume the vector "e" is chosen

in such a way that the constant "c" in the proof of

Lemma 1.1 is in fact = 1.

Remark. This leads immediately to the following

lower bound on the dimensions of representations which I

imagine is well known although I have not seen it remarked

in the literature.

Lemma 1.2. If G/K is an irreducible symmetric

space and 7: G -> EN is a real, class-one representation

then

N > dim(G/K) + rank (G/K) .

Proof. An immediate consequence of the following

theorem of Chern and Kuiper [1] and Otsuki [19].

"Let M be an n-dimensional compact Riemannian

manifold isometrically immersed in 2Rn+p . If at every

point x E M the tangent space Mx  contains an

n-dimensional subspace with the sectional curvature of any

plane in the subspace < 0 , then p > m ." Q.E.D.

We now calculate the second fundamental form of the

immersion r: G/K -> EN . To do so we shall use two

lemmas. Lemma 1.3 which gives a local coordinate expres-

sion for the second fundamental form, is well known.



Lemma 1.4 is algebraic and although relatively

simple is very important to the discussion in the next

chapter.

Lemma 1.3. Let f: M -> RN be an immersion. Sup-

pose {x1 ,...,x n  is a local coordinate system on a

neighborhood U of m in M . Then a((o ') (6 a)m)

is the normal component of (6x ( )m under the usual
2 J

identification of ]RN and its tangent space.

Proof. Cf. [11], pages 17 and 18. Q.E.D.

Lemma 1.4. Let 7 be an orthogonal representation

of G with non-zero K fixed vector. Then

(r(X)e, w(Y)w(Z)e) = 0 for all X, Y, Z E .

Proof. First assert that we need only prove

(r(X)e, r(Y)r(Y)e) = 0 all X and Y E .

Indeed since w[Y,Z]e = 0 we have

v(Y)v(Z)e = r(Z)r(Y)e (a)

So we can write

= 1w(Y)w(X)e = 7 [w(X+Y)ir(X+Y)e - w(X)w(X)e - w(y)w(Y)e]



the assertion.

We know (r(Y)e,w(X) (Y)e) = 0 since the representa-

tion is orthogonal but by (a) this is equivalent to

(v(Y)e, v(Y)r(X)e) = 0 or (r(Y)v(Y)e, r(X)e)

Q.E.D.

Theorem 1.1.

of the immersion

Le t a be the second

r: G/K ->

fundamental form

EN then at the origin of G/K

a(X,Y) = v(X)r(Y)e

Proof. Let X1,...,X n

Let U be a normal neighborhood of

for all X, Y E )

be an orthonormal basis

0 in G/K so that

Expp (x1X 1
+ ... + XnXn ) -> (xl,...,xn)

is a coordinate system about

xi 0

0 in G/K

= Xi

Now

Exp (x 1 X1
+ ... + xnXn) = exp(xlX1 +

v(Exp (x 1 X1
+ ... + xnXn) = r(exp(x 1 X1 + ... + XnXn)e

= exp(xlv(X
1

) + ... + Xn (Xn))e

2
To compute - x

i 6 S(0o,0...) we need only consider

+ x i(X) )e

= 0 .

of

with

... + XX n )

~ii-- -

which proves

exp(xi r(X i )
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But if A and B are rxr matrices then

_2 1

at -t2 (exp(tlA + t2 B))J (0 ,0 ) = (AB + BA)

(This can be proven by expansion in series.) Hence

2"r = 1 ((X )w (x)e + (X )r (Xi)e)
6Xi1Xj 0(X0 7(x i

which by the proof of Lemma 1.4 equals v(Xi)r(X )e

But Lemma 1.4 shows r(Xi)r(X )e is perpendicular

to (G/K ) so

c(Xi,Xj) = r(Xi )r(X )e

For any X and Y E 3 the bilinearity of a gives

a(X,Y) = v(X)r(Y)e

Q.E.D.

Since the classical information about an immersion

is contained in the second fundamental form and since

the form has a simple expression for our immersions one

might expect that the study of the classical properties

would be relatively easy.

To show that this is indeed the case we digress a

little from our main theme and consider the following

two concepts first introduced by Chern-Kuiper [1].
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Let f: Mn -> EN be an immersion of a compact

manifold in Euclidean space.

Definition 1.1. X in Mx  is an asymptotic vector

if a(X,X) = 0 .

Definition 1.2. If X and Y in Mx  are such

that a(X,Y) = 0 then X and Y are said to be

conjugate.

To completely describe these concepts for our im-

mersion we have

Theorem 1.2. For the immersion r: G/K -> EN

constructed above

(i) There are no asymtotic vectors at any point.

(ii) If X E V then the set of vectors in @ which

are conjugate to X form a Lie triple system.

Remark. By way of illustration of Th. 1.2 part (ii)

it is instructive to consider the sphere Sn

If we consider Sn  as imbedded in IRn+1 in the

usual way then if X is a vector in Sn  then the
p

tangent space to the sphere Sn -l contains all tangent

vectors conjugate to X .

In 15] the following is shown. Consider

Sn = SO(n+l)/SO(n). For each positive integer S choose

an orthonormal basis fo ''''fm for the space Vs of

spherical harmonics of degree s on Sn and define
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Fs(X) n- (fo(X),' "' fm(X)) X in Sn

Then Fs gives an equivariant immersion of Sn in Em

If we define

k(s) = s(s+nl)

_ (1-k(s))2n
S n+2

and take Xi and X orthonormal vectors in the

orthogonal complement of SO(n) in SO(n+l) then

(w(Xi )r(X )e,w(Xi)w(Xj )e) = X/2

= 0

if and only if s = 1 , i.e. Fs is the standard immersion.

Thus part (ii) of Th. 1.2 shows that the immersions F

have no conjugate vectors for s > 2 .

Proof of Theorem 1.2. (i) By Lemma 1.1

(w(X)(X)e,e) 0 all X in ) .

(ii) Perpendicularity is an immediate consequence

of Lemma 1.1 and the fact that dr(X ) = v(X)e for

v(X)r(Y)e = 0 implies (r(X)e, r(Y)e) = 0 .

For the second part we prove the following stronger

result.

Let X E define
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eX = (Y E v(Y)w(X)e = 0)

A = (Z inA [Z,X] = 0 ]

and 7X = (W in ~ v(W)v(X)e = 0o

We assert that OX = X qPx
Let Z E A be such that v(Z)v(X)e = 0 . Then

v[Z,X]e = O . Thus by Lemma 1.1 dv([Z,X] ) = 0 and

z E Ax

Thus X N c Ax ; the converse inclusion follows

by reversing the above argument so X = X "

Choose W E YX We can write W = Z + Y , Z E ,

Y in p .

v(W)r(X)e = v(Z)v(X)e + v(Y)v(X)e

= w[Z,X]e + v(Y)w(X)e = 0

But by Lemma 1.4 the terms on the right are mutually

perpendicular.

So r(W)r(X)e = 0 if and only if Z E AX 3 Y EX

Hence X = AX X .

The fact that is a Lie triple system is now

obvious. Q.E.D.

We now turn to

Definition 1.3. Let Mn be immersed in the
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Riemannian manifold N . Then the mean curvature

normal CX at a point x E Mn is given as follows:

Let a be the second fundamental form and el ... en

an orthonormal basis for Mx . Then

n
9X = E C(ei,ei)

i=1

Remark. If v E Mx  then (v,g ) = TrAv  showing

C is independent of choice of basis.

Definition 1.4. M is minimal in N if 9g = 0

for all x in M .

To show that the type of immersion we are consider-

ing is minimal in the sphere Do-Carmo and Wallach [14]

used a result of Takahashi [21] which we state since we

refer to it again in Ch. 3.

"A submanifold Mn of SN(r) (where r is the

radius) is minimal if and only if every height function

(see Def. 0.5) is an eigenfunction of the Laplacian with

eigenvalue -n/r 2 ."

However as can be expected from the foregoing, this

can be given a very direct and simple algebraic proof.

Let 7: G -> U(VN) be a unitary class one irreducible

representation. Make VN into Euclidean 2N-space E2 N

as follows: let << , >> be the inner product on VN

Consider the Euclidean inner product ( , ) = Re << , >>

This gives us an orthogonal representation of G also
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denoted by r . Pick a K fixed vector "e" in E2N

and we have the immersion r(gK) -> r(g)e .

Theorem 1.3. The immersions 7: G/K -> E2 N are

minimal in the sphere S2N-1 ((n/y) 1 2 ) where y is

the eigenvalue of the Casimir operator of the representa-

tion r of Y on VN

Proof. The fact that 7: G/K -> E2 N  can also be

regarded as an immersion in a sphere is obvious.

Let V be the affine connection on E2N , v the

affine connection on S2 N-1(r) and v the affine connec-

tion on G/K

If X and Y are vector fields on G/K then

locally they can be considered as vector fields on

S2 N - 1 and on E2N . Thus we have

Y( + (a(XY))x x xX X

where a is the second fundamental form of the immersion

S2N- l ( r ) -> E2N . But

(V Y) (v ~) + (E(XY))
X X

where c is the second fundamental form of the immersion

G/K -> S2 N - 1(r) .

Thus if a is the second fundamental form of the

immersion G/K -> E2 N then



1-..-~i _;~

(at( Y)) (('Y))x + (a(MY))

Hence we need only show that the mean curvature normal

of the immersion 7: G/K -> E2N is perpendicular to the

sphere.

By equivariance we need only consider what happens

at 0 . Let g0 be the mean curvature normal at 0 .

n
o = E r(Xi)(Xi ) e

i=l

where (Xi ) is an orthonormal basis for .

n
(go,v) = Re E <<r(Xi)r(Xi)e,v>>

i=l
all v E E2N

Let (Ys be an orthonormal basis of

Then if r is the Casimir operator

n
r = - r w(Xi r(X i ) - E w(Ys)w(Ys)

i=l s

n
re = ye = - r v(X i ) w(Xi )e

i=l

w. r.t. -B .

in VN where y is real, cf. [23], pg. 247. So

(oq,v) = Re <<-ye,v>> = - Y(e,v) . Hence = - ye

which is perpendicular to S2 N-l(r ) where r = (e,e) .

So the immersion is minimal in S 2n-(r) . A

trivial calculation now yields r .

16.
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n
- y(e,e) = ( v(Xi)Tr(Xi)e,e)

i=l

n
= - Z (v(X i )e, v (X i )e) = -n

i=l

r =(e,e)1/2= (n/y)1/ 2  . Q.E.D.

Remark. Before closing out the chapter perhaps we

should mention that we have not assumed that the

orthogonal representation 7: G -> 0(N) is irreducible

in this chapter, as this is unnecessary and in fact much

too restrictive. For instance we have the following

immersion of G/K . Let F be the space dim N of

all eigenfunctions of the Laplacian with eigenvalue -X

Let qp, be the map M ->IRN given by pc(x) =

(fl(x),... fN(x)) where (fi } is some orthonormal basis

of F w.r.t. the unique G invariant inner-product. That

this gives a minimal immersion into a sphere is obvious

from Takahashi's result. Let *,(x) be another minimal

substantial immersion of G/K in a sphere such that

coordinate functions form an irreducible subspace of F

Then although cpx and * can be regarded as immersions

in the same sphere they are equivalent (i.e. differ by an

isometry of the sphere) if and only if FX is irreducible

cf. [4]. However we will see that for the discussion of

absolute curvature there is no loss of generality in

restricting to irreducible representations.
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CHAPTER 2. TIGHTNESS.

§1. Introduction.

Let f: 1Mn -> MN be an immersion of a compact

manifold. Let B be the unit normal sphere bundle of

the immersion, i.e.

B = ((x,v)jx E M , v E M , 1iv1 = 1)

We have the map v: B -> SN - 1 where v((x,v)) = v

If do is the volume element of SN - 1 and CN is

the volume of SN - 1 we have ([2] or [13]).

Definition 2.1. The total absolute curvature of the

immersion is

= CN- v*(da)
CNl-1 B

Remark. If Mn  is orientable Chern-Lashof [2]

showed the formula

T(Mn, fRN) - CN M( S d e t A1 r ddmC N-1 jM jS Idet Ad)dm

where Sm is the unit sphere in m and A is the

operator on Mm given in Definition 0.2.

Remark. Although the formula in [2] is in a somewhat

T (14,f,R N )



different form in formula

given which is our A in terms of moving frames.

[24]

See

for instance.

We shall use the following terminology.

= (Co functions on M with no degenerate

critical points)

= # of critical points of index

cp E (M)
n

k=O

k of

Bk(p)

min
cp E (M)

= min (p)
cp E (M)

For any coefficient field K set

bK (M,K) = dimKHK (M,K)

n
b(M,K) = Z bK (M,K)0

Then we have the Morse Inequalities,

any field

cf. 115]

K .

Definition 2.2. A function cp E §(M) is called

k-tight if Sk( P) = Ok(M) •

A function e E (M) is called

S(M)

B(p)

B(M)

I

19.

(21) of [2], an expression is

5 k ( M ) > b k ( M , K )

Definition 2.3.

( k(CP)
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tight if B(cp) = B(M) .

All this is related by means of

Theorem 2.1. Let cp E (M) then

(i) If p is k-tight all k then p is tight

and if the Morse inequalities are equalities for some

coefficient field K and some function r E §(M) then

this conclusion can be reversed.

(ii) If p is tight then it is 0-tight and n-tight.

Proof. (i) Is obvious

(ii) See [16]. Q.E.D.

Theorem 2.2. Let I be the set of all immersions of

Mn  in Euclidean space. Then

inf T(M,f, RN) = B(M) > E B(M)
fel K

Proof. See [13]. Q.E.D.

Definition 2.4. An immersion in RN  has minimal

total curvature if T(M,f, IRN) = B(M); such an immersion

will be called tight.

Remark. It is well known that not all manifolds

have tight immersions, e.g. the exotic sphere does not

have one [13].

We shall need the following well known lemma.
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Lemma 2.1. (Kuiper [13]) An immersion Mn  in RN

is tight if pa is tight for all height functions pa

with non-degenerate critical points.

This leads to

Definition 2.5. An immersion f is k-tight if

pa(x) = (f(x),a) is k-tight whenever it is non-

degenerate.

Theorem 2.1 shows that an immersion which is tight

is also O-tight, but Banchoff, cf. [14], has shown that

the reverse is not necessarily the case; however we will

see that for equivariant immersions of symmetric spaces

they are equivalent.

A theorem of Chern-Lashof [3] shows that if

f: M -> IN is an immersion and iof: M ->IRN+ 1 is the

immersion induced by the inclusion i: ]RN -> EN+l then

T(f,M, ]N) = T(i f,M, JRN+l) . Also total curvature is

invariant under affine transformation [13] so the search

for tight immersions can be restricted to the study of

substantial immersions.
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§2. Reduction of the Problem for Homogeneous Spaces.

We now prove two theorems the second of which proves

a conjecture of Wilson [22]. In fact [22] contains a

particular case of the theorem proved in a very different

manner.

Theorem 2.3. If G/H is a compact homogeneous

space and 7 is a class-one orthogonal representation

of G ; if r is reducible 7 = pt1 and gives an immer-

sion 7: G/H -> Ev which is O-tight and substantial

then if p(p) gives an immersion p: G/H -> E , then

the immersion p is 0-tight.

Remark. p need not give an immersion; for instance

p could be the trivial representation of G .

Before proceeding with the proof of Th. 2.3 we re-

call the two-piece property, cf. [14].

Definition 2.6. Let f: M -> EN be an immersion.

Then f has the two piece property if given any hyperplane

H c EN . (m E M If(m) ' H) has at most two components.

Lemma 2.1. [14]. Let f: M -> EN be an immersion.

The f is O-tight if and only if it has the two-piece

property.

Proof of Theorem 2.3. Let E and E be the
p P
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representation spaces for p and ut respectively.

Since 7: G/H -> E. is substantial then the H fixed

vector e can be written

e = e + e 0 e H-fixed in E
p p p

O e H-fixed in E

Suppose p gives an immersion of G/H into E . We

show p satisfies the two-piece property.

Since r satisfies the two piece property given

any v E E , (p E G/H ((p),v) # c) has at most two

components, for any constant c.

Write v = v + v . v EE Ep and v E E , and

p = g.0 . Then (v(g)e,v) = (p(g)e p,v) + (U(g)e v) .

In particular if we consider v = 0 , then for any

vp E Ep , (gH E G/H I (p(g)e ,Vp) c) has at most two

components which is the two piece property for the immersion

p: G/H -> E . Hence the immersion p is 0-tight by

Lemma 2.1. Q.E.D.

Corollary. Suppose G/K is an irreducible symmetric

space and r an orthogonal class-one representation of

G such that the immersion v: G/K -> EN is 0-tight.

Then there is an irreducible orthogonal class one

representation w' of G such that w': G/K -> EN is

0-tight.

Proof. There is no loss of generality in assuming
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I

r: G/K -> EN  substantial. For if not then there is

i.e. a v with (v,w(g)e) = 0 . If e is K-fixed

vector so there is a G invariant space E with
v

(E,G/K) = 0 .

Suppose EN = E PE . Then since immersion is
P u

substantial, we can write as in Th. 2.3 e = e + e .

Then by proof of Lemma 1.1 r(X)ep = 0 all X E )

or w(X)ep 0 all X E ) ; so we get immersion from

either p or p . Assume p gives immersion. We re-

peat the process for E and eventually we get immer-

sion ': G/H -> E., where r' is irreducible. Then

repeated applications of Th. 2.3 show r' is 0-tight.

Q.E.D.

Remark. Henceforth we assume all representations

are irreducible unless explicitly stated otherwise.

Theorem 2.4. Let G/H be a compact homogeneous

space and r a class-one orthogonal representation of

G (not necessarily irreducible). If the map

7: G/'H -> EN by w(gH) = r(g)e where e is the

H-fixed vector, gives a 0-tight immersion, then it is

in fact an imbedding.

Proof. Let e be the H-fixed vector in RN . Then

if Y= +J9 is the direct sum decomposition r(X)e # 0

for any X E 7 since 7 is an immersion.

Suppose r is not an imbedding. Then there is

g 0 H with w(g)e = e , i.e. if He is the subgroup

wft

24.



leaving e fixed then
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H H

properly.

But since 7 is an immersion the Lie algebra of

He is also ; thus since both groups are compact

H /H is finite. If index [H,H ] is m say, then

G/H is an m-fold covering of G/H . Denote this cover-

ing by .

We can regard G/H e as imbedded in IRN by

where '(gH e ) = v(g)e . So we can factor the map

7: G/H -> R by 7 = Vo .

Now consider the height function pa on G/H .

cp(x) = (r(x),a)

= ('or(x),a)

x E G/H

(X)

where pa is the height fn on G/H . Thus dp =
d' o dT . So the singularities of Cpa occur "above"

the singularities of a , cf. Fig. (i).

*

FIGURE (i)
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Since a singularity is a local phenomenon the

singularities have the same type and index on both

G/He and G/H .

But G/He is compact. Thus for any non-degenerate
Ne
pa there is at least one critical point of index-0

(namely the minimum). So pa has m-points of index-0.

Contradicting 0-tightness.

Hence H = He and r is an imbedding. Q.E.D.

_. _;__ i___ _~ _I
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3. The Second Fundamental Form of 0-Tight

Immersions.

The following theorem is a useful improvement of

Theorem 4 in [13] and represents more of a change in

point of view than anything else.

Theorem 2.5. If f: M - RN  is a substantial

0-tight immersion then there is an open subset U of

M such that a: lmMm -> M is onto for all m EU .

Proof. Let a ERN be such that the height function

pa is non-degenerate. Assume CPa(x) attains its maxi-

mum at x0 E Mn . Since tightness is translation invariant

we can assume f(x ) = 0 . Then the function

CP-a(x) = - (a,f(x))

has a non-degenerate critical point of index 0 at x o

If ax is not onto then by Lemma 1.3 we can choose

0 # z E 40such that

Fz(x) = - (a-z,f(x))

has a non-degenerate critical point of index- 0 at x .

Assert aek Fx(x) = - (a-Xz,f(x)) assumes both

+ve and -ve values.

The function h(x) = (zf(x)) is not constant(a,f(x))



I

2 2
CP (x) = u + ... + un on U .

Consider the "sphere" S(r) cU given by u + ... + u2
1 Un

2 2r Then p (x) = r on S(r) . We can choose w'

in any neighborhood of w such that pw' has only non-

degenerate critical points

where

Choose w' wi

lipw - IW, 1M = I (f(x), w- w' ) IM
< Alw- w!

A = max !if(x)1!
xEM

2 2
th Iw-w' 1 < r Then Icpw-w i < - - •

The 1!p~ n 7
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since f is a substantial immersion. Thus there is X

such that h takes values > and values < Thus

F = - (a-Xz, f(x)) assumes +ve and -ve values.

Let w = xz - a .

Then cp (x) = (w,f(x)) has a non-degenerate

critical point of index-0 at x .

Assert we can choose w' in IRN  such that w' (x)

has non-degenerate critical points and cpw has a

critical point of index- O0 near x0 which is not a true

minimum.

Since pw(x) has a non-degenerate critical point

of index- O0 at xo there is a local coordinate system,

(u 1 ,...,un) on an open neighborhood U of x o = (0,...,0)

such that
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cpw,  has a minimum in the closed ball f(r) . We assert

that this minimum does not occur on the sphere S(r) .

But this is easy since

, (x o ) = 0
2

and cp (x) > - for x E S(r)

So the minimum on T(r) is in fact a critical point of

index- O of w' .

Since pw takes +ve and -ve values it is clear

that we can choose w' such that @w' takes +ve and

-ve values. Hence the point will not be the absolute

minimum of cpw "

So cp, is a non-degenerate height function with

two critical points of index- 0, contradicting 0-tightness.

Hence a must be onto at x .

The fact that a is onto in an open neighborhood

U of x o is a trivial consequence of the differentiability

of a . Q.E.D.

Corollary 1. Cf. Th. 4 in [13].

N- n < 1 n(n+l) .--2

Proof. Trivial since a is a symmetric map from

Mxm to Mx. Q.E.D.

Corollary 2. Let M = G/H be a homogeneous space
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and w a real class one representation of G on EN

such that the imbedding r: G/H -> EN is 0-tight and

substantial. The a is onto everywhere.

Proof. Obvious.
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§4. Symmetric R-Spaces.

The theory of R-spaces, as we need it, is scattered

throughout the literature so in this section what we

need is organized with outlines of the main proofs. We

do not define a general R-space but give a somewhat

ad-hoc definition of symmetric R-spaces since that is

all we need.

Let ? be a real semi-simple Lie algebra and

Z E 4 such that ad Z is semi-simple with real eigen-

values 0, +1 .

Theorem 2.6. There is a Cartan decomposition

=,= + 5 such that Z E .

Proof. Cf. [10], Ths. 2 and 3.

Let z = -l + ;?o + + be the eigenspace decomposi-

tion of 4 and define a: 4 -> Z a linear map by

a(X+Y+W) = -X+Y-W , X E £oi , Y E ;eo Z E .

Then a is an involutive automorphism.

Let 4 = ' + 3' be any Cartan decomposition with

involution a' . Then if

a' ) = -B(X Y) X nd YB (X,Y) = -B(X,a'Y) X and Y E e

is a symmetric, positive definite, bilinear form onB
C '
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at
; and aat  is self-adjoint w.r.t. B . Now it is

almost standard that there is a Cartan decomposition

S= e + 6 with involution a such that a and a

commute.

Thus Zo = o N z 0 N direct sum. To see

that Z E 6 it suffices to show that ad Z is sym-

metric w.r.t. Ba . Q.E.D.

Now let (L,G) be a pair associated with (;,a)

such that L has no center.

Theorem 2.7. Let K = fg E Glad.g(Z) = Z3 . Then

(i) G/K is symmetric

(ii) The immersion p: G/K -> B by

cp(gK) = adgZ

is tight, equivariant.

Proof. (i) Since L has no center, Ad : L ->

Int(Z) is an analytic isomorphism onto so we shall assume

L = Int(Z) . Let Lc be the complex Lie group Int(,c)

where Zc is the complexification of Z . Then L c Lc

and exp(irZ) E Lc where i = 4--1 .

Let e denote the inner automorphism of Lc defined

by exp(irZ) . Then e2 = Id . We assert G is e-stable.

First we show ;e is stable in Ac under

Ad c(exp iwZ) .
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Let W E- , W = Wl + W + W1 , W_1 E - ' W E o
and WI E J1 in the notation of Th. 2.6.

Ad(exp iwZ)W = Ad(exp irZ)W_ 1 + Ad(exp iVZ)W°

+ Ad(exp iwz)W1

= e W _l+ Wo + ei W

= Wo - W1 - W1 E ;.

Now

a Ad(exp irZ) = Ad(exp iraZ)o a

= Ad(exp- iwZ)o a

= Ad(exp irZ) o a

So is stable under Ad(exp irZ) . Thus G is 8-stable.

We let IG be also denoted by 8 .

Let K8  be the fixed point set of 8 . Then

(K )o cKc K where (KS)o is connected component of

the identity of K . So G/K is Riemannian symmetric.

(ii) The equivariance of p is obvious.

Tightness is proven in [12] Th. 3.1 for an even more

general type of space. Q.E.D.

Definition. A symmetric homogeneous space G/K is

a symmetric R-space if it can be constructed as in Th. 2.6

and Th. 2.7.
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§5. The Fundamental Lemma.

We now examine the implications of Th. 2.5 for

equivariant immersions of symmetric spaces.

Let G/K be an irreducible symmetric space, 7

an irreducible class-one representation of G on EN

with a K-fixed vector e . Denote by 7 the immersion

w(gK) = r(g)e , of G/K in EN . Then if the second

fundamental form is onto we have

EN= T + T
0 0

where To = fw(X)e ; X E

To = linear hull of fr(X)r(X)e: X E

We shall need the following lemma.

Lemma 2.2. If r is a real orthogonal representation

of T with a vector e 0 annihilated by then

(r(X)r(X)e , w(Z)r(Y)r(Y)e) = 0

for all X, Y and Z in .

Proof. We know (r(X)r(Y)e, w(Z)r(X)r(Y)e) = 0

We can rewrite r(Z)w(X)r(Y)e = r[Z,X]r(Y)e + r(X)r(Z)r(Y)e.

So (w[Z,X]w(Y)e,w(X)r(Y)e) + (r(X)7(Z)r(Y)e,r(X)r(Y)e) = 0.

But the first term is zero by Lemma 1. So
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o = (r(X)r(Z)r(Y)e, r(X)r(Y)e)

= - (r(X)r(X)r(Y)e, r(Z)v(Y)e)

=- (r(X)r(Y)w(X)e, r(Z)v(Y)e)

since

w(Y)r(X)e = r(X)r(Y)e

= (w(X)r(X)e, w(Y)r(Z)w(Y)e)

as above

= (r(X)r(X)e, w(Z)r(Y)r(Y)e) . Q.E.D.

Now let Z = E EN

Give ; the following algebraic structure.

(i) X,Y in : IX,Y] as in .

(ii) X in 7 u in EN [X,u] = -[u,X] = v(X)u

(iii) u,v in EN then [u,v] is in V where
-B([u,v],X) = - (v,w(X)u) for all X in .

Lemma 2.3. If G/K is a symmetric space and r a

class-one orthogonal representation of G giving imbedding

T: G/K -> EN then if the second fundamental form is onto

the above operations make Z = + EN into a Lie algebra.

Proof. Anti-commutativity. For X and Y in

then anti-commutativity is inherited from et. For X E

and u E EN then it is defined. For u and v in EN

just note (u,w(X)v) = - (v,w(X)u) .

So now we need only check the Jacobi identity.

Unfortunately this must be done case by case.



Case (i). X, Y and Z E

from 2.
Case (ii). X, Y E and

[X,[Y,ull]] + [u,[X,Y11

then it is inherited

u EN  then

+ [Y,[u,x]]

= r(X)r(Y)u - 4[X,Yju - 7(Y)w(X)u

=0

Case (iii). XE V, u and v E EN Let Y be in .

Then

(Cx,[u,v]],Y) + ([v,[X,u]],Y) + ([u,[v,x]],Y)

([u,v],[X,Y]

= (v,r[X,Y]u)

S(v,7[X,Y]u)

([v,r(X)u],Y)

- (v(X)u,r(Y)v) +

+ (r(Y)r(X)u,v) -

- (lu,w(x)v],Y)

(7(X)v,r(Y)u)

(V(X)r (Y)u,v)

= 0 .

Now before we consider u, v and w

develop a few preliminary results.

If X and

for Z E .

Y are in P consider ([r(X)e,r(Y)e],Z)

([1(X)e,r(Y)e],Z) = - (v(Y)e, v(Z)r(X)e)

Thus ([v(X)e,r(Y)e],)) =

only consider Z E A.

by Lemma 1.4. So we need

V 36.

in EN we



-(7r(Y)e,7(Z)7(X)e) = (-r(Y)e,r[Z,X]e)

=- (Y,[Z,X])

=- ([x,Y],Z)

[(X)e,r(Y)e] = - [x,Y]

Now we can consider

Case (iv). u, v, w in T , u = r(X)e , v = r(Y)e ,

[v(X)e, [(Y)e,r(Z)e]] + Iv(Z)e,[r(X)e,r(y)e]]

+ [v(Y)e,[v(Z)e,r(X)e]]

= r[Y,Z]v(X)e + w[X,Y]v(Z)e + r[Z,X]r(Y)e

- r[X,[Y,Z]]e-r[Z,[X,Y]]e - w[Y,[Z,X]]e

= 0 by Jacobi identity on

Case (v). u, v in T and
o0

w in TO

By Lemma 14we need only consider

r(Z)r(Z)e

w of the form

with Z E so

[u,[v,w]] + [w,[u,v]] + [v,[w,u]]

= [r(X)e,[((Y)e,r(Z)r(Z)e]]

+ I[(Z)r(Z)e,[(X)e,w(Y)e]]

+ [w(Y)e,[ (Z)r(z)e,r(X)e ]]

u = w(X)e , v = r(Y)e

=- r([r(Y)e,w(Z)r(Z)e] )r(X)e

+ r[X,Y]r(Z)r(Z)e

+ T([r(X)e,7(Z)r(Z)e])r(Y)e

Thus

w = r(Z)e .

(a)

by (a)

where

(b)

37.



Assert [r(X)e,r(Z)r(Z)e]

38.

is in 6 all X and Z in 9

For any

([ (X)e, (Z)v(Z)el ,w) - (v(Z)r(Z)e,r(W)r(X)e)

=0 if WE

by Lemma 1.4 since Y(W)r(X)e = r[W,X]e E T So we can

write

v([r(X)e,r(Z)r(Z)e])r(Y)e = r(Y)r([v(X)e,7(Z)v(Z)e)e

Now let Xi ) be an

[I(X)e,w(Z)r(Z)e]

orthonormal basis for

n
E ([i(X)e,7(Z)r(Z)e],Xi)X

ii=1

v([v(X)e,w(z)r(Z)e] )e

n
= ([r(X)e,7(Z)r(Z)e],Xi)w(Xi)e

i=l
n

i=1

Z (v(X)r(Z)r(Z)e,

- (X)r(Z))(z)e

Since by Lemma 2.2 w(X)R(Z)r(Z)e E To and v(Xi)e

a basis. Substituting in (b) we get

. Then

Thus

is

(r(Z)Y(Z)e,(X i )r(X)e)r(Xi )e

v(Xi)e)v(Xi)e

VE I



[u,[v,w]] + [w,[u,v]] + [v,[w,u]]

= - r(X)r(Y)r(Z)w(Z)e + r[X,Y]r(Z)r(Z)e

+ (y)r(X)r(Z)r(Z)e

0 .

Case (vi). u in To , v and w in T

u = r(X)e , v = w(Y)r(Y)e , w = V(Z)r(Z)e Then let

J = [u,[v,w]] + [w,[u,v]] + [v,[w,u]] . Assert

J = [r(X)e,[v(Y)r(Y)e,w(Z)r(Z)e]]

+ [v(Z)v(Z)e,

+ [v(Y)r(Y)e,

[v(X)e,w(Y)v(Y)e]]

[r(Z)r (Z)e, r(X)e]]

We saw in the course of the proof of case

Thus Lemma 2.2 implies the

second and third terms of J are in T .

Let W be in .

([r(Y)r(Y)e, r(Z)z(Z)e],W) = - (r(Z)7(Z)e, v(W)r(Y)r(Y)e)

= if W E~

Thus [r(Y)7(Y)e,r(Z)r(Z)e]

first term of

Let WE

by term.

J is in T .

P . We shall consider

by Lemma 2.1.

which proves that the

(J,w(W)e) term

r
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Let

J E T

E6 .

(v) that

Then

[r(X)e, r(Y)r(Y)e]



([r(X)e, [v(y)r(Y)e,

= - (r([r(y)r(Y)e,

v(Z)r(Z)e] ],

v(Z)r(Z)e] )7(X)e,

= ([w(y)r(y)e,7(Z)r(Z)e], [v(X)e,w(W)e])

= - ([r(y)v(Y)e,w(Z)r(Z)e], [X,W])

r[X,W]w(Y)r(Y)e)

Now consider

([r(Z)r(Z)e, [v(X)e,r(Y)v(Y)e] ],

= - (v([v(X)e, v(Y)r(Y)e])7r(Z)r(Z)e,

= - ([v(X)e,7(Y)r(Y)e], [r(W)e, r(Z)7r(Z)e])

= (r(Y)r(Y)e, r([r(W)e, r(Z)r(Z)])v(X)e)

= (r(Y)r(Y)e, r(X)r(W)7(Z)r(Z)e)

Substituting (c) and (d) along with the equivalent expres-

sion for the third term gives

(J,r(W)e) = (r(Z)v(z)e, r[X,W]r(Y)v(Y)e)

+ (r(Y)w(Y)e, r(X)r(W)r(Z)r(Z)e

- (v(Z)r(Z)e, r(X)v(W)r(Y)r(Y)e)

= 0

Case (vii). u, v, w in T' 0

Essentially this is done by reducing it to cases

First consider

40.

7(W)e)

r(W)e)

= (r(Z)r(Z)e, (c)

7 (W)e)

w(W)e)

(d)

(i)
through (vi).
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a

= [r(X)e, [r(Z)r(Z)e, [X,w(Y)r(Y)e]]

+ [I(X)e, [v(Y)v(Y)e, [v(Z)r(Z)e,X]]

- [X, [r(Z)v(Z)e, [v(X)e, v(Y)v(Y)e]

- [X, [v(Y)v(Y)e, [I(Z)v(Z)e, v(X)e]

by cases (iii) and

= [v(X)e, [v(Z)v(Z)e, v(X)v(Y)v(Y)e]]

- [r(X)e, [v(Y)w(Y)e, v(X)v(Z)v(Z)e]

- [X, [v(Z)v(Z)e, [v(X)e, v(Y)R(Y)e]

- IX, [v(Y)v(Y)e, [v(Z)v(Z)e, r(X)e]

]

(v)

Now consider

[w(Z)r(Z)e, [v(X)w(X)e, v(Y)r(Y)e]]

= - [w(Z)r(Z)e, [v(Y)w(Y)e, IX, v(X)e]]]

= - (Z)w(Z)e, [v(X)e, r(X)w(Y)r(Y)e]]

+ [w(Z)7(Z)e, [X, [r(X)e, v(Y)v(Y)e]]

by case (iii)

[v(X)r(X)e, [r(Y)r(Y)e, r(Z)w(Z)e]]

= [[X,w(X)e], [v(Y)w(Y)e, v(Z)r(Z)e]]

= [r(X)e, [[v(Y)w(Y)e, v(Z)T(Z)e], X]]

+ [x, [w(X)e, [I(Y)r(Y)e, w(Z)v(Z)e]]]

by case (ii)
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= [w(X)r(Y)w(Y)e, [v(Z)r(Z)e, v(X)e]]

+ [w(X)e, [v(X)w(Y)r(Y)e, r(Z)w(Z)e]]

+ [[v(X)e, 7(Y)r(Y)e], r(X)w(Z)r(Z)e]

- [X, [[v(X)e, v(Y)v(Y)e] , v(Z)v(Z)e]]

by cases (iv) and (ii)

If we write the corresponding expression for

[v(Y)r(Y)e, [v(Z)r(Z)e, v(X)r(X)e]] and combine we get

[w(X)w(X)e, [v(Y)r(Y)e, n(Z)v(Z)e]]

+ [w(Z)w(Z)e, [r(X)r(X)e, v(Y)v(Y)e]]

+ [v(Y)r(Y)e, [v(Z)v(Z)e, r(X)r(X)e]]

= 0 .

So we have proven Jacobi Identity. Hence . is

a Lie algebra. Q.E.D.

We can now prove

Theorem 2.8. Let G/K be a symmetric space and w

an irreducible class-one orthogonal representation of G

giving the imbedding v: G/K -> EN . If the second

fundamental form of the imbedding is onto then ; = e EN

is a semi-simple non-compact Lie algebra with d = e EN

a Cartan decomposition.

If a is the Cartan involution then in fact (Z,a)

is irreducible orthogonal symmetric.



Proof. We define a representation p of G on -

P, (G) EN = V(G) .

Consider and let ad pu be the adjoint

u on e .

Assert ad-(p(g)u) =

Let X be in f.

[w(g)u,XJ

p(g)adiu p(g)-1

= -w(X)T(g)u

= -7(g)w(AdG -lX)u

= p(g)oad uop(g - 1 )

Let v be in EN , X

([7(g)u,v],

in

= - (v, w(X)w(g)u)

= - (V(g-1)v, V (Ad g-X )u)

[w(g)u,v]

= ([u, r(g- 1 )v],

= (AdGg[u, r(g- 1

= p(g)oad uop(g - )

AdG -lX)

v], x)

Assertion is thus proven.

B = killing form on . Then by above

is G invariant hence is a constant multiple of the

Euclidean inner product on

constant is >0

Consider ad e * ade

EN . We now show that this

by p(G)I = AdG

43.

action of

(X)

So

Now let

u E E



adelk = 0 since e

= 0 Also let W

([e,v(X)7r(X)e],W) =

but also

So to find B;(e,e)

is K-invariant. Assert

E I. Then
I,

- (v(X)r(X)e,7(W)e)

= 0 if W is in

= 0 if W is in

by Lemma 1.4.

we need only consider

on p and To

Let X E 6

([e,[e,X]],X) =

So tr(ade) 2

Let X and Y be in .

([e,7(X)e],Y)

- ([e,X],[X,e])

(v(X)e,w(X)e)

(x,x)

= - (X,Y)

by above. Hence

[e,r(X)e]

Hence

ade
I

r

(ade)2

44.



([e,[e,w(X)e],w7(Y)e) = ( (X)e,7(Y)e)

tr (ade) 2 1T
0

B (e,e) = tr(ade) 2 tr(ade) 2

= 2n .

We have thus shown that if is the killing form

on 4 , B g(X,X) > 0 if X is in EN .

If X is in

BZ(X,X) = tr(ad X )2 + tr(v(X)) 2

< 0

being orthogonal under Bo , d. is semi-

Define s: -- > 4i a linear map by

s(X+v) = X-v , X in v in EN

Clearly s 2 = Identity. Assert s is a Lie algebra

automorphism.

s[X+v,Y+w] = s[X,Y] + sv(x)w - sv(Y)v + s[v,w]

= [X,Y] - r(X)w + v(Y)v + 4 v,w]

= [s(X+v),s(Y+w)]

So

45.

But

So and EN

simple.

IToT,
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So s is an involutive automorphism and & = EN is

a Cartan decomposition. The fact that V. is irreducible

orthogonal symmetric is easily seen from the irreducibility

of the representation of on EN and the fact representa-

tion must be faithful. Q.E.D.
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§2.5. Geometric Results.

We now apply the results we have obtained to the

problem of classifying those locally symmetric homo-

geneous spaces which have equivariant tight immersions.

We have the situation G/K locally symmetric ,

7 a real class-one representation of G giving O-tight

immersion r: G/K -> EN . By the corollary to Th. 2.3

we can assume 7 is in fact irreducible and we get the

following classification theorems.

Theorem 2.9. Let G/K be an irreducible locally

symmetric space and 7 an irreducible class-one

orthogonal representation of G giving the immersion

7: G/K -> EN . Then the following are equivalent.

(i) v is 0-tight.

(ii) G/K is a symmetric R-space and 7 is in fact

one of the imbeddings constructed in [12].

(iii) 7 is tight (has minimal total curvature).

Theorem 2.10. Let G/K be a locally symmetric

space. Then the following are equivalent.

(i) G/K covers a symmetric R-space.

(ii) There is an irreducible class-one representa-

tion 7r of G such that the second fundamental form of

the immersion 7: G/K -> EN is an onto map.

Proof of Theorem 2.9. (i) => (ii).
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Since r is an irreducible representation of G ,

the immersion r: G/K -> EN is substantial and thus

since the immersion is 0-tight Th. 2.5 shows the second

fundamental form is onto; so Th. 2.8 shows ;P = 'e EN

is a semi-simple Lie algebra with G the compact subgroup

of Int(e) with Lie algebra L. Thus G is maximal

compact in Int(;) . Th. 2.4 shows that r is an imbed-

ding so K is the subgroup of G leaving e fixed, and

e has eigenvalues 0, +1 ; so by definition G/K is a

symmetric R-space and the imbedding is one of the class

considered in [12].

(ii) => (iii). Shown in Th. 3.1, [12].

(iii) => (i). See Th. 2.1, part (ii).

Proof of Theorem 2.10. (i) => (ii).

f: G/K -> M' is the covering. Let r be

constructed in [12]. Then wof gives the

sion.

(ii) => (i). As above G is

Int(;) where 4 = I + EN . Thus

the isotropy subgroup of e , Ke ,

have the same Lie algebra. Hence

which is by definition a symmetric

Suppose

the imbedding

required immer-

maximal compact in

K is a subgroup of

both are compact and

G/K covers G/Ke

R-space. Q.E.D.

Theorem 2,11. Suppose G/K is a locally symmetric

space which admits a motion group L such that L is

simple, non-compact and properly contains G as a sub-

group. Then L is locally equivalent to an R-space.

916--

48.
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Proof. If such a group L exists then by [/72

Theorem 3.1 a space G'/K' equivalent to G/K can be

immersed in ad(L)/ad(G) . Hence G'/K' covers an

R-space by Th. 2.11. Q.E.D.

Remark. We have confined our considerations to

irreducible spaces but the extension to reducible spaces

is easy as given by

Theorem 2.12. If G/K is a locally symmetric space

which has a tight immersion then we can write

G/K = MlxM 2x.**Xh

where the Mi are irreducible symmetric R-spaces.

Proof. We can write G/K = MlXM2 x...xMn where the

Mi are irreducible locally symmetric spaces.

Shall consider the case where G/K = M M2 . The

general case follows easily.

The theorem follows from

Lemma 2.4. Let f: M -> JRN and g: M' -> RN ' be

immersions. Then the immersion

fxg: MxM' -> JRN+N

by fxg (x,y) = (f(x),g(y))
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is 0-tight if and only if f and g are 0-tight.

Proof of Lemma. Let e: M -> JR1 , : M' -> Ml be

functions with non-degenerate critical points. Then the

fn p+X: MxM' -> JR by (cp+*)(x,y) = c(x) + 4(y) has

a critical point at (x,y) if and only if x is a

critical point of e and Y is a critical point of .

If X is a critical point of index i and if ay /s cL

critical point of index j then (x,y) is a critical

point of index I+j so cp+X has only one critical

point of index-0 iff ep, * have only one critical of

index-0, which gives Lemma and Theorem. Q.E.D.
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CHAPTER 3. EIGENVALUES OF THE LAPLACIAN.

1i. An Inequality on the Betti Numbers.

In this section we work with the formula given in

the remark following Def. 2.1. So we are tacitly assum-

ing G/K is orientable throughout this section.

Definition 3.1. If f: M -> RN is an immersion

then the absolute curvature at the point m E M is

defined by

Tm(f) = Idet AJda
Sm

where Sm is unit sphere in M . We have if V(G/K)

is volume of G/K

Lemma 3.1. For the immersions

T(G/K,, EN) =V (G/K)
N-1

r: G/K -> 1RN

or )

Proof. Let u E T0  Then w(g)u E T since
o r(g)e

Y E (G/K)g 0 if and only if there is X E 6 with

Y = (Ad g X) . Thus r(Y)7(g)e = v(g)r(X)e . Thus

(7(g)u,w(Y)r(g)e) = (w,7(X)e) = 0 . Consider the

endomorphism Au of ) . Then

(AuX,Y) = (u,w(X)r(Y)e)
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Thus (A (g)uAd gX,Adg Y) = (u,r(X)w(Y)e) . So

det Au = det AT(g)u . Q.E.D.

So to calculate the total absolute curvature we

need only calculate the absolute curvature at 0 and

this leads to

Theorem 3.1.

C2N-n-1 n/2
E bi(G/K, *) < V(G/K) C2N-n- n

where y is any eigenvalue of the Laplacian and N is

the complex dimension of any irreducible subspace of the

eigenfunctions with eigenvalue y and Cr = volume of

sphere S r .

Prof. Consider once again the situation described

before Th. 1.3. We have r: G -> VN a class one unitary

representation and an immersion v: G/K -> E2 N

Let E To and X and Y E .

(A X,Y) = (7r(X)r(Y)e, ) .

Now A is a symmetric operator so we can choose

an orthonormal basis of ) such that A is diagonal.

Let basis be (Xi) . Then
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n
Det A = 11 (V(Xi)v(Xi)e,)

i=n

Squaring both sides

jDet A g 2 = 1 (v(Xi),7(Xi)e,) 12

< H lv(X) ) 2  by Schwartz'

inequality
E 1v(Xi) 

2 n

< arithmetic, geo-

metric means

< n(,) - (Y)nn
-- n n

Thus IDet Ag < (Y)n/2

So T() < C 2N-n- 1 (Y)n/2

T(G/K,Tr,E N )  V(G/K) C2N-n-1 Yln/2
C2 N-1

The other inequality is merely a Morse inequality. Q.E.D.

Remark. Although this inequality is very weak it

would suggest that to find a tight imbedding the optimal

method would be to immerse in an irreducible subspace of

the eigenfunctions of the Laplacian and procede to

"eliminate unnecessary critical points." This is strength-

ened by the next section.



3. Minimal Eigenvalues for R-Spaces.

We shall prove

Theorem 3.2. For many symmetric R-spaces the tight

immersion is in fact an immersion in a space of eigen-

functions of the Laplacian with least eigenvalues.

(The term "many" will be clearer as we proceed.)

Something of this nature is done in [12]. But the

authors seemed to have ignored to a certain extent the

nA-lresults of [18] especially that X - for any eigen-

value X of the Laplacian.

Proof. We break the proof into a series of Lemmas.

First let us recall the idea of scalar curvature.

For convenience we shall define the scalar curvature at

a point m E M of a Riemannian manifold by

p(m) = - E (R(Xi,X )Xi,X.)
i,j

where R is the curvature tensor and (Xi ] is an

orthonormal basis of Mm .

Lemma A. Let G/K be an irreducible symmetric space

of dimension n . Then

p(m) = n at all points.

Proof. See e.g. [12].



For the isometric immersion 7 G/K ->

(R(X,Y)Z,W) = (7(Y)7(Z)e,w(X)v(W)e)

- ( (X) (Z)e,7(Y)7(W) e) XY Z.)'W

Proof. This is of course just the classical Gauss

curvature equation but in our case has a very simple

proof.

(R(X,Y)Z,W) = - ([[x,Y],z],w)
= - (v[[X,Y],Z]e,w(W)e)

f[[X,Y],Z]e = 7(X)w(Y)r(Z)e - V(Y)T(X)7(Z)e

(R(X,Y)Z,W) = (T(Y)v(z),w(X)v(w)e) - (v(X)r(Z)e,r(Y)v(W)e)

Q.E.D.

spaces we have

EN

T = (v(X)e) T lin. hull (v(X)7(X)e]

Lemma C. The immersion G/K -> EN is minimal in

the sphere.

Proof. cf. [12].

Let Y, X E )

Lemma B.

55.

EN

Now for

whe re

£=0 +E N

= To

Lemma D. Then



trace v(X)7(Y)IT = B(X,Y) for some

constant K.

First let H(X,Y) = trace v(X)w(Y)

this is K invariant so H = kB . Now by Lemmas 1.4 and

2.2 we can choose an orthonormal basis 0of EN by first

choosing one for

in matrix form

then one for

0A

-A

T
0 so that we have

A(X)

0 

(
V(X)

(X)

w(X)7(y) = 2 tr A(X)A(Y)

= 2 tr v(X)w(Y)

=kBtr V (X)7w(Y)T 0

If we now let be mean curvature normal

0o = V (X i ) ( X i ) ei

Lemma E.

p(o) = (o , o ) - .
0 0

56.

Proof. But

Thus

Thus

IT
0

.Q.E.D.

at 0

To
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Proof.

p(O) = R((X,XJ)Xi,X. )
i,j J

= - " (w(X )r(X)e(x)f (X )e)

+ i ((X i ) (Xi )e,(X j ) T(Xj )e)

Z (w(Xi )w(Xi)e,w(X j)w(Xj )e) = ([o,)

Now consider

(7r i )(X j )e , w(X i ) v (X )e) = - (v(X i ) r ( X i ) r ( X ) e , r ( X ) e

but fT(X )e) form orthonormal basis for To . Thus

E (v(X i ) 7(X )e,w(X i ) v (X )e) =
ij

Lemma F. (§ o, ) = nX where -X is an eigenvalue

of the Laplacian.

Proof. By Lemma C e(gK) = (v(g)e,e) is an

eigenfunction of the Laplacian and by Takahashi's Result

cited in Chapter I-

n
e= - (e,,e) cfe - Xce say

(e,e) = n/X

" - I



4

,o = - Xe

( o, 0) = X2(e,e)

= nX Q.E.D.

Lemma G.

K+l
n -

Proof. Direct from Lemmas A, E and

But K can be calculated easily for

F. Q.E.D.

many R spaces.

We shall do examples.

B. is G invariant so B,, = c B . But

BZ(X,Y) = B (X,Y) + tr v(X)w(Y)

= (l+k)B .

The list can be found in [12] where credit is given

to [8].

1. Hermitian Symmetric Spaces.

By [91 the immersion is given as follows. EN _

and r is equivalent to AdG . Thus tr 7 = tr ad X ad Y

APe() = E (v(Xi) v (Xi )e,e)

= (e,e)

(o,e) = - x(e,e)

But

58.

So

I
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X, Y E . Thus k = 1 and X = 1 which is the

minimum value for eigenvalues of the Laplacian.

2. Sphere.

Let f: G/K -> Fy be the immersion constructed in

Th. 1.3. We can project onto a sphere radius 1 changing

the metric by a factor of Y hence multiplying scalarnn

curvature by . The property of minimality is unaltered

so by a result of Simons [20]

p(m) = nc < n(n-1)y -

nc =

2. Y (n-1)

with equality if and only

if G/K is the sphere

immersed in standard way

This can also be deduced

from [18].

Thus for sphere immersed in standard way

n
Y =

2(n-l)

3. G/K = SO(2n)/U(n)

4 = SO(2n, C)

EN = SO(2n)

l+k = 2

X = 1 which is minimal by [18].

but



G/K = Sp(p+q)/Sp(p)

- = su* (2 (p+q) )

1+k = 2 (p+q)

p+q1
p+q+l

x Sp(q)

minimal by [18].

6o.

Q.E.D.
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