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ABSTRACT

Two studies of the thermospheric physics and dynamics
are considered. In the first study a comprehensive theoretical
discussion of the nature of energy sources and of the general theory
of gravity-tidal wave motions in the neutral gas is given. We con-
sider motions which are of planetary scale in the horizontal and which
have time scales of order of a day or longer. For time scale of one
day we derive equations which generalize the usual equations for
atmospheric tides and may be used to describe the diurnal circulation
of the thermosphere. Motions are classified as thermally, thermal-
-electromagnetically, and electromagnetically driven, according to
which driving force is most important. Motions are further classified
by the relative importance of viscosity and heat conduction as inviscid,
transition, and diffusive regimes. For large ion drag, typical of high
solar activity, we define a "thermal geoplasma regime" which des-
cribes the balance between the thermal forcing and the ion drag in the
momentum equation. This motion regime is fully studied.

The dissipative processes of viscosity, heat conduction, and
ion drag are briefly discussed. The physics of diabatic heating sour-
ces as they occur in the thermosphere are discussed in some detail
from the macroscopic and microscopic pointsof view. Ionization heating
efficiency for neutral particles is found to be as large as 85% and for
electrons as low as 2% above 200 km. A simple and useful expression
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for Joule heating in terms of neutral and drift velocities is derived.
It is found that Joule heating, heating by viscous dissipation, corpus-
cular heating, and chemical heating can only be as large as one tenth
of solar heating.

In the second study the "thermal geoplasma motion regime"
forced by solar heating and infrared cooling is integrated numerically
in the forced region and analytically outside the forced region. The
analytical study reduces to the solution of a fourth order ordinary diff-
erential equation whose solutions are coefficients of spherical har-
monics. Power series solutions satisfying the condition of no flux at
z = " are obtained. Another solution satisfying the boundedness
condition for small z is obtained in integral form. The two solutions
are matched at the upper and lower boundaries of the numerical in-
tegration region. The results further establish that adiabatic heating
and cooling by vertical motions is the "second heat source" of Harris
& Priester.

Thesis Supervisor: Reginald E. Newell
Title: Professor of Meteorology
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PART I. THEORETICAL CONSIDERATIONS

1. INTRODUCTION

1. 1 The General Circulation of the Atmosphere

The study of the general circulation of the atmosphere is the

description and explanation of the characteristic properties of all

circulation patterns which ever occur in the atmosphere.

The circulation patterns include the long-term time and

zonally averaged circulations, synoptic features such as cyclones,

anticyclones, and the jet streams, long and ultra-long waves, and

tidal and gravity waves. From these, only the long-term and

synoptic circulations have received more attention in the general

circulation of the lower atmosphere. Long and ultra-long waves

have received more attention in weather prediction. Because of a

minor amount of the total energy contained in the tidal and gravity

wave, they have not been considered at all in the general circulation

of the lower atmosphere. Only in the thermosphere is the gravity-

tidal motion a dominant feature.

The circulation pattern is described by the field of motion,

temperature, radiation, and other thermodynamic variables.

There seems to be no question that the driving force of the

circulation is the solar radiation. The absorption of this radiation

takes place throughout the atmosphere. Most of the radiation lies
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in the visible region and reaches the earth surface where it is

absorbed and which in turn is transmitted to the overlying atmos-

phere. The remaining solar energy in the ultraviolet, soft and hard

x-rays, and infrared regions is absorbed by the atmospheric gases.

Some of this energy is reflected or scattered back to space and plays

no further role in the energy balance of the atmosphere.

The incoming solar energy is more intense in low than in

high latitudes, and the net result is therefore a considerable excess

of heating in low latitudes, which causes a cross-latitude pressure

gradient. It follows that horizontal and vertical motions must develop

and consequently the atmosphere possesses a circulation to allow a

transport of energy across each latitude.

This circulation must possess a direct meridional cell to

transport the required amount of energy poleward. Since this cell

would also transport angular momentum poleward, there must be

easterly surface winds in low latitudes and westerlies in higher lati-

tudes. But such a single meridional cellular circulation is not ob-

served. The real atmosphere contains eddy structures which have

been extensively described in the literature. The role of the eddies

represent one of the most important aspects of the general circu-

lation of the lower atmosphere. The energy of the eddies in the
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form of available potential energy is gained from the zonally

averaged circulation by transporting energy toward latitudes of lower

temperature, and kinetic energy is returned to the zonal flow by

eddies transporting angular momentum toward latitudes of higher

angular velocity. The gain of kinetic energy from the eddies by

the mean flow has been considered as a new physical phenomenon

and discussed extensively by Starr (1968).

The description and explanation of the general features of

the general circulation in the lower atmosphere as revealed by

observation is discussed in detail by Lorenz (1967). Newell (1968)

has reviewed and discussed the pertinent main features of the general

circulation of the atmosphere above 60km.

1. 2 Atmospheric Tides

The formulation of the dynamical tidal theory in connection

with the oscillation of the ocean and the lower atmosphere, where

the dissipative effect of viscosity, heat conduction and ion drag can

be neglected, was first presented by Laplace (1799, 1825). The

solution of the so-called Laplace's tidal equation has been extensively

studied after the elegant treatment of Hough (1897, 1898), who first

obtained solutions in terms of spherical harmonics. A detailed
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review of the derivation and discussion of the tidal equations are

given by Wilkes (1949) and Siebert (1961). The discussion includes

both gravitational lunar tide and gravitational and thermal solar tides.

Further calculation and investigation of Laplace ' s tidal equations are

presented by Kato (1966), Lindzen (1966b, 1967b) and Longuet-Higgins

(1967), among others. A somewhat different derivation of the class-

ical atmospheric tidal equation has been presented by Dickinson (1966)

and Flattery (1967), based on the primitive equations of meteorology.

A more specialized article on lunar tides has been written by

Matsushita (1967).

The observed diurnal density variation in the thermosphere

indicates that the oscillation has strong thermal origin, that is, the

main thermal drive for the diurnal oscillation is the absorption of

the extreme ultraviolet solar radiation. It will become clear from the

present study that the theory of the diurnal bulge can be interpreted

as an extension of the diurnal tidal theory of the lower atmosphere.

1. 3 Motivation and Statement of the Problem

To begin with the study of the diurnal circulation of the

thermosphere, one certainly would start with the description of the



general behaviour of the wind and temperature fields, and the neutral

and ionized constituents. Having established from observation what

the general features of the circulation are, one would proceed with

theoretical studies searching for the explanation. To do this we would

employ our experience with the analogous circulation of the lower

atmosphere or else we would develop new procedures to provide

deeper physical insight to the problem at hand.

We would be, however, far behind if we followed systematically

this procedure. There are practically no observations on a global

scale that can be used for obtaining the statistical properties of the

circulation. A somewhat detailed picture of the fields of neutral gas

density has only emerged from the analysis of satellite drag measure-

ments above 100km. There is also some very scarce data on compo-

sition and temperature obtained with high altitude rockets. The

statistics of these data has revealed five different effects on the net-

tral gas density, which are:

1) the diurnal variation

2) variation with geomagnetic activity

3) the 27-day variation

4) the semiannual variation

5) variation with solar cycle

-17-
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Detailed discussion of these effects are given by Jacchia (1967),

Jacchia and Slowey (1967), Keating and Prior (1967), Harris and

Priester (1967), and Priester et al. (1967).

To attempt an explanation of the physical behavior of the

thermosphere we further require the knowledge of the temperature

and wind fields. The temperature can be derived from density fields,

and the wind fields, due to lack of observations, can only be derived

indirectly. Here we compute these fields theoretically and investi-

gate their role. From our experience in dynamical meteorology we

know that the thermosphere must possess a circulation, since a state

of no motion would be incompatible with the poleward temperature

gradient which radiative processes alone would demand. We expect

that these large-scale motions will play a significant role in most of

the problems that remain to be solved.

The present study, therefore, is motivated by the lack of the-

oretical description which can explain properly several time-varying

features of the earth's upper atmosphere. Among these are the dis-

crepancy between the phase and amplitude of the diurnal bulge deduced

from the analysis of satellite drag measurements (Jacchia and Slowey,

1967) and the results of the quasi-static diffusion model when the ex-

treme ultraviolet solar radiation is the only heat source (Harris and
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Priester, 1962, 1965; Mahoney, 1966), and the disagreement between

the small latitudinal temperature gradient observed by Jacchia and

Slowey (1967) and the large equator-to-pole temperature difference

at the equinox and the winter solstice calculated by Lagos and Mahoney

(1967) using a quasi-static diffusion model. Theoretical explanation

of the observed semi-annual variation in the thermospheric density

is still lacking (Harris and Priester, 1969), and many features of

the interaction between the upper atmospheric heating during mag-

netic storms by Joule dissipation of ionospheric currents and the

subsequent density changes remain unsolved. The problem is of

fundamental importance to the aeronomer because of the implications

of the motion field in modifying the neutral and ionized density distri-

bution and the ionospheric currents associated with such motions; and

because such motion will supply sources of energy through large-scale

circulation, which in turn will have significant geophysical effects at

these altitudes.

It has been previously suggested that motion would account

for the phase-amplitude discrepancy (Newell, 1966; Lindzen, 1966a;

Lagos and Mahoney, 1967), and the latitudinal variance (Newell, 1966;

Lagos and Mahoney, 1967). Geisler (1966, 1967) Kohl and King (1967),

Bramley (1967) and Rishbeth (1967) have undertaken the task of
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calculating the motion field of the neutral thermospheric gas in con-

nection with its possible effects on the ionization distribution in the

ionospheric F region. Volland (1966, 1967) and Lindzen (1967a)have

also computed the horizontal wind system and indicated that horizon-

tal advection of heat would possibly account for the "'second heat source"

postulated by Harris and Priester which was required in order to

bring into agreement the calculated and observed variation of the

diurnal bulge. May (1966), however, has pointed out that a mean

zonal wind can only decrease the amplitude but does not change the

phase of the diurnal bulge. More recently, Lagos (1967, 1968) and

Dickinson, Lagos, and Newell (1968) have shown by scale analysis

and by an initial-boundary value, two-dimensional numerical model

that adiabatic heating by vertical motion plays an important role in

the diurnal oscillation of the thermosphere. When this effect is in-

cluded in the dynamical study, the diurnal phase discrepancy discussed

above disappears. Furthermore, it was shown that horizontal advec-

tion of heat has negligible effect on the phase of the diurnal bulge.

Our previous numerical studies, however, have certain short-

comings such as neglect of ion drag and the two-dimensional approxi-

mation. From the studies of Lindzen (1967a) and Geisler (1966, 1967)

it is known that neglect of ion drag can result in horizontal and hence
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vertical wind amplitudes that are overestimated by a factor of 3 or

greater. Motions are of a global nature with strong horizontal coup-

ling. Neglect of meridional velocities in the continuity equation may

result in further overestimation of vertical velocities if the divergence

of the north-south motions cancels the divergence of the east-west

motions. Hence, the actual vertical velocity may differ considerably

in amplitude and phase from that obtained using a two-dimensional

model. The concomitant adiabatic heating would, therefore, change,

and our result that adiabatic warming associated with the vertical

motion gives the proper "second heat source" should be considered

accidental. These uncertainities will remain unless these approxi-

mations are lifted.

Our next task is therefore, to remedy the deficiency discuss-

ed above by retaining ion drag and extending the numerical studies

to three dimensions on a spherical earth. The hydrodynamic system

of equations is now greatly complicated and can be numerically tract-

able only if some other terms in the momentum equation are disre-

garded. Hence, we are forced to consider in our analytical and nu-

merical studies the simplest yet consistent system of equations which

retains ion drag and describes the coupling between the equation of

motion and the thermodynamic equation on a spherical earth. In this
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system, the horizontal momentum equation is replaced by the balance

of pressure gradient force with ion drag force, and the vertical mo-

mentum equation is replaced by the hydrostatic approximation. The

thermodynamic equation is exact to a first order approximation, how-

ever.

1. 4 Scope of the Present Study

This work will be concerned with the formulation and dis-

cussion within the framework of modern dynamical meteorology of

the general theory of gravity-tidal wave motions in the thermosphere.

The diurnal circulation, therefore, will be properly described.

Two main subjects of the thermosphere are considered:

The theoretical and the analytical and numerical part. In the first

part we present the system of governing equations and introduce some

useful approximations. Viscosity, heat conduction, and ion drag are

retained in the formulation and discussion of the equations. The na-

ture of several sources of energy and the relevant physical parameters

are critically reviewed and some new ideas are introduced. These

are discussed in the next six chapters and represent the first most

comprehensive theoretical study on the subject. An application is pre-

sented in the remaining chapters, dealing with a discussion of analyti-

cal solutions and the numerical simulation of the circulation in
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the middle thermosphere based on the approximate set of equations

outlined at the end of last section. The role of vertical motion as

a source and sink of heat through adiabatic compression and expan-

sion of magnitude comparable to solar heating is further established.

The theoretical formulation of the equations uses the loga-

rithm of pressure as an independent variable instead of height. This

transformation of. the vertical coordinate has been used by many

writers in order to simplify the formulation of many atmospheric pro-

blems. In dynamic meteorology pressure is used as a vertical co-

ordinate in the theory of vertical motions (Bjerknes et al., 1910), in

the theory of quasi- static wave motions in autobarotropic layers and

in the theory of turbulent motions (Bjerknes et al. , 1933). This me-

thod has been extended and proved to be valid for any hydrostatic sys-

tem (Eliassen, 1949), and used in the analysis of geostrophic motion

(Phillips, 1963). In the theory of atmospheric tides the pressure and

the logarithm of pressure as the vertical cooridnate has been also in-

troduced successfully (Flattery, 1967, Dickinson, 1966, 1968). Under

this transformation, the equations of motion and continuity are sim-

pler than in the usual form. Thus, density drops out in the horizon-

tal equation of motion if viscosity is not included, and the equation

of continuity expresses that the three-dimensional velocity field is

solenoidal.
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The vertical structure equation of the tidal theory for a non-isothermal

atmosphere is much simpler if the logarithm of pressure, rather than

altitude, is used as the vertical coordfnate (Dickinson and Geller, 1968).

In the thermosphere we not only obtain a simpler continuity

equation, but as indicated by the model computations of Mahoney

(Mahoney, 1966), the constituent partial pressures, mean molecular

weight, mean specific heat, and solar heating at constant solar decli-

nation, can be expected to vary much less on constant pressure sur-

faces than on constant height surfaces, for a given composition in the

lower thermosphere. We can also expect that the electron density in

the F-region will vary much less on constant pressure surfaces than

on constant height surfaces.

In summary:

Chapter 2 presents the hydromagnetic equations for the

thermosphere. The hydromagnetic approximation is based on the

concept of a single-component, electrically conductive but neutral

fluid interacting with an external magnetic field. The mechanical

motion of the system can then be described in terms of the usual hy-

drodynamic variables of density, velocity, and pressure. At low-

frequency oscillation of the fluid compared to the mean ion gyrofre-

quency, the description in terms of a single fluid will be valid. Thus,
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our analysis of the thermospheric motion with further assumptions

will be restricted to: a) use of a continuum Newtonian fluid model,

that is, a fluid model whose stress components are linear functions

of the rate of strain components; b) the mean molecular weight and

mean specific heat depend only on pressure; and c) the perturbations

are in hydrostatic balance. The theory then becomes a generalization

of theories of dynamical meteorology and tidal theory for the lower

atmosphere.

The usual continuum Newtonian fluid theory of atmospheric

motions may be employed so long as:

1) the mean free path of gas molecules is small compared

to the typical distance scales of the motion and the collision

frequency of the plasma particles is large enough.

2) local departure of the fluid molecules from a Boltzman

velocity distribution are small so that pressure density,

temperature and other thermodynamic variables may be de-

fined and the equations of equilibrium thermodynamics apply.

Both of these assumptions can be readily justified up to

the base of the exosphere (roughly 500km) for atmospheric

motions with a horizontal scale of at least 103km and

appear to be approximately valid to altitudes twice as

great, provided
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planetary horizontal scales of motion are considered. It

must be noted also that a continuum fluid model approach

has been employed to discuss flow past the magnetosphere

at several earth radii altitude (Spreiter, Summers and Alksne,

1966).

The concept of hydrostatic balance can be extended to heights of rough-

ly 500 km (cf. Anderson and Francis, 1966) by correcting for parti-

cles with escape trajectories, but at such levels the mean free paths

become greater than the radius of the earth and the collective behaviour

implicit in a fluid model is gone completely.

In chapter 3 we discuss the scaling assumptions of the hydro-

magnetic equations for use in the study of thermospheric dynamics.

We shall exhibit in a systematic fashion the lowest order balances

that occur in the governing equations for different ranges of relevant

nondimensional parameters. The procedure of dimensional analysis

used here is analogous to that employed in earlier studies of dynamic-

al meteorology (Charney, 1947; Burger, 1958; Charney and Stern, 1962;

Phillips, 1963; and Pedlosky, 1964) and in the theory of rotating fluids

(Greenspan, 1964). We then nondimensionalize the govern-
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ing equations for motions with a horizontal scale the radius of the

earth and with a vertical scale assumed to be an atmospheric scale

height. Other important parameters introduced include a time scale,

a Rossby number measuring amplitude of nonlinear advections, an

Ekman number determining the relative importance of viscosity, a

flux tube drift velocity, ratio of ion collision to gyrofrequency and

a parameter measuring the ionization density.

In chapter 4 we take the Rossby number to be small and

classify various possible motion regimes according to the values

assumed by the other nondimensional parameters. For very small

Ekman numbers we define an "inviscid regime, " for Ekman number

of order one, a "transition region, " and for very large Ekman num-

bers, a "diffusive regime. " The inviscid regime motions match be-

low to motions of the lower atmosphere. The diffusive regime motions

match above to motions of the exosphere where gas collisions become

negligible and the usual laws of continuum single fluid model breaks

down. For small time scales applicable to longitudinal asymmetric

motions with periods of a day or less but greater than the period of

buoyancy oscillations, we follow the terminology applied to motions

of the lower atmosphere in referring to the motion as "gravity-tidal

waves. .' For larger time scales applicable to longitudinally averaged



-28-

motions, we obtain various other approximate systems of equations

according to the relative importance of the thermal and electromag-

netic driven forces which are implied by different scalings. One

such a motion regime is the thermal geoplasma regime which describes

the balance between the thermal forcing and the ion drag in the hori-

zontal momentum equation, and which forms the basis for the numeri-

cal study.

In chapter 5 we discuss the mathematical formulation of the

physically- meaningful boundary conditions required for specification

of well-posed problems in thermospheric dynamics. In chapter 6 we

discuss the physics of the dissipative processes of viscosity, heat

conduction and ion drag. The time and space dependence of the mag-

nitude of ion drag for various ionization profiles and model atmospheres

is presented.

In chapter 7 we review and discuss the present knowledge

of the diabatic heating and cooling as it appears in the thermosphere.

We discuss the relevant photochemistry of the neutral and ionized

constituent in the thermosphere and outline the correct procedure to

calculate the heating efficiencies for the neutral and electron gas

components. The values obtained are compared with current values

available in the literature. Other heating sources which we discuss
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briefly include Joule heating, heating by viscous dissipation, corpus-

cular heating and chemical heating.

In chapter 8 we describe the procedure to develop the numeri-

cal model for the diurnal circulation in the middle thermosphere. By

neglecting viscosity, coriolis force, and inertia in the momentum

equation, the system of equations is easily reduced to a fourth-order

differential equation in the z co-ordinate, the coefficients of which

-z
depend on e , and where the dependent variables are coefficients of

Legendre Polynomials. Consequently, all hydrodynamical variables

and forcing functions are represented in terms of spherical harmonics.

The differential equation is integrated numerically in the transition

region and analytically above and below this region. Conditions at

the upper and lower boundary of the numerical integration are supp-

lied by matching the analytical solutions to the numerical solution.

The numerical procedure is also outlined.

Chapter 9 summarizes the principal results obtained from

the model calculations when different parameters are changed sys-

tematically. In chapter 10 we discuss the results of velocity and

temperature fields and briefly indicate the most important conclusions

which can be deduced from our theoretical analysis and model calcu-

lations.
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2. THE DYNAMIC EQUATIONS WITH VISCOSITY,

HEAT CONDUCTION, AND DRAG

In this chapter we present the general equations that govern

a large class of fluid systems, such as an electrically conducting

Newtonian fluid, where viscosity, heat conduction, and electrodyna-

mic effects. are present. These equations are used to derive the pri-

mitive equations of dynamical meteorology, which have been taken as

the starting point for the study of thermospheric dynamics. The plasma

nature of the thermosphere introduces an additional complication. The

plasma has three components, and there is a coupling between the

motion of the electrons, that of the ions, and that of the molecules.

These couplings make the derivation of the governing equations very

complicated. At very low frequency oscillations that involve the mo-

tion of the fluid, the system can be described in terms of a single con-

ductive fluid with the usual hydrodynamic variables of density, veloc-

ity, and pressure. At these low frequencies the displacement current

in Ampere's law is neglected and the approximation lies in the mag-

netohydrodynamics domain. Thus in addition to the gas dynamics

equations which determine the density, pressure, velocity, and tem-

perature, we must also use the Maxwell equations in order to obtain

the strengths of the electric and magnetic fields. We note that when

a conductor moves in a magnetic field, an induced electrical field is
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generated in accordance with Faraday's law. In the thermosphere, the

source of this electrical field is either the dynamo field in the E-region

which drives the motion of electrons and ions in the F-region or lies

in the magnetosphere. Consistent with the magnetohydrodynamics

approximation, an additional term, J x B (the pondermotive force

acting on the conducting medium), will appear in the momentum equa-

tions, and a term J • (E + V x B) in the energy equation.

2. 1 The Exact One-component Gas Dynamic Equations

For a rotating spherical coordinate system (X ,G , r

where h , and r represent longitude, latitude and altitude

respectively, these equations are:

The equation of motion:

p + 2p x v = - V P - pg + J x B + V I (2.1)
dt

The equation of mass continuity: (2.2)

3+ V (p v) = 0
at

The energy equation (see Appendix I for derivation of this equation):

pT ds = V - (KV T) +4 * (E + V x B) + ( + pq
(2. 3)
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the equation of state:

P=Rp T

Maxwell's equations:

V xB= J

(2. 5)

V xE = -
at

where, for a Newtonian fluid,

dIV H = - V x- VV2 p + V- X (V x V) +

2
3 + VV •

P (V V)

(p V)

S= ( v) *

d a
d - +V V
dt at ~

V =
r cos ' ax+ r a K ar

r 30 r

(2.4)

(2.6)

(2. 7)

(2.8)

(2.9)

* V

(2. 10)
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and where

v

t

p

T

p

g

JxB

B

E

J

K

q

J (E+VxB)

R

mIn

= vector velocity

= time

thermodynamic pressures

= Temperature

= entropy

density

= acceleration of gravity

= pondermotive force per unit volume

due to the magnetic field

= magnetic field

= electric field

= electric current density

= viscous dissipation function

= viscous stress tensor

= rate of rotation of the earth

thermal conductivity coefficient

= dynamic viscosity coefficient

= diabatic heating rate per unit mass

= Joule heating

= R*/m, where R universal gas constant

= mean molecular weight
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In these equations and definitions we have used the MKSQ (meter-

kilogram-second-coulomb) units. The electromagnetic fields in the

fluid are described by (2. 5) and (2. 6). For electrically neutral

plasma, as is the case in the thermosphere to a high degree or ac-

curacy, the electrical charge density is zero and consequently the

two divergence Maxwell's equations are V * D = O and V* B = O.

We have neglected the displacement current DD/at in (2. 5)

according to the MHD approximation. Since the thermospheric plasma

is not ferromagnetic, the magnetic permeability is unity. Next we

need to specify a relation between the current density J and fields E

and B. This relationship is given Ohm's law:

J = QT(E + V x B)

(2. 11)

where Or is the electric conductivity tensor. In the energy equation

which is derived in Appendix I, we find that the thermodynamic pressure,

the internal energy and the reversible work done by the fluid include

mechanical and magnetic components. However, the magnetic component

has a zero net contribution to the entropy, and hence, the general

equation for gas dynamics applies with an additional term due to,

Joule heating.

2. 2 The One-component Gas Primitive Equations
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The solution of the system (2. 1) - (2. 6) is a formidable

task and we don't intend to do this here, but rather to systemati-

cally derive another approximate, and hence more tractable con-

sistent set of equations. To simplify the problem we shall restrict

the analysis to motions with perturbation densities and vertical pres-

sure gradient hydrostatically balanced. The assumption of hydro-

static balance implies the neglect of the vertical acceleration, the

vertical component of the coriolis force, the viscous force and the

ion drag, in the third component of the momentum equation. To

justify this approximation it is necessary to reduce the hydrodynamic

system of equations to an equation in a single variable with and with-

out the hydrostatic approximation and see under what conditions the

hydrostatic solution will be accurate. It follows from this analysis

that if the time scales of the vertical forces and acceleration are

large compared to the buoyancy time scale, which is approximately

102 sec, then hydrostatic balance is justified. Ion drag time scales,

for typical values of the ionospheric parameters, are 103 sec or

greater. Planetary scale motions with periods of several hours or

greater and with vertical length scale of one scale height should be

in hydrostatic balance. We then use z = log (po/p) as a vertical co-

ordinate, where p is the total pressure of the fluid and po is some
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reference pressure to be later specified. The vertical component of

the momentum equation is then the hydrostatic relation

a -RT
Sz

(2. 12)

where + is geopotential and T the gas temperature. As indicated

by the model computations of Mahoney, the mean molecular weight

and mean specific heat, can be expected to vary much less on con-

stant pressure surfaces than on constant height surfaces, for a given

composition of the lower thermosphere to be constant and neglect the

horizontal fluctuation of m and c compared to perturbations on T
p

and take m m(z) and c = c (z) to be specified z-dependent parame-

ters to account for the variable composition in z. This will allow us

to treat the thermosphere as a single component gas with height de-

pendent molecular weight. In Figs. 2. 1 - 2. 2 we sketch the vertical

variation of mean molecular weight and the specific heat at constant

pressure as obtained from the models of Mahoney.

Let D be a typical vertical distance scale of thermospheric

motions and assume motions have a horizontal scale a, where a is

the mean radius of the earth. Then let us define the parameter 6 by

6 = D/a

(2. 13)

since, as discussed in chapter I, continuum equations only apply up
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to altitudes of 1000 km, or so, even for planetary scale motions we can

without further restriction assume rc, 1.

Neglecting terms of 0 (A) we may make the following approxi-

mations, originally stated by Phillips (1963); "The radial distance from

the center of the earth is approximately constant so that a) gravity g is

uniform, b) geopotential surfaces are approximately spherical, and c)

the horizontal metric coefficients are sensibly independent of the dis-

tance from the center of the earth". Furthermore, we may assume

that diffusive transfer of heat and momentum depends only on the verti-

cal gradient of the temperature and motion fields respectively. For

planetary scale motion this approximation aho uld be valid up to about

500 km. At this and higher altitudes the motion can choose its own

scale height so that the horizontal component of diffusive terms is

important and must be retained.

Let the eastward, nortward velocities, and the vertical

motion parameter be

u = a cosA , v = a , w = z (2.14)

The equations of motion and conservation of mass may then be writ-

ten



st Cos IP j X
Lrsin o(2 (2.15)

Jt P
" a Sini(Qn A\) F F

V cV (2.16)

+ 5j(rcos)j+

u s
R CoS 5 N

dz. -W- 0 (2.17)

Lr W dCL )1

Above 100 km the electromotive forces or the so-called iondrag

forces FA I F are of the following form,

these expressions are given in appendix II,

ni i/ n( (uF (ud

the derivation of

u) + f+(vd - v) sin I)

(2. 19)

((vd - v) sin 2 - + (ud - u) sin I)

where we use the definitions

I

d
dt

-38-

F ~L~A

(2. 18)

F =_n i i n,F, I: , f 4.

ju

(:T
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p+ = ./w.+ 1:1/

v = the frequency of ion-neutral collisions per ion
i

n -1W = the mean ion gyrofrequency, .q 200 sec ,
1 i

where q is the ionic charge, and B the magnitude of the earth's

magnetic field.

n. = number density of ionized molecules
1

n. = number density of neutral molecules
n

Pi = density of ionized molecules

I = magnetic dip angle, (tan I = tan 2 4m , where m is

the magnetic latitude.)

ud d = the components in the " and ¢ directions of

the flux tube drift velocity E x , / 1 B 2 where E is the

net electric field due to polarization in the ionosphere or magnetos-

phere.

The viscous

approximation are of

1 a
Fv pH az

1
Fcv pH 3z

forces F v

the form

u

H az

H avT _ _Z

where H = RT/g is the atmospheric scale height.

F v to a first

(2.20)
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The energy equation (3. 3) may be written

dT 1 dP
p dt p dt cond

(2.21)

Here q cond denotes the conductive heating and Q denotes

all other forms of heating per unit masses.

Q is written as

Q - qSR + IqR + qJE + qDS + qEX

(2.22)

where

= heating by solar radiationqSR

QIR = cooling by infrared radiation

JE = Joule heating

qDS = heating by molecular dissipation

qEX any other externally specified heating,

such as corpuscular heating, heating by chemical

recombination.

Since the temperature dependence of qIR is negligible, as we shall

see later, we assume here that qSR qR , and 4EX

(e) + +
are externally specified, and take q = qSR IR EX +



-43-

The conductive heating, to a first approximation is

taken to be given by

1 8 K 2T
cond pH 8Z H 8Z

(2.23)

We note that the coupling between the electromagnetic

and mechanical effect in the momentum equation are via the drift

velocity Yd . An explicit expression for the drift velocity can

be obtained, but this will not be necessary since we shall only be

restricted in this work to thermally forced motions. Finally we note
-i

that the adiabatic heating given by - -idp/dt can alternatively be

written as - R(z)wT.
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3. THE NON-DIMENSIONAL EQUATIONS

3. 1 Scaling Assumptions

We shall analyze motion characterized by the following scales

horizontal scale = a

vertical scale = D

time scale = 1/2 e f

scale of maximum horizontal velocity = C

where a is the radius of the earth, and where we now take D to be

order of magnitude of a scale height, and C is taken to be order

of magnitude of 100 m/sec or less. E is a dimensionless parame-

ter. It is equal to unity for the time scale of longitudinal asymmetric

motions, and much smaller than one for the time scale of longitu-

dinal average motions.

From the relevant dimensions of the problem at hand, we

may form the following nondimensional parameters. We have the

Rossby number R0
o

-" c/2ZN 1/10

(3. 1 )

which describes the ratio of the motion velocity to the earth's velocity

of rotation. Also we have the Prandtl number, which we denote
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f= c n / K . 4 (3.2)
p i oo

describing the ratio of viscosity to heat conduction, and the Ekman

number E

E,,.,-Alo HO FO (3.3)

which measures the ratio of viscous to Coriolis forces. Further-

more, we take A = H , / (/ H) and K = H K/ (K H) to be

0 (1) nondimensional viscosity and heat conduction coefficients. Here

0o and K are / and K evaluated at some reference level z .

It will be convenient to divide the factor n. Y. / n n in (2. 19) by
11 n

2 A to define a nondimensional ion drag coefficient
-&

IV; = ( , n,) V / A 5 / 0 7,' (3.4)

Typically, the ion number densities in the ionosphere are in the

5 6 3
range 10 to 10 6 / cm , hence N. 0(1).

1

The hemispheric average of the external heating (e) gives

diabatic heating rates of 0[ (2 .A) a /c 100 deg/hr. and de-

viations from this hemispheric average will be assumed to give di-
= (e) (e)r

abatic heating rates of " 10 deg/hr. Let , , and

(e)'
( be, respectively, the hemispheric average, the longitudinal

average deviation from this average, and the deviation from the

(e)
longitudinal average of the heating $ . The nondimensional heating
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of order unity is denoted Q

Qz Q0 + R?

where we use the definitions

(z, t)

Q, x, ,z,t)9; h. ZJ 0 t

and

&.1

written

* ~ Q1

Roo/Cp
(.21) o.

and Roo is R evaluated at z . According to (3. 5), the deviation
0

heating is 0 (Ro) smaller than the mean heating, giving a consistent

perturbation expansion, with the equations for the hemispheric mean

state of lower order than the deviation equations. The deviation tem-

peratures and geopotentials observed in the upper thermosphere are

considered 0(R ) of a mean reference state, but the calculated de-

viation heating rates are actually found to be as large as the hemi-

spheric mean rate.

(3. 5)

(e)

(e)

IC) (3.6)
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3. 2 The Nondimensional Equations

When the governing equations are written so that dependent

and independent variables are nondimensional and of order unity, in-

formation concerning the amplitudes of these variables is relegated

to the nondimensional parameters of the problem. We obtain the re-

levant small parameters in which solutions to the governing equations

can be expanded. The equations of Section 2. 2 are written in terms

of nondimensional starred variables and are the same as those given

in Dickinson, Lagos and Newell (1968). We use the following defini-

tions

•P-I 2 • CL) O

The nondimensionalized atmospheric velocities are measured rela-

tive to the earth's rotational velocity.

We now may use the above definitions to write equations

(2. 12), (2. 15), (2. 16), (2. 17), (2.21), and (2.24) respectively as

T (3.7)



t -

z x vE 5

+ ,e siA .. .F z E e

cS 4;xr as
U

-
~ oS '

- w 0r as-9 ),

E-t~
E+ W

where we use the definitions,

U
os iP

X I

+ Or
,. l---

gI j f*
L
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at cos4

, ,,

(3.8)

( 3. 9 )

( 3.10 )

ez K
3z

S+ 4.+ R 91Q
ax ( 3.11)

tenAllUr.

* *Z

z

qz
IA
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s in z ( T 31 -4

( J f)Cu ((, '
S

(A

RP= c/sco
4wVfL

QI= e-1

F
Fz

F e

_ fo m a4) sf I .r

F Z

Ca
Cp

CP

d u
dz

Lr

;C,/Cp.
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In order for ( 3. 7 ) - ( 3. 11) to represent a closed system of diff-

erential equations, it is necessary to prescribe the heating, the drift

velocity, and the ion number density. These parameters, which in

general may depend on motions, are here assumed known. Assuming

now that the Rossby number defined by ( 3. 1 ) characterizes the

amplitude of the atmospheric velocities, we seek solutions to (3. 7) -

(3. 11) expressed as an asymptotic power series in R .

Substituting (3. 12) into (3. 7) - (3. 11), using the definitions

of Section 3. 1, and requiring that terms multiplied by a given power

of Rossby number separately must satisfy the equations, we obtain a

sequence of linear partial differential equations. Implicit in this pro-

cedure is the assumption that all parameters and variables are now

0 (1) except the Rossby number R , which is a small parameter.
o
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The lowest order system is

(3. 13)
_R le

= Q ()

We shall assume that any boundary conditions applied to (3. 13) will

be independent of x, y and t so that T
0

and 'fo will depend only

on z. These resulting dependent variables will then be hemispheric

averages or standard atmosphere.

The first system is

+N , -E eeZA(A)zjut\

+ E e

a -

A

Lec

- Vf, 6in z , v,

. v(u, V,

:),N ~ Sjrir Ob go)

c w,dt/

dr
I

c DJ 9

4----st* -z)

149 (3.14)
U.SiIz)

E

t,

Et

C) 00

SE e z A(A.)
17Y az ax

, ( a-, Yj
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whereweuse N NA _(I ) 4, S C( 27o

The parameter S ,-1 for a 1000 deg K isothermal atomic oxygen

atmosphere. The first order system provides an approximate model

for the description of motions of the neutral gas in the thermosphere.

Equation (3. 14) has been written so all forcing terms, assumed

known, occur on the right-hand side. The higher order equations

have a left-hand side similar to (3. 14) but their right hand sides

contain forcing by nonlinear terms of lower order. Knowing the

solution of (3. 14) we can solve the second order system, and by

further iteration, we can solve the higher order systems.
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4. CLASSIFICATION OF MOTION REGIMES ,

4. 1 The Nature of Nondimensional Parameters

Motions described by the system (3. 14) will depend primarily

on the choice of parameters f , E N , +, and (ud vd),

since the parameters /I' , S, can vary in the thermosphere but

little from their mean values. We shall now introduce a number of

scaling assumptions based on the observed range of values assumed

by the parameters, and use these assumptions to derive various simple

systems of equations. These systems are intended to be useful for

theoretical rather than practical applications. For the latter usage,

some of the approximations assumed should and can easily be re-

laxed.

Since we are considering motions with a time scale of one day

or larger we take 6 i. Noticing that a typical average value

5 3for ion number density in the thermosphere is 10 /cm , we assume

that the nondimensional parameter N ~ 0(1). Let us assume that

R , which describes the importance of nonlinear terms, is much

less than one. We see from Figs. 7. 3 that f+ 4' 1 except in the

region in which E 44 1 where we can assume f+ *v 0(1). Also

we assume here sin I '_ 1, which is valid for middle and high

latitudes.
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Given the above restrictions we now have as free parameters

, E ,(u d , v d ) which describe respectively the time scale of

motion, the magnitude of heat conduction and viscosity, and the mag-

nitude of "magnetospheric convection" drives. Three general classes

of motion may be distinguished according to the magnitude of (ud, v d)

These are class I, thermally driven motions, where ud vd L 1,

class II, thermal-electromagnetically driven motions, where ud , vd

0(1), and class III, electromagnetically (or plasma) driven motion,

where u d  vd >> 1. For class I, we may neglect the drive re-

sulting from plasma motions which accompany motions of magnetic

field tubes, while for class III, the plasma motions are assumed to

be aprimary drive for the neutral gas. The studies of Geisler (1966),

Lindzen (1967a), Lagos (1967), Dickinson, Lagos, and Newell (1968)

assume class I motions to occur, while studies of Kato (1956),

Axford-Hines (1961), Hines (1965), Dougherty (1963), De Witt and

Akasofu (1964), and Rishbath et al. (1965), have examined the possi-

ble importance of class III motions.

We have assumed for derivation of our equation two nondimen-

sional time variables according to the value of E . For £ , 1 we

have a short time variable t* , which is of the order of a day. This
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time scaling is appropriate for the discussion of diurnal motions.

For 6 4 1 (say E ,- R ), on the other hand, we have a long

time variable. This time scale, which is longer than a day, is

appropriate for the study of zonally symmetric motions. For the dis-

cussion of long time scale motions, we again start with (3. 7) - (3. 11)

and use the R t time variable. Assuming again (3. 12), we obtain

equations equivalent to (3. 13) and(3. 14) except that the time deriva-

tive terms are deleted. Thus we can classifythe motions according to

these time scales as (1) gravity-tidal waves for 6 = 1, which would

be forced by Q 1 ' and (2) meteorological scale motions for 6 R

forced by Q1

The Ekman number E increases with height approximately

as e z o . Hence, specification of the parameter E specifies a

reference level. Using the discussion of Yanowitch (1967), the fol-

lowing levels are so defined

a) E .4 1, the inviscidregime (9> IOA6)

b) E '* 1, the transition regime ( Io0h i- 1 10i )

c) E > 1, the diffusive regime ( L o~ )

As noted above, we take 4 4 1 for b) and c) and = 1

for a).

The pressure levels for which in practice these regimes
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occur depend on the assumed values for vertical scale of disturbance.

The values given in parentheses above are roughly estimated using

the scaling of this paper (see Table 3).

4. 2 The Inviscid Regime

The inviscid regime thermospheric motions are given to

first order by

I

IuY ,.- . ,,r ,+ -- -- - N(U3ppf,,).+ V , -- . vu, f, + .. Z At- (v U..fU, )..

L/I Hu 4* 4 At (

a,

6d IV

az

motions.

the first

omit

decouple

+ .- (. , ( ts-.J z - , - o
C-4 " o( z

R T&

(4. 1)

Eq. (4. 1) with e = 1 describes class II gravity-tidal wave

To describe class I motions we simple omit ud and vd in

two equations. To describe class III motions we simply

in (4. 1). For class III motions the momentum equations are

d from the thermodynamic equation . In order to study

. W, - lp
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meteorological scale motions, we note that E ' R , and there-
o

fore, to a first approximation we neglect the time differentiated terms.

Eq. (4. 1) should be valid below about 150km altitude. If we

consider motions below 100km, we may further make the assumption

that N 4. 1 to justify the omission of ion drag terms. With this

additional assumption, the first five equations in (4. 1) represent the

usual linearized primitive equations of dynamical meteorology. To

obtain the equivalent form of geostrophic scale analysis discussed by

Phillips (1963) for motions of the lower atmosphere, we simply modify

the first five equations of (4. 1) so that S N Q, " . , 'E R
O

N I. I, and the horizontal scale " ' a

4. 3 The Transition Regime

For transition region motions, we take E = 1, and obtain

to first order

e (o, , ,) - 5'Ae

6 - 4  -a ,,, - -V (4.2)

-L- (C# 4- J 7ems 0 WIN



-58-

b i -- RT
z

___'r; z / w~s = ,ZaT; e 0 + W,~5= 4a) t*dr z
(4.2)

Eq. (4. 2) with 6 = 1 describes class II motions. Again we

omit ud and vd for class I motion and 4), for class III motion in

(4. 2) . The gravity-tidal wave motion is appropriate to describe the

thermospheric diurnal bulge. For meteorological scale motions, we

simply omit the time differentiated terms since they are multiplied

by Ro . The resultant system of equations is appropriate to the

study of the seasonal and long time thermospheric motions, and can

easily be modified to describe the meridional circulation of the

thermosphere.

4. 4 The Diffusive Regime

The diffusive regime motions

given by

du, 0590 ,

Ee zdI -z

~.Z.rd "
, ,,,o

to first order are simply

0

_O

=O

dz

(4.3)
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Eq. (4. 3) describes motions of class I and II. To describe class III

motions, (4. 3) is modified so that N. U and N. V appears in theid Id

right hand side of the first two equations. Eq. (4. 3) together with appro-

priate boundary conditions, such as the requirement of no heat, momen-

tum, and mass fluxes at infinity establishes that, to the order that

(3. 14) holds, U. , V 1  W and T are constant with z. At very

high altitudes, however, the vertical and horizontal components of

diffusive terms balance, as discussed in section 2. 2.

4. 5 The Thermal Geoplasma Regime

To insure the validity of the scale analysis, it was necessary

that the nondimensional ion drag coefficient N, defined by (3. 4) be

of 0 (1) or less. An interesting motion regime results if this res-

triction is violated. This would be the case if the ion number density

5
is greater than 2, . 10. Typical values for the ion concentration

above 25km at daytime is 106. This number will increase by a fac-

tor of 2 at the equinoxes in middle latitudes and by about a factor of

5 at sunspot maximum. This will result in ion drag dominating in the

-1
momentum equations. For E , 0 (1) and N. ,v 0 (R ) it is easily

1 O

shown that ion drag term will balance the pressure gradient to zeroth

and first order approximations in the momentum equation.
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-1
N i V (R -1) or larger will occur within 1. 5 to 2 scale heights above

1 O

and below the F-region peak, for the period described above (i. e.

daytime, sunspot maximum and at the equinox).

We shall, therefore, call the Thermal Geoplasma Regime

that mode of motion in which the horizontal component of the ion drag

force is balanced, or nearly balanced, by the geopotential pressure

gradient force. This mode of motion is somewhat equivalent to the

geostrophic motion, the approximate balance between the coriolis

force and the horizontal pressure gradient force, in the lower atmos-

phere.

The thermal geoplasma regime motions to first order are

simply described by the system of equation

a464 
4);- 

I
d (4.4)

* a -),
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Here again, 6 will take the value of unity for gravity-tidal

wave motions and the magnitude of Ro for meteorological scale mo-

tion.

Eq. (5. 4) forms the basis for the numerical study discussed

in chapter 8.

The above analysis into equations for inviscid, transition,

diffusive, and thermal geoplasma motions has been made to show the

different balances that will be important at different heights in the

thermosphere. For actual application of these equations to real geo-

physical phenomena, it will probably be more convenient to use (3. 14)

as the only system valid at all heights rather than matching the solu-

tions of (4. 1) - (4. 4). Finally, the above discussions are only valid

for planetary scale motions. For motions with horizontal scale much

smaller than the radius of the earth the Ro will no longer satisfy

the relation R 44 1, and therefore, nonlinear terms will need to
o

be retained to first order if we wish to consider motions of smaller

horizontal scale with amplitudes of the order of 100 m/ sec as those

commonly observed.
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5. FORMULATION OF BOUNDARY CONDITIONS

5. 1 Lateral Boundary Conditions

Before the systems of equations (3. 14) or (4. 1) - (4. 4)

can be solved, it is necessary to specify boundary conditions. The

selection of our lateral boundary conditions will depend entirely on

the manner in which the variables are represented. There are two

alternatives: (1) we may represent the variables as discrete functions

on a mesh which covers physical space, or (2) we may represent

the variables by the coefficient of an expansion in orthogonal functions.

For planetary scale motions, the grid point method contains serious

difficulties when extended to cover the entire globe. We, therefore,

choose the spectral representation, on the ground that it does not use

any approximations for the evaluation of horizontal space derivatives,

and though it does not eliminate entirely the necessity for truncation,

it permits a rigid control over the resulting truncation errors.

The shape of the earth suggests that we represent the hydro-

dynamic variables in terms of spherical harmonics. This set has

the advantage that no artificial lateral boundary conditions are neces-

sary.
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5. 2 Vertical Boundary Conditions

The vertical boundary conditions are obtained from physical

considerations. If we consider the thermosphere to extend from the

mesopause to some very high level, we can ignore any effect of the

surface of the earth and extend the lower and upper boundaries to in-

finity. This geometry suggests that the boundary conditions should

be formulated for a vertically unbounded domain and then approximated

by conditions on finite boundaries when numerical methods are used

in modeling the thermosphere.

In the absence of sources and magnetic field each component

of the momentum equation may be regarded as describing two viscous

modes of motion, one growing and one decaying exponentially in z.

Similarly the thermodynamic equation may be regarded as describing

two heat conduction modes. When magnetic field is present in a

weakly ionized gas, the collisions between charged and neutral parti-

cles will essentially provide the coupling between the electromagnetic

and hydrodynamic forces giving rise to two further modes, the hydro-

magnetic modes, which remain when we neglect viscosity. Likewise

as a result of coupling between motion and temperature perturbation,

there will exist two additional modes. This last pair of modes will

remain if we formally neglect viscosity, ion drag, and heat conduction,
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and so may be regarded as the inviscid component of the motion. To

summarize, we expect the vertical structure of solutions to be des-

cribed by six dissipative, two hydromagnetic and two inviscid modes.

Four boundary conditions for z -- are then readily

obtained. These are

C 7

(5. 1)
-z

which implies the conditions of no vertical fluxes of heat, horizontal

u or v momentum, or mass at very high levels. We will make

little error if these conditions are applied at some level sufficiently

high into the diffusive regime.

If we take all sources to vanish below some level, then a

plausible requirement for z - - *1 is that all solutions decay

"exponentially." in the downward direction below the level.
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We would like to obtain four boundary conditions in z from this

requirement. Three conditions follow directly. That is, we require

below the source region that the three downward growing dissipative

modes are identically zero.

First let us consider the situation when the inviscid modes are

evanescent, that is, gravity waves or Rossby waves are not present

in the inviscid equations. Then there will be one inviscid mode where

energy density grows and one whose energy density decays exponen-

tially with decreasing z. We take then as the fourth condition that

the growing mode is absent below the source region. We now have a

well posed problem for the region unbounded for a large negative z

Secondly, let us assume the inviscid modes are wavelike. Then

there will be two normal mode solutions, one mode propagating energy

upward an d one mode propagating energy downward. In order to in-

sure that solutions at a lower boundary contain no inviscid mode that

propagates energy upward, we select the normal mode solutions that

give outward energy flux. If the influence of the lower atmosphere on

the thermosphere is considered, we may explicitly specify waves com-

ing upward from the lower atmosphere. A more detailed discussion of

the mathematical formulation of boundary conditions will be examined

when we apply the system of equations described in the last section

to specific problems.
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6. THE PHYSICS OF VISCOSITY, HEAT CONDUCTION

AND ION DRAG COEFFICIENTS

Various thermodynamically irreversible processes that at-

tenuate or alter the shape of any wavelike motion are present in the

thermosphere. These irreversible processes are represented by

viscosity, heat conduction and ion drag, which have indeed the most

important effects. They represent small departures from an equili-

brium distribution of energy and from an isotropic distribution of mo-

lecular velocities about their mean values, and are mainly due to the

fact that molecules drift to new positions between collisions and re-

quire a few collisions before reaching the mean energy and momentum

values characteristic of their new position.

When we consider a monatomic gas, a molecule exhibits a

lag in taking up the translational energy appropriate to its new loca-

tion. When, on the other hand, we consider a mixture of monatomic

and diatomic molecules, we must introduce the rotational and vibra-

tory energy and further molecular relaxation processes are to be

considered, i. e. the lag of the molecule in taking up the energy of

rotational degrees of freedom behind the taking up of the translational

energy. The number of collisions required for a rotational energy of
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the gas molecule to adjust to the equilibrium condition are very few,

but a much larger number of collisions may be necessary to adjust

the energy in the vibrational degrees of freedom.

Because the time constant of the dynamical processes

we are concerned with is very large compared with the time constant

of the relaxation process or lag, we may still use the concept of

equilibrium thermodynamics (Goldstein, 1960) as long as we intro-

duce viscosity, heat conduction,and ion drag, which are considered

as thermodynamically irreversible processes, in the dynamic equations.

Thus, the coefficients of shear viscosity, /,, , heat conduction,

K , and ion drag, N. (1 + +)-1 , will describe the lag associated

with the taking up of the translational energy in the adjustment of the

molecules to equilibrium conditions. Similarly, the effect of relax-

ation processes associated with the internal degrees of freedom will

be represented by a bulk viscosity, /' . The relaxation times

for dissociation, ionization, and recombination are taken as negli-

gibly small compared with the characteristic time of the dynamical

process we are concerned with.

6. 1 Viscosity

For a perfect collision type gas the coefficient of shear vis-

cosity, "A , is independent of density and is a function of tempera-
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ture only. The temperature dependence of ," varies according

to what molecular model is used (Chapman and Cowling, 1952). For

example, from kinetic theory of gases the simplest model, rigid elas-

tic spherical molecules, gives ' T1/2 . If the force between

molecules of opposite type varies inversely as the th power of

their mutual distance, the temperature dependence of / for point-

centers of force and for a gas-mixture gives / o- T m where

1 2m = +V-l" Experiments show that the actual variation of viscosity

coefficient with temperature is more rapid than T1/2

(see references cited in Chapman and Cowling, 1952). This is be-

cause the collision cross-section, Cf , gradually falls as temper-
1/2

ature rises, since / z T /2

Thus far, the viscosity we are speaking of is of the molecu-

lar type. In dealing with planetary scale motions in which the velo-

cities measured are averages of large spatial and temporal scales,

it is more convenient to introduce a coefficient of turbulent or eddy

viscosity in order to discuss the transfer of momentum. However, the

nature of this parameter, generally speaking, is far from being un-

derstood. When this coefficient of eddy viscosity turns out to be sys-

tematically negative, the effects of the transport processes lies with-

in a new physical phenomena (Starr, 1968) which cannot be treated by
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analogy to molecular viscosity. Whether the actual thermospheric

flow will exhibit negative viscosity effects is too early to speculate.

Finally, due to the presence of ionized particles in the thermosphere,

the coefficient of molecular viscosity will be systematically altered

when magnetic and electric fields are present. In the present study

we only consider the molecular viscosity of the neutral gas component.

6. 2 Heat Conduction

The thermal conductivity, K , is connected with

cient of viscosity, .' , by an equation of the form K

where c is the specific heat at constant volume, and its

with temperature is in general approximately the same to

the coeffi-

" /A' C ,

variation

the varia-

tion of /4 .

For the thermospheric application the temperature depend-

ence of the thermal conductivity and the coefficient of viscosity are

not sufficiently well known. Power constant law ranging from 0. 5

to 1 are being used. For example, Harris and Priester (1962) and

Mahoney (1966) used the square-root law, Nicolet (1963) used K

3/4
T . Konowalow et al (1959) and Dalgarno and Smith (1962) have

calculated the coefficients of thermal conduction and viscosity for

atomic oxygen and found a temperature dependence, for T 4 3500K
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(Konowalow et al) and for 1000K T - 100, 000 0 K (Dalgarno

and Smith), of the form K - T O 71.. Figures 6. 1 and

6. 2 illustrate the vertical distribution of the mean values of/a and

K when the square-root and 2/3's law are assumed. The mean

temperature corresponds to average solar activity and is presented

in Fig. 9. 20.

If the presence of ions and electrons would have to be consider-

ed, then the thermal conductivity should be altered to take into ac-

count the thermoelectric and thermomagnetic effects. For weakly

and fully ionized gases, the thermoelectric effect acts to reduce the

effective coefficient of thermal conductivity. The thermomagnetic

effect acts to reduce the heat flow in the direction perpendicular to

both the electric and magnetic fields. These effects we do not in-

clude in the present study.

6. 3 Ion Drag

We next describe the observational features about the space

and time variation of several ionospheric parameters which comes

into the ion drag coefficient, namely, the ion-neutral collision fre-

quency ( i ), the ion gyrofrequency ( W). ), and the ion concen-

tration (ni). Collision frequencies at ionospheric level are discuss-
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ed by Chapman (1956). Changes in collision frequency are due to changes

in the concentration of ion and neutral particles and molecular weight.

Hanson (1965) has calculated the ion-neutral collision frequencies for

daytime, nighttime, sunspot maximum and sunspot minimum conditions,

and we use these values. The daytime vertical distribution of the &/

),4 ratios are shown in Figure 6. 3. The electron and the ion densities

are quite variable parameters in the ionosphere. The vertical elec-

tron density distribution is characterized by a large diurnal variation

controlled partly by solar radiation and partly by transport processes

due to horizontal and vertical wind systems, electromagnetic drifts,

plasma diffusion etc. The diurnal variation pattern of electron density

is different at different latitudes (diurnal anomaly) and depends on

the season and sunspot activity. Seasonal, geographical and solar

cycle variation of the electron density profile are discussed for example

by Davis (1965). The dependence of the ionospheric F region on the

solar cycle for summer and winter and for low, medium and high la-

titudes at noon, is illustrated in Figure 6. 4.

The concentration of neutral particles for low and high solar

activity has been obtained from Cospar International Reference Atmos-

phere (CIRA, 1965). Using the data from Figures (6. 3) and (6.4) and

the data for ,m% , the dependence of the vertical distribution of the
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ion drag coefficient Ni /( 1+ ) on the sunspot activity are calcu-

lated for summer and winter conditions for middle latitude at noon.

The results are shown in Figures 6. 5 and 6. 6. We have assumed here

that > / does not change with local time and season, and n
m

does not change with season.

For actual application to the numerical study, in the region

above about 15km, we find it more convenient to use the relation

-t/

Y' =  O m and L~ 1 . Hence, the ion drag

2 -1 -10 -1 -6
coefficient N = N. (1 + + ) 7 10 ( 22 ) n. e 5. 10

n.. A set of vertical profiles of N is presented and discussed in
1

chapters 9 and 10.

Viscosity and heat conduction play an increasingly important

role at sufficiently large altitudes z , since the density roughly de-

creases exponentially as z -' . Ion drag will also be important

in the altitude range between 200 and 500km and especially at periods

of maximum solar activity. The dissipative effect of these processes

will damp the motion at high altitude. These damping processes and

other additional effects of viscosity, heat conduction and ion drag will

be further discussed in the next chapter.
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7. THE PHYSICS OF DIABATIC HEATING

The most important diabatic processes, in the thermosphere,

are associated with several modes of heating, each given a contribu-

tion to the generation of total potential energy. The modes of diabatic

heating as defined in section 2. 2, are:

(1) absorption of EUV solar radiation

(2) infrared radiation

(3) corpuscular heating

(4) chemical heating

7. 1 Solar Heating

The major diabatic energy source of the thermosphere above

100 km can be considered to be the absorption of solar radiation in the

spectral region for which X < 1800 . Changes in the thermospheric

temperature are due principally to the variation of EUV, as found by

Bordeau et al. (1964). To obtain a quantitative description of this

heating source, one needs the following information

(1) a precise description of the incoming extreme ultra-

violet and soft X-ray spectrum, which gives solar photon

flux as a function of wavelength.
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(2) absorption and ionization cross sections for each

spectral interval and for each component gas.

(3) a detailed description of the photo-chemical processes

that follow the absorption of a photon of a given wave

length by a given component.

(4) concentration and composition of the neutral gas.

Recent observational programs and the extensive progress

made in developing instrumentation for measuring the EUV have

been reviewed by Hinteregger (1965). Allen (1965) has reviewed and

summarized previous tabulations of ionizing solar fluxes and cross

section data and discussed their interpretation. Further details and

references may be found in these papers. The following summary is

sufficient for our purposes.
o

Almost all the radiation in the spectral region 40 A to

o -1 -3
1000 A is absorbed in the 10 to 10 b layer (radiation in the

o o -20 0-2
spectral region 30 A - 40 A is absorbed in the 1 to 10 v b layer,

O O

radiation in the spectral region 200 A - 973 A. is absorbed in the

-2 -4 o
10 to 10 P b layer, and the 1215. 7 A radiation is absorbed

-1
below the 10 P b layer). We can associate E layer ionizing radia-

tion with heating of the 10-1 to 10-2 p b layer, and F layer ionizing

radiation with heating of the 10 - 2 to 10- 3 b layer. Allen suggests
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that for solar photon fluxes of energy in the E and F layers, one

uses

Layer Flux in ergs/cm 2 sec

E 0. 5 (1 + .0097R)

F 0.9 (1 + .0124R)

where R is the sunspot number. R ranges from a minimum of 0 at

sunspot minimum to a mean value of 100 at sunspot maximum, and

exceeded 300 at times during the IGY. The sunspot cycle variation of

the EUV radiation is deduced from surface measurements of the max-

imum electron content of the E and F layers, and has not yet been

verified by a long term satellite monitoring program. Several

months data from OSO I showed a good correlation between EUV
o o

(40 A to 400 A ) and 10. 7 cm microwave radiation. In view of this

correlation, it has been generally assumed that the 10. 7 cm radia-

tion is another index of the intensity of EUV. It has also been

accepted that the 10. 7 cm flux and the EUV is closely correlated

with the sunspot number. Anderson (1965), however, has questioned

the assumed close association between the 10. 7 cm flux and the EUV

on the ground that they do not vary the same way over a solar cycle.

The other major solar heat source for the thermosphere are
o o

photons in the Schumann Range continum, 1325 A < X < 1775 A.
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These photons are absorbed primarily between the 1 and . 01 p b

2
levels. The measured energy flux is approximately 32 ergs/cm sec,

and is believed to have little dependence on the sunspot cycle since it

originates in the solar photosphere.

The solar energy fluxes mentioned above may be compared

6 2
with the solar constant, 1. 4 x 106 ergs/cm sec. The drastic effect

that the EUV has on the thermosphere is a consequence of the thermo-

sphere's very small mass. For example, 1 erg/cm2 sec heat input

absorbed uniformly above . 01 jb gives a heating rate of roughly a

thousand degrees per day.

Let us now discuss those aspects of thermospheric photo-

chemistry which determine the distribution and the fraction of the

photon energy which is absorbed and realized as in situ heating. The

direct heating can be determined as the difference between total pho-

ton energy absorbed and the energy lost in chemical reactions or re-

radiated by longer wave-length photons.

First we consider the heating by the ionizirg radiation. From

the survey and tabulation by Hinteregger et al. (1965) we see that
O

photons more energetic than 1027 A can ionize 02 , those more en-

O O
ergetic than 911 A can ionize 0, and those more energetic than 796 A

can ionize N2 . The ultimate chemical end products that result after
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charge exchange, dissociative recombination, and radiation of less

energetic photons are 02 and N 2 molecules, 0 and N atoms. The

net change of atomic versus molecular composition, is needed to com-

pute the fraction of photon energy converted to chemical energy.

Atoms are produced from charged molecules by the disso-

ciative recombination processes.

02 + e 2 0

+ (7. 1)
NO + e N+O

For a quantitative description of the rate of production of the atomic

end products we require the rate of production of 02 + and NO+ mole-

cules. Donahue (1966) has discussed the relevant ionospheric react-

ions in the light of recent laboratory measurements of rate coefficients

and of recent ionic composition measurements. The important charge

exchange reactions are:

N 2 + O - NO + + N

N2 + 02 02 + N 2
(7.2)

O+ + N 2 - NO + + N

0+ + 02 02 + + O

Based on Donahue's discussion we estimate that the rate of
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production of 02and NO+ and hence O's and N's from ionization are

roughly equal. The N's undergo the further reactions N + O NO,

NO + N -* N 2 + O, which from the discussion of Nicolet (1965) would

appear to take place on a shorter time scale than the time scale for

diffusion or transport by motions. Assuming then that all the above

reactions occur locally at the point of initial ionization, the net result

will be that for each ion produced from N2 , 02, or O there occur

locally the "equivalent" chemical reaction

02 + 5.1 e. v.-* 2 O (7.3)

where the 5. 1 e. v. is the dissociation energy of 02. Reaction (7. 3)

is equivalent to the photochemical processes that gives the net change

from molecules to atoms. Hence, for photons of wavelength less than

o
1027 A the rate of production of chemical energy (loss of ionization

energy) is given by 5. 1 e. v. times the sum of photons per spectral

interval and times the ions produced per photon. A. small loss of

ionization energy in the form of chemical energy occurs from direct

dissociation 02 - 20.

If some of the N and NO are transported away from their

production site, the chemical energy production by the "equivalent"

reactions
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N 2 + 9.8 e.v. 2N
(7.4)

NO + 6. 5 e. v. - N +O

where the 9. 8 e. v. and 6. 5 e. v. are the dissociation energy of N 2

and NO respectively, and the transport of the N's and NO's should

alos be taken into account. The error resulting from assuming only

(7. 3) to occur probably will not exceed the error in specifying the

solar fluxes.

The largest energy loss above the lower thermosphere due
o

to nonthermal radiational damping of excited states is by the 6300 A

dayglow. According to Dalgarno and Walker (1964) a maximum air-

glow emission of 50 kiloraleighs . 1 erg/cm2 sec is possible but

observational evidence suggests that this is reduced by about a factor

-2 2of two. We deduce an upper limit of about 5 x 10 ergs/cm sec

-1
energy loss from nonthermal radiation above the 10-1 -b level.

For a review of the major dayglow lines in the visible, cf. Wallace

and McElroy (1966). See Krassofskij and Lefov (1965) for a general

tabulation of the strength of thermospheric airglow lines.

Photons of wavelength greater than 1027 A are significantly

absorbed in the thermosphere only by molecular oxygen. Most of the

o
absorption takes place in the Shumann-Range continuum 1325 A - X

0
1775 A, where molecular oxygen is dissociated into atomic oxygen.
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Eq. (7. 3) also applies here, thus 5. 1 e. v. of chemical energy is

produced per photon absorbed.

Figure 7. 1 shows schematically the major photochemical pro-

cesses that take place in the thermosphere. QCH and QA are the

chemical energy and the energy reradiated by longer wavelength pho-

tons respectively.

The following considerations are discussed further as other

forms of heating.

(1) Much of the dissociation energy itself may also eventually

go into heat. The oxygen atoms resulting from the disso-

ciation of 0 2 are transported downward in the thermo-

sphere by diffusion and motions until the atmosphere is

dense enough 1 b, that three body recombination

can quickly occur. This energy would be released in the

lower thermosphere. This is discussed under "chemical

heating".

(2) Most of the heat energy obtained directly from an ionizing

photon originally goes into the kinetic energy of the esca-

ping electron. These photo-electrons quickly come into

thermal equilibrium with the electron gas and more slow-

ly with the ions and neutrals. However, the photo-electrons
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can travel a considerable distance up magnetic field

lines before losing kinetic and chemical energy by colli-

sion, and hence being thermalized by the ambient elec-

tron gas in the congugate point. This nonlocal heating

effect of the electron turns out to be negligible for the

neutral gas heat budget.

7. 2 Heating Efficiency in the Neutral Gas

The term heating efficiency factor, E , used here is a

nondimensional quantity which indicates the percentage of the total

energy input that is transformed into heat, i. e. s = (total input - loss)

/ total input. This parameter plays an important role in determining

the heating rates and consequently the thermal structure of the neutral

and ionized constituents in the thermosphere. Until now, its applica-

tion to the therm. ,phere has been regarded as empirical only. The

terms E N and E e will denote the neutral and electron heating

efficiencies respectively. To estimate the value of e N we require

a detailed description of the photochemical processes in the thermo-

sphere, which we have discussed in the preceding section.

Let us first consider the heating efficiency due to the ionizing

radiation. From the tabulation of the spectral intensity distribution
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and ionizing efficiency (secondary ion production rate) of photons
0

less than 1027 A, we find an average photon energy of r- 36 e.v.

producing 1. 3 ions/ photon. 6. 6 e. v. (5. 1 x 1. 3) is expended to pro-

duce chemical energy, and a negligible amount of energy to produce

airglow. The resulting mean heating efficiency is thus found to be 83%.

This value is considerably higher than those used by other authors.

Harris and Priester (1962) have assumed a heating efficiency of 38%

and consider 70-90% an extremely high efficiency. Lasarev (1964) esti-

mates that an average value for EN is between 40%/ and 60%, and

probably nearer to 40%. Mahoney (1966) has estimated the value of

E N to be 60%o. It seems that only the heat energy obtained directly

from ionizing photons adjusted empirically was included, and the

energy lost in the photochemical processes was apparently neglected.

Since different wavelength photons are absorbed at different

levels, the heating efficiency should vary with altitude. In order to

obtain this distribution we require the knowledge of the total heat in-

put, which we shall call ionization photon energy and denote by Ii , as

a function of altitude or pressure. Using table 1, which presents the

solar flux, cross sections, and secondary ion production rate, and

table 2, which presents the composition data for average solar activity

and noon condition as reported by Mahoney (1966), we calculate Ii
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TABLE 1. Solar Flux (e. v. ) and Cross Section (10 gm cm

o
(A)

1775-1725

1725-1675

1675-1625

1625-1575

1575-1525

1525-1475

1475-1375

1375-1325

1215. 7

1027-990

977.0

972. 5

990-911

911-840

840-810

Flux (e. v. )

6.98-7.19

7. 19-7.40

7.40-7.63

7. 63-7.87

7.87-8. 13

8. 13-8.41

8.41-9.02

9.02-9. 36

10.20

12. 1-12. 5

12. 7

12. 7

12.5-13.6

13.6-14. 8

14.8-15.3

0

0

0

0

0

0

0

0

0

0

0

0

0

10.8

12.0

" (02 )

0. 32

1.62

4.14

9.79

15.06

21.28

26.92

10.92

0. 0156

3.29

7. 53

75.3

13. 8

18. 5

49.0

0(N 2 ) 0-(IO 2 )

0

0

0

0

0

0

0

0

0

0.538

5.59

538.

6.95

9.75

7.21

0

0

0

0

0

0

0

0

0

1.54

3.01

33.9

8.02

12.4

17. 1

0 (IN 2

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0



TABLE 1 (continued)

0

(A) Flux (e. v. ) (0) 0 (O2 ) ~ (N 2  T (IO2) 0 (IN 2)

810-796 15.3-15.6 12.4 75.3 14.5 26.4 0 1.0

796-740 15.6-16.8 12.7 46.7 53.6 23. 5 33. 1 1. 0

740-630 16.8-19.7 32.4 60.6 54.4 48.4 48.8 1.0

630-460 19.7-27.0 47.8 57.6 51.9 52.7 46.9 1.0

460-370 27.0-33.5 43.7 45.0 36.6 44.2 35.5 1.0

370-310 33.5-40.0 34.7 40.3 19. 1 40.3 19.1 1.0

303.8 40.8 36.9 36.7 1.08 36.7 1.08 1.0

310-280 40.0-44.3 34.6 35.2 1.05 35.2 1.05 1.0

280-240 44.3-51.7 27.6 27. 5 8.35 27.5 8. 35 1. 1

240-205 51.7-60.5 19.7 19.7 6.39 19.6 6.39 1. 3

205-165 60.5-75. 1 12.4 12.4 4.52 12. 3 4.52 1.9

165-138 75-90 7.91 7.91 3.01 7.91 3.01 2.4

138-103 90-120 4.14 4.14 1.94 4.14 1.94 3. 1

103- 83 120-150 2.63 2.64 1.18 2.64 1.18 3.8

83-62 150-200 1.51 1.51 0.796 1.51 0.796 5.0

62-41 200-300 0. 828 0. 828 0. 387 0. 828 0. 387 7. 5

41-31 300-400 0.377 0. 377 0.151 0.377 0. 151 9.0



TABLE 2. Atmospheric Composition for Medium Solar Activity,

Height
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from

E F PI Pi (7.5)
i P T

where F and P. are the solar flux and photoelectron pro-

duction rate at wavelength A , and PT is the total photoelectron

production rate. Figure 7. 2 shows this result. The magnitude of I i

ranges from 35 e.v., above about 250 km, to 170 e. v. around the

100 km level. The dependence of the heating efficiency due to ioniza-

tion iN , on altitude is depicted in Fig. 7. 3. The values ob-

tained are seen to lie between 81% and 96%.

Let us now consider the heating efficiency due to absorption

of the Schumann-Range photons. Again from the spectral intensity

distribution we find an average photon energy of ' 8 e. v. and ex-

penditure of 5. 1 e. v. to produce chemical energy. The resulting

heating efficiency per photon is a 35%. The dissociation photon

energy, Id , as a function of altitude is also computed from tables

1, 2, and (7. 5). The result is shown in Fig. 7. 2. We find that the

photon energy ranges from 7 to 11 e. v. The height dependence of the

d
heating efficiency due to photodissociation, EN , is shown in Fig.

7. 3. The value obtained is seen to lie between 30% and 36% above

100 km.
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7. 3 Heating Efficiency in the Ionosphere

Another important item which merits much study is the

nature of the electron heating efficiency in the ionosphere. Just as

the neutral heating efficiency plays an important role in determining

the temperature structure of the thermosphere, so does the electron

heating efficiency, Ee , in determining the thermal structure of the

electron gas. Determination of E e requires the detailed knowledge of

the electron heating rate, i. e. the heat input to electrons, and the

photoelectron production rate. Estimates of the value of E e and its

altitude dependence given in the literature do not agree among them-

selves (Hanson, 1963; Hanson and Cohen, 1968; Nagy et al., 1969).

A detailed calculation and interpretation of the electron heat-

ing efficiency within the framework of ionospheric physics is beyond

the scope of the present work. The following summary will be suffi-

cient for our purposes.

We have already computed the ionization photon energy Ii ,

which required the knowledge of PT and computed from tables 1 and

2. We next define the photoelectron heating energy coefficient, Ephe ,

as

Ephe (e.v.) = Ii - i , (7.6)
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where i is the average ionization potential for 0, 02 and N 2 ,

and which we take to be -. 15 e. v. The electron heat input, Qe, can

be computed indirectly, by assuming that under local equilibrium, the

heat input and loss must balance. The heat loss can be computed from

the heat transfer to ions and neutrals. The heat transfer is fulfilled

by means of elastic and inelastic collisions with neutral particles and

elastic collision with ions.

The electron-ion-neutral energy flow in a mixture of O, 02,

N 2 , e, O + , NO+, and 02 , in the ionosphere is presented in Fig. 7.4.

Under the above assumption we would require the following relation to

hold,

qe

QiN

Ii

= ei + QeN

= i + Qei - Qei

= Qe + Qi + QN + Qs

(7. 7)

where Qs is the rate of photoelectron lost to the magnetosphere by

diffusion and escape. There is no estimates of Qi, but this component

must be very small compared to Qei. The process of slowing down

the photoelectrons by neutral particles, QN, and the subsequent emis-

sion of the dayglow has been discussed by Dalgarno et al. (1969).

The electron-ion energy flow by means of elastic collision,

measured in e. v. /cm 3 sec, is (Dalgarno et al., 1967),
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Qei 5 x 10 - 7 n 2 (T - T.)/T3/2

(7. 8)

Here we have assumed that the 0 + ions dominate and that n(O ) n e

The rate at which the electron gas loses heat to the neutral

by means of elastic collision is

I 7 -18
Q e= 3.74 x 10 nn (0)T 2 (T - T )en e e e n

+ 1.21 x 10- 1 8 (1 + 3.6 x 10- 2 T ) n n(T T ( Te - T )
e e

-16 -4
+ 7.75 x 10 (1 + 1.27 x 10 Te) ne n(N )(T e - T )

(7. 9)
-17 (Te- Tn) ev/cm3sec

+ 2.3 x O10 n n(H ) T (T - T ) e.v./cm sec

The terms for electron-neutral collision for O and 0 2 were

taken from Banks (1966), for N2 from Dalgarno et al. (1963), and

for H from Dalgarno et al. (1967). Electron cooling processes by

rotational excitation of 02 and N2 have been included in (7. 9), how-

ever, cooling by vibrational excitation is not. Electron cooling by

excitation of atomic oxygen to 1D level from the ground level has

been neglected. -'The electron cooling arising from electron-impact-

induced transition amongst the fine-structure levels of O, denoted

here Q , is adopted from the calculation of Dalgarno and Degger (1968).
en

In order to calculate Qeiand Q we need to known , T , T.,
ei en e e

and the composition and temperature of the neutral atmosphere. A

sample of this calculation is presented below. We adopt here the
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values of Qei , ne, and Te given by McClure (1969) for

Jicamarca, Peru, for August 17, 1965, and use the same model of

neutral atmosphere. The values of Qen so obtained, together with

II
Qen and Qei , and the resulting Qe are shown in Fig. 7. 5. We

I IInote that Qen is systematically smaller than Qen , and Qen smaller

than Qei, except in the region below about 280 km.

Next, we define the electron heating energy coefficient, Eeh'

as the ratio of the electron heating rate to the total photoelectron pro-

duction rate,

Eeh (e.v.) = Qe/PT (7.10)

and the "electron heating efficiency", e , as the ratio of the electron

heating energy coefficient to the photoelectron heating energy coeffi-

cient,

e Eeh Ephe (7.11)

Note that Eeh , as defined here, is equivalent to the parameter ori-

ginally defined as electron heating efficiency. These three quantities

are presented in Fig. 7. 6. We first note that the value of Eeh , and

hence E e, is smaller than those found by other authors. A maxi-

mum value of 1. 4 e. v. is reached by Eeh at about 260 km. Secondly,

we see that Eeh or E e does not increase monotonically with alti-



Fig. 7. 5.
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Height dependence of electron heating rates Q calculated as the sum of
e

electron-ion Qei and electron-neutral Qen heating rates.
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tude as previous results (c. f. Hanson and Cohen, 1968). These

differences arise, and the uncertainty in e will remain, mainly

from the uncertainties in the rate of total photoelectron production

which are available for heating the electron gas and the electron

heating rate. The values of PT used here are 2. 5 times larger than

those used by Hanson and Cohen (1968) at about 300 km, whereas

Qe's used here are about 3 times smaller than those used by Hanson

and Cohen at 300 km. Probably a significant amount of photoelec-

trons will diffuse and escape outward from the ionosphere (Nisbet,

1968), and consequently change the values of Eeh and e ,

The microscopic view treated in this section is useful not

only for describing the heating processes in the thermosphere, but it

is also more rigorous than the macroscopic description treated in

sections 7. 1 and 7. 2. More work remains to be done to fully under-

stand the physics associated with the heating processes. The present

discussion is intended to be only a preliminary study.

7. 4 Infrared Cooling

The radiation budget above 80 km is accomplished by the EUV

solar heating and infrared heating primarily by atomic oxygen. In the

lower thermosphere from 10 to . 1 b layer, the infrared thermal

emission by CO 2 , 03 and H20 are not yet very well understood,
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primarily because the concentration of these trace substances is not

known. Recent studies of the infrared radiative cooling in the 30 to

110 km region, which are due to CO 2, 03, and H 20 were computed

by Kuhn and London (1969). They found that the radiative heating

and cooling rates corresponding to the 15 1 CO 2 band are of some

importance at the base of the thermosphere. This cooling is approx-

imately 12°K/day over the winter pole and decreases to 20K/day over

the summer pole. At the mesopause there is convergence of radia-

tive energy leading to a heating of about 4 K/day over the summer

pole and a weak cooling of about 4 K/day over the winter pole.

Above the . 1 - b level the only significant infrared cooling

process is the 62 line of atomic oxygen (Bates, 1951; Nicolet,

1960). The ground state of atomic oxygen is 3PJ with J = 2,

J = 1, and J = 0. The energy levels of the last two lie 0. 020 and 0. 028

e. v. above the first one respectively. The statistical weight and the

Einstein coefficient for the transition 31 - 3P 2 are 3 and 8. 9 x10-5/

sec respectively. The corresponding magnitudes for the transition

-5
3PO - 3P1 are 1 and 1. 7x 10 /sec, hence, only the first transition

is energetically significant and this gives rise to the 62 , line.

The rate of heat lost per unit volume due to the 62 v line

has been given by Bates (1951) as



-105-

-18 -3 -1
IR = f( , T) n(O) x 10 ergs cm sec (7.12)

where f ( y , T) depends on optical path length from some z to m

and temperature. For an optically thin atmosphere, Bates gives the

expression for f ( y , T) as

-1. 67 exp (-228/T)
1 + 0. 6 exp (-228/T) + 0.2 exp (-325/T)

Numerically one obtains from (7. 13)

Temperature

oo

000

500

000

500

250

f (O,T)

.93

.88

.86

.83

.76

.51

which disagree with numerical values given by Nicolet (1960) but

agrees with Hunt and VanZandt (1961).

Above the . 01 p b level the atmosphere may be regarded as

optically thin to 62 , radiation.

Bates gives, for the optical thickness, the expression

0-17 / (1 - exp (-228/T)) 3Z . i n (O, 3 P 2 ) dz.
T (7.14)
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Assuming a mean temperature, one obtains from (7. 14)

Y t C M(O, 3P 2 ) (7.15)

3 3
where M (0, 3. 2 ) is the column density of O( P2 ) and C takes the

following values

Mean Temperature C

1000 6. 6 x 10- 19

800 8. 5 x 10- 1 9

600 12.0 x 10 19

400 20.0 x 10- 19

200 45.0 x 10- 19

-16
Observations indicate a column density of roughly 5 x 10 O's

above the . 01 i b level, given an optical depth of . 1 for a mean

temperature of 4000K.

Current models of the lower thermosphere indicate the

17 -2
presence of 2 to 5 x 10 cm atomic oxygen atoms between . 01

17 -2
and 1 i b, and about I to 2 x 19 cm between 1 and 10 1 b. The

actual concentration of atomic oxygen is probably quite variable and

the values quoted above may be within a factor of two larger or

smaller. Thus, (7. 12) overestimates the radiational cooling rate in

the lower thermosphere because of the assumption that the atmo-

sphere is optically thin to 62 P .
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A similar conclusion has been reached by Craig and Gille

(1969) who have integrated numerically the equation of radiative

transfer for the CIRA 1965 model atmosphere. Their results show

that in the region 80 - 230 km (7. 12) overestimate the cooling, with

error over 50% below 130 km. Below 100 km they found a region of

radiative warming, but the temperature change produced was very

small. The fluctuation of the infrared cooling by CO 2 around its

mean value, in a time scale of a day, is generally very small in the

lower thermosphere. The error introduced by neglecting the fluctua-

tion in infrared cooling by CO 2 and the reabsorption of the 62 p line

is no worse than the error caused by the neglect of the horizontally

variable energy transfer due to downward diffusion of atomic oxygen

and the dissipation of turbulent motion in the lower thermosphere.

7. 5 Solar Heating and Radiational Cooling Rates

As discussed below only solar heating and infrared cooling

by atomic oxygen are the major heating and cooling sources in the

thermosphere. These heating rates are externally specified in the

numerical model calculations discussed in the next chapter. They

are obtained from a detailed one-dimensional study carried out by

Mahoney (1966). The magnitude of Q reported by Mahoney has
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been multiplied by 1. 41, given a net ionization heating efficiency of

85% (see section 7. 2) and dissociation heating efficiency of 14%. The

heating rate Q has been assumed to be of the form

oo oo

Q( , ,z , t) = Re y Q*( z, t ) ym ( , ) = Re Z Qm (z )

m, n=0 n mn= 0
m m n

1 3 1 21
where Y( , ) - cos P + cos ( 5

47T 4 4T
2 iX

sin - 1) )e

This representation gives only three terms in the spherical harmon-

ics expansion. We think that this is the smallest. subset in the ex-

pansion still capable of representing the general feature of the

thermospheric diurnal bulge. From these three components, the

first one is responsible for the determination of the mean thermo-

1 1 1 1
spheric structure. The rest, Y Q 1 and Y 3 Q3 , are used for

the determination of the perturbation quantities. Figs. 7. 7 and 7. 8

show the amplitude dependence on altitude and latitude respectively.

0 0 1 1 1 1
Fig. 7. 7 depicts the magnitude of Y Q Y 1 Q 1  and Y Q0 0 1 13 3

versus latitude. The last two components are for 15 degrees latitude.

0 1
Note that Q0 (mean solar heating) and Q1 have almost the same

0 1k

magnitude. Also note that the broken lines in Q0 from 90 to about

130 km represents cooling, that is, the values are negative. In Fig.
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7. 8 we present the perturbation heating rates at three of the model

levels. Here the amplitude of Q which is the sum of the amplitudes

1 1 1 1
of Q1 Y and Q3 Y is shown for level 15 only. Note here that

Q= qSR + qIR

Other modes of diabatic heating mentioned above include corpus-

cular and chemical heating. The particle precipitation is observed di-

rectly from artificial satellites (cf. O'Brien et al, 1964; Sharp et al,

1964;; Sharp et al, 1967), by rockets, by monitoring secondary X-rays

with high level balloons (cf. the review by Brown, 1966), and by surface

observations of auroral arcs (cf. Chamberlain, 1961).

Two questions on heating by particles and accompanying radiations

in the auroral region have been discussed by Chamberlain (1961). The

first is concerned with the temperature increase during a bright aurora.

The second is concerned with whether particle bombardment affects the

average temperature and structure of the thermosphere in the polar re-

gions. Regarding the first one, he estimates that a bright aurora caused

by particle bombardment may consume as much energy as 400 ergs/cm 2

sec. From this about 350 ergs/cm sec is reradiated and about 50 ergs /

cm2 sec is dissipated as heat primarily between the lib to . 1 pb levels.

This gives roughly 12% of the energy of the energetic electron converted

to heat
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A mean quiet day particle precipitation along the auroral oval of

roughly . 1 erg/cm2 sec is consistent with available observations

(Sharp et al., 1964, Sharp et al., 1966), given an upper limit of

about . 01 ergs/cm 2 sec for the energy converted into heat. Regard-

ing the second question, Chamberlain finds plausible that bombard-

ment during a great aurora, especially a high-altitude one, might

produce temporary but large changes in the polar thermospheric

temperature. Dalgarno et al. (1965) have presented a table which

summarises some quantitative information about typical auroras.

The energy flux of a beam of fast electrons absorbed by the atmo-

sphere has been derived from the intensity of the first negative sys-

tem of molecular nitrogen, which arises from the electron impact

with N2 . The energy fluxes given by Dalgarno et al. (1965) and the

conversion into heat by assuming a 12% efficiency is given below,

Parameter Intensity of Visual Auroras

I II III IV

Energy flux (erg/cm2 sec) .6 6 60 600

Auroral heating (erg/cm2 sec) .07 .7 7 70

We can, therefore, conclude that corpuscular fluxes are a

negligible source of thermospheric heating except possibly during geo-
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magnetic storms. Even then, considering the small portion of the

sky that auroral forms cover, a hemispheric mean heat absorption

2
in the middle thermosphere much exceeding . 01 ergs/cm sec seems

unlikely. Cole (1966) tentatively concludes that even in the auroral

atmosphere the integrated heat input by Joule dissipation will be sig-

nificantly greater than that by corpuscular bombardment.

A detailed computation of the corpuscular heating for the in-

coming particles and all the relevant cross sections, would be based

on the principles outlined in 7. 2 and 7. 3. This mode of heating will

not be included in the numerical computation.

As discussed in 7. 2, a significant fraction of the extreme

ultraviolet absorbed in the thermosphere (a daily average of 6

ergs/cm2 sec) goes into the production of atomic from molecular

oxygen. Another major source of O comes from direct dissocia-

tion of 02 by the Schumann-Range continuum. The atomic oxygen

so produced is transported downward to the turbopause primarily by

diffusion, and then further downward until at some level, around 1v b

where the number densities of atmospheric constituents are suffi-

ciently great that three body recombination can rapidly occur, and

the energy be released. This energy as released at this level is pro-

bably insignificant in the energy budget of the thermosphere and
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therefore will not be included in the numerical model.

In addition to diabatic heating, other modes of heating which

strongly depend on the motion and on the electromagnetic fields include

Joule heating and heating by viscous dissipation. The rate of Joule heat-

ing is given by

qJE = J * (E + V x B) (7.16)

which can be written as

qJE = [ * V - Vd ]  [(V - Vd ) x B]

(7. 17)

where again T is the anisotropic electric conductivity tensor and V

is the drift velocity vector. Using the expression for (see Appendix II)

and assuming that horizontal velocity is much larger than vertical ve-

locity, we find the rate of Joule heating per unit mass is given by
- 1 i 22

qJE- n (1 + p [(u - Ud)2 (v- d) sin2 I](7.18)

This formulation is very useful for direct computation of 4JE

and is valid provided that the ion-electron collision frequency is negli-

gible compared to the collision frequency of ions or electrons with neu-

trals. Eq. (7. 18) will describe the total Joule heating that is associated

with motions whose time scales are greater than 103 sec. Motions with

shorter time scale, such as nonhydrostatic gravity-waves, high frequen-

cy hydromagnetic waves, and
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plasma waves, will also give a contribution to qJE , which is not

described by (7. 18). According to the discussion of Karplus et al.

(1962) and Campbell (1967), the Joule heating provided by the hydro-

-8 2
magnetic waves is of the order of 10-8 ergs/cm , which is, of

course, negligible. The Joule heating associated with small scale

turbulence or acoustic-gravity waves with time scale smaller than

103 sec is not known. The magnitude probably is negligible com-

pared to the heating provided by (7. 18). The Joule heating associa-

ted with plasma waves is apparently of no significance.

To estimate the Joule heating expected from dissipation of

gravity-tidal waves and meteorological motions, consider a typical

-4 -1 -z
value for n. Yi./n u 10 sec (N. a 1), assume p+ e

i in

take p = 1 at the . 01 pb level, assume also that sin I 1 and

that the wind velocities (u - ud ) and (v - vd ) are typically 70 m/sec.

Then from (7. 18) we find the rate of Joule heating to be of the order

. 1 erg/cm2 sec which will heat the atmosphere at the rate of

1000K/day above . 01 b level. At maximum solar activity this

value should be about five times as large, since the ion concentra-

tion will increase by about this amount. Likewise, if the amplitude

of the winds exceeds the value quoted above, the Joule heating will

accordingly increase.
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The importance of Joule heating as a heat source at the iono-

spheric levels has been found to be significant especially during geo-

magnetic storms over the polar cap (Cole, 1962, 1963, 1966; Kato,

1962; Cummens and Dessler, 1967). The Pederson conductivities may

be expected to increase in the auroral regions by at least a factor of

ten. Thus an increase in Joule heating by at least a factor of a hundred

may locally be expected. In the mean, however, Joule heating will pro-

bably be in an order of magnitude less than solar heating. This mode

of heating will not be included in the numerical calculations.

The implication of Joule heating as a source for driving the

semi-annual variation in density in the thermosphere has been recently

discussed by Newell (1968). Internal gravity wave generation by Joule

heating in the region of the auroral electrojet has been discussed by

Blumen and Hendl (1969).

In order to calculate the heating by viscous dissipation, we need

to know the dissipative function 4 which can be derived from equation

(2. 8), and which, in an invariant vector form is

= {V V V2 + 2V * [(V x V) x V] - 2 (V • V)V * V

+ (V V) 2 _ (V ) 2 }
3

(7. 19)
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The rate of dissipation of energy in any finite volume is

d v = V . [ V + 2 +2(V x ] dm

-2 (V ) V Vdm + x V )2 dm

2 2
.3 ( V " V) dm (7.20)

where dm is an element of mass.

This, to a first approximation (using (3. 3) and definition of

6 ) is

Su 2 1 dm (7.21)
fdv = 2Q1 E e z + z dm (7.21)

As an estimate of the magnitude of conversion of kinetic

energy to heat energy by viscous dissipation that might occur, con-

au av
sider a typical value of z and az in the thermosphere to

be 15 m/sec, assume 5 A 1 and E 1. Then from (7. 21) we find

an energy conversion of the order .05 erg/cm2 sec and will heat the

atmosphere 50 degrees per day above the . 01 p b level. This mode

of heating also will not be included in the numerical calculations.
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PART II. ANALYTICAL AND NUMERICAL STUDIES

8. THE CIRCULATION IN THE MIDDLE THERMOSPHERE:

PROCEDURE

8. 1 General Remarks and Description of the Simple Case Study

In the previous chapters we have derived a set of approxi-

mate systems of equations for the analysis of thermospheric dynam-

ics and discussed the relevant boundary conditions and diabatic pro-

cesses. We have classified the thermospheric motions according to

the driven force, the time scale, and the importance of viscosity,

heat conduction, and ion drag. The system of equations describing

various types of motions in the thermosphere show that only vertical

motion can give adiabatic heating and cooling in the thermodynamic

equation.

We have indicated the convenience of using (3. 14) as the only

system valid at all heights for actual application to the thermosphere.

In general, to get actual solution representing the dynamical struc-

ture of the thermospheric diurnal bulge using (3. 14) is not a trivial

problem. As discussed below, several practical difficulties arise

when all the terms of (3. 14) are kept. This leaves us with no other

choice but to consider other equivalent systems to (3. 14) which may
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be simpler, but still give some new insights, or reduce some un-

certainties, as to the nature of the thermospheric processes. These

"alternative models" must be considered in a systematic fashion,

starting with the simplest to the most complex ones.

We have learned a great deal about the thermal structure of

the thermosphere considering the one-dimensional quasistatic models,

and still more about the two dimensional dynamical model. The

shortcoming of the latter, as mentioned in the introduction, was the

uncertainty as to whether the divergence of the north-south compon-

ent of the motion field would cancel the divergence of the east-west

component, and consequently lead to a negligible adiabatic heating or

cooling. Therefore, we need to consider the three-dimensional pic-

ture if more meaningful, or less uncertain, results are required.

We have one such alternative model to consider, the thermal

geoplasma regime, which describes the balance of the thermal for-

cing and the ion drag in the momentum equation and uses the com-

plete linearized thermodynamic equation. As we have discussed in

section 4. 5, this motion regime is appropriate for describing the

coupling between the dynamics and thermodynamics at altitudes of

the F region peak.

The main purpose of this and the next chapters is, therefore,
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to obtain solutions of the system of equations given by (4.4) and

use them to substantiate our earlier discovery that only adiabatic

heating and cooling by vertical motion can shift the phase of maximum

temperature to a time two hours earlier than that obtained in the ab-

sence of motions, and thus, to establish adiabatic heating as the ex-

planation of the Harris and Priester's second heat source.

8. 2 Representation of the System of Equations in Terms of

Spherical Harmonics

Having established (4. 4), we revert to the dimensional vari-

ables of chapter 2. Since we are only concerned with thermally

driven motion, the drift velocity is omitted from here on. Dropping

the subscript 1 on all variables, (4.4) becomes

1= -2JAN. U

1 -2 _ N. V (8. 1)

1 , + 1 (V cos ) + - = 0

e = RT

Sez K ) +W VS Q/c
Sp, )z H z p
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where here

N. - ni
i nn

2Vi
2 1 S= ( + R T

z -p o

Next, we assume that all perturbation variables and the

heating source Q are proportional to exp (im A + i Y t) and that the

latitudinal variable P is changed to ( = sin g ).

Upon substitution, (8. 1) becomes

= -2

ip?- I _ _ [~
+-2

- RT

S z K 7T
,.C T ( ) +

Po Cz H z

JI N. U

AN. V1 8.2)

1 + z.Z. w

W 5 = Q/cpj

The first two equations can be used to solve for u and v.

sulting expression can be substituted in the third equation,

following equation

F( )- 2 A a2. ( - ) = 0

Where the operator F is defined by

The re-

given the

(8. 3)
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_2 m 2

F a (1 - 2 ) (8.4)

Equation (8. 3) can be solved by the method of separation of variables.

Noting that the generalized Legendre equation is

F (P ) + m Pn n n = 0, (8.5)

where i = n (n + I1).
n

It is convenient to expand each dependent variable in Legendre Poly-

nomials pm ( ), so that
n

:Ree tZ
n m

m
n

m
n

mI
v

n

m
w

n

Tm
n
m
n

(z)

(Z)

(z)

(z)

(z)

(z)

m (8.im A

(8. 6)

Hence (8. 3) and the fourth and fifth equations of (8. 2) can be re-

written as

Wm m
n n

+ 2 a 2N. ( W
Z

- Wn)= 0n (8.7)
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(8.8)= RT m

)Z n

* m - _ K.VT e (-
n fo cp f H

rn

t z n
m= Q / cpn

(8.9)

m
Eliminating n from (8. 7) and (8. 8) gives

n

2 ~W d 4J Ni m

yn RTm + 2 La [N Z + ( Ni)  _ W, z Nn n 1 ~a  x n

0 
(8. 10)

which together with (8. 9) form a system of two second-order ordinary

differential equations.

9. 3 Formulation of Variables

Taking

Tm
T

e X,7
fn

(8. 11)e

d
dz

the vertical structure of the system of equations takes its simple

form
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n + ( )X + h ( )Y = 0 (8.12)
d z2  x n x n

2m
d Y + f (z) y + h (z) X m  = Gm( ) (8.13)
d z y n y n n

wh ere

yf

x

h = -' p ),cI) "' "/,".Cf Cz

n

Eh

Once X m and Ym are obtained from (8.12) and (8. 13), the
n n

other dependent variables are calculated from these solutions. The

final dependent variables computed in this study are:

(1) h = geopotential height perturbation

(2) u = eastward wind velocity perturbation

(3) v = northward wind velocity perturbation

(4) h = upward wind velocity perturbation

(5) T = temperature perturbation
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Each of these variables is next expressed in terms of Wm
n

and Tm .n

Geopotential height perturbation (h)

The starting point for this variable is (8. 7), which gives

mfor 95

m
n

z= a " ( w ,, ,rd Z) / 2n (8. 14)

m m
since )5 = gh ,

n n

h = e f

(8. 14) can be solved for h

,JZa nl ) p AA -

v, h, and T are given by

.A ' ,,.aw

v 2- /-,^) C'
/ Z" 0 f 7 ,

vd /.d f r

h =

he E 7-C
M' i

Likewise, u,

Pr
CI VVO IdX ) (8. 15)

P74~ c/ - s z) (8.
C1 V" /a

j3XI -;A4

16)

d Wrlddz) (8. 17)

(8. 18)

(8. 19)

) ,,p (,'A 4- ,./) j

= - ?

e. W (m r ; t

de

/.rirP"1 . /,./v,*"
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(8.20)

Let

?C6, (Z)

ti (m, s)

where T(mr n)r
(m, n)

T.
1

(m, n)
r

and w ( m , n)
and ~w

i
are real functions of z.

The final formulae for h, u, v, h, and T are found from

(8. 15), (8. 16), (8. 17), (8. 19), and (8. 20) to be

h = Z 2a
? 7tn

,A1 P') c~id p/cz)

/g~n, cs (MnA +r)

- - /dz/.n~' (8.21)

tl dz
u =

a£i C'0 A - v)
r f/n).

o", z>a,_ Sn~~
(8.22)

p0 1~

- J (. )/,. (8.23)

-m Lr( (rr r ~ W~f(.3

LU L(W n) )
- j vvr /az)

T (z)n
C )

r (Z)(z)Wm
n

v -
ppn

T =Re T m& <) 0' ep ( in,\ i tv )

m
a ~p~ ~3~fl (r) I
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h .- ) D. ,~i ot(. hc po/dZ)

/' 3) ,IA..srnAj e t(8.24)

T P

T . ) (8.25)

8. 4 Analytical Solution and Discussion of Vertical Boundary

Conditions

8. 4. 1 Discussion of the problem

The system of ordinary differential equations (8. 12) - (8. 13)

is seen to be fourth order in z , so that we require four boundary

conditions in order to uniquely define the solutions. These conditions

are obtained and constructed by matching the analytical solutions of

the system of equations for large and small z to the numerical solu-

tions for intermediate values of z, at the upper and lower boundaries

of the numerical model.

Analytical solutions to the system of Eqs. (8. 12) - (8. 13) can

Konly be obtained if N i , H , S , R, and cp are all independent of alti-
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tude. With these assumptions and away from the heat source, (8. 12)-

(8. 13) becomes

d2 X
dz2

d2 Y
d zZ

4
OnI Y

(8.26)
= 0

= 0 (8.27)

where

I"
Y R

- P.l

elimination of X gives

elimination of X gives

= CP

-Z d2Y
-i )e - dY

+i e dz

As z -- o 0 it is expected that solutions of (8. 28) will

behave like solutions of

d Y
d z4-

d3 Y+ z- = 0

i. e. like linear combination of a constant, z , z 2, and
-ze

(8.29)

This

is the heat conduction mode solution since z - *

same as K - 0 (e

is formally the

-1
occur only in combination with Ehhi

d4 y
d z4

+ dY
-z

=0

(8. 28)

SPa
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Likewise as z --- o , the solution of (8. 28) is expected to behave

like solutions of

d2 y
d zY

dY
dz

+
p1

Y = 0 (8. 30)

i. e. like

e / f El Xr -In i) z 3

where Kn

Eq. (8. 30) is the differential equation for the inviscid regime.

On the other hand, elimination of Y from (8. 26) - (8. 27)

gives

d1 z

3
dX
.17 3 Le 0' + o

IV / IW (8.32)

As z -. 0 the solution behaves like the solution of

d4 Xdz4
dX

3
d X
dz

1
4

dX
dz

1
X1616

i. e. the corresponding heat conduction modes are

Likewise as z /

Likewise as z -~- 

- z/e
2

, the solution to (8. 32) behaves like solutions

Y* (8.31)

(8.33)

= c,, / p

z C1 2
,A A Z

I d

vd
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d2 X
dz

1
( - Kni) X = 0

X exp [ K 1/2z ] + (
-4 n

8. 4. 2 Change of variables and asymptotic behaviour

It is convenient to introduce a new variable P =

(8. 35)

p /p =e0

where P is pressure, mapping z -- c"

to P --

to p -- 0 and z --.- "

. Thus d/dz goes over into - pd/d P = D, the differen-

tial equation (8. 28) tranforms into

D4Y- D 3 - i ?D2Y - iO DY + an P Y = 0
(8. 36)

The differential equation for the inviscid regime in the new variable is

D2 Y + DY + K iY = 0
n

with solutions

the substitution of Y P [ 1 + 0 (P) ] into (8. 36) yields

(8. 37)

(8. 38)

the indi-

cial equation

S3 ( 5 - 1) = 0

i. e.

(8. 34)

(8.39)
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which according

four independent

Y (P)

Y2 (P)

Y (P)

%j; ( P)

to the Frobenius technique indicated that (8. 36) has

solutions with leading terms for small P of the form

,.,. j +r o ,)

Sr' + o (P)) LoX P + O() , (c,)

',- [,+ o(P))LoCPt E ,0(f Co,

,. P € o (P"3

P 0 ( 8. 40c )

1 (8.40)

the leading terms corresponding to W (W = e/2corresponding to W (W = e

w, ( P) -, 0() + O(P)

() P D ) - .,fP

"(p) ." 0() t- o (P) - I' P + P"

, () ,, / o CP)

(8.41)

Finite heat flux T- T z  PY is given by Y2 and Y3
-Z

and finite mass flux - e W, is given by W 3 . Thus only Y1 and Y4

satisfy the upper boundary condition of no heat flux at P --o 0, which

in terms of z they are

-Z;y,(z) , + o((.4
y(Z) -,, (e) f (8.42)Y 4 [2.) e to( e

X) are
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The asymptotic solution as P -+ ** is obtained by replacing 1/P

by a new independent variable 3 , and considering the solutions of

the new equation for small values of ' , since $-- 0 as P - .

The new equation is

dyL (8.43)

The substitution of Y " $ [1 + o ( ) ] yields the indicial

equation

S- - K i = 0 (8.44)
n

which gives two independent solutions for large P with leading terms

proportional to

y (P , o(P ) 3 P  (8.45)

and which are identical with Y , the solution to the inviscid regime.

In order to obtain the constant coefficients in (8. 42), we need a

more exact solution to (8. 36).

8. 4. 3 Series solution

The solution to (8. 36) can be found by taking linear combination



-133-

of series solution constructed about the regular singular point P = 0.

Y. (P5s) as P (8.46)
-j 0=0

where s 1 0, the subscript j corresponds to the four values of s

and the coefficients are evaluated by substituting (8. 46) in (8. 36), and

are given by the recursion formula

We can write

(rs( 5j  ) -(s) -- Y)

and we have set a ( s ) = 1. Since the recurrence formula (8.47)

or (8. 48) cannot be solved for any value of (Cl when s = 0, equa-

tion (8. 36) does not possess a solution of the type (8. 46) beginning

with a term of the form a Po . Therefore, the third order s = 0

root of Eq. (8. 39) establishes three logarithmic solutions of the form



0b(o) P
P= b

[a (5) Le P * 5

Eb t o) *

4,, is) L/P.]s_
(8. 50)

, (o)L o j P

a rs) LJ P "2 a,,
.2 3 ?

(8. 51)
P. p"

Likewise the single = I root of Eq. (8. 39) establishes

the power series solution

op

YY (P,.1) w ()

wh ere

4.I.

(0) L) 4T
C)S

sa, s)J= o

4qq CS) 
5o

From (8. 49) - (8. 52) we have to select the solution which

satisfies the requirement of no fluxes of heat at P -+ 0 ( z - .0 ).

Only the Y 1
(P , 0 ) and Y (P, 1) solutions satisfy this condition.

-134-

n=o

y2 (P,o)

(8.49)

fl

DN:

d -0

(8. 52)

L

eA (5)
01

bn / C. r4

E Sa,(s) La P, 

\ 3 ( P,o ) =

,bo (0)1 Dip-/
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8. 4. 4 Integral representation and asymptotic behaviour

We shall now transform the series representation of

Y (P, s ) into an integral, evaluate this integral by contour integra-

tion, and investigate the asymptotic behaviour for large P.

Let a ( 5 ) be an analytic function of the complex

variable r which coincides with a when T = n. The series

(8. 52) is summed by

Y4(P, 1) = 2 - F ,(8.53)

where

F P) 0 4s p ee )Lo P

and the path of integration is presented in Fig. 8. 1

t.;

]-

Fig. 8. 1 Contour of Integration
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Since r - 1 - 1/2 4 integer, the function

F( J , P ) is analytic except for a finite number of poles, all of

which are to the right of some line = L . It can be shown that

F( J , P ) tends uniformly to zero along the contour C as

R - " and for large P.

Then

Y 4 (P, 1) ? Res { F(

where the points r are the poles of F(

The functionF ( r , P ) has

T P ).

simple poles at

KO, i 1-l.

All of these poles are nonintegers. The residue

is given by

Res ( 1

Likewise the residue of

Res.( * )

(8. 54)

of F ( , P ) at

P 
+

(8. 55)

F ( J , P ) at is given by

,(',r)f(-2 ') p.L
(8. 56)

= ,(,,) ( ir
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thus

-1/2
Y (P 1) P (A P + BP ) (8.57)

where

B = r c- r) r -r )

for large P. Hence, the series solution Y4 (P ' 1) is asymptotically

proportional to Y . The solution (8. 57) will be used as solution

for large P (or small z). Three other solutions for large P can be

obtained from the corresponding integral representations of (8. 49)-

(8. 51), with asymptotic approximation different to Y. , and hence

will not be necessary to obtain here. The large P solutions cannot

be connected to the small P solution through the transition region

because Y ( or X ) does not satisfy (8. 28) or (8. 32) in this region.

8. 4. 5 Matching solutions and determination of the model vertical

boundary conditions

In this section, the two flux-free solutions for small P is

matched to the numerical solution at the top boundary and the bounded

solution for large P is matched to the numerical solution at the
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lower boundary.

We shall take the solution for small P a linear combina-

tion of Y1 (P, 0) and Y4 (P, 1) solutions, thus

Y(P) = C 1 Y1 (P, 0) + C 2 Y4 (P, 1) (8.58)

where Y 1 (P, 0) and Y4 (P, 1) are given by (8.49) and (8.52) respec-

tively. We shall take the three leading terms of Y1 (P, 0) and the

first leading term of Y4 (P, 1). To insure that the remaining terms

in the power series are small compared to the leading terms, we

select the reference level for the power series solution in such a way

that the coefficients are 0 (1). Having established this, we may

write (8. 58) as

y (P) C , (r * IP + LP P) + C C, P

(8. 59)
~ c a. cs)- / r = S a. , 

and

We want , and Tr to be 0 (1). Since Kn 0 (1) when evaluated

at the upper boundary of the numerical model, we take ( = 1 by

choosing -P O .~ . In terms of z, (8.59) is

y (z) = , (/ + - z e ) + ce (8. 60)
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the corresponding expression for X(z) is obtained from (8. 27) and is

given by

X (z) z ,, C ( r +. - p) e

+P), z e z

r z

S+.C (e-

zZe - ': r'e

-/p -j z) I
-3e 5

The matching procedure is accomplished by taking

and dY/dz to be continuous across the boundary.

(8.61)

Y, dX/dz,

Eqs. (8.60) and

(8. 61) can be written as

X(z) = C 1 F 1 (z) + C 2 F 2 (z)

(8.62)

Y(z) = C 1 F 3 (z) + C 2 F4 (z)

t A:16 ) ed

: ecpe

e -

3h

)
-z-z

-a

-Z
e

From (8. 62) we can obtain the constants C 1 and C 2 , which are

where

c5 ("r,Fl(Z)

F2(z)

F3(z)

F4(z)

3

I'P Y ;r z

i



-140-

given by

C 2C = F 4 X - F 2 Y1, F I F 4 - F2F 31 4 2 3

Now we can write the expression for X

-1
2 -z+

FlY - F 3 X
F 1 F 4 - F 2 F 3

and Y

2 -. z .z2z
('3) 3 e je

( " -)

- &/(3(i -,)
ij Z)

+ ,-+ g(,-'e )X
C(2 rj .- ,)

Likewise, for large P (or z 44

bounded Y solution,

(8.64)

0), we shall take the

i. e. Y - (P) in (8. 57).

8P P
(8.65)

or in terms of z

Y (2) 8 e e

where

S . s) r (s r ( -2 r) . .
s -r r 3&

d A

C1

CAz
C1 zL

(8.63)

2 -

I- r )j

Hence

(8.66)
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The term (8. 66) represents a wave, which has upward traveling

phase and downward energy flow, with exponentially decaying ampli-

tude for z e- 0.

The corresponding expression for X(z) is obtained again

from (8. 27) and is given to order a by

X(z) =  - i1 . (8.67)

To insure that solutions at the lower boundary contain no gravity

wave component that propagates energy upward, we see from (8. 66)

and (8. 67) that we need to apply the condition

d_ = +  I' + i ". )Y (8.68)

and

dX ( + i . )X. (8. 69)
dz 1

The system of equations (8. 12) - (8. 13), (8. 63) - (8. 64),

and (8. 68) - (8. 69) will be the starting point for the numerical model

which we discuss below. We shall also consider the set of boundary
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conditions, d Y/dz = 0 and dX/dz = 0 at the upper boundary.

8. 5 Numerical Procedure

In this chapter we shall describe the numerical procedure

used to obtain the solutions of the system of equations (8. 12) - (8. 13)

together with boundary conditions (8. 63), (8. 64), (8. 68), and (8. 69).

Eqs. (8. 12) - (8. 13) should more precisely be written as

the four equations
i n)

2 ws n) (wO, ))
1 X A 0 (8.70)

X f L .. ) ) (8.72)

( 7) z)Y .t jhY eZ)XL. = G.z) (8.73)

where here

f = R 12 n, -

= (/ r/)fr,- '

* / • I . , ,,, '
f - r 7'0 k/1,1
yx~~r ~;t(- V N.~, v
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-Z

=I e Cp L,CP f/l

Z / , )

(8. 68) - (8.

Likewise, the boundary conditions (8. 63) - (8. 64) and

69) are also separated in real and imaginary parts.

In order to simplify the notation, the following variables

are defined

x (z)r

x. (z)1

Y (z)r

Y. (z)
1

G (z)r

G. (z)
1

f (z)
Y

= X(m, n) (z)
r

(m, n)= X. (z)
i

Sy(m, n)
r

(m, n)
1

= G(m, n)
r

(m, n)
= G )1

= f (z)
y

Eqs. (8. 70) - (8. 73) become

gy

h
Y

(m, n)G
r

G(m, n)
1

- /



-144-

x( z) " r

kK IZ Y.-

Sfy( L) Y - 3, (z) Y. +hyZ)Xr = cG ) (8.76)J2 Y

Jz' j,(2) YY~ r
6. CL)I

Eqs. (8. 74) - (8. 77) will now be put into finite-difference form.

following finite-difference notation will be needed:

h = z = ZTo p / N

z n n z
n

) = ( ) evaluated at z

S2 ( ) K+1 - 2( )K K-1

We use the discussion given by Hildebrand (1956) to

write

- 2X + X
n n-1

2
h (1 +

12
J 2)X

n

(8.78)

where the truncation error T n

S 2 )(.
dz2

d zA

(8. 74)

(8.75)

(8.77)

The

, z) X,

4 b~y a L

Xn+

is expressible in the form



n- 1 Zn+l1

Thus, if we use (8. 74) to replace X
n by (-f Xx r - h Y),

x r

equivalent form for (8. 78) is

Xr  - 2Xr + X r

n+l n n- 1

where we have neglected

(8. 75) - (8. 77).

12h2(1 + 6 ) (_f Xr

x - h yr)
x

(8.80)

T . Similar procedure is applied to
n

By expanding 6 , in (8. 80) and in those correspon-

ding to X,
rY and Y , the following equations are derived:

(I.2
)X .+ (I x ;.

X"-/, (8.81)

. r, . . 2 A r 1. K ,

I2 JV, / Y, + YT

5 :. x)XW (i ,

Y'* f Y,9,' , 4 2

Y
-r: r 8W 0 or

- .2 (1 -,~j- .~fY)

- .y'y .
I' n"~

(i fK "! , fY
Y Y

-LY
2.

P' 'r

/z

. (8.83)

,x

V )- I
/0/ Gn IL 4 one7-
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T
n

XvI ( ) (8. 79)

the

(,oi

(I
I 2.

n- (8.82)

)1, fV
fl-i

X~e ~hY V

6

240
240

/2 r ,,
12

_s5 I _ A 'L ( r
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.I' Y ,

-., Y I.

, -! . X "
C, 7' "

2(I-

R 1. Y r-
/.z n-,"p1

y"a (/ -Y
S y

Do 'V

/2 r?'

/rv-C7j tXL

r"- / ( A/

In virtue of (8. 79), this procedure is of fifth order, in the sense tha

it would afford exact results if Xr , Xi  yr , and Y were

polynomials of degree five or less.

This system of equations must be supplemented by the

boundary conditions. The real and imaginary parts of the boundary

conditions (8. 63) - (8. 64) and (8. 68) - (8. 69) must now be put into

finite-difference form to complete the formulation of the numerical

problem. It will, for this purpose, be necessary to expand d/dz

numerically at both the upper and lower boundaries.

The formula for forward and backward differences in

terms of derivatives are (see Hildebrand, 1956, p. 138) ,

22 33
hD + h D h D3

A h + + + (8.
11 2! 3!

22 33
V - + + ...... (8.8

1! 21 31

t

5)

6)

where

( n = n+1

(8.84)

- ( )
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( ) = ( ) -( )nn n-1

:D ( ) = d(
n

)n/dz

Using eq. (8. 85) at z = 0 (n=0) and eq. (8. 86) at

Z =z top (n=N), the following expressions are obtained

Hence to second order

Xo R (- )
_ Ay.

1. . x"I
• = C - 1\1 \O' "' =- - k1 o ' , "

yo

= t; y L R~- y- r- -N,' ( ' J 4 (6 y ya

2 o hx rI

and

(8.87)

(8.88)

(8.89)
Xi/ -R _ K Y'
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x2 - x X,
Siv Pe

7, n. •y y/

.: ( Y ' r Y Y r Gre c

Y ( r <Y'- j, ,,,Y Yjr, - t G,)-<_. jyN IV> a IV

Ye)
,W-/.

Yr/ilN '

(8.90)

The lower boundary conditions (8. 68) and (8. 69) can be

written as

aaXr - bh X;

as X zr ba

ca yr

X,

+ dYr

at t

(8.91)

X'

IV

dXr

c z
dz
Jz

at Y

r X _ ,x

/V IV IV IV

'R ( <'

r
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where

4

aB, bB and dB are all evaluated at z=0

Eq. (8. 91) can now be written in finite difference form

by use of (8. 89) giving

: %Xo - b XLO

b13

+ O

r- fo'r +7 ~&'OC
2 -/, a .

8.92)

,-" ) - - - " . , y

The upper boundary conditions (8. 63) and (8. 64) can

similarly be written as

aB

CB

dB

2(XT-I

4 )r

r/ X
dL dx Y

LY

tb~):
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X
-T %

c7 C - x XTy - r

Y
CL Y  IF,- e Y.- -V r7

- y +
7

x

T £

"T

where

bT
- - -z

7
Y -z

Y Z -Z
b - ( )e /b

. = - (,- 2 ) e /

-z
3 = (2') e - )

S  X C. AY ay 0 C Are a // ~Va / Wfea o-f " Z.: 7
T7 7 , T 1 r, r, T ap

c Xr
j

c Y
d z

j Y.' t
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(8.93)
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Thus, the upper boundary condition can be written in

finite difference form using (8. 90) and (8. 93), giving

r

x

- "-

KNY:
SX X X

r Yr"6T r X.

r YI -C K
7* £.

r _(yr' yr ( I Y iN
_fl Y -,F ' Y"_ A-

re 'W ylv OV J

y C
N NI(- f;Y_ jiy yXIV

(8.94)

Y
I c r

-C ~(

T V r a'. T ~x7 rLy

The total finite-difference system can be written in matrix

form as

A * Y = B

Vo
~CI~-i~r

.+ b: ".T

O &"

G a Y + Y
_Y~r 1-6

I- Y Y c
Iv fG:)--

(8.95)
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where

r 0

_ 0o
Y = B

0

r 1r

and A is a (4N+8) x (4N+8) band-structured matrix, whose elements

are coefficients of X , X , Y , and Y
n n n n

The set of simultaneous linear equations given by the

matrix eq. (8. 95) is then solved numerically by GELB, an IBM sub-

routine.

8. 6 A Justification of the Simple Case Study

There are several technical and practical reasons that

makes difficult to solve completely the system of Egs. (3. 1.4). First,

we have to justify that diffusive transfer of heat and momentum, to a

first order, depends only on the vertical gradient of the temperature

and motion fields. This amounts to show that all terms in the express-
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ion of the viscous force for example, are very small compared to

that term retained in (3. 14). This turns out to be the case as long

as the parameter 6 =D/a is much smaller than one. From the pre-

sent and our previous studies we find that 6 N h/u 4a 1 at

least to the base of the exosphere ( 500 km). As

however, the motion can choose its own vertical scale such that

and horizontal diffusion must be kept. This would lead

to a difficult 4th order equation in latitude for separation. On the

other hand, viscosity, compared to ion drag, is only important above

350 to 400 km. Inclusion of viscosity greatly complicates the calcu-

lations and for reasons stated in earlier sections we have omitted

viscosity in the model calculations.

Secondly, inclusion of coriolis force and time derivative

in the momentum equations does not amount to simple replacing spheri-

cal harmonics by Hough functions. The operator F (8. 4) has com-

plex parameters in it because of the ion drag term.

Thirdly, the ion drag parameter N. actually undergoes
1

a significant diurnal change and hence, the zonal component of the

ion drag term should properly be written as -2 .fA (N.U + N. Ue),
1 1

where N. and U are average values and N.' and U' are the pertur-
1 1

bation quantities. Inclusion of N.'U in the equations, however, would
1
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interfere with the separability condition (8. 3) thus only the N.U' term

is retained in the model calculations.

Finally, correct inclusion of drift velocity is not possible

at present mainly because of insufficient knowledge of electric fields

in the dynamic region and magnetosphere.



-155-

9. RESULTS

9. 1 General Description of the Model Calculation

In the previous chapter, we have described a simple

model that can be used to attempt simulation of several features of

the diurnal circulation of the thermosphere. We have also presented

the numerical method used to compute the circulation and the temper-

ature fields. Having done all of this, the results of these calculations

are given in this chapter. Particular attention is paid to the field of

motion and temperature.

The model preassumes the knowledge of heating rates

and a distribution of ion concentration. The continuously varying

ion distribution is replaced by a time independent profile as discuss-

ed in section 8. 6. We approximate the height dependence by the

Chapman formula

r); = ,, ze, )/ - *Ff- Cz-Z)A)3
(9. 1)

where n , z , and D are variable parameters in the model andm m

represent the maximum ion concentration, the height of the maximum
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ion concentration, and the thickness of the distribution, respectively.

Note that z = h dh/H, where h and H are the altitude and scale

height respectively.

The elements in the spectral expansion for the heating

1 1 1 1rates inputs has been truncated so that only Y1 Q and Y 3 Q

have been retained. Consequently, our perturbation variables will

be restricted to be the response to this forcing alone.

Figures 9. 1 - 9. 22 show these results. The final varia-

bles are presented as being proportional to cos[ A + Y t - (z) ].

Here 9 (z) is the variable part of the total phase which we shall

call here phase lag. For = 0 the amplitude reaches a maximum

at " 4 hours of local time. Each of the variables is

represented by a curve in which the amplitude and phase is plotted

as a function of z. Each of the variables is now discussed separately.

9. 2 Derivation of the Standard Data

For the purpose of comparing the results by changing

different parameters in the model calculation, we find it convenient

to define arbitrarily a standard result or a standard data, meaning

our guess as to the most typical behavior. This standard data is

based on a typical ion density profile, which we take here to be the
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day-night time averaged ion density profile for middle latitudes and

for maximum solar activity. We recall that the motion regime we

are concerned with is most likely to occur at high solar activity and

during daytime at mean solar activity, when the ion drag term is the

dominant term in the momentum equation. Note, however, that the

perturbation heating rates used in the calculation are for average so-

lar activity. We take for this average condition n , z , and D,
m m

6 -3
to be 10 cm , . 01234gb ,u 243km, and 2, respectively. Heating

efficiency for A 1027 rs 85% and for the Shamann-Range region

is 14 %.

The basic defining variables for the model calculation

are h, u, v, h, and T, which are obtained at every 150 latitude.

The result at 3001latitude will be used as a reference for comparison

involving the systematic changes of the parameter in the model. Only

one parameter is changed at a time. When the latitude is not indi-

cated explicitly in the discussion below, it must be regarded as re-

presenting 300latitude.

Geopotential height (h)

The height of the standard pressure surfaces used in the

model is described by this variable. Only the perturbation height
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associated with the diurnal bulge is obtained from the model. The

hemispheric averages of h and T are assumed to be known. This

mean state is determined by the mean solar heating. It can be de-

rived by solving the zeroth order approximation discussed in section

3. 2 (see Eq. 3. 13). However, we have used here the average values

of h and T obtained from the two-dimensional study (Lagos, 1967;

Dickinson, Lagos, and Newell, 1968). Table 3 gives the mean heights

and height range of the pressure levels used in the numerical study.

These mean heights are used here to present our data results. The

actual heights will depend, of course, on longitude, latitude and time.

The vertical structure of the perturbation geopotential

height is given in Figs. 9. 1 - 9. 6. Figs. 9. 1 and 9. 2 show the hour

of maximum and the amplitude of h at 00 latitude, Figs 9. 3 - 9.4

for 300 latitude, and Figs 9. 5 - 9. 6 for 600 latitude. Amplitude is

maximum at 0200 local time at about 100km altitude and shifts to

earlier time as altitude increases. Above about 200km the hour of

maximum height occurs at 1600 L. T. to 14:30 L. T..

The amplitude of h is about 1. 5km at 160km altitude and

increases to 20km at 400km altitude. At about 243km altitude, the

hour of maximum: height changes from about 15:30 hrs L. T. at 00

latitude to about 15:00 hrs.
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TABLE 3

Pressure, Mean Heights and Height Range for the Levels

Used in the Model Calculations

Level Pressure
(,b)

1 10.0

2 3.68

3 1.35

4 0.498

5 0.183

6 0.0674

7 0.0248

8 0. 0091

9 0.0033

10 0.00123

11 0.000454

12 0.000167

13 0.0000614

14 0.0000236

15 0.0000083

Mean Height
(Km)

80. O

85. 6

91. 6

98.4

107. 4

117.0

130.7

160.0

200.6

243. 1

293.4

349.5

409. 5

471.8

535. 5

Pressure
(,Acb)

10

100

10-1

10-2

Height Range
(Kim)

80

92

108

140

203-260

320-380

400-600
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L. T. at 750 latitude. The corresponding change in amplitude is

from 8 km at 00 latitude to 3 km at 750 latitude.

Horizontal Velocity (u, v)

The height dependence of the eastward wind u and the

northward wind v due to the diurnal bulge are shown in Figs. 9. 1 -

9. 6. These figures show the phase and amplitude at 00, 300, and 600

latitude. Above 200km, this maximum occurs at night around 21:00

hrs. L. T.. Maximum westward velocity is 12 hours apart from max-

imum eastward velocity. The phase of the meridional component is

always ahead of the u. Thus maximum northward velocity above

200km altitude occurs at about 1600 hrs. L. T.

The amplitude of u ranges from 5 m/sec at 150km to

115 m/sec at about 400km. The corresponding amplitude of v is

from 3 m/sec to 35 m/sec, at 150km and 400km altitudes respec-

tively.

The latitudinal dependence of the hours of maximum east-

ward and northward, at about 243km altitude, is presented in Fig. 9. 7.

This time of maximum has little change for u, but large for v.

We find maximum northward at 1900 hrs. L. T. at 150latitude and

shifts to earlier time as the latitude increases. At 750 latitude, the
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maximum northward occurs at 15:20 hrs. L. T.. The latitudinal

dependence of the amplitude at the 243km level is presented in Fig.

9. 8. Note that the amplitude of v is identically zero at the equator.

A detailed discussion of the field of motion and its comparison with

current values available in the literature will be presented in the

next chapter.

Vertical Velocity (h)

The phase and amplitude of the vertical component of

motion as a function of altitude is also presented in Figs. 9. 1 - 9. 6.

There is a maximum upward motion above 200km altitude at about

14:30 hrs. L. T., and maximum downward motion above 200km alti-

tude at about 02:30 hrs. L. T. The amplitude of this wind component

ranges from 10cm/sec at 150km to about 4 m/sec at 400km. Both

the phase and amplitude depend strongly on latitude. At the equator

there is a maximum upward velocity at 1600 hrs. L. T., and at 750

latitude the maximum upward velocity occurs around 1400 hrs. L. T.,

as can be seen from Fig. 9. 7. The amplitude of h at 450 latitude

is 1. 6 times larger than the value at the equator at the 243km level.

This space and time variation of h and its implication in determi-

ning the temperature structure of the thermosphere will also be dis-
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cussed in the next chapter.

Temperature (T)

The vertical structure of temperature is presented in

Figs. 9. 1 - 9. 6. The hour of maximum temperature variation has

an altitude dependence, as we can see from all of these figures. At

150km altitude, for example, the maximum temperature occurs a-

round 1600 hrs. L. T., at 250km around 14:30 hrs. L. T., and at

400km around 14:20 hrs. L. T. Likewise, the amplitude varies

from 150km, 106 0 Kat 250km, to 108 0 Kat 400km. These values change

with latitude as we can see from Figs. 9. 7 - 9. 8. The latitudinal

1dependence of the perturbation temperature varies essentially as P

We shall compare our results with observed data and

attempt to explain the phase and amplitude variability with altitude

and latitude in the next chapter. It will also be illustrative to com-

pare our results when adiabatic heating is and is not included in the

thermodynamic equation. This will be discussed in the next chapter.

The temperature distribution when heating efficiency, boundary con-

ditions, and ionization profiles are changed, will be discussed next.
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9. 3 Results for Different Heating Efficiencies

Having established the standard data, we proceed now to

alter each of the free parameters in the model, and examine to what

extent the results are changed.

A set of model calculations have been obtained by changing

the value of heating efficiency. W and Ed were set as low as 60%n n

and 10% respectively. These values were used by Mahoney (1966).

The result of this calculation is shown in Figs. 9. 9 - 9. 10. The am-

plitude of perturbation temperature and other variables resulted to

be small, as indicated in Fig. 9. 10 (cp. Fig. 9.4). The hour of

maximum h, u, v, -h and T shown in Fig. 9. 9 has practically no

change with reference to the standard result shown in Fig. 9. 3.

From this calculation it was evident that more solar heating was re-

quired, and consequently, I and £d were increased. A constantn n

average value of 85% for EI  (E d was set equal to 14%), as pre-n n

dicted from theory, gives amplitudes of temperature perturbation

that are in better agreement with observations. These values were

selected for the standard and subsequent model calculations.

9. 4 Results for Different Boundary Conditions

Let us now consider the problem of solving the system
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of equations (8. 74) - (8. 77) with boundary conditions which specify

-z/2
that heat flux and the gradient of e w vanish at the top boundary,

and compare the results with the standard data. The solutions of

-z/2(8. 74) - (8..77) together with the finite difference analog of (e w) =
z

T = 0, are summarized in Figs. 9. 11 - 9. 12. There are two
z

points worth mentioning.

First, there is practically no change of the phase of the

temperature perturbation with reference to the standard data. The

hour of maximum temperature occurs at 14:30 hrs. L.T. at 250 km

and 14:06 hrs. L. T. at 400 km. Secondly, the amplitude is somewhat

smaller than the standard results. It is 5% smaller at 250 km and

10% smaller at 400 km.

The phase of the three components of the velocity and h

have also negligible change with reference to the standard data. The

amplitude of the horizontal velocity field and h are smaller than the

standard value by about 5% at 250 km and 18% at 400 km. The am-

plitude of h , however, is larger than the standard value by about

5% at 250 km and 18% at 400 km.

9. 5 Results for Various Ion Density Profiles

We next examine the effects on the model when the ion
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drag parameter is changed. There are three free parameters to

play with, n , z , and D. Six sets of these parameters were
m m

selected as shown in Table 4.

TABLE 4. Numerical Values of Ion Drag Parameters

Used in the Model Calculations

Model 1 2 3 4 5 6

n 1106  110 10 1106  1.10 6  5.10 5  5.10 6
m

z 10 10 10 11 10 10
m

D 2 3 2 2 2 2

* Reference model
**Expression (9. 1)

(standard)
+.5 (z - 6. 5). Second term added from Level 7 up.

Fig. 9. 13 shows the set of ion density profiles. Figs.

9. 14 - 9. 15 summarize the results of the temperature calculations

when the parameters of ion drag take the values of the first four col-

umns given in Table 4. Likewise, Figs. 9. 16 - 9. 17 show the re-

sults when the parameters of ion drag take the values of the last two

columns of Table 4, i. e. nn is decreased by a factor of two and in-

creased by a factor of five.
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Let us consider the model results individually. The thickness

of the ion drag coefficient distribution of Model 2 is wider. The hour

of maximum of the vertical temperature structure shifts to later time

by about .5 hrs. The amplitude increases at all levels, 80K at 200km

altitude, 20°K at 300 km, and 280K at about 400 km altitude. In

model 3 a term, .5(z-6.5), has been added above level 7 to N. corre-1

sponding to model 1, in order to keep the magnitude of Ni almost

constant above F2 peak. The hour of maximum shifts to later time

by about 1:10 hrs. The amplitude increases by about 400K at 250

km and about 700K at 400 km. In model 4, the height of nm has

been raised to level 11 (about 300 km), the other parameters

are kept the same as in model 1. The changes in phase and ampli-

tude of the temperature are not large. The hour of maximum shifts

only 0.2 hrs. to later time, and the amplitude increases by about

100 K at 250 km and about 230K at 400 km. In model 5, n has been

decreased by 50%. The hour of maximum shifts by about one hour to

earlier time, the amplitude decreases by about 300K at 250 km and

450K at 400 km. Finally in model 6, we have increased the nm by

500%, (an upper limit, although never observed )the resulting phase

change is that maximum temperature variation occurs 1:20 hrs.

later, and the amplitude increases by about 360K at 250 km and 650K
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at 400 km. These results encompass the actual range of observed

electron density profile.

9. 6 Results for Changes in the Mean Temperature Field

Let us consider next the changes that may result in the verti-

cal structure of temperature when the mean state is altered. The

effect of the basic state condition (e. g. the hemispheric average

temperature) in the model calculation comes in through the thermody-

namic heating or adiabatic heating, which depend on the static sta-

bility S.

Fig. 9. 18 shows the vertical distribution of mean temperature

for average and high solar activity, and the corresponding distribu-

tion of S.

Fig. 9. 19 illustrates the results for the high solar activity

case for the hour of maximum h, u, v, h, and T. There is a phase

shift of about 0:30 hrs. toward earlier time on h, u, h, and T, and

about 0:50 hrs. on v. The amplitude of h, u, and v decreases by

about 10%,the amplitude of T decreases by about 10% at 250 km and

18% at 400 km, whereas the amplitude of h increases by about 15%

as we can see from Fig. 9. 20.
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9. 7 Results for Subsidence Heating

It is of interest to calculate the magnitude of subsidence

heating (or adiabatic heating, or thermodynamic heating, or heating

by compression) and compare with heating by solar radiation. The

subsidence heating is given by

= W[[c dT + RT ] (9.2)
p dz o

Fig. 9.21 shows the vertical distribution of }-f for 300 lati-

tude. Fig. 9. 22 shows the latitudinal distribution of 7-/ at 245 km

level. The magnitudes of -/ are of the same order of magnitude as

of the solar heating (cp Figs. 7. 7 - 7. 8). The hour of maximum

heating by 71 is the same as the hour of maximum downward mo-

tion. In general, maximum cooling by 7-/ is associated with maxi-

mum heating by Q.
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10. GENERAL DISCUSSION AND CONCLUSION

A system of equations describing the global circulation of

the thermosphere has been formulated in the previous chapters. A

simpler model describing the diurnal circulation in the middle ther-

mosphere has been derived with the additional approximation that the

thermal forcing in the momentum equation is balanced by the ion drag

term alone. This model has been integrated numerically and the re-

sults were presented in the last chapter. It is now our task to discuss

the results of the model and derive the consequences in so far as they

concern current ideas about the circulation of the thermosphere.

10. 1 Discussion of the Motion Field

The horizontal component of the motion field has been com-

puted from the momentum equation after neglecting inertial forces, cori-

olis force, viscous drag, and electromagnetic drifts. This is a very

crude approximation, but appears to be satisfactory if the ion drag pa-

rameter is large. This will be the case, as discussed in section 4. 5,

during maximum solar activity, or at summer solstice near higher so-

lar activity, and at daytime during average solar activity. This motion

regime, which has been given the name cross isobaric (Geisler, 1966),

will be limited to the region where N. > 1. This condition will be
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satisfied around the F region peak, say between 165km and 400km

altitude. Outside this region our results are not applicable. The va-

lues of the ion drag parameter adopted for the calculation have been

selected such that they will cover the actual range of the average elec-

tron (ion) density profile observed at sunspot maximum (see Fig. 9. 13).

We have also assumed that N. is independent of time (and latitude).
1

In general the calculated amplitudes of zonal and meridional component s

of horizontal velocity are small whenever N. is large, and vice versa.
1

The amplitudes of u and v at the hour of maximum at about 350km are

70 m/sec and 35 m/sec respectively for the reference model at 450

latitude. The amplitudes of u and v at the hour of maximum for mo-

del 5 at about 300km are 60 m/sec and 30 m/sec respectively at 450

latitude.

The pressure gradients associated with the diurnal bulge of

atmospheric density as deduced from satellite drag measurements

have been used to derive horizontal winds in the thermosphere (Geisler,

1966, 1967; Kohl and King, 1967; Lindzen, 1967a). Geisler (1966) has

calculated the horizontal components of the geostrophic and cross-isobaric

winds for sunspot maximum and minimum, at 450 latitude. He finds

that during the day, the peak ion concentration is sufficiently high for

the cross-isobaric component to be dominant. The maximum ampli-

tudes of the zonal and meridional components that he obtains at the F2
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peak (about 340 km) around 2000 hrs. L. T. (for u) and 1600 hrs. L.T.

(for v), for summer and high solar activity are 60 m/sec and 20 m/sec,

respectively. The corresponding values for winter at the F2 peak

(about 260 km) are 120 m/sec and 40 m/sec respectively. Although

these results and those reported here can not be compared directly due

to the difference in nm used to compute them (see Table 4 and Fig.

9. 13, and Table 1 in Geisler (1966) the amplitudes are in agreement

within a factor of two.

The orientation and time of maximum eastward and northward

velocity are also in agreement with Geisler's calculation. From Fig.

9. 7 we can see that the zonal component is eastward from 1500 hrs. to

0300 hrs. local time, with maxima at 2200 hrs., and the meridional

component is poleward from 1000 hrs. to 2200 hrs. L.T., with maxima

at 1600 hrs. L.T.. Geisler's calculations also indicate a maximum east-

ward velocity at 2200 hrs. and maximum northward at 1500-1600 hrs.L.T.

It is also interesting to note that the inclusion of inertial, cori-

olis force, and viscouse drag (Geisler, 1967) does not substantially

change the phase of the north-south wind component. From Fig. 9. 7

we note that the time of maximum northward velocity change with lati-

tude, shifting to earlier time as latitude increases. Similar results

have also been obtained by Geisler (1967).

The amplitudes of u, v, and h obtained in the present study

increase unrealistically with altitude above about 400 km. This
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is because we have neglected viscosity, which becomes important

above about 400 km. Our results, therefore, are not applicable above

400 km.

The field of vertical velocity is also in agreement in phase and

amplitude with the vertical velocity calculated from the horizontal wind

system of Geisler (1967) (Dickinson and Geisler, 1968), below 400 km.

The average rotational speed of the upper atmosphere at heights

of 200 to 300 km has been evaluated by analysing the changes in the

orbital inclination of several satellites (King-Hele and Allan, 1966,

and King-Hele and Scott, 1966). These studies suggest that the atmo-

sphere rotates at a rate of about 1. 3 (1. 1 to 1. 5) faster than the earth,

given a diurnal average westerly wind between .100 to 200 m/sec. The

i-esults of the linear model presented here provide no average zonal wind.

10. 2 Discussion of Temperature Field

Let us now examine the question of the phase and amplitude of

the perturbation temperature associated with the diurnal bulge. The

results presented in the previous chapter show that the phase and am-

plitude depend to some extent on what boundary conditions(for ampli-

tude only) and ion drag coefficient are adopted in the model calcula-

tions. In general the results indicate that the phase is height dependent.

The time of maximum temperature lags behind the hour of maximum

heating by more than 4 hours below 150 km, but 2. 3 hours above 250 km.
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Temperature data inferred from density observations indicate that

maximum temperature lags maximum heating by 2 hours and remains

independent of height above about 200 km.

We have mentioned above that the horizontal component of wind

and consequently the vertical component, are unrealistically large

above 400 km. Larger vertical velocity leads to larger adiabatic

heating. Adiabatic heating by vertical motion is about 1400 out of

phase with solar heating. That is, there is a maximum cooling at

14:30 hrs. L. T. As a net result, the amplitude of the temperature

perturbation decreases slowly above 400 km.

The amplitude of the temperature perturbation can be increased

by increasing the ion drag, so that the velocity field is small and con-

sequently the adiabatic heating by vertical motion will be small, how-

ever, the hour of maximum shifts to later time. The contrary holds

true if we decrease the ion drag. From Figs. 9. 11-9. 12 we can also

see that changes in the upper boundary conditions could lead to some

changes in the amplitude of T.

Jacchia (1965) has investigated the amplitude of diurnal exosph-

eric temperature variability and found that the ratio of daily maximum

to minimum temperature remains very near to 1. 3, independent of

latitude and season. The maximum and minimum exospheric tempera-

tures change with solar cycle. For mean solar activity (10. 7 - cm

solar flux = 150), T ' 12300K and T .2 9600K; for periodsmax mm
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between mean and high solar activity (10. 7 - cm solar flux = 175),

T - 1345 0 K and T ' 1050*K. Similar data from the
max min

present standard model calculations gives at 00 latitude Tmax " 13000

and Tmin = 10560 K, given a Tmax to Tmin ratio of 1. 23; at 3001lati-

tude Tmrax 1 1290°K and Tmin 5 10660Kwith Tmax to Tmin ratio

of 1. 21; and at 600 latitude Tmax 1 12520K and Tmin ' 1104 0 K, with

Tmax to Tmin ratio of 1. 14.

We have neglected the coupling between the lower atmosphere

and the thermosphere, and between the thermosphere and the exosphere.

Probably, the diurnal tide originated in the lower atmosphere will be

dissipated below 150km but the semidiurnal tide inight reach up to the

200km level. The momentum and heat fluxes associated with these

tides should be incorporated in the model if we seek a more complete

description of the circulation in the lower thermosphere. It seems

that on account of the lack of experimental evidence for a vertical heat

flux coming in from the magnetosphere, we can safely neglect it. On

this basis one can justify the simpler boundary conditions used in our

previous study so long as we choose the top boundary at altitudes high-

er than 500km.

Perhaps the most important shortcoming of the present model

is to have neglected viscosity. Its omission cannot be justified above

-1
400km, since E = O (R ) in this region. If N = O (1), it cannot be

o 1
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even justified above 300km. Its omission in the present model has

lead us to obtain results for the motion field increasing with altitude.

If we had included viscosity in the model, the solution for the motion

field would have been independent of altitudes for large z, as we found

in our two dimensional model.

10. 3 The Significance of Adiabatic Heating by Vertical Motion

We want to end by summarizing the positive qualities and

consequences that can be derived from the present study.

It has been established by a scale analysis of the dynamic

equations in chapter 4 (see also Lagos, 1967; Dickinson, Lagos, and

Newell, 1968) that only vertical motion can give adiabatic heating and

cooling in the thermosphere that is of the same magnitude as the heat-

ing by EUV solar radiation. These studies have been supplemented

with two-dimensional numerical models to support the above conclu-

sion (see references above). Because of the approximations inherent

in these models, the uncertainty, regarding the exact description of the

"second heat source" as due mainly to adiabatic heating and cooling

by vertical motion, has remained. We have then sought a more correct

description of the "second heat source" using a more elaborate dyna-

mical model which is described in the present study. Yet, even here
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we were forced to make some approximations. Our results indicate,

however, that these approximations are not serious. We may regard,

therefore, the present and our earlier studies as complementary and

consider as satisfactory our explanation of the "second heat source".

From our theoretical formulation and the numerical solutions

presented in the previous chapters, we can safely claim, that the model

reproduces the main features of the diurnal bulge in the region from about

160km to about 400km. The error in describing properly the lower boun-

dary condition and the interaction with the lower atmosphere is certainly

no larger than the error in neglecting inertial and coriolis force. Like-

wise, the error that may be introduced by specifying properly the upper

boundary condition is certainly no larger than the error introduced by

neglecting viscosity and electromagnetic drifts.

Noting again that only vertical motions couple the equations of

motion to the thermodynamic equations, the numerical solutions present-

ed in chapter 9, all showing that maximum temperature occurs near 1400

hrs. L. T., must therefore, be regarded as due to adiabatic heating and

cooling by vertical motion, which shifts the phase to earlier time by al-

most exactly two hours. To prove that indeed adiabatic heating and coo-

ling by vertical motion can shift the phase of the maximum temperature,

solutions of the thermodynamic equation with and without the subsidence

heating term have been obtained. Figs. 10. 1 - 10. 3 summarize the re-
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sults. Figs. 10. 1 - 10. 2 show the solution with the boundary condi-

tions used in.the present model, whereas Fig. 10. 3 shows the solu-

tion using the boundary conditions that allow no flux of heat at the top

boundary. Figs. 10. 1 and 10. 3 show the hour of maximum tempera-

ture and Fig. 10. 2 shows the corresponding amplitude of Fig. 10. 1.

Note that the amplitude in absence of adiabatic heating has increased

by about 80% above 200 km. In view of these results, there can be

little doubt that the "second heat source" is due to adiabatic heating,

or to heating by compression, or to thermodynamic heating. These

names have been used to describe the pressure-work term.

The role and consequences of vertical motion in other thermo-

spheric processes is evident of course, but we do not want to discuss

them here. There is no question about the work that remains to be

done before we can understand fully the circulation of the thermo-

sphere.
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Appendix I: Energy Equation for a Single Fluid Plasma Approximation

The energy equation of a single fluid plasma under the action of

mechanical and magnetic changes for the special case of low frequency

oscillations of a conducting fluid are derived in this appendix. It is

shown that when an external magnetic field is applied the pressure, the

internal energy and the reversible work done on a fluid have two compo-

nents, the mechanical and magnetic parts. When these modifications are

considered together the thermodynamic equations for gas dynamics remain

unaltered except with the additional heat source due to Joule

The usual hydromagnetic approximation amounts to the omission of the

displacement current in Ampere's law and consequently neglect Coulomb's

law, thus Maxwell's equations are

8B
Vx E = VxB= J

(I.1)

V. B = 0 J = (E + Vx B)

where the symbols are defined in section 2.1.

The fluid is supposed to be non-magnetic and hence its permeability

is taken as unity. The hydrodynamic equations are (2.1) - (2.4).

In addition to the above equations, we have the following relations:

The electromagnetic energy per unit volume

M = 1/2 B2  (1.2)

The energy flow which is the Poynting vector

N = Ex B (1.3)

and the Maxwell stress tensor

Tij = B B.j - 1/2 6ij B2
ij :I .j ij

(1.4)
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In a moving fluid with velocity v the relationship between the

electromagnetic field vectors E* , B* and the current density J* in

the local frame, and E, B and J in the laboratory frame are given by

E*= E + Vx B

B* = B - Vx E (1.5)

J*= J

and the Poynting vector is similarly transformed according to (1.5).

The derivation of the energy equation here follows closely the

analysis by Chu (1959), who has discussed the thermodynamics of a

general electrically conducting fluid including the displacement current

and the dependence of dielectric constant and the permeability on the

state of the fluid.

The thermodynamic pressure due to the joint action of the mechanical

and magnetic changes can be written as the sum of two parts

o= m))+ (1.6)

where

p(O)= RpT , p (m)= 1/2 B2  (1.7)

Similarly the internal energy U due to the joint action of the mechanical

and magnetic changes can be written

u = U(o)+ U(m) (1.8)

where

(0) (m)U = CT , U = 1/2 B2 /p (1.9)V
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and the stress tensor

(o) (m) (I.10)
ij ij + (I.10)i

where

(o) (O)6 +.. (I.11)
ij ij 1)

(m)- p(m) 6  + B.B (1.12)
ij 1ij i

and where the viscous stress tensor .ij is given by (cf. equation (2.7))

7j= ( + -5-) - 2 k 6 (I.13)
ij + x 3 3xk

The momentum equation for the single mechanical and electromagnetic

system can be rewritten (omitting the coriolis force, see equation (2.1))

dv ST..

p = + pF (I.14)
dt ax. j

where F. is the external body force per unit mass acting on the fluid.

The electromotive force J x B is included in T. . This can be see

as follows,

J x B = B(V * B) -. V x B)

= B(V * B) + (B - V) B - 1/2 V B2  (1.15)

which can be identified as the divergence of a dyadic:

B (V * B) + (B * V) B - 1/2 V B2 = V-(BB - 1/2 I B2)
S(I.16)

V * T

where T is the tensor-dyadic, the magnetic part of Maxwell's stress



-215-

tensor. The elements of this tensor are

(m) (1.17)(m)
ij

Hence

a (m)J x B ax. T iJ
1

The continuity equation (2.2) will be sued in the form

dv
= p d 1(1.18)

dx dt p

The equation of energy balance for a mass of fluid may be written

as

W + W + C + Q + N = K + U (1.19)s b

where W is the rate of work done by the surface stresses, W the
s b

rate of work done by external body forces, C the rate of heat energy

conducted, Q the rate of heat energy added by radiation and chemical

action N the rate of energy radiated, and K and U are the rate of

increase of kinetical and internal energy of the mass. That is,

Tij v. ds . v + dv+ (KV T) * ds

+ pQ dv - (E* x B*) * ds = d- p (1/2V 2 + U) dv (1.20)

and making use of Gauss's theorem, (1.20) becomes

d 1 T.V.
p d (- V2 + U) = .- + pF * V + V.(KV T) + pQ - V. (E* x B*)

dt 2 ax.
1

(I.21)
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Next we derive an expression for the work done by the stresses and

body forces. Using (I.14) and (1.18) we can write

ar.. aV.
V. = V. ( + - F.) + 2.

(ax. ij ax.
1 1

dV. aV.
=V. (p ) -P B. B.

j dt ax. 11

d V2 d 1
= [ (-) - p ( ) + Bdt 2 dt p

ax.
1

+ 7.r
ij ax.

1

*(B *V)V + 4

(1.22)

Now

B -(B *V)V = (B *-)(V * B) - V -(B -V)B

V [B (V )1 - -(B -V) B

E* x B* = E x B - B x (V x B) = B (V *B) - V (B -B)

V -(E* x B*) = V -(E x B) + V *[B (V *B)] - V -[V (B- B)]

V -(E x B) = - E * V x B + B

thus (I.23) can be rewritten

* VxE=-J E - B

(1.26)

B *(B * V)V = V.(E* x B*) + (B * B)V - V + B *(V * V)B + J - E

+ B
+ B • t - V -(B *V)B

(I.27)

= V(E* x B*) + (B - B)V * V + B - + B *(V * V)B
- - -- - at -

+ J * E - V *(J x B)

T ..V.
-a +JfF

ax.
1

(1.23)

(1.24)

(I1.25)
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or

B -(B -V)V = V -(E* x B*) + J * E - V *(J x B) + p[B--- ( )]
Sdtp

(1.28)
Hence (1.22) becomes

T..V. 2  d 1 B

Dxi ii dt 2 dt P - dt 

1J~x. ) ~~ [ - -"P () + B.
(I.30)

+ V (E* x B*) + J * E - V * (J x B) + 4

therefore the energy equation (1.21) becomes

p[dU + p ) - -d ( )] = V - (KV T) + J * E - V *(J x B)+ 0 + pQ
dt dt p at p

(I.29)

where again p and U are the pressure and internal energy due to the

joint action of mechanical and electromagnetic effects.

Using the second law of thermodynamics, we see that

B
Tas = dU + pd () - B - -)

p at p

= dU(o) (o)d (1)au()+ p aC)

= Tdso)

where s ( o) is the mechanical entropy.

Hence (1.30) the energy equation becomes, dropping the upperscript

on s

pTs = V (KV T) + J (E + x ) + + p Q (I32)
at

(I.31)
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Appendix II: Pondermotive Force and Ion Drag

The basic effect of a magnetic field on the dynamics of a conducting

fluid is accounted for by the pondermotive force per unit mass, which in

our fluid is the magnetic component of the Lorentz force,

F (J x B) (II.1)
- p p

where J is the current density, B the magnetic induction, and p the

density of the fluid. The current density, in turn, is related to the

electric and magnetic fields by

J = Q E' = -(E + V x B) (11.2)

where E is the polarization electric field, v the velocity and the

anisotropic electric conductivity tensor.

Substitution of (11.2) in the formula for F , give the

expression for this vector as

Fil jk ijk jm E'm Bk (11.3)

This expression is simplified by assuming that the vertical current flow

can be neglected and by expressing B in the form

B = (- cos Ie - sin I K)B (II.4)

where I denotes the magnetic dip angle. The X and € - components of

F are
^I

FX = aX (U - U)B2sin2 I + o (dv - v)B2sin 2I

(II.5)
FI = a0 (vd - v)B2sin 2I - aX (U - U)B2sin 2I



-219-

where Ud  and vd are the components in the X and # directions of

the drift velocity E x B/ EL and the components of the conductivity

tensor are given by (Chapman 1956)

- 1

a = K 0 a
XX 1 0

a = K-12 ao sin I
2

a = a sin21 + 1 03 cos 2 ). (11.6)
1 0 3

oa = 1 + 0G /3 1 2 1

K = al cos2 I + a sin 2I

and where oo ' 01 and a2  are given by (Chapman and Bartels, 1940)

a = (n.e/B)[(w./v.) + (e /ve)]

a = (n e/B)[w.v./(W + V?) + W V /(w2 + v2)] (II.7)
1 1 1 ee e e

a = (n.e/B)[w2/(? + v) - W/( 2+ v)]
2 1 e 1 1 1 1 1

where n , n. and n are the number densities of electrons, ionized
e 1 n

and neutral molecules, e is the absolute value of their charge,

w. = n.eB /p , w = n eB/p are gyrofrequencies, p and p. are the
1 1 ie e e 1

densities of electrons and ionized molecules, v and v. are the
e 1

electron-neutral and ion-neutral collision frequencies. In the middle

and upper thermosphere the following inequalities a >> a > a
0 1 2

w >> W. w >> v and v. >> v are satisfied. Hence the expressions
e 1 e e 1 e

for -FI and F#I are
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nF ii/nn [(U d -U) + P+(v d  v) sin I
1+ p2

n. Iv/n
F = n

l+p2

(II.8)

[(v d - v) sin 2 I - p+(Ud - U) sin I

where p+ =Vi/m . A somewhat similar analysis has been given by

Piddington (1954).
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