
THE CIRCULATION OF THE ATMOSPHERE OF VENUS

by

EUGENIA E. KALNAY de RIVAS

Licenciada en Meteorologia
Universidad Nacional de Buenos Aires

(1965)

SUBMITTED IN PARTIAL FULFILLMENT

OF THE REQUIREMENTS FOR THE

DEGREE OF DOCTOR OF PHILOSOPHY

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

July, 1971

Signature of Author........ ...... ..........................
Department of Meteorology, July , 1971

Certified by....
/ / / /Thesis Supervisor

Accepted by .;_. /1. ... ......1. . ... .* ** * **9***** * *
/Chairman, Departmental Committee

on Graduate Students
Lindgren



THE CIRCULATION OF THE ATMOSPHERE OF VENUS

Eugenia E. Kalnay de Rivas

Submitted to the Department of Meteorology on July 6, 1971 in partial

fulfillment of the requirements for the degree of Doctor of Philosophy.

ABSTRACT

The circulation of the atmosphere of Venus is simulated by

means of two-dimensional numerical models. Two extreme cases are

considered: first, rotation is neglected and the subsolar point is

assumed to be fixed; second (and probably more realistically), the

solar heating is averaged over a Venus solar day and rotation is

included. For each case a Boussinesq model, in which density vari-

ations are neglected except when coupled with gravity, and a quasi-

Boussinesq model, which includes a basic stratification of density

and a semi-grey treatment of radiation, are developed. The results

obtained with the Boussinesq models are similar to those obtained

by Goody and Robinson and by Stone. However, when the stratification

of density is included and most of the solar radiation is absorbed

near the top, the large-scale circulation is confined to the upper

layers of the atmosphere and cannot maintain an adiabatic stratifi-

cation in the interior. The thermal equilibrium in the interior is

radiative-diffusive. When solar radiation is allowed to penetrate

the atmosphere, so that at the equator 6% of the incoming solar

radiation reaches the surface, then the combination of a more deeply



driven circulation and a partial greenhouse effect is able to main-

tain an adiabatic stratification.

The effect of symmetrical solar heating is to produce di-

rect Hadley cells in each hemisphere with small reverse cells near

the poles. Poleward angular momentum transport in the upper atmo-

sphere produces a shear in the zonal motion with a maximum retrograde

velocity of the order of 10 m/sec at the top of the atmosphere.

The numerical integrations were performed using non-uniform

grids to allow adequate resolution of the boundary layers. A study

of the truncation errors introduced by the use of non-uniform grids

is included, and it is shown that the use of stretched coordinates

has several advantages for flows with boundary layers.

A proposal for a simple three-dimensional model, capable in

principle of explaining the observed rapid zonal velocities at cloud

level as well as the deep circulation, is presented.

Thesis Supervisor: Jule G. Charney
Title: Sloan Professor of Meteorology
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CHAPTER 1

Introduction

The atmospheres of our planet Earth and our neighboring

planets Venus and Mars seem to have been designed with an experimen-

tal purpose in mind. While they are all subject to approximately the

same driving, i.e., the incident minus the reflected solar radiation

differs by less than a factor of 2, other parameters important to met-

eorologists are quite different (Table 1.1).

Main constituent

Solar constant x
(1-albedo)

(erg cm-2sec
- 1 )

Specific gravity
(cm sec- 2 )

Rotation period
(sec)

Inclination of
Equator to ecliptic
plane (degrees)

Surface pressure
(atm)

Venus

C0
2

6.3 x 105

850

2 x 10 7

' 100

Earth

N
2

9.0 x 105

980

7 x 105

23

1

Mars

Co
2

5.1 x 105

376

7 x 105

25

6 x 10 - 3

Table 1.1: Some physical data of the planets Venus, Earth, and Mars.

For example: (a) the inclination of the Equator with res-

pect to the plane of the ecliptic is near zero in Venus, which means

that very little seasonal variation is observed, and is about 25* for

both Mars and the Earth, with correspondingly strong seasonal variations



of insolation; (b) the total mass of the atmosphere measured by the

surface pressure, which together with the length of a solar day gives

a measure of the importance of diurnal effects, also varies dramati-

cally: it is about one hundred atmospheres for Venus, one atmosphere

for the Earth and one hundredth of an atmosphere for Mars; (c) the

rate of rotation of the planet is rapid for Mars and the Earth, which

have a rotation period of about one earth day in the positive direc-

tion, and is very small for Venus, which has a rotation period of

about 243 earth days and (with the marginal exception of Uranus

whose equator is inclined 980 with respect to the plane of the eclip-

tic) is the only planet known to rotate in a retrograde direction.

It can be expected that the general circulation of the at-

mospheres of Mars and Venus will be found to be widely and interest-

ingly different from the Earth's general circulation. This paper is

an attempt to study the general circulation of the atmosphere of Venus.

The recent history of the investigation of the atmosphere

of Venus contains some surprising discoveries. The emission temper-

ature of the top of the cloud deck whic4 covers most of the atmosphere

is about 230'K, but at the beginning of the 1960's microwave emission

temperatures indicated the existence of surface temperatures of at

least 600*K (Roberts, 1963; Barath, 1964; and others). There were

three theories offered to try to explain this high temperature. Opik

(1961) proposed an "aeolospheric" model of the atmosphere of Venus

between the planet's surface and the top of the clouds in which strong

winds driven by the differential heating at the top were responsible

both for grinding and raising dust from the surface, making the at-

mosphere opaque to radiation, and for the heating of the surface



layers due to frictional dissipation of kinetic energy.

In the more popular "greenhouse" model proposed by Sagan

(1962) and others, most of the solar radiation is assumed to pene-

trate through the atmosphere to the planet's surface, but the atmo-

sphere is very opaque in the infrared region, so that emission into

space takes place in the colder regions near the top of the cloud lay-

ers. The main objection to this model is not the large opacity re-

quired in the long wave region, but the relative transparency in the

short wave region necessary to heat up the lower layers of the

atmosphere.

The first dynamical model offered to explain the high sur-

face temperatures was that of Goody and Robinson (1966). They used

a two-dimensional Boussinesq model on a flat surface with the sub-

solar and antisolar points represented by vertical planes. The at-

mosphere was considered to be completely opaque, so that radiation

was absorbed and emitted at the top of the atmosphere (the top of

the cloud deck). In the interior, radiative and turbulent transfer

were parameterized as a diffusion process.

Using scale and boundary layer analysis, they developed

a model for the circulation of the atmosphere of Venus with slow

rising motion in most of the atmosphere and a narrow region of sink-

ing motion, which they called mixing region, at the antisolar point.

There was a thin horizontal upper boundary layer with strong horizon-

tal motion towards the antisolar point, and a slow return motion

towards the subsolar point in the interior (Figure 1.1). The narrow-

ness of the region with downward motion could explain why most of

Venus' disk seems to be covered by clouds, if these are of a condensation
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Figure 1.1: Schematic representation

of the deep circulation of Venus. After

Goody and Robinson (1966).



type. Goody and Robinson's analysis suggested that the large scale

atmospheric motions were able to keep the lapse rate nearly adia-

batic throughout the atmosphere. In this way the high temperatures

at the surface could be explained even if the solar radiation were

absorbed near the top of the atmosphere.

Stone (1968) developed a similar two-dimensional Boussinesq

model on a flat surface with an improved scaling of the mixing region

at the antisolar point. He did not deal with the problem of the main-

tenance of the adiabatic lapse rate in the interior. The main dif-

ference between Stone's and Goody and Robinson's results was the width

of the mixing region. Goody and Robinson's scale analysis gave a

width of 3 km while Stone's gave a width of 150 km. Furthermore,

Stone pointed out the magnitude of the vertical velocity would decay

slowly away from the mixing region so that downward motion would not

be confined to the mixing region.

Both Goody and Robinson and Stone concluded that the Ross-

by number would be large due to the small rotation rate of the planet

so that the effects of rotation would be minor.

Hess (1968) performed a numerical computation with a simi-

lar nonrotating, two-dimensional model in Cartesian geometry. He

used pressure as the vertical coordinate so that the Boussinesq approx-

imation was not made. The initial conditions were a state of no mo-

tion and a small static stability. A circulation was produced by

the uneven heating at the top. Although after the equivalent of

160 earth days the model had not converged, the results were similar

to Goody and Robinson's except that the motion was confined to the

top third of the atmosphere, probably due to the increase of density



with depth. The width of the mixing region was much larger than in

Goody and Robinson's or Stone's analyses, probably because the grid

that Hess used was too coarse to resolve the boundary layers. The

negligible value of the winds near the surface made Opik's "aeolo-

spheric" model improbable (Figure 1.2).

In 1961 Boyer and Camichel published the results of their

ultraviolet photographs of Venus. They found cloud patterns shaped

like a horizontal Y which seemed to move in a zonal direction with a

speed corresponding to a rotational period of about four days, as

well as a tendency for certain cloud patterns to recur every four or

five days. A rotation period of four days implies zonal velocities

of the order of 100 m/s, i.e., about 50 times larger than the speed

of rotation of the planet itself at the Equator. For a while it was

generally felt that the "four-day rotation" was probably an observa-

tional error. More recent observations, reviewed by Smith (1967)

and by Schubert and Young (1970) support the evidence for the existence

of a retrograde rotation of the Venus atmosphere with a period of

four to five days.

There have been a series of papers suggesting that the cause

of these high velocities is the apparent rotation of the Sun during

a Venusian solar day, implying that the Reynolds stresses that arise

from the vertical circulation driven by a periodically-moving thermal

forcing are able to sustain a mean horizontal flow. Fultz (1959) and

Stern (1959) did moving flame experiments on a stationary annulus

and found that a weak motion developed in a direction opposite to the

motion of the flame. Schubert and Whitehead (1969) performed a simi-

lar experiment with a flame rotating under an annulus filled with
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liquid mercury and found that the liquid rotated in an opposite dir-

ection with a speed about four times larger than the speed of the

flame. They were the first to suggest that the rotation of the clouds

of Venus was due to this mechanism.

Theoretical studies to explain the occurrence of a mean

flow due to periodical thermal forcing were carried out by Stern (1959),

Davey (1967), Schubert (1969), Schubert and Young (1970) and Malkus

(1970). Schubert and Young showed that this effect is likely to play

a significant role only in the dynamics of the atmosphere of Venus,

mainly because of the favorably low overhead speed of the Sun, which

is about 3 m/s. Malkus found zonal velocities of the right order of

magnitude, even at a vanishingly small forcing speed, for a wide range

of physical parameters, particularly the Prandtl number. Gierasch

(1970) showed that the radiative time constants are of the correct

magnitude to cause a strong zonal flow by the mechanism suggested by

Schubert and Whitehead.

More recently Schubert, Young and Hinch (1970) have disputed

Malkus' results. According to them the average motion of a fluid

driven by a moving thermal source is either prograde (in the same

direction of the thermal wave) or retrograde depending on the magni-

tude of the Prandtl number ./K . The downward diffusion of the

thermal wave produces a tilt of the convection cells that tends to

produce prograde motion, and viscous diffusion from the lower rigid

surface tilts the convection cells in the opposite sense tending to

produce retrograde motion. Only if the heat is well diffused (4/O<<c )

can retrograde motion occur. They conclude that the four-day retro-

grade circulation is a proof that the thermal balance at the cloud



top level is mainly radiative, with a correspondingly high radiative

thermal diffusivity, since a turbulent diffusion would tend to have V/3 I,

Thompson (1970), like Malkus, suggested that while the

zonal flow could be started by the Schubert-Whitehead mechanism,

the interaction of a shearing flow with the tilted cells via the

Reynolds stresses could intensify the shear and produce an upper

zonal flow of the required magnitude. In both Thompson's and

Malkus' models the moving Sun mechanism only provides the initial

zonal flow. The final flow is much larger and is p;oduced by what

is essentially a finite-amplitude instability mechanism.

We should also mention a qualitative discussion by Mintz

(1961) who concluded from the visible cloud observations of Dollfus,

and from the zonal structure observed in the ultraviolet cloud pic-

tures, that there might be a lower level circulation in the atmo-

sphere of Venus with convection cells driven by the day-night heating

contrast, together with a rapid zonal circulation aloft. Considering

the large thermal inertia of the lower atmosphere of Venus (Chapters

IV and V), his conjecture of a deep diurnal circulation is questionable.

Review papers on the circulation of Venus have been written

by Goody (1969) and Hunten and Goody (1969).

The present thesis is an attempt to study the general cir-

culation of the atmosphere of Venus from a dynamical point of view.

The complexity of the processes that must be considered and the ob-

vious importance of nonlinear effects that one deduces from simple

analytical models and from the strong cloud motions, make imperative

the use of numerical models. Although the observational data of the

atmosphere is very scarce, we know enough to develop some simple



models. Until good "meteorological" observations become available,

which will not happen in the near future, the results of analytical

and numerical models are the best one can hope for to obtain some

insight into what happens in the atmosphere of Venus.

The observational data that we now have available include:

(a) Astronomical data, which by this time are well estab-

lished: Venus' gravity, mass, rotation period, length of year and

solar day, albedo, solar constant, inclination of the equator with

respect to the ecliptic plane.

(b) Atmospheric data: the Soviet spacecraft probes Venera

4, Venera 5 and Venera 6 penetrated the atmosphere of Venus on Octo-

ber 18, 1967, May 16 and May 17, 1969 respectively, but they ceased

sending information before they reached the surface. On October 19,

1967, the American spacecraft Mariner 5 flew by the planet at less

than one planetary radius. On December 15, 1970 the Soviet space-

craft Venera 7 was able to land softly on the surface of Venus and

transmit information throughout the descent from an altitude of

about 60 km to the surface.

From the observations made by these vehicles we now have

some data on the atmospheric structure of Venus (Avduevsky et al,

1970; Avduevsky et al, 1970; see Figures 1.3 and 1.4). We also

have the cloud observations mentioned before and the thermal maps

made by Murray, Wildey and Westphal (1963).

Based on these data, a series of numerical models was de-

veloped. Two extreme cases were considered: first the case in which

rotation is neglected and the subsolar point is fixed, and then the

case in which rotation is included and diurnal effects are neglected,
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Figure 1.4: Altitude distribution of temperature based

on measured temperatures and calculations of distance de-

scended based on Doppler frequency-shift observations.

After Avduevsky, et al. (1970).



as if the heating were to come from a "toroidal sun". For each of

these cases we used the Boussinesq approximation which neglects the

variations of density except when theyproduce buoyancy forces, and the

quasi-Boussinesq approximation,which implies mean density and temper-

ature stratifications close to the adiabatic. All these models have

been developed for flow on a sphere.

The main conclusions of this investigation are the following:

(a) The results of the Boussinesq numerical models agree

qualitatively with the analyses by Goody and Robinson, except that

downward motion occurs over almost half the surface of the planet.

However, when a quasi-Boussinesq model is used with a near-adiabatic

stratification, the circulation remains confined to the top of the

atmosphere (as in Hess' model) and therefore is incapable of main-

taining an adiabatic stratification in the interior. It is concluded

that some penetration of the solar radiation in the atmosphere is

necessary, both because it drives a deeper circulation and for the

greenhouse effect.

(b) The planetary rotation, even though very slow, is not

negligible. In the interior the relative velocities are very small so

that the Rossby number is small. Near the top, even though the Rossby

number is large, the relative zonal velocities generated because of

the planetary rotation are important.

(c) A basic retrograde zonal shear is produced by the solar

heating when diurnal effects are neglected. This shear may be com-

bined with Thompson's mechanism to produce strong zonal shear near the

cloud top level. The mechanism of Schubert and Whitehead requires

a strong viscous effect from the ground; it is felt that the strong



density stratification (which is absent in their model) makes this

mechanism less probable.

In the course of this investigation a numerical method of

dealing with boundary layers was developed using variable grid inter-

vals defined through a stretched coordinate. It was shown that the

truncation errors are of second order in the stretched coordinate,

both for the first and second finite difference derivatives, and that

the particular choice of the stretched coordinate made in this paper

has very distinct advantages.

The organization of the thesis is as follows:

In Chapter 2 we discuss the characteristics and results of

a Boussinesq model without rotation, similar to the models of Goody

and Robinson and of Stone. A quasi-Boussinesq model without rotation

is described in Chapter 3. This allows an estimation of the nature

of the Boussinesq approximation for a deep atmosphere. In Chapter 4

a Boussinesq model with rotation and axi-symmetric heating is de-

scribed. A quasi-Boussinesq model with rotation and symmetric heating

is presented in Chapter 5. With this model the effects of varying

the value of the horizontal and vertical coefficients of eddy viscosity

and diffusivity, and of the solar optical depth, are tested. The

properties of a simple model of radiative equilibrium in a grey atmo-

sphere are also presented here. Both Chapters 2 and 5 contain some

discussion of conservative finite-difference convective models. A

summary and discussion of the results, and a proposal for future work

is given in Chapter 6. Appendix A contains a description of a simple

three-dimensional, quasi-Boussinesq model, and Appendix B a detailed

discussion of the truncation errors in the method of stretched
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coordinates and a comparison of the results in a test case using both

that of
the method proposed here and , Sundquist and Veronis (1970).



CHAPTER 2

Non-rotating Boussinesq Model of the Atmosphere of Venus

2.1 Introduction

In this chapter we describe a non-rotating Boussinesq model

of the atmosphere of Venus which is similar to the analytical models

of Goody and Robinson and of Stone. The main difference is that we

have used the full spherical equations, and that the numerical model

gives a complete solution both at the boundaries and in the interior.

We consider that the point of maximum insolation (subsolar

point) is fixed so that both the rotation of Venus and its revolution

around the Sun are neglected. In this way there is symmetry about

the subsolar-antisolar axis, and no zonal motion arises.

The results obtained with this model, as well as those ob-

tained by Goody and Robinson, by Stone and by Hess, are interesting

from a theoretical point of view but cannot be applied directly to

the visible circulation of the atmosphere of Venus, which is undoubtedly

greatly influenced by rotation. The observations of high zonal vel-

ocities (Smith, 1967) as well as the zonal symmetry in the temperature

field shown by measurements at the cloud top level (Murray, Wildey

and Westphal, 1963) suggest that the rotation of the planet, however

small, plays a very significant role. Furthermore, the large thermal

inertia of the deep atmosphere would not allow a deep circulation to

follow the Sun.

We make use in this model of the Boussinesq approximation

in which variations of density are neglected except when they produce

buoyancy forces. Ogura and Phillips (1962) show that this approxi-

mation is justified if the dynamic processes are confined to a depth



smaller than the scale height RT/g, Since the height of the clouds in

the Venus atmosphere is several scale heights, the use of the Bous-

sinesq approximation is not really justified. On the other hand, it

may give some insight into the balance of forces, and since it has

been used by several authors, we present the results obtained with it

in order to compare them in the next chapter with those obtained

with the more realistic quasi-Boussinesq approximation.

One must be aware that in the Boussinesq approximation, the

temperature T and the potential temperature 0 are related by the

equation

T - " (2.1.1)

and therefore that there is no dynamical difference between them except

in the heat flux boundary condition. This is the only place where it

makes a difference whether we assume that the heat transfer is brought

about by turbulent diffusion, which tends to equalize potential temp-

erature, or by radiation with the opaque approximation, which tends to

equalize temperatures. In this respect the model presented here is

more comparable to Stone's than to Goody and Robinson's model because

the heat transfer is parameterized as a turbulent diffusion process,

even at the boundaries.

In the numerical model we have used density (which can be

interpreted as potential density) instead of temperature. They are

related by

6 P/ po = - ( T/T2

~_~__ I_ -^I~XI-I U- LUn~lll*~~-*~.I

(2.1.2)



T was taken as 2300, i.e., the mean temperature at the cloud

top level, where the driving of the atmospheric model takes place.

Po however was interpreted as the mean density of the atmosphere,

so that the large inertial mass of the atmosphere of Venus is repre-

sented by a relatively large value of o

The characteristics and boundary conditions of the model

are described in sections 2.2 and 2.3. To be able to resolve the boun-

dary layers using a reasonably small number of grid points we used

"stretched coordinates", which are described in section 2.4. In sec-

tion 2.5 we discuss a conservative finite difference scheme that can

be used with non-regular grids. The finite difference equations that

were actually used are given in 2.6 and the computational procedure

in 2.7. The numerical values that were used in the model are given

in section 2.8, and the results are described and discussed in 2.9.

2.2 Basic description of the model

A numerical model of the atmosphere of Venus was developed

for spherical coordinates with the following approximations:

(a) Boussinesq.

(b) Hydrostatic. This is based on the small aspect ratio

H/a where H is the height of the cloud layer top (60 km) and a is the

radius of Venus (6060 km). It is only in the mixing region that this

approximation may not be very accurate.

(c) No rotation.

(d) The subsolar point remains fixed.

(e) The atmosphere is very opaque so that short and long

wave radiation is absorbed and emitted only at the top of the cloud
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layer. The heat flux is parameterized as a turbulent diffusion process.

(f) Constant horizontal and vertical coefficients of eddy

viscosity and diffusivity. Unit Prandtl number.

The Boussinesq equations in spherical coordinates are:

or - (n,Ai nx), u -w).,

+ A .i, &M ..2!. - 2w 3, nr (2.2.1)

the meridional component of the equation of motion,

the hydrostatic equation,

0 (Y A ) - (2.2.3)

CL- AiMs

the continuity equation, and

~.P -__ _ _n_ _ () -i .). () _ Kf (2.2.4)

the thermal equation. In the above equations a is the radius of Venus,

oK is the colatitude measured from the antisolar point, fto is the

surface pressure, P is the potential density departure divided by

the mean density Po , and Po is given by 4Lo/(V) , x. and Xv  are

the horizontal and vertical coefficients of eddy diffusivity, and 9.

and 9 are the corresponding coefficients of eddy viscosity. The
V

other symbols have their usual meanings. (Note: the 2. / component



of the horizontal viscosity term in the horizontal momentum equation

should have been dropped because of the small aspect ratio H/a, but

the term is so small that it made no difference.)

From (2.2.1) and (2.2.2) we can eliminate the pressure and

obtain a forecast equation for nJt . This equation contains nonlinear

terms generated by the convergence of the meridians which can produce

a weak numerical instability. It is preferable to work with the vor-

tex strength which, for an inviscid, homogeneous fluid, is individually

conserved over the whole sphere.

Consider a vortex tube (Figure 2.2.1). By Helmholtz' circu-

lation theorem the vorticity times the cross section of the tube is

constant if the fluid is homogeneous and inviscid. The cross section

is given by Q S S (we can neglect the variations of the radial

distance due to the small aspect ratio). From the Boussinesq approx-

imation the volume of the tube TT CL s z is constant, so

that the cross section is inversely proportional to the sine of the

colatitude. Therefore the vortex strength y is

fNg (2.2.5)

because of the small aspect ratio, H/a.

From equations (2.2.1), (2.2.2), (2.2.3) and (2.2.5) we

obtain

VW [( A l 1 L (2.2.6)
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Figure 2.2.1: Vortex tube.



We define a mass stream function P :

+ 4-
+oC.

Ctrt:, w, (2.2.7)

so that

(2.2.8)a Atim a,

(2.2.9)

O.

Equations (2.2.4) and (2.2.6) to (2.2.9) are the ones used

in the model. To complete the problem we need the boundary conditions.

2.3 Boundary conditions

We assume a no-stress rigid top at the cloud top level and

a non-slip rigid bottom at the surface. From the geometry of the model

the horizontal velocity is zero at the subsolar and antisolar points.

We have then the following boundary conditions for the mass stream

function:

w w , L (a)

- O at

YP = oC= TT

(b) (2.3.1)

(c)

We assume that all the absorption and emission of radiation

takes place at the top. The short wave radiative flux is

9 A;'W4k ~:

W. AiL 0 &



- 2

where % is the Venusian solar constant and A the planetary albedo

taken as constant.

If we assume that the temperature departures from the mean

value at the top are small, i.e., T/To << I , we can approximate

the long wave radiation as

t FLW,, T (I + '/To)

were To is the mean emission temperature at the top. From the

overall balance between incoming shortwave and outgoing long wave

radiation we have

aT.o (-R S0

At the fixed height of the cloud top we have

?9 P - _T
o TO

so. that the heat flux F is given by

=.. , P , C To T ?

From the previous relationships we get as upper boundary

condition for 9

II~~ _I_~_ j~(_l I ~i^;_F_^~~_~ -Ld -- -~.L.~_ii ~i~-_
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KCr.PO 4for 40L L71

(2.3.2a)

At the bottom we assume that the heat flux is negligible:

P.0 ot ~ (2.3.2b)

2.4 Stretched coordinates

From the previous studies by Stommel (1962), Goody and Robin-

son, and Stone, we expect the appearance of horizontal boundary layers

at the top and possibly at the bottom of the atmosphere, and a verti-

cal boundary layer at the antisolar point.

In these narrow regions we need a fine grid (at least two

or three points within the boundary layers) to be able to resolve them

but in the interior much less resolution is necessary. The solution

of the problem with a regularly spaced grid that is fine enough to

resolve the boundary layer was not possible because it would have con-

sumed too much computer time. But if we use a coarse grid that doesn't

resolve the boundary layers, for example as Hess (1968) did, large

truncation errors will arise and we can expect that, even in the in-

terior, the numerical solution will be quite different from the exact

solution.

Barcilon and Veronis (1965) and Sommerville (1966) obtained

numerical solutions for simple models of a fluid driven by differential

heating at a horizontal boundary. They were obliged to weaken the



intensity of the driving until the boundary layers were wide enough

to be resolved by a regular grid with a reasonable number of points.

This procedure would not be satisfactory in our problem because it

would not correspond to realistic values of the parameters.

Another possibility is to use an irregular net with smaller

spacing in the boundary layer regions. Some computations have been

performed in which the grid size was divided by two in the region of

interest. This method however has two disadvantages: first, it is

necessary to interpolate values of the variables or their derivatives

at intermediate points, and weak numerical instabilities may arise in

the boundary between the small and large grids; second, this method

does not permit really small grid sizes without greatly increasing

the number of intermediate interpolations.

In our numerical model we have avoided these problems by

varying the gris size continuously. This is done by defining a func-

tion - () which maps the physical space X into a "stretched"

space , where we use a regularly spaced grid.

In Appendix B we show that this procedure, together with the

use of a finite difference equivalent of

F th (2.4.1)

a - ' F ' -' 1 (2.4.2)

gives the following approximations for the first and second derivatives
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and similarly
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Therefore the truncation errors due to the non-uniformity

of the grid sizes are of second order with respect to the stretched

variable . Furthermore we show that the choice

x, 1 (2.4.5)

for a problem with a boundary layer at x = 0 has three distinct

advantages:

(a) The extra truncation error introduced by the use of

a non-uniform grid is independent of x (except for the variations of

f itself).

(b) The density of points near x = 0 grows with the square

of the total number of grid points.

(c) The resolution at the worst point is equal to one half

of the resolution obtained with a regular grid if the same number of

points is used.

In our model we expect a vertical boundary layer in the re-

gion of the antisolar point, i.e., where the colatitude c< is zero.

We therefore define a new horizontal "stretched" coordinate (Figure

2.4.1):

_ (2.4.6)

In the vertical we expect boundary layers at the top, where

the driving takes place, and probably at the bottom also, due to the

presence of the solid surface. We must choose a coordinate which

is stretched at the top and bottom and quasi-linear in the interior.
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Figure 2.4.1: Distribution of grid points

in the horizontal direction obtained through

the use of the stretched coordinate y = .



In particular, we take a coordinate whose derivative is proportional

to I , i.e., (Figure 2.4.2)

4 z (4-2)

A 2 wi P "C
ITwhere STI

where S _____

(2.4.7)

Ctid H 5

This coordinate seems to be very well suited to numerical

problems with boundary layers at both boundaries of a region, as in

the Rayleigh problem, the turbulent flow in a channel, etc.

It should be noted that when stretched variables are intro-

duced, the geometric factor d_1 needs to be computed at each grid
dx

point only once, so that very little extra computer time is involved.

When the computational stability criteria are applied, the smallest

grid size in physical space has to be used in general.

In this model we used 20 grid intervals in both the hori-

zontal and vertical directions, i.e.,

20

Even with this sparse grid the first interior point was at

only 47 km from the antisolar point and 340 m from top and bottom.

The equations corresponding to (2.2.4) and (2.2.6) to (2.2.9)

in the new coordinates are:

PAM CK

8P (INvn~ ____a

Pei cL.qx) (J)"
+ K

HK _

(2.4.8)

20
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Figure 2.4.2: Distribution of grid points

in the vertical direction obtained through

the use of the stretched coordinate s = 2 c ta rc
U.
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The boundary conditions corresponding to (2.3.1) and (2.3.2) are

The boundary conditions corresponding to (2.3.1) and (2.3.2) are

at A - I

at 40O

at (

4.t 4 . I

~~t 0-(e

(2.4.9)

(2.4.10)

(2.4.11)

(2.4.12)

(a)

(b)

(c) (2.4.13)

(d)
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To 0 Lf

alA -=0

(2.4.14a)

(2.4.14a)

(2.4.14b)

2.5 Conservative finite-difference formulation of the non-linear terms

of the hydrodynamic equations in a nonregular grid

Lilly (1965) and Bryan (1966) have proposed a finite-dif-

ference scheme for the advective terms which can be used with nonregular

grids and which conserves the average value and the mean square value

of the quantity being advected (except for time truncation errors).

As was shown by Arakawa (1966), the conservation of these integral

properties eliminates non-linear instability.

Bryan's scheme is as follows. Consider the equation

_ . Vat (2.5.1)

If the continuity equation is

V, W 0 (2.5.2)
v, -l o

then (2.5.1) can be written in a "flux" form:

Rs =.0
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9 - _ V. (0c () (2.5.3)

The finite differences scheme corresponding to (2.5.2) and

(2.5.3) are

jf.. V,.1  o (2.5.4)

(r4 4i-Ac41± 1 (2.5.5)

where the volume R is divided invsubvolumes r each of which is

bounded by K plane interfaces of area i. and average normal

velocity , KO is the average value of O( in the subvolume

. and o( the average of o( in the adjacent subvolume r

If the normal velocities vanish on the boundaries of R

the following finite-difference integrals are conserved except for

truncation errors in time:

I, -. (2.5.6)

T _r. (2.5.7)

The following remarks may be made about Bryan's algorithm:

(a) It can be used in any quasi-incompressible model, i.e.,

whenever the continuity equation doesn't contain time derivatives.
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For example, in the quasi-Boussinesq approximation, the continuity

equation is

(2.5.8)

where Po (' )

Then the equations corresponding to (2.5.3) to (2.5.7) are

V ' . \(90 V)

iV

(2.5.9)

(2.5.10)P. A

r.~c E V . .

I r d L2L.tIO
172.

r~LI ''a L

where P is the average of 9

, -

on the interface % i.

are conserved except for time truncation errors.

(b) The staggered scheme can be simplified to

(2.5.14)d

that has been dropped is identicallysince the term nr
1 19 &-

(2.5.11)

(2.5.12)

(2.5.13)

and T----
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zero by (2.5.4). This simpler scheme will have the same conserva-

tion properties as (2.5.5) with some saving of computer time.

Another scheme which by (2.5.4) will also give the same

results as Bryan's scheme is

-
(2.5.15)

This shows that Bryan's "flux scheme" is really equivalent

to an average of the finite-difference advection at the boundaries.

In this way, when there is a flow towards a region with strong gra-

dient of o( we expect large truncation errors in the finite differ-

ence approximation of the advective terms.

These two schemes were found independently by Piacsek and

Williams (1970). They point out that in the numerical models which

use the primitive momentum equations the divergence is not strictly

zero due to limited accuracy in the solution of the associated Pois-

son equation for the pressure. Even in this case, the simplified

scheme (2.5.14) will conserve the integral IQ (but not -, )

preventing nonlinear instability.

(c) The method can be generalized to the compressible

case:

01 V ( \ )(2.5.16)

(2.5.17)
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Then the finite-difference scheme

Ki' ) 2±; 91. (2.5.18)

5 a -9t j (. ( 4Q (2.5.19)

will conserve the quantities

except for time truncation errors.

In this case the simplification corresponding to (2.5.14)

cannot be made. This scheme is similar to the one used by Lilly (1965)

for the shallow water equations.

2.6 Finite-difference equations

We use a staggered mesh so that in each grid rectangle the

variables with the same subindex (i,j) are placed as in Figure 2.6.1.

This placement has several advantages: it allows the use of conser-

vative finite-differences for the density , decreases the trunca-

tion error, effectively dividing by two the distance over which many

il- l~-- i~u- ?r.r~r~-x.lr~rmB*e-.



of the derivatives are computed, and finally it is the placement of

variables which allows the simplest computation of the boundary con-

ditions.

The complete grid is shown in Figure 2.6.2. The left and

right vertical boundaries correspond to the antisolar and subsolar

points respectively. The lower and upper horizontal boundaries cor-

respond to the surface of the planet and top of the cloud level

respectively.

Whenever it was necessary to fulfil a boundary condition

on the normal derivative of a function, an extra value was placed

at half a mesh length outside the boundaries.

The corresponding grid in the physical coordinates o and

is shown in Figure 2.6.3, corresponding to IM = 20, JM = 20.

I used the simplest spatially-centered finite-difference

scheme for the nonlinear terms written in a flux form, which conserved

the mean density, the mean squared density and the mean vorticity,

but not the mean squared vorticity (see section 2.5). The lack of

conservation of the mean-squared vorticity was accompanied by a

nonlinear numerical instability that ruined the computations after

7.5 x 105 secs. This instability was overcome when thercoefficient

of eddy viscosity was increased from '4 = 101 0cm2 /sec to the per-

haps unrealistically large value 3, = 10 1 1 cm2/sec.

The "leap-frog" method (centered differences in time) was

used except that the viscosity and conductivity terms were evaluated

at the time E-At , so that, with respect to these terms, the time

differencing was forward. In this way one avoids the unconditional

instability which occurs when centered time differences are used with
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direction and JM intervals in the vertical direction. and

7 are defined at the X points.
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Figure 2.6.3: Position of the grid points in the physical coordinates.

Here, as in the following diagrams, the abscissa represents the colati-

tude o( (degrees) and the ordinate height z (kin).



diffusion. The leap-frog method is the most accurate of the second

order time methods (Orszag, 1970), but it has the disadvantage that

a numerical instability arises because the solutions at even and odd

time steps tend to uncouple. This problem was easily avoided by

averaging two successive solutions after forecasting 20 double time

steps.

In the following finite-difference equations which were

used in the model, the superindex n indicates the value of a variable

at time t=mAt ; when it is omitted it is assumed to be n. (See

Figure (2.6.1) for the position in a grid cell of the variables with

subindices (i,j) and for the definition of 51IN .)

/2V )

2AA H .

+(.. -- Ki ,

vv ere

(2.6.1)
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Due to the hydrostatic approximation the equations (2.6.3) are un-

coupled in i (the index corresponding to the colatitude o( ).
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Equation (2.6.3) can be written as the matrix equation

Qa = M H

where the elements of Q do not depend on i (colatitude) or on n (time);

has the elements v and H has the elements . . Q needs

to be inverted only once. This was done in the model using a Guas-

sian elimination method. Equation (2.6.3) was thus replaced by

Y'"= '-1 M H+1 (2.6.6)

which permits a rapid and accurate evaluation of the mass stream func-

tion at the new time -(mei)t from the predicted values of

the vorticity.

The boundary conditions in finite-differences are

c VC -- + I

"1

T"IM*iJ= 0

0

0

VP 'k ,
P.

(2.6.7a)

(2.6.7b)

(2.6.7c)

tor 2 PJ3M

o r LtZM
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(2.6.7e)
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The non-slip boundary condition at the bottom was imposed

by the following procedure, which is similar to the one used by

Pearson (1965) and by Williams (1967). We express T at the first

two interior points using a Taylor expansion about the lower boundary

- 21 LI - .v o

ur'i, cv;, 't 1- Zfi L ;Lo

But at the lower boundary ,i and 9 ti/a'-0. We next elim-

inate- from these equations and obtain

Then from (2.2.7) the boundary condition for 5 at the bottom of

the atmosphere becomes

___ UY J (2.6.7f)

2or - 2... /M

2.7 Initial conditions and computational procedure

The initial condition is taken as a state of no motion

(v = w = 0) and constant potential density ( =O ).

After that at each time step the field values are advanced

as follows:

(a) The new interior values of the vorticity and density



fields corresponding to time -(' Yn)t are obtained using for-

mulas (2.6.1) and (2.6.2).

(b) The new stream function is obtained from the vorticity

field by (2.6.6).

(c) The new boundary values of the vorticity and density

fields are deduced from (2.6.7).

(d) The new velocity fields are obtained from the stream

function field from (2.6.5) and (2.6.5).

The diffusivity computational stability criterion

imposes the rather small value of 200 sec for the time step, because

of the large value of the horizontal coefficient of eddy viscosity

and the small spacing at the boundaries.

The differential heating by the sun was allowed to build

up a circulation for 133 x 105secs (about 154 earth days).

2.8 Numerical values of the physical parameters

The numerical values that follow are those used by Goody

and Robinson (1966) with the following exceptions: H was taken as

60 km instead of 40 km as being closer to the actual height of the top

of the clouds, the surface pressure was taken into account to obtain

the value of , and the horizontal coefficients of eddy viscosity

and conductivity were taken as 10 1 1 cm2 /sec instead of 101 0cm2 /sec

to prevent a numerical instability which developed at the antisolar

point for smaller values. We have

__ICLI1~III_________11_(~1
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2.9 Results

Figure 2.9.1 shows the meridional mass stream function.

Although the velocity vector is parallel to the isolines, the speed

is proportional to the gradient of the mass stream function divided

by the sine of the colatitude, i.e., much stronger near the anti-

solar and subsolar points. There is a single strongly asymmetric

Hadley cell with its center near 750 from the antisolar point and

slightly below the central level. The existence and strength of the

boundary layers is more apparent in the following figures:

Figure 2.9.2 is a cross section of the vortex strength

S __t . It shows that there is very little shear in the interior.

Large values of the vertical shear of the horizontal velocity are

confined to the top and bottom boundary layers, the latter due to

the non-slip condition at the rigid bottom.

Figures 2.9.3 and 2.9.4 show the horizontal and vertical

_LIIIL~I_~III___I1_ .Li__ .. -_.IIII~~-YI~D-XX* I--~1.
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Figure 2.9.1: Meridional mass stream function in units of 108cm2 /sec

after running 1.33 x 107sec.
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Figure 2.9.2: Vortex strength in units of 10-2sec-1.
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Figure 2.9.3: Meridional velocity v in m/sec.
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Figure 2.9.4: Vertical velocity w in cm/sec.
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components of the velocity.

In the upper boundary layer, the typical meridional velocity

is about 10 m/s with a maximum of 18 m/s; in the interior, the merid-

ional velocities are of the order of 2 m/s and vary slowly. Although

the flow towards the antisolar point is very strong in the narrow

boundary layer at the top, it is not confined to it. Essentially

it is the upper half of the atmosphere that moves towards the anti-

solar point, and the return flow towards the subsolar point occurs

in the lower half of the atmosphere.

The vertical boundary layer at the antisolar point (or

"mixing region" as Goody and Robinson called it) is characterized

by a strong and concentrated downward flow with a maximum velocity

of 60 cm/sec. In the interior the vertical velocity is of the order

of 1 cm/sec. The width of the "mixing region" is about 150 latitude,

or 1500 km.

It is interesting to note that, as Stone showed in his

scale analysis, there is downward motion in large parts of the inter-

ior. Probably the spherical geometry also contributes to the exten-

sion of the downward motion far from the antisolar point. Sinking

motion in the interior occurs up to 75* from the antisolar point

and even more at the top. This is an important point because one

of the most attractive features of Goody and Robinson's results was

that downward motion was confined to a very narrow mixing region at

the antisolar point; this would explain the almost complete cloud

coverage of Venus' sky if the clouds were of condensational origin.

However our numerical results are different in this respect, showing

upward motion confined mainly to the illuminated hemisphere.

ilr__l~l~n___i_ ~ L _ _Yi ~.Y-IIIYlllli-~^II~X-ly -I_-~
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Figure 2.9.5 shows the relative density departure . 9- P

It is clear that the interior is almost completely adiabatic, or more

precisely, neutrally stable. The departures of density from the mean

value are very small, less than 0.1%, and this agrees well with the

adiabatic interior obtained by Goody and Robinson. However this

result may be due to the fact that in our model, as in Stone's, radi-

ation is not included, and therefore there is nothing to counteract

the tendency for turbulent diffusion to bring about an adiabatic

lapse-rate. Our Boussinesq model thus has a built-in tendency to

produce an adiabatic lapse-rate and therefore high surface temper-

atures. It is unrealistic in this respect. The strong density

gradients are confined to the top boundary layer with a thickness

of about 1 km. The density difference between the antisolar and sub-

solar points is about 10% corresponding to a temperature difference

of about 23*. This is rather large compared to the few degrees ob-

served temperature difference between the equator and the poles, and

almost no difference along longitude between the illuminated and

the dark hemispheres. However these temperatures are measured at

the cloud top level, and if the clouds are formed by condensation their

tops may correspond roughly to an isothermal surface. There is a

small region near the antisolar point with a gravitationally unstable

stratification.

Tables 2.9.1 and 2.9.2 show the numerical balance of the

terms in vorticity and density equations at different points in

the boundaries and interior. The position of the points is indicated

in Figure 2.64~: A is in the mixing region; B and C in the upper

boundary layer; D is within the sinking region below the mixing region;
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E is a typical interior point; F is an interior point near the sub-

solar point; F, H, and G show the effect of the lower boundary.

Equations (2.2.6) and (2.2.4) are reproduced here for clarity.

In Tables 2.9.1 and 2.9.2 the principal balancing terms

are underlined. In some interior points there is not a complete

balance so that the numerical value of the local time derivative

term is of the same order as the advective terms, especially in the

density equation. Near the bottom, away from the antisolar point,

the balance of forces is advective-vertically diffusive, and since

the velocities are very small and the vertical coefficient of diffu-

sion not large the relaxation times both for advection and diffusion

are large and the system has not reached equilibrium. Nevertheless

the density gradients are so small that the numerical value of the

density only undergoes very small changes.

m~_Y__~II *_i-L_ ~



POINT

Hor. Adv.

Vert. Adv.

Hor. Visc.

Vert. Visc.

Driving

A

-23706.

25368.

15924.

684.

B

- 42.86

C

115.64

D

138.81

42.15 - 35.12 -356.70

24.72 33.29 - 82.62

282.92 310.75 - 0.04

E

-0.58 0.24 -4632.1

1.50 -1.18

2.04

0.00

-13880. -306.86 -424.56 -123.12 -2.98

0.89

0.00

0.04

141.3

54.87 1.88

2.72 -2.30

- 765.9 -74.99

4346.9

2.02

20.32 -1.09

- 4.3 - 1.47 -0.79

0.00 -423.67 -0.02 -0.01 - 913.4 1.45 -0.28

Table 2.9.1: Balance of terms in the vorticity equation at 9 points in units of 10- 1 0sec- 2 . Underlined

are the terms that are numerically larger. See Figure 2.9.6 for the position of the points A through I.

Time Der. 4390. 0.06



POINT

Hor. Adv.

Vert. Adv.

Hor. Diff.

Vert. Diff.

Time Der.

15324.3 -198.1

-6127.6

-9394.3

197.8

0.3

48.0

- 20.6

163.6 -139.1

196.5

2.40 -0.63 -131.6

213.4 -2.91

41.3 - 74.0

171.1 -401.0

0.4 0.4

0.0

0.4

1.10 133.4

H

0.213

I

0.434

-0.072 -0.431

0.90 -0.02 - 2.2 -0.295

-0.00

0.38

-0.02

0.43

0.9

0.4

0.573

0.419

0.262

0.087

0.352

Table 2.9.2: Balance of terms in the density equation at 9 points in units of 10-10sec-1 .

that are numerically larger are underlined. See Figure 2.9.6 for the position of the points A through I.

The terms



The results show that the nonlinear advective terms are

important everywhere. There is a good agreement in the overall

balance of terms between the results of our numerical model and the

scale analyses of Goody and Robinson and of Stone. In the mixing

region (point A) the balance in the vorticity equation is between

the advective terms, the horizontal viscosity (due to the large hori-

zontal gradients), the vertical viscosity (due to the proximity of

the upper boundary) and the driving. Similarly the balance in the

energy equation is between the advective terms and the horizontal

and vertical eddy diffusivity terms.

In the upper boundary layer, away from the antisolar point

(points B and C), as in Goody and Robinson's and in Stone's results,

the horizontal viscosity (or diffusivity) ceases to be important and

the balance is between advection and vertical diffusivity in the

energy equation and between advection, vertical viscosity and the

driving term in the vorticity equation.

Point D is directly below the mixing region. As could be

expected, the horizontal viscosity is still important and the ver-

tical viscosity term is negligible. At this point the time deriva-

tive of the vorticity is as large as the other terms, but it still

represents a very small variation of the actual value of the vor-

ticity over several days.

In the interior point E, as in Goody and Robinson's analysis,

there is a balance between the driving and the advective terms. In

our results, however, the horizontal viscosity and diffusivity terms

are not negligible because of the excessively large values of 9.

and KW . The situation is similar at point F, under the subsolar



point, except that the horizontal gradient of the density is smaller

so that the driving term is very small.

Points G, H, and I are very close to the lower boundary.

Point G, near the antisolar point, is in the region where most of

the dissipation of the vorticity occurs. In the vorticity equation

there is a balance between horizontal advection of vorticity and ver-

tical viscosity. As was pointed out before, in the bottom, away

from the antisolar point (points H and I) the balance in the energy

equation is advective-diffusive with very slow velocities.

In Table 2.9.3 we compare the orders of magnitude of the

velocity components, the density departures, and the width of the

boundary layers in our numerical model with those in Stone's scale

analysis. The subindex "mr" represents the value of the magnitude

at the mixing region, and "bl" at the upper boundary layer. We have

replaced Stone's expression OG , where X is the expansion coef-

ficient and G the magnitude of the boundary condition on T , by

[~9, - *o /(KCr PT) , the magnitude of the flux boundary condition

applied to P , where eo: _ . We include also the results

obtained by Goody and Robinson, although the comparison is more dif-

ficult because of their use of radiative diffusive boundary conditions,

whereas ours are diffusive only, and because we use a larger value

of Po corresponding to the mean density of the atmosphere. In

the mixing region the agreement with Stone's results is good except

for the vertical velocity which is much larger in our results. This

is probably due to the convergence of the meridians in the spherical

geometry. It is probably also this effect that makes the downward

jet penetrate most of the interior of the atmosphere. In the upper



STONE'S ANALYSIS NUMERICAL
MODEL

GOODY AND
ROBINSON

z
mr Kv R ,4

K"
[ I

(K~% ;,3/

I,r

Ymr

w
mr

m r ( K M[? ) /

= 430 m

= 1350 km

= 0.23 cSm-
sec

7.4 m/s

n. 5 km

' 1500 km

" 20 cm/sec

" 10 m/sec

( K

L)

( K L) =

= 1.5x10- 2

= 1 km

cm= 0.1
sec

0.43 m
sec

3.7x10- 2

no 2 x 10- 2

ei 1 km

1.7 x 10- 1

1.2 km

' 1 cm/sec 0.12 cm
sec

n 5 m/sec

' 6 x 10-2

34 m/sec

1.7 x 10-1

Table 2.9.3: Comparison of the width and velocity magnitudes at the

upper boundary layer and the mixing region obtained by Stone, by Goody

and Robinson, and by using the numerical Boussinesq model.

800 m

3 km

1000 cm
sec

34 m/sec

Pmr
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boundary layer there is a discrepancy in the scale of the velocity

components which are ten times larger in our results. But in this

region Stone's analysis is not completely valid because he assumes

( _ which is not true even with K = 10 1 0 cm2 /sec.

As was anticipated in section 2.5 the truncation errors

due to the "flux form" of the finite-difference equations are most

apparent in the region below the subsolar point where the errors associ-

ated with flow towards a zone with strong gradients produce irregu-

larities in the density and vorticity patterns. This is apparent

in the density field (Figure 2.9.5) where we find small positive

density values imbedded in a region of large negative values, and

especially in the vorticity field (Figure 2.9.2) where we find

a similar but stronger effect. It is also the cause of the kink

in the upper right of the mass stream function field (Figure 2.9.1),

and the small countercurrent in the upper right of the horizontal

velocity field (Figure 2.9.3).

The time taken by the integration to converge was the

equivalent of about 100 earth days and was probably given by the ad-

vective time 2. L/.. /w ,j lOcwhere L is the distance be-

tween the antisolar and subsolar points (20,000 km), H the height of

the atmosphere (60 kmn) and and Ai the interior horizontal

and vertical velocity scales (P- 2 m/s and P-1 cm/s respectively).

However, near the bottom the velocities are smaller and the larger

diffusive relaxation time A ,r ,vIO 40C is probably required be-

fore the system converges. But the rotation period of Venus is 243

earth days and the length of a solar day is only 117 earth days so

that it is clearly impossible to obtain a.realistic result with a

IIII__I___L____LI__L-LI~~II-LL-I _I. Y~-~l-
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model in which rotation is neglected.

_ ~~~1YII_~- L-~- ~pl~i-- ~ll- y



CHAPTER 3

Non-rotating quasi-Boussinesq Model of the Atmosphere of Venus

3.1 Introduction

The atmosphere of Venus is much deeper than the Earth's at-

mosphere: the cloud top level is located at about 60 km from the

solid surface; the ratio of the density at the surface level to the

density at the cloud top level is of the order of 100, the temperature

ratio is of the order of 3 and the pressure ratio about 400. A

Boussinesq model neglects density variations except when coupled with

gravity, so that the basic density stratification is not taken into

account, even for a compressible fluid (Spiegel and Veronis, 1959;

Ogura and Phillips, 1962). The Boussinesq approximation applied to

a compressible fluid can be strictly justified only if the vertical

dimension is smaller than any scale height, which is not the case in

Venus' atmosphere. For this relatively deep atmosphere, a better

approximation is the use of local mean values of temperature, pres-

sure and density which vary with height, rather than constant mean

values.

The observations made by the space probes Venera 4 to Venera

7 (Avduevsky et al.,1970; Avduevsky et al., 1971) showed that the

stratification of the atmosphere of Venus is nearly adiabatic. This

allows us to use the "anelastic" or "quasi-Boussinesq" model (Ogura

and Phillips, 1962; Charney and Ogura, 1960). In this approximation,

the distribution of pressure and density is assumed to be always

close to the distribution of pressure and density in an adiabatically

stratified atmosphere. Here it is the variations of potential temperature



that are neglected except when coupled with gravity, The quasi-

Boussinesq approximation, as well as the Boussinesq approximation,

eliminates the sound waves from the original hydrodynamic equations.

In this chapter we describe a quasi-Boussinesq numerical

model for the atmosphere of Venus, in which rotation is neglected

and which includes a simple, semi-grey treatment of radiation.

Section 3.2 contains the basic equations of the model;

the modeling of radiation is described in section 3.3; the boundary

conditions are stated in section 3.4; sections 3.5 through 3.8 de-

scribe the numerical algorithms; and the results are given and dis-

cussed in section 3.9.

3.2 Quasi-Boussinesq model: hydrodynamic equations

A numerical model of the atmosphere of Venus with spherical

geometry, which takes into account the basic density stratification,

was developed with the following approximations:

(a) quasi-Boussinesq

(b) hydrostatic

(c) no rotation

(d) the subsolar point is fixed

(e) "semi-grey" approximation, i.e., the atmosphere has

two different constant absorption coefficients for short and long

wave radiation.

(f) constant horizontal and vertical coefficients of eddy

viscosity and diffusivity. Prandtl number equal to unity.

Following Ogura and Phillips (1962) we define a non-dimen-

sional vertical coordinate



- :/D (3.2.1)

where - C_ . is the adiabatic height of the atmosphere,

is the temperature at the surface level. The potential temperature

is defined by

0- T- (3.2.2)

where to is the surface pressure and k, R/C .

It is convenient to define a new variable to replace the

pressure:

T-- r/ r~ (3.2.3)

We expand all variables as

T- 1.O (-S) t -r-' (,j, , ;, ) 3.2.4)

where T is the value of I in an adiabatic stratification and

Ti/ , the departure from the adiabatic value, is assumed to be

small everywhere.

Assuming that the mean stratification is approximately

that of an adiabatic atmosphere, we have



Ta - T5

R I-
T4 0

(3.2.5)

-0 
/K

As in the Boussinesq model, we assume a slippery rigid top

at a height H, which is assumed to be near the cloud top level, at

which

(3.2.6)S /i= (" I

Then the quasi-Boussinesq hydrodynamic equations in spher-

ical coordinates are as follows: the meridional component of the

equation of motion is

(r'

(3.2.7)

We have dropped the term 2 from the expression in square brackets

for the horizontal eddy viscosity because of the smallness of the

aspect ratio. In the Boussinesq model (chapter 2) this term came out

a(Y N ~ Ck) a, Our 'Pa.)TEc A v c 0

C,8

~3 04 Ar 4- :Z-3 U-s
0AA/A01,



to be numerically less than 1% of the other two terms or their sum.

The hydrostatic equation is

0- _-C T-/ O -T (3.2.8)

the continuity equation is

0 - - trAj4, _ (w .) (3.2.9)

and the first law of thermodynamics for a perfect gas may be written

O1 _ -s'o, __ _ __ & (3.2.10)

where Iv is the radiative energy absorbed per unit volume and per

unit time.

The small aspect ratio allows us to define the vorticity

as , neglecting the term . As before, it is conven-
t a-

ient to employ the vortex strength instead of the vorticity for its

conservation properties: if the atmosphere were isentropic and

inviscid, then by Bjerknes or Kelvin's theorem, the circulation of

an infinitesimal ring of fluid symmetric around the subsolar-anti-

solar axis would be individually conserved. Applying Stokes' theorem,

we have

where d- is the cross-section of the ring. Since the mass of

the ring is also conserved,



Thus, in an isentropic inviscid atmosphere, the vortex strength

- , -(3.2.11)

is individually conserved.

As before, the use of the variable y instead of the vor-

ticity avoids a non-linear numerical instability near the subsolar

and antisolar points that appears because of the sudden convergence

of the meridians.

From equations (3.2.7) to (3.2.9) we obtain an equation for

the vortex strength :

r, (3.2.12)

We define the mass stream function + by

.24 L (3.2.13)

Then

ArA&0, YX = U (3.2.14)

kP Q -d, (3.2.15)



Equations (3.2.10), (C3.2.12) to (3.2.15), the boundary

conditions, and the formulation of the radiative heating IV define

the model.

We note that an alternative method of integration could

have been used instead of the "vorticity method" used here. In the

"pressure method" equation (3.2.7) is used directly to forecast v,

instead of the vorticity equation, and r1 is obtained by the fol-

lowing procedure:

From equation (3.2.9) and the boundary condition of no

meridional velocity at the subsolar and antisolar points, we obtain

0 -(3.2.16)

0

i.e., the mean meridional transport of mass (as well as its time

derivative) is zero. We define P -i is and 'T) . de&

Then multiplying equation (3.2.7) by @ , integrating it from bot-

tom to top, and using equation (3.2.16) we obtain an equation for

from which T2 can be determined except for a constant. From

equation (3.2.8) we obtain

- (3.2.17)

Eliminating l) from the previous two equations,

( t+) can be determined except for a Constant. Then from

equation (3.2.8)

1'(, ) T- r (3.2.18)

~_~II_ ~ i_~/ _ (___~___11~1_~_1__~~11_11__



This procedure has the advantage that it is not necessary

to solve an elliptic equation equivalent to (3.2.13) at each step,

and the disadvantage that the vertical velocity, computed by inte-

gration of the continuity equation (3.2.9), may not be exactly zero

at a horizontal rigid boundary due to truncation errors, and this

might cause numerical instability problems.

3.3 Radiative transfer

We assume that the atmosphere is semi-grey, so that it has

constant absorption coefficients different for solar and thermal

radiation. In what follows the subindices "T" and "S" refer to ther-

mal and solar radiation respectively, a star indicates the value of

a variable at the surface level and a subindex H its value at the

cloud top level.

(a) Long wave radiative transfer

The upward energy flux by thermal radiation is given by

(Gierasch and Goody, 1970)

aT e, -( r+ e

e- r- j (3.3.1)

where 0- is the Stefan-Boltzmann constant, r = 1.66 is a diffusivity

factor that compensates for the neglect of the angular dependence of

the radiation field, and Z is the thermal optical depth given by

7r, (3.3.2)

-~ XX_-CIIII~ -*_--~IIPL~YLIXI*-~ LIIII~



We assume that r , the volume absorption coefficient,

is given by

ST  4 (3.3.3)

0 >

that is, there is no absorption above the top of the atmospheric

model and below this level the volume absorption coefficient is

proportional to the mean density.

Then

T/ C T K(3.3.4)

where 2 is the total optical depth of an adiabatic atmosphere ifTo

H = D. The optical depth between two points in the vertical is pro-

portional to the pressure difference.

We now separate the radiation of thermal energy into two

parts: one due to the mean adiabatic stratification, which needs

to be computed only once, and the other due to the small departures

of the temperature from its mean adiabatic value, which should be

computed along with the other variables as the time integration

goes on.

The temperature is

_ T-tT fro. -t TB) tT, 9, (3.3.5)

In the radiation computations we approximated



/ I-~Tl" 0 (3.3.6)

which is not totally consistent with the quasi-Boussinesq approxima-

tion (3.3.5) (Ogura and Phillips, 1962), but which allows a great

simplification of the computations. In section 3.9 we give an "a

posteriori" justification for this approximation.

Then, since ~O/'

From (3.3.4) (3.3.7)

From (3.3.4)

where Z :
rfT.- I

(3.3.8)

H

The "adiabatic" component of the thermal radiative flux is

computed as

, (&C

7rr 4 J.0y

*1t~ (3.3.9)

The thermal flux corresponding to the nonadiabatic temperature com-

ponent is

- r ( - -_CT

r. (C 4.r)e~ r a-C + P_ Te



Co TO

We assume that the atmosphere of Venus has a large optical

depth (Gierasch and Goody, 1970), so that the exponentials in (3.3.10)

will go to zero very fast, ana only layers that are very near to

the level C will give a significant contribution to (3.3.10).

We can then evaluate the integrals with sufficient accuracy if we

make the linear expansion:

(3.3.11)
+It)r_ T,) t (F - z) d

d1

where N ( (9 eTr r4

We can neglect the last term of (3.3.10)

integrals

*jc -(<-,t- - c-

C,

except near the ground. The

~ ~t ,...{t--, d- t,:-) - e -
e iv L- dL +' rr Zr

0 0 -

00 0

ee e

0-0,

(3.3.12)

I



At the interior points we compute the upwards flux depar-

ture from the mean "adiabatic" value by means of the explicit formula

I _r( 4 -rr ) ? (3.3.13)

At the top we assume that there is no turbulent transfer of heat so

that >o . From (3.3.10) and the same linear approximation

we obtain Zi Y

- " K K T
Z: 0 4Ct (3.3.14)

At the bottom we get from (3.3.9)

EIi . (3.3.15)

The last term on the right hand side of (3.13) was included only at

the first point next to the ground.

Professor Goody has pointed out that this approximation may

not be accurate near the top of the atmospheric model where the mean
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molecular free path becomes larger than the distance to the top, but

this is not important unless convection is negligible near the top,

which is not true in our model.

(b) Short wave radiation

We assume that the volume extinction coefficient in the short

wave region of the spectrum is also proportional to the mean adia-

batic density and is zero above z = H.

If

0o

Z I s$ d- (3.3.16)

then

zT - ,\ (3.3.17)

We further assume that diffuse radiation is absorbed at

the same level at which it is generated. The downgoing flux of solar

radiation is then given by

F, LCZ e- (3.3.18)

(c) Heating rate

The radiative energy IV absorbed per unit volume, per

unit time in equation (3.2.10) is

( F -(3.3.19)

I_ II -I 1LI_-C.__~_._ -- IYPI~Y~L~Y-~I



3.4 Boundary conditions

The mechanical boundary conditions are similar to those used

in the Boussinesq model: non-stress rigid top, non-slip rigid bottom.

We have then:

a ( - - 0 2 a

' -z. 0 b (3.4.1)

For the energy equation we assume that there is no turbu-

lent transfer of heat at the top, since radiation is considered as

a separate term.

0- 0 a - o (3.4.2)

At the bottom we assume a state of equilibrium such that

there is no net flux of heat, i.e., there is an instantaneous energy

balance between the downgoing thermal radiation and the upgoing ther-

mal radiation plus convective heat transfer:

Z AFt (r4. f (3.4.3)

, (~) is obtained from (3.3.18). ' is formed

* Unlike Jupiter, there is no evidence that there is any appreciable

flux of heat from the Venus surface.



by the "adiabatic" component F ('r) , which doesn't vary with

time (evaluated from equation (3.3.9)), and the perturbation part

F I(T-2) evaluated from (3.3.15).

The turbulent transfer of heat at the ground is parame-

terized as

by consistency with the assumption of a constant coefficient of ver-

tical eddy viscosity. In the finite difference model this coincides

numerically with the parameterization developed by Leovy (1968)

and adopted by Leovy and Mintz (1969) of the turbulent transfer of

heat in a stable atmosphere.

t~: PC, C , JV AT

1 -3
where CM z 0,9XIO is the momentum drag coefficient for stable

conditions and 6T is the temperature change across the boundary

layer, if VS, the wind speed a few meters above the surface, is

of the order of 2.5 m/s. This was the order of the wind speed near

the ground in the Boussinesq model, but in the quasi-Boussinesq

model the mean wind speed near the ground was much smaller.

Equation (3.4.3) can be written as

' r 9r,



3.5 Equations in stretched coordinates

As in the Boussinesq model, we used stretched coordinates

giving a finer resolution near the antisolar point and near the top

and bottom of the atmosphere, although the resolution near the ground

turned out to be unnecessary since the density stratification causes

the presence of the ground to have a negligible effect upon the cir-

culation.

The horizontal stretched coordinate is, as before

(3.5.1)

XOL -

and the vertical coordinate

(3.5.2)A L- a z . cl -
, OvH4S

where S - Jt (-Vw)

If we write 0 , the relative potential temperature

departure, equations (3.2.10a) and (3.2.12) to (3.2.15) become

9e - Z A-_UO a W+Sgj a-. [ t (

I (9
s

(3.5.3)+
C f&.tI~ ~

(1~-r>ACot __ (PA ?i~ _ q (3
Ok 

(3.5.4)

r4'- ±L 9V
iAA % 4zC

= ro
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( 1  S (3.5,5)

/A _ _ 6 (3.5.6)

S 4Aa ck c

(3.5.7)

The boundary conditions are

y = e b (3.5.8)

o -O O) \ f c

0 a

- y BCrB 84 + zO i(3.5.9)
b

a/ A 0

3.6 Finite difference equations

We used a staggered mesh similar to the one used in the

Boussinesq model. Figure 3.6.1 shows a typical cell with the posi-

tion of the variables having the same subindices i,j. The complete

grid is similar to Figure 2.6.2, with instead of .'I J
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Equation (3.5.3) is straightforwardly written in finite

differences; we drop the superindex n.

+ d /Smtj

k-I +ie"
4-~4t) AJ- L-

C)

2 L6 R C

+4Y (4 e . s, V

OK- / . - 4
AA2h-

4 -:

(3.6.1)

where c- 2~ LM+ I

a1

and t f- s-FT -

component of the thermal

is the radiative flux. The "nonadiabatic"

radiative flux F was updated every 20
Ir i

steps.

The finite difference scheme for the nonlinear terms con-

serves both the mean value and the root mean square of , as

can be proved in a manner similar to Bryan's for an incompressible

model (section 2.5).

A simple finite difference vorticity equation similar to

equation (2.6.2) in the Boussinesq model was triedbut nonlinear

IIYY_~_lm__*LYIIlL~-1*11^-~s~ 1~ 11~

I vt



instability ruined the computations after the equivalent of about

thirty days. The problem was solved in the following way:

The continuity equation in stretched coordinates is

The simple finite-difference equivalent of the continuity

equation,

-i St t -i - -Wi'1 " 0) (3.6.2)

is valid at the center of a grid cell (Figure 3.6.1), where e is,

and not at the corners, where )'j is. To obtain the finite-differ-

ence continuity equation valid at an " 7 -point" (Figure 3.6.1)

we have to average the finite difference continuity equations similar

to (3.6.2) valid at the center of the four adjacent cells, where . ,

6, , 0c and ., are located (Figure 3.6.2).

The resulting continuity equation in finite differences

valid at an " - point" is

(P4. + f. P '+I ) S NJl+ - (nxctr S. +(L- +G s G. Pa. )SI

+ ii. si~ S t \ Y 5 (Wei" Yi SI il SiFi) PU) _O

4AA Y SIWi NI 9'C~ %.

According to Bryan's scheme (section 2.5) the flux terms in



the vorticity equation should be written in a form consistent with

this finite difference continuity equation. Therefore the finite

difference vorticity equation equivalent to (3.5.4) was written as

follows:

r" I

'i-j
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The scheme is conservative if we define the vorticity at

the center of a cell as the weighted average of the vorticity at

the four corners, (Figure 3.6.1) and if we assume that there is sym-

metry at the boundaries. Then it can be shown that the contribution

of the nonlinear terms to the integral:

T- It

I ~ I fa d 42 ,

o o

II 'l II

is zero, as well as their contribution to the similar finite differ-

ence equivalent of

o o

This conservative finite-difference scheme succeeded in eliminating

the problem of catastrophic nonlinear instability. It had the dis-

advantage that truncation errors were increased by roughly four times

over the simpler scheme, since it used values of situated at a

distance of 2h from the centerpoint instead of A . This dis-

advantage was overcome in an improved version of the scheme used for

the rotating case (Chapter 5).



Equations (3.5.5) to (3.5.7) are now written simply as

?Z1~ Sl+t)
LJ+-

qIj+ ' S

R - ,...3i

-vi -K. 'J
3Ja 4. J I,j =t AM

j=2l..M +-Ic

(3.6.6)

(3.6.7)

(3.6.8)

P

Equation (3.6.6) can be written as a matrix equation

M41

where Q needs to be inverted only once so that (3.6.6) is replaced

by

(3.6.9)r-1' M H "

The boundary conditions in finite differences are the

following:
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tor (3.6.12a)

The non-slip boundary condition at the bottom is introduced in the

model as follows: from (3.2.13) we have

'7 nM~
P2 AA z

At = O

9oalA.iAjo(

Y = W,. __

Then

Making a Taylor expansion of about z = 0 as we did in

section 2.6, and solving for T1 at z = 0, we get

P.r S o(A Z)().'I

Then

1 Z2_____ t, yJCI - S I (3. 6. 12b)

( 4 ~IVo ri I. 2 ... ,orM

Z NZVW)

From equations (3.5.9) the boundary conditions on the po-

tential temperature are

r+I

S;Y-t--~

Y 2. - 2 e.2 .

SC 3M+l

Y11



9L3M+2.= IJMti jm i= " .. I. M+1 (3.6.13a)

(no turbulent transfer of heat at the top)

and

C 6, CIL &' - Fr)
(3.6.13h)

(zero net flux of heat at the bottom)

where L= 2 ... IM t1 )

C!
,, Cr pi O _ q_4.

C -

L , S

rL

I

r

6 K ,

r C4,

3.7 Numerical values of the physical data

In this model we used the following numerical values:

CL- g .O5 x 10 vyn

W.5 XiOt /z

C t= S.5 X IQ ro ,,# -( rm )

10- 0 /r

and

P = /C -

R - ,, / (,I0 OK"
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7( _ -_o) -730 0K

I0O0si 1.O' X-0 /1CJO
r

J - - 104  / t

Although depends on the temperature, it was taken as a con-

stant, with a value corresponding roughly to 300'K. This introduces

an error of the order of ten percent. The values of the pressure

and temperature at the surface are similar to those reported by the

Venera 7 (Avduevsky et al., 1971), 90 -15 atm and 748 t20 'K respec-

tively.

The temperature at the top of the model was taken as 200'K

and by trial and error a value for the optical thickness of the at-

mosphere in the long wave range was found such that under an adia-

batic stratification the effective radiative temperature was 230*K,

thus balancing the shortwave incoming radiation. The value obtained,

& = 222.0 is rather high but not unreasonably so or large enough,

with the assumed transmission of solar radiation, to allow a green-

house effect to maintain the observed high surface temperature

IIIIII-_~LIIPCY-_LPI- -I. ̂ Y



(Gierasch and Goody, 1970).

We used a high value for the effective optical thickness

of the atmosphere in the short wave region so that most of the solar

radiation was assumed to be absorbed in the upper third of the at-

mosphere. This allowed a better comparison of the results with those

of the Boussinesq model, but more cases should be run, corresponding

to absorption mainly in the lower atmosphere, or even much of the

solar radiation reaching the surface.

Unrealistically large values for the horizontal coefficients

of eddy viscosity and diffusivity have been used for two reasons:

(1) except near the antisolar point, the horizontal scale is very

large, so that even these high values of ; and k will affect

the results only quantitatively, but not qualitatively; (2) it allows

a better comparison with the Boussinesq model in which we used the

same numbers.

Figure (3.7.1) shows the intensity of the solar radiation

as a function of latitude and height computed with c- 13.76

Figure (3.7.2) shows the sum of solar and thermal radiation

in an adiabatic atmosphere and Figure (3.7.3) the corresponding

heating rate. Note that long wave radiation tends to cool the at-

mosphere at all levels, as shown in Figure (3.7.3) for the dark

hemisphere. This result follows from the grey atmosphere approxi-

mation which was used: Gierasch and Goody (1970) have shown that in

a deep adiabatic atmosphere, the thermal radiative flux can be

approximated by

T 8 TTK(3.7.1)
r r
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Figure 3.7.1: Solar radiation flux in 105 g/sec3 .
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which can also be obtained from our equation (3,3.9) by allowing

-07 + +o . From equations (3.2.5), (3,3,4) and (3.7.1)

-0Or (a-0) (3.7.2)

r ZTo

The heating rate corresponding to this thermal flux is

SF -r a 9 Fr (3.7.3)

and from equations (3.2.5), (3.7.2) and (3.7.3)

3-

H ek-a. 8o Q ([-5) (3.7.4)

In our computations we used a value of Cr corresponding to CO2 at

3000K, which gives (LI-l)- -0.104. In Table 1 of Gierasch and Goody

(1970) it may be seen that for any temperature higher than - 210 0K

the factor (4K-) 4 0 so that thermal radiation will cool the at-

mosphere at all levels. The cooling rate in units of relative po-

tential temperature increase per unit time varies from 4 x 10-8sec-1

at the top to less than 1 x 10- 10sec -1 in the interior, giving ther-

mal relaxation time constants of the order of several Venus solar

days at the top to about 103 Venus solar days in the interior (Fig-

ure 3.7.3).

3.8 Initial conditions and computational procedure

Initially the atmosphere was adiabatically stratified and

in a state of no motion.
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The computational procedure was similar to the one used

for the Boussinesq model (section 2.7) except that the new field of

F: , the thermal radiation flux corresponding to the departure

of the atmosphere from the initial adiabatic stratification, was com-

puted every 20 double time steps.

-7

The model was run for 1.5 Y 10 secs of simulated time,

(about 1.5 Venus solar days). At that time the system had approxi-

mately converged to an equilibrium state except near the bottom.

3.9 Results

The results obtained with the non-rotating quasi-Boussinesq

model are rather similar to those of the nonrotating Boussinesq

model. The main difference is that the inclusion of a basic strati-

fication and a more realistic treatment of radiation confine the cir-

culation mostly to the upper third of the atmosphere. This result

was also obtained by Hess (1968) in a model in which he used pressure

as vertical coordinate.

Figure 3.9.1 shows the meridional mass stream function.

The strength of the velocity at any point is proportional to the in-

verse of the spacing divided by the density and by the sine of the

colatitude. There is one strong Hadley cell in the upper third of

the atmosphere. The smaller and weaker cells below are probably

frictionally driven and correspond to horizontal velocities of the

order of 1 cm/s in the lower atmosphere and less than 1 m/s at middle

levels. The asymmetry of the circulation is more apparent in Fig-

ure 3.9.2 where the vortex strength 9 N-i- is shown. In this

model we see that the presence of the lower boundary has very little
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effect on the circulation as compared to the Boussinesq model, in

which the return flow tends to be strongest very near the lower

boundary.

Figures 3.9.3 and 3.9.4 show the horizontal and vertical

velocity components corresponding to Figure 3.9.1 The maximum vel-

ocity in the top boundary layer is about 30 m/s, about twice as much

as in the Boussinesq model. However, owing to the basic adiabatic

stratification of the density the return flow occupies a much narrower

layer than the direct flow from the SS to the AS point, and has a

maximum of only 6.6 m/s. This return flow in turn produces a small

region of flow from SS to AS with a maximum speed of 1 m/s, at a

height of 32 km, and below that velocities are of the order of a

few cm/s.

The picture of the vertical velocity is very similar to

the one obtained with the Boussinesq model except in its confinement

to the upper part of the atmosphere. The maximum speed of the down-

going jet at the AS point is about 44 cm/s, compared to about 60

cm/s in the Boussinesq case. Again we find that although the down-

ward current at the AS point is very strong, much stronger than the

upward motion at the SS point, there is nevertheless upward motion

in only slightly more than half of the atmosphere, and downward

motion is not confined to the "mixing region" near the AS point,

but occurs in slightly less than half of the atmosphere. This kind

of model apparently would not be able to explain an almost complete

cloud coverage of the atmosphere of Venus, as proposed by Goody and

Robinson (1966).

Figure 3.9.5 shows a cross section of the relative
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potential temperature . The shaded regions near the top corres-

pond to a weakly unstable stratification (2//#a N - oS*KAw ). The

top 20 km of the atmosphere is almost neutrally stable or slightly

unstable. This is true even in the day hemisphere because the maxi-

mum heating due to solar radiation occurs not at the top but at about

6 km below the top. Between 26 and 32 km there is a region with a

stronger static stability, with Q/ed n, 1,5OK/K,. The beginning of

this stable layer gives the lower limit of penetration of the direct

Hadley cell. The indirect cell occurs within the very stable region.

This circulation is similar to the roll vortices observed in a fluid

contained between two cylinders rotating in opposite directions. The

rolls produced by the inertially unstable centrifugal field near the

inner cylinder, frictionally drive indirect rolls in the stable region

near the outer cylinder (G.I. Taylor, 1923). In the lower half

of the atmosphere the stratification of 9 is slightly stable, with

a vertical gradient of about 0.30K/km. As discussed later on, this

is probably due to the fact that radiative processes have not acted

long enough to produce a more isothermal stratification.

We compute the corresponding field of temperature:

-= TT 4- 7. -/ r/ ', (3.9.1)

Strictly speaking, the value of TTI at the top of the at-

mosphere is different from zero, since a horizontal gradient of pres-

sure is required to balance the horizontal advection of momentum at

the top (Equation 3.2.7). T / should have been computed as

described at the end of section 3.2. However we can estimate the
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maximum amplitude of 'I1  at the top from equation (3.2.7), and

from this we find that it can be neglected in the computation of the

temperature (see Appendix C). _R is computed from equation

(3.2.8) written in stretched coordinates:

I (* 0 S"SA (3.9.3)

D

or in finite differences

1 -[ . T A ( . J + N+ A ' (3.9.4)

Figures (3.9.6) and (3.9.7) are the second and third com-

ponents of the temperature in equation (3.9.1). If we compare them

we see that they are of the same order of magnitude, except very near

the top. Therefore the use of the approximation

instead of (3.9.1) is inconsistent with the quasi-Boussinesq approxi-

mation, as shown by Ogura and Phillips (1962). Nevertheless there is

some justification "a posteriori" for the use that was made of equa-

tion (3.9.5) instead of (3.9.1) in the computation of long wave radi-

ation. First, it allowed the use of a simple method of computation

of the thermal radiative flux, without which the computation time

would have been prohibitive; second, the correction of the radiative

flux due to departures from adiabatic stratification is negligible

compared to the basic radiation field except near the top of the
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atmosphere (Table 3.9.2), and in that region the third term in equa-

tion (3.9.1) is negligible. However, if the computations had been

continued long enough, the lower atmosphere would probably have been

in a state close to radiative-.diffusive equilibrium. In that case

the stratification in the lower atmosphere would havebeen much further

from adiabatic. Thus the whole quasi-Boussinesq approximation is

less accurate than appears at the present stage of the calculation

for the lower atmosphere. Also, if a still smaller value of Kv  had

been used to simulate conditions in a stable region, the temperature

stratification would have been still further from the adiabatic and

the quasi-Boussinesq approximation still less accurate. (See dis-

cussion in Chapter 5.)

The temperature contrast between the subsolar and antisolar

points is about 2%, or roughly 40K, much smaller than the 23
0K ob-

tained with the Boussinesq model.

In Tables (3.9.1) and (3.9.2) we display the numerical

values of the terms in the vorticity and potential temperature equa-

tion at nine different points, whose position is shown in Figure

(3.9.8). The vorticity and energy equations (3.2.12) and (3.2.10)

are reproduced here for the sake of clarity.

e Pe r. /or. -v. Ver Adv. Dri in

4 hM-Lvc -Z -Ld I V

Vert V/c.
or. V' c.
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Figure 3.9.8: Position of the 9 points at which the balance of terms in

the vorticity and energy equation is shown.
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The balance of terms in the vorticity and energy equations

(Tables 3.9.1 and 3.9.2) is essentially similar to that in the Bous-

sinesq model (section 2.9) except that the circulation remains con-

fined to the upper regions of the atmosphere, and as velocities tend

to zero in the deep atmosphere, nonlinear terms cease to be important,

except perhaps at the antisolar point.

We expect therefore that in the lower atmosphere the ther-

mal balance will be radiative-diffusive. In this case, as we dis-

cuss in Chapter 5, the stratification will be very stable, and the

use of the large coefficients of eddy diffusivity is not really

justified.



VERT. ADV. HOR. VISC. VERT. VISC.

-154.12x10-5

- 12.16x10-7

16.23x10-8

- 20.0 x10 - 7

12.76x10-9

3.01x10 - 9

- 0.18x10 -10

0.0004x10 - 1 2

0.001x10- 1 2

133.46x10-5  49.98x10- 5

117.71x10 - 7  35.56x10- 7

- 92.73x10-8 122.44x10-8

-170.8 x10 - 7  70.9 x10 - 7

- 2.38x10-9  - 63.44xl0- 9

76.96x10- 9  - 25.13x10- 9

0.12x10-10 -18777x10
- O

- 0.0007x10- 12 - 14.31x10- 12

- 0.011x10- 12 -147.07x10 - 12

0.85x10- 5

23.62x10- 7

10.36x10 - 8

- 0.2 x10 - 7

- 2.65x10-9

1.02x10 - 9

124,48x10 - 10

- 8.12x10- 1 2

-14.73xi0- 1 2

- 30.18x10-5

-164.81x10
- 7

- 57.48x10-8

120.2 xl0- 7

54.75x10-9

- 54.86x1O-9

63,27x10- 10

18.07x O1012

114.49x10
- 12

0.02x10- 5

- 0.01x10-7

- 1.19x10- 8

0.1 x10 - 7

- 9.65x10- 9

1.04x10- 9

- 0.08x10- 1 0

=_-436xlp-12

-17.87x10 - 12

Table 3.9.1: Balance of terms in the vorticity equation at 9 points (see Figure 3.9.10). The numeri-

cally larger terms are underlined.

Point HOR. ADV. DRIVING TIME DERIV.



HOR. ADV.

23936.

1991.8

-1526.1

- 138.1

12.74

- 1.61

15.15

- 0.043

0.031

VERT. ADV.

-30376.

- 1710.8

1512.5

776.3

- 7.76

- 16.62

- 12.99

0.037

0.027

HOR. DIFF.

6262.

14.3

- 2.8

- 636.1

- 0.76

- 0.83

- 2.17

- 0.001

0.004

VERT.
DIFF.

29.

- 0.9

- 4.9

3.4

2.26

1.84

6.74

BASIC
RAD. H.

-271.

-271.0

128.7

- 1.5

- 1.46

22.50

- 11.15

6.731 - 11.148

6.723 - 11.148

VERT.
RAD. H.

432.

- 9.0

-92.7

1.1

0.49

- 0.19

1.76

TIME
DERIV.

12.

14.3

14.5

5.1

5.51

5.47

- 2.64

1.757 - 2.664

1.756 - 2.660

Table 3.9.2: Balance of terms in the energy equation in units of 10- 10 sec- 1 at 9 points (see Figure

3.9.10). The numerically larger terms are underlined.
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CHAPTER 4

Boussinesq Model of the Atmosphere of Venus

Including Rotation and Axi-Symmetric Heating

4.1 Introduction

It was first suggested by Thaddeus (1968) that the atmosphere

of Venus has such a large heat capacity that it cannot respond to

diurnal heating changes even for the long Venusian day. Gierasch,

Goody and Stone (1969) estimated the value of A6d4y , where dAayeb ,
is the magnitude of the diurnal temperature variation and 6, the

average emission temperature at several planets. They found that
.2

Aday /0o 10 in Venus, the same value as in the Earth where diur-

nal (tidal) effects are known to have a negligible effect on the gen-

eral circulation of the atmosphere. The smallness of diurnal effects

has been confirmed by observations both at the cloud top level and

at the ground. The brightness-temperature maps made by Murray, Wildey

and Westphal (1963) show no clear-cut night-to-day variation at the

cloud top level. They do however, show an appreciable temperature

contrast between equator and poles (see Figure 4.1). There have been

contradictory reports about the existence of a "phase effect" at the

ground, that is, a day-to-night temperature variation. (Pollack and

Sagan, 1965; Morrison, 1969.) Ultraviolet cloud pictures show a

marked zonal structure, and an absence of the radial structure that

would be expected if rotation were negligible (see Boyer and Newell,

1967 and Dollfus, 1968). Dollfus (1955) reported that the result of

superposing several images of Venus photographed through a yellow
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DEC. 15. 1962
1334 - 1%,? 'J T.

Figure 4.1: Eight to fourteen micron brightness-

temperature map of Venus for the morning of Dec-

ember 15, 1962. After Murray, et al. (1963).
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filter showed some kind of radial structure, but this has not been

confirmed since then.

It is felt that there is enough motivation to explore a

model that represents another limiting case of the possible circu-

lation of the atmosphere of Venus, in which rotation is included

and the daily variations are neglected, so that the solar heating

is assumed to be symmetrical about the axis of rotation.

A symmetric model was developed using both the Boussinesq

and the quasi-Boussinesq approximations. The Boussinesq model is

briefly described in this chapter, and the quasi-Boussinesq sym-

metric model is described in next chapter.

4.2 Description of the model

This model is similar to the Boussinesq model described in

Chapter 2 except that rotation is included and the solar radiation is

averaged over a Venusian day. Since we assume that there is no oro-

graphy, the flow is now symmetric about the rotation axis rather than

the antisolar-subsolar axis.

We use the Boussinesq equations in rotating coordinates.

The velocity components are defined as in Figure 4.2.1: u is the zonal

velocity, positive in the retrograde direction (direction of rotation

of Venus), v is the meridional velocity, positive from North to

South, and w is the upward velocity. ). is negative because of the

retrograde rotation of Venus:

7where -

where e 2 T-- 2.3r xto 4
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Figure 4.2.1: Velocities and coordinate system.
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2.1 :\O As-eand Z L ca

In this system the Boussinesq equations are:

- (LL

0,AA M O(

(u. " CO

A;A& D(

4- F y L AALat 4

(4.2.1)
+ V A -- )

the zonal momentum equation;

(M OY,-t-A tLa C A4j"L-4Y A iOu ) ,
0- 4, d

-9,j± ( r AiA-1
Ai4~2I j

the meridional momentum equation;

0- -L

Fo

(4.2.2)

(4.2.3)

the hydrostatic equation;

(4.2.4)

the continuity equation; and

Y 4t

Z

L -s, ) dd w 2
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--) C} ) - (i o) V( kA, ? (4.2.5)

the energy equation.

We have dropped the terms ULW. , '2S. Ai U. , (11 and
0- C.

2StAXM.H AW from the first two equations for consistency with

the "shallow approximation", in which r is replaced by a when it is

not differentiated (Phillips, 1966), and with the hydrostatic approx-

imation. For the same reason 2._ was dropped in the horizontal

viscosity term of (4.2.2). The above approximations are all conse-

quences of the small aspect ratio H/a.

The terms proportional to f and to cdLed L in equations

(4.2.1) and (4.2.2) have different signs because f is now negative.

As in the non-rotating model, we define 1n- ~iL- , the

zonal component of the vortex strength. From equations (4.2.2) to

(4.2.4) we obtain the vorticity equation

L 4 a A4.,U7-

Again we define mass stream function Y

S- . to (4.2.7)

so that
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(4.2.8)

and

wA m&- (4.2.9)

Equations (4.2.1) and (4.2.5) to (4.2.9) and the boundary conditions

define the model.

4.3 Boundary conditions

The boundary conditions are similar to those described in

section 2.3. We assume for both horizontal velocity components a

zero stress rigid top at the cloud top level and a nonslip rigid bot-

tom at the surface. Since the driving is symmetric with respect to

the equator we need to consider only the northern hemisphere. At

the equator symmetry considerations impose a zero meridional velocity

and zero latitudinal gradient of the zonal velocity component.

We have then

S (4.3.1)
L, o ~ r
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(4.3.2)

-U 0 -0,0 e

The flux of radiation at the upper boundary is treated as

in Chapter 2. Solar radiation is averaged over one Venusian day:

-r

so that the heating contrast is TT times smaller than in the non-

rotating case. The long-wave outgoing radiation is calculated from

the linearized relation

L F - ( T)

From these equations we get the upper boundary condition for 9

01i02L+ 4LI a) Z+ (4.3.3a)

C,P POLY

At the bottom we assume that the heat flux is negligible:

~ a ~ " (4.3.3b)
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Finally

4.4 Equations in stretched coordinates

We use the stretched coordinates defined in section 2.4,

so as to give better resolution near the pole and near the upper and

lower boundaries.

The new horizontal coordinate is

_ (4.4.1)

and the vertical coordinate

- W - (4.4.2)

where $ - TF

In the present model 13 grid intervals are used, both in

the horizontal and in the vertical directions (TM= , )]= t[b). This

number of intervals gives approximately the same resolution in the

northern hemsiphere as 20 intervals gave in the antisolar hemisphere

in the nonrotating case, and it was felt that 13 grid intervals gives

enough resolution in the vertical direction.

Equations (4.2.1) and (4.2.5) to (4.2.9) in the stretched

coordinates are:



1+SL tCN br0.
I+S Ol

__-
4--

A
1f A %

(4.4.3)

2 IlL4-4 1
e H L"~

I-c'

4S a o<

- t* l 1 _ +_ I (4.4.5)

Y6 AAM d(4.4.6)

A- (4.4.7)

(4.4.8)

A;% 0,

The boundary conditions (4.3.1) to (4.3.3) in the new coor-

dinates are

9- O -= o

L -) d& - I

at-
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4.5 Finite-difference equations

The finite-difference scheme was similar to the one used

in Chapter 2. Figure 4.5.1 shows a typical grid cell. The new
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c-O
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(4.4.9)

(4.4.10)

(4.4.11)

a
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C

d
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b
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Figure 4.5.1: Typical cell with the position

of the variables and functions having the sub-

indices i,j.
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variable . was placed at the same location as v. to improve the

accuracy of the computation of the third and fourth terms in the

right hand side of equation (4.4.3).

The finite-difference equations corresponding to equations

(4.4.3) to (4.4.8) used in the model are the following (we have

dropped the superscript n) :

. - I kt- 4 F ,. I- O -,

LAA Ii Gj()g w

M o - -L.') SN Sh/*1 ,- -  -9- 'z
t S IN' . SIN,.

I --- I -.- a... -)-T, I : , cU.

A'J1d (4.5.1)

where L- 2 ... ) j" : 2 ... ) Ml1

Mrc, * + ilYcl + iVs
~ ±~~') )Nc La-

2..A H S

I(- V ) ' " AA-1

L114 Y1 sw1  (4.,. S- 1J
IS V 0(.5 .2)

H 1

~~wl

a-.

kt
I-t'

f%
-1 :z 4t -



where -=. . . IM+-

ji4

'7.
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+w 1 .- , " (. -I )-

AI+H SIN!.

. 2

+ COTc At1z' - 9.4.t -- bl--it 0-
+ ( 4- P+,i- +  -P' - P+i)

Ss J

4,~ Y4 S (0,-

,k-l

+.i.~ -

r I

L 1.

*9 I
_ iA, .I

J4 1

where .. I'

S.
+ I

where i42 Il) t

/~~ .
6A HS SN

where : , .. ) . i

5/N. S 1AH,i ,d (4.5.4)

) )M

(4.5.5)
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= ~~ -fp

130

s t ,' , - (.

4 Wc1

4.dj+v .. :, J+.
Y S IN

Is4 It.

SINt 
-

AA

27"-]
,," ,i -

(4.5.3)

Sp.
" J. 1 ,

t4i
WUl (4.5.6)

-- 2A
Tij

( -, + , , ) ,. +,,

v,

'SLtJ 31-1r L1
, I I

I 1, it W

a 1.



where ~- 2,.., T Ml i 2 ... j

Equation (4.5.4) was solved as in the nonrotating case

(see Equation 2.6.6).

The boundary conditions in finite differences are:

1+I

(Y -iI 4) 3 ti = O
'WI.'

Y.
Id

Mv 41

- O

tUM : *KJ. 1

M- I 2S + t 0 QCl?41+] 1 -

Wt~arI

r(1-I

?z (z,.-j

A t I.
0

1r41

AIA
A C

-ki
- M l-

(4.5.9)rt

-lv *I

A .

W-=2A j t.-) I M I

4slAti = -Z , -,) Jtl
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(4.5.7)

W Lm 2 ) -.'/
) '/

I I (4.5.8)
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4.6 Initial conditions and physical data

As initial conditions we assume a state of solid rotati

(u = v = w = 0) and of neutral stability ( f o ).

The computational procedure is the same as described in

section (2.7) except that at each step new interior values of the

zonal velocity are computed.

The physical data were the same as in the nonrotating c

(section 2.8) except that

It-

K 10t Ctw/AC_
10~~ ~ ~ 10-I /&L

(4.5.10)

on

ase

Also, we set 5 - 5.825M 10 ca(corresponding to a rotation

period of 243 earth days).

The horizontal eddy viscosity and eddy diffusivity coef-

ficients now have the values suggested by Goody and Robinson (1966).

The differential heating between equator and pole of the

sun was allowed to act for about 2xl07 secs (approximately 2 solar

N kt (

~,,, I
w-= ,,...) 3N41
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Venus days) at which time the model had converged.

4.7 Results

Figure 4.7.1 shows a cross-section of the meridional mass

stream function. As might be expected it consists mainly of a direct

Hadley cell similar to that in the nonrotating case. The main dif-

ference is that the region of downward motion (similar to the mixing

region in the nonrotating case) is not at the pole where the maximum

cooling occurs, but between 5 and 8 degrees from the pole. There is

a narrow reverse cell within the first 5 degrees in the polar region.

This is because the conservation of angular momentum (except for tur-

bulent viscosity) would create infinite zonal velocities and gradients

of velocities if the parcels at the top of the atmosphere coming from

the equator were to reduce their radius of rotation to zero at the

pole. The circulation resembles the vortex formed when a bath tub

is being emptied. The center of the positive cell is lower than in

the nonrotating case.

Figures 4.7.2, 4.7.3, and 4.7.4 are the corresponding cross-

sections of the vortex strength and the horizontal, meridional, and

vertical components of the velocity.

As in the nonrotating case there is a narrow meridional jet

directed towards the colder regions, except near the pole where the

indirect cell is located, but here the return flow occupies only the

lower third of the atmosphere. The region of downward motion occupies

a narrow band between 5 and 10 degrees of colatitude at middle levels,

but it extends more towards the equator at the top and bottom of the

atmosphere, up to 40* colatitude.
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Figure 4.7.1: Meridional mass stream function after running 2.0 x 107

sec. Units of 10 8 cm2 /sec.
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The meridional jet has a maximum of about 8 m/sec towards

the pole in the upper boundary layer and 11 m/sec in the narrow re-

verse cell at the pole. In the interior the direct meridional velo-

cities are of the order of 2 m/sec, the return flow having a maximum

of more than 5 m/sec near the surface of the planet. The vertical

velocity in the interior is still of the order of 1 cm/sec and has

a maximum of about 30 cm/sec both at the downward jet near the pole

and at the pole in the upward branch of the reverse cell.

Figure 4.7.5 shows the field of relative density departure

. Again we find that the interior is neutrally stable. The

density difference between the equator and the pole is only 2.5x10
- 2

at the top of the atmosphere, corresponding to about 6
0 K which is

of the order of the observed temperature contrast. Again the strong

density gradients are confined to a top boundary layer of less than

5 km thickness.

Figure 4.7.6 is the cross-section of the zonal component of

the velocity. As might be expected the zonal velocity is positive

(retrograde) in most of the atmosphere and attains rather large val-

ues near the pole where the maximum speed of the jet is 14 m/sec.

The indirect cell at the pole produces a negative zonal velocity at

the top of the atmosphere in a narrow band between 0* and 30 colati-

tude. Except in this small region there is a positive shear of the

zonal momentum everywhere in the atmosphere with a maximum near the

pole and a minimum at the equator.

Figure 4.7.7 shows a cross-section of the field of A':

Q0(_ kOA +A)A, w, a quantity proportional to the angular momentum,
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showing that the meridional circulation has produced a poleward tran-

sport of angular momentum in the upper layers. If the flow were non-

viscous and symmetric the relative zonal velocity at the equator

would be strictly zero. The non-zero u velocity at the equator is

due to the existence of horizontal eddy viscosity.

Tables 4.7.1, 4.7.2 and 4.7.3 show the numerical values of

the different terms in the vorticity, zonal velocity and thermal

equations at 12 grid points (Figure 4.7.8).

Equations (4.2.6), (4.2.1) and (4.2.5) are reproduced

below for clarity:

c Adv. er Adv.
14 o r A 8 v, Ve . Aa v. Co Grolis U- -erm

(4.7.1)

rL ;r 4. iA .

Pri VIKJ 140 r. Z V Sc.
er-i. Vi-c.

Q-- - (LL4"AMA~) - (t&.), 4- ar-_

Trive Der. 4o. Nd V. Vel-t.fA4 v Cor,'os U - -erm

12 ___AX__

a:Ltni' + V L

Hsor L'~C Verf. v(sc.

r~ - KV o+

Ti, t erv, 4or. A v. Vert/:td v r. 7) Ve. e),

T( M

(4.7.2)

(4.7.3)
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Point HOR. ADV.

-12480.

- 650.22

220.93

9.64

65.30

38.21

- 0.78

- 0.07

- 102.14

- 417.69

- 61.53

10.13

VERT. ADV.

954.

-318.71

5.25

0.30

-120.97

26.44

3.99

- 0.09

0.19

0.59

- 13.59

- 0.71

COR. TERM

-270.

13.71

- 2.65

0.07

8.89

10.26

0.91

0.05

- 0.17

0.18

3.26

- 0.76

U. TERM DRIVING HOR. VISC.

2672.

786,11

- 33.91

0.05

200.89

220.63

4.09

- 0.00

- 0.12

0.09

0.26

0.25

- 441.

8291.9

- 414.28

- 18.92

16.06

18.45

- 11.22

0.32

5.81

5.13

- 3.17

- 0.33

9771.

-7836.9

96.30

0.82

- 171.87

- 314.99

3.25

- 0.33

493.73

767.35

- 14.43

- 0.72

VERT. VISC.

-213.

-288.86

132.68

9.41

- 0.02

- 0.00

0.04

- 0.02

-391.39

-351.25

85.99

- 10.05

-6.

-3.00

4.25

1.37

-1.73

-1.00

2.74

0.03

5.92

4.40

-3.22

-2.18

Table 4.7.1: Balance of terms in the vorticity equation in units of 10 sec- 2

TIME DERIV.



Point HOR. ADV.

-2761.9

18775.

14.44

13.20

1142.4

-2488.5

212.0

1.51

61.85

- 106.67

26.70

- 0.76

1664.0

-3046.

- 162.38

- 13.46

- 516.4

1929.5

- 210.7

- 16.19

- 13.14

2691.

2.97

4.28

- 29,1

-326.

49.59

- 2.42

7.6

61.6

17.8

6.97

11.70

92.07

-135.32

0.55

- 146.2

-9180.

323.65

- 0.87

74.3

556.9

37.0

- 0.57

4.30

22.38

13.18

- 0.02

1281.7

394

- 183.43

5.99

- 649.0

2062.0

- 54.7

12.35

- 58.16

64.43

12.11

0.17

12.6

0.9

-36.38

1.24

- 0.0

0.0

- 0.1

- 0.60

- 6.52

-38.25

82.34

- 3.80

- 0.0

6618.

5.48

3.68

- 1.1

2121.6

1.3

3.47

0.04

58.89

1.98

0.42

Table 4.7.2: Balance of terms in the zonal momentum equation in units of 10-6cm/sec2

n

HOR, VISC. VERT. VISC.VERT. ADV. CORIOLIS U. TERM TIME DERIV.



Point HOR. ADV.

-214.49

-371.68

- 12.52

- 1.02

60.88

28.03

7.68

0.06

92.68

40.97

- 6.09

1.07

VERT. ADV,

141.55

201.23

10.41

14.72

- 61.29

- 28.35

- 7.98

0.04

93.06

- 41.03

6.41

- 1.08

HOR, DIFF.

70.53

170.26

- 1.62

- 0.01

0.41

0.31

0.39

0.01

0.56

0.24

- 0.10

0.02

Table 4.7.3: Balance of terms in the thermal equation in units of 10-1 0sec-1 .

VERT. DIFF.

2.02

-0.3

3.48

13.39

-0.00

-0.00

0.00

0.00

0.04

0.03

0.04

0.14

TIME DERIV.

-0.39

-0.5

-0.26

0.24

-0.00

-0.01

0.09

0.11

0.22

0.20

0.27

0.15
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It is not possible to make a direct comparison with Stone's

and Goody and Robinson's results because they considered a Cartesian

geometry, and the convergence of the meridians is very important in

the presence of rotation, especially near the poles. The nonlinear

terms are important everywhere in the force and heat balance equations,

just as in the nonrotating case. Rotation has an important effect

on the meridional circulation in the vicinity of the pole; elsewhere

the balance of forces in the vorticity equation is similar to that in

the nonrotating case.

It is instructive to look at the energy balance in the Bous-

sinesq model with rotation.

We define

K ui S gP ?. &k'AD LC (4.7.4)

o O

the kinetic energy of the zonal motion,

I'4

KM o ) (475)

the kinetic energy of the meridional motion, and

p_ ' 1 il + P p d h~ (4.7.6)

o 0

the potential energy, separated into its undisturbed value and the

perturbation generated after 2xl07secs.

From equations (4.2.1) to (4.2.5) we obtain the energy

equations



CT + UT - -D

bK t CT UT - -

O O0

o 0M =-.1 I

P0

p Caf Av\ ot 0r

. Po WA L C. a 11

- AiAAMe C aLt

o o

I T

- - ~2S2 Tr 0,

)P FZ-

H

0 o
v, ()A ?

rr.

A-I- I ' t

148

9 , Km) KI

(4.7.7)

(4.7.8)

(4.7.9)

where
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and F and T7 are the eddy friction forces in equations (4.2.1)

and (4.2.2).

Paraphrasing Lorenz (1955), we can define unavailable po-

tential energy as the potential energy of a hypothetical state of

the atmosphere which has the same statistical distribution of density

as the actual model atmosphere but has the least amount of potential

energy. In this state of minimum potential energy, surfaces of con-

stant density are horizontal and density never increases upwards.

The available potential energy is then defined as the difference

between the potential energy of the actual model and the unavailable

potential energy. However, in our results the stratification of

density is not stable everywhere so that there is not a simple formula

to compute the available potential energy and the generation of

available potential energy.

We have computed the total generation of potential energy,

which includes the generation of both available and unavailable po-

tential energy (Figure 4.7.9). This is why the generation of poten-

tial energy is larger than the conversion term from P to i< .

The smallness of the excess of potential energy compared to the ini-

tial value shows that the distribution of density has departed very

little from the initial neutral stratification.

If the model had completely converged we should have the

equalities

1 M) K M3k~ t=I

KK tA)?I
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Figure 4.7.9: Balance of energy in the Boussinesq rotating model. Energies are in dynes and

conversion terms are in dynes/sec.
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Except for the generation of unavailable potential energy

which cannot be computed, but whose effect on the total is negligible,

these relationships are roughly true in the numerical results indi-

cating that the solution has approximately converged.

It is interesting to note that the zonal kinetic energy

is one and a half times larger than the meridional kinetic energy

and that the conversion from K to 3 is accomplished mainly

by the relative rotation term analogous to the Coriolis force and not

by the work of the Coriolis force itself.
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CHAPTER 5

Quasi-Boussinesq Model with Rotation

5.1 Introduction

In this chapter we describe a numerical model in which,

as in Chapter 4, we assume that the solar heating is symmetrical

about the axis of rotation (a "toroidal Sun"), and we also include

the effect of rotation. As pointed out in the introduction to

Chapter 4, the large thermal capacity of the atmosphere of Venus,

as well as the marked zonal structure of the temperature and cloud

distributions, make this model more realistic than that of a fixed

planet and sun. We make the quasi-Boussinesq approximation instead

of the Boussinesq approximation, so that the effect of a basic-near-

adiabatic stratification of density, pressure and temperature are

included. In this respect the model is similar to that described in

Chapter 3, except that rotation is included, and the finite-difference

treatment of the nonlinear terms has been improved.

In section 5.2 we give the quasi-Boussinesq hydrodynamical

equations. The treatment of radiative transfer is discussed in sec-

tion 5.3, and the boundary conditions in section 5.4. In section 5.5

a vertical stretched coordinate is introduced. In section 5.6 we

describe in some detail a straightforward method for constructing

a conservative, finite-difference scheme for an arbitrarily staggered

placement of dependent variables; the resultant finite-difference

equations are improved with respect to those used in Chapter 3. In

section 5.7 we give the numerical values of the physical parameters

that were used in four different specifications of the model. In

I1__LY~____III__ILIY_-.I. ^.ILILL.I^_. _
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section 5.8 we present the results of the four runs, and conclude

that if most of the solar radiation is absorbed at the cloud top

level, then the circulation driven by differential heating remains

confined to the upper part of the atmosphere; it is not able to main-

tain a lapse-rate close to the adiabatic; this is in contrast to the

finding for the Boussinesq models. However, if there is some pene-

tration of solar radiation, even if only a small percentage of the

solar radiation can reach the surface, there is a double result:

the combination of a partial greenhouse effect and a deeply driven

circulation, which can stir the lower layers of the atmosphere, seems

to be capable of maintaining the observed near-adiabatic lapse rate.

In section 5.9 we present the energy budgets of the four model runs,

and in section 5.10 we derive a simple and rapid method for computing

radiative equilibrium temperatures in a grey atmosphere; the results

of several calculations with varying optical depths are presented.

5.2 Hydrodynamic equations

The following approximations are made:

(a) quasi-Boussinesq

(b) hydrostatic

(c) diurnal effects of the solar heating are neglected,

so that there is axial symmetry around the Equator

(d) semi-gray treatment of radiative transfer

(e) constant horizontal and vertical coefficients of eddy

viscosity and diffusivity; Prandtl number equal to one.

We define the variables 4 t/ , ., and T

as in section 3.2, and, as in that section, we separate each dependent
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variable into its basic value, corresponding to an adiabatic strati-

fication, (subindex a) and a perturbation (denoted by a prime).

We use coordinates rotating with the planet. In the fol-

lowing equations o( is the colatitude, z the elevation from the sur-

face of the planet, u the zonal velocity, positive in the direction

of rotation (i.e., retrograde with respect to the orbital motion),

v is the meridional velocity positive towards the South, and w is the

vertical velocity positive upwards (see Figure 4.2.1).

The rotation period is

S '23 cays - - 2.1 xIO10 C

so that we define the Coriolis parameter

-7

where 2/ = _ 2.9 ,lO -'

Then the zonal equation of motion is

-O Af a 9 -T (5.2.1)

and the meridional equation of motion is

at: '-hi/nd o- O,0- o

a,: (v a- a (5,2.2)

Here we have dropped the term -Iw from the square brackets in the

_~ i-ii-lr-iL---L-~~.- *1_1_- 11 1..~-.....
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horizontal eddy viscosity term because it is of order H/a compared

to the other terms.

The hydrostatic equation is

o_ c,- 9 ' 0T (5.

and the continuity equation may be written

0-- d) + (5
-o..f 0 Qa

since we assume that there is no longitudinal dependence.

The thermal equation is

- &AAV

2.3)

.2.4)

(5.2.5)- 8/

where IV is the radiative energy absorbed per unit volume and unit

time, due both to solar and atmospheric radiation.

As in the quasi-Boussinesq model without rotation,

ter 3) we define a new variable

M (Ut-

(Chap-

(5.2.6)

instead of the vorticity

From equations (5.2.2) to (5.2.4) and (5.2.6) we obtain an

equation for :

C P Tj-
CrP*i-
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0- AA~ t t4 V

0 AA'- 4- ~i
_% (4,Aj - (5.2.7)

~iAM2
*o(h Po

As in Chapter 3, we define a mass stream function such

that

(5.2.8)

Then

(5.2.9)

and

(5.2.10)W A4.ol Po. _ Uo
CL

Equations (5.2.1) and (5.2.5) to (5.2.10), with the boun-

dary conditions and the formulation of 9V
define the model.

5.3 Radiative transfer

, the radiational heating,

As in Chapter 3, we make a semi-grey assumption, i.e.,

assume a different constant absorption coefficient for the solar and

long wave regions of the spectrum.

ra/ U
/ p ~~
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(a) Long-wave radiative transfer

This is the same as in the non-rotating model, section

3.3 part (a).

(b) Short-wave radiation.

As in Chapter 3, we assume that the volume extinction coef-

ficient in the short-wave region of the spectrum is proportional to

the mean density and is zero above z = H; this implies that any scat-

tered radiation is absorbed at essentially the same level at which

it is generated.

The zenith angle of the sun at a point P is, from Figure

5.3.1,

L(5.3.1)

The flux of solar radiation is

dFs
(5.3.2)

1,d _-- deo
a C_'

and the flux of solar radiation impinging on the top is

Z

CAM (P C) at~5 2.

~cAnc4 c,,SLt

(5.3.3)

(5.3.4)

Hence

oun In

~ __I

J T sip t) Es~-) u' LM~t

2-

> I2-
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-- SUN

'at

Figure 5.3.1: : zenith angle; :

latitude; At : hour angle from the local noon.
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We neglect diurnal effects in this model, so that the flux

of solar radiation over a Venus solar day is averaged:

I -

This integration was carried out numerically using Simpson's

rule.

(c) Heating rate

The radiative energy absorbed per unit volure and unit

time is

9 F - r) (5.3.6)

5.4 Boundary conditions

Since the driving is symmetric with respect to the equator,

we consider only the northern hemisphere, as in Chapter 4. The bound-

ary conditions for a zero-stress rigid top, a zero-velocity rigid

bottom, and symmetry at the equator are as follows:

- L 1 0 o- z= H a

) L 0 a 0 b (5.4.1)

Y 0o 4 ( T, c
21

~
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S0 (5.4.2)

The boundary conditions for the energy equation are similar

to those in Chapter 3 (quasi-Boussinesq model without rotation).

Since we assume that the ground has a negligible heat capacity, the

net heat flux due to solar and thermal radiation and to convection

is zero at the ground. At the equator we assume symmetric conditions.

(- _ a

-r C r.---r b (5.4.3)

(The left hand side of equation (5.4.3b) is the same as equation

(3.4.4b).

5.5 Equations with the vertical coordinate stretched

For this model we decided to use stretched vertical coor-

dinates and a regular horizontal grid, since from the results obtained

with the Boussinesq model with rotation and from preliminary quasi-

Boussinesq calculations we didn't expect a narrow boundary layer at
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the pole.

The vertical stretched coordinate is

2. .1. , .
Tr f-

JfiJAL S Z. IT /H6-)
JO

The model equations with the vertical stretched coordinates

are the zonal momentum equation,

__ (, PA')A
1+ S P0. CL

s4the orticity equation, with

the "vorticity" equation, with

0. A4'.~ ~ a4

(5.5.2)

f45 A o(

4 S PaO A"a

the thermal equation,

+ -

8 8 s,

+ -2&L( X

1v+ L " .

4 C, 9

the definition of the mass stream function

L YAi -

CAS?-a )

(1 9q~e %w~ H, (5.5.5)

(5.5.1)

/aL Ox, AM C

0- Airt A

( .5.S)
(5 . 53)

(5.5.4)

V S

V+ rj P.
I+ S R



162

giving the velocity components

(5.5.6)

and

AA..A40( (5.5.7)

The boundary conditions are:

o)TA1)

c A zOy=4-O
(5.5.8)

s 0( 7T-T
/z

o (s 1

.- O

cy Cc)
afR' %W

cd- A = 0

a~2.

U -t=O

(5.5.9)

k-

RA--O

4 3 K;
z7T0,

+ _ rs (5.5.10)

, =. 17 =

-Fr,+S

00( = 0
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5.6 Finite-difference equations

We used the same staggered grid as in Chapter 3 with AC..

located at the same place as (T. (Figure 5.6.1).

The conservative finite-difference equation for the thermal

equation is

Equation (5.6.1) coincides with (3.6.1), which was written

.- P , 1, 0,,To

h i(5.6.1)

where 1- .... IM+1I j-.j...) P+!

and R- is the radiative flux.

Equation (5.6.1) coincides with (3.6.1), which was written

with a horizontal stretched coordinate, if we make a d= 6o and

Y: = Y!% = 0.5" . This is an illustration of the advantage of using

stretched coordinates defined analytically. It allows a change in

the type of stretched coordinate without a change in the finite-dif-

ference equations; one only needs to redefine the derivative of the

_
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stretched coordinate with respect to the physical coordinate.

The finite-difference vortex strength equation is here

improved in such a way that the truncation errors in the spacial

differencing of the nonlinear flux terms are reduced from order 0 (QA)t

as in Chapter 3, to 0 (11) , the same as the truncation errors

in the corresponding terms in the thermal equation. We present the

derivation in some detail because it gives a simple and general pro-

cedure for obtaining a finite-difference analogue of the equation

which shares the conservation properties of the staggered method

(Williams, 1969; Bryan, 1967; Lilly, 1964), i.e., conservation of

and , even when the position of the variable f is not at the

center of the grid cell at which the finite difference analogue of the

continuity equation

V. V = O

has been formulated.

This derivation can be used for any model which has a time

independent continuity equation and will prevent the development of

nonlinear instability. If the continuity equation contains a time

derivative a scheme similar to scheme c in section 2.6 can be used.

The idea is to obtain a finite-difference continuity equa-

tion defined at the points at which the 6 are located, in which

the normal velocities are those that should be used in the staggered

method. For this purpose the finite difference continuity equations

defined exactly at neighboring points should be averaged with weights
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proportional to the mass contained in those cells.

From the continuity equation (5.2.4) in stretched coor-

dinates

cky)j d +(W PI& - O

and the finite-difference equivalent of equations (5.5.6) and (5.5.7)

we get

- - (5.6.2)

A.6 1+ S II), .

w i (5.6.3)

We see that the finite-difference equivalent of the continuity equa-

.tion is defined exactly for a cell with center at a " e..-point"
(Figure 5.6.1) as

•Sw - 1"' - _ i (5.6.4)

The mass of the ring whose cross-section is the cell cen-

tered at a " . -point" is proportional to SItPJ S. . To obtain

the exact finite-difference continuity equation for a cell centered

at an " .- point" (the cell limited by a dashed line in Figure

5.6.2), we add the finite-difference continuity equation (5.6.4)

defined at the four neighboring points ', O. e,

and i "d multiplied by the mass of the corresponding cells,

and divide by the total mass 4Lt If P :
I J
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A C4

~fW

Pj 3iK& S

SI l

SA15

SIN 1

Figure 5.6.1: Typical cell with the position of the

variables and functions having the subindices i,j.

Figure 5.6.2: Cell centered at a " -point" for

which a finite-difference continuity equation is found.

I,IB i
----- 1~1,,,I

Oij- Lj
Urt
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A,+ Aj- + n;-j-, -* 8 - ;) -( 1. d C:%1+, + Rc 4- , , ,)

4- + C 1j. ) ( 4ej -- i- PJ 4- + 4R130_1 1:-

where

W j. j 21W. 9,

If we cancel the terms A , q+, , Oi, and ;idtj in

(5.6.5), as we did in the quasi-Boussinesq model without rotation,

(5.6.5) becomes the continuity equation valid at the large cell

composed of the four smaller cells in Figure (5.6.2), but as it is,

equation (5.6.5) corresponds to the small dashed cell.

Analogously, to develop a conservative scheme for u, we

need the finite-difference continuity equation for a cell centered

at a " At,. -point" (Figure 5.6.3). Here it is necessary to average

the continuity equation at only two neighboring cells, and we obtain

4h) + i I (5.6.6)

2 L 1 SQ S ,N'. Sj 9 j

In equations (5.6.5) and (5.6.6), each parenthesis repre-

sents the normal flux of mass that has to be used in the conservative

scheme. Accordingly the finite-difference vorticity equation equi-

valent to (5.5.3) is



I I
I U '~jI
t I
I I

I II I
I I

I ij

Figure 5.6.3: Cell centered at a " Al -

point" for which a finite-difference con-

tinuity equation is found.
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+A 2A - + 
N/1. ,) m

1' *)iN
(c) j S&h . ?SQ.L

4-1i i) J

4 j1) -[ ( V, 9

l l , Sd4 Pd ' ) slj I(

SIM,)

+ /(A S/N!J

,(W . + va i, t s1o f)tJ -

S4 Sio

coT L/(Ao H

sJ ?t~~j)

*i- SI W'h~1) ~~
c~SIt'J P~

V (- . - )

I'
USs N'J) ( A

4V1"'-I

(W~2Lij

+ r-

I

~=2,

J 2.~

PtQJ .c- yij

SIM,-I) sw

/s+

(5.6.7)

J- f
3Ir1

Yi

$I &-I (Ar. 'J d P45

''d4- j"S

5 5*r

w ,

[Iq- ri/(

;-4 w-, C4td) -l + ( w s N

.' ..0
fJ

IQ- .

/(AA 1s'. 9' I ,)i 'i

where

9 o)J+9,i * s ,]

_ tl/(2Od

S

/(4 SIN!11 /s I L.
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and the forecast equation for u is

-2z&t -

( Ar

(frj SIN' &A,,J SIN ,) (AC

~U JI4- 4-~

-1

i ACtI

A4j)

4. JJ e,., ) - ( W'j-,I

0-
0

6- --

L)

E4I 4L-)

(Ai

44.-I

SU 'V /

(5.6.8)

where T = ... M M Z )... O +)

Equation (5.5.5) in finite-difference form is written as in the non-

rotating model

' - -I(e, I )
?a: £;

k -e re ...

I
/ j

9 Sj

6+ Y4-.
- 2 . j M

COT. ..-- ' J

IM h)

pae+ l S1. W. I-

SII

^ .
(5.6.9)

3 /(4 1ca IN1.

E I tc. w,-, jj51v

u~r,)l(i~dSIN/-i

- U; ) Slhf;

+ 2
01 1

SIN, )

I4, j 4- Wet, COMO qP I'

~pl (I~ ~
QJ-i J
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Equation (5.6.9) is solved as described in the non-rotating model

(equation 3.6.9):

The boundary conditions in finite differences are

*+1 M+ )
VVj = LJMi+I

nv'4'j
1.t

IM4

,Ae

M 4'

(5.6.10)
-o0

&r .- i= 2,..., 3 M

Wkw j -Z z 3

Aw l ;, : J...) M

(5.6.11)

'V+ I

(7V'L2-7

1
7-1

'.). Int+

Cl. . 1a M+.
(j L2W - Lt.

- ~ 3*

A1 -0

(5.6.1l.)

Wk& C -_2...) 12PM

OK 4-

AM4j XUtl

th.+

t I / 9 90

W6AJL =r 2) " , j T_

W4VA9 j :
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3 IM+ xi -

1'* 41+1 
.

A Mi

- nr

A4ere Z jI, / J)

CI and C. are defined in (3.6.13b).

5.7 Physical data

We made several runs with this model. The following numer-

ical values for the physical parameters were unchanged.

C = G.05 K1 C 4,)

N-

rF - /Cr _

5 " ' 106 ci14

, 1l5 I / (,~/Mr

10" °1'/

- i ,Io ¢ /(Ace OK)

q-- S.67 )e10 -5 , / ( A

30 ok

r (a= o)= 730 Kf-

10O0 a v - 1.013 e I9obd-"

-- L C
The above values coincide with the values used in the nonrotatin..

The above values coincide with the values used in the nonrotating

model (Chapter 3).

C, MI
%W4 AA, C. 2,... J tr+I

(5.6. 13)

0KL)

!lo
*C-

-A
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The other parameters were varied in the following way:

Run I I.;

VV

vvst
.5

KJ+ - 100 C/M 2 /AL

01 CWA /At.e

-_5

Run I I - K - IOt A- '1/ C

V K - 0

10

Run III ) K - 1010 c /

5. KRe10lsV V -

Run IV 10
414

-7 K 1 0 1 4 C -/-

t - .3-

5.8 Results

Figure 5.8.1 shows the basic heating of the atmosphere

assuming an adiabatic stratification and the optical depths of ~ 222

for the long wave part of the spectrum and = 55 for the solar

radiation. It may be seen that the maximum heating contrast between

equator and poles occurs very near the top; in this respect the situa-

tion is similar to the one assumed in the Boussinesq model (Chapter 4).

This basic heating was used in the first three runs.



0 5 10 15 20 25 30 35 40 45 50 55 60 65 ?0 75 0 s5 tO

Figure 5.8.1: Basic heating for an adiabatic stratification

used in.Runs I, II and III.
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Run I: The values of the coefficients of eddy viscosity and diffusiv-

ity are those suggested by Goody and Robinson. Figures 5.8.2 to

5.8.8 show the results obtained after running the equivalent of

-7
3.94 x 10 secs. At this time the velocities and temperatures had

practically converged at the upper and middle levels, but not quite

near the bottom. The most striking result is that the circulation

remains confined to the top 10 km or so of the atmosphere. The velo-

cities are of the same order of magnitude as those obtained in the

Boussinesq model but somewhat larger. The maximum zonal velocity

is about 19 m/s and the maximum meridional velocity about 12 m/s,

as compared to 14 m/s and 10 m/s respectively in the Boussinesq

model. The indirect cell near the pole is present but is weaker

than in the Boussinesq model, perhaps because in the Boussinesq

calculation there was better resolution near the pole. The return

meridional flow has a maximum velocity of 60 cm/s at a depth of 6 km

from the top. In the interior the meridional velocities are of the

order of a few cm/sec and the zonal velocities are even smaller.

In accordance with the existence of a counter cell, the downward jet

is located at about 80 colatitude from the pole, with a maximum

speed of about 28 cm/sec.

The temperature contrast A & between equator and pole

is 1.1% or about 2*K.

Tables 5.8.1, 5.8.2, and 5.8.3 show the balance of terms

in the vorticity, zonal momentum and thermal equation respectively

at nine points. The position of the points is indicated in Figure

5.8.9.
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Figure 5.8.2: Meridional mass stream function T corresponding to Run I

after a time of 3.94 x 107sec.
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Figure 5.8.3: Zonal vortex strength

cm sec-1g - 1 .

for Run I in units of 10
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Figure 5.8.4: Relative potential temperature departure in Run I.
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Figure 5.8.5: Zonal velocity u in m/sec. Run I.
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Figure 5.8.6: Meridional vleocity v in m/sec. Run I.
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Figure 5.8.7: Vertical velocity w in cm/sec. Run I.
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Figure 5.8.9: Position of the nine points at which the balance of terms in the

CO
vorticity, zonal momentum and energy equations is given.
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VERT. ADV. HOR. VISC. VERT. VISC. CORIOLIS U. TERM SOLENOID TIME DERIV.

A - 1.47x1 0 - 5

B 192.25x10- 8

C 16.64x10-8

D 0.16x10-10

E - 0.10x10-1 0

F 0.03x10- 11

G - 0.45x10- 1 2

H 0.04x10- 1 2

I - 0.04x10- 1 4

- 1.41x10- 5

145.07x10-8

-10.20x10-8

0.15x10 -1 0

0.08xlO- 1 0

- 0.02xlO-l l

- 0.13x10-12

0.005x10-12

0.04x10-14

- 74.88x10-5

36.75x10- 8

0.72x10- 8

807.53x10-1 0

1.44x10-1 0

- 2.12x10-1 1

-153.93x10- 1 2

0.91x10- 12

-118. 01x10-1 4

- 0.69x10- 5

69.92x10- 8

5.07x10 - 8

1.45x10-10

- 0.92x10- 1 0

- 0.54x10- 11

- 462.39x10- 12

- 73.46x10-12

-1035.0 x10 - 14

2. lOxlO- 5

3.94x10- 8

0.19x10- 8

- 36.48x10- 10

- 16.96x10- 1 0

- 4.62x10 - 11

- 44.94x10-12

- 23.80x10-12

-134.74x10 - 1 4

185.15x10
-5

12.24x10- 8

0.07x10- 8

- 1.58x10-10

- 0.38x10- 10

- 0.12x10-11

0.12x10- 12

0.00x10-12

0.20x10- 14

-108.79x10-5

-461.00x10 - 8

- 12.57x10-8

-767.90x10 - 10

14.63x10-10

6.28x10-11

614.55x10-12

89.32x10-12

1061.9 x10 - 1 4

0.01ix10-5

- 0.82x10- 8

- 0.08x10- 8

3.32x10- 10

- 2.21x10- 1 0

1.10x10-11

- 47.17x10-12

- 6.94x10- 12

-225.57xl0- 14

Table 5.8.1: Balance of terms in the vorticity equation at nine points. Run I:

Point HOR. ADV.

( ------- ---.. ::~, - .~_________~,~,i~iiznriiis~il-~
A

14



Point HOR. ADV.

A 50.15x10-6

B -593.12x10-6

C - 60.16x10 - 6

D 9.72x10 - 8

E - 2.64xl0- 8

F - 6.04x10-8

G - 0.09x10- 10

H 0.03x10- 10

I 0.23x10 - 10

VERT, ADV,

772.66x10- 6

-125.03x10 - 6

47.46x10 - 6

- 0.97x10-8

0.74x10- 8

2.89x10- 8

0.32x10-10

- 0.21x10 - 10

- 1.15x10- 1 0

HOR, VISC.

-579.39x10- 6

7. 1lx10- 6

11.31x10- 6

0.82x10- 8

-103.45x10-8

- 16.48x10-8

- 1.76x10

35.69x10- 10

33.90x10-10

VERT, VISC.,

28.82x10-6

1. 38x 10 - 6

- 0.14x10 - 6

- 13.82x10- 8

- 76.40x10-8

- 50.64x10-8

-109.61x10- 0

- 80.63x10-10

26.73x10-10

CORIOLIS

- 7.14x10- 6

279.67x10-6

1. 05x10- 6

- 0.04x10 - 8

134.86x10-8

0.70x10 - 8

162.23x10-1 0

132.10x10-1 0

6.85x10- 1 0

U. TERM

-264.85x10-6

429.57x10- 6

0.19x10 - 6

- 0.003x10-8

6.39x10-8

0.02x10- 8

- 0.03x10- 1 0

- 0.02x10-10

- 0.00x10-i0

TIME DERIV.

0.26x10 - 6

- 0.42x10- 6

- 0.30x10- 6

- 4.30xlO- 8

-40.49x10- 8

-69.55x10 - 8

51.05x0 -10

86.94x10-10

66.56x10-10

Table 5.8.2: Balance of terms in the zonal momentum equation. Run I.



Point HOR. ADV. VERT. ADV. HOR. DIFF. VERT. DIFF. RADIATION
(BASIC)

RADIATION
(PERT.)

TIME DERIV.

- 882.27

788.77

-1248.6

- 0.002

- 0.21

- 0.29

- 0.20

0.016

0.03

909.20

- 760.76

1225.6

0.74

0.21

0.34

0.18

- 0.014

- 0.03

Table 5.8.3: Balance of terms in the thermal equation at 9 points. Units of 01 0 sec-1. Run I.

349.27

0.10

- 0.40

- 0.93

- 0.02

- 0.02

- 0.01

- 0.000

0.00

- 4.99

-15.40

-15.88

3.01

2.97

2.94

7.38

7.36

7.36

-241.62

301.76

365.11

- 1.46

- 1.46

- 1.32

- 11.15

- 11.15

- 11.15

-117.46

-308.25

-319.53

0.89

0.85

0.84

2.06

2.05

2.05

6.13

6.22

6.38

2.25

2.33

2.49

-1.74

-1.73

-1.73
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The most important result is that the nonlinear terms

corresponding to large scale advection of momentum and temperature

are negligible in the interior and near the bottom (points D to I).

In particular the balance in the thermal equation tends to be radia-

tive-diffusive, and not advective, except near the top. Furthermore

the system has not reached a steady state in the deep atmosphere since

the relaxation time is radiative and not advective, and is much larger

than 107 sec (at least a 109 sec). As was stated before, there is

little justification for the use of a vertical coefficient of eddy

diffusivity as large as 104cm2 in the interior, where radiation tends
sec

to produce a strongly stable lapse-rate.

Run II: \) = K = 1011cm2/sec instead of 1010cm2/sec. This

run was made for the purpose of comparison, since even 0, = 1010

cm2/sec is probably excessive, especially in the interior. Figures

5.8.10 to 5.8.16 reproduce the fields obtained after 1.8x107sec.

Note that some intermediate isolines have been drawn to improve the

resolution.

The results are similar to those of Run I except that the

circulation is slowed down by the large horizontal viscosity. The

maximum zonal and meridional velocities are 2.0 m/s and 4.6 m/s as

compared to 18.7 m/s and 11.7 m/s respectively in Run I. The counter

cell pear the pole is not present any longer because before a ring

of air has reached the pole, the horizontal eddy viscosity has

dissipated most of its angular momentum.

If we compare the streamlines in Figures 5.8.10 or 5.8.2

with those obtained for the nonrotating case (Figure 3.9.1) we see
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Figure 5.8.10: Meridional mass stream function corresponding to o

Run II after a time t = 1.8x107sec.
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that the effect of rotation is to reduce still further the penetra-

tion depth of the circulation. The upper part of the direct cell is

the most compressed because the stabilizing effect of the relative

rotation is greatest where the relative rotation is strongest.

The balance of terms in the forecast equations at the 9

points of Figure 5.8.9 is presented in Tables 5.8.4 to 5.8.7. The

balance is basically similar to that of Run I, except that the hori-

zontal viscosity is important even in the interior. In the thermal

equation, however, the temperature is so strongly stratified hori-

zontally that horizontal diffusivity remains unimportant except near

the pole.

Run III: V = = 103cm2/sec instead of 104cm2 /sec. From the

results of Runs I and II, and the nonrotating quasi-Boussinesq model,

it became clear that if most of the solar radiation is absorbed at

the top, the large scale circulation is not enough to stir the deep

atmosphere and maintain an adiabatic or quasi-adiabatic lapse rate.

In that case, a vertical coefficient of diffusivity of 104cm2/sec

is excessive since the interior of the atmosphere would be stable.

The vertical radiative-diffusive equilibrium state of the

atmosphere was calculated for several values of the vertical coef-

ficient of eddy diffusivity, with radiation (treated in the same lin-

earized fashion as in the two-dimensional model). Figure 5.8.17

shows the vertical profile obtained for the relative potential temp-

erature departure. It may be observed that )4V = 104cm2 /sec forces

the lower atmosphere to remain adiabatically stratified, whereas

XV = 10 3 cm2 /sec, a more realistic value in a stable atmosphere,
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VERT. ADV. HOR. VISC. VERT. VISC. CORIOLIS U. TERM SOLENOID TIME DERIV.

- 3.21x10- 5

148.46x10-8

7.67x10- 8

- 0.002x10- 10

- 0.03x10-10

0.04xlO-11

- 0.00x10- 1 3

O.00xl -1 3

0.00x0l- 1 5

2.64x10- 5

73.63x10- 8

- 3.74x10- 8

0.08x10- 10

0.06x10-10

- 0.02x10-11

- O.00x10-13

- O.O0x10-13

0.00x10-15

11.78x10- 5

269.24x10- 8

2.77x10-8

-14.47x10 

-30.23x10-10

-14.15x10-l l

-51.80x10-1 3

0.20x10-1 3

-72.75x10- 1 5

0.51x10- 5

139.60x10-8

4.63x10-8

- 0.70x10-10

- 0.78x10-10

- 0.57x10-1

49.53x10-13

- 2.64x10-13

60.16x10-15

0. 09x10 - 5

28.31x10- 8

0. 72x10- 8

- 4.10x10-1 0

- 2.81x10-1 0

- 1.14x10-ll

- 3.65x10-13

- 2.79x10-13

-17.36x10-15

0.36x10- 5

44.99x10-8

0.37x10- 8

0.02x10-1 0

0.01x10O- 1 0

-0.00x10-l

0.00x10- 13

0. Ox10- I 5
0.00x10-15

- 12.17x10- 5

-705.75x10- 8

- 12.49x10-8

17.47x10-1 0

33.58x10-10

15.70x10 -I

0.00xi0-13

0.00x10- 1 3

0.00xlO- 1 5

- 0.005x10-5

- 1.52x10-8

- 0.07x10-8

- 1.69x10-10

0.18x10-1 0

- 0.14x10-11

- 5.92x10-1 3

- 5.23x10-13

-29.96x10-15

Table 5.8.4: Balance of terms in the vorticity equation. Run II:

Point HOR. ADV.

i- -

_ - n ____ II



Point HOR. ADV.

A 23.55x10- 5

B 24.29x10- 6

C -45.27x10 - 6

D 0.25x10- 8

E 0.69x10- 8

F - 0.44x10- 8

G 0.00x10 - 10

H - 0.00x10- 10

I - 0.00x10 - 10

VERT. ADV.

- 4.29x10- 5

-21.05x10-6

13.87x10 - 6

- 0.01x10 - 8

- 0.ii x 1 0 - 8

0.14x10- 8

- 0.00x 1 0-10

0. 00 x 110

0.00x10-10

HOR, VISC.

- 30.89x10- 5

-238.89x10 -6

32.63x10-6

- 16.49x10-8

-104.78x10- 8

5.80x10-8

3.93xl0-10

1.40x10-1 0

3.23x10-10

VERT. VISC.

-0.54x10- 5

-4.45x10 - 6

-1.86x10- 6

-0.98x10 -8

-8.39x10 -8

-8,39x10 - 8

0.24x10-1 0

-2.39x10 - 10

-0.98x10 -10

CORIOLIS

4,50x10- 5

143.39x10-6

0.65x10-6

16.90x10- 8

109.96x10- 8

0.73x10- 8

- 4.12x10- 1 0

4.07x10- 10

- 4.20x10- 10

U. TERM

7.22x10- 5

97.60x10- 6

0. 14x10 - 6

0.07x10- 8

0.38x10 - 8

0.00x10 - 8

0.00x10-10

-0.00x10-10

0.00x10-10

TIME DERIV.

0.03x10- 5

0.88x10- 6

0.15x10- 6

-0.26x10 - 8

-2.23x10-8

-2.17x10-8

0.05x10- 10

3.08x10- 1 0

2.21x10 - 10

Table 5.8.5: Balance of terms in the zonal momentum equation for run II.



Point HOR. ADV.

4917.7

574.47

-649.74

- 0.01

- 0.00

0.00

0.00

- 0.00

- 0.00

VERT. ADV.

-4865.8

- 546.83

631.05

- 0.14

- 0.03

- 0.01

- 0.00

0.00

0.00

HOR. DIF.

428.26

- 8.70

- 3.90

0.18

0.08

- 0.06

0.00

0.00

0.00

VERT. DIFF.

-10.19

-14.30

-15.32

2.01

2.01

2.00

6.92

6.92

6.92

RADIATION
(BASIC)

-241.62

301.76

365.11

- 1.46

- 1.46

- 1.32

- 11.15

- 11.15

- 11.15

RADIATION
(PERT.)

-211.35

-288.95

-309.62

0.91

0.91

0.90

1.81

1.81

1.81

TIME DERIV.

17.06

17.46

17.58

1.50

1.50

1.51

-2.42

-2.42

-2.42

Table 5.8.6: Balance of terms in the thermal equation for Run II. Units of 10-10sec-1.
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has relatively little effect. The potential temperature at the sur-

face is here 25% lower than its initial adiabatic value, 730
0 K; hence

the linearization procedure used for radiation is inaccurate, and

the original radiative transfer equations should have been used.

This is actually done in section 5.10 for a purely radiative model.

The results of Run III after 3.6 x 10 sec are shown in

Figures 5.8.18 to 5.8.24.

The direct cell at the top of the atmosphere is quite

similar to that obtained in Run I. The main difference is that

the circulation in the interior is stronger, with horizontal velo-

cities of the order of 10 cm/sec instead of 1 cm/sec.

The maximum zonal and meridional velocities are 18.3 m/sec

and 10.4 m/sec respectively, about the same as those in Run I. The

reverse cell is also observed at the pole, and the maximum downward

velocity is 2.8 cm/sec and occurs at 8* colatitude from the pole in

both runs.

The balance of terms in the forecast equations is presented

in Tables (5.8.7) to (5.8.9). The balance in the vorticity equa-

tion is quite similar to that of Run I; the nonlinear terms are still

negligible in the interior. In the zonal momentum equation the non-

linear terms are important in the interior but not near the bottom,

and this is also true in the thermal equation. In any case the ad-

vective terms in the interior (which tend to cancel each other be-

cause the streamlines are rather parallel to the isotherms) are of

the same order as the vertical diffusion term and smaller than the

radiative terms. Near the bottom they become completely negligible.

Both in Run I and in Run III the zonal momentum equation
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Figure 5.8.18: Meridional stream function corresponding to Run III

after a time t = 3.6 x 107sec.
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HOR. ADV.

- 0.22x10-5

-107.58x108

22.45x10-8

0.05x10 1

- 0.22X10-1 0

2.62x10 1 1

- 0.04x10 1 2

- 0.00x10-1 2

-1 4
1.07x 0

VERT. ADV.

-5
- 0.45x0-5

287.25x10-8

- 15.08x10-8

- 0.83x10 1 0

0.10x10

1.41x10- 1 1

- 0.02x10 1 2

- 0.00xlO-12

-1 4
0.24x10

HOR. VISC.

- 45.72x10-5

36.50x10-8

1.09x10 8

438.11x10

15.94x10 1 0

- 16.10x10 1 1

8.33x10 1 2

14.80x10 1 2

-1 4

-213.28x10

VERT. VISC.

- 0.07x10-5

-8
2.17x10 8

0.51x10-8

- 0.29x10 1 0

o0.07X0-10

0.OOx10- 1 1

20.46x10 1 2

- 6.53x10 - 1 2

-1 4

-2"729x10

CORIOLIS

-5
1.89x10-5

-8
11.02x10-8

-8
0.36x10-8

- 34.72x10 1 0

- 22.52x10 1 0

-11

S-12
-274.87x10

-12
-238.43x10

-14
-1610.1x 10

U. TERM

-5
154.21x10

37.61x10-8

-8
0.17x10-8

7.29x10 1 0

5.10OX10

- 2.63x10

-12
4.91x10

-12
4.34x10

-14
28.64x10

SOLENOID

-109.63x10-5

-266.58x10 8

- 9.59x10-8

-10
-405.96x10

-10
9.82x10

28.65x10 1

-12
248.18x10

-12
249.64x10

-14
2389.3 x10O

TIME DERIV.

0.03x10-5

-8
0.39x10 8

-8
- 0.09x10 8

- 10.93x10 1 0

- 1.92x10 1 0

- 2.43 X10-

-12
6.95x10

-12
23.82x10

318.58x10 1

Table 5.8.7: Balance of terms in the vorticity equation. Run III

Point

_ ~_ I ~ L



Point HOR. ADV.

A - 78.10x10- 6

B -466. 11x10-6

C - 84.01x10-6

D - 8.10x10- 8

E 106.22x10- 8

F -359.15x10 -8

VERT. ADV.

470.97x10
-6

-292.59x10-6

69.48x10- 6

0.27x10- 8

-143.82x10 - 8

304.97x10
-8

U. TERM TIME DERIV.

-544.13x10 - 6

10.63x10- 6

12.56x10- 6

34.52x10- 8

14.63x10 - 8

- 41.24x10- 8

VERT. VISC.

2.28x10 - 6

0.47 x10 - 6

0.23x10- 6

- 1.76x10- 8

- 2.93x10- 8

- 10.16x10- 8

6.03x10- 6

- 0.41x10-6

- 0.25x10-6

- 24.37x10-

-154.18x10 -8

- 96.80x10-8

27.08x10- 10

CORIOLIS

4.02x10- 6 138.93x10-6

280.66x10- 6 466.43x10 -6

1.24x10- 6

- 42.30x10-

-110.46x10 - 8

7.62x10-8

0.58x10- 10 - 1.43x10-10 67.33xi0-10 46.88x10- 10 - 86.46x10-10

0.03x10-6

- 7.01x10- 8

-17.82x10- 8

1. 16xl0- 8

0.18x10- 10

- 3.30x10- 10 14.05x10- 10 285.28x10-10 - 14.89x10- 1 0 321.10x10- 10 - 0.59x10- 10 601.65x10-10

6.79x10-10 - 3.47x10-10 432.57x10- 10 -129.19x10 -10 12.09x10-10 - 0 . 0 2 x 1 0
- 10 287.55x0 -10

Table 5.8.8: Balance of terms in the zonal momentum equation. Run III.

HOR. VISC.



Point HOR. ADV. VERT. ADV. VERT. DIFF.HOR. DIFF. RADIATION
(BASIC)

-241.62

301.76

36.51

1.30

- 1.46

- 1.32

- 11.15

- 11.15

- 11.15

Table 5.8.9: Balance of terms

478.79

1396.9

-1417.8

0.54

- 0.33

0.81

0.20

- 0.16

0.26

- 464.51

-1360.9

1386.9

- 0.75

0.51

- 0.87

0.16

0.13

- 0.21

363.04

0.10

- 0.28

0.01

- 0.22

- 0.07

- 0.03

0.00

- 0.01

-0.57

-1.68

-1.63

-1.46

0.26

0.27

1.25

1.26

1.25

RADIATION
(PERT.)

-129.77

-330.89

- 32.66

0.27

1.24

1.29

6.31

6.33

6.31

TIME DERIV.

Units of 10-10sec-1. Run III.in the thermal equation.

5.36

5.29

5.75

-0.09

0.02

0.24

-3.58

-3.59

-3.55



211

shows a lack of convergence in the interior and near the bottom.

However this is not really important since the zonal velocities them-

selves are very small except near the top.

Run IV: % - K - )O0 C 2

") -V YV 0 4- I

In this run we allowed a deeper penetration of solar radi-

ation, and consequently a deeper circulation. An optical depth

= 2.Z allows 10% of the solar radiation to reach the surface

when the zenith angle is zero; when the radiation is averaged over

a day, 6% of the normal radiation reaches the surface at the equator,

3% at 45* and none near the pole. Figure 5.8.25 shows the basic

"adiabatic" heating field obtained with Cs 2.3 . (Unfortunately,

even though the model was free from nonlinear instability, a "nood-

ling"effect appeared and though there was a tendency to settle down,

the smaller-scale details are obviously not real.)

In Figures 5.8.26 and 5.8.27 we present the temperature

and meridional velocity v fields obtained after 1.8x10 secs. *- --

Besides the "noodling", the most important observation is

that the velocities are much stronger both in the interior and near

the top, and that the circulation is able to maintain the temperature

close to an adiabatic stratification everywhere.

Even though the numerical values don't deserve confidence

because of the noodling, we present in Tables 5.8.10 to 5.8.12 the

"balance" of terms in the forecast equations, because they may give
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Figure 5.8.25: Heating rate in an adiabatic stratification wi 1  t' 2.3 -

Units of 10-7sec- 1 . Run IV.
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Figure 5.8.26: Relative potential temperature departure e in units
of 10 - 3 . Time t = 1.8 x 10 . Run IV.
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Point HOR. ADV.

A - 70.22x10- 5

6
B -131.99x10

6
C - 22.26x10

2.50x10

E 154.79x10

F 307.37x10

17.96x10

- 0.73x10

0.45x10-1 0

VERT. ADV.

- 59.45x10-5

105.64x10-6

- 1.85x10- 6

4.43xl0- 6

620.93x10- 1 0

535.99x10-9

- 11.24x10

- 2.20x10- 1 0

- 0.14x10

HOR. VISC.

- 17.41x10- 5

47.00x10- 6

2.80x10-6

- 40.70x10-6

309.36x10- 0

-111.37x10-9

42.07x10-8

- 1.49x10- 0

41.64x101 0

VERT. VISC.

3.85x10 - 5

3.78x10- 6

1.11x10- 6

- 0.04x10- 6

- 8.99x10-10

- 1.27x10-9

-104.52x10-8

10.25x10-10

4.41x10-1 0

7

CORIOLIS

- 0.04x10- 5

0.00x10- 6

0.00x10-6

- 0.52x106

5.00x10-1 0

- 0.01x10- 9

- 0.21x10-8

- 1.06x10 - 0

- 0.20x10-10

U. TERM

6.20x10- 5

0.00x10- 6

- 0.00x10-6

41.97x10-6

6.19x10-10

0.00x10-9

0.00x10- 8

0.01x10- I0

0.00x10-10

SOLENOID

- 77.92x10-5

- 80.64x10-6

28.10x10-6

9.40x10-6

-1779.5 x10-1 0

289.06x10-9

- 25.62x10-8

- 45.05x10-10

- 61.84x10-10

TIME DERIV.

- 61.19x10- 5

- 56.20x10-6

1.99x10- 6

18.08x10-6

- 692.26x10-10

17.50x10-9

- 182.68x10-8

- 40,27x10-1 0

- 15.68x10-10

Table (5.8.10) Balance of terms in the vorticity equation after 2x10

A
ad

Run IV.



Point HOR. ADV.

A 32.49x10-3

B 34.12x10- 4

C - 41.14x10- 5

D - 4.90x10- 5

E -115.20x10 - 6

F 12.06x10- 6

G 8.19x10 - 6

H - 5.12x10-8

I - 4.22x10- 8

VERT. VISC.

-34.35x10
-3

-31.82x10- 4

46.70x10- 5

431.29x10- 5

13.77x10- 6

-31.29x10-6

0.65x10- 6

8.99x10- 8

21.49x10-8

10.18x10
- 3

0.21x10 -

2.12x10- 5

-396.70x10- 5

20.15x10-6

23.29xl0- 6

- 7.43x10-6

1.14x10 - 8

16.55xi0-8

0.03x10-3

0.00x10- 4

0.10x10- 5

0.14x10- 5

- 0.03x10- 6

0.03x10 - 6

- 8.05x10- 6

275.08x10-8

10.93x10- 8

- 0.25x10- 3

4.40x10
- 4

10.06x10- 5

- 8.01x10- 5

54.13x10- 6

- 1.76x10- 6

88.48x10-
6

122.98x10-8

1.55x10- 8

- 22.20x10- 3

2.91x10- 4

1.06x10- 5

-252.42x10- 5

32.96x10-6

0.15x10-6

4.08x10- 6

- 0.34x10- 8

0.00x10- 8

- 34.47x10- 3

9.83x10-4

- 1.22x10- 5

-230.60x10- 5

5.79x10-6

2.48x10-6

85.92x10
-6

402.74x10-8

24.03x10
- 8

Table 5.8.11: Balance of terms in the zonal momentum equation after 2 x 107sec.

VERT. ADV, HOR. VISC. CORIOLIS TIME DERIV.

Run IV.

U. TERM



Point HOR. ADV.

A 362.56

B - 42.55

C -515.78

D - 94.84

5.98

F - 35.00

G -548.63

H - 5.45

I - 7.24

VERT. ADV.

-367.20

31.79

1016.3

252.09

- 8.22

19.93

450.31

4.57

6.10

HOR. DIFF.

223.62

158.77

-231.58

- 82.19

- 0.18

7.64

5.42

- 0.11

0130

VERT. DIFF.

-0.98

-3.49

-1.30

-0.03

-0.06

0.05

8.79

6.92

8.48

RADIATION
(BASIC)

-246.13

-240.93

-240.79

- 1.46

4.66

7.23

- 11.15

- 11.09

- 10.71

RADIATION
(PERT.)

0.84

66.34

-13.31

0.00

- 0.07

0.02

1.97

1.73

1.73

TIME DERIV.

-27.29

-23.04

13.48

73.58

2.10

- 0.14

-93.27

- 3.44

- 1.32

Table 5.8.12: Balance of terms in the thermal equation after 2 x 10 sec. Units are 10-10sec - 1 .

Run IV.
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an indication of what would be the dominant terms in balance in a

correct solution, It may be inferred that a solar optical depth

of Z: - 2.3 or smaller will give rise to a circulation that is

strong enough to stir the whole atmosphere and maintain an adiabatic

or quasi-adiabatic stratification. In particular, from Table 5.8.12,

we see that nonlinear terms in the thermal equation are of the

same order or larger than the radiative terms even near the ground.

Other runs: In several runs it was observed that poor resolution

may give rise to large-scale oscillations that are not damped out

with time. These spurious oscillations may be due to a physically

unstable situation produced by truncation errors especially in the

advective terms. For example in one run very regular oscillations

were observed in the meridional circulation with the suggestive period

of 4 1/2 earth days (the same as the observed rotation period of

the clouds). It was thought that this was related to an inertial

period corresponding to the high relative rotation, until it was

found that increasing the resolution caused the oscillations to dis-

appear! In this case the oscillations were associated with a highly

unstable distribution of angular momentum, which also disappeared

as the number of grid points was increased.

5.9 Energy budget

We define the kinetic energy of the zonal motion as

S(5.9.1)

0 t)
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the kinetic energy of the meridional motion as:

M6 P
6

2ghed 0 dO 

and the potential energy separated in its initial (adiabatically-

stratified) value and the excess of potential energy generated during

the run by

a, Q
PL pa 0(

(5.9.3)

Then, from equations (5.2.1) to (5.2.5) we obtain the energy

equations:

CT . UT

I P,)K
GeP 1 KM

CrUT - M . (5. 9. 5)

(5.9.6)

o o

(5.9.7)

(5.9.8)CAbi 2z r Ck L CC Av, -

S- (5.9.9)

0 

4

(5.9.2)

where

0 o

aK, _
a)t

9t

D, -_ LT
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'P z To, "4J OMOI _') O (5.9.10)

o 0 a. IXAM 10

0 

0

G - ,-Q tF

K P4 60 AA;K 00.4 e v_ Aim 0± dj (5.9.12)

These equations are completely similar to the energy equa-

tions in the Boussinesq model (section 4.7), except that the mean

constant density Po , is replaced in the quasi-Boussinesq model

by the mean adiabatic density , and the relative density de-

parture P by - , the negative of the relative potential

temperature departure.

Figures 5.9.1 to 5.9.4 show the energy budgets of the model

atmosphere at the end of the four runs. It is interesting to compare

the results with those obtained in the Boussinesq model with rotation

(section 4.7).

The initial potential energy in the quasi-Boussinesq model

is less than half the potential energy in the Boussinesq model where

the density is constant and therefore the center of gravity is higher.

The excess (or deficit) of potential energy over that of the basic
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Figure 5.9.1: Balance of energy in the quasi-Boussinesq rotating model, Run I. Energies are

in dynes and conversion terms in dynes/sec.
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stratification is two orders of magnitude larger in Runs I, II and

III, and one order of magnitude larger in Run IV, than that of the

Boussinesq model. This result reflects the fact that radiation has

affected the deep atmosphere in the quasi-Boussinesq models, making

it more stable and decreasing by a large amount the unavailable po-

tential energy, whereas in the Boussinesq model the interior density

remained essentially unperturbed.

In the Boussinesq model the Gp term was about twice as

large as the i , j term, indicating that only half of the poten-

tial energy generated was unavailable. Here the ratio Gp/ ,) K

is of the order of 100 or more in Runs I, II and III. Again, this

is due to the fact that the general circulation is confined mainly

to the top, and in the interior there is a tendency to have radiative

equilibrium, which obviously has not yet been reached. ?p is

negative because radiation is continuing to decrease the unavailable

potential energy by much more than available potential energy is

being generated and converted to kinetic energy.

In Run I, and in the Boussinesq model, in which V l 10o ctOy'C/

and ~, = 10 cm /sec, the ratio of the zonal kinetic energy to the

meridional kinetic energy is roughly 10:6. In Run II, where the hori-

zontal coefficient of eddy viscosity was increased to 10 cm /sec

this ratio decreased to 10:30, and in Run III, where the vertical

coefficient of eddy viscosity was reduced to 10 cm /sec, the ratio

increased to 10:4. This suggests that if smaller (and probably more

realistic) values for the horizontal and vertical coefficients of

eddy viscosity were used, the zonal kinetic energy would become

even larger.
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The confinement of the circulation to the top in Runs I,

II, and III is also apparent in the magnitude of the kinetic energy

which is roughly 40 times smaller in the quasi-Boussinesq than in

the Boussinesq case. In Run IV,in which the circulation penetrates

deeply into the atmosphere, the kinetic energy is of the same order

as in the Boussinesq case.

If the models had converged we should have observed the

following equalities:

Of these, only the last two equations have been satisfied

with good approximation in Runs I, II and III. The first equation

is very far from being satisfied because of the tendency of the in-

terior to reach radiative equilibrium with a much larger relaxation

time than the times for which the integrations were made.

Figure 5.9.4 corresponding to Run IV with C' 2.4 presents

a much different picture. The effect of a deeper penetration of the

solar radiation is twofold: there is a greenhouse effect, and a

deeper circulation is driven; the combination of the two effects is

apparently capable of maintaining a near-adiabatic lapse rate. Thus

in Figure 5.9.4 we see that even though there is no sign of conver-

gence, the values of Gp and P) <Mk are of the same order, and
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that the extra potential energy generated is 10 times smaller, and

the kinetic energy 100 times larger, than in Runs I, II and III,

in which solar radiation was absorbed mainly at the top.

5.10 Radiative equilibrium in a semi-grey atmosphere

The results of Runs I, II and III, as well as those ob-

tained in the nonrotating quasi-Boussinesq model, show that if solar

radiation is absorbed mainly at the cloud top level, then the large-

scale circulation is not able to maintain an adiabatic or close to

adiabatic temperature stratification in the interior. In that case

the thermal balance will be mainly radiative and the temperature will

tend to become isothermal in the interior. In this case the quasi-

Boussinesq approximation and the linearized treatment of radiation

become inaccurate.

To find what the radiative balance would be if large-scale

convection and turbulent diffusion were negligible, a simple and rapid

method was developed to evaluate the radiative fluxes in a semi-grey,

constant composition atmosphere.

For a semi-grey atmosphere, the thermal and solar radiative

fluxes are respectively (Gierasch and Goody, 1970)

I er () r =t ' U(1

(z,) F ( - (5.10.2)
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which are seen to coincide with equations (3.3.1) and (3.3.18). As

before we consider s to be the effective solar optical depth.

If we assume that the volume absorption coefficients both

for solar and thermal radiation are proportional to the density, but

with different constants of proportionality (semi-grey assumption),

then from the hydrostatic equation, we obtain that the optical depths

are proportional to the pressure:

io o so (5.10.3)

where :_ , - ,and 4 are the values of the pressure

and the thermal and solar optical depths at the top of the atmosphere,

and may, in particular, be zero.

The heating rate is given by

(Fs -pr) (5.10.4)

crP

or, using the hydrostatic approximation

"- i .

:(F5  r (5.1

We introduce (5.10.3) into (5.10.1) and (5.10.2) and obtain

fPO.l/\ 4 -crC (P-,) 4 r ( -

0.5)

Tf
T - ()

Crd. LP +a e

(5.10.6)
- TCr(P
it'
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F (t). l ) e) (5.10.7)

where C - r, and C s  o

Equations (5.10.5) to (5.10.7) and the boundary conditions

F :, PO (5.10.8)

are simple to integrate numerically by successive iterations.

If the atmosphere has a large thermal optical depth, ,

the rapid variation of the exponentials in equation (5.10.6) may pro-

duce problems in the numerical approximation. However, in that case

we can make the following simplification (Figure 5.10.1):

Divide the atmosphere into pressure layers Art and assume

that the temperature varies linearly with pressure within each layer

i.e., at each layer n, set

T -M ) (5.10.9)

where r C T

Then, if we assume that the temperature varies continuously, and neglect

- W , we can integrate (5.10.6) directly and obtain the finite-

difference system of equations
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Figure 5.10.1: Computation of radiative

equilibrium.
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FS N 4 &k

Ct iTFr h't

M= I) N-I

.1 )

TN + 2h e ( ,T = N-

where

(5.10.11)

The numerical integration of the system (5.10.10) to convergence is

simple and rapid. Once the final solution T1) is known, the cor-

responding function T6?) may be obtained from a combination of the

hydrostatic equation and the perfect gas law:

(5.10.12)

(5.10.10)

TA $P1 + 1f-..

&A, /K ar-..

i T~ 4 1 T + \2 T 4 r31 T 2+ P

SRr T
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Table 5.10.1 shows the surface temperature obtained at

radiative equilibrium for some combinations of ~ and 1-

Gierasch and Goody's (1970) radiative4equilibrium calculations gave

a surface temperature of 4640 K when S 21. and 50 ; this

coincides with our radiative eauilibrium result.

The combination C * =-2ZL and t*= 5- , which was used
T S

in Runs I, II and III, gives a radiative equilibrium surface temper-

ature of 271*K. We quote Mintz (1960) as saying that it is like a

greenhouse with very dirty glass which will not work. If the circu-

lation is included, the results of Runs I to III indicate that it

will be able to maintain the lapse-rate close to adiabatic only in

roughly the upper half of the atmosphere. In the lower half the ther-

mal balance will be radiative, and we would expect the surface temper-

ature to have an intermediate temperature of about 500*K, consider-

ably lower than the 748 0K observed by Venera 7 (Avduevsky et al.,

1971).

The combination C t Z and Z: 23 , which was

used in Run IV, gives a surface temperature of 664 0K, so that even

if 90% or more of the solar radiation is absorbed before it reaches

the surface, there is a considerable greenhouse effect, although not

enough to explain the Venera 7 observations. But the results of Run

IV show that in this case the combined effect of a deep circulation,

which penetrates to the ground, and a partial greenhouse effect can

explain the adiabatic lapse rate throughout the atmosphere and there-

fore the high surface temperature observed by Venera 7.
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1.0 2.3 4.6 9.2 55

50 522 464 401 341 241

100 617 548 470 395 252

150 680 604 517 431 261

200 ' 730 647 553 460 268

222 ' 750 664 567 469 272

250 ' 770 684 584 483 275

300 "' 800 715 610 504 281

350 "' 830 742 633 522 287

400 n 860 767 653 538 292

450 1' 880 789 672 553 297

500 ' 900 810 689 567 301

Table 5.10.1: Surface temperature for radiative equilibrium

in a grey atmosphere. These values have been computed assum-

ing the solar radiation to be normal and equal to =  =

. If the zenith angle is different from zero,

a correspondingly larger value of ~ should be taken.sb
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CHAPTER 6

Summary and Conclusions

In this thesis the behavior of two-dimensional models of

the atmosphere of Venus is studied. Two extreme cases are consid-

ered: first, we neglect (following Goody and Robinson) the effects

of planetary rotation and assume that the subsolar and antisolar points

remain fixed, and second, we include the planetary rotation but as-

sume that the effects of the diurnal variation of solar heating are

negligible. In each case we develop a Boussinesq model, in which

there is no basic stratification of density, and a quasi-Boussinesq

model, in which the effect of stratification of density is included.

The Boussinesq model without rotation does not include

radiation, since the transfer of heat is assumed to be effected only

by eddy diffusivity and large-scale advection. The model is thus

more similar to Stone's than to Goody and Robinson's model. The re-

sults obtained show an overall agreement with those of Stone and

Goody and Robinson. An asymmetric cell develops, with a strong cur-

rent at the top directed from the subsolar to the antisolar points

and a strong downward jet at the antisolar point ("mixing region").

In Goody and Robinson's calculations, the downward motion is confined

to the narrow mixing region, a phenomenon which would explain the

almost complete cloud coverage of the surface of Venus, if the clouds

were of condensational origin. However, our results differ from

theirs in that weak downward motion occurs over most of the dark

hemisphere, not only in the mixing region.

The convergence time is given by the interior advective
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7

time a/a4 , \A LpC , or approximately one Venus solar day. This

shows that the approximation in which the subsolar point is assumed

to be fixed is not really justified. The approximation is even

less justified for the quasi-Boussinesq model, in which the interior

velocities are much weaker and the relaxation time for the deep at-

mosphere consequently much longer.

In the Boussinesq model without rotation, the stratification

remains neutrally stable except in the top boundary layer, but this

fact is not really signficant, for radiation is not taken into

account, except for the influx and outflux of heat at the top, and

it is the vertical eddy diffusivity,which is very probably too large,

that tends to maintain the density neutrally stratified.

In the Boussinesq model with rotation, in which the solar

heating is averaged over a Venus solar day, the result obtained is

essentially a direct Hadley cell in each hemisphere and a smaller

reverse cell near the poles, the latter occuring because the rings

of air near the top of the atmosphere tend to increase their speed

of rotation as they move polewards with decreasing radius of rotation,

until the centrifugal force urges them back before reaching the pole.

Angular momentum is transported polewards in the upper atmosphere with

the result that in most of the atmosphere there is a shear of the

zonal momentum in the same direction as the planetary rotation with

a maximum near the pole. As in the Boussinesq model without rota-

tion, the circulation penetrates the atmosphere and the return flow

has its maximum intensity near the bottom. The stratification also

remains neutral in the interior.

In the quasi-Boussinesq models, two important factors are
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introduced: (a) the basic stratification of density in the deep

atmosphere of Venus is included, and (b) radiation is introduced

through a semi-grey approximation, i.e., constant absorption coef-

ficients are assumed for both the solar and thermal radiation, The

thermal radiative fluxes are linearized about the values they would

have in an adiabatic atmosphere. This linearization is introduced

in order to obtain a simple expression for the thermal fluxes. If

the stratification does not remain nearly adiabatic, the approximation

becomes inaccurate; this is probably the least accurate approximation

of the model.

In the quasi-Boussinesq model without rotation most of the

solar radiation is assumed to be absorbed near the top, as was the

case in the Boussinesq model. The results obtained are similar to

those for the Boussinesq model, except that the stratification of

density confines the circulation to the upper part of the atmosphere.

In the interior only a weak frictionally-driven circulation with

velocities of the order of a few cm/sec are found. Hence the large-

scale circulation is unable to maintain an adiabatic stratification

in the interior. The thermal equilibrium in the lower atmosphere is

radiative-diffusive, with a much longer relaxation time (of the order

of 10 sec or 100 Venus solar days). The confinement of the circulation

to the upper atmosphere was also obtained by Hess in a numerical model

in which pressure was used as a vertical coordinate and with radiation

absorbed and emitted at the top of the atmosphere as in our Boussinesq

model.

In the quasi-Boussinesq model with rotation and symmetric

heating, several cases were run, with varying horizontal and vertical
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coefficients of eddy viscosity and diffusivity and varying penetra-

tion depths of solar radiation.

As in the non-rotating quasi-Boussinesq model, it was

found that if most of the solar radiation is absorbed near the top

( Z = 55) then the large scale circulation remains confined to
T

the upper atmosphere and cannot maintain an adiabatic stratification

in the interior (Run I). However, when some penetration of the solar

radiation is allowed ( Zs = 2.3), even though only 6% of the solar

radiation reaches the surface at the equator, and much less at higher

latitudes, the circulation is able to penetrate the interior of the

atmosphere (Run IV). In this case it is found that the combination

of a deep large-scale circulation, and some greenhouse effect can

maintain an adiabatic or nearly adiabatic lapse rate.

The effect of increasing the horizontal coefficient of

eddy viscosity is to slow down the intensity of the circulation, es-

pecially the zonal velocities. With ,) = 101 0cm2/sec (Run I) the

maximum relative zonal velocity is found to be 18 m/sec, whereas it

is only 2.0 m/sec when l) = 101 1cm2/sec (Run II). Smaller (and

probably more realistic) values of the horizontal coefficients of

eddy viscosity would allow larger zonal velocities, perhaps of the

order of 100 m/sec, although not near the equator.

When lower values of the vertical coefficients of eddy vis-

cosity and diffusivity are used (Run III), as being more appropriate

for the slow velocities and stable stratification of the interior,

the frictionally-driven interior circulation becomes somewhat stronger

with velocities of the order of 10 cm/sec; the thermal equilibrium is

now radiative-advective rather than radiative-diffusive; otherwise
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the results are essentially the same,

It is found that the planetary rotation has a considerable

effect on the circulation even though the rotation period is very

long (243 earth days). In the interior the relative velocities are

very small, and therefore the Rossby number is small compared to

unity (except in Run IV, where the interior velocities are of the

order of a few meters per second and the Rossby number is of order 1).

Near the top the relative rotation due to the transport of angular

momentum towards the pole is important.

We should note here that each of the runs described required

several hours of computer time in the very fast IBM/360-95 computer

at the Goddard Institute for Space Studies at New York.

The apparent rotation of the sun, I$ , is given by

sI = 11y -a

where Ry is the angular velocity of Venus corresponding to its yearly

revolution around the sun and 1 the angular velocity corresponding

to its sidereal rotation. The prograde revolution of Venus with a

period of 225 earth days, and its retrograde rotation with a period

of 243 earth days, combine to give a prograde apparent rotation of the

sun with a period of 117 earth days. If solar radiation is assumed

to be absorbed near the top, then the effect of the prograde motion

of tht sun would be to tilt the convection cells in such a way that

there would be an upward transport of prograde zonal momentum. Only

if the frictional effect of the ground is strong enough can retro-

grade motion be produced at the top (Schubert, Young and Hinch, 1971).

Therefore it is felt that the mechanism proposed by Schubert and
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Whitehead to explain the observed high zonal velocities at the cloud

top level is not probable, since the effect of the ground is unlikely

to be significant at high levels, especially when the basic strati-

fication of the density is considered.

A more probable explanation seems to be a combination of the

assumption of symmetrical heating introduced in Chapters 4 and 5, and

the Malkus-Thompson idea. that an initial zonal flow can amplify beyond

the linear limit by Reynolds stress interaction with the tilted

thermally-induced disturbances in such a manner that the velocity of

the zonal flow becomes much larger than the apparent velocity of the

sun, so that the direction of the solar rotation becomes immaterial.

Let us assume that the main effect of the sun is to produce

a direct Hadley cell in each hemisphere, and a corresponding shear

of the zonal momentum, with maximum retrograde velocities at the top

of the atmosphere as in our quasi-Boussinesq model with rotation.

The diurnal contrast of heating between the day and night hemispheres

will be important only near the top of the atmosphere. There, as

Thompson has suggested, the basic shear of the zonal velocities

can tilt the convection cells in such a manner as to increase the

shear and produce even stronger zonal velocities at the top. Although

the zonal shear produced by the Hadley cells is a minimum at the equa-

tor, the heating contrast is a maximum so that both effects may combine

to give an appearance of near solid rotation. Furthermore, the ultra-

violet cloud pictures show that the motion is actually three-dimen-

sional, with the bifurcated horizontal Y pattern suggesting that

there is eddy transport of retrograde zonal momentum from middle to

low latitudes.
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It is felt that only a three-dimensional, non-linear, non-

Boussinesq model of the Venus atmosphere will adequately test the

validity of the hypotheses offered to explain the high zonal velocities.

A simple model suggested by J. G. Charney and R. T. Thompson that

will retain the characteristics of three-dimensionality without con-

suming a prohibitive amount of computer time is proposed in Appendix

A. Some preliminary computations were actually made but were ruined

by non-linear instabilities inherent in an earlier version of the

finite-difference equations. It is felt that the procedure discussed

in sections 2.5 and 5.6 will eliminate these instabilities.

A very fast procedure has been found to obtain the radiative

flux and the corresponding radiational heating in a semi-grey atmo-

sphere when pressure is used as vertical coordinate (section 5.10).

The use of pressure as vertical coordinate has the advantage, further-

more, that it provides a time-independent continuity equation without

the need of the quasi-Boussinesq approximation. These characteristics

make desirable the use of pressure as vertical coordinate in future

models. The only disadvantage is that it gives poor resolution in

the upper atmosphere, but this might be corrected with the use of

a suitable vertical stretched coordinate defined in terms of the pres-

sure. Other improvements that should probably be introduced are

the use of nonconstant coefficients of eddy viscosity and diffusivity

dependent on the local Richardson number and the horizontal deformation

field.

In the course of this investigation it was realized that

in order to keep the computation time within reasonable limits it was

necessary to use non-uniform grids in order to be able to resolve
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the boundary layers. A study of the truncation errors introduced

by the use of such grids was made (Appendix B), It was found that

a suitable choice of the stretched coordinate gives a decided advan-

tage over other variable grid methods.
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APPENDIX A

A Truncated Fourier Series Model

For the Three-Dimensional Circulation of the Atmosphere of Venus

A.1 Introduction

Our approach to the study of the circulation of the atmo-

sphere of Venus was to try to obtain a steady state numerical solution

for a series of simple two-dimensional models. These solutions,

which include nonlinear interactions, are more complete than the sche-

matic solutions obtained by scale analysis in previous studies (Goody

and Robinson, 1966 and Stone, 1968). They have shown that some

penetration of the solar radiation through the atmosphere is neces-

sary in order to maintain an adiabatic stratification. However it

has become clear that a two-dimensional model cannot explain some ob-

servations of the atmosphere of Venus, in particular the high zonal

velocities observed at the cloud top level (Dollfus, 1968; Smith,

1967). The cloud observations also indicate that the circulation is

three-dimensional and unsteady.

The recent theories developed by Schubert (1969), Malkus

(1970) and Thompson (1970) make it plausible that the large zonal

velocities observed may be due to the apparent motion of the sun during

a Venus solar day. Thompson's model requires a basic zonal flow

with a vertical shear. The relative motion of the sun is not essen-

tial. The basic zonal flow can be explained by neglecting diurnal

variations as a first approximation, and considering a two-dimen-

sional model symmetric around the equator, as was done in Chapters

4 and 5. But it is obvious that a three-dimensional model will be
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necessary to adequately test the validity of the theories of Schubert,

Malkus and Thompson.

The possibility of developing a fully three-dimensional

numerical model for the atmosphere of Venus is remote now, because it

would require an enormous consumption of computer time, probably comp-

arable to that required for the complex models of the three-dimensional

atmospheric circulation developed, for example, by Smagorinsky et

al. (1965). It would not be reasonable to construct such a model

now in view of the sparcity of data on the constitution of the atmo-

sphere of Venus, its aerosols, and its circulation. We propose in-

stead to develop a simple model that will retain some characteristics

of three-dimensionality while requiring only a little more than three

times the amount of computer time used by a two-dimensional model.

The model proposed is one in which zonal variations are

expressed by a Fourier expansion with only a few components retained,

and a finite-difference method is used to solve the differential equa-

tions in the meridional and vertical directions (similar to the one

used in Chapter 5).

The expansion in Fourier series for the zonal dependence,

when only a small number of components are retained, has several

advantages: (a) the boundary condition of periodicity in the zonal

direction makes the expansion in orthogonal (Fourier) series espec-

ially simple; (b) for very few (say 3) components the Fourier method

is about as efficient, computationally speaking, as a finite-differ-

ence method with the same number of grid points; (c) for a moderately

large number of components, the Fourier method is much more accurate

than a finite-difference scheme with the same number of grid points
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(Orszag, 1970). With few components, this becomes even more true,

since finite-difference methods become meaningless as the number of

points decreases and the Fourier representation retains the basic

characteristics of the nonlinear interactions; (d) the Fourier repre-

sentation has conservation properties of energy and momentum similar

to those of the continuous equations (Lorenz, 1960).

In the meridional and vertical directions it would not be

convenient to use an expansion in orthogonal functions because there

it would be necessary to retain many more components to obtain a

reasonable resolution and this would require much more computer time.

We present here the basic equations and a method of solu-

tion for a numerical model in which the meridional and vertical di-

rections are resolved by finite difference and in which diurnal var-

iations are taken into account by retaining only three Fourier com-

ponents: the zonally-symmetric component and the sine and cosine

components with longitudinal wave number unity.

A.2 Three-dimensional quasi-Boussinesq model

(a) Continuous equations

The quasi-Boussinesq equations are written in spherical

coordinates, where X is the longitude, increasing in the retrograde

direction, 0 the colatitude and z the height: The zonal momentum

equation is

e 4. CpOAL Ot C 'V(.21
Lv;~ , F

Ur ~r KL ' WU Z o r (
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the meridional momentum equation is

..,_ uJLA- \F- -w.7_C 7 , W, ,,

1 4 AL.,O aO 00

AAA.
A 1 (

-

+ V .
(A.2.2)

the hydrostatic equation is

0= - c. 0.. T + 4 (A.2.3)

the thermal equation is

2 rv = - (A

2 cL4b o(

+ lv g!a

, t f .a r #
OL --

(A.2.4)
cJr .O

and the continuity equation is

(vA;, oL) O

0, bd O.

± (A)

(b) Expansion in a finite Fourier series

The variables u, v, w, of , Sr' , and qv are now expanded

as follows:

I C 1, 0- . ) = C.4 -I- S, (A.2.6)

a-/)A". O
(A.2.5)

14n;-~ O) W ,
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We introduce (A.2.6) into equations (A.2.1) to (A.2.5)

and, by integrating them with respect to A between 0 and 2W ,

obtain the zonally-averaged mean field equations. Similarly, equa-

tions for Tc and fs are obtained by multiplying (A.2.1) to (A.2.5)

by cosA and sinA and integrating between 0 and 2'1r.

The following equations for the mean fields and the Four-

ier components are obtained:

The three zonal momentum equations:

___ [ -o o _ --+ rs o 2 . 2

(o)

___a U, -o + V __ + v U-oe,

0.. s14Vv .. )

The meridional equations of motion are:c at . + V 14 2.",. 2, (.2.7CLAse~o ) d ± wan~~ka a - . Tn,

(a)

- +- CV0 0 '2+4k 4-
100( 2 e VV/W A O ( IFO
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IrQ- b, - wo 0TC -. WC.VO c P Oa. ir Z Lt U-cC

Zq-c - Zc-b. +b
C4 A t .4L

(c) (A.2.8)

-S'C - ^____ Wce'jr W 7r 1 4 ct -

g+. ,o .Ai,- L- "

(s)
0..4Ct

In these equations the w-terms in the expressions for the horizontal

viscosity are neglected. The hydrostatic equation components are:

S- c,,g T

+

4f
6a

BA

On

(o)

(c) (A. 2.9)

(s)

The thermal equation components are:

2.I. I,
05 +Us 9C:

LLAAI IJ

L 0oo _ -o '
., --

________ 0~

C-4 , Waw, G' .rsL -a '

+ Vv , t4'*V8~ 4 (c (.2lQ
c~

W .
o,

20.

I
+ GO it-b

- qV.

Cr .fa
(o)

(c)

(\r.., A -- L) .1 Z -C,+ Lc. VV- Ts Z
A,;, PL bq d-

+ -
zc

A ,
C-

O'L
(A.2.10)
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+ + k (s)

and the continuity equation

+ 4- -- (c) (A.2. 11)

- ____+ = (s)
1-

Equations (A.2.7), (A.2.8) and (A.2.11) can be solved numerically

by a finite difference method; it may be useful to use stretched

coordinates, especially near the top of the atmosphere.

At each time step after advancing u, v and 0 , the new

value of 'F can be obtained in the following way:

We define

(A.2.12)

and

14
corintsepeill ea hetp fth tms0ee
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From the continuity equation (A.2.11o) and the boundary

condition Wo= o at S o,+(

C[ 0
Cz[diYP-i

we have

and since =I'o d - 0 at the pole

H

Then we can integrate equation (A.2.8.o) from top to bot-

tom and obtain

___" - (*?c I'eb J0H J.. t O

(A.2.14o)

where the parenthsis in integral is a shorthand that stands for the

right hand side of equation (A.2.8.o) without the pressure term.

Similarly from the continuity equation (A.2.11c) and the

boundary conditions Wc=0 at -=o, I, we get

+ ca cob ) feqain d = 0

We can combine equations (A.2.7s) and (A.2.8c) to obtain

c 0 e,(&

fcH J]L+o t ?a&C
dA )t ~4C

(A.2.14c)



250

I
which is an elliptical equation that can be solved for T. . Again

the two parentheses in the integral of (A.2.14c) stand for the right

hand side of equations (A.2.7s) and (A.2,8c) without the pressure

terms.

Similarly, from equation (A.2.11s) we get

and from equations (A.2.7c) and (A.2.8s)

(j
W I~

TdL- a1 4 t 6L -, CO- (A.2.14s)

The functions o , CI
, and T are obtained

from equations (A.2.14). From the hydrostatic equations (A.2.9)

where L, e) u 7' C rl ) -t i unodc, ined as

where IC-d41) , the "uncorrected ?' " is defined as

P d, I) =
Cr B A

(A.2.15)

(A.2.16)

Then integrating (A.2.15) multiplied by e, between z = 0 and z = H,

we get
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'IroLH.) rC4I L'o- I. f 'r' Cat-a) C'-,d (A.2.17)

and replacing in (A.2.15)

' Ici) t .CT) + -"it)  d i , )  (A.2.18)

Computations were begun with an earlier version of the model

described here, but had to be stopped because of numerical instabilities.

It is thought that these instabilities can be avoided by the use of the

finite-differences scheme (2.5.b) and the conservative method described

in Section (5.6). I plan to go on working on this model in the future.
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APPENDIX B

On the Use of Nonuniform Grids in Finite-difference Equations

Finite-difference schemes that use grids with uniform

spacing are the simplest and most accurate, but they are not satis-

factory in problems with boundary layers. If the number of points

is not large enough to resolve the boundary layer (at least two or

three points within it) then the numerical solution is apt to have

gross errors even in the interior. The use of enough grid points to

resolve the boundary layer then makes the total computation time

unacceptably large. The problem can be solved by the introduction

of an irregular net with smaller spacing near the boundary.

One possibility is to divide the grid intervals by two or

more within the region of interest. This method has two disadvantages:

first, it is necessary to interpolate values of the variables or their

derivatives at intermediate points and weak numerical instabilities

usually arise at the boundary between the large and small grid size,

and second, this method cannot give really small grid intervals with-

out greatly increasing the number of intermediate interpolations.

Crowder and Dalton (1971) have shown that, in a boundary layer problem,

the use of grids with discontinuously varying resolution gives worse

overall errors than a regular grid with the same number of points.

Another possibility is to vary the grid intervals continuously, avoid-

ing the necessity of intermediate interpolations. Consider, for

example, a function 4(y) defined on a non-uniform grid (Figure B.1).

Making a Taylor expansion about the center point XL ,
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Figure B.1: Non-uniform grid defined through the

use of a stretched coordinate.
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there are two "centered" combinations of the function at three

points that give an approximation of the first derivative T :

z

which has first order errors, and

*1 Li 6 C !--- W L+ a X a,,.L (B.2)

which has second-order errors. If XYG \ X , both (B.1) and

(B.2) reduce to the usual centered-difference scheme. However, there

is only one combination of the three points that gives an approxi-

mation of the second derivative (I

'+ I L +  W T + '' "

which has first order errors. Note that the second term of the right

hand side of equations (B.1) and (B.3) is the "extra error" intro-

duced by the use of a non-uniform grid, while the following terms

are equivalent to the second order errors that are made when constant

spacing is used.

Sundqvist and Veronis (1970) reduced the "extra error" in

equation (B.3) to second order by choosing the intervals such that

- S(x.) (B.4)

but they still use (B.2) instead of (B.1). This method allows some
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improvement of the resolution near the boundary but it still requires

a large number of points to significantly reduce the grid intervals

there.

Suppose now that we vary the grid intervals by defining a

stretched coordinate ' ,

S= X (t) (B.5)

in such a way that the grid intervals A, are constant. If we are

studying a function defined in a region OX ! i with a boundary

layer at x = 0, then X~() should have the following properties:

(a) should be finite over the whole interval. If

becomes infinite at some point then the mapping X=XCL) will

give a poor resolution near that point, which cannot be improved by

increasing the number of points, since AX -- A- At

(b) o at _ . This will insure a high reso-

lution near x = 0.

Making a Taylor series expansion of x about )tL we find

, ' - ( rd(B.6)
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since

,d2

z
21( t)

Therefore

X i X _ - [zC4 1

- i

tA~

dl\ (

'Ti L &

S(hjL

+ 4
Ii- /'

Introducing (B.6)

fZ4, - -,

2 __ ac\

to (B.9) into (B.1) and (B.3) we get

+t dx+ , '

( I dX+ 2

+ t [ ( 4K

+ r / i
) J

L ( -)2 /)

'iv'

( +~

AIX1 (A
V-)L q

AV L (B.8)

(B.9)

and

(B. 10)

oc~)

ti
L ]

C:[ 1

4-
3

(a"x 161 Y-
V) Les

t
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L 'ii -r + (4., x +L )j

+ (B.l )

Equations (B.O10) and (B.11) show that any smooth function

X( ) that satisfies conditions (a) and (b) will give an approxi-

mation of the first and second derivatives with second order accur-

acy, since the "extra truncation errors" due to the nonuniformity

of the grid are of second order in . This useful result is due

to the fact that although the truncation errors near the boundary

may be of first order with respect to the intervals A XL , they are

very small, so that the overall truncation error remains small.

The form of equations (B.10) and (B.11) suggests the con-

venience of choosing a function =:1(4) where 1, is a polynomial

of degree greater than one, and in particular the advantage of the

choice of the simple function (see Figure 2.4.1)

(B.12)
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which has the following attractive properties:

(i) *LaO 4 Y- g* )C=j (B.13)

This implies that near x = 1, )CX t- ,where N is the number of

intervals N -- . This shows that at worst the stretched coor-

dinate gives half the resolution of the uniform grid, which is not

bad at all.

(ii) The first interior point at the boundary X=O will be such

that

aXI = Z = (B.14)

Then the resolution near the boundary layer increases with N
2 and

not with N as the uniform grid

40y (B.15)(iii) 2 - . (B 15)

Equations (B.10) and (B.11) reduce to

= I (B.17)

TV_ _± 
2  .s ' (4 I 7 o (B17

a 3
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and we see that the "extra truncation error" is independent of x

(except for the variations of the derivatives of f).

When a boundary layer is expected both at x = 0 and at

x i, a convenient stretched coordinate is defined by the symmetric

function

(B.18)

with

i -s,- T " (B.19)

It behaves like X= 7 near x = 0, like =1l- I-) near x = 1, and

is rather linear in the interior (see Figure 2.4.2). At the bound.-

aries, the first interior point is at a distance

'A)--- (B.20)

and at the center point, x = 0.5,

aY- 'r
2-N

Both types of stretched coordinates have been successfully

used in two-dimensional numerical models of the atmosphere of Venus.

Finally we compare our results with those obtained by Sund-

qvist and Veronis (1970), who solved numerically the following dif-

ferential equation proposed by Stommel (1948) for the wind-driven

circulation in a homogeneous ocean:

_I__1_~ 111__~~ ___~_IF_ __ _
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q1= 0 a;tX = 0, O7" (B.21)

which has a boundary layer at x = 0. Sundqvist and Veronis set

AYp 1' -( aX!-) , ( = 2 (B.22)

The exact solution of (B.21) is also included in their paper.

Figure (B.2) compares the percentage errors introduced by

the Sundqvist-Veronis method with those introduced by using the stretched

coordinate X= , . Note that not only are the latter smaller, but

that there is no tendency for the relative errors to grow as X-0 0,

even though the function itself tends to zero.

If we compare (B.22) with (B.9) and (B.7) we see that the

choice (B.22) corresponds approximately to the use of a stretched

coordinate defined by the differential equation

L -X X(B.23)

which has the solution

(B.24)

Then the grid spacing is given by

a rs_0(r X=o (B.25)
O'N
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Figure B.2: Comparison of the results obtained by Sundqvist and

Veronis and by using the stretched coordinate x .
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and

7r (I-e ) 4-A rc
(B.26)

This is obviously not a good choice of X') because as

Sundqvist and Veronis pointed out, to obtain a good resolution near

the origin , o( should be large, and that would spoil the computations

near = r .

Beardsley (1971) used the stretched coordinate X=4 to

solve a problem with a boundary layer near x = 1. Since -'' 4 ,

-W oo as - o , an inspection of equations (B.10) and (B.11)

shows clearly why the truncation errors that he obtained were very

large near x = 0. Near x = 1 this stretched coordinate gives A ---

so that it only increases by 2 the resolution of a regular grid!

Another advantage of the method proposed here is that

the actual spacing of the grid points is obtained immediately, once

N is given,whereas the method proposed by Sundqvist and Veronis re-

quires the solution of a rather cumbersome equation for A~lt .
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APPENDIX C

Estimation of the Magnitude of iT'at the Top

in the Non-rotating Quasi-Boussinesq Model

From the meridional momentum equation (3.2.7) and from the

numerical values of the terms in the vorticity equation near the top

of the atmosphere, we see that in the region where T at the top

may be largest, near the antisolar point,

Hence the magnitude of T' at the top will be

1 C 
.

2

We take the worst value of v

1 3 3, 103 c'AA/ s-

V.85 . 10, C4-4sec

S= 7.3 I c /b-

;. TrrPp] ] I9.x1o

At the top

TTOP= +AX-T .P l+ zow-p6, P +

where

7no,.,T = 0.27d

o- = 7.0 K

C 0 1 M 20 OK

Then

~i~__lY_ -I-~1-1I-I1_ ~r~---~-T~i _
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SO' °S.5 *K

and

T'ro P t I.I 0K

Therefore in the computation of the temperatures ,T can be assumed

to be zero without producing significant errors.



J

1

2

3

4

5

6

7

8

9

10

11

12

13

14

1.5

HEIGHTZ

-0.004
0.0

0.004
0.015

0.032
0.057

0.089
0.126

0.168
0.216

0.268
0.323

0.380
0.440

0.500
0.560

0.620
0.677

0.732
0.784

0.832
0.874

0.911
0.943

0.968
0.985

0.996
1.000

1.004
1.015

0.0 -0.193
0.095 0.0

0.189 0.193
0..:76 0.770

0.557 1.722
0.730 3.035

0.892 4.691
1.042 6.664

1.176 8.927
1.293 11.446

1.391 14.185
1.469 17.103

1.525 20.158
1.559 23.306

1.571 26. 500
1.550 29.694

1.525 32. P42
1.469 35. 897

1.391 38.815
1.293 41.554

1.176 44.073
1.042 46.335

0.892 48. 309
0.730 490.965

0.557 51.278
0.376 52.230

0.189 52.807
0.095 53.000

0.0 53.193
0.0 53.770

TAUSPTI P*10**-6

1.003 102.505
1.000 101.300

0.997 100.106
0.989 96.606

0.976 91.039
0.958 83.771

0.936 75.261
0.909 66.010

0.878 56.517
0.843 47.233

0.806 38.533
0.766 30.687

0.724 23.864
0.6P1 18.131

0.637 13.469
0.593 9.797

0.550 6.990
0.508 4.906

0.468 3.401
0.431 2.341

0.396 1.611
0.365 1.119

0. 338 0.793
0.316 0.582

0.298 0.447
0.285 0.366

0.277 0.323
0.274 0,309

0.271 0. 296
0.0 0.0

0.0

TAUT RHO*100 TFLUX*10**-5

0.00.0
729.986

0.0
722.286

0.0
699.632

0.0
663.343

0.0
615.525

0.0
558.959

0.0
496.933

0.0
433.050

0.0
371.023

0.0
314.457

0.0
266.639

0.0
230.350

0.0
207.697

0.0
199.996

0.0
0.0

55.03; 221.977
0.0 0.0

52.474 211.660
0.0 0.0

45.48 183.449
0.0 0.0

35.80 144.4 10
0.0 0.0

25.570 103.139
0.0 0.0

16.553 66.771
0.0 0.0

9.712 39.173
0.0 0.0

5.170 20.854
0.0 0.0

2.505 10.104
0.0 0.0

1.107 4.465
0.0 0.0

0.44L 1.790
0.0 0.0

0.148 0.599
0.0 0.0

0.031 0.125
0.0 0.0

0.0 0.0
0.0 0.0

0.0 0.0

APPENDIX D

VERTICAL STRUCTURE OF THE

ADIABATICALLY STRATIFIED ATMOSPHERE
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0.0
7.304

7.237
7.040

6.722
6.302

5.799
5.237

4.643
4.039

3.448
2.889

2.377
1.920

1.525
1.191

0.916
0.696

0.524
0.392

0.293

0.221
0.169

0.133
0.103

0.0o3

0.084
0.081

0.0
0.0

0.401

0.787

0.815

0.840

0.878

0.908

0.947

1 .003

1.075

1.163

1.273

1.418

1.542

1.586

0.0
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