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ABSTRACT

A set of linearized equations for a 2-layer rigid lid
model is developed, which is used to investigate the centri-
fugal instability of nonaxisymmetric flows. A basic state
is derived which is stationary, essentially barotropic and
stable to Rayleigh (inflection point) instabilities.

A theoretical discussion of the linearized equations, in
natural coordinates, reveals the importance of the stability
criterion for axisymmetric flows in determining the stability
of nonaxisymmetric flows. Additional terms, related to the
confluence and difluence of the streamlines, are shown and
their possible effect on the flow is discussed.

When the linearized equations are integrated numerically,
the form of the instability is seen. The growth rate of the
instability is correlated with the criterion for an axisym-
metric vortex, but the terms introduced by the asymmetries
have a definite destabilizing effect.
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I. INTRODUCTION

The centrifugal stability of a rotating balanced flow

has a long and extensive history going back to Rayleigh and

Helmholtz. The basic idea is that a flow which has a balance

between the Coriolis and pressure gradient forces may be un-

stable if the shear of the velocity is larger than the

Coriolis parameter. The most interesting aspects of this

type of instability are: 1) the velocity profile need only be

linear, in contrast with other flow instabilities which

require inflection points and 2) the instability is exactly

analogous to the gravitational stability of a particle in

hydrostatic balance, which is displaced vertically. There is

an extensive literature on the stability of the circular

vortex including centrifugal stability and we refer the

reader to Charney (1973) for a complete discussion and bib-

liography.

Our purpose here is to investigate the extent to which

the stability criterion for an axisymmetric circular vortex

applies to non-axisymmetric flows. To do this, we shall de-

velop a numerical model and analyze the results of several

experiments. In Chapter II, we discuss the limitations of a

1-layer model and the suitability of a 2-layer model for this

task.

We then show in Chapter III how a steady, almost baro-

tropic basic state can be derived for our model. We find



that in order to meet the requirement of steady flow, the

condition on the functional form of the stream function y is

that one must be able to write .z = G ) . This limits

the types of flow patterns one can use.

The use and limitations of integrating the nonlinear

equations is discussed in Chapter IV and a linearized set of

equations is derived for both the barotropic and baroclinic

modes. The Rayleigh (inflection point) instability of the

barotropic mode is investigated and the streamfunctions which

we shall use are found to be stable. This is important be-

cause we must be sure of which stability problem we are in-

vestigating. We have eliminated the possible baroclinic

instabilities by choosing a basic state which is nearly baro-

tropic and, as stated above, we have eliminated the Rayleigh

type of instability.

In Chapter V, we discuss the meaning of the stability

criterion for a circular vortex. The perturbation equations

developed in Chapter IV are in Cartesian coordinates, which

do not explicitly show the important terms analogous to the

circular vortex. We therefore recast our perturbation equa-

tions in terms of the natural coordinates of the flow, defined

by the streamlines of the basic state. In this form, we can

readily see the terms which are associated with the stability

of the circular vortex and additional terms which are due to

the nonaxisymmetric nature of the flow. We then discuss



possible modifications of the stability criterion due to

these terms.

The results of our numerical experiments are presented

in Chapter VI. We see one important result is that the per-

turbation is strongest in a region of strong anticyclonic

curvature and the wave fronts line up perpendicular to rather

than along the streamlines of the basic state. The growth

rate of the perturbation increases in the direction the clas-

sical criterion predicts but we are unable to give a good

quantitative prediction based on the present theory. In fact,

we show several cases where we expect no growth but in fact

the perturbation energy does grow in time. These and other

results are discussed in detail in Chapter VII.
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II. DERIVATION OF MODEL EQUATIONS

In order to study the centrifugal instability of non-

axisymmetric flows, we can choose among several possible

models. The simplest model is the one layer, homogeneous

shallow water model on an f-plane. If we consider the

stability of a basic state e C) which is in geostrophic

balance with the gradient of the free surface height (Y) ,

we can easily show by a local stability analysis that the

condition for centrifugal instability is

SH k + (P - ) o (2.1)

where k is the wave number in the y direction and H is the

mean depth of the fluid. It happens that for any linear

velocity profile = ColY such that Eqn 2.1 holds, the

flow is stable. The reason for this contradiction is that

the linearization is incorrect. On cannot neglect the y

variation of the free surface. Physically, we require the

angular momentum to decrease in the negative y direction

(assuming y is positive toward the north). The product of

the mass times the velocity should increase as y increases,

but the free surface 1(Y) decreases so rapidly toward in-

creasing y that, even though the velocity U increases, the

product ()() decreases. For this reason the one

layer model is not suitable. The main consideration is to

allow another degree of freedom which minimizes the above



11.

effect. This can be achieved by a continuously stratified

model or an n-layer model. As discussed by Houghton and

Young (1970), the continuous model provides for the minimi-

zation of the stabilizing effect of gravity by allowing very

short vertical wavelengths.

An alternate approach is to use an n-layer model, the

simplest being a two-layer model. In this model the gravi-

tationally stabilizing term is minimized by the reduced

gravity entering the stability analysis rather than g itself

and the variation in the free surface and interface heights

is negligible thus making the local analysis valid. The

geometry of the model is shown in Fig. 1.1. We have a re-

entrant channel in the x-direction, lateral boundaries at

y = 0 and Y = w, a flat bottom and a rigid lid. We assume

we are on an f-plane, far from the axis of rotation, so that

Cartesian coordinates can be used.

In the vertical, we have two layers of slightly differ-

ent densities in the upper and ( in the lower. We

assume that the system is gravitationally stable so that

f < . The constraint of a rigid lid introduces a re-

action pressure -P on the upper layer. The equations of

motion for this two layer model can be written



/ / / /// I / / / I / I / I // / I /'Y=\I

Lx

Y =\

X=o
X=O

Z=2H

Y=o

Fig. 1.1 Physical geometry of the model.

12.
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/ " - = I r --
ii ~ ~__ q ~n6,~

+ . - , y

dwhere i = 1, 2, --

is the Kronecker delta, AI, -= 2N - 1m and -P is

the pressure in the upper layer.

We nondimensionalize the above equations in the follow-

ing manner:

--- ~U L4 0 tr

> L~-

-~(,L')~

(2.3)

ro L_

and H is the mean depth of each layer. The equations of

motion then become

(2.4)

cPT:

ill

~; - _e xy

£ KI 
0

LLR 1, d ~

c~k
(2.2)

LU -U.~,

IL

where - ?I N

- 2.(, - '

e,
P,

dx

2L
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where Y Id C+ V.whr = Y , J -t - -L o

If one wishes to integrate the full set of nonlinear

equations (Eqs 2.4), it is convenient to write the momentum

and continuity equations in flux form. To do this, we define

the total scaled depth of each layer: = / I- E o I- .

Eqs 2.4 then become

i C) uU +0 L, V. u \ - £i 3

1)4;) 2 6 i 7'

where U,' = UL and V- = dI; . Note that the con-

straint of a rigid lid implies that 4-d, = constant,

i.e., k, = - k, , thus d, + d = 2. Therefore we need to

integrate only one continuity equation. A method for inte-

grating Eqs 2.4 is discussed by Lilly (1965) and the proced-

ure for maintaining the constraint of the rigid lid is dis-

cussed by Smagorinsky (1958).
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III. THE BASIC STATE

In order to study the centrifugal instability of curved

flow, we must be certain that other types of instabilities

are not possible for our basic state. In order to ensure

that we do not have baroclinic instability, we would like our

basic state to be as close to barotropic as possible. We

must also be certain that our basic state is stable to purely

horizontal perturbations of the Rayleigh type of instability.

We must find a (nearly) barotropic non-axisymmetric flow

which satisfies the equations of motion and then either inte-

grate the nonlinear Eqs 2.5 to see if a small random pertur-

bation grows or else linearize about that basic state and

again consider the growth of a small perturbation. In either

case, it is desirable to find a stationary basic state.

We begin by noting that, for each layer, the steady-

state momentum and continuity equations may be combined to

give the potential vorticity equation

. - - o (3.1a)

If we assume that \V is nondivergent, we can write

V. k (3.1b)

and

7 L (3.lc)



The steady-state continuity equation therefore is

(V, ) . = o

If Eqn 3.1a is to hold,

perpendicular to V

and therefore R, i + /

IROL +1 _ because \yV

. Eqn 3.1d implies that

must also be a function of

One can rewrite the momentum Eqs 2.4 for each layer

2

and since f9, / is a function of

Eqn 3.2 then gives

4- 2 &.L, - . ) - o L )

Taking times Eqn 3.4 with i = 1 and subtracting from

Eqn 3.4 with i = 2 gives

(3.5)

From Eqn 3.5, we see that

if LP = 9/ . In

h is a function of 9)2

this case we have

16.

(3.1d)

db= d,)

(3.2)

(3.3)

(3.4)

only

(3.6)
:71 = C_ 7,( W2.) - IK , ( - - ' - .
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One can easily show from Eqs 3.3 and 3.6 that b.

/'2 (l- s~)(=(_) plus a constant which is independent of x

and y. Thus 1z = I RjoK satisfies Eqn 3.1d and , -,

I ER , = I-E J~also satisfies Eqn 3.1d.

Note that the rigid lid provides a reaction pressure

which filters out the bothersome barotropic gravity wave in

the numerical computations.

To summarize the conditions on the flow, we write them

as follows:

G- o 2 (3.7a)

S) R(3.7b)

S ' 'l (I_ , ) L (3.7c)

\ = >, V q) (3.7d)

-- 
/  (3.7e)

The purpose of the density difference is to reduce the

effective gravity and therefore the gravitational stabilizing

effect. Its inertial effect is unimportant if we let -'/

S1 , thus W ' , and the flow is essentially baro-

tropic. A measure of the baroclinicity is given by

(3.6)
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Since = , = . In the

cases we will consider in our numerical experiments, .999,

which implies that " OCio -3 ) if \Y, j O1i ) . Thus

our basic state is nearly barotropic and for our purpose will

be considered as such.

We should also note that Eqn 3.7a places a serious con-

straint on the form of the stream functions which one can

choose for stationary flows. For example, a stream function

commonly used to represent jet-like flows is -= -Y + cos kx*

sin ky and therefore cos kx sin ky, One cannot

find a function G( ) such that = _ - I. One can also

show that if , and c$ are two different stream functions

which satisfy Eqn 3.5a separately, neither their sum nor

their product do so. As a consequence, in our numerical work

we shall use a stream function of the form

k, (k k, X (3.8)

where A and R are constants to be specified.

We now have

and we can specify G( L ):

- -) kL L L

which satisfies Eqn 3.5a.
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IV. LINEARIZED EQUATIONS

Having developed a model and a basic state which is un-

changing in time, we might be tempted to integrate Eqs 2.4

numerically to determine the stability of this basic state.

One could subtract the basic state components from the evolv-

ing flow and use the growth of this difference as a measure

of the instability. However, there are several shortcomings

to this approach. If we wish to study the linear case with

a nonlinear model, we must make the initial perturbation

small enough to make the nonlinear terms negligible during

the entire integration. The finite differencing errors in-

troduce perturbations orders of magnitude larger than one

would like to begin with and the nonlinear phase is approach-

ed rather quickly.

Fortunately, before we reach the nonlinear phase, an-

other disaster overtakes us - the interface becomes so per-

turbed that it "hits" the lid and bottom, causing the model

to become numerically unstable.

In light of the preceding discussion, we shall linearize

Eqs 2.4. Recalling that our basic state is very close to

barotropic and that ~,z< I , we shall linearize about the

basic state

(4.1)
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We write the velocity and height components as

4, -- C C

io= 1- 4-Sf'

where 6 is an arbitrarily small parameter, defining the

relative size of the perturbation, and the primed quantities

are therefore 0(1). The perturbation equations are (dropping

the primes):

DU - w-P C - _

, CV.I - - ,- ---

R LA - L- (4.2)

/,

Co', + '. . =\o

We now define \= Vz,4 \Y and \YW = Y2- \,

and recall that h1 = -h2 . We use Eqs 4.2 to obtain equations

for the variables and :
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-a o , LEE
-t R,\ ~~_Uz + (14 +- ) LA

V. -" = - (4.3a)

-f R. CY- VIV -I- L4 4- 4- -! r 4- T

-'- (4.3a)
7-\Y= o

and

-- U-

+I ~ 4

.. / - + - -

x ddX fw =0

9C, r- 3 L t-z':)~X Y

I " 0-t ' CI ) 'q.V = o

We now have two sets of equations, with the reaction

pressure, 1 , entering only in the first set, Eqs 4.3a.

One can immediately recognize Eqs 4.3a as the equations for

barotropic nondivergent flow, with a forcing function on the

right hand side. If we denote k x L ) = \ x *, =

;LFT7 and -;= = Y/ we can rewrite 4.3a as

-7 j-5 V V -7 (4.4)

which, in the case of \ 4= (Y) I , is the classical

Rayleigh problem for two dimensional nondivergent parallel

flow. In the case of Eqn 4.4, we have the more general

(4.3b)
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problem of barotropic stability of nonparallel flow. This

problem (or ones similar to it) has received some attention

over the past several years, notably in papers by Dikii (1965)

and Blumen (1968). They assume a functional dependence be-

tween E and 3 ,i.e., =~( ) or =  ( .

This is equivalent to restricting the basic state to be
a = O The method of est-

stationary in time, that is . The method of est-

ablishing the stability criterion is a variational principle

developed by Arnold (1965). (See Appendix A for a deriva-

tion of the criterion for barotropic flow in a channel.) In

order to insure stability, the integral

If 4-) (4.5)

must be positive definite. This will be so if a o over

the entire domain.

It is clear from Chapter III that the basic state we

have chosen is indeed steady. However, it is also clear

that > = \)F gives = -k , and therefore O

everywhere. This does not imply that the flow is unstable,

merely that Arnolds sufficient criterion for stability is

not satisfied.

The Rayleigh stability criterion for plane parallel

flow is that if O everywhere, the flow is stable.

By analogy, we might conjecture that if W~ 0 every-

where the flow should be stable (See Chapter VII). Here
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is a natural coordinate which takes the place of the cross-

stream coordinate y in parallel flow. As a test of the

stability of our basic state, we made a numerical experiment

using a stream function W of the form of Eqn 3.7. In one

experiment R was 2.0 and in another R was 0.0 (purely zonal

flow). The wave numbers kx and ky were taken to be equal to

-r/v\ , W being the width of the channel. ), was chosen

so that in the case R = 0, the maximum of the cosine curve

was at mid-channel (Fig. 4.1). We note that the velocity

profile has inflection points near the walls and that

and y are positively correlated. Although the necessary

conditions for instability were satisfied, when Eqs 4.3a

were integrated to more than 20 hours, no instability devel-

oped, as evidenced by the graph of total perturbation energy

versus time (Fig. 4.2). Similar results were obtained for

the case R = 2.0. Apparently the inflection points were so

close to the walls that the walls prevented the instability

from occurring.

It follows from our considerations that if we now

attempt to integrate Eqs 4.3b we shall be studying the cent-

rifugal instability of the flow and not the barotropic in-

stability.
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Fig. 4.1 Basic state velocity profile for R = 0.

.4

.Z
20 30 HovuRS

TIME

Fig. 4.2 Barotropic stability of the basic state.

R = 2.
P, 0o
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V. THEORETICAL TREATMENT OF CENTRIFUGAL INSTABILITY

Having developed Eqs 4.3b, one might be tempted to pro-

ceed with an analysis of the stability of an arbitrary basic

state . However, one might expect that the results

would not be illuminating since the underlying assumption in

this work is that the curvature of the flow has a direct

bearing on its stability and Eqs 4.3b do not explicitly show

how the curvature affects the flow.

To fix ideas, we consider a symmetric circular vortex

in an incompressible homogeneous fluid. If we ignore the

effect of gravity (i.e. no free surfaces or density discon-

tinuities), the condition for stability of the vortex is that

--3 > o , where R is the radial coordinate and

nr = R = R ( -_ -1s ) is the angular momentum, -r the

relative tangential velocity and -2 the angular rotation

rate (for the proof and development of the above criterion

see Charney (1973)). The criterion states that the square

of the angular momentum must increase radially outward for

stability.

Carrying out the differentiation, we obtain

ii ( L ± (5.1)
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The total relative vorticity of the flow - -

consists of two parts, the vorticity due to the radial shear

of the flow i and the vorticity due to the curvature

-v
R . We then have the stability criterion in the form

y (5.2)

As we can see, the condition for stability depends on

the sign of the absolute vorticity (2fL- 4 ) and the term

Frequently one finds that the stability criterion is

expressed in terms of the absolute vorticity alone, i.e.

2 -1 - > 0 (5.3)

In many problems of interest, _L + . '/R > O and this

condition is sufficient; however, it may happen that this

term is negative (as in the case of strong anticyclonic flow),

where the total vorticity may be negative and greater than

-ZfL. In order to explore this possibility, we must recast

Eqs 4.3b into a more suitable form.

In most problems of the stability of flows, the basic

state is stationary and can be described rather simply in

some coordinate system which reflects the geometry of the

problem. In the more general case of stability of non-sta-

tionary flows, Eckart (1963) has shown that one can obtain
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the Eulerian perturbation equations by a variational prin-

ciple using generalized coordinates which are defined by the

basic state rather than by the more common Lagrangian coord-

inates defined by the initial positions of the particles.

Since we already have the perturbation equations and

since we have a steady-state basic state we need not go to

the Lagrangian approach, but we need only to transform our

coordinate system to the "natural coordinates" defined by

our basic state. We may rewrite our perturbation Eqs 4.3b

in vector notation:

(5.4)

Here the basic velocity \' defines a natural coordinate

system as shown in Fig. 5.1. Let V = J , and let

LV = f p --\ and - - L be

the unit tangent and normal vectors at each point. We have

now defined a right-handed coordinate system at each point

in space such that kxf=± , except possibly at the

points where V= )'/ is zero. In the flows which we shall

consider there are only a finite number of such points and

for the most part we shall consider particle paths which do

not have such singularities. The streamlines ) = constant
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Fig. 5.1 Natural coordinates.

Fig. 5.2 Differential distances along coordinate curves.

p z:- C o t, s -

,.

J =COI\s-r
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of the basic state become one set of coordinate curves and

the other a set of orthogonal trajectories, = constant.

be the infinitesimal distance along curve

(P = constant and Js/ the infinitesimal distance along

the curve = constant (see Fig. 5.2).

( L , ) coordinates we can write

4--V

In terms of our

(5.5)

,)5,

We substitute Eqs 5.5 into Eqs 5.4 to obtain

-T 4J RV 3
D112.

--U-- -- 4-TLA
\i t-IJ

(s, V- -JO

where we have made use of the Frenet formulas (see

Hildebrand (1962)):

c~ _

Here f, and z.

C3~ _" -L:
'L '.2.

denote the local radii of curvature of

the curves LP = constant and

Let JS,

(5.6)

4- c);

d-t G;

3sl ~I

(P = constant, respectively.
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As pictured in Fig. 5.1, both , and

is positive for cyclonic curvature of

positive for anticyclonic curvature of

In natural coordinates the condition

are positive;

-curves and

P -curves.

V. \V=o becomes

c-V _ -__

(5.7)

V C)V
and Ro) is the relative

vorticity of the basic state. We then rewrite Eqs 5.5 in the

form

( 1R V ) -F')Sr

- (-F4fw C) i

(5.8)

215, -t 3v 1 ~-j z zz

If we set \ \ -( ) , J,= d9 , = - d ,

= D , then the basic state becomes the classical

circular vortex, and Eqs 5.8 reduce to the usual perturbation

equations for a circular vortex.

The basic assumption in perturbation expansions is that

the perturbation quantities are much smaller than those of

the basic state, i.e. U << V . This implies that the

fluid particles have trajectories which almost coincide with

those of the basic state. We may choose U(-L--c) so small

is

+ (-C~+C, V

, .
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that

over any time T we wish to consider. We therefore express

the substantial derivative of any variable as

C - - , (5.9)

so that Eqs 5.8 may be interpreted as the Langrangian per-

turbation equations for a particle. This connection between

the Eulerian and Lagrangian equations was demonstrated by

Eckart (1963), starting from the Lagrangian point of view

and identifying the generalized coordinates not with the

initial positions of the particles but with their paths as

defined by the basic state.

Eqs 5.8 may now be written

J +- ( C (5.11)

where

_ R.C -5

(We remark that f = 1 non-dimensionally, but we retain the

symbol as a reminder of where the term came from.)
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We shall now do a "local" stability analysis to obtain

some insight into the nature of centrifugal instability. We

assume that, although the coefficients are variables, their

variations are slow in comparison with the variations in u,

v, and h. With this assumption, we let (u, v, h) -

k (k s, 4- 1s,- t)
L~°L, € '(ks'+ s-where k) >> / '

Eqs 5.11 have a non-trivial solution if

) O (5.12)

We note that in terms of the Eulerian equations, WC is mere-

ly the Doppler shifter frequency, i.e. cO= CZ -k]oV . From

Eqn 5.12 we get the characteristic equation for c :

-+ S - - (5.13)

where , _ '+ P ( +- c . We shall now examine

an interesting special case.

The Axisymmetric Circular Vortex

In this case ' is identified with the usual radial

coordinate r. . -O* and therefore 7 -> 0. If we

still permit perturbations in the r and & directions,
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Eqn 5.13 becomes

w0 cu -4' w.4- ki 2 1J (0-c) (5.14)

The term in braces yields the same criterion as one would

obtain by more exact treatments of the circular vortex (see

Eqn 5.2) with the additional stabilizing term /< + ) .

The additional term b5)k( -c) is most likely due to the

nature of our analysis and probably has no physical signifi-

cance. It does not appear if we limit the perturbation to

be axisymmetric.

We shall now look at a more exact treatment of Eqs 5.11,

making the simplifying assumption that there is little or no

dependence on s2 . We make this assumption based on the num-

erical results presented in the next chapter, where one can

see that the perturbation is essentially oriented so that

the wave crest are perpendicular to the streamlines, at

least in the region of strongest instability. This allows

us to assume that the perturbation is a function only of s1

and t. This is contrary to the usual analysis of centrifugal

instability where - is assumed to be zero. Since the

coefficients of Eqs 5.11 are independent of t, we assume

(u, V-, S) = L
C ( (S) -(S ) (5.19)
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where s - sl. If - o

obtain

and putting 5.19 into 5.11 we

(-It U 4L )u

(-F + c ) Lu

Eliminating v(s) and h (s) from Eqs 5.20, we obtain an equation

for u (s) :

+5SLW
9 ('j 4

Making the definitions

o< ( s) =-_ -(
(5.22)

c Z2 )

is as defined in Eqn 5.13, we rewrite Eqn 5.22 as

+ or(s) L4 - P(- )u = (5.23)

If we make the transformation

(5.24a)

+ C

- (3 = O

(5.20)

)r -F 
C)c ---

+~(j +iC)

(~LJ YZ_ w32)
(5.21)
= O

+ 4-C

where W!

(-F ) IL'U

zr
-6 e,

S + --7 + C

ds ( ?Z 4 1 LO)~>,

4- 0(
,)SCa~-~S~d (r4;CL7) (i ?2 -

1Als) = ~P~S)/U(S)
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where

f(c5) = ejL - (0 ( ) A (5. 24b)

we obtain an equation for4,(s):

_ + F(5) - S # J = O (5.25)

We rewrite 5.25 as

±Z fS (L )C (5.26)

O

One should note several thinqs about Eqn 5.26. First,

since we have the small parameter S in the equation, we

might be tempted to do a perturbation expansion. However,S

multiplies the highest derivative, thereby making this a

singular perturbation problem. We can get around this prob-

lem by transforming to stretched coordinates S= . This

leads to a second order equation with complex coefficients.

Since the particles travel on closed streamlines, Eqn 5.26

has periodic coefficients. By imposing the condition that

the solutions ,/L(s) also be periodic in s, we have an eigen-

value problem where WA is the eigenvalue to be determined.

The general theory of such equations is known as Floquet

theory (see Whitaker and Watson (1927), Ince (1926) or

Lefshetz (1948)).

In general, the solutions to such equations need not be
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periodic and in addition may have exponentially growing solu-

tions. We shall merely note that the determination of ad-

missable solutions is not a trivial matter.
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VI. RESULTS OF NUMERICAL EXPERIMENTS

Having developed the model with which one might study

centrifugal instability, we shall now discuss the results de-

rived therefrom and try to relate these results to the theory

outlined in Chapter V. The model Eqs 4.3b were integrated

numerically using standard finite difference procedures,

which are detailed in Appendix B. The computations were done

on a channel of cross section 4000 km and length 8000 km.

The grid size was 50 km in both the x and y directions and a

time step of 5 minutes was chosen to be compatible with the

Courant-Friedrichs-Lewy stability criterion at all values of

the paramters E and R0 . We note that changing the para-

meter R changes the shape of the streamlines (compare Figs.

6.1 - 6.3), the parameter R0 changes the ratio of r to f, and

the parameter E influences the stabilizing effects of the

divergence of the perturbation. (Also note that decreasing

the value of 6 is equivalent to increasing the phase speed

of the gravity waves (see Eqn 2.2).)

We shall now examine the streamlines of the basic state,

which are given by Eqn 3.7. Figs. 6.1, 6.2, and 6.3 show

the streamline pattern for values of the parameter R = 2.0,

1.0, 0.5 respectively. We see that as R decreases, the

closed circulations become flatter. This has several effects.

The first is to decrease the curvature of the closed
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circulations in the regions labeled r2. We also note that

regions rl are regions of strong confluence and difluence of

the streamlines which, as discussed in Chapter V, may have

an effect on the stability of the flow. In this connection,

we have sketched several lines in Fig. 6.1 which are the

cross-streamline coordinates in our natural coordinate system.

We see that these lines have larger values of curvature in

regions rl. This effect is quite pronounced in Fig. 6.3.

In all cases, the constant A in Eqn 3.7 is chosen so that

lyIfx & i . This implies that the absolute vorticity,

/ oF , is negative only if Ro is large enough.

Thus, we can change the shape of the streamlines by adjusting

the parameter R and we can independently adjust the absolute

vorticity maximum by changing Ro .

We shall now consider the detailed nature of one experi-

ment so that we have a picture of what is occurring in an

Eulerian framework. In Figs. 6.4 - 6.14, we have contoured

the interface perturbation height for the parameters R0 = 1.0,

R = 1.0, E = 50. The corresponding streamlines are given

in Fig. 6.2. The figures show the h field at hourly intervals

from 10 hours to 20 hours of model time. During first 10

hours of the run, the model was organizing the perturbation

and there is considerable randomness due to the initial ran-

dom perturbation of the If velocity field. The contours

are given as multiples of 0 , the standard deviation of h

about the mean, which is always zero. This allows us to focus
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0 2 3

X (/o3 l )--

Fig. 6.1 Basic state stream function (R = 2.0). Orientation
is that of Fig. 1.1.

Fig. 6.2 Basic state stream function (R = 1.0).
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Fig. 6.3 Basic state stream function (R = 0.5).



41.

Fig. 6.4 Contours of Cr(h) (see text) for time t = 10 hours.
Contour values are:

1 - -6 5 - 1.5 

2 - -4.5U- 6 - 3LT

3 - -3a- 7 - 4.5cr

4 - -1.5 0- 8 - 6 "



42.

Fig. 6.5 Same as Fig. 6.4, t = 11 hours.

Fig. 6.6 Same as Fig. 6.4, t = 12 hours.
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Fig. 6.7 Same as Fig. 6.4, t = 13 hours.

Fig. 6.8 Same as Fig. 6.4, t = 14 hours.
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Fig. 6.9 Same as Fig. 6.4, t = 15 hours.

Fig. 6.10 Same as Fig. 6.4, t = 16 hours.
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Fig. 6.11 Same as Fig. 6.4, t = 17 hours.

Fig. 6.12 Same as Fig. 6.4, t = 18 hours.
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Fig. 6.13 Same as Fig. 6.4, t = 19 hours.

Fig. 6.14 Same as Fig. 6.4, t = 20 hours.
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on the significant features and to eliminate most of the back-

ground noise from the picture.

The most important feature, in terms of structure and

magnitude, occurs in the lower right hand corner. This is a

region of strong anticyclonic curvature and streamline con-

fluence. The wave crests are oriented more or less perpendic-

ular to the streamlines; this is the basis for our assumption

in Chapter V. The line along the wave crests is oriented

with the region which has a minimum value for CO (Eqn 5.2).

The tilt of the wave crests may also be due to the shear in

the basic state. The velocity near the wall is larger than

near the center of the high (note that the wall is a stream-

line) and therefore one might expect this configuration.

The wavelength of this disturbance is ~ 800 km at 10

hours. By 15 hours, this feature has diminished in extent

and magnitude and has been advected away from its source

region by the mean flow. At the same time, starting at 14

hours, we see the development of a new wave packet which grows

and then dissipates by 19 hours. The wave-length of this

second feature is -350 km. From this point on in time one

sees continual growth and decay of features such as this,

with a scale of "-350 km. As the integration is carried out

further in time the waves have a more fractured, small scale

structure, which may be due to the limitation of the grid in

resolving the steep height gradients.
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Other features during this time frame are less well

structured and of generally smaller magnitude. In the lower

left corner, along the bottom boundary is a feature which per-

sists for some time. Its orientation is along the streamlines

rather than across them. Its significance is that disturban-

ces generated here tend to propagate into the region of major

activity.

At this point, we should consider a physical explanation

for these phenomena. One simple explanation which comes to

mind is that on the right, between points A and B in Fig. 6.2,

fluid particles are slowing down, reaching a maximum speed at

the line of curvature, and therefore any conserved quantity,

such as potential vorticity, would pile up in this region.

The feature near the wall at the lower left might be explained

by a similar argument. However, we have exactly the same

situation around the low, but there is no evidence of such

strong wave generation. We must therefore conclude that the

flow being anticyclonic is of major importance in determining

this instability.

Another aspect of the stability problem is the growth of

the total perturbation energy in time. The perturbation

energy of the system is

SE= -IL 4L 2u 
(61)(6.'1)
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(In writing the finite difference analogue of Eqs 4.3b, it is

somewhat more convenient to use the nondimensional variable

S= ERo(I+Y) . Thus the energy is calculated as

u2 + (E 9'(14-0) . See Appendix B.)

In Fig. 6.15, we have plotted total energy E divided by

E(t = 0) versus time. R0 and E are fixed and R varies from

.5 to 2.0, as indicated in the figure. The first thing we

note is that in the first 40 hours, the growth rates are

fastest for larger values of R. For R = 2.0 we get a doubling

time of 36 hours while for R = 0.5 we get 67 hours. The

second feature of these curves is that for intermediate values

of R (1.0-1.5), the growth in E very nearly levels off, as if

a steady state had been reached. It is clear from these

results that the dependence on R is quite complex and we have

no simple explanation of these results.

In Fig. 6.16 we see a much simpler aspect of the problem.

For fixed R = 1.0 and E = 200, as R0 increases we get an

increase in the growth rate of E. This is more easily ex-

plained since our stability criterion is

O = - R +)(i - ) _ 
> o (6.2)

In Figs. 6.18 - 6.22, we have contoured values of cot

for various values of R0, keeping R = 1.0. In general, we

see that the regions of strongest anticyclonic curvature have

negative values of oW3 . There is a slight discrepancy
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/.0

/0 20 30 40 50 60o 0 80

TIME (HOURS)

Fig. 6.15 Total perturbation energy versus time for F = 200,
R0 = 1.0 for various values of R.
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3,0

/.0
/0o 20 30 40 50 0 70 so

T/ME (HOURS)

Fig. 6.16 Same as Fig. 6.15 for & = 200, R = 1.0 for various
values of RO.
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3.0

.0

/0 20 o 40o 50 60o o70 80

T/ME (HOURS)

Fig. 6.17 Same as Fig. 6.15 for RO = 1.0, R = 1.0 for various
values of E.



Fig. 6.18 Contours of the stability parameter 3AJz (see text). Hatched areas
have values of ,2 0. R = 1.0, R0 = 1.5. Min c' = -0.20.

*o



Fig. 6.19
2

Same as Fig. 6.18. R0 = 1.25, Min Oc = -0.16.
0



Fig. 6.20 Same as Fig. 6.18. R0 = 1.0, Min 62 = -0.09.

U,

*



Fig. 6.21 Same as Fig. 6.18. R0 = 0.75, Min U2 = 0.03.



Fig. 6.22 Same as Fig. 6.18. R = 0.5, Min (9 = 0.20.

ULn
-4
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for RO = .75. Fig. 6.21 shows CJc positive everywhere, but

the curve for R0 = .75 in Fig. 6.16 shows that this case is

2
unstable. For R0 = .50, C-D is again positive everywhere

in Fig. 6.22 and the corresponding curve in Fig. 6.16 shows

no growth up to /30 hours. After this time the energy

begins to grow slowly, an unusual result. We see in Fig. 6.18

(R0 = 1.50) that the area over which w~ is negative increases

with R0 and that some regions where oQ was negative (Fig.

6.19) are no longer so. This is because in this region both

.factors in Wf' are negative. Therefore if the curvature is

large enough, it is possible to have a stable region, even

though the absolute vorticity is negative. If we can assume

that Wof determines'the stability of the flow, then the

dependence on R0 is clear.

In Fig. 6.17, we see that the dependence of E on E is

very weak and in a sense opposite to that expected. We see

that for the larger values of E , which should minimize the

stabilizing effect of gravity, the flow is more stable after

about 60 hours. We also see that for E large enough the

instability is little affected by increasing E any further.
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VII. CONCLUSIONS

As we have seen in Chapter VI, anticyclonic curvature

plays an important role in producing instabilities in curved

flow. However, we have also learned that the simple measure

of instability given by Eqn 5.2 is inadequate to explain the

results of our numerical experiments.

The major results of our numerical experiments are:

1. Instabilities are suppressed in cyclonic regions of

the flow and are generated in anticyclonic regions, with max-

imum instability in regions of maximum curvature. (Figs. 6.4-

6.14)

2. Growth rates of the instability are related to the

curvature of the flow, but not in any regular manner, thus

growth rates are not a monotonic function of the curvature

parameter R. (Fig. 6.15)

3. There is strong correlation between the Rossby num-

ber R0 and the growth rate of the instability, probably due

to the effects of (- P R-o ) ( C 2 R,V ) and - V

(Fig. 6.16)

4. We have seen for R0 = .75 CoQ is positive every-

where (Fig. 6.21) yet the flow appears to be unstable (Fig.

6.16). If we include the N1 term in Eqn 5.13, there are

regions where ( cO - ~ 2  ) is negative. This is a strong

indication that the nonsymmetric nature of the flow is im-

portant. This conclusion is partially supported by the
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experiment for R0 = 0.5, where ( c- - 'qZ) > 0 everywhere.

This run is stable to - 30 hours. The growth of energy after

this time is not easily explained.

5. In the run with R 0 = 1.5, we not only have (f + c)

negative, but the absolute vorticity is also negative. This

2
gives us the peculiar situation that W, may be positive in

regions of strong curvature due to the compensating effects

of these two terms. (Fig. 6.18)

The present theoretical development is lacking in several

respects. First, we have proceded on the basis that -= 0.

From our numerical experiments, this is a reasonable approxi-

mation in region B of Fig. 6.1. On the other hand, it may

not be as good in regions where the waves are oriented along

the streamlines rather than across them.

The other deficiencies in the present development are

that we have not been able to explain the growth rates as a

function of the parameters E and R. A more complete analysis

of the problem, including the solution of Eqn 5.26, would

hopefully yield such information. At that point one could be

more certain about the effect of the periodic or aperiodic

components of the flow. One other method of investigating

the effect of the fluctuating component would be to take a

series of particles, all following the same path, at fixed

time lags between each successive particle. By averaging the

energy curves one could obtain a mean energy curve which

might show the effect of the fluctuating components by their
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absence.

As an extension of the present theoretical work in Chap-

ter V, several problems suggest themselves. The first is the

use of natural coordinates in understanding the stability of

barotropic flows. If we make use of our definitions of V, L ,

n , S, , and S? in Chapter V, the vector barotropic vorticity

equation (4.4) becomes

RV ,) c R- 0 (7.1)

where we recall that V is now a function of both sl and

s2, but, for stationary flows, = '(Sz)only. Since s2 is

the cross-stream coordinate, s2 OC2 9 and, by analogy with

the Rayleigh problem, the stability of the flow should be

dependent on whether or not S :C == 0 somewhere

in the flow. We note that the problem is somewhat more comp-

licated by the fact that V = V(S,)sz).

Another area for further investigation is suggested by

our analysis of the circular vortex in Chapter V. In a paper

published some years ago, S.D.R. Wilson (1965) suggested that

parallel constant shear flow might be more unstable to per-

turbations with a component along the flow than to purely

symmetric perturbations. Our analysis also suggests this

and the problem bears further research.

A related problem is that of the "almost circular

vortex". A comparatively simple, analytical problem is that
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of a stationary elliptical vortex, where the streamlines are

concentric ellipses having an ecentricity 6 C1. One should

be able to do a complete analysis of this problem to point up

the effect of having a changing curvature along a path, and

to see if the results are radically different from a circular

vortex.

This brings us to the final point in our discussion.

One often cites results valid for the symmetric circular

vortex to explain phenomena associated with noncircular flows.

In this case a part of the flow is usually considered to be a

"piece of a circular vortex." Our present investigation,

however limited in scope it may be, does emphasize that this

may not be the case.
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APPENDIX A

We consider purely barotropic, nondivergent flow on an

f-plane in a periodic channel with rigid walls at y = 0 and

W. The period of the channel is L. The equation of motion

for such flows is

Y - YYg, , Y Y = (Al)

where the subscripts t, x, y denote differentiation with

respect to that variable and ' is the vorticity, t= +-F.

In what follows, we shall keep close to the line of

derivation by Blumen (1968). We can define two functions of

the flow, E and 0 , where = Og) is an arbitrary function

of g and E is the total energy of the flow

JL qw (A2)

One can easily show that

L) (A3)

and

2 -d (A4)
dt 0
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Eqn A3 is demonstrated by integrating by parts:

f-iT ( Yx j x J f d A 1

The first integral is zero, when the respective integrations

are carried out, due to the periodicity in x and the boundary

condition that

L X O and y=o \A/

which is derived from the x-momentum equation. Using Eqn Al,

the remaining integral becomes

L W

q y)

0

using the boundary condition that = 0 at y = 0, w and

the periodicity in x.

In a similar manner, we can prove the validity of A4.

We now form the functional I( q ) = E+ F and take its

variation. We assume that for some (= - I has a minimum

value and thus we shall look for the conditions under which

this is true. Let

W = q1 - C5 (P I = W j. S = ;Q T + 4' +
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Taking the variation of I, we get

LW

rTI-Iy 1Pc d
3

2 ( (dC' - V"(P)( )J d d+

+ o(J53 )

where 2 = I (1) .

The first integral becomes

L \)-O

(A5)

-q v0 d Jd

f- dxJq d
(A6)

We have assumed in deriving A6 that the variations are peri-

odic in x and vanish at y = 0, W. f( Y) has an extremum

if its first variation, given by Eqn A6, vanishes.

true for all ~9 if and only if

S- 0'( ) =

This is

(A7)

This implies that

- _= C or 1) = f d -

which is to say that L= Y(') . This implies that a suf-

ficient condition for an extremum of I(&) is that !~ -o

i.e. that we have a steady-state solution for the vorticity

- (P'( ) 5 ) d(dy
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equation Al. It is easily shown by substituting W =

into Eqn Al that this is the case.

If we now assume that 4 << , we can neglect terms

of O (Jg3) and higher, and the second variation is posi-

tive, implying 7(Y)

( q~± (JPjd

is a minimum. if

+ 2 (65)z 7o2

over the entire domain. This is guaranteed if

>C 0 everywhere.

This is a sufficient condition for stability.
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APPENDIX B

In this section we shall outline the finite differencing

approximations to Eqs 4.3b and the procedures used to inte-

grate these difference equations. We write Eqs 4.3b schem-

atically, dropping the " A " notation for the perturbation

quantities

C) Fir (B.1)
3k

where

_Q o 5Y) + (B.2a)

Fi _ - 4r -L L - (B.2b)

o X d y

The variable h in these equations has been rescaled by the

factor 8 Ro (i -) for reasons inherent in the evolution of

our numerical model.

For our time differencing scheme, we have chosen the

Adams-Bashforth method. The leap-frog scheme was considered,
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but the instabilities associated with it add more complica-

tions to the integration procedure than we wished to contend

with. The Adams-Bashforth scheme has been shown to be

(theoretically) slightly unstable (see Lilly (1965)) but our

experience shows that this is not a problem. We then write

the finite difference analogue of Eqs B.1

U - F - f '

+- [3t Ftrj (B.3)

where n refers to the values at time t = 6-t and At is

the time step.

In order to compute the finite difference analogues of

Eqs B.2, we use a staggered grid pictured in Fig. B.1. The

variables are arranged so that Vi = 04M , where j = 1

and j = JMAX coincide with the walls. Since the channel

is periodic with period L we let the variables at " = 1

equal those at 6 = IM.x and add enough additional points in

the x-direction to overlap the ends. We may then write the

finite difference approximations to Eqs B.2
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Fig. B.1 Arrangement of variables on the finite differencing
grid (top figure). Relation of grid to channel
(bottom figure).
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-- I- I - an CR o 2 C .where Cu =2 C L and C+-C ' 2.

We note that the advective terms are written in flux form

wherever possible. This adds some complication to the calcu-

lations but ensures that the perturbation is advected by the

basic state without introducing spurious energy sources. In

calculating PUi; , we must modify the equation slightly near

the rigid walls, the scheme as written above requires

values outside the grid. We merely recall that 1/ and 1J

are identically zero on the walls and omit those terms from

The Courant-Friedrichs-Lewy stability criterion for

is determined in our model by using the maximum fluid part-

icle speed U rather than the gravity wave phase speed

C = U/Rao . In our model /R O1)and E >, 50, therefore

C << U and a suitable Ai- is determined from

AX

In our model AY = 50 km and U" L = 10 4 sec x 10 km.

Thus LZi < 8 min. In our computations we have taken

Z\ = 5 min.


