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Abstract

The response of vertical arrays at single frequencies (CW) and for homogeneous media
is well known. This paper addresses the issues of frequency dependence and sound
velocity gradients for the vertical array response in a deep ocean. I have modified
the synthetic seismogram code of Neil Frazer, Subhashis Mallick and Dennis Lindwall
to address this problem. The code uses a rearrangement of the Kennett reflectivity
algorithm (Kennett, 1974, 1983) which computes the geoacoustic response for depth
dependent media and pulse sources by the wave number integration method. The
generalized Filon method is applied to the slowness integral for an additional increase
in speed (Frazer and Gettrust, 1984; Filon, 1928). The original code computes the re-
sponse of a single source at a specified depth. The new code has several improvements
over the previous one. First, it is a much simplified code addressing only acoustic
interaction. The total length is about half the length of the original code. Secondly,
the code can compute the response of a vertical array of point sources. By changing
the phase delay between the sources, we can steer the beam to the places of most
interest. Thirdly, the code reduces considerably numerical noise at large offsets. The
original work has numerical noise beyond about 30 km offset at 50 Hz which limits
the application of reflectivity modeling in long range problems. The improvement
comes with the optimization of the program, both in the speed and program struc-
ture. The improved algorithm can be used to get the far offset response (up to 150
km) of a vertical array in the deep ocean at frequencies up to at least 250 Hz. The
modeling results are compared to analytical and benchmark solutions. The modified
reflectivity code can be applied to the study of pulsed-vertical array sources such as
were deployed on the ARSRP (Acoustic Reverberation Special Research Program)
acoustic cruises.
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Chapter 1

Introduction

The ARSRP (Acoustic Reverberation Special Research Program) Reconnaissance Ex-

periment was conducted from 25 July to 19 August 1991, and in 1993 the ARSRP

acquired detailed geological and acoustic backscatter data from three sites in the

ARSRP corridor in the western North Atlantic. A vertical line array (VLA) of 10

coherent sources was used, and its beam angle can be steered (Elliot, 1991). Spe-

cific long term objectives of these efforts are: 1) "to characterize the variations in

bottom topography and sub-bottom properties that control the scattering of low fre-

quency acoustic waves", 2) "to develop theoretical and numerical techniques capable

of predicting the low frequency acoustic wavefield scattered from geologically realistic

models of the bottom/sub-bottom environment", and 3) "to isolate from these scat-

tering models the physical mechanisms which dominate the long-range reverberation

from the seafloor."

The challenge for the ARSRP is to analyze the acoustic and geological data and

to demonstrate a predictive modeling capability for low angle seafloor backscatter.

In order to achieve such a goal, it is important to model the acoustic responses on

the seafloor for the VLA. There are several interesting objectives in the numerical

modeling: 1) what is the effect of the free surface on the sea floor response, 2) what is

the effect of the ocean velocity gradient on the response, 3) how do the above factors

affect CW and pulse sources, etc.

Ray theory and parabolic equation methods (Smith and Tappert, 1993) are com-



mon in ocean acoustics to compute the acoustic field. They are compared in Tolstoy

et al. (1985). Ozliier (1992) studied the refraction effects on vertical line array

beamforming applying a simple ray theory method. She studied the responses from

10 omnidirectional point sources with linear phase tapering equivalent to a steering

of 6 deg depression. There are big inaccuracies involved in the results after 30 km

horizontal offset.

In order to study the vertical array interference problem more completely and

to get a more accurate picture of the interference response in the deep ocean for a

wide variety of outgoing beam angles from the vertical array, we use the reflectivity

modeling method. The reflectivity method has been widely used to compute synthetic

seismograms in layered media. In fact, it has contributed to a better understanding

of the earth's structure, both on the continents and beneath the ocean (for example,

Braille and Smith (1975), Spudich and Orcutt (1980a, b), and Kempner and Gettrust

(1982a,b)).

Its main advantage is its capacity to compute a total solution of the wave field

for a given model. A matrix method is generally used to compute the response

of the model in frequency-wavenumber space. This includes contributions from all

possible generalized rays within the reflecting zone (Kennett 1974, 1983; Kind, 1976).

The original reflectivity version of Fuchs and Miller (1971) required the source and

receiver to be above the reflecting zone, but the method was subsequently modified

by Stephen (1977) to accommodate a receiver buried within the reflecting zone. In

practice, there are some disadvantages of the reflectivity method. The main one is

the usually long computation time required in the modeling. So, even though there

has been extensive study of the theory of the reflectivity method, adequate care must

be taken to implement the theory and also to balance the speed and accuracy. This

is especially true for our vertical array problem which has multiple sources and which

is required to compute long range responses in the deep ocean.



Chapter 2

Background

2.1 Reflectivity Method

The reflectivity method has long been used by seismologists for modeling both land

and marine reflection and refraction data. The method, originally proposed by Fuchs

and Miiller(1971), was extensively modified by Kennett (1974). The calculations are

done essentially in two steps:

* A reflectivity function R(w,p) is calculated in the frequency-ray parameter

(wavenumber) domain. This is performed by layer iteration starting from the

free surface down to the deepest interface. In each step of the iteration, all

orders of multiple-bounce paths in the layer are included. At the final step,

one obtains a reflectivity function that includes all possible ray paths from the

source to the receiver.

* The second step involves numerical evaluation of a double integral of the form

u(x, t) = / exp(-iwt) x dpf(w, p) exp[og(p)] (2.1)

where a = iwz and g(p) = p.

The integration over frequency w is usually carried out by a fast Fourier transform

(FFT). A complex frequency with a constant imaginary part is used in the integral



to attenuate the wraparound caused by the use of the FFT.

The integrand of the integral over the ray parameter p is highly oscillatory and use

of the trapezoidal rule would require a very small step size in p. Use of a generalized

Filon method (GFM) ( Frazer, 1978; Frazer and Gettrust, 1984) allows one to use a

much larger step size in p. The sampling interval Sp depends both on frequency and

the maximum range needed for the calculation, i.e., long range and high-frequency

calculations require a very small step size in p to avoid spatial aliasing.

The background and limitations of the method are described in the two papers

of Mallick and Frazer (1987; 1988). We modified their program for our vertical array

problem.

The compressional potential of the wave from an explosive point source is

1 R
o(r, z,t) = -F(t - ) (2.2)

R a,

where R2 = r2 + Z 2. Its Fourier transform can be written in integral form

o(r, z, w) = F(w) j Jo(kr) exp(-jv z)dk (2.3)

where F(w) is the Fourier transform of the excitation function F(t), Jo(kr) the Bessel

function of the first kind and order zero, j the imaginary unit, k the horizontal wave

number, and

V, = (k , - k2)1 (2.4)

is the vertical wave number (ka, = w/a).

Since we are mainly interested in the application of synthetic seismograms to

explosion seismological studies, we can replace the Bessel functions by their asymp-

totic approximations for large arguments(Fuchs and Miller, 1971) , which is good

for kr > 14 (Corresponding to a source with a frequency of 200 Hz, this approxi-

mation is good for ranges down to 16.7m. The synthetic seismograms based on this



approximation will be incorrect at normal incidence) :

Jo(X) ±cos(x-  ) = exp[j(X - -)] + exp[-j(x - -)] (2.5)
irx_ 4 27 4 4

Yo() - sin(x - ) = expLj( - 4)]exp[-j(z- (2.6)
iR 4 4 4

Where Jo and Yo are Bessel functions of first and second kind respectively and both

are of order zero.

The second exponential term in the above equations corresponds to waves prop-

agating in the positive r-direction (away from the source), whereas the first term

describes waves traveling in the negative r-direction (towards the source).

2.2 The Reflectivity Function in a Layered Water

Column

Fig. 2-1 shows the geometry and notation for the derivation of a layered half space.

The pressure reflection and transmission coefficients at the boundary of layers 1 and

2 for a wave incident from above are:

p2c 2 cos 01 - P1C 1 cos 02

p2 C2 COS 81 + p 1C1 COS 02

2p 2C2 COS 81
a12(01) = 2 C (2.8)

p2c2 COS 01 + P1 COs (2.8)2

with similar expressions for R23 and 23. From Figure 2-1, the total up-traveling

signal is the sum of an infinite number of partial transmissions and reflections. Each

path within the layer has a phase delay 2k 2h 2 cos 02, where k2 cos 02 is the vertical

component of the wave number in the layer. By letting the incident signal have unit

amplitude, the total reflection 13s is



Figure 2-1: Reflection and transmission at a thin layer(From Figure 2.10.2. in Clay
and Medwin, 1976)

13(,W) = 2R12 + Z1 2 Z 21 U23 exp(-2i2) + 12 . 2 12 12 3
2 R21 exp(-4i 2)+... (2.9)

b2 = k2h2 cos 82  (2.10)

After R12, terms in ( 2.9) have the form of a geometric series

S= Er" =(1-r) -' for r < 1
n=o

R l = 1 2 + 12 21'J 23 exp(-2iA2) E [3 23R 21 exp(-2i 2)]" (2.11)
0

Note that the reflection and transmission coefficients at a single interface are

frequency independent (i.e. a function of angle or ray parameter only). When the

propagation through a layer is considered (i.e. using (2), the coefficients become

frequency dependent.

We can reduce equation 2.11 by using the following relations, which come from

equations 2.7 and 2.8,



R12 = -R21 (2.12)

1221 = 1 - 122. (2.13)

We have

R13 -R 12 + 323 exp(-2iD2)
1 + R12R 23 exp(-2ib 2)

The transmission through the layer for a unit incident signal is

13 = a12a 2 3 exp(-iP 2) + i12a 2 3 3 23 21 exp(-3i4 2) + . . . (2.15)

This is a geometric series, and the sum is

213 - (2.16)
1 + R12,R23 exp(-2i( 2)

Both the R13 and a13 are oscillatory functions and depend on 42 = k 2 h 2 cos 02.

They are functions of frequency and angle of incidence for a given layer.

We then can derive the total reflection and transmission of n layers, by repeated

applications of the single layer coefficient.

As in Fig. 2-2 the reflection from the lower half space is R(n-1)n. Applying equa-

tion 2.14 the reflection coefficient at the top of the n - 1 layer is

(R(n-n-2)(n-1) + R(n-l)n exp( -2i4tn-) (2.17)
?(~n-)n =1 + (2n-2)(n-1).1(n-1)n exp(-2in-_)7)

We can repeat the above process to get R(n - 3)n, the reflection coefficient for

the layers beneath the interface, which is

(-3) (n-3)(n-2) + R(n-2)n exp(-2itn-2) (2.18)
1 + 3(n-3)(n-2)3(n-2)n exp(-2iIn-2)(



R~ PI , CI

2 n P2, C2

-2 21 R

a - 1 P, - 1c. - I

Figure 2-2: Reflection from a layered
Medwin, 1976)

half space(From Figure 2.10.3. in Clay and

Continuing the above calculation upward to the top, we have

9 12 + -R2n exp(-2iP 2 )

1 + R 12 R2n exp(-2iA2)
(2.19)

By letting the reflection coefficient ln represent all the frequency and angle de-

pendence, we simplify the expression for the reflection from a multiple layered half

space. The above process can also be applied to get the transmission coefficient from

a multiple layered half space. So, for large ranges, we can get the composite pressure

reflection and transmission coefficients by applying the above layer iteration approach.

-- I1.



2.3 Computation of the Slowness Integral

In the reflectivity method, we do the numerical evaluation of the slowness integral,

in the form

u(z,w) = w2pdpJo(wpx)fi(w,p) (2.20)

where Jo denotes the first kind Bessel function of order zero. This integral is oscilla-

tory and in a normal integration scheme many steps are necessary in computing this

when wx is large. The step size used is inversely proportional to wx. The program

uses the generalized Filon method given by Frazer (1978) and Frazer and Gettrust

(1984), which requires the step size to be inversely proportional to (wx)'/ 2, which

allows higher wz response, for a given step size and a given error in computation.

To use the generalized Filon method, we transform the integral of equation 2.20

into (see Chapman 1978)

J 2
r 2 p dp H (l ) (wp ) fi(w ,p )  (2.21)

where r is the contour of integration (shown in Fig. 2 of Frazer and Gettrust (1984)).

The H(1) stands for a Hankel function of type 1 and order zero. The details for the

transformation from equation 2.20 to equation 2.21 are shown by Chapman (1978).

We can rewrite equation 2.21 as

f (p)eSg(P)dp, (2.22)

where

f(p) = VpH1)(wpx)ewP"fi(w,p)
2

S = iwz

and

g(p) = p



Application of the standard trapezoidal rule to the integral in equation 2.22, between

the limits a and b, gives the quadrature formula

Ibf (p)eSg(P) = [f(a)eSg(a) + f(b)eSg(b)]6p (2.23)

This formula does not work well because it assumes that f(p)esg(p) is well approxi-

mated by a linear function over the interval (a, b), while actually it is highly oscillating.

If, we assume that both f(p) and g(p) are well approximated by different linear func-

tions on (a, b), then we get the generalized Filon method analog of the trapezoidal

rule (Frazer, 1978):

b f(p)eSg(P)dp = 8P[f(a)es(a) + f(b)eS(b)], for 8(g) = 0 (2.24)

Sf(p)eSg(P)dp [s(fes g) - g, otherwise (2.25)sa(g) ss(g)

where, Sp denotes P2 - P1, 8(g) denotes g(p2) - g(pi), etc. It can be derived by

replacing the integrand in the left-hand side of 2.23 by

[f1 + (p - pi) ( exp s[gY + (p - p g)]

The generalized Filon method greatly improves the quality of the synthetic result.

It saves computation time by as much as 80 percent (Mallick and Frazer, 1987). A

straightforward error analysis shows that, for a given accuracy, the step size in 2.23

is proportional to |s|-1 whereas the step size to 2.25 is proportional to IsI-1/ 2 (Frazer

and Gettrust, 1984).

The integral in equation 2.25 is simplified by letting Sp = S(g) and removing the

term Sp/S(g):

Sf (p)esg(P)dp = [8(feS) 8 (e , otherwise (2.26)
S S8(g)

The results using equation 2.26 show great improvement in terms of the quality

of the modeling result. Applying equation 2.25 as in the original program, there is



a big numerical noise problem beyond about 30km offset which limits the applica-

tion of reflectivity modeling in long range problems. The optimized program using

equation 2.26 reduces significantly the noise at large offsets. In the integral 2.25, the

p and g(p) are very small. This results in more numerical error than the simplified

integral 2.26.

For the reflectivity method, we need to evaluate the integral:

u(w ) = o kdkit(w, k)J,(kx) (2.27)

in which J, is the Bessel function of order n, and k is the wavenumber. Here advantage

is taken of the relation (Olver, 1972, formula (9.2.19))

J" = Mn cos On (2.28)

where the definitions of Mn and On are:

Mn = tan -1(Y /Jn) (2.29)

1

O = (J.2  nY2)' (2.30)

The functions Mn and On are available as polynomial approximations (Allen, 1954;

Ovler, 1972, formula (9.4.3) and (9.4.6)) for values of kx greater than three. For

values of kx less than three, exact values of Mn and On could be computed (Olver,

1972, formula (9.2.17)).

The asymptotic expansion of On is (Olver, 1972, formula (9.2.29))

O, = kx - an + O(kzx- 1') (2.31)

where

a, = -(2n + 1)7r



So, the equation 2.27 can be written as:

u(w, = f dkf (k)ei~k + j dk f 2(k)e-ik (2.32)

in which

f (k) = (, k)M,ei(O-k) (2.33)

f2(k) = 2 kI(w, k)Mne-i(O-kx) (2.34)

Equation 2.32 is exact, and yet the functions, fi and f2, are relatively non-oscillatory

because of 2.31. More importantly, each integral on the right-hand side of 2.32 is of

the form 2.22, and so they can be evaluated using the generalized Filon integration

method.

In the modeling of refraction data, x is usually greater than four or five wave-

lengths, and then the following simpler procedure can be applied. In equation 2.32

replace 8n by kx - a, and M, by (2/rkx)1/ 2 (Frazer, 1988).

The u(w, x) can now be evaluated using the generalized Filon formula 2.26 with

g(p) = p and s = iwz.



Chapter 3

Theory of Vertical Array

Interference for Harmonic Sources

3.1 Notation and Example Parameters

In our study, we use the following notation as shown in Fig. 3-1. We denote W

as the total distance between the top source and the bottom source, d denotes the

neighboring source distance, h is the depth of the top source from the free surface

and 4 is the grazing or dip angle of the ray to a receiver at a large distance from the

array. Unless otherwise specified, all of the plotting will have the following parameters:

W = 5.49A, h = 24.755A, which implies that the distance between the surface to the

midpoint of the 10 sources is 27.5A and the distance between the neighboring sources

is 0.61A. In the case of a frequency of 250Hz and a velocity of 1.5km/s (so that the

wavelength A = 6m), d = 3.66m and h + - = 165m.

3.2 Dipole Interference

3.2.1 The Field from a Single Source

A sinusoidaly excited source expands and contracts repeatedly. The resulting con-

tractions (density increases) and dilatations (density decreases) in the medium move
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Figure 3-1: The Notation for Multiple Source Interference beneath a Free Surface



away from the source at the sound speed c, as would the disturbance from an impul-

sive source. This disturbance is called a continuous wave (CW), and it comes from a

CW source. The distance between adjacent contractions along the direction of travel

is the wavelength A.

Assume that an omnidirectional CW sinusoidal point source in a homogeneous

medium has the pressure at unit distance given by:

P = Po * sin(wt) (3.1)

So, at distance R, the pressure at a given time t will be:

P, = O * sin w(t - r) (3.2)

where r is the phase delay due to the travel time in the medium (r = R/c) and c is

the wave velocity.

The field intensity (transmitted power per unit area), I, will be:

I 0  (3.3)
pc 2pcR 2

where P 2 is the ensemble average of P2 in the time domain, p is the density of

the medium and c is the wave speed in the medium.

3.2.2 The Field from Two Sources

Under the same assumption as the single source, two sources will generate an inter-

ference pattern.

The pressure at the receiver R is given by

P, = P1 + P2 (3.4)

where



Po Po
P = *sin = -* sin w(t - r1 ) (3.5)R1 1

Po Po
P2  * sin2 * sin w[(t - r2) + 60] (3.6)

R2 R 2

( 71 and 72 are the wave travel time from source 1 and source 2 to the receiver

respectively, 8o is the phase difference of the sources )

Then the field intensity will be:

p2 (P1 + P2)2  P 2  22 2P1 P2  2P( P2
I + + ===I +2 (3.7)pc pc pc pc pc pc

(I and I2 are the intensity due to single sources in the absence of the other source,

and the term 2P 2 corresponds to the interference of the two sources.)PC

At the same frequency, the phase shift ,6, between waves from two adjacent sources

is independent of time:

6 = ¢2 - 1 = W(71 - 72 ) + 60 (3.8)

27r2=- * (ri - r2) + 80 (3.9)

( A is wave length, rl and r2 are the distances from the two sources to the receiver

respectively, and So is the phase delay of the top source relative to the bottom source).

Then

I = 4 + I2 + 2 [I12cos 6 (3.10)

Discussion:

* When I, = 12 = Io, which is the case when the two sources have the same

intensity, we have I = 410 cos2 . For the case with S = 0, the phase shift offsets

the phase difference due to the separation of the sources and we have I = 4o0.

* Figures 3-2 and 3-3 show the interference between two sources at four typical

separations of A, A/2,A/4 and A/8 with (So = 0). From these plots, it can

be seen that within one wavelength, as the distance of the sources decrease,
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the intensity becomes less directionally dependent. All of the plots have the

maximum intensity at $ = 0 as they are always 'in phase' in that direction.

For the case in which the separation equals one wavelength, the sound is also in

phase in the vertical direction and so there is a maximum intensity downwards

and upwards. For a half wavelength separation, the sources are exactly out of

phase and there is no response at 4 = 900. For the case in which the separation

is just an eighth of the wavelength, the intensity pattern is very close to the

point source case.

3.3 Multiple Source Interference

3.3.1 Analysis Using Complex Numbers

Complex numbers can simplify the analysis of the interference of multiple sources (see

Clay and Medwin, 1976). Many operations involve the sums and differences of angles

and the products of trigonometric functions. These operations are simplified by using

the relations between trigonometric functions and complex exponential functions.

ei P = cos 4 + i sin P (3.11)

ei P + e - i k e i _ e-iP
cos = ,2 sin = 2i (3.12)

2 2i

For N sources evenly spaced over a distance W, the separation of neighboring

sources is:
W

d = (3.13)
N-1

and the pressure fluctuation, Apn, of the signal from the nth source, relative to the

source at the distance R, is

nkW sin )
Apn = aexp[i(wt - kR + kWsin (3.14)

N-ere a is a constant.

where a is a constant.



So, the pressure fluctuation of n sources is

N-1 inkW sin
Ap = aexp[i(wt - kR)] E exp(kWi ) (3.15)

N-1ln=O N- 1

Since wt - kR is common to all the signals, we factor it at the beginning and then

suppress it by calculating C as follows:

N-1 inkW sin )
C=aI exp( N-)

n=O

N-1

= a exp(inkd sin q)
n=O

We can show that (see p. 46, Clay and Medwin, 1976):

ezp[iNk(W/2) sin] sin[Nk(W/2) in
C = NaN N-1 (3.16)C Na{ ep[ik(W/2) i] Nsin[k(W/2)n (3.16)

The expression in braces has an absolute value of 1 and specifies a phase shift that

depends on the choice of origin. The remaining factor is known as the "directional

response", D, which is:

sin( N kW sin
D = N-1 2 (3.17)

N-1 2Nsin(Nl_ kw sin )

When N is large, and using

sin[k(W/2)(sin 0/(N - 1))] - k(W/2)(sin O)/(N - 1) (3.18)

D becomes

sin kWsin
D= kwi (3.19)

2

The latter expression has the form (sin x)/x which has a maximum of one as x

tends to zero. This is identical to the directional response of a continuously distributed

line source (Clay and Medwin, 1976).



If we substitute 6 = kdsin 0 (d is the distance between two neighboring sources)

into C, we have

sin[Nk(d/2) sin €]C = Naexp[ik(W/2) sin 0] sin[Nk(d/2) sin
N sin(k(d/2) sin )

8 sinN6
= aexp[i(N - 1)_sin 2

2 sin(5/2)

So, we have the expression for the energy intensity of n equally spaced sources

(denoting Io = a2)

* N6sin -- )2 (3.20)
I = Io * ( s (3.20)

Figures 3-4 and 3-5 show us the situation without considering a free surface. The

plots have the following characteristics:

* When the sources are in phase (as dsin € = ±kA), the intensity reaches its

maximum (I = N2 Io). As for the two source case, when the sources are in-

phase, there is always a maximum response horizontal to the vertical array

which is independent of the distance between the sources. More importantly,

the maximum direction stays the same when we add more sources to the array

because the new sources are still in phase with the old sources.

* Also, we notice that in the direction of maximum intensity, all of the sources

must be in phase with each other.

* Generally, nodes in the beam pattern increase as the number of sources in-

creases. In theory, at the position that 6 = ±2 , k'= 1,2,...,(N -1),(N

1),..., (under the condition that k' $ 0) the intensity reaches its minimum

I = 0.

* Between the minimum position, there are local maximum responses. We can

get the local maximum position and its intensity theoretically by letting ! = 0.
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Figure 3-4: Interference Patterns for a Ten Element Array without a Free Surface (I),
plotted as rose diagrams
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Figure 3-5: Interference Patterns for Ten Sources without a Free Surface (II), plotted
as rose diagrams
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Figure 3-6: Ten Element Array without a Free Surface (I), plotted as intensity versus
angle
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This leads to positions (8 = kdsin q) at

tan-- = Ntan-
2 2

and the local maxima of

N 21

1 + (N 2 - 1)sin 2 -
2

(3.21)

(3.22)

3.3.2 Multiple Sources with a Free Surface

In the case of multiple sources at depth h below a free surface, the fluctuation has

two parts, one is directly from the n sources,

N-i inkW sin q
Api = aexp[i(wt - kR + kh sin )] exp( W si

n=O N-

and the other part corresponds to their images

(3.23)

N-1

Ap2 = aexp[i(wt - kR - kh sin 0)] E
n=O

-inkW sin )
exp( N- 1N-1

We have already shown that

N-1 inkW sin )
a exp( N- 1

n=O

= aexp[i(N -

Similarly we can show that

N-1 -inkW sin
a exp( -

n= N- 1
= aexp[-i(N

8 sin N6
- 1)-] 2

2 sin(8/2)

So, the total fluctuation is

Ap = Ap +Ap 2

=a exp [i(wt - kR)]

(3.24)

8 sin N6

2 sin(8/2)
(3.25)

(3.26)

si N6
s(/2)

sin(8/2)



expi(khsin + (N - 1)6 (N - 1)))exp(i(kh sin + (N 2 )) -exp(-i(khsin + (N2 1)8))

sin NS (N- 1)6
a exp [i(wt - k (R)1 " * (2i) * sin(kh sin +)

sin(6/2) 2

and the energy density is

sin kW sin 3I, = 4 * a sin ( ) 2 * (sin(kh sin + ))2  (3.27)
sin' 22

Discussion:

* At the free surface, = 0 and we can see that for all cases, In = 0.

* If we denote Ino as the energy density for the case of n sources without a free

surface, we have
sin N

'no = a 2 *(i 2 )2

and

kW sin 2
In = 4 * Ino * (sin(kh sin 0 + 2 ) 2  (3.28)

We can conclude that the free surface effect modifies the energy intensity by a

factor of 4 * (sin(kh sin 0 + kCWIin,))2.

3.3.3 Multiple Sources under a Free Surface with Phase

Delay

By modifying the phase difference between two neighboring sources, we can control

the outgoing beam direction. Figures 3-4 and 3-5 show the situation without con-

sideration of a free surface. Figures 3-8 and 3-9 show us the interference pattern of

10 sources with different outgoing beam angle with consideration of a free surface.

Assuming that the phase difference between two neighboring sources is the same,

with phase advance So, we have

N-1 inkW sin €
Apl = aexp[i(wt - kR + kh sin E)] exp( N - 1 + o) (3.29)

n=O 
N
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Figure 3-11: Ten Element Array with a Free Surface (II), plotted as intensity versus
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and another part corresponding to their images

N-i -inkW sin +
Ap2 = aezp[i(wt - kR - kh sin )] ep( + So) (3.30)

n=O

Let b = i So and b' = + So, the total fluctuation is expressed as

N - 1 + sin Nb sin Nb'
Ap = aexp[i(wt-kR+ 2 So)] {ei(khsin + 2 sin ) -i( h sin+

2 s in sin b
2 2

(3.31)

and the energy density is

siNb sin Nb'

I = A + A-2 2 - 2 a2 s 2 * cos(2kh sin + kW sin ) (3.32)sin sin b,
2 2

where
sin Nb

A, = a2 * {( )2 (3.33)
sin b

* Nb'

A2sn= a22 s ( )2 (3.34)

When 80 = 0, we get the case without phase difference between sources. From

equation 3.20, we notice that A 1 is the same as the ten element interference result

without a free surface. A 2 is also a ten element interference result, but it has a

reversed phase delay corresponding to the image of the vertical array. Also, the part
Nb Nb'

-2* a2  sin sin Os(2kh sin + kW sin €) in the equation 3.32 can be considered
sin sin b-

2 2

as the interference between the ten element array and its image without considering

the free surface.



Chapter 4

A Study of a Ten Element

Vertical Array in a Depth

Dependent Ocean

4.1 Program Development for a Vertical Array

The weakness of the reflectivity model is that it requires large computation time.

The original program has noise in the far field, say beyond 30 km offset at 50 Hz.

Attenuation is included in order to compress the noise, which alters the result. The

new program finds a way to improve the accuracy and also avoids the use of attenu-

ation. In order to improve the accuracy of modeling, we have to make Sp very small.

While making it smaller, we increase the relative error in the truncation process in

the computation, which results in noise in the final modeling(see section 2.3). We get

rid of the noise by successfully compressing the truncation error in the far field. The

new program is optimized both in speed and structure of the program. Also, a new

plotting program was written in matlab 4.0 to plot the amplitude versus distance.



4.2 New Program Flow Chart

The ocean medium can be assumed to be stratified. The sound speed in the water

column is approximated by thin homogeneous layers with small discontinuous jumps

in velocity across interfaces. The new program has the following flow chart:

Sources Loop

get the new source depth;

determine the layer number that the source belong to;

change the model so that the source is on the top the layer;

get the receivers depths;

determine the layer number that the receivers belong to;

change the layer so that the receivers are on the top the layer;

Frequency Loop

Layer Loop

p loop

Iteration equations to compute the downward(also upward)

looking reflection and transmission coefficient matrices.

end{p loop}

If source layer then {write down its reflection

and transmission coefficient matrices. }

If receiver layer then {write down its reflection

and transmission coefficient matrices. }

end{Layer Loop}

Receiver Loop

x loop

p loop

integrate over p to transform p to x



end{p loop}

end {x loop}

end{Receiver Loop}

multiply the phase delay factor to the source response

end{Frequency Loop}

sum the new source response to total update sources response

end{Sources Loop}

It is easy to get the vertical array response. We simply edit a file which has sources

and receiver information. Generally, it works as follows:

* Get the new source depth, which is always deeper than the previous one. The

distance between sources stays the same and so the new source is always the

same distance deeper than the previous one.

* Determine the layer numbers for the new sources and receivers. The program

requires that the sources and receivers should be on the top of a layer. It changes

the thickness of neighboring layers so that adding sources will not affect the

other parts of the layer model.

* Get the source response.

* Multiply the response by the phase delay factor to get the response relative to

the top source.

* Sum up all of the responses to get the multiple source response.

4.3 Reflectivity Modeling

4.3.1 Speed of Sound and Ray Paths in the Ocean

The sound travel path is associated with the dependence of the sound speed on depth.

Simplifying the results of the Naval Research Laboratory studies (Medwin, 1975), the
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right. The angles are grazing angles at the axis of the sound channel. (Ewing and

Worzel, 1948.)

dependence of sound speed on temperature, salinity, and pressure within 1 km of the

surface is found to be approximately

c = 1449.2+4.6T-0.055T2 +0.00029T 3 +(1.34-0.010T)(S-35)+1.58 x 10- e p, (4.1)

where c = sound speed (m/s), T = temperature (oC), S = salinity (ppt), Pa =

gauge pressure due to water column, (N/rm2).

Ignoring compressibility Pa = pagz and using PA (1 + S x 10- 3 ) kg/m 3 , g =

9.8m/s 2, and z = depth(m), the pressure term can be obtained.

When the temperature has a large decrease with increasing depth, the temperature

effect overrides the pressure effect and the sound speed gradient is negative, otherwise,

the sound gradient is positive.

This vertical stratification of the deep ocean and the resulting ray paths depends

on location, season, and time of day. The Figure 4-1 shows the ray traces computed

by Ewing and Worzel (1948) as well as the sound profile. The steepest ray shown just

grazes the bottom. The angles are measured relative to the horizontal in long-range

ray tracing and are called "grazing angles".
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4.3.2 Model Description

In Figure 4-2, we show the ten element vertical array position and the ocean velocity

profile. A total of 172 layers are used to approximate the smooth gradient zones. We

put the sources in such a way that all of the sources are in different layers. In this

chapter we present results at 50 Hz (compared to 250 Hz in the last chapter). At this

frequency the reflectivity solutions are faster and have less noise.

4.3.3 Homogeneous Result

The results for a homogeneous ocean are shown in figures from Figure 4-3 to Figure 4-

9. They show that:

* The deeper the receivers are, the closer the modeling result agrees with the

theoretical result. We compare the modeling results at 250 meters below the

top source of the vertical array with the theoretical results, and find that they

are similar in general characteristics but there are differences in the local char-

acteristics. For receivers at 4000 m depth the modeling results agree well with

theoretical predictions. The reason for the difference in the receiver responses at

250 m and 4000 m can be deduced from the conditions we put on the theoretical

work. We assumed that the receivers were an infinite distance from the vertical

array. The receivers at 4000 m depth are much closer to that assumption than

those at 250 m. We conclude that the theoretical results hold pretty well in the

far field but are less accurate in the near field.

* Comparing the reflectivity results with the theoretical results, we must consider

the geometric effect on the responses. The theoretical results assume that all of

the receivers are at the same distance from the source, while in our models all of

the receivers are laid out horizontally. So, because of the geometric spreading

effect, the responses of receivers on the sea floor will be the product of the

theoretical results and a geometric spreading factor which is cos(angleo). The

angleo is the angle between vertical axis and the receiver angle. Because the

distance from the source to the receiver is d = ho/cos(angleo), the response



decreases with the distance from the receiver to the source. The response at

distance has to be multiplied by the factor of cos(angleo) to get the real response

on the horizontal receivers.

* For results beyond 300 dip angle, the energy focuses mainly between zero offset

and 10 km offset. The far offset response is barely noticeable. As the beam be-

comes directed downwards, there are less variations in the near offset response.

The sidelobe has less effect.

* We do not notice much difference in the results between the 600, 750 and 900

beams at 4000m, except that amplitude decreases as the beam angle increases.

The reason that the maximum mainly remains at 1-3 km distance is that in the

far field, the response results from sidelobes of the interference pattern.

* The vertical array response can be divided into three components: the vertical

array response without free surface, the image of the vertical array response in

the homogeneous media, and the interference of the vertical array and its image

array. The complex interference between the array and its image introduces

the 'finger' feature into the response on the seafloor. The results show that the

image of the array response gives a better fit to the vertical array response than

the response from the array itself. Also, the theoretical vertical array response

shows stronger 'fingering' than the modeling results.

4.3.4 Gradient Ocean Result

The results for the ocean with gradient velocity profile are shown as follows:

* The gradient effect can be seen from Figure 4-11 to Figure 4-16. Unlike the ho-

mogeneous situation, the minimum response never goes to zero. This is because

the sources are at depths with different velocities and all of the waves reaching

the receivers have complex paths. In this case the assumptions for the theory

of a homogeneous ocean can not be applied.



* The gradient has the effect of increasing the amplitudes between 25 and 30 km

by about 6 dB to the 00, 150, 300 beams. For the rest of the offsets, the modeling

results for receivers at a depth of 4000m show a good fit to the homogeneous

theoretical results. This indicates that for our arrangement of a vertical array,

in a general ocean velocity gradient, the beam is affected at some ranges and

in our case there is a great increase in amplitude between 20 and 30 km range,

especially for 00, 150 and 300 beams. For the rest of the offsets, the beam does

not change its characteristics dramatically. We conclude that the gradient in

velocity profile has a big impact on the beam pattern.

* We found our results are quite different from the work done by Ozliier using the

ray tracing technique, even considering that we used different oceanic velocity

models. First, there is no clear indication of the interference between sources

and its image on her results which should change the beam pattern dramatically.

Second, her results found no indication that the oceanic velocity profile has

effects on the beam. Third, our modeling results show interference even beyond

50 km offset. Her results cannot be trusted after 28 km offset. Fourth, our

results show patterns due to the complicated interference between sources and

their images, her results show a pretty simple interference pattern. Also, our

model uses 50 Hz sources and her model used 250 Hz sources which should have

much strong interference patterns. It might be helpful if we can redo her work

applying our program to the same model. This can be part of future work.

* It would be interesting to investigate the vertical array results of a pulse. Also,

studying the wave path using ray tracing techniques might give us more insight

into the vertical array response for the gradient ocean. It is believed that several

velocity models might need further study.
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Figure 4-3: The homogeneous ocean response for a 10 element vertical array under a
free surface with a 0 degree beam angle. The agreement is good out to 40 km. The
solid line is for the reflectivity modeling, the dash-dot line is for theoretical results,
the dash line is the theoretical result for the ten element array and also its image
(they are the the same). Note that all curves have been normalized to a maximum
value of one.
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Figure 4-4: The homogeneous ocean response for a 10 element vertical array under a
free surface with a 15 degree beam angle. The agreement is good out to 40 km. The
solid line is for the reflectivity modeling, the dash-dot line is for theoretical results,
the dash line and dots line are the theoretical results for the ten element array and its
image respectively. Note that all curves have been normalized to a maximum value
of one.
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Figure 4-5: The homogeneous ocean response for a 10 element vertical array under a
free surface with a 30 degree beam angle. The agreement is good out to 40 km. The
solid line is for the reflectivity modeling, the dash-dot line is for theoretical results,
the dash line and dots line are the theoretical results for the ten element array and its
image respectively. Note that all curves have been normalized to a maximum value
of one.
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Figure 4-6: The homogeneous ocean response for a 10 element vertical array under a
free surface with a 45 degree beam angle. The agreement is good out to 40 km. The
solid line is for the reflectivity modeling, the dash-dot line is for theoretical results,
the dash line and dots line are the theoretical results for the ten element array and its
image respectively. Note that all curves have been normalized to a maximum value
of one.
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Figure 4-7: The homogeneous ocean response for a 10 element vertical array under a
free surface with a 60 degree beam angle. The agreement is good out to 40 km. The
solid line is for the reflectivity modeling, the dash-dot line is for theoretical results,
the dash line and dots line are the theoretical results for the ten element array and its
image respectively. Note that all curves have been normalized to a maximum value
of one.
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Figure 4-8: The homogeneous ocean response for a 10 element vertical array under a
free surface with a 75 degree beam angle. The agreement is good out to 40 km. The
solid line is for the reflectivity modeling, the dash-dot line is for theoretical results,
the dash line and dots line are the theoretical results for the ten element array and its
image respectively. Note that all curves have been normalized to a maximum value
of one.
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Figure 4-9: The homogeneous ocean response for a 10 element vertical array under a
free surface with a 90 degree beam angle. The agreement is good out to 40 km. The
solid line is for the reflectivity modeling, the dash-dot line is for theoretical results,
the dash line and dots line are the theoretical results for the ten element array and its
image respectively. Note that all curves have been normalized to a maximum value
of one.
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Figure 4-10: The gradient ocean response for a 10 element vertical array (50 Hz)
with a 0 degree beam angle (solid line). The gradient has the effect of increasing the
amplitudes between 25 and 30 km by about 6 dB. Because of geometrical spreading
the largest response at the seafloor occurs at 8 km from side lobes. The dashed line is
the theoretical result for the ten element array and is given as a reference. Note that
all curves have been normalized to a maximum value of one and it would be useful
to compare reflectivity for both homogeneous and gradient models.
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Figure 4-11: The gradient ocean response for a 10 element vertical array (50 Hz)
with a 15 degree beam angle (solid line). The gradient has the effect of increasing
the amplitudes between 25 and 30 km by about 6 dB. For a homogeneous ocean a 15
degree beam would intersect the seafloor at 15 km. However because of geometrical
spreading the largest response at the seafloor occurs at 8 km from side lobes. The
dashed line is the same as dash-dot line in the homogeneous ocean response plot and
is given as a reference. Note that all curves have been normalized to a maximum
value of one and it would be useful to compare reflectivity for both homogeneous and
gradient models.
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Figure 4-12: The gradient ocean response for a 10 element vertical array (50 Hz)
with a 30 degree beam angle (solid line). The gradient has the effect of increasing
the amplitudes between 25 and 30 km by about 6 dB. The dashed line is the same
as dash-dot line in the homogeneous ocean response plot and is given as a reference.
Note that all curves have been normalized to a maximum value of one and it would
be useful to compare reflectivity for both homogeneous and gradient models.
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Figure 4-13: The gradient ocean response for a 10 element vertical array (50 Hz)
with a 45 degree beam angle (solid line). The gradient has the effect of increasing
the amplitudes between 25 and 30 km by about 6 dB. The dashed line is the same
as dash-dot line in the homogeneous ocean response plot and is given as a reference.
Note that all curves have been normalized to a maximum value of one and it would
be useful to compare reflectivity for both homogeneous and gradient models.
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Figure 4-14: The gradient ocean response for a 10 element vertical array (50 Hz)
with a 60 degree beam angle (solid line). The gradient has the effect of increasing
the amplitudes between 25 and 30 km by about 6 dB. The dashed line is the same
as dash-dot line in the homogeneous ocean response plot and is given as a reference.
Note that all curves have been normalized to a maximum value of one and it would
be useful to compare reflectivity for both homogeneous and gradient models.
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Figure 4-15: The gradient ocean response for a 10 element vertical array (50 Hz)
with a 75 degree beam angle (solid line). The gradient has the effect of increasing
the amplitudes between 25 and 30 km by about 6 dB. The dashed line is the same
as dash-dot line in the homogeneous ocean response plot and is given as a reference.
Note that all curves have been normalized to a maximum value of one and it would
be useful to compare reflectivity for both homogeneous and gradient models.
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Figure 4-16: The gradient ocean response for a 10 element vertical array (50 Hz)
with a 90 degree beam angle (solid line). The gradient has the effect of increasing
the amplitudes between 25 and 30 km by about 6 dB. The dashed line is the same
as dash-dot line in the homogeneous ocean response plot and is given as a reference.
Note that all curves have been normalized to a maximum value of one and it would
be useful to compare reflectivity for both homogeneous and gradient models.



Chapter 5

Comparison of Modified

Reflectivity Results with

Benchmark Solutions

5.1 Test Problem Solutions

In order to test our reflectivity code, we compare solutions of two of seven test prob-

lems discussed at the PE Workshop II held in Slidell, LA on 6-10 May 1991 (Jensen,

1993).

5.2 Test Case 1

A point source placed near a reflecting boundary in a homogeneous medium gives

rise to the well-known Lloyd-mirror interference pattern for which an exact field so-

lution is available. The Lloyd-mirror pattern is ideal for checking both the angular

distribution of energy associated with a given starting field and the high-angle capa-

bility of parabolic methods. It is also a simple test for checking the normalization of

reflectivity output to transmission loss.

In Test Case 1 the fluid halfspace has a constant speed of 1500 m/s. The source

frequency is 40 Hz and the source/receiver depths below the free surface are 350m and



3990m. The solid line in Fig. 5-1 shows the image reference solution which is known

to be exact reference. The reflectivity result is in perfect agreement with the reference

solution out to 10 km range at 40 Hz. Numerically stable results were obtained with

p = 0.00005, starting p = 0.0, ending p = 1.0. In order to get this agreement a DC

offset of 6 dB was applied to the reflectivity result.

5.3 Test Case 7

During PE Workshop II, test case 7 was introduced which reveals serious deficiencies

in some PE approximations. The test problem deals with long-range propagation in a

surface duct. The source frequency is 80 Hz, which results in a leaky (virtual) mode,

which continuously sheds energy into the lower medium, as indicated by the dashed

arrows in Figure 7.1 of Jensen, 1993.

The test problem is critical to test that a small phase error for the refracted leaky

path can result in large changes in sound level in the duct beyond the first convergence

zone. Thus, in the case where the two arrivals (the ducted and the leaky arrival) have

similar amplitudes, we may observe level changes of several tens of dB's between

constructive and destructive path interference.

The reference solution to this problem for a source at 25 m and a receiver at 100

m was generated by the SNAP normal-mode code. The SNAP reference solution is

shown as the solid line in the Fig. 5-2. The reflectivity results are shown as a dashed

line. Numerically stable results were obtained with a p = 0.00005, starting p = 0.0,

ending p = 1.0. The number of layers was 760 which makes a layer thickness of about

A/4 . The results are poorer at coarser thicknesses. When starting receiver range =

0.5 km, ending receiver range = 150.5 km, receiver offset = 0.81 km, The run time

on an IBM RS-6000 is 22 minutes and 10 seconds for one frequency (80 Hz).

The results show that the our reflectivity code can handle this problem accurately

for 80 Hz to range beyond 100 km. No offset was applied to the reflectivity output

to get this agreement.
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Figure 5-1: Comparison of image reference solution (solid line) with reflectivity re-
sult(dotted line)
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Figure 5-2: Comparison of normal-mode reference solution (SNAP with solid line)
with reflectivity result(dotted line)



5.4 Discussion

In order to get correct response in the far field, I modified the original program to get

the acurate response in far field. There is the several improvement in the reflectivity

code.

* I change the single precision program to double precision which increases the

the precision of the program and thus reduces the error of reflectivity result.

* The new program is much simpler which help to reduce unnecessary numerically

error. The new program can interpolate the velocity profile in a easy way so

that it is easy to decrease the layer thickness until the result convergence. In

our practice, we found the reflectivity results converge when the layer thickness

is about a quarter of the wavelength.

* It is essential to get the correct result by introducing an attenuation factor

in the frequency, which the program uses to get around the singularity pole

on the real axis by deforming the integration path. Without attenuation, we

cannot get an convergence result for the PE test case 7. The attenuation factor

is introduced by making the frequency fo complex, which gets new frequency

f = (fo, decay/(2 * r)), the decay is the attenuation factor. In our calculation,

I found we can get quick convergent result by letting decay = log(1.1)/4.

* The new program correct attenuation effect on the far field response by mul-

tiplying a correction factor, edeca y *x where z is the horizontal offset. I found

the factor from the equation 2.33, which brings a decay factor after we apply

complex frequency by bringing in attenuation.

* The original program does not get amplitude relative to im from the source

which implies that we might use a "magic number". In PE Workshop test 7,

we get the results exactly relative to im from the source. Unfortunately, for

the Test case 1, we get to twice big responses applying our modified program.

In our future study, we will try to calibrate the source level to get amplitude



relative to im. I believe we might need a factor of frequency difference in the

program, because in the PE Workshop test 7 the source frequency is 40 Hz

instead of 80 Hz used in PE Workshop test 7.

e Applying the improved program, I get the very far offset response (up to 150 km)

of a source in the deep ocean at frequency of 250 Hz, while original program

cannot get the response without significant noise beyond 50 km for 50 Hz.

Figure 5-3 shows that response of the 250 Hz source on the 250 m and 4000 m

receivers below the source using the PE Workshop test 7 model except that it

uses 250 Hz source instead of 80 Hz. It is surprising that it do not have any

noise as far as 150 km offset. In the result, we notice that the convergence

zones are at about 30 km, 75 km, and 140 km offset which confirms Figure 7.1

of Jensen 1993. It needs to mention that the convergence result is gotten when

I apply the layer thickness as fine as a quarter of wavelength which is finer than

that of 80 Hz in the PE Workshop test 7.
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Chapter 6

Conclusions

A theoretical study has been carried out for a vertical array with the capability of

steering the beam angle in a homogeneous ocean and in a homogeneous ocean with a

free surface. A modified reflectivity technique has been implemented with the ability

to calculate the total deep ocean response of a vertical array. Also, the modified code

can get results with less noise, especially in the far field, which enables us to get

the response as far as 55 km offset for 50 Hz sources with little noise. This enables

us to study the response for different beam angles at long offsets. All of the results

are compared with theoretical results. For the vertical array with different beam

angles, the reflectivity results for a deep ocean response fit well with our theory for a

homogeneous ocean response which assumes that the receivers are at infinite distance

from the array.

The vertical array response can be divided into three components: the vertical

array response without free surface, the image of the vertical array response in the

homogeneous media, and the interference of the vertical array and its image array.

The complex interference between the array and its image introduces the 'finger'

feature into the response on the seafloor. Also, geometric spreading has a big effect

on the deep ocean response. As an example, the maximum response of the vertical

array with zero beam angle is vertically below the array, where it is closest to the

vertical array even though the response is from the sidelobe of the beam.

The gradient has a significant effect on deep ocean responses of the vertical array.



From our study of the vertical array with 00, 150 and 300 beam angle, we find the

response amplitudes between 25 and 30 km increased by about 6 dB, the energy is

steered to that range due to the velocity gradient. This is different from the conclusion

of Ozliier ( 1992 ) who applied ray tracing techniques.

It would be interesting to investigate the vertical array results of a pulse. Also,

studying ray paths of each source in the array using ray tracing techniques might

give us more insight into the vertical array response for the gradient ocean. Also, it

is believed that different velocity gradient profiles and frequencies need future study.
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