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ABSTRACT

The global mid-ocean ridge system is one of the most striking geological features on
the surface of the Earth. In this system, the East Pacific Rise (EPR) is the fastest
spreading ridge and is thus considered as the most active magmatically among the plate
boundaries. In January and February of 1988, an extensive survey by the Massachusetts
Institute of Technology and the Woods Hole Oceanographic Institution was conducted
along the EPR between 9*05' and 9055'N to study the crustal structure of the axial region.

This thesis, the result of that cruise, comprises four main topics: (1) characterization of
normal faulting from Sea Beam bathymetric data, (2) application of mechanical models to
explore the hypothesis that buoyancy arising from crustal magma chambers and
gravitational spreading of the upper crust are the principal processes leading to the initiation
and development of normal faults, (3) investigation of seafloor magnetization anomalies to
constrain upper crustal structure, and (4) analysis of gravity anomalies to examine possible
correlations between observed variations in seafloor manifestations of volcanism and
deformation and underlying structure. Thus, each topic focuses on different levels of the
mid-ocean ridge. Together with the results of seismic and other observations, the findings
are woven into a better understanding of the tectonic processes and structure of fast-
spreading mid-ocean ridges.

First, to understand the characteristics of normal faults at fast-spreading ridges, we
utilized swaths of Sea Beam bathymetry and estimated the distribution and geometry of
normal fault zones using the slope of the seafloor as the criterion for a faulted surface. In



our survey area, normal fault activity begins 2-8 km off-axis and continues at least to 30-40
km from the axis, as indicated by an increase in the total and average throws of normal
fault zones versus distance from the axis. There appears to be no significant difference in
the plan-view area of inward- and outward-facing normal fault zones. The distance from
the rise axis to the nearest large-offset fault zone (throw > 20 m) on either side of the axis
is approximately symmetric to the north of 9*23'N, but the midpoint between nearest large-
offset fault zones is offset 2-3 km to the west of the bathymetric axis to the south of
9*23'N. The continued growth of normal fault zones suggests that significant extensional
stress persists to greater distances from the axis than previously thought and that the rise
axis possesses a finite strength. The argument that the rise axis has finite strength is
consistent with recent evidence for solidified axial dikes along magmatically active portions
of the EPR from near-bottom seismic refraction experiments, which suggests that, while
eruption of magma at the rise axis weakens the axis, the persistence of such weak zones is
short-lived and the emplacement zones at any given time are localized along the axis.

We examined how the presence of a low-density, low-strength magma chamber within
the crust and gravitational spreading of a mechanically strong upper crust over an
underlying substrate contribute to the formation of faults at a fast spreading mid-ocean
ridge by comparing the predicted stress field with the observed pattern of normal fault
zones. We employed boundary element methods to incorporate buoyancy and
gravitational spreading as body forces in an elastic medium, and we determined stress and
strain fields for a variety of rise axis conditions and a range of possible sets of material
properties for different parts of the mid-ocean ridge.

Our results show that the strength of the rise axis is one of the most crucial factors
governing the near-axis stress field. If the rise axis is mechanically weak, the maximum
extensional stress from buoyancy occurs at shallow depth off the rise axis. A weak rise
axis may result from recent magmatism such as the intrusion of dikes into the upper crust.
On the other hand, if the rise axis is mechanically strong, which may result after
solidification and cooling of the dike zone, the maximum surface extensional stress occurs
on the rise axis. However, the reduction in size of a magma chamber that would
accompany cessation of dike injection would lead to less buoyancy and thus a lower
likelihood of stress levels sufficient for faulting. For a given set of material strengths and a
given magnitude of buoyancy force, the flexural rigidity of the upper crust plays an
important role in determining if a zone of extension will develop off axis and, if so, the
position and horizontal extent of that zone. A thin or mechanically weak upper crust is
more likely to develop a zone of extension than one that is thick or mechanically strong.
The stress field resulting from gravitational spreading is similarly affected by the strength
of the rise axis. While buoyancy can explain a consistent distance at which normal faults
initiate off-axis, gravitational spreading can account for continued activity on normal faults
to a greater distance from the axis than can buoyancy. The existence of a magma lens can
play an important role in reducing the magnitude of the stress field for a weak rise axis, as
the crust above the magma lens can slide and thus relieve the thickness-averaged
extensional stress.

Next, we inverted surface ship measurements of the scalar magnetic field along the
EPR between 9*10' and 9*50'N. We examined whether the axial magnetization high,
which increases in amplitude to the south in our area, can best be explained by variations in
the thickness or in the magnetization intensity of the source layer. The variation in axial



magnetization is too large to be explained solely by the variations in the depth to the top of
the axial magma chamber indicated by reflection seismology. For a magnetic source layer
that is 500 or 750 m thick, the observed along-axis variations in FeO and TiO2 explain
only 36 and 60%, respectively, of the total variance of axial magnetization anomalies.
Therefore, a combination of variations in magnetic layer thickness and in intensity of
magnetization (by variations in the FeO and TiO2 contents of the source rock or by other
mechanisms) is needed to explain the along-axis variation of axial magnetization. In
addition to the increase in amplitude to the south, the axial magnetization high exhibits at
least three marked changes in magnitude and offsets in its along-axis linearity ('magnetic
devals') (at 9*25', 9*37', and 9*45'N) which appear to be related to boundaries or offsets
between the segments of the axial summit caldera (ASC). Because the amplitudes of the
axial magnetization anomalies are highest at the midpoints of the ASC segments, we
speculate that midpoints of the ASC segments are the loci of more frequent lava eruptions,
and the seafloor basalts at the midpoints are thus younger and more magnetic, than at the
segment ends.

The magnetization shows distinct short-wavelength (- 5 kam) banding to the north of
9*25'N over a region that does not appear to have been affected by an overlapping
spreading center. Among the possible explanations for these off-axis magnetization
anomalies are short geomagnetic reversal events within the Brunhes epoch, variations in
the paleointensity of the Earth's field, variations in the magnetization intensity of the source
rock due to variability in the magmatic supply, and variations in the degree of hydrothermal
alteration at the rise axis. On the basis of comparisons of forward models and
observations, short geomagnetic reversal events appear to be the most likely explanation of
these anomalies.

The analysis of sea-surface gravity field measurements shows an axial residual mantle
Bouguer gravity anomaly too large to be explained by the anomalous temperature of the
mantle or by changes in the thickness of the crust. The broad axial residual gravity low is
interpreted as a signal arising largely from the upper mantle, presumably by presence of
partial melt along the rise axis. A northward increase in the width of the low implies a
greater melt fraction in the region to the north than to the south, especially on the Pacific
plate side. The residual gravity anomaly also shows several short-wavelength local lows
along the axis (e.g., 9021', 9*32', and 9*42'N) which correlate with along-axis variations in
axial magnetization and tomographic images of mid-crustal seismic velocities. Along axis
the local lows have an amplitude of 1.5-3 mGal and appear at a nearly regular spacing (10-
15 km). Across the axis, however, the local lows show a greater variation (3-5 mGal),
suggesting that there is an additional gravity anomaly signal arising from a low-density
structure that is approximately continuous along the axis. The anomalous masses
producing the local lows are interpreted as zones of relatively high melt concentration,
formed within the crust by recent replenishment of magma from the upper mantle, that are
surrounded by a region of lesser melt concentration corresponding to the low-velocity
volume imaged by seismic tomography. If the zone of high melt concentration are
modeled as circular rods of radius 1 km, along-axis length 10 kIn, and center of mass 2.25
km below the seafloor, density contrasts of 200-350 kg/im3 are needed to match the
observed anomalies. For larger anomalous mass volumes, the density contrasts would be
lower.



The findings of this study support the hypothesis that the axis of the EPR can be
divided into segments 10-15 km in length, with each segment defined by the locus and
timing of most recent emplacement of magma in the axial crust. The segments in the
study area appear to be in different phases of a magmatic cycle, but the period of such a
magmatic cycle is not known. By this view, the discrete emplacement of magma bodies
gives rise to along-axis variations in crustal structure manifested as short-wavelength
residual gravity anomalies and magnetic devals. Another consequence of a rise axis at
which magma is emplaced at discrete locations is that the mechanical strength of the axial
upper crust varies with position along the axis and over time. During active magmatism,
the rise axis acts as a weak zone and the buoyancy of the axial magma chamber and
surrounding low-velocity volume can lead to initiation of off-axis normal faulting.
However, for a long segment of the rise bounded by transform faults, the axis will have
sections with a solidified axial injection zone as well as sections undergoing active
magmatism, and thus the rise overall may appear to have finite strength. If such a finite-
strength ridge axis is subject to significant extensional stress as a result of gravitational
spreading, mantle convective tractions, or differential cooling, then continued normal fault
activity would extend over a broad region to distances of at least several tens of kilometers
from the spreading axis.
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Chapter 1

Introduction

In the theory of plate tectonics, the mid-ocean ridge is the site of creation of oceanic

lithosphere by the processes of mantle upwelling, decompressional melting, magma

ascent, and crustal formation. Oceanic crust created at mid-ocean ridges covers two-

thirds of the Earth's surface, and the heat released by the generation and cooling of

oceanic lithosphere accounts for two-thirds of the total heat loss from the Earth's interior.

Mid-ocean ridges regulate ocean chemistry through volcanic eruptions and hydrothermal

circulation and supply the energy and nutrients which support unique deep-sea biological

communities. Mid-ocean ridges are also tectonically active regions. The tectonic

deformation that occurs near the ridge axes not only shapes mid-ocean ridges but also

affects the morphology and relief of the seafloor as it is rafted away from the spreading

axis. Abyssal hills, the most common landform on the surface of the Earth, are believed

to develop from near-ridge faulting.

Despite the fundamental importance of mid-ocean ridges and the processes of oceanic

lithosphere accretion to the geological evolution of the Earth's lithosphere, we lack

detailed knowledge of their dynamics and structure. This is largely because mid-ocean

ridges constitute a complex system which requires for its understanding information not

only on the processes that operate at different depths in the Earth's interior but also on the

interactions among these processes. A multidisciplinary approach is often beneficial to



insight into any geological structure or process because, although each type of

observation may be limited by spatial or temporal resolution or by inherent

nonuniqueness, together these observations can provide important constraints on the

detailed nature of and important processes at ridge axes.

In recent years, working models of mid-ocean ridges have evolved from two-

dimensional, steady-state idealizations to more complex, three-dimensional and time-

dependent representations. At fast-spreading ridges such as the East Pacific Rise (EPR),

documentation of variations in the axial depth and cross-sectional area of the ridge

[Macdonald et al., 1984; Macdonald and Fox 1988; Scheirer and Macdonald, 1993],

several scales of morphological discontinuities along-strike [Macdonald and Fox, 1983;

Langmuir et al., 1986; Batiza and Margolis, 1986; Macdonald et al., 1988] and their

relation to along-axis variations in the chemistry of dredged rock samples [Langmuir et

al., 1986; Klein and Langmuir, 1987; Sinton et al., 1991; Reynolds et al., 1992], and the

distribution of active hydrothermal vents [Haymon et al., 1991] and its relation to

variations in the depth to an axial magma body along axis [Detrick et al., 1987; Harding

et al., 1993] have led us to view ridges as composed of individual segments probably at

different stages within a complex cycle of magmatic and tectonic activity. Although this

concept of a variation of axial magmatism and deformation. with time and along axis

provides a powerful viewpoint for interpreting upper lithospheric phenomena, some of

the fundamental aspects of the governing processes remain to be resolved. For example,

it is unclear what mechanisms trigger distinct stages of a cycle or determine the cycle

repeat time, and to what extent different stages of the magmatic-tectonic cycle affect the

structure of the spreading axis or the properties of the lithosphere generated at each stage.

With the exception of several seismic constraints [e.g., Detrick et al., 1987; Toomey et

al., 1990; Harding et al., 1993; Kent et al., 1993a, b; Christeson et al., 1992; 1994a, b],

most of the evidence for axial variability comes from observations of the seafloor and

shallow crustal features and their interpretation in terms of volcanic, magmatic and



hydrothermal processes. It is thus important to examine whether these interpretations of

geological observations are consistent with geophysical constraints on structure and

associated processes at greater depth.

Unfortunately, few direct observations have been made of the deep characteristics of

mid-ocean ridges. According to models of the thermal structure and mantle flow beneath

mid-ocean ridges, mantle upwelling leads to a region of melt production as much as 50 to

100 km in half width [Su and Buck, 1993; and references therein]. However, detailed

near-bottom observations suggest that most of the magmatism and hydrothermal

processes are centered within a narrow zone, the neovolcanic zone, of half width

normally 1-2 km or less [Lonsdale, 1977; CYAMEX, 1981; Choukroune et al., 1984;

Macdonald, 1982, 1983; Macdonald and Luyendyk, 1985; Bicknell et al., 1987]. One

interpretation of this difference, by two orders of magnitudes, between the width of the

zone of melt generation and the neovolcanic zone, is that the melt that accumulates

within the melt production zone forms a gravitationally unstable layer beneath a depleted

mantle and rises in the form of plumes to a level near the surface [Whitehead et al., 1984;

Crane, 1985; Schouten et al., 1985]. Under this interpretation the observed variability

and inferred episodicity along mid-ocean ridges are explained by the characteristic

spacing between mantle-derived, melt-rich plumes and the timing of their ascent to the

upper lithosphere. An alternative mechanism for producing a narrow neovolcanic zone is

by the process of melt focusing through a porous mantle matrix. Phipps Morgan [1987],

for example, suggested that, in addition to mantle flow-induced pressure gradients, strain-

induced anisotropic permeability leads to focusing of melt toward the axis, whereas Scott

and Stevenson [1989] suggested that buoyancy due to melt segregation and depletion

could lead to a narrow, rapid upwelling beneath the ridge axis.

A prerequisite in any model for the generation of oceanic crust is the presence, at

least for short periods of time, of a magma chamber or shallow body of molten rock

within the crust. The existence of magma chambers at oceanic spreading centers has long



been predicted from the stratigraphy of blocks of presumed oceanic crust in ophiolite

complexes [Cann, 1974; Dewey and Kidd, 1977; Casey and Karson, 1981; Pallister and

Hopson, 1981; Nicolas et al., 1988]. In recent models, the magma chamber serves as a

temporary, shallow-level reservoir for mantle-derived parent magmas from which crustal

rocks form by chemical differentiation [Sinton and Detrick, 1992; and references

therein]. The magma chamber is also believed to be the source of most of the eruptive

activity as well as of the heat that drives hydrothermal circulation. However, the role of

the magma chamber in the crustal generation process remains controversial, and the

shape and dimensions of these magma bodies, as well as their composition, longevity,

and along-strike variability, are not well constrained.

Between January and February of 1988, an intensive survey was conducted over a

portion of the EPR near 9*30'N by the Massachusetts Institute of Technology and the

Woods Hole Oceanographic Institution from the R/V Thomas Washington. This region of

the EPR is a classic example of a fast-spreading mid-ocean ridge with an axial high and

modest local relief. A previous multichannel seismic reflection investigation by Detrick

et al. [1987] had discovered evidence for a strong reflection from the top of an axial

magma chamber (AMC) at 1.5-2 km depth along a portion of the EPR that included the

area near 9*30'N.

The survey had two objectives: to perform a seismic tomography experiment using

an array of ocean-bottom seismometers (OBSs) and ocean-bottom hydrophones (OBHs)

to record seismic waves generated by explosives and airgun shots fired near the sea

surface, and to carry out areally dense measurements of the bathymetry and the sea-

surface gravity and scalar magnetic fields. Bathymetry was measured using Sea Beam, a

high-resolution multibeam swath-mapping system. Results of delay-time tomography

were presented by Toomey et al. [1990, 1994] and those of attenuation tomography by

Wilcock et al. [1992a, 1995]. In addition to our initial objectives, the deployment of OBS

and OBH arrays provided an opportunity to monitor microearthquake activity in the axial



and near-axial region; these microearthquake observations were reported by Wilcock et

al. [1992b]. Although the gravity and magnetic fields of this area have previously been

investigated by Madsen et al. [1990] and Carbotte and Macdonald [1992], respectively,

the coverage of gravity and magnetic anomaly data collected during our survey is at least

three times more dense than that of previous investigations. The acquisition of areally

complete bathymetric data during our survey allows us to perform high-resolution three-

dimensional analyses of density and magnetization structure.

A number of investigations and experiments have been conducted on the EPR near

9430'N during the time following our cruise. These include the geochemical analysis of

rock samples collected by dredging [Batiza and Niu, 1992; Goldstein et al., 1994] and by

a rock corer mounted on the submersible Alvin [Perfit et al., 1994; Goldstein et al.,

1994], a near-bottom seismic refraction study [Christeson et al., 1992, 1994a, b], detailed

investigations of axial morphology and vent distribution [Haymon et al., 1991, 1993],

additional microearthquake studies [Hildebrand et al., 1992], and reprocessing of

multichannel seismic reflection data [Harding et al., 1993; Kent et al., 1993a, b]. Where

possible, we use the results from these studies to provide independent constraints on and

tests of some of our working hypotheses.

This thesis consists of four main topics: a detailed analysis of normal fault

characteristics, the modeling of stress fields capable of explaining these faulting patterns,

an inversion and interpretation of magnetic anomalies, and an inversion and interpretation

of gravity anomalies. Although each approach taken in this thesis focuses on different

aspects of mid-ocean ridge structure and processes, they result in complementary views

of a single ridge segment. Following are brief descriptions of the contents of each

chapter.

Chapter 2 characterizes the distribution and geometry of normal faults from Sea

Beam swaths crossing the rise axis. The acquisition of high-resolution Sea Beam data

during this survey enables us to examine some of the details of seafloor morphology



associated with normal faulting. Although normal faults may be recognized

physiographically because of their sharply edged features with slopes greater than that of

the adjacent seafloor, because of the limited resolution of Sea Beam, it is difficult to

distinguish whether a normal fault scarp is comprised of a single dominant fault or of

several closely spaced faults. In this study, closely-spaced rise-parallel fault scarps are

thus referred to collectively as "fault zones." For those fault zones large enough to be

resolved by Sea Beam, we were able to map their locations and distribution, determine

their dimensions, and examine their variation with seafloor age.

. A successful documentation of normal fault characteristics in this area provides an

opportunity to better understand tectonic processes that operate near the axis of a fast

spreading ridge. Although several studies have been conducted to examine seafloor

morphology associated with normal faulting on the flanks of the EPR [e.g., Lonsdale,

1977; CYAMEX, 1981; Choukroune et al., 1984; Macdonald, 1982, 1983; Macdonald

and Luyendyk, 1985; Bicknell et al., 1987; Malinverno and Cowie, 1993], fundamental

issues such as the width of the zone of active normal faulting (i.e., the active tectonic

zone) remain unresolved. One reason this is not understood is because normal fault

scarps at fast-spreading ridges are generally of modest relief and thus difficult to detect.

Also, each prior study used different instruments to map the seafloor and developed

separate schemes to identify and measure normal faults. Unlike side-scan sonar systems,

which thus far have been the most commonly used instrument for detailed seafloor

mapping, Sea Beam provides accurate depth information from which the vertical

dimensions of features can be measured. Thus, by measuring the density and relief of

normal fault zones by a careful analyses of Sea Beam data, we hope to determine the

width of the active tectonic zone and provide constraints on models of the states of stress

near the axes of fast-spreading ridges.

A characteristic of normal faults on the EPR is that they begin to develop on the rise

flank rather than on the axis. Moreover, contrary to previous suggestions that active



normal faulting ceases beyond 10 km [Macdonald and Luyendyk, 1985; Choukroune et

al., 1984; Bicknell et al., 1987; Malinverno and Cowie, 1993], we find in Chapter 2 that

activity can continue to distances of 30 km or more from the axis. In Chapter 3, a

combination of numerical and analytical models is employed to examine several

candidate sources of stress fields to see if they can explain the formation and

development of normal faults. Specifically, we examine two sources of stress that we

consider to be important near the axis of -a fast-spreading mid-ocean ridge: the buoyant

force that a low-density magma chamber exerts on an overlying crust, and extensional

stress due to gravitational spreading off the axial high of the EPR. Although shear stress

exerted at the base of a spreading plate by mantle flow may also be important, a recent

study by Chen and Morgan [1990] suggests that the magnitude of effective shear stress is

probably too small within the axial region to cause significant failure of the upper crust

near fast-spreading ridges. Also, if the thickness of the mechanically strong crust varies

little with distance from the axis, as suggested by Wilson et al. [1988], then thermal stress

from plate cooling cannot account for the initiation of off-axis normal faulting.

In this study, we use the boundary element method to model the stress and strain

fields associated with different configurations of magma chambers and mechanical

properties of the axial crust in an effort to seek successful combinations of model

parameter values. The boundary element method provides several significant advantages

over domain methods such as finite difference and finite element methods. In essence,

the boundary element method takes far less time to set up and to modify problems and

produces more accurate results than domain methods in cases where fundamental

solutions exist, such as potential field and linear elastic problems. Also, the boundary

element method provides an effective and accurate treatment of body forces such as those

arising from gravitational loading and buoyancy. A comparison of boundary element and

domain methods is given in Appendix A, and the boundary element formulation for

potential field and elastostatic problems is given in Appendices B and C, respectively.



The state of stress in young oceanic lithosphere is significantly affected by boundary

conditions at the ridge axis. Traditionally, the axes of fast-spreading ridges have been

considered as free-surface edges [Madsen et al., 1984; Bratt et al., 1985; Chen and

Morgan, 1990; Wang and Cochran, 1993]. Under this assumption, ridge axes are free to

slide in the direction of plate spreading and are thus incapable of supporting any

horizontal stress. However, recent detailed investigations of the rise axis [e.g.,

Christeson al., 1992, 1994a, b] provide evidence of solidified dikes in the uppermost

axial crust which suggests that the rise axis may have finite mechanical strength.

Therefore, in light of this inference, it is worthwhile to examine the relationship between

the stress field and the strength of the rise axis for the various sources of stress mentioned

earlier.

A simple way to consider a finite-strength rise axis when using the boundary element

method is to model the axis as a set of internal springs that join both sides of the plate and

then to prescribe the values for spring stiffness. Although less intuitive, this approach

provides several advantages over the alternative one of modeling the rise axis as a

separate subregion and then prescribing the elastic moduli of such subregion. To

understand what values spring stiffness represent in relationship to an actual elastic

strength of the rise axis, a comparison of two approaches involving a simple case of a

dike is examined in Appendix D.

To model accurately stress and strain in a given region, it is necessary to know its

material properties, especially if the range in variation of material properties is large. At

a mid-ocean ridge, temperature is a major factor that influences the material properties of

mid-ocean ridge rock, and yet we know that temperatures may vary widely.

Unfortunately, because the structure of an axial region is complex and temperature at a

given point depends on factors such as proximity to the magma chamber, convection

within the magma chamber, and hydrothermal circulation, there is no universally

accepted thermal model. An attempt by Wilson et al. [1988] to reconcile the misfit



between predicted thermal fields and temperatures inferred from seismic constraints

[Detrick et al., 1987] by placing sources and sinks of heat in the upper crust of the axial

region is considered among one of the more realistic representations of the EPR to date,

but their model extends only 10 km from the axis. In this study, we used a finite

difference method to extend the model of Wilson et al. [1988] to a greater distance by

assuming that the crust undergoes only simple- conductive cooling at distances greater

than 10 km from the axis. These results are used not only as a basis in this chapter to

define the mechanically strong portion of the crust, but the model is also invoked in

Chapter 5 to correct the gravity anomaly field for temperature variations across the study

area.

Chapter 4 contains a study of the properties and structure of the uppermost crust from

an inversion of sea-surface magnetic field anomalies for crustal magnetization. We were

able to reduce the level of background noise in our magnetic field data set by correcting

for the field fluctuations stemming from ionospheric activity. As a result of this

correction, the root mean square (rms) misfit of total magnetic field at ship track

crossovers was reduced from 26 to 15 nT. Although the information provided by

magnetic anomalies is generally nonunique, useful interpretations can be made of the

inversion results. For example, by assuming that the magnetization intensity is uniform,

magnetization anomalies can help us to constrain the thickness of the extrusive layer, or

layer 2 of the oceanic crust. However, studies have shown that magnetization intensity

can also change with degree of low-temperature alteration [Honnorez, 1981] or

fractionation within the magma chamber [Byerly et al., 1976; Sinton et al., 1983]. This

latter possibility can be particularly useful for analyzing areas such as ours where the

existence of a magma chamber is confined, because magnetization anomalies may then

be used to place constraints on the size and replenishment rate of a chamber. Since

crustal rocks can also undergo thermal demagnetization (i.e., high-temperature

alteration), magnetization anomalies can be used to identify magmatic injection points in



the upper crust and thus the relative timing of recent magmatism [e.g., Wooldridge et al.,

1992, at the Trans-Atlantic Geotraverse (TAG) hydrothermal field on the Mid-Atlantic

Ridge and the Sea Cliff hydrothermal fields on the Gorda Ridge].

Chapter 5 presents an analysis of gravity anomalies from the study area. A critical

step in reducing the gravity measurements is to make an accurate Eitv6s correction for

ship's velocity, an especially important reduction step in this survey because the

magnitude of the E6tv6s correction increases toward the equator and the variation in the

free-air gravity field across the EPR is modest compared with that at other mid-ocean

ridges. Unfortunately, during the time of this survey, the Global Positioning System

(GPS), a highly precise satellite navigation system capable of updating positional

information almost continuously worldwide, was not fully operational and, therefore,

most of the navigation during gravity and magnetic field measurements was determined

using conventional Transit satellites. Therefore, as an intermediate step in reducing

gravity data, we improved our navigation by reducing the misfits of Sea Beam

bathymetric features at crossover points. As a result of our renavigation effort, the rms

misfit of gravity at ship track crossovers was reduced from 3.9 to 1.9 mGal. The

formulation of our renavigation method, which is a slight modification of that of

Nishimura and Forsyth [1988] and likewise is based on a generalized inversion technique

with a least squares criterion, is given in Appendices E and F.

Much of the free-air gravity field near mid-ocean ridges arises from several

predictable effects, such as the attraction from the water/crust and crust/mantle interfaces,

and the variation in the density of the oceanic lithosphere as it cools and moves away

from the axis. Therefore, by systematically removing these predictable components from

a free-air gravity field, it is possible to obtain a mantle Bouguer anomaly from which the

distribution of remaining mass anomalies may be constrained. Previous investigations of

gravity anomalies along the EPR [Madsen et al., 1984, 1990; Wang and Cochran, 1993]

have suggested the presence of a low-density volume beneath the axial topographic high.



However, because the gravity field alone cannot uniquely distinguish among candidate

structural models, the density and depth extent of such a volume and the role it plays in

the support of the axial high remain controversial. Understanding the distribution of

anomalous density within the mantle is important because it provides constraints on the

dynamics of mantle flow. The controversy has centered on the strength of the axial

lithosphere and the melt fraction of the low-density volume.

Traditionally, the axial lithosphere was thought to have a very low flexural rigidity;

by that viewpoint the axial high is produced in local isostatic response to the buoyancy of

the underlying low-density volume [e.g., Cochran, 1979; McNut, 1979; Wilson, 1992].

A contrasting view is that the axial lithosphere has a finite strength, and the axial high is

explained by regional isostasy, i.e., lithospheric flexure [e.g., Madsen et al., 1984, 1990;

Wang and Cochran, 1993]. The different views on the strength of the lithosphere have

resulted in different estimates of the depth of isostatic compensation; according to

McNutt [1979], the depth of isostatic compensation should lie at least 7 km below the

seafloor, whereas Wang and Cochran [1993] argue that the low-density volume that

explains both gravity anomalies and flexure of lithosphere should extend to depths of 25-

30 km. Using an isostatic compensation model, Wilson [1992] argued that, for a 2% melt

fraction and a source volume less than 10 km in half width, the low-density volume

should extend to at least 40 km beneath the seafloor. However, it is unclear whether such

a small fraction of melt is consistent with large reductions in viscosity of upper mantle

one would expect from focused mantle upwelling. For example, Buck and Su [1989]

assume 20-30% melt fraction for a low-density region that extends 30 km below the

seafloor in their mantle flow model. Such a large fraction of melt in the mantle may be

gravitationally unstable [Wilson, 1992], however, and lead to the rise of magma to

shallow crustal levels. If so, evidence of recently replenished crustal regions might be

found through the analysis of gravity field anomalies.



Previously, investigators have assumed that anomalous density is uniform with depth.

An alternative approach is to consider that the density contrast between the low-density

volume and the surrounding region is different for the shallow crust and the underlying

mantle. This approach may be more realistic since recent seismic images of the crust

show a distinctive low-velocity volume in the shallow to middle crust [Vera et al., 1990;

Toomey et al., 1990, 1994]. In this study, we use these seismic results to place

constraints on the depth and dimensions of the crustal low-density volume. By assuming

that the short wavelength component of the observed gravity anomalies is caused by this

crustal low-density volume, it is possible to estimate the magnitude of the density

anomaly. Then, after subtracting these contributions, we can estimate the amount of

gravity anomaly that is due to deeper sources. The likelihood of explaining the long-

wavelength variation in gravity by crustal thickness variations along the axis is also

explored, but the required differences in crustal thickness are larger than permitted by

seismic reflection data from the region.

In Chapter 6, conclusions drawn from this thesis are gathered, including an

integration of all the different views of the EPR obtained from the diverse observations

discussed in earlier chapters. In particular, we combine information gathered from

observations of normal faulting, the analysis of magnetic field anomalies on the

properties of the upper crust and that on the lower crust and upper mantle from the

analysis of the gravity field to assemble new constraints on the governing processes along

fast-spreading mid-ocean ridges.
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Chapter 2

Constraints from Sea Beam Bathymetry on
the Development of Normal Faults on the
East Pacific Rise

Introduction

Near-bottom investigations of the axial region of the East Pacific Rise (EPR) [e.g.,

Lonsdale, 1977; CYAMEX, 1981; Choukroune et al., 1984; Searle, 1984; Macdonald and

Luyendyk, 1985; Bicknell et al., 1987] have revealed a systematic variation in the

morphological characteristics of the seafloor with distance from the axis of spreading.

Most recent volcanic features are confined to a narrow band, referred to as the

"neovolcanic zone" [Macdonald, 1982; Macdonald and Luyendyk, 1985], which is less

than 1-2 km wide and generally centered on the spreading axis. Except for the axial

summit caldera, which is present along some sections of the EPR and is thought to result

from the collapse of axial dikes which feed lava to the seafloor [Macdonald and Fox,

1988; Haymon et al., 1991], the neovolcanic zone appears to be free of large-offset

normal faults. Significant normal faulting occurs only well outside the neovolcanic zone;

the nearest large-offset normal faults, having throws as great as 70-150 m, are found 2 to

12 km from the axis [CYAMEX, 1981; Macdonald and Luyendyk, 1985; Bicknell et al.,



1987]. The zone extending beyond these faults to the outer limits of significant off-axis

fault activity on either side of the spreading axis is referred to as the "active tectonic

zone" or "plate boundary zone" by Macdonald [1982] and Macdonald and Luyendyk

[1985]. Macdonald [1982], for example, described the plate boundary zone as a region

where newly formed seafloor is accelerated from rest on the axis to the full spreading

velocity of the plate. He argued that along fast-spreading mid-ocean ridges such as the

EPR, the plate boundary zone is marked by inward- and outward-facing normal faulting

and block tilting that give rise to the horst-and-graben structure of Pacific abyssal hill

topography. These characteristics are in contrast to those of slower spreading centers

such as the Mid-Atlantic Ridge, which include a median valley having several kilometers

of relief and active normal faulting that is concentrated along the inner valley walls on

predominantly inward-facing normal faults.

Despite the documentation of these general characteristics in the Pacific, several

aspects of normal fault development on the EPR are still not understood. For instance,

there is considerable disagreement among investigators as to the width of the active

tectonic zone, i.e., the distance from the axis at which near-surface normal fault activity

ceases. According to Lonsdale [1977] and Searle [1984], active crustal extension extends

as far as 20 km from the rise axis at 3*S. In contrast, Bicknell et al. [1987] found that

faulting ceases within 5-8 km of the rise axis at 19*30'S, while Choukroune et al. [1984]

argue that tectonic activity ceases within 2 km of the rise axis at 12*50'S. Furthermore, it

is not clear what processes control the initiation of normal faulting off-axis or the

diminishment of fault activity at greater distances from the axis, or whether the initiation

and growth of fault zones are related to along-axis variations in crustal accretion

characteristics. A more comprehensive analysis of the development of normal faults near

the EPR axis is necessary to improve our understanding of the state of stress and its

causative processes in young oceanic crust.



This chapter provides a set of measurements of fault-zone characteristics which

addresses these questions. The results of this study also provide the basis for

development of numerical models of stress and frictional failure in Chapter 3. The study

area is the section of the EPR near 9430'N (Figure 2.1), which is one of the most

intensively explored sections, and serves as a classic example, of a fast-spreading ridge.

Investigations in this area include the determination of seismic crustal structure (Figure

2.2) [Detrick et al., 1987; Vera et al., 1990; Toomey et al., 1990, 1994; Christeson et al.,

1992, 1994a, b; Wilcock et al., 1992a, 1995; Harding et al., 1993; Kent et al., 1993a, b],

near-bottom observations using the ARGO imaging system [Haymon et al., 1991],

documentation of a recent volcanic eruption along the crest of the rise axis from

submersible observations [Haymon et al., 1993], geochemical analyses of rock samples

obtained using conventional dredges [Batiza and Niu, 1992] and a rock corer mounted on

a submersible [Perfit et al., 1994], and determination of microearthquake characteristics

[Wilcock et al., 1992b; Hildebrand et al., 1992]. In particular, the axial magma chamber

(AMC) has been identified and the depth to its top mapped along this rise section (Figure

2.2) [Detrick et al., 1987; Mutter et al., 1988; Kent et al., 1993a, b]. Given the geological

and geophysical constraints provided by these studies, it is worthwhile to examine the

dimensions and distribution of normal fault zones in this region and to compare them

with the characteristics revealed by the other investigations.

Sea Beam Data

Information on the fine-scale morphology of the seafloor is best deduced from near-

bottom bathymetric surveys made with systems such as Deep-Tow [e.g., Kleinrock and

Hey, 1989] and ARGO [e.g., Haymon et al., 1991] equipped with cameras and side-scan

sonars, or by deep-sea submersibles (e.g., Alvin and Cyana). While near-bottom surveys



can resolve features along a track with relief as small as a few meters, they are limited to

small areas. To cover larger areas, it is necessary to use a swath-mapping bathymetric or

imaging system near the sea surface such as Sea Beam or Sea MARC II [e.g., Edwards et

al., 1989; Macdonald et al., 1992; Carbotte and Macdonald, 1994]. Side-scan sonar

systems such as Sea MARC II image fault scarps directly and provide information on the

relative timing of fault activity, but multibeam bathymetric mapping tools such as Sea

Beam offer the advantage that they provide accurate depth information from which the

vertical dimensions of features can be measured and thus the variation of fault throw with

distance from the axis can be addressed. Some side-scan sonar systems, including Sea

MARC II, use a split-beam method, which compares phase angles to determine seafloor

depth from data received by pairs of closely spaced transducers viewing the same side.

However, the depth accuracy of such a system is generally poorer than multibeam

systems at a similar frequency- and altitude above the seafloor. Summaries of the various

systems used in seafloor surveys can be found in Kleinrock [1992] and Cowie et al.

[1994].

As with any bathymetric survey system, Sea Beam has finite vertical and horizontal

resolution; the vertical resolution of individual beams is approximately 10 m [de

Moustier and Kleinrock, 1985]. From geologic, geodetic, and seismic measurements, the

amount of fault slip during a single earthquake seldom exceeds a few meters [e.g., Stein

et al., 1988]. Therefore, Sea Beam will not resolve the changes in seafloor morphology

produced by individual seismic events. The beam width and sampling interval determine

the horizontal resolution of Sea Beam and are more critical factors limiting its overall

resolution. The resolution of many acoustic survey systems can be characterized by

footprint dimensions. The footprint of a beam is an ellipse formed by the intersection of

the cone of the beam (defined by a half-power angle) with the seafloor. In Sea Beam the

beams are formed so that their outgoing angles abut, and thus the cross-track component

of the footprint and the cross-track spacing are the same. In our survey, Sea Beam



samples were taken at intervals of 4-5 s with 16 beams forming an angle of insonification

athwartship of ± 210. With the ship generally cruising at 10 knots over an area whose

average depth is approximately 2700 m, the corresponding sampling intervals in

directions parallel and perpendicular to the ship's heading were approximately 25 and 125

m, respectively. Therefore, in practice, the resolution of Sea Beam can range anywhere

from the vertical resolution of an individual beam of 10 m to a footprint width of 125 m.

The Sea Beam data used in this study were collected during a seismic tomography

experiment conducted in January of 1988 onboard R/V Thomas Washington. The

mapping covered an area between latitude 9*05'N and 9*55'N, out to a maximum distance

of approximately 100 km to either side of the EPR axis. Figure 2.3 shows twelve straight

Sea Beam tracks, selected from our bathymetric data set, which are oriented almost

perpendicular to the rise axis. The spreading half-rate in this area is approximately 55

mm/yr [Carbotte and Macdonald, 1992]; thus, a distance of 100 km from the axis

corresponds to a crustal age of about 1.8 My.

Given information on seafloor depth from Sea Beam, the simplest way to identify a

large-offset normal fault is by means of seafloor slope. Identification and

characterization on the basis of seafloor slope alone, however, inevitably involves some

uncertainty. Although normal faults may be recognized physiographically from their

sharply edged features and slopes greater than that of adjacent seafloor, there is still no

consensus on their characteristic slope, and thus it may be difficult to distinguish clearly

between faults and other sloped features on the seafloor such as volcanic constructs (e.g.,

seamount flanks, flow margins, and caldera walls).

Despite such concerns, a rationale can be given to justify the use of slope as a criterion

for identifying normal fault scarps. According to recent analyses of seamounts and

submarine volcanoes on the Pacific plate [Fornari et al., 1984, 1987; Barone and Ryan,

1988; Smith, 1988], the slopes of smaller volcanic constructs average about 15*-20*.

Moreover, according to Fornari et al. [1987], seamounts are virtually absent near the



spreading axis (< 10 km from the axis) of the EPR, in contrast to the Mid-Atlantic Ridge,

where the median valley floor is often covered with small seamounts [e.g., Batiza et al.,

1989; Smith and Cann, 1990]. Probably the most important factors that distinguish

volcanic constructional features from fault structures are their horizontal dimensions and

orientations. Detailed near-bottom investigation of the EPR at 19*30'S shows that

common volcanic constructional features have wavelengths much less than the long

dimension of dominantly faulted structures [Bicknell et al., 1987], and they have a lesser

tendency to be parallel to the rise axis.

The limited resolution of Sea Beam does not allow discrimination between a normal

fault scarp composed of a single dominant fault or several closely spaced faults (Figure

2.4). In this study, in recognition of this ambiguity, narrow rise-parallel fault scarps will

be referred to as "fault zones." For those fault zones large enough to be resolved by Sea

Beam, we can nonetheless map their location and distribution, determine their width

(heave) and height (throw), and examine their variation with seafloor age.

Methods

Estimation of Fault-Zone Area

We used two different schemes to measure the characteristics of fault zones. In the

first, we gridded the individual Sea Beam swaths after the bathymetry had been

renavigated so as to minimize swath misfit at crossovers [Wilcock et al., 1993]. Grid

spacing was 20 and 100 m along and across track, respectively. The misfits between ship

tracks are too large (100s of meters) for us to correlate narrow fault zones between

swaths with confidence. Thus, we used gridded bathymetric data only to estimate the

plan-view area of fault zones.



To estimate the fault zone area, slope analysis was applied to the gridded bathymetry.

For each three adjacent grid points, we found the plane through them (Figure 2.5). The

triangular grid surface element is regarded as part of a fault zone if the dip angle of that

plane exceeds a critical value. On the basis of the previous discussion, we chose 300 as

the critical angle. Within the gridded data set, the fraction of grid surface elements that

satisfy the slope criterion is equivalent to the fractional plan-view surface area

represented by normal fault zones. By examining the dip direction for each surface

element, we also determined whether the fault zones represented inward- or outward-

facing faults.

A similar technique was used by Shaw and Smith [1990] to characterize seafloor

topography in Sea Beam swath data. They constructed normal vectors to small patches

of the seafloor. Shaw and Smith [1990] also extended their technique to characterize the

terrain from the histogram of normal vector orientations and autocovariance functions.

To present the results of our analysis, we divided the gridded data into 5-km-wide,

axis-parallel isochron bins over the EPR flanks, summed the area of all fault zones within

each bin, and then divided by the total gridded area in each bin. The results are shown as

the percentage of seafloor area made up of inward- and outward-facing fault zones versus

distance from the rise on both the Pacific and Cocos plates (Figure 2.6). Because we

have only two tracks on each side of the rise that extend farther than 30-40 km from the

axis, the results beyond 35 km are less certain than those within 35 km and are shown as

dotted lines in Figure 2.6.

Estimation of Fault-Zone Heave and Throw

In the second type of analysis, the height and width (throw and heave) of fault zones

was estimated from bathymetry averaged across individual swaths. We studied twelve



straight Sea Beam swaths, labeled A through L from north to south, as shown in Figure

2.3. Tracks E, F, H, and I extend more than 100 km from the spreading axis, while the

remaining tracks extend approximately 30-40 km from the axis. Two tracks (K and L)

cross areas west of the axis where large-relief features appear to be related to the

southward migration of an overlapping spreading center from 9*20'N to 9403'N during

the past 0.7 My [Carbotte and Macdonald, 1992]. According to Carbotte and

Macdonald [1994], who analyzed Sea MARC II images over a greater area of the EPR

(8*30' to 10*N), discordant zones left by overlapping spreading centers exhibit low fault

abundance. However, as we will show, the inclusion of those two tracks does little to

change the principal conclusions of this study.

In the process of analyzing the gridded bathymetric data as discussed earlier, we

determined the strike of observed fault zones (Figure 2.7). Because most fault zones in

our survey area are axis-parallel, the fault-zone heave and throw are readily characterized

by means of a simple automated scheme applied to profiles perpendicular to the rise axis.

The details of the scheme are as follows (Figure 2.8):

(1) Topographic profiles along the spreading direction were obtained by averaging

seafloor depths across the beams. During our Sea Beam bathymetric survey, the outer

beams often dropped out, so we used only 13 beams that consistently provided seafloor

returns. The tracks for swaths E, F, G, H, I, J and L are parallel to the direction of

spreading, so a simple average of the 13 beams is sufficient. However, the remainder of

the tracks, A, B, C, D and K, are along azimuths that differ from the direction of

spreading by 5-10*. Thus, we first projected each beam profile onto a vertical plane

perpendicular to the rise axis, and then we averaged the profile values at equal distances

from the axis.

(2) Slope was calculated from this averaged topography, and values of slope were

divided into bins of 100 width. In practice, five bins were used: slopes less than -20*

comprise group 1, from -20* to -10* group 2, from -10* to 100 group 3, from 10* to 20*



group 4, and greater than 200 group 5. Positive and negative values denote seafloor dip

along and opposite to the ship's direction, respectively. We identified candidate fault

zones as areas in which the absolute value of the slope exceeded 200, i.e., groups 1 and 5.

This threshold value is less than that used for the gridded swath bathymetry, in order to

compensate for the smoothing effect of averaging across the swath. Still, as noted earlier,

this value is greater than the typical 15-20* slopes of volcanic constructs.

(3) A running window operation was performed to determine the along-track extent of

the fault zone (Figure 2.8). We consider that we passed out of the fault zone when 75%

of the points in the running window had slopes with an absolute value of less than 10*.

This scheme ignores small changes in slope such as that midway down the scarp sketched

in Figure 2.8. It also results in mapping what may be two or more closely spaced fault

scarps as one fault zone.

The fault-zone dimensions determined according to this scheme are shown along

illustrative swath profiles in Figure 2.9. Because of the resolution limits of Sea Beam

and the smoothing effect of averaging across the swath, the widths of the fault zones

measured in our scheme are greater than those of scarps determined from near-bottom

surveys in other portions of the EPR [e.g., Bicknell et al., 1987]. Furthermore, the

lengths of fault zones were not measured in this analysis, because many of the zones

extend beyond the width of individual Sea Beam swaths.

Effects of Mass Wasting and Sedimentation

Before describing the results of our fault-zone characterization, it is important to

discuss two phenomena, fault-scarp degradation by mass wasting, and sedimentation, that

may affect our quantitative analyses. At slow-spreading ridges, for instance, recent

evidence shows that mass wasting plays an important role in modifying fault-scarp



morphology. According to detailed near-bottom surveys performed on the flanks of the

Mid-Atlantic Ridge near 26*N at crustal ages of 3 to 24 My [Tucholke et al., 1994], mass

wasting creates canyon-like incisions and causes significant scarp retreat and scarp

widening. Keith [1986] also reported that even the young rift valley floor (- 0.1 My) of

slow-spreading ridges shows substantial degradation by mass wasting.

One argument that mass wasting will be ubiquitous on the seafloor is that upper crustal

rocks are weak because fissures, joints, and veins develop at the time of crustal

formation, and because of subsequent weathering and hydrothermal alteration.

Therefore, slope failure may be common. At present, it is unclear whether there is active

mass wasting on the seafloor of fast-spreading ridges. If mass wasting is prevalent, as

illustrated in Figure 2.10, it could significantly increase the apparent heave of a fault zone

over time. Thus, heave is not a satisfactory measure of possible growth of seafloor fault

scarps with time. Throw, however, is a diagnostic measurement. Mass wasting will

decrease apparent throw, so an observed increase in throw with distance from the axis is a

strong indication of continued activity on normal faults off-axis.

, It is uncertain to what extent sedimentation has affected the morphology of fault zones

in our survey area. Lonsdale and Spiess [1980] estimated the sediment accumulation rate

near 9*N to be approximately 18 m/My. Therefore, if sediment accumulated on the

seafloor in the form of an even drape (Figure 2.1 1a), there may be as much as 10 m of

sediment cover at 30 km from the axis. Uniform sediment cover would not change the

results of our analysis, since the apparent heave and throw would be similar to true heave

and throw. On the other hand, if sediment were mobilized from topographic highs to

lows (Figure 2.11b), as in mass wasting, the apparent throw would be reduced. The

apparent heave might also be increased, depending on the slope criterion we use to define

a fault zone.



Variations in Fault Zone Characteristics

By employing the analytical methods described above, we examine the characteristics

of normal-fault zones and their variations in our survey area. As seen by the estimation

of plan-view area of fault zones in Figure 2.6, there is no significant difference between

the total area of inward- and outward-facing fault zones on either side of the rise-axis.

This result contrasts with some reports based on data from other parts of the EPR that

there are a greater number of inward-facing faults than outward-facing faults [e.g.,

Searle, 1984]. Carbotte and Macdonald [1994] argued that 60% of all faults were inward

facing. Our results do not differ significantly from those of Carbotte and Macdonald, and

it appears that inward- and outward-facing faults are roughly of equal importance.

Our results also show that the plan-view area of fault zones increases with increasing

distance from the axis for distances less than about 30 km (Figure 2.6). This trend is seen

most clearly on the Pacific-plate side of the rise, but it is also evident for inward-facing

fault zones on the Cocos-plate side. Fractional fault-zone area, on average, appears not to

change systematically beyond approximately 30-40 km from the axis, but because track

coverage is limited at these distances, this inference needs to be confirmed by additional

investigations with wider coverage.

We examined whether discarding tracks K and L affects our observations (as noted

earlier, portions of track K and L sampled seafloor where there are tectonic structures

produced by an overlapping spreading center). Figure 2.12 is similar to Figure 2.6, but it

excludes data from tracks K and L. A comparison of the figures shows that there is no

significant difference in the estimated plan-view area of fault zones versus distance off-

axis.



While the observations shown in Figures 2.6 and 2.12 are consistent with the

hypothesis that normal fault activity continues to 30 km or more off-axis, the plan-view

area of fault zones could equally well increase with off-axis distance because of mass

wasting (Figure 2. 10b). As noted above, a robust indicator of continuing fault activity is

given by the areally averaged fault zone throw versus distance.

The total apparent throw of fault zones within 10-km-wide isochron bins, derived from

averaged swath bathymetry and normalized by the number of swaths contributing to each

bin, is shown in Figure 2.13. There is clearly a systematic increase in total apparent

throw of fault zones with distance from the rise axis. Because both mass wasting and

sediment redeposition from topographic highs to lows would tend to decrease total

apparent throw with increasing crustal age, the observed increase of throw in Figure 2.13

provides strong evidence for continued fault activity out to at least 30-40 km from the

axis on both the Pacific and Cocos plates.

The fault zones that we mapped vary widely in size, from tens of meters to hundreds

of meters in both heave and throw. However, the population of fault zones is made up

principally of features of modest relief, i.e., small throw. Figure 2.14 shows a histogram

of the distribution of fault zones by throw in the full gridded bathymetric data set. The

upper quartile of fault zones corresponds to throws greater than 45 m.

To determine whether the increase in total throw with distance off-axis is attributable

primarily to an increase in the spatial frequency of fault zones or to continued off-axis

growth of fault zones, we calculated the total throw for the upper quartile of fault zones

by throw (dashed line in Figure 2.13). (In our survey area, this upper quartile accounts

for more than half of the total throw for a given isochron bin). It appears that much, but

not all, of the increase in total throw of fault zones within 30 km of the rise axis can be

explained by increased throw on the largest-relief fault zones. However, the ratio of

upper quartile throw and total throw appears to be constant with distance. This result



implies that the fault activity in our survey area occurs by continuing slip on large-offset

fault zones as well as from an increase in the areal density of small-offset fault zones.

As with the plan-view area of fault zones, we also examined whether removal of

tracks K and L affects our results on fault throw (Figure 2.15). Even with data from these

two tracks removed, we still obtain an increase in total throw within 10-km-wide

isochron bins out to a distance of at least 30 km from the axis. Thus, the inclusion of

possible tectonic features formed by an overlapping spreading center does not alter our

results.

Another way to determine whether fault zones increase in throw off-axis is to examine

the average throw in each bin (i.e., the total throw in each bin divided by the number of

fault zones in each bin) (Figure 2.16). Average throws show an irregular but distinct

increase with distance off-axis, again supporting the concept of continuing off-axis

faulting over time.

On the basis of an examination of a pair of tracks on each side of the rise axis that

extend beyond 40 km distance, fault activity appears to continue as far as 60-70 km off

axis. Evidence for this inference can be found in the plan-view areas of fault zones on

both the Pacific and Cocos plates (Figure 2.6) and, more importantly, in both the total

throw (Figure 2.13) and the average throw (Figure 2.16) of identified fault zones.

Because of our limited coverage, however, we are unable to assign a high confidence to

this result. Further investigation with more extensive coverage will be necessary in order

to determine the full width of the active tectonic zone of the EPR.

We also examined the locus of initiation of significant faulting along the spreading

axis by determining the distance of the first large-offset fault zone from the axis. Only

fault zones with throws greater than 20 m were considered. A plot of the positions of

these fault zones with respect to the rise axis along each Sea Beam swath (Figure 2.17)

shows that the total width of young seafloor free of large-offset faults is an almost

uniform 7 km throughout our survey area. However, the distance to the first large-offset



fault zone is not always symmetric across the rise axis; the midpoint between the first

large-offset fault zones on either flank of the rise is offset to the west of the bathymetric

axis by almost 2-3 km south of 9*23'N.

Discussion

Comparison with Other Studies

The characteristics of normal fault zones which we documented along the section of

the EPR near 9*30'N can be compared to those of other sections of the EPR reported by

Lonsdale [1977] at 3425'S, Choukroune et al. [1984] at 12*50'N, Macdonald and

Luyendyk [1985] at 214N, and Bicknell et al. [1987] at 19030'S. Both at 9*30'N and along

other sections of the EPR, normal faults begin to develop a few kilometers from the axis.

Differences have been reported, however, for the distance to which active faulting

continues (Table 2.1). Except for Lonsdale [1977], most investigators have suggested

that faulting diminishes considerably within 5-10 km from the axis. Macdonald and

Luyendyk [1985] suggested that faulting of the EPR at 21*N generally ceases beyond 10-

12 km from the axis; however, they reported fresh scarps, observed in submersible dives,

which showed no indication of erosion at one location 23 km off-axis in their study area.

Our results, in contrast to the conclusions of most previous investigators, suggest that

normal fault zones continue to be active up to distances at least 30 km from the axis, and

perhaps as far as 60-70 km from the axis. This different finding may be attributed to a

number of factors, including differences in mapping systems and measures used to

characterize faults. For example, studies performed with side-scan sonar systems base

their measure of fault activity on the length of fault scarps on the seafloor. An increase in

the average lengths of faults with distance from the axis is evidence for continued fault



activity, but the lack of such evidence does not necessarily indicate that all activity has

ceased. Unless a rigorous scaling relationship between the displacement on a fault and its

length can be demonstrated, using the lengths of faults is thus an imperfect measure of

fault activity. Differences in the inferred extent of fault activity between our results and

those of studies that relied on deeply towed surveying systems may partly stem from

differences in the amount of areal seafloor coverage. As noted earlier, most deep-tow

surveys are performed on relatively small portions of the seafloor.

The locations and source mechanisms of earthquakes provide independent measures

of fault activity and style of faulting. Wilcock et al. [1992b] located microearthquakes

that occurred along this section of the EPR during an 8-day period. They found two

events of moment 1020_1021 dyne cm located 20-30 km off-axis; the event with the best-

constrained location occurred within the crust, probably within the upper 3 km.

Unfortunately, no focal mechanism study was possible for these microearthquakes, so it

is unclear whether they were caused by normal faulting.

If indeed normal faulting does continue beyond 30 km and even as far as 60-70 km

from the rise axis, an important question that may be asked is the distance at which

normal faulting ceases. In order to have continued activity on normal faults, there must

be an extensional stress field within the upper crust. Investigations of large ridge-flank

earthquakes in lithosphere 3-35 My in age (160 km or more off-axis at this portion of the

EPR) suggest that normal-faulting mechanisms are common, but body waveform

inversion indicates that most such normal-faulting events have centroid depths beneath

the crust [Bergman and Solomon, 1984; Wiens and Stein, 1984]. In contrast, thrust or

reverse faulting events typically have centroid depths within the crust at these ages.

Therefore, from these earthquake studies and our observations of fault patterns, it seems

likely that normal faulting within the upper crust of fast-spreading ridges should cease

somewhere beyond 30 km from the axis (0.6 My) but at a seafloor age less than 3 My.

At present, the relationship between large ridge-flank earthquakes, plausibly attributable



to differential thermoelastic stress associated with plate cooling [Bergman and Solomon,

1984; Bratt et al., 1985], and the active tectonic zone of the EPR is not clear.

In terms of relative abundance of inward versus outward facing normal faults, our

results differ slightly from those of Carbotte and Macdonald [1994]. According to

Carbotte and Macdonald [1994], inward-facing faults are more numerous and have

greater vertical offset and length on average than outward-facing faults. They also found

that outward-facing faults tend to appear as clusters of short, closely-spaced antithetic

faults subsidiary to long master inward-facing faults. In our data, there appear to be no

significant differences between the plan-view areas of inward- and outward-facing

normal fault scarps. Assuming that fault zone widening by mass wasting is equally

effective on inward- and outward-facing fault zones, our results suggest that in total,

approximately equal areas of the seafloor are covered by inward- and outward-facing

normal faults.

Processes Controlling Initiation of Faulting

Our observations and those of others (Table 2.1) confirm that large-offset normal

faulting begins several kilometers from the axis at the EPR. A possible explanation for

the first formation of large-offset normal faults at such distances is that replenishment of

the magma chamber heats and weakens the overlying material within a few kilometers of

the axis to such an extent that no large-offset faults can form. However, an argument

against this hypothesis is that the upper crust tends to be well cooled by hydrothermal

circulation. A more likely explanation of this off-axis initiation of normal faulting is that

frequent volcanic eruptions create a zone of weakness along the axial magmatic

emplacement zone. Unlike the first hypothesis, this explanation does not invoke changes

in material properties over a large portion of the upper crust but, rather, only over a



narrow zone (- 100 m) along the axis. Given a far-field extensional stress, a zone

surrounding the weak axis would have a lower level of deviatoric stress. Lachenbruch

[1961] derived an analytical solution to the problem of the stress field in the vicinity of a

vertical crack in a half-space in which pressure is applied to the crack walls. His study

showed that in the case of uniform pressure applied to the walls of the crack, the pressure

decays to 10% of its peak value at a distance approximately equivalent to 5 times the

depth extent of the crack. In Chapter 3, we develop numerical models to examine the

effects that mechanical strength has on the near-ridge stress field for candidate sources of

stress, and we conclude that the process most likely responsible for the initiation of

normal fault formation is buoyancy of the axial magma chamber and the surrounding

low-velocity volume.

Buoyancy arising from low-density material beneath fast-spreading ridges has long

been regarded as a viable source of tectonic stress and deformation near the axis, yet few

studies have examined buoyancy quantitatively as a possible cause of near-ridge normal

faulting. Madsen et al. [1984] considered the axial high of the EPR to be a result of a

buoyant force bending the free edges of a plate upwards. They used a model that

consisted of an elastic plate of uniform thickness (6 km), and they assumed that the

buoyant force is balanced by the flexural rigidity of the plate and a hydrostatic restoring

force created when crustal rock effectively replaces denser mantle rock in the vertical

column. However, there are two principal difficulties with the treatment of buoyancy in

their model. First, their depth for the source of buoyancy is inconsistent with the depth of

the AMC observed seismically [Detrick et al., 1987], information not available at the

time of their study. Second, the base of the lithosphere was assumed to be free of shear

stress as if it were lying over an inviscid fluid. This implies that the buoyant source itself

is an inviscid fluid, and the possible transmission of shear stresses between the buoyant

source and the surrounding mantle or the crust is ignored. Furthermore, given this

assumption, the plate on each side of the spreading axis deflects upwards in a concave



manner. As a result, the top half of the plate is under compression while the bottom half

is under extension, which is contrary to the stress regime implied by normal faults on the

seafloor. A more realistic model of the crust near the axis, including different

assumptions about boundary conditions, produces a buoyancy model that can explain the

initiation of normal faulting in agreement with observations, as discussed in Chapter 3.

A different explanation for why few normal faults are found very near the axis is that

tectonic features form at such distance but are masked by lava flow from the neovolcanic

zone [Bicknell et aL, 1987]. Under this explanation, faults may actually form on the rise

axis, but because the brittle layer of upper crust on the axis is very thin, fault offsets may

be quite small. As a result, frequent volcanic eruptions may cover the features. Recent

geochemical analyses [Perfit et al., 1994] and uranium-series dating [Goldstein et al.,

1994] conducted on rock-core samples collected from a suite of closely spaced lava flows

within the axial summit caldera and on the crestal plateau of the EPR near 9031'N

suggest that eruptions occur throughout the crestal region and are not restricted to the

axis. Support for the emplacement of lavas outside the axial summit region is given by

the evidence for significant thickening of layer 2A within 2 km of the EPR axis near

9*30'N [Christeson et al., 1992, 1994a]. Two arguments, however, can be made against

this explanation. First, the off-axis onset of large-throw normal faults often occurs at

distances (8 km or more) too large to be explained by this mechanism. Second, off-axis

faults generally display relief too large to be completely covered by lava flows. For

instance, detailed near-bottom investigations of the axial region of the EPR often reveal

features such as faults and graben embayed but not fully covered by lava flows [W. B. F.

Ryan, personal communication, 1994].



Along-Axis Variations

Along-axis variability in the characteristics of the EPR is well documented near

9*30'N. We can compare the near-axis pattern of fault development (Figure 2.17) with

results of other investigations conducted in this area to look for relations indicative of the

processes controlling the onset of faulting. As noted previously, the cross-axis separation

between first-appearing large-offset fault zones appears almost uniform throughout the

survey area; however, the midpoint between these fault zones is nearly centered on the

axis north of 9*23'N, but to the south of 9*23'N it is offset to the west by 2-3 km. This

offset is at about the same location as a westward offset in the axial magma chamber

reflector (by 2-3 km) near 9*20'N [Mutter et al., 1988; Kent et al., 1993a] (see Figure

2.2). The approximate coincidence of the midpoint between large-offset fault zones

flanking the rise axis and the locus of magmatic emplacement as indicted by the AMC

reflector supports the hypothesis that the upper crust is thermomechanically weakened at

the axis of most recent crustal accretion.

Processes Controlling Continued Off-Axis Faulting

As noted above, thermoelastic stress caused by the differential cooling of the oceanic

lithosphere provides a likely mechanism for the generation of ridge-flank earthquakes in

lithosphere 3-35 My old, so it is worth considering whether thermal stress could also be

responsible for a zone of active extension at least 60 km wide centered on the axis of the

EPR. Because crustal rocks in general have fairly high coefficients of thermal expansion,

depending on the boundary conditions a small change in differential temperature can

produce a large stress, and an accumulation of such stresses may ultimately lead to brittle

failure. On the other hand, if rocks are at a sufficiently high temperature, the thermal

stress is relieved by flow on time scales short compared with those leading to brittle



failure of the upper crust. This behavior is sometimes parameterized in terms of an

elastic "blocking temperature" [Turcotte, 1983]; this is the temperature marking the base

of the elastic or mechanical lithosphere, above which thermal stress can be assumed to be

rapidly relieved by flow. For crustal and mantle materials, these temperatures are

thought be 250-450*C and 600-800*C, respectively [Chen and Molnar, 1983]. Since we

are dealing with normal faulting within the upper crust, we may assume, for example,

400*C as the elastic blocking temperature for our problem. Unfortunately, the depth of

the 400*C isotherm near the axis of a fast-spreading ridge is poorly constrained, because

it is strongly dependent on the assumed thermal model.

A comparison of two models illustrates this dependence (Figure 2.18). Lin and

Parnentier [1989] assumed that crustal accretion occurs within a narrow zone along the

axis, and they simulated hydrothermal convection by increasing the thermal conductivity

in a surficial crustal layer. Wilson et al. [1988], in contrast, modeled a narrow zone (±10

km) around the axis and incorporated a magma chamber of finite size; they utilized point

sources and sinks of heat to simulate latent heat release, hydrothermal circulation, and

convection within and near the magma chamber. Their model was also constrained to

match the depth of the axial magma chamber reflection present in the multichannel

seismic reflection data of Detrick et al. [1987], and thus may be a better representation of

the thermal structure of the EPR near 9*30'N than that of Lin and Parmentier [1989]. In

the thermal model of Wilson et al. [1988], the depth of the 400*C isotherm is almost

uniform (1.0-1.5 km) within 10 km of the spreading axis. This result leads us to conclude

that crustal cooling is not a major source of stress at distances of 10 km or less from the

axis. However, beyond 10 km, the thermal model of Lin and Parmentier [1989] suggests

that the extensional stress arising from cooling of the crust might be an important

mechanism that affects the development or growth of normal faults.

Another source of stress is the mantle flow field. This subject has been studied by

Chen and Morgan [1990a, b]. They argue on the basis of finite element models that



anomalously high temperature leads to a broad zone of low viscosity beneath the axial

crust of a fast-spreading mid-ocean ridge (Figure 2.19a). This low-viscosity zone causes

sufficient reduction in the magnitude of stress induced by mantle flow that frictional

failure will not occur in the brittle upper crust near the rise axis. Without such a low-

viscosity zone, the shear stress induced by mantle flow tractions on the base of the

mechanical lithosphere is a maximum at the spreading axis and can result in a broad

region of frictional failure in the upper crust (Figure 2.19b).

A number of factors can affect the outcome of finite element modeling, including

material parameters in the flow law

A (q, - q,) exp L2 (2.1)
R_ T

where t is the uniaxial strain rate, a, - U3 is the differential stress, R the gas constant, T

the absolute temperature, and n, Q, and A are material constants. In the model of Chen

and Morgan [1990b], values for the rheological parameters n and Q for crust and mantle

are based on laboratory measurements of diabase [Ranalli, 1982] and olivine [Goetze,

1978], respectively. However, Chen and Morgan chose values for A, the least

constrained among material parameters, in such a way that the model matches

observations. For instance, the value of A for the crust was chosen so that results of the

model match the width of the axial valley at slow-spreading rates. The value of A for the

mantle was selected from a mantle-only half-space model. The choice was made in such

a manner that the transition between two domains, one at which the failure zone is wider

than the decoupling zone and vice versa, take place at a spreading rate of 35 mm/yr, this

value, according to Small and Sandwell [1989], represents the spreading rate at which an

abrupt transition in the smoothness of gravity and geoid anomalies occurs. Despite these

uncertainties in material parameters, the models of Chen and Morgan [1990] appear to



present a reasonable argument that mantle flow does not explain the initiation or

development of normal faults near the EPR axis.

As noted earlier, Macdonald [1982] argued that a zone of active faulting of finite

width may occur along a spreading axis simply because newly formed crust accelerates to

the full spreading velocity over such a zone. While this hypothesis is purely kinematic,

such a zone of acceleration would be expected to give rise to extensional stress and, if

sufficiently wide, might account for the observed steady increase in fault throw to

distances of at least 30 km from the rise. This issue can be examined from the model

results of Chen and Morgan [1990b]. They investigated the horizontal velocity of the

seafloor under the assumptions that the viscosity of the mantle is either uniform or

dependent on temperature and stress, and that horizontal velocity increases from zero at

the spreading axis to the plate spreading velocity at some distance off axis. According to

their calculations, the zone of acceleration is very narrow for cases with temperature- and

stress-dependent viscosity; for example, the half-widths of the acceleration zone are 4.5,

2, and 1.5 km for spreading half-rates of 10, 30, and 60 mm/yr, respectively (Figure

2.20). Therefore, it is unlikely that the acceleration of newly emplaced crust would

explain active normal faulting to distances of 30 km from the rise axis.

A final possible mechanism of extension is gravitational spreading off the axial high

of the EPR. Under the assumption that the oceanic lithosphere is in local isostatic

equilibrium and is underlain by region of inviscid fluid, Dahlen [1981] argued that

deviatoric stress necessary to support the topography of a mid-ocean ridge is compressive

in the direction perpendicular to the axis. However, the study of Dahlen [1981]

represents a particular case in which the boundaries of the spreading axis and the base of

the lithosphere are considered to be free surfaces. While such an assumption may be

valid for considerations of the platewide stress field, for near-ridge regions the stress field

may be sensitive to the boundary conditions at the axis. Therefore, one needs to explore

different boundary conditions for the spreading axis.



The first-order effects of gravitational spreading on stress can be illustrated by

schematic models involving an upper crust resting on a sloping detachment (Figure 2.21).

For the sake of simplicity, we assume that plane strain applies. If the top of the slope is

pinned, the upper portion of the slope will experience extensional stress while the base of

the slope will be subjected to compressional stress (Figure 2.21a). On the other hand, if

the top of the slope is free, there is no resistance to downslope motion and the expected

stress will be compressional throughout, with the magnitude of compression increasing

downslope (Figure 2.21b). Also, if gravitational spreading occurs because a

mechanically strong lithosphere slides over a weaker asthenosphere, then the shape of the

base of the lithosphere and the ease of sliding may be important factors. These topics are

explored at greater length in Chapter 3.



Conclusions

From an analysis of Sea Beam bathymetry, we determined the distribution, plan-view

area, and throw of normal fault zones out to 30-60 km from the axis of the East Pacific

Rise (EPR). From gridded bathymetry produced from twelve Sea Beam swaths

extending across the axis of the EPR, we identified fault zones, determined their strike

and dip directions, and measured their plan-view area. One-dimensional profiles

perpendicular to the axis also were produced by averaging along-strike across individual

Sea Beam swaths. Along these averaged profiles, an automated scheme based on

seafloor slope was used to identify and measure the heaves and throws of fault zones.

Our study yielded the following conclusions:

(1) The immediate axis of the EPR generally appears to lack large-offset fault zones

(i.e., throw greater than 20 m). While fissures, cracks, and an axial summit caldera may

be present, as near-bottom investigations [e.g., Haymon et al., 1991] have shown, fault

zones with significant offsets generally do not form within 2-3 km of the axis.

(2) The plan-view area of fault zones increases steadily out to a distance of at least

30 km from the axis. However, because mass wasting may significantly increase the

apparent widths of fault zones with age, such an increase is not uniquely diagnostic of

continuing off-axis fault activity. On the basis of plan-view area, there appears to be no

significant difference in the density of inward- and outward-facing faults.

(3) The total throw and average throw of fault zones also show steady increases with

distance from the spreading axis out to at least 30-40 km, indicating that fault activity

continues at least this far off axis. It is difficult to determine if fault activity continues to

distances greater than 30-40 km from the axis because of our limited bathymetric

coverage. Measurements of fault-zone throw along a few long tracks on both sides of the

plate, however, suggest that the normal fault activity may continue as far as 60-70 km



from the spreading axis. Large fault zones (the upper quartile of the population of fault

throws) account for more than half of the total fault throw in our survey area. Fault

activity occurs both through repeated slip on existing faults and by the formation of new

faults.

(4) The midpoint between the nearest large-offset fault zones on either side of the

axis generally coincides with the bathymetric axis north of 9*23'N. However, south of

9*23'N, the midpoint is offset to the west of the bathymetric axis by 2-3 km. This offset

is similar to that of the AMC reflector [Mutter et al., 1988; Kent et al., 1993a], suggesting

that magmatic emplacement is offset to the west of the bathymetric axis in this region.

The pattern of fault zone development is thus influenced more by the position of the most

recent axis of magmatic accretion and shallow thermal structure than by the position of

the bathymetric rise axis.
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Table 2.1. Half-widths of active tectonic zones inferred along various portions of the

EPR.

Half-width of active
Location Spreading half-rate, tectonic zone, Reference

mm/yr km

21ON 36 10-12 Macdonald and Luyendyk
[1985]

12050'N 55 2 Choukroune et al. [ 1984]

9030'N 55 > 30 This study

3025'S 75 20 Lonsdale [1977]

19030'S 75 5-8 Bicknell et al. [1987]
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Figure 2.1. Schematic map of the East Pacific Rise showing our Sea Beam survey

area near 9*30'N. The Sea Beam data were collected as part of a seismic tomography

experiment in 1988.
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Figure 2.2. Diagrams from Kent et al. [1993a], showing three-dimensional character

of the EPR in our study area. (a) Cross-sectional view of along-axis variations of layer

2A and axial magma chamber (AMC) reflections. (b) Plan view of along-axis variation

in the width of the AMC reflector superimposed on bathymetry (in meters); bold black

lines show where the AMC reflector was detected in multichannel reflection profiles. (c)

Cross-sectional interpretation of upper crustal structure at 90 19'N (Line CDP 33 in b). (d)

Depth-migrated solution to the data of (c) showing an offset of the AMC reflector toward

the west.
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Figure 2.3. Location of the 12 ship tracks whose Sea Beam swaths were used in this

study to map the distribution of fault zones and determine their characteristics. The ship

tracks are labeled from A to L; the axis of the EPR is shown as a dashed line.
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Figure 2.4. Schematic illustration of two types of normal fault zones, one in which

offset occurs principally on a single fault (top) and one with closely spaced, multiple

faults (bottom). A thick solid line denotes the exposed fault scarp, and dashed lines

illustrate possible continuation of fault planes at depth. Because of limitations in the

resolution of Sea Beam, these two types of fault zones may not be distinguishable from

one another.
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Figure 2.5. An illustration of the scheme used for identifying a fault zone from

gridded Sea Beam data. A plane is constructed from three adjacent grid points. The

magnitude of the dip angle a is used as a criterion for whether the grid surface element

represents a portion of a fault zone.
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Figure 2.6. Percent of plan-view seafloor area composed of fault zones (dip > 300)

versus distance from the spreading axis: (a) inward-facing and (b) outward-facing fault

zones on the Pacific plate; (c) inward-facing and (d) outward-facing fault zones on the

Cocos plate. Dip calculations were made with gridded Sea Beam data. The data have

been grouped into 5-km-wide bins parallel to the spreading axis. Because of limited

coverage, the results beyond 30 km are more uncertain than those closer to the axis and

are plotted as dotted lines. Distance from the axis can be converted to age by the rule that

1 My corresponds to approximately 55 km.
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Figure 2.7. Rose diagram of the strike directions of fault zones, obtained from gridded

bathymetry in swath A (Figure 2.3) using the grid element method noted in Figure 2.5.

The dominant strike direction is parallel to the rise axis.
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Figure 2.8. An illustration of the scheme for identifying and characterizing fault zones

from Sea Beam swath data. (Top) A schematic bathymetric profile obtained by

averaging the beams perpendicular to the spreading direction. (Bottom) Slopes (filled

circles) calculated from the bathymetric profile and classified into five bins (greater than

200, between 10* and 20*, between -10* and 100, between -20* and -10*, and less than -

200). A running window operation is performed with 6 windows, each 25 m along track.

A fault zone is considered to be present when the absolute magnitude of the dip in a

window exceeds 200, and the edge of the zone to have been passed when 75% of the

slope values in the running window have an absolute magnitude of dip less than 104.
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Figure 2.9. Two examples of fault zones identified from Sea Beam swath data (tracks

A and G). Shown here are traces of only 13 of the 16 beams, because there often are no

seafloor returns in outer beams. For each plot, crosses beneath the trace denote the

apparent heave and throw of fault zones as determined in Figure 2.8. The top and bottom

rows of crosses represent positive and negative polarities of fault-zone dip direction. The

position of the spreading axis is indicated by the arrows.
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Figure 2.10. Schematic illustration of the effects of mass wasting. (a) The heave and

throw are the horizontal and vertical components, respectively, of displacement on a

single normal fault. (b) Despite no further fault movement, mass wasting can cause the

apparent heave to become greater than the heave of the original fault. On the other hand,

the apparent throw will be reduced because of deposition at the base of the fault zone.
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Figure 2.11. Schematic illustration of the effects of sedimentation. (a) In the case

where sediment accumulation occurs in the form of a uniform drape, heave and throw

will replicate true heave and throw. (b) However, if there is remobilization of sediment

from topographic highs to lows, it will reduce the apparent throw. Apparent heave may

be increased.
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Figure 2.12. Percent of plan-view seafloor area (within a 5-km-wide isochron bins)

composed of fault zones (dip > 300) versus distance from the spreading axis, but without

the data from tracks K and L (Figure 2.3): (a) inward-facing and (b) outward-facing fault

zones on the Pacific plate; (c) inward-facing and (d) outward-facing fault zones on the

Cocos plate. The removal of data from tracks K and L does not significantly affect the

pattern of increasing fault-zone area with distance from the spreading axis observed in

Figure 2.6.



Plan-View Area of Fault Zones Excluding K & L from Gridded Data

(a) Inward-facing fault zones on Pacific plate
101 -

50
Distance from axis (km)

(b) Inward-facing fault zones on Cocos plate
101 1

100

(c) Outward-facing fault zones on Pacific plate
101

0 50
Distance from axis (km)

50
Distance from axis (km)

100

(d) Outward-facing fault zones on Cocos plate

O'-
0100 50

Distance from axis (km)
100

(Figure 2.12)



Figure 2.13. The total apparent throw of fault zones within successive 10-km-wide

isochron bins versus distance from the EPR axis. Calculations were based on Sea Beam

swath data. The solid line is based on all fault zones within each 10-km-wide isochron

bin. The dashed line is based only on fault zones that comprise the top quartile by throw

(Figure 2.14). This upper quartile accounts for more than half of the total throw for all

fault zones. The results are normalized by the number of swaths contributing to each bin.

Again, due to limited coverage, the results beyond 35 km are plotted as dotted lines (note

that we have 4-5 tracks covering each side of the rise axis out to 35 km from the axis).



Total Throw of Fault Zones within 10-km-wide Bins
- I I I I I I I -

900'-

800-

700-

600-

500-

400-

300-

200-

100-

IIi
Ij

I -

-20 0
Distance from

20
axis (km)

40 60

(Figure 2.13)

1000

I
I

0

0

-60 -40

............



Figure 2.14. The distribution of fault zones by apparent throw. Fault zones with small

apparent throw show the highest frequency of occurrence. The upper quartile of fault

zones corresponds to apparent throws greater than 45 m.
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Figure 2.15. The total apparent throw of fault zones within 10-km-wide isochron bins

versus distance from the EPR axis with data from tracks K and L excluded. The results

beyond 35 km are plotted as dotted lines.
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Figure 2.16. The average apparent throw of fault zones within 10-km-wide isochron

bins versus distance from the EPR axis. The results beyond 35 km are plotted as dotted

lines.
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Figure 2.17. Variation in distance from the spreading axis to the first large-offset fault

zone (apparent throw greater than 20 in), coded by profile (Figure 2.3). The EPR axis is

shown as a dashed line.
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Figure 2.18. Two models of the temperature distribution at a fast-spreading mid-ocean

ridge. (a) Isotherms (in *C) for the thermal model of Lin and Parmentier [1989], which

include the effects of lithospheric thickening on mantle flow, the latent heat of magmatic

solidification at the ridge axis, and hydrothermal circulation in the crust. In this

particular model, the Nusselt number in a permeable layer of 6 km thickness is 10 and the

spreading half-rate is 50 mm/yr. The dashed line represents the base of the crust at a

depth of 6 km, and material at a temperature less than 400*C is shown as shaded. (b) The

near-axis thermal model of Wilson et al. [1988] for a slab spreading at a constant velocity

(61 mm/yr spreading half-rate) from a narrow, continuously intruding, vertical dike. The

lightly shaded area represents material at a temperature of 1150*C, and upper crust at

temperatures less than 400*C is shown by darker shading. Plus and minus symbols

indicate discrete sources and sinks of heat used as input to the model.
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(b) Wilson et al.
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Figure 2.19. Schematic diagram showing two different stress regimes predicted for

passive mantle flow, drawn from modeling results of Chen and Morgan [1990a, b]: (a)

fast-spreading mid-ocean ridges (spreading half-rate greater than 35 mm/yr), and (b)

slow-spreading (spreading half-rate less than 35 mm/yr). In case (b), the shear stress (r)

induced by mantle flow is maximized at the axis and decays rapidly with increasing

distance (x). In case (a), however, due to higher temperature and lower viscosity beneath

the rise axis, a zone of decoupling (shown by the shaded area) develops and the shear

stress is reduced significantly in the axial region. -rc represents the magnitude of the

critical shear stress for frictional failure, and x, is the distance from the axis at which r =

ic. The variation in lithosphere thickness is greater at a slow-spreading than a fast-

spreading ridge.
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Figure 2.20. Horizontal velocity of the seafloor, according to models of Chen and

Morgan [1990b], for three spreading half-rates: (a) 10 mm/yr, (b) 30 mm/yr, and (c) 60

mm/yr. The solid curves represent the results with a mantle viscosity that is stress- and

temperature-dependent, while the dashed curves are based on a uniform-viscosity mantle.

Numerals 1, 2, and 3 represent three cases L = 20, 50, and 80 km, respectively, where L

is the location beyond which horizontal velocity of the seafloor equals the plate velocity.

For a uniform-viscosity fluid mantle, the flow depends critically on the choice of L.

However, for a temperature-dependent nonlinear mantle rheology, the solutions are

independent of the boundary conditions.
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Figure 2.21. Schematic diagram illustrating stress associated with gravitational

spreading of an upper crustal layer resting on a sloping detachment. Dashed lines denote

the shape of the crustal layer prior to gravitational spreading. (a) In a case where the top

is pinned, the upper part of the slope will experience extensional stress while the lower

part will be under compression. (b) If the top is free to slide, stress arising from

gravitational spreading will be compressional throughout and will increase in magnitude

downslope.
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Chapter 3

Mechanisms for Near-Ridge Normal Faulting
at Fast-Spreading Mid-Ocean Ridges

Introduction

Normal faults are nearly ubiquitous along mid-ocean ridges. Such faults not only

provide constraints on the state of stress and mechanical properties of the oceanic crust,

but they are also a primary structural component of abyssal hills, the most common

landform on the surface of the Earth. Despite their widespread occurrence, the causes of

near-ridge faulting at fast-spreading mid-ocean ridges are not well understood. One

reason for this lack of understanding is the intrinsically complex nature of faulting. For

instance, laboratory experiments on rock specimens suggest that the path of fracture

propagation is more likely to be determined by material inhomogeneities or preexisting

zones of weaknesses than by the directions of principal stresses, and that the onset of

fracture propagation is also affected by processes that occur within the zone of plasticity

that develops at the tip of a fracture [e.g., Atkinson, 1987]. In addition to the inherent

complexity of faulting, the fact that normal faulting at fast-spreading ridges generally

produces small features further compounds efforts to map and characterize these features.

Despite great improvements during the last decade in our capability to map large areas of
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seafloor accurately, it is still difficult to detect normal fault scarps and measure their

relief with certainty at fast-spreading ridges.

Although it is difficult to predict the formation of individual faults in a tectonic

setting, in situations where a number of faults have formed under similar material and

stress conditions, the characteristics of such a group of faults can often be explained by

simple principles. One such principle is based on the premise that faulting occurs when

differential stress exceeds the critical fracture strength of the material and, once the

material is fractured, a frictional law (also known as Byerlee's law) governs continued

displacement along the fracture plane. Given this principle, one useful approach in trying

to understand the formation of normal faults is to model the near-ridge stress and strain

fields that arise under candidate tectonic forces and compare model predictions to the

observed pattern of normal faulting.

Detailed investigations of the morphology of the East Pacific Rise (EPR) have

provided a number of observational constraints that a stress-strain model of a fast-

spreading ridge must address. One constraint is the distance to the first appearance of

large-offset normal faults, which generally is between 2 and 10 km from the ridge axis

[Lonsdale, 1977; Choukroune et al., 1984; Macdonald and Luyendyk, 1985; Bicknell et

al., 1987; Carbotte and Macdonald, 1994]. Another observational constraint that

remains to be resolved by a stress-strain model is the possibility of further slip on a

normal fault after it has formed. There are at least two different views on this issue.

According to Macdonald and Luyendyk [ 1985], Choukroune et al. [1984], and Bicknell et

al. [1987], most of the active faulting at the EPR is confined to a narrow zone extending

no more than 5-10 km from the axis. An alternative view for the continued development

of normal fault zones to distances of at least 30 km from the axis is motivated by the

evidence described in Chapter 2.

Any explanation regarding continued normal faulting activity at large distances from

the axis must also be consistent with the body of evidence from near-ridge earthquakes.

114



Investigations of large near-ridge earthquakes in lithosphere 3-35 My in age have found

that normal faulting mechanisms are common, but waveform inversions indicate that

most such normal faulting events have centroid depths beneath the crust, whereas near-

ridge events with centroid depths of less than 6 km typically have thrust or reverse

faulting mechanisms [Bergman and Solomon, 1984; Wiens and Stein, 1984]. At present,

however, the relationship between large near-ridge earthquakes, plausibly attributable to

thermoelastic stress associated with plate cooling [Bergman and Solomon, 1984; Bratt et

al., 1985], and the active tectonic zone of the EPR is not clear.

Although no formal assessment has been performed to determine the principal

sources of tectonic stress in the lithosphere of a young fast-spreading ridge, sources

generally thought to be important include shear stress exerted at the base of the

lithosphere by mantle flow [Chen and Morgan, 1990a, b], buoyancy of low-density

material beneath the spreading axis [Madsen et al., 1984], gravitational spreading off the

axial topographic high [Lister, 1975; Dahlen, 1981], and differential cooling of the

lithosphere [Bratt et al., 1985; Haxby and Parmentier, 1988]. However, there are several

difficulties with these previous models as explanations for the initiation and development

of normal faulting near the axis of the EPR. For one, previous models of buoyancy,

gravitational spreading, and differential cooling all predict that axis of greatest

compressional tectonic stress within the shallow crust is normal to the ridge. Although

mantle-flow-induced shear stress gives rise to extensional stress at fast-spreading ridges,

because of the likelihood of a low-viscosity region in the uppermost asthenosphere, such

extensional stress is not likely to be large enough to cause brittle failure [Chen and

Morgan, 1990a, b].

Another difficulty with previous models is that they generally lack sufficient detail to

predict the specific characteristics of near-ridge stress and strain fields. For instance, the

state of stress of a near-ridge region can be strongly affected by a variation with depth of

the mechanical conditions at the spreading axis. However, the axial boundary condition
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generally adopted in previous models has been either zero shear stress or zero

displacement with no depth variation [e.g., Chen and Morgan, 1990a, b]. Also, because

these models were aimed at explaining features of relatively large scale or examining

processes averaged over a relatively long time (> several thousand years), the near-ridge

lithosphere was idealized either as a uniformly thick plate overlying an inviscid fluid

[e.g., Madsen et al., 1984], in a state of local isostatic equilibrium [e.g., Dahlen, 1981], or

as a plate with a stress-free base defined by a half-space conductive cooling model [e.g.,

Haxby and Parmentier, 1988].

This study examines the near-ridge stress and strain fields at a fast-spreading ridge

caused by the separate and combined effects of (1) the buoyancy of low-density material

within the crust and (2) the gravitational spreading of a mechanically strong upper crust

over an underlying substrate. The model uses a boundary element method (BEM) based

on linear elastostatic theory, and explicit consideration is given to a range of possible

heterogeneities in mechanical properties The resulting stress fields are compared with

the observed pattern of normal faulting at the EPR as a step toward understanding the

processes of the initiation and development of normal faulting at fast-spreading ridges.

Model Assumptions

One of the primary difficulties in applying a mechanical model for the investigation

of ocean ridge tectonics is the representation of material properties. From studies of

crustal deformation [e.g., Forsyth, 1980], earthquake sources [e.g., Chen and Molnar,

1983], and rock mechanics [e.g., Ashby and Verrall, 1977], we know that the mechanical

properties of rocks depend on composition and temperature as well as the stress

magnitude and strain rate. Figure 3.1 is a schematic diagram of rheological stratification

that may be expected in a relatively cold or low-stress regime versus that in a hot or high-
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stress regime. It illustrates that, while the upper crust can be modeled as linear elastic

medium, the lower crust and perhaps all of the upper mantle may be modeled as

viscoelastic or viscous media, since nonlinear mechanisms such as ductile flow may

dominate the mode of deformation in those regions. While the strength of some regions

near ridges may be well represented simply as a function of depth as shown in Figure 3.1,

the distribution of material strength near the ridge axis may be more complex because of

additional factors such as the presence of melt. Also, the reference state of stress is

uncertain near the ridge axis, since a variety of forces may act on a variety of length and

time scales.

When trying to explain tectonic features in the shallow crust, it is worthwhile to see if

the simple assumption of linear elasticity is adequate. The BEM can accommodate

compositional changes and structural heterogeneity in a linear elastic model to some

extent by dividing the modeling region into a number of subregions of uniform

properties. In general, for linear problems, the BEM is more convenient and yields more

accurate results than finite difference or finite element methods. For instance, the BEM

reduces the dimension of the problem by one, i.e., a volume integration can be reduced to

a surface integration and a surface integration to an integration along a path (see

Appendices A, B and C for an extensive discussion of these subjects).

The accuracy of the calculated stress and strain fields are only as good as the degree

to which the structure of the mid-ocean ridge is represented by our models. Thanks to

numerous investigations of the structure of the EPR carried out over the last decade, a

much more realistic model can now be developed than was heretofore possible for the

structure of fast-spreading ridges. For instance, seismic experiments on the EPR near

9"N [Detrick et al., 1987; Vera et al., 1990; Toomey et al., 1990, 1994; Wilcock et al.,

1992, 1995; Harding et al., 1993; Kent et al., 1993a, b] suggest a structure in which the

upper crust near the rise axis consists of a thin lid overlying a small magma lens of

extremely low seismic velocity and a surrounding zone of low melt volume which
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extends approximately 5 km from the rise axis (Figure 3.2). In this study, we incorporate

these features in our models and, through suitable parameterization, we seek the set of

model parameters that best explains the observed patterns of normal faulting.

Boundary Element Models

This section describes the boundary element models used to investigate stress

resulting from the buoyancy of a crustal magma chamber and the gravitational spreading

of a relatively strong upper crust over an underlying substrate. A two-dimensional cross-

section of the mid-ocean ridge is taken as the basis of our models, and linear elastostatic

and plane-strain assumptions are made throughout this study. As mentioned earlier, the

BEM can accommodate changes in material properties through a division of the modeling

region into several homogeneous subregions. Three special interface conditions explored

for boundaries between different subregions, including (1) an internal-spring interface,

used to understand the effect of rise-axis mechanical strength; (2) a tangential spring,

used to model the ease with which the mechanically strong upper crust can slide over an

underlying substrate; and (3) a sliding interface at the base of the mechanically strong

upper crust, used to understand the effects of the presence of mid-crustal zones of high

melt concentration. In this study, we used the Boundary Element Analysis SYstem

(BEASY), a code developed by Computational Mechanics, Inc. One unique feature of

BEASY when compared with other boundary element codes is that it allows for the

prescription of body forces over an entire region or any subregion. This capability of

BEASY makes it possible to model phenomena such as buoyancy and gravitational

spreading.
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Buoyancy Model

The configuration of the buoyancy model is based on constraints provided by recent

seismic experiments [Detrick et al., 1987; Toomey et al, 1990; 1994; Vera et al., 1990;

Wilcock et al., 1992, 1995], which characterize the crustal structure near the rise axis of a

fast-spreading ridge (Figure 3.2). These studies consistently point toward a low-velocity

volume in the shallow to middle crust. The mid-ocean ridge is therefore divided into five

subregions of different properties in our model: the mechanically strong upper crust, the

weak lower crust, the axial magma chamber (AMC), the low-velocity volume (LVV) that

surrounds the AMC, and the upper mantle (Figure 3.3). Both the AMC and the LVV act

as potential sources of buoyancy. The modeling region extends 30 km from the axis on

both sides. The mechanically strong portion of the crust thickens as it moves away from

the rise axis. We assume that all the subregions are fully bounded except for the upper

mantle that extends downward as an infinite half-space.

The mechanically strong upper crust is defined as that portion of the crust at

temperatures less than 400*C, which is the approximate elastic blocking temperature

[Turcotte, 1993], that is, the temperature below which crustal rock has long-term

mechanical strength [Chen and Molnar, 1983]. To determine the position of the 4004C

isotherm, we extended the thermal model of Wilson et al. [1988] to distances greater than

10 km (see Chapter 5 for a detailed discussion of the thermal model).

The general shape of each subregion of our buoyancy model agrees with the shape of

the different zones defined in the composite magma chamber model of Sinton and

Detrick [1992]. However, because our model is simplified, there are minor differences

from seismic models, such as that of Vera et al. [1990]. For example, in the model of

Vera et al. [1990] (Figure 3.2), the P-wave velocity varies significantly with depth in the

crust above the AMC. In particular, a large change in P-wave velocity, from 2.5 to 5.0

km/sec, occurs within the uppermost 300 m on axis and 500 m off axis. This depth
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interval is interpreted as a layer of extrusive basalts. In our model, such vertical changes

in the material properties of the upper crust are ignored in order to keep the model as

simple as possible and because the boundary element technique is generally not well

suited to incorporating regions of high aspect ratios. Also, in the seismic velocity

models, the region of extremely low-velocity (< 2 km/sec), interpreted as a region of

significant magma fraction, is actually very small (Figure 3.2). Sinton and Detrick

[1992] refer to this region as a magma lens to distinguish it from a surrounding region of

lower magma concentration, the crystalline mush. The AMC in our buoyancy model

includes both the magma lens and the zone of crystalline mush. The AMC is modeled in

cross-section as circular body with a radius of 1 km. According to seismic reflection

profiles along the northern EPR [Detrick et al., 1987], the depth to the top of the magma

lens varies, but on average it is located at about 1.6 km below the seafloor. The LVV in

our buoyancy model extends laterally to approximately 5 km from the rise axis. The

interface between the LVV and the upper crust is 2 km in half width. We later consider a

case where this interface is 5 km in half width.

Determining the appropriate elastic strength values of those subregions that lie below

the upper crust involves a rather large uncertainty. Even for the upper crust there is

considerable discrepancy between the estimates of Young's modulus from laboratory

experiments and those from studies of long-term crustal deformation. Laboratory

measurements indicate that Young's modulus for oceanic basalt and gabbro ranges from

50 to 70 GPa [e.g., Jaeger and Cook, 1979]. On the other hand, the effective Young's

modulus used in crustal deformation studies is generally at most 50-70% of these values

[Kirby, 1983]. In some modeling studies, the effective Young's moduli were even lower.

For instance, King and Ellis [1990] had to reduce the effective elastic thickness of the

crust by a factor of 4 from the observed seismogenic thickness to match the observed

deformation in the case of a high-angle normal faulting of an elastic upper crust overlying
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an inviscid lower crust, which is equivalent to the reduction of Young's modulus by a

factor of 64 from given by laboratory measurement.

In this study, we first estimate the dynamic modulus of the each subregion from the

seismic velocity structure. The dynamic Young's modulus ED can be obtained from the

relationship

ED 1- 2v
GD = D "P = V 1 p (3.1)

2(1 + v) 2 (1 - v)

where GD is the dynamic shear modulus, V, is average P-wave velocity, p is the density,

and v is Poisson's ratio. Table 3.1 summarizes the values of parameters used for

estimating the dynamic moduli of the subregions. With the dynamic moduli of the

subregions as a reference, we then uniformly lower the strength of those subregions

below the mechanically strong upper crust. Since the compositional difference between

the crust and mantle can play an important role, we also consider cases where the strength

of the upper mantle is much higher or much lower than that given by the uniform

reduction of dynamic modulus. Poisson's ratios of 0.28 and 0.32 are assumed for the

upper and lower crust, respectively [Hyndman, 1979]. Using 4.0 km/sec as the S-wave

velocity of the upper mantle beneath the EPR [Zhang and Tanimoto, 1992] and 8 km/sec

as the P-wave velocity, we estimate 0.32 as the Poisson's ratio for the upper mantle. For

the LVV, we also use a Poisson's ratio of 0.32, which is consistent with that determined

by Bratt and Solomon [1984] for the region between 1.2 and 3.7 km depth beneath the

axis of the EPR at 1 120' N. While a Poisson's ratio of 0.5 may seem appropriate for a

region of high melt concentration such as a magma lens, we assumed 0.41 as the

Poisson's ratio for the AMC for two reasons. First, the AMC in our model includes not

only the magma lens but also the surrounding crystalline mush, which probably has a

much lesser melt fraction than the magma lens. Second, a Poisson's ratio of 0.5 would

121



result in zero elastic strength under the assumption of linear elasticity, so that even a

small stress within the AMC would give rise to unbounded strain.

We assumed density contrasts of 300 and 100 kg/m3 for the AMC and LVV,

respectively. These density contrasts are consistent with the assumption that the AMC

and LVV provide the necessary buoyant forces to balance isostatically the increase in the

thickness of layer 2 with distance from the EPR axis near 9430'N [Christeson et al.,

1994]. A density contrast of 300 kg/m 3 for the AMC is also consistent with that

estimated from the local short-wavelength gravity low if the causative mass anomaly is a

cylindrical body approximately 1 km in radius, 10 km in length, and buried 1.25 km

beneath the seafloor [see Chapter 5].

In boundary element analysis, boundary conditions are imposed by pairs of stress or

displacement or by combinations of stress and displacement in the normal and tangential

directions for each element. The relationships between those quantities are imposed at

the interface between two subregions. To avoid rigid-body motion of the whole region, it

is important that at least one displacement condition be imposed in each orthogonal

direction. Since the upper mantle is modeled as a semi-infinite region, zero vertical

displacement in the far-field is implicitly assumed. We also assume zero displacement in

the horizontal direction at the far left (x = -30 km) and far right (x = 30 km) side of the

upper crust (Figure 3.3). The length of our modeling region is sufficient so that details of

the manner in which these boundary conditions are imposed do not affect the results near

the rise axis. The seafloor is prescribed as a stress-free surface. Except along those

interfaces where special interface conditions are prescribed, the interface conditions

between subregions are required to satisfy continuous stress and displacement in both

normal and tangential directions, i.e., as if there were no physical discontinuity except for

changes in material properties across the interfaces.

As shown in Figure 3.3, boundary elements are spaced more densely near the rise

axis. Elements are spaced every 250 m along the seafloor within 10 km of the rise axis
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but only every 500 m at distances greater than 10 km from the rise axis. The resulting

stress and strain fields are thus more accurate near the axis.

Gravitational Spreading Model

Many elements of the gravitational spreading model are similar to those of the

buoyancy model. However, the gravitational spreading model has only the mechanically

strong upper crust, which is defined in the same manner as in the buoyancy model. In

our models, the mechanically strong crust thickens less rapidly within 10 km of the axis

than beyond this distance (Figure 3.4).

There is a problem with modeling gravitational spreading as a mechanically strong

crust overlying a mechanically weak substrate as in the case of buoyancy. Because the

upper crust thickens with distance from the axis, a greater vertical pressure will be

applied to the underlying substrate with increasing distance from the axis. Such a

pressure may unevenly deform the prescribed interface between the upper crust and

underlying substrate, unless one assumes an unrealistically high modulus for the

underlying substrate. To circumvent this problem, we assumed no normal displacement

at the base of the mechanically strong crust in our gravitational spreading model (or,

equivalently, that the substrate is infinitely rigid). The resistance that the underlying

substrate provides to the upper crust (or the ease with which the upper crust can slide

over the underlying substrate) is parameterized by the stiffness of tangential springs that

connect the base of the upper crust to the underlying substrate. Although it is unclear

how values of spring stiffness in this case relate to material properties such as Young's

modulus or viscosity, we can still examine qualitatively the stress field arising from

gravitational spreading.
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In our model, gravitational spreading can occur because the upper crust is resting on a

sloping surface of an underlying substrate, presumably weaker than the upper crust, and

because the upper crust itself has an axial uplift. To examine the significance of the axial

uplift, we shall consider the amount of axial uplift as a variable. As with the buoyancy

model, we assume zero displacement in the horizontal direction at the far left (x = -30

km) and far right (x = 30 km) sides of the upper crust to avoid rigid-body motion. We

assume 2700 kg/m 3 as the density of the upper crust. Aside from the gravitational body

force provided by this layer, a 2.5-km column of water exerts additional weight on the

lithosphere. Thus, a pressure of 25 MPa is assumed to act on the seafloor. As with the

buoyancy model, the boundary elements are spaced more densely over the axial region

(Figure 3.4).

Special Interface Conditions

The mechanical strength of the rise axis may differ depending on whether the

shallowest zone of axial intrusion is solidified or molten (Figure 3.5a). By modeling the

rise axis as an interface between the two sides of the mechanically strong upper crust

bound together by pairs of internal springs in normal and tangential directions, one can

examine systematically how rise-axis strength affects the stress field. Then the strength

of the rise axis, that is, the ease with which the two plates can be pulled apart, can be

represented by the stiffnesses of these springs (Figure 3.5b).

The internal spring conditions can be expressed as

Ti = ki (ui - ui) (3.2)
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where Til is the traction in the ith direction acting on one side of the upper crust, kiis the

spring stiffness in the ith direction, and the displacements uji and ua represent the

displacements of the two sides of the upper crust.

The above equation also describes the tangential spring interface condition that we

used along the base of the upper crust in the gravitational spreading model. In this case,

the tangential displacement corresponding to the substrate is taken to be zero.

There are two important advantages in considering the axial dike zone as pairs of

internal springs rather than as a separate subregion. One advantage is that considering

the axial dike zone as an interface with springs reduces the number of parameters. For

instance, even if one assumes that the subregion has a Poisson's ratio of 0.28 as in other

subregions and that the depth extent of the subregion is known, one still has to explore

two other parameters, the width and the Young's modulus of the subregion, in contrast to

a single parameter, internal spring stiffness, required in a spring-type model. The other

advantage, as mentioned earlier, is that the boundary element method is generally not

suitable for handling regions with high aspect ratios such as a dike zone.

Fortunately, one can generally relate the internal spring stiffness to the width and

material strength of the axial dike zone. This relationship can be expressed as

k Ed (3.3)
W

where k is the internal spring stiffness, Ed is the Young's modulus of the axial dike region,

and W, is the width of the axial dike region. Appendix D provides a comparison of two

approaches, an internal-spring approach and a separate-subregion approach for the simple

case of a dike.

A second type of special interface conditions is a sliding interface condition, for

which only normal stress and normal displacements are continuous across the border

between two subregions (Figure 3.5c). This condition is useful for modeling stress and
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strain in areas where solid and liquid come into contact. In this study, we use a sliding

interface to understand how the presence of a zone of highly concentrated melt such as a

magma lens (Figure 3.5a) may affect the stress and strain in the upper crust.

Model Results

The buoyancy and gravitational spreading models contain several variables that have

significant geological implications and can affect the stress and strain fields near the

surface. For the buoyancy model, these include the elastic moduli of the subregions, the

mechanical strength of the rise axis, the source of buoyancy, the magnitude of the

buoyancy force, and the interface conditions between the mechanically strong upper crust

and underlying subregions. For the gravitational spreading model, the strength of the rise

axis and the interface condition between the mechanically strong upper crust and the

underlying substrate are the important variables. In this section, we explore these

variables systematically by prescribing different values to one or more variables while

fixing the rest and examining the resulting stress and strain fields.

Buoyancy Model

For the study of the effect of buoyancy, we shall consider the following sets of

material strengths of the subregions (Table 3.2). Set I represents a case where the

Young's moduli of the subregions equal the dynamic Young's moduli. Set II and III are

cases in which the strengths of the subregions below the mechanically strong crust are

uniformly reduced from their dynamic strengths by factors of 10 and 100, respectively.

We also consider cases in which the reduction in material strength of the upper mantle
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differs from that of other subregions below the upper crust (Table 3.3). Set Ila and IIa,

for example, represent cases where the upper mantle is reduced by a factor half that of the

lower crust. The cases where the upper mantle is 10 times weaker than the lower crust

are represented as sets Ilb and IlIb. In this study, we limit the strength reductions to a

factor of 1000. Although the boundary element method can accommodate large strength

contrasts among subregions, too large a strength contrast was found to produce numerical

errors in the results. To consider situations with very large strength contrasts (e.g., a

mechanically strong upper crust underlain by an extremely weak substrate), it is often

beneficial to model the weak side of the interface as a stress-free surface.

Variations in the Strength of the Rise Axis

The mechanical strength of the rise axis appears to be one of the most important

factors that affect the stress field within the upper crust. We examine two extreme cases,

one where both sides of the upper crust are connected at the axis as if there were no

physical boundary across the axis, and another where zero stiffness was prescribed for the

internal springs at the axis. In the latter case, the walls of the rise axis act almost as

stress-free surfaces. For convenience, we shall refer to the former case as a "strong axis"

and the latter case as a "weak axis." Figures 3.6 and 3.7 show the differential stresses for

strength set I, and sets II and III, respectively. The results show that the stress fields for

the strong and weak axis cases differ near the axis. In the cases of a strong axis, the

maximum differential stresses occur on the rise axis (Figure 3.6a). The basic pattern of

stress is the same for all strong-axis cases, and thus we shall not show results for other

strength sets. In contrast, for the cases of a weak axis, the maximum differential stress

occurs off axis (Figures 3.6b, and 3.7a and b). The principal stress orientations and the

distance from the axis of maximum differential stress differ depending on the strengths of
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the underlying subregions. For strength set I, for instance, the horizontal stress at the

point of maximum surface differential stress is extensional (Figure 3.6b), whereas for

strength sets II and III, the highest surface differential stresses occur over broad zones

farther off-axis in which the horizontal stresses are compressional (Figure 3.7a and b).

One can infer the type of faulting from these stress fields. In particular, the stress

fields resulting from strong axis cases are not consistent with the observed pattern of

normal faulting at fast-spreading ridges because they predict a maximum stress too close

to the rise axis. For some cases of a weak axis, however, the occurrence of a zone of

large horizontal extensional stress off-axis as in Figure 3.6b may explain the development

of normal faulting off-axis. Further examination is warranted to explore this possibility.

Factors Controlling the Stress Regime

To see whether a variation in the width of the interface between the upper crust and

the LVV might change the stress field in the upper crust, we modified the buoyancy

model so that this interface is 5 km in half width. We assume that the total buoyancy

force is the same as in the previous models. The differential stresses for this case are

shown in Figures 3.8a and b for strength sets I and II, respectively. Overall, the

differential stress fields for 2- and 5-km-interface half widths do not appear to differ

much, except that surface extensional stresses occur over a broader area for the 5-km half

width.

A useful way to compare stress fields is to look at the horizontal stress ao, 1 at the

surface (Figure 3.9). For strength sets I and H, cases with both 2-km and 5-km interface

half widths develop an off-axis zone of extensional (positive) or. In the case of the 5-km

half width, this zone is broader (set I) and the magnitude of extensional stress is greater

(set II) than for a 2-km half width. Therefore, the width of the interface between the
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mechanically strong crust and the LVV appears to be one of the factors controlling the

characteristics of the off-axis zone of normal faulting.

Next, we examined how a variation in the thickness of the mechanically strong upper

crust affects the stress field. For a weak axis with a 5-km interface half width between

the upper crust and the LVV, we increased the thickness of the upper crust uniformly at

increments of 250 m. The resulting surface horizontal stresses are shown in Figures

3.10a and 3.10b for strength sets I and II, respectively. The figures show that the

magnitude of extensional stress decreases with an increase in the thickness of the upper

crust. Therefore, a thin upper crust is more likely to develop normal faults off-axis than a

thick one. In addition, there appears to be some difference between the two strength sets

in the variation in the distance from the axis of maximum surface extensional stress with

increasing upper crustal thickness. This difference is discussed later in this section.

To examine how a variation in the material strength of the upper crust affects the

stress field, we lowered the mechanical strength of the upper crust. We considered two

cases of a weak axis with a 5-km interface half width: one with a Young's modulus of 10

GPa for the upper crust and one with a modulus of 5 GPa. For the subregions below the

upper crust, we assumed strength set II for the former case and strength set III for the

latter case. From the resulting horizontal stresses at the surface (Figure 3.11), we

conclude that an off-axis zone of extensional stress is more likely to occur for an upper

crust that is mechanically weak than for one that is strong.

Thus far we have examined the stress field only for two extreme types of rise axis,

weak and strong. For a given set of strengths and a given half width of the interface

between the upper crust and the LVV, we need to determine the spring stiffness where

the transition occurs in near-axial stress field from that of a strong-axis, where the

maximum differential stress occurs on-axis, to that of a weak-axis, where the maximum

differential stress occurs off-axis. Knowledge of the spring stiffness corresponding to

such a transition constrains the width or material strength of the axial dike zone.
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Figure 3.12 shows the surface horizontal stress for different spring stiffness values

applied along the axis, for cases with a 5-km interface half width between the LVV and

the upper crust and strength set II. The transition between strong-axis and weak-axis

behavior occurs at a stiffness of about 5 MPa/m. We found that the transition generally

occurred at about the same stiffness for other strength sets as long as the strength of the

upper crust remained at 53 GPa. This result leads us to conclude the transition in near-

axial stress field from strong-axis to weak-axis behavior appears to be governed primarily

by the material strength of the upper crust.

Factors Controlling the Distance to Maximum Off-Axis Extension

For those weak axis cases in which extensional stresses develop off-axis, it is

important to determine those factors that control the distance to the point of maximum

extensional surface stress. From our earlier analysis, we already know that one such

factor is the width of the interface between the upper crust and the LVV. In general, as

the width of the interface between the upper crust and the LVV increases, the distance

from the axis to the maximum extensional surface stress also increases (Figure 3.9).

Another factor that may determine the distance to the maximum extensional stress is the

vertical extent of the axial weak zone. For example, theoretical models of tension cracks

in a semi-infinite solid suggest that the vertical length of the cracks is an important factor

that determines the distance to which stress is relieved [Lachenbruch, 1961]. From the

previous examples of a 5-km interface half width, we can examine the horizontal stress at

the surface as a function of the thickness of the upper crust (Figure 3.10). For strength

set I, the figure shows that the distance from the axis to the maximum extensional stress

at the surface increases with thickening upper crust or, equivalently, with an increase in

the vertical extent of the axial weak zone (Figure 3.10a). For strength set II, on the other
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hand, increasing the thickness of the upper crust does not increase the distance to the

maximum extensional surface stress (Figure 3.10b). The reason that we obtain results

similar to those for a semi-infinite solid only for strength set I is probably because its

upper crust and underlying subregions have the more modest contrast in material strength

among subregions than set II.

Variations in the Strength of the Upper Mantle

In our model, the buoyancy force is balanced by the tractions applied by surrounding

to the boundaries of the LVV. Therefore, for a given density contrast, the total vertical

traction will be the same regardless of the material strength. On the other hand, the

distribution of vertical tractions may differ with respect to the material strengths of the

surrounding subregions. For example, if the lower crust or the upper mantle is relatively

strong, it will be difficult to deform those regions and thus less traction will be applied to

the upper crust. For a weak lower crust or upper mantle, on the other hand, the opposite

will be true. Figure 3.13a and b illustrate the vertical traction T, along the boundaries of

the LVV for strong and weak axes, respectively, for different strength sets. Again, in all

cases, the sum of all vertical tractions along the LVV and AMC is uniform. However, a

reduction in the strength of the lower crust and upper mantle allows a greater fraction of

the total vertical traction to be applied to the upper crust. The reason that a large positive

vertical traction occurs at the axis for a weak-axis condition (Figure 3.13b) can be

attributed to the fact that the LVV is least constrained just below the weak axis.

Since the difference in the composition of crustal and upper mantle materials can

produce a large difference in strength, we need to examine how the relative strength of

the upper mantle affects the stress field in the upper crust. The horizontal surface stress

and the vertical traction along the LVV are shown in Figures 3.14a and b, respectively,
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for strength sets I1a, Ib, IIIa, and IIlb. For a fixed set of material strengths of the crustal

subregions, a weak upper mantle is generally more likely to develop a zone of extension

off-axis than a strong upper mantle (Figure 3.14a). This can be explained by the fact that

a weak upper mantle applies more traction to the upper crust than a strong one (Figure

3.14b).

Variations in Axial Uplift

The axial uplift produced by low-density volumes within the crust was examined for

various sets of material strengths (Figure 3.15). The magnitude of the axial uplift show a

large dependence on the strengths of the subregions. For example, for the same

buoyancy force, strength set Ia produces the least axial uplift (-10 m), and set IIIb

produces the largest axial uplift (-270 m).

We also examined a case where the AMC alone acts as source of buoyancy and

compared the axial uplift with a case where both the AMC and LVV act as sources of

buoyancy. The results show that the axial uplift caused by the AMC alone is small, less

than 5 m or 10% of that caused by the AMC and LVV combined for strength sets I and II.

Also, the differential stresses produced by the buoyancy of the AMC appear to be too

small to cause significant frictional failure in the upper crust.

Effects of Adding a Sliding Interface

We have thus far assumed that stress and displacement in both the normal and

tangential directions are continuous across interfaces between subregions. However, if a

zone of highly concentrated melt is present within the sources of buoyancy, there may be

a discontinuity in tangential stress and displacement across the interface between that
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region and other regions. Here we examine how a sliding interface affects stress and

strain due to buoyancy near the axis. First, we assumed that the upper half of the

interface between the AMC and the LVV acts as a sliding interface. The resulting

differential stress fields show that the case of a sliding interface produces less extensional

stress in the axial region than without a sliding interface; however, the difference is small.

Next, we assumed that the full length of contact between the upper crust and the LVV

acts as a sliding interface. Figure 3.16 shows the differential stress and the directions of

principal stresses for a 2-km and 5-km interface half width. The case with no sliding

interface is also shown for comparison. The figure shows that the amount of stress will

generally be reduced over a sliding interface. Therefore, the addition of a sliding

interface to a weak axis makes failure less likely to occur.

Gravitational Spreading Model

In our gravitational spreading model, the interaction between the mechanically strong

upper crust and the underlying substrate is modeled by tangential springs at the base of

the upper crust. A greater stiffness means that it is harder for the upper crust to slide over

the underlying substrate. Unlike previous cases where the rise axis is modeled as a set of

internal springs, the relationship between the spring stiffness and the Young's modulus of

the substrate is not straightforward. We found, however, that the stress and strain fields

are became similar to those for a fixed base with no tangential displacement when the

spring stiffness reachs 108 Pa/m. In this study, we consider four spring stiffnesses: 102,

104, 106, and 108 Pa/m.
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Strength of the Rise Axis

For gravitational spreading as well as for the buoyancy model, the maximum

differential stress develops on axis in the case of a strong axis and off-axis in the case of a

weak axis. In this study, we examined at what spring stiffness of the rise axis does the

stress field change from strong-axis to weak-axis in character. As with the buoyancy

model, we found that the transition occurs at an axial spring stiffness of approximately 5

MPa/m.

Variation in the Stiffness of Tangential Springs

We examined the surface horizontal stress for the four tangential spring stiffnesses

(Figure 3.17) for both strong and weak axes. For a spring stiffness of 10' Pa/m, there is

virtually no difference in the stress field between a strong and a weak axis. A small

extensional stress develops off axis over the region where the base of the upper crust

shows the largest depth gradient. Since we assumed no horizontal displacement at 30 km

distance, a zone of compressional stress occurs beyond the zone extension. Such a

variation in the surface horizontal stress tends to diminish as we increase the material

strength of the upper crust. With a reduction in the spring stiffness from 108 Pa/m, the

stress field starts to differentiate between strong- and weak-axis cases. For a strong axis,

a reduction in the tangential spring stiffness causes a greater extensional stress at the axis.

For weak axis cases, a large extensional stress develops at 10 km from the axis for a

spring stiffness of 106 Pa/m. A further reduction in the tangential spring stiffness

diminishes the amplitude of the off-axis extensional stress, and beyond about 10 km

distance the horizontal stress becomes increasingly compressive with greater axial

distance.
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Effect of Axial Uplift

We have thus far considered situations where there is no axial uplift at the surface and

all the spreading is caused by the sloping base of the upper crust. We need to examine

how important the axial uplift is to the total stress field. To do so, we modified the shape

of the upper crust such that there is 200 m of axial uplift in addition to the sloping base.

The resulting stress field can be compared to that obtained without axial uplift. Figure

3.18 shows the comparison of two cases for both strong and weak axes. There is only a

small difference in the stress field between the two cases. Therefore, axial uplift is not a

major source of stress in gravitational spreading.

Discussion

The two most important characteristics of normal faulting that need to be addressed

by a stress model of a fast-spreading mid-ocean ridge are the off-axial initiation of

normal faulting, which generally occurs at 2-12 km distance, and the continued

development of normal fault zones to distances at least 30 km from the axis. As we noted

in Chapter 2 and earlier in this chapter, previous models of sources of stress and strain

along fast-spreading ridges provide little insight on the explanation of such patterns of

normal faulting. Unlike previous models of plate-wide stress and strain fields, our

buoyancy and gravitational spreading models focus on regional stress and strain fields

produced by processes and structure near the ridge axis. We incorporated constraints

provided by recent seismic investigations of the EPR near 9*30'N and set up the models

so that they can handle a variety of mechanical and material conditions. This section

summarizes the results of our modeling and compares them with the observed pattern of

normal faulting. In particular, we hypothesize that buoyancy may contribute to the
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initiation of normal faulting, while gravitational spreading may explain the continued

development of normal fault zones. We also discuss how the boundary condition at the

rise axis might affect other sources of stress, including the thermal stress from plate

cooling and the stress induced by mantle flow. Finally, on the basis of the results of our

modeling and other studies, a new model of faulting at fast-spreading ridges is presented.

Among several factors that could affect the pattern of stress in near-ridge oceanic

lithosphere, the mechanical strength of the rise axis appears to be the most important

factor. The results of buoyancy and gravitational spreading modeling consistently show

that for a strong axis a zone of extension is centered on the axis. On the other hand, if the

rise axis is weak, since it cannot support large stresses, the maximum differential stress at

the surface due to buoyancy and gravitational spreading occurs off-axis. The argument

that a strong axis would develop extensional stress on-axis can be easily foreseen from a

consideration of a continuous plate under vertical loading from the base or a thickening

plate that is extended in the horizontal direction by a far-field stress. In the former case,

the loading will cause the region above the loading point to deform such that the upper

half of the plate is extended while the lower half is compressed; and in the latter case,

because the plate is thinnest at the axis, the greatest concentration of stress will occur at

the axis. This leads us to conclude that for a strong axis normal faulting will initiate on-

axis rather than off-axis.

At fast-spreading ridges, there may be temporal variations in the strength of the axis

arising as a result of different phases in the evolution of an axial dike zone, with a strong

axis corresponding to a solidified stage and a weak axis to a molten stage. In our models,

the transition from strong to weak axis occurs when the stiffness of the spring used to

model the rise axis is approximately 5 MPa/m for an upper crust with a Young's modulus

of 53 GPa. On the basis of the relationship between the width of the dike, its Young's

modulus, and the spring stiffness of the axis, we can estimate the width of the axial

injection zone or its Young's modulus relative to normal upper crust in order for the rise
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axis to be considered weak. For example, for two cases of dike zone width of 10 and 100

m, the strength of such a zone has to be at least 200 and 20 times less than that of normal

upper crust, respectively. The width of the axial summit caldera may provide a constraint

on the width of such an active dike zone. According to Haymon et al. [1991], the width

of axial summit caldera ranges from 40-150 m along the axis of the EPR.

Buoyancy

For a weak rise axis under a buoyancy force, the type of stress that occurs near the

surface depends on the structure and material properties of the mid-ocean ridge.

However, since the material properties of mid-ocean ridge are not well known and

difficult to represent by elastic moduli, in this study, we considered a range of possible

variations in moduli among model subregions. For a weak axis and relatively strong

subregions below the upper crust, we found that the near-axial stress field is analogous to

that of a pressurized vertical crack in a semi-infinite solid [Lachenbruch, 1961] in that a

zone develops around the axis where stress is generally relieved. As with the case of a

pressurized vertical crack, the vertical extent of the weak axis is a crucial factor

determining the size of the area of stress relief and thus the distance from the axis to the

maximum surface extensional stress. The reason that this case resembles that of a

pressurized vertical crack is understandable, considering the fact that the subregions

beneath the upper crust are relatively strong, and thus the whole region may behave as a

semi-infinite solid. However, a weak axis with relatively strong subregions below the

upper crust may not be representative of fast-spreading ridges over the time scale of most

geologic deformation. One consequence of having a high modulus LVV is the

development of a zone of stress concentration at the lower tip of the weak axial injection

zone.
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For a weak axis and relatively weak subregions below the upper crust, a number of

factors control whether a zone of extensional stress will develop or not, and if so, the

stress magnitude and the locus of such a zone. Without a knowledge of some of these

factors, such as the material properties, it is difficult to determine which mechanism will

dominate the process of normal faulting. For a given buoyancy force, a zone of

extensional stress is more likely to develop if the upper crust is thin or weak than if it is

thick or strong. Therefore, the flexural rigidity of the upper crust appears to be one of the

parameters that determines if normal faulting will develop off-axis or not.

Another important factor is the way in which traction is applied to the upper crust by

the buoyancy sources. In the models of Madsen et al. [1984] and Wang and Cochran

[1993], by assuming that the lithosphere is underlain by a region of inviscid fluid, the

buoyancy force was simply considered as a normal traction applied along the base of the

lithosphere. This is conceptually different from the way we have modeled buoyancy. In

our case, buoyancy forces are modeled as body forces in the source regions and therefore

can exert shear as well as normal tractions along the base of the upper crust as the source

regions themselves deform not only vertically but also laterally.

For those cases with a weak axis where a zone of extensional stress develops off-axis,

a greater buoyancy force will increase the size of this extensional zone and thus promote

the development of normal faulting off-axis. Another way to increase the buoyancy force

applied to the upper crust is by lowering the strength of the underlying subregions.

However, simply lowering the strength of the subregions below the upper crust will not

guarantee that a greater extensional stress will develop off-axis. This is because as one

reduces the strength of the LVV, the shear traction that the LVV exerts at the base of the

upper crust is also reduced. In our buoyancy model, this shear traction provides the

necessary mechanism for extension in the upper crust. This effect was demonstrated

earlier; we showed that a systematic reduction in the strengths of the subregions

underlying the upper crust leads to greater axial uplift (Figure 3.15a) but also results in
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the development of a greater compressional stress off-axis (Figures 3.6 and 3.7). One

way to promote the development of normal faulting off-axis would be to have a relatively

strong LVV while having a relatively weak upper mantle. A weak mantle will allow a

greater fraction of total buoyancy to be applied to the upper crust, and the strong LVV

will allow a greater shear traction to be applied along the base of the upper crust.

However, such conditions may not be realistic, for the reasons discussed below. Another

way to facilitate the development of normal faulting off-axis is to have a wide interface

between the LVV and the upper crust. In this study, we considered two configurations of

the LVV, one where the interface is 2-km in half width and the other where it is 5-km in

half width. For a given set of material properties for the subregions underlying the upper

crust and a given magnitude of the buoyancy force, the 5-km half width allows more

shear traction to be applied directly along the base of the upper crust than the 2-km half

width and thus increases the likelihood of normal faulting (Figure 3.9).

Thus far we have assumed that displacements and tractions in both the normal and

tangential directions are continuous across the interfaces between the buoyancy sources

and surrounding subregions. However, a recent seismic investigation by Kent et al.

[1993a] suggests that the AMC reflector may not be the roof top of the AMC, but instead

the path of melt migration just below an impermeable upper crustal layer. If so, it may

not be valid to assume that tangential displacements and tractions are continuous across

this interface. Our results show that adding a sliding interface between the upper crust

and the LVV, for a weak rise axis, virtually eliminates stress within upper crust above the

sliding interface. Although extensional stresses do develop in the upper crust beyond the

sliding interface, the magnitude of those stresses are small relative to those in cases

without the sliding interface. Nonetheless, we cannot preclude the possibility that off-

axial development of normal faulting may be controlled by the dimensions of the path of

melt migration within the crust.
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Based on our discussion thus far, we have developed three possible mechanisms for

normal faulting to initiate off-axis due to sources of buoyancy within the crust (Figure

3.19). However, the extensional stresses resulting from buoyancy forces, for reasonable

material parameters, do not extend far enough from the axis to explain the continued

development of normal fault zones. In Chapter 2, we noted that the midpoint between the

nearest large offset normal fault zones on either side of the axis follows the inferred axis

of magmatism rather than large-scale bathymetry. We examine each of the three

mechanisms to see if it is consistent with the observed distribution of normal fault zones

along the EPR.

For cases involving strong subregions beneath the upper crust (Figure 3.19, top), an

offset in the buoyancy source produces a greater magnitude of extensional stress on the

same side of the upper crust, but the distance from the bathymetric axis to the peak

extensional stress remains virtually unchanged, and thus would not explain the observed

variation in the distance to the nearest large-offset normal fault zone along axis. This

may be understandable considering the earlier argument that the vertical extent of the

weak axial zone controls the size of the area of stress relief for strong subregions. For

cases with weak subregions beneath the upper crust (Figure 3.19, middle) or with a

sliding interface (Figure 3.19, bottom), on the other hand, the distance to the peak

extensional stress is asymmetric in a manner consistent with the observed pattern of

normal fault zones along the EPR.

Gravitational Spreading

For a strong axis, reduction of the tangential spring stiffness at the base of the upper

crust results in a greater extensional stress at the axis (Figure 3.17a). In general, the

magnitude of such stress diminishes with distance from the axis and eventually becomes
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compressional. Obviously, the total extent of the zone of extension at the surface may

have an important influence on the width of the zone of normal faulting. However,

according to our analysis, the width of such a zone appears to be controlled by the

configuration of the base of the upper crust and the boundary condition at the far ends of

the modeling region. For example, because we assume no horizontal displacement at the

ends of our model (i.e., at x = ± 30 km), the transition from horizontal extension to

compression at the surface in most cases occurs halfway along the total length of the

modeled region. Because of such a dependence of horizontal stress on the length of the

modeling region, a direct comparison between the distal end of the zone of extension at

the surface and the distance of normal fault activity is not meaningful.

Two distinct stress fields result from weak-axis cases. In cases where the base of the

upper crust has extremely low stiffness because the upper crust is allowed to move

virtually freely in the horizontal direction, the horizontal stress is predominantly

compressional and increases in magnitude with distance from the axis. This type of

stress field is thus similar to that obtained by Dahlen [1981] using an isostatic model of

the lithosphere. For an upper crust whose base deepens with distance from the axis,

surface extensional stresses are nowhere predicted. With increasing stiffness at the base

of the upper crust, however, a zone of extensional stress develops in the near-axis region.

The stress fields are virtually indistinguishable between weak- and strong-axis cases

except for the region very near the axis. Therefore, as with strong-axis cases, the shape

of the base of the mechanically strong upper crust and the boundary condition at the far

end of the modeling region determine the general stress field. For a moderate stiffness,

both weak and strong axes can account for continued fault activity.
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Along-Axis Variability

Mid-ocean ridges at all spreading rates are segmented into individual spreading cells

bounded by ridge-axis offsets. A segment of the mid-ocean ridge may undergo cycles of

active and inactive phases of magmatism or extension. During such a cycle, the strength

of the rise axis and the boundary conditions at the base of the upper crust can change,

allowing the stress field in the upper crust to vary as well.

An active phase of magmatism may be characterized as a stage in which the rise axis

is mechanically weak compared with other parts of the crust (Figure 3.20). When the

magma chamber may is replenished by hot magma, a sequence of dike intrusions and

surface eruptions may follow. The buoyancy force that the magma chamber exerts on the

overlying upper crust is then at its maximum. The place where normal faulting is most

likely to occur is then predicted by our models to be on an off-axis region (for example,

between 2 and 10 km from the axis). Furthermore, if a zone with a high concentration of

melt is present at the top of AMC, it will allow the upper crust to slide and thus the

thickness-averaged component of extensional stress to be relieved to a greater extent in

the region near the axis. In contrast, when the supply of magma diminishes in the magma

chamber, the frequency of eruptions will lessen and the shallow structure of the

neovolcanic zone may become comparatively cool and strong. During this phase,

faulting due to buoyancy could develop on-axis. However, the chances of failure on-axis

during this phase may decrease if the magnitude of buoyancy force decreases or if the

magma chamber retreats deeper into the crust.

Once normal faults that initiated near the axis are transported far from the axis, the

buoyancy of the axial magma chamber and surrounding low-velocity volume is no longer

able to drive further activity on these faults. With increasing distance from the axis, the

local boundary condition at the axis is expected to become less important. Thus, sources

such as gravitational spreading, plate cooling, and mantle-induced stress must play more
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important roles in the continued slip on normal faults beyond the zone of initial fault

formation (Figure 3.20). At present, however, it is unclear which of the above

mechanism is the dominant source of continued fault activity.

The argument that the rise axis possesses some strength does not contradict the

evidence from near-ridge earthquakes. Studies of near-ridge earthquake have suggested

that the source mechanism of earthquakes in 3-35-My-old lithosphere is consistent with

thermoelastic stress arising from a weak axis under plate cooling [Bergman and Solomon,

1984; Bratt et al., 1985]. Figure 3.21 shows two situtations where there could be

characteristic stress field as a result of plate cooling (i.e., compressional stress at the top

of the lithosphere and extensional stress at mid to bottom of the lithosphere). Obviously,

one is to have a weak axis (Figure 3.21a). However, if there exists a finite width plate

boundary zone, where most of the deformation takes place, then the plate outside this

zone can still act in the same way as if the axis was weak even if the rise axis has

significant strength (Figure 3.21b). For instance, consider an extensional stress applied in

the horizontal direction by sources outside this zone of active tectonic deformation. In

response to such stress, deformation will probably occur by normal faulting throughout

this zone rather than only at the rise axis itself.

An important element of our model that we may be able to test is that the initiation of

normal faulting by buoyancy should occur preferentially at portions of the ridge axis

where independent geological evidenc indicates a weak boundary (Figure 3.22). Here the

dotted line represents the portion of the rise axis that is mechanically weak, and the

surrounding shaded area represents an area where stress is generally relieved by the

presence of the weak rise axis, and I and I' denote the initiation of normal faults predicted

for weak and strong rise axes, respectively. If normal faults do form as a result of

buoyancy during a period of a weak rise axis, one could further predict that the normal

faults will appear closer to the rise axis in regions where the rise axis has been most

recently weak.
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This idea can be tested using the results of Sea MARC II side scan sonar survey of

the EPR between 8*30' and 10*N [Carbotte and Macdonald, 1994] (Figure 3.23).

Although there is no direct way to tell which portions of the rise axis have been most

recently weak, we may deduce from the residual gravity anomalies [Chapter 5] that local

gravity lows near 9*21', 9*32', and 9042'N represent regions of high magmatic flux and

therefore places where the rise axis has been recently weakened by volcanic eruptions

(dark shades in Figure 3.23). There appears to be a qualitative correlation between

regions where normal faults occur close to the rise axis and the loci of gravity lows,

which is consistent with our hypothesis.

The continued growth of normal faults beyond the zone of stress relief (denoted as II

and III in Figure 3.22) may depend on a number of factors, such as the effect of

mechanisms such as gravitational spreading, mantle flow-induced stress, and

thermoelastic stress. It appears that the average fault length is greater beyond 10-15 km

from the rise axis than at closer distances (Figure 3.23). Such a pattern would favor the

initiation of new faults, with geometry influenced by the thicker mechanical lithosphere

(Figure 3.20), rather than only continued slip on previously formed faults. A careful

comparison of fault populations versus distance, however, awaits a future, more

quantitative analysis.
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Conclusions

We have examined the stress and strain fields that result from two different types of

sources that we consider to be important at fast-spreading mid-ocean ridges: the

buoyancy forces exerted on the lithosphere by low-density regions in the lower crust, and

gravitational spreading. Recent seismic studies along the northern EPR [Detrick et al,

1987; Vera et al., 1990; Toomey et al., 1990] and thermal models [Wilson et al., 1988]

provide us with an opportunity to constrain the shapes of low density regions and of the

overlying mechanically strong upper crust. We employed boundary element methods to

incorporate buoyancy and gravitational spreading as body forces in a linear elastic

medium, and we determined stress and strain fields for a variety of rise axis conditions.

On the basis of our modeling results, the following conclusions may be drawn:

1. The mechanical strength of the rise axis is the most important factor affecting the

stress field in the upper crust near the axis. If the rise axis is mechanically weak,

buoyancy and gravitational spreading produce a stress field in which a zone of

extensional stress develops off-axis. On the other hand, if the rise axis is mechanically

strong, buoyancy and gravitational spreading produce a stress field in which the zone of

extensional stress is centered on the axis. While buoyancy can explain a consistent

distance at which normal faults initiate off-axis, gravitational spreading can account for

continued activity on normal faults to a greater distance from the axis than can with

buoyancy. The existence of a magma lens can play an important role in reducing the

magnitude of the stress field for a weak rise axis, as the crust above the magma lens can

slide and thus relieve the thickness-averaged extensional stress.

2. For a given set of material strengths and a given magnitude of buoyancy force, the

flexural rigidity of the upper crust plays an important role in determining if a zone of

extension will develop off axis and, if so, the size of that zone. A thin or mechanically
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weak upper crust is more likely to develop a zone of extension than one that is thick or

mechanically strong.

3. A number of factors control the distance from the axis of the maximum surface

extensional stress for a weak-axis case, including the vertical extent of the axial weak

zone and the horizontal extent of the magma chamber and magma lens.

4. The rise axis can be considered as weak locally at sites of recent magmatic activity

but of a finite strength when viewed at a sufficient distance from the axis. The initiation

of normal faulting near a weak axis can be the result of buoyancy, while continued

normal faulting activity farther from the axis may be maintained by an extensional stress

field produced over a wide region by such other tectonic processes as gravitational

spreading, mantle-convective tractions, and lithospheric cooling.
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Values of parameters used to determine dynamic moduli of subregions in

our modeling region.

P-wave velocity Density Poisson's Ratio Young's
(km/s) (kg/m 3) modulus (GPa)

Upper Crust 5 2700 0.28 53

AMC 3.5 2500 0.41 13

LVV 6 2600 0.32 65

Lower Crust 7 2900 0.32 100

Upper Mantle 8 3300 0.32 160
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Table 3.2. Sets of material strengths considered in this study.

Young's Modulus (GPa)

Set I II III

Upper Crust

AMC

LVV

Lower Crust

Upper Mantle

65

100

160

1.3

6.5

0.13

0.65

1.6
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Table 3.3. Sets of material strengths used to study the effect of variations in mantle

strength.

Young's Modulus (GPa)

Set Ila IIb IIla Illb

Upper Crust 53 53 53 53

AMC 1.3 1.3 0.13 0.13

LVV 6.5 6.5 0.65 0.65

Lower Crust 10 1 1

Upper Mantle 80 1.6 8 0.16
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Figure 3.1. Schematic diagram of strength and mode of deformation in oceanic crust

and upper mantle. The upper crust can be modeled as an elastic-brittle medium and thus

a zone where brittle failure can occur. Ductile flow dominates the deformation in the

lower crust. Depending on the temperature and stress, the uppermost part of the mantle

may behave as elastic.
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Figure 3.2. P-wave velocity structure (in km/s) of the EPR derived from expanding-

spread-profile and common-depth-point reflection data [Vera et al., 1990]. Although the

roof of the axial magma chamber appears as a narrow reflector whose total width is only

about 2 km [Detrick et al., 1987; Kent et al., 1993a, b], the seismic low-velocity volume

extends to 5 km from the rise axis. The arrows represent schematically the extent of

hydrothermal circulation near the axis. According to Sinton and Detrick [1992], the low-

velocity zone comprises a narrow, sill-like body of melt 1-2 km below the rise axis that

grades downward into a partially solidified crystal mush zone which is, in turn,

surrounded by a transition zone of solidified but still hot, surrounding rock.
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Figure 3.3. Schematic diagram showing the configuration of the buoyancy model

developed and used in this study. The region of modeling, extending 30 km to each side

of the rise axis, is divided into five subregions: the axial magma chamber (AMC), the

low-velocity volume (LVV), the mechanically strong upper crust, the weak lower crust,

and the upper mantle. In this study, we assume a fixed Young's modulus of 53 GPa for

the upper crust. The Poisson's ratios of the subregions are given in Table 3.1. The axial

magma chamber and the low-velocity volume, lower in density than the lithosphere

because of high temperatures, act as potential sources of buoyancy. To avoid rigid-body

motion of the modeling region, we prescribe zero displacement in the horizontal direction

for three elements at the far end of the upper crust. Elements are prescribed more densely

in the upper crust near the rise axis.
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Figure 3.4. Schematic diagram showing the configuration of the gravitational

spreading model used in this study. The region of modeling extends to 30 km on each

side of the rise axis. The amount of axial uplift is treated as a variable. The elevation

lessens with increasing distance from the axis and becomes zero at approximately 30 km

from the axis. The base of the mechanically strong upper crust is defined in the same

manner as with the buoyancy model. The elevation at the rise axis and the fact that the

upper crust sits on the sloping substrate provide the component of gravitational body

force that drives the lithosphere away from the axis. To avoid rigid-body motion of the

modeling region, we prescribe zero displacement in the horizontal direction for three

elements at the far end of the upper crust. Elements are prescribed more densely in the

upper crust near the rise axis.
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Figure 3.5. (a) Locations of internal spring and sliding interface conditions. In our

models, the axial dike zone is modeled as an internal spring interface and the magma lens

as a sliding interface. (b) and (c) are enlarged illustrations of internal spring and sliding

interface conditions, respectively. The internal spring interface is specified in terms of a

spring stiffness in a given direction. In the case of the sliding interface, the two zones are

free to slip past each other frictionlessly in the tangential direction. Normal stress an and

normal displacement u, are continuous across the interface.
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Figure 3.6. Differential stresses for (a) strong- and (b) weak-axis cases for strength set

I. The two pairs of arrows depict the polarity direction of the two principal stresses; the

relative absolute magnitudes of the principal stress are represented only approximately.

For the strong rise axis case the lithosphere is continuous across the axis, while for the

weak rise axis case the axis has zero internal spring stiffness and thus acts as a stress-free

surface. Both the AMC and the LVV act as sources of buoyancy. The stress fields are

almost identical except in the axial region. In the case of a strong axis, the maximum

differential stress at the surface occurs on-axis. This is true for all other strong-axis

cases. On the other hand, for a weak axis the maximum differential stress occurs off-

axis, approximately 2 km from the axis in this particular case.
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Figure 3.7. Differential stresses for a weak axis (a) for strength set II and (b) for

strength set III. In (a), the surface horizontal stress is extensional within 2-3 km of the

axis, but this stress is of low magnitude. In (b), the surface horizontal stress is

compressional throughout.
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Effect of Low Strengths below Upper Crust
For weak-axis cases
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Figure 3.8. Differential stresses for a weak-axis (a) for strength set I and (b) for

strength set II. In both of these cases, the interface between the LVV and the upper is 5

km in half width, in contrast to the half width of 2 km in the cases shown in Figures 3.6

and 3.7. Therefore, the top plot may be compared with Figure 3.6b and the bottom plot

with Figure 3.7a. Both comparisons show that the zone of extensional stress at the

surface is wider for the greater interface width.
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Figure 3.9. Surface horizontal stresses for cases involving different strength sets and

different half widths of the interface between the LVV and the upper crust. All cases

include a weak axis. Thick lines are used for cases with a 5-km interface half width. For

a given strength set, a broader interface produces a wider zone of extension at the surface

or a greater magnitude of stress in that zone. Also, an increase in the width of the

interface allows the maximum extensional stress at the surface to occur farther from the

axis.
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As Functions of Upper Crust/LVV Contact
Half Width & Strength Sets

For weak-axis cases
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Figure 3.10. Variation in surface horizontal stresses with upper crustal thickness for (a)

strength set I and (b) strength set II. In both cases, we assumed that the rise axis is weak

and the interface between the LVV and the upper crust is 5 km in half width. The

magnitude of extensional stress decreases with increasing upper crustal thickness. For

strength set I, where the contrasts in strength between the upper crust and the underlying

subregions are relatively small, the distance from the axis to the maximum surface

extensional stress increases with upper crustal thickeness. On the other hand, this

distance is virtually constant for strength set II, where contrasts in the strength between

the upper crust and underlying subregions are relatively large.
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As a Function of Upper Crustal Thickness
For 5-km interface half width & strength set=I
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As a Function of Upper Crustal Thickness
For 5-km interface half width & strength set=II
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Figure 3.11. Surface horizontal stress as a function of upper crustal strength. The case

with strength set II and an upper crustal Young's modulus of 53 GPa (solid line) is shown

for reference. This case can be compared with that where the upper crustal Young's

modulus is 10 GPa but underlying subregions have unchanged strengths (dashed line). A

case with strength set III and an upper crustal Young's modulus of 5 GPa (dotted line)

can be compared with the case shown as a thin dotted line in Figure 3.9, where the upper

crustal Young's modulus was 53 GPa but the strengths of underlying subregions were the

same. For a given set of strengths for the underlying subregions and a given magnitude

of the buoyancy force, a zone of extension off-axis is more likely to develop for a weak

than for a strong upper crustal layer.
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As a Function of Upper Crustal Strength
For weak axis & 2-km interface half width
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Figure 3.12. Variations in the surface horizontal stresses as a function of spring

stiffness at the rise axis. For an upper crust with a strength of 53 GPa, the transition from

weak-axis to strong-axis behavior occurs at a spring stiffness of about 5 MPa/m.
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As a Function of Axis Strength
For 5-km interface half width & strength set II
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Figure 3.13. Vertical tractions along the outer boundary of the LVV for (a) strong- and

(b) weak-axis cases, for different strength sets. For the upper half of the plot, negative

values represent compression on the LVV whereas, for the lower half of the plot, they

represent extension of the LVV. For strong-axis cases, the greatest compression occurs

at the axis. However, for weak-axis cases, because the LVV is least constrained at the

axis, a large extension develops near the axis.
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As a Function of Material Strengths
For strong axis & 2-km interface half width
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As a Function of Material Strengths
For weak axis & 2-km interface half width
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Figure 3.14. (a) Surface horizontal stresses and (b) vertical tractions along the LVV for

different relative strengths between crust and upper mantle.
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As a Function of Upper Mantle Strength
For weak axis & 2-km interface half width
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As a Function of Upper Mantle Strength
For weak axis & 2-km interface half width
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Figure 3.15.

IIla, and Ib.

Axial uplift for (a) strength sets I, II, and III, and (b) strength sets Ila, HIb,
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Axial Uplift as a Function of Strengths
For weak-axis cases

(a) Surface Vertical Displacement

Distance from axis
20

(km)

(Figure 3.15a)

60

50 F

-- Strength set=I

- -Strength set=II

Strength set=III

40 F

30 F

20 -

30

ft" I , ,

189



190



Axial Uplift as a Function of Strengths
For weak-axis cases
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Figure 3.16. Surface horizontal stresses for two cases with a sliding interface between

the LVV and the strong upper crust, one where the interface extends 5 km from the axis

and the other 2 km. The case without a sliding interface is shown for comparison. A

sliding interface has the effect of reducing the amount of the stress in the overlying crust

for weak-axis cases.
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Effect of Sliding Interface
For 5-km interface half width & strength set II
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Figure 3.17. Surface horizontal stresses resulting from gravitational spreading as a

function of tangential spring stiffness for (a) a strong axis and (b) a weak axis.
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As a Function of Spring Stiffness at Base
For strong-axis cases
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As a Function of Spring Stiffness at Base
For weak-axis cases
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Figure 3.18. Comparison of surface horizontal stresses for two cases, one where an

axial uplift of 200 m was prescribed and the other where no axial uplift was prescribed.

Both weak- and strong-axis cases are shown.
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With and Without Axial Uplift
For spring stiffness of 10 kPa/m at base
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Figure 3.19. Schematic diagram of three mechanisms by which a zone of normal

faulting can initiate off-axis from the buoyancy of an underlying low-density region. All

three mechanisms require a mechanically weak axis. (a) In the case where the magma

chamber volume is relatively strong, the development of extensional stress off-axis is

similar to that produced by a vertical crack in a semi-infinite solid. A zone develops

around the axis, in which stress is generally relieved. Even for a magma chamber that is

offset from the bathymetric axis, the normal faulting should develop symmetrically with

respect to the axis, because the vertical extent of the axial weak zone is the most

important factor determining the size of the stress-relief volume. (b) For a relatively low-

strength magma chamber, the deformation of the magma chamber itself may provide the

necessary traction at the base of the upper crust for the initiation of off-axis normal

faulting. In this case, the largest vertical displacement along the interface between the

magma chamber and the upper crust may occur just below the weak axis. With vertical

displacement of the weak axis, the upper crust off-axis may be extended horizontally,

which may result in a zone of normal faulting. An offset in the magma chamber can

change the distribution of tractions under the upper crust and thus can affect the distance

from the axis at which normal faulting occurs. (c) If a region of high melt concentration

such as a magma lens is present under the mechanically strong upper crust, it would

allow the upper crust above it to displace freely in the horizontal direction. This would

make extensional stress less likely to develop near the axis. The width of the magma lens

can be a crucial factor determining the distance to off-axis normal faulting.
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Figure 3.20. A schematic diagram illustrating the basic characteristics of faulting

observed at fast-spreading mid-ocean ridges, which can be grouped into three stages of

differing seafloor age: the initiation of normal faulting, which generally occurs 2-12 km

from the axis, continued activity on normal faults to distances of 30 km or more, and the

transformation in the state of stress in the upper lithosphere so that shallow thrust faulting

occurs (ages of 3 My and greater). Shown here is a segment of mid-ocean ridge bounded

by major transform faults, which in turn is composed of smaller segments with

mechanically weak axes. Pairs of parallel lines denote fault zones on the seafloor. The

outward- and inward-facing pairs of arrows depict extensional and compressional states

of stress, respectively. The probable causes of faulting at each stage are also depicted.

At the initiation of normal faulting, the local boundary condition at the axis can be

important. For example, our study has shown that off-axis initiation of normal faulting

can occur only if the rise axis is weak. With increasing distance from the axis, the local

boundary condition becomes less important, and the condition of the ridge as a whole

may govern the continuation of normal faulting. Even though the rise axis may become

weakened by an increase in magmatic activity, if the phase of active magmatism is short

relative to that of inactive magmatism or if the axial region affected by magmatism is

localized, the strength of the rise axis as a whole may be higher than that inferred locally.

In that case, several mechanisms, including gravitational spreading, may favor continued

normal fault activity to a considerable distance from the axis. If deformation is

distributed across a zone several tens of kilometers in half width (i.e., if the plate

boundary zone has a finite width), then from the perspective of the entire plate, the ridge

can be perceived to act as a free surface. This may explain why thermoelastic stress from

plate cooling under a weak-axis assumption is consistent with the observed

characteristics of near-ridge earthquakes.
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Figure 3.21. Two situtations yielding the same characteristic stress field of

compressional stress at the top and extension at the bottom by plate cooling in lithosphere

3-35 My in age [Bratt et al., 1985]: (a) a weak rise axis; and (b) a rise axis with a finite

strength within a zone of distributed deformation extending at least several tens of

kilometers off axis but to ages less than 3 My. Here V and F denote the horizontal

displacement and total force exerted on the young lithosphere by plate cooling beyond 3

My, respectively, and the lithosphere is assumed to overlie an inviscid fluid. In the

former case, all deformation takes place at the axis essentially at the time of generation of

new crust. Thus, the lithosphere may be assumed to be rigid and moving everywhere at

the rate of plate spreading. However, in the latter case, deformation occurs over a finite-

width zone. When viewed from lithosphere older than 3 My, both cases would appear

similar.
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Figure 3.22. Predicted pattern of fault development for a rise axis that is composed of

mechanically strong (shown as solid lines) and weak portions (shown as the dotted line).

The shaded area around the weak rise axis represents an area where stress is generally

relieved by the weak axis. Normal faulting is initiated by a bending moment that arises

from the buoyancy of a low-density magma chamber during a weak-axis condition. Such

a fault, denoted by I, forms close to the rise axis (2-3 km from the axis). If magmatic

activity is cyclic, then portions of rise axis which appear strong may have been weak in

the past. Because normal faults that formed during the weak axis period must have been

transported off-axis by plate motion, such faults (denoted by I') should appear farther

from the axis than in an area which is currently undergoing active magmatism. Farther

off-axis (e.g., > 10-15 km from the axis), the rise axis will be seen by the faults as having

a finite strength and thus will continue to grow (denoted by II and III) provided that there

is an extensional stress field produced by gravitational spreading or another mechanism.
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Figure 3.23. A map of fault distribution derived from Sea MARC II data for the EPR

between 8430'-10*N (after Carbotte and Macdonald [1994]), shown together with local

gravity lows identified from the short-wavelength residual gravity anomaly [Chapter 5].

The local gravity lows, which are centered at 9*21', 9*32', and 9*42'N, are shown as

dark shaded areas. The light shaded area is the 2700 m contour enclosing the rise axis.
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Chapter 4

Crustal Magnetization Anomalies and Segmentation
of the East Pacific Rise, 9'10'-9'50'N

Introduction

Since the establishment of the seafloor spreading theory in the early 1960s, magnetic

surveys have become a standard method for investigating the evolution of tectonic plates.

In the last two decades, along with improvements in our capability to map fine-scale

features on the seafloor, new attention has been given to relatively short (< 10 km)

wavelength magnetic anomalies that lie within a single polarity interval. Investigations of

such short-wavelength magnetic field anomalies at mid-ocean ridges have provided

detailed information on the properties and structure of the upper crust and have played an

important role in transforming the working models of mid-ocean ridges from two-

dimensional, steady-state idealizations into more complex, three-dimensional, time-

dependent representations [e.g., Hey et al., 1980; Sempgrg et al., 1984; Tivey and Johnson,

1987; Gee and Kent, 1994]. Although mid-ocean ridge basalts acquire their magnetic

properties after cooling below their Curie temperatures, a variety of complex processes can

lead to changes in the magnetization intensity and the thickness of the magnetic source

layer. Thus, determining the process responsible for a magnetic anomaly can be difficult.
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Moreover, this difficulty in interpreting magnetic results is compounded by a fundamental

ambiguity of all potential field problems, since the magnetization anomalies that we deduce

from the total magnetic field is a product of the magnetization intensity of the source layer

and its thickness.

Several factors can cause variations in the magnetization intensity of the source rock.

One important factor to consider when examining the magnetization of a young mid-ocean

ridge is hydrothermal alteration or oxidation, whereby, through reaction with seawater,

magnetite and titanomagnetite in basalt are altered to less magnetic hematite and

titanomaghemite. Such changes may be divided into rapid high-temperature hydrothermal

alteration [Thompson and Humphris, 1977; Mottl, 1983; Alt et al., 1986; Johnson and

Pariso, 1987] and gradual low-temperature alteration or weathering, which normally

occurs on rock surfaces during the first few tens of thousands of years following their

emplacement [Irving et al., 1970; Marshall and Cox, 1972; Johnson and Merrill, 1973;

Johnson and Atwater, 1977; Marshall, 1978; Honnorez, 1981]. Fissures and cracks at the

seafloor can also affect the extent of low-temperature hydrothermal alteration, since they

facilitate the penetration of seawater and thus increase the depth to which low-temperature

oxidation can occur. Mineral grain size is another factor that can affect the magnetization

intensity. For instance, dikes are considered to be less magnetic than surface pillow basalts

because they generally have larger grains as a result of slower cooling. Finally, the

composition of ferromagnetic minerals within the source rock can greatly affect the

magnetization intensity. For instance, evolved magmas enriched in Fe and Ti can form

basalts with higher intrinsic magnetization [Vogt and Johnson, 1973; Byerly et al., 1976;

Sinton et al., 1983]. Recent investigations of magnetic anomalies along propagating rift

systems and overlapping spreading centers [e.g., Hey et al., 1980; Sempiri et al., 1984]

have suggested that a smaller magma body, in general, has less chance of becoming well-

mixed and thus is more likely to become highly evolved.
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Variations in the thickness of the magnetic source layer can be caused by a number of

factors. One important factor that can affect the processes of magnetization and

demagnetization is temperature. Understanding the thermal structure can provide

important information on the structure of a magnetic source layer. For example, local

negative magnetic anomalies on or very near ridge axes have been associated with an

anomalous thermal source, such as a hydrothermal vent field [e.g., McGregor and Rona,

1975; McGregor et al., 1977; Wooldridge et al., 1992; Tivey et al., 1993]. The Curie

temperature of unaltered basalt is estimated to be approximately 150-2004C [Carmichael,

1970; Irving et al., 1970; Marshall and Cox, 1972; Marshall, 1978], which is well within

the range of temperatures encountered in hydrothermal discharge zones, so that large heat

sources are potentially capable of erasing the magnetization of oceanic crust. The thickness

of the magnetic extrusive layer can also vary locally through variations in volcanic flux.

This chapter examines measurements of the scalar magnetic field taken near the sea

surface during a cruise on board RIV Thomas Washington to the East Pacific Rise (EPR)

in January-February of 1988. The magnetic survey covered the area between 9*10'N and

9*50'N and 255*27' and 256*02'E (Figure 4.1). The magnetic anomalies are analyzed with

the aim of improving our understanding of the structure and governing processes of this

fast-spreading mid-ocean ridge. In this study, we perform three-dimensional inversions of

the magnetic field anomaly to obtain the distribution of magnetization over of the survey

area as well as two-dimensional inversions to obtain the thickness of the magnetic source

layer along selected profiles. Since seafloor topography can have a significant effect on the

resulting magnetization anomalies, the correction of the contribution for topography is an

important task, especially when examining short-wavelength anomalies. For the three-

dimensional inversions, we assume and that the magnetic source layer is of uniform

thickness. For two-dimensional inversions, we assume that the upper boundary of the

magnetic source layer is the seafloor, and we try to determine the lower boundary that best

satisfies the observed scalar magnetic field.
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Although the source of magnetization of normal oceanic crust is generally considered to

be fairly uniform in thickness, there is a continuing debate on the thickness value (see

Johnson [1979], Banerjee [1984], and Harrison [1987] for detailed discussions of this

issue). Some models define the extrusive layer as the source layer, whereas other models

suggest a significant contribution from deeper intrusive dike and gabbro layers. According

to DSDP 504B results [Smith and Banerjee, 1986] from 5.9-My-old crust, substantial

magnetization was measured from a dike complex at 1000 m depth, although a difference

was noted in the dominant magnetic carrier between the pillow basalt layer (- 500 m

depth) and the dike complex. Miller and Hey [1986] estimated that the thickness of the

magnetic layer at the Galapagos Propagating Rift is 900 m on the basis of a comparison of

inversion results with the magnetization of dredged rock samples [Anderson et al., 1975;

Vogt and de Boer, 1976].

One beneficial approach to resolving the ambiguity in the interpretation of magnetic

results is to use independent observations and models. Fortunately, the section of the EPR

which includes our survey area is one of the most intensively explored sections of a fast-

spreading mid-ocean ridge. Investigations in this area include the determination of seismic

crustal structure [Detrick et al., 1987; Vera et al., 1990; Toomey et al., 1990, 1994;

Christeson et al., 1992, 1994; Wilcock et al., 1992a; Harding et al., 1993; Kent et al.,

1993a, b], near-bottom observations using the ARGO imaging system [Haymon et al.,

1991], geochemical analyses of rock samples obtained with conventional dredges [Batiza

and Niu, 1992] and with a rock corer mounted on submersible [Perfit et al., 1994], and the

determination of microearthquake characteristics [Wilcock et al., 1992b; Hildebrand et al.,

1992]. Therefore, whenever possible, we compare the structures and properties of the

crust inferred from our investigation of the magnetization to those obtained from other

studies such as gravity [Chapter 5] and seismic imaging [Vera et al., 1990; Toomey et al.,

1990, 1994; Harding et al., 1993; Kent et al., 1993a, b] conducted over the same region.
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Survey Area

The magnetic survey area, covering the EPR from 9*10' to 9050'N and 255027' to

256002'E, corresponds to the upper portion of a long segment of the ridge-axis bounded by

two major transform faults: the Clipperton Fracture Zone at 10005'N to the north and the

Siqueiros Fracture Zone at 8*20'N far to the south (Figure 4.1). This portion of the EPR

forms a boundary between the Pacific plate to the west and the Cocos plate to the east.

Directly south of the survey area at 9*03'N lies an overlapping spreading center (OSC)

which has migrated episodically but at an average rate of 52 km/My to the south over the

past 0.7 My [Carbote and Macdonald, 1992]. Numerous deviations from linearity

(devals) of along-axis bathymetry have been identified along this portion of the EPR

[Langmuir et al., 1986; Toomey et al., 1990; Haymon et al., 1991]. Such devals are

thought to represent the topographic expression of variability in magma supply to the ridge

crest. This portion of the EPR shows a slight degree of asymmetrical spreading. The half

spreading rate has been approximately 53 to 55 mm/yr on the Cocos plate and 58 to 59

mm/yr on the Pacific plate during the past 0.7 My [Carbotte and Macdonald, 1992].

Morphologically, the EPR near 9*30'N is a classic example of a fast spreading mid-

ocean ridge; along-strike the ridge axis is fairly straight and continuous, and across-strike it

is characterized by a smooth axial high of approximately 500 m in relief and 20 km in

width (Figure 4.2). However, a closer observation shows some deviations from this

simple description both along-strike and across-strike. First, the height of the rise summit

decreases steadily to the south, from 9050'N to 9010'N, by approximately 50 m. Second,

the cross-axis profile of the ridge broadens to the north. Variations in breadth are larger on

the Pacific plate than on the Cocos plate. To the north of the survey area on the Pacific

plate side lies a series of seamounts known as the Lamont Seamount Chain. Another chain

of seamounts, the Watchstander Seamount Chain, is located to the northeast of our survey
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area but at a greater distance from the axis than the Lamont Seamount Chain. Several

depressions 100-200 m deep are found at the south end of the survey area. These

depressions are long and narrow, and appear to be bounded by pairs of normal faults,

suggesting that they were formed by extension. The depressions and the small highs

which appear between them have been identified as the relicts of overlapping basins and

ridges which became extinct and were transported off-axis as the overlapping spreading

center migrated to the south [Carbotte and Macdonald, 1992].

A critical constraint on the structure of the EPR is provided by multichannel seismic

reflection profiles. A reflection from the top of an axial magma chamber (AMC) was

detected and traced almost continuously along the rise axis [Detrick et al., 1987]. The

presence of an AMC at a fast spreading center is an important element of current geological

models for the formation of oceanic crust. The width of the AMC is quite narrow (< 4-6

km), with the top located 1.2-2.4 km below the seafloor. Although it was thought initially

that the depth to the top of the AMC from the seafloor increases as much as 500 m from

9*50' to 9*10'N in our survey area, after reprocessing the multichannel seismic mflection

data, Kent et al. [1993a] suggested that much of this apparent increase may be due to ship

wandering off the rise crest. In three-dimensional images obtained by travel-time

tomography, the upper crustal structure of the EPR shows pronounced heterogeneity over

distances of a few kilometers [Toomey et al., 1990, 1994]. Much of the variation in the

velocity structure of the upper crust is considered to reflect evolution over the first few tens

of thousands of years of age.

Geochemical analyses of dredged rock samples along the EPR between 5*30' and

14430'N by Langmuir et al. [1986] indicate a relatively high content of MgO along this

portion of the ridge, which has been interpreted as suggesting a high quenching

temperature of the basalts. In a more recent and detailed analysis between 9*17' and

9*42'N, Batiza and Niu [1992] noted an increase in the MgO content and decreases in the

FeO and TiO2 contents by approximately 15% from south to the north in our survey area.
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From the geochemical analysis of closely spaced lava flow near the axis at 9031 'N, Perfit

et al. [1994] suggested that eruptions on this portion of the EPR occur throughout the

crestal region and are not restricted to the axial summit caldera (ASC). A similar

conclusion was reached on the basis of uranium-series dating by Goldstein et al. [1994].

In a recent survey using ARGO Optical/Acoustical Survey System equipped with side-

looking sonar, video, 35-mm and electronic still cameras, Haymon et al. [1991] were able

to map the distribution of hydrothermal vents and sulfide deposits and image the surface

morphology of a narrow axial zone, 40 to 200 m wide, from 9*09' to 9*54'N. Their results

show a systematic variation in both the morphology of the ASC, which is 50-100 m wide

and 10 m deep, and the distribution of hydrothermal vents field along the axis. Between

9009' and 9*27'N, no well-developed ASC or evidence of hydrothermal vents were found.

Extremely fresh, largely unfissured lobate and pillowed lavas were found from 9*13' to

90 17'N. However, between 9*27' and 9*54'N, a well-developed ASC, hydrothermal vents,

and sulfide deposits are all present along-axis. The ASC becomes especially narrow

between 9044' and 9*54'N, which coincides with the location where most of the active

hydrothermal vents were found, and where a volcanic eruption as recent as April of 1991

has been documented [Haymon et al., 1993].

Collection of Data

During a 21-day survey period, we were able to obtain dense coverage of Sea Beam

bathymetric and magnetic data within our survey area. The magnetic data consist of total

scalar magnetic field measurements recorded near the sea surface by a ship-towed proton

precession magnetometer. The magnetic field data, initially sampled every 6 s by the

magnetometer, were averaged to produce observations at one-minute intervals. Except for

the times during which explosives or airguns were fired or instruments were being
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deployed and recovered, the magnetometer was operating continuously. In this study, we

used only data taken on long, straight ship tracks. Magnetic field measurements within 15

minutes of major speed or course changes were removed from the data set, since it takes

some time for the magnetometer to stabilize after changes in course or speed. The

coverage of the magnetic field measurements used in this study is shown in Figure 4.3.

The cumulative duration of measurement is approximately 200 hours, corresponding to

50% of the total time span of the survey. Most of the measurements were taken within the

Brunhes normal epoch, except for four excursions approximately 100 km long that were

made to the east and west from the main survey area to cross the Brunhes/Matuyama

reversal boundary.

Though not as critical as for gravity field analysis or seismic tomography, obtaining

accurate navigation is also important for magnetic field analysis. The navigation for the

magnetic survey was performed using the Global Positioning System (GPS) and

conventional Transit satellites. Although GPS yields much more precise navigation than

Transit satellites, its coverage was limited to 8 hours a day at the time of this survey.

Moreover, even when GPS navigation became available, seismic tomography was given a

higher priority than magnetic and gravity field measurements. Therefore, our initial

navigation contained substantial errors which were manifested by misfits in Sea Beam

bathymetry at expected crossover points.

In this study, we used the reprocessed navigation of Wilcock et al. [1993]. The

renavigation is based on the technique of Nishimura and Forsyth [1988], which minimizes

misfit errors of Sea Beam swaths at track crossing points. According to Wilcock et al.

[1993], the average Sea Beam misfit error was reduced from several kilometers to several

hundreds of meters as a result of their inversion.

Magnetograms from land-based geomagnetic observatories during the period of the

survey, obtained through the World Data Center at Boulder, Colorado, were used to extract

information on low-frequency ionospheric activity. Although proximity to our survey area
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was an important criterion for selecting the land-based stations, not all the stations around

our survey area had useable magnetic field data. In this study, we used digital

magnetograms from stations at Honolulu (HON), Hawaii; Fresno (FRN), California; and

Del Rio (DLR), Texas. The geographic and geomagnetic locations of these observatories

are summarized in Table 4.1.

Reduction of Magnetic Field Data

The presence of background noise can pose a serious problem, especially for magnetic

surveys conducted in near-equatorial regions where the signal-to-noise-ratio is low. This is

because subsequent analysis of the magnetic field anomalies involves downward

continuation, which tends to amplify short-wavelength signals, such as those attributable to

noise, relative to long-wavelength ones. Several sources have been recognized as potential

contributors to background noise, including errors in navigation, ship-induced magnetic

fields, unstable motions of the magnetometer, and ionospheric activity [Miller, 1977]. A

simple way to estimate the background noise level in our magnetic field record is to

calculate the crossover error. The following describes the series of steps that were taken to

reduce the level of noise in our magnetic data.

First, we examined whether renavigation had reduced crossover error. We compared

the crossover errors before and after renavigation. The result showed a slight reduction in

the rms of crossover error from 28.2 to 26.0 nT after the new navigational information was

applied (Figure 4.4a).

Next, we corrected for the magnetic field that arises from ionospheric activity. We

divided the magnetic field that arises from the ionosphere into a diurnal component and a

low-frequency component (periods greater than one day). This distinction was necessary

because the diurnal field corrections were derived from the WDCA/SQ1 global model
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[Campbell et al., 1989], whereas the low-frequency field correction was calculated from

the digital magnetograms gathered from land-based geomagnetic observatories.

The global model of solar quiet day field variation (WDCA/SQ1) is based on a

spherical harmonic analysis of digital magnetograms obtained from a worldwide

distribution of observatories in 1965, a year of sunspot minimum in the 22-year solar-cycle

and with the highest percentage of geomagnetic quiet days (i.e., the activity index, Kp, is

less than 3). This model does not contain a solar-cycle adjustment and includes only a

yearly adjustment of geomagnetic coordinates calculated according to the International

Geomagnetic Reference Field (IGRF). Nevertheless, it is considered to be a fairly accurate

representation for a sunspot-minimum period with reliable predictions of the 24-, 12-, 8-,

and 6-hour period components at mid- and low-latitude regions. Comparison of diurnal

variations predicted by WDCA/SQ1 and magnetic fields observed at the geomagnetic

observatories used in this study showed that the rms discrepancies are less than 10 nT

during normal atmospheric conditions. Figure 4.5 is an illustration of the diurnal variation

in the scalar field predicted for the EPR at 9*30'N on January 25, 1990. The diurnal

variation is approximately 30 nT; most of the activity occurs around local noon. By

subsequently correcting for the diurnal field, we were able to reduce the rms crossover

error to 21.8 nT (Figure 4.4b).

Unlike diurnal variations of a magnetic field, there is no model for predicting low-

frequency variations in the magnetic field because such variations are too irregular. For

land-based stations, low-frequency field variations can be derived simply by averaging 24-

hour-long records of the magnetograms. Figure 4.6 shows the low-frequency field

variations at three land-based stations (Table 4.1). Despite the large distances between

stations, the low-frequency field signals show strong similarities. We assumed that the

low-frequency field variation can be characterized as a long-wavelength signal, and we took

a simple average of the three observed low-frequency field variations as a first-order
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representation of the low-frequency field variation at 9*30'N. After correcting for the low-

frequency field variation, the rms crossover error was reduced to 17.4 nT (Figure 4.4c).

Finally, we examined carefully the residual crossover errors to see if they show a

correlation with the heading direction of the ship. If so, it could mean that there is an

induced magnetic field affecting our measurements, which were taken 200 m behind the

ship. Bullard and Mason [1961] proposed a simple model for correcting for a ship-

induced magnetic field. According to this model, the amplitude of the ship's field is zero at

magnetic poles and maximum at the magnetic equator. Also, the ship's field is represented

as a negative cosine function with respect to the heading direction. With this model, we

estimated the amplitude of the ship's field to be approximately 8.4 nT. After correcting for

this ship effect, the rms crossover error was further reduced to 15.1 nT (Figure 4.4d).

As shown in Figure 4.4, we were able to improve the quality of magnetic data

significantly. Our improvement corresponds to a 70% reduction in the variance of the

crossover error. Considering that the fit of WDCA/SQ1 to data from land-based

geomagnetic observatories was only slightly better than 10 nT, the overall reduction of

crossover error that we achieved appears to be quite remarkable. In magnetic surveys

conducted at on the EPR at 1 1*45'N by Perram and Macdonald [1990], the rms crossover

error was 28-29 nT, even after shifting the field values of individual track lines by a

constant amount to minimize the overall crossover error in a least squares sense [Prince

and Forsyth, 1984]. Carbotte and Macdonald [1992] also report an rms crossover error

of 33 nT in their study of magnetic anomalies of the EPR at 80-10030'N.

Once the background noise from various sources was corrected, the long-wavelength

field variations of the IGRF [IAGA Division I, 1986] were removed from the observed

magnetic field. IGRF provides spherical harmonic coefficients up to degree and order 10,

which is equivalent to a wavelength of approximately 1000 km. Because our survey area

is small, the IGRF correction has a negligible effect, except to reduce all values by a

constant. The reduced magnetic field data were then gridded using a minimum curvature
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scheme [Briggs, 1974] on a 64 by 64 grid with sampling intervals corresponding to 1.16

and 1.0 km in latitude and longitude, respectively. This procedure is analogous to the

bending of a thin elastic sheet by forces at fixed points in such a manner that the

displacement at those points equals the observed values. The resulting magnetic field

anomaly map is shown in Figure 4.7. To minimize boundary edge effects the gridded field

and bathymetric data sets were mirrored along the edges to produce a grid of 128 by 128

for inversion.

The magnetic field anomaly within our survey area shows a notable north-south

variation, with higher anomalies occuring to the north (Figure 4.7). That this trend is real,

and not an artifact of an erroneous reference field, is demonstrable because a similar long-

wavelength variation can also be seen in the magnetic field map of Carbotte and

Macdonald [1992], which covered a much larger area of the EPR (from 8*30' to10040'N

and from 254*30' to 257015'E). Some of the north-south variation in the magnetic field in

our area appears to have been accentuated by the presence of the Lamont Seamount Chain

just to the northwest and overlapping spreading center basins to the south of our survey

area.

Inversion

In this study, we performed two types of inversion: one to invert for the distribution of

magnetization intensity from the observed magnetic field anomaly assuming that the

magnetic source layer has a uniform thickness and that the direction of magnetization is

known, and the other to invert for the thickness of the magnetic source layer from the

observed magnetic field anomaly assuming that both the magnetization intensity and the

direction of magnetization are known. Both cases involve the solution of an integral

equation which can be expressed as
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A (x) = K J(4)-K(x- , ( 1, 2 ) d

(4.1)

where A (x) is the observed magnetic field anomaly at point x, J ( ) is magnetization

intensity at point , K is a kernel defining the shape of the magnetized body and is a

function of the upper boundary (1 ( ) and lower boundary (2 (4) of the source layer. Both

x and 4 are coordinates defined in the horizontal level of observation, and (1 and (2 are

defined in the vertical direction.

There is an important difference between the two types of inversion. As is clear from

equation (4.1), the problem of determining magnetization intensity distribution (J) is linear,

whereas that of determining layer thickness (C) is nonlinear. In the following sections, we

examine the basic characteristics and assumptions made in the course of each inversion

method in detail.

Inversion for Magnetization Intensity

The inversion for magnetization intensity of a magnetic source layer of uniform

thickness that follows the undulations of surface topography was developed by Parker and

Huestis [1974] and later extended to incorporate three-dimensional cases by Macdonald et

al. [1980]. The method is based on a Fourier domain representation of magnetic fields and

a search for the solution that best fits the observed magnetic field in a least squares sense

through Taylor series expansion. It is more efficient and yields more accurate results than

direct matrix inversions such as that employed by Bot [1967].

The forward solution for the magnetic field anomaly resulting from a magnetic source

layer located at depth shows that it inherently involves a bandpass filter, also known as an
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"earth filter," in which the low- and high-wavenumber components are attenuated

[Schouten, 1971; Schouten and McCamy, 1972]. Upon inversion, high and low

wavenumber components are amplified so that, it is common practice to apply a bandpass

filter to the computed magnetization after each iteration to ensure that convergence and

stability are achieved throughout the inversion. In this study, we employed a bandpass

filter in which a higher cutoff wavenumber was set at 2n/4 km-', with cosine tapering

between 2n/4 and 27r/8 km-1, and a lower cutoff wavenumber at 2n/148 km-1, with cosine

tapering between 2/74 and 2n/148 km-'. The higher cutoff wavenumber was set at 2n/4

km- because our measurements were taken near the sea surface, and the inversion will not

resolve wavelengths shorter than the average depth to the seafloor (i.e., approximately 2.8

km). Also, because of the earth filter, a common practice is to choose the lower cutoff

wavelength such that it is less than the shortest dimension of the inversion area. The lower

cutoff wavelength of 148 km corresponds to the horizontal length of our mirrored

inversion area. One consequence of such bandpass filtering is that the resulting solution

will be much smoother than the true magnetization and the long wavelength variations will

be subdued.

A parameter that we need to prescribe is the direction of magnetization of the magnetic

source layer. According to the IGRF [IAGA Division I, 1986], the present-day magnetic

field direction in our survey area corresponds to a declination of 8* and an inclination of

310. However, it is thought that over periods of time in excess of 104 years the average

direction of the Earth's magnetic field is believed to be close to that of an axial, centered

dipole field aligned with the rotation axis. Therefore, we assumed 0* declination and 18*

inclination as the direction of magnetization.

An important factor that one needs to consider when estimating the distribution of

magnetization intensity of a body from a field measurement external to the body is the

existence of an "annihilator," a particular magnetization solution that produces zero

magnetic field anomalies [Parker and Huestis, 1974]. The general solution which satisfies
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the observed magnetic field is nonunique, since it is the sum of an initial magnetization

solution obtained from an inversion of the magnetic field plus an arbitrary amount of the

annihilator. The correct amount of annihilator to be added to the initial solution, however,

can often be deduced from an independent piece of information. One commonly used

technique is to assume that the magnetization intensity is equal but opposite in sign across

reversal boundaries, such as Brunhes/Matuyama boundary. During our survey, we made

four transects across the Brunhes/Matuyama reversal boundary (Figure 4.3). On the basis

of two-dimensional inversions performed along these four ship tracks, we found the

scaling for the annihilator needed to balance the magnetization on the eastern

Brunhes/Matuyama reversal boundary. We used the eastern reversal boundary because the

western reversal boundary appeared to be less well defined, presumably due to large

variations in seafloor topography. Figure 4.8 shows two examples of these inversions. In

the first example (Figure 4.8a-c), we first combined the two long northern tracks (i.e.,

tracks 056 and 066) and then inverted for the magnetization intensity, assuming a 500-m-

thick magnetic source layer. In the second example (Figure 4.8d-f), the result was obtained

after combining the two long southern tracks (i.e., tracks 058 and 068). We will discuss

the choice of magnetic layer thickness later. In our problem, however, the annihilator

solution has a very small variance compared with that of the initial solution, and thus the

addition of annihilator does little to affect changes in the pattern of magnetization anomalies

other than shifting the overall value by a constant amount.

We conducted a simple test to see how closely this magnetization intensity solution

reproduces the observed magnetic field. The rms difference between the observed

bandpass-filtered magnetic field and the recomputed total magnetic field, obtained by a

forward calculation from the magnetization intensity solution, is approximately 4 nT, or

less than 1% of the total variance of the magnetic field.
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Inversion for Magnetic Layer Thickness

The problem of determining the thickness of the magnetic layer is solved iteratively

with successive adjustments to the starting layer model. Since we assume the seafloor to

be the upper boundary (CI) of the magnetic source layer, the problem reduces to that of

determining the lower boundary (Q2). As with the inversion for magnetization intensity,

we assumed that the direction of magnetization corresponds to that of the axial dipole field

of the Earth (i.e., 0* declination and 180 inclination). The resulting solution depends on the

prescribed value of magnetization intensity, since one can not resolve both the intensity and

the thickness from only the observed magnetic field.

The method is in many ways similar to that described by Tanner [1967] for analyzing

gravity anomalies. However, unlike the case of gravity, the pattern of the total scalar

magnetic field varies with the angle between the local magnetic dipole source and the

Earth's field. As a result, even if a discrepancy between the observed and estimated

magnetic fields is found, deciding where to adjust the thickness of the magnetic source

layer can be quite complicated. Fortunately, our survey was conducted near the magnetic

equator, and therefore, we can simply adjust the thickness of the magnetic source layer

directly below the point of discrepancy. To illustrate, consider the oceanic crust as a

horizontal slab whose magnetic lineations strike north-south. Assume that the direction of

magnetization has zero declination. If the seafloor is at the magnetic pole, increasing the

layer thickness locally acts to increase the total magnetic field at the overlying sea surface.

On the other hand, if the seafloor lies at magnetic equator, increasing the layer thickness

locally acts to decrease the total magnetic field. The following describes the steps taken for

the two-dimensional inversion for layer thickness.

First, we gridded the observed magnetic field anomaly and the source layer thickness

into m points equally spaced in a horizontal direction (i.e., A (xi) and (2 (xi), i = 1...m).

We began by taking as the starting model a uniformly thick magnetic source layer that is
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uniformly magnetized. At each step, a comparison is made between the observed

magnetic anomaly and the estimated anomaly for the N-th update of the layered model at

points xi, i = 1...m,

A (xi) - A (xi) (4.2)

The latter term is simply a forward solution for a non-uniform layer, which can be readily

computed using the method of Parker [1972]. If the grid interval, Ax = xp.1 - xp, is

sufficiently larger than the depth to the base of the layer, the difference between the

observed field and the estimated field at a point xp can be reduced by adjusting the lower

interface at that point xp:

CN+1(x) (xp)±A

This process is repeated until a satisfactory fit is achieved between the observed and

estimated fields.

Magnetization Solutions

The three-dimensional solution for magnetization intensity of an upper crustal layer of

uniform thickness is shown in Figure 4.9. In this study, we assumed 500 m as the

thickness of the magnetic source layer. This thickness estimate was chosen on the basis of

the multichannel seismic results from the EPR [Detrick et al., 1987] and thermal models

of Wilson et al. [1988]. In the thermal models of Wilson et al. [1988], point sources and

sinks of heat were used to simulate latent heat release, hydrothermal circulation, and

convection within a magma chamber, and the isotherms were constrained to match
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multichannel seismic results from the EPR [Detrick et al., 1987]. According to those

thermal models, the depth of the 150-200*C isotherms, which correspond to the

approximate Curie temperature of unaltered basalt, ranges from 300 to 600 m beneath the

seafloor near the axis. However, as mentioned earlier, the source and the thickness of

magnetic layer for oceanic crust remain debatable, and therefore it is worthwhile to

examine the consequences of assuming other thickness estimates. Figure 4.10 shows three

profiles of the axial magnetization anomaly obtained by inversions of the full magnetic

anomaly data set under different assumptions for the thickness of the magnetic source layer

(i.e., 500, 750, and 1000 m). Although the total variance of the magnetization anomaly is a

function of the assumed magnetic layer thickness, we found that the basic patterns were

insensitive to layer thickness.

A well-defined magnetization high can be traced along the rise axis throughout most of

the survey area (Figure 4.9). Such an axial magnetization high, often referred to as the

central anomaly magnetic high (CAMH), has been found along many other mid-ocean

ridges [e.g., Klitgord, 1976; Tivey and Johnson, 1987; Gee and Kent, 1994] and is

considered to be the result of the most recent acquisition of permanent magnetization by

fresh basalts.

The axial magnetization high shows considerable along-axis variation, both in its

magnitude and its linearity. In general, the magnitude of the axial magnetization decreases

to the north (Figure 4.10). Several marked reductions in the axial magnetization intensity

occur along the axis at 9*25', 9437', and 9*45'N. These marked changes in the axial

magnetization intensity are often accompanied by an offset in the along-axis linearity. For

example, a major offset in the linearity of the axial magnetization anomaly can be seen at

9*45'N (Figure 4.9); and smaller offsets can be discerned at 9*25' and 9*37'N. We refer

to such offsets as "magnetic devals" to distinguish them from conventional bathymetric

devals. We also compare the center of the axial magnetization high with the bathymetric

axis. Shown in Figure 4.9 by white crosses are the locations of the rise summit
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(bathymetric axis) in our survey area. Although the axis of the axial magnetization high

does not always coincide precisely with this bathymetric axis, the discrepancy does not

appear to be significant, except from 9*42' to 9045'N where the bathymetric axis appears

2-3 km to the west of the axis of the axial magnetization high.

The magnetization anomalies also show several notable features off the rise axis. One

such feature appears to the south of 9*25'N as a series of magnetization highs and lows

occurring off the rise axis. These features have been identified as relict ridges and basins of

an overlapping spreading center by Carbotte and Macdonald [1992]. Some asymmetry in

the magnitude of magnetization with respect to the rise axis is evident to the north of

9'30'N, an area not known to have been influenced by an overlapping spreading center.

Our calculation shows that the average magnetization of the crust of the Cocos plate is

almost twice that of the crust of the Pacific plate between 9*30' and 9*45'N. This lower

magnetization appears to correlate with a lower gravity anomaly seen over the Pacific plate

to the north of 9*30'N [Chapter 5]. We performed simple tests to see if an error in our

estimate of the declination of the magnetization direction may have contributed to the

asymmetry in magnetization anomaly. We varied the assumed declination over the range

± 10* in the inversion and examined the magnetization anomalies resulting from a suite of

inversions. The results showed that the asymmetry in magnetization can not be solely the

result of uncertainty in the assumed magnetization direction.

As noted earlier, a number of processes can cause the thickness of the magnetic source

layer to vary. We performed two-dimensional inversions to examine how much of a

variation in the thickness along axis can explain the observed axial magnetic anomalies.

The inversions were performed using starting models with different magnetization

intensity. Results show that a magnetic layer that thickens to the south, with a minimum

thickness near 9*40'N, would fit the observed axial magnetic field. Figure 4.11 is an

example of a variable-thickness layer solution with a magnetization intensity of 10 A/m.

Although a uniform thickness of 500 m was the starting model for the inversion, results
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indicate that the final solutions are insensitive to the initial thickness. Results for other

magnetization intensities are summarized in Figure 4.12, where the difference in the

magnetic layer thickness between 9440' and 9*15'N serves as a measure of overall

thickness variation. As expected, the variance in the layer thickness increases with

decreasing magnetization intensity.

Discussion

Cause of the Axial Magnetization Anomaly

One of the prominent features in the map of magnetization anomalies (Figure 4.9) is

the along axis variation of the magnetization at the rise axis. An examination of the cause

of the axial magnetization anomaly may reveal new insight into rise processes and

structure. One hypothesis is that the variation of axial magnetization anomaly along the

rise axis represents an along-axis variation in the thickness of the magnetic source layer.

The results of two-dimensional inversion for thickness variation (Figure 4.11) showed that

the magnetic layer has to thicken from 9040' to 90 15'N by 150-400 m depending on the

assumed magnetization intensity (Figure 4.12).

These estimates of the variation in the magnetic layer thickness can be compared with

structural constraints obtained by other methods. One useful constraint may be the

variation in the depth to the AMC along the axis. To make this comparison, however, we

first need to consider a simple model of the mid-ocean ridge in which the thickness of the

magnetic layer at the rise axis is controlled by the depth to the AMC. In such a model, we

can assume that both the top of the AMC and the seafloor represent fixed-temperature

boundaries, and the magnetic layer is simply a region whose temperature is less than the

Curie temperature (150-200*C). We assume that the seafloor is at 0*C. Usselman and
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Hodge [1978] and Sleep [1978] suggested that the zone of partial melt marking the AMC

reflectors may correspond to a temperature of 1185 0C, the temperature at which mid-ocean

ridge basalt melt is 70% solid. For a locally uniform gradient of temperature with depth

above the AMC reflector, a thicker magnetic source layer would be expected in regions

where the AMC lies at greater depth. Detrick et al. [1987] have suggested that the AMC

reflector deepens by approximately 500 m from north to south in our survey area.

Recently, however, Kent et al. [1993a] suggested that this estimate may have been

exaggerated by an error in navigation during the 1987 seismic reflection survey when the

ship wandered off-axis. The amount of any southward increase in the depth to the top of

the AMC reflector is therefore unclear. However, one speculation is that it should be

comparable to the southward increase in the off-axis thickness of layer 2A, which is

approximately 100-200 m [G. M. Kent, personal communication, 1994]. Table 4.2

summarizes the average thicknesses of layer 2A on each side of the rise axis estimated

along three cross-axis common depth point (CDP) seismic reflection lines that transected

our survey area. The locations of these cross-axis CDP lines are shown as white dashed

lines in Figure 4.9. If the depth to the top of the AMC deepens by only 100-200 m, it is

unlikely that the magnetic source layer itself would thicken by more than this amount. If

the magnetic layer does thicken southward by 100-200 m in our survey area, the

magnetization intensity must be at least 25 A/m in order to explain the observed variation

in the axial magnetic field anomaly Although there is no direct measurement of the

magnetization intensity of surface rocks for this portion of the EPR, according to

measurements of magnetic properties of young basalt recovered from other parts of the

EPR [Sempire et al., 1988; H. P. Johnson, personal communication, 1995], a

magnetization intensity of 25 A/m or greater is not uncommon for young mid-ocean ridge

basalts. However, if the temperature gradient above the AMC reflector is indeed uniform,

then an increase in the depth to the top of the AMC of 100-200 m along axis would only

give rise to a 15-30 m increase in the thickness of the magnetic source layer, and the
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magnetization intensity would have to exceed 70 A/m in order to explain the observed

variation in axial anomaly.

Another argument against a variation in the thickness of the magnetic source layer as

the principle cause of the variation in the axial magnetic anomaly derives from estimates of

layer 2A thickness at the axis of the three CDP lines (Figure 4.13). Although the average

thickness of layer 2A is the greatest along CDP line 33 (Table 4.2), much of this difference

is due to a thicker layer 2A off axis. If one compares the thickness at the rise axis, CDP

line 29 shows the greatest thickness among the three profile lines, followed by CDP line 33

and then by CDP line 31 (Figure 4.13). These thicknesses do not correlate with the axial

magnetization at the same locations.

An alternative explanation for the variation in the axial magnetization anomaly is that it

is caused by along-axis variation in magnetization intensity. As a test of this idea, we may

ask whether the observed variations in FeO and TiO2 content in our survey area match the

inferred variations in the magnetization intensity. The measured composition of glasses

found in dredged rock samples at the rise axis indicate that the content of FeO and TiO2

increases to the south from 9 to 11% and 1.2 to 1.9%, respectively, in our survey area

[Batiza and Niu, 1992]. We compared these variations against an empirical relationship

between FeO and TiO2 contents and magnetization intensity of surface rock derived by

Vogt and de Boer [1976] from samples from several mid-ocean ridges (Figure 4.14). The

variation predicted for magnetization intensity from basalt chemistry is consistent with the

inversion solution, but only if we assume a 1-km-thick magnetic source layer. If the

assumed magnetic layer thickness is 500 or 750 m, the predicted variation in magnetization

explains only 36 or 60% of the total variance of axial magnetization intensity, respectively.

Thus, additional causes, such as a variation in the thickness of the magnetic layer or post-

emplacement hydrothermal alteration, are needed to explain the observed magnetic field

completely. For a magnetic source layer less than 700 m thick, such causes can be equally
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or more important than the variation in magnetization caused by the variation in FeO and

TiO2.

In addition to the increase in amplitude to the south, the axial magnetization high

exhibits short-wavelength variability that appears to be related to boundaries or offsets

between the segments of the ASC (Figure 4.15a). On the basis of the distribution of ASCs

[Haymon et al., 1991], the rise axis in our survey area may be divided into four segments

(Figure 4.15b): The first segment is the axial region to the south of the 9*25'N. Although

an ASC exists between 9*21' and 9*25'N, it is very narrow (< 50 m), and the remainder of

the segment is without an ASC. The magnitude of the axial magnetization anomaly is the

highest along this segment. The second segment can be placed between 9*25' and 9*37'N.

The ASCs along this segment are generally the widest, and the magnitude of axial

magnetization anomaly is moderate. The third segment can be defined between 9*37' and

9*43'N, and the fourth segment to the north of 9*43'N. In this fourth segment, ASCs are

present, but again they are narrower than on the second and third segment On the basis of

such correlations between axial magnetization and ASCs, we speculate that a reduction of

the original magnetization intensity in the magnetic source layer by cracks around the

ASCs and the subsequent enhancement of low-temperature oxidation along those cracks

may have played a role in the along-axis variation of magnetization.

The degree of weathering of surface rock is likely to be affected by the development of

an ASC. The faults forming the bounding walls of the ASC may facilitate the penetration

of seawater and thus increase the depth to which low-temperature oxidation can occur. The

permeability of such faults, as well as secondary fissures and cracks, may be most

pronounced at the midpoint of an ASC segment where the ASC typically shows the largest

relief. If so, the greatest degree of weathering may be found at the midpoint of an ASC.

However, if the ASC has also been the locus of repeated volcanic eruptions, the bulk of the

most recently extruded and most magnetic basalts would appear near the midpoint. On the

basis of the correlation between the boundaries of ASCs and the loci of marked decreases
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in axial magnetization (Figure 4.15a), the effect of recent eruptions appears to override any

tendency for enhanced rates of weathering near ASC segment centers.

Implications for the Characteristics of Axial Magma Bodies

It has been argued that the variation in FeO and TiO2 in dredged rock samples and the

corresponding variation in magnetization provide important insight into the characteristics

of the magma bodies from which the rocks of the magnetic source layer were derived.

Basalts originating from highly evolved magma tend to be more enriched in Ti and Fe than

those originating from less evolved magmas [Sinton et al., 1983]. The size of crustal

magma bodies may be a critical factor affecting the degree of magma evolution. This is

because small magma bodies are less prone to mixing and, since mixing can impede

crystallization and fractionation, less mixing will allow the magma to become more

evolved. Previous investigations to the south of our survey area [Sempgrd et al., 1984;

Carbotte and Macdonald, 1992] have found extremely high magnetization near the tips of

the overlapping spreading center at 9*03'N and have interpreted such anomalies as evidence

for magmatic bodies that are small relative to normal sections of the ridge.

We have examined whether the occurrence of a high axial magnetization anomaly in

the south of our survey area can be related to the extremely high magnetization anomalies

near the tips of the OSC at 9*03'N. Since our coverage does not extend to the overlapping

spreading center, we combined our results with those from previous investigations

[Senpir6 et al., 1984; Carbotte and Macdonald, 1992]. We found that the high axial

magnetization anomaly that occurs to the south of 9425'N in our survey area can be traced

farther southward to the tip of an OSC at 9003'N. If, indeed, the high magnetization

anomalies near the tips of the OSC were produced by relatively small magma bodies, the
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northward continuity of the axial magnetization anomaly implies that the axial magma

body has not fully recovered to its normal dimensions until 40 km from the OSC.

Our investigation of gravity anomalies [Chapter 5] may provide additional information

on the cause of the higher axial magnetization to the south. According to our analysis, the

long-wavelength component of the residual gravity anomaly (Figure 5.10) shows a

positive correlation with the axial magnetization anomaly (Figure 4.9, 4.10), i.e., regions of

low residual gravity anomaly coincide with regions where the axis appears as a

magnetization high, and regions of high residual gravity anomaly with regions where the

axis appears as a magnetization low. Although gravity anomalies alone can not resolve the

distribution of anomalous density, the most plausible interpretation of the long-wavelength

component of the residual gravity anomalies is that they represent unmodeled temperature

heterogeneity or variations in melt content [Chapter 5]. Under this interpretation, the lower

residual gravity to the north of our area suggests that the mantle or crust is hotter or has a

greater fraction of retained melt to the north than to the south.

On the other hand, the short-wavelength component of the residual gravity anomaly

along axis reveals a quite different pattern. In our survey area, the short-wavelength

residual gravity anomalies [Chapter 5] along axis are characterized by a series of local

gravity lows which may mark the locations of larger than average crustal magma chambers

or crustal magma chambers with greater melt content. Unlike the long-wavelength

component of the residual gravity anomaly, however, these gravity lows do not show a

systematic variation along axis in terms of their wavelength or amplitude, which suggests

that the size of the largest crustal magma chambers does not vary substantially along axis.

According to Phipps Morgan and Chen [1993], the width of a crustal magma chamber is

limited by hydrothermal cooling. If indeed the sizes of the largest crustal magma

chambers are more or less the constant along the rise axis as in our area, then an enhanced

rate of melt production (due to hotter mantle) would have to be accommodated by an

increased frequency of replenishment of crustal magma chambers. A more frequent
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replenishment of magma will lead to a magma chamber that is better mixed and to the

eruption of basalts that are, on average, less evolved and lower in magnetization intensity.

According to Batiza and Niu [1992], a higher MgO content is observed toward the

north in our survey area, which suggests that the basalts may have been quenched from

higher temperatures. A more frequent replenishment will also enable the crustal magma

chamber to maintain its temperature more effectively than a less frequently replenished

one. Using an empirical relationship obtained from studies of the Kilauea Iid lava lake in

Hawaii [Helz and Thornber, 1987], we estimate a 15*-20*C increase in the quenching

temperature from 9*20' to 9440'N. The distribution of the ASC is also consistent with the

argument that crustal magma chambers are replenished more frequently to the north of

9*25'N. According to Haymon et al. [1991], the ASC is found only to the north of 9*21'N

in our survey area (Figure 4.15b). The presence of an ASC on the rise summit was

originally interpreted as the result of a waxing and waning in the magma supply to the

AMC [Macdonald and Fox, 1988]. If the magma chambers to the north of our survey

area are indeed replenished more frequently than those to the south, it would cause the

magma chamber to wax and wane more often which, in turn, increases the chance of

producing an ASC.

Although we argue, on the basis of short-wavelength residual gravity anomalies along

axis, that the largest crustal magma chambers in our survey area appear to be

approximately uniform in size, it is still possible that magma in the southern part of our

survey area originated from comparatively small sources. The bulk of the lava that is

extruded on the seafloor may, just prior to eruption, lie within only a small section of the

crustal magma chamber, such as the magma lens. Sea surface gravity measurements may

not be able to detect changes along axis in the characteristics of such a late-stage reservoir.

According to Kent et al. [1993a], almost a fourfold increase in the width of the AMC

reflector can be observed between 9*30' and 90 19'N. Kent et al. [1993a, b] argued that the

AMC reflectors may represent migration paths of melt instead of the frozen roofs of
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AMCs, as previously thought. If so, a wider AMC reflector at 90 19'N may mean that the

melt migration path is longer at 9'19'N than at other locations. A longer migration path, in

turn, may have led the melt to become more evolved and thus produce basalts that are

relatively highly magnetized.

Cause of Off-Axis Magnetization Anomalies

The magnetization anomaly maps exhibit several large-amplitude features off the rise

axis. Many of the off-axis features exhibit some degree of asymmetry with respect to the

rise. For instance, to the north of 9*30'N, the average magnetization on the Pacific plate is

lower than on the Cocos plate, whereas to the south of 9*20'N, it is considerably higher on

the Pacific side. To the south of 9425'N on the Pacific plate, the magnetization anomaly is

also characterized by a series of distinctive highs and lows. On the basis of an analysis of

magnetic anomalies obtained over a larger area, Carbotte and Macdonald [1992] showed

that some of these local lows and highs correspond to deformed basins and ridges marking

the path of an OSC which migrated episodically to the south over the last 0.7 My.

Before discussing the exact of cause of short-wavelength features in our magnetization

anomaly map, it is important to address whether they are artifacts caused by combining

data from adjacent north-south ship tracks such that intertrack noise was not adequately

removed. This issue is particularly important because many of these short-wavelength

features in the magnetization map (Figure 4.9) are aligned parallel to the axis. Since our

survey area is near the equator, we need to be cautious because there is a tendency for the

east-west component to become amplified during the inversion. A simple way to check

for this possibility is to compare our three-dimensional inversion solution, which is

obtained using all ship tracks, with the two-dimensional inversion solutions obtained along

east-west tracks that continue out to the Brunhes/Matuyama reversal boundary (see Figure
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4.3 and Figure 4.9). In Figure 4.16, we show comparisons between two-dimensional

inversions and the three-dimensional inversion solution sampled along the same tracks.

There is a strong correlation between the two solutions, confirming that the short-

wavelength features in our magnetization anomaly map are not ship track artifacts.

A number of possibilities may explain such short-wavelength variations in the

magnetization anomaly in our area. These include short geomagnetic reversal events

within the Brunhes epoch [Champion et al., 1988], variations in the magnetic source layer

thickness [Tivey and Johnson, 1993; Gee and Kent, 1994], variations in the paleointensity

of the Earth's field [Valet and Meynadier, 1993; Schneider and Mello, 1994], variations in

the magnetization intensity of the source rock due to variability in the magmatic supply

[Sinton et al., 1983], and variations in the degree of hydrothermal alteration at the rise axis

[Tivey and Johnson, 1987]. To examine whether short reversal events might have caused

the variations in magnetization intensity, we plotted the times of documented short reversal

events at the bottom of Figure 4.16. If short geomagnetic reversals were the cause of

cross-axis variations in the short-wavelength magnetization, they should correlate with the

magnetization anomaly signal on east-west tracks. Figure 4.16 shows that both two-

dimensional and three-dimensional magnetization solutions show symmetry with respect

to the rise axis in their short-wavelength variations. If we take the short-timescale reversal

signal and impose a 1-km-wide Gaussian emplacement filter [Schouten and Denham,

1979], we generate a magnetization anomaly that is similar to the observed magnetization

anomaly (see thick solid lines in Figure 4.17). Thus, while the amplitudes of the off-axis

magnetization anomalies may be quite small, they may represent short reversals within the

Brunhes epoch.

Variation in the paleointensity of the Earth's field is also a viable explanation. We took

the available paleointensity history [Valet and Meynadier, 1993] and subjected it to the

same 1-km-wide Gaussian emplacement filter (see dashed lines in Figure 4.17). While the

resulting profile does not fit the peaks and troughs of the observed magnetization anomaly
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well, the variation of paleointensity of the Earth's field is still a matter of debate [Valet and

Meynadier, 1993; Schneider and Mello, 1994].

Recently, Tivey and Johnson [1993] found from deep-towed magnetometer data that

the thickness of the seismically-defined layer 2A correlates positively with the thickness of

the magnetic source layer on the Endeavour Segment of the northern Juan de Fuca Ridge.

Although there is evidence for a significant increase in the thickness of layer 2A within 1-2

km of the axis in our area [Christeson et al, 1992, 1994; Harding et al., 1993], because our

measurements were taken near the sea surface, the resulting magnetization intensity

anomalies are at too long a wavelength to resolve a change in layer thickness over so short

a scale. However, we can still compare the magnitudes of off-axis magnetization

anomalies with estimates of layer 2A thickness made by Harding et al. [1993] along CDP

seismic reflection profile lines. Comparisons of magnetization anomalies with estimates of

layer 2A thickness along three CDP lines that transected our survey area are shown in

Figure 4.13. On the basis of these three lines, there does not appear to be a positive

correlation between the magnetization anomaly and layer 2A thickness. For CDP line 29,

which transects the rise axis at approximately 9*40'N, the average thickness of layer 2A on

the Pacific plate is only slightly (~ 10 m) thinner than that on the Cocos plate, although the

Pacific plate shows a significantly lower magnetization. For CDP line 31, which transects

the rise axis at approximately 9*30'N, despite a layer 2A that is 90 m thicker beneath the

Pacific plate than on the Cocos plate, the magnetization on the Pacific plate is lower than

that on the Cocos plate. For CDP line 33, the region of thickest layer 2A on the Pacific

plate appears as an area of low magnetization.

We discussed in the previous section how a variation in magmatic supply and alteration

can lead to a variation in the magnetization intensity of the source layer. For the

magnetization anomalies to the south of 9*25'N, an episodically migrating overlapping

spreading center probably played an important role in causing the magnetization intensity

of the source layer to vary [Carbotte and Macdonald, 1992]. However, to the north of
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9025'N, there are few independent constraints to examine how much of a contribution the

variation in the magnetization intensity of the source layer played in generating the off-axis

magnetization anomalies.

In summary, short reversal events appear to be the primary cause of the short-

wavelength off-axis magnetization anomalies to the north of 9*25'N. Neither a variation in

the thickness of the magnetic source layer nor a variation in the paleointensity of Earth's

field predict convincing matches to observed magnetization anomalies.
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Conclusions

We have measured the total scalar magnetic field at the sea surface over the East Pacific

Rise between 9*10'-9*50'N and 255427'-256'02'E. Through renavigation, and corrections

for magnetic field fluctuations due to ionospheric activity and the ship-induced magnetic

field, we were able to improve the quality of the magnetic data. The rms misfit of the

measured magnetic field misfit at track crossovers was reduced significantly from 28 to 15

nT. Complete coverage of the bathymetry from Sea Beam and dense magnetic field

coverage allowed us to perform a three-dimensional inversion to obtain a map of

magnetization anomalies within a magnetic source layer assumed to be of uniform

thickness (1 km). We also performed two-dimensional inversions for the thickness of the

magnetic source layer along the rise axis under the assumption of uniform magnetization

intensity (10-25 A/m). Throughout this study, we assumed that the direction of

magnetization is that of an axial dipole field about the Earth's rotation axis (i.e., 00

declination and 18* inclination).

On the basis of our analyses of the magnetic field data, we have drawn the following

conclusions:

1. The axial magnetization high appears well defined and continuous over almost the

entire survey area. However, the axial magnetization shows a significant variation along

axis. The magnitude of the axial magnetization anomaly increases to the south, with the

sharpest increase at about 9*25'N. When combined with the results from previous

magnetic surveys [Sempgrd et al., 1984; Carbotte and Macdonald, 1992], the enhanced

axial magnetization high can be traced 40 km southward to the tip of the overlapping

spreading center at 9'03'N.

2. The increase in the amplitude of the axial magnetization high toward the south may

be caused by a number of factors, which can be classified as either variations in the
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thickness or in the magnetization intensity of the source layer. Because of the suggestion

that the axial magma chamber reflector may deepen by as much as 100-200 m to the south

in our survey area, we examined whether a similar increase in the thickness of the magnetic

source could explain the increase in the axial magnetization anomaly. Such an explanation

requires that the magnetization intensity of the source layer be at least 25 A/m, which is not

uncommon for young basalts. However, it is more likely that the actual increase in the

thickness of the magnetic layer resulting from a 100-200 m deepening of the axial magma

chamber would be much smaller (< 30 m), in which case one would require unreasonably

high (>70 A/m) magnetization. Furthermore, estimates of layer 2A thickness on the rise

axis from cross-axis multichannel seismic reflection profiles [Kent et al., 1993a] do not

show a systematic north-south variation. Therefore, a southward increase in the thickness

of the magnetic source layer in our area does not appear to be the major cause of the along-

axis variation in the axial magnetization.

The empirical relationship between FeO and TiO2 contents and magnetization intensity

was employed to test whether variations in FeO and TiO2 along axis could explain the

southward increase in magnetization. The concentrations of FeO and Ti0 2 are known to

increase to the south [Batiza and Niu, 1992], but in order for this effect to increase the

magnetization by the required amount the magnetic source layer has to be 1000 m thick.

On the basis of multichannel seismic data [Detrick et al., 1987] and thermal models

[Wilson et al., 1988], the thickness of the magnetic source layer is unlikely to be this great.

For a magnetic source layer that is 500 or 750 m thick, the observed along-axis variations

in FeO and TiO2 contents explain only 36 and 60%, respectively, of the total variance of

axial magnetization anomalies. Therefore, a variation in magnetic layer thickness or a

variation in magnetization unrelated to bulk chemistry must accompany the magnetization

variation caused by variations in the FeO and TiO2 contents of the extrusive layer.

3. We also observed short-wavelength variability in the axial magnetization high.

Two effects may contribute to this variability. On the basis of correlations between the
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location of the axial summit caldera (ASC) and the magnitude of the axial magnetization

anomaly, we speculate that the faults bounding the ASC and the subsequent enhancement

of low-temperature oxidation along those faults and associated secondary cracks and

fissures may have varied along individual ASC segments. In addition, if the midpoint of

an ASC segment is the locus of more frequent lava eruptions than the ends, then basalts

near an ASC midpoint will tend to be younger and more magnetic. The addition of new

lava along ASCs appears to have a greater affect on the magnetization anomaly than low-

temperature oxidation.

4. We found distinct bands of short-wavelength (- 5 km) variations in the

magnetization anomaly. These features are not artifacts caused by intertrack errors.

Possible explanations of these off-axis variations in magnetization anomalies include short

geomagnetic reversal events within the Brunhes epoch, variations in the magnetic source

layer thickness, variations in the paleointensity of the Earth's dipole field, variations in the

magnetization intensity of the source rock due to a variability in magma supply, and

variations in degree of hydrothermal alteration at the rise axis. We compared the

magnetization anomalies with estimates of layer 2A thickness [Harding et al., 1993] along

several cross-axis multichannel seismic profiles, since layer 2A can be an important

contributor to the magnetic source layer. No clear evidence was found for a positive

correlation between the magnetization anomaly and layer 2A thickness. Also, a

comparison between the observed magnetization anomaly and that derived from available

information on the history of Earth's field strength did not show a good correlation. An

application of 1-km-wide Gaussian emplacement filter to the short-timescale reversal

signal shows a good correlation with the positions of the observed magnetization

anomalies. On the basis of this argument, the most likely explanation for the off-axis

magnetization anomalies is that they result from short reversal events within the Brunhes

epoch.
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5. There are two possible explanations for the along-axis variation in the magnetization

intensity of the magnetic source layer. Although it is commonly thought that small crustal

magma chambers are more likely to produce basalts enriched in Fe and Ti, the short-

wavelength residual gravity anomalies along axis [Chapter 5] show no evidence of

substantial variation in the size of the largest crustal magma chambers in our survey area.

On the basis of the along-axis variation in the long-wavelength component of the residual

gravity anomaly, however, there is evidence that the crust or upper mantle in the north of

our survey is hotter or more melt-rich than that to the south [Chapter 5], which would in

turn favor a more frequent replenishment of crustal magma chambers, less evolved

magmas, lower Fe and Ti contents, and less magnetization. A second explanation, based

largely on recent observations of the width of axial magma chamber reflections [Kent et al.,

1993a, b] along the rise axis, is that melt follows a longer migration path or takes more

time to reach the seafloor in the south of our survey area than in the north. A longer

migration path or increased migration time can yield more evolved magmas and thus

basalts with greater magnetization intensity.
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Table 4.1. Land-based geomagnetic observatories used to deduce the low-frequency

variation of the total magnetic field at the EPR near 9030'N.

Honolulu Fresno Del Rio

(HON) (FRN) (DLR)

Geographic

Latitude (*N) 21.3 36.8 29.4

Longitude (OE) 202.0 240.3 258.8

Geomagnetic

Latitude (*N) 21.5 43.5 38.6

Longitude (*E) 268.7 304.0 325.8

Field Direction

Inclination (0) 38.8 61.4 58.0

Declination (0) 11.1 15.2 8.3
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Table 4.2. Average thickness of seismically-defined layer 2A along CDP lines, based

on data from Harding et al. [1993].

CDP line Pacific plate (m) Cocos plate (m) Both (m)

29 440 450 440

31 490 400 450

33 580 450 510
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Figure 4.1. Sketch map of the East Pacific Rise showing the survey area near 9*30'N

where the magnetic survey was conducted as part of a seismic tomography experiment in

1988.
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Figure 4.2. Bathymetic map of the survey area. The map was constructed with back-

projection gridding [Stewart, 1988] and new navigation information provided by Wilcock et

al. [1993]. The yellow circles in the middle of the survey area represent the locations of

seismic instruments (OBSs and OBHs) deployed for the seismic tomography experiment

and are shown here for reference.
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Bathymetry of the Survey Area
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Figure 4.3. Coverage of ship tracks along which magnetic field measurements were

taken. Most of the field measurements were taken within the Brunhes central anomaly.

The two dotted lines indicate the approximate locations of the Brunhes/Matuyama reversal

boundaries, estimated according to half spreading rates of 59 mm/yr and 54 mm/yr on the

Pacific and Cocos plates, respectively [Carbotte and Macdonald, 1992]. The numbers 056

and 058 denote the two long tracks that traveled across the reversal boundary on the Pacific

plate side, and 066 and 068 those that traveled across the reversal boundary on the Cocos

plate side.
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Figure 4.4. Histograms of misfit errors following each correction step: (a)

renavigation, (b) diurnal fluctuation of the magnetic field, (c) low-frequency variation, and

(d) ship-induced field.
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Figure 4.5. Diurnal variations in the scalar magnetic field predicted by the WDCA/SQ1

global model for a solar-quiet day [Campbell et al., 1989] on January 25, 1988 at 9030'N,

255 045'E. Note the high activity which occurs around local noon.
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Figure 4.6. Low-frequency variations in the total magnetic field at land-based

geomagnetic observatories in Hawaii, California, and Texas (Table 4.1). Most of the

variations at the beginning of the survey appear related to a magnetic storm which occurred

on January 15, followed by a recovery period which lasted for several days. Another

magnetic storm occurred on February 5, near the end of the survey.

266



Low-Frequency Variations

16 18 20 22 24 26 28 30 32 34
Julian Days

(Figure 4.6)

40

35

30

$25

20

15

10

267



Figure 4.7. Gridded magnetic field anomaly map after corrections. The grid spacing is

to 1.16 and 1.0 km in latitude and longitude, respectively. Although much of the

background noise along tracks has been reduced by our correction effort, some artifacts

appear to remain. However, in our inversion, we apply a bandpass filter with lower

stopband and lower passband cutoff wavenumbers set at 27t/4 and 2/8 km-1, respectively.

Therefore, the magnetic field actually inverted is much smoother than the field shown in

this map.
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Figure 4.8. Two-dimensional inversions for magnetization intensity performed along

the two long tracks, one after combining tracks 056 and 066 and the other tracks 058 and

068. The locations of these tracks are shown in Figure 4.3. In combining the two tracks,

we ignored a slight offset between tracks 058 and 068. The inversion was performed

assuming a uniform thickness of 500 m for the magnetic source layer. (a) Scalar magnetic

field, (b) bathymetry, and (c) magnetization solution for the combination of tracks 056 and

066. (d) Scalar magnetic field, (e) bathymetry, and (f) magnetization solution for the

combination of tracks 058 and 068. In both magnetization solutions, we scaled the

annihilator relative to the initial solutions so that the average absolute magnetization

intensity would be the same on either side of the Brunhes/Matuyama reversal boundary.
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2-D Inversion for Magnetization along 056 & 066
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2-D Inversion for Magnetization along 058 & 068
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Figure 4.9. Magnetization intensity map obtained by inversion of magnetic anomaly

data assuming a uniform magnetic layer thickness of 500 m and adding an annihilator as

determined by fitting the observed field across the Brunhes/Matuyama reversal boundary

(see Figure 4.8c and f). The white crosses represent the bathymetric rise axis. Circles

represent instrument locations during the seismic tomography experiment [Toomey et al.,

1990]. Plus symbols represent three magnetic devals (at 9*25', 9*37', and 9*45'N), i.e.,

major breaks in the axial magnetization anomaly defined by changes in magnitude and

offsets in anomaly linearity. White dashed lines indicate the locations of three common-

depth-point (CDP) seismic reflection lines conducted across the axis [Harding et al.,

1993]. White dotted lines represent the two combined long tracks (i.e., tracks 056 and 066,

and tracks 058 and 068).
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Figure 4.10. Profiles of magnetization anomaly along the magnetization axis from

inversions of the full magnetic anomaly data for different fixed values of magnetic layer

thickness. The profiles were obtained after adding the appropriate annihilator to the

particular solution so as to satisfy the anomaly profiles that cross the Brunhes/Matuyama

reversal boundary. The overall level and the total variance of the magnetization anomaly

decrease with increasing magnetic layer thickness.
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Figure 4.11. (a) Observed and modeled magnetic field anomaly along-axis for a

uniformly magnetized upper crustal layer of variable thickness. (b) Magnetic layer

thickness along-axis, assuming a 10 A/m magnetization intensity. The lower boundary

(dashed) was obtained by successive inversions starting from a uniform thickness of 500

m.
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2-D Inversion for Magnetic Layer Thickness
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Figure 4.12. The difference in magnetic layer thickness, between 9*40' and 9*15'N, as a

function of the assumed magnetization intensity. A uniform thickness of 500 m was the

starting model for the inversion, but the final solutions are insensitive to the initial

thickness.
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Figure 4.13. Comparisons between the magnetization anomaly (solid line) and the

estimated layer 2A thickness [Harding et al, 1993] along three CDP lines, whose locations

are shown in Figure 4.9. Notice that at the axis the thickness of layer 2A is the smallest for

CDP line 031.
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Figure 4.14. Empirical relationship between (a) FeO and (b) TiO2 contents and remanent

magnetization intensity (modified from Vogt and de Boer [1976]).
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Figure 4.15. (a) Along axis variation of the axial magnetization anomaly. The circles

represent the loci of boundaries and breaks in the ASCs, and the plus symbols the

magnetic devals (9*25', 9*37', and 9*45'N). Notice that the boundaries and the breaks in

the ASCs in many cases coincide with the magnetic devals. (b) Distribution of the ASC.

Notice that no ASC is found to the south of 9421'N.
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Figure 4.16. Comparisons of two-dimensional and three-dimensional inversions for

magnetization anomaly along the two combined tracks; (a) 056 and 066, and (b) 058 and

068. The comparisons show that highs and lows of the two solutions match quite well,

confirming that the short-wavelength variations in the magnetization anomaly in the 3-D

inversion are not caused by errors between adjacent N-S ship tracks. We assumed 59 and

54 mm/yr as the spreading half-rates on the Pacific and Cocos plates, respectively. The

gray shaded scale at the bottom of each figure indicates short reversal events within the

Brunhes central anomaly (e.g., 1 = Laschamp, 2 = Blake, 3 = Jamaica, 4 = Levantin, 5 =

Biwa III, 6 = Emperor, and 7 = Big Lost). The timing of these reversal events, originally

from Champion et al. [1988], was recalibrated to match the new estimate of the time of the

Brunhes/Matuyama reversal boundary (0.78 My) [Shackleton et al., 1990].
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(b) Combined tracks 058 & 068
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Figure 4.17. Predicted magnetization anomalies resulting from short-timescale reversals

(thick solid lines) and paleointensity variations (dashed lines) compared with the anomalies

obtained by three-dimensional inversions along the two long ship tracks (thin solid line):

(a) tracks 056 and 066, and (b) tracks 058 and 068. The predicted anomalies from

reversals and paleointensity variations were applied with a 1-km-wide Gaussian

emplacement filter [Schouten and Denham, 1979]. The gray shaded bars at the bottom of

the figures show the times of short reversal events as in Figure 4.16.
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(b) Combined track of 058 & 068
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Chapter 5

Gravity Anomalies and Their Implications for
the Lithospheric Structure of the East Pacific
Rise

Introduction

Our knowledge of the structure of fast-spreading mid-ocean ridges has improved

greatly during the last decade because of a number of surveys performed over the East

Pacific Rise (EPR). A series of active seismic investigations, including multichannel

seismic reflection [Detrick et al., 1987; Mutter et al., 1988; Harding et al., 1989, 1993;

Kent et al., 1990, 1993a, b], seismic refraction [Harding et al., 1989; Vera et al., 1990;

Christeson et al., 1992, 1994a, b], and travel-time [Burnett et al., 1989; Toomey et al.,

1990, 1994; Caress et al., 1992] and attenuation [Wilcock et al., 1992b] tomography along

portions of the EPR have led to the discovery of an axial magma chamber (AMC) and

structures related to it within the crust. However, because these investigations were

performed on relatively small volumes within the crust, they generally provide us with little

information on structures that may lie below the crust.

The analysis of gravity field measurements at the sea surface is complementary to

seismic information and can provide information on relatively long-wavelength density
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structures such as those associated with the thermal structure of the mid-ocean ridge or

systematic variations in crustal thicknesses. Since a large part of the near-ridge gravity

field can be attributed to undulations in topography and changes in the density structure

associated with cooling and progressive thickening of the lithosphere, by removing these

effects from the observed gravity field systematically, we can isolate residual gravity

anomalies. These residual gravity anomalies can then be used to place bounds on the size

and along-axis variability of any anomalous mass associated with a crustal magma

chamber or unmodeled anomalous density structures that lie below the crust [e.g., Kuo and

Forsyth, 1988; Lin et al., 1990; Madsen et al., 1984, 1990; Wang and Cochran, 1993;

Neumann and Forsyth, 1993].

Previous investigations of gravity anomalies along the EPR [Madsen et al., 1984,

1990; Wang and Cochran, 1993] have suggested that a low-density volume is present

along the axis and that the axial topographic high is a consequence of such a low-density

volume. However, because the investigation of gravity fields alone can not uniquely

distinguish among probable structural models of the EPR, the density and depth of such a

volume and the role it plays in the generation of the axial topographic high remain

controversial. One of the questions that remains to be resolved is how much of the axial

gravity anomaly is due to sources within the crust and how much is due to those in the

upper mantle. Recently, Magde et al. [1994] argued that approximately 70% of mantle

Bouguer anomaly low of the southern EPR (14*S and 17*S) can be explained by a crustal

region of partial melt and elevated temperature and that the remaining gravity signal is

contributed by a narrow (10 km wide) partial melt conduit that extends to depths of 50-70

km with melt fraction up to 2% higher than the surrounding mantle. However, it is unclear

whether such a small fraction of melt is consistent with the large reductions in the viscosity

of upper mantle one would expect from focused mantle upwelling. For instance, Buck and

Su [1989] assume 20-30% melt fraction for a low-density region that extends 30 km below

the seafloor in their mantle flow model. If indeed a large portion of the axial gravity
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anomaly is cuased by sources within the crust, then understanding the amount of this

contribution is crucial for unraveling upper mantle structure.

In this chapter, we examine the sea surface gravity field measurements taken during a

cruise of the R/V Thomas Washington to the EPR in January of 1988. The area surveyed

lies between 9405' and 9*55'N and 255*25' and 256*05'E, which corresponds to the upper

portion of a long segment of the ridge-axis bounded by two major transform faults: the

Clipperton Fracture Zone at 10*05'N to the north and the Siqueiros Fracture Zone at

8*20'N far to the south (Figure 5.1). By taking advantage of information on crustal

structure gathered by previous seismic investigations [Detrick et al., 1987; Harding et al.,

1993; Kent et al., 1993a], we attempt to distinguish those portions of the low-density

volume that can be associated with sources within the crust and those below it. We also

explore whether the gravity anomalies of the EPR can be interpreted as systematic

variations in the thickness of crustal layers. Since the density contrast between the lower

crust and upper mantle is greater than that expected to arise from temperature variations or

melt content, a change in crustal thickness is an effective way to induce gravity anomalies.

A number of recent developments in the study of mid-ocean ridges make this a worthwhile

exercise, including recent evidence for thicker crust at the midpoint of several segments of

the Mid-Atlantic Ridge [e.g., Tolstoy et al., 1993] and a global compilation of seismic

velocity structure data reprocessed by Mutter and Mutter [1993] which suggests that a

thicker crust is produced mainly through increases in the thickness of layer 3. Although

the travel time between the seafloor and the Moho appears to be almost constant in several

seismic reflection profiles across the EPR near our study area [Detrick et al., 1987], these

data do not constrain crustal thickness variations within 2-3 km of the axis. Further, it is

possible that some variation in crustal thickness is still permitted by the variation in vertical

travel times. Although the gravity field in this area has previously been investigated by

Madsen et al. [1990], the coverage of gravity anomaly data collected during our survey is

at least five times more dense than that of the previous investigation, and areally complete
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bathymetric data of the area was acquired during our survey, allowing us to perform high-

resolution three-dimensional analyses of the gravity field. An accurate analysis of gravity

field anomalies may help us to examine the nature of those variations which are believed to

be associated with processes that occur at shallow levels beneath the rise axis. For

instance, some of the deviations from linearity of along-axis bathymetry (devals) or axial

summit calderas (ASCs) have long been thought to represent the topographic expression of

variability in magma supply to the ridge crest. By comparing the gravity anomalies with

such fine-scale bathymetric features, we may be able to better understand their origin.

The section of the EPR which includes our survey area is one of the most intensively

explored sections of a fast-spreading ridge (see Chapter 4 for a detailed description of this

area). Investigations in this area include the determination of seismic crustal structure

[Detrick et al., 1987; Vera et al., 1990; Toomey et al., 1990, 1994; Christeson et al., 1992,

1994a, b; Wilcock et al., 1992b; Harding et al., 1993; Kent et al., 1990, 1993a, b], near-

bottom observations using the ARGO imaging system [Haymon et al., 1991],

geochemical analyses of dredged rock samples [Batiza and Niu, 1992], and determination

of microearthquake characteristics [Wilcock et al., 1992a; Hildebrand et al., 1992].

Therefore, whenever possible, we compared the structures inferred from the gravity field to

those obtained from magnetic [Chapter 4] and seismic data [Vera et al., 1990; Toomey et

al., 1994, 1990; Harding et al., 1993; Kent et al., 1993a, b] conducted over the same

portion of the EPR.

Collection of Data

The sea surface gravity field was measured using a Bell BGM-3 gravimeter, which

measures the total acceleration field. BGM-3, which has an accuracy of approximately ± 1
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mGal [Bell and Watts, 1986], is a significant improvement over the conventional beam-

type gravimeters which had a cross-coupling error of 10-20 mGal.

One of the important steps in the reduction of ship-borne gravity measurements is to

apply an optimal lowpass filter so that high frequency noise from wave motion is

suppressed and geological signals are recovered with the least amount of distortion. In this

study, we used a 25-pole recursive filter designed by Bell Aerospace. After applying the

Bell filter, the original data from the gravimeter, which came as pulse counts every second,

were reduced to a record with a 3-minute sampling interval. The gravimeter had negligible

drift; on the basis of gravity ties made at the start (San Diego) and the end (Acapulco) of

our cruise, we estimated a drift of -0.064 mGal/day.

In addition to measuring the sea-surface gravity field and bathymetry, other objectives

of our investigation were to measure the sea-surface scalar magnetic field and to perform a

seismic tomography experiment using an array of ocean-bottom seismometers (OBSs)

and ocean-bottom hydrophones (OBHs) to record seismic waves generated by explosives

and airgun shots fired near the sea surface. The measurement of scalar magnetic field was

performed simultaneously with the measurement of gravity and bathymetry. However, the

seismic tomography had to be conducted during the time of the day when Global

Positioning System (GPS) navigation was available (about 8 hours per at the time of this

survey). Given such a restriction, we covered areas outside the tomography experiment as

much as we could during times of the day when GPS navigation was not available but then

returned to the central portion of our survey area for the seismic tomography experiment

when three or more GPS satellites were in view. As a result, many speed and course

changes were made during this survey. Such changes can adversely affect the overall

quality of gravity measurements, because it takes some time for the gravimeter to stabilize

after changes in course or speed. Therefore, in this study, we restrict our analysis only to

straight, long track lines with few speed changes (Figure 5.2). This restriction resulted in

the omission of gravity data collected during the seismic shooting when changes in course
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and speed occurred frequently. Also, three minutes of record at the beginning and end of

each straight long line of track were eliminated to ensure that the transient effects of course

and speed changes were not included in our data set. The total duration of measurements

used in our analysis is approximately 200 hours, corresponding to 50% of the total

duration of the survey, or approximately 3800 km of track length.

Renavigation

The gravity field that we measured is the sum of the gravitational acceleration and

centrifugal force of the Earth's rotation. A change in the velocity of the ship with respect to

the Earth's rotating coordinate frame perturbs the centrifugal force field and thus changes

our gravity measurements. The ability to compensate accurately for this phenomenon,

known as the E6tv6s effect, is one of the most critical steps in marine gravity field

investigation. Correction for the E6tv6s effect is especially important, because our survey

area is near the equator and the EPR generally has only a small variance in its gravity

anomaly signal. For instance, a miscalculation of the east-west component of the ship

speed by 1 knot results in a 7 mGal error, whereas the largest variation of free-air gravity

anomaly signal across the EPR is only 20-30 mGal.

A technique for renavigating ship tracks based on the principle of minimizing misfit

errors of Sea Beam swaths at crossovers was initially investigated by Nishimura and

Forsyth [1988]. In their method, the navigation and the constraints, including the

positional fixes provided by satellites and amount of shift required to fit Sea Beam swaths

at crossovers, were first represented as random variables, and then a generalized inversion

technique was used to update navigation. A major difficulty in implementing this

technique on a computer for most surveys, however, is that the number of parameters in

the inversion is too large. To address this difficulty, instead of representing a misfit as a
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difference between the positional parameters of each track, Nishimura and Forsyth [1988]

attributed half of the positional difference to each of the tracks at a crossover. Making this

assumption allowed them to avoid placing off-diagonal elements in the matrices and thus

having to store and invert full matrices. Applications of this technique to surveys

conducted along the southern Mid-Atlantic Ridge [Nishimura and Forsyth, 1988] and the

East Pacific Rise (EPR) near 9*30'N [Wilcock et al., 1993] showed a reduction in the

overall misfit of Sea Beam at crossovers to within a few hundred meters. However, since

matching Sea Beam at crossovers was built into the inverse problem as a constraint, the

overall reduction of Sea Beam misfit is not an objective measure of whether navigation

was improved. In fact, when independent measurements such as the free-air gravity

anomalies were compared at crossovers, the errors increased as a result of renavigation [C.

E. Nishimura, personal communication, 1988; Wilcock et al., 1993].

The free-air gravity anomaly is an especially important criterion for examining the

plausibility of an inversion solution, since it is sensitive to ship speed changes in the east-

west directions through the E5tv6s correction. Thus, unless free-air gravity anomaly

misfits are also reduced at crossovers, one cannot be confident that an optimal solution is

obtained simply because the Sea Beam crossover misfits are reduced. Although the

reduction of free-air gravity anomaly misfit itself may be used as a direct constraint in the

formulation of a renavigation inversion, ship-borne gravity field measurements often

contain spurious data and are generally difficult to implement into the inversion problem.

Our approach instead has been to use the reduction of free-air gravity anomaly misfit as

a criterion with which to assess a family of inversions of Sea Beam misfit data. Unlike

Nishimura and Forsyth [1988], we represent the Sea Beam crossover misfits as positional

differences between two tracks. Further, by taking advantage of sparse matrix algorithms,

we are able to explore a large range of inversion parameters. The navigation solution to the

Sea Beam crossover misfit problem that minimize the rms free-air gravity anomaly misfit

yields a 75% reduction in the variance of the gravity misfit, or a reduction in the gravity
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misfit from 3.9 to 1.9 mGal. Details of our renavigation inversion scheme are given in

Appendix E to this thesis.

Reduction of Free-Air Gravity Anomalies

Free-Air Gravity Anomaly

The along-track free-air anomaly was obtained by applying the Ebtv6s correction and a

latitude correction to our gravity measurements; both corrections were based on our new

navigation. The along-track free-air gravity anomaly data was then projected onto a surface

using a minimum curvature scheme [Briggs, 1974]. Although many of the artifacts due to

errors in navigation were corrected by renavigation, we applied a two-dimensional lowpass

filter with cosine tapering with a bandpass cutoff wavenumber of 2n/10 km4 and a

stopband cutoff wavenumber of 2n/5 km' to ensure that remaining artifacts were not

included in our free-air gravity anomaly map (Figure 5.3).

The dominant features in the free-air anomaly map are those related to seafloor

topography. For instance, the highs in the free-air gravity anomaly map correlate with the

topographic highs of the seafloor and the lows with bathymetric depressions such as those

resulting from relicts of an overlapping spreading center that appear on the Pacific plate

side. In addition to the close correspondence between free-air gravity and bathymetry, free-

air gravity anomalies show a notable variation along the rise axis. Despite the fact that, in

our survey area, the ridge crest is shallower to the north (Figure 5.2), some of the peak

values of free-air gravity anomaly are found along the southern portion of the rise axis.

The free-air gravity anomaly is a sum of gravitational attractions that arise from a

variety of sources. The sources can be divided conceptually into well-known and less well-

known ones. Well-known sources include undulations in interfaces between two regions
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of differing density, such as water/crust and crust/mantle, and the systematic increase in the

density of the lithosphere as it cools and moves away from the axis (Figure 5.4). Some of

the less well-known sources in this study include those that arise from the AMC and

structures related to it within the crust, as well as crustal thickness variations and

anomalous density structures that may lie below the crust. A common procedure used in

analyzing a gravity field is to use simple models of crustal structure and temperature to

calculate the gravitational attraction from the well-known sources. Then by systematically

removing the effects of well-known sources from free-air gravity anomalies, one can

obtain a residual gravity anomaly which represents contributions from less well-known

sources.

Crustal Model

The initial model that we used for calculating the gravitational attraction arising from

the undulation of various interfaces consists of a crust whose thickness and densities within

layers are uniform (illustration on the left side of Figure 5.4). The mid-ocean ridge is

modeled as four layers of differing density, that is layer 2A (extrusive section), layer 2B

(dike complex), layer 3 (gabbro), and the mantle. Each layer is assumed to have a constant

thickness across-axis, except for layer 2A, which thickens by almost a factor of 2 within 1-

2 km of the rise axis [Harding et al., 1993]. Average seismic velocities for the extrusive

section and dike complex were converted to densities using the relationship of Christensen

and Shaw [1970], p = 1850 + 0.165 V, (for velocities in m/s and density in kg/m3), which

was obtained by comparing the compressional wave velocities and bulk density of dredged

rock samples in the laboratory. The measurements were performed at room temperature

and at pressures ranging up to 100 MPa. The rock specimens were wrapped with copper

foil so that the pressure medium does not enter the pore spaces of the rock. For an average
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layer 2A velocity of 3500 m/s and layer 2B velocity of 5500 m/s, the resulting densities are

roughly 2400 kg/m 3 and 2700 kg/m3, respectively. Near-bottom gravity measurements

determined a density 2630 ± 50 kg/m3 for the upper 2 km of young crust on the southern

Juan de Fuca Ridge [Stevenson et al., 1994], which is consistent with our estimate of

densities. For layer 3, we assumed an average velocity of 6750 m/s [Vera et al., 1990],

which results in a density of roughly 2900 kg/m 3. We assumed a density of 3300 kg/m3

for the mantle. Table 5.1 summarizes the parameters used for the forward calculation of

gravitational attraction from the crustal model.

A recent detailed analysis of multichannel seismic data suggests several along-axis

variations. For instance, according to Harding et al. [1993], reexamination of multichannel

seismic data taken in 1987 showed a slight thickening of layer 2A (50-100 m) which may

occur towards the south of our survey area.

In most of the multichannel seismic profiles taken across the rise axis, reflections from

the Moho can be traced almost continuously, except within a few kilometers of the axis

[Detrick et al., 1987]. Figure 5.5 shows Moho reflections on several common-depth-point

(CDP) profiles which cross the rise axis in our survey area. Although a detailed

examination shows that there may be slight variations in the travel time (one way travel

time differences are less than 150 ms) from the seafloor to Moho among CDP lines

[Barth, 1991], it is unclear which layer or layers is the source of such a travel-time

anomaly. Therefore, in our initial model, we assume that the crust has a uniform thickness

of 7 km.

Gravitational Attraction from Crustal Layers

The calculation of the gravitational attraction arising from an undulating interface with a

density contrast is based on the method developed by Parker [1972]. This method uses a
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Taylor series expansion to represent the Fourier transform of the gravity anomaly as an

infinite sum of discrete Fourier transforms of powers of the relief of a density interface. In

most cases, Taylor series expansion terms up to and including the third power are

sufficient to account for the nonlinearity associated with roughness on the density

interfaces.

To minimize edge effects, we began with a larger map of the survey area (9*05'-

9055'N, 255 025'-256*05'E). Since the Fourier transform assumes that the structure is

periodic, the input grids were mirrored along the boundaries to prevent discontinuities.

The contributions to the gravitational attractions from each layer within an area defined

by 9010'-9 050'N and 255*30'-256*E are shown in Figure 5.6. Due to the upward

continuation of the gravity signal from the source level to the sea surface, most of the high-

frequency components of the gravity signals are damped. The total variance due to the

interfaced water/layer 2A, layer 2A/layer 2B, layer 2B/layer 3, and layer 3/mantle is

approximately 32, 6.6, 3.6, and 4.3 mGal, respectively.

Mantle Bouguer Gravity Anomaly

The mantle Bouguer anomaly (Figure 5.7) is obtained after removing the gravitational

attraction of the different crustal layers (Figure 5.6) from the free-air anomaly (Figure 5.3).

On a broad scale, the mantle Bouguer anomaly is low along the rise axis and increases off-

axis. Much of this long-wavelength variation, as shown below, can be attributed to

changes in the density structure of the plate as it cools and moves away from the axis. The

mantle Bouguer anomaly also shows significant along-axis as well as cross-axis variations.

The width of the cross-axis low of the mantle Bouguer anomaly generally increases to the

north, especially on the Pacific plate side. On average, the mantle Bouguer anomaly to the

north of 9*35'N is lower by approximately 2 mGal on the Pacific plate than on the Cocos
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plate. In addition, the asymmetry in mantle Bouguer to the north of 9*35'N appears to

correlate well with the asymmetry in bathymetry in the same general area (Figure 5.2); the

seafloor is elevated by approximately 25 m on the Pacific plate compared with that on the

Cocos plate. This apparent asymmetry in mantle Bouguer anomaly might be due to an

anomalous mantle structure, thickness variations among sublayers, or an error in our

density estimate of one or more sublayers. The mantle Bouguer anomaly map also shows

several short-wavelength features: several distinctive local gravity lows are centered along-

axis at around 9021', 9026', 9*32', 9*42', and 9*50'N (Figure 5.7).

Anomaly due to Lithospheric Cooling

In addition to density differences due to variations in the lithology of the crust, changes

in temperature also give rise to variations in density structure. Our knowledge of the

thermal structure of the mid-ocean ridge is largely based on analytical and numerical

models. However, for lithosphere ages of a few million years and less, because of

complex and transient processes such as those involved with hydrothermal cooling and

magmatic injection in addition to conductive cooling, there are considerable differences

among existing thermal models [Stein and Stein, 1994; Chapter 2] and, therefore, the

gravitational field contributed from plate cooling remains uncertain. In this study, we

extend the thermal model of Wilson et al. [1988], which covers a region extending 10 km

from the axis and to 7 km depth, to greater distances from the axis. The thermal model of

Wilson et al. [1988] is for a horizontal, uniform slab spreading at a constant rate away from

a narrow, continuously intruding vertical dike (illustration on the right side of Figure 5.4).

Point sources and sinks of heat were used to simulate latent heat release, hydrothermal

circulation, and convection within a magma chamber, and the isotherms were constrained
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to match multichannel seismic results from the EPR near our survey area [Detrick et al.,

1987].

In this study, we assume that most active hydrothermal cooling occurs within 10 km of

the axis as described by Wilson et al. [1988]. Less active, but significant hydrothermal

cooling beyond 10 km is considered in our model by enhancing the thermal conductivity.

In deriving a new thermal model, we took the temperature profile at 10 km distance from

the model of Wilson et al. [1988] and used it as a boundary condition for our modeling

region. Within 10 km from the axis and for depths greater than 7 km, we assumed a

temperature gradient of 0.8*C/km. Figure 5.8 shows the configuration of our thermal

model and the rest of the boundary conditions used to set up a steady-state two-

dimensional heat flow problem. Table 5.2 summarizes the parameters that were used.

The problem was solved using a finite difference method based on a successive over-

relaxation technique [Smith, 1985]. Convergence was obtained easily after several

iterations. The resulting temperature distributions for distances beyond 10 km from the

axis were then combined with the thermal model of Wilson et al. [1988] at closer axial

distances (Figure 5.9). At first, we considered four values of thermal diffusivity (K): 0.25,

1, 5, and 10 mm 2/s. A thermal diffusivity of 0.25 mm 2/s, for instance, corresponds to the

value adopted by Wilson et al. [1988], although the detailed features of their thermal

models appear to be controlled by the placement and magnitudes of heat sources and sinks

rather than their value of thermal diffusivity. A more typical estimate of the average

thermal diffusivity of the oceanic lithosphere is 1 mm 2/s [e.g., Phipps Morgan et al., 1987;

Lin and Parmentier, 1989]. Thermal diffusivities of 5 and 10 mm2/s can thus be

considered as enhancements in thermal conduction by factors of 5 and 10, respectively, as

a result of hydrothermal circulation. We prefer the thermal model result with K = 5 mm 2/s

(Figure 5.9c), because it appears to match the estimates of average total heat flow for 0-1

My old seafloor (- 2 W/m2) [Stein and Stein, 1994].
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Unlike the situation for discrete layers, there is no efficient way to estimate the

gravitational effects of a three-dimensional temperature structure. In this study, we first

divided the crust into subblocks of equal dimensions, and then for each point at the sea

surface we calculated the contribution from subblocks around the point. In our model, the

distance from the sea surface (i.e., the level of measurement) to the center of mass of each

subblock is determined by bathymetry. Fortunately, because the distances from each

measurement point to the subblocks are sufficiently large, the dimensions of the subblocks

did not have to be very small. For example, in this study, we used subblocks that were 1-

km cubes. The resulting gravitational field from our thermal model (i.e., ic = 5 mm2/s) has

a total variance of less than 3 mGal within our survey area.

Residual Gravity Anomalies

By removing the effects of plate cooling from the mantle Bouguer anomaly, we obtain

the residual gravity anomaly (Figure 5.10). Since the contribution of plate cooling can be

represented as a variation in the gravity anomaly predominantly in the cross-axis direction,

the residual gravity anomaly maps still show many of the same features that were observed

in the mantle Bouguer anomaly map. For example, the broad low-gravity signal along the

axis is present in both the residual gravity anomaly and mantle Bouguer anomaly maps,

and the short-wavelength gravity lows along the axis are present in the residual gravity

anomaly for all four thermal models.

In the absence of independent constraints, it is impossible to determine the depth and

the density contrast of an anomalous structure from gravity anomaly information alone.

However, one can separate the residual gravity anomalies into long- and short-wavelength

components and assume that, while the former can be caused by sources that are either

deep or shallow, the latter must stem from relatively shallow sources, such as density
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anomalies within the crust. In this study, we take two approaches, each looking at different

wavelengths of the residual gravity anomaly. First, we examine if the long-wavelength

residual gravity anomaly can be explained by variations in the crustal thickness. The

outcome of this examination, in turn, can help us validate another hypothesis, namely that

the long-wavelength residual gravity anomalies are caused by sources in the mantle. Next,

by systematically filtering the long-wavelength components from the residual gravity

anomaly, we obtain the map of short-wavelength anomalies. From the along-axis variation

of short-wavelength gravity anomaly, we then explore the nature of the anomalous mass

within the crust needed to explain the short-wavelength gravity anomaly signal.

Variations in Crustal Thickness

As a possible cause of variations in crustal thickness, we consider variations in the

thickness of layer 3. We should note that all of the features in the residual gravity map

cannot be explained by such variations. This is because the base of layer 3 (i.e., the Moho)

lies approximately 10 km below the sea surface and thus will only contribute to residual

gravity anomaly features that are much greater than 10 km in horizontal wavelength unless

unreasonable thickness variations are invoked. For residual anomaly features with

wavelengths of a few tens of kilometers or less, we examine below alternative explanations

such as density anomalies within the middle to upper crust.

To convert residual gravity anomalies to crustal thickness variations, we need to

perform a downward continuation of the gravity anomalies. A problem with such a

downward continuation is that it is inherently unstable; short-wavelength signals are

amplified relative to long-wavelength ones. As a result, a lowpass filter must first be

applied to the gravity anomalies to ensure a stable downward continuation. Even with

lowpass filtering there still can be some problems, however, if the filter is designed on the
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basis of an empirically determined cutoff wavenumber, for instance [e.g., Blackman and

Forsyth, 1991], filtering may eliminate a significant geological signal.

In this study, we used the downward continuation scheme proposed by Phipps

Morgan and Blackman [1993]. The scheme differs from previous methods in which

filters with empirically determined cutoff wavenumbers were used in that the downward

continuation filter can be tailored to find the crustal thickness solution that satisfies a

criterion of minimum slope, or maximal smoothness, or a weighted combination of these

desired solution features. The resulting variation in layer 3 thickness is shown in Figure

5.1 lb. For comparison, we also show the crustal thickness variation that was determined

after the application of a lowpass filter given by a cosine taper between a passband cutoff

wavenumber of 21c/30 km-' and a stopband cutoff wavenumber of 2n/15 krn-1 (Figure

5.1 la). The result shown in Figure 5.1 lb is based on a maximal smoothness criterion and

was obtained from an inversion of residual gravity anomalies where the effects of plate

cooling were removed with the thermal model given by a thermal diffusivity of 5 mm 2/s

for regions beyond 10 km from the axis. (Because the magnitude of the gravity anomalies

and the size of the survey area were small, a minimum slope criterion yielded a solution

with virtually no variation in thickness.) The result shows a significant change in crustal

thickness; as much as 1-1.2 km greater thickness of crust is needed beneath the rise axis to

explain the broad gravity lows in the residual gravity anomaly. Also, in terms of an along-

axis variation in layer 3 thickness, the crust must increase its thickness by as much as 400

m to the north of the survey area. We comment on the plausibility of this solution below.

Comparisons with Simple Geometric Bodies

The residual gravity anomaly that we observe is a sum of contributions arising from

sources in the crust as well as from those in the mantle and, therefore, without knowing
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how much of any given anomaly is from crustal sources, estimating density contrasts of

crustal sources can be misleading. In this study, as a way of partitioning the residual

gravity anomaly into crustal and mantle contributions, we use a highpass filter. We adopt a

cosine taper between passband and stopband cutoff wavenumbers, and we take the former

as twice than the latter. For example, Figure 5.12 is a map of short-wavelength gravity

anomalies that was obtained after applying a two-dimensional highpass filter to the residual

gravity anomaly (Figure 5.10) with cosine tapering between a stopband cutoff

wavenumber of 27r/40 km-' and a passband cutoff wavenumber of 27c/20 km-1. We refer

to such a gravity anomaly as "local residual gravity anomaly" to distinguish it from a

residual gravity anomaly which contains both long- and short-wavelength components. In

the ideal sitiuation, the highpass filter will cut out features arising from the mantle, while

retaining the short-wavelength features arising from sources within the crust. Of course,

long-wavelength anomalies may also arise from crustal sources.

The variation of local residual gravity anomaly clearly depends on the highpass filter.

Figure 5.13 shows along-axis variations of local short-wavelength residual gravity

anomalies that were obtained using three different stopband cutoff wavenumbers (2n/20,

2iK/40, and 27t/60 km-). Also shown in the figure (solid line) is a residual gravity anomaly

obtained by removing a linear trend from the unfiltered residual gravity anomaly (Figure

5.10). This representation is equivalent to the admittedly ad hoc assumption that the

mantle contribution to the residual gravity anomaly is represented by a linear trend along-

axis. We use this line as a reference for selecting the filter. The local residual gravity

anomaly obtained with a stopband cutoff wavenumber of 21t/40 km-1 provides a best

match to the detrended anomaly. We choose this filter parameter for determining a local

residual gravity anomaly from crustal sources. Had we chosen the local residual gravity

anomaly obtained with a stopband cutoff wavenumber of 21c/60 km-1, it would mean that

we were more likely to incoporate some long-wavelength mantle contribution, and thus we

would overestimate the anomalous mass in the crust. On the other hand, had we chosen
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the local residual gravity anomaly obtained with a stopband cutoff wavenumber of 27x/20

km', then we would have likely removed components that are from crustal sources, and

thus we would underestimate the anomalous mass in the crust.

Three local gravity lows, centered at 9*21', 9*32', and 9042'N, can be seen in the

along-axis profiles of short-wavelength residual gravity anomaly in Figure 5.13. The

anomaly at 9*21'N shows the largest amplitude. The magnitudes of these anomalies

depend on the parameters of the highpass filter chosen. For the filter used in Figure 5.12,

the anomalies have amplitudes of 1.5-3 mGal along axis and 3-5 mGal across axis.

That these short-wavelength residual gravity anomalies are real, despite having

magnitudes comparable to or only slightly larger than the rms gravity anomaly misfit at

crossovers, is supported by their strong correlation with other documented variations in

crustal properties. For example, the box in Figure 5.12 delineates the area where images of

crustal velocity structure were obtained by delay-time tomography [Toomey et al., 1990].

The local gravity low at 9*32'N appears to be consistent with the tomographic image

[Toomey et al., 1990] in terms of its location and dimensions. Figure 5.15 shows

horizontal cross-sections of the tomographic images at the seafloor and at 2 km depth.

Both the mid-crustal velocity low imaged by delay-time tomography and the local gravity

low appear approximately midway between the two devals at 9028'N and 9435'N. As with

the tomographic images, the local gravity low at 9*32'N is slightly offset to the west of the

bathymetric rise axis.

We next compared the local residual gravity anomaly with the gravitational attraction

arising from anomalous masses of specified geometry. Specifically, we assume that the

anomalous masses are cylindrical bodies of circular cross-section buried beneath the

seafloor. We further assumed that there are three cylindrical bodies of equal dimensions

and depths beneath the seafloor and that their centers coincide with the troughs of the

gravity lows at 9*21', 9*32', and 9*42'N. We also fixed the radius at 1 km, the along-axis

length at 10 km, and the depth to the top of the anomalous body at 1.25 km beneath the
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seafloor. The density contrasts of the cylindrical bodies, however, were considered as

variables. In comparing the observed short-wavelength gravity anomalies to predicted

gravity anomalies, details of the shape of the anomalous body are not important since the

distance between the point of measurement and the source is large compared with the

dimensions of the anomalous body. Once the predicted gravity anomaly was calculated, it

was then convolved with the same highpass filter as the observed local residual gravity

anomaly.

The predicted and observed local residual gravity anomalies along and across the axis

are compared in Figure 5.14. In this particular example, density contrasts of 350, 200, and

200 kg/im3 for the anomalous cylindrical bodies at 9421', 9*32', and 9*42'N, respectively,

provide the best match to the observed local residual gravity anomaly along the axis

(Figure 5.14a). However, the same models for the anomalous mass predict only about

half the observed magnitude of the local residual gravity anomalies in cross-axis profiles

(Figure 5.15b). We infer that in addition to the along-axis variations arising from discrete

bodies of anomalous mass there is also an additional signal arising from a structure that is

approximately continuous along the rise. It is important to note that these estimates

represent the amounts of reduction in density caused by effects other than the average axial

temperature at mid-crustal depths as given by the thermal model of Wilson et al. [1988].

The magma chamber in that thermal model is considered to have a temperature greater than

1150 0C.

Discussion

Before focusing on the causes of the observed residual gravity anomalies, we review

some of the important aspects of the models used in this study to correct for various

sources of gravitational attraction. In obtaining the residual gravity anomaly, we used two
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models, one to correct for the gravitational attraction arising from changes in lithology with

depth, and the other to correct for the gradual variation in the density structure of the plate

with cooling. Although there is evidence that layer 2A may thicken to the south of our

survey area by approximately 200 m [Harding et al., 1993], the total contribution of such

thickening would be very small, less than 0.5 mGal. As mentioned earlier, the thermal

structure of a fast-spreading rise at ages of less than a few million years is not well known

because of the lack of measurements that can validate the thermal models, except for near

axial regions where seismic observations [e.g., Detrick et al., 1987] provide some

constraints on the distribution of temperatures. In this study, we employed a simple model

where the thermal diffusivity of the modeling region beyond 10 km from the axis was

considered as a variable. After comparing the average heat fluxes of various thermal

model results with the predicted average total heat flow for 0-1 My old seafloor [Stein and

Stein, 1994], we chose a thermal model which assumes an 5-fold enhancement in the

effective thermal conductivity due to additional hydrothermal cooling (i.e., ic = 5 mm 2/s).

The residual gravity anomaly map, obtained by correcting for crustal layering and plate

cooling, shows several notable patterns. For instance, it shows that the area near the rise

axis is characterized by a broad residual gravity low (Figure 5.10). Although there are

indications that the AMC at this portion of the EPR is surrounded by a wider zone of low

velocities [Vera et al., 1990; Toomey et al., 1990], such a low-velocity volume extends

only about 5 km from the axis. Therefore, the width of the residual gravity low is too large

to be explained by a body of anomalous density coinciding with the low-velocity volume.

We tested whether this anomaly can be explained by a variation in the thickness of the

crust, specifically in the thickness of layer 3 [Mutter and Mutter, 1993]. If the axial

residual gravity low is to be attributed to crustal thickness variations, then the crust must be

thickest on axis and thin by as much as 1-1.2 km over a distance of 10-20 km from the

axis (Figure 5.11). Also, to explain the broadening of the residual gravity low to the north,

layer 3 must increase its thickness systematically by approximately 400 m along the axis.

316



Such large variations can be excluded on the basis of seismic reflection profiles conducted

along this portion of the EPR [Detrick et al., 1987], which show no sign of crustal thinning

with axial distance or of crustal thickening of that magnitude to the north. To the contrary,

a detailed examination of seismic reflection profiles show a slightly lesser travel-time

between the seafloor and Moho to the north than to the south of our survey area [Barth and

Mutter, 1994]. However, it should be noted that seismic reflection from the Moho is

absent within several kilometers of the axis. Also, it is unclear what portions of the crust

are contributing to these travel-time anomalies. Since compressional wave velocity differs

among oceanic crustal layers, there can be different estimates for the variation in crustal

thickness for the same magnitude of travel-time anomaly. For example, assuming that the

travel-time anomalies not explained by variations in layer 2A thickness [Harding et al.,

1993] occur within layer 3, Barth and Mutter [1994] estimate that the crust thins by as

much as 1.5 km from 9419' to 9040'N (Figure 5.16). However, since layer 3 is normally

the fastest (- 7.2 km/s) section of the crust, their estimate should be interpreted as an upper

bound. Regardless of the magnitude of the crustal thickness variation, a variation in crustal

thickness does not appear to the principal cause of residual gravity anomaly in our survey

area.

The most probable explanation of the broad residual gravity low is that it is caused by a

low-density volume that lies beneath the crust. Low density in the upper mantle beneath a

ridge can be caused by changes in the composition of the residual mantle as melting occurs

and by presence of melt in the solid matrix, as well as by elevated temperature. For

instance, one could imagine a region beneath the crust that serves as the source of magma

supply to one or more crustal magma chambers. Many models of mid-ocean ridges view

the generation of magma and upward ascent as a hierarchical system where the magma

becomes more spatially focused as it is derived from a larger and deeper magmatic source

[e.g., Crane, 1985; Schouten et al., 1985; Macdonald et al., 1988].
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Although there is no other direct measurement made to date that can constrain the

lateral distribution or depth extent of the low-density volume, a simple analysis still permits

us to examine some of the characteristics of the anomalous mass accounting for the long

wavelength variation in gravity anomaly. The gravity anomaly for a vertical cylinder with

an infinitely large radius and temperature anomaly AT is

Ag ~ 27r G p,a, AT Ah

where G is the universal gravitational constant, p, is the density of the mantle, a, is the

volumetric thermal expansion coefficient, and Ah is the height of the source volume. For

example, the residual gravity anomaly map (Figure 5.10) shows a decrease of

approximately 10 mGal to the north. If the decrease is caused by an increase in the

temperature of the mantle by 100*C, the temperature anomaly should extend from the

seafloor to approximately 25 kilometers below. However, such a temperature increase

should be accompanied by an increase in melt production, which in turn should produce a

thicker crust to the north. Since there is no observed increase in the crustal thickness in our

survey area from the multichannel seismic survey [Detrick et al., 1987], a preferred

argument would be that the long-wavelength gravity anomaly is caused by a lesser

temperature variation and sources extending deeper into the mantle. For AT = 50*C

sources extending down to 50 km are required; according to Wilson [1992], the low-

density volume at fast-spreading ridges should extend down to at least 40 km of depth in

order to be consistent with evidence for the geochemical diversity of seamount lavas.

The cause of such along-axis variations as the broadening of the residual anomaly low,

particularly on the Pacific plate side to the north of 9*35'N, is also unclear. As mentioned

earlier, the pattern of low residual anomaly appears to correlate with an area of the seafloor

that is slightly more elevated than elsewhere at a given age. One possible explanation is

that the crust may be thicker in the area of elevated seafloor. For a seafloor that is elevated
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by 50 m on Pacific plate relative to that of the Cocos plate, the amount of thickening

predicted for layer 3 is approximately 170 m. According to the map of crustal thickness

estimates [Barth and Mutter, 1994] (Figure 5.16), there is not a noticeable difference in

crustal thickness across 9*35'N. However, a difference in crustal thickness of 170 m

across the rise axis may be within the uncertainty in seismic reflection measurements. An

alternative explanation is that the area on the Pacific plate to the north of 9*35'N may be

receiving a greater than average heat flux from the upper mantle, and therefore it is elevated

by greater thermal expansion compared with other regions at the same distance from the

axis.

The observation that the region to the north exhibits a lower residual gravity anomaly

appears to be consistent with the results of several previous investigations. According to a

geochemical analysis of dredged rock samples along the axis [Batiza and Niu, 1992], there

are indications that seafloor basalts were quenched from a higher temperature to the north

of our survey area than to the south. Also, magnetic anomalies along axis show an abrupt

increase in the magnitude of magnetization to the south of 9*25'N [Chapter 4]. This

increase in magnetization is interpreted as evidence that lava to the south of 9*25'N was

derived from more highly differentiated magma chambers. If the upper mantle to the north

has a higher temperature than that toward the south, it also should be capable of a greater

magma generation rate. This could lead in turn to a more frequent replenishment of magma

in crustal magma chambers, which may explain why seafloor basalts appear quenched at

higher temperatures. Also, a more frequently replenished magma chamber is more likely

to be well mixed and thus produce a less differentiated magma than less frequently

replenished one.

Several characteristics of the broad residual anomaly low of the EPR may be compared

and contrasted with those of the Mid-Atlantic Ridge. At the Mid-Atlantic Ridge, the

gravity lows generally form concentric patterns and tend to be centered at midpoints of

ridge segments [e.g., Kuo and Forsyth, 1989; Lin et al., 1990, Blackman and Forsyth,
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1989; Neumann and Forsyth, 1993], leading to the so-called "bull's eye" pattern. Although

our coverage is somewhat limited, the pattern of residual anomaly lows at this portion of

the EPR does not appear to be distinctly as concentric as over the Mid-Atlantic Ridge, nor

are anomalies centered at midpoints of ridge segments. For the residual anomaly low to be

situated midway between the Clipperton Fracture Zone at 10005'N and an OSC at 9003'N,

the center of the low would have to be at 9031'N. Instead, the lowest residual anomaly lies

at 9045'N or farther north. The residual anomaly north of 9035'N is only about 5 mGal

lower than that to the south, whereas at the Mid-Atlantic Ridge the along-axis difference

can be as high as 20-30 mGal.

The local residual anomaly shows several lows along the axis which are interpreted as

magmatically robust regions within the crust. Distinct lows are centered at 9021', 9*32' and

9042'N. From the apparent wavelengths of these lows, it is clear that the anomalies are due

to sources in the crust. We have modeled the anomalous masses giving rise to these lows

as circular rods of radius 1 km, along-axis lengths 10 km, and tops 1.25 km below the

seafloor. With such a geometry, the required density contrasts are approximately 200-350

kg/m3. Such contrasts are far too large to be due to unmodeled thermal anomalies, and

they are also higher than can be plausibly be explained by melt fraction given that the

density change associated with complete melting of typical crustal rock is less than 300

kg/m3. Of course, lesser contrasts would be obtained for anomalous masses of greater

volume.

Although the magnitudes of the crustal density anomalies trade off with the geometry

of the anomalous masses, the positions and spacing of gravity lows correlate well with

other known crustal variations. For instance, the local gravity low at 9032'N coincides with

the low-velocity volume imaged by delay-time tomography [Toomey et al., 1990] in terms

of its location and dimensions. Unfortunately, for other local gravity lows, there are no

similar seismic constraints. However, we can compare the distribution of the local gravity

anomaly with that of ASCs mapped by Haymon et al. [1991]. Except for the local gravity
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low at 9*21'N which appears at the terminus of an ASC, the local gravity lows are

generally centered over segments of the ASC, but not necessarily at their midpoints.

Compared to ASCs, devals show a slightly better correlation with the loci of local gravity

lows. None of the devels appear near the centers of the local gravity lows; instead, most of

them occur along the portions of the rise axis where gravity anomalies are relatively high.

The local gravity lows show some correlation with the distribution of reflectors from the

top of the AMC mapped by Kent et al. [1993a]. For instance, there is a large gap between

9*29' and 9*22'N where the AMC reflector is absent, according to a seismic reflection

profile conducted along the axis (i.e., CDP line 41), and it coincides with an along-axis

region where the residual gravity anomaly lacks a prominent low.

In our survey area, the AMC reflector is the widest at around 9*18'N but is offset to the

west by approximately 2-3 km [Kent et al., 1993a]. The residual gravity anomaly low

does not show an offset of such a magnitude, but shows some sign of bifurcation to the

south of 9*15'N, with the gravity low to the west appearing as slightly more pronounced in

magnitude than that on the east. One possible scenario that may explain this pattern of

residual gravity anomaly is that, the eastern limb of the OSC at 9'03'N is being overtaken

by the western limb [Semperd et al., 1984], with the consequence that the crust beneath the

western limb is being more frequently replenished with magmatic material. Unfortunately,

because our gravity survey does not cover the region of the OSC, we are not able to

examine the southward extension of the residual anomaly pattern in detail to test this idea.

The local gravity low centered at 9*21'N is the largest in magnitude of the axial lows.

Since there is no evidence that a magma chamber is unusually shallow at this location, we

speculate that the AMC at 9*21'N may have been the axial region most recently replenished

with new magma. The absence of an ASC over the local gravity low at 9421'N may be

another indication that the region has only recently undergone lava eruption, so that

preexisting ASCs would have become filled with sheet flows and pillow lavas. According
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to Haymon et al. [1991], some of the freshest basalts and an active hydrothermal vents

were found at 9417'N.

The residual gravity anomaly in our area shows greater cross-axis variation than along-

axis. A plausible explanation to a greater cross-axis variation is that axial regions that are

magmatically robust are surrounded by a region of lower than normal density that is

approximately continous along the axis. Such a region may correspond to the low-velocity

volume surrounding the magma chamber imaged by seismic tomography. Although no

further quantitative analysis is carried out here, on the basis of a comparison between the

amplitudes of the observed cross-axis residual gravity anomaly and those predicted by our

cylinderical models, the surrounding low-velocity volume appears to have a mass anomaly

comparable to that of the magmatically robust regions.

A New Model of the EPR, 9*10'-9*50'N

Based on the information gathered through gravity analysis, we suggest the following

description of the EPR between 9*10' and 9*50'N (Figure 5.17). The temperature of the

upper mantle is probably higher, and thus the melt flux is higher, in the upper mantle to the

north than to the south. A greater presence of melt in the upper mantle in turn reduces the

density. (Regions of lower density are represented by darker shades in the bottom figure.)

In addition to an along-axis variation of density, the density structure of the upper mantle

shows a slight asymmetry with respect to the bathymetric axis, which is illustrated by the

white dashed line in the bottom figure. The gray arrows represent the loci of magma

upwelling from the mantle to the crust, each marked by a short-wavelength residual gravity

anomaly low. Because the rate of upper mantle magma production is greater to the north,

magma chambers to the north are being replenished with new magma more frequently.
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To a large extent, the structure of the crust near the axis appears to reflect magmatic

processes that occur in the upper mantle. The axial crust along the axis can be characterized

by a series of approximately regularly spaced bodies of high melt concentration surrounded

by a region of lesser melt concentration. The actual transition between regions of high and

low melt concentration, of course, may be more gradual. The regions of low melt

concentration may correspond to the seismically-defined low-velocity volume (LVV)

[Vera et al., 1990]. Although shown as uniform, the width of the LVV may vary along

the rise axis. There are at least five distinct regions of high melt concentration in our

survey area. As mentioned earlier, the dimensions and the densities of these regions of

high melt concentration are not derivable from gravity information alone. However, if the

shape of the region of high melt concentration is a circular rod whose radius is 1 km,

along-axis length is 10 km, and center of mass is 2.25 km beneath the seafloor, the density

contrast of such a region of high melt concentration with the surrounding region may range

from 200 to 350 kg/m3 on the basis of a fit to along-axis residual gravity anomaly profiles.

Near the southern limit of our survey area, the region of high melt concentration appears to

be divided into two sections, with the one to the west more pronounced and perhaps

receiving magma at greater rate than the one to the east. Consequently, the magmatic axis

may deviate to the west of the bathymetric axis southward of 92 1'N.
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Conclusions

We have examined sea surface gravity field measurements gathered over the East

Pacific Rise between 9*10'-9*50'N and 255*30'-256*E. Complete coverage of bathymetry

from Sea Beam and dense coverage of gravity allowed us to perform a three-dimensional

analysis of this area. By reducing the misfit of Sea Beam bathymetry at track crossovers,

rms free-air gravity misfit after renavigation was reduced from 3.9 to 1.9 mGal.

A residual gravity anomaly map was obtained by removing from the free-air anomaly

the effects of crustal layering and plate cooling. We modeled the crust as having three

distinct layers of constant density: layers 2A, 2B, and 3. The layers were assumed to have

uniform thickness, except for layer 2A, which thickened approximately twofold within 2

km of the axis. The thermal model used to correct for cooling was extended from that of

Wilson et al. [1988] to distances greater than 10 km from the axis. A variable thermal

diffusivity permitted the examination of a range of thermal models.

The residual gravity anomaly map shows that the EPR is underlain by a wide region of

low density that is not explained by plate cooling or modeled density structures within the

crust. The broad residual gravity anomaly cannot be explained solely by crustal thickness

variations, because the crust would have to decrease by as much as 1 km in thickness over

a distance of 10-20 km off axis, a change too large to be compatible with multichannel

seismic observations [Detrick et al., 1987]. The broad residual gravity low, therefore, is

interpreted as a signal arising from the upper mantle, presumably caused by the presence of

partial melt along the rise axis.

The width of the broad residual gravity pattern varies considerably along-axis, with

greater values occurring to the north. To the north of 9*35'N, the broad low is slightly

more prominent on the Pacific than on the Cocos plate side. The increase in the width of

the broad low is interpreted as evidence for a greater presence of melts in the mantle to the
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north than to the south, especially on the Pacific plate side. A greater melt productivity in

the upper mantle may lead to more frequent replenishment of the AMC and more frequent

axial eruptions.

The residual gravity anomaly shows several short-wavelength lows approximately

regularly spaced along the axis (e.g., 9*21', 9*32', and 9*42'N) which correlate with

variations in seismic structure and other characteristics. The local lows have an along -axis

amplitude of 1.5-3 mGal and appear at almost regular distances (10-15 km) along the axis.

They are interpreted as regions of relatively high melt concentration in the crust,

presumably sites of recent replenishment of magma from the upper mantle. Furthermore,

because the local lows show a greater variation (3-5 mGal) across the axis, an additional

low-density structure that is approximately continous along the axis is thought to surround

the regions of high melt concentration. If this view is valid, one can deduce information on

the state of axial magma chambers during comparatively active and inactive phases of a

magmatic cycle from the along-axis variation of the gravity field. For a simple model of

the anomalous density structures, density contrasts of approximately 200-350 kg/m3 can

account for the observed along-axis variations.
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Table 5.1. Thicknesses and densities of layers used for the calculation of gravitational

attraction.

Layer Density (kg/m3) Thickness (m)

Seawater 1000

Layer 2A 2400 400

Layer 2B 2700 1350

Layer 3 2900 5250

Mantle 3300
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Parameter values used for the thermal model.

Variable Meaning Value Used

Tm Temperature of the mantle (i.e., 100 km) 13000 C

TO Temperature of the seafloor 00 C

av Volumetric thermal expansion coefficient 3x10-50 C

IC Thermal diffusivity variable

V Half spreading rate 55 mm/yr
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Figure 5.1. Schematic map of the East Pacific Rise showing the survey area near

9*30'N where the gravity field survey was conducted as part of a seismic tomography

experiment in 1988. The survey area corresponds to the upper portion of a long segment

of the ridge-axis bounded by two major transform faults: the Clipperton Fracture Zone at

10*05'N to the north and the Siqueiros Fracture Zone at 8420'N far to the south. An

overlapping spreading center (OSC) lies just south of the survey area at 9'03'N. Two

seamount chains appear just outside of our survey area to the north, the Lamont and

Watchstander Seamount Chains located on the Pacific and Cocos plates, respectively.
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Figure 5.2. Bathymetic map of the survey area, from 9005' to 9*55'N and 255025' to

256*05'E, compiled from Sea Beam after renavigation [Wilcock et al., 1993]. The depth of

the seafloor ranges from approximately 2500 to 3400 m. The purple dashed and dotted

contour lines represent the depths of 3000 and 3200 m, respectively. The yellow circles

represent the locations of OBSs and OBHs that were deployed in the central portion of the

survey area for the seismic tomography experiment. The white lines are ship tracks used

for the gravity field analysis.
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Figure 5.3. Free-air anomaly map of the survey area, from 9010' to 9*50'N and 255030'

to 256*E. The circles, shown here as reference points, represent the locations of OBSs and

OBHs that were deployed for the seismic tomography experiment. The white crosses

represent the bathymetric axis.
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Figure 5.4. Initial model used to correct for the gravitational attraction of distinct crustal

layers and the effects of plate cooling. As shown by the illustration on the left, the mid-

ocean ridge is modeled as four layers of differing density, that is, layers 2A (extrusive

section), 2B (dike complex), 3 (gabbro), and the mantle (Table 5.1). Each layer is

assumed to have a constant thickness across-axis, except for layer 2A, whose thickness

increases by almost a factor of 2 within 1-2 km of the rise axis [Harding et al., 1993]. The

thermal model, shown on the right, is that of Wilson et al. [1988] at distances within 10 km

of the axis. Their model is for a horizontal, uniform slab spreading at a constant rate from

a narrow, continuously intruding vertical dike. Point sources and sinks of heat were used

to simulate latent heat release, hydrothermal circulation, and convection within a magma

chamber. The isotherms in their model were constrained to match multichannel seismic

results from the EPR [Detrick et al., 1987]. For distances beyond 10 km, we continued

their thermal model by solving the steady-state two-dimensional heat flow problem with

the temperature profile of Wilson et al. [1988] at 10 km distance as a boundary condition.
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Figure 5.5. Migrated time section for CDP seismic reflection lines which cross the

EPR at (a) 9*19', (b) 9*24', (c) 9*30', (d) 9*35', (e) 9*40', (f) 9045', and (g) 90 50'N

[after Barth, 1991]. The solid lines trace some of the notable reflections seen along the

profiles. The relatively flat, high-amplitude event beneath the rise axis is believed to be a

reflection from the top of an AMC and from the off-axis continuation of the frozen top.

Along most of these profiles, Moho reflections can be traced to within 2-3 km of the rise

axis.
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Figure 5.6. Gravitational attraction at the sea surface predicted from the geometry of the

following interfaces: (a) the seafloor, (b) between layers 2A and 2B; (c) between layers 2B

and 3; and (d) the Moho. The gravitational attraction of the seafloor dominates the

summed gravitational attraction, because it is the interface with the largest density contrast

and is the nearest to the observation datum.
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Figure 5.7. Mantle Bouguer anomaly map, obtained after correcting for the gravitational

attraction of the various crustal layers of the rise. The white crosses represent the

bathymetric axis of the rise.
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Figure 5.8. Grid used for finite difference analysis to solve the steady-state heat flow

problem. Our modeling region begins 10 km from the axis and extends to a depth of 100

km from the seafloor. It is also more densely gridded in the area of interest, which is the

axial region near the surface. The temperature at the seafloor is assumed to be 0*C. At x =

10 km, the temperature of the upper 7 km is taken from Wilson et al. [1988] (illustration

on the right side of Figure 5.4). The temperature, which is approximately 1220 0C at 7 km

depth at 10 km from the axis, increases adiabatically (0.8*C/km) to a depth of 100 km.

Thus the temperature at the base of the modeling region is approximately 1300*C. The

right side of the modeling region is assumed to have no horizontal heat flux. As with

Wilson et al. [1988], a uniform slab moving away from the axis at constant rate is

assumed. The only remaining variable that affects the resulting temperature distribution

strongly is the thermal diffusivity (K).
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Figure 5.9. Thermal models obtained by prescribing four different values for thermal

diffusivity i: (a) 0.25; (b) 1; (c) 5; and (d) 10 mm2/s. The dashed lines represent the

contours of the 300 and 900*C isotherms, and the solid lines 500 and 1 100*C isotherms.

352



Temperature structure as a function of thermal diffusivity

(a) Therm. Diffusivity= 0.25 mm2/s

-. .. ..-

.. ~~~~~ . . . ... ..

20 40 60

(c) Therm. Diffusivity = 5 mm 2/s

-5

-10

-15
80

(b) Therm. Diffusivity I = 2/s

-------------------------- --------
............. M

...................... ... .... ....... ....................... .......................... ..... .... ..................... ....
...................................

.................................... .......................... .. .. ... .... ..... .. .. .. .. ............................. ...... ..... .. .... .. .. ..... ...

20 40 60

(d) Therm. Diffusivity = 10 mm 2/s

20 40 60 80
Distance from axis (km)

-5

-10

-15
20 40 60 80

Distance from axis (km)

Mim i 01 X4iiX
325 650

Temperature 'C
975 1300

-5

-15

-5

&-10

-15

N



Figure 5.10. Residual gravity anomalies obtained after removing both the gravitational

attraction of crustal layers (Figure 5.6) and the effect of plate cooling predicted by the

thermal model with a thermal diffusivity K of 5 mm 2/s (Figure 5.9). The white crosses

represent the bathymetric axis of the rise.
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Figure 5.11. Variations in the thickness of layer 3 obtained from a downward

continuation of the residual gravity anomalies of Figure 5.10. (a) Solution obtained after

lowpass filtering of the residual gravity anomalies with an empirically determined cosine

taper, (b) solution based on a maximum smoothness criterion.
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Figure 5.12. Local residual gravity anomaly, obtained after removing the residual

anomaly map (Figure 5.10) a low-frequency contribution using a two-dimensional

highpass filter with cosine tapering between a stopband cutoff wavenumber of 2x/40 km-

and a passband cutoff wavenumber of 2n/20 km-'. The box represents the area where

seismic tomography images where obtained [Toomey et al., 1990]. The white crosses

represent the bathymetric axis.

358



Short-Wavelength Residual Gravity Anomalies
50-

45-

40

35'

30

25'-

20'-

15'-

30' 35' 40' 45' 50' 55'
Longitude 255' (E)

60'

3.5

(Figure 5.12)

-4.5 -2.5 -0.5 1.5
mGal

359



Figure 5.13. Along-axis variations of local residual gravity anomalies using different

cutoff wavenumbers for the highpass filter. We assumed cosine tapering between the

passband cutoff wavenumber and stopband cutoff wavenumber half as great. The results

are shown for stopband cutoff wavenumber of (a) 27c/20; (b) 271/40; and (c) 271/60 km'.

The solid line represents the case where a linear trend along the axis was removed from the

unfiltered residual gravity anomaly (Figure 5.10).
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Figure 5.14. Comparison of the observed variation of local residual gravity anomaly

(Figure 5.12) and the modeled gravity anomaly (a) along and (b) across the axis. In

calculating the modeled gravity anomaly, we assumed that there are three anomalous

cylindrical bodies of circular cross-section beneath the seafloor. These anomalous bodies

are equal in dimensions and depths beneath the seafloor and their centers coincide with the

centers of the gravity lows (i.e., 9421', 9*32', and 9*42'N). Also, we fixed the radius at 1

km, the along-axis length at 10 km, and the depth to the top of the anomalous body at 1.25

km beneath the seafloor. Density contrasts of 350, 200, and 200 kg/m3 for the anomalous

cylindrical bodies at 9421', 9*32', and 9*42'N, respectively, provide the best match to the

observed local residual gravity anomaly. As with the local residual gravity anomaly, the

modeled gravity anomaly was highpass-filtered using a stopband cutoff wavenumber of

2n/40 km 1 . In (b) the profiles were shifted vertically by a constant amount so that the

troughs of the observed and modeled gravity anomaly profiles match at 0 and -2 mGal,

respectively.
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(a) Observed vs. Modeled Residual Anomalies Along Axis
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(b) Observed vs. Modeled Residual Anomalies Across Axis
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Figure 5.15. Horizontal cross-sections through a three-dimsional P-wave velocity (in

km/s) structure obtained from delay-time tomography [after Toomey et al., 1990]. (a) At

the seafloor, and (b) 2 km depth.
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Figure 5.16. Estimates of crustal thickness beneath the EPR between 8450' and 9*50'N,

based on measurements of travel time between the seafloor and the Moho along CDP lines

of the 1987 multichannel seismic reflection survey [Detrick et al., 1987], from Barth and

Mutter [1994]. These results were obtained by assuming that all travel-time anomalies

arise within layer 3.
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Figure 5.17. A schematic diagram illustrating the density structure of the EPR inferred

from the analysis of gravity anomalies and from results of other investigations conducted

over the same general area. The source of low-density beneath the axis may be divided

into sources within and below the crust. The series of distinctive short wavelength gravity

lows near the rise axis corresponds to regions of high melt concentrations within the crust.

In our survey area, the local lows appear almost regularly-spaced along the rise axis and are

surrounded by a region of lesser melt concentration but of greater along-axis continuity

which probably corresponds to the LVV imaged with seismic tomography. As the OSC at

9003'N is approached, the local gravity low may become offset and eventually divide into

two anomalies. With increased magmatic activity beneath the Pacific plate, the magmatic

axis (shown as a dashed line in the top figure) may also migrate to the west. These local

gravity lows are replenished by sources in the upper mantle as indicated by upward arrows

in the bottom figure. Shading in the lower figure represents the density structure of the

upper mantle, with regions of lower density indicated by darker shades. The increase in the

width of the residual gravity low to the north suggests that the region to the north is hotter

and receiving a greater flux of magma than that to the south.
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Chapter 6

Conclusions

Review of Primary Results

A multidisciplinary approach is often the most beneficial way to gain insight into any

geological structure or process. This is because, although each type of observation may be

limited by spatial or temporal resolution or by inherent nonuniqueness, together these

observations can provide important constraints on the detailed structure and processes.

Through a diverse set of observations, we were able to document a number of important

aspects of the East Pacific Rise (EPR), including the initiation and development of normal

faults on the seafloor, the magnetization structure of the upper crust, and the density

structure of the crust and upper mantle. This chapter attempts to integrate the different

views arrived at through these diverse observations and analyses into a new tectonic model

for fast-spreading ridges. We begin by reviewing the primary results of our investigations.

Figure 6.1 summarizes some of the important results from our investigations as well as

those from other researches pertinent to our interpretations.

Despite the general acknowledgment of normal faults as the basic tectonic element of

the EPR, there has been considerable disagreement among investigators on some of the

characteristics such as the distance from the ridge axis to which normal fault activity
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continues and the number of inward- versus outward-facing normal faults. Many of these

disagreements can be attributed in part to the different types of instruments and the data

processing schemes that were used to analyze normal faulting [Cowie et al., 1994]. In this

study, we used a relatively simple scheme for estimating the abundance of normal fault

scarps at a given distance from the axis; we gridded individual swaths of Sea Beam into

fine-scale grids of equal area (20 m x 100 m) and then counted those grid elements within

which the dip angle exceeded a critical angle (300). This analysis showed that the plan-

view area of fault zones increases to a distance of at least 30 km from the axis. Since the

plan-view area of fault zones can increase with off-axis distance simply because of mass

wasting, however, we examined how fault zone throws vary with distance. Our analysis

of fault zone throws not only confirmed previous observations that the axial region of the

EPR is generally free of large-offset normal faults, but also provided new evidence for

continued normal faulting to a distance of at least 30-40 km from the axis. We also found

that, in our survey area, the midpoint between the nearest large-offset normal faults on

either side of the axis does not always coincide with the bathymetric axis. According to a

recent investigation of the distribution of the axial magma chamber (AMC) reflector [Kent

et al., 1993a, b], there is evidence that the AMC reflector is offset to the west of the

bathymetric axis to the south of 9*23'N (Figure 6.lg), which coincides with the offset in

the midpoint between the nearest large-offset normal faults on either side of the axis in the

same general area (Figure 6.1b).

An extensive modeling effort was performed to understand the two important

characteristics of normal faulting on the EPR: the initiation of normal faults a few

kilometers off-axis and the continued development of these faults farther off-axis. We

examined stress and strain fields in the upper crust arising from two sources, the buoyancy

that low-density regions in the lower crust, such as the AMC and the surrounding low-

velocity volume, exert on the upper crust, and gravitational spreading as a result of a

mechanically strong upper crust trying to slide over a relatively weak lower crust. The
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stress and strain fields were modeled using the boundary element method and, to simplify

our modeling effort, we assumed that the modeled regions, including those beneath the

upper crust, are elastic media with variable moduli rather than low-viscosity fluids.

The results of both buoyancy and gravitational spreading modeling showed that the

boundary condition of the rise axis, that is, the mechanical strength of the rise axis, can

have a great effect on the near-axial stress field. If the rise axis is mechanically strong, the

extensional stress due to buoyancy would be concentrated at the axis. On the other hand, if

the rise axis is mechanically weak, the peak extensional stress occurs off-axis. While this

occurrence of peak extensional stress off-axis may explain the initiation of normal faults,

the extensional stresses resulting from buoyancy do not extend far enough from the axis (<

10-15 km) to explain continued normal fault activity to distances of 30 km or more. The

presence of partial melt below the upper crust may also be important since it can lower the

magnitude of stress in the upper crust near the axis for cases with a mechanically weak rise

axis.

It is difficult to predict the style of faulting from the results of gravitational spreading

modeling other than to obtain a general understanding of the importance of several factors.

This is because the details of the stress field depend largely on factors such as the ease at

which the upper crust can slide over the lower crust and boundary conditions at the far end

of the modeled region, which are presently not well constrained. An important

characteristic of gravitational spreading models is that, as with the case of buoyancy, a

mechanically strong rise axis would cause a zone of large horizontal extensional stress to

develop on the rise axis. This is not consistent with off-axis initiation of normal faults. A

weak rise axis with an extremely weak lower crust (e.g., an inviscid fluid) would also be

inconsistent with the observation of normal faults because it predicts horizontal

compressional stress within the upper crust whose magnitude increases with distance from

the rise axis.
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Our treatment of buoyancy differs from previous investigations [e.g., Madsen et al.,

1984; Wang and Cochran, 1993] in several ways. In the model of Madsen et al. [1984],

the lithosphere was considered to be underlain by a region of inviscid fluid, and therefore

no shear stress could be applied at its base. In that case, a buoyant force could not explain

normal faulting at the seafloor, because it causes the lithosphere to bend in a concave

upward manner, in which case the upper half of the lithosphere is compressed while the

lower half is extended. However, we assumed the lower crust to have a finite strength,

thus allowing shear stress to be transmitted across the interface between the upper and

lower crust. We found that, if the strength of the lower crust is sufficiently large, the

buoyant force will cause the crust to bend in a convex upward manner, in which case the

upper crust will be extended. Therefore, our treatment of buoyancy is consistent with the

presence of normal faults at the seafloor.

Besides buoyancy and gravitational spreading, there are other sources that are thought

to be important contributors of tectonic stress at mid-ocean ridges, including shear stress

exerted at the base of the plate by mantle flow and thermal stress due to differential plate

cooling. However, previous models of these sources can not explain normal faulting at the

seafloor. In previous models of differential cooling [Bratt et al., 1985; Haxby and

Parmentier, 1988], for example, horizontal compressional tectonic stress is predicted in the

direction parallel to plate spreading within the shallow crust. Mantle induced shear stress

can give rise to extensional stress, but at fast-spreading ridges, because of a low-viscosity

region in the upper asthenosphere, the extensional stress in the lithosphere is not large

enough to cause brittle failure [Chen and Morgan, 1990a, b]. We believe that such

predictions are the direct result of the boundary conditions at the rise axis assumed in these

models. In previous models, for example, the rise axis was either treated as a stress-free

surface [Bratt et al., 1985; Haxby and Parnentier, 1988] or as a surface which is

constantly moving at the velocity of plate spreading [Chen and Morgan, 1990a, b], both of

which are equivalent to treating the rise axis as a mechanically weak region. However, if
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one assumes the rise axis has a finite strength then, depending on the magnitude of this

strength, these sources may produce extensional stress large enough to produce normal

faulting. Further, unlike buoyancy, these sources would generally affect large areas of

seafloor over a significant distance from the axis (> 30 km) and thus may explain the

continued development of normal faults. Although the assumption of a weak rise axis

may be valid for regions of most recent volcanic eruptions, such regions may be localized,

and therefore it may be valid to consider a substantial length of the mid-ocean ridge axis (-

many tens of kilometers) as having a finite strength. Later in this section, we discuss the

details of a new model of fault development at fast-spreading ridges which incorporates the

weak axis assumption to explain the initiation of normal faulting off-axis, and the strong

axis assumption to explain the continued development of normal faults farther off-axis.

Analysis of the scalar magnetic field often provides constraints that can improve our

understanding of the structure and properties of the upper crust of the EPR. One of the

most widely used methods for analyzing the sea-surface magnetic field is to assume a

uniformly thick magnetic source layer and invert for the intensity of crustal magnetization.

However, it is often difficult to determine the exact cause of the magnetic anomaly, because

diverse processes can lead to similar anomalies. According to our map of magnetization

anomalies (Figure 4.9), a considerable variation in the magnitude of axial magnetization

high occurs along the axis, with the magnitude generally increasing to the south. We

examined whether an increase in the thickness of the magnetic source layer to the south

might explain the observed variation in the axial magnetization high. The results showed

that, to explain the observed variation along-axis with a small change in layer thickness (-

50 m), the magnetization intensity of the source had to be either extremely high (>70 A/Nm)

or, for a more reasonable estimate of magnetization intensity (- 25 A/m), the thickness had

to increase by approximately 200 m along axis. This is probably too large to be consistent

with recent determinations of the amount of deepening of the AMC reflector to the south

[Harding et al., 1993]. An alternative explanation of the axial magnetization anomaly is
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that it represents variations in the FeO and Ti0 2 contents of source rock. We found that,

for a magnetic source layer that is 500 m thick, the variation in magnetization intensity

predicted from the FeO and TiO2 contents of dredged rock samples [Batiza and Niu,

1991] explains less than half of the total variance of our observation. Hence, we conclude

that a combination of variation in both magnetic layer thickness and in intensity of

magnetization (by variation in the FeO and TiO2 contents of the source rock or by other

mechanisms) is needed to explain the along-axis variation of axial magnetization.

In addition to an increase to the south, the axial magnetization high exhibits short-

wavelength variability. In particular, the discontinuities between adjacent segments of the

axial summit caldera (ASC) seem to correlate with breaks in the axial magnetization

anomaly (e.g., 9425', 9*37', and 9*45'N), i.e., so-called "magnetic devals" (Figure 4.15).

The amplitudes of the axial magnetization anomalies are highest at the midpoints of the

ASC segments. The midpoints of the ASCs appear to be the loci of most frequent lava

eruptions, and thus the lava at the midpoints will tend to be younger and more magnetic.

A comparison of off-axis bands of short-wavelength (- 5 km) magnetization

anomalies with the thicknesses of a seismically-defined layer 2A [Harding et al., 1993]

does not show conclusively that the high magnetization features off-axis are caused by a

thicker layer 2A. There are a number of other possible explanations for these off-axial

anomalies including short geomagnetic reversal events, variations in the paleointensity of

the Earth's field, variations in the magnetization intensity of the source rock due to

variability in the magmatic supply, and variations in the degree of hydrothermal alteration

at the rise axis. However, we found a convincing correlation between the off-axis

magnetization anomalies and the short geomagnetic reversal events within the Brunhes

epoch and so propose this as the most plausible explanation.

Analysis of sea surface measurements of the gravity field can provide information on

the density structure of the crust and upper mantle, which is important for corroborating

many of the models of shallow and surficial structure of the EPR. According to our
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analysis, a considerable variation in the residual gravity anomaly occurs along axis, with

more negative anomalies occurring to the north. The magnitude and the extent of this

variation are too large to be explained entirely by a variation in the thickness of the crust.

The most plausible explanation of the long-wavelength components of the residual gravity

anomaly is that they represent variations in the density structure of the upper mantle,

presumably caused by higher temperatures and a greater presence of melt to the north of

our survey area. At present, the depth extent of such a density anomaly is unclear;

however, it is unlikely that the density anomaly is caused by a large temperature variation

(e.g., > 100*C) in the upper mantle. This is because a large increase in temperature in the

upper mantle would lead to a significant increase in melt production rate, which in turn

would produce a thicker crust. Despite having lower long-wavelength residual gravity

anomalies to the north of our survey, there is no evidence from multichannel seismic

reflection data [Detrick et al., 1987] that the crust is thicker to the north. Our calculation

suggests that if the long-wavelength residual gravity anomaly represents a moderate

temperature difference of 50*C along axis, then such an anomalous region may extend 40-

50 km below the seafloor, which is consistent with the depth of the melting inferred by

Wilson [1992] from geochemistry of seamount lavas near fast-spreading ridges.

In addition to the broad variations in the residual gravity anomalies, several local

gravity lows appear along the axis (e.g., 9*21', 9*32', 9442' and 9*50'N), whose positions

correlate with documented variations in the crustal structure, including those shown by

seismic tomographic images near 9*30'N [Toomey et al., 1990] and by the presence or

absence of the AMC reflector along the axis [Kent et al., 1993a] (Figure 6.1g). The

relation between the local gravity lows and the distribution of ASCs along the rise crest

[Haymon et al., 1991] (Figure 6.le) is, however, not clear. Although we interpret these

local gravity lows as density anomalies arising primarily from crustal magma chambers of

greater than average dimensions, the geometry and density of the anomalous sources are

difficult to constrain. For one, we do not know how much of the residual gravity anomaly
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is caused by sources in the crust and how much is caused by those in the mantle. If we

assume that only features with wavelengths less than 40 km or those that remain after

removing a linear trend from the along-axis anomaly are caused by crustal sources, then

the local gravity lows range from 1.5-3 mGal in amplitude along the rise axis. Further,

assuming that we know the dimensions of crustal density anomalies, we can examine the

density contrast that these local lows represent. We represented the crustal density

anomalies as a circular rod with a radius of 1 km, an along-axis length of 10 km, and a top

at 1.25 km below the seafloor. We considered three such crustal density anomalies and

assumed that their along-axis centers lie just below the peaks of local gravity lows (9*21',

9*32', and 9442'N). The results showed that local lows correspond to a density contrast of

approximately 200-350 kg/m3. Such contrasts are far too large to be due to unmodeled

thermal anomalies, and they are also higher than can be plausibly be explained by melt

fraction given that the density change associated with complete melting of typical crustal

rock is less than 300 kg/m 3. Of course, lesser contrasts would be obtained for anomalous

masses of greater volume.

Discrete Emplacement Model

It has long been thought that the melt which accumulates within the zone of melt

production in the upper mantle forms a gravitationally unstable layer beneath a depleted

mantle residuum and rises in the form of plumes to a level near the surface by buoyancy

[Whitehead et al., 1984; Crane, 1985; Schouten et al., 1985]. According to this

hypothesis, the observed variability and inferred episodicity of tectonic and magmatic

processes along a mid-ocean ridge are explained by the characteristic spacing between

mantle-derived melt-rich plumes and the timing of their ascent to the upper lithosphere

[e.g., Macdonald et al., 1988]. Many of the results derived in this thesis, including the
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pattern of residual gravity anomalies and the along-axis variation of magnetization

anomalies, can be explained by a model in which magmas derived from the upper mantle

are injected or emplaced at discrete locations along the axis within the crust. The most

convincing new piece of evidence is the short-wavelength residual gravity anomaly lows

appearing at almost regularly-spaced (10-15 km) intervals along the axis. In addition, the

axial segments defined by distinct magnetization values and delimited by magnetic devals

(Figure 6.1c) show correlations with those defined by the short-wavelength residual gravity

anomaly (Figure 6.1d). In particular, the midpoints of axial magnetization segments

generally coincide with residual gravity anomaly lows, implying that some of the

characteristics of crustal magma chambers, such as replenishment rate or the time it takes

for magma to reach the surface, may differ among those segments.

Without knowing how much of the gravity anomaly is caused by sources in the

mantle, it is difficult to determine from the residual gravity anomaly whether crustal

magma chambers vary in size or density along the axis. If one simply attributes the

longest wavelength component to the mantle source and removes it from our residual

gravity anomaly, then the resulting anomaly shows local gravity anomalies which are

almost equal in amplitude along the axis. However, since the axial long-wavelength

gravity anomaly low becomes progressively broader and deeper to the north along the axis,

one possibility is that the frequency at which the magma chambers are replenished may

differ along axis with crustal magma chambers in the northern part of our survey area

more frequently replenished than those to the south.

One corollary of discrete magmatic emplacement along-axis is that there will also be

magmatically starved regions at the distal ends of magmatic segments. Although there are

numerous small-scale offsets in the bathymetric axis in our survey area, this portion of the

fast-spreading ridge exhibits considerable general continuity, which leads us to suggest

that, over a period of time, as the older melt sources in the upper mantle become depleted,
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previously untapped regions become new sources and thus change the position of

magmatic emplacement along the axis.

Fault Development Model

In constructing a model of fault development for fast-spreading ridges, one needs to

consider several constraints. These constraints provide insight into the mechanical strength

of the rise axis as viewed from several scales and in some cases may appear to be

inconsistent.

First, we showed that, to explain the initiation of normal faults by buoyant forces

arising from the crustal magma chamber, we need a weak axis condition. However, to

explain continued slip on normal faults to distances of 30 km or more off axis, one must

have a significant extensional stress at the surface that extends to comparable distances,

which is possible only if the rise axis has a finite strength.

Another important constraint can be derived from the argument that the stress field that

we infer from the observation of normal faults within 30-40 km of the axis must be

consistent with the stress field derived from a more plate-scale consideration. According to

investigations of near-ridge earthquakes in lithosphere 3-35 My in age, normal faulting

mechanisms are common, but waveform inversion indicates that most such normal

faulting events have centroid depths beneath the crust, whereas near-ridge events with

centroid depths of less than 6 km typically have thrust or reverse faulting mechanisms

[Bergman and Solomon, 1984; Wiens and Stein, 1984]. Therefore, the state of tectonic

stress near the seafloor has to change from one that is predominantly extensional to

distances of at least 30-40 km from the axis, to one that is compressional beyond

approximately 160 km from the axis.
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The most plausible explanation of the occurrence of thrust faulting at shallow crustal

levels, and normal faulting at deeper levels for lithosphere older than 3 My, is that such

deformation is caused by cooling of the plate [Bratt et al., 1985]. For a plate that is cooling

and underlain by a region of inviscid fluid, a characteristic pattern of extensional stresses

develops as a function of depth, which can be divided into a thickness-averaged uniform

extensional stress and a deviation from this thickness-averaged uniform extensional stress.

The latter represents a bending moment and matches the stress field inferred from

observations of near-ridge earthquakes. However, in order for the bending moment only

to remain, the thickness-averaged uniform extensional stress has to be relieved, and such a

condition can be achieved only if the plate has a weak rise axis.

Finally, according to a recent near-bottom seismic refraction study performed near the

9430'N of the EPR [Christeson et al., 1992, 1994a, b] which overlaps the region of the

seismic tomography experiment of Toomey et al. [1990], the rise axis appears to be

underlain by solidified dikes in the upper crust. The argument that the rise axis is underlain

by solidified dikes over a region that is considered as magmatically robust implies that the

rise axis cools rapidly after a volcanic eruption through hydrothermal activity. Therefore, if

the rise axis is underlain by solidified dikes for most of the time, then it is appropriate that

it be considered as strong mechanically.

All the constraints mentioned above may be satisfied if we consider the following

model of fault development (Figure 6.2). Here we divide the fault development into three

stages: the initiation of normal faulting, continued normal fault activity, and the occurrence

of thrust faulting in the upper crust.

An important element of the model is that at any given time only portions of the rise

axis are mechanically weakened from volcanic activity. During the magmatically active

phase, the crustal magma chamber will exert the greatest buoyant force to the upper crust,

and together with a weak-axis condition, a zone of extensional stress may develop near the
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seafloor some distance from the axis. The initiation of normal faulting will probably occur

during this stage.

Within a long segment of the mid-ocean ridge, such as that bounded by major

transform faults, there may be regions where the rise axis is undergoing an active

magmatic phase as well as those that have already solidified the axial injection zone.

Therefore, it may be valid to consider a substantial length of the mid-ocean ridge axis (~

many tens of kilometers) as having a finite strength. This seems a reasonable assumption

if the portion of the rise axis weakened by dike intrusions and volcanic eruptions is short

compared with the length of the transform-fault-bounded segment, and if the phase during

which the rise axis remains weak is short-lived due to rapid hydrothermal cooling of the

crust. With increasing distance from the axis, the local boundary conditions of the rise axis

that initiated the faults will become less important, and instead the boundary condition of

the rise axis as determined by the average strength of transform-fault-bounded segment

will govern the further displacements along those faults. On the basis of an examination of

a recent Sea MARC II side scan sonar data [Carbotte and Macdonald, 1994] in our survey

area and our boundary element calculations, such a transition seems to occur at 10-15 km

from the axis. Consequently, beyond 10-15 km from the axis the rise axis may be

considered as having a finite-strength and able to support horizontal extensional stresses.

Then in the presence of horizontal extensional streses induced by such sources as

gravitational spreading, plate cooling, and mantle-convective tractions, normal fault zones

can continue to be active.

The argument that the rise axis possesses some strength is not inconsistent with studies

of near-ridge earthquakes [Bergman and Solomon, 1984; Bratt et al., 1985]. If there exists

a finite width zone, in which most of the deformation takes place, then the plate outside this

zone can still act in the same manner as if the axis were weak.

On the basis of this model, which argues that the initiation of normal faulting is caused

by buoyancy during a weak-axis condition, one would expect to see a variation in the
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distance from the axis to the nearest fault zones. For instance, portions of rise axis that

experienced active magmatism most recently should have fault zones appearing closer to

the axis than those that previously experienced active magmatism. When we compared the

short-wavelength residual gravity anomalies with the distribution of normal faults mapped

by recent Sea MARC II side scan sonar survey [Carbotte and Macdonald, 1994], we

found that the portions of rise axis with low residual gravity anomalies generally showed

shorter distances from the axis to the nearest normal fault zone, which is consistent with

our model.

Future Work

Through analysis of Sea Beam swaths, we found evidence which suggests that normal

faulting continues to the boundary of our coverage, which is only 30 km from the axis. An

extended investigation of Sea Beam bathymetry would allow the determination of the distal

end of the zone of normal fault development. Through such an investigation, we may be

able to determine the sources of continued fault development and the total width of the

active tectonic zone at fast-spreading ridges. Also, by taking full advantage of a highly

accurate navigation system such as GPS, which was only partially available during the time

of our survey, we can construct a better high-resolution composite map of the seafloor.

Such a map would allow us to estimate along-strike length of the normal faults, which was

not measured during our analysis of individual swaths.

The linear elastic models that we used to calculate stress fields can provide at best only

a qualitative understanding of the effect of various tectonic sources of stress. This is

because material beneath mid-ocean ridges varies widely in physical state, from molten

lava to brittle crust. Of course, the advantage of using linear elastic models is that the

numerical results can be calculated relatively easily and accurately based on approaches
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such as the boundary element method. Despite the fact that we considered a wide range of

lower moduli for regions underlying the upper crust, the assumption of linear elasticity for

the entire modeling region still remains questionable. Now that the first-order effects of

various parameters of our model are understood, we can treat the regions underlying the

upper crust as viscoelastic materials, and consider effects such as time-dependent stress-

relaxation and rheology that is temperature-dependent, as ways to improve the

representation of mechanical behavior.

In interpreting the cause of our magnetic anomalies, the magnetization intensity of the

source rock is a crucial piece of information. In this study, we used an indirect estimate

based on an empirical relationship between FeO and TiO2 contents and magnetization

intensity of surface rock samples obtained for other mid-ocean ridges [Vogt and de Boer,

1976]. However, a comparison of our estimate with other estimates taken near our survey

area suggests that there may be a large uncertainty with this relationship. A significant

improvement in our interpretation of magnetic data can be made if the magnetization

intensity of the source rocks in our survey area can be accurately measured.

Although we were able to infer the loci of magmatically robust regions along the axis

from residual gravity anomalies, we could only marginally resolve their density anomalies.

Again, this is because in our survey area there is a significant along-axis variation in the

long-wavelength component of the residual gravity anomaly and one can not tell from the

gravity anomalies alone how much of it is due to sources in the crust and in the mantle.

Recently, a new three-dimensional mantle flow model [Sparks et al., 1993], that

incorporates both plate driven and buoyancy flows, has been developed. Using such a

model, we may be able to constrain the long-wavelength component of our residual gravity

anomaly. This, in turn, would provide us with a better chance, providing the model is

valid, of resolving the densities or the sizes of crustal magma chambers in our area.
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Figure 6.1. Summary of observations made along the EPR between 9*10'-9*50'N. (a)

The information on the location of the bathymetric devals is derived from various reports,

including Toomey et al. [1990], Haymon et al. [1991], and Kent et al. [1993a]. While

most of the bathymetric devals in this area appear to be quite distinct, one near 9*19'N

appears sigmoidal in shape; its exact location is therefore difficult to define. (b) The

distances to the nearest large-offset (> 50 m) normal faults on either side of the plate. The

uneven dashed line represents the highest point of the seafloor, i.e., the bathymetric axis.

The midpoint between the two nearest normal faults is offset to the west of the bathymetric

axis, especially to the south of 9*23'N. (c) Three major changes in the magnitude of the

axial magnetization high, each with an offset in the linearity of the magnetization anomaly

(magnetic deval), occur in our survey area. A sharp change in the magnitude of axial

magnetization anomaly with a small offset in the linearity of the magnetization anomaly

occurs at 9025' and 9*37'N, and a large offset in the linearity of the magnetization anomaly

occurs at approximately 9*45'N. (d) The distribution of local residual gravity lows along

the axis. At least five local residual gravity lows are found along this portion of the EPR.

The black dots represent the locations of local minima. The extent of local gravity lows

that appear near the top and bottom of the survey area are unclear, and thus their local

minima are not shown. Towards the bottom of the survey area, the local gravity low may

bifurcate. (e) The distribution and the width of ASCs [from Haymon et al., 1991]. Here,

we divided the rise axis into four segments by widths of ASCs (i.e., those less than 50 m,

between 50 and 100 m, and greater than 100 m as represented by three different thickness

of solid lines) and their offset. The first segment occurs to the south of 9*25'N. Although

an ASC exists between 9*21'-9*25'N on this segment, it is quite narrow. No ASC is

found in the remainder of this segment. On the second segment, between 9*25'-9*37'N,

several ASCs defined by small discontinuies separating their distal ends can be seen. On

average, the ASCs in this segment are wider than those in the other segments, with the

widest ASC found between 9*32'-9*37'N. The third segment can be defined as a rise axis
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between 9*37'-9*45'N by a large offset and overlap of ASCs at approximately 9*37'N.

The fourth segment can be defined to the north of 9*44'N. Two ASCs appear in this

segment, however, their widths are generally small. (f) The location of active

hydrothermal vents and hydrothermal gaps [from Haymon et al., 1991]. Hydrothermal

gaps (arrows) are defined as segments of the rise axis where no active hydrothermal vents,

sulfide deposits, or vent biota were found. (g) The distribution of the AMC reflectors as

mapped by Kent et al. [1993a] from a series of cross-axis CDP and wide aperture profile

(WAP) lines as well as along-axis CDP lines. The locations of the AMC reflector are

shown by the solid line. The uneven dashed line represents the bathymetric axis. The

AMC reflector is absent between 9423' and 9*29'N. The AMC reflector generally

coincides with the bathymetric axis to the north of 9029'N, but starts to deviate to the west

of the bathymetric axis south of 9*23'N.
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Figure 6.2. A schematic diagram illustrating the basic characteristics of faulting

observed at fast-spreading mid-ocean ridges, which are described in three stages: the

initiation of normal faulting, which generally occurs 2-12 km from the axis, continued

activity on normal faults, and the transformation in the state of stress in the upper

lithosphere such that thrust faulting occurs. Shown here is a segment of mid-ocean ridge

bounded by major transform faults, which in turn is composed of smaller segments of

mechanically weak axes. Pairs of parallel lines denote fault zones on the seafloor. The

outward- and inward-facing pairs of arrows depict extensional and compressional states of

stress, respectively. The probable causes of faulting at each stage are also depicted.
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APPENDIX A

Overview of Numerical Methods

Physical problems can often be defined by sets of differential or integral equations

which are referred to as governing equations. Because the differential forms of governing

equations merely express physical laws, boundary conditions are either prescribed

separately or incorporated within differential equations to form integral equations. Solving

a problem thus implies finding an expression or a set of expressions that satisfy the

governing equations with conditions imposed either upon the boundary or within the

domain of interest. Since analytical solutions are difficult to obtain except for very simple

cases, numerical methods used in conjunction with computers have become widely used

for solving many scientific and engineering problems.

The most widely used numerical schemes are the Finite Difference Method (FDM) and

Finite Element Method (FEM). Numerical schemes such as these can be characterized by

the choices of approximate solutions for the governing equations and the way errors due to

such approximate solutions are handled. The FDM and FEM are referred to as 'domain

methods' because their choice of approximate solutions satisfy the boundary conditions, as

a whole or partially, but not necessarily the governing equation in the domain. Thus the

final solution is determined based on a concept of the least amount of error within the

domain. The FEM, in particular, has attracted the most attention largely because it divides

the continuum into a series of elements that can be associated with physical parts.

In recent years, the Boundary Element Method (BEM) has emerged as a powerful

alternative to the domain methods. Although the BEM began appearing in the literature in

1978, the fundamental concept of the BEM has been used by mathematicians and
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physicists for a long time under such names as 'boundary integral method' or 'boundary

value problem.' BEM differs from domain methods because the approximate solution is

chosen as the one that satisfies the governing equation in the domain, and thus matching

the conditions is necessary only on the boundary. For this reason, it is categorized as a

'boundary method.'

The BEM offers several important advantages over the FDM and FEM. These

advantages, listed below, are detailed in Appendices B and C as well.

- In BEM, the dimension of the problem is reduced by one; the volume integrations in

three-dimensional problems are reduced to surface integrations and surface

integrations in two-dimensional problems to contour integrations. Because one needs

to define meshes only at the boundary rather than the whole domain, BEM takes far

less time to set up a problem or modify it than FDM or FEM. In BEM the internal

points within the domain are computed only if needed and are not required to solve

the problem.

. BEM does not require conformal mapping like domain methods and can handle any

type of well-posed boundary conditions, whether uniform or mixed. Mixed types of

boundary conditions include cases where displacement and traction (or temperature

and flux) are prescribed by the same boundary.

* BEM provides greater accuracy than domain methods especially in regions of high

stress or flux, which makes it an appropriate tool for solving problems such as stress

in the vicinity of cracks and other fracture mechanical applications. An example will

be given later in this appendix in which FEM gives poor results when used to

ascertain surface fluxes or tractions at a boundary.

* The approximate solution of BEM corresponds to the 'fundamental' solution of the

governing equation (i.e., the solution due to a unit load or source in an infinite

domain), whereas in FEM it is an arbitrary function that satisfies certain types of
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boundary conditions. As a result, a BEM formulation is mathematically succinct and

elegant.

e Because it uses a fundamental solution and does not require the generation of a mesh

within the domain, BEM is suitable for problems where the domain extends to

infinity. Boundary elements can be easily extended to analyze half-space problems as

well.

- The consideration of body forces is cumbersome in domain methods, since it

requires an integration over the domain. However, in BEM, because the fundamental

solution already exists, body forces can be considered accurately and effectively by

taking the integration to the boundary. For example, various types of body forces in

elastic problems can be reduced to boundary integration using the Galerkin vectors

already defined as a part of the fundamental solution.

In summary, the BEM is advantageous over the domain methods in problems where

there exists a fundamental solution for the governing equations. Such is the case for

potential field and elastostatic problems. Because BEM is relatively new as a numerical

method, many aspects of it remain to be developed and improved. For instance,

drawbacks of the BEM are:

- it is not appropriate for solving problems involving complex material properties such

as those of nonlinear materials. In BEM, the domain may be divided into several

subregions but each subregion has to be homogeneous.

- it is not cost-effective for the analysis of thin bodies; BEM is most appropriate for

bulky bodies with low surface to volume ratio.

This appendix investigates some of the fundamental properties of differential equations

from which numerical method such as the FDM, FEM and BEM can be developed. A
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simple differential equation is used to illustrate fundamental concepts instead of relying on

mathematical theorems and derivations. In addition, solutions to the same differential

equation are provided using concepts of different numerical methods.

The boundary element formulation in this thesis is based on the so-called 'direct

method' which, in a way, corresponds to Green's theorem in mathematics. The direct

method is used to describe the fundamental concepts in Appendices B and C as well. In

Appendix B, we will derive the boundary element formulations for Poisson's equation or

its homogeneous form, Laplace's equation. The direct boundary element formulation of

potential theory can be traced back to as early as the 1960s (e.g., Jaswon [1963] and Symm

[1963]). In Appendix C, we will then derive boundary element formulations for two- and

three-dimensional elastostatic problems.

As with many papers on the subject, we shall follow the notations and conventions of

Brebbia et al. [1984]. Since our main goal is to show the important ingredients used by

boundary element analyses in Chapter 3 of this thesis, the formulation is not complete.

More complete derivations of the expressions that appear in these appendices and other

related matters can be found in boundary element textbooks such as Brebbia et al. [1984]

and Crouch and Starfield [1983].

Applications of boundary element analysis for geological problems has, thus far, been

somewhat limited. Some of the recent examples are Phipps Morgan et al. [1987], who

used it to solve a potential flow problem, and King and Ellis [1990], who solved a plane-

strain linear elastic problem. Recent developments in boundary element analysis have

shown that the formulations can be extented to viscous flow [e.g., Kitagawa, 1990] and

inelastic [e.g., Telles, 1983] problems. The boundary element method is expected to

become a popular tool in the geological sciences.
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SOLUTIONS TO DIFFERENTIAL EQUATIONS

Many of the fundamental principles of numerical methods are derived from the

analytical properties of differential equations. In this section, we explore some of the

characteristics of differential equations using a simple one-dimensional, second-order

differential equation as an example.

Let us consider the following equation defined over domain x which is bounded by two

boundaries at x = 0 and x = 1,

dzu
+U).2-b= 0

dx2 0 x ! 1 (A.1)

where 'Z2 is a known positive constant and b is a known function of x. The solution of the

above problem u(x) may be found analytically or numerically by approximating u by a

series of functions. Such an approximation is not only the foundation of many numerical

techniques but also an important analytical concept.

We assume that there is an arbitrary function w, which is continuous and whose

derivatives are continuous up to second-order over the domain, and multiply it by the

above equation and integrate over x:

I U+ 1u-b wd = 0
0 0(A.2)

This operation is called an 'inner' product and although it does not imply any new concepts,

it allows us to investigate the property of the differential equation. We then perform an

integration by parts of the terms with derivatives in the above expression, i.e.,
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fdudw 2  Edu 1'----- + (1u-b~w dx+ -w =0
dx dx I & 0 (A.3)

The first term in equation (A.2) produced two terms, one in the domain with first

derivatives of u and w, and the other on the boundaries, that is at x = 0 and x = 1. By

integrating by parts the first term in equation (A.3), we obtain

'f dz2W du 1 [ dw
u + ( A2u -b)w dx + -w - = 0

0 dx dx 10 dx o ( A.4)

In effect, through integration by parts, the derivatives of function u have been transferred to

an arbitrary function w. Also, we have introduced the boundary conditions into the

problem. To solve the above equation, we need to know the values of

du
u or - at x = Oandx = 1

dx

Boundary conditions are an essential part of a differential operator. They allow the

transformation of the differential form of the governing equations into an integral form.

We shall assume the following boundary conditions for our problem:

U = iT atx = 0

q = u= 27 at x = 1 (A.5)
dx

where the derivative of u is now defined as q. The bar indicates that the value of the

quantity is known. The first type of condition is called an 'essential' (or kinematic or

Dirichlet) boundary condition and the second type involving a derivative is called a 'natural'

(or dynamic or Neumann) boundary condition.
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By substituting those defined boundary conditions into equation (A.4), we obtain,

u {UW+(- +(Azu-b)w dx+ -[qw],.}

[dw] dw]
d =1 dx =0 (A.6)

Let us try to return to the original expression (A.2) by exchanging derivatives for w to

those for u again by integrating by parts. However, this time we will not substitute values

of the expressions on the boundary. Integrating by parts twice leads us to the following

expression

S2 + (A2u -b)}w dx -[(q -q)w] + [(u - = 0 (A.7)

This integral equation provides an important concept which is the starting point of many

numerical techniques. It implies that when one is solving a differential equation one is

trying to satisfy not only the differential equation in the domain but also its boundary

conditions. In this sense, both functions w and dw/dx can be seen as Lagrangian

multipliers.

APPROXIMATE SOLUTIONS

Representing an unknown function by a series of known functions with weight

coefficients and then solving for the coefficients is a common mathematical tool. Let us

assume that the exact solution for u is unknown. We can write an approximate solution for

u as
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u = a(8+a2)2+---

where ai are unknown coefficients and the #, are a set of linearly independent functions

which are known. In practice, one prefers to use nodal values as they have a clear physical

meaning. In such a case, u may be written as

N

u = u
(A.9)

where #5 are now the interpolation functions and u are the nodal values of the field

variables or its derivative.

Because u is an approximate solution, an error will occur when we substitute it instead

of the exact solution. Error or residual functions can be defined to represent the errors

occurring in the domain and on the boundary. For the governing equation in (A. 1) and the

boundary condition in (A.5), these residual functions may be written as

R = 2U 2 -b # 0
dx2 (A.10)

R,= u-Ti 0

R2 = q-q * 0 (A.11)

There are several ways that residuals can be minimized or reduced in the domain. For

example, one could perform the reduction by forcing the errors to be zero at certain points,

regions or in a mean sense. The reduction of error in fact is similar to distributing the
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errors, and various distributions of errors in the domain and on the boundary have resulted

in different numerical methods.

WEIGHTED RESIDUAL METHODS

This section describes various methods used to reduce error by using an approximate

solution within the context of the weighted residual method.

We assume that $, in equation (A.8) is chosen such that u satisfies all the boundary

conditions but not the governing equation in the domain. The operation of distributing the

error R over the domain Q can be expressed as

f RqydQ = 0 in 0 i 1, 2, ... , N (A.12)

where yi are the weighting functions, linearly independent from one another.

The above equation can be also written as

f RwdQ = 0 in Q (A.13)

by defining a function w such that

w = 0 y+p2V2+--- +pN N =

N

i=1 (A.14)

where #3 are arbitrary coefficients. We now examine

techniques by employing these definitions.

several well-known approximate

405



Point Collocation Method

In this method, N points are chosen within the domain and the residuals at these points

are set to zero. This process can be described as defining the weighting functions 4fy as

Dirac delta functions, i.e.,

y = 8(x - x )

Dirac's delta has such property that

i= 2, ... , N

f 8(x - x) dx=

x. +E

f 3(x - x) dx =1

x, -C

where e is any positive number.

For a point collocation method, the domain integration in equation (A. 12) can be

expressed as

hR s(x - x) dt a 0

This is equivalent to the statement that

R(x = xi) = 0

i = 1, 2, ... , N

i = 1, 2, ... , N

(A.15)

(A.16)

Point collocation is essentially what one does when using the finite difference method.

In the point collocation method the residuals are set to zero at as many points as there are

unknown coefficients in the approximate solution.
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Example 1. (Finite Difference Approach)

To better understand the characteristics of the point collocation method and thus the

finite difference method, let us consider the following example.

d2u
+ux= 0 0 x : 1 (a)

with the following boundary conditions

u= 0

u= 0

at x = 0

at x = 1.

It can be shown easily that the exact solution for the above equation is

sinx
sin

In the FDM, an approximate solution is chosen as one that satisfies the given boundary

conditions. Therefore, we chose the following as our approximate solution,

U = x(1-x)(a 1 +a 2x) (d)

Substituting this approximate solution into the governing equation (a) we obtain the

following residual function

R = d 2 u+x = (-2+xx2)a1 +(2-6x+x 2 -xs)a 2 +x (e)
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According to the point collocation method, we then set the residual function to zero at

points within the domain x. We chose the following two points, x = - and x = I. Thus

the weighting function can be expressed in terms of Dirac delta functions applied at these

two points as follows

w = A oSx - k)+ pz S(x - )

The weighted residual integral is represented by

1
fRw dx
0

= 0 (g)

or equivalently,

R(x = -) = 0 R(x = i)2= 0 (h)

We obtain two equations in a, and a2, which can be expressed in matrix form as

16 64 3I i
7 711a I 2

L48J2J

Solving the above linear system, we obtain a, = - and a2 = T. Therefore, the

approximate solution can be written as

and the residual function as
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R = +(-4+19x 2x2 _4x 3)

Notice that R is identically zero at x = - and x = . However, this does not mean that the

solution for u is exact at those points.

Subdomain Collocation Method

In this method, the domain Q is divided into N subdomains and the integral of error in

each of them is set to zero. This is equivalent to choosing the weight functions such that,

y. =
' 0

for x eQ.
for x e2

(A.17)

Notice the weighting function is a step-type function in the subdomain collocation method.

The weighted residual integral in equation (A. 12) then becomes simply

J Rdx = 0 i = 1, 2, ..., N (A.18)

In most cases, the subdomain collocation method provides more accurate results than the

point collocation method.

Galerkin Method

In this method, the weighting functions are chosen to be the same as the approximating

functions, i.e.,

(A.19)p = yi

409

(k)



The weighted residual integral in equation (A. 12) therefore becomes

J R# dQ = 0 i = 1, 2, ..., N (A.20)

This is the method used in most finite element formulations for which the symmetry of

$i = V/r coupled to inherently symmetric field equations leads to symmetric algebraic

matrices.

In this section, we examined three methods of weighting the residual due to error in the

approximate solution. As shown in equation (A.15), the FDM is equivalent to

approximating the governing equations at points within the domain using local expansions

for the variables, generally truncated Taylor series. The solution is then found by forcing it

to be satisfied at a series of points. On the other hand, the solution of FEM is found using

the concept of distributing error within the domain, which is analogous to a process of

smoothing. Therefore, the FEM solutions tend to have less 'noise' than ones that are

derived from the FDM.

WEAK FORMULATIONS

We showed that integration by parts of the governing equation reduces or 'weakens' the

order of continuity required for the u function by transferring it to an arbitrary function w.

In other words, by chosing the right function for w, we can find u that satisfies the

governing equation with less requirements. For such a reason, the formulations derived

from integration by parts of the original differential equation, such as equations (A.4),
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(A.6) and (A.7), are referred to as 'weak formulations.' Combined with weighted residual

statements they provide the fundamental integral statements of the FEM and BEM.

Finite Element Method

Let us again consider the governing equation of (A. 1). We showed that it can be

written as

+( 2u-b) wdx-[(q-q)w + [(u -d = 0
(A.21)

This equation can be written in more compact form using residual functions as defined by

equation (A.10) and (A.11), i.e.,

Rwdx-[R2 w] + R, ]
0

= 0
(A.22)

We assume that the approximate solution u

condition u = U at x = 0. The equations (A.21)

[ dx2

satisfies exactly the 'essential' boundary

and (A.22) then become

+ ( 2u -b)w dx = [(q-q)w]
(A.23)

or equivalently

1

fR w dx =[ R2 WIX=
(A.24)

By integrating by parts equation (A.23), we obtain
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f'j --- d+(A~u-b)wjdx =[[qw].w].L1J dx dx (A.25)

Further, if we force the weighting function w to satisfy the homogeneous version of the

essential boundary condition at x =0, the above equation becomes

-{ w+(.2u-b)w dx = (A.26)
0 d dx

This is the basic formulation of the FEM. We shall investigate the characteristics of the

FEM using the following example.

Example 2. (Finite Element Approach)

Let us consider the following differential equation (for which we know the exact

solution)

dzu
-+u+x = 0 0 x 1

with the following boundary conditions

u = 0

du
q =-- = q

dx

at x

at x

=0

= 1

The approximate solution for u can be expressed as

U = a1+a 2 x+a 3 x 2+... (c)
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However, since we assumed that our approximate solution satisfies the essential boundary

condition exactly, we find that

(d)u(x = 0) = a, =

The approximate solution for u and the residual function is now written as

u = a 1x+a 2 x2 +...

R = d2 u+x
dx2

= a1x+a 2 (2+x 2)+x

The weighted residual integral statement can be written as

I
fR w dx = [R2W]z= (g)

or equivalently

(h)

In FEM the governing equation is solved by reducing the order of derivatives in the

domain by integration by parts the d2 u/dx2 term, i.e.,

( du dw-(u+x)w dx
Idx dx

= [qw]1-[qw],_,
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According to the Galerkin method, we set the weighting function w to have the same shape

as the approximate solution for u. Therefore, by using only the first two terms of the

approximate solution (equation (A.8)) and the weighting function (equation (A. 14)), we

obtain,

u = a j+a0)

and

w =011+#202 (k)

where

1 =x and #2 =X 2  (1)

Substituting these values into (i), we obtain

= [q (#1#1 +#32#2)]- (in)

which can then be reduced to

1 a,+2a 2x)(( 1 +2#2) -o1+ a2x2 + x)( 1x + #2 X2) dx
0

= [q( +#2)] (n)

As the quantities # and 2 are arbitrary, the satisfaction of the above equation implies

satisfaction of the following two equations.

{(a+2a 2x)-(a -x2+ax3+x2 dx = p (o)
0
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1

f 2(aix+2a2 x2)_(ax3 +a2 x4 +x')}dx =i
0

(p)

Integrating the above equations and expressing them in matrix form, we obtain

34 41
3 17 a2

_ 1
~ q +{ (q)

We now obtained the FEM solution. The values of a, and a 2 are,

a, = 0.9859+1.9864q

a 2 = -0.4319-0.4322q

Notice,

x =1.

however, that an error will now appear when we try to compute the value of q at

q = - a, +2a 2 = 0.1221+1.122i
Idx'

In other words, q # q. This peculiar result is characteristic of weak formulations such as

those used in finite elements. Because of this approximate satisfaction of the natural

boundary conditions, finite element solutions tend to give poor results for surface fluxes or

tractions.
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Boundary Element Method

A boundary element method can be obtained by choosing a weighting function w in

either of the following two ways:

- By selecting a function w which satisfies the homogeneous form of the differential

equation.

- By using special types of functions which satisfy those equations in a way that is still

possible to reduce the problem to the boundary only. The best examples are singular

functions such as Dirac delta functions which simply give a value at the point when

integrated over the domain.

First Approach

By performing an integration by parts again on equation (A.23), we obtain

1 d 2W +1W b du w] udw1 0f u +X 2* b dx -w - u-
0 d o (A.27)

The first approach assumes that we know a solution to the homogeneous version of the

governing equation, i.e.,

dw W 'V2

dx2 (A.28)

regardless of the boundary conditions of the problem. By substituting the above

expression, the statement (A.27) becomes
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fbwdx
0

du dw [
dx W1 udx Io (A.29)

Second Approach

This approach is based on the assumption that there exists a function w such that

d2 w 2+W
dx2 X) 

(A.30)

where S(x- xi) is the Dirac delta function. By substituting the above expression, the left

side of the equation (A.27) becomes

u (
ol k ) dxdx2 = -0uS(x-x i )dx = -U.

(A.31)

where ui represents the value of the function u at point x = xi. The equation (A.27) can

then be written as

u; + f bw dx
0

- du dww - u-
dx -o dx (A.32)

When the point xi is chosen at the boundary, the equation (A.30) gives a relationship

between boundary variables. This approach is applied in boundary elements where the

function w, called the 'fundamental' solution or Green's function, is known.

Example 3. (Boundary Element Method Using the First Approach)

Let us consider the following differential equation.
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d2U
dX2 +U 

= 0 x 1 (a)

with the following boundary conditions

u = 0 at x = 0 and x = 1

The weight function is chosen as the one that satisfies the homogeneous form of equation

(a), i.e.,

d 2W

The general solution for (c) is

w = #,cosx + #2sinx (d)

with
dx

= -1 sinx + #2 cosx

By substituting w and dw/dx, the governing equation (a) becomes

1
fxwdx+[qw],-[qw] = 0
0

x(#,cosx + #2sinx) dx + q, (#l, cos1 + f#2sin1) - q 1 = 0
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Since the above equation has to hold for any arbitrary values of f#1 and #2, we obtain the

following two expressions

(h)= -(qcos1 - qO)

S-qi sinl

cosi1
sin1

11
O = s 1

sin1

which are the exact boundary fluxes at x = 1 and x = 0.

Example 4. (Boundary Element Method Using the Second Approach)

The weighting function is chosen as the one that satisfies the following singular

equation

d2W
dX-+ W 8 8(x-xi)

A solution of w is

w = sinr (b)

where r=|x- (. Again, this is a solution to the singular problem regardless of the

boundary conditions.
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Sx cosx dx
0

1
fx sinx dx
0

Therefore,



By substituting the above expressions, the governing equation becomes

= -xwdx-
0

where

qO1

= -- 1
sin1

q, w, + qO wo

cosi
q= - -1

sin1

Taking into consideration that w =0, and substituting other values of w, we obtain

1/2
= -i f x sin(± - x) dx -

0
xsin(x- L) dx - q1 sin+ + qO sini

={
x I-i- 

X

for 0<x<{
for i<x<1

Thus

= -tI{(cosl - 1)/sinl}sin - (- sin!) - i( + sin-L - cosi)

= 0.069746964

This result is the same as the exact solution

exacu ( )
sini

sin1
= 0.069746964 (g)

The fundamental solutions that satisfy the boundary conditions as well as the governing

equations are called Green's functions.
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APPENDIX B

Boundary Element Formulation for Potential Field Problems

This appendix formulates boundary element methods for the two- and three-

dimensional Laplace's and Poisson's equations. These equations govern many physical

problems including heat conduction, diffusion processes, torsion, fluid motion, and flow in

porous media. In our case, because the boundary element formulation for the elastostatic

problem is relatively complex, it is beneficial to understand the formulation for the potential

field problem first. As in Appendix A, the notation and convention of Brebbia et al.

[1984] are followed.

We begin with the Laplace's equation

V2 u = 0 in domain Q (B.1)

Implicit in the above expression are the conditions that u is continuous in 92 and that u is

differentiable to at least the second order in 0.

We assume that u satisfies the following boundary conditions.

u =i on FI (essential)

du
q - - q on TF2  (natural)

qd-
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where n is normal to the boundary IF. Figure B.1 illustrates the configuration for such a

potential problem. For a thermal conduction problem, the boundary conditions of the first

type represent temperature and the second type flux.

We assume that only the approximate solution for u is known. Therefore, errors

would occur if we substitute the approximate solution in place of the exact solution. Such

errors can be represented by nonzero residual functions in the domain and on the

boundaries, i.e.,

R =V 2 u t 0

R,= u-Wi 0

R2 = q-q 0 (B.2)

Finding the solution to Laplace's equation with given boundary conditions is the same

as finding an approximate solution u which satisfies the following integral equation

f (V 2uu* dC = (q - q)u* dT - (u -i)q* dT
Q r2 r1 (B.3)

where u* is an arbitrary function that satisfies the same conditions as u. Based on the

definitions in equation (B.2), the above equation can also be written as

f Ru* d2 = fR2u* d -fR, q* dF
a r2 r1 (B.4)

Integration by parts of the term on the left hand of equation (B.3) leads us to

du du* d = - qu* d - qu* d - uq* d + u q* d
&k &k ) r2 1, 1(

(B.5)
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where k = 1, 2, 3 and Einstein's summation convention is implied by repeated indices.

By integrating by parts the term on the left side of equation (B.4), we obtain

f (V2 u*)udQ = -qu* d - fqu* d + Juq* dT + f iq* dT
a r2  r, r2  ri (B.6)

Notice that by integrating by parts, we have transferred the derivative on u in our original

equation to that of an arbitrary function u*. In the boundary element method, u* is chosen

as the fundamental solution of the governing equation.

FUNDAMENTAL SOLUTION

The fundamental solution u* of Laplace's equation represents the field generated by a

concentrated unit charge or unit source acting at a point i. Physically, the effect of this

source can be imagined as a field which propagates from i to infinity without any

consideration of boundary conditions. This property is in contrast to domain methods such

as the finite element method where the approximate solution is required to satisfy the

essential types of boundary conditions.

The fundamental solution of Laplace's equation must satisfy the following expression

V2 u* + 3(x-x) = 0 (B.7)

where 8(x- X) represents the Dirac delta function. By substituting equation (B.7) into

(B.6), the left hand side can be reduced to

f (V2u*)u d. = {-4(x- xj)}udQ = u'
Q a (B.8)
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Thus equation (B.6) can now be written

ui + uq*dT+Jiiq*dT = qu*dT+fqu*dT
r2 r, r2 ri (B.9)

Note that in the above equation, the values of u* and q* are those corresponding to that of

the charge at point i. For the sake of simplicity, unless mentioned otherwise, we shall

assume that the charge is at point i.

For an isotropic medium, the fundamental solution of Laplace's equation is

u*=U
4;rr

for a three-dimensional problem

(B. 10)

and

u* = In 
27r('

for a two-dimensional problem

where r is the distance measured from the position of the source charge, x'.

BOUNDARY INTEGRAL EQUATION

Now that the fundamental solutions are found, we formulate the boundary integration

scheme. The formulation in this section is for a continuous case.

For the moment we shall not distinguish the two types of boundary conditions. The

equation (B.9) can then be written as
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ui + uq* dT = u* q dT
r r (B.12)

By definition the above equation applies to any point within the domain Q. A problem

arises when we place the source charge (point i) on the boundary IF. The evaluation of the

above integrals can be done simply by considering a semicircle (for the two-dimensional

problem) (Figure B.2) or a hemisphere (for the three-dimensional problem) around point i

and then taking the radius to zero.

Next, we examine how the integrations are carried along the boundary around the point

source (]F). The integral of the type shown on the right side of the above equation can be

evaluated easily. For the three-dimensional case, it becomes

lim qu* dT
e-.0

1 1
= limil q- dTi(r47 r

2rE2
= lim q - = 0

e--+O( 4re )

The right side of equation (B.12)

(B. 12), however, is different, i.e.,

lim uq*dJ = limf
E-+0 fE-+0

is thus zero. The integral on the left side of equation

1 ~ #-2xe 2

-f U 1 dT lim - 2  = -kui

ar 2 E-40 47r2

In other words, a free term

dimensional case, i.e.,

is produced. The same

(B.14)

free term is produced for the two-

ri 1
lim j uq* dT = lim - J u- dT

-- 2 2 E
= lim ---- = -kuLC-40 2xe

(B.15)
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Therefore, the governing equation for both two- and three-dimensional problems can be

expressed as

u+ fuq*dT = fu*qdT
r r (B. 16)

This boundary integral equation is generally regarded as a starting point for the boundary

element formulation.

THE BOUNDARY ELEMENT METHOD

Thus far we have examined the boundary element formulation for continuous cases.

To implement the boundary element method on a computer, we need to render the

boundary into a finite number of discrete elements. In this section, the boundary element

formulation for discrete cases is provided.

Depending on how the boundary is discretized, the boundary element method can be

formulated for constant, linear and quadratic cases (Figure B.3). Although one can achieve

a greater accuracy with higher-order boundary types such as linear or quadratic elements

than with constant elements, the problem size becomes larger with such higher-order

boundary types. In the previous section, a free term was produced when the integration

was carried around a point source located on the boundary. Because the angle between two

adjoining boundaries may be different for linear and quadratic elements, special

considerations are needed in dealing with the free term in higher-order boundary types.

We begin by considering the simplest case, the constant element. The boundary is

assumed to be divided into N elements (Figure B.3a). The values of u and q are assumed

to be constant over each element and equal to the value at the mid-element node.
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By discretizing, the boundary integral equation (equation (B.16)) which represents the

relationship between boundary values can now be expressed as

N

ui + f uq* dT =
j=1 r,

N
I u * q dT
j=1 r, (B.17)

The point i is one of the boundary nodes and is the location of the point source. F, is the

boundary of the jth element. Notice that for this type of element (i.e., constant) the

boundary is always as 'smooth' as the node is at the center of the element, and therefore the

multiplier of u' is .

The u and q values can be taken out of the integral because they are constant over each

element. We shall call them u, and q, for element j.

N

ui + f q* dT u

j=1 Ir,

N
= f u* dT qi

j=1 rJ, (B. 18)

Notice that

element. They

we now have two types of

are

q* dT and

integrals that need to be carried out over the

f u

These integrals relate the ith node where the fundamental solution is acting to another

node, the jth node. For this reason, they are referred to as 'influence coefficients'

IHii = q* dT
ri (B.19)

(B.20)G'I= fu* dT
r,
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This effect of influence coefficients is illustrated in Figure B.4a. In general, a numerical

method such as Gaussian quadrature is used to calculate these two terms. By substituting

equation (B.19) and (B.20), equation (B.18) can now be expressed as

N N

ku +1Hi = Gijqj
j=1 j=1 (B.21)

Furthermore, we can define H such that

($'iH + k2

for i j
for i= j

(B.22)

The governing equation thus reduces to the more compact form

N N

E Hjiu = E Gijq
j=1 j=1 (B.23)

This set of equations can be expressed in matrix form as

HU = GQ (B.24)

where H and G are two N x N matrices, and U and Q are two vectors of length N. We can

rearrange the terms so that all the unknowns are passed to the left side, and thus the above

equation can be expressed as

(B.25)AX = F
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where X is a vector of unknown u and q boundary values. Note that the unknowns are

now a mixture of the potentials and their derivatives, rather than potentials only as in the

finite element method. This is a result of the boundary element being a 'mixed'

formulation, which gives it an important advantage over the finite element method.

Once equation (B.25) is solved, we know all the boundary values of u and q. Unlike

the finite element method no domain integration is neccessary.

Since we now know all the boundary values, it is possible to calculate any internal

value of u or its derivatives. The value of u can be calculated at any internal point i using

equation (B.12) which can be written as

u'= fqu* dT- fuq* dT
r r (B.26)

Because the fundamental solution is considered to be acting on an internal point i, there is

no need to consider free terms. Since all values of u and q are already known, we only

need to compute

f q* dT and fu* df
r, r,

which are due to a point source acting on an internal point i. The relationship between the

internal point i and the known values at boundary nodes is illustrated in Figure B.4b.

Again, a numerical method such as Gaussian quadrature is used to calculate the above two

terms. The same discretization is used for the boundary integrals, i.e.,

N N

u = I Gij qj - I Hil uj (B.27)
j=1 j=1

The coefficients G'j and H'' are calculated for each different internal point.
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Once the u' are known at internal points, the values of internal fluxes can be calculated

as follows

(q, ) - q a d- u d
dx1 r dxi r dx1 (B.28)

(q ) = -- = fq --* d-J u d(
l2) rXx 2 (B.29)

where x, and x2 represent two coordinate directions. Note that the derivatives are carried

out only on the fundamental solution function u* and q*, which are exact solutions, as we

are computing the variations of flux around the point i.

Linear Elements

In the case of a linear element, the free term is no longer -u' and we need special

treatment of corners. This is because, in linear elements, the first node of the j element is

the same as the second node of the j+1 element (Figure B.5).

The boundary integral formulation can be written in general as

ci ui + f uq* dT = Ju* q dF
r r (B.30)

The value of c' for any other boundary has proved to be

e
CL -

27r (B.31)
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where 0 is the internal angle of the corner in radians (Figure B.5, top). This result was

also obtained by defining a small spherical or circular region around the corners and then

taking the radius of the region to zero. The constant element represents a special case

where c' is 1.

After discretizing the boundary into a series of N elements, equation (B.30) can be

written as

N N

ci ui + fuq* dT = I u* q dT
j=1 r, j=1 ri (B.32)

Interpolation Functions

Higher-order element types can be considered systematically by introducing

interpolation functions. For linear elements, u and q vary linearly over each F1 , and

therefore by using interpolation functions they can simply be taken out of the integrals.

Specifically, we can write u and q as

u() = #1U1 + #2U2 = [0 11] 2 (B.33)

q( ) = $1q[ + 2 q2  = [1 2][q2 (B.34)

where is the dimensionless coordinate that varies from -1 to +1, and the two

interpolation functions are

0 = Yl(-) (B.35)

2= i(1+) (B.36)
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Let us consider the integrals over an elementj. Those on the left side can be written as

1 1I
f uq dT = [c1 #2]q*d[ = [h h 2u
ri r - - (B.37)

= 1 q* dT
r;

hj = 0 2 q* dr

Similarly, the integrals on the right side can be written as

qu* dT = [#1 #2 ]u*d [ 2
r r

g = $ d, T
r,

gJ = .2u' d

e Treatment of Corners

Unlike constant elements, linear and quadratic elements have a common node between

two elements (Figure B.5). A quantity such as potential (u) is unique at any point on the

boundary, and therefore the common node does not pose any problems. However, this is

not the case for a quantity such as flux (q) which is calculated in the direction normal to the

boundary. The flux is not unique at the corner node because it has two normal directions.

A similar situation arises if the flux prescribed along a smooth boundary is discontinuous.

This dilemma can be circumvented by arranging the values of q such that they are now a

2N array for linear elements and 3N for quadratic elements.

The boundary element formulation is thus expressed as
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(B.38)
ij ij 1

= g g2



i N[
(B.39)

where q is a vector of length 2N and G an array of N by 2N. The above equation can also

be expressed as

N
ci ui + I S^'j u

11

2N

= Gli qi

j=1 (B.40)

Similarly, as we showed for the constant-element case (equation (B.23)), this can be

reduced to

N

I H"j uj
j=1

H"i

2N

= G'j q
j=1

= 'j($'j+ c'

(B.41)

for i:# j
for i= j

(B.42)

The matrix form of equation (B.41) can be written as

HU = GQ (B.43)

Again, by rearranging all the unknowns to the left side, we can express the above equation

as

A X = F (B.44)
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Quadratic Elements

For a curved geometry, it is useful to implement curvilinear elements (Figure B.5b).

The simplest of curvilinear elements are three-noded quadratic elements. However,

quadratic elements are still much more complex than constant or linear elements because

they require transformations. In this section, we provide some of the important steps of

the formulations and omit detailed derivations.

In the same sense as with linear elements, the quantities u and q can be defined by

using interpolation functions such as

= $ 1u + #2 u2 +0#3 U3= [1 02 03] U2

" -(B.45)

q1~

q(4) = 1 q'+$ 2q2 + 3 q = [01 02 03] 42
3_- (B.46)

where interpolation functions are

1 1= ( -1) (B.47)

2= (1+-)(1+) (B.48)

3 = (B.49)

436



As in the case of linear elements, we consider 4 as the dimensionless coordinate which

varies from -1 to +1. The interpolation function indices are referenced according to Figure

B.5 (middle).

The integrals along anyjth element are similar to those computed for the linear element,

but there are now three nodal unknowns and their integration requires the use of a Jacobian.

For example, let us see how an integral for H type terms is transformed. In the same sense

as the linear element case, they can be expressed as

f u(c)q* dF = f [ 1 02 $3]*dF*u] = [h h hB| 2

r, r. 3 U3 (.0

where

h = $1q* dr
r,

h = $2 q* dr
r.

= f$ 3q* dT
r,

For a curve such as in Figure B.5b, the transformation is

dT = 1+1 T dI = IGI d
w e t dT w

where IGI is the Jacobian. Therefore, we can write,

hk = p q* =
r

node 2

O ( )q*|G(d
node I (B.52)
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To calculate the Jacobian we need to know the variation of the x, and x2 coordinates in

terms of 4. This can be done by defining the geometrical shape of the element in the same

way as the u and q are defined, that is using quadratic interpolation functions so that

x =3

= X' + #2X2 (B.53)

where the superscripts indicate the node numbers.

Subregions

Many problems require treatments with variable material properties or body forces in

the domain. In boundary element methods these problem can be considered by dividing

the domain into piecewise homogeneous subdomains. The way that the boundary element

method handles the heterogeneity is by formulating the problem for each subdomain and

then combining them to solve for a final set of equations for the whole region using a

compatibility rule along common interfaces between the subdomains.

Let us consider the case where the whole region is divided into two subregions, Q' and

n2, with two boundaries IT and F2 and an interface represented by F, (Figure B.6). We

use the following definitions:

On the subregion Q1

U1 and Q' are nodal values of u and q on boundary F'

U' and Q' are nodal values of u and q on the interface F' which belongs to 91

On the subregion 02
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U2 and Q2 are nodal values of u and q on boundary F 2

U2 and Q2 are nodal values of u and q on the interface F 2 which belongs to 02

The system of equations in KY can then be written as

[Hi H U1
.U1.

Q1

91- (B.54)

and that in Q2 as

[H2 H[] = [G2 G2)
U _ Qi (B.55)

If we assume that the displacements and the stresses are continuous across the

interface, the compatibility and equilibrium conditions on the interface F1 , can be expressed

as

U1 =u (B.56)

and

I = 0 (B.57)

If we call the potential at the interface U' and adopt on the same interface the fluxes of Q1

as reference values, we obtain

U, =U1 =u2

QI =QO =~~I

(B.58)

(B.59)
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The system of equations for the whole region can be written as

H1

0
H 1 0

H 2 H 2 U1
I - U2-

Gi

0
G1 0 I

-GG2 1 ]
(B.60)

Since U, and Q, are unknowns, they can be transferred to the left side. In such a case,

the system of equations becomes

H'
0

.UI

H1 -G' 0 U1
H2 G2 H2 Q]

-U2- (B.61)

As more subdomains are defined, the system of equations will become banded and

thus have a large number of zero submatrices.
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POISSON'S EQUATION

Laplace's equation is a special case of Poisson's equation in which the term that usually

represents sources in the domain b(x) is zero. The boundary element formulation for

Poisson's equation is the same as that of Laplace's equation except for the term b(x).

Let us consider the following equation.

V2 u = b in 2 (B.62)

where b is a known function of position. The boundary integral formulation of the above

equation can be written as

f (V2u - b)u*d = f(q -i)u* dT - (u- W)q* dF
r2 ri (B.63)

Using the fundamental solution, the above expression can be then reduced to

ciui + uq* dT + bu* dCA = u* q d
r a r (B.64)

The only difference from the boundary integral formulation of Laplace's equation is the

third term on the left side of the above equation which involves a domain integration.

There are several ways in which this term can be evaluated instead of directly

performing the domain integration. The most simple case is when function b is harmonic,

i.e.,

V2b =0 (B.65)
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This case is analogous to the elastostatic case presented in Appendix C where body forces

could be represented by a potential field.

Another way to evaluate the domain integral is to define regions of integration called

'cells' in the domain and compute the domain integral. In this case, for each position of

singularity at a boundary point i, the domain integral can be expressed as

M r
B' = bu*dQ = X X W(bu'), 2

Se=1 = I (B.66)

where e denotes the different cells, M is the total number of cells describing the domain K,

wk is the integration weight, and Q, is the area of the cell e. The function bu* is evaluated

at r integration points on each cell.

Equation (B.64) then becomes

N N

ciu' + XH S' uj + B' = G'j qj
j=1 j=1 (B.67)

or in matrix form

HU+B = GQ (B.68)

The domain integrals need to be computed also when calculating the values of

potentials or fluxes at internal points. For an internal point i, the boundary element

formulation can be expressed as

N N

ui = G' qi- Sui-9B'
j=1 j=1 (B.69)
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Figure B. 1 Configuration of Laplace's equation.
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Figure B.2 Illustration of source point i on the boundary for the two-dimensional case.

In this case the boundary is modified to include a semicircle around source point i.
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Different types of boundary elements. (a) Constant, (b) linear, and (c)
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Figure B.3
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Figure B.4 (a) Relationship between the fundamental solution at the boundary node i

and other boundary nodes. (b) Relationship between the fundamental solution at the

internal point i and other boundary nodes.
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An example of notation definition and corner treatments for (top) linear and

(middle) quadratic elements.
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Domain Q divided into two piecewise homogeneous subdomains.
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Figure B.6
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APPENDIX C

Boundary Element Formulation for Elastostatic Problems

LINEAR ELASTICITY

Under linear elasticity material behaves linearly, and changes in the orientation of a

body in the deformed state are negligible. The latter assumption leads to linear relations

between strain and displacement and allows the equilibrium equation to be referenced to the

undeformed geometry. Due to the existence of the fundamental solution, linear elasticity is

another important area where one can benefit from using the boundary element method

over domain methods.

We begin by describing the basic theories of linear elasticity. Because they be can

found in many textbooks [e.g., Timoshenko and Goodier, 1951], we shall state them

without any proof.

The state of stress in the body can be described by the following second-order tensor

611 612 613

6 21 422 723

631 0'3 C33 J

For static problems, the stress tensor is symmetric, i.e., auj = a . As a result, we have

only six independent components.

The infinitesimal strain of the body can also be defined as a second-order tensor
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[l I112 8i -131821 E2 E2

831 832 833]

The strain tensor is symmetric by definition, i.e., s, = c,,. Therefore, the strain tensor also

has only six independent components. All linear elastic problems can be fully described by

a total of fifteen quantities. These fifteen quantities represent the unknowns.

There are a total of fifteen independent relations or equations that describe linear elastic

laws. There are three equations from a consideration equilibrium

6i1. + b = 0 (C.1)

six equations from compatibility relations

Ei;= 2(u, + u) (C.2)

and six equations from the constitutive law

;= 2u v "~ij m + EiJ (C.3)

where 8;j is the Kronecker delta, b; is the component of the body force, y and v are the

shear modulus and Poisson's ratio, respectively, and repeated indices imply summation.

Only two quantities are required to describe the material property in linear elastic cases if

elastic isotropy is assumed. Since there are an equal number of unknowns and equations,

one can always find a unique solution for a well-posed linear elastic problem.
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FUNDAMENTAL SOLUTION

The fundamental solution in elastostatics corresponds to an infinite domain loaded with

a concentrated unit point load. This problem is also known as Kelvin's problem.

If the governing equation in equation (C.1) is expressed in terms of displacements, we

obtain what is known as the Navier equation, i.e.,

ujj.+uijj+-b = 0
1 2(C.4)

Kelvin's problem is a special case when a unit load is applied at a point i in the direction of

the unit vector e,, i.e.,

b, = 3(x - x; ) el (C.5)

There are several methods of finding solutions to Kelvin's problem. One such method

involves representation of the displacements in terms of Galerkin vectors, i.e.,

1
Uj GMM - G., , (C.6)

2(1 - v)

where G, = G-e (C.7)

The problem is thus reduced to finding the Galerkin vector G.

For the three-dimensional case, this is

1
8 7cp (C.8)
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and for the two-dimensional case

G = -- 21n (
8xy r (1 (C.9)

If we assume that each load is independent, we can define a new quantity G,, to

represent the load, i.e.,

Gik = GSk (C.10)

where G,, is the k th component of the Galerkin vector at any point when a load is applied

at i in the I direction. We can also represent the displacement in the domain for the point

load as

u = u,, el (C.11)

where u,*, represents the displacement in the k direction when the unit load is at point i

applying a force in the I direction.

Substituting equation (C.8) and (C.10) into equation (C.6), we obtain

Uk = {(3-4v)S,,+r,r, (C.12)
167ry (1 - v)r

for three-dimensional problems, and for two-dimensional problems

u, (3 - 4v)In( 1 ) + r ,k
8y (1 - v) fr) j (C.13)
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Stress at any internal point can be written using the compatibility equation (equation

(C.2)) and the constitutive law (equation (C.3)) as

j Sk', e, (C.14)

The kernel Sk, will be shown later in this appendix.

The tractions or surface forces on the boundary I whose normal direction is n can be

expressed as

p: Pik el (C.15)

For a three-dimensional case, the traction components can be expressed as

P*k = ~ 1 2[ (1 -2 v),',+k 1 rk} + (1-- 2nv)(n, r k r)87r(1- v)r Ldn

(C.16)

where n, and nk are the direction cosines of the normal vector with respect to the x, and x.

directions. dr/dn is the derivative of the distance vector r with respect to the normal

vector.

For a two-dimensional plane strain problem, the traction components can be expressed

as

P1*k = - {{1- 2V)831k+ 2rjgj +( - 2 , k- nk r47x(1-rvdr dn

(C.17)
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BOUNDARY INTEGRAL FORMULATIONS

The boundary element formulation for linear elasticity can be obtained by minimizing

the error arising from an approximate solution. For an elastostatic problem, the governing

equation can be expressed as

kj,j +bk = 0 (C.18)

We assume the following boundary conditions

Uk = Uk

Pk = U nj = Pk

on IF1

on IF2

(C.19)

(C.20)

The first type of boundary condition represents the essential or displacement boundary

condition and the second type the natural or traction boundary condition.

The weighted residual integral for the above problem can be expressed as

(ai.; + bk)u* dC = 0
a ( )(C.21)

Integration by parts twice on the above equation leads to a familiar equation, i.e.,

* + f bjdu+* dJUf = u* d+ p*uf pku.dT
a r r (C.22)

This equation corresponds to Betti's reciprocal theorem in elasticity. Applying the

boundary conditions provided in equation (C. 19) and (C.20) to (C.22), we obtain
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f';.jju d+ f bk u* dMJ =- pu* d- f
r, r2

(C.23)

In the boundary element method, the weight function corresponds to the fundamental

solution. We assumed that the fundamental solution corresponds to a point load acting at

the point i in the direction of the unit vector e,, i.e.,

u,'.; + 3(x- x,) e, = 0 (C.24)

Substituting equation (C.24) into the term on the left side of equation (C.23) leads to

= - f8(x- xj) ue, Ad2

(C.25)

The whole equation (C.23) can now be written as

p,, u. dT -i U,*k + u,, P, d + f u*k bk dGQ
a

For the moment we shall not distinguish the two boundaries, I and ]F2 -

equation can then be written as

u1 + j P*k k
r

= u*pt d7 + u*bk d
r Q

This equation is known as Somigliana's identity in elasticity.
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kju, d = fua,u, dGi
Q

u + f p* k +

(C.26)

The above

(C.27)

j5, u, d + j
r,

f u. p: dT
r2

W, p*E+

= -u' e,



Boundary Points

Equation (C.27) describes the relationship between the boundary values for the point

load within the domain. However, one needs to be careful how the boundary integration is

carried out when the point load is located on the boundary F.

The first integral in equation (C.27) can be divided in two parts, i.e.,

f u,, p, = lim f u,*, p, d + Bm f u,*,, kE-+0 -+r r-r, r, (C.28)

The first integral on the right side of the above equation will simply become an integral on

the whole boundary F when e -+ 0. The second integral becomes

pk lim u* d = 0
ir (C.29)

A special consideration is required for the integral on the left side of equation (C.27), which

also can be divided into two terms

f P,*,u,d = im fP,*,u, d 4 + lim fp,* ud4
rE-*0 C-+0r Lr-re I re (C.30)

The second term on the right side of the above equation produces a free term. For a

smooth boundary such as a constant element, this is

lim p,* u, T =f 1 p,*, aT = u,
E . r,*{f k Uk ( C .3 1

re re (C.3 1)
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As a result, we can write equation (C.28) as

cul, + fp,*uk = Ju*, p. d + fu,*b. dC

r r a (C.32)

where c' represents the coefficient of the free term, which for a smooth boundary is , lk.

BOUNDARY ELEMENT FORMULATION

We can now formulate the boundary element method for the discrete case. First, we

need to define the following functions

u =4 u' (C.33)

and

P =' P (C.34)

where uj and p' are the displacements and tractions at the nodal points, respectively. The

dimension of matrices u1 and pi is 3 x Q and 2 x Q for three- and two-dimensional

problems, respectively, where Q is the number of nodes on the element. Using the above

definition, displacement and traction may be represented at any point on the boundary as u

and p, respectively.

(D represents the interpolation function matrix, whose dimension is 3 x 3Q and 2 x 2Q

for three- and two-dimensional problems, respectively. For the three-dimensional case D

can be written as

= [ 02 - ] (C.35)
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$, 0 0

<bDi 0 $i 0

where -0 0 0- (C.36)

Using the notations defined above, we can now write equation (C.32) as

c ui+f p*udf = u* pd f +u*bd
r r n (C.37)

where c' = for a smooth boundary. Otherwise it will be a 3 x 3 or 2 x 2 array.

By discretizing the boundary, the above equation can be then be written as

R RM

c t ui + I p* CD df u = u*<(D d pi + u* b dM
j=1 r j=1 (r s=1 Q,

(C.38)

where R represents the number of elements on the surface, and u' and pl are the nodal

displacement and traction on elementj, respectively.

System of Equations

Equation (C.38) can be expressed in a more compact form as

c z N A i uN M
clu + N j ul = I G'i pi + I B'j

j=1 =1 s=1 (C.39)

where N is the number of nodes. The influence coefficients H and G can be written as

Nri = fJp*<D, d
t ]r, (C.40)

466



G'= J u* b qdT
Sr-. (C.41)

where the summation extends to all the elements to which node j belongs and q is the

number of the order of the node j within element t. For constant elements, the summation

extends only to one element, t = j, and <bq is the identity matrix.

The body force integration can also be expressed as

B'' = u* b dK
a. (C.42)

Equation (C.39) can be written in a more compact form by defining H such that

(Ni
H'i + c'

(C.43)

Equation (C.39) is now

N N M

IHiLuj =pj + I B'j
j=1 j=1 s=1 (C.44)

This can be written in matrix form as

HU = GP+B (C.45)

Rearrangement of the terms such that unknowns are gathered into X leads from the

above equation to
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AX = F

Once this linear equation is solved, we know all the quantities on the boundary.

Internal Points

For internal points, the boundary element formulation can be expressed as

R 

ui = u*<b
j=1 rj

dlj pi
R

j=1

M
p*<(D df u +j f

S=1 j.

(C.46)

u* b dM
(C.47)

where i is now an internal point.

Displacement at an internal point can be found directly in terms of the nodal

displacements and tractions using the following expression

N N M

u'= I Gl pi - I i uj+ Bj
j=1 j=1 (C.48)

On the other hand, internal stresses can be computed indirectly using the following

relationship for an isotropic medium

6 - . = 2.v
1-2v '

du, du, du)- +p -+-
dx, (dxj dx'

Equation (C.49) can also be written as

12v dU, k
1-2v ''dx,

(dui, d,1k
+ p + d, JPk d

(dx, dx, )
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+ uF E

. 1- 2v
du* u duk bY dQ

(dx, dxi )

This equation in turn can be expressed as

6ij= fDkijpd -
r

= a-2 (r

su u dir+ D bdnkij k kij (k .51)

+ r - r) +r r r 4 - v

(C.52)

and

r= dn
- 2v)y; ;r, + v(35i rj +83 jk rL) - yr rj rk

+#y(n rr+nk + njjk)+(1 -2v)(IlnkrrI + n, 3 ik + n 8,)

-(1-4v)n,] 1  v
8j4 ayc(1 - v) (C.53)

where, for the two-dimensional case a=1, #=1 and y=4, and for the three-

dimensional case a = 2, P =3 and y= 5.
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Treatment of Domain Integrals and Body Force Terms

The body force term requires a special consideration because it involves an integration

over the domain. As we saw in Appendix B, one way to evaluate the body force term is to

divide the domain into M internal cells and compute body force integrals over them. In

some cases, such domain integrations can be avoided by taking the body force integrals to

the boundary.

(i) Body Forces

The domain integrals can be avoided in many cases by reducing them to the boundary.

Consider in this case that body force components bk can be obtained from a potential

function V/ such that

bk = -
(C.54)

where the potential yp is assumed to satisfy the following harmonic relationship

V V = KO = constant (C.55)

The body force integral can then be written as

fbu* d d = JU k--fd =u d dQ
Ql &\dk Jl &k l &k

(C.56)

Furthermore, if we use the divergence theorem, the above equation can be written as
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bkugd.Q = ujk V nk dg2 - IkV dQ
a a a dxk (C.57)

where nk is the direction cosine normal to F with respect to the xk axis. To take the last

integral of the above equation to the boundary, we can write u*k in terms of the Galerkin

vector G,,, i.e.,

u-*, = 2- G v) kj V2GkI - G
2(1- v) ' 2(1- v) (C.58)

For three-dimensional problems, the solution is when

1
Gk = - r 5k8u (C.59)

and for two-dimensional problems it is when

Gkl = r 2 In -'I
8xrp r) (C.60)

For two-dimensional problems the solution can be written as

*= 1 8 3i- I _ (7-8v) s}
Ulk =13 ' 1

8xpy (1 - v) r2

(C.61)

This solution differs from the fundamental solution in equation (C.13) by a constant

term, which was dropped because rigid body motion does not change the solution of the

systems of equations.
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The last integral in equation (C.57) thus becomes

Ju,*,, y dGf ulk K
= 1-2vA

2(1 - v) .
V2(Glkk) Yfd.

(C.62)

The Green's theorem can be applied between the field G,,,, and yf, i.e.,

f {G, V2  V2 (G,,,k) Y dK2
n

= f(Gk yj n) dT -
r

(Glkkj yvnj) a-

(C.63)

The first integral on the left side is

GlkkV2 V dQ = KOJ Gk dC

n
= Ko f Glk nk d

r (C.64)

Therefore, equation (C.63) is now

-f V2(G,,,t) yf dG
n

(Glkk ypnj) dT - KOf Glk n dl
rf (G,,,, y,, nj dT

r

(C.65)

Finally, the body force integral can be expressed in terms of boundary integrals as

UlkbkdQ =

*1- 2vf
Ulky 1/fk d + -2(1- v)I. (Gl,,, V,, n,) dJ - [ (G,,j in,) dF - KO f

r r

(C.66)
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(ii) Gravitational Loads

A gravitational load represents a special case in which the body force takes the form

V= -Px 3

0

b =0

.- Pg.

(C.67)

(C.68)

The potential arising from such a body force satisfies the harmonic equation, i.e.,

V2V/ = 0 (C.69)

Substituting these terms into equation (C.66), the body force integral can be reduced to

f -Ju~p9X 3 nk dF -(1- 2v)
r 167y (1 - V)r

(r n - X3x r n) dF

(iii) Thermoelastic Problems

Temperature changes 6 in an elastic body are equivalent to adding a body force equal

to - y 6, at each point and increasing the traction by y 0n, where

2pa(1+ v)
(1-2v) (C.71)

and a is the volumetric thermal expansion coefficient. Therefore, the thermoelastic

problem is a special case of the elastostatic problem with body forces.
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If only thermoelastic body forces exist, the boundary integral equation can be written as

C' Ui + f p,*u. dT
r

= Ulk pA kd + fu,(yO)n, d -f
r r

u,, y., dQ

We can write the potential of the equivalent body force as

V -70

For steady state conduction, the potential satisfies the harmonic equation, i.e.,

V26 = 0

As a result, the boundary integral equation can now be written as

'ci, + p u PCk Uk + k Uk dF
r r 2(1V- v) ,kj

en1 - G,, n )d

(C.75)
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APPENDIX D

Comparison Between Subregion and Spring Models of the Axial Dike

Region

The axial dike region at the rise axis can be modeled either as a separate subregion or as

internal springs connecting two imaginary walls of a slit (Figure D. 1). In the former case,

the strength of the axial dike region can be defined by the Young's modulus and the width

of the subregion, whereas in the latter case, it can be defined by the spring stiffness.

For a subregion model, we can consider a region of dikes as being embedded within a

semi-infinite half-space that is being stretched by a far-field horizontal extensional stress

(a-.) (Figure D.la). For the sake of simplicity, let us assume that there is only horizontal

strain as a result of the far-field horizontal extensional stress. The stress y along the

vertical interface between the dike zone and the surrounding medium may be expressed as

Ede = Ea (D.1)
W,

where Ed is the Young's modulus of the dike region, e is the strain, and W and W, are the

widths of the axial dike region before and after the application of far-field stress,

respectively. Correspondingly, the amount of traction (T,) applied along the vertical

interface between the axial dike zone and the surrounding medium is

T, Ed * (D.2)
W,

477



Note that the traction here is applied on an area along the vertical interface of unit thickness

between the axial dike zone and the surrounding medium.

For a spring model, we shall consider the same axial dike region as a slit where a series

of springs connect the two opposing walls with unit thickness (Figure D.1b). The force F

applied along the walls can be expressed as

F = kTx = kT (W -W,) (D.3)

where kr is the total spring stiffness of the springs, and x is the displacement resulting from

far-field extension, and is thus equivalent to the difference in the width of the slit before and

after the application of far-field stress. If we use k, the spring stiffness per unit length, then

the total spring stiffness can be written as

kT = k-L (D.4)

where L is the vertical extent of the dike zone. The amount of traction applied along the

walls of the slit (T2) can be expressed as

T2 kT(W -W) k (W -W)
L

(D.5)

Finally, by assuming that the tractions derived in the subregion and spring models are

equal,

(D.6)

we obtain the following relationship
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k Ed (D.7)
W

The reason that the above relationship is an approximate one is because we have only

considered the horizontal strain in our models, thus ignoring the Poisson effect of the

material.

To test the above relationship, we used the boundary element method to compare the

predictions of a model of the axial dike zone as a subregion with a model in which the dike

zone is a slit with springs (Figure D.2). First, we considered an axial dike 2 m wide and

with a Young's modulus of 0.01 MPa. Next, we considered it as a slit with a spring

stiffness per unit area of 0.005 MPa/m. In this particular example, we assumed 1 MPa as

the magnitude of the far-field horizontal extensional stress and 10 m as the vertical length

of the axial dike region. The comparison of resulting differential stress fields from both

approaches shows good agreement.
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Figure D. 1. Two different ways to model the axial dike zone. (a) The dike zone is

modeled as a separate subregion which is embedded in a surrounding medium; (b) the dike

zone is modeled as a slit with springs connecting the two opposing walls.
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(a) Dike modeled as elastic subregion

WO

d. L

(b) Dike modeled as an interface with springs
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Figure D.2. Differential stress fields resulting from cases where the axial dike zone was

modeled (a) as a separate subregion and (b) as an internal spring connecting the two

opposing walls of a slit.
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Comparison of two different dike models
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APPENDIX E

A Method for Improving Navigation Based on Sea Beam and Free-Air

Gravity Anomaly at Crossovers

Navigational information is used to reduce measurements and generate maps for

subsequent analyses, and thus estimating a ship's position accurately during a survey is an

important task. Unlike determining position on land, obtaining an accurate estimate of

position is difficult at sea, especially if the survey is conducted distant from the shore

where there are few well-established positional references. Given these difficulties, a

number of systems of satellite-positioning have been used throughout marine geophysical

surveys.

Prior to the introduction of the Global Positioning System (GPS) in recent years,

navigation was based on positional fixes given by Transit satellites and interpolation

between the positional fixes, a procedure known as dead-reckoning. This type of

navigation, however, was unsuitable for detailed investigation, because the accuracy of

some of the positional fixes on conventional satellites was poor and the positional fixes

were given only at intervals of tens of minutes to hours; past surveys have shown that error

could amount to several kilometers between positional fixes. For a survey conducted by

interlacing ship tracks, the inaccuracy of navigation becomes evident as measurements

such as bathymetry, free-air gravity anomaly, and magnetic field taken along the tracks do

not necessarily match at the expected crossover points of two ship's tracks.

Several techniques have been devised to reconcile the misfit of measurements at the

crossovers. Prince and Forsyth [1984], for example, used an inversion method based on

a least squares criterion to determine the amount of constant shifts that need to be applied
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along each track as a way to minimize the overall misfit. However, this technique, apart

from being ad hoc, did little to reduce the uncertainty of navigation.

For a survey conducted with a high-resolution, swath-mapping bathymetric survey

system such as Sea Beam, an additional set of constraints can be placed on navigation by

requiring the features of two swaths to match at a crossover. If the number of tracks

involved and thus the number of crossovers is small, ship track adjustments can, to some

extent, be made by fixing one or more reliable tracks such as those navigated by GPS

while shifting the other tracks manually; however, as the number of tracks involved and

thus the number of crossovers become large, it becomes difficult to make consistent

adjustments to the tracks manually.

For an extensive survey, the navigation and the constraints, including the positional

fixes provided by satellites and the shifts required to match Sea Beam swaths at

crossovers, can be represented as random variables, and then a generalized inversion

technique can be applied to update navigation [Nishimura and Forsyth, 1988]. However,

to increase numerical efficiency, instead of representing a misfit as differences between

positional parameters of each track, Nishimura and Forsyth attributed half of the positional

difference to each of the tracks at a crossover. Making this assumption allowed them to

avoid placing off-diagonal elements in the matrices and thus having to store and invert full

matrices. Although this approach reduced the overall Sea Beam misfit, since matching Sea

Beam swaths at crossovers was built into the inverse problem as a constraint, the overall

reduction of misfit cannot be an objective measure of whether navigation was improved.

In fact, when independent measurements such as free-air gravity anomalies were compared

at crossovers, the crossover errors increased as a result of renavigation [C. E. Nishimura,

personal communication, 1988; Wilcock et al., 1993].

Another problem with the approach taken by Nishimura and Forsyth [1988] is that

their code can not handle large matrices efficiently. As a result, it is difficult to explore a

large range of possible inversion parameters. Nonetheless, to represent the functional form
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of navigation generally requires a large number of parameters. A survey conducted over a

period of 21 days, for example, would require at least 105 pairs of latitudinal and

longitudinal parameters to represent navigation at every 3 minutes. A model with m

parameters involves an m by m matrix. Such a matrix requires m2 words of computer

storage and computational time proportional to m3 to solve a system of simultaneous

equations. Even on contemporary workstations, a model becomes inconvenient or

intractable when the number of parameters reaches several hundred or a thousand.

Fortunately, as with many large models, the matrices involved in navigation are sparse;

specifically, each parameter is directly related to only a few other parameters. If the

number of nonzero elements in a matrix comprise only a few percent of the total number

of elements, a significant reduction in the amount of storage and computation time can be

gained by using algorithms for solving sparse linear systems such as SPARSPAK

[George and Liu, 1981], the Yale Sparse Matrix Package [Eisenstat et al., 1981], the

Harwell Subroutine Library [United Kingdom Atomic Authority, 1988], and MATLAB

[Gilbert et al., 1992].

Instead of relying only on the reduction of Sea Beam misfit at crossovers as a measure

of the quality of inversion solutions, we use the free-air gravity anomaly misfit at

crossovers as a criterion for selecting among a family of inversion solutions. Unlike

Nishimura and Forsyth, we represent the Sea Beam crossovers as positional differences

between two tracks, and we employ sparse matrix algorithms. The sparse matrix

algorithms allow us to examine the renavigation solutions over a wide of range of

inversion parameters efficiently. This Appendix outlines the theory and approach we have

taken to this problem.
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THEORY

Our knowledge of navigation can be represented by a set of discrete quantities, referred

to as model parameters. In general, for any physical problem, there exists a law to describe

how model parameters relate among themselves and to observations. As a new set of

observations is made, we are required to modify our model parameters on the basis of

inferences drawn from these so-called data parameters. One important use of an inverse

theory is that it provides a formal procedure for updating model parameters.

Because observations contain noise or the law itself may be probabilistic, the model

and data parameters can be described by random variables with certain probability

distributions. In particular, if the probability distributions are Gaussian, the problem

reduces to a compact form of linear inverse theory. This section describes the formulation

of a renavigation problem within such a framework.

If we neglect the curvature of the Earth's surface over our survey area, the navigation

can be represented by a pair of Cartesian coordinates as a function of time; in particular, the

navigation can be represented by pairs of latitude and longitude estimates. Further, we can

assume that the latitudinal and the longitudinal parameters are uncorrelated; this assumption

allows us to divide the problem of renavigation into two problems that are similar in

formulation, one for estimating latitude and the other for longitude. The formulation in this

section applies to estimation of both latitude and longitude.

In discrete form, navigation can be represented by a set of model parameters
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m2

m = (E.1)

mm-1

where m is the vector that represents model parameters, m the number of discrete points,

and mi the value of the navigational function at time t . We can also define C., an m by m

matrix, which represents covariance among model parameters.

Cu1 ... C.

Cm = (E.2)

One important condition which we can impose on the navigation model is smoothness.

Smoothness can be prescibed in the functional form of the a priori model covariance

matrix, Cm. We use the Gaussian weighting function in which

2~

Ci(ti, ti) = uexp - t 2
1  (E.3)

where A is the characteristic correlation interval and d 2 the a priori model variance. The

model covariance matrix, Cm, is always positive, and the magnitude of the correlation

coefficient decreases with increasing time difference, ti - tg.

Next, we can construct a vector d which consists of n observations
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.di~
d2

d =- !(E.4)

d.-

The uncertainty associated with these observations can also be represented by an n by n

data covariance matrix Cd. Since we assume each observation to be independent, the

matrix Cd is a diagonal matrix

U1  0-

Cd = (E.5)

0 --- oFI

The data parameters and the model parameters are related by linear equation:

Gm =d (E.6)

where G is an n by m matrix.

The form of G depends on the type of problem. In a case where positional differences

are used to update the model parameter, each crossover point can be expressed as

mi = m3  (E.7)

where mi and mj are two model parameters that correspond to the time of crossover

according to the updated observations. Therefore, each row of G should have two nonzero

elements whose values are 1 and -1.
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The solution to equation (E.6) can be found by searching for a set of model parameters

that produces zero predicted error Ed, where

Ed(m) = (d - G m) T C- (d - G m) (E.9)

However, if the number of equations n is less than that of model parameters m, it is

possible to find more than one solution for which the predicted error Ed is zero. In fact,

there exists an infinite number of solutions that satisfy such a criterion since the system of

linear equations is underdetermined. To single out one of the infinite number of solutions,

we must add to the problem additional information not contained in equation (E.6). This

extra information is referred to as a priori information [Jackson, 1979]. We shall assume

that the best solution is the one that deviates as little as possible from our initial model.

Deviation from the initial model m, or the length of estimated perturbational model

parameters m - m, can be expressed as

Em(m) = (M - m.) T C- (M - M.) (E.10)

The solution of linear equations can be found by minimizing a weighted sum of the data

misfit and the length of estimated perturbational model parameters

Et(m) = Ed(m) + - Em (m) (E.11)

where X is a coefficient that represents the trade-off between fitting the data and staying

close to the initial model. In a case when X is zero we are fitting the data only, whereas

when X is infinite we are fitting the initial model only.

The problem can be reduced to finding that m which yields a minimum Et.

Mathematically,
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d E,
d m

- dEd
dm

+ Id = 0
dm

Using equations (E.9) and (E. 10), equation (E. 12) becomes

GT C- (d - G m) - A C- (M - m.) = 0 (E.13)

By rearranging the terms in equation (E. 13), the model parameter m can be written as

= (GT C- G + .a Cm)~ (GT C-' d + A C, m.)

However, finding the model parameter m in the form of equation (E. 14) can be time

consuming, since one needs to calculate the inverses of three matrices: Cd, Cm and

(GT C-1 G + A C-1). The above equation can be simplified to a more numerically

efficient form by using a matrix identity as described in Appendix F

m = (C - C. GT S-1 G Cm) (AG T C- d +C Cm.)

where

S = Cd + A GCM GT

By rearranging the terms in equation (E.15), we obtain

(E.15)

(E.16)

M = M, + '- CM GT (I - S-1 G C GT) C1 d Cm GT S-1 G m.

Equation (E.17) can be further simplied to
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M = M, + A 1 CM GT S1 (d - G m.) (E.18)

The above equation (E.18) requires the inversion of an n by n matrix only once and is thus

far less time consuming than equation (E. 14). A set of new model parameters was found

using equation (E. 18) combined with sparse matrix algorithms.

DATA

The navigation and gravity data used in this study were obtained during a survey of the

EPR near 9*30'N over a period of 21 days. The survey was conducted on board RIV

Thomas Washington operated by the Scripps Institution of Oceanography and had two

primary objectives: to conduct a seismic tomography experiment near the axis in the

central portion of the survey area (9*30'-9*40'N and 255*35'-255*45'E), and to map the

seafloor using Sea Beam and to measure gravity and total magnetic fields at the sea surface

over the entire survey area (9408'-9*50'N and 255*20'-256*05'E).

The navigation during this survey was performed by Transit satellites and GPS. At the

time of this survey, however, GPS satellites were not fully deployed and, as a result, GPS

navigation was available for only 6-8 hours a day. Since seismic tomography experiments

demand more precise information on a ship's position than gravity and magnetic surveys,

most of the GPS navigation was used to conduct seismic tomography experiments.

The most up-to-date navigational information that we had was NAVLIST, processed

onboard from information gathered from a variety of sources, including satellite fixes and

doppler speed readings. NAVLIST served as the starting or a priori model in our

inversion and thus was sampled at 3-minute intervals to produce discrete model parameters

consisting of pairs of latitude and longitude estimates. It is important to reduce the number

of model parameters if possible. We excluded from the starting model the times when
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seismic tomography experiments were conducted because the GPS-based navigation was

sufficiently accurate. Parts of the tracks where speed or course changes were made were

also removed from the starting model. Figure E.1 shows a plot of remaining ship tracks

that we used for the inversion. The cumulative time span of the data in the starting model

is 240 hours, comprising 70% of the entire survey period.

Next, we determined a set of observations that the starting model must satisfy, as

follows. First, we estimated crossover points on the basis of navigational information

provided by NAVLIST and gridded each track in the vicinity of each point (Figure E.2).

In this study, we used a grid of 5 km by 5 km with grid spacings of 100 m in both the

latitudinal and longitudinal directions. Then by systematically shifting one of the gridded

tracks relative to the other, we calculated the average misfit between the two tracks for each

shift. The results can be represented on a two dimensional misfit distribution diagram as

shown in Figure E.3; the minimum represents the best fit between the two tracks, and the

vector from the center of the error surface to the minimum gives the amount of optimal

shift for track 1 to match track 2.

Assuming that a two-dimensional Gaussian error distribution (x2) is the proper

measure for misfit distribution, we inverted for the best fitting ellipsoid. For a X2 error

distribution, the two dimensional parabolic error surface is [Hald, 1960],

2 1 (0 - 6.)2 - 0)2 - ( - 00) ( - #)z2 a2 + -2-2 2 p
1 - p2 , (TO CFO

where

X2= chi-squared error distribution

and the six parameters that describe the errors are

0, = optimal shift in latitude

#,= optimal shift in longitude
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a2 = variance of error in latitude

qf = variance of error in longitude

p = correlation coefficient of the errors in latitude and longitude

;= minimum variance of misfit.

The optimal shift point in latitude and longitude and the minimum variance, 0,, 0, and ,2,

can be found directly from the error distribution. One must make sure, however, that they

are not from local minima. The three remaining parameters, af, ao and p, can be

estimated through a least square inversion of values of the error surface. Because most of

the bathymetric features in our survey area strike parallel to the mid-ocean ridge axis, the

variance of error tends to be greater in the latitudinal direction than in the longitudinal

direction.

Once the parameters for the best fitting ellipsoid are found, it is possible to calcuate the

new crossover times for both tracks, ti* and t2*. The new times are when crossover

occurred according to the comparison of Sea Beam swaths as opposed to the crossover

times of starting model, ti and t2. Therefore, the latitude and longitude of two tracks must

be equal at times ti* and t2* (see equation E.7). The data covariance matrix Cd can be

constructed by using the standard deviation of the latitude misfit error (a) or the longitude

misfit error (ao) as its diagonal element.

The new crossover times should not necessarily match with the times that we used to

sample the model parameters. With the addition of model parameters that correspond to

the new crossover times, the total number of model parameter pairs became 5900. From

700 crossovers initially, we removed bad error surfaces, including those that contained

multiple minima, poorly constrained error ellipsoids, and too large a minimum variance of

misfits. A total 500 valid crossovers remained.
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INVERSION RESULTS

The inversion of navigation as formulated contains three free parameters: the a priori

model variance 62, the correlation interval A, and the trade-off coefficient X between fitting

the data and remaining close to the initial model. Since reduction of Sea Beam misfit at

crossovers is already imposed as a constraint in the inversion, we searched for the set of

these parameters that best reduces free-air gravity misfit at crossovers. To do so, we

performed a number of inversions of Sea Beam misfit by changing these parameters

systematically. For each inversion, we estimated the ship's velocity and position and used

them to calculate the misfits of free-air gravity anomaly at the points of crossover.

We assigned the same importance to fitting the data and remaining close to the starting

model (X = 1) and varied the a priori model variance 62 and the correlation interval A. The

results are summarized in Figure E.4 in terms of the rms free-air gravity anomaly misfit.

The figure shows that the minimum rms gravity misfit is obtained when A = 4500 s and a-

= 3000 m. The rms free-air gravity anomaly misfit in this case is 1.9 mGal. Since the rms

free-air gravity anomaly misfit prior to the inversion was approximately 3.9 mGal, the

navigation solution corresponds to a 75% reduction in the variance of gravity misfit.

Considering that the accuracy of the gravimeter used in this study, BGM-3, is no better

than 1-2 mGal [Bell and Watts, 1986], this reduction represents a reasonable improvement.

In addition to reducing the misfit of free-air gravity anomalies, a significant

improvement in numerical efficiency was achieved by utilizing sparse forms of matrices

for storage and calculation. In our case, where the number of model and data parameters

are 5900 and 500, respectively, the amount of memory required to store the C., Cd and S

matrices in full form would have been 280, 2 and 27 Mbyte in double precision,

respectively. However, by using the sparse form, the sizes of these matrices were reduced

to 8, 0.1 and 3 Mbyte, respectively. The computation time was also significantly reduced:
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for example, the right side of equation (E. 18) took 170 hours in full form but took only 12

minutes in sparse form.
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Figure E. 1. Plot of ship tracks used in the inversion. These tracks represent our starting

model and were cast in discrete form from the most up-to-date navigational information

prior to the inversion. Most of the tracks shown here were navigated by Transit satellites.

The Sea Beam swaths were gridded around the crossovers and then compared to find a

better match.
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Figure E.2. Schematic illustration of two tracks at a crossover point. The shaded area

represents the portions of the seafloor insonified by Sea Beam. The plus symbol

represents the crossover point according to our starting model of navigation. To find a new

crossover point, bathymetric data for each track are gridded around the crossover; the box

represents the area of the gridded swaths. The gridded swaths are then compared against

each other to find a better fit. The circle in this plot marks the place where a new crossover

point was successfully identified.
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Sea Beam swaths at a crossover
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Figure E.3. Plot of a two dimensional misfit distribution map and an ellipsoid fit to it.

The vertical and horizontal axes correspond to the amount of shift made by track 1 against

track 2 in latitudinal and longitudinal directions, respectively. The vector corresponds to

optimal shift to match the bathymetric features of tracks 1 and 2.
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Figure E.4. Variation in the rms free-air gravity anomaly misfit as a function of a priori

model uncertainty a- and correlation interval A. The same weight is given to fitting data

and remaining close to the starting model (% = 1).
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APPENDIX F

Derivation of Matrices in Appendix E

Assume that C1 and C2 are symmetric matrices whose inverses exist, M is a third

matrix, and % is an arbitrary scalar. Let us consider the following expression:

A MT + MT CM C2 MT

A special case where X = 1 is given by Menke [1984, pp. 98]. However, the derivations

for a general case where X is arbitrary are not so obvious and thus will be examined.

By grouping terms in the above expression in two different ways, we can establish the

following relationship:

W c- (,I C, + M C M T) = (A C- + MT C1 M)C2M T

By multiplying by the appropriate matrix inverses, (F.1) can also be written as:

C2 MT ( C1 + M C2 MT)~' = (A C + MT C- M)' MT C1

(F.1)

(F.2)

Now let us consider another matrix expression:

C2 - C2MT (A C1 + M C2 MT) M C2
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By using the matrix identity that we derived in (F.2), the above expression is equal to the

following expressions:

C2 -(A C + MT C1 M)lMTC1MC2

= (A C + MT C- M)' {(A C1

= (A C- + MT C- M)~

Therefore, we conclude

+ MT C IM) C2 - MT C 1MC21

(A C2' + MTCII M)'1 = A-' {C2 + C2 MT (A C, + M C2 M)- M C2 1 (F.4)
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