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Abstract

Magnetic composites, obtained on associating magnetic fluid with non-magnetic
particles, offer interesting opportunities in separations, assemblies and other applications,
where the microstructure of the composite can be altered reversibly by an external field
without altering the composition. The goal of our work in this area is to develop
computational and simulation tools to assist in the in-depth understanding of the
thermodynamic and transport properties of such non-magnetic nanoparticles immersed in
magnetic fluids under varying magnetic field conditions. Also, in this work we have
studied the relaxation and magnetization characteristics of magnetic nanoparticle clusters
in presence of low external magnetic fields.

Theoretical analysis of such a complex system is difficult using conventional theories,
and hence we have used Monte Carlo Simulations to explore these effects. We simulated
the interactions between non-magnetic particles (1000 nm) and magnetic nanoparticles
(10 nm and 20 nm diameter) dispersed in organic phase. We observed that the presence
of the non-magnetic particle in the system induces magnetic non-homogeneity. The
magnetic nanoparticles present in the equatorial place of the non-magnetic particle with
reference to the applied magnetic field have a higher magnetization as compared to the
particles in the polar region. This effect was much more dominant for 20 nm particles
than 10nm particles, because the magnetic inter-particle interactions are much stronger
for the larger particles. We have also studied the effect of radial distance from the non-
magnetic particle on the magnetization and radial distribution function characteristics of
the magnetic nanoparticles.

We have evaluated the magnetophoretic forces the non-magnetic particles experience
when subjected to magnetic field gradient. We have identified such forces arising from
the inter-particle interactions between the magnetic nanoparticles. These forces were
found to be significant for larger magnetic particles, smaller non-magnetic particles and
lower magnetic fields.



Diffusion coefficients were evaluated for non-magnetic nanoparticles in magnetic fluids
using Brownian Dynamics Simulation. The chain-like structures formed by magnetic
nanoparticles introduce anisotropy in the system with the diffusion coefficients higher
along the direction of applied external magnetic field and lower in the perpendicular
direction. It was observed that the anisotropy increases with higher magnetic particle
concentration and larger non-magnetic particles. Anisotropy is negligible for small sized
magnetic particles for which the inter-particle interaction is smaller, increases with
increasing magnetic particle size and becomes constant thereafter. Results were
compared with theoretical predictions.

N6el Relaxation was studied for magnetic nanoparticle clusters. Chain-like, spherical and
planar clusters were evaluated for the relaxation times. For chain-like structures the
relaxation times increase significantly on increasing the chain length and particle size.
For spherical clusters the relaxation times were fairly similar to that of individual
magnetic nanoparticles. Hence, such a fast relaxation makes them ideal candidates for
HGMS separations, since they will be released quickly from the magnetic wires during
the elution step. Also, we studied the magnetization characteristics of rectangular and
hexagonal packing arrangements of magnetic clusters in presence of remnant fields. The
hexagonal arrangement revealed a novel oscillatory behavior. A theoretical model was
developed to predict the magnetic particle size beyond which the oscillations are
observed.
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Chapter 1

1. Introduction

The goal of this thesis is to understand the interactions between magnetic nanoparticles

and non-magnetic particles. We have evaluated transport and thermodynamic properties

of non-magnetic nanoparticles in magnetic fluids using Monte Carlo simulations and

stochastic dynamics simulations. We have considered non-magnetic particles of the size

of few nanometers, almost similar in size as that of magnetic nanoparticles. Hence, we

treat the magnetic particles discretely as compared to the continuum approximation

considered previously [1, 2]. Another area looked in this study is the Neel relaxation of

magnetic nanoparticle clusters and magnetic characterization of particle clusters in

remnant magnetic fields.

1.1 Magnetic fluids

1.1.1 Applications

Magnetic fluids are stable colloidal suspensions of sub-domain magnetic metal particles

(3-15 nm) in a carrier liquid. Their history dates back to the early 1930's when Bitter [3]

and Elmore [4] synthesized the first magnetic colloid. However the type of magnetic

fluids used these days have their origins in the early 1960's [5]. Nanoparticles of

magnetite (Fe30 4) and maghemite yFe20 3 are the most studied magnetic nanoparticles

due to their ease of synthesis and chemical modification and their non-toxicity. Industrial

applications for magnetic fluids include seals, dampers, and moving coil loud speakers

[5]. Magnetic fluids have been employed in adsorptive non-magnetic particle separations

[6-10]. These separations have become widespread in the field of biology, biotechnology,

biomedicine [11] and applications include cell sorting, RNA and DNA isolation [12],

separation and purification [13, 14]. Recently these particles have also been employed

13



toxin removal [15-17] and water purification [18-21]. Magnetic nanoparticles have been

employed in data storage [22], magneto-optical areas [23-26], catalysis [27-29], oxygen

transfer [30], and bio-medicine [31-36]. Researchers have designed various kinds of on-

chip and integrated magnetic particle manipulators and separators [37, 38]. Pamme [39]

has used magnetic nanoparticles for mixing fluid streams, as valves, and as support for

bio-reactions in microchannels.

1.1.2 Stability of magnetic fluids

An important component of these ferrofluids is the presence of adsorbed long chain

molecular species on the particle surface (Figure 1-1). The magnetic fluid is considered

stable, if it can overcome the van der Waals forces of attraction responsible for

agglomeration. Also the magnetic particles interact with each other by another

interparticle force, which is the magnetic dipole-dipole interaction. The magnetic dipole-

dipole interaction is dominant at long separation distances, while the van der Waals

interaction dominates at short distances [5]. The repulsion caused by this surfactant or the

polymer prevents aggregation between particles even under the presence of strong

magnetic fields.

All stabilizing polymers or surfactants require a means of attachment to the nanoparticles.

A common method of stabilizer attachment to the particles is through the incorporation of

a functional group that forms an electrostatic or covalent bond to the particle surface. For

magnetite-based magnetic fluids, the most common functional group for attachment is

carboxylic acid, which is known to form a strong d-orbital chelation to iron atoms on the

magnetite surface [40, 41]. This attachment mechanism was used in the earliest magnetic

fluids [42, 43], which consisted of fatty acid-stabilized magnetite nanoparticles in

kerosene, where the carboxyl head group of the fatty acid attached to the magnetite

surface and the alkyl tail provided steric stabilization.

The repulsive forces are steric in nature for organic magnetic fluid, and are steric and

electrostatic for water based magnetic fluids. Usually, water based magnetic fluids are

considered more stable that organic magnetic fluids. Stability of these magnetic colloids

has been an exciting area of research in the recent past [44-46].
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Figure 1-1: Magnetic fluids: The image on the left shows a microscopic image of

magnetic fluid with the long chain molecular species attached to the magnetic

nanoparticles. The image on right shows the macroscopic behavior of such a magnetic

fluid under an externally applied magnetic field. (Source:

http://www.ferrofluidics.de/images/fluid_demo.jpg)

Under ambient conditions, the suspended particles are subject to significant Brownian

motion, which prevents the particles from settling. This Brownian motion leads to a zero

net magnetic moment of the ferrofluid in absence of an externally applied magnetic field

because the moments of all the individual particles are randomly oriented (for e.g. at

298K, the dipole vector of an 8 nm magnetite nanoparticle changes direction after every

10-8 s). Also, the magnetic domains of the particles rotate randomly, termed as Neel

Relaxation. However, if an external magnetic field is applied to the magnetic fluid, the

magnetic particles will try to align themselves so that their magnetic moments line up

with the applied magnetic field as shown in Figure 1-2. For this reason, magnetic fluids

are said to exhibit superparamagnetism [5]. Removing the applied magnetic field from

the particles will instantly reduce the overall net magnetic moment of the fluid to zero,

making it possible to use these magnetic nanoparticles for a number of repetitive

separation cycles.
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H=O
M=O H,M O

(a) (b)

Figure 1-2: Dipoles for the magnetic nanoparticles are randomly oriented in absence of a

magnetic field (a). They tend to align themselves preferentially in the direction of the

applied magnetic field (b).

1.1.3 Structure of magnetic fluids

Various researchers have tried to understand the behavior and structure of these magnetic

fluids due to their significance in technological applications as well as for the

fundamental physics [47-49]. Most of the computational studies in the 1980's and the

1990's involved 2-dimensional simulations of the magnetic fluids due to the limited

computational power available. Chantrell observed the formation of chain like structure

in cobalt nanoparticles [50]. In zero applied field, the particles form open loop structure

with no spatial orientation. In large applied field of 10kOe, the particles form long chains

which are oriented along the applied field direction as shown in Figure 1-1. They also

showed that the formation of such structures leads to a decrease in the initial

susceptibility of the system. These interactions decrease with a decrease in the size of the

nanoparticle [51]. Also these simulations were carried out for varying temperatures and it

was found that for each particle diameter the initial susceptibility obeyed the Curie-Weiss

law [52], which states that the initial susceptibility varies inversely with temperature.
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Figure 1-3: Configuration of cobalt nanoparticles in zero applied field (a) and in the

presence of large applied field (b) [50].

However, all these simulations did not include any cluster moves. It is impossible to

reproduce the correct aggregate structure of these magnetic particles using the

conventional Monte Carlo algorithm. Satoh introduced a new method to capture

aggregate structures of these nanoparticles by using a cluster moving Monte Carlo

algorithm [53]. This new algorithm involved performing a cluster move after a certain

number of particles moves. The criterion of acceptance was the same as described by the

Metropolis algorithm. This algorithm violated the detailed balance equation. The new

algorithm by Satoh represented a more realistic picture than the previous works as shown

in Figure 1-4. Also, Satoh incorporated the electrostatic forces of interaction between the

magnetic nanoparticles, which play an important role in the stability of aqueous magnetic

fluids. Davis incorporated 'reversal moves' so as to satisfy the detailed balance when

performing cluster moves to study magnetic anisotropy in dilute thin films [54].

Satoh carried out two dimensional Monte Carlo simulations to capture thick chainlike

clusters of ferromagnetic particles in colloidal dispersions [55]. The simulations were

carried out in 2-dimensions, to save computation times, so as to simulate thick and large

clusters, similar to those observed experimentally. Also they made an attempt to capture

the internal structure by plotting pair correlation functions for these chains as shown in



Figure 1-5. Later, they also carried out these simulations for 3-dimensional system [56]

and similar results were obtained.

(a) (b)

Figure 1-4: Simulation results obtained
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Figure 1-5: Pair correlation functions in the direction parallel to the field direction [55]

The simulations discussed above are very time consuming. Satoh and Chantrell [56] used

the concept of secondary particles (as shown in Figure 1-6a) to speed up calculations for

the formation of thick chain like clusters. The secondary particles are composed of highly



interacting primary particles. To simulate the thick chain like clusters only the interaction

of these secondary particles was considered as shown in Figure 1-6b. However the

mechanism of the formation of these particles was not considered in their work. The

simulations were performed for various sizes of secondary particles. The attractive forces

were found to get stronger as the clusters became longer and were composed of larger

secondary particles.

(a)(a) (b)

(b) oooduy palde
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(a) (b)

Figure 1-6: Secondary particles, linear chainlike structures (a) and the interactions of

these secondary particles (b) [56].

The effect of size distribution on ferrofluid configuration was studied by Bhatt [57]. The

Monte Carlo simulations were performed for log-normal and flat top profiles for the

magnetic nanoparticles. They observed that in absence of magnetic field, the

agglomerates were formed from smaller particles (d<10 nm) as compared to larger

particles. However they failed to justify their results.

Kruse however predicted an increase in agglomeration probability with an increase in

size [58], but a large fraction of small particles also take part in agglomeration. The work
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also discussed the choice of Hamaker constant and its effect on convergence of the Monte

Carlo simulations. The probability distribution of the agglomerate size was found to

decay exponentially which is in agreement with theoretical distributions. Very recently,

Aoshima studied the effect of the variation of the standard deviation in particle size in a

polydisperse system in a 2-dimensional system [59]. He observed necklace-like structures

for smaller values of the standard deviation (-0.2) and clumplike structures for larger

values of the standard deviation (-0.35). Large complicated network structures were

formed for stronger magnetic interactions.

1.2 Magnetic and non-magnetic particles

Particles can be classified as ferromagnetic, which have a very high magnetic

susceptibility, paramagnetic, which have a low magnetic susceptibility and diamagnetic,

which have a negative magnetic susceptibility and can be considered non-magnetic for all

practical reasons, when subjected to a magnetic field. A high magnetic field alone,

although necessary for separating paramagnetic particles, is not sufficient; there must also

be a high field gradient. When a uniform magnetic field is applied to a magnetized

particle, the forces acting on the two poles of the particle are equal and opposite, resulting

in a net zero force. Only if the applied field differs in intensity at the two sides of the

particles, a net magnetic force will act on the particle. That means that the applied field

must have a gradient, a spatial variation that is appreciable in terms of the dimensions of

the magnetized particle.

A particle in an inhomogeneous magnetic field experiences several forces. The relative

importance of these forces depends primarily on the type of magnetic separation and the

size of the particle. Forces that act on the particle are the magnetic force, viscous drag

force of the surrounding fluid medium, the gravity force, the inertial forces on the

particle, the thermal diffusion and inter-particle interactions forces.

1.3 Magnetic separations

Magnetic separations have been employed in water treatment, mineral and other

industries in the past. Recently high gradient magnetic separations has been employed in

~n~ur~;u-m~3rur ;x.uil_?r~;-rliii~ifi i



separation of proteins [6-8, 60, 61], peptides [62], cells [63, 64], organic compounds [15,

16, 65], heavy metal ions [66], etc. These separations can be broadly categorized into two

categories. In the most common type of magnetic separations one of the non-magnetic

entities is either physically or chemically attached preferentially to the magnetic

nanoparticles. The suspension is then passed through a high gradient magnetic separation

(HGMS) column under the presence of a magnetic field. The magnetic nanoparticles

along with the bound non-magnetic particle species are trapped in the HGMS column,

while rests of species are eluted out (see Figure 1-7). Following this step the bound non-

magnetic species can be separated from the magnetic particles and the magnetic particles

can be recovered for the next cycle.

PURFED PRODUCT
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Figure 1-7: Cycles in high gradient magnetic separation [2].

A HGMS column usually consists of magnetically susceptible wires or spheres packed in

a column placed inside an elecotromagnet [61, 67]. One of the challenges one faces in the

design of magnetic nanoparticles is that the particles should be large enough so that they

get trapped in the HGMS column in separation phase, yet should be easily removed in the

elution phase when the magnetic field is switched off. In other words, they should have

high net magnetic moment, but should have small relaxation times. Ditsch [7, 60] has

used magnetic nanoparticle clusters to achieve the same effect. Having multiple smaller
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(8-10 nm) particles in the cluster ensures that the clusters are entrapped in the HGMS

column, yet are removed easily when the magnetic field is removed. However in case the

chemical and biological properties of the non-magnetic species are identical, these

separations become difficult.

Another kind of separation has the medium rather than the particles to be separated to be

magnetic. These have been termed magnetic separations of the second kind [68]. The

magnetic fluid is used to generate a "magnetic pressure", which is utilized to move the

non-magnetic species in the direction opposite to the magnetic field gradient. Fateen [2]

studied the forced diffusion of polystyrene beads in magnetic fluids. Fateen validated his

work experimentally by using digital imaging techniques to study the dynamic evolution

of the concentration profile of fluorescently-tagged polymer beads. He also performed a

feasibility study by designing a simple separation device to isolate 200 nm from 500 nm

particles. Gonzalez [1, 69] studied the focusing and trapping of sub-micron non-magnetic

particles in magnetic fluids under the presence of magnetic fields. He developed a

microchip that produced spatially increasing magnetic field gradients that trapped

polystyrene beads in different locations of the chip, based on the relative size of the

beads. Brownian dynamic simulations were used to match his experimental results with

theoretical predictions.
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Figure 1-8: On application of a magnetic field gradient, magnetic particles move in the

direction of the applied gradient, while the non-magnetic particles move in the opposite

direction [1].

Watarai studied the magnetophoretic behavior of polystyrene latex micro-particles [9, 10,

70] and red blood cells [70] in paramagnetic metal ion solution of aqueous Manganese

(II) Chloride. Bashtovoi [71] has studied the effect of magnetophoresis and Brownian

diffusion on levitation of non-magnetic bodies in magnetic fluid. He studied the variation

in magnetic particle concentration and its influence on the pressure distribution and

pressure forces under the influence of non-uniform magnetic fields. Gao and co-workers

[72] have evaluated the magnetophoretic forces on non-spherical non-magnetic particles.

They have also evaluated these forces when an alternating currents magnetic field applied

to electrically conducting particles produces eddy currents.

1.4 Assemblies using magnetic fluid

Another interesting application of magnetic fluid involves transporting and assembling

non-magnetic particles, often termed as 'magnetic holes', into regular patterns such as

chain like alignments and triangle-lattice alignments [73, 74]. Davies et al. [75] carried

out Monte Carlo simulations with the ferrofluid as a continuum and magnetic holes

having negative susceptibilities [76]. Skejltorp [77, 78] demonstrated the application of



magnetic fluid to orient biological assemblies. He experimentally studied one and two

dimensional crystallization of magnetic holes by chaining polystyrene beads in modest

magnetic fields. Chainlike structures were observed when the external magnetic field was

applied parallel to the plane of magnetic fluid film and regular two dimensional triangular

structures were obtained when the external magnetic field was applied perpendicular to

the plane of the magnetic fluid film as shown in Figure 1-10. Skjeltorp further carried out

experiments with non-spherical particles [78]. On using pear-shaped particles, application

of an external magnetic field perpendicular to the layer produced a triangular structure

with a preferential up-down arrangement.

Figure 1-9: Assembly of non-magnetic particles in magnetic fluids [74].

Toussaint worked out an interaction model for magnetic holes in a ferrofluid layer and

was able to give an explanation for the finite equilibrium separation between the particles

[79]. He also studied the stability of such systems. Miguel and Rubi worked on the

dynamics of magnetic colloidal particles and holes [80]. They were able to justify the

experimental observation of rotation of the magnetic holes in the direction opposite to

~



that of the applied field. Again these calculations assume that the non-magnetic particle is

considerably larger in size in comparison to the magnetic nanoparticles.

Arrangement of these non-magnetic and magnetic particles is of considerable importance

with some of the applications in display elements and nanowire transistors [81].

Manipulation of materials can also be guided by a program of magnetic information in a

substrate. A unique advantage offered by this method is a large degree of control over the

particle motion [74].

Figure 1-10: Assemblies formed by polystyrene beads at varying concentrations. The two

figures at top are for a monolayer of polystyrene at high volume concentration (magnetic

field parallel and perpendicular to the plane of the sample respectively). The figure at the

bottom is for a monolayer of polystyrene at low volume concentrations [82].



In the previous works, the magnetic holes considered have been a few microns in size,

where the magnetic fluid can be treated as a continuum and the diffusion is not important.

There is a need for an integrated equilibrium and dynamic analysis when magnetic

nanoparticles and magnetic nanoparticles are of similar sizes and the continuum

approximation is no longer valid. In our work, we have evaluated the thermodynamic and

transport properties of non-magnetic particles in magnetic fluids.

1.5 Outline of the Thesis

The work in this is primarily divided into two sections. Chapters 2, 3, and 4 focus on the

interaction of magnetic and non-magnetic nanoparticles, while Chapters 5 and 6 relate to

the magnetization behavior of magnetic nanoparticle clusters. In Chapter 2, we study the

effect of non-magnetic particles on the magnetization behavior of the magnetic

nanoparticles. We have performed Monte-Carlo simulations to show the non-

homogeneity in the magnetization behavior around the non-magnetic particle. In Chapter

3, we have evaluated the forces non-magnetic particles experience when subjected to a

magnetic field gradient. We evaluate the gradient of chemical potential with the variation

in magnetic field, by using Monte-Carlo Simulations. In Chapter 4, we evaluate the

diffusion coefficients of the non-magnetic particles in magnetic fluids using Brownian

dynamics simulations.

In Chapter 5, we carry out Stochastic Dynamics Simulations to evaluate the N6el

relaxation behavior of stationary magnetic particle clusters. In Chapter 6, we have

evaluated the magnetization behavior of magnetic particles in rectangular and hexagonal

packed clusters in presence of low magnetic fields. Finally, in Chapter 7 we present our

conclusions from this work and recommendations for future work.
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Chapter 2

2 Non-homogenous magnetization by

induction of non-magnetic entities in a

magnetic fluid

2.1 Introduction

Manipulation of suspensions of nonmagnetic particles immersed in magnetic fluids is of

interest to us. It is known that, when subjected to a magnetic field gradient, these non-

magnetic particles experience a force of magnitude

F,, = PoVp (M - M, )VH (2.1)

where Mf and M describe the magnetization of the fluid and of particles, respectively, V,

is the particle volume, po is the permeability of free space and H is the magnetic field

strength. Generally, M = 0, and thus the force acts on the non-magnetic particles so that

they migrate in the direction of decreasing field strength. These phenomena can offer

interesting opportunities in separations of biological entities that are non-magnetic

(viruses, cell organelles, etc.), and in the fractionation of fine particles (also non-

magnetic) [ 1, 2], which rely on the different rates of migration of different sized particles.

Similar effects can be harnessed to drive the formation of particle assemblies and other

nanostructures where the microstructure of the composite suspension can be altered

reversibly by an external field without altering the composition [3, 4]. Arrangement of

these nonmagnetic and magnetic particles is of considerable importance with applications

in, e.g., display elements and nanowire transistors [5]. In the presence of a magnetic field,

these materials can exhibit anisotropies in various properties, including dielectric
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permittivities, viscosities and refractive indices [6], that can be exploited in a range of

electro-optical [7-10] and other applications.

Davies et al. [11] carried out Monte Carlo simulations of magnetic holes with negative

susceptibilities [3] dispersed in a ferrofluid as a continuum. Toussaint worked out an

interaction model for magnetic holes in a ferrofluid layer and was able to reproduce the

experimentally-observed finite equilibrium separation between the particles [12]. He also

studied the stability of such systems. Miguel and Rubi worked on the dynamics of

magnetic colloidal particles and holes [13] and were able to rationalize the experimental

observation of rotation of the magnetic holes in the direction opposite to that of the

applied field. These calculations and simulations assumed that the non-magnetic particle

is considerably larger in size than the magnetic nanoparticles.

In the analyses and work reported to date, the magnetic fluid has been treated as a

continuum; however, when dealing with nonmagnetic particles comparable in size to the

magnetic nanoparticles or near the boundaries of the non-magnetic particles, this

approximation may not be valid, and the thermodynamic and transport properties of these

systems need to be evaluated with allowance for these effects. The goal of our work is,

therefore, to develop computational and simulation tools to provide an in-depth

understanding of the thermodynamic and dynamic properties of such systems under

varying magnetic field conditions. In this chapter, we have used Monte Carlo simulations

to show that the introduction of non-magnetic particles to a magnetic fluid can lead to the

development of non-homogenous magnetization characteristics for the system.

2.2 Monte Carlo Simulations

For nonmagnetic particles with sizes of a few microns or more, it is reasonable to assume

that the magnetic fluid, consisting as it does of a stable suspension of -10-20 nm

nanoparticles, can be treated as a continuum [14]. However, when the nonmagnetic

entities are similar in size to the magnetic nanoparticles (of the order of a few tens of

nanometers, for instance, in the size range of viruses) or near the boundaries of the non-

magnetic particles, the continuum approximation may no longer be valid. A statistical



analysis which includes the role of inter-particle interactions may be required. This

analysis has been carried out in this work by performing Monte Carlo simulations.

We simulated the system, as shown in Figure 2-1, in which we probed the equilibrium

distribution and magnetization of magnetic nanoparticles surrounding a stationary 100

nm nonmagnetic particle when subjected to an external magnetic field. The magnetic

nanoparticles are 10-20 nm in diameter, which is the size range over which inter-particle

magnetic forces start to become significant, and is also representative of the sizes

normally obtained during the nanoparticle synthesis. We considered 1000 magnetic

particles in a cubic simulation box with a volume fraction of the magnetic nanoparticles

of about 1%.

Non-magnetic Particle

Magnetic Particles

Figure 2-1: The simulation box consisting of the stationary nonmagnetic particle in the

center and the mobile magnetic nanoparticles in the medium.

2.2.1 Methodology

The conventional Markov chain three-dimensional Monte Carlo method for an NVT

ensemble was used for these simulations. Two types of moves, single particle and cluster,

were considered. Single particle moves involve translation of the particle and orientation

of its magnetic dipole [15]. The cluster moves involve translation of the intact cluster and
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rotation about a randomly chosen particle. This method of rotation is as rigorous as

rotating about the center of mass, yet it is more computationally efficient as there is no

need to calculate the center of the mass of the cluster.

When the particles aggregate through attractive particle-particle interaction, most of the

moves for the single particles in the cluster are rejected as they are not favorable

energetically. It is often difficult to explore the different possible conformations of such

aggregates, because they are separated by high energy barriers [16]. Hence, a cluster

move involves collectively changing particle co-ordinates for a group of magnetic

nanoparticles, without changing the interactions within the cluster, even though the

interaction of the cluster with the remainder of the system changes. A new algorithm (see

Appendix) was also developed for identification of clusters, which is more efficient for

larger systems.

These simulations do not include any moves which would lead to a fissure of clusters.

Hence, it is important to ensure that the growth of the clusters takes place only by single

particle moves and not by cluster moves, so that the detailed balance equation [17] is

satisfied. A detailed balance equation requires that, at equilibrium, each pair of

configurations be in dynamic balance [16], i.e.

N(o)7r(o -> n)= N(n);c(n - o) (2.2)

Here the 'o' subscript refers to the old state and 'n' subscript refers to the new state and

z(o-+n) refers to the transition probability to go from configuration 'o' to 'n. N(n) is the

probability density that the system will assume any particular configuration, rN . It is

given by

exp(-pU(r")N(rN) = (2.3)
Jexp(- fU(rN ))drN

where fl is the reciprocal temperature (1/kT) and U is the energy of a system. Thus, on

average, the number of accepted trial moves that result in the system leaving the state 'o'

and proceeding to state "n" must be equal to the number of accepted trial moves from



state 'n' to state 'o'. Violation of the detailed balance equation can easily arise in the

context of cluster moves, as e.g., in the work of Satoh et al. [16, 18, 19]. Fateen [36] has

shown that this can lead to significant errors in the predicted sizes of the aggregates.

The Metropolis criterion [20] was used for acceptance or rejection of the moves

generated in the simulation. The acceptance ratio is defined as

acc(o - n) = min[1, exp(-8A U)] (2.4)

where A U is the change in the energy of the system on going from the old configuration

to the new configuration and is defined as

AU = U(n) - U(o) (2.5)

In order to decide whether to accept or to reject the move, a random number is generated

in the interval [0, 1]. If the value of the generated random number is less than acc(o--n),

the move is accepted. In other words, all moves which lead to minimization of the total

energy (for which acc(o -- n) = 1) are accepted; but moves which lead to an increase in

total energy may be either accepted or rejected. The bias toward rejection increases as A U

increases.

An important criterion that should be satisfied by the simulation is that it be ergodic,

which implies that all accessible points in the configuration space should be attainable in

a finite number of Monte Carlo steps. This is a necessary condition in order to generate

states with the correct probability distributions [21]. Some of the transition probabilities

of the Markov process can be zero, but that there should be at least one path of non-zero

transition probability between any two given states.

Periodic boundary conditions were used to simulate the infinite bulk surroundings,

thereby constraining our study to uniform external magnetic fields. The minimum image

convention [17] was used for calculation of interaction energies, such that each particle

'sees' at most just one image of every other particle in the system, repeated infinitely via

the periodic boundary conditions. The interactions of a given particle are calculated with

the closest particle or image. The system was initialized by assuming that the positions of



the magnetic nanoparticles and the directions of their magnetic dipoles were distributed

randomly in the medium. Since the system is ergodic, the final results are independent of

the initial conditions.

2.2.2 Simulation parameters

The acceptance criterion, defined as the ratio of the number of accepted moves to the

total number of attempted moves, used for the simulations was selected to be in the range

of 0.3 to 0.5 [22], by adjusting the step size during the translational moves of the

magnetic nanoparticles and the orientation of their dipoles. The maximum step size for

single particle translational move was one fifth of a diameter of the magnetic nanoparticle

(d) and the cluster translational moves were limited to a single particle diameter of the

magnetic nanoparticle. In both cases, the dipole/orientation move was restricted to no

more than n/10 radians. The simulations were carried out for room temperature

conditions (298K) in an NVT ensemble. In the following simulations 6,000,000

equilibration steps and 20,000,000 sampling steps were used. One hundred and eight

codes were executed simultaneously to expedite the calculations.

2.2.3 Energy models

The magnetic nanoparticles were modeled as hard spheres coated with soft layers of

chemisorbed surfactants and the large particle was assumed to be a hard polystyrene

bead, as shown in Figure 2-2 and Figure 2-3. The inter-particle interactions considered in

the energy model were magnetic dipole-dipole interactions, entropic repulsion, and Van

der Waals forces of attraction. These inter-particle interactions were assumed to be pair-

wise additive. The interactions of these particles with the external applied field were also

included in the model.

The magnetic contributions to the energy field were those due to dipole-dipole

interactions

u," = kTA ni,.n - (ni.rij)(nj.rj) (2.6)rl 3
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and those due to the interactions of the dipoles with the applied field

u" = -kTn,.H (2.7)

where ni is the unit vector of the magnetic dipole of particle i. A and are dimensionless

parameters defined by

2
m

2=
4rpod kT

mH

kT

(2.8)

(2.9)

respectively, with the magnetic moment, m, defined by

m = 0o MV (2.10)

The distance ry is the magnitude of the vector r drawn from the center of particle 'i' to

the center of particle 'j', V is the volume of the particle, H is the applied field strength, M

is the saturation magnetization of that material, and g is the permeability of free space.

The value of , for a 10nm magnetite particle is 1.31, while that of a 20nm particle is 10.5.

s d I
I I
I I
I II I

Figure 2-2: Dimensions involved in the model
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Entro p ic steric repul sion

Mag n etic d ipole-dipole interaction

H f Van der Waals attractions

Ap p li ed fi eld-dipole interaction

Figure 2-3: Force model

Van der Waals forces of interaction also play an important role in agglomeration. The

interaction between two spheres of unequal sizes can be expressed as [23]:

va, A 2R1R2  2R1R2  If(R 1,R 2,s)
6 f(R,,R2 ,s) f 2 (R,,R 2 ,s) Af (R, R 2 ,s)]

where, (2.11)

f (R,R 2,S) = S2 + 2Rs + 2R2s

f 2(R,,R 2z,S) = 2 + 2Rs + 2R 2s+4RR2

and A is the Hamaker constant which is calculated as discussed below. R, and R2z are the

radii of the two particles, and s is the separation of the surfaces along the line of centers.

The negative sign in front of the equation signifies that this force is attractive in nature.

The values of Hamaker constants are known only approximately. In a given system,

particles of two different materials interact across a medium with an effective Hamaker

constant [23]



A312 = (A33 - A/)(A22 -2 A,) (2.12)

which captures the interactions between two bodies of types 2 and 3 in a medium of type

1 where Aii is the Hamaker constant of type i. Hence, it is possible to have negative

values for effective Hamaker constants, depending on the choice of medium. It was also

assumed that the surfactant layer does not contribute to the Van der Waals force of

attraction since we assume that the surfactant chains are similar in nature to the solvent

molecules. For our simulations Hamaker constants were taken to be 20x 10-20 J for

magnetite, 9.8x 1020 J for the non-magnetic polystyrene sphere, and 5.4x10-20 J for the

medium (kerosene) [23].

Figure 2-4: Arrangement of polymer layers on the particle surface

Various models are available to capture the entropic repulsion energy. In this work, we

considered the statistical mechanics of a rigid rod attached to a universal hinge[24]. It is

assumed that one of the ends of the surfactant molecule is attached on the particle

surface, while the other end is free, as shown in Figure 2-4. On the surface of the particle,

the molecules are close-packed. The inter-particle repulsion is due to the decrease in the

number of possible configurations when the two particles approach each other. The

entropic energy is then [18]



uer = 2kTd2N, 2 +2In + (2.13)

where l=2s/d and t=26/d (symbols s, d and 6 are defined in Figure 2-2), and N, is the

number of adsorbed surfactant molecules per unit area. Note, however, that s cannot

approach zero, because the surfactant layer becomes fully dense at some non-zero value

of s. The volume of the surfactant molecules, for a close-packed surface, is given by

Vs = ;d25 (2.14)

Since the total volume of the particle plus the surfactant molecules is conserved, the

minimum thickness of the surfactant layer is given by

(d + 2a)3  d3 +d2 (2.15)
6 6

The real root of the above equation gives the value of a.

2a 6 3= - 1 -1 (2.16)

Thus, the entropic repulsion term is given by

oo r<d +2a

u ={" d + 2a < r < d + 26 (2.17)

0 r > d+28

From our results we gathered that the inter-particle magnetic interaction forces are the

most dominant forces. For the particles simulated in our system we have taken the value

of 5 to be 2nm. It was also assumed that a surfactant head occupies an area of Inmx Inm

on the magnetic nanoparticle [24, 25]. The model for the entropic repulsion term does not



influence the results obtained significantly. A simple volume exclusion model would

have yielded very similar results.

The simulations were run for suitably long periods of time to achieve system equilibrium.

The length of this period is called the equilibration time (req). The total energy of the

system was used as the criterion to determine whether the system had equilibrated. Once

equilibrium was attained, the quantities of interest were measured over another suitably

long period of time (sampling phase) and averaged over this period.

2.3 Results

In this work we have simulated the effect of the nonmagnetic particle on the

magnetization characteristics of the magnetite nanoparticle under varying magnetic field

conditions. We have also examined the effect the nonmagnetic particle has on the

structural properties of the magnetic particles around it. These simulations have been

performed for two sets of magnetic particle sizes (10 nm and 20 nm) to the study the

effect of importance of magnetic inter-particle interactions on the results obtained. In the

following simulations one hundred eight codes were executed simultaneously to expedite

the calculations. A 3-dimensional graphical representation of the results was provided by

POVRAY®.

2.3.1 Variation with azimuthal angle

Figure 2-5 shows the variation of the normalized magnetization of the magnetic

nanoparticles close to the nonmagnetic particle as a function of the azimuthal angle 0,

defined relative to the plane perpendicular to the applied magnetic field (Figure 2-6). The

particles considered in these calculations are within a shell of thickness three times the

diameter of the magnetic particle around the nonmagnetic particle. The normalized

magnetization is defined as the ensemble average of the cosine of the angle the dipole

makes with the applied magnetic field. It is also important to note that these individual

dipoles have a fixed magnetic moment magnitude dependent on the materials magnetic

properties. The nonmagnetic particle introduces non-homogeneity to the system with the

average normalized magnetization at the equator (0 = 0O) being considerably higher than



it is at the poles (0 = 900). The results are plotted for various 4 values, representing

varying magnetic field strengths.

This observation of non-homogenous magnetization can be explained by noting that any

two given magnetized particles are in a lower energy state (Equation (2.6)) if they are

aligned along the magnetic field (e.g. Particles A and C in Figure 2-6) than if they lie

adjacent to each other (e.g. Particles A and B in Figure 2-6). The magnetic particles next

to the bead within its equatorial plane (0 = 00) have no particles on the side adjacent to

the bead, and hence they are more stable, leading to higher magnetization values. The

opposite is true for the particles occupying the polar regions adjacent to the top and

bottom of the nonmagnetic particle (0 = ±900). These nanoparticles have no neighboring

particle on one side along the direction of applied field, and therefore have lower stability

and lower normalized magnetization values.

D=20 nm D=10 nm
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Figure 2-5: Plot of normalized magnetization against the angular position with reference to

the nonmagnetic particle (0° representing the equatorial position and 900 representing the

poles) for magnetic nanoparticles with a diameter of (a) 20nm (X=10.5) and (b) 10nm

(X=1.31). The dotted lines represent the bulk magnetization values for the given magnetic

field.
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Figure 2-6: The effect of the nonmagnetic particle on the magnetization of the magnetic

nanoparticles.

Figure 2-5b shows the variation of the normalized magnetization of 10 nm particles

around the nonmagnetic particle. The magnetic interparticle interactions, represented by

X, for these particles are approximately 8 times weaker than those of 20 nm diameter

particles, and consequently the non-homogeneity effects are much smaller. These results

corroborate the hypothesis that the inter-particle interactions are responsible for the

anisotropic magnetization behavior observed.

The equilibrium structures of the two magnetic nanoparticle suspensions considered here

are visualized in Figure 2-7. On application of the magnetic field the 20nm diameter

magnetic nanoparticles align themselves to form chain like structures that must curl

round the non-magnetic particle (Figure 2-7b). In contrast, the 10nm diameter magnetic

nanoparticles do not form such structures (Figure 2-7d) because the magnetic inter-

particle interaction forces are weak relative to the Brownian forces.
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(a) (b)

(c) (d)

Figure 2-7: Equilibrium structures: Dark grey sphere is the nonmagnetic particle (100nm

in diameter). Light grey spheres are the magnetic particles. (a) 20nm diameter, H = OT,

(b) 20 nm diameter, oH =0.007 T, (c) 10nm diameter, H = OT and (d) 10 nm diameter,

jioH =0.06 T.

2.3.2 Variation in the equatorial plane

Figure 2-8 shows the variation of the normalized magnetization of the magnetic particles

with normalized radial distance (r,) from the nonmagnetic particle in the equatorial plane

(9 = 0' plane). The normalized radial distance is defined as:

r=n r (2.18)
d)



where r is the distance between the centre of the magnetic particle and the centre of

nonmagnetic particle, rc is the closest distance of approach between the magnetic and

nonmagnetic particles and d is the diameter of the magnetic particle.

These variations are in agreement with the results shown in Figure 2-5, exhibiting higher

values of magnetization in the perpendicular direction as compared to the bulk

magnetization values. These trends are more significant for the 20 nm diameter magnetic

nanoparticles than for the 10 nm diameter magnetic nanoparticles. Also, the

magnetization values decrease slowly to the bulk normalized magnetization values with

increasing distance from the nonmagnetic nanoparticles surface.
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Figure 2-8: Radial variation in normalized magnetization in the direction perpendicular to

the magnetic field (8=00) for magnetic nanoparticles with a diameter of (a) 20nm

()= 10.5) and (b) 10nm ( = 1.31).

2.3.3 Variation along the polar axis

The variation in the magnetization of the magnetic nanoparticles with distance from the

poles of the nonmagnetic particle (9 = 900) is shown in Figure 2-9. The magnetization in

the vicinity of the nonmagnetic nanoparticles is smaller than in the bulk values. Again,

these trends are stronger for the 20 nm diameter magnetic nanoparticles than for the 10

nm diameter magnetic nanoparticles.
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Figure 2-9: Radial variation in normalized magnetization in the direction parallel (0=900)

to the magnetic field for magnetic nanoparticles with a diameter of (a) 20nm (X=10.5)

and (b) 10nm (= =1.31).

From the zero magnetic field strength data in Figure 2-8 and Figure 2-9, it is clear that the

noise for the 0 = 900 region is significantly greater than for the 0 = 00 case. This is

because the sampling space for the 0 = 900 region (a cylinder extending above and below

the particle), is a lot smaller than the sampling space for the 0 = 00 plane (a disk

extending along the equatorial plane).



0.16
0.008

0.12 0.006

0.08 0.004

0.04 74 0.002

0 0

0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8
Average Normalized Magnetization Average Normalized Magnetization

(a) (b)

Figure 2-10: Difference in Magnetization in 0=00 plane and the average normalized

magnetization values for the bulk plotted against average normalized magnetization for

magnetic nanoparticles with a diameter of(a) 20 nm (X=10.5) and (b) 10 nm (X=1.31).

The deviation in the magnetization of the nanoparticles adjacent to the non-magnetic

bead in the equatorial plane from that of the nanoparticles in the bulk fluid far from the

beads is shown in Figure 2-10 as a function of increasing average normalized

magnetization, which can be related directly to an increasing applied magnetic field

strength. It is clear that the non-homogeneity in magnetization of the nanoparticles near

the bead vanishes both for very low field strengths and very high field strengths, and

passes through a maximum at some intermediate field strength. The reason for such

behavior is that at zero field strength, corresponding to zero average normalized

magnetization values, all the dipoles are completely randomly distributed through

Brownian rotational and translational diffusion, while at very high field strengths,

corresponding to a normalized magnetization value of one, all dipoles are oriented along

the magnetic field irrespective of their actual position within the system. Hence, this

anisotropic behavior becomes significant in a magnetic separation device near the edges

or physical constraints in the device where the magnetic field strengths are low.

The presence of the nonmagnetic particle affects the energetics of the system. If the

magnetic inter-particle interactions are strong and the system is subjected to a magnetic

field gradient nonmagnetic particles will experience chemical potential driving forces

apart from the magnetophoretic forces. These forces have been neglected for systems

(0=0, - 10 nm)(0--=0, 0=20 nm)



where continuum approximation is valid [1, 26]. The evaluation of forces could be

important for nano-sized nonmagnetic particles when the continuum approximation

breaks down, and this would be the topic of interest for our next chapter.

2.3.4 Radial distribution functions

Figure 2-11a shows the radial distribution function (rdf) from the centre of the 100 nm

non-magnetic particles in the equatorial plane. The rdf values are greater near the

nonmagnetic bead due to the stabilization effect, as discussed previously, and increase

with an increasing applied magnetic field intensity, in accord with the effects of field

strength on nanoparticle stabilization. The rdf for the case with no magnetic field should

be a constant function, however because of the statistical fluctuations there is a small

decrease in the region close to the nonmagnetic particle. A similar rdf function for the

10nm diameter magnetic nanoparticles is shown in Figure 2-1lb. In this case, however,

these trends are very weak and the effects of applied field strength are small.
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Figure 2-11: Radial distribution function in the direction perpendicular (0=00) to the magnetic

field for magnetic nanoparticles with a diameter of(a) 20nm (X=10.5) and (b) 10nm (X=1.31).

2.4 Conclusions

We have determined the equilibrium magnetization profiles for magnetic nanoparticles in

the vicinity of a nonmagnetic particle. The introduction of this nonmagnetic nanoparticle

introduces non-homogeneity in the system with normalized magnetization values that are

higher in the equatorial regions than in the polar region. The radial distribution functions

M



for the magnetic nanoparticles show that they are more stable in the equatorial plane than

in the polar region around the nonmagnetic particles. All these effects were more

pronounced for the 20 nm than for the 10 nm diameter magnetic nanoparticles, since the

larger particles have much stronger magnetic interparticle interactions than do the smaller

particles. These effects are stronger at moderate magnetic field strengths, when all the

dipoles are not completely aligned along the magnetic field.

In contrast to the previous works, this study does not consider the magnetic medium as a

continuum, but the magnetic nanoparticles are considered discretely. The understanding

of the thermodynamic and transport properties of these nonmagnetic particles immersed

in magnetic fields is important in the development of many nano-scale operations,

including chemical and biological separations and self assembly systems in which the

continuum approximation may not hold.
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Chapter 3

3. Evaluation of chemical potential of

non-magnetic species in magnetic

fluids

3.1 Introduction

The focus of this section of work is separation conducted such that the medium rather

than the particles to be separated is magnetic. These have been termed magnetic

separations of the second kind [1]. The magnetic fluid is used to generate a "magnetic

pressure", which is utilized to move the non-magnetic species in the direction opposite to

the magnetic field gradient. Fateen [2] studied the forced diffusion of polystyrene beads

in magnetic fluids. Fateen validated his work experimentally by using digital imaging

techniques to study the dynamic evolution of the concentration profile of fluorescently-

tagged polymer beads. He also performed a feasibility study by designing a simple

separation device to isolate 200 nm from 500 nm particles. Gonzalez [3, 4] studied the

focusing and trapping of sub-micron non-magnetic particles in magnetic fluids under the

presence of magnetic fields. He developed a microchip that produced spatially increasing

magnetic field gradients that trapped polystyrene beads in different locations of the chip,

based on the relative size of the beads. Brownian dynamic simulations were used to

match his experimental results with theoretical predictions.

Our interest lies in evaluating the forces a non-magnetic particle experiences when

subjected to external magnetic fields in magnetic fields. The forces are evaluated by

taking the gradient of chemical potential. For a system of non-magnetic particles

immersed in magnetic particles the gradient in chemical potential can be defined as:



V91 -= ,l + 
H VH + .Vp (3.1)

TpH Tpx t p T,H,x,

Gonzalez [3] has shown that the last term in the above equation the pressure gradient

term in the end can be simplified to show that a non-magnetic particle experiences a

magnetophoretic force of

F = -,uoVpMVH (3.2)

where po is the permeability of free space, Vp is the volume of the particle, M1 is the

magnetization of the magnetic fluid and VH is the gradient of the magnetic field.

However, the variation of the chemical potential with the magnetic field has been ignored

in the past. This variation becomes significant when the non-magnetic particles are of the

same size as that of magnetic particles and has been demonstrated in this work. We have

studied the significance of this force as a function of magnetic field strength, non-

magnetic particle size and the magnetic particle size.

3.2 Theory

Thermodynamic properties such as free energy, chemical potential, entropy and related

quantities cannot be directly evaluated by taking averages of function of the phase space

coordinates of a system [5]. However, there do exist some indirect ways to evaluate the

excess chemical potential of a species in the system. The chemical potential can be

calculated thereafter by adding the ideal gas chemical potential.

One of the most commonly used methods for evaluating chemical potential is the particle

insertion method or the Widom method [6]. Chemical potential can be defined as

A = (FV (3.3)/ l = i VTNi i

where, F is the Helmholtz free energy and Ni is the number of moles of species 'i'. This

form of definition for chemical potential was chosen so as to relate it with an NVT



ensemble. The Helmholtz free energy of the system can be related the classical partition

function as

F(N, V,T) = -kBT nQ (3.4)

The classical partition function of a system with N atoms in a cubic volume with a side of

length L can be given as:

Q(N,V,T) AN ... dsN exp [-fU(sN; L)] (3.5)
0 0

where A is the thermal de Broglie wavelength, U is the energy of the system with the

scaled coordinates defined as sN=rN/L. Now relating this Helmholtz free energy definition

of chemical potential, we have

p = -kBTIn +V L (3.6)

On substituting the definition of classical partition function we have

(V/A' { ds ' exp [8U(sN+ )]
I = -kBT lnN+ kBTn IdsN p (sN (3.7)

N+ 1) Bds" exp [-fU(sN)]

Pid Pex

Here the first term represents the ideal gas contribution of the chemical potential, while

the second term is the contribution from the excess part. On separating the potential

energy term as a function of the N+1 particle system into a function of the N particle

system and the interaction energy of the (N+])th particle with the rest N particle system

(A U) we can define the excess chemical potential as

P = -kTln IdsN+" (exp(-flAU)N (3.8)

Here the angular brackets imply a canonical ensemble averaging over the N particle

ensemble. To evaluate this integral, a conventional NVT Monte Carlo simulation is

carried out for the N particle system using the Metropolis algorithm [7]. After frequent



intervals, a random co-ordinate sN+I is generated uniformly and the interaction energy of

this 'inserted' particle A U is computed. It is important to note that none of these trial

moves is accepted, or in other words we are always sampling a N particle system.

However, for systems with higher particle densities this technique fails because most of

the insertion moves are rejected [8, 9]. Also, this method fails to calculate the chemical

potential of the larger species when simulating a system with two species having

contrastingly different sizes. Shing and Gubbins [9] used the method of particle removal

to calculate the chemical potential. The calculation of excess chemical potential is

slightly different from the particle insertion method.

ueXinsertion -kTn (exp (-U, I kT)) (3.9)

Pexremoval = kTln(exp (U, / kT)) (3.10)

where, Ut is the energy of the test particle (inserted or removed). However, this method

leads to a systematic discrepancy, that the test particle is already biased with the pre-

existing energy distribution. A simple derivation using statistical mechanics shows that

for the particle removal method, test particles with high energy contributions play a

significant part in evaluation of chemical potential which are not adequately sampled. In

other words it is unsafe to ignore the outcome of an unlikely event, which makes a large

contribution. To elucidate this bias a system of hard spheres is considered. For the

particle removal method U, is equal to zero and hence the value of excess chemical is

zero. However, for the particle insertion method it would be a finite value dependent on

the particle density. A detailed description of the discrepancies between the two models

has been discussed by Parsonage [10, 11]. Kofke and Cummings [12] have further

described the precision and accuracy of staged free energy perturbation methods

involving insertion and deletion for computing the residual chemical potential.

Mon and Griffith [13] explored the method of gradual insertion of a new particle to

evaluate chemical potential for dense systems. This method is a variation of the 'umbrella

sampling method' proposed by Shing and Gubbins [8]. However this method is

computationally expensive and needs long run times to obtain statistically significant



data. Lyubartsev and co-workers [14-17] used the method of expanded ensemble to

evaluate free energy and chemical potential. The expanded ensemble is composed as a

sum of canonical ensembles with gradually inserting the (N+I)th particle. The probability

distribution over the sub-ensembles is directly related to the ratio of the partition

functions and hence to the free energy difference. This method is computationally less

expensive than the gradual insertion method, but still significantly higher than particle

insertion method. A variation of expanded ensemble method utilizing preferential

sampling method was used by Vrabec [18]. The method of expanded ensemble has been

extensively used in polymeric systems [19, 20].

A slightly different variation of expanded ensemble was used by Labik [21] to evaluate

the chemical potential by using the 'scaled particle theory'. The essence of this method

was to measure the probability of successful insertion of solute particles smaller than the

particle diameter and then performing a cubic interpolation. This theory was used by

Smith and co-workers [22] used the 'scaled particle theory' to calculate the chemical

potentials of binary hard-sphere mixtures. This was further extended by Smith [23] for

ternary mixture of fused hard spheres. Malijevsky [24] used a refined scaled particle

method to calculate the chemical potential of ternary hard sphere mixtures. Boulougouris

[25, 26] used a variation of the particle removal method to calculate the chemical

potential of binary mixtures.

Lotfi and Fischer [27] used perturbation theory and simulations to evaluate the chemical

potential of Lennard-Jones mixtures. However, the chemical potential evaluated from this

method becomes inaccurate at decreasing densities. Nezbada and Kolafa [28] developed a

method for evaluation of chemical potential for mixtures of significantly different

compounds using a variation of the gradual particle insertion method. Nonetheless they

had extremely long run times, resulting in poor statistical reliability. Gao and co-workers

[29] used umbrella sampling to investigate Solute-solvent size ratio dependence of the

solute residual chemical potential in subcritical solvents.

Biased Monte Carlo methods were used by Orkoulas [30] and de Pablo [31], which also

suffer from the aforementioned drawbacks. Stamatopoulou and Ben-Amotz [32] carried

out excess chemical potential calculations for different shaped solutes, such as linear and
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hexagonal hexa-atomic solutes using the Widom test particle insertion method. Koda and

Ikeda [33] used the scaled particle theory to calculate the chemical potential of hard

sphero-cylinders.

Some other methods which have been used in the literature are the methods proposed by

Attard [34], Wolf and co-workers [35], Powles [36], Parsonage [37], Henderson [38],

Sokhan [39], Kofke [40, 41], Borowko [42] and Athenes [43]. However they all suffer

from limitations unsuitable for our system.

3.3 Proposed method

We propose a new method to measure the variation of chemical potential with the

magnetic field. We can relate the differential of Helmholtz free energy as:

dF = -SdT - PdV + u0o Hd(MV) + u,dn, (3.11)

where S is the entropy, T is the temperature, P is the pressure, V is the volume, H is the

partial molar magnetic field strength, M is the magnetization, Pi is the chemical potential

and n is the number of moles of species i in the system.

Applying Maxwell's relationship we get

(MV) TVnj TVMn (3.12)

Since the volume of the system is constant we can move V out of the differential we have

1 (8 
=0 C 8H)

V8M T,V,nj nT,V,M,nji (3.13)

Now we add H as another variable on the left hand side of the equation to get
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On rearranging equation (3.14) we get

H T,V,n

(3.14)

=VH TVMj (aMITVj

8" (ni T,V,M,ny, 8 H T,V,n (3.15)

Now by triple product rule we have

OH] ¢Oni f (aM] = -1

anH am _Han)'M M )H 'Hni (3.16)

Considering the equation at constant yemperature, volume and constant mole fraction for

all other species, we have

aH an,(aM -1

ni )M M an H M i T,V,nji (3.17)

Substituting equation (3.17) in equation (3.15) we have

,,i V H (aT1KJ,V,nj

:aH i,V,ni amM
(aM JH,T,V,n.,i H T,V,nj

This further simplifies to

H ) T V
(aM(

an, )H,T,V,njzi (3.19)

(3.18)



With this expression we have been able to relate a quantity on the left hand side which is

difficult to measure with the help of simulation with a quantity on the right hand side,

which relates the change in magnetization of the system with the changing mole fraction

of non-magnetic species which can be evaluated easily through computer experiments.

3.4 Simulation Procedure

We have used Monte Carlo simulations in an NVT ensemble to evaluate the quantity of

interest. We perform simulations with varying concentration of non-magnetic particles

and observe the change in magnetization of the system. The simulation box contains

magnetic particles at a concentration of about 1.5 volume % with periodic boundary

conditions at 298K.

The interactions that we consider in the simulation are magnetic inter-particle

interactions, magnetic particle and external field interaction for magnetic particles. For

both magnetic and nonmagnetic particles we consider, Van der Waals forces of

interaction and steric repulsion forces. We have used Metropolis algorithm [7], which

means that all particle moves that lead to lowering of energy of the system are accepted,

while moves which lead to an increase in energy are accepted with a finite probability.

Magnetization is evaluated by averaging over the entire ensemble of particles.

3.5 Results

We perform a sample run for a system consisting of 100 magnetic particles, 20 nm in size

with systems varying from no non-magnetic particles to 900 non-magnetic particles. In

the Figure 3-1, we observe that the normalized magnetization of the particle decreases

with increasing number of non-magnetic particles. The normalized magnetization here

represents the ensemble average of the cosine of the angle 0 the dipole makes with the

external magnetic field.

i =(cos9) (3.20)
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The magnetic particles on application of an external magnetic field align themselves in

chain-like structures in an energetically favorable manner. The presence of non-magnetic

in the system increases the hindrance between the magnetic-particles, making it difficult

for them to interact, leading to lower magnetization. Hence, with increased non-magnetic

particle strength the normalized magnetization of the system decreases.

0.8
0

0.78

"4 0.76C e

0.74

0.72

z i

0.68

Nonmagnetic Particles

Figure 3-1: Normalized magnetization decreases with increased non-magnetic particle

strength.

In order to evaluate the chemical potential driving force arising from the magnetic field,

FH we need to evaluate the slope of the line plotting magnetization against the non-

magnetic particle strength. As a simplistic model we have fitted a straight line to the data

for the evaluation of the force. To demonstrate the significance of FH, we define a

dimensionless quantity f as:

f = H (3.21)
Fp

where Fp is the magnetophoretic force that originates from the pressure gradient, defined

as -ouJVMVH. To understand the origin of both these forces let us look at Figure 3-2.

When a magnetic field gradient is applied, the magnetic particles move in the direction of

the gradient, displacing the non-magnetic particles in the opposite direction (shown in the

top figures). Also, on application of an external magnetic field, magnetic particles (large

~



enough to interact with each other) align themselves in chain-like structures. The

particles are more constrained when present in chain like structures at higher magnetic

field and hence to reduce their entropy the force FM, pushes the particles to lower

magnetic field regions. Hence, any non-magnetic particles present in the system would go

towards the region of lower magnetic strength (lower left hand illustration in Figure 3-2)

as compared to region of higher magnetic strength (lower right hand illustration in Figure

3-2). Hence, both the effects create the driving forces FM and Fp in the direction opposite

to that of the magnetic field gradient in the system.

F (Displacement Forces)

0 *0 * 0
*0 00 0 0 00.

0 Magnetic Particle
FM (Structural Forces) 0 Nonmagnetic Particle

Figure 3-2: Understanding the origin of the driving forces for nonmagnetic particles. Fp

arises from the magnetic particles pushing the non-magnetic particles in the direction

opposite to the gradient, while FM arises from the interaction effects between the

particles. The arrow shown here depicts the direction of magnetic field gradient.

3.5.1 Variation with magnetic particle size

The results in Figure 3-3 show the variation of the dimensionless magnetic driving force

for the non-magnetic particle, fwith the magnetic particle diameter. The size of the non-



magnetic particle is the same as that of the magnetic particle. The simulation was

performed for a dimensionless magnetic field strength, of 1.35. The dimensionless

magnetic field strength is defined as

mHmH (3.22)
k,T

where m is the magnetic moment of an individual magnetic nanoparticle defined as

m = U0MV, V is the volume of the particle, M is the saturation magnetization of

magnetite, H is the applied external field, kB is the Boltzmann's constant and T is the

temperature of the system.

We observe that this force is small for smaller magnetic particle sizes, since there are no

chain-like structures as the magnetic inter-particle interactions are weak. The scale on the

top shows X, the ration of inter-particle magnetic forces to thermal forces.

2
m

A = (3.23)
4z7rp(d + 26) kT

where 6 is the surfactant layer thickness. At around 18 nm particle size we observe a

sudden increase in the force which occurs with the chain formation in system. On further

increasing the magnetic particle size, we do not observe a significant change in the

driving force since the chain structures for 20 nm particles are very similar to that of say

25 nm particles. Also, it is important to note the significance of the driving forces arising

from these structural effects, which are comparable to that of the displacement forces

arising from the magnetic particles.
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Figure 3-3: Variation of the dimensionless magnetic driving force with the magnetic

particle size shows a sharp increase at a size of approximately 18 nm. The scale on the

top X is the ratio of magnetic inter-particle forces to thermal forces.

3.5.2 Variation with non-magnetic particle size

Next, we observe the variation off with increasing non-magnetic particle size. The

simulation results shown in Figure 3-4 are for 20 nm magnetic particles and a magnetic

field strength 4 of 1.35. With an increasing non-magnetic particle size, f decreases. This

primarily occurs because the displacement driving force Fp increases linearly with

volume of the particle. Sincefis inversely proportional to Fp, it decreases with increasing

magnetic particle size. This is in accordance with the continuum approximation model for

the driving forces, according to which the structural driving forces are almost absent

when the non-magnetic particle size is much larger than the magnetic particle size in the

magnetic fluid.
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Figure 3-4: The dimensionless driving force, f decreases with increasing nonmagnetic
particle size in accordance with the continuum approximation for magnetic nanoparticles
of size 20 nm and magnetic field strength of 1.35.

3.5.3 Variation with magnetic field strength

On increasing the magnetic field strength, f decreases as shown in Figure 3-5. When we
initially apply a field, we see formation of chain-like structures. On increasing the field
strength to higher values we do not see a considerable change in the structures. Hence,
the driving forces at higher magnetic field strengths arising from the magnetic field
gradients are fairly small. Another way to think about this result is that the
magnetization of the magnetic nanoparticles is high because of the stronger magnetic
field and the field arising from inter-particle interactions is not significant in increasing
the magnetization of these particles.
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Figure 3-5: The dimensionless driving force, f decreases with increasing magnetic field
strength. These results are for magnetic nanoparticles and non-magnetic particles of size
20 nm.

3.6 Conclusions

In this work we have identified and developed a novel method to evaluate driving forces
on non-magnetic origination from the structural effects of magnetic particles in magnetic
fluids. The method involved identifying this variation of chemical potential with the
magnetic field to quantities, such as magnetization of magnetic nanoparticles which can
be measured using Monte Carlo simulation.

With this new method we were able to demonstrate that this force arising from the
structural effects is equally important as compared to the displacement force,
F =- uoVMfVH, arising from the displacement of magnetic particles when non-
magnetic particle are similar to the size of magnetic particles. Both these forces push the
non-magnetic particles in the direction opposite to that of the external magnetic field
gradient.

It was observed that this force was small compared to the displacement force when
magnetic particles are small (-15 nm for magnetite), since at this size range the inter-
particle interaction between the magnetite particles is not large enough to form chain-like
structures. At around 18 nm we see a sharp increase in these forces as we see the
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transition from a disordered structure to an ordered structure for the magnetic

nanoparticles. Any further increase does not lead to a significant increase in the structural

driving forces.

On increasing the size of the non-magnetic particle, for a fixed size of magnetic particles,

the ratio of force arising from the structural effects as compared to the displacement force

decreases. This is in agreement with the continuum approximation, which when evaluates

the force on the non-magnetic particles considering the magnetic fluid as a continuum

neglects and forces arising from the structural effects of the magnetic particles in the

fluids. Also, it was observed that this ratio also decreases with increasing magnetic field

strength.

It is essential in developing separation devices for non-magnetic particles using magnetic

fluids, that we understand the magnetophoretic forces these particles experience. To

model these forces we need computational tools that evaluate these driving forces. In this

work we have developed a novel method to calculate these forces by evaluating the

gradients in chemical potential of non-magnetic particles in magnetic fluids. A detailed

parametric study for these forces is further required to understand this further.
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Chapter 4

4. Anisotropic diffusion of non-magnetic

particles in magnetic fluids

4.1 Introduction

For designing separation systems, it is important that we understand the diffusion

characteristics of the non-magnetic particles. Knowledge of these diffusion coefficients is

also important in understanding self assembly of non-magnetic particles in magnetic

fluids. In this work, we have evaluated the diffusion coefficients of the non-magnetic

particles in a system of magnetic and non-magnetic particles. We expect these diffusion

coefficients to be anisotropic because of the constraints imposed by magnetic particles in

such systems, as shown in Figure 4-1. Magnetic nanoparticles having sufficiently strong

inter-particle interaction (more than 20 nm in size for magnetite particles at room

temperature) tend to align themselves as chains upon application of a magnetic field. The

diffusion coefficient in the direction of the magnetic field will therefore be higher than

that in the direction perpendicular to the field because diffusion across the chains is more

difficult than diffusion parallel to the chains.
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Magnetic Particle Non magnetic Particle

Figure 4-1: Diffusion of non-magnetic particle (white) in a system of magnetic particles

(grey) aligned under the influence of magnetic field.

4.2 Diffusion in constrained systems

Diffusion in constrained systems has been of considerable interest in the literature.

Rallison [1] studied the diffusion of particles around a circular ring, and one dimensional

and two dimensional rod suspensions using theory and stochastic simulations. He
evaluated the self diffusion coefficients of these particles, which was observed to
decrease with sampling time intervals. Guzowski [2] has evaluated the short time
diffusion coefficients in a system consisting of freely moving rods and a single spherical
particle, which was found to be a linear function of the rod concentration. Diffusion of
spheres in a network of rods has been studied by Kang and workers [3, 4] using
fluorescence correlation spectroscopy for small tracer particles, dynamic light scattering
for intermediate sized particles and video microscopy for larger particles. Kluijtmans [5]
studied the long time self diffusion and sedimentation in a dilute suspension of rigid rods.
Tracy studied the diffusion characteristics of rod-sphere composites. Cavicchi [6]

evaluated anisotropic diffusion coefficients in block copolymer cylinders by using forced

Rayleigh scattering. Phillips and co-workers [7] have evaluated the effect of
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hydrodynamic interaction on the hindered transport of macromolecules in fibrous media.

Lord Rayleigh [8] has studied the influence of obstacles in a rectangular order on the

properties of the medium. This system compares well with the diffusion of spheres in

system of magnetic particle chains, which can be considered as rigid cylinders.

In this work, we perform Brownian dynamics simulations to evaluate the diffusion

coefficients of the non-magnetic particles in magnetic fluids. We have used the

Gunsteren and Berendsen [9] algorithm to perform the stochastic dynamic simulations.

The methodology is explained in detail in the following section. The results demonstrate

a strong anisotropy in the diffusion coefficients in directions parallel and perpendicular to

the field. We have studied the effect of magnetic fluid concentration, magnetic particle

size and non-magnetic particle size on the anisotropy coefficient, defined as the ratio of

diffusion coefficients perpendicular and parallel to the magnetic field.

4.3 Methodology

For a dispersion of nanoparticles in a low molecular weight solvent, the time scales for

motion of solvent molecules and of nanoparticles are vastly different. Therefore, the short

time steps needed to model the fast solvent behavior may severely restrict the overall

time span that can be modeled. Brownian Dynamic Simulations remove this difficulty by

treating the solvent molecules statistically rather than explicitly [10]. A combination of

stochastic and frictional terms eliminates the need for an explicit treatment of the solvent

molecules in our simulation [ 11].

A system consisting of N nanoparticles in a solvent can be described by the Langevin

equation [9]:

mi (t)= miiv, (t)+ F x(t)} + (t) (4.1)

The index i labels particles and Cartesian components (i= 1, 2, . .., 3N). vi is the x, y or z

component of the velocity, mi is the mass of the particle and y is the friction coefficient

of the particle. F represent the systematic force acting on the particle which depends on

the coordinates of all the particles, represented by x(t). The non-systematic effect of the
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solvent on the solute is represented by Ri. The friction coefficient is related to the

viscosity by:

7 -~ a (4.2)
m

i

where r is the viscosity of the dispersion medium and mi and ai being the particle's mass

and radius. This process takes place on a characteristic time scale , =r m /6;ura, = 1/y

[12].

The random force should be stationary, Markovian, Gaussian with a zero mean and

should have no correlation with prior velocities. The stochastic term, Ri(t) needs to

exhibit the following statistical properties [13].

(R, (O)Rj(t))= 2mikT,ss5(t )  (4.3)

W(R1 ) = [2 R2 exp -R2 / (2 (R2 (4.4)

(R,) =0 (4.5)

(v, (O)R (t)) = 0, t > 0 (4.6)

(]F(O)Rj(t)) = 0,t > (4.7)

where (....) denotes the average over an ensemble, i andj classify the components of the

ensemble, kb is the Bolzmann's constant, T is the temperature, 6ij is the Kronecker delta

function, and W(R) is the probability density function of the random force.

Brownian Dynamic equations are the simplest form of stochastic equations which have

no correlation in time and space [14]. Various algorithms have been employed to solve

these Brownian dynamic equations. Ermak and McCammon's [15, 16] first order

algorithm to has been employed extensively in the past. Ermak's algorithm is restricted

by the fact that time steps have to be very small (At << 7-'); else it leads to drift in the

quantities calculated. The efficiency can be improved by using second or third order
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algorithms and longer time steps [17]. Quite a few such methods [18-22] use extensions

of the Runge-Kutta Method to involve stochastic terms. These algorithms are not limited

by the time step, but by the rate of change of the systematic force.

In this work we have used a third order algorithm devised by Van Gunsteren and

Berendsen in 1982 [9] which is based on the well known Molecular Dynamics Verlet

algorithm [23, 24]. This algorithm is numerically equivalent to the Brownian Dynamic

algorithm proposed by Allen [25, 26]. The proposed algorithm reduces to the Verlet

algorithm under the conditions of zero friction. Also, Van Gunsteren and Berendsen do

not assume that the stochastic forces to remain constant within each time step [13]. Thus,

one can take larger simulation steps as compared to schemes which assume constant

stochastic forces within a time step [27].

The discretized equation for the particle trajectories can be formulated solving the linear,

non-homogeneous first order differential equation (Equation (4.1)).

x(t, + At) = x(t) 1 + e-r ]-x(t, - At)e-rY ' + m-F(tn)(At)2 (yAt-i i1 + eYAt ] +

- (t )(A) yAt)- At( + - - y) + (4.8)

X (At) + e-rY'X (-At)+O 0 [(At)4

t" +At

where X (At) = (my) - ' 1i- e-r,+At-)]R(t)dt.

4.4 Algorithm

The computation scheme implemented in our algorithm (except the first step) can be

summarized as follows:

1. The values of x(tn), x(tn-1), Xnl(At) and F(t,,1) are assumed

2. Systematic forces in the system F(tn) are assumed.

3. The derivative of the systematic forces are computed as follows:
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F(t,) = [F(t,) - F(t,,_)]/At

4. Y is sampled from a Gaussian with zero mean and width of

2 = kf E(y(At) / C(y(At)
my

2

5. The stochastic term, Xn(-At) is computed as:

X (-At) = X_, (At) G(At)/C(yAt)+ Y (4.10)

where

C(yAt) = 2yAt - 3 + 4 exp(-yAt) - exp(-2yAt) (4.11)

G(yAt) = exp(yAt) - 2yAt - exp(-yAt) (4.12)

6. Finally Xn(At) is sampled from a Gaussian with a zero mean and a width of

2 kT
a-2 = kTf C(y(At) .

my
2

7. The new positions are calculated using equation (4.8)

For the first time step x(tl), X 1_(At) and F(tl) are unknown. Hence, for the first step the

update is performed as follows:

x(t,) = x(to) + v(to)At (yAt) [- e-  + (4.13)
(4.13)

m-'F(to)(At)2 (At) -2 [yAt-[1-e - A' ]] + X o (At)

kT
Where Xo(At) is sampled from a Gaussian mean and a width of 02 kTf C((At).

my

The system simulated has periodic boundary conditions. Hence, the algorithm needs to be

used appropriately for updating particle positions when crossing the boundaries of the

considered simulation cell.

(4.9)



4.5 Force model

The systematic forces considered in our simulation were as follows:

4.5.1 Magnetic dipole-dipole forces

The magnetic particles were considered to be spherical in shape with central point

dipoles. The force acting on them was calculated to be [28]:

F 3,= 0m2 (1 [-(i .nj)t. + 5(n.t)(n .t)ti -~((nj.t )ni+ (n1 .t)n, (4.14)

where ni is the unit vector pointing in the direction of magnetic moment, mi (m= Imi[) of

particle i, rij is the vector pointing to the center of particlej from the center of particle i, tij

is the unit vector given by r,/r , d is the diameter of the particle core.

4.5.2 Van der Waals forces of attraction

The Van der Waals forces of attraction calculated using the potential function is:

F = AH (didj) rij  (4.15)
6 2 d, -d d + d)2

2 2

where AH is the Hamaker constant.

4.5.3 Interaction energy of overlap

In a single time step, after all particles are moved, the particles may overlap and it is

important to adjust them. Some of the common approaches that have been used in the

past are those by Cichocki and Hinsen [29], Schaerlt and Sillescu [30] and Strating [31].

We assume that the particles are coated with a surfactant (or a steric layer) and the force

of repulsion is given by:
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F=kbT rd2N .t ln d + 2 (d , d +) (4.16)

where 6 is the surfactant layer thickness and N, is the number of adsorbed surfactant

molecules per unit area.

Since there are no magnetic field gradients and we have assumed that all the magnetic

particles are aligned in the direction of the applied magnetic field, the non-magnetic

particles do not experience any systematic magnetophoretic forces.

4.6 Evaluation of diffusion coefficient

Self diffusion coefficients were evaluated from the root mean square displacement [32]

Ds - (4.17)
2Ats

where ri is the displacement in the ith component (i=x,y or z) in a given sampling time Ats.

When At, is short, the result is close to the diffusion coefficient calculated from the

Stokes-Einstein equation (4.2), which applies to dilute system. However, for a long time

interval, the diffusion coefficient, has a lower value because the diffusive motion is then

hindered by other particles [33].

(2) - 2DSot for 7, << t << ro (4.18)

(r2) - 2Ds't for ro << t (4.19)

2/ 1

where r = a2 
3 Do is the time to diffuse across a particle separation distance a! I , and

y0 is the volume fraction of the spheres in the suspension.

For intermediate time scales, the self-diffusion coefficient is time dependent. Various

empirical and theoretical approaches have been used to describe this time dependence.

One such empirical approach has been used by Pusey [34, 35] to describe the time

dependence of diffusion coefficient is:
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Ds (t) = DS, + (Dso - DS)2A(t)

where X(t) is an exponential or stretched exponential decay. Though such approaches A

theoretical approach was used by Cichocki and Felderhoff [36] using a two pole

approximation.

Several prior studies have provided theoretical estimates of the long time self diffusion

coefficients. Batchelor [37, 38] has worked using the 'relaxation affect' approach to

calculate the diffusion coefficients of interacting spheres in dilute suspensions. A very

common approach used by other researchers has been using the 'memory effect' [39-42].

Both the approaches describe the same physical effect. The relaxation approach involves

evaluating the mobility of a tagged particle from the thermodynamic driving force which

is used to evaluate the diffusion coefficient. Memory effect utilizes the Smoluchowski

effect to describe the motion of a tagged colloidal particle and the root mean square

displacement is used to evaluate the diffusion coefficient. For the case of hard spheres

without hydrodynamic interaction, Lekkerkerker [32], Ackerson and Fleishman [39], and

Hanna, Hess and Klein [43] have derived the self diffusion coefficient to be

Ds. = Do (1- 2b) (4.21)

where 9 is the volume fraction of the hard spheres.

4.7 Error estimation of the diffusion coefficients

The confidence intervals were calculated by evaluating the Chi square values for the

(n-1)S2  (n-1)S2
variance. The probability (P) that the value of 2 lies between 2 and 2 is

2  
XL

2

1-a [44].

P L 2
-) = l-a (4.22)

(4.20)



Where S2 is the sample variance, n is the number of data points, and the values of X can

be looked up in tables or evaluated with the help of MATLAB' using the command

'chi2inv'. The value ofZ is dependent on both n and a.

4.8 Simulation Parameters

The simulations were performed for magnetic particles in the size range of 10 nm

(X=0.48) and 30 nm (X=24.38), where A = m2/4z7u 0(d+ 25)3 kT compares the inter-

particle magnetic forces to the thermal forces. Here, m is the magnetic moment of the

dipoles defined by m = u0MV, d is the diameter of the magnetic particle , V is the

volume of the particle, M is the saturation magnetization of magnetite, and 6 is the

surfactant layer thickness which was taken to be 2 nm. This definition of k is similar to

one used by Rosensweig [45], but adjusted to include the surfactant layer thickness. The

non-magnetic particles are in the range of 10 nm to 60 nm. Only mono-disperse spheres

were considered.

The viscosity of the medium was considered to be 0.002 Pa-s. The simulation time step

was in the range of 10-10 to 10-9 seconds depending on the system simulated. The step

size is constrained by the fact that a larger step size may lead to a larger overlap of the

particles, giving it unrealistically high forces and displacements. The density for

magnetic particles and non magnetic particles were taken to be 6000 kg/m 3 and 2500

kg/m3 respectively. Simulations were carried out at a temperature of 300K and a strong

magnetic field was applied in the z-direction. Error bars correspond to a 99% confidence

level, as determined by the Chi squared analysis [44].

The simulation was carried out in two phases, the equilibration phase and the sampling

phase. In the equilibration phase, starting with a random initial configuration of the

particles, we simulate till the system achieves equilibration. In the next stage, the

sampling phase, we measure the quantities of interest, which in this case are the position

vectors for the non-magnetic particles. These position vectors are used to calculate the

diffusion constants. We use periodic boundary conditions with a Cartesian co-ordinate

system in the above simulations.



4.9 Results and Analysis

4.9.1 Validation

The base case (Figure 4-2) used only non-magnetic particles, 30 nm in diameter, with a 2

nm surfactant coating. The concentration of the non-magnetic particle was taken to be

0.5% by volume, ensuring that any effects of concentration on the diffusion coefficient

were minimal. The diffusion coefficient plotted in Figure 4-2 has been non-

dimensionalized by Do, the diffusion coefficient from the Stokes-Einstein equation [46].

The dotted lines, the coefficient values in the three different co-ordinates, show no

anisotropy. This is as expected. The solid line represents the averaged (over the three

different co-ordinate axis) values of the diffusion coefficient. One might observe that the

error bounds increase with increasing value of Ats. The system is simulated for 10-2

seconds of real time, which means that for higher values of Ats, there would be fewer data

points, since there are a fixed number of data points and sampling is less frequent. This

leads to a lower confidence and larger error bars for data with larger sampling time

intervals. Also the time is plotted on a logarithmic axis to cover a wider range of

sampling time intervals. The y-axis has been made dimensionless using rz, the time

required for particles to travel the inter-particle separation:

Ato = At (4.23)TO
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Figure 4-2: Dimensionless diffusion coefficient of 30nm non-magnetic particles (0.5%

volume concentration) decreases as a function of sampling time, At,.

However, for the rest of the simulations we need to simulate the systems at a higher level

of concentration for the non-magnetic particles to obtain statistically significant data on

non-magnetic particles. A larger simulation box (to reduce the concentration, for the

same number of non-magnetic particles) is not feasible because then one would need to

simulate a considerably larger number of magnetic particles (for a higher magnetic

particle concentration to observe the anisotropic effects), leading to very long simulation

times.
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Figure 4-3: Diffusion coefficient decreases with higher non-magnetic particle

concentration. The plot shows the diffusion coefficient as a function of sampling time for

30nm non-magnetic particles at 2.5% volume concentration.

Figure 4-3 shows similar results for higher concentration of non-magnetic particles.

Higher concentration implies that these particles bump into each other more often

restricting their mobility and hence lower diffusion coefficient values. Again, we observe

that the results are isotropic. At short sampling times, we see that the effects of

concentration are very small. The non-magnetic particles can travel very small distances

in short sampling times and hence do not experience the effect of other particles around

it. We compare our results with the long time diffusivity values, DS% obtained from

literature, we had discussed previously (Equation (4.21)). The results are in broad

agreement within the error bounds of the diffusion coefficient values.
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Figure 4-4: Anisotropic diffusion coefficients are observed for 30 nm non-magnetic

particles (2.5% by volume) in a suspension of 30 nm magnetic particles (10% by volume)

with the magnetic field being applied in the z-direction.

4.9.2 Anisotropy in a sample system

A system consisting of 30 nm magnetite particles at 10% volume concentration and 30

nm magnetite particles at 2.5% volume concentration was simulated (Figure 4-4). The

particles have a 2 nm surfactant layer on them. The y-axis has been made dimensionless

using A z-c , the time required for non-magnetic particles to travel the distance between the

magnetic nanoparticle chains:

r = (4.24)
2D

Where dc is the distance between chains of magnetic nanoparticles and D is the

diffusivity of the non-magnetic particle.

At = At, (4.25)
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These magnetite particles have fairly strong inter-particle interactions (A=24.38) and

chain up on application of magnetic fields. A uniform magnetic field was applied along

the z-direction, which leads to formation of chain-like structures. Hence, the non-

magnetic particles will experience a greater obstruction when diffusing in the x-y plane as

compared to the z-direction, since the chains are aligned along the z direction. Again,

these effects are non-existent at short time scales, since the diffusing particles do not get

to see the effects of the chains. As seen in Figure 4-4, behavior at short times is similar to

that of Figure 4-3, but for the long time diffusion coefficients exhibit strong anisotropy.

To obtain asymptotic behavior, we need to simulate system with sampling time intervals

much higher than the current scheme

4.9.3 Freeze Method

With the current computation scheme it is difficult to go beyond a Ate of 1 since it would

lead to very long simulation times. Hence, we developed a "freeze method" to evaluate

the diffusion for longer sampling times. In this method, the equilibration phase is

performed in an identical manner as the usual case. However, during the sampling phase,

we freeze the magnetic particles. This is a reasonable because 30 nm magnetic particles

form chain-like structures which are fairly rigid and change very little in the course of 10

ms or so during the sampling phase. Hence, during the sampling phase we do not need to

evaluate the new co-ordinates for the magnetic particles, thus reducing the computational

times. For the system simulated in Figure 4-4, we were able to speed it up by a factor of

5. The results thus obtained are shown in Figure 4-5.

In Figure 4-5, we observe that the freeze method compares very well with the previously

discussed regular simulation method. We also notice that freeze method always slightly

under-predicts the diffusion constant as compared with the more rigorous method. Since

the magnetic particles are not allowed to move, the constraints for the non-magnetic

particles become more rigid, hence leading to the lower values for diffusion coefficients.

Also, the freeze method will not work for magnetic particles which have low inter-

particle interactions, since they will not form chain like structures and will move around

in the time scales we would be evaluating the diffusion coefficients.
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Figure 4-5: Comparing the results obtained from the freeze method (dotted lines) to the

regular computation scheme. By using the freeze method we could obtain the data point

for At, for one higher magnitude as compared to the regular method.

We had mentioned that we would expect asymptotic behavior for sampling times well in

excess of 1. Using this method we were able to obtain the values for the diffusion

coefficients for values of At, up to 10. An asymptotic behavior for the diffusion

coefficients in the x or the y direction was not fully observed, initiating a need to

calculate these constants for higher values of Ats. Since the diffusion coefficient is

reduced in the perpendicular direction and if the scaling was done with these adjusted

diffusion coefficients it would yield a At, of 5. Hence, we expect that we would need to

simulate for even larger time intervals to expect asymptotic behavior. However, we were

constrained by the computational power we to go any further.

A quantity of interest, the Anisotropy Coefficient, a defined as:

Dx +Dv
D += (4.26)
2DZ
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Plotting a for the two methods helps describe the same results as above in a more

comprehensive manner and helps compare multiple data on the same plot. In Figure 4-6,

we observe that the results obtained from the freeze method and the regular simulation

methods are in close agreement with each other.

Also, we try to compare our results for the perpendicular direction by the analytical

expressions obtained by Rayleigh in 1892 [8]. Rayleigh calculated expressions for the

case of diffusion in a rectangular array of cylinders. We modified the expressions

calculated by Rayleigh to include that the diffusing particles in our simulations have a

finite size. Since our diffusing particles have the same diameter as those of particle

chains, we use twice the diameter in our calculations to account for the excluded volume.

The dotted line in Figure 4-5 shows the long time diffusion values calculated for the

parameters used in our simulations. Again, in our case we do not have perfect rectangular

array of cylinders, but this result does give us benchmark values which is broadly in

agreement with our simulations. Another set of results is to compare our results is the

anisotropy coefficient obtained by Phillips [7]. The coefficients, so obtained were fairly

similar to that obtained by Rayleigh, but slightly lower (of the order of 10%), since they

include for the hydrodynamic interactions among the particles.
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Figure 4-6: Anisotropic coefficient, a as a function of sampling time interval. The solid

line represents the data shown in Figure 4-4, while the dotted line shows the data from

the freeze method (Figure 4-5)

4.9.4 Anisotropy as a function of magnetic particle concentration

Anisotropy coefficient decreases with increasing magnetic particle concentration, as

shown in Figure 4-7. As the concentration of the magnetic particles increases, there are

more chain-like structures present in the system. The constraints the chains have on the

non-magnetic particles in direction perpendicular to the magnetic field, leads to a

decrease in their mobility and hence the diffusion coefficients in the perpendicular

direction. On the other hand the mobility in the direction parallel to the chains is only

marginally affected, leading to a decrease in the anisotropy coefficient. We have also

compared the anisotropy with the long time diffusion coefficients calculated using

Rayleigh's method.
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Figure 4-7: Anisotropy coefficient, a decrease with increasing magnetic particle

concentration (by volume). The dotted lines represent the long time diffusion coefficients

calculated using Rayleigh's method as described before. Magnetic and non-magnetic

particles simulated are both 30 nm in diameter. The concentration of non-magnetic

particles is 2.5% by volume..

4.9.5 Anisotropy as a function of magnetic particle size

Variation of the anisotropy coefficient with magnetic particle size shows a very

interesting behavior (Figure 4-8). We simulated similar systems with magnetic particles

with the same size as that of non-magnetic particles. The concentration for magnetic

particles was 10% while that of non-magnetic particles was 2.5% by volume. The

magnetic particles considered were 10 nm (X=0.48), 20 nm (X=6.09) and 30 nm (X=24.38)

in diameter. We did not use the freeze method for the following simulations because the

magnetic particles for the 10 nm particles do not form chain like rigid structures but tend

to move around the simulation box. Also, we need to take smaller simulation time steps

because the mobility of smaller particles, either magnetic or non magnetic is higher.

Large time steps can lead to overlaps between particles and hence erroneous results.
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Figure 4-8: Variation of anisotropy coefficient with the sampling time for different sized

magnetic particles. The non-magnetic particles are taken to be the same size as that of

magnetic particles. The volume fractions are 2.5% for the non-magnetic particles and

10% for all the magnetic particles.

For 10 nm particles the inter particle magnetic interactions are weak. When a magnetic

field is applied we do not observe the formation of any chain-like structures. Hence, for

the 10 nm particles the anisotropy coefficient is close to 1. On comparing the results

obtained for 30 nm particles and 20 nm particles, we observe that there is a strong chain

formation for both the systems. In other words, the systems look very similar to each

other, with a difference in scale. Hence, the anisotropic coefficient for both the systems

are very similar and the anisotropy curves almost overlap on each other. This argument

can be further extended to say that anisotropy curves for particles larger than 20 nm will

overlap on each other.



4.9.6 Anisotropy as a function of non-magnetic particle size

Anisotropy coefficient decreases with an increase in the size of non-magnetic particles.

The plot shown in Figure 4-9 depicts this behavior for a system with 30 nm magnetic

particles at 10% volume concentration and varying non magnetic particle size. Small non

magnetic particles tend to navigate themselves around the chains a lot easier as compared

to larger particles. For the given system, the separation between the chains is a little less

than 100 nm. Hence, we see that the 60 nm non-magnetic particles face a lot of constraint

while passing through the magnetic particle chains in the direction perpendicular to the

magnetic field leading to lower anisotropy coefficients for larger particles.
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Figure 4-9: Variation of anisotropy coefficient with the sampling time for different sizes

of non-magnetic particles. The magnetic particles were 30 nm in diameter and 10% in

volume concentration. All systems had the same number concentration for non-magnetic

particles, corresponding to 2.5% volume fraction for the 30 nm non-magnetic particles
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4.10 Conclusions

Understanding the transport behavior of non-magnetic species is important in design of

separation and other devices employing magnetic fluids. Magnetic fluids have a unique

property that their structure can be reversibly altered by application and removal of an

externally applied magnetic field. Different applications can utilize the anisotropic

transport properties induced by the structural arrangement of magnetic nanoparticles. In

this work, we have successfully designed computational tools to evaluate the diffusion

coefficient of non-magnetic particles in magnetic fluids. The evaluated diffusion

coefficient will be used in developing macroscopic models for such devices. Also, a

systematic study on parameters such as particle size, surfactant thickness, and particle

concentrations would help us design suitable magnetic fluids for the corresponding

applications.

We have explored the diffusion characteristics of non-magnetic particles in magnetic

fluids using Brownian Dynamics simulation. The diffusion coefficients were evaluated as

a function of sampling time intervals. To evaluate long time diffusion coefficients, we

have developed a new 'freeze method' for our simulations. Also, runs with non-magnetic

particles only were compared with previous theoretical works.

We observed that the diffusion coefficients in the direction perpendicular to the magnetic

field were lower than that in the direction parallel to magnetic field, due to the formation

of chain like structures by the magnetic nanoparticles. The anisotropy was stronger for

magnetic fluids with higher volume fraction for the magnetic nanoparticles. The results

were at large in correspondence with the long time anisotropic values evaluated for

diffusion across cylinders evaluated by Rayleigh. Larger non-magnetic particles tend to

have a higher anisotropic coefficient, since they find the motion across the chains to be

more constrained. Anisotropy coefficient was close to 1, for smaller magnetic particles

which do not chain when a magnetic field is applied. For similar systems having

magnetic nanoparticles larger than 20 nm in size, the anisotropy curves are very similar

each other, since the inter-particle magnetic forces are sufficiently higher than thermal

forces for the magnetic particles making them fairly similar in the structural arrangement.
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Also, the anisotropic coefficients for particles larger than 20 nm were much less than one,

emphasizing the need to evaluate the diffusion coefficients for the different directions

when developing macroscopic models for separation devices. This work was limited to

presence of strong magnetic fields, but can be further extended to low magnetic fields by

including appropriate magnetic relaxation mechanisms for the magnetic nanoparticles.

We also neglected hydrodynamic interactions between the particles. These interactions

should also be included to simulate a more realistic behavior.
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Chapter 5

5. Neel relaxation of magnetic particle

clusters

5.1 Introduction

Magnetic fluids have been employed in adsorptive non-magnetic particle separations[l-

5]. One of the challenges one faces in the design of magnetic nanoparticles is that the

particles should be large enough so that they get trapped in the High Gradient Magnetic

Separation (HGMS) column [6, 7] in separation phase, yet should be easily removed in

the elution phase when the magnetic field is switched off. In other words, they should

have high net magnetic moment, but should have small relaxation times. Ditsch [2, 8] has

used magnetic nanoparticle clusters to achieve the same effect. Having multiple smaller

(8-10 nm) particles in the cluster ensures that the clusters are entrapped in the HGMS

column, yet are removed easily when the magnetic field is removed. The objective of this

work is to study the relaxation of magnetic nanoparticle clusters. A better understanding

of the relaxation will help us design, tailor and synthesize magnetic nanoparticle clusters

which will have optimal properties for magnetic separations.

5.2 Relaxation mechanisms for magnetic nanoparticles

Studies have been performed on relaxation of magnetic nanoparticles in ferrofluids [9-

13]. There are two basic mechanisms by which the colloidal ferrofluid can relax when the

applied magnetic field is changed: Brownian and Neel relaxation. Brownian relaxation

refers to the bulk rotational diffusion of the particle while Neel relaxation refers to the
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rotation of internal magnetization vector or the magnetic domain of the magnetic particle

[14].

The Brownian rotational diffusion time, rB having a hydrodynamic origin was calculated

by Frenkel [15] to be:

3Vr 0
zrB - (5.1)

kBT

where V is the particle volume, qo is the viscosity of carrier liquid, kB is the Boltzmann's

constant and T is the temperature of the system. Neel relaxation is caused by reorientation

of the magnetization vector by overcoming an energy barrier [ 16]. The magnetic moment

of the particles also have preferred orientations, called the 'easy axis' of magnetization.

The easy axis of magnetization arises from a combination of shape and

magnetocrystalline anisotropy [17]. For example, a sphere of magnetite, there would be

six easy directions of magnetization.

The energy barrier between the two opposite orientations is given by KffV, where Kff is

the anisotropy constant of the material. When kBT > KfV , the thermal energy is large

enough to overcome the energy barrier. The characteristic Nel relaxation time, Tr inside

a single grain is given by:

1
N -e BT (5.2)

wherefo is the frequency having an approximate value of 109 Hz.

Normally, both Brownian and Neel mechanisms contribute to the relaxation of the

magnetic nanoparticles. The effective relaxation time, teff for the particles can be

calculated to be [10]

Sef "'B (5.3)
TN + TB
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In case N << TB, or if the rotation is inhibited (freezing/drying of sample, or formation of

large agglomerates, relaxation occurs by N6el mechanism and the process is called

intrinsic superparamagnetism. However, when , > rB , Brownian motion is primarily

responsible for relaxation and the material exhibits extrinsic superparamagnetism. In

general, N6el relaxation dominates for smaller particles while Brownian relaxation

dominates for larger particles. For magnetite, this transition occurs around a particle

diameter of 10 nm [14]. Particles with relaxation times faster than the measurement time

are referred to as superparamagnetic. Both N6el and Brownian relaxation can be

described as exponential decays for identical particles, but for real systems it is usually

non-exponential because of the distribution of sizes and shapes of the particles.

In our model, we assume a simplistic case in which all orientations would have an equal

probability. In other words, we ignore the easy axis of magnetization. Our interest lies in

qualitative understanding of relaxation behavior of magnetic cluster based on their size,

arrangement configurations and geometry. We have studied the effect the magnetic inter-

particle interactions play on the relaxation time of these clusters.

5.3 Simulation methodology

Rotational Brownian Dynamics simulations are used to describe the time evolution of the

orientation distributions of particles [18]. These simulations are frequently used to study

the relaxation effects in a variety of systems such as liquid crystals [19, 20],

ferromagnetic colloidal dispersions [21, 22], quantum spin systems [23], etc. Dickinson

[24, 25] studied the effect of translational motion on the rotational Brownian motion. In

our work, we consider the magnetic particle clusters to be stationary (no translational

motion) and hence we consider only the pure rotational movement of the magnetic

domains.

The rotational motion expressed in the Langevin equation can be written as:

dw.
I, d = -R + T, + R, (5.4)

dt
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where i (1 i 3N), labels the particle number and the three axis (x,y, and z) in an N

particle system. Ii is the moment of inertia associated with index i, Ti is the sum of

external and interparticle torques, coi is the angular velocity, and Ri is the stochastic force

acting in direction i.

Using the above equation, we can evaluate the angular time step in a given time interval

At by [24, 25]

Oi - o = (kBT) D RTAt + R, (DR At) (5.5)

Where D R is the rotational diffusion coefficient, kB is the Boltzmann's constant and T is

the temperature of the system. The Brownian displacement force can be related to the

rotational diffusion coefficient as

(R,(O)Rj(t)) = 2DR At3i (5.6)

Now the rotational diffusion coefficient can be related to the Brownian relaxation time by

the following relationship

1
DR = (5.7)

2 rB

However, in our system we do not allow the physical rotation of the particles or particle

clusters, but just the rotation of the magnetic domains resulting in N6el relaxation. Hence,

we just use the same system of equations as above with an effective diffusion rotation

coefficient of

1
DRef = - (5.8)

2z-u

For the above simulation the time step, Ats was restricted by the condition, At, < rN.

This condition ensures that the systematic forces, magnetic torque in our case do not

change appreciable over the give time step. We have used a time step of 00 for all

our simulations.
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5.4 Torque Models

The torque acting on a magnetic dipole due to an external magnetic field H is

T=mxH (5.9)

Here the magnetic dipole moment m is defined as

m=lml= PoMsV (5.10)

in which po is the permeability of free space, Ms is the saturation magnetization of the

material and V is the volume of the magnetic particle. To derive the torque acting on a

particle a due to magnetic field from a particle fl, we have

TO = m x H (5.11)

The magnetic field, Hp originating from a dipole is

3(mp.t)t-m,H = t)(5.12)
4; po r'

On grouping m can be written as:

H = 3 m [(np t)t- n. (5.13)
4zpor3 [(n tt- ]

in which np is the unit vector denoted in the direction of the magnetic moment mp, t is the

unit vector given by r/r, where r is the position vector of the co-ordinates at which the

field being measured with the centre of dipole being the origin and r is the magnitude of

the position vector. So the torque on particle a due to the particle 0, Tq can be written as:

2

Ta 4= r na , [3(n.t )t ,-nl) (5.14)

2

TaP M 3 m na x n,. - 3(n,.t,) (n. x ta (5.15)
4 tr
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It is also important to note that this torque vector is not symmetric. In other words Tp is

not identical to Tp.

5.5 Simulation parameters and details

We carried out 10,000 parallel simulations to generate reasonable statistics about the

relaxation behavior. In all the simulations we start an initial configuration with all the

dipoles aligned along the z-axis at time t=-0 and we allow them to relax thereafter, with or

without a remnant magnetization field. The simulations are carried out a room

temperature of 298K. Also, it is assumed that the particles are single domain, which is

considerably fair for the particle size range simulated. We measure the magnetization of

the particles over the simulated ensemble as a function of time. The two primary

structures we start with are chains and spheres as shown in Figure 5-1. The reason we

simulate these shapes is because they are commonly observed in magnetic fluids. For

larger magnetic particles chain-like structures are stable and frequently observed. The

parameters that we vary are the size of the cluster, the size of the individual

nanoparticles, and the structural arrangement. The simulations have been carried out for

the magnetite as the material for the particles, but can be easily repeated for other

magnetic materials, such as cobalt.

Figure 5-1: Sample structural configurations simulated: Top row shows spherical clusters

(n=l, 7, 33). Bottom row shows chain like structures (n=l, 3, 5).
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5.6 Results

5.6.1 Chain-like clusters: effect of chain length

In our first set of simulations, we have captured the relaxation behavior of chain like

magnetic nanoparticle clusters on removal of magnetic field which was originally applied

along the z-axis. The clusters are composed of 10 nm magnetite particles of varying chain

lengths. The normalized magnetization, mdim is defined as

dim = (cos ) (5.16)

in which 0 is the angle the dipole makes with the z axis and (...) represents the ensemble

average. The dimensionless time, tdim is defined as:

tdim =t (5.17)

in which TN is the characteristic relaxation time for a single isolated particle of the same

diameter. In the results shown in Figure 5-2 it would be the relaxation time for a 10 nm

particle.
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Figure 5-2: Relaxation dynamics of individual particles in cluster chains on removal of

magnetic field (at time t=O). The labels 'n' represent the number of particles in cluster

chains. The arrow next to cluster indicates the direction of initially applied external

magnetic field.

The single particle cluster (n=l) relaxes exponentially with a characteristic time of rN as

expected, shown in Figure 5-2. For the two particle cluster, the relaxation is slower than

compared to an isolated single particle. This is because both the particles are in a stable

configuration aligned in the direction of initial applied field. Also, they exhibit identical

relaxation behavior because they have the same spatial configuration. Observing the three

particle chain cluster, the relaxation is even slower than the two particle cluster. Also,

here we see two distinct relaxation curves. One is for the particles on the outside and the

other is for the particle in the centre. The relaxation for the particle in the centre is slower

than the particles on the outside, since it is stabilized by two dipoles right next to it (one

above and one below). The particles on the outside have only one immediate neighbor

and a particle two diameters away leading to a lower stabilization and faster relaxation as

compared to the particle in the middle. Similarly in the five particle cluster chain we see

three distinct modes, one for the particles on the outside, one for particle in the absolute

center and one for the particles in between.
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Another interesting behavior is that the initial relaxation behavior may not determine the

final relaxation behavior. If we compare the relaxation of the particle in the centre of the

three particle cluster to that of the particles on the outside of the five particle cluster, we

see that initially the five particle cluster end particles relaxes faster than the center

particle of the cluster. However, the final relaxation is slower for the central particle in

the three chain particle cluster. To understand it, let's try to consider the inter-particle

interactions. The central particle in the three chain particle cluster interacts with the outer

particles in the three particle cluster, which relax faster and have lower magnetization,

also bringing the magnetization down for the central particle. However, the outer

particles in the five particle cluster interact with the inner particles, which have relaxed

slower and have higher magnetization, leading to an increased magnetization and slower

relaxation for outside particles of the five particle cluster.

0
N 0.8

0n=10

C 0.4 -

0 n=2
N 0.2 -

9 0 n=1

0 2 4 6 8 10 12
Dimensionless Time

Figure 5-3: Relaxation behavior of magnetic chains averaged over all the particles. 'n'

represents the number of individual particles in the chains.

Figure 5-3 plots the average magnetization of particle clusters against dimensionless

time. The averaging is done over all the particles in a given cluster. We see that the

relaxation times are a strong function of the cluster size. The more the number of

particles in the chain, greater is the stabilization and slower the relaxation. This means
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that in order to design clusters for efficient separations they should not be preferably in

linear shapes, which will lead to difficulties in the elution step of the separation.

5.6.2 Chain-like structures: effect of particle size

We also studied the effect of particle size on the relaxation times of magnetic particle

clusters in chain forms as shown in Figure 5-4. We observe that the dimensionless

relaxation times for the clusters are a very strong function of particle size, since inter-

particle interactions vary as the third power of diameter of the particle. For 6 nm particles

(Figure 5-4a), the relaxation behavior for a 10 particle cluster is very similar to the

relaxation characteristic for an individual particle. However, for larger particles the

relaxation becomes a lot slower as when compared to the behavior of a single particle.

Observing it for the 12 nm particles (Figure 5-4d), the relaxation time for the 10 particle

chain is order of magnitudes slower than that of the individual particle. Hence, if we

expect a system to have long magnetic nanoparticle chains, the size of the individual

particles should be maintained below 8 nm for elution step to be effective.
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Figure 5-4: Relaxation behavior of magnetic chains with individual particle size of 6nm

(a), 8nm (b), 10nm (c) and 12nm (d). 'n' represents the number of individual particles in

the chains.

5.6.3 Spherical clusters

The relaxation behavior of spherical clusters is very similar to that of the individual

particles themselves as shown in Figure 5-5. Even on increasing the cluster size to 33

particles, we do not see any appreciable change in the relaxation times. This is a result of

the arrangement or the packing of the clusters. If we observe an individual particle, it has

a couple of particles present directly above and below it which provide a stabilizing force

while the four particles around its equatorial plane, provide a destabilizing force. These

stabilizing and destabilizing forces negate each other, providing a relaxation behavior

very similar to that of individual particles. Comparing the result for 10 nm particles in

spherical and linear arrangement, we see that the relaxation of spherical clusters is orders
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of magnitude faster that linear clusters. Hence, spherical clusters would be more efficient

in the elution step as compared to linear clusters.

0
0.8

N

0.6

a, 0.4- =1 -
n=7

O0.2- n=33

o
-0.2 III

0 2 4 6 8 10 12
Dimensionless Time

Figure 5-5: Relaxation behavior of spherical cluster consisting of 1 (n=l), 2 (n=7) and 3

(n=33) layers of 10 nm particles. The pictures on the right show the arrangement of the

particles in the cluster for 7 and 33 particles respectively.

5.6.4 Planar structures: Orientation

To understand how the effect of particles in different configuration affect the relaxation

behavior we have performed a study for planar structures parallel and perpendicular to

the initially applied external magnetic field, shown by the arrows in Figure 5-6. The

planar structures are of interest to us because they are frequently observed on the wires in

HGMS columns. For the rectangular perpendicular arrangement (top right hand comer in

Figure 5-6), the relaxation is much faster as compared to an individual particle. Since the

particles are present in the equatorial plane of one another, they provide a destabilizing

force to each other, leading to faster relaxation. Looking at the situation when the plane

of magnetic particles is parallel to the initially applied external magnetic field (bottom

right hand corner in Figure 5-6), the relaxation is slower than that of individual particles

since the particles present above and below each other prevent a stabilizing force.

However, on comparing this result with chain like structures of similar length, we

observe this relaxation is still faster. One can visualize this structure to as that of multiple
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chains sitting alongside each other. Though the particles in chains by themselves provide

a stabilizing force, the presence of chains alongside each other is energetically

unfavorable. We also compare the results for different sized clusters, n=25 and n=100 to

understand the significance of edge effects. For the perpendicular arrangement, we

observe that for 100 particles the relaxation is a little faster than for 25 particles, while for

the parallel arrangement it is slightly slower.

t 0.8
N n=10*10(par)
2 0.6 n=5*5(par)
U Single particle
" 0.4 n=5*5(perp)
E 0.42

0

z-0.2

0 2 4 6 8 10 12
Dimensionless Time

Figure 5-6: Relaxation behavior for rectangular planar arrangements parallel and

perpendicular to the initial applied field. The results are shown for 25 and 100 particle

clusters.

5.6.5 Planar Structures: Arrangement

Next, we compare the relaxation behavior for the rectangular and hexagonal packing

arrangement for the planar clusters. For the parallel configuration we observe that the

relaxation behavior for the hexagonal arrangement is slightly faster than the rectangular

arrangement (Figure 5-7). In hexagonal arrangement, each particle has six immediate

neighbors next to it, while in rectangular arrangement there are only four immediate

neighbors, leading to slightly stronger destabilizing forces and shorter relaxation times in

the case of hexagonal arrangement of particles. For the perpendicular configuration, let us

compare the rectangular and hexagonal arrangements as packing of linear chains. In the

rectangular arrangements the chains can be visualized to be lying next to each other, as
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shown in bottom right hand corner of Figure 5-6, while in the hexagonal arrangement

they are present in alternating fashion (bottom right hand corner of Figure 5-7). Since in

the hexagonal arrangements particle are not occupying positions next to each other, but at

45 degrees, the configuration is more stable. Hence the relaxation for the hexagonal

arrangement is slower.

0
U0.8

N
S0.6 par (rec)

(D 0.6
o3 /par (hex)

0.4 perp (rec)

N 0.2 single particle

E 0
Z -0.2 perp (hex)

0 2 4 6 8 10 12
Dimensionless Time

Figure 5-7: Comparing the relaxation behavior for the rectangular and hexagonal

configuration in planar magnetic nanoparticle structure for 25 particle clusters. The

figures on the right show the hexagonal packing considered for the particle clusters for

the parallel and perpendicular arrangements.

5.6.6 Planar Structures: Size of magnetic nanoparticles

We have also examined the effect of particle size on the magnetic relaxation behavior of

planar structures. In Figure 5-8, we can compare the difference in relaxation times for 6

nm magnetic particle clusters to that of 10 nm particle size clusters. The inter-particle

effects are much smaller for the 6 nm particles as compared to that of 10 nm particles and

hence the relaxation times for the 6 nm particle clusters is very similar to that of 6 nm

individual particles.
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Figure 5-8: Relaxation behavior for planar magnetic nanoparticle clusters consisting of

(a) 10 nm particles and (b) 6 nm particles.

5.6.7 Remnant Magnetization

5.6.7.1 Chain-like structures

Iron wires are frequently used to pack the HGMS column to trap the magnetic

nanoparticles. Iron is ferromagnetic and has a high amount of remnant magnetization

even on removal of external magnetic fields. This could prove to be a reason for concern

during the elution step. We have studied the relaxation behavior of magnetic nanoparitcle

clusters under the influence of remnant magnetic fields. In these simulations, we have

included the external torque term defined in Equation (5.9).
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Figure 5-9: Relaxation behavior under the presence of a varying external magnetic field

for 10 nm chain-like magnetic clusters having (a) 1 particle, (b) 2 particles, (c) 5 particles

and (d) 10 particles.

In Figure 5-9, we have shown the relaxation behavior of chain-like magnetic clusters for

varying external magnetic field strengths. X, the dimensionless external magnetic field

strength is defined as:

mHe
kT

(5.18)

where m is the magnetic moment of the particle as defined by (5.10), He is the applied

field strength. We observe that for the same magnetic field strength, the longer chains

have a higher magnetization values, implying difficulty in elution. Say, on comparing

magnetization values for X=1, it is a little more than twice for 10 nm individual particles

(mdim-0. 4 ) to that of 10 nm particles in the 10 particle chains (mdim-0.8).
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5.6.7.2 Spherical Clusters

Next, we perform a similar study as show in Figure 5-9 for spherical shaped clusters

having individual magnetic nanoparticles with a diameter of 10 nm. We observe that for

the spherical clusters the relaxation is very similar to that of individual particles (Figure

5-10). Also, the final magnetization values are identical to that of individual

nanoparticles. The reasoning for these results is along similar lines to that of results

obtained in Figure 5-5 that the particles above and below a given particle nullify the

stabilizing and destabilizing effect.

1 1
0.8 - 0.8

N N

c 0.6 - 1 0.6
50.4 0o.i X=0 .2 5  =0.1 =025• ,= 0.4- X._0.

. 0.2 - - . 0.2 -

0 X -- 0 x=0
0 0
z -0.2 I I -0.2

0 2 4 6 8 10 12 0 2 4 6 8 10 12
Dimensionless Time Dimensionless Time

Figure 5-10: Relaxation behavior under the presence of a varying external magnetic field

for 10 nm spherical clusters for (a) 1 particle and (b) 7 particles.

5.7 Conclusions

It is important to understand the relaxation process of magnetic nanoparticle clusters

employed in high gradient magnetic separation columns so as to design magnetic

nanoparticles which can prove to be most efficient in separation as well as elution step.

In this work we have modeled the Neel relaxation processes using stochastic dynamics

simulations, in the presence and absence of an external magnetic field. Our simulations

are restricted to capture only Neel relaxation and not Brownian relaxation processes,
because when these particles are present in sludge like mixtures or are trapped on the iron

wires in the column, the rotational Brownian motion is physically restricted and the

primary method of relaxation is via the rotation of magnetic domains or in other words by

N6el relaxation.
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The parameters that we consider in these simulations are the size of the magnetic

nanoparticle clusters, size of the individual nanoparticles, shapes of these clusters,

arrangement and orientation of the clusters with regards to the external magnetic field.

We observed that relaxation characteristic of spherical clusters is very identical to that of

individual particles in isolation. Even under the presence of an external magnetic field,

the final magnetization is very similar for both spherical clusters and isolated magnetic

nanoparticles.

For chain-like clusters we observe that relaxation times increases with increasing chain

lengths. For particles less than 8 nm in size this increase in relaxation times is fairly small

because the inter-particle magnetic interactions are small as compared to the thermal

forces. However, for particles larger than 8 nm, the relaxation time drastically increases

with increasing chain length. For a 10 nm particle size, the relaxation time for a 10

particle chain is orders of magnitude higher than that of an individual particle. Also, the

final magnetization under the presence of an external magnetic field is considerably

higher for particles present in chain like structures as compared to individual particles.

Magnetic nanoparticle cluster in planar arrangements relax extremely quickly when the

plane is present perpendicular and slower when the plane is present parallel to the

initially applied magnetic field. The configuration of these planes when hexagonal,

relaxes faster than rectangular configuration when the plane is perpendicular and slower

when the plane is parallel to the initially applied magnetic field.

It was observed the initial relaxation behavior of the magnetic nanoparticles may not

determine the final relaxation behavior. The end particles on the five particle chain like

cluster initially relax faster than the centre particle in the three particle chain like cluster,

but after a while, the behavior is inverted. This behavior is a result of the interaction

between the different particles in the magnetic nanoparticle chains.

To design magnetic nanoparticle clusters for separations, one would like them to get

trapped easily during the separation step and to be released quickly during the elution

step. In other words, one is looking for clusters that relax quickly when the magnetic

field is removed. Analyzing the results so obtained from these stochastic dynamic
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simulations, we recommend that spherical nanoparticle clusters to be employed for

magnetic separations. If there is a need to use, or in the process we obtain chain like

structures, the individual particle size should be restricted to less than 6 nm, if using

magnetite for efficient elution.

This work can be further extended to include the rotational Brownian motion when the

clusters are not physically constrained to move. Also, we have neglected the effect of

"easy axis" of magnetization. More complicated models need to be developed to include

such effects. However, the simple model that we developed has led to an increased

insight in design of magnetic fluids.
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Chapter 6

6. Magnetization characteristics of an

array of magnetic nanoparticles under

the presence of magnetic fields

6.1 Introduction

A HGMS column usually consists of magnetically susceptible wires or spheres packed in

a column placed inside an electromagnet [1, 2]. When a magnetic field is applied, the

wires dehomogenize the magnetic field in the column producing large magnetic field

gradients in the column which can be used to trap particles on to the surface of these

wires.

In the separations of non-magnetic particles using magnetic nanoparticles, the non-

magnetic entity that needs to be separated is either physically or chemically attached

preferentially to the magnetic nanoparticles. This entity then gets trapped in the HGMS

column, while all other species are eluted out. The diffusion and equilibration steps are

very fast of the order of few milliseconds, while HGMS usually poses as the rate limiting

step [3]. Thus, it is important to understand the HGMS separations in further detail. The

specific interest of this work is to understand the magnetization properties of magnetic

nanoparticle clusters that get trapped on the wires in the HGMS columns. In this chapter,

we have made an attempt to understand the effect of inter-particle magnetic interactions

and the external magnetic field on the magnetization of these particle clusters.

These magnetic inter-particle interactions and contact forces between particles lead to

formation of interesting particle structures, such as rings and chains [4]. Karpov [5]
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studied the formation of three dimensional aggregates by considering the effect of

interaction potential which consists of magnetic, electrostatic, elastic, gravitational and

van der Waal forces. Neto [6] has studied the formation of complex superstructures such

as spirals and spokes with magnetic nanoparticles using SANS, SAXS, and AFM.

Richardi [7] and co-workers have studied the formation of magnetic nanoparticle

structures when the suspension evaporates using Brownian dynamics simulation methods.

Magnetic nanoparticle structures have been analyzed for which the local moment

distribution is governed by the magnetic inter-particle dipolar interactions [8-12].

We have determined the effect of inter-particle interactions on the magnetization

characteristics of magnetite nanoparticle clusters formed on cylindrical iron wires in an

HGMS column. Understanding the effect of these interactions on the moment of particles

and its effect on the structure is important so that they can be tailor-made for other

applications such as colloidal photonic crystals [13, 14], catalytic coating of surfaces

[15], nano-composites [16], etc. It is not possible to experimentally probe an array of

magnetic nanoparticles to determine the magnetization values for each of these particles.

Thus, we have developed a model to determine the magnetization characteristics of

magnetic nanoparticles in regular arrays.

6.2 Theory

When a magnetic field Hi is applied, the average magnetic moment of a

superparamagnetic nanoparticle for a given ensemble can be represented by [17]

m PVX H uOV( tH i  for Hi (6.1)
1+,#H ,  uoV (Xi /) I for Hi/ >> I

where Hi = (H i -Hi)1/2 is the magnitude and Hi the direction of the magnetic field Hi, ,o

is the permeability of free space, V is the effective volume of the core and X is the

magnetic susceptibility, given by the slope of the magnetization (M) curve at low

magnetic fields, and i is the index for the particle number. The magnitude of the magnetic

field at which the magnetization is half of its saturation value, puoV (XIf) is 1/ .
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For non-interacting particles, the particles only experience the external magnetic field.

However for a set of particles in close proximity of each other, not only do they

experience the external magnetic field but also the magnetic fields associated with the

particles around them. When an assembly of particles is in an externally applied field Ho,

the net magnetic field acting on a nanoparticle i is [18]

H, = H o + H, (6.2)
ji

where Hii is the field of thejth particle on the ith particle, and is given by [ 19]

1 3?.QK .m,)-m
H = 1 3(6.3)

4~co 3

where ^. the unit vector connecting the particle 'i' to particle 'j', separated by a distance

rij. Hence the average magnetic moment for a magnetic nanoparticle when present in a

collection of magnetic nanoparticles is

fVZ '1 3~( mj) -m (6.4)
mi Ho + (6.4)

1 + PH, i,, 4rt0  r 3

In our work, we will only consider low magnetic fields (Hfi << 1) since the remnant

magnetic fields from the iron wires are usually small. Such an approximation yields

linear equations that can be solved explicitly.

1 3iQ (t -m) (6.5)
m, = oV Ho+. 3 3 (6.5)

# 4;uo r.

Converting the above equation in a dimensionless form we get

Pi = IHO +  -, (6.6)

where the dimensionless magnetic moment ui, is defined as p,= m=i/l 0 VH o,

HI = Ho / Ho is the unit vector pointing along the direction of magnetic field, and a is the
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radius of the magnetic nanoparticle. Hence, if we are given a system with n particles, we

can write n such linear equations, one each for the particle and obtain the magnetic

moment values for each of the particles by solving the set of these equations.

6.3 Particle clusters on wire

In this work we have explored rectangular and hexagonal particle configurations in three

dimensional magnetite clusters present on a magnetized iron wire as shown in Figure 6-1.

We assume the clusters to be infinitely large in the x and y direction, reducing the

problem to uni-dimensional with variation in magnetization only along the z direction as

indicated in the figure below. We consider particles of different sizes in rectangular and

hexagonal packing on a cylindrical iron wire. We also assume the wire diameter to be

much larger than the particle size to assume planar geometries.

Iz

Figure 6-1: Particle clusters present on an iron wire in rectangular packing (on left) and

hexagonal packing (on right).
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6.3.1 Rectangular arrangement

The first arrangement we consider is the rectangular arrangement. As stated before, we

have reduced the chosen system into a one dimensional problem. The magnetic moments

would have a non-zero average value only in the z-direction. In other words, we have

explored the variation of the magnetic moments as a function of z-direction. In the

equations described below the subscript i refers to the layer number, with i=1 being the

layer closest to the iron wire. The equation written below would be identical for any

particle in row i, since we assume clusters to be infinitely large in the x and y planes.

3rz 3rz (6.7)

3 a a) 3 a (ra)

Here the double summation (a,p) is done over all the particles in that row in the x and y

directions, rZij refers to the z component of the radial vector originating from the particle

considered in the row i to a given particle in row j . Now considering the rectangular

geometry of the system and substituting in all the summations we get

p, = Ho iaii (6.8)

ji3 3

3( j- i)2

1 amax )6.x ( a2 t2 + (j )2

where, a, Y 2 23/2 (6.9)
8 a=-ar =-fx (a +2 + 2(ji) 2

1 a /3- -1
aii = - 3/ (6.10)

a=-ax f=-max a2 + )
12

The limits a,,ax and 8ma,, extend from -oo to +oo. When calculating aii, the coefficient

excludes the summation for both a and fl equal to zero, since that would imply the field

of the particle itself. The coefficients ao. and aii were numerically evaluated as a function

of amax (=max) as shown in Figure 6-2 and Figure 6-3. In Figure 6-2, we observe that al,2

(interaction between a given particle in row 1, with particles in row 2 starts with a

positive value, as am,,=O corresponds to the single particle sitting exactly above the given
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particle in row 1. Thereafter, with increasing values of a,,, the interacting particles

provide a destabilizing force, leading to a decrease in value of a12. This value stabilizes to

an asymptotic after more than 50 particles, since any more particles are far away from the

given particle to make any significant difference. For the coefficient al,Jo, we observe that

it increases for the first few particles, since the magnetic field originating from them is in

the same direction as the particle itself, providing a stabilizing force (see right hand side

illustration in Figure 6-3). For the particles further away, they are in an energetically

unfavorable position, leading to a decrease in the value of the coefficient. We have used

30 layer and 60 layer particle clusters for the simulations and we have used 200 particles

as our cut off radius for the evaluation of these coefficients.
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Figure 6-2: al2 as a function of ama
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Figure 6-3: al,1o as a function of am,

6.3.2 Hexagonal Configuration

The set of equations that we develop for the hexagonal configuration are very similar to

the ones we developed for rectangular configuration (Equation (6.8)). The index of the

rows in z direction is slightly different as shown in Figure 6-4 as compared to the

rectangular arrangement.

N=6 ------- ---- 1--

N =5 - X

Figure 6-4: Arrangement of particles in a hexagonal cluster. N represents the layer

number. The dotted circles represent the layer above and behind the given solid layer (x-z

plane) in the y-axis.
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With the hexagonal arrangement, the difference in geometry leads to a difference in the

coefficients aj and aii as:

1 a- x
aii = -

8 =-am

/6.. -1

Pf=, x2+ )3/2
'=-m. (X2 +2

where,

x = [-a for / = even

x = a+ 2 for = odd

3Z2

X2 2 2

x 2 +y2 +z 2

(X2 + ,
'

+Z2 )3/2

where,

(i -j)Z"'

2

for (i - j) = even

x = /3a for / = even

x = a + 2 for = odd

for (i-i) = odd

x = -J + for = even
2

x = /-a + 1 for P = odd
2JF

and,

(6.11)

1 max

a, = -1:
8a=-amax

6-

P=-Pm.

(6.12)
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6.4 Results

6.4.1 Rectangular configuration

We simulate a rectangular array of magnetic nanoparticles for 30 layers along the z-

direction and measure the magnetic moment of particles for each of the layers, shown in

Figure 6-5. For the same dimensionless magnetic field applied we observe that the

dimensionless magnetization decreases with increasing magnetic particle size. This

happens because the particles in the rectangular arrangement are not in a stable

configuration since they are in equatorial position to each other with reference to the

external magnetic field. Hence, the inter-particle magnetic interactions lower each other's

magnetization values. Another way to represent the results shown in Figure 6-5, is by

plotting the magnetization as a function of the distance from the wire surface (Figure

6-6). The dotted line represents the magnetization of particles if there was no inter-

particle magnetic force. The magnetic field originating from a wire decays as the square

of the inverse of the distance from the centre of the particle wire.

0.8 -

0.6 -

0.4 - 6nm

0.2nrn

0
0 5 10 15 20 25 30

N

Figure 6-5: Dimensionless magnetization for rectangular array of magnetite nanoparticles

consisting of 30 layers as a function of the layer number for particles with a diameter of

4, 6, 8 and 10 nm
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Distance (in nm)

Figure 6-6: Dimensionless magnetization for rectangular array of magnetite nanoparticles

consisting of 30 layers as a function of distance from the wire surface (d- 200 nm) with

diameters of 4, 6, 8 and 10 nm. The dotted line represents the magnetization in absence of

any inter-particle interactions.

6.4.2 Hexagonal Configuration

When simulating the hexagonal arrangement, for 4 and 6 nm particles we see results

similar to that of rectangular arrangement, but for particles larger than 8 nm, we see an

oscillatory behavior (Figure 6-7). To understand this oscillatory behavior we parsed the

10 nm results in two sets of data, one for each set of chains which are next to each other

but are offset by half a particle diameter in the z-direction (Figure 6-4). One set of data is

for odd layers (i=1,3,5....) and the other one is for even layers (i=2,4,6.....) show in

Figure 6-8. We observe an alternating oscillatory behavior between the two set of data,

i.e. if the magnetization is higher for a given particle, it will be lower for the particle in

the adjacent column and vice-versa.
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Figure 6-7: Dimensionless magnetization for hexagonal array of magnetite nanoparticles

consisting of 30 layers as a function of distance from the wire surface (d= 200 nm) with

diameters of 4, 6, 8 and 10 nm. The dotted line represents the magnetization in absence of

any inter-particle interactions.
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Figure 6-8: Oscillatory alternating behavior for 10 nm particle for

columns. The dotted line represents the magnetization in absence of

interactions.

the two adjacent

any inter-particle
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6.4.3 Oscillatory behavior

To decouple the effect of changing magnetic field and inter-particle magnetic

interactions, we perform the simulations at a constant magnetic field (Figure 6-9). The

right hand side figures illustrate the magnitude and direction of the dipole moments.

There is an external magnetic field present which would force the particle to point in the

upward directions. However the particles in the adjacent column provide a magnetic field

in the opposite (downward) direction in which they are pointing. Hence, the dipoles

evolve themselves in such a unique magnetic moment configuration to maximize the

stability. For the 12 nm particles the dipole interactions are significant enough, as

compared to the external magnetic field, to make them point in the opposite direction to

the external field. In other words the adjacent columns want to point in direction opposite

to each other, but the presence of the external magnetic field in one direction wants both

of them to point in the same upwards direction, resulting them to point in the periodic

higher and lower values.
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Figure 6-9: Oscillatory alternating behavior for 10 nm particle for the two adjacent

columns at a constant magnetic field. The figures on the right depict the results in a

pictorial fashion for 10 and 12 nm particles. The arrow heads show the direction of

magnetic field, while the arrow length directly proportional to the magnitude of the

magnetization of the dipole of the particle.

6.4.3.1 Effect of number of layers

We have also explored the effect of number of layers on the oscillatory behavior of the

magnetic nanoparticle by repeating the simulation for twice the number of layers as

compared to the previous simulation (Figure 6-10). We see that the oscillatory behavior is

very similar to the results obtained in Figure 6-9 with an oscillatory period of close to 100

nm or 10 particle diameters.
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Figure 6-10: Oscillatory behavior for twice the number of layers in z-direction is very

similar compared to the results simulated in Figure 6-9.

Also, it is important to note that the particle closest to the wire (N=I) always starts with

the higher value as compared to the second particle (N=2) in this periodic oscillatory

behavior. This happens since the particle in layer 1 (see Figure 6-4) has fewer immediate

neighbors as compared to the particle in layer 2, which will provide a destabilizing

influence.

6.4.3.2 Effect of size of magnetic nanoparticle

Next, we explore the influence of particle size on the oscillatory behavior (Figure 6-11).

There are no oscillations for particle sizes of less than 9 nm. On increasing the particle

size, at 9.25 mm particles we observe a sudden occurrence of the oscillations in the

magnetization behavior. On increasing the particle size further we see a decrease in

periodicity for this oscillatory magnetization.
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Figure 6-11: Oscillatory behavior as a function of magnetic particle size for (a) 8 nm, (b)

9 nm, (c) 9.25 nm, (d) 9.5 nm, (e) 10 nm and (f) 12 nm.
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6.5 Theoretical Analysis

In order to understand why the diameter of ~9.25 nm proves to be the critical value for

the oscillatory behavior we perform the following analysis. We take equation (6.8) and

re-order it to obtain:

-1+ a i' + aji + H0 = 0 (6.13)

Now, we write the entire set of equations in a form of a matrix to get

3
---+ a, a12  a13
x /f03 /1 Ho
a21  -- +a 22  a 23  2.. Ho

X_ X /3 + fo =0 (6.14)
3 3

a31  a32  - + a 33

On substituting the values of the coefficients, aj's in the matrix A, with only the diagonal

elements dependent on X, we get

-- +(-0.71) -0.45 0.086 -0.0026

3
-0.45 -- +(-0.71) -0.45 0.086 -0.0026

3 (6.15)0.086 -0.45 -- +(-0.71) -0.45 0.086

3
-0.0026 0.086 -0.45 -- + (-0.71) -0.45

We observe that at the critical radius diameter of 9.25 nm, we get a value ofX=8.33 at

which for any given row, the sum of alternate columns becomes equal (except the first

and the last two rows present at the boundary). Physically it would mean that the
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magnetic interactions between the two columns are balancing each other out, leading to

this oscillatory behavior. As a test case, we set all the coefficients except aM, aiO-1), ai+1)

to zero. Again, we find that the critical value of radius is when ay is the sum of ai-1) and

ai6 1 ). This confirms our theory that we can predict the onset of oscillatory behavior when

the sum of alternate column is same.

6.6 Conclusions

In this work, we have explored the magnetization of magnetite nanoparticles clusters

present on iron wires in HGMS columns. We have developed a theoretical model to

evaluate magnetic moments under the presence of low external magnetic field. We have

studied the effect of particle configurations, arrangements and particle sizes on the

magnetization behavior. For rectangular arrangement, we observed a decrease in

magnetic moments with increasing particle size. For hexagonal arrangement, again we

observed a reduction in magnetic moments, but we observe a novel oscillatory behavior

for the magnetite particles more than 9.25 nm in diameter.

We were able to explain the onset of this oscillatory behavior by developing a matrix, A

from the set of linear equations, which captures the inter-particle interactions between the

different layers. The periodicity of the oscillations is a function of the particle size, but

not a function of the number of layers in the z-direction of the particle cluster. However,

we were unable to come up with a method to predict the periodicity of this oscillatory

behavior.

Understanding of this oscillatory behavior can be of significance when modeling HGMS

columns. During the elution stage, when we have fluid flow around these magnetic

clusters, the clusters having such magnetic moment oscillations are more likely to break

at locations having null magnetic moments. Thus, we can tailor the magnetic particle size

in such a way to exploit this oscillatory behavior to enhance the removal of clusters from

the magnetic wires, even under the presence of low remnant magnetic fields. More work

is further need to have a more detailed understanding and prediction of this oscillatory

behavior of magnetic moments.
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Chapter 7

7. Concluding discussions

7.1 Summary of work

The goal of this work was to evaluate the thermodynamic and transport properties of non-

magnetic particles in magnetic fluids. Also, we have evaluated the magnetization

characteristics of magnetite particle nanoclusters. We have considered magnetic fluids to

consist of discrete particles rather than to be continuum as considered by some of the

previous works [1-5]. We consider non-magnetic particles to be of similar order of size as

that of magnetic particles and hence the approximation is not valid for our work.

We performed Monte Carlo simulations [6] to evaluate the interactions between non-

magnetic particles and magnetic nanoparticles (10 nm and 20 nm diameter) dispersed in

organic phase. The presence of the non-magnetic particle in the system induces magnetic

non-homogeneity. The magnetic nanoparticles present in the equatorial place of the non-

magnetic particle with reference to the applied magnetic field have a higher

magnetization as compared to the particles in the polar region. This effect was much

more dominant for 20 nm particles than 10 nm particles, because the magnetic inter-

particle interactions are much stronger for the larger particles. It was also observed that

the radial distribution function for the magnetic nanoparticles in the equatorial plane next

to the particle increases with increasing magnetic field strength, since the particles are

more stable in this region.

We have evaluated magnetophoretic forces non-magnetic particles experience when

subjected to magnetic field gradient. The forces arising from the inter-particle

interactions between the magnetic nanoparticles were found to be significant, which have

been neglected previously [2, 3], for larger magnetic particles, smaller non-magnetic
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particles (as compared to the magnetic particles) and lower magnetic fields. A physical

reasoning for the trends has been discussed in detail in Chapter 3.

We performed Brownian Dynamics simulations [7] to evaluate the diffusion coefficients

for non-magnetic nanoparticles in magnetic fluids. The chain-like structures formed by

magnetic nanoparticles introduce anisotropy in the system with the diffusion coefficients

higher along the direction of external magnetic field and lower in the direction

perpendicular. The anisotropy coefficient, defined as ratio of the diffusion coefficient in

the parallel direction to the coefficient in the perpendicular direction, increases with

higher magnetic particle concentration and larger size for the non-magnetic particles.

Anisotropy is negligible for small sized magnetic particles for which the inter-particle

interaction is smaller, increases with increasing magnetic particle size and becomes

constant thereafter. Results have been compared with theoretical predictions [8, 9].

Neel Relaxation [10] was studied for magnetic nanoparticle clusters. Chain-like, spherical

and planar clusters were evaluated for the relaxation times, as a function of cluster size

and the individual magnetic nanoparticle size. For chain-like structures the relaxation

times increase significantly on increasing the chain length and particle size. For spherical

clusters the relaxation times were fairly similar to that of individual magnetic

nanoparticles, irrespective of the cluster size. Hence, fast relaxation makes spherical

clusters ideal candidates for HGMS separations [11-13], since they will be released

quickly from the magnetic wires during the elution step.

Also, we studied the magnetization characteristics of magnetic clusters in presence of low

remnant fields [14]. Rectangular and hexagonal packing arrangements were studied. The

hexagonal arrangement revealed a novel oscillatory behavior in the magnetization

characteristics. A theoretical model was developed to predict the magnetic particle size

beyond which the oscillations are observed.

7.2 Future work

The interaction between the magnetic and non-magnetic particles was limited to only

spherical particles for lack of computational power. This work can be further extended to
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observe shape and orientation effects non-spherical particles may have. Also, a more

detailed parametric study for the studied properties is needed. For example, our work for

magnetization non-homogeneity is limited to only 10 nm and 20 nm sized particles. A

parametric study would help us develop empirical models for the effects that we have

observed. Also, for the evaluation of diffusion coefficients we need to run the simulations

for longer times, so that we can evaluate the long time diffusion coefficients [15-18]. To

perform these long time diffusion coefficient studies we either need to use faster

algorithms or better computational resources. The thermodynamic and transport

properties evaluated in this work have been limited to organic solvents. By including the

electrostatic forces of interaction, this work can be extended to aqueous solutions.

Neel relaxation studies were limited to very simplistic models. A more complicated

model needs to be developed to include the effect of the presence of 'easy axis of

magnetization' [19]. This work can be further extended to include the rotational

Brownian motion when the clusters are not physically constrained to move. Also, more

work is further need to have a more detailed understanding and prediction of this

oscillatory behavior of magnetic moments. We were able to predict the critical size at

which the oscillations are induced, yet we need further work to predict the frequency/

wavelength of the oscillations.

The area of work to understand the interactions between magnetic and non-magnetic

particles has a lot of unexplored opportunities. In this work we were able to explore only

a few of these possibilities. Future work is needed to understand other thermodynamic

and transport properties to help develop applications which will use magnetic fluids.
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Appendix

A.1 Cluster Moving Algorithm

A new convenient cluster Algorithm was developed for the simulations. This method is

modified insertion sort algorithm to easily identify the cluster and the data structure

henceforth helps organize and perform cluster moves efficiently. To verify if two particle

are a part of the same cluster we verify whether the two selected particles are in close

proximity to each other, which is done be selecting an arbitrary clustering radius r. The

most efficient way to demonstrate our algorithm is by illustrating with an example. Let us

consider a system as shown in Figure A-1.

Figure A-1: An example cluster system chosen for our example. Particles 1,2,4,5 and 8

form one cluster while particles 3 and 6 form another cluster.

The first part of the algorithm involves initializing an array with particles at alternating

position and zeros occupying the remaining positions as follows with the size of array

being twice the size of number of particles.
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11 0 12 01310141015101610171018 10

The next step involves checking if the two particles belong to the same cluster. This

process starts from the left hand side of the cluster. The comparison is made only if the

two elements of the array are non zero. So for example the first comparison will be made

between particles numbered I and 2.

1 0 10 I 3 0 I I 1 0 16 0 I7 0 I8 10 I
Since these particles do not belong to the same cluster, no move is performed. The

second step involves comparing 1 and 3 and after that the comparison is made between 1

and 4.

1 0 L 0 1 3 0 1 0 15 0 16 0 1 7 0 18 10 I

Here we see that 1 and 4 are within the clustering radius of each other and the first

insertion move is performed. This implies inserting 4 immediately after element storing

the index for particle 1 as follows:

1 0 3 10 10 15 0 6 0 7 0 8 0

We make further checks by further moving along the array. Hence the next comparison

would be between 1 and 5. Another insertion move would be performed. These moves

are performed till the second index reaches the end of the array. The array after the end of

this operation will look as follows:

SL 5 18 0 0 3 10 10 10 6 0 7 10 10 I
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The second set of operation would begin from the second element in the array, which is

'4' in this cited example and compare it with the next element.

I 4 18 0 L 10 3 10 10 10 16 0 7 0 I
The second script moves to the right as discussed before till the end of the array. These

operations are performed until the entire array has been scanned for clusters.

The final output looks like:

I1 1 I L  8 0  0  3  6 0 0  0  10 7 0 I
The next step involves cluster size identification and ordering. The elements which are

grouped together, or in other words elements not separated by zeros are particles of the

same clusters. This algorithm is advantageous over some frequently used algorithms[ 1]

As it reduces the numbers of cluster calculations by half as the number of comparisons

made in our algorithm are proportional to N 2 as compared to N3 in the algorithm

compared with [1]. Also by this algorithm we gather data for all the clusters

simultaneously.

Particle Number 1 2 5 800 3 6 0 0 0 0 7 0 0

Size Vector 5 5 5 5 0 0 2 2 0 0 0 0 1 00

Position Vector 1 23 45 0 1 0 0 0 0 1 0 0

The second row added here denotes the size of the corresponding cluster and the third

row stores the position vector of that particle in that cluster. The calculations of the

position vector helps us in performing cluster orientation moves and the calculation of the

size vector helps us to ensure that cluster size grows only by particle moves and not by

cluster moves.
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