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Abstract

New trajectory planning concepts are explored for rapidly planning a long range, boost-
through-reentry mission, using a lightweight, highly maneuverable reentry vehicle. An
Aimpoint Map, a set of all possible piercepoints through which a boost-through-reentry
trajectory can be flown to a fixed target, contains valuable information about the joint
capabilities of the booster and the reentry vehicle. At each piercepoint in the Aimpoint
Map, a set of velocities and flight path angles exist that can be reached from launch as
well as a set of velocities and flight path angles that allow the target to be reached from
the piercepoint. The intersection of these velocity and flight path angle sets provides
important information for the trajectory planner about the margins available at each
piercepoint in the Aimpoint Map. Boost-through-reentry trajectory optimization is used
with a six degrees-of-freedom (6DOF) vehicle model to provide a quantitative assessment
of the limiting capabilities of the vehicle flight subject to complex terminal and path
constraints. Particular constraints of interest include energy management, max g's, heat-
ing rate, final velocity and flight path angle, angle of attack, over-flight considerations,
approach azimuth, and booster stage disposal.
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Chapter 1

Introduction

In the years following the end of the Cold War, the United States has seen a dramatic shift

in the character of its global adversaries. The state of the world today finds a proliferation

of dangerous weapon technologies to small, decentralized extremist groups operating in

some of the most remote locations of the world. As these threats continually evolve, so

must our preparedness. While the U.S. nuclear arsenal has proved valuable in the past for

satisfying the nation's deterrence policies against other superpower nations such as the

USSR and China, it provides no such deterrence against emerging rogue threats. A rapid,

long range, conventional weapon capability is desired to counter such emerging threats.

Current rapid, long range vehicle capabilities include Intercontinental Ballistic Missiles

(ICBMs) and Submarine Launched Ballistic Missiles (SLBMs). These systems fly both

endo- and exo-atmospherically, have ranges of well over 5,000 miles, are guided during

boost, and can reach a target within 30 minutes [9]. However, these vehicles are typically

designed for static, predetermined targets and exhibit little-to-no maneuvering capability

(ballistic) during reentry. In addition, the use of nuclear-capable vehicles for conventional

applications is undesirable since it could lead to a misinterpretation of U.S. intentions

by other nations. Another vehicle option currently available for rapid, long range con-

ventional missions is the Sea-Launched Cruise Missile (SLCM). However, many of these

cruise missiles travel at subsonic speeds, requiring two or more hours to reach a maximum

distance of 1,500 nautical miles 1. Therefore, a new vehicle traveling at hypersonic speeds

1J. Buff, Undersea Global Strike, Military.com, March 13 2006



is needed to close the 0-to-60 minute response gap for conventional payloads 2. This new

vehicle will exhibit advanced maneuvering characteristics for range extension with a total

mission completion time of under one hour. The need to plan for a rapid, long range

mission using a lightweight, highly maneuverable vehicle requires the formulation of a

completely new approach to mission design and planning.

The new time-sensitive mission requires both flexibility and continual readiness for

U.S. forces. The mission planner must now be prepared to plan and execute a mission

within a short time of target detection. Uncertainties in both the target location and U.S.

ship/sub location, prior to target detection, will require a great deal of mission planning

flexibility. For example, a ship patrolling the South China Sea must be able to respond to

a threat in North Korea without flying over the People's Democratic Republic of China.

Therefore, a maneuvering reentry vehicle with maximum coverage and high precision

capabilities is desired.

The primary enabler to rapid mission planning is boost-through-reentry trajectory op-

timization. Such a capability can be used to maximize vehicle coverage while satisfying

important fly-out, en route and terminal mission constraints (both technical and political),

such as energy management, max g's, heating rate, final velocity and flight path angle,

angle of attack, over-flight considerations, approach azimuth, and booster stage disposal.

Trajectory optimization will provide the mission planner with a quantitative assessment

of the vehicle capabilities and limitations with regard to its maximum and minimum ma-

neuvering characteristics. Through careful examination of these capabilities, new mission

possibilities may emerge, such as aiming the launch vehicle in a direction other than

directly at the target or remaining in the atmosphere for a greater portion of flight.

In addition to defining the inherent capabilities of a proposed vehicle GN&C system,

trajectory optimization also serves to define a multitude of mission options to the mission

planner. The most pressing concern, with respect to planning a mission of this type,

is choosing where to aim the launch vehicle such that the reentry vehicle can reach the

target. Calculation of the launch vehicle "feasible aimpoints" involves tying together the

capabilities of the launch system with the capabilities of the reentry system. The ultimate

2T. Benedict, A New Role for the Trident Fleet, Military.com, July 31 2006
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goal is to demonstrate the properties of an aimpoint map that the mission planner can

use for quickly and effectively aiming his launch vehicle.

The work presented here will analyze the boost-through-reentry optimization of a

conceptual maneuvering reentry vehicle using a skid-to-turn control approach for the

purpose of defining the characteristics of an aimpoint map. The conceptual maneuvering

reentry vehicle for this mission is desired to be lightweight, travel at speeds up to Mach

16, and have a lift-to-drag ratio of approximately two.

1.1 Maneuvering Reentry Vehicles

A maneuvering reentry vehicle can be classified as a vehicle designed to enter a planetary

atmosphere from orbital altitudes with the capability of performing preplanned flight

maneuvers using either thrusters or flaps [9]. Reentry vehicles have been an active area

of research since the dawn of the space age in the 1950s. The basic premise behind the

reentry vehicle is to develop a body that can safely and accurately transport a payload

from Earth orbit to a point on the Earth's surface. The development of reentry vehicle

guidance systems has been a particularly active area of research due to the difficulty of

maneuvering to a precise terminal location given the complex hypersonic aerodynamics

encountered upon reentry. A variety of guidance schemes for maneuvering reentry vehicles

have been conceptualized and studied over the past 40 years, leading to modern advances

in both manned and unmanned vehicles.

Beginning with the development of the first ICBMs in the 1950s, unmanned reentry

vehicles were developed and built to follow a ballistic (non-maneuvering) trajectory to a

target on the Earth's surface [9]. With this design, all vehicle guidance maneuvers were

performed during the launch portion of flight with the remainder of the flight flown ballis-

tically [9]. In the 1960s, research in manned reentry vehicles became a national priority as

the United States sought to establish a manned space presence with the Mercury, Gem-

ini, and Apollo manned space programs. These vehicles used a high angle-of-attack trim

condition along with a steering guidance law based on lift bank angle modulation to steer

the capsule to the desired landing spot in the ocean [11]. By the 1970s and 1980s, inter-



est in higher precision targeting during reentry led to several research and development

studies involving maneuverable reentry vehicles, including the Advanced Maneuverable

Reentry Vehicle (AMaRV) [9], Precision Guided Reentry Vehicle (PGRV) [9], and U.S.

Space Shuttle [15]. The AMaRV test flights in 1980-1981 were the first to demonstrate a

high altitude maneuvering capability with new angles of attack, speed, acceleration, and

guidance features [9]. The PGRV R&D program was an effort to build upon the AMaRV

project by demonstrating a terminal guidance capability [9]. In contrast, the U.S. Space

Shuttle was more limited in its design due to strict g-loading and heating limits enacted

to ensure crew survivability and protection of its reusable thermal protection system. It

was designed to fly at high angle of attack trim conditions for a majority of its reen-

try flight before energy management maneuvers were executed below 83,000 ft and final

maneuvering to its runway below 10,000 feet [15].

Recent increases in computational power have provided a catalyst for research into

higher fidelity reentry vehicle models exhibiting new flight characteristics with increased

accuracy and maneuverability. Technologies developed for the AMaRV project in the

1980s have been revived recently for the development of a Common Aero Vehicle (CAV),

a multi-mission capable reentry system for transportation of cargo, payload, or weapons

through the atmosphere to the Earth's surface [13]. The CAV is designed to weigh 500

pounds and transport a nominal payload of 800 pounds to the Earth's surface. Addition-

ally, it travels at speeds of up to Mach 30, has a cross range capability of 2,400 nautical

miles from its reentry point, and can reach its destination on the Earth's surface in less

than 90 minutes [13].

Clarke [12] investigated the maneuvering capabilities of the CAV using Legendre Pseu-

dospectral Optimization, a direct collocation method. The mission profile used in Clarke's

study examined the reentry portion of the vehicle trajectory with initial conditions of 40

kilometers (131,233 ft) altitude and a velocity of 7,000 m/s (22,965 ft/s). In particular,

Clarke examined the effect of heat loads, dynamic pressure limits, and lift-to-drag ratio

on the maximum control margin of the vehicle. The study used a 3 degrees-of-freedom

(3DOF) model to govern the motion of the vehicle while assuming a time lag in the

command of angle-of-attack and lift bank angle. The angle-of-attack and lift bank an-



gle rates were assumed to be instantaneously controlled. In addition, the vehicle model

was assumed to have lift proportional to angle of attack, and a drag polar that increases

quadratically with lift [12].

Other recent reentry vehicles studied include the Kistler K-1 Orbital Vehicle, the X-

33, and the Crew Exploration Vehicle (CEV). Each of these vehicles are designed for a

manned crew and, therefore, have much greater restrictions on maneuvering capability as

compared to the CAV. Bibeau [16] generated optimal reentry trajectories for the Kistler

K-1 vehicle using a direct collocation approach to discretize the optimal control problem,

using as few as 10 node points. The Kistler K-1 is a reusable vehicle designed to place

one or more payloads in low Earth orbit and return to a designated circular landing area

6,000 feet in diameter [17]. Bibeau modeled the K-1 vehicle motion using 4 degrees-of-

freedom (4DOF) equations of motion, initialized at an entry interface (EI) altitude of

400,000 ft (121.9 kin) and a velocity on the order of 26,000 feet per second (7,925 m/s)

[17]. The model assumed fixed-trim angle-of-attack conditions during reentry with the

vehicle bank angle used as the control variable for maneuvering. The optimization metric

used was a weighted combination of control effort and target miss distance [16]. Similarly,

Bairstow [11] examined the reentry characteristics of the Crew Exploration Vehicle (CEV)

using similar initial conditions and a fixed-trim angle of attack. A guidance algorithm

was designed to perform lift bank angle modulation upon reentry for extended range

maneuvering to a land-based landing site.

The X-33 is an autonomous, reusable launch vehicle with aerodynamic control provided

during reentry by a set of in-board and out-board elevons, split body flaps, and dual

rudders [15]. Bollino [15] examined the reentry capabilities of the X-33 using a high-

fidelity six degrees-of-freedom (6DOF) model with Legendre Pseudospectral Optimization.

Unlike the other manned vehicle models mentioned above (i.e., K-1, CEV), the X-33 is

not required to reenter at a fixed trim condition and thus has much greater maneuvering

capability than the other vehicle models. In addition, Bollino concluded that optimal

vehicle capabilities predicted by 6DOF models can be significantly more accurate than

optimal capabilities predicted by a 3DOF model [15]. However, the X-33 is still a much

larger, less agile vehicle than the vehicle to be considered in this study. Additionally,



the X-33 is an asymmetric vehicle which uses a bank-to-turn (BTT) control approach

while the vehicle in this study is symmetric about the vehicle nose and uses a skid-to-turn

(STT) control approach.

Undurti [1] examined the optimal reentry characteristics of a novel triconic-shaped

maneuvering reentry vehicle designed by Textron Systems, Inc. The vehicle was modeled

using four degrees-of-freedom (4DOF) equations of motion with a quadratic lag modeled

for commanding the angle of attack and lift bank angle. Undurti investigated the vari-

ation of landing footprints due to limits on maximum G-loading, stagnation point heat

rate, and lift-to-drag ratio (L/D) using a Legendre Pseudospectral Optimization Method.

Complex phenomena were encountered in landing footprints with high L/D ratios due

to the enhanced ability of the vehicle to skip. For this study, a vehicle with an L/D of

approximately two will be used to explore more of this complex phenomena. Instead of

computing landing footprints, however, this study will focus on computing the aimpoint

map, or "footprint in the sky", along with associated characteristics that will enhance

mission planning capabilities.

The vehicle in this study exhibits different characteristics from all of the aforemen-

tioned vehicles. Therefore, the vehicle model developed for this study will include several

modeling choices that are different than those used in prior studies. First, the vehicle in

this thesis will be modeled using a six degrees-of-freedom (6DOF) model so as to incorpo-

rate rotational motion. This will accurately model the ability of the vehicle to command

both attitude and the proper lift magnitude and direction for maneuvering. Second, the

vehicle will maneuver using a skid-to-turn control approach, as will be described in sec-

tion 1.2. Third, the vehicle considered in this study will be much smaller, in volume and

mass, and will reenter the atmosphere at suborbital speeds approaching Mach 16 rather

than at orbital speeds. Fourth, and most importantly, the entire boost-through-reentry

vehicle flight will be considered as a unified optimization problem. While many previous

studies have performed optimization of the reentry flight with arbitrarily-chosen initial

conditions, the reentry initial conditions in this study will be directly tied to the capability

of the launch vehicle to target a reentry point. This represents a complex and challenging

optimization problem.



A conceptual model of the reentry vehicle is depicted in Figure 1-1. This vehicle

weighs 300 lbs, has a maximum diameter of 21 inches, a length of 1.43 meters, and has a

lift-to-drag ratio of approximately two.

Figure 1-1: Conceptual Vehicle Body With L/D 2
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1.2 Skid-To-Turn Control

The maneuvering reentry vehicle considered in this study will exhibit a skid-to-turn (STT)

control approach, in which both the pitch and yaw plane responses have identical behavior

due to body symmetry about the axis of roll [4]. Such a STT-controlled vehicle can

maneuver in any preferred radial direction that is normal to the axis of roll (XB) with

equal control response. In fact, the roll attitude of the vehicle is often stabilized to a

fixed reference position for the STT control strategy, allowing the use of a non-rolling

body frame [10]. The purpose of using such a model is that the cross coupling between

pitch, roll, and yaw is eliminated, allowing a reduction in the number of necessary state

variables.

The STT control approach dictates the motion of the vehicle body by orienting the

nose of the body in a particular direction relative to the velocity vector. By orienting

the body in this way, the vehicle is able to direct the aerodynamic forces in a desired

direction. Unlike asymmetric vehicles, the roll attitude (about the nose) of this vehicle

will have no effect on the direction or magnitude of the aerodynamic force since the relative

wind pressure acting perpendicular to the nose axis exhibits the same force independent

of which vehicle side is facing it. The lift force is directed in a plane spanned by the

velocity vector and the nose pointing vector called the lift plane. The vehicle will turn

by orienting the vehicle attitude (and, therefore, lift vector) in a particular direction

relative to the velocity vector. The images in Figures 1-2 and 1-2 depict the necessary

attitude of the vehicle for making a turn toward the left. Figure 1-2 shows the attitude

of the vehicle within the lift plane while Figure 1-3 shows the range of allowable attitude

pointing directions relative to the velocity vector. The resultant lift force is denoted as

L, the angle of attack is denoted as a, and the lift bank angle is denoted as a. Also, the

displacement of the nose vector from the velocity vector in the vertical plane is defined

as the pitch channel and the displacement in the horizontal plane is defined as the yaw

channel [10]. The lift bank angle determines the radial direction relative to the velocity

vector in which the attitude points, while the angle of attack determines how far along

that direction the nose attitude is pointed. A particular attitude is shown within this



range that serves to turn the vehicle toward the left with the maximum angle of attack

values, amax.

Lift

Lift Plane

xB

Velocity
Relative Wind

Figure 1-2: Relationship Between Attitude And Lift In The Lift Plane

Notice in Figure 1-2 and 1-3 that the lift can be resolved into a component in the

vertical plane, L cos a, and a component in the horizontal plane, L sin a, dependent on

the lift bank angle. While the vertical component affects the in-plane motion of the

vehicle, it is the horizontal component that creates out of plane motion and turns the

vehicle. The vehicle is essentially generating lateral force by allowing the relative wind to

push it one way or another, so the vehicle can be thought of as slipping, or skidding, in a

direction when it executes a turn. The goal of STT control is to direct the correct amount

of horizontal lift using pitch and yaw control that obtains the desired turning while still

satisfying the in-plane motion.

In contrast, the bank-to-turn (BTT) control approach directs the lift force using lifting

surfaces (e.g. wings) that are fixed to the body in a particular orientation. For vehicles

using this approach, there is a preferred body vertical direction that points perpendicular

to the lifting surface and a body side direction that points along the lifting surface in a

direction perpendicular to the body nose and body vertical. While the STT approach

relied on relative wind exerted against the vehicle body to generate aerodynamic force,

the BTT approach primarily relies on the lifting surface, which exhibits a much larger

reference area and force coefficient than the body. Therefore, the majority of the lift force

will be directed perpendicular to the lifting surface and the lift direction may be changed

111~~
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by changing the roll attitude of the vehicle. The remaining component of aerodynamic

force due to pressure exerted on areas of the vehicle body other than the lifting surfaces

is resolved as a sideslip force that acts in the side direction. Thus, the vehicle banks (or

rolls) about the roll axis in order to divert the lift force in a desired turning direction.

It is important to note that the definitions of body vertical direction and body side

direction are not applicable to the STT vehicle due to symmetry. For BTT vehicles, the

body roll angle, v, is used to defined the orientation of the body vertical direction relative

to the local vertical plane. While lift is often split up into a vertical lift component,

Lv, in the body vertical direction and a sideslip force component, Ls, in the body side

direction for BTT vehicles, it cannot defined as such for STT vehicles. The only analogous

definitions for an STT vehicle are the pitch channel and yaw channel directions. Figure

1-4 illustrates a typical BTT vehicle, as observed from the aft, for comparison to the

STT approach. In particular, the difference between the lift bank angle and the body roll

angle should be noted. While the lift bank angle describes the direction of the lift vector

relative to the vertical, the body roll angle describes the roll attitude of the vehicle body.

Notice that the STT and BTT control methods require different maneuvers to achieve

the desired turning. The STT control method must pitch and yaw the nose vector to

a desired position before the desired accelerations are obtained while BTT control can

simply roll without changing the nose vector to obtain the desired acceleration. However,

BTT control strategies suffer from increased complexity due to the coupling of the roll,

pitch, and yaw channels [10]. Therefore, a STT control model is used for the symmetric

reentry vehicle in this study.



VerticalIIPlane
II
I
I
I
I
I

L "

Velocity
Vector

Fuselage

Wing
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1.3 Mission Planning Considerations

Planning for the new rapid, long range mission requires a completely new set of tools

and approaches. The fundamental question for the mission planner to consider is where

to aim the launch vehicle such that the reentry vehicle can safely and accurately reach

its target while satisfying all necessary flight constraints. The answer to this question is

influenced by a variety of complex factors, including environmental perturbations, vehicle

dynamics and control authority, mission constraints, flight path constraints, and navi-

gational performance. A clear and concise method for depicting the vehicle capabilities

associated with each choice of aimpoint is desired. This thesis will discuss the concept of

an Aimpoint Map, which represents the locus of all points at the reentry interface that

can be reached by the launch vehicle and from which the reentry vehicle can reach the

target. The reentry interface is chosen in this problem to occur at an altitude of 400,000

feet, since the atmosphere first begins to have an effect on the vehicle motion below this

altitude. The goal of this thesis is to understand the scope of the Aimpoint Map and

investigate specific properties of the Aimpoint Map related to the vehicle maneuvering

capabilities.

The Aimpoint Map is defined as the collection of latitude (A) and longitude (p) points

at an altitude of 400,000 feet through which a boost-through-reentry trajectory can be

flown that satisfies all terminal and path constraints for both the launch and reentry

portions of flight. At each point (p,A) in the Aimpoint Map, there exists a collection

of velocity magnitude and flight path angle pairs (V - -y) that can both be obtained

from launch and used as valid reentry conditions for maneuvering to the target. Let the

space of all such V - -7 pairs at a given piercepoint in the Aimpoint Map be defined as the

Piercepoint V-'y Map for the given piercepoint. For all reentry points within the Aimpoint

Map, at least one V - -/ pair must overlap between the launch V - y pairs and the reentry

V - 7 pairs to ensure the validity of a boost-through-reentry trajectory that flied through

a particular (p,A) point. Some points in the Aimpoint Map may have many more V--y

pairs than other points, suggesting that these points are more robust to uncertainties in

the vehicle flight. Furthermore, given a chosen point in the Aimpoint Map and a chosen



V - y pair in the Piercepoint V--y Map, a footprint of reachable landing locations exists

which contains the target of interest. Undurti [1] demonstrated the computation of these

footprints for a variety of reentry vehicles in his work. Therefore, the work presented

here will focus on demonstration of the Aimpoint Map and the Piercepoint V-7 Map.

These concepts are illustrated in Figure 1-5. This goal of this thesis is to demonstrate

the properties of such mission planning maps for the new rapid, long range mission.
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Figure 1-5: Depiction Of Potential Trajectory Planning Concepts For The New Rapid,
Long Range Mission

1.4 Trajectory Optimization

Boost-through-reentry trajectory optimization is the primary method used to investigate

the complex mission planning concepts described in the previous section. A variety of

trajectory optimization tools exist today that exhibit different approaches to the opti-
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mization problem. This section will briefly describe the fundamental differences between

available approaches and explain which approach is best for solving this problem.

Trajectory optimization describes a variety of methods -and approaches for determining

a vehicle trajectory that optimizes a chosen performance index subject to a set of dynamic,

path, and boundary constraints. It is founded upon the principles of optimal control, in

which a set of controls is chosen to influence an evolving system state in some optimal

manner. Optimal control problems are particularly challenging optimization problems

because they almost always involve constraints in the form of differential equations. These

constraints require that the system state evolves according to some fundamental law of

motion over time. For the boost-through-reentry maneuvering mission described above,

these constraints ensure that the vehicle motion is governed by Newton's Second Law over

the entire flight.

The trajectory optimization problem can be approached in many ways. The desired

solution is one that is both optimal and feasible. Optimality asserts that the performance

index is at a minimum value while feasibility asserts that all constraints are satisfied.

Many different approaches are available for verifying both the optimality and feasibility

of an optimal control problem. Two main classifications of approaches to solving optimal

control problems exist today: direct methods and indirect methods [7].

Most complex optimal control problems are solved numerically using nonlinear pro-

gramming (NLP) principles. Both direct and indirect methods perform iterations of

Newton's methods to solve for a finite set of unknowns [7]. The difference between them

lies in the particular application of Newton's method. Indirect methods use Newton's

method to solve a multipoint boundary value problem (BVP) that is formulated using

Pontryagin's Minimum Principle and the Calculus of Variations. Any solution to the BVP

will satisfy the first-order optimality conditions, which are the necessary conditions de-

rived from the Calculus of Variations. In contrast, direct methods use Newton's method

to iteratively conduct a search for the solution that reduces the performance index at

each iteration until a minimum is converged upon [7]. At every Newton iteration, direct

methods must compute gradients in an effort to move in a direction that moves closer to

the minimum performance index. Thus, indirect methods seek to influence the perfor-



mance index indirectly through a set of derived necessary conditions while direct methods

perform iterations that directly influence the performance index at each time step [7].

The fundamental drawback to using indirect methods, as compared to direct meth-

ods, is that a new set of necessary conditions must be analytically derived for each new

optimization application. This can be difficult and time consuming for complicated dy-

namical systems, such as the vehicle investigated in this study. In addition, indirect

methods typically require better initial guesses than direct methods and have difficulty

solving problems with path inequality constraints [7]. However, as mentioned before,

solutions to indirect methods are guaranteed to satisfy first-order optimality conditions

and do not require any additional check on feasibility and optimality [7], whereas direct

methods typically do not provide a method for checking the optimality conditions. Di-

rect methods can also suffer from high computation costs and inaccuracies when analytic

gradients are not available. For very complicated optimization problems, such as the

problem considered in this study, gradients must be computed numerically using finite

difference approximations, representing a source of potential inaccuracies and increased

computation time.

Among direct and indirect methods, shooting methods and collocation methods are the

most popular. Direct and indirect variants exist for both shooting and collocation meth-

ods. Shooting methods approach the problem by solving an initial value problem within

each Newton iteration. Direct shooting propagates the trajectory to an end condition,

evaluates the constraints and performance index, and returns these values to the Newton

iterator for a search towards the minimum performance index that satisfies all flight con-

straints. Similarly, indirect shooting propagates the necessary conditions to the end state,

evaluates the constraint residuals, and iterates until the BVP is solved. Shooting meth-

ods suffer from high sensitivity to small perturbations early in the trajectory. Since these

methods iterate over values evaluated at the end of a propagation, small changes early

in the propagation can have very large, nonlinear effects at the terminal boundary. Ad-

ditionally, these methods are only reasonable for problems containing a small number of

variables since the finite difference approximations for the gradient are obtained through

a numerical integration of the trajectory [7]. If many gradients must be computed and



checked for each Newton iteration, the problem can become very time consuming. Many

commercial optimizers, such as POST, utilize the direct shooting approach for a variety

of problems while indirect shooting has primarily been used to solve very specialized cases

due to sensitivity issues [7].

Collocation methods solve the trajectory optimization problem by discretizing the tra-

jectory into a set of grid points, or nodes [7]. By discretizing the trajectory, collocation

methods transform the original trajectory optimization problem into a discrete NLP prob-

lem where the variables are the states and controls at each node point. At each node,

the trajectory states must be chosen such that they satisfy the differential equations gov-

erning the motion of the state, as well as other boundary and path constraints. This

approach differs significantly from the shooting method, which numerically integrates an

entire trajectory during each Newton iteration. The NLP approach requires no numerical

integration. Rather, a series of iterations are performed to choose the trajectory states

at the nodes that minimize the performance index. Indirect collocation seeks to satisfy

the dynamics of the BVP at each node while direct collocation seeks to satisfy the trajec-

tory dynamics at each node while iterating over the performance index. Both approaches

have the disadvantage of solving a NLP problem with a very large number of variables.

However, many direct collocation methods are able to increase computational efficiency

by exploiting the sparsity of the gradient matrices [7]. Unlike all of the other methods

mentioned, direct collocation methods have the distinct advantage of being able to solve

problems with path inequalities without needing to define portions of the trajectory where

each path constraint is active and inactive a priori [7].

The exact spacing of the nodes has been an active area of research in optimization

theory. It is advantageous to choose a spacing for the nodes that allows for the best

polynomial approximation of the trajectory states by values evaluated at the node points

[12]. Pseudospectral (PS) methods are direct collocation methods that choose the nodes to

be located at the Legendre-Gauss-Lobatto (LGL) points, which provide the optimal node

spacing for constructing Legendre polynomial approximations [6] [12]. Pseudospectral

methods are increasingly popular for numerically solving optimal control problems because

they offer an exponential convergence rate for the approximation of analytic functions [19].



For the optimal control problems addressed in this thesis, a direct collocation method

using Pseudospectral discretization will be used. This approach is chosen because the

problems in this thesis involve a variety of complex path and terminal constraints that

cannot be solved easily with other approaches. In addition, a variety of different metrics

will be optimized in these problems, which are readily achieved with direct methods using

a single formulation, but require many different formulations for indirect methods. Fur-

thermore, the LGL node spacing provides superior convergence properties [19]. DIDO,

a MATLAB application for solving smooth and nonsmooth hybrid optimal control prob-

lems using Pseudospectral methods, will be used to solve the optimization problems in

this thesis [6]. DIDO will numerically solve an optimal control problem involving a dy-

namic model of the vehicle and a formulation of the flight constraints. These models will

be developed in the coming chapters for application to DIDO.

1.5 Thesis Overview

The goal of this thesis is to investigate properties of potential mission planning concepts for

the new long-range, high-precision boost-through-reentry mission. Chapter 2 will develop

a set of relevant coordinate frames and parameters for describing the complex boost and

reentry motion of the vehicle relative to a rotating, spherical Earth. In chapter 3, a six

degrees-of-freedom (6DOF) vehicle model will be derived for governing the translational

and rotational motion of the vehicle in flight. Chapter 4 will discuss the formulation of

the optimal control problem, while chapter 5 and chapter 6 will discuss vehicle models

for boost and reentry. Finally, chapter 7 ties together the boost and reentry portions of

flight with the computation of a representative Aimpoint Map.
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Chapter 2

Coordinate Frames

This chapter will develop the framework for describing the motion of a manuevering

reentry vehicle moving at hypersonic speeds in the Earth's atmosphere. A variety of

coordinate frames will be developed to adequately describe the translational and rotational

motion of the vehicle including:

* Earth Centered Inertial Coordinate Frame (ECI)

* Earth Centered Earth Fixed Coordinate Frame (ECEF)

* Reference Plane Coordinate Frame (REF)

* Up-Downrange-Crossrange Coordinate Frame (UDC)

* Velocity Coordinate Frame (V)

* Non-Rolling Body Coordinate Frame (B)

The goal of this chapter is to develop a series of coordinate systems that define relevant

parameters for position, velocity, and attitude determination and exhibit uniform validity

for both endo-atmospheric and exo-atmospheric flight regimes.

2.1 Earth Centered Inertial (ECI) Coordinate Frame

The Earth Centered Inertial Coordinate Frame is an inertial reference frame fixed at the

center of the Earth. An Earth centered inertial frame can have many different orientations,



provided that it is fixed to the center of the Earth and non-rotating. A commonly used

inertial frame is the J2000 frame, a geocentric inertial coordinate frame that is defined

with reference to the Julian Epoch of January 1, 2000. The z-axis, 2i, points along the

Earth's rotation axis through the Geographic North Pole, defined as 90 degrees North

Latitude. The x-axis, RI, points in the direction of the Vernal Point, defined as the unit

vector pointing from the center of the Earth to the Sun location during the Vernal Equinox

(referenced to the Julian Epoch). The third axis, yI = 2I x RI, completes the right-handed

coordinate system. By definition, the I1 - YI plane is aligned with the Earth's equator,

defined as 0 degrees latitude.

Z,

X,

Equator

VI

Figure 2-1: Earth Centered Inertial Coordinate Frame

The ECI frame translates with the Earth as it revolves around the Sun, but does not

rotate with the Earth. The position and velocity of the vehicle in this frame, therefore,

are inertial and are defined relative to a fixed orientation in space. Since the work in

this study is concerned with motion relative to the Earth's surface, additional reference

frames are required to adequately define Earth-relative motion with continually changing

local vertical and local horizontal planes.

-I



2.2 Earth Centered Earth Fixed (ECEF) Coordinate

Frame

The Earth Centered Earth Fixed Coordinate Frame is an Earth-fixed rotating frame that

is positioned at the center of the Earth and rotates about the Earth's rotation axis.

The Earth's rotation axis is assumed to rotate with a constant rotation rate, QE, of

7.292115 x 10- 5 radians per second, neglecting precession and nutation effects. The x-

axis, kE, points to 0 degrees latitude, 0 degrees longitude at all times. The z-axis, ZE,

is aligned with the Earth's rotation axis and the y-axis, YE = 2E X kE, completes the

right-handed coordinate system. The X^E - YE plane defines the Earth Equatorial Plane

with ZE pointing perpendicular to the Equator and through the Geographic North Pole.

At any time t, the transformation from the ECI frame to the ECEF frame involves a

rotation of QE(t- tI), where t 1 is the reference time when the -I1 and XE axes were last

aligned.

Zl, ZE
WE

X ~. Equator

QE(t-tJ) E

XE |Y

Figure 2-2: Earth Centered Earth Fixed (ECEF) Frame

The transformation matrix from ECI to ECEF is as follows:



cosQE(t - t1) in E (t - ) 0

T = - sin E(t - t) COS QE(t--t ) 0

0 0 1

The angular velocity vector of the ECEF frame with respect to the ECI frame is

EI EZI = QEZE

2.3 Reference Plane (REF) Coordinate Frame

The Reference Plane Coordinate Frame is an Earth-fixed, rotating frame positioned at the

center of the Earth with axes positioned along a chosen plane of reference passing through

the center of the Earth. It rotates with the same rotation rate as the ECEF frame, and

therefore is observed to be fixed relative to the ECEF frame. The purpose of the Reference

Plane Coordinate Frame is to provide a frame that measures vehicle motion relative to

a chosen plane of reference. In this frame, the Equator, used as a plane of reference in

the ECEF frame, is replaced by a new plane of reference. This plane of reference can be

defined by an initial vehicle position and heading or by a plane containing a launch point

and a landing point. Ikawa [2] derives equations of motion for a vehicle traveling relative

to a plane of reference defined by the initial heading of the vehicle. In this study, the plane

of reference will be defined as the plane containing both the initial location and the final

destination. The use of such a coordinate frame can be particularly advantageous when

when attempting to measure maximum downrange and maximum crossrange capabilities

from a plane of interest. In addition, the use of a reference plane can avoid singularities

that occur when angular values (e.g. latitude) approach 90 degrees. The new variables

defining the vehicle position in this frame will be defined as relative longitude, p, and

relative latitude, A, as measured relative to the plane of reference and the initial vehicle

location.

The axes are transformed from the ECEF frame such that the x and y axes lie in a
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Figure 2-3: Reference (REF) Coordinate Frame

chosen plane of reference and the z axis points perpendicular to this plane. The x-axis,

XR, points towards the initial vehicle position, while the z-axis, ZR, is directed normal

to the plane of reference and the y-axis, YR = R x ^R, completes the right-handed

coordinate system.

The initial vehicle position and plane of reference can be described in terms of the

three angles (o, io, and 00. The first angle, (o, describes the nodal point shift of the

plane of reference, defined as the positive angle measured counter-clockwise along the

Equator from the RE axis to the nodal point of the reference plane, iN. The unit direction

of nodal point is defined as

1N - ZE X ZR

can then be computed as the angle between XE and i
|2E X ^Rj

4o can then be computed as the angle between X-E and iN:

11 1 11 11_ 1 MhK_



4Io = cos - '
IN " XE

JiNJI^E1E

The second angle, io, defines the inclination of the plane of reference with respect to

the Equator. This is defined mathematically as

o = COS1 ZR ZE
so = cos Z

The third angle, 0o, defines the initial vehicle angular position along the plane of

reference as measured from the node, iN Similarly, 0o can be defined mathematically as:

0  O-1 IN 'XR
0o = cos-

iN HXR

When io, 00, and 1o are equal to zero, the plane of reference becomes the Equator and

p and A represent the longitude and latitude location of a point on the Earth. With the

use of the REF coordinate frame, the Earth-relative vehicle position can now be expressed

relative to any arbitrary reference point and reference plane.

The REF frame can be obtained from the ECEF coordinate frame through a series of

three rotations as follows:

1. Rotation about the iE axis by (o.

2. Rotation about the iN vector by io.

3. Rotation about the 2R axis by 00.

Thus, the transformation matrix from ECEF coordinates to REF coordinates is defined

cos 00 sin 00 0

-sin0 0 cos0 0 0

0 0 1

0 0

cos io sin io

- sinio cos io

cos Qo sin Q0  0

-sin o cos o 0

0 0 1
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cos 0o cos Qo - sin 0o cos io sin wo cos 0o sin wo + sin Oo cos io cos wo sin 0o sin io

TR= - sin 00 cos 0 - os0 Cos sin - sin 00 sin wo + cos 0o cos io cos wo cos 0 sin io

sin io sin wo - sin io cos wo cos io

The REF frame and the ECEF frame remain fixed relative to one another as the

Earth rotates. Thus, the reference frame must rotate in such a way that the relative shift

angles between the ECEF and REF frame (4Io, io, 0o) remain constant over all time. This

requirement will ensure that the plane of reference rotates with the surface of the Earth.

Relative to the ECI frame, the REF frame must rotate about all three axes to keep pace

with the Earth's rotation. The angular velocity vector of the REF frame relative to the

ECI frame is given below in REF coordinates.

RI, = EZE = QEsin io sin OOR + QEsin io cos OR + E COS i0ZR (2.1)

2.4 Up-Downrange-Crossrange (UDC) Coordinate Frame

The Up-Downrange-Crossrange Coordinate Frame is used to describe the vehicle's motion

relative to a local horizontal and local vertical plane. Since the equations of motion

are defined in spherical coordinates, the local horizontal plane will be tangent to a unit

sphere at every instant in time and the local vertical plane will be perpendicular to this

horizontal plane along a given heading direction. Although an ellipsoidal-Earth model

will be introduced in chapter 5 to compute accurate altitude and latitude information

relative to an oblate Earth, the coordinate frames and equations of motion will remain

defined in spherical coordinates for the entirety of this study.

The UDC frame is positioned at the center of mass of the vehicle with the x-axis,

cU, pointing radially outward away from the center of the Earth. The y-axis, Yu, and

the z-axis, iu, define a local horizontal plane that is normal to the radial direction at

each point in time. Within the horizontal plane, Yu defines the downrange direction and

ru defines the crossrange direction with respect to the plane of reference defined in the



previous section.

Xu

Zu

r
Irl

- RXXU

lI-RXRUI

= xY u

yu can be interpreted as the Reference East direction and zu can be interpreted as

the Reference North direction, as determined by the chosen plane of reference. When io

and 4o are equal to zero, the chosen plane of reference is the Equator and the UDC frame

reduces to the Up-East-North (UEN) frame in which Yu points East and zu points North

at each moment in time.

Z

Initial Vehide
Position

Vehide Position

XR

Plane of
Reference

Figure 2-4: Up-Downrange-Crossrange Coordinate Frame

The UDC coordinate frame can be obtained from the REF coordinate frame by two

rotations.

1. A rotation about the ZR axis by an angle p

2. A rotation about the vu axis by an angle -A

--

XU



The angles p and A, along with the radial distance r, represent the polar coordinates

of the vehicle position in the REF frame. The angle p represents the downrange angular

position (relative longitude) of the vehicle along the plane of reference and the angle A

represents the crossrange angular position (relative latitude) from the plane of reference.

The corresponding rotation matrix for a transformation from REF coordinates to UDC

coordinates is given by

cosA 0 sinA cos p sin p 0

TU  0 1 0 -sin p cos p 0

-sinA 0 cosA 0 0 1

cos A cos p cos A sin p sin A

T = - sin p cos p 0

-sinAcos/p -sinAsin p cosA

The UDC frame must rotate as p and A vary in order to keep the ^9u and iu axes in

the instantaneous local horizontal frame and ku in the instantaneous vertical direction at

each instant in time. The angular velocity vector of the UDC frame relative to the REF

frame can be expressed as

Wu,_ = Z~R - ,-u = Xsin piR- Acos PR + /iZR (2.2)

2.5 Velocity (V) Coordinate Frame

The Velocity Coordinate Frame is a non-inertial frame positioned at the center of mass of

the vehicle that follows the motion of the Earth-relative velocity vector, VE, over time.

The x-axis, kcv, is directed along the velocity vector while the y-axis, Yv, points in the

direction perpendicular to both the -? and VE vectors. The z-axis, zv, completes the

right-handed coordinate system and lies in a vertical plane, along with iv, that passes

through the center of the Earth.



xv

Yv

zv

IVEI

xUXxV

IXu XXV I
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Figure 2-5 depicts the orientation of the V frame axes relative to the UDC frame axes.

Notice that the Yv axis lies in the local horizontal plane, an angle V) away from the 2u

axis, while the Zv axis lies in a local vertical plane, an angle y away from ku and 90

degrees away from Iv. The local vertical and horizontal planes are illustrated in Figure

2-6.

1 ZR

Initial Vehide
Position

Vehide Heading
Direction

i> YR

Vehide Position

X,

Figure 2-5: Velocity Frame

The velocity frame is obtained from the UDC frame by a series of four rotations.

1. A rotation about the ^u axis by j

2. A rotation about the radial direction, r , by 2

3. A rotation about the radial direction, Ir, by angle /

- .......................
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Figure 2-6: Representation of Velocity Vertical Frame and Local Horizontal Frame

4. A rotation about the v axis by angle --y

The first two rotations serve to simply switch the axes so that the z-axis points up, the

x-axis points downrange, and the y-axis points crossrange. The first angle of rotation, 4,
is the velocity heading angle that defines the horizontal velocity direction, Vh, measured

positive counter-clockwise from the Relative East, Yu. This angle lies in the Yu - Zu

plane and defines the vehicle heading direction at each instant in time. The second angle

of rotation, y, is the flight path angle that defines the VE inclination with respect to the

local horizontal plane. This angle is measured as a positive rotation about the -yv axis.

With this definition, y is measured positive when VE is above the local horizontal plane

and negative when it is below the local horizontal plane.

The transformation matrix from the UDC frame to the V frame can be expressed as

cos -y

0

- sin 7,

sin 'y

0

cos ,

cos V)

- sin V)

0

sin 4

cos '

0

cos 72

- sin

0

sin -
2

cos

0

0

0

1

cos 7

0

sin r2

- sin 2

0

Cos 22



sin 7 cos y cos cos y sin4

TVDc = 0 - sin cos 0

cosy -sinycos4 -sinysin4

The rotation of the velocity frame must align the instantaneous Xv axis with the VE

vector at each instant in time. Thus, the rotation of the velocity frame with respect to

the UDC frame will be governed by the rates of change of the velocity unit vector, 'y and

WV- = fu - 'v = ~gu + sin Oyu - ' cos O-u

2.6 Non-Rolling Body (B) Coordinate Frame

The Non-Rolling Body Coordinate Frame is a non-inertial frame that is positioned at the

center of mass of the vehicle with the x-axis, xB, fixed to the body nose. The purpose of

the body frame is to define the nose attitude of the vehicle at each point in time. The

x-axis, XB, points along the nose of the vehicle, while the y-axis, YB, and the z-axis, ZB,

lie perpendicular to XB. Figure 2-7 illustrates the orientation of these axes relative to the

V frame axes.

Typically in reentry analysis, a body-fixed coordinate frame is used in which all three

axes are fixed to the vehicle body. As mentioned in Section 1.2, the vehicle considered

in this study uses a skid-to-turn (STT) control approach in which the roll orientation

of the vehicle has negligible effect on its manuevering capabilities [10]. Therefore, the

particular orientation of the YB and AB axes at any instant in time is inconsequential to

the determination of the vehicle trajectory. The axes fB and %B can be aligned in any

direction such that they are both perpendicular to kB and to each other. In contrast, for

bank-to-turn (BTT) vehicles, the YB and zB axes define the body side and body vertical

directions, respectively, and must rotate about the X-B axis as the vehicle rolls. For the

formulation presented here, ^B and ZB axes are not required to roll with the vehicle body.
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The YB and iB axes are defined such that the transformation between the V frame and

the B frame can be expressed as a yaw about the iv axis followed by a pitch about the

Vk = YB axis.

Thus, the vehicle body attitude, ~B, can be defined relative to the V frame by

1. A yaw about the zv axis by angle 5

2. A pitch about the :B axis by angle -0

The ¢ and 0 angles mentioned above represent the position of the kB
-. +

VE. Let 4 be defined as the nose yaw angle and 0 as the nose pitch angle

to the velocity vector.

The transformation matrix from V frame coordinates and B frame

defined as

cos 0

0

- sin 0

sin 0

0

cos 0

cos 4

- sin

0

axis relative to

defined relative

coordinates is

sin 4

cos 4

0

cos 0 cos 4

- sin 4

- sin 0 cos c

cos 0 sin qS

cos 0

- sin 0 sin

The YB axis will lie in the iv - :v plane, directed at an angle 4 counter-clockwise

from S:v. Likewise, the iB axis will lie in the kB - 2v plane, directed at an angle 0

counter-clockwise from 2v.

The rotation of the B frame relative to the V frame will depend on the attitude

dynamics of the vehicle. Since the relative attitude is defined here in terms of 4 and 0,

the relative rotation will depend on q and 0.

wB_, = 2v - OYB = 0 sin i v - 8 cos 4Sv + 2v

sin 0

0

cos 0

T BV

(2.3)

TBV



2.6.1 Aerodynamic Angles

In addition to defining attitude angles, q and 6, it is important to define the aerodynamic

angles a and a. a is defined as the angle of attack and represents the angle between

the vehicle nose attitude, XB, and the vehicle velocity, xv. This can be respresented

mathematically as

Cos a = XB " iV

ZB

(2.4)

Zv

XB

SYB

Yv

xv

Figure 2-7: Body Coordinate Frame

Figure 2-7 illustrates the relationships between the angles 0, 0, and a. The angles 0

and q are intermediate angles measured along perpendicular planes that define the body

attitude relative to the velocity vector, while the angle a is a direct angle between iv

and xB measured in the plane defined by Rv and XB.

The expression for XB in the velocity coordinate system, (XB)v, can be computed

using the transformation matrix, TB.

- -- - -~



(XB)V = TgxB = T T~B = COs 0 cos Ov + cos 0 sin 5Sv + sin O8v (2.5)

Therefore, by substituting 2.5 into 2.4, an expression for the angle of attack in terms

of the nose yaw and nose pitch angles can be obtained.

cos a = cos 0 cos (2.6)

By using a trigonometric identity, the sine of a can also be expressed.

sina = 1 - cos2  = 1 - cos 2 0 cos 2  (2.7)

a is defined as the lift bank angle, which describes the direction of the lift vector relative

to the velocity vertical plane, illustrated in Figure 2-8. Since the vehicle considered in

this study uses a skid-to-steer control approach, the lift vector will always lie in the iv -

RB plane, the plane that the vehicle attitude makes with the velocity vector. The angle

between this plane and the velocity vertical plane is defined as o. Thus, the orientation

of the vehicle relative to the velocity vector defines a.

The velocity vertical plane is defined by the normal vector

x:v x zv
nv v x v -Yv

Likewise, the lift plane is defined as the plane which contains both Rv and iB with

normal vector

iL = V X B (2.8)

Therefore, using 2.5 with 2.8, the normal vector to the lift plane can be expressed in

the velocity coordinate frame.

- sin OYv + cos 0 sin Ozv
niL = (2.9)

sin 2 0 + cos 2 0 sin 2  (

o is then defined as the angle between the lift plane normal vector, fiL and the vertical
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Figure 2-8: Relationship Between Sigma and Alpha

velocity plane normal vector, fiv.

sin 0
cos a = iL fiv = L ' -YV =

/sin 2 9 + cos 2 9 sin 2
(2.10)

Furthermore, Equation 2.7 can be related to 2.10 through a series of trigonometric

substitutions. First, cos2 can be replaced by the identity 1 - sin 2 .

sin a = 1 - cos 2 0 (1 - sin 2 = V1 - Cos 2 0 + Cos 2 0 sin2

Next, the 1 - cos2 0 term can be replaced by sin2 9.

sin a = Vsin 2 + cos 2 0 in2 (2.12)

By comparing 2.12 with 2.10, it can be seen that sin a is equivalent to the denominator

of cos a.

(2.11)



sin 0
COS = --

sin a
(2.13)

Furthermore, by examining Equation 2.5, it can be observed that sin a is equivalent

to the component of kB projected onto the Yv - Zv plane. This component of the XB unit

vector lies along the line where the lift plane intersects the v - zv plane, equivalent to

the lift vector direction. Similarly, cos a is the component of XB projected along the kv

axis, equivalent to the velocity vector direction. This relationship is illustrated in Figure

2-9.

C)

COS Ga xv

Figure 2-9: Illustration Of The Lift Plane

Thus, the lift unit vector, iL, can be described as the normalized component of xB in

the Sv - Zv plane.

(2.14)= cos 0 sin 5Sv + sin 02v
sin a

The relationship between iL and a is shown in Figure 2-10. Notice that since the lift

vector is defined as perpendicular to the velocity vector, it will always lie in the Stv - zv

plane and a will be the angle between zv and iL

Thus, from Equation 2.14 additional trigonometric properties of a can be derived.

. .. .....
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Figure 2-10: Relationship Between Sigma And The Lift Vector

cos 0 sin q
sin o =

sin a

cos 0 sin q
tan sin =

sin 0

(2.15)

(2.16)

Finally, the rotation rate of the body frame with respect to the velocity frame can be

expressed in terms of the aerodynamic angles. The rotation of the body frame is affected

by the rate of change of a as well as the rate of change of o. & changes the orientation of

XB within the lift plane, while & changes the orientation of the lift plane with respect to

the velocity vertical plane.

_V = &fiL - XV (2.17)

By substituting Equation 2.12 into Equation 2.9, fiL can be expressed as

- sin OSv + cos 0 sin iv
sin a

(2.18)

Futhermore, from Equation 2.10 and Equation 2.15, the following relationships can be

substituted into Equation 2.18.



sin 0 = cos a sin a

cos sin¢ = sinasina

Thus, by substituting the above identities into Equation 2.18, fiL can be expressed

entirely in terms of the aerodynamic angles, a and a.

- cos a sin av + sin a sin av (2.19)
nL = (2.19)sin a

This can then be substituted into Equation 2.17 to obtain the angular velocity vector

of the body frame with respect to the velocity frame in terms of the aerodynamic angles.

This is equivalent to Equation 2.3, now expressed in terms of the aerodynamic angles and

their rates.

w,_, = -B dv - & cos 07v + & sin 0cv

2.7 Summary

In this chapter, a set of coordinate frames have been defined for position, velocity, and

attitude. The ECEF coordinate frame provides a convenient reference for determining

the vehicle position relative to the rotating Earth. Furthermore, the REF coordinate

frame provides the capability for position determination relative to a plane of reference

other than the Equator. This formulation will allow simple determination of downrange,

crossrange, and radial movement relative to the chosen reference frame. The position

vector of the vehicle over time can be expressed in the REF frame in terms of the angles

defined above and the radial distance from the center of the Earth, r.

(--f)R = riu = r cos A cos p I + r cos A sin P/1 R + r sin AZR (2.20)

The UDC coordinate frame provides convenient local vertical and local horizontal

reference planes that can readily define the Earth-relative velocity vector, VE, through



use of a heading angle, 'b, and a flight path angle, 7.

VE U = VEV = VEsin -yu + VE COs y cos7 u + VEcos Ysin U~ (2.21)

Finally, the Velocity Coordinate Frame provides a reference for determination of the

vehicle attitude either in terms of the nose pitch and yaw angles, 0 and q, or the aerody-

namic angles, a and a, all defined relative to VE.

(iB)V = cos 0 Cos V + cos 0 ssi V + sin 0 v

(kB)V = cos alv + sin u sin av + cos a sin acv

The body nose axis is defined using a Non-Rolling Body Coordinate Frame, which has

an x-axis, 5kB, fixed to the vehicle axis of symmetry and perpendicular ^B and AB axes

that do not roll with the vehicle body for simplicity. A non-rolling body frame is valid

for vehicles using the skid-to-turn control approach due to symmetry about the kB axis.

The expressions shown here for position, velocity, and attitude determination can

be transformed to any of the other coordinate frames using the transformation matrices

defined in the preceding sections.



Chapter 3

Equations of Motion

In this chapter, a single set of 6DOF equations of motion will be defined to describe both

the endo-atmospheric and exo-atmospheric motion of a flight vehicle over a rotating,

spherical Earth. The motion of the vehicle will be described by a set of 10 states in total,

with 6 states defining the translational motion of the vehicle and 4 states defining the

rotational motion of the vehicle about its center of gravity.

3.1 Translational Equations of Motion

The translational motion of the vehicle will be described by 6 states:

x = (3.1)
VE

As defined in chapter 2, the vehicle position is determined by the radial distance, r,

relative longitude, p, and relative latitude, A. Likewise, the vehicle velocity is determined

by the Earth-relative velocity magnitude, VE, flight path angle, y, and heading angle, 0.

The translational dynamics of the vehicle will be governed by nonlinear expressions
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Figure 3-1: Position And Velocity States Of The 6DOF System

for the rates of change of the six states in terms of the states, x, controls, u, and time t.

These expressions will be derived in full in this section.

= f (x, u, t) (3.2)

A careful discussion of the relationships between the states, state dynamics (rates),

and the coordinate frames is warranted here. At every instant in time, the states are

defined by the instantaneous 7 and VE vectors as well as the instantaneous orientations

of the coordinate frames in which they are defined. For example, the value of 4 (t) at any

arbitrary time t can be obtained by examining the instantaneous orientation of VE relative

to the instantaneous UDC frame at time t. However, the state dynamics are dependent

on not only the observed rates of change of 7 and VE, but also on the rotation rates of

-- It



the coordinate frames in which they are observed to be changing. Continuing the example

above, b (t) not only depends on the rate of change of 0 as seen by an observer in the UDC

frame, but also on the rotation rate of the UDC frame over time. In other words, since

4' is defined as the velocity heading angle relative to the UDC frame, its time derivative

must account for both the VE motion within the UDC frame as well as the UDC frame

rotation over time relative to the inertial frame. It is important to clearly define the frame

in which a vector is observed to be changing. Therefore, the time derivative of a vector,

5, as observed in a frame A will be notated as follows.

dtA

It should be noted that the time derivative of a vector as observed in one frame is not

equivalent to the time derivative of a vector as observed in a second frame. For example,

VEl, as seen by an observer in the UDC frame is not equivalent to EIR as seen by an

observer in the REF frame since the UDC frame is rotating relative to the REF frame.

While the instantaneous position and velocity vectors may be freely expressed in any of

the defined coordinate frames and still represent the same vectors, the vector rates over

time will have different representations by observers in different frames. Therefore, the

effect of coordinate frame rotation rates on the state dynamics will be explored in the

derivation of the state rates.

The time derivative of the position vector, -- , as well as the time derivative of the

Earth-relative velocity vector, 7 E, as observed in various frames, can be used to extract

expressions for the rates of the state variables. For notational purposes, VI will be defined

as the derivative of the position vector as seen by an observer in the ECI (inertial) frame,

while VE, the Earth-relative velocity vector, is equivalent to the derivative of the position

vector as seen by an observer in the REF frame (Earth rotating).

VE =



3.1.1 Position Equations of Motion

In order to obtain the rates of the position variables (r, p, A), the time derivative of the

position vector is taken. Suppose that the position vector is expressed in an arbitrary

rotating frame, frame A, that rotates relative to an inertial frame, frame B, with rotation

rate w A_B . Let frame A have axes i, 3, and k and frame B have axes I, J, and K.

Figure 3-2: Illustration Of Relationship Between Frame A And Frame B

The rate of change of the position vector as observed by frame B is obtained by

differentiating r, as shown in Equation 3.4.

r = ri + rj + rk

, = = xi+ryj+zk+rxi+ryj+rzk

= A+rx1 +ryj+rz k

(3.3)

(3.4)

--



In Equation 3.4, the first three terms on the right hand side represent the motion

of the r vector observed from within the rotating frame A, assuming all axes are fixed,

while the latter three terms represent the motion of the coordinate frame axes due to the

rotation of frame A relative to frame B. As shown in Vinh [5], the rates of change of a

rotating frame's axes are given by Poisson's formulas.

Sd-t A-B Xi (3.5)
4 dj

J -d A-B 
j  (3.6)

dk
k = dt A-B x k (3.7)

dt A-B

By substituting these expressions into Equation 3.4, the following expression is ob-

tained for transforming the time derivative of a vector from frame A, which is rotating

with relative rate WA-B, to frame B.

r|, = fiA +WA-B x r (3.8)

In the expression above, the E A term represents the rate of change of vector r as

observed within frame A, assuming all axes are fixed, and is equivalent to the first three

terms on the right hand side of Equation 3.4. The remainder of the expression accounts

for the additional motion due to the frame rotation that will be seen by an observer in

frame B. In the case at hand, frame A will be chosen as the UDC frame and frame B will

be chosen as the REF frame in order to express the position vector rate of change relative

to the REF coordinate frame, since this expression will contain f/ and A. The expressions

below show the relationships between the rates of change as observed in the two frames.

(r)u = rku (3.9)

rK, = r~vi (3.10)



k, - xU + r(3.11)

= Xu + r (WR X XU) (3.12)

= r , + w,_R x r (3.13)

Some discussion is helpful for differentiating the physical meaning of r R and r ,. As

mentioned above, , R describes the motion of the position vector relative to a reference

frame that is rotating with the Earth's surface (REF frame) while f I, provides the motion

of the position vector relative to the rotating UDC frame, which is rotating with the

local horizontal. Thus, i, only expresses the position change that occurs relative to

the changing local vertical and local horizontal planes. Since the position vector is always

defined to point along the x-axis in the UDC frame, ru only expresses the position motion

along the xu axis, while the remainder of the position motion is assumed by the rotation

of the UDC frame. The observed position rate in the REF frame, R,, contains both

contributions to the position motion and is equivalent to the Earth-relative velocity vector.

Similarly, if the observed position rate in the ECI frame were desired, it would consist

of a contribution from r, R and a contribution from the rotation rate of the REF frame

relative to ECI.

As shown in Equation 2.2, the rotation of the UDC frame relative to the REF frame

can be expressed in UDC coordinates as

WU , = R - A U = f sin A Xu - A -u + f cos A Zu

Thus, by taking the cross product given in Equation 3.13, the rate of change of -- due

to the rotation of the UDC axes is given by

w,_R x r = r~ cos u + rA u (3.14)

By substituting Equation 3.14 into Equation 3.13, an expression for the position vector

......... ...... --- ...... ..



rate of change can be obtained.

i 1R = VE = Tj U + r cos A yT + ru (3.15)

By comparing Equation 3.15 to the expression derived in Equation 2.21 for VE, the

equations of motion for the vehicle position are obtained.

i = VE sin y (3.16)

VE COS 3; COSS= coscos (3.17)
r cos A

VE cos Y sin (3.18)
r

In the above equations, VE represents the Earth-relative velocity magnitude, y and V

represent the flight path angle and heading angle as defined in section 2.5, fP and A are

the relative longitude and latitude as defined in section 2.4, and r represents the distance

from the center of the Earth to the vehicle. These equations define the motion of the

vehicle in terms of position altitude, downrange position and crossrange position from the

defined plane of reference.

3.1.2 Velocity Equations of Motion

Next, the equations of motion for the velocity vector will be defined. Fundamentally, the

motion of the vehicle must obey Newton's Second Law. Recall that the position vector

rate of change as observed in the ECI frame is denoted as VI. This is equivalent to the

velocity vector in the inertial frame. Thus, Newton's Second Law is given below.

ni', = mVlI1 = F (3.19)

The right-hand side of Equation 3.19 represents all of the external forces acting in-

ertially on the vehicle, including gravitational, propulsive, and aerodynamic forces. The

goal is to extract expressions for the velocity parameter rates of change (V,/,4) from the

governing dynamics of the vehicle. The first step is to differentiate Equation 3.8 with



respect to time to obtain an expression for the inertial acceleration of the vehicle in terms

of the frame rotation rates.

r d = A +w B xr) A - B  A A-B

= (fIA + W A-B xr+w -B X A) A- X A + A-B X A-B xr)

= rFA +-A-B x r + 2wA-B X A+ WA-B x ( A-B x r) (3.20)

In this study, Equation 3.20 will only be applied to frames that are rotating with the

Earth's rotation rate, QE. Since the rotation rate of the Earth is assumed to be constant

in this study, cA-B = 0 and the second term in Equation 3.20 can be neglected. In

addition, 1 A represents the velocity of the vehicle, VA, as observed in the rotating frame,

A. Thus, the expression for the inertial acceleration, B,, is given in terms of the observed

rates of change in a rotating frame and the frame rotation rate.

f B = FA + 2wA-B X VA + WA-B X wA-B X r (3.21)

The second term on the right hand side in Equation 3.21 is defined as the Coriolis

acceleration due to the vehicle moving with a velocity VA within the rotating A frame.

Likewise, the third term on the right hand side represents the centrifugal accleration which

results from the position vector being offset from the axis of rotation of the A frame.

For the development of the velocity equations of motion, the inertial acceleration must

be related to the velocity flight angles, so the B frame will represent the ECI frame and

the A frame will represent the REF frame. Therefore, the expression given in Equation

3.19 for inertial acceleration, fB = , can be substituted into Equation 3.21. Thus, a

dynamical expression governed by Newton's 2nd Law is created to represent the velocity

vector motion within the REF rotating frame.



rI R = VE R F - 2 _R-I x VE - WRI x (w, x r) (3.22)

Examining Equation 3.22, it should be noted that the velocity and position vectors, as

well as their derivatives, are all expressed relative to the rotating frame, while the forces

acting on the vehicle are expressed inertially. The forces can also be resolved at each

instant in time along the instantaneous axes of any of the coordinate frames derived in

chapter 2.

Returning to the pursuit of the velocity rates, it is possible to incorporate a third

rotating frame into Equation 3.22. The reason for this is that the velocity angles (7, 4b)

are expressed relative to the UDC frame, and it would be convenient to relate the velocity

rate in the UDC frame directly with the inertial acceleration to avoid extra computation

later. Therefore, using the expression for transferring derivatives between rotating frames

in Equation 3.8, the left hand side of Equation 3.22 can be expressed as follows.

VE R = VE a + WU-R x VE (3.23)

Thus, by substituting in the expression above and moving the proper terms to the

right side, Equation 3.22 becomes

VE (2 R-I + aR) x VE- R- X WR-, xr (3.24)

The objective is to derive equations of motion for V, 7, and 7P, so the first step will be

to derive an expression for the left side of Equation 3.24 in terms of V, i, and <. Using

the expression for transferring derivatives between rotating frames in Equation 3.8, the

velocity rate observed in the UDC frame can be expressed in terms of the velocity rate

observed in the V frame and the rotation rate of the V frame relative to the UDC frame.

VE1 = VE + Wvu X VE (3.25)

The velocity rate observed in the V frame is simple since the x-axis points in the

velocity vector direction. An observer in this frame would observe the velocity changing



with rate along this axis. The rotation rate of the V frame relative to the UDC frame

is given by Equation 2.5. By using T V , it can be expressed in V frame coordinates.

(WV_- ) = sin 7v - Yv + cos7 v (3.26)

By substituting into Equation 3.25 and performing the cross product, an expression

is obtained for the left side of Equation 3.24.

0

+ VE Cos

VEK

= VE V + VE cos -y v + VE V

The rotation rate of the UDC frame with respect to the REF frame is given by Equa-

tion 2.2 in REF coordinates.

coordinates, as shown below.

Using T U , the rotation rate can be transformed to UDC

(wR) = fsin A:u - -Au + /cos A-u (3.28)

In the expression above, t and A are given by the position equations of motion in

Equations 3.17 and 3.18.

Similarly, Equation 2.1 gives the rotation rate of the REF frame with respect to the

ECI frame, which can also be transformed to UDC coordinates using TU.

(WR- I) U
= E (cos p coS A sin 0o sin io + sin p cos A cos 0o sin io + sin A cos io) k-u

+QE (- sin t sin 0 sin io + cos p cos 0o sin io) Yu

+QE (- Cos [t sin A sin 0 sin io - sin pt sin A cos 00 sin io + cos A cos io) ZU

(3.29)

Let the ku, Yu, and iu components of C,_ I given in Equation 3.29 be denoted as wl,

w2 , and w3 , respectively.

VTE

0

0

(3.27)iTEIU



w1 = E (COS - cos A ssi o sin io+ sin [ cos A cosO sino + sin A cos io)

W2 = QE (- sinpl sin 00 sino + Cos c COS 00 Sinll o)

W3 = QE (- cos p sin A sin 00 sin 0o - sin p sin A cos 00 sin io + cos A cos o0)

The rotation rates in the Coriolis acceleration term of Equation

combined and transformed to V frame coordinates.

3.24 can now be

2w R_ + WU-R= T V (w01 + sin A u + U 3 + COs A ,u)

=(2wl + f sin A) sin 7 + (2w 2 - A ) cos y cos + (2W3 + / cos A) cos Y sin O:iv

- (2w2 - ) sin ~ + (2W3 + t cos A) cos 4ybv

+ (2wl + f sin A) cos y - (2w 2 - ) sin cos - (2W3 + t cos A) sin 7 sin 0iv

(3.30)

Thus, the Coriolis term in Equation 3.24 can be obtained in V frame coordinates by

taking the cross product of the rotation rates shown above with the velocity vector.

(2w_ I + w R) VEXV =

VE ((2w 1 + f sin A) cos' - (2w 2 - X) sin cos 7 - (2w 3 + / cos A) sin -y sin i) sv
+VE ((2w2 -) sin V - (2w 3 + ftcos) cos ) 2V

(3.31)

As observed above, the Coriolis accleration acts only in directions perpendicular to

the velocity vector. This confirms the fact that the Coriolis acceleration generated by

the rotating frames applies corrections to the direction of the velocity vector but does



not affect the magnitude of the velocity. This acceleration has contributions from two

sources: the rotation of the REF frame relative to ECI and the rotation of the UDC

frame relative to the REF frame. The contributions from the first source are in terms of

wI, w2 , and w3 while the contributions from the second source are in terms of niu and A.

The contributions from the second source can be simplified by substituting the position

rates (Equations 3.16-3.18) into the expressions shown in 3.31.

First, the position rate terms in the Yv component can be simplified by replacing /

and A and manipulating the new expression.

(sin A cos y - cos A sin 7 sin 0) + A sin 7 cos VE = C COS ta A
r

Similarly, the same operation can be performed for the position rate terms in the zv

component.

-Asin - fcoscoso VE COS
r

Next, the third term on the right side of Equation 3.24 can be expressed in V frame

coordinates by taking the cross products then transforming from UDC coordinates to V

coordinates using T V .

T V (WR x (w_ x r)) =r (-w -w) siny + rw1w2 cos ' cos TrwI3 cos Y sin kv

-rwlw 2 sin 4 + rwlw3 cos yv

+r (-w - W3) COS Y - 1  sin cos - - rw1w 3 siny sin iv

(3.32)

The next step is to incorporate the external forces acting on the vehicle into Equation

3.24. It is most convenient to sum the external forces along the velocity frame axes

since many of the aerodynamic forces act along these axes. External forces acting on



the vehicle include lift (L) and drag (D) aerodynamic forces, gravity force, and thrust

(T) force provided by the launch vehicle. Using common convention, the drag force acts

opposite the velocity vector (-Dkv), the gravity force acts radially inward towards the

center of the Earth (-g(r):u), and the lift force acts perpendicular to the velocity vector

in the lift plane (LiL). Furthermore, the gravity force will be expressed according to the

inverse square law, g(r) = mL-, where PG = 3.9860064 x 10 14 m3/s 2 is the gravitational

constant of the Earth and m is the vehicle mass. Since the thrust force acts from the

back of the vehicle, only the component of thrust acting along the vehicle nose axis will

accelerate the vehicle center of gravity, while the other components will induce torques.

The axial thrust force will be denoted as TA, with TAx, TAY, and TAz components exerted

along the iv, Sv, and iv axes, respectively. Since the axial force acts along the xB axis,

the aerodynamic angles can be used to identify the components along the velocity axes.

TAx = TA cos a (3.33)

TAy = TA Sin a sin a (3.34)

TAz = TA sin a cos a (3.35)

By expressing each of these forces in the velocity coordinate frame, the following force

components can be obtained.

SFx = TA cos a - D - m sin7 (3.36)

SF, = TA sin a sin a + L sin a (3.37)

Fz, = TA sin a cos o + L cos a - m2P cos (3.38)

Models of these forces based upon the vehicle model will be discussed in detail in

Chapters 5 and 6. By substituting into Equation 3.24, the equations of motion for the

velocity parameters are obtained.



IE

VE COS -Y

VE )

S TA COs a D AG s
m m -r2 siny

TA sin a sin L sin a
m m

TA sin a cos a L cosa A G
m m r COS

Inertial Acceleration

/ 0 s

- VE (2w1 cos - - 2w 2 sin y cos 4 - 2w 3 sin 7 sin )

+VE (22 sin - 2w3 cos 0)

0

VE cos 2 y cos tan A
r

~ Cos 2 -y
r

r (-w2 - w32) siny + rw 2 cos y cos T r wlw3 cos y Sinl?'

-rwlw 2 sin + rW1 3 COS /

+r (-w2 - w3) cos - rw 1w 2 sin y cCOS - rw 1w 3 sin' sin ll Sl

Coriolis Acceleration

Due To Earth Rotation

The equations of motion given above can be cleaned up by extracting the rotation of

the Earth, QE, from the wl, w2 , and w3 terms and dividing by the necessary terms to

leave VE, , and / on the left side. Thus, we have the equations of motion governing the

Earth-relative velocity of the vehicle.

TA COS a D - G iQ2rF
m m r 2

TAsin a cos a Lcos a ( VE G 2
7= + + cos ' - 2+EC2

m m VE r r 2 VE )

TA sin a sin o- L sin a VE 2QEC3
= + __ - cos ycos # tan A -

m VE COS Y cos y

rQ2F2

VE

VE cos y

The terms defined as C2, C3, F, F2 , and F3 represent coefficients for the Coriolis

and centrifugal acceleration terms from the Earth's rotation contributing to 1V, -,, and <,

Coriolis Acceleration Due To UDC Frame Rotation

Centrifugal

Acceleration

(3.39)

(3.40)

(3.41)

(3.42)



respectfully. As can be seen by examining Equation 3.39, these terms are entirely due to

the Earth's rotation rate, QE. A non-Earth rotating model can be obtained by simply

setting QE to zero and neglecting these term. They are defined as

C2 = Wl cos - w2 sin 7 cos - W3 sin 7 sin (343)

QE
w2sin 0 - w3 cosO

C3 = (3.44)
2E

(-w - w ) sin 7 + wmw 2 cos 7 cos ' + ww 3 cos 7 sin/
F = 2E (3.45)

-w 1 w 2 sin 1 + lw 3 cos
F72= 2  (3.46)

(-w - w~) cos Y - w1w 2 sin 7 cos - l 3 sin sin (3.47)F3 = 32 (3.47)

For perspective, the maximum value of the centrifugal acceleration, Q~ r, is on the

order of 10- 3 go for the Earth rotation, while the maximum value of the Coriolis accel-

eration, 2QE VE, is on the order of 10- 1 go for vehicles traveling at orbital speeds, where

go = 9.81m/s 2 is the gravity acceleration at sea level [5]. After dividing both terms by

VE, which is on the order of 103, the maximum Coriolis contribution to the y and i rates

is on order 10- 4 go, while the maximum contribution from centrifugal acceleration is on

order 10- 6 go. While these terms have little effect on the high dynamics of y and ¢b, they

have a drifting effect on the low dynamics of 4 and A, which can lead the vehicle slightly

off-course when targeting a terminal destination. These terms can often be ignored for

short range, low speed flight, but they are important for accurate modeling of high speed,

long range flight, especially when targeting a terminal destination.

Similarly, the third set of terms on the right hand side of Equation 3.39 are corrections

to the velocity direction due to the spherical coordinates used to define the UDC frame. As

the vehicle travels downrange and crossrange from its initial position, the local horizontal

plane (UDC frame) will rotate to remain tangent to the unit sphere, affecting the velocity

direction. A flat Earth model can be obtained by allowing r to approach 0o and neglecting

these terms.



3.2 Rotational Equations of Motion

The remaining four states will describe the attitude motion of the vehicle body. As

described in the introduction, the vehicle considered in this study exhibits skid-to-turn

control due to an axially symmetric body with a pointed nose. Therefore, the entire control

of the vehicle amounts to directing the body attitude in a chosen direction relative to the

velocity vector. In essence, by choosing the body attitude relative to the velocity vector,

the vehicle is choosing the lift plane, defined by the XB and xv axes. The formulation

given in this section will introduce a 6DOF model with skid-to-turn control that describes

the motion of the body attitude relative to the velocity vector.

It is first important to define new parameters related to the attitude motion of the

body. The rotation of the non-rolling body frame relative to the ECI (inertial) frame is

given by

WB-I = qbodyYB + rb o dyZB (3.48)

The parameters qbody, and rbody represent body pitch rate, and bodyyaw rate, respec-

tively, about the YB and ZB axes. The resultant rate from these two components represents

the total angular motion of the body nose relative to inertial space. For an asymmetric

bank-to-turn vehicle, the roll rate about the xB axis, Pbody, would also be included in this

analysis. However, since the roll rate has negligible effect on the control authority of a

skid-to-turn vehicle and is often stabilized to zero, it is ignored in this analysis [10].

It is important to note that the YB and ZB axes are not fixed to the vehicle and

therefore do not rotate with the vehicle's roll motion. The yaw and pitch motion should

be thought of as components of the total body angular motion composed along pre-defined

axes perpendicular to the vehicle nose direction, k^B. As mentioned earlier, when defining

the non-rolling body frame in section 2.6, these axes can be oriented in any way such that

they are perpendicular to XB and perpendicular to one another. The end goal is to define

the total body angular motion along some defined axes and use that definition to describe

the vehicle attitude motion relative to the velocity vector. Whether the defined pitch and

yaw axes are always pointing out of the "top" or "side" of the vehicle is irrelevant due to



the vehicle symmetry.

Equations describing the change in these body rates over time can be derived using

Newton's Second Law. Newton's Second Law states that the sum of torques acting about

a body's center of mass is equal to the body's change in angular momentum.

:T=I = (IB-I)I

Let the symbol I be defined as the inertia matrix, given as

!xx Ixy 1xz

IzX Izy Izz

The derivative of angular momentum in the inertial frame can be computed in terms

of the angular momentum derivative in the body frame and the rotation rate of the body

frame. The inertia matrix does not change over time in the body frame since the XB axis

is fixed to the roll principle axis and the YB and zB axes continually point in directions

with identical inertia properties (Iy, = Izz). Since the inertia matrix does not change in

the body frame, the derivative of the angular momentum in the body frame is the product

of the inertia matrix and the derivative of w_, observed in the body frame.

ZT = i , = I B i, + ,B_, X IBw_, (3.49)

IXX Ixy, xz 0 0x Iy I x Iz 0

= yx Iyy lyz Obobod bo Iyx Iyy yz qbody (3.50)

zx zzy zz body rbody zx zy zz rbody

Since the vehicle considered in this study is symmetric about the x-axis, all cross terms

in the inertia matrix are equal to zero and Iy = Izz. By multiplying the matrices above

with the proper terms set to zero and taking the cross product, expressions for the body

angular accelerations in terms of external torques acting on the body are obtained.



qbody = (3.51)

Tbody = Tz, (3.52)
Izz

As seen above, the pitch and yaw motion of the vehicle is completely decoupled due to

the vehicle symmetry as well as the roll attitude stabilization. For a bank-to-turn vehicle,

in contrast, the terms above would include cross-coupling terms in terms of the roll axis

inertia, I, and the roll rate, Pbody-

The body rates given in Equation 3.48 express the angular rate of the body relative to

inertial space but the purpose of this model is to define the body attitude motion relative

to the velocity vector. In Section 2.6, the nose yaw angle, q, and nose pitch angle, 0, were

introduced to relate the body frame to the velocity frame. The objective of this exercise

is to derive equations for the rates of change of those angles in terms of the body rates

qbody and rbody

The first step is to express the body axis of symmetry, XB, in V frame coordinates.

1

(:RB)v = TBT  0 cos 0 cos ORv + cos 0 sin Oqv + sin O v

0

Next, the time derivative of RB, as observed in the ECI (inertial) frame, will be taken

to find expressions for 0 and . Using Equation 3.8, the change of the XB axis in inertial

space can be defined in terms of the change of XB observed in the V frame and the rotation

rate of the V frame relative to inertial space.

XBi XB v W_ X B (3.53)

The left hand side of Equation 3.53 represents the derivative of the body x-axis with

respect to inertial frame, which can be expressed using Equation 3.5.



XBI = WJB i X XB

= [0 qbody rbody BX B (3.54)

= rbodyYB - qbodyZB

The first term on the right side of Equation 3.53, the derivative of XB as observed in

the V frame, can be expressed using the expression for a time derivative in a rotating

frame as defined in Equation 3.8.

B = B B + _- X XB (3.55)

The first term on the right side, jB B, is a vector of zeros since the B frame is fixed

to the body attitude and the attitude will not appear to change when observed in the B

frame. The rotation rate of the B frame relative to the V frame is given by Equation 2.3

can be expressed in B frame coordinates as

(wB-V) = sin OXB - 6B -- COS OZB

Now, performing the cross product with XB, an expression is obtained for XBv in B

frame coordinates.

XB v = coS B + O B (3.56)

Next, the rotational component of Equation 3.53 requires an expression for the rotation

rate of the V frame relative to inertial space, wv- I . An expression for w,_L is composed of

three terms describing the Earth rotation, the local level frame rotation, and the velocity

rotation.

WV I = LL() V - WU + IR-



An expression for (W R_,)u in UDC coordinates is given by Equation 3.29. As in section

3.1, let w, w 2 , and w3 represent the components of the Earth's rotation along the xU,

yu, and zu axes, respectfully. Similarly, (w-R) U was expressed in UDC coordinates in

Equation 3.28. Lastly, (w,_)v is expressed in V frame coordinates by Equation 3.26.

First, the rotation rates discussed above must be transformed to a common frame

before they are combined to form wv-I. Therefore, (WRI ) U and (w R) v will be trans-

formed from the UDC frame to the V frame.

(wR-I )
w1 sin y + w 2 cos y cos + W 3os -y sin Ox-4v

-w 2 sin 0 + W3 COS 0YV

+wl cos y - w 2 sin y cos - 03 sin y sin Ob-v

(W, R)= 4 (sin y sin A + cos7 sin cos A) - A cos 7 cos ^bv

+/ cos # cos A + A sin 0'v

+/t (cos y sin A - sin y sin 0b cos A) + A sin 7 cos Oiv

In the second equation above, expressions for /t and A can be replaced by Equations

(3.17-3.18), as was done in section 3.1 to obtain simpler expressions in terms of V.

( ) VEcos cos sin tan A VE cos2 7 VE cos2 7 cos tan A

0u - x + yv + ZVV r r r

Therefore, the rotation rate of the velocity frame as observed in the inertial frame

(ECI) can be expressed in V frame coordinates by summing the components described

above.

sin7y + VE coscos-ysinytan A + sin y + w 2 cos 7 cos b + w 3 cos y sin

(Wv-, =- -+ -' E c3
COS, - VE COS

2 7 CoS tan A E 2

L Vcos y Ecos2
y'tan +QE C2

(3.57)

By comparing the equation above with the Coriolis coefficients defined in Equations



(3.43-3.44), it should be noticed that the contributions from the Earth's rotation in Equa-

tion 3.57 can be expressed in terms of these coefficients. However, since only two Coriolis

coefficients are defined in section 3.1, a third coefficient, C1, will be defined to represent

the contributions from the REF frame rotation in the iv direction. Therefore, C1 will be

defined as

w1 sin 7 + w 2 cos 7 cos b + W3 cos y sin V
C1 =

QE

Similarly, terms can be defined to represent the contributions to the V frame rotation

from the UDC frame motion relative to the Earth. Let U1 , U2 , and U3 represents the

contributions along the kv, vy, and iv axes, respectively.

U - VE cos cos sin tan A
r

U2  ECOS
2

U2 = i cos2 -

U VE COS
2 - coso tan A

U3= r

Using these newly defined terms along with the previous definitions for C2 and C3,

V_-, can be expressed more cleanly as

i sin y + U± + E C1

v = -+ U 2 - QE c 3 (3.58)

cos y + U3 + QE C2
-V

Now, transforming to the body frame using T B , performing the cross product with

XCB as shown in Equation 3.53, and adding the terms previously defined for Equation 3.53,

the body rates qbody and rbody can be expressed in terms of 0 and b.



0 0

rbo C 0 sin 0 sin 0 + b (cos -y cos 0 - sin y sin 0 cos q)
Tbody COS 0

+ -(U + QE C) sin Cos - (U2 - E C3) sin 0 sin+ (U3 + E C 2) COS

-- qbody B cos 0 + sin - sin 0+
-Qbody +

(U1 + QE CI) sin0 + (U2 - QE C) COs I
(3.59)

The equation above can now be solved for 0 and q to obtain expressions for the body

attitude dynamics relative to the velocity vector in terms of the pitch and yaw body rates,

qbody and rbody.

= body sec 0 - ' tan 0 sin q + 4 (sin y tan 0 cos - os y)

+ (U + E C) tan cos +(U2 - E 3 ) tan0 sin - U3 - E C 2  (3.60)

0= -qbody - COS 0 - 4 sin y sin q

- (U + E C) sin - (U2 - E C3) cos (3.61)

The equations here describe the motion of the vehicle nose relative to the velocity

vector. The state angles, 0 and q, can be used to compute the aerodynamic angles, a and

a, as shown in chapter 2. The lift and drag forces present in the translational equations

of motion are explicit functions of a and a.

Notice that the equations above each have contributions from the rotations of the V

frame, UDC frame, and REF frame, as well as the body rates. The terms containing 4
and A, represent the effects of the velocity frame rotation, the Uj terms represent the effects

of the rotating UDC frame, and the Ci terms represent the effects of the rotating REF

frame. The effects from the rotation of the Earth involve QE, which is on the order of

10- rad/s, multiplied by the sum of at most eight different sinusoidal terms. Therefore,

~:'-;I--~--~--~~~~--"""--i;~i'~"'";'-'"' :



these terms will be on the order of 10- 4 - 10- rad/s. The contributions from the UDC

frame rotation, Ui, are bounded by a maximum of v. Since the vehicle in this studyr

reaches a maximum velocity of approximately 16,000 feet per second (4877 m/s) and flies

primarily at suborbital altitudes (r 6380 km), these terms are on the order of 10- 4 rad/s.

In contrast, the body rates (qbody, rbody) and the velocity rates (7', /) are commanded by

large lift and thrust forces and control torques and, therefore, will be more on the order

of 10-1 radians per seconds. Therefore, in the analysis presented in this thesis, effects on

the rotational dynamics due to the Earth's rotation, Ci, and the local horizontal rotation,

Ui, will be neglected.

3.3 Singularities

The 6DOF equations derived in the previous two sections have the advantage of providing

a uniform description of vehicle motion about a rotating, spherical Earth for both endo-

atmospheric and exo-atmospheric flight. However, the equations contain singularities that

must be carefully avoided in order to allow computation of an optimal trajectory.

The most problematic singularity is the presence of cos - in the denominator of terms

determining I. The reason for this is that the vehicle heading direction is undefined

when 7 is 90 degrees, i.e. the velocity vector points straight up, along the radial vector.

To avoid this singularity, the flight path angle is bounded by + 89 degrees. Similarly,

a singularity occurs when the Earth-relative velocity magnitude, VE, is equal to zero.

Therefore, velocity will be bounded to be greater than zero. The only difficulty that arises

from these bounds is choosing initial conditions for the launch vehicle. As suggested by

Ashley [3], the initial conditions can be chosen a few moments after launch when the

vehicle has a finite velocity magnitude and a finite heading angle (i.e. 7|y < 89).

Another singularity occurs in the ft equations when A is equal to 90 degrees (i.e. the

position vector is perpendicular to the plane of reference). This singularity is particularly

troublesome for formulations using the Equator as the plane of reference because trajec-

tories are not allowed to fly over the poles. However, the formulation described in chapter

2 takes care of this problem by allowing an arbitrary choice for the plane of reference.



Lastly, a singularity occurs in the computation of the lift bank angle, a, from the

angles 0 and q, given in chapter 2.

sin a = v1 - cos 02 cos 2

COS = sin 0
sin a

sin o = cos 0 sin ¢
sin a

When 0 and q are both exactly zero, the angle of attack, a, equals zero and the body

nose is oriented directly along the velocity vector. Since the lift direction is defined by

the orientation of the XB axis relative to the xv axis, the lift direction, and therefore a,

are undefined when a equals zero. The singularity can be avoided by fixing a to equal

zero when a is exactly zero. Fixing this value will not affect the results because the lift

force is also equal to zero when a equals zero, and the only place where a is used in the

equations of motion is to calculate lift.

Other singularities are possible if r or m are equal to zero, or if 0 is equal to 90 degrees,

but these singularities are never encountered due to the definition of the problem.

3.4 Summary

In this chapter, a six-degrees of freedom (6DOF) vehicle dynamic model was formulated

to govern the translational and rotational motion of the vehicle in both exo-atmospheric

and endo-atmospheric flight. The states of the system are chosen to be the radial distance

from the Earth's center, r, relative longitude, pt, relative latitude, A, Earth-relative velocity

magnitude, VE, flight path angle, 7y, heading angle, /, body pitch rate, qbody, body yaw

rate, rbody, nose pitch angle, 0, and nose yaw angle, .



r

A

VE

x = (3.62)

qbody

rbody

0

For the long range, high speed flights desired for this vehicle, it is important to include

Coriolis and centrifugal effects on the translational motion of the vehicle from the Earth's

rotation. These accelerations will cause the vehicle to drift to a different final destination

(r, p, A) since the ground position of the target will be rotating over time.

The contributions to the rotational dynamics from the Earth's rotation and the UDC

frame rotation can be neglected in the computational analysis due to their small magni-

tudes relative to the high rotational dynamics of 0 and q. These neglected terms include

the following terms from the 0 and equations:

- (U1 + QE C1) sin - (U - QE C3 ) COS

(U1 + QE C1) tan0 cos + (U2 - QE C 3 ) tan 8 sin 0- U3 - E C 2



The full 6DOF equations of motion, including the neglected terms, are presented

below.

r = VE sin y

VE Cos 7 cos
r cos A

VE Cos 7 sin

E A cos a _ _
VE -

m m

TA sin a cos o-

m
TA sin a sin o-

m

_ sin 7 - QrTF1

L cos o-
+ +

mV

L sin o-
mV cos Y

rVE 2VE COS -
rVE r 2VE o) t
VE

- cos 7 cos 4 tan A

2 QE62 -

2 cos3

cos i

rQ F2

VE

(3.63)

(3.64)

(3.65)

(3.66)

(3.67)

rO Fzr F 3 (3.68)
VE cos 7

E TB

IZE TzB

Izz

(3.69)

(3.70)

0 = -qbody - ' COS 0 - b sin y sin 

- (U1 + QE C) sin - (U2 - E C3 ) cos

= Tbody sec 0 - tan 0 sin + b (sin -y tan 0 cos - cos 7)

+ (U1 + QEC1) tanOcos + (U2 - E C3) tan0 sine - U3 - QEC2

C1=

C2=

wI sin 7 + w2 cos 7 cos b + w3 COs 7 sin

2fE
w1 cos 7 - w2 Sin Y COS - W3 sin 7 sin

w 2 sin - w3 COSC3=
2E

F (- 2 - ) sin- + W102 COS COS c + 0 1W 3 COS 7 sin b

-1W2 sin 0 + W1j3 COS Q

qbody -

Tbody -

where

(3.71)

(3.72)

(3.73)

(3.74)

(3.75)

(3.76)

(3.77)

T Dn



(-w-2 - w2) Cos Y - wIw2 sin y cos - ww 3 sin y sin 
F3 = Q2 (3.78)

E

VE COS COS ' sin } tan A
U1 = (3.79)

U2 = (3.80)

VE coS2 7 Cos V) tan A
U3 (3.81)

wI = QE (os COS Sln 0 sin + sin i oscos0 in 0 + in + sincos 0) (3.82)

w2= E (- sin /p sin 0 sin io + cos cos 0 sin io) (3.83)

w3 = E (- COs t sin sin 0 sin o - sin p sin A cos 0o sin o0 + cos A Cos iO) (3.84)

sin a = 1 - cos 02 cos2 (3.85)

sin 0
COS = (3.86)

sin a
cos 0 sin 

(sin a = sni (3.87)
sin a0

Notice that if io and 0o are set to zero in the above expressions, the familiar 6DOF

equations of motion used by Bollino [14] are obtained.

Now that the dynamical model of the vehicle has been formulated, the flight profile

will be elaborated upon in detail in the next chapter.
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Chapter 4

The Optimal Control Problem

In the previous chapters, a 6DOF dynamics model was developed to describe the motion of

a skid-to-turn maneuvering vehicle. In this chapter, a nonlinear optimal control problem

will be formulated that applies the vehicle dynamics model as a set of constraints on the

optimal control solution. The optimal control problem will seek to minimize a performance

index

J (x (t), u (t) ,to, t) = E (x(to),x (tf) ,to, tf)+ F (x (t) , u (t) , t) dt

subject to the dynamic constraints,

Sc = f (x (t), u (t) , t)

event constraints,

eL < e (x (to),x(tf) to, tf) < eU

path constraints,

hL < h (x (t),u (t),t) < hU

and the state and control bounds



x L < x (t)< xU

u L  U (t)< UU

As mentioned in chapter 1, a direct optimization method will be used to solve the

optimal control problem presented in this thesis. In order to enhance understanding of

the results, fundamental concepts from optimal control and nonlinear programming theory

will be discussed here. In particular, the necessary conditions for indirect methods will be

formulated and it will be shown why solving the problem in this manner presents several

difficulties for the problem in this thesis. Additional considerations for proper problem

formulation, such as the use of knots and parameter scaling, will also be discussed.

4.1 Optimal Control Fundamentals

The optimal control problem -involves a state, x (t), that is governed by a set of nonlinear

differential equations:

= f (x (t), u (t) , t) (4.1)

As can be seen in the Equation 4.1, the rate of change of the state, x (t), is dependent

on the control u (t). The optimal control problem attempts to solve for the control solution

u (t) that controls the state x (t) in some optimal way. In essence, by choosing the optimal

control, the solution to the problem will determine a feasible and optimal state-control

function-pair, (x (t) , u (t)) [6].

4.1.1 Performance Index

The desired optimal control is dependent on the specification of a performance index, or

objective function, J (x (t) , u (t) , to, tf). This is the parameter that algorithm will attempt

to minimize subject to the constraints. The optimal control, u (t), is chosen in a way to

minimize the performance index:



J(x(t(,u(t)to,) = E(x(to) , x (t) ,to, tf) + F (x (t) , u (t) ,t) dt (4.2)

The objective function given above is expressed in Bolza form, J, which contains

a Mayer term, E, and a Lagrange term, F. The Mayer term, E (x (to) , x (tf) , to, tf),

represents the terminal cost, as determined by state and control values at the terminal

points of a trajectory, and the Lagrange term, F (x (t) , u (t) , t), represents the cost that

accumulates over the time interval of a trajectory segment. The vehicle state and control

pair (x (t) ,u (t)) that minimizes J (x (t) ,u (t), to, tf) while also satisfying all dynamic,

path, and event constraints is a solution to the optimal control problem.

4.1.2 Necessary Conditions and The Minimum Principle

A set of necessary conditions for indirect methods are derived here using Calculus of

Variations and Pontryagin's Minimum Principle. The necessary conditions define first-

order optimality subject to a set of constraints on the states and controls. As with any

constrained optimization problem, constraints can be incorporated into the problem using

Lagrange multipliers. Since the control chosen must satisfy the vehicle state dynamics

over the entire trajectory, the dynamics equation (4.1) becomes a differential constraint

in this problem. It can be adjoined to the objective function with a set of Lagrange

multipliers, p:

Ja (x (t) , u (t) , p (t), to, tf) = E (x (to) , x (tf) , to, tf)

+ F (x (t) , u (t) , t) + p (t) [f (x (t) , u (t) , t) - ]] dt

(4.3)

The value of the objective function remains the same because the additional term

added to the right side of the equation is defined to be zero at all times. The Lagrange

multipliers adjoining the dynamics to the performance index, p, are referred to as the



dual variables or co-states. The necessary conditions for optimality in this problem can

be solved by the Calculus of Variations by setting the variation of the objective function,

JJa, equal to zero. The initial state, x (to), and time, to, are assumed here to be fixed,

but the final state, x (tf) and time, tf, may either be fixed or free to vary. In order to

simplify the notation, the following expression is defined as the control Hamiltonian, H:

H (x (t) ,u (t), p (t), t) = F (x (t), u (t), t) + pT (t) [f (x (t) ,u (t), t) - 5] (4.4)

By solving the equation J Ja = 0, using partial differentiation with respect to the vary-

ing parameters and integration by parts, the following necessary conditions for optimality

and feasibility are found to satisfy 6 Ja = 0 in terms of the Hamiltonian:

Necessary Conditions

P =H (4.5)

8H OH 0 (4.6)Ou
* = f (x (t) , u (t) , t) (4.7)

Boundary Conditions
OE

+ H (x (tf),u (tf),p (tf), tf) = 0 if tf free (4.8)a tf

pi (tf) = E) for each zi (tf) free (4.9)

The necessary conditions above define a two-point boundary value problem. The first

three conditions are conditions that must hold over the entire time interval, while the final

two expressions are terminal boundary conditions. The first necessary condition provides

a set of differential equations for the co-states, p (t), while the second necessary condition

expresses the control, u (t), in terms of the states and co-states. The third necessary

condition ensures that the vehicle dynamics are satisfied throughout the trajectory. The

first boundary condition, called the transversality condition, is only active if the final time



tf is free to vary in the problem. The second boundary condition will impose boundary

values for the co-states associated with any terminal states that are not fixed. Solving the

boundary value problem formulated above guarantees first-order optimality and feasibility

of an optimal control solution.

For problems with a constrained set of allowable controls, u E U, Pontryagin's Min-

imum Principle dictates that the optimal control solution will be the choice of controls

that minimizes the Hamiltonian.

u* = arg min H (x (t) ,u (t), p (t) , t)
uEU

In addition to the dynamic constraints considered in this section, terminal constraints

and path constraints can also be incorporated into the problem, as will be shown in the

next few sections.

4.1.3 Event Constraints

Event constraints, e, specify a set of terminal constraints imposed at the end points of a

trajectory in terms of either inequality or equality constraints. They can be incorporated

into the optimal control problem just as the dynamic constraints were incorporated into

the problem in the previous section using a set of Lagrange multipliers.

e < e (X (to0) ,X (tf) , to, tf) eU (4.10)

The expression above is equivalent to an equality constraint when eL = eU [6]. The

inequality constraints can also be expressed in the following general form:

e (x (to) , x (tf) , to, tf) 0

Since the event constraints act at the terminal points of a trajectory segment, they are

adjoined to the Mayer term, E, in the objective function using the Lagrange multipliers,

/.



Ja (x(t) , u(t) ,p(t) ,to, tf)= E (x(to) ,x(tf) ,to, tf) + v (t)Te (x (to) ,x (tf) , to, tf)

+ tof [F (x (t)u (t), t) + (t) t) f (, u (t) , u (t) , t) - c]] dt

Since the adjoined term must be equal to zero at all times, it is important to identify

whether each event constraint is active (ei = 0) or inactive (ei < 0). The values of the

Lagrange multipliers, v, will be constrained to different values depending on how the event

constraints are met.

> 0 ifei =0 active

= 0 if ei < 0 inactive

By setting the variation 6 Ja = 0, the event constraints then become incorporated

into the boundary conditions of the two-point boundary value problem in the previous

section. While the first three necessary conditions remain identical to the conditions

given in Equations 4.5 - 4.7, the modified boundary conditions are given by the following

expressions.

QE + H (x (tf), u (tf), p (tf), tf) = 0 if tf free

Pi (tf) = ) for each xi (tf) free

where

E = E (x (to), x (tf), to, tf) + VTe (x (to) ,x (tf), to, tf)

4.1.4 Path Constraints

The path constraints, in contrast, specify constraints that must be met at every point

along the trajectory. In the problems examined in this thesis, path constraints will be

examined that are functions of both the time-varying states and controls.

hL < h (x (t),u (t),t) < hU (4.11)

In similar fashion to the manipulation of the event constraints, the path constraints



can be expressed in the following general form.

h (x (t), u (t),t) < 0

They can be incorporated into the optimal control problem by adjoining them to the

Lagrange term, F, using a set of Lagrange multipliers, p.

Ja (x (t), u(t)p (t) , to, tf)= E (x(to),x(tf) , tf) + Vf (t)T e (x (to) x (ts) to, tf)

+ fff [F (x (t) ,u (t), t) + p (t)T (t) [f (x (t) , u (t), t) - ]

+PT (t) h (x (t), u (t) , t)] dt

As with the event constraints, the Lagrange multipliers associated with the path con-

straints will have different values depending on whether the path constraints are active

or inactive. Unlike the event constraints, path constraints act over all portions of the tra-

jectory. The portions of the trajectory during which a path constraint is active and the

portions of the trajectory during which the path constraints are inactive must be identified

in order to apply the proper constraints on the Lagrange multipliers, given below.

> 0 if hi = 0 active
= 0 if hi < 0 inactive

The Hamiltonian can be augmented with the path constraints using the set of Lagrange

multipliers, p, as shown below.

Ha (x (t) ,u (t) , p (t) , t) = F (x (t) , u (t), t)+p T (t) [f (x (t) ,u (t) , t ) - C]+P (t) h (x (t) ,u (t), t)

The necessary conditions for an optimal control problem with dynamic, path, and

event constraints are now derived in terms of the augmented Hamiltonian.



S =)T = 0
ua

c = f (x (t), U (t), t)

S+ Ha (x (tf),u (t),p (tf), tf) = 0 if tf freeatT

Pi (t)= )T for each xi (tf) free

The path constraints add additional complications to the optimal control problem

because they act over all parts of the trajectory while the event constraints only act at

the trajectory end points. Therefore, the portions of the trajectory in which the path

constraints are active must be identified prior to solving an optimal control problem with

indirect methods. For example, an optimal control problem with the heating constraint,

q < qmax, can only be solved by specifying a priori which portions of the trajectory

meet the constraint q = qmax and which portions of the trajectory have an inactive

heating constraint q < qmax. This amounts to specifying a sequence of constrained and

unconstrained trajectory arcs prior to solving the problem [7]. This presents a challenging

obstacle to indirect solution methods since path constraints, such as heating constraints

and g-loading constraints, are important limitations to the problem considered in this

study.

4.1.5 Indirect Method Challenges

Indirect solution methods take the approach of solving the two-point boundary value

problem, requiring a separate analytic derivation of the necessary conditions in Equations

(4.5 - 4.9) for each case. For problems with complex dynamics, such as the problem

considered in this thesis, this can become challenging and time consuming. This derivation

process must be repeated for each new optimization problem, presenting a difficulty for

analyzing the maximum and minimum capabilities of several different parameters.

As mentioned in the preceding section, indirect methods have a difficulty incorporating

important path inequality constraints into the optimal control problem. In particular, the



trajectory must be segmented into portions which contain active equality constraints and

portions which contain inequality constraints that are defined prior to solving the problem.

In order to avoid these potential challenges, a direct collocation method is used to solve

the optimal control problem that allows the use of dynamic, path, and event constraints

without the need to derive necessary conditions or specify path-constrained trajectory

arcs a priori.

4.2 Nonlinear Programming Concepts

The direct collocation method used in this study approaches the problem by solving a

discretized nonlinear programming problem (NLP) rather than the two-point boundary

value problem. Direct collocation transforms the optimal control problem, via discretiza-

tion, into an NLP with a much larger number of variables. The NLP is then solved using

an iterative algorithm which seeks to improve the performance index at each step until a

minimum value is reached. The nonlinear programming problem for determining an opti-

mal choice for the variables, x, that minimizes the nonlinear function, f (x) is formulated

as follows:

minx f (x)

subject to gi (x) < 0 Vi = 1,...,1

hj (x)= 0 Vj= 1,...,m

xEX

The standard nonlinear programming problem solves static problems, not dynamic

problems with states that vary over time. The key to solving dynamic optimal control

problems with nonlinear programming is the use of proper discretization techniques. The

time history of the states and controls can be discretized into a set of discrete variables

(ij, uij) at nodal points corresponding to the discrete times ti. The total number of

variables in the nonlinear programming problem will be

N = Nt (Nx + N,)



where Nt is the number of nodes, Nx is the number of states, and N, is the number of

controls. The continuous functions approximated by the discrete nodal points are more

accurately represented with a higher number of nodes, but an increase in the number

of nodes significantly increases the number of variables in the problem, and, thus, the

computation time.

The DIDO solver used in this analysis uses Legendre polynomials to approximate the

continuous functions in the optimal control problem. The pseudospectral method imple-

mented in the DIDO solver places the nodal points at Legendre-Gauss-Lobatto (LGL)

points to provide an exponential convergence rate for the approximation of analytic func-

tions [19]. Detailed discussion of the pseudospectral discretization is available in [12] and

[15].

The underlying nonlinear programming solver that solves the discretized optimal con-

trol problem in the DIDO software used for this project is SNOPT. SNOPT is a general

purpose optimization software package that solves optimization problems with the use of

Sequential Quadratic Programming (SQP) [12]. The solver performs a series of iterations

using quadratic approximations to the problem to determine a direction and a distance

along that direction to search for the minimum performance index [15]. The optimizer

returns when the first-order optimality conditions are met. These conditions are discussed

in the next section.

4.2.1 Optimality Conditions

Similar to optimal control formulations, nonlinear programming problems return with

an optimal solution if and only if both feasibility and optimality are achieved to some

tolerance. Feasibility is often dictated by the primal problem, while optimality is dictated

by the dual problem. An illustration of this can be shown with a simple linear programming

problem, containing a linear performance index, cTx subject to a set of linear constraints,

Ax < b. The primal problem with optimal solution x* is given as

min cTx

s.t. Ax > b



The optimization of trajectory parameters subject to dynamic, path, and event con-

straints is also a primal problem. The objective of the primal problem is to find a mini-

mum value of the performance index within a feasible space bounded by the constraints

(b - Ax < 0). Notice that the primal problem has strict bounds on the feasible space

bounded by the constraints. The primal problem can be relaxed by removing the con-

straints and adjoining them to the performance index with a set of Lagrange multipliers,

p. p can be thought of as a price, or penalty, that is imposed with every incremental

violation of the constraints. Since the adjoined constraint should incur a positive penalty

when violated, p is constrained to be nonnegative (p > 0). Notice that this is the same

approach taken when deriving the Necessary Conditions in section 4.1.2.

minx cTx + pT (b - Ax)

s.t. x free

Since the new problem is now more relaxed than the initial problem (i.e. fewer con-

straints), its minimum performance index must be less than or equal to the minimum

performance index of the initial problem, cTx* [20].

minx c x + pT(b - Ax) = pTb + minx (cT - pTA)x < cTx*

Therefore, the maximum value of the performance index in the relaxed problem pro-

vides a lower bound on the performance index of the primal problem [20]. In other words,

by finding the maximum value of the relaxed problem, the minimum value of the primal

problem is also found.

max pTb + min (CT pT A) x = CTX*p x
Notice that the performance index for the relaxed problem contains a minimization

of (cT - pT A) x over all values of x. The maximum value that this minimization term

can be is zero when the coefficient cT - pT A is equal than zero. If this coefficient is

any value other than zero, the minimization will pick a value for x that makes the term



approach -oc. In addition, the Lagrange multipliers are constrained to be nonnegative,

as mentioned earlier. Therefore, the dual problem is given as the following maximization

problem.

max, pTb

s.t. PTA = cT

p>0

At the optimal solution, the maximum value of the dual problem will be equal to the

minimum value of the primal problem (cTx* = pT*b). Furthermore, satisfaction of the

dual constraints (pT A = cT, p > 0) ensures optimality while satisfaction of the primal

constraints (Ax > b) ensures feasibility of the solution. An important relation between

primal and dual optimal solutions is given by the complementary slackness conditions.

pT (Ax- b) =0

(cT - pTA) x =O

Notice that this is equivalent to ensuring that the terms adjoined by Lagrange mul-

tipliers to the objective functions of the primal and dual problems must always be equal

to zero. In other words, either the primal and dual constraints are met or the Lagrange

multipliers adjoining them must equal zero. More about this subject can be found in [20].

The same concepts of primal feasibility, dual feasibility, and complementary slackness

are used in nonlinear optimization to define the optimization conditions, known as the

Karush-Kuhn-Tucker (KKT) Conditions [15]. For the general nonlinear optimization

problem (Equation 4.2) with pi and qi representing the dual variables associated with the

inequality and equality constraints, respectively, the KKT are given as
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1 m

Sfx*) (x*) = p g(x*) + qV h(x*) (4.12)
i=1 j=-1

p* > 0 Vi = 1 ... 1 (4.13)

9i (x*) < 0 Vi = 1, ... , 1 (4.14)

hj (x*)=O Vj = l,...,m (4.15)

p gi (x*)= 0 Vi= 1,...,1 (4.16)

The first two KKT conditions specify dual feasbility (cT = pTA, p > 0 in linear case),

while the third and fourth conditions specify primal feasibility and the last condition

specifies the complementary slackness condition. Notice that a complementary slackness

condition is not necessary for the qj dual variables since the corresponding hi equality

constraints are already constrained to be zero by primal feasibility.

The equality and inequality constraints in the optimal control problem consist of the

event constraints, path constraints, and the discretized dynamic constraints with the

corresponding dual variables, p, v, and p. The algorithm within SNOPT will conduct

a search that attempts to move closer to satisfaction of the KKT conditions with each

iteration step. DIDO will return a solution to the optimal control problem when all KKT

conditions are met.

4.3 Knotting Conditions

The analysis presented in the preceding sections examined the problem of solving for an

optimal trajectory subject to a single set of dynamic, event, and path constraints. In

reality, many trajectories pass through portions of flight that are governed by different

dynamics and which are constrained differently with respect to point and path constraints.

Therefore, trajectories are often split up into separate segments, each of which has a

unique set of dynamics, event constraints, and path constraints. The boundaries between

the separate segments occur at points called knots. DIDO allows a user to place knots at

fixed times along a trajectory or to specify event conditions at the knots that determine
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the knot time location.

I I II I I
I I II I I I
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Figure 4-1: Example of Knot Locations Along Vehicle Trajectory
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A set of connection constraints at the knot locations must connect the variables on

the left side of the knot appropriately with the variables on the right side of the knot.

Typical connection constraints include enforcing continuity of a particular state, such as

altitude, across the knot or enforcing an instantaneous mass drop of a certain size at the

knot location. Let tk, be the time of the i t h knot and K be the total number of interior

knots (excluding knots at terminal conditions). Then the following connection constraints

must be ensured for the problem studied here.

r(t~-r

pI(t~t) -[tL

'r(t+-r

VE (t~) - V/E
it (tk)-

qbody (t)- qbody

o(t-o

(tk

(tk

(tk

(tk)

(tk

(t)

(ti

(tk

(t)

(t)

Vi= 1,...,K

The event constraints located at each knot provide an opportunity for specifying in-

terior point constraints at specific points within the trajectory. This capability will be

important later when specifying certain conditions at the piercepoint reentry interface. In

addition, the capability of using knots to segment the path constraints will allow for the

modeling of different control approaches over different segments of the trajectory. This

will become important when modeling the boost, coasting, and reentry phases of flight.
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4.4 Parameter Scaling

Scaling of the problem variables is one of the most important aspects of successfully solving

a complex optimal control problem. Poor scaling of the parameters in the problem can

lead to a long and misdirected optimization search which increases the computation time

significantly. Trajectory optimization, in particular, is aided greatly by scaling since the

trajectory states exhibit significantly different magnitudes (e.g. velocity 1 103, attitude

angles 1 0-1).

Scaling each of the states, controls, and time essentially involves expressing the optimal

control problem in a new set of units. Each of the states, controls, and time variables (yi)

are divided by a scaling factor (kyi), converting the SI units to scaled units.

yi
Yi =ky

A scaling matrix can be established for the states and controls to allow easy and

convenient transformations from SI units to scaled units. Expressions for the scaled time,

7, states, x, and controls, U are given below.

t

kt

l I1 0 0 ... 0 X1k 1

x2 0 ... 0 X2x2

3N 0 0 0 O 3 =K

k kxN
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u~ 0 0... 0 Ul

U2  0 0 ... 2

kku 3  - 00 zt3 . u Kuu

u, 0 0 0 ... u

Scaling of the time variable has implications for the time derivatives in the optimal

control problem. The vehicle dynamics are now defined as the scaled states, R, varying

with respect to the scaled time, T, rather than time, t.

d d ( Kxx) K kdx
dT -d( K ktd = Kd kt f (x (t) ,u (t) , t)

dT d (1 t dt

Therefore, in order to specify the rates of the scaled NLP variables with respect to the

scaled time, the dynamics of the vehicle, as computed with the unscaled states, controls,

and time, must be multiplied by a time scaling factor, kt, and a state scaling matrix, Kx.

These two factors can be packaged together into another scaling matrix, called the rate

scaling matrix, Kr = kt Kx.

kt 0 0 0... O
kx

1

0 kt 0 0 2O 2

dT x3

0 0 0 k X
kxN

4.4.1 Scaling Method

Good scaling practices typically scale the problem variables to be on the order of one.

Bollino [15] suggests scaling the state, control, and time variables such that they vary

between 0 and 1, while scaling the variable rates and the co-states to be on the same

orders of magnitude (O(c)).
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Since the states, state rates, and co-states will have different magnitude ranges de-

pending on the particular scenario examined, it is desired to have a scaling methodology

that automatically scales the variables for a particular scenario. The objective is to scale

all of the variables to be on the order of one and all of the dynamics to be on a similar or-

der of magnitude. A general optimization problem can be formulated that seeks to satisfy

these objectives subject to certain constraints. The variables for the scaling optimization

problem are the individual scaling factors for time, states, controls.

kt

kX,

kX2

kxN

kul

kuN

Notice that the matrices Ke, Kr and Ku are expressed entirely of terms of the variables

in the scaling optimization problem. The scaling optimization problem is given as follows:

min ENx (Kri - ce)2 + EZx K_ (xi - e)2 + ENU K (u - e)2

s.t. Ay < 6b

YL_ Y <Yu

where

A = -I{N x N}

b=[t x u]T

6 = bound factor

6 = desired rates order of magnitude

e=[111... 1]T
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The cost function seeks to minimize the deviation of the scaled rates from some spec-

ified order of magnitude, e, and the deviation of the scaled states and controls from one.

The subscript i denotes the state, control, and rate vectors at a node time, ti. The square

of the deviation of these parameters at each nodal point is summed in the cost function.

The constraints in the problem, Ay < 6b, seek to constrain all scaled state, control,

and time parameters at all nodal times to be less than a specified value, J. For example,

if 6 = 1, the maximum scaled states, controls, and times cannot exceed 1 at any point in

the trajectory. Thus, 6 is a sensitivity parameter that relaxes the problem as it becomes

smaller (e.g 6 = 0.1 constrains all values less than 10).

Lastly, the optimized variables, y, are bounded by upper and lower bounds. The lower

bounds, YL, of all the variables are set to zero so that the scaling factors do not change the

sign of the states, controls, or time. The upper bounds, Yu are set such that the scaling

factors do not reduce the scaled states, controls, or time to values that are too small.

These bounds are specified as some constant, C, multiplied by the maximum values of

the unscaled times, states, and controls.

YL = [000 ... 0 ]T

Yu =C [tmax la ' , Xrrnax Ul ... Unfax]

The MATLAB function for constrained optimization, fmincon, is used to solve the

scaling optimization problem presented above.

Although, the scaling method presented here does not constitute the "best" approach

to scaling that will necessarily yield the most accurate and fastest solution, it does present

a general method for quickly and consistently scaling a new problem according to certain

metrics. As mentioned before, several metrics for scaling optimization problems have been

suggested in the literature [6] [15], but no single approach has proven to be a universally

optimal approach for all problems. The scaling metric used here attempts to consistently

scale the problems such that the state and control variables are on the order of one and

the rates are on the same order of magnitude, subject to maximum and minimum bounds

on the scaled values. An illustrative example is given below for the scaled states and state

rates during launch after running the scaling algorithm using values of 6 = 0.001, e = 1,
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and C = 10.

Scaled States vs. Scaled Time

150
Scaled Time (s)

Figure 4-2: Scaled States Using Scaling Method
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Scaled State Dynamics vs. Scaled Time

-1I I I I I I I I
0 50 100 150 200 250

Scaled Time (c)
300

Figure 4-3: Scaled Rates Using Scaling Method
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Another scaling metric commonly explored is scaling the problem co-state variables to

be on the same order of magnitude as the state variables [6]. However, the current version

of DIDO is unable to estimate the co-states for a problem containing knots. Since the

problem studied in this thesis contains many knots, this metric was not fully explored in

the work here. Future investigations into optimization scaling may consider using methods

similar to the ones presented here to scale the co-states appropriately in the problem.

4.4.2 Segmented Scaling

Due to the significant variability of the states, controls, and dynamics over the different

segments of the boost-through-reentry flight, it may be necessary to have separate scalings

for separate segments. For example, the atmospheric forces experienced upon reentry will

be more extreme than those experienced during launch since the reentry vehicle dives

into the atmosphere traveling at approximately Mach 16 while the launch vehicle does

not reach such speeds until it is well above the densest parts of the atmosphere. Therefore,

separate scaling units are developed for the boost segment of flight and the reentry segment

of flight. The only constraint is that the time scaling must be common to both segments,

since the scaled time must be continuous over the entire trajectory.

The boundary between the boost scaled states and the reentry scaled states occurs

at a knot located at the piercepoint location of 400,000 ft altitude. Let the time at an

instant prior to the knot time be denoted as t- and the time an instant after the knot

time be denoted as t + . The continuity constraints across this knot must account for the

differences between the boost scaling (K,) and the reentry scaling ( K 2 ). In order to

impose proper continuity constraints, the variables at t' are transformed from reentry

scaled units to boost scaled units before being differenced with the tk variables.

(4.18)

The scaling method presented in the previous section can now be performed with twice
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as many variables, representing scaling factors for both the boost (K.1 ) and reentry (Kx2)

segments. The overall deviation of all the states and state rates from their desired orders

of magnitude is reduced since the problem now scales the boost and reentry portions

independently. An example of the segmented scaled states is given in Figure 4-4 for the

boost-through-reentry flight.

Demonstration Of Segmented Scaling Of States

300 400
Scaled Time (c)

Figure 4-4: Scaled States Using Segmented Scaling

Although only two portions of the trajectory are scaled independently in this formu-

lation, the use of independent scaling for each trajectory segment could prove to be even

more efficient for future studies.

4.5 Summary

In this chapter, the framework for formulating an optimal control problem was presented.

Both indirect and direct method concepts were introduced as solution methods for the

optimal control problem. Due to the ability of direct methods to be flexible to a wide

range of optimization problems and allow easy implementation of path constraints, direct
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methods are chosen over indirect methods for this study. Problem formulation tools in-

cluding event constraints, path constraints, and knotting conditions were presented and

described in detail. A general scaling method was presented for scaling the optimization

variables quickly and consistently according to a chosen metric. For the problem consid-

ered in this study, the boost and reentry segments of flight are scaled separately using

segmented scaling. Now that the basic optimal control framework has been presented,

chapters 5 and 6 will formulate optimal control problems for the launch problem and the

reentry problem.
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Chapter 5

The Boost Problem

This chapter initiates the discussion of boost-through-reentry trajectory optimization by

examining the models incorporated for the boosting portion of flight and relating the boost

end conditions to typical reentry initial conditions at the piercepoint reentry interface,

located at 400,000 ft altitude.

The boost portion of the flight profile extends from first stage ignition through the

final stage burnout and mass drop up until the piercepoint conditions are met that initiate

reentry. This portion of flight consists of six segments, three of which include powered

flight and three of which are coasting flight. Figure 5-1 illustrates the segments of flight

associated with the boost problem. After each powered flight segment, the vehicle instan-

taneously drops the mass of the lowest stage and coasts for a period without thrusting until

the next stage is ignited for another powered segment. After the third stage burns out,

the vehicle coasts ballistically until reaching the piercepoint reentry interface at 400,000

ft altitude. The vehicle state at the piercepoint interface will define the initial conditions

for the reentry portion of the flight profile.

5.1 Launch Vehicle

The reentry vehicle will be launched aboard a three-stage, intermediate-range ballistic

missile (IRBM) with solid rocket engines. The launch vehicle must be sized appropriately

to provide end conditions that are representative of typical reentry conditions for a vehicle
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Figure 5-1: Flight Segments Of The Boost Portion Of Flight

of the size and shape mentioned in Chapter 1. For the scenario examined in this thesis, a

final stage burnout velocity of approximately 16,000 feet per second after 90-100 seconds

of powered flight is desired.

5.1.1 Mass Sizing

A common first-order approach to sizing a launch vehicle is to use the rocket equation, as

given by [18].

mf mo - mprop e o (5.1)= e Isp 90 (5.1)
nmo mo

The rocket equation describes the propellant mass, mprop, required to achieve an in-

crement of velocity, AV, with a rocket of total mass, mo, and specific impulse, I~,. The

specific impulse is defined as the ratio of thrust, T, to the weight flow rate, rhg, and

provides a measure of how efficient the rocket engine converts propellant into thrust. The
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velocity increment decribed by this equation, AV, describes the ideal velocity increase

possible from the engine thrust in the absence of gravity and drag forces. In addition, go

represents the sea-level gravity acceleration, 9.81lm/s 2

The goal of this exercise is to calculate mass ratios for each stage of the launch vehicle

that can achieve the desired burnout velocity. The rocket equation given above can be

applied to each stage of the launch vehicle for these sizing calculations. At this point,

it is convenient to define additional terms related to the mass ratios of each stage. The

total mass of each stage, mstagei, will consist of propellant mass, mprop , and dry mass,

mdryi, which contains all structural masses excluding the propellant. Let 3i be equivalent

to the dry weight ratio of stage i and pi equivalent to the ratio of initial mass at ith-stage

ignition to the remaining mass at the i-th stage burnout before i-th stage separation. In

addition, let m0o, represent the remaining mass of the entire rocket stack at the beginning

of the i-th stage. The stages of the launch vehicle are illustrated in Figure 5-2.

S= ry (5.2)
mstagei mdryi - mpropi

i moi, mo0 ,, + mstage - mo0i+ 1 + mstagei

0i - mpropi m00i+1 ± mdryi m0oi+1 i+ instagei

The fundamental difference between these two terms is that Oi is an inherent property

of the i-th stage that is limited by current technology while pi is a parameter that chooses

the size of each stage. Therefore, pi is the parameter to be chosen to achieve the desired

burnout velocity. Through algebraic manipulation, the rocket equation for each stage can

be expressed in terms of Pi, as given in [3].

/ Vi = Ispi go In Pi (5.4)

Since the launch vehicle initially starts at rest in the Earth-relative frame, the desired

burnout velocity is equivalent to the sum of velocity increments given by Equation 5.4 for

each stage.
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3

Vf = go Ispi Ini (5.5)
i=1

Since the characteristic velocity specified in the rocket equation, Vf, neglects velocity

loss due to gravity and drag, it is important to compensate for these losses in the sizing

of the launch vehicle. Ashley [3] gives representative numbers for the three contributions

to characteristic velocity composed of kinetic energy velocity increase, potential energy

increase (gravity), and drag loss. The data suggests a ratio of 1.2:1 between the char-

acteristic velocity increment and the actual kinetic energy velocity increment. Since the

launch vehicle desires a burnout velocity of 16,000 feet per second, this value should be

multiplied by a constant factor of 1.2 to account for effects due to gravity and drag.

Vf = 1.2 x 16, 000 ft/s - 1.2 x 4876.8 m/s = 5852.16m/s

Next, the performance numbers for the rocket stages must be specified. A list of

representative solid rocket motors is given by [18], with performance values, such as Is,

and /3i given. Vacuum Is, values for a solid rocket motor typically range from 280-300

seconds while the propellant weight of a solid rocket typically assumes about 85-90%

of the total stage mass. Additionally, Sutton estimates that medium-sized solid rocket

motors typically have propellant mass fractions between 0.8 and 0.91 [8]. For the sizing

of this vehicle, a vacuum Is, of 290 seconds will be assumed for each stage with a dry

weight mass ratio, fp3, of 0.15 per stage.

Returning to the sizing of each stage, Equation 5.3 can be manipulated to form an

expression relating the remaining rocket mass at each staging, mo,.

o, stage - lii)

mmo = mom, + mstagei -m

[i -1

mo Pi (1 - )S- ) (5.6)
m0oi+ 1 - /_ij
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Equation 5.6 allows for the mass of each stage stack to be easily reconstructed from

pi. It should be remembered here that mstage represents the total mass of the i-th stage

while mo0 represents the total mass of the i-th stack, which contains the i-th stage plus

any additional stages above it.

The rocket equation can now be applied for sizing the launch vehicle with an assumed

vacuum Is, of 290 seconds for each stage and a /i of 0.15. According to Ashley [3], if

the Ispi and 3i are assumed to be constant over all stages, the optimal pi for reaching

Vf with minimum stack weight is invariant over all the stages. Therefore, Equation 5.5

reduces to

Vf = 3 go Isp In , (5.7)

The mass fraction, p, can then be solved by plugging in values for Vf, go, and Ip,

defined previously.

Vf
S= e3go sp = 1.985 (5.8)

Now, using Equation 5.6, the mass of each stage can be sized appropriately beginning

with the payload weight of 300 lbs (136.08 kg) assumed as the size of stage 4.

1.985 (1 - 0.15)
mo03 = 136.08 0.15 1.985 = 326.9782 kg

1 - 0.15 * 1.985

1.985 (1 - 0.15)
mo0 = mo 3  1.985 = 785.6887 kg

1 - 0.15 * 1.985

1.985 (1 - 0.15)
mo = mo 1 -0.15 1.985 = 1887.9144 kg

S '2 1 - 0.15 e 1.985

The mass of each individual stage can be obtained by taking the difference of the total

stack masses given above.
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mstagel = o01 - mo2 = 1102.2256 kg

mstage2 = 02- o0 3 = 458.7106 kg

mstage3 = n 0 3 - RV = 190.9005 kg

mRv= 136.08 kg

5.1.2 Propellant Burn Rates

The next consideration is to determine how long to burn each stage motor. For solid

rocket motors, the internal fuel grain retains a constant surface area as the motor burns,

creating a relatively constant mass flow rate and thrust [18]. Such a motor operates with a

single start and burns until all propellant is used. Therefore, by choosing the motor burn

time, the mass flow rate and the thrust are determined. As mentioned previously, the total

powered flight time of these three stages will be a combined 90 seconds. The individual

stage burn times will be proportioned such that the mass flow rates are relatively similar

between stages, with the first stage burning a bit cooler than the second stage to avoid

high dynamic pressure experienced at low altitudes. Thus, the burn times for stage 1,

stage 2, and stage 3 in this problem are chosen as 60 seconds, 20 seconds, and 10 seconds,

respectively. By fixing the burn times to these values and assuming a constant mass burn

rate, the propellant burn rates for each stage are uniquely determined.

The mass burn rates can be computed by dividing the propellant of each stage by the

burn times mentioned above, assuming constant burn rates.

mpropl = mstagel - 0.15 * mstagel = 936.8918 kg

mprop2 = mstage2 - 0.15 * mstage2 = 389.9040 kg

mprop3 = mstage3 - 0.15 * mstage3 = 162.2654 kg

ro mpropl 15.61 kg/secmTprop1 - 60sec

mprop2 = M = 19.50 kg/sec

mpro3 = = 16.23 kg/sec
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The mass of the launch vehicle will vary over time based upon these burn rates as well

as the staging of the vehicle. A general expression can be given for the mass of the vehicle

at a time t from launch during the ith stage. Let mo0 represent the mass of the vehicle at

the start of the ith stage and to, represent the time when the ith stage is ignited.

m (t) = - Thprop. (t - to0) (5.9)

5.1.3 Thrust Force

The thrust force exerts an acceleration on the vehicle body that is proportional to the

mass flow rate, rm, and the exit velocity of the propellant, ve. As mentioned in Sutton [8],

rocket engines produce a thrust that varies with altitude due to a difference in the nozzle

exit pressure and the atmospheric pressure. As a rocket ascends to higher altitudes, the

thrust and Is, increase as the atmospheric pressure decreases. The difference in sea level

thrust and vacuum thrust can amount to 10 to 30% of the overall thrust [8]. The equation

for thrust in terms of exit velocity ve, exit pressure, p,, exit area, A., and atmospheric

pressure, Pa is given as

T = h ve + (Pe - Pa) Ae (5.10)

The Ip, for this vehicle was assumed to be 290 seconds in a vacuum. This represents

the maximum efficiency the engine can obtain. Thus, the maximum thrust values for

each stage are then obtained by multiplying the mass flow rates by the vacuum specific

impulse, Ispv, and sea-level gravity acceleration, go.

Tstagelma = ipropl go Ipvac = 44423 N

Tstage2mx = iprop2 go IsPc = 55462 N

Tstage3mx r= prop3 go Ispvae = 46163 N

To model the 10 to 30% loss in overall thrust at lower altitudes due to atmospheric

pressure, the following exponential model, with altitude specified in feet, is used to vary

the Isp from 260 sec (sea level) to 290 sec (vacuum), similar to a curve shown in Sutton
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[8].

alt

I = 290- 30 e 12000 (5.11)

Isp Model For Thrust Variations Over Altitude

Altitude [kft]

Figure 5-3: Isp Variation Over Altitude

Thus, the altitude varying thrust will be given by the mass flow rate of the engine and

the altitude varying Isp.

T = rh Isp go (5.12)

5.1.4 Booster Length

The last consideration is to determine the length of each stage. As mentioned previously,

the launch vehicle will have a uniform diameter of 21 inches and a circular cross area,

as dictated by the mission requirements. This amounts to a cross section area, Ac, of

0.223 m2 . The length of each stage will be limited by the volume of the propellant. Using

typical propellant density values for missile motors available in Sutton [8], the density,

121



Pprop, can be estimated to be 0.0635 lbm/in3 (1757 kg/m 3 ). Sutton also estimates that

the propellant grain typically accounts for 82 to 94% of the total motor mass [8]. For

this vehicle, let it be assumed that the propellant accounts for 85% of the total mass for

each stage. Using the known propellant mass for each stage as well as the cross sectional

area, Ac, of the vehicle, the the required volume of each stage can be estimated. The

expression for volume is then used to calculate the length of the propellant grain, Lprop ,

for each stage.

0.85 Vprop, = 0.85 ALp,,op = mprop (5.13)
Ppropi

Lp'op mpropi (5.14)
0. 8 5 pprop, Ac

The equation above solves for the required length of each stage for satisfying the

propellant volume requirement. An additional factor must account for the exposed nozzle

length of each stage. Let it be assumed that the exposed nozzle length represents 10%

of the propellant length for each stage. Therefore, the total length of each stage can be

calculated as follows.

Li = Lpropi + Lnozzlej

1.1 Lprop (5.15)

The calculated lengths are summarized in Table 5.1.
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5.1.5 Summary

The table below summarizes the launch vehicle parameters for a launch vehicle designed

to achieve 16,000 feet per second by final engine burnout.

stage 1 stage 2 stage 3 payload total

mprop (kg) 936.8918 389.9040 162.2654 0.0 1489.0611
mdry (kg) 165.3338 68.8066 28.6351 136.08 398.8532
mtotal (kg) 1102.2256 458.7106 190.9005 136.08 1887.9144
rh (kg/s) 15.61 19.50 16.23 N/A N/A

Tmax (N) 44423 55462 46163 N/A N/A
Sea Level Is, (s) 260 260 260 N/A N/A
Vacuum Isp (s) 290 290 290 N/A N/A

A, (m 2 ) 0.223 0.223 0.223 0.223 N/A
L (m) 3.088 1.285 0.535 1.450 6.358

Table 5.1: Launch Vehicle Properties

5.2 Environment Models

Environmental models are incorporated into the problem describing the variations and

disturbances in the atmosphere as well as the non-sphericity of the Earth.

5.2.1 Ellipsoidal-Earth Model

An ellipsoidal-Earth model is used to model the Earth's shape as an oblate spheriod rather

than as a simple sphere. Since the r, p, and A states defined in chapter 2 are defined

relative to a spherical Earth (geocentric), they must be transformed to geodetic position

coordinates, defined relative to an oblate Earth. The process involves first converting

r, y, and A, as defined relative to a plane of reference, to geocentric longitude (7) and

latitude (() coordinates relative to the Equator (REF to ECEF). The geocentric radial

distance and geocentric latitude are then transformed to geodetic altitude (distance above

Earth's surface in direction perpendicular to surface), h, and geodetic latitude, rz, using

the ellipsoidal-Earth model. These parameters will be used in the optimization algorithm

to accurately specify initial and final altitude and latitude parameters that are relative

to an oblate Earth. Computation of the atmospheric properties as a function of altitude
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above the Earth's surface will also benefit from the increased accuracy of the ellipsoidal-

Earth model.

ZE

Geocentric
Latitude

Geocentric

Longitude

Oblate
Earth

Equator

YE
X 1XE

NOTE: Not To Scale

Figure 5-4: Oblate Earth Model With Geodetic Altitude, h, and Geodetic Latitude, ,

The ellipsoidal-Earth model is defined by a flatness coefficient, f, in terms of a semi-

major axis, a, and a semi-minor axis, b. Additionally, as mentioned in the previous

chapter, the Earth's surface is assumed to rotate about a constant axis of rotation with

rotation rate, WE, and exert a gravitational force acting toward the Earth center with

gravitational constant G*.
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a = 6,378, 137 m

b = 6, 356, 752 m

f a-b = 3.35281066474748 x 10-3

WE = 7.292115 x 10- 5 rad/sec

PG = 3.9860064 x 1014 m 3 /s 2

5.2.2 Atmosphere Model

The density of the Earth's atmosphere is modeled using the Global Reference Atmospheric

Model (GRAM-99) developed by Marshall Space Flight Center (MSFC). GRAM-99 is an

atmospheric model that provides density, pressure, temperature, and wind data with

complete global geographical variablility, complete altitude coverage from the surface to

orbital altitudes, and complete seasonal and monthly variability [21]. In addition, GRAM-

99 has the ability to simulate spatial and temporal perturbations in the atmospheric

parameters related to turbulence, storms, gravity waves, and tides [21]. For the scenario

examined in this study, an accurate model of atmospheric denisty is the most pressing

need since all of the vehicle manuevering capability is dependent on aerodynamic control.

GRAM-99 was compiled into a MEX-file for easy and efficient function calls from

the MATLAB interface. However, even with the efficient interface, GRAM-99 still takes

approximately 10- 2 seconds to return for each call. Since the optimization algorithm

may perform thousands or tens of thousands iterations, this computation penalty is not

acceptable for use in the optimization algorithm. In order to reduce computation time

during each optimization iteration, the atmospheric density profile given by GRAM-99 is

fit to an analytic function. Atmospheric density is commonly modeled as an exponential

function of the altitude above the surface of the Earth, h, based on a fixed reference

height, H, and the sea level density, po. For example, Undurti [1] models the atmospheric

density as

-h
p (h) = po e H

where H = 10000m, po = 1.168k-
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A more accurate density fit can be obtained by choosing the exponential function

coefficients using a least squares fit to the GRAM-99 density data.

p (h) = ap,ebph(t)+cp

1.

f
r0a

Jo

A

(5.16)

Comparison of Atmospheric Density Models vs. Altitude

- Least Squares Exponential Fit To GRAM-99 Data
-GRAM-99 Density Data

.2 .............- Exponential Model With po = 1.18kgn 3 , H 10000m

.4

.2

0 50 100 150 200 2
Altitude [kftj

Figure 5-5: Comparison Of Atmospheric Density Models Versus Altitude

Notice that both exponential models significantly overestimate the density values in

the region between 50,000 feet and 150,000 feet, where the reentry vehicle performs most of

its maneuvering. The least-squares exponential fit is chosen to represent the atmospheric

density in the optimization algorithm since it exhibits less error in this altitude range.

Other higher-order analytical fits were considered for the atmospheric density, but few

of these fits could approach p = 0 as h --+ oc without becoming negative at some point.

Since an exponential function has infinite smoothness and approaches zero while keeping

p continually positive, it was chosen as the fitting function.

In order to incorporate slight variations in density based on latitude and longitude,

the density function is automatically fit during each algorithm run to a unique GRAM-99
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density profile generated from an initial guess trajectory (r, p, A).

GUESS r, p, Ellipsoidal h, rq, K p(h,rj,K) p(h)
(r , p A) Earth Model GRAM-99 Isqcurfit

Figure 5-6: Algorithm Sequence For Automatic Density Curve Fit

Although the density is modeled as an exponential function of the altitude only, it is

fit to data with a particular (r],i) profile that is representative of the final trajectory.

The atmosphere is assumed to be rotating with the Earth's surface during the vehicle

flight. Therefore, the dynamic pressure exerted on the vehicle during flight is a function

of atmospheric density, p, and the Earth-relative velocity of the vehicle, VE.

q = p (h) V2

5.3 Launch Vehicle Aerodynamics

The aerodynamics of a launch vehicle are typically defined in terms of an axial coefficient

of force (Cx) acting along the body axis of symmetry and a normal coefficient of force

(CN) acting normal to the body axis of symmetry in the lift plane, as defined in section

2.6.1. These coefficients are defined as the axial (FA) and normal (FN) forces exerted on

the vehicle normalized by the dynamic pressure, q = lp VE2, and reference area, Sref. The

center of pressure, Cp, specifies the location along the vehicle body where the resultant

aerodynamic forces act. It is typically specified as a fraction of the total body length,

Lbody, along the body axis of symmetry, as measured positive from the body nose to the

tail.

FNcNi- ---

qSref

Fx
Cx = (5.17)qS

XCp
CP = (5.18)

q Sref Lbody
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The reference area for an axially symmetric (non-winged) vehicle is typically defined

as some percentage of the maximum cross sectional area of the vehicle base. The choice

for Sref can be thought of as a parameter for determining the sensitivity of the vehicle

motion to atmospheric forces. The reference area chosen for this problem is approximately

one-third of the maximum cross-sectional area of the vehicle base, Sref = 0.075m2

The normal and axial coefficients can be resolved into components representing the

coefficient of lift (CL) and the coefficient of drag (CD) by using the angle of attack, a.

CL = -CX sin a + CN cos a

CD = Cx cos a + CN sin a (5.19)

Drag is defined to be the component of force directly opposite the velocity vector.

Therefore, the acceleration exerted by this force serves to solely reduce the velocity magni-

tude, but cannot change the direction of the vehicle motion. Lift represents the remainder

of the force, which is constrained to remain in the lift plane, defined by the orientation

of the body symmetric axis relative to the velocity vector. The component of the lift in

the velocity vertical plane, L cos a, will change the flight path angle while the remaining

component, L sin a will change the heading angle. The lift and drag forces can be ob-

tained from the coefficients above using atmospheric density (p), Earth-relative velocity,

VE, and the reference area, Sref.

1
L= p (h) V 2CL(a, M)Sref

1
D = p (h) V 2CD(a, M) Sef

In order to express the aerodynamic forces exerted on this vehicle, a set of axial and

normal coefficients must be defined as functions of both Mach number (M) and angle of

attack (a). Aerodynamic coefficient dependencies on Mach number and angle of attack

are shown for the V-2 missile in Sutton [8] as well as for a variety of representative launch
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vehicles in Ashley [3]. At least three distinctive features of the aerodynamic profiles

are important to model for any vehicle crossing the transonic regime. First, the normal

coefficients can be characterized by a sharp jump followed by a sharp drop in Cx in the

transonic region (M - 1-2). Second, the axial coefficients exhibit a linear increase in CN

with angle of attack for angles up to 15 degrees. Lastly, the center of pressure shifts

towards the aft of the vehicle as it passes the transonic region. Similar trends can be

observed in aerodynamic tables modeling a triconic reentry vehicle, used by Undurti for

hypersonic reentry analysis [1].

It is desirable to develop a table of aerodynamic coefficients exhibiting the general

features mentioned above, while having values to accurately represent the aerodynamic

flow over a long, slender body representative of the launch vehicle. Therefore, Undurti's

aerodynamic table is scaled to represent the typical launch vehicle aerodynamic coefficients

observed in [3] and [8] while keeping intact the transonic and supersonic aerodynamic

trends. The scaled table of coefficients are given on the next few pages along with plots

representing the variations of the coefficients with Mach number and angle of attack.
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Mach / a 0 1.0 5.0 10.0 15.0 30.0
0.0 0.2500 0.2500 0.2500 0.2500 0.2500 0.2500
0.5 0.2500 0.2500 0.2500 0.2500 0.2500 0.2500
0.8 0.3000 0.3000 0.3000 0.3000 0.3000 0.3000
1.0 0.4265 0.4265 0.4213 0.4048 0.3980 0.4360
1.2 0.4265 0.4265 0.4213 0.4048 0.3980 0.4360
1.5 0.4265 0.4265 0.4213 0.4048 0.3980 0.4360
2.0 0.4265 0.4265 0.4213 0.4048 0.3980 0.4360
3.0 0.3180 0.3180 0.3162 0.3116 0.3188 0.3878
4.0 0.2721 0.2721 0.2718 0.2724 0.2854 0.3878
5.0 0.2262 0.2262 0.2274 0.2332 0.2520 0.3878
8.0 0.1782 0.1782 0.1812 0.1937 0.2400 0.3878

10.0 0.1638 0.1638 0.1674 0.1821 0.2400 0.3878
12.5 0.1566 0.1566 0.1605 0.1764 0.2400 0.3878
15.0 0.1493 0.1493 0.1536 0.1707 0.2400 0.3878
20.0 0.1454 0.1454 0.1499 0.1684 0.2400 0.3878
25.0 0.1454 0.1454 0.1499 0.1684 0.2400 0.3878

Table 5.2: The Axial Force Coefficient Cx As A Function Of Angle Of Attack And Mach
Number.
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Figure 5-7: Axial Coefficient Of Force
Attack

As A Function Of Mach Number And Angle Of
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Mach / a 0 1.0 5.0 10.0 15.0 30.0
0.0 0.0 0.0558 0.2855 0.5891 1.0 2.0733
0.5 0.0 0.0558 0.2855 0.5891 1.0 2.0733
0.8 0.0 0.0558 0.2855 0.5891 1.0 2.0733
1.0 0.0 0.0558 0.2855 0.5891 1.0 2.0733
1.2 0.0 0.0558 0.2855 0.5891 1.0 2.0733
1.5 0.0 0.0558 0.2855 0.5891 1.0 2.0733
2.0 0.0 0.0558 0.2855 0.5891 1.0 2.0733
3.0 0.0 0.0591 0.3007 0.6276 1.0 2.0733
4.0 0.0 0.0588 0.2970 0.6149 1.0 2.0733
5.0 0.0 0.0585 0.2933 0.6023 1.0 2.0733
8.0 0.0 0.0570 0.2831 0.5755 1.0 2.0733

10.0 0.0 0.0564 0.2793 0.5661 1.0 2.0733
12.5 0.0 0.0561 0.2767 0.6273 1.0 2.0733
15.0 0.0 0.0557 0.2742 0.5551 1.0 2.0733
20.0 0.0 0.0553 0.2720 0.5483 1.0 2.0733
25.0 0.0 0.0553 0.2720 0.5483 1.0 2.0733

Table 5.3: The Normal Force Coefficient CN As A Function Of Angle Of Attack And
Mach Number
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Mach / a 0 1.0 5.0 10.0 15.0 30.0
0.0 0.5184 0.5184 0.5219 0.4866 0.5509 0.5920
0.5 0.5184 0.5184 0.5219 0.4866 0.5509 0.5920
0.8 0.5184 0.5184 0.5219 0.4866 0.5509 0.5920
1.0 0.5184 0.5184 0.5219 0.4866 0.5509 0.5920
1.2 0.5184 0.5184 0.5219 0.4866 0.5509 0.5920
1.5 0.5184 0.5184 0.5219 0.4866 0.5509 0.5920
2.0 0.5184 0.5184 0.5219 0.4866 0.5509 0.5920
3.0 0.5373 0.5373 0.5401 0.5479 0.5797 0.5920
4.0 0.5427 0.5427 0.5444 0.5518 0.5808 0.5920
5.0 0.5483 0.5483 0.5487 0.5559 0.5818 0.5920
8.0 0.5520 0.5520 0.5500 0.5563 0.5818 0.5920
10.0 0.5520 0.5520 0.5496 0.5559 0.5818 0.5920
12.5 0.5520 0.5520 0.5490 0.5557 0.5818 0.5920
15.0 0.5518 0.5518 0.5483 0.5550 0.5818 0.5920
20.0 0.5518 0.5518 0.5477 0.5537 0.5818 0.5920
25.0 0.5518 0.5518 0.5477 0.5537 0.5818 0.5920

The Center Of Pressure Cp As A Function Of Angle Of Attack And Mach
Number Expressed As A Percentage Of Vehicle Length

0.6
.... ..
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S0.544
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Figure 5-9: The Normalized
Mach Number

Center Of Pressure As A Function Of Angle Of Attack And
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Using a table lookup can add significant computation time to an optimization algo-

rithm, since the lookup operation must be performed multiple times for each iteration.

The data may also be nonsmooth, creating some difficulties in calculating the finite differ-

ence approximations to the gradients. Therefore, Cx, CN, and Cp can be approximated

by analytic functions in order to speed up the computation time. The choice of functions

must be such that the distinctive features of the aerodynamics remain intact. The analytic

function for Cx is chosen such that a jump in the value of Cx is observed in the transonic

(M~1) region followed by an exponential decay to a steady state value as Mach number

(M) increases. In addition, it models an increase in Cx as a increases in the supersonic

region. The analytic function for CN will be a linear function of a since there is little

variation in CN as Mach number increases. Lastly, Cp will be modeled using a heaviside

function to represent the sharp increase in center of pressure across the transonic region

(M~1). For the analytic functions below, a is specified in degrees.

Cx = ax + e - ex(Al- 1) + ( log (M) (5.20)1 + e-cx((M-1)-dx) 5 10000

CN = aNa (5.21)

ap
Cp = + cp (5.22)

1 + e-M+bp

The values for ax, bx, d, x, dx, ex, aN, ap, bp, and cp are chosen using a least squares

fit to the tabular data. Comparisons between tabular data and analytic functions are

shown in Figures 5-10, 5-11, and 5-12.
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Axial Force Coefficient As A Function Of Mach Number

Mach Number

Figure 5-10: The Angle of Attack-Averaged Curve Fit To The Axial Coefficient Of Force
Plotted Versus Mach Number

Normal Force Coefficient As A Function Of Angle Of Attack

Angle of Attack (a) [deg]

Figure 5-11: The Mach Number-Averaged Curve Fit For Normal Coefficient Of Force
Plotted Versus Angle Of Attack
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Center Of Pressure As A Function Of Mach Number
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5.4 Launch Vehicle Attitude Control

The launch vehicle exhibits two types of control to appropriately shape the trajectory

and target the proper reentry interface conditions. The primary method of control is

Thrust-Vector Control (TVC), in which the rocket engine is gimballed about nose axis

of the vehicle body in order to direct moments that control the attitude. The secondary

control is an attitude control system (ACS) with small thrusters that serve to stabilize the

vehicle attitude during the coasting phases when the TVC control is inactive. The TVC

control will be specified in terms of the gimbal angles while the ACS will be specified as

moments about the vehicle's center of mass.

5.4.1 Thrust Vector Control

The TVC system diverts part of the engine thrust normal to the vehicle nose axis in order

to create a moment about the body center of mass with the length from the center of mass

to the engine nozzle serving as the moment arm. Let the component of thrust normal

to the nose axis be denoted as TN and the component of thrust acting along the nose

axis be denoted as TA. TN creates a moment about the vehicle center of mass while TA

accelerates the translational motion of the center of mass, as discussed in chapter 3. The

direction of the total thrust, T, relative to the nose axis will be described by the gimbal

angles 3 and . The angle / will denote the thrust angular offset from the nose axis in

the plane of motion, while will represent the out of plane offset of the thrust vector.

The thrust vector can be expressed as components along the body frame axes in terms

of the gimbal angles as follows.

TB = T cos 3 cos ( (5.23)

T, = T cos 3 sin (5.24)

Tz = T sin/3 (5.25)

where
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Figure 5-13: In Plane and Out of Plane Thrust Vectoring Control

ITA= TXB

STN = Ty2, + T 2,

As mentioned above, Tx, will provide acceleration to the vehicle, while T,, and T,,

will create moments about the vehicle center of mass. The pitch and yaw control moments

(MT, MT,) exerted by the TVC about the YB and ZB axes can be expressed in terms of

the thrust components as well as the vehicle center of mass and length. The center of mass

is assumed to be equivalent to the center of gravity (CG) in this formulation. Let CG

represent the vehicle center of gravity as a percentage of the total body length, measured

from the nose toward the aft of the vehicle, and L represent the total length of the launch

vehicle stack at each stage. For this vehicle, the center of gravity (CG) is chosen as a

constant value of 0.5086.

137

------------------------------------------~



MTq = Tz_ (1 - CG) L (5.26)

MT = -Ty (1 - CG) L (5.27)

The moments about the center of mass from the TVC, MTq and MTr, are defined to

be positive about the body axes YB and zB. Notice that a positive 3 gimbal angle creates a

positive moment in the pitch direction (about YB), while a positive gimbal angle creates

a negative moment in the yaw direction (about ZB). In other words, a positive 0 angle

will increase the body pitch rate (qbody), forcing the nose downward, while a positive (

angle will decrease the body yaw rate (rbody), forcing the nose in a direction to the right,

as seen from the zB axis, and reducing the heading angle (i).

5.4.2 Attitude Control System

The attitude control system (ACS) consists of small thrusters oriented normal to the

body nose axis that are used to stabilize the body attitude during the coast (unpowered)

portions of the boost flight. The ACS exerts the appropriate moments about the vehicle

center of mass to keep the nose pitch angle, 0, and nose yaw angle, q, constant during the

coast phases. The pitch and yaw moments exerted by the ACS about the YB and ZB axes

are defined as Mcq and Mc,, respectively. These torques are only used for control during

the unpowered segments of flight.

5.4.3 Aerodynamic Torques

The vehicle control discussed above will be counteracting aerodynamic torques exerted

on the vehicle from the aerodymamic forces acting at the vehicle center of pressure. The

offset of the center of pressure from the center of mass is referred to as the static margin.

LsM = (Cp - CG) L (5.28)

The normal aerodynamic force, FN, will exert a moment about the vehicle center
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of mass with a moment arm of LSM. The vehicle is a stable system since the center

of pressure is always farther aft than the center of mass (LSM > 0) and the applied

aerodynamic moment (MA) will always rotate the vehicle in a direction toward zero angle

of attack.

MA = FN LSM = P V 2 Sre CN LSM
2 rft.'

(5.29)

LIFT PLANE

FN

xB

XV

Vrel
FA

CG

Figure 5-14: External Aerodynamic Torque

Since FN acts in the lift plane, the total aerodynamic moment MA also acts in the lift

plane and can be expressed in components along the body axes using the lift bank angle,

a. Let the component along the YB axis be denoted as MAq and the component along the

ZB axis be denoted as MAr.

MAq = MA COS a

MAr = -MA sin a
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The negative sign on MAr occurs because a is defined as a positive angle when the

vehicle is turning to increase its heading (i.e. turning left), and the restoring aerodynamic

moment at this attitude has a negative component along ZB.

5.4.4 Launch Vehicle Control Summary

The sum of external moments exerted on the vehicle during the boost flight can be summed

along the YB and ZB axes to obtain expressions for the total torques used in the rotational

equations of motion.

, B= Tz, (1 - CG) L + Mc, + MA cos a (5.32)

TZ, = -TyB (1 - CG) L + Mcr - MA sin a (5.33)

Note that the first and second terms on the right side act on the vehicle during separate

segments and will never exert moments on the vehicle simultaneously.

5.5 Launch Optimal Control Problem Formulation

The launch portion of flight will be formulated as an optimal control problem in terms

of path, event, state bound, and control bound constraints as well as a series of knots

for segmenting the trajectory. The launch trajectory problem will be formulated such

that the vehicle remains in the same inertial plane of motion for the entirety of the launch

flight, the angle of attack is stabilized to zero during the coasting segments, and the states

remain continuous over the entire trajectory.

5.5.1 Initial Conditions

The initial conditions for a launch vehicle problem typically involve a vehicle located on

the surface of the Earth at a given latitude and longitude that is at rest relative to the

rotating Earth and fixed upright on a launch pad. These initial conditions are difficult to

describe in terms of the state vector, x, formulated in this problem since the flight path
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angle, y, and velocity heading angle, 0, are undefined when velocity is equal to zero. In

addition, singularities exist in the equations of motion when VE = 0 or 7 = 90 degrees.

Therefore, initial conditions are obtained by propagating values very close to the singular

values out to a reasonable distance away from the singularities. The initial conditions

used in this problem are as follows.

ri = f (hi, A,), where h = 100ft

P i 0 deg

A, = 0deg

VEI = 90 ft/sec

7i = 70 deg

0 = open

qbody = open

Tbody, = open

01 = 0 deg

r = 0 deg

The initial conditions of the vehicle are at an altitude of 100 feet above the surface of

the Earth at a velocity of 90 feet per second and a flight path angle of 70 degrees. In order

to properly define the initial value for the radial distance, ri, the initial geodetic altitude,

hi, is transformed to the geocentric radial distance using the ellipsoidal-Earth model and

Ai. Since the relative longitude, p, and relative latitude, A, can always be defined relative

to the launch point, the initial values of p and A can be fixed to zero for all cases. The

initial heading angle will be determined by the particular scenario examined in each case,

while the body rates will be determined by the optimizer.

5.5.2 Knots

As mentioned in chapter 3, the trajectory is split up into separate segments with knots

located at the boundaries of the segments. The inclusion of knots into the problem allows

for placement of dynamic, path, event, state, and control constraints that may only act
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over a portion of the trajectory. For the boost problem, seven knots are used to separate

the boosting and coasting portions of flight. Five of these knots are interior knots, which

lie along the trajectory between the initial time, to, and the final time tf. The other two

knots are boundary knots, which lie at to and tf to specify initial and end conditions.

At open

Final
Burnout

ignition 3

Mass
Drop2 -o

ti

/ tk Interior Knot5

At = 10 sec

Interior Knot 4
At = 5 sec

Interior Knot 3

At = 20 sec

At = 5 sec

At = 60 sec

Ignition t o Initial
Boundary Knot

Figure 5-15: Knot Locations Along Launch Trajectory

For the launch trajectory, all interior knots times, tki, will be fixed to predetermined

times while the final boundary knots at time tf will be allowed to vary. Bounds are set

on the time of the final knot to ensure that it is not placed before any of the five interior

knots. The boost segment times are fixed to 60 seconds, 20 seconds, and 10 seconds,

respectively, as given in section 5.1.2, while the coasting segments between burns are

fixed to 5 seconds each. The final ballistic coast segment has an open time interval that

will stretch from the final burnout point until the vehicle reaches the piercepoint altitude.
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5.5.3 State Bounds

The following state bounds are adopted to reasonably limit the vehicle motion as well as

avoid potential singularities.

RE- 60,000ft< r < RE+ 50, 000, 000 ft

-1deg < p < 180deg

-1 deg < A < 89 deg

10 ft/sec < VE < 500, 000 ft/sec

-89 deg < / < 89 deg

-180 deg < 1) < 180 deg

-10deg/sec <qbody < 10 deg/sec

-10deg/sec <rbody < 10 deg/sec

-30deg < 0 < 30 deg

Odeg < 5 < Odeg

The radial distance, r, is given a lower bound that allows values slightly less than the

Earth mean radius, RE, due to the oblateness of the Earth. The upper bound on r is

made large enough that it cannot physically limit any feasible trajectories. The relative

longitude, p, is bounded on the lower end by -1 degrees to limit the optimization search to

trajectories that head in a direction of increasing longitude, while the upper bound is 180

degrees. Similarly, the lower bound of -1 degrees on relative latitude is imposed to limit

the search space, while an upper bound of 89 degrees is imposed to avoid a singularity at

A = 90deg. The Earth-relative velocity, VE, is bounded to be positive at all times, with

the lower bound at 10 ft/sec to avoid a singularity when VE = 0 and the upper bound

set large enough that it cannot physically limit any feasible trajectories. The flight path

angle, 7, is bounded to be within ±89 degrees in order to avoid singularities at y = ±90

degrees. The heading angle, V), is allowed to be open to all values ± 180 degrees to

allow a full range of motion for turning the vehicle in various directions. The body rates,

qbody and Tbody, are limited to ± 10 deg/sec, while the nose pitch angle, 0, is limited to ±

30 degrees. The nose yaw angle, 0, is constrained to zero in order to keep the vehicle
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traveling in the same plane of motion throughout the boost trajectory. In order to satisfy

this constraint, the optimizer will choose the lateral thrust vector control angle, , and

the ACS yaw control Mc,, such that the thrust torque balances any out of plane motion.

5.5.4 Control Bounds

The controls are bounded based upon the limitations of the control systems on the launch

vehicle.

-10deg < 3

-10deg

-1 N-m < Mcq

-1 N-m < Mc,

1 N-m

1 N-m

10deg

10 deg

The thrust vector control system has the capability to gimbal the engine nozzle a

maximum of 10 degrees in both the pitch direction and the yaw direction. Likewise, the

small ACS thrusters used to stabilize the vehicle during the coasting segments can exert

a maximum torque of 1 Newton-meter (N-m) in both the pitch direction and the yaw

direction.

5.5.5 Event Constraints

Event constraints are enforced at the knot locations to dictate continuity of the states

and also specify state values that are desired at the knot locations.
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x(t+) x( ) o
h (tf) - 400,000 ft = 0

-I deg < (tf) <-89deg

(t-) 0 o

o(t) = o

k4(t+ 0

o(t ) = o

o(t;) = o

Vi= 1,...,K

The first set of event constraints specify that the states must be continuous across all

of the interior knots. The second and third event constraints dictate conditions that must

be met at piercepoint. The piercepoint must occur at 400,000 feet above the surface of

the Earth and the flight path angle, 7, must have a negative value less than -1 degree

to ensure that the piercepoint occurs when the vehicle is re-entering the atmosphere and

not when it is exiting the atmosphere. The remainder of the events specify constraints

on the nose pitch angle (0) at the boundaries between the trajectory segments. Since q is

constrained to zero for the entirety of the launch flight, 0 is equivalent to the aerodynamic

angle of attack, a, during the launch flight, as given by Equation 2.6. In order to eliminate

potential instabilities that may occur during engine ignition or burnout if the vehicle is

at a high angle of attack, 0 is constrained to be zero at these boundaries.

5.5.6 Path Constraints

Path constraints are enforced on the trajectory nodal points between the knots in order

to specify special limits on the states and controls during particular segments of flight.
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0 < h(t) < 5,000,000ft Vt

SM(t = 0 Vtkl < t - t421 tk3 < t < tk4, tk5 <- t < tf

(t) = 0 Vtkl - t k2 , tk 3 _< t < tk 4 , tk 5  t < tf

Mcq (t) = 0 Vto < t < tki, tk 2 < t - tk3, tk 4  k t tk5

Mcr (t) = 0 Vto < t < ttkl, tk2 < t < tk3, tk 4 < t <- tk 5

0 (t) 0 Vtk < t t tk, tk3 t tk 4 , tk5 <_t < tf

The first path constraint dictates that the altitude of the vehicle above the surface

of the Earth (ellipsoidal model) must remain positive over the entire flight. This must

be imposed by a path constraint since the altitude is not a state variable. The following

four path constraints dictate the segments of the trajectory in which certain controls are

inactive. The thrust vectoring controls (,3, () are inactive during the coasting periods,

while the attitude control system is inactive during the thrusting segments. The limitation

of the thrust vectoring control (TVC) angles during coasting is especially important since

0 and ( have no controllability of the vehicle when the thrust is equal to zero. Without

fixing these controls to zero during the coasts, the optimization algorithm would detect

the objective function to be invariant with respect to a variation in the TVC controls

during coast and would not be able to converge on a unique solution for the TVC control

profile during the coasting flight.

The final path constraint dictates that the nose pitch angle, and therefore angle of

attack, is stabilized to zero over each of the coasting periods. The reasons for imposing

this constraint involve both stability and controllability. For stability reasons, the angle

of attack is set to zero because the attitude control system (ACS) is only designed with

enough control authority to stabilize the vehicle, not to maneuver the vehicle. As the angle

of attack increases, the aerodynamic forces increase in magnitude, leading to more intense

aerodynamic moments exerted on the vehicle body which require a powerful control system

to counteract. In order to avoid high frequency attitude motion, the event constraints

mentioned in the previous section specify that the TVC system must drive the angle of

attack to zero prior to each stage burnout and the path constraint here specifies that the
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ACS control will stabilize the angle of attack to zero for the entire length of each coast.

The angle of attack is also stabilized to zero for controllability purposes. As the vehicle

ascends to higher altitudes, the atmospheric density exponentially decreases, leading to a

substantial decrease in dynamic pressure exerted on the vehicle by the relative wind. As

the dynamic pressure descreases, so does the ability to generate lift for manuevering the

vehicle. As the vehicle ascends higher, the sensitivity of the vehicle trajectory to changes in

the vehicle attitude approaches zero. This can create ill-conditioned sensitivity matrices

in the optimization algorithm, leading to incorrect or infeasible solutions. Therefore,

the angle of attack is stabilized to a constant value of zero during the ballistic coast to

piercepoint to avoid controllability issues.

5.6 Launch Vehicle Capabilities

Now that the launch vehicle has been formulated, the full capabilties of the vehicle will

be examined.

5.6.1 Initial Guess

The DIDO solver used in this study requires an initial guess for the state, control, and time

variables to initialize the optimization algorithm. It is recommended, but not required,

that the initial guess represents a dynamically feasible trajectory that obeys the state

dynamics throughout the trajectory [6]. An initial guess is obtained for the boost problem

by starting with the initial conditions presented in section 5.5.1 and integrating the vehicle

dynamics equations developed in chapter 3 with all controls set to zero. Since the vehicle

is a stable system (SM > 0), it is expected that propagation of the initial conditions with

zero control will provide a reasonable guess. The initial heading angle, 0b, is initially set

to be traveling along the Equator (b = 0), while qbody and rbodv are also initially set to

zero. The guess altitude profile plotted versus relative longitude (downrange) is given in

Figure 5-16.

The guess trajectory travels 30.5 degrees downrange and peaks at an altitude of 2000

kilofeet with no applied attitude control. Since the initial heading was 0 degrees, the
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Figure 5-16: Altitude Versus Relative Longitude For Guess Trajectory

vehicle does not travel out of plane and the relative longitude (A) and heading (0) are

equal to zero for the duration of the flight. As designed in section 5.1, the vehicle achieves

a velocity of approximately 16,000 feet per second upon the final engine burnout, as shown

in Figure 5-17.

Each of the coasting and powered segments of flight can be easily identified in Figure

5-17. After final burnout, the vehicle ascends until gravity is able to turn the velocity

vector downward, then descends and gains velocity as it approaches the piercepoint.

The flight path angle, y, begins at 70 degrees and initially begins to drop due to

gravitational acceleration and a low initial speed. However, the reduction in flight path

angle creates a positive angle of attack, which decelerates the flight path angle drop using

a torque created by the thrust force acting along the nose axis. This positive angle of

attack is short-lived, as stabilizing aerodynamic torques drive the angle of attack toward

zero, as seen in Figure 5-19.

The final stage burnout is shown to occur when 7 is approximately 30 degrees. From
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Velocity Profile of Guess Trajectory
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Figure 5-17: Earth-Relative Velocity Versus Time For Guess Trajectory

Flight Path Angle Profile of Guess Trajectory
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Figure 5-18: Flight Path Angle Versus Time For The Guess Trajectory
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Nose Pitch Angle Profile of Guess Trajectory
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Figure 5-19: Nose Pitch Angle Profile For Guess Trajectory

this point, gravity turns the flight path angle negative until the vehicle reaches the pier-

cepoint altitude. Notice that the flight path angles at piercepoint and final burnout are

nearly symmetric about 7 = 0.

The nose pitch angle, 0, oscillates about 0 = 0 due to the stabilizing aerodynamic

moments exerted on the vehicle. The change in the amplitude and frequency of the

oscillations can be explained by variation of the applied aerodynamic moments over time.

The dynamic pressure exerted on the vehicle body increases with the square of velocity,

increasing the aerodynamic moments significantly. However, as the vehicle ascends to

higher altitudes, the exponential decay of atmospheric density eventually reduces the

dynamic pressure to zero.

Additionally, as the vehicle gains speed, the center of pressure, Cp, moves toward the

aft of the vehicle, increasing the static margin and, therefore, the stability of the vehicle.

All of these factors contribute to the observed attitude dynamics of the vehicle with no

applied controls. It can be seen in Figure 5-19 that the oscillations reduce in magnitude,
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Dynamic Pressure As A Function Of Altitude For Guess Trajectory
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Figure 5-20: Dynamic Pressure As A Function Of Altitude For The Guess Trajectory

but increase in frequency as the vehicle gains altitude and velocity.

It can be observed that as the vehicle leaves the atmosphere, it loses stability since

the stabilizing aerodynamic moments approach zero. This results in the body pitch rate

leveling out to a constant value as the vehicle heads into space. The attitude control

system (ACS) described in section 5.4 is used to stabilize the vehicle attitude during this

portion of flight.

These dynamically feasible states are input into the DIDO solver as a guess to solve

for optimal trajectories.
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Pitch Body Rate Profile of Guess Trajectory
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Figure 5-21: Body Pitch Rate Versus Time For Guess Trajectory
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5.6.2 Maximum Piercepoint Range Case

The first capability of the launch vehicle to be examined is the maximum range piercepoint

that can be reached. This problem enforces the dynamic, event, and path constraints

formulated in the previous sections and applies the following cost function.

J = -p (tf)

The launch vehicle is able to enhance its range capability by using optimal thrust

vectoring controls to control the vehicle attitude during the boosting segments of flight.

The attitude control system stabilizes the attitude during the coasting segments and thus

has no influence on the optimal motions of the vehicle. The maximum range capability

for the launch vehicle is approximately 31.5 degrees downrange, as can be observed in

Figure 5-22.

Altitude Profile For Maximum Range Trajectory
2 5 0 0 ...................................... ........... ...

2000 - Maxiiii Altitude

1500

1000 -

Firml Bn iceoint

0o.99  5 10 15 20 25 30 35
Relative Longitude [deg] 31.5

Figure 5-22: Maximum Range Boost Trajectory

The final stage burnout occurs at an altitude of 265,400 feet and a relative longitude
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of 0.99 degrees downrange from the launch point with a velocity magnitude of 16,337 feet

per second and a flight path angle of 34.4 degrees. From this point, the vehicle glides

ballistically with angle of attack stabilized to zero until it reenters at the piercepoint

altitude of 400,000 feet. The conditions upon reentry at piercepoint are as follows:

tf = 1072 sec

h (tf) = 400, 000 ft

p (tf) = 31.5 deg

VE (tf ) = 16, 077ft/sec

7Y(tf) = -33.7deg

The results here show that the maximum range can be attained by reaching the final

burnout location with a flight path angle of approximately 34 degrees. Since the flight path

angle profile is nearly symmetric about y = 0 during the ballistic coast, this corresponds

to an optimal reentry flight path angle of -33.7 degrees at piercepoint. The value for 7 at

the final burnout represents an optimal balance between vertical velocity and downrange

velocity. Higher values of y at burnout will result in higher maximum altitudes but

reduced piercepoint ranges, while lower values of y will have lower maximum altitudes

and hit piercepoint uprange of the maximum range piercepoint. In Figure 5-23, it can

be observed that the vehicle optimally manuevers during the boost segments to target

7 = 34.4 deg at the final burnout. For comparison, the suboptimal guess trajectory

illustrated in Figure 5-18 reaches final burnout with 7y 29 deg.

The flight path angle profile is influenced by the nose pitch angle variation over time.

Figure 5-24 shows the nose pitch angle profile for the maximum range trajectory. The

optimal pitch angle profile during the boosting segments involves entirely positive pitch

angles. By choosing positive pitch angles during the boost, the vehicle slows the reduction

in y caused by gravity and targets a higher y at final burnout than in the guess trajectory.

This nose pitch angle profile is optimally chosen to target an optimal 7 of 34.4 degrees

at final burnout. The maximum altitude is shown to increase from about 2000 kft in the

guess trajectory to approximately 2500 kft for the maximum range trajectory.

The motion of the nose pitch angle is a function of the body pitch rate as well as the
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Flight Path Angle Profile For Maximum Range Launch Trajectory
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Figure 5-23: Flight Path Angle Profile For Maximum Range Launch Trajectory

Nose Pitch Angle Profile For Maximum Range Trajectory

1200600
Time [sec]

Figure 5-24: Nose Pitch Angle Profile For Maximum Range Launch Trajectory
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motion of the velocity vector over time. The body pitch rate is shown in Figure 5-25.

The pitch rate profile is no longer a damped oscillation, as in the guess trajectory, but is

instead controlled by the TVC and ACS control systems. Recall from the definitions in

chapter 3 that a positive pitch rate directs the vehicle nose downward while a negative

pitch rate directs the nose upward. The rates remain small for the boosting phases of flight

in order to keep the nose pitch angle relatively constant. At the boundaries between the

boosting segments and coasting segments, large impulsive jumps in the pitch rate occur

in order to satisfy the zero angle of attack constraints for each stage ignition and burnout.

The pitch rate during the ballistic coast is a small, non-zero value that rotates the vehicle

nose such that it remains coincident with the velocity vector.

Body Pitch Rate Profile Versus Time
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Figure 5-25: Body Pitch Rate Profile For Maximum Range Trajectory

The pitch rate is directly influenced by pitch controls from the TVC and ACS systems

as well as from aerodynamic torques applied about the vehicle center of mass. In Figure 5-

26, the TVC control is described in terms of the engine gimbal angle and the ACS control

is described in terms of the applied torque magnitude. The controls are relatively smooth
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except for impulsive controls at the boost-coast boundaries that are used to quickly drive

the angle of attack to zero. The ACS control requires very small torques to stabilize the

vehicle during the coast periods. The largest ACS control is on the order of magnitude

of 10-2 N-m for the first coast since the dynamic pressure is higher during this portion of

the flight. The stabilizing moments for the second coast and the ballistic coast are even

smaller on the order of 10- 4 N-m since the counteracting aerodynamic torques are near

zero during these periods.
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Figure 5-26: Pitch Controls For Maximum Range Launch Trajectory
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5.7 Minimum Piercepoint Range Case

Another limiting capability of the launch vehicle to be examined is the minimum achiev-

able piercepoint range. The minimum piercepoint range case seeks to find the minimum

downrange piercepoint location that can be reached by the launch vehicle. Launch tra-

jectories with very steep final burnout and reentry conditions (17| > 80deg) are not

considered in this study since these trajectories reenter with flight path angles that are

far too steep for the boost-through-reentry problem. The performance index for this

problem is the relative longitude of the piercepoint location.

J = p (tf)

Figure 5-27 gives the minimum piercepoint range solution for the launch trajectory.

The trajectory can be characterized by an initial steep ascent to gain altitude, followed

by a rapid pitch-over maneuver toward the horizontal that achieves a shallow reentry at

piercepoint.

The final burnout occurs at an altitude of 216,300 feet and a relative longitude of 0.68

degrees with a burnout velocity of 14,072 feet per second and a flight path angle of 11.2

degrees. The final burnout for the minimum range case occurs at a lower altitude and

closer to the launch point than the final burnout for the maximum range case. In addition,

the final burnout velocity has a much lower magnitude and a much lower flight path angle

for the minimum range case. The final burnout state results in a piercepoint reentry

location at a relative longitude of 6.1 degrees downrange with a velocity of 13,638 feet per

second and a flight path angle of -1 degrees. The maximum altitude reached during the

flight is 401,400 feet, just slightly above the piercepoint reentry altitude. The flight path

angle profile is no longer symmetric over the ballistic coast due to the large difference

between final burnout altitude and piercepoint altitude as well as the low maximum

altitude.

Figure 5-28 shows the flight path angle profile of the minimum range launch trajectory.

The most interesting feature of the flight path angle profile is the series of oscillations that

occur during the first 50 seconds of flight. The flight path oscillates at very high values
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Altitude Profile of Minimum Range Trajectory
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Figure 5-27: Minimum Range Launch Trajectory

Flight Path Angle Profile For Minimum Range Launch Trajectory
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Figure 5-28: Flight Path Angle Profile For Minimum Range Launch Trajectory
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between 75 degrees and the maximum allowable value of 89 degrees in order to gain

sufficient altitude while at the same time performing energy wasting maneuvers. After

the oscillations, the flight path angle makes a rapid descent in order to quickly turn the

motion of the vehicle toward the horizontal for a shallow final burnout condition.

Nose Pitch Angle Profile For Minimum Range Launch Trajectory
30

Maximize Diag To Burn Off Energy While
Maintaining.Adequate Flight Path Angle
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Figure 5-29: Nose Pitch Angle Profile For Minimum Range Launch Trajectory

Figure 5-29 gives the nose pitch angle (0) profile over time, which is equivalent to

the angle of attack (a) profile since the nose yaw angle (¢q) is constrained to zero during

the launch flight. The pitch angle profile gives additional insight into the energy wasting

maneuvers as well as the rapid reduction in flight path angle. Figure 5-29 shows that the

pitch angle oscillates between its maximum and minimum values (±30 deg) during the

first 50 seconds of flight. The purpose of hitting these angle of attack limits is to exert

a maximum amount of the normal aerodynamic force along the drag direction, since this

force increases significantly with angle of attack. This maximizes the vehicle energy loss

due to drag in order to reduce the amount of vehicle velocity at burnout, which in turn

reduces the piercepoint range. The reason for the oscillation between the bounds is to

prevent the flight path angle from violating its maximum limit of 89 degrees. Thus, the
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vehicle must control the proper flight path angle while at the same time controlling the

velocity magnitude through control of the drag force exerted on the vehicle. Once the

vehicle has reached a sufficient altitude, the flight path angle begins to drop very rapidly.

The limit on how fast the flight path angle can drop is enforced by the minimum allowable

nose pitch angle (-30 degrees). Notice in Figure 5-29 that the pitch angle remains at the

minimum limit of -30 degrees from 50 seconds into the flight until final burnout, with the

exception of the coasting phases. This choice of the pitch angle serves the dual purpose of

driving the flight path angle down while also burning off the maximum possible velocity

with drag. The drag profile is shown in Figure 5-30 as a function of time. Since drag

is directly proportional to dynamic pressure, the maximum drag profile exhibits a curve

similar to the dynamic pressure curve.

Drag Profile Versus Time For Minimum Range Trajectory

250
Time [sec]

Figure 5-30: Drag Profile For Minimum Range Launch Trajectory
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5.8 Summary

In this chapter, a three-stage launch vehicle model was developed to boost a maneuvering

reentry vehicle to suborbital altitudes with a maximum velocity of approximately 16,000

feet per second. The launch vehicle controls its attitude during the boosting phases with

thrust vectoring control (TVC) and during the coasting phases using a stabilizing atti-

tude control system (ACS). Analysis of the limiting capabilities of the vehicle has shown

that the launch vehicle has the capability to deliver a payload a maximum downrange

piercepoint distance of 31.5 degrees and a minimum uprange piercepoint distance of 6.1

degrees.
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Chapter 6

The Reentry Problem

The portion of the vehicle flight profile extending from the piercepoint location at 400,000

ft altitude to arrival at the target is considered the reentry flight. Unlike the boost flight,

the reentry portion of flight is entirely unpowered and consists of a vehicle with constant

mass and length maneuvering to a final target state using aerodynamic controls. The

vehicle passes through the piercepoint location at hypersonic speeds (M 16) and slows

to supersonic speeds by the time the target is reached (M 1.5).

The reentry flight is partitioned into two segments. The first segment extends from

an altitude of 400,000 ft to an altitude of 200,000 ft, while the second segment covers the

vehicle flight from the 200,000 ft altitude to the target location.

The vehicle will not exhibit any maneuvering capabilities during the first segment of

the reentry flight due to the lack of substantial dynamic pressure available for flap control.

Instead, the attitude control system (ACS) used for the ballistic exo-atmospheric coast

will continue to fix the vehicle angle of attack to zero using small control torques until

200,000 ft altitude is reached. At that point, the vehicle will begin to use aerodynamic

flaps to control the nose attitude of the vehicle relative to the velocity vector. The second

segment of the reentry flight may exhibit one or more skips, in which the vehicle regains

altitude in order to extend its range capability.
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Figure 6-1: Reentry Flight Profile

6.1 Reentry Vehicle Aerodynamics

During the reentry phase of flight, aerodynamic forces are exerted on the vehicle body

by dynamic pressure from the relative wind. The reentry vehicle aerodynamics will be

specified by axial and normal coefficients of force as functions of Mach number and angle of

attack, as was done for the launch vehicle. However, the aerodynamic characteristics of the

reentry vehicle are much simpler than that of the launch vehicle since the reeentry vehicle

does not pass through the transonic region (M s 1). Therefore, the highly nonlinear

aerodynamic effects modeled for the launch vehicle are not necessary here.

Aerodynamic tabular data for a manuevering reentry vehicle exhibiting a lift-to-drag

ratio of approximately two (L/D - 2) is used to create analytic functional fits to the

coefficient data 1. The simplified analytic functions approximate the coefficient of normal

force, CN, as a function of angle of attack (a) only and the coefficient of axial force, Cx,

as a function of Mach Number (M) only. CN is fit as a linear function of angle of attack

(a) while Cx is fit as an exponential function of Mach Number (M).

1M. Bottkol, Maneuvering RV Simulation, Internal Draper Memo
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CN = aNa (6.1)

(6.2)Cx = ax e - bx(M-cx) + dx

The coefficients aN, ax, bx, cx, and dx are determined using a least squares curve fit.

The simplified aerodynamic coefficients are plotted in Figures 6-2 and 6-3.

Reentry Vehicle Normal Coefficient of Force vs. Angle of Attack

Angle of Attack (deg)

Figure 6-2: Reentry CN as a Function of Angle of Attack

The center of pressure (Cp) model used for the reentry vehicle remains the same as

was used for the launch vehicle, as described in section 5.3.
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Figure 6-3: Reentry Vehicle Cx as a Function of Mach Number (M)
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6.2 Reentry Vehicle Control

During reentry, a set of aerodynamic flaps located at the vehicle base are used to control

the nose attitude. The flaps exert pitch and yaw moments (Mq, Mr) on the vehicle by

actuation of the flap deflection angles. These control moments are used to counteract

aerodynamic moments exerted on the vehicle in an effort to control the vehicle. Figure

6-4 illustrates the location of the flaps on the body and the directions of the resultant

moments, Mq and Mr.

Mr

M4
M

Pitch '"
Flaps Flap

XB

Figure 6-4: Reentry Vehicle Control Flaps

The aerodynamic moments exerted on the vehicle during reentry are given by the same

general expressions governing the aerodynamic torques during launch, given in Equation

5.29. The only difference in the moment calculation here is the use of the reentry vehicle

normal force coefficients, CN, which exhibit higher L/D characteristics than the launch

vehicle coefficients.
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MA = FN LSM = V2 Sref CN LSM

MAB = MA COS O

MAzB = -MA sin a

The pitch flaps exert a control torque, Mq, along the yB axis, while the yaw flaps exert

a control torque, Mr, along the ZB axis. The resultant angular motion of the vehicle body

is determined by the sum of the external torques along the pitch and yaw axes, given as

S TyB = Mq + MA COS U (6.3)

TzB = Mr - MA sin a (6.4)

Although the flap control can be specified as a deflection angle, 6, it will instead be

specified as a moment exerted about the vehicle center of mass in this formulation. In

order to adequately describe the control capabilities of the flaps, reasonable bounds must

be placed upon the torque control indicating the maximum control authority of the flaps.

The torque exerted by an aerodynamic flap can be expressed in terms of dynamic pressure,

q = pV, a reference area, Sref, a mean aerodynamic chord, i, and a nondimensional

moment coefficient, Cm.

1(Mq)max p (h) VE Sref e (C mq) (6.5)2 max
(Mr)max = p (h) V1j Srey -e (Cmr)max (6.6)

The vehicle reference area used in the reentry flight is equivalent to the area used

for the launch vehicle aerodynamics, Sref = 0.075m 2. For vehicles with no primary

lifting surface, Z is often replaced by body length or maximum diameter [3]. For this

vehicle, Z is chosen as vehicle length, - = 1.43 m. The flaps are assumed to have identical

control authority in the pitch and yaw directions, so (Cmq)max and (Cm,)max will be
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equal to one another. In addition, it is assumed that the flaps have an equal ability

to exert both positive and negative torques (i.e. (Cm)max = (Cmq) min). The moment

coefficient is chosen to be on the same order of magnitude as the maximum flap moment

coefficients used by Bollino in his investigation of the X-33 manuevering capabilties [15],

(Cm) max = (Cmr)max = 0.05. Therefore, the optimizer will choose values for the pitch

and yaw control torques within these bounds that optimally control the vehicle attitude

and, consequently, maneuverability.

6.3 Problem Formulation

The reentry portion of flight will now be formulated as an optimal control problem in terms

of path, event, state bound, and control bound constraints as well as a knot for segmenting

the trajectory. The initial conditions for the reentry problem will be dependent upon the

end conditions of a particular launch trajectory. In general, the initial conditions will

always occur at the piercepoint altitude of 400,000 feet with Oi and I, set to zero to be

consisitent with the attitude constraints imposed in the launch problem.

6.3.1 The Submunitions Deployment Mission

The reentry problem will be solving for a trajectory that meets sufficient end conditions

to complete a submunitions deployment mission. The submunitions deployment mission

involves dispensing a payload from the vehicle at level flight conditions. The mission

may or may not require the payload to be dispensed while traveling along a particular

heading. For this mission, it is assumed that the vehicle must be traveling along the plane

of reference defined by the launch point and target point when dispensing the payload.

The submunitions deployment mission considered in this study must reach end conditions

of hf = 3kkm, pf = 30deg, Af = Odeg, VEf = 1300 ft/sec, 7f = Odeg, Of = Odeg,

Of = 0 deg, and of = 0 deg.
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6.3.2 Knots

One interior knot is used in the reentry problem to enforce attitude constraints at altitudes

above 200,000 feet and also to prevent the vehicle from skipping out of the atmosphere.

Boundary knots are also located at the reentry initial time (piercepoint) and the end

time of the trajectory (tend). In order to be consistent with the notation from the launch

problem, the time at piercepoint will be referred to as tk6 and the knot located at 200,000

feet will be referred to as tk,. The boundary knot at the end of the trajectory will occur

at time tend.

400,000 ft

t6 q Piercepoint

200,000 ft

tk7 Flap Control
Begins

Target
State

tow

Figure 6-6: Knots Locations For The Reentry Problem

Unlike the launch problem knots, the interior knot as well as the final boundary

knot in the reentry problem are free to vary. While the initial knot at tk6 is fixed to

a piercepoint location and time determined by the launch end conditions, the interior

knot at 200,000 feet and the final knot do not have fixed times or bounds. However, it

is important to restrict the open knots such that the optimization algorithm does not

choose overlapping knots (i.e. knot 8 placed before knot 7). This issue will be dealt with
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using event constraints.

6.3.3 State Bounds

The following state bounds are adopted to reasonably limit the vehicle motion as well as

avoid potential singularities.

RE- 60,000 j

-1 deg

-1 deg

10 ft/sec

-89 deg

-180 deg

-20 deg/sec

-20 deg/sec

-30 deg

-30 deg

t < r < RE

< A <

< VE < 50

< <

< <

< qbody <

< rbody <_

< 0 <

< <

+ 500, 000 ft

180 deg

89deg

0, 000 ft/sec

89 deg

180 deg

20 deg/sec

20 deg/sec

30 deg

30deg

The state bounds imposed during reentry are very similar to the state bounds used

in the launch problem. The only differences are a lower limit on the maximum radial

distance, relaxation of the = 0 constraint, and widened bounds on the maximum and

minimum body rates. The maximum radial distance is lowered to 500,000 feet above the

Earth mean radius, RE, since the entire reentry trajectory must remain below an altitude

of 400,000 feet. The lowering of the maximum bound reduces the potential search space

of the optimization algorithm. The bounds for the nose yaw angle (0) are expanded to

±30 degrees since the reentry vehicle has significant out-of-plane maneuvering capability

that is equivalent to its in-plane maneuvering capability. The bounds on the body pitch

rate, qbody, and the body yaw rate, rbody, are expanded to ±20 deg/sec since the reentry

vehicle is much smaller and more agile than the launch vehicle.
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6.3.4 Control Bounds

The controls are bounded based upon the limitations of the reentry vehicle control mech-

anisms. These include both limits on the attitude control applied moments and on the

flap control applied moments.

-1 N-m < Mc < 1 N-m

-1 N-m < Mc, < 1 N-m

-O <Mq < 00
S00 Mr < c00

The limits on the attitude control are equivalent to the limits used in the launch

problem while limits on the flap control moments are specified by path constraints since

the limits vary over the course of the trajectory.

6.3.5 Event Constraints

The event constraints for the reentry problem include continuity conditions as well as

specification of conditions at the interior knot and the final knot.

x(t) x(t7) = 0
h (tk 6 ) - 400000ft = 0

h (tk 7 ) - 200000ft = 0

-89deg < ~ (tk 6 ) < -ldeg

-89deg < -y (tk 7 ) < -ldeg

tk 7 - tk 6 > 0

tend- tk 7 > 0

h (tend) - 3000m = 0

The piercepoint knot is constrained to be at an altitude of 400,000 feet with a reentry

flight path angle between -1 degrees and -89 degrees. Similarly, the interior knot must

be located at 200,000 feet with a reentry flight path angle between -1 degrees and -89

degrees. The time constraints dictate the necessary order of the knot times such that the
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knots do not overlap. The last event constraint dictates that the final trajectory point

ends at an altitude of 3 km to satisfy the submunitions mission.

6.3.6 Path Constraints

The path constraints dictate special bounds on the states and/or controls that only act

over a particular segment of the trajectory. Path constraints will be imposed to constrain

the angle of attack to zero at high altitudes, prevent skipping out of the atmosphere,

prevent impact with the ground, and enforce bounds on the maximum control authority

of the flaps. Due to the high velocity at which the vehicle reenters the atmosphere, it is

also important to include physical constraints on the maximum heat loading and g-loading

of the vehicle to ensure vehicle safety.

State Path Constraints

Path constraints are imposed on the 0 and q states, as well as the altitude above the

surface of the Earth, h.

O deg < 0 (t) < 0 deg Vtk6  t tk

0 deg< (t) < 0 deg Vtk 6 < t < tk 7

0 ft < h (t) < 200,000 ft Vtk7 < t _ tend

The first two state path constraints constrain the attitude angles 0 and q to zero during

the first segment of reentry flight from 400,000 feet to 200,000 feet. This constraint is

necessary due to a lack of flap controllability at altitudes above 200,000 feet due to very

low dynamic pressure. Attempting to control the vehicle with flaps during this segment

of flight would lead to an incorrect or inaccurate optimization search since the sensitivity

of the vehicle trajectory to flap control would be very low at these altitudes and very high

at low altitudes, creating ill-conditioned sensitivity matrices.

The third constraint ensures that the altitude of the vehicle above the Earth's surface

remains between 0 and 200,000 feet during the second segment of the reentry flight. The

lower bound ensures that the vehicle does not impact the ground while the upper bound
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ensures that the vehicle remains within a region with adequate controllability.

Flap Control Path Constraints

As mentioned in the control bounds section, the bounds on the flap controls are enforced

by path constraints since they vary over the course of the reentry flight.

(Mlq)max < Mq < (Alq)max
0.5p V - 0.5p VE 0.5p V

(r)ax < < (Mr)max
0.5p V - .5p - o.5pVE

The maximum moments that can be generated by the pitch and yaw flaps are given

in Equation 6.6. Notice that these limits are a linear function of the dynamic pressure

(q = p (h) VE2) acting against the vehicle body during flight, which varies over time. Since

the control bounds must be fixed values, a path constraint is imposed on the maximum

moment divided by the dynamic pressure. In this manner, the flap control can be thought

of as a linear function of q, Mq = Kq, where the coefficient K = Sref Z Cmq, is limited by

a maximum value of (C,)max = 0.05. Given a certain amount of dynamic pressure, the

flaps can convert at most a maximum percentage of the dynamic pressure to a control

moment.

Heating Path Constraints

The reentry vehicle cannot sustain an indefinite amount of heating. The heat load expe-

rienced by the vehicle will be limited by a maximum stagnation point heating rate, Qmax.

The stagnation point heating rate of a vehicle is given by Chapman's Equation [22].

Q = K 5 3.15 BTU/ft 2/ (6.7)

where

K = 17600 BTU/ft2/s

In the Equation 6.8, p (h) represents the atmospheric density as a function of altitude,
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Po represents the sea level density, VE is the Earth-relative velocity of the vehicle, and

Vc, is the speed required to maintain a circular orbit at zero altitude (7.9km/sec). The

maximum stagnation point heating rate is 1800BTU/ft2/s for this vehicle.

0 K(P(h)o 0.5 VE 3.15

(Po ) Vc
< 1800BTU/ft 2/s

G-Loading Path Constraints

The reentry vehicle also has structural limits that can only sustain limited accelerations.

The acceleration limits are often specified in terms of multiples of the sea-level gravity

acceleration, go = 9.81m/s 2, referred to as gs. The maximum gs allowable for this reentry

vehicle is 60gs. A structural safety margin is introduced by limiting this value to 55gs.

For the reentry vehicle, the g-loading acceleration is computed as the total acceleration

from aerodynamic forces, a = vL 2 + D 2/m.

0 < < 55go
m

(6.9)

Path Constraints Summary

The total path constraints used in the reentry problem are summarized below.

0 (t) <

0 (t) <

h (t) <
Mq <

0.5p V

0.5p V 2

K (p(h) 0.5 ( V 3 .1 5

L+D 2  <m

0 deg

0 deg

200, 000 ft
(Mq)max
0.5p V

(Mr)max
0.5p V2

1800 BTU/ ft 2/s

55go

Vtk6 _ t < tk7

Vtk 6 <_ t < tk7

Vtk7 t tend

6.4 Reentry Vehicle Capabilities

The capabilities of the reentry vehicle formulated in the previous sections will be briefly

examined here. The cases here will use the end conditions from the maximum range
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launch trajectory, examined in section 5.6.2, as initial conditions for the reentry problem.

6.4.1 Ballistic Reentry

Figure 6-7 shows the ballistic trajectory from the piercepoint conditions of VE = 16, 077 ft/sec

and y = -33.7 deg to the final altitude of 3 kilometers. The vehicle travels just over 1.5

degrees downrange and reaches the final altitude at non-level flight conditions.

Ballistic Reentry Trajectory From Maximum Range Launch Conditions
400

350-

300

250 .

20 00

150

100

50 -

0 IIII I Ii
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Relative Longitude (j) [deg]

Figure 6-7: Ballistic Reentry Trajectory

Figure 6-8 shows the nose pitch angle profile for the ballistic reentry trajectory. The

vehicle attitude exhibits the properties of a stable system, with the nose pitch angle profile

appearing as a damped oscillation that reduces in magnitude and increases in frequency

as the vehicle descends into the atmosphere.

Figure 6-9 gives the velocity and flight path angle profiles for the ballistic reentry

trajectory. The velocity initially increases due to gravity, but decreases due to drag upon

hitting the atmosphere. Despite the decrease in velocity due to drag, the vehicle is still

traveling at a velocity slightly less than 13,000 feet per second with a flight path angle
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Nose Pitch Angle Profile For Ballistic Reentry Trajectory

1090 101
Time [sec]

1115

Figure 6-8: Nose Pitch Angle Profile For Ballistic Reentry Trajectory

approaching -36 degrees when the final altitude of 3 kilometers is reached. Thus, maneu-

vering is required to reach the intended terminal states for the submunitions deployment

mission.
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Velocity Profile Versus Time
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Figure 6-9: Velocity And Flight Path Angle Profiles For The Ballistic Reentry Trajectory
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6.4.2 Maximum And Minimum Downrange

In order to determine the maneuvering limitations of the vehicle for satisfying the sub-

munitions mission, reentry trajectories are considered which maximize and minimize the

downrange distance of the end state. The performance index used for the maximum

range case is J = -pi (tend) and the performance index used for the minimum range case

is J = p (tend). The resulting optimal trajectories are shown in Figure 6-10 along with the

ballistic trajectory for comparison. The maximum range trajectory reaches a total down-

range distance (p) of 44.9 degrees in a total boost-through-reentry time of 1768 seconds

while the minimum range trajectory ends up at 34.3 degrees in a time of 1272 seconds.

Notice that the minimum range trajectory must perform one skip to burn off enough

velocity to meet the terminal conditions, while the maximum range trajectory performs

three skips to extend the maximum range. Additionally, the maximum range trajectory

skips up to the maximum altitude of 200,000 feet during the first skip to maximize down-

range distance while the minimum range trajectory remains lower in the atmosphere to

reach the terminal state at a minimum range.

The velocity profile of the minimum range trajectory is shown in Figure 6-11 while the

velocity profile of the maximum range trajectory is shown in Figure 6-12. The minimum

range trajectory is shown to decrease in velocity from approximately 16,000 feet per second

to 4,000 feet per second during the first skip. The remainder of the velocity is expended

during the final dive and maneuver to reach the target condition of 1,300 feet per second.

The maximum range trajectory, in contrast, only reduces to approximately 9,000 feet per

second after the first skip and retains enough energy to perform two additional shallower

skips before expending the remaining velocity during a final dive to the target altitude.

The reason for the large differences in velocity expenditure for the two cases can be

explained by examining the attitude profile of both cases. Figure 6-13 gives the nose pitch

angle (0) profile for the minimum range reentry trajectory and Figure 6-14 gives the nose

pitch angle profile for the maximum range reentry trajectory. Notice that the nose pitch

angle for the minimum range trajectory is near the bounds of ±30 degrees for a majority

of the flight. This attitude maximize the drag force exerted on the vehicle, leading to the
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Comparison Of Maximum And Minimum Range Reentry Trajectories
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Ballistic
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Figure 6-10: Comparison Of Maximum And Minimum Downrange Reentry Trajectories

maximum expenditure of velocity and, therefore, minimizing the range. The phenomenon

seen at approximately 1120 seconds into the flight is an attempt by the vehicle to remain

at low altitudes, where dynamic pressure is high, while still maximizing the drag. Since

a positive nose pitch angle not only generates a large amount of drag, but also rapidly

increases the flight path angle, the vehicle must temporarily maneuver to a negative flight

path angle to avoid an increase in altitude. The nose pitch angle for the maximum range

trajectory, in contrast, only approaches the bounds during the initial skip to prevent the

vehicle from dipping too deep into the atmosphere. In addition, the vehicle must begin

pitching down early enough to avoid violating the maximum altitude limit of 200,000 feet.

From that point, the nose pitch angle avoids the bounds in order to avoid high drag and

conserve enough energy to complete three skips.

The optimal pitch flap controls along with their upper and lower bounds are given for

the minimum range reentry trajectory in Figure 6-15 and the maximum range trajectory

in Figure 6-16. The pitch control profile for the minimum range trajectory spends a
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Figure 6-11: Velocity And Flight Path Angle Profiles For Minimum Range Reentry Tra-
jectory
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Velocity Profile Versus Time For Maximum Range Reentry Trajectory
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Figure 6-12: Velocity And Flight Path Angle Profiles For Maximum Range
jectory

1800

Reentry Tra-

majority of its time along the maximum and minimum control bounds due to the extreme

maneuvers described above while the pitch control for the maximum range trajectory only

encounters the control bound during the first pitch up maneuver for the first skip. Notice

that the control authority is extremely limited during the high altitude skips due to a

lack of dynamic pressure. Future investigations into this work may consider a bound on

minimum dynamic pressure for controllability purpose, or simply reduce the maximum

altitude to a lower value.
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Figure 6-13: Nose Pitch Angle Profile Versus Time For Minimum Range Reentry Trajec-
tory

Nose Pitch Angle Profile Versus Time For Maximum Range Reentry Trajectory
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Figure 6-14: Nose Pitch Angle Profile For Maximum Range Reentry Trajectory
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Pitch Flap Control Profile Versus Time For Minimum Range Reentry Trajectory
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Figure 6-15: Optimal Pitch Flap Control For The Minimum Range Reentry Trajectory

x 104 Pitch Flap Control Profile Versus Time For Maximum Range Reentry Trajectory

---M
I Skip 1

p 2 S
\ YSkip 3

1100 1200 1300 1400
Time [sec]

tch Control
aximum Moment Bound
inimum Moment Bound

DiveTo Target

i /xN

N.

1500 1600 1700 1800

Figure 6-16: Optimal Pitch Flap Control For The Maximum Range Reentry Trajectory
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6.4.3 Maximum Crossrange

The maximum crossrange reentry trajectory will be examined to investigate the crossrange

maneuvering capabilities of the reentry vehicle. The maximum crossrange case maximizes

the final latitude position of the vehicle upon reaching the target and the performance

index used is J = A (tend). Figure 6-17 shows the maximum crossrange trajectory in

comparison with the minimum and maximum downrange trajectories. The vehicle reaches

a final relative latitude (A) of 9.3 degrees at a relative longitude (p) of 39.7 degrees, which is

about halfway between the minimum relative longitude and maximum relative longitude.

The total boost-through-reentry flight time is 1740 seconds. The maximum crossrange

trajectory also performs a total of three skips, exhibiting similar characteristics to the

maximum downrange trajectory.

Maximum Crossrange Trajectory

.Piercep int....
, .... ' • ........... ...... . ..• ."". ....... ...... .............................400 -

.. " :' ~......... ........3 5 0 . . ..... . . .300
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00.. Max Cros range....
.- '*'" " .............

50A. ... ......
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Figure 6-17: Maximum Crossrange Reentry Trajectory

Figure 6-18 gives the pitch and yaw flap controls for the maximum crossrange reentry

trajectory. Notice that the yaw control is generally lower in magnitude than the pitch

control. This is because the pitch control is more vital to keeping the skipping features

of the trajectory intact. While the yaw control turns the vehicle toward the crossrange
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direction, it is the pitch control that enables skipping to enhance the range capability and

reach maximum latitude values. The pitch and yaw controls must be balanced since the

nose pitch and yaw angles both contribute to the angle of attack, and higher angles of

attack result in higher drag and more immediate energy loss.

Pitch Flap Control Profile Versus Time For Maximum Crossrange Reentry Trajectory
500
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Yaw Flap Control Profile Versus Time For Maximum Crossrange Reentry Trajectory
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Figure 6-18: Pitch And Yaw Flap Controls For Maximum Crossrange Reentry Trajectory

Figure 6-19 gives the heading angle profile for the maximum crossrange reentry trajec-

tory. The heading angle profile indicates a set of three left turns to increase the heading

angle and one final right turn to turn back toward the target. The first three turns

correspond to the trajectory skips, while the final turn corresponds to the final altitude

dive toward the target altitude of 3 kilometers. The turns occur during each dip into the

atmosphere since the vehicle control authority is proportional to the dynamic pressure

exerted on the vehicle. More will be discussed on this topic in the next chapter.
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Heading Angle Profile Versus Time For Maximum Crossrange Trajectory
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Figure 6-19: Heading Angle Profile For Maximum Crossrange Trajectory

6.5 Summary

In this chapter, a maneuvering reentry vehicle model was formulated for achieving the

submunitions mission by maneuvering from a given piercepoint location at 400,000 feet

to a target location. The vehicle uses a set of pitch and yaw flaps to control the vehicle

attitude below an altitude of 200,000 feet and manuevers according to a skid-to-steer ap-

proach. The control authority of the flaps is directly proportional to the dynamic pressure

exerted on the vehicle body, resulting in more aggressive maneuvering at lower altitudes.

The limiting maneuvering capabilities of the vehicle are investigated by examining the

maximum downrange, minimum downrange, and maximum crossrange target locations

that can be reached from a fixed piercepoint. The maximum downrange and maximum

crossrange trajectories exhibit a series of three skips to extend the maximum range of

the vehicle, while the minimum downrange trajectory performs one low-altitude skip to

expend extra energy. Now that the boost and reentry problems have been investigated

individually, the boost-through-reentry problem will be considered as a unified optimalindividually, the boost-through-reentry problem will be considered as a unified optimal
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control problem for the purpose of examining trajectory planning metrics.
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Chapter 7

The Aimpoint Map

In this chapter, a set of potential trajectory planning tools will be demonstrated for the

submunitions mission formulated in the previous chapters. The primary tool, called the

Aimpoint Map, will illustrate the set of all possible locations where the launch vehicle can

be aimed while still satisfying the mission requirements. The Aimpoint Map can provide

the mission planner with a set of potential aiming choices in order to satisfy certain

flyover constraints, such as sovereign airspace avoidance or proper booster disposal. In

order to provide additional valuable information to the mission planner, several properties

of the Aimpoint Map and its associated trajectories will be examined using boost-through-

reentry trajectory optimization. In addition to the Aimpoint Map, concepts such as the

Launch Footprint, the Reverse Reentry Footprint, and the Piercepoint V-Gamma Map

will be demonstrated as useful tools for trajectory planning.

The boost-through-reentry problem will be formulated by combining the bounds and

constraints of the launch problem with the bounds and constraints of the reentry problem,

as formulated in chapters 5 and 6. The piercepoint will serve as an interface between the

two models. The final boundary knot in the launch problem and the initial boundary

knot in the reentry problem are combined into one interior knot at the piercepoint time,

tk6 . Since the launch problem and reentry problem may use different scaling units, an

additional event constraint is required to ensure continuity of the states across the pierce-

point. Let K,, represent the launch problem state scaling matrix and K~ represent the

reentry problem state scaling matrix. In order to ensure continuity across the tk6 knot, it

191



is necessary that

(t+f)- K,, K,2 X(t)=0

Several interesting properties of the Aimpoint Map will be investigated in the following

sections.

7.1 Aimpoint Boundaries

The characteristics of the Aimpoint Map boundaries are of prime interest since they

provide valuable information about the limiting capabilities of both the launch and reentry

vehicles. The aimpoint boundaries can provide useful information to the mission planner,

such as the maximum heading angle relative to the target direction that the launch vehicle

can be aimed such that it can still reliably reach the target. The aimpoint boundaries are

broken down into three categories for analysis: the corner point boundary, the maximum

boundary, and the minimum boundary. Each boundary will be analyzed in detail to fully

explain the limiting factors in each case.

7.1.1 Corner Point Case

The first step in computing the boundary points of the Aimpoint Map is to compute the

corner point trajectory. The corner point represents the aimpoint boundary point that

lies on a Great Circle with the maximum inclination, (, relative to the plane of reference

containing the launch location and target location. A Great Circle is defined as a plane

passing through the center of the Earth and intersecting a 360 degree slice of the surface,

as shown in Figure 7-1.

The corner point is computed by finding the feasible piercepoint (r (tk6 ) , (tk6 ) , (tk 6 ))

with the maximum (. The optimal control problem should seek to maximize ( as a func-

tion of the piercepoint relative latitude and longitude states. Since the launch trajectory

is constrained to remain in plane (0 = 0), the corner point also represents the maximum

heading angle (V)) allowable at piercepoint such that the vehicle can maneuver back to the
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Figure 7-1: Illustration Of Geometry Used To Computed Corner Point Trajectory

target. In order to obtain an expression for the performance index, general expressions

for the piercepoint position unit vector, ir (tk6 ), and the unit normal to the piercepoint

plane, ih, are computed.

ir = cos A cos pLLR + cos A sin ,SUR + sin AiR

Iro - XR

S ir0 xi - sin AyR+cos A sin CpiR
iro xil Vsin2 

A+COS2 A sin 2

In order to incline the piercepoint plane as much as possible relative to the plane of

reference, the YR component of ih should be made as negative as possible. Therefore, the

performance index for the corner point problem is given as the YR component of the unit

normal to the piercepoint plane.

- sin A (tk6 )
J =

V/sin2 A (tk 6 ) + cos 2 A (tk) sin 2 P (tk 6 )

The boost-through-reentry trajectory for the Aimpoint Map corner point reaches a

piercepoint at 7.4 degrees relative longitude and 4.7 degrees relative latitude, resulting in
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a maximum ( of 32.44 degrees. The corner point trajectory is shown below.

Aimpoint Corner Point Trajectory
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Figure 7-2: Corner Point Trajectory of Aimpoint Map

The corner point trajectory reaches the piercepoint at the shallowest possible reen-

try flight path angle (-1 deg) and exhibits four skips while manuevering to the target.

The total flight time from launch to mission completion is 1313 seconds. After reaching

piercepoint, the reentry vehicle must travel much farther crossrange since it cannot begin

maneuvering until it reaches an altitude of 200,000 feet. Once the vehicle begins applying

flap control at 200,000 feet, it must decide how to manuever back to the target. The skips

represent an optimal choice for maneuvering because they minimize velocity loss due to

atmospheric drag by repeatedly lofting up to higher altitudes. However, the vehicle also

has less control authority at higher altitudes, representing a limited turning capability for

the vehicle at high altitudes. There is a fundamental tradeoff between energy manage-

ment and control authority during the reentry flight. With every skip, the vehicle must

balance how much to turn versus how much velocity to conserve for range extension. This

decision essentially involves choosing how far to dive into the atmosphere. A deep dive
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will provide high controllability for a large turn, but will burn off a great deal of velocity

while a shallow dive will burn off minimal velocity but only allow a small turn.

It is especially important for the vehicle to make a large turn during the first skip

in the corner point trajectory since the heading angle is very large for this case and not

turning on the first skip could send the vehicle another 2 or 3 degrees crossrange (relative

latitude) before the vehicle is able to turn back toward the target. The corner point case

represents the maximum inclined direction that the launch vehicle can be aimed toward

while still having enough energy and control authority to reach the target. By examining

the latitude-longitude profile of the trajectory as well as the altitude-longitude profile, it

can be observed that the vehicle turns the greatest amount during the first skip, which

also happens to be the deepest skip.

Aimpoint Comer Point Trajectory

Largest Ski1
8 Turn

7 F................ la p C o n tro l ........................... .................
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..4 . .. . . . . .
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Relative Longitude (p) [deg]

Figure 7-3: Top-View of Corner Point Trajectory
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Aimpoint Corner Point Trajectory
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Figure 7-4: Side-View of Corner Point Trajectory

Velocity Profile

The velocity profile of the corner point trajectory clearly illustrates the energy manage-

ment issues facing the reentry vehicle. The reentry vehicle faces a hard constraint of

1300 ft/sec on the terminal velocity and must budget the use of the 16000 ft/sec reentry

velocity such that all end conditions can be met. The turning of the vehicle heading angle

to direct the vehicle toward the target is one use of the energy budget. Another use of the

budget that requires a large amount of energy is the final dive toward the target. As the

vehicle dives toward the target, it encounters a dense atmosphere and sheds off a large

amount of energy due to increased drag. The final dive must be initiated with enough

spare energy to ensure that the vehicle will be travelling at 1300 ft/sec after the dive is

completed. As can be observed in Figure 7-5, the vehicle initiates the final dive towards

the target with a velocity of approximately 4000 ft/sec and reaches 1300 ft/sec by the

time it pulls up to level flight at 3 km altitude.
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Velocity Profile For Corner Point Trajectory
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Figure 7-5: Velocity Profile Of Corner Point Trajectory

Flight Path Angle Profile

The flight path angle profile can give insight into the skipping characteristics, as well

as the final dive and pull-up to reach the target state. The flight path angle profile for

the corner point case is given by Figure 7-6. During the first 100 seconds, the launch

vehicle maneuvers to target a final burnout y of approximately 10 degrees. The flight

path angle is turned by gravity during the ballistic coast and reaches piercepoint at a y

of only -1 degree, the shallowest possible flight path angle allowed by the event constraint

at tk6 . From this point, the flight path angle continues to drop under gravity until the

flap controls are enabled at 200,000 ft and the vehicle begins to pitch upward. The flight

path angle oscillates about y = 0 as the vehicle performs four skips, then dives deep into

the atmosphere to reach the target altitude of 3 km and pulls up to level flight.

197



Flight Path Angle Profile For Corner Point Trajectory
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Figure 7-6: Flight Path Angle Profile For Corner Point Trajectory
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Heading Angle Profile

Insight into the turning characteristics of the vehicle can be obtained by examining the

heading angle profile for the corner point trajectory. Figure 7-7 gives the heading angle

profile. It can be observed that the vehicle heading remains relatively constant during

the launch portion of the trajectory due to the restriction that q = 0 over this segment.

The heading angle will vary slightly during this period due to the rotation of the Earth

and the rotation of the local level frame as the vehicle ascends to higher latitudes. The

vehicle cannot constrain the heading to be constant during the launch because the vehicle

motion is governed by inertial forces and will remain in an inertial plane of motion while

the Earth rotates below it. The vehicle cannot manuever to stay in a rotating plane of

motion because it has zero controllability during the ballistic coast and must travel in an

inertial plane of motion.

It can be observed that soon after the flap control is enabled, the vehicle makes a large

turn towards the right. Three additional turns of reducing magnitude corresponding to

the skips turn the vehicle further to the right until a sharp left turn at the end returns

the vehicle heading to the plane of reference (V = 0). While the first turn associated

with the first skip is the largest right turn, the final left turn associated with the dive

toward the target represents an even larger turn. The reason for this is that the vehicle

is trying to balance energy conservation with turning authority during the first skip, but

is required to dive all the way down to the terminal altitude of 3 km during the last

dive. Therefore, energy management is not a consideration for the final turn since a fixed

amount of energy is required to satisfy the end conditions. The required deep dive at the

end of the trajectory provides plenty of control authority to make a sharp left turn prior

to reaching the target.

Attitude Angle Profile

Further insight into the skipping and turning characteristics can be obtained by examining

the profile of the attitude angles over time. The attitude angle profile is given by Figure

7-8. During launch, the nose pitch angle is used to shape the flight path angle profile in
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Figure 7-7: Heading Angle Profile For Corner Point Trajectory
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order to target an appropriate y at final burnout to achieve optimal reentry conditions.

The pitch angle is initially positive to raise the flight path angle up to ensure the vehicle

reaches an adequate altitude before pitching over to the side. A bump in the flight path

angle profile can be observed at approximately 20 seconds due to the positive pitch angles

observed here. Once the vehicle has been guided to an adequate altitude, the pitch angle

takes a negative value to turn the vehicle towards the horizontal and target a shallow

reentry. Note that this is very similar to the launch profile seen for the minimum range

launch trajectory in section 5.7.

Once the flap control is enabled upon reentry, the nose pitch angle is quickly com-

manded to a positive value, where it remains until the final dive to the target near the

end of the trajectory. The positive pitch angle allows the vehicle to perform its skipping

maneuvers by continually generating a positive lift force. As the vehicle skips upward,

the magnitude of the lift force decays due to a loss of dynamic pressure and gravity turns

the flight path downward for another dip into the atmosphere. As the vehicle decends

into the atmosphere, the lift force grows to a sufficient value to overcome gravity and

allow another skip. Since a higher nose pitch angle will generate more lift upward in

proportion to dynamic pressure, the choice of the pitch angle determines how far into

the atmosphere the vehicle will dip prior to each skip. Again, the choice of the pitch

angle represents a balance between energy management and turning capability. A larger

pitch angle will enable a shallower skip while a smaller pitch angle will enable a deeper

skip into the atmosphere for more turning authority. It can be observed in Figure 7-8

that the pitch angle for the first skip is approximately 5 degrees, allowing a deep dip into

the atmosphere for a large turn, while the later skips exhibit pitch angles of 10 degrees

of higher, indicating shallower dips and smaller turns. The final dive toward the target

conditions exhibits a slightly negative pitch angle to quickly lose altitude, followed by a

sharp increase to pull up the flight path angle to level flight conditions.

The nose yaw angle (0) is fixed to zero for the launch and ballistic coast segments of

flight to ensure planar motion. Once the flap control is enabled, the nose yaw angle is

commanded to a value of approximately -10 degrees to begin turning the vehicle toward

the right by reducing the heading angle. The nose yaw angle remains negative until it
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Nose Pitch Angle Profile Versus Time For Comer Point Trajectory
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Figure 7-8: Nose Attitude Profile For Corner Point Trajectory

approaches a value of 5 degrees during the final dive toward the target to enable a left

turn back to 0 = 0.

Optimal Controls

The motion described in the previous sections is entirely enabled by an optimal choice

of the TVC, ACS, and flap controls. All three types of control include control capability

in both the pitch and yaw channels. The thrust vector pitch control (0) is initially

negative immediately after the first ignition in order to keep the nose pitched upward

and drive toward higher altitudes. However, 3 soon takes on positive values to drive the

nose downward and turn the vehicle towards the horizontal for a shallow reentry. The

ACS pitch control (Mcq) exerts positive moments about the YB axis during the coasting

period to constrain the nose pitch angle to zero. Since the flight path angle is dropping

during the coasting periods, Mcq must be positive to drive the vehicle nose downward

to follow the motion of the velocity vector. It can be observed that only very small
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moments are required to maintain this stability. The pitch flap control is proportional

to the amount of dynamic pressure exerted on the vehicle. It can be observed that the

primary pitching control occurs at discrete locations associated with each skip. The pitch

flap exerts negative moments about the fB axis to drive the nose upward and enable a

skip. The control authority degrades significantly during the periods between each skip

due to the vehicle ascent to high altitudes. The flap control pitches downward for the first

time (positive moment) during the final dive to the target, followed by a quick command

of a negative moment to pull up the nose attitude to level flight. The pull-up maneuver

requires a larger moment than the diving maneuver because gravity assists the diving

maneuver while the pull-up maneuver must counteract gravity.

SThrust Vector Pitch Control

i70J,
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-0.5 und, -
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Figure 7-9: Pitch Control Profile For Corner Point Trajectory

The optimal yaw controls have similar characteristics to the pitch controls. The ACS

yaw control applies small negative moments to stabilize the vehicle attitude to zero angle-

of-attack during the coasting periods while the yaw flap control exerts a series of negative

moments proportional to the dynamic pressure. The negative yaw moments turn the
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vehicle toward the right and decrease the vehicle heading angle. As mentioned previously,

the primary turning moments occur at discrete locations associated with the skips. For

this trajectory, most of the turning moment is applied during the first skip while the

turning moments during the remaining skips are substantially lower in magnitude. A

positive yaw moment is applied at the end of the trajectory to enable a right turn to meet

the end condition b = 0.
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Figure 7-10: Yaw Control Profile For Corner Point Trajectory

7.2 Aimpoint Minimum and Maximum Piercepoint

Cases

Once the corner point is established, additional boundary points on the Aimpoint Map

can be computed by sweeping out intermediate planes between the corner point plane

and the plane of reference. Since the corner point plane was inclined with a ( of approx-

imately 32 degrees relative to the plane of reference, the remaining boundary points are
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computed by sequentially solving for maximum and minimum range trajectories that lie

along planes with a ( between 32 degrees and 0 degrees. In order to accomplish this,

a series of maximum range and minimum range optimization problems are solved with

the initial heading angle (0 (to)) for each case fixed to a value between 32 degrees and

0 degrees. A looping algorithm is implemented that solves all minimum and maximum

cases sequentially starting at V (to) = 30 degrees and sweeping out over 2 degree decre-

ments to 4 (to) = 0 degrees. Since ¢ is constrained to zero, this amounts to sweeping

out intermediate piercepoint planes that lie between the corner point piercepoint plane

and the plane of reference, as illustrated in Figure 7-11. The Aimpoint Map is assumed

to be symmetric about the plane of reference since the reentry vehicle has equal control

authority for right and left turns.

TOP VIEW

LAUNCH POINT AIMPOINT MAP TARGETPOINT

Comer Point (,,

V
32de2d

t = -20 de 
V

Launch Trajectories V Reentry Trajectories

Minimum Points Maximum Points

Figure 7-11: Concept For Sweeping Across The Aimpoint Map To Compute Minimum
And Maximum Boundaries

The initial guess for kickstarting the algorithm is the corner point case. From that

point, the minimum range problem is solved first for each choice of 0 (to), followed by the

maximum range problem. The cost function for the minimum range problem is J = A (tk6)

while the cost function for the maximum range problem is J = -P (tk6). The most recent

minimum range solution is used as a guess for the corresponding maximum range problem

as well as for the next minimum range problem with a new choice of 4 (to). The Aimpoint
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Map boundaries for the submunitions mission with a target at 30 degrees downrange and

0 degrees crossrange are shown below.

The Aimpoint Map For Submunitions Case With p 30 deg, if = 0 deg

I- i Maximum Boundary
- Minimum Boundary...... ....................... .... .... .......... ... ... ... ................ . . Corner Boundary

.-. . o.... -Comer Boundary

Plane of Reference

.......... .......... ... P o in t

0 5 10 15 20 25 30

Relative Longitude (p) [deg]......... ... ... ..... ....

Launch Targe
-point .......... ..... .............. Poin

Figure 7-12: The Aimpoint Map For The Submunitions Mission

The boundaries of the Aimpoint Map are composed of minimum and maximum range

piercepoint locations as well as a corner point boundary where the maximum and min-

imum bounds come together. The Aimpoint Map resembles a maple leaf, with smooth,

well-defined minimum and corner boundaries and less well-defined boundaries along the

maximum edge. The corner point boundary was examined in detail in the previous sec-

tion. Now the minimum and maximum Aimpoint Map boundaries will be examined in

detail.

Minimum Boundary Points

The minimum boundary of the Aimpoint Map lies entirely between 6 and 8 degrees

relative longitude and exhibits a smooth, uniform shape. The minimum range trajectories

which pass through the minimum boundary points are examined to infer characteristics
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of the aimpoint minimum boundary. The minimum range trajectories corresponding to

0(to) = 0deg, V (to) = 10deg, 0 (to) = 20deg, 0 (to) = 32.2deg (Corner Point) are

plotted along the Aimpoint Map boundary in Figures 7-13 and 7-14.

Aimpoint Map For Submunitions Mission

-I

/.. ......... r r

Piercepoint 0
... i. w .. .. .. ..

Target
............Poi t

Boundary

10 15 20
Relative Longitude (i) [deg]

Figure 7-13: Top-View Of Minimum Boundary Trajectories

Notice that the minimum range trajectories have similar characteristics to the cor-

ner point trajectory. All minimum range trajectories pitch over towards the horizontal

considerably before the final burnout, allowing a shallow reentry at piercepoint. This pro-

file also resembles the minimum range launch trajectory computed in section 5.7, which

reached piercepoint with -y = -1 deg and [ = 6.1 deg. The flight path angle profiles of

the minimum boundary trajectories, corner point trajectory, and minimum range launch

trajectory are compared in Figure 7-15.

All five trajectories maneuver such that they reenter with the maximum possible flight

path angle (-1 deg) at piercepoint. This suggests that the minimum aimpoint boundary

is defined by trajectories with the shallowest allowable reentry conditions. The shallowest

reentry conditions can result in the minimum aimpoint boundary because the piercepoint-

to-target range is maximized by allowing for the best possible energy conservation during
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Aimpoint Map For Submunitions Mission
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Figure 7-14: Aimpoint Minimum Boundary Trajectories
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Figure 7-15: Flight Path Angle Profile For Minimum Aimpoint Boundary Trajectories
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the reentry flight. By reentering with the shallowest allowable y, the reentry vehicle loses

a minimal amount of energy during the first reentry skip and retains a maximum amount

of energy for range extension.

Another characteristic of the minimum boundary trajectories is that they all use a total

of four skips during reentry to reach the target location. This suggests that the region

in which the minimum boundary lies (6 to 8 degrees longitude) can be characterized as

a four skip region. That is, the reentry vehicle must maneuver with four skips to reach

the target from any piercepoint in this region. This suggests that the minimum aimpoint

boundary is also characterized by an energy limitation of four reentry skips. The total

energy budget of approximately 16, 000 f /sec for reaching the target will be over the

limit if a fifth skip is added to the reentry profile.

Maximum Boundary Points

The maximum aimpoint boundary defines the maximum range along a given heading

( b) where a reentry vehicle can hit piercepoint and still reach the terminal conditions

at the target point. The maximum boundary represents limitations enforced by both

minimum energy bounds as well as the vehicle turning capability. The vehicle turning

capability represents a limiting factor for the maximum aimpoint boundaries because the

vehicle reenters at piercepoints with heading angles that are directing the vehicle away

from the target. Unlike the minimum and corner aimpoint boundary piercepoints, these

piercepoints are much further downrange and/or crossrange from the launch point and

require sharper turns to maneuver back to the target.

The vehicle turning authority must be balanced with energy management to ensure the

the vehicle can reach the terminal conditions. Since the flap controls of the reentry vehicle

are directly proportional to dynamic pressure, the vehicle must descend to low altitudes

with high velocities to ensure a large turning capability. However, since drag is also

directly proportional to dynamic pressure, increasing the turning authority consequently

reduces the vehicle velocity, thereby reducing the range of the vehicle. In addition, large

turns require large angles of attack, which also increase the drag force. Therefore, the

vehicle's ability to turn must be balanced appropriately with its range capability. Figure
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7-16 illustrates a sample of the maximum boundary trajectories.

Aimpoint Map For Submunitions Mission

VE
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Figure 7-16: Top View Of Maximum Piercepoint Range Trajectories

Figure 7-16 provides a good depiction of the turning requirements for each piercepoint

along the maximum boundary. Notice that the trajectory with 4 (to) = 8 deg is capable

of turning the greatest amount since it does not require a large range capability to reach

the target, resulting in a piercepoint over 25 degrees downrange of the launch point. The

piercepoints associated with 0 (to) = 16 deg, 26 deg, and 30 deg, however, cannot extend as

far because of the inability of the vehicle to perform sharp turns while properly managing

energy. In fact, the piercepoints located crossrange of the target perform turns with a

number of skips that increases as the piercepoint is moved further crossrange.

Figure 7-17 illustrates the vehicle's method of maneuvering to the target from various

piercepoints along the maximum aimpoint boundary. It is important to note that the

vehicle maneuvers with fewer skips as the piercepoint is moved closer to the plane of

reference. The piercepoints can be categorized based upon the number of skips used to

maneuver to the target. A one-skip region, two-skip region, three-skip region, and four-
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Figure 7-17: Maximum Boundary Trajectories

skip region can be defined to indicate the number of skips required for a given aimpoint.

The one-skip region represents the region closest to the target, while the four-skip region

represents the minimum and corner boundaries of the aimpoint. The regions are defined

here at the aimpoint boundaries, but further investigation is required to segment the

aimpoint interior into distinct skip regions.

The jagged shape of the maximum aimpoint boundary may be attributed to inter-

esting phenomena occuring at the boundaries of the skip regions as well as complexities

associated with phasing the skips correctly. This subject warrants further investigation

in future studies.

7.3 Launch Footprint

The launch problem can be revisited by examining the state conditions that can be reached

at various piercepoints within the Aimpoint Map. Since at a given piercepoint location

the position variables (r, p, A) are fixed and the attitude variables (qbody, rbody, 0, 0) are
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Figure 7-18: Illustration of Skip Regions Along Aimpoint Boundaries

uniquely determined by the constraint that the angle of attack must be zero at piercepoint,

the remaining state variables to consider are the velocity states (VE, 7, 0'). The heading

angle (/) is nearly unique at piercepoint due to the constraint that q = 0 during launch.

Therefore, only secondary effects due to the Earth sphericity and rotation affect the

heading angle during launch. For this study, analysis of the effects of slight variations in

heading angle are not considered. An analysis will be performed to evaluate the set of

launch footprints of VE and 7 states that can be reached at each fixed piercepoint in the

Aimpoint Map.

The launch footprint is computed by first solving for the steepest (bmin) and shallowest

('max) reentry conditions that can be reached at a piercepoint. For this analysis, the final

Earth-relative velocity (VE) is free to vary in order to obtain the absolute steepest and

shallowest reentry profiles possible over all possible reentry velocities. The performance

index used for the steepest descent problem is given as

J= y -(t4 6 )
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For a piercepoint located in the Aimpoint Map at p (tk6) = 15 deg and A (tk6 ) = 4 deg,

the minimum achievable flight path angle at piercepoint is -67.8 degrees. The flight path

angle for this case is shown in Figure 7-19.

Flight Path Angle Profile For Steepest Reentry At fpierce = 15 deg, 3Xpierce = 4 deg

1500
Time [sec]

Figure 7-19: Flight Path Angle
Apierce = 4 deg

Profile For Minimum y Trajectory With lpierce = 15 deg,

Notice that the vehicle maneuvers during the launch to maintain the flight path angle

at approximately 65 degrees for a majority of the powered flight until the final burnout,

when the flight path angle rises to approximately 70 degrees. The vehicle is manuevering

such that it can hit a particular final burnout location (r,p,A) with a certain (VE, 7) pair.

Maintaining the flight path angle at 65 degrees allows the vehicle to reach a particular

location at final burnout while also ensuring that altitude is gained quickly to mimimize

drag loss. Thus, reaching certain conditions at piercepoint essentially involves targeting

specific conditions at final burnout.

Similarly, for the shallowest descent problem the performance index is given as

J = -- (tk 6 )
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For a piercepoint located in the Aimpoint Map at 15 degrees relative longitude and 4

degrees relative latitude, the maximum achievable flight path angle is approximately -8

degrees. The flight path angle profile is shown in Figure 7-20 for the shallowest launch

trajectory. The profile for this case differs considerable from the steepest launch trajectory.

The flight path angle drops off very quickly to allow the vehicle to pitch toward the

horizontal and target a y at final burnout of approximately 13 degrees. In addition, the

quick dropoff of the flight path angle allows the launch trajectory to target a final burnout

location that is much farther downrange from the target than the final burnout location

for the steepest launch trajectory.

Flight Path Angle Profile For Shallowest Reentry At Lpierce = 15 deg, Xpierce = 4 deg

200 250
Time [sec]

450

Figure 7-20: Flight Path Angle For Shallowest Launch Trajectory For [Lpierce = 15 deg,
Apierce = 4 deg

The altitude profiles for the steepest and shallowest launch trajectories can be com-

pared to evaluate the differences in conditions at the final burnout as well as the pier-

cepoint conditions. Figure 7-21 illustrates the steepest and shallowest reentry conditions

possible at the piercepoint located as p = 15 degrees and A = 4 degrees. The final burnout

for the steepest case occurs at an altitude of slightly over 400,000 feet at a location less
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than one degree downrange of the launch point. From this burnout point, a large ve-

locity with a high flight path angle is needed to reach the specified piercepoint location.

If the velocity is inclined any shallower at this point, the trajectory will overshoot the

piercepoint and if the velocity is inclined any steeper, the vehicle will fall short of the

piercepoint. From this point, a high velocity is needed with a low flight path angle to

reach the piercepoint location. If the velocity magnitude or the flight path angle are

any lower, the vehicle will undershoot the piercepoint location and may not even cross

400,000 feet. The final burnout location for the shallowest case, in contrast, occurs much

farther downrange at a much lower altitude. The farther downrange the burnout location

is located, the lower the maximum altitude of the ballistic coast will be needed to reach

the piercepoint.

Maximum And Minimum ypierce Trajectores For )pierc e = 15 deg, 'ierce = 4 deg
5000 .

-ypierce = -67.8 deg

4500 T-Ypierce= -8 deg

4000
Max Alt = 4879 kft

3500

3000

S2500

2000

1500 V-

~1000 - Max~=4Piercepoint
500. - Y..

0 5 10 15
Final Burnout Relative Longitude (g) [deg] V
Locations

Figure 7-21: Steepest And Shallowest Launch Trajectories For Ipierce = 15 deg, Apierce =
4 deg

Once the maximum and minimum flight path angles achievable at the piercepoint are

computed, maximum and minimum velocities achievable for each gamma within the range

of (7max - "min) are computed. The algorithm used in this study splits the interval of
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between 7yax and 7yin into 15 equally spaced points and sequentially solves for minimum

and maximum velocities starting at 7,max and moving at equal intervals toward "min. The

performance index used in the minimum velocity problem with 7 (tk6 ) fixed to a particular

flight path angle between ymax and -Ymin is given as

J = vj (tk6 )

Likewise, the performance index for the maximum velocity problem is given as

J = -V (tk)

The local launch footprint for the piercepoint at pu

shown in Figure 7-22.

= 15 degrees and A = 4 degrees is

The Launch Footprint Map For Apierce = 15 deg, Ipierce = 4 deg

-60 -50 -40 -30
Flight Path Angle (y) [deg]

-20 -10

Figure 7-22: Launch Foorprint For ppierce = 15 deg, Apierce = 4 deg

The launch footprint for a given piercepoint resembles a crescent shape with closed
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ends and a positive, bounded area between the maximum and minimum velocities associ-

ated with each y (tk 6). The minimum and maximum flight path angle cases occur at the

edges of the launch footprint. The minimum and maximum flight path angle cases can

be reached with velocities on the order of 16,000 feet per second while the cases associ-

ated with intermediate values of 7 (tk6 ) require lower velocities to reach the piercepoint

location.

It should be noted that for each of the intermediate y (tk6 ) values in the Launch Foot-

print, there is not a unique piercepoint velocity that can be obtained. Instead, the maneu-

verability of the launch vehicle enables different final burnout locations to be reached with

different velocity conditions, resulting in multiple reentry velocities for a single reentry

flight path angle. Figure 7-23 illustrates the differences in the minimum and maximum

velocity trajectories that intersect a piercepoint at p = 15 degrees and A = 4 degrees with

a reentry flight path angle of y = -31.9 degrees. The minimum velocity trajectory remains

in the lower atmosphere for a longer period of time and reaches a final burnout location

that is much lower in altitude further downrange than the maximum velocity trajectory.

Due to increased exposure to drag, the minimum velocity trajectory reaches final burnout

at a lower velocity and lower altitude than the maximum velocity case, resulting in a lower

velocity at the piercepoint. As -y (tk6 ) approaches its limiting values, ~max and mi, the

difference in minimum and maximum velocity reduces to zero and converges on a unique

piercepoint velocity.

7.3.1 Launch Footprint Trends

For trajectory planning purposes, it is important to examine the variations in launch foot-

prints when moving from one aimpoint location to another aimpoint location. For the

launch problem, the most important metric to examine is the variation of the launch foot-

print with increasing range across the Aimpoint Map. Three distinct piercepoint locations

in the Aimpoint Map are chosen to demonstrate the variation in the launch footprint for

trajectories launched with an initial heading of 4 degrees (b (to) = 4 deg). The piercepoint

locations within the Aimpoint Map are shown in Figure 7-24. One piercepoint is chosen

at the Aimpoint Map minimum boundary, another is chosen at the maximum aimpoint
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Altitude Profiles of Maximum And Minimum VE Case For ppierce 
= 15 deg, 1pierce = 4 deg, "pierce = -31.9 dog
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Figure 7-23: Maximum And Minimum Velocity Trajectories For ppierce = 15 deg, Apierce

= 4 deg, pierce = -31.9 deg

boundary, and the third aimpoint is chosen about mid-distance between the minimum

and maximum piercepoints for the V) (to) = 4 deg case. In addition, the local launch foot-

print for the maximum range case examined in section 5.6.2 is included to demonstrate

an extreme case.

Figure 7-25 depicts launch footprints for the chosen points within the Aimpoint Map.

The launch footprints are observed to reduce in area and increase in velocity as the

range from launch point increases. The corners of the launch footprints shrink inward

towards the median flight path angle and the differences between maximum and minimum

velocities decreases. The ability of the launch vehicle to target various (VE,y) pairs at

piercepoint is diminished as the range from launch point increases.

The launch footprints increase in velocity as the range from launch point increases

because the vehicle must reduce its energy loss during the boost phase in order to increase

range. For the minimum range trajectories, the vehicle seeks to maximize drag in order

to burn off as much energy as possible, while the vehicle must minimize drag loss to reach
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The Aimpoint Map For Submunitions Case With 30 deg, N = 0 deg
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Figure 7-24: Piercepoint Locations At Various Ranges For 4' (to) = 4 deg
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Figure 7-25: Launch Footprints For Various Piercepoints Within The Aimpoint Map
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the maximum range piercepoints. Therefore, launch trajectories with greater range allow

reentry with greater velocities.

7.4 Reverse Reentry Footprint

The capabilities of the reentry vehicle departing a given piercepoint in the Aimpoint Map

can be compared to the launch capability to reach that piercepoint by computing a reverse

footprint. Instead of considering the final conditions that a reentry vehicle can reach, the

reverse footprint considers the set of initial conditions the can enable the vehicle to reach

a particular final condition. For the problem at hand, we wish to consider the space of all

possible V - 7 pairs at a fixed piercepoint location that can enable the vehicle to reach

the submunitions mission final conditions.

The reverse reentry footprint is computed in similar fashion to the computation of

the launch footprint in the previous section. First, the maximum and minimum flight

path angles (7 (tk,)) are computed with VE (tk6 ) free to take on any feasible value. Next,

a series of optimization problems are solved with each case fixing 7 (tk6 ) to a particular

value between 7min and 7ma,. For each case with y (tk6) fixed, the maximum and minimum

piercepoint velocities are computed. The algorithm begins with '/min and increases i (tk6 )

at equal intervals until /y,,a is reaches. The resulting profile of minimum and maximum

VE (tk6) for each value of 7 (tk6 ) make up the reentry reverse footprint.

The reverse footprint for the piercepoint location of p = 15 degrees and A = 4 degrees

is given in Figure 7-27. The reentry reverse footprint exhibits a conical shape with the

minimum and maximum boundaries converging to a point at the minimum flight path

angle case. The minimum boundary of the footprint is enforced by minimum energy con-

straints for reaching the target from the piercepoint. As the flight path angle becomes

steeper, this bound increases because more energy will be lost during the first skip, requir-

ing a higher amount of energy for reaching the target. The upper bound of the footprint is

enforced by maximum heat rate and g-load constraints as well as an overshoot constraint.

This bound decreases as the flight path angle becomes steeper because the vehicle will

be plunging deeper into the atmosphere with higher velocities, resulting in very high dy-
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Figure 7-26: Piercepoint Located In The Aimpoint Map At p = 15 deg, A = 4 deg
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Figure 7-27: The Reverse Footprint For Ppierce = 15 deg, Apierce = 4 deg

221

0

r Maximum Boundary
_ Minimum Boundary

............. . .. .................. . ...... .. ..................... ........ . Com er Boundary

. . . . .... .........
Plane of Reference

La unch Target

I I i I

Overshoot Bound

Reverse
Footprint......... .. -

Energy

It
-50

iii

-10

m

-- I

An%. 
I.A

ni I r



namic pressures which are proportional to the heating rate and structural g-loads. The

g-load and heating rate constraints are both active at steep flight path angles because

the vehicle must perform a sharp pull-up maneuver with high dynamic pressure to enable

a skip, while only the heating rate constraints are active at shallower flight path angles

since the vehicle is not required to pull-up as sharply. The upper bound also decreases as

the flight path angle approaches very shallow values, since the vehicle will overshoot the

target if the velocity is too high.

7.4.1 Reverse Footprint Trends

For trajectory planning purposes, it is important to examine the variation of the reverse

footprint over various piercepoints within the Aimpoint Map. Reverse footprints will

be compared for interior piercepoints, minimum boundary piercepoints, and maximum

boundary piercepoints. Figure 7-28 illustrates the locations of the chosen interior pierce-

points within the Aimpoint Map. One piercepoint is located along the plane of reference

(p = 19 deg, A = 0 deg) while the other piercepoint (p = 15 deg, A = 4 deg) is located in

the upper half of the Aimpoint Map at a location nearly equidistant from the aimpoint

boundaries and the plane of reference.

Figure 7-29 shows the reverse footprints for the interior piercepoints. The piercepoint

that is located closer to the target point (p = 19 deg,A = 0 deg) has a steeper minimum

flight path angle (ymin) than the piercepoint farther from the target (p = 15 deg,A -

4 deg). As the range from the piercepoint to the target increases, the left corner of

the reverse footprint will shrink inward to shallower ymin values. The movement of this

minimum point is largely due to a rise in the minimum energy bound, which bounds the

lower edge of the reverse footprint. As the piercepoints move farther away from the target

and have a larger piercepoint heading angle, they require a higher amount of energy to

manuever to the target, thus raising the lower bound. In contrast, the reverse footprint

upper bounds enforced by heating and g-loading limits are relatively invariant to changes

in the piercepoint location. At very shallow flight path angles, however, the vehicle has

the danger of gliding past the target if it reenters with too much velocity. Thus, the upper

bound drops significantly as the flight path angle approaches the upper limit of -1 degrees.
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The upper bound drop is greater in magnitude for piercepoints closer to the target, since

they have a greater chance of overshooting the target. Figure 7-30 shows the maximum

velocity reentry trajectory for a flight path angle of -1 degrees that originates from the

piercepoint at pLpierce = 19 deg and Apierce = 0 deg.

Reentry Trajectory From Apierce = 19 deg, 1pierce = 0 deg With Ypierce = -1 deg
400 ...........

350

300

Piercepoint Energy Wasting Maneuvers

250

-r 200

1.Flap Control
Enabled

100

50 I I

18 20 22 24 26 28 30
Relative Longitude (A) [deg]

Figure 7-30: Shallow Reentry Trajectory From ALpierce = 19 deg, Apierce = 0 deg

This trajectory reenters with a maximum velocity of 17,797 feet per second, which is

significantly lower than the maximum velocities of 33,000 feet per second observed when

the flight path angle on the order of -10 degrees. Due to the shallowness of the reentry

conditions for this trajectory, the vehicle travels more than 7 degrees downrange before it

passes 200,000 feet and can begin manuevering to the target. Once manuvering begins,

the vehicle is within 4 degrees uprange of the target and has limited space to burn off

sufficient energy to meet the 1300 ft/sec end condition. Therefore, due to target overshoot

and energy wasting considerations, the upper bound on the reverse footprint significantly

reduces as shallow flight path angles are approached.

In similar fashion, reverse footprints can be compared for piercepoints located along the
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maximum boundary of the Aimpoint Map. Aimpoint locations are chosen that correspond

to trajectories with initial heading angles of 2 degrees, 4 degrees, 8 degrees, and 26 degrees.

These piercepoints are illustrated in Figure 7-31.

The Aimpoint Map For Submunitions Case With . 30 deg, = 0 deg
10

- Maximum Boundary
V-1=19.45, X=9.32 - Minimum Boundary

8 - ......... ....... . Comer Boundary

S:..... W25.86, =.155-

o i I.=24.34, A=0.84

0-8 - ...

10
0 5 10 15 20 25 30

Relative Longitude (p) [deg]

Figure 7-31: Piercepoints Located Along The Maximum Aimpoint Boundary

The corresponding reverse footprints are given by Figure 7-32. It can again be observed

that the lower bound on the reverse footprint moves upward while the upper bounds stay

relatively constant as the piercepoint moves further away from the target. Therefore, the

bound on the steepest flight path angle moves to shallower values as the piercepoint moves

away from the target. The reverse footprint corresponding to ppierce = 24.34deg and

Apierce = 0.84 deg shows a decrease in the upper bound for flight path angles greater that

-15 degrees. This can be explained by the same phenomenon seen in Figure 7-30, where

the maximum velocity is limited by target overshoot and energy management concerns.

As the piercepoint moves further from the target, it is observed that higher maximum

velocities are achievable at these shallow flight path angles. Lastly, the minimum bound is

observed to curve upward as the flight path angles approach ,max for the two piercepoints
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Comparison Of Reverse Footprints Along Maximum Aimpoint Boundary
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Figure 7-32: Reverse Footprints For Piercepoints Along The Maximum Aimpoint Bound-
ary
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furthest from the target. As the piercepoint moves further from the target, the minimum

velocity for shallow flight path angles rises since the vehicle cannot turn as sharply when

reentering at very shallow angles and requires more energy to reach the target.
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Finally, a set of piercepoints spanning the length of the Aimpoint Map with be ex-

amined to determine variations in the reverse footprint maps across the Aimpoint Map.

The points chosen for this analysis are the same points used in the launch footprint anal-

ysis, shown in Figure 7-24. The set of piercepoints represent potential aimpoints for the

mission planner to use for a mission launched with an initial heading of 4 degrees. The

reverse footprints correpsonding to these three piercepoint locations are given in Figure

7-33.

Comparison Of Reverse Footprints Along Launch Plane With t) = 4 deg
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Figure 7-33: Reverse Footprints For Trajectories With b (to) = 4 deg

By choosing a piercepoint closer to the target, the mission planner has a much greater

range of options for reentry (VE,7) conditions. However, as discussed in section 7.3.1,

the launch footprint decreases in area as the piercepoint is moved closer to the target

and further from the launch point. Thus, a mission planner will be expected to balance

the size of the launch footprint with the size of the reentry footprint to ensure mission

robustness.

Now that the launch footprint and reentry footprint concepts have been established,

228

..... .......... .....



the Piercepoint V-Gamma Map will combine the launch footprints and reentry footprints

for demonstration of a potential trajectory planning capability.

7.5 Piercepoint V-Gamma Map

The Piercepoint V - y Map combines the Launch Footprint and Reentry Reverse Foot-

print concepts to evaluate the robustness of a boost-through-reentry trajectory that passes

through a given piercepoint. The launch forward footprint is superimposed onto the reen-

try reverse footprint in order to determine feasible V-y pairs for the boost-through-reentry

problem of reaching a fixed target from a fixed launch point on a trajectory which passes

through a fixed piercepoint. Several cases are presented below to depict the Piercepoint

V-7 Map at representative piercepoints within the Aimpoint Map.
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7.5.1 Minimum Point Case

The first case represents a piercepoint on the minimum boundary of the Aimpoint Map

at pierce = 6.60 deg and Apierce = 0.5 deg. Since the piercepoint is close to the launch

point and far from the target point, the launch footprint appears large and wide while

the reverse reentry footprint is reduced in size. The only overlap of feasible (VE,) pairs

that occurs is near 7 = -ldeg and VE - 14000 ft/sec. The piercepoint conditions for

the boost-through-reentry trajectory corresponding to this piercepoint location lie within

this feasible space at VE = 14,238ft/sec and 7 = -1deg. Ignoring small numerical

inaccuracies, this suggests that a unique (VE,7) exists for piercepoints along the aimpoint

boundary. Therefore, for trajectory planning purposes, the aimpoint boundaries should

be avoided.

Piercepoint V-y Map For Submunitions Mission With Apierce = 6.6021 deg, ;pierce = 0.49715 deg

40
-Min V Reentry

-- MaxV Reentry
---- Min V Launch
--- Max V Launch

S 25.......... ...................

Flight Path Angle (Bot- [deg]Traj

Figure 7-34: Piercepoint V-~ Map For Minimum Aimpoint Boundary Piercepoint Corre-itions

Flight Path Angle () [deg]

Figure 7-34: Piercepoint V-y Map For Minimum Aimpoint Boundary Piercepoint Corre-
sponding To 4(t 0 ) = 4 deg
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7.5.2 Corner Point Case

Figure 7-35 depicts the Piercepoint V - y Map for the corner piercepoint location. The

piercepoint conditions for the corner point trajectory represent the only overlapping V -

conditions at VE = 15, 731ft/sec and y = -1.07deg. Therefore, the corner point can only

satisfy all terminal and path constraints with this unique V-7 pair.

Piercepoint V-y Map With =pierce 
= 7.4147 deg, "pierce = 4.6895 deg (Aimpoint Comer Point)
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----Max
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V Launch I

Reentrv Footprint
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Launch Footprint
1 0 ..... .. ...... ......

r

-40 -35 -30 -25 -20
Flight Path Angle (y) [deg]

-15 -10 -5 0

Figure 7-35: The Piercepoint V-y Map For The Corner Point Trajectory
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7.5.3 Maximum Point Case

Figure 7-36 depicts the Piercepoint V -y Map for a piercepoint located on the maximum

aimpoint boundary at iece,,, = 19.45 deg and Apierce = 9.32 deg. Again, it can be shown

that a unique V - y pair exists for a piercepoint located on the aimpoint boundary.

The unique V - 7 pair is equivalent to the V - 7 conditions of VE = 16, 035ft/sec

and y = -14.04deg solved for at piercepoint for the corresponding boost-through-reentry

trajectory. Notice that the vehicle is required to hit piercepoint at faster and steeper

conditions for points along the maximum aimpoint boundary. The vehicle must reenter

with a steeper flight path angle due to launch limitations and must reetry with a faster

velocity due to reentry energy requirements.

Piercepoint V-y Map For Submunitions Mission With Apierce = 19.449 deg, Xpierce = 9.3233 deg
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Figure 7-36: Piercepoint V-- Map For Maximum Aimpoint Boundary Corresponding To
/ (to) = 26 deg
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7.5.4 Interior Point Cases

It has been demonstrated with the previous boundary cases that only one unique V - 7

pair exists for each aimpoint on the aimpoint boundary. V - 7 Manifolds for aimpoint

interior points will be now be examined that are representative of typical piercepoints the

mission planner may consider before choosing a boost-through-reentry trajectory. Two

cases are investigated for the piercepoints located at (Idpierce = 15 deg,AXvierce = 4 deg) and

(Ppierce = 19 deg, pierce = 0 deg)
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Case 1: pierce = 15 deg, Apierce = 4 deg

Figure 7-37 illustrates the Piercepoint V - y Map for Case 1 and demonstrates that

multiple V - y pairs are possible for this piercepoint choice. In particular, flight path

angles ranging from -8 degrees to -20 degrees are possible with velocities that range from

15,900 feet per second to 13,200 feet per second. Notice that only shallow flight path

angles are allowed at this piercepoint due to minimum energy constraints associated with

the large distance away from the target.

Piercepoint V-y Map For Submunitions Mission With pierce - 15 deg, ;pierce = 4 deg
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Figure 7-37: Piercepoint V-y Map For [tpierce = 15 deg, Apierce = 4 deg

234



Case 2: Ipierce = 19 deg, Apierce = 0 deg

Figure 7-38 illustrates the Piercepoint V - 7y Map for Case 2 and shows that a greater

number of feasible V - y pairs exist for piercepoints closer to the target. In particular,

flight path angles ranging from -11.2 degrees to -36.8 degrees are possible with velocities

that range from 15,980 feet per second to 12,900 feet per second. Steeper flight path

angles are allowed at this piercepoint since the piercepoint is closer to the target and the

minimum energy constraint is relaxed. However, since the piercepoint is further away

from the launch point, the launch footprint is smaller and therefore the ability for shallow

reentry shinks.

Piercepoint V-y Map For Submunitions Mission With 'pierce = 19 deg, Apierce = 0 deg
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Figure 7-38: Piercepoint V-y Map For pierce = 19 deg, Apierce = 0 deg
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7.6 Summary

In this chapter, several trajectory planning metrics were investigated using boost-through-

reentry trajectory optimization. The Aimpoint Map, a set of latitude (A) and longitude

(/t) points at an altitude of 400,000 feet through which a boost-through-reentry trajec-

tory satisfying all mission constraints can be flown, is computed by first optimizing the

offset of the piercepoint location from the plane of reference. Once this corner point is

calculated, a series of optimizations sweep out the maximum and minimum boundaries

of the Aimpoint Map between the corner point and the plane of reference. In order to

evaluate the robustness of piercepoints within the Aimpoint Map boundaries, launch foot-

prints and reverse reentry footprints are computed for several representative piercepoints.

By taking the intersection of the launch footprint and the reverse reentry footprint for a

given piercepoint, the Piercepoint V-y Map can provide the mission planner some insight

into the robustness of a particular piercepoint. It was demonstrated that piercepoints

along the Aimpoint boundary typically have a single, unique V-y pair that satisfies a

boost-through-reentry trajectory, indicating a lack of robustness to potential uncertain-

ties. However, Piercepoint V-y Maps computed for piercepoints located on the interior

of the Aimpoint Map provided many more V--y options for the mission planner when

choosing a boost-through-reentry trajectory.
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Chapter 8

Conclusions

In this work, the optimal maneuvering capabilities of a launch vehicle and a reentry vehicle

were investigated for application to a long range, rapid response mission. A unified 6-DOF

dynamics model was developed to accurately model the motion of both the launch and

reentry vehicle in both endo and exo-atmospheric flight. Detailed vehicle models were also

developed for a solid rocket launch vehicle using thrust vector control and a manuevering

reentry vehicle using flap control that met the specifications of the boost-through-reentry

mission. Optimal control and nonlinear programming techniques were employed to solve

a range of optimization problems related to the maximum and minimum maneuvering

capabilities of the launch and reentry vehicles.

The fundamental motivation behind this study was to explore the space of potential

aimpoint locations for a highly maneuverable reentry vehicle with a lift-to-drag ratio of

approximately two. The capability now exists to aim a launch vehicle in a direction sig-

nificantly away from the target while still satisfying all mission objectives. This capability

is crucial for satisfying certain flyover constraints, including avoidance of hostile airspaces

and residential areas. The vehicle formulated in this study was able to acquire the target

while being aimed with initial headings offset up to 32 degrees relative to the target di-

rection. This resulted in aimpoint locations as much as 620 miles crossrange of the target

location. An Aimpoint Map was formulated to depict the space of all possible aimpoints

for the boost-through-reentry problem. While the minimum and corner boundaries of the

Aimpoint Map were limited by energy constraints, the maximum boundaries are limited
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by the turning capability of the vehicle and the number of skips it can endure without

exceeding the energy limit. In particular, since the control authority of the vehicle as well

as the energy loss of the vehicle due to drag are directly proportional to dynamic pressure,

the vehicle must carefully choose how deep to dive into the atmosphere during each skip.

The trajectories along the maximum edge use anywhere from one to four skips to reach

the target. The uneven edges at the maximum boundary suggest that the phasing of the

skips may play a factor in the location of maximum piercepoint range locations.

In order to help the mission planner quickly decipher the characteristics of various

points in the Aimpoint Map, the concept of a Piercepoint V-Gamma Map was demon-

strated by the calculation of launch footprints and reverse reentry footprints. By su-

perimposing the launch and reverse reentry footprints, the Piercepoint V-Gamma Map

provides a metric for determining the robustness of a chosen piercepoint. It was shown

that the piercepoints located on the Aimpoint Map boundaries may only have a single

V- pair that is common to both the launch footprint and the reverse reentry footprint.

Piercepoints examined in the interior of the Aimpoint Map contained many more feasible

V-y pairs for the boost-through-reentry problem.

The mission planner must choose a piercepoint that satisfies necessary flyover con-

straints while ensuring robustness of the trajectory. The launch footprint was shown to

shrink in size as the piercepoint is moved away from the launch point while the reentry

footprint was shown to shrink as the piercepoint is moved away from the target point.

Since increasing the crossrange distance of the piercepoint increases the distance from

both the launch point and the target, the mission planner must balance the need to

satisfy flyover constraints and the need to choose a trajectory with sufficient robustness.

Additional specific conclusions of this study include:

* The Aimpoint Maximum Boundaries Are Limited By The Vehicle Turning Capa-

bility As Well As By Energy Constraints

* The Aimpoint Minimum Boundaries Are Limited By Energy And The Maximum

Piercepoint Flight Path Angle (Ymax (tk6 ))

* The Aimpoint Corner Point Is Limited By Energy
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* The Launch Vehicle Targets A Particular Piercepoint By Maneuvering To A Final

Burnout Location With A Particular Velocity And Flight Path Angle

* The Launch Vehicle Can Shed Off Energy By Manuevering For Extended Periods

At Low Altitudes

* For A Fixed Piercepoint Location With A Fixed Flight Path Angle (7 (tk6)), Vmax (tk6 )

and Vmi, (tk6 ) Can Differ Due To The Ability Of The Launch Vehicle To Manuever

To Different Burnout Locations

* The Reentry Reverse Footprint Is Limited By Energy, Heating, G-Loading, And

Overshoot Constraints

* Proper Parameter Scaling Is Crucial For Highly Nonlinear Optimization Problems

* Controllability During Reentry Is A Function Of Altitude

8.1 Future Work

In this study, the concepts of an Aimpoint Map and a Piercepoint V-Gamma Map were

developed for trajectory planning purposes as applied to the boost-through-reentry prob-

lem. Future work to be done on this subject includes analysis of the effects of navigational

and environmental uncertainties on the Aimpoint Map, further investigation of automated

scaling techniques for a wide range of problems, and additional analysis of the skipping

abilities at piercepoints within the Aimpoint Map. The tool developed in this study

should serve as a starting point for further investigation of the Aimpoint Map properties.
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