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ABSTRACT

A wide diversity of applications, in both fundamental science and practical technology, has

come to rely on broadband optical light sources as key enabling tools. In this thesis, we

investigate three devices that contribute to the generation of broadband light at 1.5 pm.

The first two fall into the same broader class of saturable absorber mirrors - one device

was developed for low-repetition-rate sub-100-fs ultrafast lasers and the other for high-

repetition-rate femtosecond lasers. The third device bypasses generating broadband light

directly from a laser altogether through the use of extra-cavity spectral broadening in a

novel highly nonlinear glass fiber. In the first category, ultra-broadband saturable absorber

mirrors based on III/V and Si material systems were developed for ultrafast lasers. The

III/V-based mirrors were designed, fabricated, characterized and implemented in a wide

range of wavelengths, spanning the visible to the near-infrared. These mirrors exhibited

high-reflectivity ranges of >300 nm. Implementation of these mirrors in Ti:sapphire,
Cr4+:forsterite, Cr4+:YAG, and erbium-doped bismuth-oxide lasers demonstrated self-

starting and stable modelocked operation. Saturable absorber mirrors were also developed

for high-repetition-rate short-cavity femtosecond lasers, with modulation depths ranging

from 1.7% to 11%. Post-growth proton bombardment was used to improve recovery

times, and preliminary laser testing has yielded promising results, with all structures

demonstrating modelocking in an erbium-doped fiber laser. Saturable absorber mirrors

with integrated dispersion compensation were also designed with 750 fs2 of anomalous

group delay dispersion at 1.5 pm. Finally, a novel highly nonlinear bismuth-oxide glass

fiber was used to generate smooth, controlled supercontinuum spanning 1200 to 1800 nm.

With a 2-cm length and a grating pair for dispersion compensation, compression of 150-fs

pulses down to 25-fs was also demonstrated.
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cm length of highly nonlinear bismuth oxide fiber. A pulse width of 25 fs was extracted
from the PICASO phase retrieval algorithm fit of the measured data.
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Chapter 1

INTRODUCTION

1.1 MOTIVATION

A large and wide variety of applications have driven the development of ultrafast light

sources over the past decade. The painful economic correction earlier in the decade

notwithstanding, the telecommunications industry has been the most visible consumer of

ultrafast optical technology. Driven by the ever expanding consumption of digital content,
national backbones of communications providers and infrastructure developers around the

world have experienced a swell in network traffic, which has been enabled by ultrafast

optical components and sources. And it is expected to continue, with global IP traffic

forecast to quadruple from 10 exabytes a month in 2008 to over 40 exabytes per month in

2012 [1, 2]. Despite sometimes questionable economics, such as the recent fiber-to-the-

home and fiber-to-the-node buildouts in the United States by Verizon and AT&T, optical

technology is undeniably helping people become more connected. As demand continues to

climb in the coming years, the pursuit of faster, more efficient, more compact and more

economical optical sources remains an important endeavor.

The widespread application of WDM technology in telecommunications has strongly

motivated the search for ultrashort broadband light sources at 1.5 p~m. Modelocked lasers

with multi-gigahertz data rates are key enabling technologies for wavelength and time

division multiplexed networks. Optical time division multiplexing systems using return-

to-zero (RZ) formats, typically operating at 40 Gbps or greater, benefit greatly from the



availability of simple, compact, transform-limited optical pulse sources. The still-in-

development next-generation 100 Gbps Ethernet standard might also benefit from these

lasers. Data streams encoded on a laser pulse train with a modulator need only the state

between two successive pulses to be changed. This approach reduces the highly stringent

demands on the slopes of the modulator, as the pulse shaping is already accomplished by

the laser source.

In the wavelength domain, modelocked lasers generate a stable comb-shaped optical

spectrum with equally spaced longitudinal modes. As data rates grow, and along with

them the number of wavelength channels, the classical dense wavelength division

multiplexing (DWDM) approach of using a separate stabilized source for each channel

becomes less practical. The complexity of tuning and aligning the individual cw sources

with the specific wavelength grid of the system is likely unsustainable. Alternatively, a

single, high repetition rate modelocked laser can be used as a more efficient solution, since

it simplifies wavelength stabilization and its broad output spectrum can be partitioned into

a large number of WDM channels. Increasing the pulse repetition rate leads to wider

channel spacing, and this often relaxes the demands on the filter characteristics of the

channel add/drop nodes, allowing for higher channel capacities. In addition, the coherence

of modelocked lasers can be used to increase the channel information capacity by

techniques such as those used in CDMA networks. Even higher bit rates per channel can

be achieved by time multiplexing the short transform-limited pulses generated in each of

the spectrally sliced channels.

The application of optical arbitrary waveform generation (OAWG), in particular, has

become a focus of our work at MIT. An OAWG independently encodes and decodes via

amplitude and phase modulation all the individual frequency components of an oscillator

at a high rate to generate arbitrary waveforms [3, 4]. It takes advantage of many of the

same properties so highly valued for telecommunications applications - the extreme

bandwidth of frequency lines, the relatively large spacing between said comb lines, and the

coherence of the source, to name the key characteristics. Building a stable, compact, high-

repetition rate modelocked laser that would be suitable for OAWG is quite challenging and

needs to overcome significant headwinds. When successful, optical arbitrary waveform

generation promises to have an impact both in fundamental optical science and in

technology, opening the possibility of single-shot precision spectroscopy, sub-diffraction-

limited imaging, and high-performance lidar, as well as ultra-wideband low-probability-of-

intercept spread-spectrum lightwave communications.



In addition to the headline application of optical communications and our focus on

OAWG, a number of other disciplines and applications have come to rely on pulsed lasers

as a vital tool. These range from the very fundamental, such as studies of extreme

nonlinear optics in novel materials and systems, to the every practical, such as biomedical

imaging. In recent years, a newly developed field, frequency metrology, has also become

increasingly important [5. 6. 7]. On the practical side, the presence of water absorption

lines near 1.5 pm makes ultrafast optics especially interesting for biological applications.

The spectral bandwidth that accompanies ultrashort pulses creates new opportunities for

optical coherence tomography (OCT), enabling unprecedented ultrahigh depth resolution

on the sub-micron scale [8]. In addition, the high peak powers associated with short pulse

durations enable the use of femtosecond lasers for nonlinear spectroscopic techniques, such

as bio-imaging via higher harmonic generation [9. i10] and coherent anti-Stokes Raman

scattering [I I]. In all, it is a long list of applications for which broadband light is sought

after, including time-resolved spectroscopy [12], high-harmonic generation [13], laser-

driven particle accelerators [14], x-ray lasers [ 15], coherent control of chemical dynamics

[ 16], optical data storage [17], and terahertz generation and imaging [ 18].

1.2 THESIS OUTLINE

As can be seen, the application of ultrashort broadband light sources has rapidly become

widespread over the past decade. However, the utility of ultrafast lasers for many

commercial applications is still limited by their ease of use, reliability, bulkiness, and high

cost, necessitating novel approaches to developing stable, turnkey and inexpensive

ultrashort broadband light sources. To that end, a variety of optical light sources and

devices at 1.5 tm have been investigated in this thesis for the purposes of improving the

aforementioned characteristics.

Chapters 2 and 3 explore the design and use of saturable absorber mirrors in ultrafast

lasers. Saturable absorbers play an important role in initiating, controlling and stabilizing

modelocking. In addition, they simplify and relax otherwise stringent cavity design

parameters for stable laser operation. Chapter 2 focuses specifically on absorber mirrors

designed for broadband operation, that is, for lasers trying to achieve the shortest possible

pulse widths. After a brief review of the basic operating principles of saturable absorber

mirrors in Section 2.2, we present work on oxidized large-area ultra-broadband

semiconductor saturable absorber mirrors in Section 2.3, that have been designed and



implemented in a number of wavelength regimes, ranging from the near-infrared to the

visible. The design, fabrication, characterization and laser implementation of these devices

are discussed. A novel silicon-based ultra-broadband saturable absorber mirror is the

subject of Section 2.4.

Chapter 3 moves the spotlight to absorber mirrors for operation in short-cavity high-

repetition rate lasers. Section 3.2 discusses, at a high level, the particular design

requirements unique to high repetition rate systems, with Sections 3.3, 3.4 and 3.5 being

drilldowns on specific design parameters. Section 3.3 discusses the use of resonant coating

layers to enhance the modulation depth of absorber mirrors. Section 3.4 looks at proton

bombardment to reduce the recovery time of absorbers. Section 3.5 considers novel mirror

designs integrating dispersion compensation with saturable absorption.

Finally, we switch gears in Chapter 4 and consider an alternative broadband light source to

ultrafast lasers - supercontinuum generation. Short lengths of a novel highly nonlinear

bismuth-oxide fiber are used dramatically amplify the bandwidth of coherent output from a

relatively long-pulse-width seed laser. Subsequent pulse compression yielded pulse widths

on par with the ultrafast laser outputs discussed in Chapter 2.
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Chapter 2

BROADBAND SATURABLE BRAGG REFLECTORS

2.1 INTRODUCTION

Semiconductor saturable absorbers are an important and well established technology for

generating stable, self-starting pulses in solid-state lasers. These devices, known as

saturable Bragg reflectors (SBR) or semiconductor saturable absorber mirrors, consist of

semiconductor quantum wells or bulk absorbing layers integrated with a semiconductor

mirror structure. SBRs have been very successful in modelocking a variety of solid-state

lasers, covering a wide range of wavelengths in the visible and near-infrared; pulse widths

from femtoseconds to nanoseconds; and power levels from milliwatts to >100 watts. For

short pulse generation in particular, SBRs were used to start and stabilize ultrafast two-

cycle pulses in a Ti:sapphire laser, for example [I]. In the 1.5 tm wavelength range, we

demonstrated self-starting 35-fs pulses, generated directly from a Cr4+:YAG laser

incorporating an SBR [2].

As part of this thesis, SBRs were investigated for use in a number of femtosecond and

picosecond lasers. The focus of this chapter is on broadband SBRs developed for the

purpose of generating ultrashort pulses. The chapter following, Chapter 3, will explore

SBRs developed for high-repetition-rate lasers. We begin in Section 2.2 with a bit of

background and theory on SBRs - how they work and some broad design principles. An

oxidized ultra-broadband SBR design, based on III/V-based materials, is the subject of

Section 2.3. This SBR was originally designed for the 1.5 ptm wavelength range and



produced the aforementioned 35-fs self-starting pulses. Subsequent improvements in the

design and fabrication process led to SBRs with larger usable surface area and more

favorable optical characteristics. These SBRs were then adapted and their operating

wavelength range modified for implementation in a number of different laser systems,

including Ti:sapphire, Cr:forsterite and bismuth-oxide erbium-doped fiber. Finally, in

Section 2.4, the characterization and performance of a broadband Si-Ge SBR are

discussed. This SBR design is particularly interesting due to its silicon-based material

system, opening the possibility of leveraging existing integration technology and

manufacturing processes for photonics applications. The device exhibited broadband

reflectivity due to its high index contrast and a surprisingly fast nonlinear response.

The work presented in this chapter was a collaborative effort, a theme throughout this

thesis. The work presented in Section 2.3 was the resultant output of many individuals.

Throughout the effort, the mirror structures were grown in Professor Kolodziejski's lab at

MIT by Gale Petrich. For the first generation SBRs, the post-growth oxidations were

performed by Alexei Erchak; for the second generation, Sheila Tandon. It is primarily the

latter's contributions that are discussed in this thesis. In Professor Ippen's group, Dan

Ripin, Juliet Gopinath and I collaborated on the design, characterization and initial laser

implementation of the SBRs. Hideyuki Sotobayashi tested the oxidized SBRs in the

bismuth-oxide erbium-doped fiber laser. Demonstrations of the SBRs in the Ti:sapphire

and Cr:forsterite laser systems were done by Richard Ell, Jungwon Kim and Thomas

Schibli in Professor Kaertner's group. For the broadband Si-Ge SBR discussed in Section

2.4, Felix Grawert in Professor Kaertner's group drove the device design and Er:glass laser

implementation. Jifeng Liu, Shoji Akiyama, and Kazumi Wada in Professor Kimerling's

group at MIT fabricated the SBRs.

2.2 BACKGROUND AND THEORY

As a content note, modelocking theory will not be covered in this thesis, as it is outside the

scope. Cursory, as well as in-depth reviews, of modelocking fundamentals can be found in

numerous other references [3, 4, 5, 6]. However, we will provide a brief review of

saturable absorbers, their application in modelocking, and device design principles in this

chapter and the next.



An essential issue for real-world applications of modelocked lasers is the starting and

stabilizing of pulsed operation. In general, the pulse build-up time for passively

modelocked lasers takes several thousands of resonator roundtrips or more and usually

lasts microseconds and longer. This can be accelerated by the use of a slow saturable

absorber. With Kerr-lens modelocking, which has been the most successful technique to

date in generating ultrashort pulses, modelocked operation is often not self-starting. In

order to start pulse formation, a significant perturbation of cw operation may be required.

KLM is often started by tapping one of the laser end mirrors by hand. With a saturable

absorber mirror, the modelocking process begins with relatively long pulses. These pulses

can then act as the significant perturbation needed for KLM to become effective. Once

KLM takes over, the absorber becomes too slow to shape the pulses faster and the SBR

functions primarily as a highly-reflecting Bragg mirror and stabilizes against instabilities

[7, 8].

The use of saturable absorbers in solid-state lasers is practically as old as the solid-state

laser itself [9, 10]. Initially however, it was believed that pure cw modelocking of solid-

state lasers was not possible with saturable absorbers. With the advent of bandgap

engineering and modern semiconductor growth technology however, it became possible to

design and construct saturable absorbers with accurate control of key device parameters.

The most prevalent saturable absorber technologies today are semiconductor-based - these

being saturable Bragg reflectors (SBR) [1 1] and semiconductor saturable absorber mirrors

(SESAM) [12], both of which have been used extensively for both saturable absorber

modelocking and initiation of Kerr lens modelocking. The advantages of semiconductor-

based saturable absorbers are numerous: their ability to absorb light over a broad range of

wavelengths, from the visible to the mid-infrared; low saturation energies; the possibility

of compact design and integration, and the ability to custom engineer the absorption

characteristics by altering growth parameters and device design. Specific reflectivity and

dispersion profiles, the absorption wavelength, the saturation energy and the recovery time

can all be tailor designed for specific applications.

2.2.1 FUNDAMENTALS OF SATURABLE ABSORBERS

Fundamentally, a saturable absorber is a device that has decreasing light absorption with

increasing light intensity. We need saturable absorbers to show this behavior at the

intensities typically found in solid-state laser cavities, and semiconductor saturable

absorbers are ideally suited for this.



A semiconductor absorbs light when the photon energy is sufficient to excite carriers from

the valence band to the conduction band. Under conditions of strong excitation, the

absorption is saturated because possible final states of the pump transition are depleted.

Naturally, pulse formation is favored as an intensity increase passes through the absorber.

High intensity signals are passed through unaffected, while low-intensity noise is absorbed

and suppressed. This behavior is illustrated in Figure 2.1.
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Figure 2.1 Saturable absorption illustrated with a simplified 2-level system view. (a) Incident
light at low intensities is absorbed and excites carrier to the conduction band. (b)
As the incident light intensity increases, the conduction band becomes saturated
and no more states are available for carriers in the valence band to be excited to,
leading to lower absorption. (c) With a constant stream of noise in a laser, high-
intensity sections are favored and passed through unaffected, and low-intensity
sections are absorbed, naturally leading to pulse formation.

Upon carrier excitation, the temporal dynamics are particularly interesting and relevant for

modelocking. Semiconductor absorbers have an intrinsic bitemporal impulse response, as

shown in Figure 2.2. The absorption is bleached due to band filling and then recovers with

fast and slow time constants [13]. The fast time constants are due to intraband carrier-

carrier scattering and thermalization processes, typically on the order of 10-100 fs and 1 ps,

respectively. Interband trapping and recombination processes, typically between a few

picoseconds and a few nanoseconds, lead to the slow time constant. The presence of traps

can be influenced by the device growth parameters and post-growth processing.
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Figure 2.2 Semiconductor saturable absorber response profile. Bitemporal impulse response
exhibits a fast component from intraband carrier-carrier scattering and
thermalization, and a slow component due to interband trapping and
recombination processes. Adapted from [ 2].

The presence of two different time scales proves to be rather useful for modelocking. The

faster saturable absorption plays an important role in stabilizing femtosecond lasers by

suppressing noise instabilities, while the slower response is important for starting the pulse

formation process and for pulse forming in lasers with pulse widths of picoseconds or

longer. In particular, the longer time constant results in a reduced saturation intensity for

the part of the absorption that facilitates self-starting modelocking [14]. Therefore, SBRs

allow us to obtain self-starting modelocking more easily.

2.2.2 KEY PARAMETERS OF SATURABLE ABSORBERS

The key parameters of a saturable absorber for laser modelocking are its modulation depth,
non-saturable losses, saturation behavior, absorber recovery time, and operational

bandwidth. Ease of fabrication, device damage threshold and physical configuration and



their implication on laser cavity design are additional practical considerations that need to

be accounted for.

The ideal saturable absorber would have a high modulation depth; no non-saturable losses;

adaptable saturation behavior that allows cw modelocking but inhibits Q-switching; a fast

recovery time with respect to pulse shortening and a slow recovery time with respect to

self-starting modelocking; and a large operational bandwidth with no wavelength

dependency.

The modulation depth is the amount of loss of the absorber that can be bleached by a pulse

of sufficient energy. A large modulation depth is desirable because, according to all

modelocking theories, we find that the pulse width is typically inversely proportional to the

modulation depth of the saturable absorber. The greater the modulation depth, the shorter

the pulses.

Non-saturable losses, on the other hand, need to be minimized as much as possible. These

generally result from material and device defects, and contribute two negative effects.

They increase the lasing threshold, and reduce the lasing efficiency.

The saturation behavior of the absorber needs to designed to expected intra-cavity pulse

energies. With SBRs, the saturation behavior can be adjusted by changing the incident

mode area. The saturation intensity or fluence of the absorber should be sufficiently high

so that the absorption is not bleached at cw intracavity intensities. If the absorber were

fully bleached by the cw intensity, it would not be able to provide further absorption

modulation needed to support short pulse formation. Additionally, if the saturation fluence

is too low, lasers often tend to exhibit multiple pulsing. On the other hand, if the saturation

fluence is too high relative to the lasers operating fluence, there is the risk of Q-switching.

Another important parameter, already discussed, is the absorber recovery time. The

saturable absorber's temporal response to an excitation pulse determines the minimum

achievable pulse duration and the modelocking build-up characteristics of the laser.

Finally, an ideal saturable absorber would be wavelength-independent and, in the case of

SBRs, ultra-broadband. The latter characteristic is desirable given that the SBR ultimately

acts as a high reflector end mirror in the laser cavity and one wants to avoid wavelength

filtering by that element, which would reduce the net gain bandwidth and be detrimental

for ultrashort pulse generation. The wavelength independence is desirable for the



modulation depth, the saturation behavior, and the dispersion parameters, so that one can

exploit the full gain bandwidth of the laser and maximize the operational wavelength

range.

Modulation depth, recovery time and dispersion will be discussed in more depth in the next

chapter.

2.2.3 BASIC STRUCTURE OF SATURABLE BRAGG REFLECTORS
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Figure 2.3 Configuration of a typical saturable Bragg reflector, consisting of a X/2-thick
absorber-cladding layer structure integrated on top of a quarter-wave Bragg stack.
Index profile of the structure and the square of the electric field standing wave
pattern for 3 wavelengths are shown. Light is incident from the right.

The basic structure of a saturable Bragg reflector is an epitaxially grown bulk or quantum

well absorber integrated on a high-reflectivity base mirror. A sample structure is shown in



Figure 2.3. The base mirror is typically the standard Bragg mirror, with alternative high-

and low-index layers of quarter-wave thickness. The absorber is placed within a cladding

layer meant to minimize distortion of the electric field profile in the structure. Typically,

the absorber-cladding layer section of the SBR has a total thickness of X/2. In addition, the

profiles of the square of the electric field for 3 different wavelengths are shown. The

device was designed for a center wavelength of 1.5 pm, with the absorber placed at the

peak of the standing wave pattern. As you can see, the longer and shorter wavelengths

have different standing wave patterns in the structure, hence their resulting reflectivity,

modulation depth, and dispersion will be different. As will be discussed, analysis of the

electric field in SBR structures can provide considerable insight for design.

Through the choice of materials, the placement of the absorber, and additional coatings, the

designer can manipulate a variety of design parameters to alter the response of the SBR.

The amount and distribution of strain, which affects device recovery time, can be adjusted

with the choice of mirror and absorber materials. The placement of the absorber layers in

the electric field standing wave pattern affects the modulation depth and saturation fluence.

Various coatings on the structures can be added to enhance reflectivity, modulation depth,

and saturation fluence. Additionally, the latter two parameters can be altered by the

number of quantum wells or the thickness of absorbing layers used.

2.3 BROADBAND OXIDIZED SATURABLE BRAGG REFLECTORS

We have designed, fabricated and characterized a number of novel broadband oxidized

III/V-based SBR structures here at MIT, in a collaborative effort with Professor Leslie

Kolodziejski's group. The novelty of these structures lies in the large bandwidth of their

Bragg mirrors, as well as their large surface areas. The otherwise low index contrast of

GaAs/AlAs quarter-wavelength Bragg mirrors was significantly amplified through the

addition of a novel steam oxidation process, which converted the AlAs layers into AlxOy.

As a result of the higher index contrast, the high-reflectivity bandwidth expanded, allowing

for the generation of shorter pulses. Continued exploration of the oxidation process

resulted in larger-surface-area SBRs, which improved the ease of laser alignment and

modelocking; and, subsequently, the SBR design was extended to cover a broad range of

operating wavelengths. These efforts are the focus of discussion in this section.



2.3.1 FIRST-GENERATION OXIDIZED SATURABLE BRAGG REFLECTORS FOR
THE CR4+:YAG LASER

Broadband oxidized III/V SBRs were originally developed for the Cr4+:YAG laser at 1.5

tm. The laser material Cr4+:YAG has an emission spectrum spanning 1.2 to 1.6 jim,
giving it considerable potential for sub-10-fs pulse generation. In addition, this spectral

range just covers the entire low-loss window of low-water-peak optical fiber. Such

wideband characteristics offer one-for-all convenience, flexibility, and simplicity to multi-

band component manufacturers.

Free-space Cr4+:YAG lasers had been extensively investigated previously. With the use of

highly-reflective, broadband dispersion-compensating chirped mirrors (DCMs), pulses as

short as 20 fs were generated directly from a Cr4+:YAG laser via Kerr lens modelocking

[15]. These pulses had a corresponding spectrum centered at 1450 nm, with a FWHM

bandwidth of 190 nm. However, as mentioned before, KLM was not typically self-

starting, and an SBR was needed to relax the otherwise precise cavity alignment conditions

necessary for modelocking.

Semiconductor saturable absorber mirrors have frequently been used to overcome this

difficulty and have initiated modelocking without critical alignment in several solid-state

lasers [1 1, 1 2, 16]. Previously, in Cr4+:YAG lasers, modelocking was demonstrated with

saturable absorber mirrors consisting of InGaAs/InP [17], InGaAs/GaAs [18], and

InGaAs/InAIAs [19, 20] quantum wells. In all of these devices, GaAs/AlAs quarter-

wavelength Bragg stacks were used as the substrate mirror. As a consequence of the

relatively low index contrast between GaAs (3.39) and AlAs (2.87), the maximum

achievable bandwidth was -150 nm, thereby limiting ultrashort pulse generation.

Zhang et al. designed a workaround solution by using a gold mirror substrate bonded with

an InGaAs/InAIAs quantum well absorber [21, 22]. The broadband gold mirror

reflectivity was enhanced with Si0 2/TiO 2/SiO 2 dielectric layers to offset some of its high

intrinsic loss. With this configuration, Zhang was able to generate 44 fs pulses directly

from his Cr4+:YAG laser. Rather than the mirror bandwidth limiting performance in this

case, higher order dispersion was ultimately the culprit.

In our alternative approach, we developed a novel oxidized high-index-contrast SBR,

which resulted in 36 fs pulses generated directly from a Cr4+:YAG laser [2]. The SBR

started and stabilized the modelocking, and the subsequent pulses that were formed

initiated Kerr lens modelocking. Such broadband oxidized mirrors had previously been



used only in VCSELs and not for generating sub-50-fs pulses. Their low intrinsic loss

combined with bandwidths as large or larger than enhanced metallic mirrors made these

devices quite favorable for ultrashort pulse generation.

The SBR structure is shown below in Figure 2.4. The refractive index and the electric

field standing wave pattern are shown as a function of position. The SBR consisted of a 7-

pair GaAs/AlxOy quarter-wave Bragg stack and a 10 nm InGaAs quantum well in a X/2-

thick InP cladding layer. The layer thicknesses were chosen for a center wavelength of

1440 nm, corresponding to the Cr4+:YAG gain peak. The refractive indices of the GaAs

and AlxOy layers were 3.39 and 1.61 at 1.5 p.m, respectively. In comparison to AlAs with

a refractive index of 2.87, the AlxOy layers contributed to a much greater index contrast.

This large index contrast was the key to designing a mirror with only 7 layer pairs that

exhibited high reflectivity over such a broad bandwidth.
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Figure 2.4 Refractive index profile (left axis) and standing wave intensity distribution (right
axis) of the R885 saturable Bragg reflector structure, designed for use in the
Cr4+:YAG laser [2].

The impact from the high index contrast between GaAs and AlxOy is illustrated in Figure

2.5, which shows calculated reflectivity profiles of oxidized and un-oxidized mirror

structures. The narrower bandwidth, blue dotted curve represents mirrors previously used

in Cr4+:YAG lasers that consisted of GaAs and AlAs. These mirrors typically contained 30



layer pairs and exhibited >99.5% reflectivity from 1380 to 1520 nm. In contrast, 7-layer-

pair GaAs/AlxOy mirrors (solid line) have >99.5% reflectivity from -1200 to 1850 nm - a

significant disparity and improvement over their GaAs/A1As counterparts. Additional

advantages of the high index contrast are compactness with fewer layers, short epitaxial

growth times, and a relaxed requirement on the thickness control. Even a ±10% thickness

error can be tolerated with the bandwidth of the mirror still covering the entire Cr4+:YAG

gain spectrum.
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Figure 2.5 Calculated reflectivity profiles for oxidized (GaAs/AlxOy, solid) and un-oxidized
(GaAs/A1As, dashed) III-V-based Bragg mirrors. The effect of the higher index
contrast is clearly demonstrated by the larger stopband of the oxidized mirror.

The reflectivity curves shown above were calculated using a comprehensive model built

for the purpose of designing our SBR structures, as well as for comparing measured results

to their intended design. The model is based on the propagation matrix formalism outlined

in Kong [23]. A summary of the formalism and guiding equations is given in Appendix A.

A copy of the program code is attached in Appendix B. Bulk absorption characteristics for

a number of semiconductor materials, built in with complex refractive indices, are also

included in the code in order to account for the different materials contained in our

structures. For the purposes of comparing measured to designed reflectivity profiles, the

model can also take into account the angle of incidence and polarization state, as the FTIR

reflectivity measurement uses light incident at 35 degrees. Significant amounts of time

were spent during the development of the oxidized SBRs discussed here and in the next



section, 2.3.1, characterizing SBRs, using the program to compare measured results to their

theoretical expectations, and then iterating on improved designs and growths.

In addition to the reflectivity profile, the model also calculates the standing wave electric

field patterns inside the structure, which guides the saturable absorption design of the SBR.

The placement of absorbing layers can determine the modulation depth and the two photon

absorption in a given structure. The exact positions and thicknesses of the absorber layers

were numerically optimized using the program, especially so for the SBRs discussed in the

next chapter. Altogether, the model can calculate reflectivity, dispersion, modulation

depth, two-photon absorption, and the electric field distribution inside the structure.

Device Fabrication

The structure shown above in Figure 2.4 was fabricated using III-V semiconductor growth

techniques. The process is summarized below in Figure 2.6. First, SBR layers were grown

using gas source molecular beam epitaxy (GSMBE) on GaAs substrates. The initial layers

grown on the substrate were the GaAs/A1As Bragg mirror layers, followed by the InGaAs

quantum well within an InP cladding layer. Following this growth, the AlAs layers were

then converted to AlxOy through a wet oxidation process [24, 25]. In the wet oxidation

setup depicted in Figure 2.7, nitrogen gas carried water vapor from a heated bath to the

furnace tube. A cleaved SBR sample was then placed in the wet oxidation furnace at 400

OC. The oxidation process converts the high-refractive-index AlAs to low-refractive-index

AlxOy laterally from the edge of the structure. Consequently, only material near exposed

edges was oxidized, resulting in a region 200 ptm wide around the outer boundary of the

SBRs that could be used for laser modelocking. Un-oxidized regions had too much loss

for modelocking to be a possibility.
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Figure 2.6 Overview of the oxidized SBR fabrication process, from the left to the right. The

SBR layers are first deposited epitaxially by GSMBE. The AlAs layers are then

laterally oxidized and converted into AlxOy.
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Figure 2.7 Schematic of the steam oxidation setup used to convert AlAs to lower-index
AlxOy. The sample is located on the right side in the furnace [24]. Courtesy of A.
Erchak.

Conversion of the AlAs to AlxOy via oxidation leads to a shrinkage in the original AlAs

layer thickness of approximately 10%. As the InP/InGaAs section is not lattice-matched to

the GaAs layer on which it is grown, significant strain is introduced to the interface

between the absorber region and the Bragg mirror. This strain can have both beneficial

and detrimental effects. On the positive side, the strain can lead to a higher number of

Gassbsrt



defects that increases the non-radiative recombination rates in the absorber. This means

faster recovery times and shorter modelocked pulse widths. On the negative side, too

much strain can lead to non-saturable absorber loss and, more importantly, mechanical

instability of the structure. High laser pulse intensities can also exacerbate these

instabilities and lead to overheating and device failure. Accordingly, consideration for

strain in the structure is a major factor in the device design, and needs to be accounted for

when choosing the material composition of the cladding layers around the absorber. There

is a fundamental trade-off between fast recovery times and non-saturable losses with this

design parameter.

In our structures, InP cladding layers distributed strain throughout the InGaAs absorber

layer, while GaAs cladding layers would concentrate strain at the InGaAs interface. The

35-fs pulse width generation result discussed in this section utilized an SBR with InP

cladding layers.

Device Characterization

The optical properties of the SBR were studied with several characterization techniques.

The mirror reflectivity was measured using Fourier transform infrared spectroscopy

(FTIR), and is shown in Figure 2.8(a) below. In analogy to the calculated reflectivities

shown earlier in Figure 2.5, Figure 2.8 also shows the measured reflectivity of an un-

oxidized 22-pair GaAs/A1As mirror to illustrate the impact of the higher index contrast.

The oxidized SBR had a stopband from 1300 to 1800 nm and a maximum reflectivity of

>99.2%. The band edge of the InGaAs absorber, at 1540 nm, was determined through

photoluminescence of the device.



0.8

0.7

" 0.6

0.5

o 0.4

0.3

0.2 I

0.0.
1000 1200 1400 1600 1800 2000 2200

Wavelength (nm)

Figure 2.8 Measured reflectivity profiles of (a) an oxidized GaAs/AlxOy mirror and (b) an un-
oxidized GaAs/AlAs mirror. Measurement counterpart to Figure 2.5.

To determine the saturation fluence and recovery time of the SBR, pump-probe

spectroscopy was performed using the setup shown in Figure 2.9. The pump-probe

technique reveals time-dependent responses of the SBR with a temporal resolution equal to

the cross-correlation width of the pump and probe pulses. In our experiments, 110- to 150-

fs pulses from a Spectra-Physics optical parametric oscillator (OPO), tunable between 1.4

and 1.6 rtm, were used as the source. These pulses pass through an isolator and are then

split into pump and probe paths with a beamsplitter. The pump pulses pass through a

mechanical chopper, a half-wave plate and a delay stage; and are recombined with the

probe pulses at a polarizing beamsplitter. An aspheric lens is used to focus the light onto a

sample, and a small portion of the reflected probe light is focused onto a detector. The

setup is collinear and cross-polarized, with a time resolution of approximately 150-200 fs.

Pump-probe results presented throughout this thesis were obtained by several investigators.

Juliet Gopinath measured the initial SBRs used for the Cr4+:YAG laser, discussed in this

section. Juliet and I worked together in adjusting the experimental setup and measuring

the second-generation oxidized SBRs (Section 2.3.2), as well as the Si-Ge SBRs (Section

2.4). Finally, Ali Motamedi measured the resonantly-coated and proton-bombarded SBRs

discussed in Chapter 3.
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Figure 2.9 Pump-probe spectroscopy setup for SBR characterization. Courtesy of J.
Gopinath.

Several pump-probe measurements for varying pump powers are shown in Figure 2.10. At

low fluences, the SBR response showed a fast saturation due to intraband thermalization

and a long recovery time of about 40 ps due to recombination. The saturation fluence was

estimated to be on the order of-10 VtJ/cm 2, and the maximum saturable loss was 0.3%. As

the pump fluence was increased, significant two-photon absorption (TPA) increased the

total loss of the SBR, making it an inverse saturable absorber. In general, TPA is harmful,

as it ultimately limits the power of the laser pulses and adversely affects KLM action at

high incident light intensities.
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Figure 2.10 Pump-probe traces for Cr4+:YAG SBR (sample R885), performed at 1540 nm at a

variety of fluences [2]. Data courtesy of J. Gopinath.

Laser Results

The broadband oxidized SBR was incorporated into a z-fold Cr4+:YAG laser cavity to

initiate and stabilize modelocking. A schematic of the laser cavity is shown in Figure 2.11.

A 2-cm Brewster-Brewster-cut Cr4+:YAG laser crystal was pumped at 1064 nm by a

Spectra-Physics 11-W Nd:YVO4 laser. Light exits the cavity from the output coupler

(OC), which transmits 0.7% at 1515 nm and <1.4% from 1420 to 1630 nm. Three

dispersion-compensating mirrors (DCM) were used in the cavity - 2 10-cm radius-of-

curvature DCMs (Ml and M2) flank the laser crystal and an additional 10-cm ROC DCM

(M3) focused light onto the SBR (M4). Details of the dispersion compensation by DCMs

are described in depth in [15] and [26].

By adjusting the radius of curvature of mirror M3, the spot size, and hence the fluence, on

the SBR could be adjusted. In our experimental configuration, the spot size incident on the

SBR was calculated to have a radius of -50 p.m. However, this degree of freedom was

ultimately limited by the size of the usable SBR surface area.



Finally, the angles of incidence for all 3 mirrors needed to be taken into account to

compensate the astigmatism introduced by the laser crystal and maximize the stability

range of the laser. The initial cavity design did not take this into consideration and cw

lasing was not optimized until subsequent correction. Mirrors Ml and M2 had angles of

incidence set at 14 degrees, and M3 at 8 degrees. These values were calculated using a

spatial beam profile program based on the ABCD matrix formalism, and by comparison of

sagittal and tangential spot sizes in the laser crystal and at the output coupler.

1064 nm

OC
M1

Cr:YAG Crystal
M3

M2

M4

Figure 2.11 Diagram of z-fold Cr4+:YAG laser incorporating the broadband oxidized SBR.

The laser had an output power of 300 mW with the SBR for 9 W of absorbed pump. No

damage to the SBR was observed during modelocked operation, and performance was

stable over long durations. With the SBR, modelocked operation was self-starting and the

laser could be tuned from 1400 to 1525 nm with an intracavity birefringent filter. KLM

operation initiated by the SBR produced pulses with a FWHM of 68 nm centered about

1490 nm. The measured modelocked spectrum is shown in Figure 2.12, together with an

interferometric autocorrelation. Assuming a sech-shaped pulse yielded a pulse width of 32

fs. However, given the uncertainty of the actual pulse shape, we determined the pulse

width from the Fourier transform of the measured spectrum, resulting in 35 fs.
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Figure 2.12 (a) Modelocked spectrum of the self-starting Cr4+:YAG laser incorporating the
broadband oxidized R885 SBR. (b) Interferometric autocorrelation of pulses from
the self-starting Cr4+:YAG laser. From [2].

A previous pure-KLM version of the Cr4+:YAG laser achieved 20 fs pulses and a spectral

bandwidth of 190 nm FWHM [I5]. Ideally, the self-starting Cr4+:YAG laser with the SBR

should have equaled or even bettered that performance level. There was no fundamental

reason preventing it. Ultimately, when comparing against the pump-probe measurements,

it was determined that two-photon absorption (TPA) played the limiting role in the self-

starting Cr4+:YAG laser. Under the operating conditions of the laser, we calculated an

intracavity fluence of 1 mJ/cm2 incident on the SBR. In Figure 2.10 above, 1 mJ/cm 2

would correspond to a curve even lower than the lowest curve shown - essentially turning

the SBR into an inverse saturable absorber. The challenge for the next iteration of SBR

development was to mitigate the undesired TPA effect through the fabrication of larger-

surface-area SBRs. A larger surface area would allow for a larger spot size incident on the

SBR, which would result in reduced fluence and less TPA.

2.3.2 NEXT-GENERATION DEVELOPMENT OF LARGE-AREA OXIDIZED SATURABLE

BRAGG REFLECTORS FOR MULTIPLE OPERATING WAVELENGTHS

Expanding upon the first-generation SBR development, larger-area, more mechanically

stable SBRs were developed, and extended to additional operating wavelength ranges [27,

28, 29]. Improvements in the fabrication process, achieved by Sheila Tandon in Professor

Kolodziejski's group, were key in progressing the implementation of this material platform

to wider operating ranges and additional wavelengths.



Fabrication of SBRs with larger surface areas was enabled by three significant process

design improvements by S. Tandon. First, patterning of a mesa structure through

photolithography and wet etching led a larger surface area. Second, aluminum was added

to the high-index GaAs layer to strengthen the bonding between layers. Third, a controlled

temperature ramp was implemented. The final two initiatives targeted minimizing

delamination.

For the first change, recall that the oxidation process moves laterally from the edge of the

mirror sample inwards. By defining a circular mesa shape, the usable "width" was

effectively doubled, compared to the rectangular surface areas before, creating a larger

SBR surface area for incident light. The modified fabrication process is shown below in

Figure 2.13. Mesas are defined with photolithography, and then, wet etchants are used to

expose the cross section of the SBR structure for oxidation. A (1:8:40) H2SO4 :H202:H20

etch was used for arsenic-based SBRs and a (1:1:2) HCI:H 2NO3:H20 was used for InP or

InGaAlP layers. Exposed layers were then laterally oxidized in the wet tube furnace as

before.

GaAs

AlAs

GaAs
AlAs

Step 1: Growth of III-V Step 2: Define mesa with Step 3: Wet thermal

heterostructure photolithography oxidation
I wet etching

Figure 2.13 Overview of the modified oxidized SBR fabrication process, from the left to the
right. The SBR layers are first deposited epitaxially by GSMBE. Mesas are then

defined through photolithography and wet etching to optimize the useable surface
area of the mirror. Then, finally, the AlAs layers are laterally oxidized and
converted into AlxOy.

The introduction of mesas by themselves, however, was insufficient - delamination

remained a persistent obstacle to achieving large-area SBRs. The 10% contraction of the

AlAs when converted to AlxOy and the subsequent weak bond between GaAs and AlxOy

still led to delaminated structures. An example of a mechanical device failure is shown in

Figure 2.14. A second example is shown in Figure 2.15.

GaAs
AlOy --

GaAs substrate



(a) (b)

Figure 2.14 (a) Top-down view of a delaminated SBR mesa structure. (b) Side cross-sectional
view of a delaminated oxidized SBR [27]. Courtesy of S. Tandon.

Figure 2.15 Top-down view of a delaminated SBR mesa structure. Courtesy of S. Tandon.

Low-temperature oxidation techniques could potentially stabilize the mirror layers;

however, they would have also limited the extent of the oxidation progress, and hence the

device dimensions. Instead, this led to the next set of process improvements. First, by

replacing the high-index GaAs layers with Al0.3Gao.7As layers, the bond at the interface

with AlxOy was strengthened. This greatly extended the achievable oxidation dimensions.

Care had to be taken the aluminum content in the AlGaAs layer was not too high,

otherwise, that layer would oxidize as well in the wet furnace process step. Second, by

using a more gradual temperature ramp-up and ramp-down during the oxidation process,

delamination was also reduced. This effect is illustrated in Figure 2.16. In the top panel



(a), a step change in the oxidation temperature led to delamination of the structure, as

evidenced by the vertical bars in the top-down view. When a gradual change in the

furnace temperature profile was implemented in (b), the result was production of stable

structures.

(a)

Abrupt Change:
S410 0C, 4.5hrs

Time (hr)

(b)

Gradual Change:

1000C-*410 0C, 50mil
410C, 4.5hrs
41 OOC-- 100C, 50mil

Figure 2.16 Oxidation results illustrating the effect of a gradual temperature ramp in the
oxidation process. (a) Without a temperature ramp, the sudden change in
temperature causes the structure to delaminate and fail. (b) With a temperature
ramp, the resulting structure is stable. Courtesy of S. Tandon [28].

(a) (b)

Figure 2.17 (a) Top-down view of a fully oxidized 500 [im mesa of an Al0.3Ga0.7As/AlxOy SBR

for the Cr:forsterite laser. (b) Side cross-sectional view of the same fully-oxidized
Cr:forsterite SBR [27].



With these fabrication process improvements in place - mesas to maximize oxidation area,

AlGaAs rather than GaAs to reduce strain, and a gradual oxidation temperature ramp-up

and ramp-down, complete oxidation of mesas of 500 lpm diameter was achieved. Figure

2.17 shows top-down and side views of a fully-oxidized 500-ptm-diameter SBR designed

for a Cr:forsterite laser at 1300 nm. Expanding on this work, 500-ptm-diameter mesas

were developed for lasers operating at wavelengths spanning the visible to the near-

infrared, at 800 nm, 1300 nm, and 1500 nm. Figure 2.18 demonstrates this broad span of

wavelengths covered by the base design, with sample SBR reflectivity profiles for each

wavelength range.
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Figure 2.18 Measured reflectivity
to the near-infrared.

profiles of oxidized AlxOy-based SBRs spanning the visible

Saturable Bragg Reflectors at 1500 nm

At 1500 nm, several SBRs with different modulation depths were developed, for the

Cr4+:YAG laser and the erbium-doped bismuth-oxide fiber laser.

An SBR with a relatively low modulation depth was developed for the Cr4+:YAG - growth

number R968. The structure consisted of the 7-pair Al 0.3Gao.7As/AlxOy base mirror, with

quarter-wave thicknesses designed for operation at 1440 nm (111 nm / 216 nm). For



R968, a 10 nm Ino.5Gao.5As quantum well absorber was centered in a /2-thick GaAs

cladding layer. The R968 structure is shown in Figure 2.19, together with the electric field

profile in the device. The measured reflectivity of the R968 SBR is shown in Figure 2.20.

AIGaAs / AlOy mirror InGaAs absorber in InP cladding layer

-1.2 -1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8
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Figure 2.19 Refractive index profile and electric field standing wave pattern of the R968 SBR,
designed for use in the Cr4+:YAG laser.
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Figure 2.20 Measured reflectivity of the R968 Cr4+:YAG SBR.
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Pump-probe measurements of the device, performed at 1550 nm, revealed a modulation

depth of 0.3% and a recovery time of 12 ps. Pump-probe traces are shown in Figure 2.21.

In comparison, the original Cr4+:YAG SBR discussed in Section 4.3.1 had a recovery time

of 40 ps. As mentioned earlier, because of the GaAs cladding layers, strain was

concentrated at the absorber interface leading to more defects and faster recombination

rates. Pump-probe studies also showed the fluence behavior to be similar to the original

Cr4+:YAG SBR. With the greater surface area of the mesas, negative two-photon

absorption effects could be avoided by de-focusing incident light to a larger spot size. The

second-generation SBRs had a usable surface area of 19.6 x 104 pm2 compared to the 3.1 x

104 Ptm 2 of the first-generation reflectors. In addition, the GaAs cladding layers had a

lower TPA coefficient than the earlier InP material - 10 cm/GW versus 90 cm/GW.

Simulations of the structures yield a TPA loss of -0.3% for the new GaAs-cladding layer

SBR and 1.7% for the older InP-based SBR.
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Figure 2.21 Pump-probe traces of the R9
Data courtesy of J. Gopinath.

,68 oxidized Cr4+:YAG SBR measured at 1540 nm.

Unfortunately, we were not able to investigate the implementation of this SBR in a

Cr4+:YAG laser, as our gain crystal had degraded over time and even cw lasing was erratic.

However, from its optical characterization, its potential laser performance appears

promising, and the R968 design and SBR samples are an option for modelocking other

broadband low-gain lasers in the 1500 nm wavelength range.



A larger modulation depth SBR was also developed at 1500 nm for a bismuth-oxide-based

erbium-doped fiber laser. This structure - growth number R981 - consisted of the same 7-

pair Alo.3Gao.7As/AlxOy base mirror, with thicknesses designed for a center wavelength of

1565 nm. The absorbing layers were 6 Ino.sGao.sAs quantum wells evenly distributed near

the center of a X/2-thick InP cladding layer. The placement of the quantum wells at the

center of the cladding layer maximized the overlap of the absorbers with the peak of the

electric field profile. The R981 structure is shown in Figure 2.22, together with the square

of the electric field inside the device. The measured reflectivity of the R968 SBR is shown

in Figure 2.23, along with the theoretical design. The bandgap of the device was 1550 nm,

as determined by photoluminescence measurements.
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Figure 2.22 Refractive index profile and electric field standing wave pattern of the R981 SBR,

designed for use in the Er-doped bismuth-oxide fiber laser.



0.01 -
1000 1200 1400 1600

Wavelength (nm)

1800 2000

Figure 2.23 Calculated and measured reflectivity profiles of the R981 SBR for the bismuth-

oxide fiber laser. The calculated reflectivity does not include absorption.

Pump-probe measurements reveal a modulation depth of 1.3% at 1540 nm and a

recovery time of 40 ps. Pump-probe traces are shown in Figure 2.24.
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Figure 2.24 Pump-probe traces of the R981 oxidized bismuth-oxide fiber laser SBR measured
at 1540 nm
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The structures were subsequently anti-reflection coated with a quarter-wave-thick layer of

A120 3 and proton bombarded, reducing the recovery time to -6 ps. When incorporated

into the erbium-doped bismuth-oxide fiber laser, 155 fs pulses were generated [30].

Saturable Bragg Reflectors at 1300 nm

At 1300 nm, SBRs were developed for the broadband Cr:forsterite laser. With the same 7-

pair Alo.3Gao.7As/AlxOy base mirror designed for a center wavelength of 1300 nm, the

device contained a 40 nm Ino.sGa.0 5As absorbing layer, placed in a X/2-thick GaAs

cladding layer. The R946 structure is shown in Figure 2.25, together with the square of the

electric field.
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Figure 2.25 Refractive index profile and electric field standing wave
designed for use in the Cr:forsterite laser.

pattern of the R946 SBR,

The device demonstrated broadband reflectivity, as shown in Figure 2.26. When

incorporated in a Cr:forsterite laser, self-starting 30 fs modelocked pulses were generated,

for use in a frequency metrology experiment [31, 32]. The modelocked Cr:forsterite

spectrum is shown together with the SBR reflectivity in Figure 2.26.
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Figure 2.26 Measured and calculated reflectivity spectra for the R946 SBR for the Cr:forsterite

laser. A modelocked spectrum achieved with the device is also shown. Data

courtesy of J.W. Kim.

Saturable Bragg Reflectors at 800 nm

For Ti:sapphire lasers at 800 nm, the material composition of the SBR structure needed

modification in order to absorb and transmit the appropriate wavelengths. The high-index

layer of the base mirror was changed from AlGaAs to InGaAlP for 800-nm operation; the

absorber layer was changed from InGaAs to GaAs; and the absorber cladding layers were

changed from GaAs to InGaAlP. Altogether, the structure consisted of a 7-pair

Ino.15Gao.sAlo.35P/AlxOy Bragg mirror integrated with a 10-nm GaAs layer centered in a

X/2-thick InGaA1P cladding layer, as illustrated in Figure 2.27. The square of the electric

field profile is also shown in Figure 2.27.

Although InGaAlP with a refractive index of 3.1 resulted in a lower index contrast for the

mirror, the Ti:sapphire SBR still had >99% reflectivity over a broad 294-nm bandwidth, as

shown in Figure 2.18 earlier. Figure 2.28 shows top-down and side views of a fully-

oxidized 500-pm-diameter Ti:sapphire SBR. The mesas were not circular due to the

particular wet etch that was used. The structure oxidized in 2.5 hours at 435 oC with no

observable delamination.
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Figure 2.27 Refractive index profile and electric field standing
SBR, designed for use in the Ti:sapphire laser.
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Figure 2.28 (a) Top-down view of a fully oxidized 500 jim mesa of a InGaA1P/AlxOy SBR for

the Ti:sapphire laser. (b) Side cross-sectional view of the same fully-oxidized
Ti:sapphire SBR [27].
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With the SBR, modelocked operation was achieved with a bandwidth suggesting 15-30 fs

Fourier-transform-limited pulses. The modelocked Ti:sapphire spectrum is shown below

in Figure 2.29(d), together with the other broadband oxidized SBR laser results in the near-

infrared.

(a) Cr:forsterite (1300 nm)
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Figure 2.29 SBR modelocked spectra enabled by the oxidized AlxOy base mirror design,
spanning the visible to the near-infrared [27]. In (d), reflectivities of two SBRs
from the same wafer are shown. One measurement (dotted curve) was limited in
range by the spectrometer used.

In summary, ultra-broadband monolithically integrated oxidized saturable Bragg reflectors

were developed for ultrafast solid-state and fiber lasers spanning the visible to near-

infrared wavelengths. All the SBRs tested in lasers generated self-starting ultrashort
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modelocked pulses. Sustained operation was possible for several days without observable

degradation, illustrating the SBR's durability and high damage threshold.

2.4 BROADBAND SILICON-GERMANIUM SATURABLE BRAGG REFLECTORS

In addition to III-V-based broadband semiconductor absorber mirrors, absorbers based on

silicon/silicon-dioxide (Si/Si0 2) mirrors were also investigated [33].

Silicon is the material of choice in large-scale integrated electronics. The maturity of

existing integration technology and the high-index contrast of silicon and silicon dioxide

make it attractive for photonics applications. Until recently, SBRs fabricated as both bulk

and quantum-well devices from III-V compound semiconductor materials were not

compatible with the silicon material system. A new SBR consisting of a germanium

saturable absorber integrated directly on a Si/Si0 2 Bragg mirror however has changed that.

The silicon-germanium (Si-Ge) SBR was manufactured in a fully CMOS-compatible

process, and it was incorporated into an Er-Yb:glass laser to enable modelocking. We

performed pump-probe spectroscopy on these SBRs with 150-fs pulses at 1550 nm. These

and the laser results are discussed below.

A schematic of the SBR device structure, along with the field intensity profile, is shown in

Figure 2.30(a). The high index contrast of Si (n = 3.5) and SiO2 (n = 1.45) makes possible

both a high maximum reflectivity and a large stopband with only a few quarter-wave pairs.

For this structure, only 6 layer pairs in the Bragg mirror were needed to achieve a

maximum reflectivity of 99.8%. A germanium saturable absorber layer, embedded in a

3/4-thick Si layer, resides on top of the Bragg stack. The absorber was designed to be at a

peak of the field intensity to maximize modulation depth and minimize the saturation

intensity. The center wavelength of the structure was designed to be 1400 nm.

A major accomplishment was the fabrication of the device by Felix Grawert and his

collaborators in the Kimerling group. The Si-Ge SBR was constructed by repeated poly-Si

deposition and thermal oxidation, using a silicon-on-insulator (SOI) wafer as the starting

material. The Si and SiO2 layer thicknesses were 100 nm and 244 nm, respectively. As

growth progressed and the structure became thicker, the roughness in the top-most layers

increased - an effect that degrades the mirror quality. To circumvent this harmful effect,

the top-most layer was bonded to a Si wafer, and the original silicon handle, along with the



buried oxide of the SOI substrate, etched off, reversing the Si/SiO2 layer sequence of the

reflector with respect to layer growth. Essentially, the device was 'flipped.' As a result,

the layers with the lowest roughness were now closer to the surface, or the top, of the

structure, rather than the other way around. Because of the high index contrast, light

incident on the SBR does not penetrate deep into the structure. Consequently, the

reflectivity and bandwidth of the mirror were primarily determined by the quality of the

top-most layers. A 40-nm-thick germanium absorber layer was then deposited to the top of

the structure through the application of the ultrahigh-vacuum chemical-vapor deposition

technique developed here at MIT [34]. Finally, a thin oxide was grown on the germanium

as a passivation layer and a poly-Si cap layer was deposited. This ensures the germanium

layer is crystalline and of high quality. An illustrative summary of this process is shown in

Figure 2.30(b).
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Figure 2.30 Structure and fabrication process of the Si-Ge SBR. (a) Device structure and field

intensity profile. (b) Device manufacturing steps. Courtesy ofF. Grawert [33].
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2.4.1 PUMP-PROBE MEASUREMENTS OF THE SI-GE SBR

The nonlinear response of the device was characterized in a series of pump-probe
measurements with 150 fs pulses centered at 1540 nm using the setup shown in Figure 2.9

above. Pump probe traces are shown below in Figure 2.31. A pump-to-probe fluence ratio

of 3 to 1 was used. For low to medium fluence values (<40 gJ/cm2), the germanium layer

acted as a fast saturable absorber with a modulation depth of up to 0.13%. Sub-picosecond

recovery of the bleaching was observed, with the temporal resolution of the measurement

being limited by the pulse durations of our pump-probe setup. We attribute the fast

relaxation process to inter-valley scattering within the conduction band. It may also be the

result of mid-gap states. From our pump-probe measurements, we estimate the saturation

fluence of the Si-Ge SBR to be 34 pJ/cm 2.
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Figure 2.31 Pump-probe traces at low to moderate fluences of the Si-Ge
dashed line is the cross-correlation of the pump and probe pulse.

SBR [33]. The

At high incident fluences on the order of 300 pJ/cm 2 and above, carriers generated by two-

photon absorption induced free-carrier absorption. The germanium layer effectively

became an inverse saturable absorber. Figure 2.32 shows pump-probe traces taken at



higher fluence. The probe fluence was kept constant for these measurements. The strong
inverse saturable absorber behavior of the Si-Ge SBR can be attributed to the two-photon

absorption in the germanium layer, where 3Ge = 300 cm/GW, a value much greater than

that of silicon or GaAs.
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Figure 2.32 Pump-probe traces at high fluences of the Si-Ge SBR. The dashed line is the cross-
correlation of the pump and probe pulse.

To verify that the signals observed were mainly from the 40 nm germanium layer, and not

from the silicon cladding, measurements were taken on an identical mirror structure that

lacked the germanium absorber. These traces are shown in Figure 2.33. Two-photon

absorption and free carrier absorption were significantly less in this structure - an order of

magnitude lower than that observed in the Si-Ge SBR. Therefore, we concluded that the

dynamics of the Si-Ge SBR were dominated by the absorption and bleaching dynamics

occurring in the 40-nm Ge absorber.
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Figure 2.33 Pump-probe traces of a structure similar to the Si-Ge SBR but without the
germanium absorbing layer. The pump-probe signals are about an order of
magnitude less than for the Si-Ge SBR.

2.4.2 4-LEVEL MODEL FOR DESCRIBING SI-GE SBR DYNAMICS

We posit that a 4-level band structure in germanium is the origin of the dynamics seen in

our pump-probe experiments. We modeled and simulated pump-probe experiments in

such a 4-level system to see if we could replicate our measurements, as well as to estimate

some relative cross sections and lifetimes of these hypothetical energy levels.

The proposed band diagram is shown in Figure 2.34. Energy level L1 is the state that

bleaches, giving rise to positive pump-probe signals. Photons excite carriers up from the

ground level Lo to L1, and from there, they relax to L2. From L2, carriers are either excited

to L3 or they decay back to Lo. The transition from L2 to L3 cannot be bleached, so L3 is a

very short-lived state. This transition does contribute to photon loss, however, and the

carriers that are excited to L3 do not immediately decay back down to any of the defined

energy levels.
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Figure 2.34 Proposed band diagram for describing the origin of the pump-probe dynamics
observed in the Si-Ge saturable Bragg reflectors.

The dynamics of this system are governed by the rate equations shown below:

9N° -(N o - N)o01 + 2 (2.1)
Ot Z2
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These equations describe how the population in each energy level evolves with an incident

photon flux. Here, Ni denotes the population of each energy level i; pxy is the absorption

cross section between levels i and j; ri represents the carrier lifetime of each level i; (D is

the photon flux; and fTPA is the two-photon absorption coefficient. It was assumed that V3

was equal to zero.

Using this model, we were able to replicate our measured pump probe traces, so it appears

that a 4-level band structure is a viable explanation for the pump-probe dynamics we



observed. Figure 2.35 below shows an example fit of the model to measured data. In this

case, the measured data was taken at a pump and probe fluence of 306 and 94 p.J/cm 2,

respectively. The model suggests a fast recovery time of 200 fs and a slow recovery time

of 900 fs, on par with what the laser results in the next section suggest.

Ir = 200 fs, 2 = 900 fs, C 2 3
I 01 = 3.0 11.2

"I
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Time Delay (fs)

Figure 2.35 Comparison of measured pump-probe trace at pump/probe fluence of 306/94
lJ/cm

2 to simulations results of a 4-level model. Fit suggests a fast recovery time
of 200 fs, and a slow recovery time of 900 fs.

2.4.3 ER-YB:GLASS LASER RESULTS WITH THE SI-GE SBR

The observed temporal behavior of the germanium leads to two beneficial effects when the

SBR is incorporated into a modelocked laser. First, the fast recovery time permits

ultrashort pulse shaping; and, secondly, the onset of the inverse saturable absorber

behavior at high fluences helps stabilize high-repetition-rate lasers against the tendency to

Q-switch by limiting the maximum intra-cavity power [7, 8].
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Figure 2.36 Measured and calculated reflectivity of the Si-Ge SBR and the base Si/SiO2
mirror. Measured reflectivities of the mirror include those for structures
fabricated two ways - as-grown and 'flipped' [33]. Data courtesy of F. Grawert.

The measured reflectivity of the Si-Ge SBR is shown in Figure 2.36. In addition, the

calculated reflectivity and the measured reflectivities of the base Si/SiO 2 mirrors are also

shown. Coming back to the device manufacturing process, one can clearly see there is

indeed a significant difference in mirror performance between the as-grown structure, with

the roughest layers closer to the surface, and the flipped mirrors structure, with the

roughest layers deeper in the structure.

Also from the figure, we see the effect of the germanium absorber. The thin germanium

layer grown on silicon was compressively strained, which lead to a shift of the bandgap by

38 nm to shorter wavelengths. As a result, absorption of the germanium only set in at 1580

nm. This resulted in a total loss of 0.3% and a non-saturable loss of 0.17% at the lasing

wavelength. In addition, another cause of the low modulation depth was the slight

misplacement of the germanium absorber layer away from the peak of the field intensity

profile. A larger modulation depth of the SBR could be expected from better positioning

of the germanium layer, as well as with the use of a larger thickness.

The fast recovery time of the Si-Ge SBR combined with its high reflectivity led to

excellent bandwidth and pulse width performance in a modelocked bulk Er-Yb:glass laser.

A schematic of the laser is shown in Figure 2.37(a). The gain crystal was a flat-Brewster



polished Kigre QX/Er phosphate glass. The flat side served as an output coupler with

99.8% reflectivity. The laser was pumped with a Bookham 450-mW fiber-coupled diode

laser. The overall intra-cavity loss was minimized with the use of highly reflecting

mirrors, low output coupling, and the high reflectivity Si-Ge SBR, leading to an intra-

cavity power of 8.7 W. The 4-element laser cavity had a total dispersion of -0.02 ps2.

Finally, the laser was operated with a highly saturated gain, which resulted in a flat gain

profile to support a broad optical spectrum.

a Pump: 980nm Er-Yb:glass
Output: 1550nm Er-b:glass
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Figure 2.37 Setup and performance of the Er-Yb:glass laser with the Si-Ge SBR. (a) Schematic
of the laser cavity. (b) Optical spectrum of the Si-Ge SBR-modelocked Er-
Yb:glass laser. (c) Sample RF spectrum of the laser. (d) Background-free intensity
autocorrelation measurement of the pulses. Graphic courtesy ofF. Grawert [33].



Pulses corresponding to an optical spectrum centered at 1550 nm with a FWHM bandwidth

of 11 nm, covering the entire C-band of optical communications at approximately -10 dB

level, were generated. The spectrum is shown in Figure 2.37(b). The laser operated at a

repetition rate of 169 MHz, and no evidence of Q-switching was observed, irregardless of

the pump power used. This can be attributed to the aforementioned inverse saturable

absorber behavior. A typical RF spectrum is shown in Figure 2.37(c). And finally, after

extra-cavity dispersion compensation with 1 m of single-mode fiber, the pulses were

measured to be 220 fs. The intensity autocorrelation is shown in Figure 2.37(d).

To our knowledge, these are the shortest pulses generated from a bulk Er-Yb:glass laser to

date, and about an order of magnitude shorter than those obtained solely from mode-

locking of an Er-Yb:glass laser with an SBR. The prior pulse width records were 380 fs

and 2.5 ps, respectively [35, 36].
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Chapter 3

SATURABLE BRAGG REFLECTORS
FOR HIGH-REPETITION-RATE LASERS

3.1 INTRODUCTION

Compact high repetition rate fiber and waveguide lasers present a challenging and

promising application for semiconductor saturable absorber mirrors. As mentioned before,

high repetition rate modelocked lasers may be of very practical interest to optical

communications systems. As data transmission rates continue to increase, pulsed lasers

are becoming increasingly important for telecom applications. High-data-rate

communications systems and high-speed photonic digital-to-analog conversion can benefit

greatly from a pulsed laser source [ , 2]. In addition, the mode spacing in the spectral

comb generated by the laser increases with higher repetition rates, and the resultant

spectral and spatial resolution of these individual frequency modes may be leveraged for

optical arbitrary waveform applications.

There are many compelling reasons to use a pulsed laser directly as an optical source in

telecommunications systems. First, this approach eliminates the need for a modulator to

shape the pulses, as shaping is already done by the laser. The modulator need only change

the state between two successive pulses to encode data streams onto the pulse train. This

approach simplifies system architecture, increases efficiency, and reduces cost.

Furthermore, the extinction ratio of pulsed lasers is typically very good and much higher

than for modulated cw sources. This improves the signal-to-noise ratio of the system and



allows further scaling to higher repetition rates through optical time-division multiplexing.

Finally, pulsed lasers can have a transform-limited output, which occupies the minimum

optical bandwidth for a given pulse duration and thus bit rate - an important practical

consideration given the limited availability of spectrum.

Many of these properties also make high-repetition-rate femtosecond lasers attractive for

optical arbitrary waveform generation, as discussed in the Introduction chapter. The high

laser repetition rate yields a frequency comb with sufficient spacing to enable manipulation

by optical filter banks and modulators. And the wide bandwidth provides many frequency

lines, and hence greater freedom, in generating arbitrary waveforms.

Different approaches have been used to achieve these pulsed optical sources. Actively

mode-locked fiber lasers can generate multi-GHz pulse repetition rates, but only with

harmonic modelocking. And even then, good pulse stability is only achieved by using

complex stabilization techniques. Edge-emitting semiconductor lasers, passively or

actively mode-locked, can generate repetition rates of more than 1 THz [3], but with fairly

limited average output power due to the small mode area. Optically pumped vertical-

cavity surface emitting lasers (VCSELs), which can be passively modelocked with

semiconductor saturable absorber mirrors, do not suffer from this power limitation and

have generated pulses with significantly higher average power in the multi-gigahertz

regime (e.g. 950 mW, 15 ps pulse width, 6-GHz repetition rate) [4]. Here, in this thesis,

we concentrate on developing saturable absorber mirrors for use in passively modelocked

ion-doped solid-state lasers, with the purpose of achieving high repetition rates and

femtosecond pulses, rather than the aforementioned approaches, which generated

picosecond pulses.

Diode-pumped ion-doped solid-state lasers are well known for their potential to deliver

high-power mode-locked pulse trains in diffraction-limited beams. They feature efficient,

robust, and compact operation. Because of their relatively low emission cross sections,

however, these lasers exhibit a strong tendency for Q-switched modelocking (QML) in

short cavity configurations designed for high repetition rates. In the QML regime, the

modelocked pulse train is amplitude-modulated with a long Q-switched envelope. As a

result, cavity and absorber designs must be carefully adjusted to counter the Q-switching

tendencies of these gain media.

Note that harmonic modelocking, with multiple pulses circulating in the laser resonator,

could also be used to increase the repetition rate of a solid-state laser [5]. The advantage of



this approach is that the Q-switched modelocking tendency, which depends on the cavity

length, is then weaker compared to the case of a short fundamentally modelocked laser

with the same repetition rate. However, a stable inter-pulse spacing is challenging to

achieve. For this work, we concentrate on the more straightforward approach of

fundamental modelocking, with only a single pulse circulating in the laser resonator.

Passively modelocked, optically pumped lasers have been demonstrated with repetition

rates up to 77 GHz in the 1 jtm wavelength range [6]. The availability of gain media with

large emission cross sections in the 1 pim wavelength range strongly reduces the tendency

for Q-switching instabilities [7]. Earlier attempts to replicate similar repetition rates at 1.5

jpm had met with limited success, due to the relatively lower cross sections of laser gain

media there, until the recent demonstration of a 100-GHz passively modelocked

Er:Yb:glass laser [8]. This laser incorporated a semiconductor saturable absorber mirror

optimized for low saturation fluence and a moderate modulation depth. The short cavity

was also optimized to minimize mode areas in the gain medium as well as on the saturable

absorber mirror.

Semiconductor saturable absorbers are a logical choice for ultrashort pulse generation with

short cavities. As seen in the previous chapter, SBRs play a key role in achieving stable,

self-starting cw modelocking in ultrafast lasers, in a wide variety of laser systems. In

general, however, the lasers described in Chapter 2 had relatively low repetition rates, on

the order of 100 MHz. The SBRs for those lasers were optimized for broadband operation.

As we ramp up the repetition rate, the fluence incident on the SBR decreases in two ways.

First, if we assume that the average intra-cavity power remains the same, the higher

repetition rate reduces the individual pulse energies, which reduces the incident fluence.

Second, the cavity length, which is inversely proportional to the repetition rate for a

fundamentally modelocked laser, shortens; and, if intra-cavity mirrors have the same radii

of curvature as before, the intra-cavity lasing modes are larger. As a result, the spot size

incident on the SBR increases, and a larger spot size translates into a lower fluence. If the

fluence incident on the saturable absorber in the SBR structure is not high enough, Q-

switched modelocking will be favored over cw modelocked operation. Therefore, for

higher repetition rate systems, we must re-visit the SBR design in order to support multi-

GHz operation.

Three key SBR device parameters come to the forefront and are explored in more depth in

this chapter - the modulation depth of the SBR, the recovery time, and the dispersion



profile. The saturation fluence, which is highly relevant in this discussion, is essentially

the outcome of the first two of these parameters.

Section 3.2 gives a brief overview of the challenges of building high-repetition-rate, short-

cavity laser systems. Section 3.3 will be a drilldown around the modulation depth of

saturable absorbers and will examine the use of resonant coatings to enhance the

modulation depth of an SBR design. The resonant coating layers effectively reduce the

saturation fluence by amplifying the fluence 'seen' by the absorber deeper in the structure.

Section 3.4 covers the recovery time of saturable absorbers designed for high-repetition-

rate systems - specifically, the technique of proton bombardment. Finally, Section 3.5

covers the role of dispersion in modelocking and the integration of dispersion

compensation into SBR designs.

As in Chapter 2, the results presented here were possible only through a collaborative

effort. Gale Petrich tirelessly grew the SBR structures layer by layer for us in Professor

Leslie Kolodziejski's lab. Appreciation is all the greater considering the structures

fabricated were not oxidized but had a full 22-layer-pair base mirror, which prolonged the

structure growth to an entire day. Ali Motamedi performed pump-probe characterization

on the SBRs in the Ippen lab, and generously provided many of the charts shown in

Section 3.4. Laser testing of the SBR samples were done by Hyunil Byun, and later on

Michelle Sander. Hyunil kindly provided the data and results presented in Section 3.5.

3.2 CHALLENGES OF BUILDING HIGH-REPETITION-RATE SYSTEMS

Passive modelocking of a solid-state laser with saturable absorbers is a well-established

technique. As mentioned, however, saturable absorbers introduce a Q-switching tendency

that can drive the laser into the Q-switched modelocked operation [9]. This is an

undesirable operating mode for most applications, given the output pulse train no longer

consists of pulses of constant power/energy. The complications of building high-

repetition-rate short-cavity lasers all manifest themselves primarily in the form of Q-

switching instabilities. As a result, one can arrive at this same undesirable result from a

number of different paths.



3.2.1 Q-SWITCHED MODELOCKING

To start, insufficient modulation depth can be the culprit. The modulation depth of the

SBR must be large enough to obtain stable and self-starting modelocking. A larger
modulation depth is desirable for generating shorter pulses. However, this also tends to

increase the nonsaturable losses, which decreases the intracavity power, which lowers the

fluence incident on the absorber relative to its saturation point and increases the tendency

for Q-switched modelocking.

Recovery time is another possible cause of QML. For the lasers discussed in this chapter,
the repetition rate is on the order of GHz. The recovery time of the SBR becomes

important when it is comparable to the resonator roundtrip time or even larger. For

example, the roundtrip time for a 50 GHz laser is 20 ps. SBRs typically optimized for low

nonsaturable losses tend to have relatively long recovery times, on the order of 50 ps for

MOCVD-grown devices. In this case, the SBR's ability to recover between pulses

becomes limited. With low-temperature MBE growth, significantly faster recovery could

be achieved, but at the cost of higher nonsaturable loss, which again leads us back to QML.

Finally, multi-GHz lasers have low pulse energies compared to the 100-MHz repetition-

rate lasers discussed in Chapter 2, since the same amount of energy that can be extracted

from the gain media is now divvied up into many more pulses in a given time window.

Again, this leads to a low fluence operating point relative to the saturation fluence and

increases the tendency to QML.

The physical picture of the Q-switched modelocking dynamics can be understood as

follows. If, for some reason, the pulse energy rises slightly above its steady state value,
this pulse energy fluctuation can initially grow because the stronger bleaching of the
absorber increases the net roundtrip gain. Essentially, the saturable absorber 'rewards'

higher energy pulses with lower resonator losses, thereby enhancing the relaxation

oscillations. However, eventually, the increased pulse energy will saturate the gain. If the

gain saturation is strong enough, this will lead to a dampening of the pulse energy, which

soon returns to its steady state. If this gain saturation does not occur and there is additional

preferential bleaching by the saturable absorber, the relaxation oscillations are undamped

or even growing in amplitude, and we obtain QML operation.



3.2.2 DESIGN GUIDELINES FOR HIGH-REPETITION-RATE LASERS

Basically, three different aspects need to be taken into consideration when designing high

repetition-rate solid-state lasers - (1) choice of gain medium, (2) laser cavity design, and

(3) saturable absorber parameters. The last point on the saturable absorber design is the

focus of our work; however, we will briefly review all three points below.

Choice of Gain Medium

Gain media with large laser emission cross sections are desirable. The larger the cross

section the lower the gain saturation fluence. And for a given fluence, this means stronger

gain saturation behavior to clamp down on relaxation oscillations and prevent QML.

Cavity Design

The cavity design of high repetition rate lasers is important because the mode sizes in the

gain medium and on the saturable Bragg reflector both influence the QML threshold.

Smaller mode areas translate to higher incident fluence relative to the gain and absorption

saturation points.

The cramped confines of multi-gigahertz cavities limit the number of cavity components

and exclude the use of bulky optics. For a standing-wave cavity, a 100-GHz repetition rate

corresponds to only 1.48 mm of separation between the end mirrors in air or even less with

a gain medium in the cavity. It is paramount with such limited space to optimize the lasing

modes as much as possible.

Additionally, the beam quality of the pump source becomes ever more important for the

highest repetition rates, as the mode size in the gain medium should be minimized as much

as possible. The pump beam must stay within the laser mode throughout the gain medium.

It is important to realize that an increased pump mode size is unacceptable even after

propagation by several absorption lengths because these lasers are typically operated far

above threshold, and higher-order transverse modes can easily start lasing and destabilize

the modelocking process.



SBR Design

The parameters of the saturable absorber mirror play a key role in obtaining stable self-

starting cw modelocked operation at a high repetition rate.

Q-switching can be reduced by operating the absorber far above the saturation fluence, in

principle. Absorber damage, multiple pulsing, and other instabilities set limits to this

approach. In practice, the general rule of thumb is operating 2-3 times above the saturation

fluence. With the small pulse energies present in multi-gigahertz lasers, this requires fairly

small mode areas, which are difficult to achieve due to geometrical restrictions. Therefore,

SBR designs with low saturation fluence are desirable.

A low saturation fluence can be achieved in multiple ways. The most pragmatic would be

to place the absorber at a peak in the electric field standing wave pattern in the SBR. This

placement maximizes the modulation depth. Moreover, if said peak could be enhanced

with the addition of resonant coating layers, which would increase the modulation depth as

well, the saturation fluence would be lowered even more. In a high-repetition-rate laser,
this becomes a necessary design extension as the intra-cavity powers are much lower. A

happy byproduct of the increased modulation depth is a stronger modelocking force, which

reduces the output pulse widths.

As mentioned already, the recovery time of the SBR becomes important when it is

comparable to the cavity round-trip time or even larger. In that case, the SBR recovery

after one roundtrip is incomplete. The effective reflectivity change is decreased, which

would decrease QML tendency and seemingly indicate that incomplete recovery would be

advantageous for high repetition rate lasers. However, a fast recovery time is still desirable

for pulse shaping, so ideally, it would be optimal to have a faster absorber with lower

saturation fluence and lower non-saturable losses for high-repetition-rate lasers.

The final parameter to consider in designing SBRs, not only for high-repetition-rate lasers

but for all ultrafast lasers, is the integration of dispersion compensation. Given the

premium placed on space, this is especially important for short-cavity lasers. The positive

dispersion accumulated in traversing the gain medium needs to be compensated in the laser

cavity somewhere, in order to achieve ultrashort pulses in addition to the high repetition

rate. Integrating this component into the SBR structure represents an elegant and compact

solution, and can be a crucial step to achieving multi-gigahertz repetition rate and

femtosecond pulses. As always in optics, the manipulation of phase holds the key, and the

addition of coating layers of specific thicknesses can achieve the necessary dispersion



compensation profile. Dispersion-compensating SBRs can play a key role in achieving

multi-gigahertz operation and femtosecond pulses.

3.3 RESONANT LAYERS FOR MODULATION DEPTH ENHANCEMENT

A large modulation depth is desirable for generating short pulse widths. Generally, the

greater the modulation depth, the shorter the pulse widths that can be generated by an SBR.

For high-repetition-rate laser systems, which oftentimes have high intra-cavity losses, a

large modulation depth relative to the non-saturable losses is also needed for the absorber

to be effective in starting and stabilizing modelocked operation. Having a large

modulation depth can prevent the laser from entering into Q-switched modelocking

operation.

In order to enable modelocking, in some cases, and, more importantly for us, to stave off

Q-switched modelocking, the effective fluence 'seen' by the saturable absorber needs to be

increased. The solution is the application of additional resonant coatings on top of the

standard quarter-wavelength SBR structure. For a given fluence incident on the surface of

the SBR, resonant coatings enhance the field inside the structure, specifically at the

location of the absorber. In the case of a high-repetition-rate system, a low incident

fluence on the SBR surface can translate into a much higher effective fluence at the

absorber location, and hence a higher modulation depth, with the use of resonant coatings.

3.3.1 RESONANT COATING THEORY

A brief explanation of how resonant coatings work follows.

Figure 3.1 shows the configuration that we will use as the basis for our discussion of

resonant coatings. (Incidentally enough, we'll be revisiting a similar schematic when we

discuss Gire-Tournois dispersion compensating SBRs later in this chapter.) The structure

in Figure 3.1 is effectively a Fabry-Perot cavity, with two mirrors, or more correctly,

mirror structures, flanking a spacer layer on both sides. Light is incident from the left side

with field amplitude a. The mirror on the left represents the resonant coating layers, and

the mirror on the right the high-reflectivity base mirror of the SBR. Recall that a standard

SBR is comprised of a highly reflective quarter-wave Bragg stack integrated with an

absorber inside a cladding layer. This cladding layer corresponds to the spacer layer



depicted above, so the absorber is located between the two mirrors. The reflectivity of the

highly reflecting base mirror is assumed to be 1, so the field reflection coefficient r2 is

taken to be unity. The field reflection coefficient of the resonant layers relative to the

spacer layer (and absorber) is rl. The spacer layer has a thickness of 1.
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Figure 3.1 Schematic of a resonantly-coated SBR structure. Traveling waves inside the
cavity and their equations are depicted to illustrate the basic physics of the
structure.

The incident pulse transmits through the resonant coating layers on the left and is then split

into a series of pulses multiply reflected between the two mirrors with different delays.

The field distribution inside is obtained by the superposition of this infinite series of

beams. It is clear this field distribution strongly depends on the relative phase between the

successive reflections, and specifically it depends on the thickness of the spacer layer. The

roundtrip transit time tRT in the spacer layer corresponding to the thickness is

2nl
tRT -- (3.2)
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M



where c is the speed of light and n is the index of refraction of the spacer layer. This

assumes normal incidence light.

There is a subtle point to be made here before we proceed with the calculation. When used

in a laser, the light incident upon this structure is pulsed, not continuous. Hence, the

simplifying assumption of using cw plane waves for our analysis is not automatic. If the

pulse width t, << tRT, the fields of successive pulses in the interferometer do not interfere

due to the lack of temporal overlap, and there would be no intensification of the field in the

spacer layer. Field enhancement therefore implies effective interference between the

partial fields. This requires the spacer layer to be a thin interferometer such that tp >> tRT.

Application of this technique to optical pulses with durations of 100 fs or less thus

necessitates interferometers with roundtrip transit times of 10-20 fs or less, or 3-6 jim or

less, which is indeed the case in our structures. With the condition tp >> tRT satisfied, the

response of the interferometer can be well approximated by investigating the response of a

cw field.

The enhanced field amplitude aenhanced at the left side of the spacer layer is simply a

summation of the main pulse and all the satellite pulses from subsequent reflections inside

the cavity. The math is shown in the figure, and we get:

aenhanced t 1ata( e')+t1a(r, )2 +± (3.2)

,where tl is the field transmission coefficient of the resonant coatings and cp = 2Tn/k x 21 is

the roundtrip phase change in the spacer layer. Recognizing the expression as a geometric

sum, we get:

aenhanced t(3.3)

The field intensity enhancement factor is defined as:

e aenhanced (3.4)
nhned 2 (3.4)

Fenaned-- a 2' 1 r - r1(2 cos c)



In order to maximize the field enhancement, the thickness I of the spacer layer is set so that

the term cos cp is unity, or

p = m 21r

where m is an integer equal to one or greater. For m = 1, this corresponds to a spacer layer

of thickness X/2, which just so happens to be the thickness of the SBR cladding layer in

which the absorber resides. The maximized field intensity enhancement is

t2 2

(F ,) = 1 1- (3.5)(Fenhanced)max +r 1
2-2r (1-r ) 2

(3.5)

A plot of the field enhancement as a function of the reflectivity of the resonant coating is

shown in Figure 3.2. As you can see, the higher the reflectivity of the resonant coatings,

the greater the field enhancement becomes.
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Figure 3.2 Field enhancement ratio as a function of the resonant coating reflectivity for the
configuration shown in Figure 3.1.

3.3.2 STRUCTURE DESIGNS

An example of a resonantly coated SBR structure is shown in Figure 3.3. This is, in fact, growth

VA88, which was one of four samples we designed and fabricated for laser implementation. Note

that the orientation of Figure 3.3 has been flipped from the configuration shown above in Figure
3.1. Light is incident from the right hand side now. The standard SBR structure with the absorber-

cladding section on top of a quarter-wave Bragg stack is shown on the left and the resonant layers



are the additional coatings to the right. The base Bragg mirror of the SBR is a 22-pair

GaAs/Alo.95Gao.05As quarter-wave stack designed for a center wavelength of 1550 nm. The

thicknesses of the GaAs and A10.95Gao.05As layers are 155 nm and 133 nm, respectively. The

spacer/cladding layer is X/2-thick, with a 60-nm Ino.537Ga0 .463As absorber, highlighted in red,

centered in GaAs. The flanking GaAs layers are both 83 nm thick. The InGaAs composition was

chosen so that band edge would be at 1580 nm.

The resonant coating layers are simply quarter-wave pairs, oriented so that the high-index layer

faces the absorber. The orientation does in fact matter - with only a few quarter-wave pairs, the

reflectivity is dependent on the order of the layers in the Bragg stack. The resonant layers are also

GaAs/Al0.95Gao.05As quarter-wave pairs with the same dimensions as before. However, the top-

most AlGaAs layer has 50% aluminum composition, in order to avoid oxidation. This

Alo.5oGao.5sAs layer is 124 nm thick.

Figure 3.3 shows the structure of the VA88 SBR, as well as the electric field standing wave pattern.

In contrast to uncoated SBRs, the intensity inside the structure does not rapidly decay down and is

relatively high, as expected.
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Figure 3.3 Structure and field intensity profile of growth number VA88, a resonantly coated

SBR designed for use in high repetition rate lasers. A 60-nm InGaAs absorbing

layer on top of a 22-pair GaAs/AlGaAs Bragg mirror is overgrown with a 3-pair
GaAs/AlGaAs resonant coating for enhanced modulation depth.



As additional quarter-wave layer pairs are added to the resonant layer, the reflectivity of the

resonant coating rl in Equation (3.4) increases, thereby increasing the field enhancement. That is,
in fact, what we see from designs with more resonant pairs. Figure 3.4 shows how the reflectivity

of the SBR changes as you add more pairs to the resonant coating. The structure used for the

calculation is of the same form as VA88, as shown in Figure 3.3, except the number of layer pairs

in the overgrowth is changed. The profile corresponding to N=3 is the actual calculated reflectivity

for the VA88 SBR. Figure 3.5 summarizes the increase in modulation depth as a function of the

number of layer pairs in the resonant coating structure. With a 3-pair resonant coating layers, as

you see above in Figure 3.3 for VA88, the field enhancement ratio is approximately 2x. As the

field inside the SBR is enhanced, the modulation depth increases and the saturation fluence

decreases.
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Figure 3.4 Unbleached reflectivity profiles for different resonant coating reflectivities r i,
demonstrating the effect of additional layer pairs. As layer pairs are added, the
reflectivity of the top-mirror increases, which increases the field enhancement at
the absorber, thereby increasing the modulation depth of the SBR. The profile for
N = 3 (middle) is the calculated reflectivity for SBR growth number VA88.
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Figure 3.5 Summary of different resonant orders and their corresponding modulation depths
for the VA88-like SBR structures.

The sister structure to VA88 - growth number VA89 - was also grown and fabricated for

laser implementation, and its schematic is shown in Figure 3.6. The base mirror remains

the same as for VA88, however, rather than place the absorber in the cladding/spacer layer,

it is located in the first high-index quarter-wave layer of the base mirror. VA89 is also

overgrown with a 3-pair GaAs/AlGaAs resonant coating for enhanced modulation depth.

As with VA88, the top-most layer was Alo.so10 0Gao.50As in order to avoid oxidation. The

structure design with layer thicknesses for both VA88 and VA89 are summarized below in

Figure 3.7.

4.5- Standard SBR Resonant layers

4-
InGaAs

S 3.5

S3-

o 2.5

, 1.5

_ Air
1

0.5

-1.5 -1 -0.5 0 0.5

Mirror Depth z (pm)

Figure 3.6 Structure and field intensity profile of growth number VA89. The 60-nm InGaAs
absorbing layer has been shifted into the first high-index quarter-wavelength-thick
layer of the Bragg mirror. The structure is also overgrown with a 3-pair
GaAs/AlGaAs resonant coating for enhanced modulation depth.



VA88

Material

Alo.50Ga0o.5 As / GaAs

Al0.95Ga0o.oAs / GaAs x 2

Thickness (nm)

124/115

133/115

GaAs

In0.54Ga0.46As

GaAs

GaAs / Alo 95Gao.osAs x 22

GaAs

115/133

substrate

VA89

Material

Alo.50Gao. 5 As / GaAs

Al0.95Gao.osAs / GaAs x 2

GaAs

GaAs

In0.54Ga0.46As

Alo 95Gao.0oAs

GaAs / Al0o.95Gao.05osAs x 21

GaAs

Thickness (nm)

124/115

133/ 115

230

52

60

133

115/ 133
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Figure 3.7 Summary of VA88 and VA89 SBR designs. Corresponds to Figures 3.3 and 3.6.

The calculated reflectivity for VA89 is shown in Figure 3.8. As expected, given the

location of the InGaAs absorber in the electric field standing wave pattern in Figure 3.6,
the modulation for VA89 is slightly lower. Overall, the general magnitude, bandwidth and

modulation depth of the reflectivity profile are similar to those for VA88.
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Figure 3.8 Calculated reflectivity of the VA89 SBR.

At the time of this writing, initial laser testing of VA88 and VA89 is still underway by

Hyunil Byun and Michelle Sander. However, reflectivity measurements have been done



and are shown below in Figures 3.9 and 3.10 for VA88 and VA89, respectively. They

match relatively well with the simulated results.

1450 1500 1550 1600

Wavelength (nm)

1650 1700 1750

Figure 3.9 Measured reflectivity
yield the same result.

profiles of the VA88. Measurements of different wafers

30 -

20 -

10 -

0--
1400 1450 1500 1550

Wavelength

Figure 3.10 Measured reflectivity
yield the same result.

1600

(nm)

1650 1700 1750

profiles of the VA89. Measurements of different wafers

o 4-
1400



Although resonant coatings provide enhanced modulation depths, they can bring

undesirable side effects as well. With the resonant coatings, the field intensity increases

not only in the absorber layers, but its neighboring layers as well. You can see this in

Figures 3.3 and 3.6. The increased intensity causes larger non-saturable loss, and, just as

importantly, opens the possibility that two-photon absorption in those non-absorbing layers

becomes more of a factor, both in terms of loss and the recovery time. For the former,

low-loss materials need to be used if possible. For the latter, proton bombardment is a

potential solution, and is the subject of the next section.

3.4 REDUCING SATURABLE ABSORBER RECOVERY TIME

The importance of carrier lifetime has already been discussed in Chapter 2 for the shaping

of short pulses. For optimal operation of a saturable absorber, the absorption recovery

time should be shorter than the time between successive pulses in the train. Considering

that 10 GHz operation translates to a roundtrip transit time of 100 ps, SBRs for such lasers

should recover fully in less than 100 ps. Although full recovery would be optimal, high-

repetition-rate lasers with SBRs that do not fully recover within one cavity roundtrip have

also been demonstrated.

Semiconductor recovery times can be reduced via defect introduction, an approach that has

a long history. Defect states can be introduced in a material through strain, low-

temperature molecular beam-epitaxy (LT-MBE) growth, or through post-growth ion or

neutron bombardment. Both LT-MBE growth and ion bombardment have been used in

demonstrations of passive modelocking [10, 11]. In contrast to LT-MBE growth, ion

implantation is a relatively simple post-growth process step and is a more mature

technology [12]. A variety of ions have been used for lifetime reduction in semiconductor

saturable absorbers, including protons, alpha particles, gold, and arsenic [13. 14. 15, 16.

1 7].

As defects are created during ion implantation, carrier recombination is enhanced at these

sites, thereby reducing the lifetime of the material [18, 13. 1 9. 20]. Generally, as the

implanted ion dosage is increased, recovery lifetimes decrease. The relationship between

ion dose and damage, though, is nonlinear; and the penetration depth depends on many

factors, such as the target material(s), the ion species used for bombardment, and the ion

velocity [21].



It has been shown that heavier ions create more stable defect centers, however, heavy ions
at high energies can create unwelcome amorphous layers, which can saturate lifetime

reduction, and, in some cases, even increase the lifetime with higher bombardment levels
[17. 14, 22. 23]. Lighter ions avoid this problem, so higher energies can be used, which
allows deeper penetration depth without sacrificing device nonlinearity [14]. Lifetimes of
200 fs have been achieved in As-implanted GaAs, and lifetimes of -100 fs have been

achieved in proton-bombarded InP [12. 24]. For these reasons, we decided to use proton

bombardment to shorten saturable absorber recovery times in our experiments.

Disadvantages of proton bombardment include increased non-saturable loss and reduced

modulation depth, which can potentially disrupt laser modelocking. This is also the case

with LT-MBE growth. The increased non-saturable loss and reduced non-linearity of the

devices, however, can be mitigated with a post-process anneal.

3.4.1 BACKGROUND

The study of the penetration of charged particles into matter has a long history, dating back

to the discovery of radioactive particles in 1895. It is a rich field and a subject unto itself,
and outside the scope of this thesis. We briefly cover the basic ideas here.

Upon entering any absorbing medium, the incident charged particle used for ion

implantation immediately interacts simultaneously with many electrons. In any one such

encounter, the electron feels an impulse from the attractive Coulomb force as the incident

particle passes its vicinity. Depending on the proximity of the encounter, this impulse may

be sufficient either to raise the electron to a higher-lying shell within the absorber atom

(excitation) or to remove completely the electron from the atom (ionization). The energy
that is transferred to the electron must come at the expense of the charged particle, and its

velocity is therefore decreased as a result of the encounter. A very small portion of the

particle's energy is transferred in each single interaction. Thus, the incident particle loses

its energy over the course of many such interactions during its passage through the

absorbing medium. At any given time, the particle is interacting with many electrons, so

the net effect is to decrease its velocity continuously. As the energy of the penetrating

charged particle falls, the rate of energy loss increases according to the Bethe-Bloch

formula [25].

dE 4r e4 z 2

- - NB (3.6)
dx m0v'



where
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In these expressions, v and ze are the velocity and charge of the incident charged particle,

N and Z are the number density and atomic number of the absorbing atoms, mo is the

electron rest mass, and e is the electronic charge [26]. The parameter P represents the

average excitation and ionization potential of the absorber. For non-relativistic charged

particles, which is the case for us, only the first term in B is significant.

There are two primary implications from the Bethe-Bloch formula. First, the rate of

energy loss is inversely proportional to the energy, or velocity of the incident charged

particle. As the energy decreases, more interactions occur, thereby increasing the energy

loss. When the energy eventually falls below a certain threshold, an electron (or electrons,

depending on the ion) will attach to the charged particle, dramatically reducing its effective

charge, and lowering the energy loss caused by the collisions, until the particles comes to a

stop in the absorbing medium. Second, the higher the atomic number Z of the absorbing

atom, the greater the rate of energy loss.

For the most part, the paths taken by these charged particles tend to be quite straight

because the particle is not greatly deflected by any one encounter, and interactions occur in

all directions simultaneously. Charged particles are therefore characterized by a definite

range in a given absorber material. This range represents a distance beyond which no

particles will penetrate. Energy loss in a material however is a stochastic process.

Therefore, a spread of penetration depths always results when an initially mono-energetic

beam of particles is implanted in an absorbing material. Many particles lose their energy at

an "average depth," although some will lose all their energy earlier, and some later. This

results in a finite width to the penetration depth known as "range straggling." The shape of

the particle deposition concentration as a function of the penetration depth, known as a Bragg

curve or Bragg peak, is illustrated in Figure 3.11.
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Figure 3.11 An example of a Bragg curve, showing the concentration of ion implantation as a
function of penetration depth into the target material.

The Bragg curve is approximately Gaussian-shaped, with the peak defined as the range.

This Gaussian shape is a result of the rate-of-energy-loss-to-energy relationship outlined

above. In addition, the higher the atomic number Z of the target material, the lower is the

range, and the entire distribution is closer to the surface. Higher Z corresponds to a greater

stopping force, which also leads to a narrower width of the Bragg curve.

Calculating these Bragg curves, for the purposes of designing proton bombardment

parameters, would require the application of quantum mechanics and radiation transport

principles. SRIM (the Stopping and Range of Ions in Matter) and TRIM (the Transport of

Ions in Matter) are two simulation packages for that purpose. They can simulate the

stopping range and distribution of ions into matter for up to 2 GeV in energy. These codes

use a quantum mechanics treatment of the ion-atom collisions and can perform quick

calculations, through the use of efficient Monte Carlo methods [25]. Specifically, TRIM

can accept complex targets made of compound materials with up to eight layers, each of

different materials, making it the most relevant for our structures. TRIM calculates both

the final 3-dimensional distribution of the ions, as well as all the kinetic phenomena

associated with the ion's energy loss, such as target damage, sputtering, ionization, and

phonon production.

For the purposes of designing the proton bombardment for our experiments, we performed

some quick calculations in SRIM with single layers of the III-V semiconductor materials

that comprise our SBRs. These results, together with guidance from empirical data from

past devices, allowed us to develop some broad design parameters [27], as discussed

below. The practical takeaways were rules of thumb regarding proton energies and how

they relate to the width and depth of the depositions in our experiments.



3.4.2 EXPERIMENTAL SETUP

In our SBR structures, we use protons to bombard GaAs, AlGaAs, and InGaAs material
layers. The base case for the proton energy level is 40 keV. At this energy, the protons
can penetrate approximately 400 nm deep into a structure and create defects along its entire
path, as described by the Bragg curve. For every additional 50 keV in proton energy,
roughly 300 nm of incremental semiconductor material can be penetrated. Keep in mind
these are approximations and the damage profile is nonlinear. The peak widths for these
protons are typically 100-150 nm, and even more for low energies. Therefore, for a single
quantum well, or absorber layer, one proton energy level is sufficient. For depositions in
thicknesses greater than 500 nm, a more complex dosing schedule would be required, as

we will discuss and provide later.

In addition to the VA88 and VA89 structures described earlier in Section 3.3, two other
SBR structures were fabricated for proton bombardment and subsequent implementation in
a high-repetition-rate laser - VA86 and VA87. These are versions of VA88 and VA89

without the resonant coatings. The material composition and layer thicknesses of VA86
are the same as the base mirror in VA88. VA87 has a 20-nm InGaAs absorber layer, rather
than the 60-nm absorber in VA89, hence the thickness of the first GaAs quarter-wave layer
in the base mirror is different - 94 nm rather than 52 nm. The remainder of the two

mirrors are the same. The VA86 and VA87 SBR structures are shown below in Figures

3.12 and 3.13. Without the resonant coating layers, the reasoning behind the VA87 design
becomes clearer - to reduce the amount of material in the SBR structure. By eliminating
the GaAs cladding section, the idea was to reduce potential TPA losses and non-saturable
losses, given the light penetration into VA87 is similar to VA86.

The reflectivity profiles of VA86 and VA87 are shown in Figures 3.14 and 3.15,
respectively. Compared to their respective simulated results, VA86 has slightly less
modulation depth at 4% than the designed value at 5%, and VA87 has a measured
stopband that is shifted towards longer wavelengths. The misalignment may be due to a
number of reasons. For one, the absolute value of the measured FTIR reflectivity may
have an offset. In addition, the material composition of the absorber may be different from
the expected values and slight differences in growth may contribute to differing linear

absorption values. The refractive indices, which contain the linear loss information, of the
materials in the SBR were taken from Gale Petrich and were specific for the MBE
machine. Finally, the layer thicknesses may not have been grown to their original
designed values. For instance, VA87 had a slight misstep in its growth about 7 layer pairs
from the top that is the likely cause of the shift to longer wavelengths. (It was a long day.)
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Figure 3.12 Device structure and field intensity profile of growth number VA86, a standard
SBR designed for use in high repetition rate lasers with the assistance of proton
bombardment. The 60-nm InGaAs absorbing layer is centered in the GaAs
cladding layer to maximize field overlap and reduce the saturation fluence.
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Figure 3.13 Device structure and field intensity profile of growth number VA87, a standard
SBR designed for use in high repetition rate lasers with the assistance of proton
bombardment. A 20-nm InGaAs absorbing layer has been shifted into the first
high-index quarter-wavelength-thick layer of the Bragg mirror.
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Figure 3.15 Calculated and measured reflectivity profiles of VA87.



Samples of VA86 and VA87 were prepared and sent away for proton bombardment.

Proton bombardment was performed by Kroko Incorporated in California. The initial

dosing scheme used 40 keV protons at dosage levels of 1013, 1014, and 1015 protons/cm 2.

Multiple samples were processed for each dosage. At the time of this writing, there were

ten sample classes in all that were available for laser testing. These are summarized below

in Figure 3.16.

VA86 VA87 VA88 VA89
60-nm InGaAs, 20-nm InGaAs, 60-nm InGaAs, 60-nm InGaAs,
non-resonant, non-resonant, resoInant layers, resonant layers.

4% modulation 1.7% mod. 8% mnodulation I 1% modulation

depth depth depth depth

0 no proton- 0 no proton- Ono proton- 0 no proton-

bombardment bombardment bombardment bombardment

040 keV, 040 keV,
1013 protons/cm 2  1013 protons/cm2

0 40 keV, 0 40 keV, Samples to be proton

1014 protons/cm2  1014 protons/cm2  bombarded in the future

040 keV, O40 keV,
1015 protons/cm2  1015 protons/cm 2

Figure 3.16 Summary of SBR samples fabricated and designed for use in high-repetition-
rate lasers. VA88 and VA89 have not yet been proton bombarded, but will be
in the future, with the dosage scheme outlined later in Figure 3.24.

3.4.3 PRELIMINARY EXPERIMENTAL RESULTS

The recovery dynamics of proton bombarded samples of VA86 have been measured by Ali

Motamedi, who kindly provided the data in the following figures showing preliminary

pump-probe results. Pump-probe traces for VA86 samples at a fluence of 40 pJ/cm2 with

no proton bombardment, bombardment with 40 keV protons at 1013 protons/cm 2, and

bombardment with 40 keV protons at 1014 protons/cm 2 dosage are shown in Figure 3.17.

The equivalent traces at 160 tJ/cm2 are shown in Figure 3.18. Both sets of data indicate

the effectiveness of the proton bombardment via the reduced recovery times. The falloff in

absorption is significantly faster for the 1014 protons/cm 2-bombarded sample compared to

the non-bombarded sample. Estimates of the fast and slow time constants of the absorber

were made by fitting the measured pump-probe traces to a simple model with two

exponential time constants. A summary of the results from Ali is shown in Figure 3.19.
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Figure 3.17 Pump-probe traces of
fluence of 40 pJ/cm2.

2.5-

2.0

1.5-

1.0-

0.5-

0.0-

VA86 for different proton bombardment
Data courtesy of Ali Motamedi.

levels at a pump

36 - Fluence 160 uJ/cm 2 - 1e14
- e13
-0

I ' I ' I ' I ' I ' I '

0 10 20 30 40 50

Delay (ps)

Figure 3.18 Pump-probe traces of VA86 for different proton bombardment levels at a pump
fluence of 160 [IJ/cm 2. Data courtesy of Ali Motamedi.
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Fluence =
40 I/cm2  160 pIJ/cm 2  640 pJ/cm 2

11ffits in ps tfast slIow T fast slow Tfast Tslow

No proton- 6.0 6.0 6.5 67 7.8 61
bombardment

1013 protons/cm2  4.3 63 5.1 59 6.1 61

1014 protons/cm2  2.1 43 2.4 40 3.6 53

Figure 3.19 Summary of pump-probe measurements and fitted time constants
approximating the fast and slow components of the InGaAs saturable absorber
recovery dynamics. Units in picoseconds. Data courtesy of Ali Motamedi.

Typical recovery times corresponding to the slow time constant for VA86 samples are -70

ps for the un-bombarded samples, -60 ps for the 1013 protons/cm 2 samples, and -50 ps for

the 1014 protons/cm 2 samples. These recovery times decrease with increasing proton

bombardment levels, allowing the absorber to recover from bleaching faster after each

successive pulse.

In the short cavity of a multi-gigahertz laser, KLM is not very effective. As a result, the

absorber needs to play a significant role in pulse shaping. The fast time constant indicated

in the table in Figure 3.19 provides this effect. Not only does the recovery time

corresponding to the slow time constant compress with increasing proton bombardment, so

too does the fast time constant. This means samples with high proton bombardment levels

should also help generate shorter pulses.

Finally, by combining the pump-probe traces for a number of different pump fluences, Ali

was able to construct the nonlinear reflectivity curve for VA86 samples bombarded 40 keV

protons at 1014 protons/cm 2. This is shown below in Figure 3.20. By fitting this curve, Ali

determined the saturation fluence to be approximately 18 plJ/cm 2, which is relatively low

and ideal for high-repetition-rate lasers given our aversion to Q-switched modelocking.
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Figure 3.20 Measured nonlinear reflectivity curve of VA86 samples proton bombarded
with 40 keV protons at 1014 protons/cm 2. Data courtesy of Ali Motamedi.

Initial laser testing of the VA86 and VA87 samples were performed in an erbium-doped

fiber laser by Hyunil Byun and Michelle Sander. Passively modelocked Er:-doped fiber

lasers represent a straightforward way to directly generate a high repetition rate pulse train

in the telecom C-band. The pulse generation is passive, therefore no high frequency

electronics are required.

The VA86 and VA87 SBRs were tested in the laser setup shown below in Figure 3.21.

The laser cavity consists of erbium-doped fiber spliced to single-mode fiber, the length of

which is butt-coupled to the SBR on one end and the output coupler on the other end. The

SMF was spliced on so that the heated EDF would not be in contact with the SBR, in

hopes of minimizing thermal damage.

10%
DBS L1 0C SBR

980nm EDF + SMF
pump v U Iv

outputloutput frep = 190 MHz

measurement

Figure 3.21 Schematic of erbium-doped fiber laser setup. Courtesy ofH. Byun.



Modelocked operation was achieved with both VA86 and VA87. However, because of its

low modulation depth (1.7%), relatively weak and unstable modelocking was observed

with VA87, and the focus of laser testing was turned to VA86. Fundamental modelocking

of the EDF laser was achieved with VA86 for all four levels of proton bombardment

(classes 1-4 in Figure 3.16 above). Laser performance with VA86 is summarized in

Figure 3.22. Hyunil Byun generously provided the chart.
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Figure 3.22 Modelocking stability range for the erbium-doped fiber laser using VA86 SBR
samples of various proton bombardment levels. Samples bombarded at

1014/cm 2 performed the best. Data courtesy of H. Byun.

Of the four classes, samples bombarded with 40 keV protons at 1014 protons/cm 2

performed the best, exhibiting the greatest operating range. Pulse widths of 250 fs were

estimated from FWHM bandwidths of-12 nm at the 1014 protons/cm 2 bombardment level.

Except for the 1015 dosage samples, all the samples went through a clear Q-switched

modelocking regime at low pump powers, before fundamental modelocking was achieved.

As pump power was increased further, the onset of multiple pulsing was observed. For the
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1015 dosage samples, no Q-switched modelocking was observed, however, cw lasing

continued at relatively high pump powers before fundamental modelocking was achieved.

As expected, performance improved with greater proton bombardment, up to a point.

Reduced recovery time, both fast and slow time constants, coupled with operation many

times above the saturation fluence led to stable modelocking and shorter pulses. In the

case of proton bombardment at the 1015 protons/cm 2 dosage, performance was likely

hindered by the increased non-saturable loss and reduced modulation depth associated with

over-bombardment. As a result, future post-growth processing should likely center around

proton bombardment at the 1014 protons/cm2 level.

3.4.4 PROTON BOMBARDMENT OF VA88 AND VA89

For thicker absorbing layers, or for absorbers that are deep in a structure where two-photon

absorption in the over-layers needs to be taken into consideration, more complex dosage

schedules are required to penetrate the additional material and deposit uniform defects

throughout the target region. At that point, the TPA lifetime in the otherwise transparent

over-layers that precede the absorber can become significant factors with the relatively

high intensity light in those sections of the standing wave pattern. (This was part of the

rationale for the design of VA87 - to reduce the material on top of the absorber.)

At this point though, it becomes a game of compromise, because significant amounts of

proton bombardment also introduce changes in loss - more non-saturable loss as well as

less saturable loss, both of which are bad for modelocking. Proton bombardment is a

discreet step. With annealing, you can nullify the deleterious effects of proton

bombardment slightly. Therefore, annealing is a fine tuning mechanism that should be

leveraged. Back to the problem, though, the point is that the SBR designer needs to find a

medium between enough proton bombardment so that you achieve the lifetime reduction

required for high-repetition-rate operation, and not too much, to the point that the lasing

efficiency is impeded, or there is not enough saturable loss for sufficient modelocking

force. Ultimately, this will be an empirical exercise, to test different dosage schemes in a

laser, and then iterate to find the optimal solution.

In our case, the relevant structures in this discussion are VA88 and VA89 - the SBRs

designed with extra resonant layers for enhanced modulation depths. Given the relatively

high non-saturable losses of the Er-doped fiber laser and the high gain, SBRs with large

modulation depths would be preferred.



In order to deposit a uniform damage profile throughout a thickness, a superposition

of suitably weighted proton beams of different energies can be used. The result,

termed a spread-out Bragg peak, is illustrated in the Figure 3.23 below.

1 I I i

Mirror Depth z (pm)

Figure 3.23 Illustrative figure of a spread-out Bragg peak for uniform proton bombardment.

Dosage Schedule
Energy
keV

200

150

Dose
protons/cine 2

1 1013

4 x 1012

100 2 x 1012

40 1 x 1012

2 200 1x 1014

150

100

40

4 x 1013

2 x 1013

1 x 1013

Figure 3.24 Recommended proton bombardment schedules for the VA88 and VA89 high-
repetition-rate-laser SBRs.



For VA88 and VA89, the proposed dosage schedules are outlined above in Figure 3.24.
Given the experience with the 1015 dosage in the EDF laser testing, we exclude it from the
VA88 and VA89 runs. These schedules were constructed based on empirical data from
TRIM, and from consultations with Joe Donnelly and Juliet Gopinath at Lincoln
Laboratories.

In addition to the execution of the proton bombardment schedules in Figure 3.24, there are
additional investigations that can be performed in terms of optimizing the recovery times
of these SBR structures, together with the work on dispersion in the next section. For

example, we may want to explore using oxidized base mirrors to minimize light
penetration deeper into the SBR structure to minimize TPA lifetime limiting pulse widths.
These ideas for future work will be covered in the Conclusion.

3.5 INTEGRATION OF DISPERSION COMPENSATION

Dispersion compensation is a ubiquitous challenge in femtosecond pulse generation in that
it always limits advances towards shorter pulse durations. Group delay dispersion (GDD)
naturally arises from any optical material in the laser system, including air paths, and tends

to significantly lengthen short optical pulses. The goal then is to find a dispersion
compensation scheme that can deliver adjustable dispersion over a broad bandwidth, and is
simple and compact. Traditionally, this problem has been solved with bulk dispersion
compensators or prism or grating sequences. The latter techniques could compensate for
large amounts of material dispersion. However, when it comes to really short pulse

durations in the sub-100 fs regime, these traditional approaches are limited by higher-order
dispersion. Furthermore, bulk and geometrical compensators are difficult to incorporate
into compact high-repetition-rate lasers and also cannot be integrated into fiber lasers.

Using optical fibers for dispersion compensation is an alternative approach. Fiber
dispersion properties are determined by their material and waveguide dispersion. Material
dispersion can be slightly changed by adjusting the fiber composition, whereas waveguide
dispersion is determined by the fiber core-cladding geometry. Figure 3.25 shows the

characteristic curves for some typical dispersive fibers. Dispersion-shifted fibers behave
like standard fibers, except their zero-dispersion wavelength is shifted to 1550 nm.
Dispersion-flattened fibers have a low and very constant dispersion over a broad
wavelength range. Dispersion-compensating fibers have the opposite slope from that of
standard fiber in the dispersion wavelength. As a technique, dispersion compensation



using fibers is very convenient to implement. However rather long fibers are required and

significant nonlinear effects can be introduced that limit their application.
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Figure 3.25 Dispersion curves for standard, dispersion-shifted, dispersion-flattened, and
dispersion-compensating fibers [28].

With the introduction of chirped mirror technology, progress in the generation of ultrashort

pulses was significantly advanced. By progressively varying the Bragg wavelength along

the z-dimension of a high- and low-index mirror stack, a structure can be designed to

exhibit not only a very broad optical bandwidth, but also a large dispersion compensating

bandwidth. A typical structure is illustrated in Figure 3.26. The major benefits of this

technology have been low losses, large operating and compensating bandwidth, and a

compact integrated configuration. The drawbacks, however, are the complex computer

optimization codes required to design the mirrors and the expensive equipment and

processes required to fabricate the devices.

104
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Figure 3.26 Schematic of a double-chirped mirror. The mirror consists of alternating layers of
low- and high-index materials, with a variation of the Bragg wavelength along the
stack. Longer wavelengths penetrate deeper into the structure relative to shorter
wavelengths, hence creating group delay and group delay dispersion. Satellite
pulses are suppressed by impedance matching within the mirror stack and at the
interface with air.

In addition to dispersion-compensating mirrors, gratings pairs, and prism pairs, reflection

from thin-film multilayer interferometers represent yet another technique for femtosecond

pulse compression. The utilization of the dispersive properties of interferometers for

optical pulse compression was first investigated by Gires and Tournois in 1964 [29]. The

striking property of these interferometers is that the optical phase shift is wavelength

dependent, while the reflectivity, in contrast to the usual Fabry-Perot interferometer,

remains constantly high over a broad spectral bandwidth. The typical interferometric

resonant behavior shows up in the phase delay. The thin-film variant of the Gires-

Tournois interferometer (GTI) can provide significant group delay dispersion, positive and

negative, for bandwidths of tens of nanometers. If only a few nanometers of dispersion

compensation bandwidth are required, group delay dispersions of thousands of fs2 can be

produced by these devices.

Such GTI mirrors had been used for intracavity dispersion compensation as early as 1969,

decades before the development of chirped mirrors [30]. In more recent work, these GTI

devices have been combined with saturable absorber mirrors into one monolithic

semiconductor structure capable of providing all-in-one modelocking and dispersion

compensation. Such a device was demonstrated for a Cr:LiSAF laser generating 160 fs

pulses [31]. The GTI-SBR exhibited -400 fs2 dispersion compensation over a -20-nm



bandwidth. More recent designs have demonstrated negative dispersions of several 1000

fs2 and have incorporated gain into the GTI device [32].

The standard configuration of the Gires-Tournois interferometer (GTI) is similar to the one

already used in the previous discussion for resonant coatings, and is re-shown below in

Figure 3.27 with slight modifications.
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Reflector
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Figure 3.27 Schematic of a GTI-SBR structure. Traveling waves inside the cavity and their
equations are depicted to illustrate the basic physics of the structure.

The GTI consists of two plane mirrors, flanking a spacer layer of thickness d. Again, r2 is

a highly reflective mirror (the Bragg stack of the SBR) whose reflectivity we'll simplify

and approximate as unity. And the partially reflective mirror on the left has field reflection

coefficient rl, which we'll simply refer to as r. For now, to simplify the discussion, we do

not include the effect of the absorber located within the spacer layer, and will wait to

incorporate that component later in our treatment. Intuitively, if this SBR were to be used

to self-start KLM, this initial simplification makes sense, since it reflects what the situation



would be otherwise. The absorber bleaches under KLM operation and its loss

characteristic would not be relevant at steady state. Once we have built our intuition of the

lossless GTI, we can then overlay the effect of the absorber and establish the more general

solution.

As before, the light incident upon this structure is pulsed, not continuous. We need to keep

in mind the conditions for the simplifying assumption of using cw waves to analyze the

GTI response - tp >> tRT. That is, the pulse widths are long enough so that successive

pulses from the interferometer do temporally overlap and interfere. The response of the

interferometer otherwise will just be a train of pulses with rapidly decreasing amplitude.

With the condition tp >> tRT satisfactorily fulfilled, we can proceed with the cw analysis.

(Note that the intermediate case where tp = tRT cannot be treated analytically.)

Again, the incident field with amplitude a approaches the GTI from the left. Note that

earlier with the resonant coating layers, the discussion centered on the field inside the

spacer layer. For the GTI discussion here, we focus on the reflected field b that comes

back out from the device, from right to left. Building on the math we already carried out

for resonant coatings, we see that reflected field amplitude b can be represented as:

b= -r+( -- r2)2 x x- 2 )a= -r e a (3.7)
1 - re- 1- re-J

In the expression, we simply account for the first-order reflection from the front surface

with -r. Then, for the subsequent exiting pulse train, we add onto the expression for the

field inside the spacer layer - Equation (3.3): the transmission coefficient for going

through the partial reflector, a roundtrip phase accumulation, and then the transmission

coefficient coming back out. Here, with r2 being the reflectivity; and t defined as the field

transmission coefficient, we have r2 + t2 = 1 by energy conservation. And the transmission

coefficient t is:

t = (1- r 2 (3.8)

Multiplying through, we get:

-r + e -

b = a (3.9)
1- re-J



The reflection coefficient from the device rGTI is b/a, and you can easily see that device

reflectivity Ir GTII 2 = 1, independent of the phase cp. Defining the nonlinear phase shift D

for the device by

b - e-I' a (3.10)

We multiply through to get:

e =J -- r + e- J
I - re- j'

-2r + e-"' + r2e +"'

1 + r 2 - 2rcosyo

S[+ r2)cos(-2r ]+ j(- + r2)sin(]
1+r 2 -2rcosp

From Euler's formula, we find the expression for the nonlinear phase shift of the GTI:

imag (e-'O)tan r= - e
real e- )

- ( r2 -1)sin(q

2r-( 1+r 2 COS P

Using the standard definitions for group delay, group delay dispersion and the appropriate

differentials,

T- -0(S Ico

Tg

GDD -- 2
0o2

1-r
2

4 nd
1+ r 2 2r cos (

9=od
A2 g

21rc 6A
(3.13)

(3.14)
2nd

x--

1- re+ "'

1 -re "
(3.11)

(3.12)

we get:



(1-r2)x 2rsin 4 2GDD = (3.15)
1+r2 -2rcos nd C

As you can see from Equations (3.14) and (3.15), the key design parameters for the

lossless GTI are the reflectivity of the top mirror r and the thickness of the spacer layer d.

The GDD can be both positive and negative, and the amount can be tuned by changing the

length of the GTI cavity d and the reflection coefficient r of the top mirror. For a selected

resonance wavelength XGTI, the thickness d is a multiple of XGTI/ 2 n, where n is the

refractive index of spacer layer material. The resonance wavelength of the GTI XGTI

should located within the stopband of the highly reflective base mirror (the Bragg stack of

the SBR), and need not correspond to the center wavelength kc of the base mirror.

Group delay profiles for different orders of the fundamental cavity thickness d = XGTI/2n

are plotted in Figure 3.28 (a). As you increase the wavelength, the group delay first

increases, indicating negative GDD, and then decreases with wavelength, indicating

positive GDD. The corresponding group delay dispersion profiles are plotted and Figure

3.28 (b). The plots show profiles for different GTI cavity thicknesses d of 3 (XGTI/ 2 ), 4

(XGTI /2) and 5 (XGTI /2), where ?GTI is the resonance wavelength of the GTI and equals 1.5

ltm.

As you can see, the thicker the spacer layer in Figure 3.27, the greater the maximum

dispersion value. The effective bandwidth of the designed dispersion changes as well,

though primarily, it varies with the amount of dispersion. The greater the dispersion, the

more quickly it falls off from the maximum, and hence, the narrower the usable bandwidth

for that dispersion. You can also see that for greater dispersions, the peak dispersion also

moves closer to the resonance wavelength. We need to keep these effects in mind when

designing a GTI - the amount of dispersion, the usable bandwidth, and the location of the

usable dispersion are all inter-dependent and move together. Ultimately, the

implementation challenge for ultrashort pulse generation will not be the magnitude of the

dispersion (most likely, it will be sufficient) but the usable bandwidth over which the

dispersion can be maintained. For sub-100-fs pulses, the rate at which the dispersion falls

off will play a significant role, and a more thorough investigation through simulation of the

temporal dynamics will be required.
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The other parameter that can influence the group delay dispersion is the reflectivity of the

top partially reflecting mirror, which is related to r in Equation (3.15). As you increase the

reflectivity, the dispersion increases and the usable bandwidth decreases. The effect of

varying the reflectivity is shown in Figures 3.29. Changing r results in a similar trend to

Figures 3.28 earlier, implying you have two routes that can produce the same result -

either grow a thicker spacer layer, or increase the top mirror reflectivity (e.g. with

additional coatings such as the resonant coatings described earlier).

There may be practical limitations that restrict the method used. For example, recalling the

earlier condition for using the cw analysis, the spacer layer cannot be overly thick to the

point where the roundtrip transit time approaches the pulse width of the laser. Two-photon

absorption may become an issue as well in a thick layer of material, inhibiting

modelocking. Finally, there may be fabrication issues with growing a very thick layer of

material with MBE. The alternative approach of growing additional resonant coatings to

enhance the top mirror reflectivity adds complexity to the fabrication process, which may

result in delamination and other structural instabilities, and, most certainly, additional non-

saturable loss due to the additional material interfaces. A way to avoid this would be to

use a higher-index material for the spacer layer and avoid additional top-mirror coatings

altogether. All said, these challenges can be overcome, and, compared to chirped mirrors,

GTI's are still relatively simple to fabricate.
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Figure 3.29 (a) Group delay and (b) group delay dispersion versus wavelength for a GTI, for
different top mirror reflectivities R = r2 of 30%, 40% and 50%. As R increases,
the dispersion increases.

The analysis above does not change materially when we incorporate loss into the

discussion. When you add a saturable absorber inside the spacer layer, the structure

becomes similar to the absorber-cladding section of the SBR designs shown earlier in

Chapter 2. The position of the saturable absorber inside the cladding layer in the more

general absorptive GTI structure becomes another design parameter that affects the

dispersion profile.

The initial intuitive preference would be to place the saturable absorber at a peak in the

electric field standing wave pattern, as depicted in Figure 3.30 (a). However, this would

effect a pronounced absorption resonance at XGTI, and the extra loss could push the lasing

wavelength away from the desired compensating dispersion wavelength regime, towards

one of the reflection maxima, as shown in Figure 3.31. As a result, we prefer placing the

absorber layer close to a trough in the standing wave pattern, as in Figure 3.30 (b). The

associated dispersion and reflectivity profiles are shown in Figure 3.32. Keep in mind, for

structures with low resonance, placing the absorber at a peak may be acceptable. As

always, judgment is left to the designer and experimenters in striking the best compromise.



Mirror Depth z (gtm)

Mirror Depth z (gim)

GTI-SBR structure designs with saturable absorber (red highlighted section)
placed at a peak (a) and at a trough (b) of the electric field standing wave pattern.

Figure 3.30
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Figure 3.31 Calculated reflectivity and dispersion of a GTI-SBR, corresponding to the
structure shown in Figure 3.30 (a) with the saturable absorber placed near a peak
in the electric field standing wave pattern.

As you can see in Figure 3.31, the modulation depth at 1.55 rim, which corresponds to the

operating wavelength of the erbium-doped fiber laser, is quite high when the absorber is

placed in a peak of the electric field standing wave pattern. As a result, lasing will likely

trend towards the higher reflectivities on either side of 1.55 jim, away from the desired

anomalous dispersion range. When the absorber is shifted, the resulting reflectivity at 1.55

pm is significantly improved from 72% to 91% at 1.55 pm. As a result, lasing is preferred

at the intended wavelength, and, in addition, the pulse experiences the designed anomalous

dispersion. The dispersion peaking at -750 fs2 is quite high and has a relatively narrow

bandwidth. This bandwidth however does cover the operating range for the erbium-doped

fiber laser, which typically achieves 10-15 nm FWHM bandwidth.



The jagged-ness of the calculated dispersion profiles is the result of a limited material data

set. Because the refractive indices used are drawn from empirical data, there is a lack of

smoothness when the mirror code calculates the group delay dispersion via differentials.
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Figure 3.32 Calculated reflectivity and dispersion of GTI-SBR1, corresponding to the
structure shown in Figure 3.30 (b) with the saturable absorber placed near a
trough in the electric field standing wave pattern.

The structure shown in Figure 3.30 (b) and its corresponding dispersion and reflectivity

profiles is our first proposed GTI-SBR design - GTI-SBR1. This design uses a 60-nm

In0.537Ga0.463As absorber placed in a 3 x X/2-thick GaAs cladding layer to achieve the

necessary dispersion for use in our lasers. The base mirror is the same 22-layer-pair

GaAs/Alo. 95Gao.os5As quarter-wave stack used earlier for the VA86 series of SBRs.

As mentioned before, the alternative route to achieve a desired compensating dispersion

would be to increase the top-mirror reflectivity, and that is the basis of the design for GTI-

N
.g q
44



SBR2. By adding quarter-wave layer pairs on top of the GaAs cladding layer, we can

enhance the reflectivity of the partial reflector of the GTI cavity. The GTI-SBR2 structure

is shown in Figure 3.33 and its calculated reflectivity and group delay dispersion are

shown in Figure 3.34. The structure is analogous to VA88, except the GaAs cladding layer

is thicker at 2 x k/2. The same 3-layer-pair overgrowth of AlGaAs/GaAs is used, with the

top most layer being AlosoGao.soAs, and the other low-index layers being Alo95Gao.0o5As.

The thicknesses of these layers are the same as for VA88, as shown in Figure 3.7. The

absorber has been shifted in the cladding layer to a trough location in the standing wave

pattern for the laser center wavelength at 1.55 tm. The GaAs cladding layers are 130 nm

and 280 nm thick.
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InGaAsI
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Mirror Depth z (tm)

Schematic of GTI-SBR2 design structure.

Y' Y'\ I AMIYI U

Figure 3.33



1000 -- - I -... . - -
II i I

750 - ---- ----- -- --- -- --

N - I I I I I I -- I

0, 500 T F T

4- 4 -- I - I- -- - --- -- -

1 250
. . . . ." -"1 t -I I- I

0
4-l _-- -4---- I ---- l------- -- 4- .4-

0 4 -250 ,

-750 ---- ------- -- -- I ...

I I I I I I

-1000

1

0.9
* 0.8----------

0.6o~ --- - - -I --------- c---------

U 0.5 -- ------ ---------- --------- 1- ---- -6 0 5
0.5-- -------------- ----------------- --

0.3 -----------------------

0.1 -. ..---------- -------- --------- ------

01 1.45 1.6 1.65

Wavelength (jim)

Figure 3.34 Calculated reflectivity and dispersion of GTI-SBR2.

Both of these structures will likely need proton bombardment, given the large amount of

material present before incident light reaches the absorber. Lifetime reduction of TPA in

the overgrowth layers, as well as in the absorber layer, will be required and could be done

with a dosage schedule similar to the ones in Figure 3.24.

Fabrication of these structures and subsequent testing in lasers have not yet occurred at the

time of this writing. When these structures are fabricated, care must be taken to protect the

surface of the mirror, given the relatively high intensities at the air-semiconductor interface

prevalent with these designs. Heat-sinking, as well as additional coating layers to reflect

pump light, may be required.

Given the push for high repetition rates and femtosecond pulses at MIT, however, it is

inevitable that GTI structures will be incorporated into lasers and experimented with

extensively. There are in fact several interesting opportunities for analysis that can be

further pursued.
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In terms of design, three additional structures come to mind that should be explored

further. First, as mentioned earlier, oxidized mirrors should be considered. Given their

broad bandwidth, there is significant freedom in designing additional overlayers for the

GTI or for resonant behavior. Additionally, because of the high-index contrast, light

incident on such SBRs will not penetrate deep into the structure, avoiding the loss and long

recovery time of TPA. Second, a simple chirped mirror may be interesting to investigate

for these lasers. For octave-spanning lasers, the ripples in the dispersion profile prove

detrimental to the generation of the shortest possible pulse widths. However, for pulses on

the order of 100's of femtoseconds, a simple chirped mirror may prove sufficient.

Integrating a saturable absorber on top of such a mirror would create another option for

integrated saturable absorption and dispersion compensation. The final design to consider

is the placement of multiple absorber layers of different thicknesses and band gaps. For

example, one may consider placing one absorber at a trough location and another at a peak

location in the electric field standing wave pattern. The absorbers would saturate at

different fluences and provide another degree of freedom in designing the modelocking

behavior of a laser.

For post-growth processing, there are additional paths to investigate more extensively as

well. As discussed already, proton bombardment will largely be an empirical exercise,

based on iterative attempts at finding an optimal dosage schedule. Irregardless, proton

bombardment will be required for thick SBR structures - VA88, VA89, the GTI structures,

as well as some of the other suggested designs above. Balance will always be needed

between sufficient recovery time reduction and increases in the non-saturable loss. Along

those lines, post-growth annealing should also be explored to fine tune the proton

bombardment effects. Finally, the application of transparent dielectric coating on top of

the SBR structures should be explored further. Given the possibility of thermal damage to

the absorber, extensive heat-sinking and reflection of pump light will likely be required.

Finally, the development of a richer, more holistic simulation model may be needed to

better understand laser dynamics when using these SBRs. A model that incorporates the

temporal dynamics, as educated by pump-probe, as well as the spatial implications of the

SBR structure and laser configuration may yield additional insight that could lead to

improved modelocking performance.



REFERENCES

1. M. Saruwatari, "All optical signal processing for terabit/second optical transmission,"
IEEE Journal of Selected Topics in Quantum Electronics 6, 1363 (2000).

2. P. W. Juodawlkis, J. C. Twichell, G. E. Betts, J. J. Hargreaves, R. D. Younger, J. L.
Wasserman, F. J. O'Donnell, K. G. Ray, and R. C. Williamson, "Optically sampled
analog-to-digital converters," IEEE Transactions on Microwave Theory and
Techniques 49, 1840 (2001).

3. S. Arahira, Y. Matsui and Y.Ogawa, "Mode-locking at very high repetition rates
more than terahertz in passively mode-locked distributed-Bragg-reflector laser
diodes," IEEE Journal of Quantum Electronics 32, 1211 (1996).

4. R. Haring, R. Paschotta, A. Aschwanden, E. Gini, F. Morier-Genoud and U. Keller,
"High-power passively mode-locked semiconductor lasers," IEEE Journal of
Quantum Electronics 38, 1268 (2002).

5. M. F. Becker, K. J. Kuizenga and A. E. Siegman, "Harmonic mode locking of the
Nd:YAG laser," IEEE Journal of Quantum Electronics QE-8, 687 (1972).

6. L. Krainer, R. Paschotta, M. Moser and U. Keller, "77 GHz soliton modelocked
Nd:YVO4 laser," Electronics Letters 36, 22 (2000).

7. C. Hinninger, R. Paschotta, F. Morier-Genoud, M. Moser, and U. Keller, "Q-
switching stability limits of continuous-wave passive mode locking," JOSA B 16, 46
(1999).

8. A. Oehler, T. Stidmeyer, K. Weingarten and U. Keller, "100 GHz passively mode-
locked Er:Yb:glass laser at 1.5 tm with 1.6-ps pulses," Optics Express 16, 21930
(2008).

9. F. X. Kaertner, L. R. Brovelli, D. Kopf, M. Kamp, I. Calasso and U. Keller, "Control
of solid-state laser dynamics by semiconductor devices," Optical Engineering 34,
2024 (1995).

10. U. Keller, K. J. Weingarten, F. X. Kaertner, D. Kopf, B. Braun, I. D. Jung, R. Fluck,
C. Honninger, N. Matuschek and J. Aus der Au, "Semiconductor saturable absorber
mirrors (SESAM's) for femtosecond to nanosecond generation in solid state lasers,"
IEEE Journal of Selected Topics in Quantum Electronics 2, 435 (1996).

11. M. J. Lederer, B. Luther-Davies, H. H. Tan and C. Jagadish, "An antiresonant Fabry-
Perot saturable absorber for passive mode-locking fabricated by metal-organic vapor
phase epitaxy and ion implantation design, characterization, and mode-locking,"
IEEE Journal of Quantum Electronics 34, 2150 (1998).



12. F. Ganikhanov, G. Lin, W. Chen, C. S. Chang and C. Pan, "Subpicosecond carrier
lifetimes in arsenic ion-implanted GaAs," Applied Physics Letters 67, 3465 (1995).

13. Y. Silberberg, P. W. Smith, D. A. B. Miller, B. Tell, A. C. Gossard, and W.
Wiegmann, "Fast nonlinear optical response from proton-bombarded multiple
quantum well structures," Applied Physics Letters 46, 701 (1985).

14. M. J. Lederer, B. Luther-Davies, H. H. Tan, C. Jagadish, M. Haiml, U. Siegner and
U. Keller, "Nonlinear optical absorption and temporal response of arsenic- and
oxygen-implanted GaAs," Applied Physics Letters 74, 1993 (1999).

15. S. Collin, J. Ramos, J. Lopez, J. Mangeney and N. Stelmakh, "Optical sampling by
ultra-fast high-contrast saturable absorber created by heavy ion irradiation," 1999
CLEO 35, 1667 (1999).

16. P. M. Downey and B. Schwartz, "Picosecond response in 3He+ bombarded InP
photoconductors," Applied Physics Letters 44, 207 (1984).

17. E. L. Delpon, J. L. Oudar, N. Bouche, R. Raj, A. Shen, N. Stelmakh and J. M.
Lourtioz, "Ultrafast excitonic saturable absorption in ion-implanted InGaAs/InAlAs
multiple quantum wells," Applied Physics Letters 72,759 (1998).

18. J. F. Ziegler, Ion Implantation Science and Technology, Academic (1988).

19. J. T. Gopinath, E. R. Thoen, E. M. Koontz, M. E. Grein, L. A. Kolodziejski, and E. P.
Ippen, "Recovery dynamics in proton-bombarded semiconductor saturable absorber
mirrors," Applied Physics Letters 78, 3409 (2001).

20. J. T. Gopinath, MS Thesis, MIT (2000).

21. S. M. Gulwadi, M. V. Rao, D. S. Simons. O. W. Holland, W.-P. Hong, C. Caneau,
and H. B. Deitrich, Journal of Applied Physics 69, 162 (1991).

22. F. E. Doany, D. Grischkowsky and C. C. Chi, "Carrier lifetime versus ion-
implantation dose in silicon on sapphire," Applied Physics Letters 50, 460 (1987).

23. M. Lambsdorff, J. Kuhl, J. Rosenzweig, A. Axmann and J. Schneider,
"Subpicosecond carrier lifetimes in radiation-damaged GaAs," Applied Physics
Letters 58, 1881 (1991).

24. K. F. Lamprecht, S. Juen, L. Palmetshofer and R. A. Hopfel, "Ultrashort carrier
lifetimes in H+ bombarded InP," Applied Physics Letters 59, 926 (1991).

25. J. F. Ziegler, J. P. Biersack, and U. Littmark, The Stopping and Range of ons in
Solids, Pergamon Press (1985).



26. H. M. Shen, University of Michigan NERS315 Radiation Detection & Measurement
notes.

27. Personal communications with Joe Donnelly at MIT Lincoln Laboratory.

28. H. Toda, K. Hamada, Y. Furukawa, Y. Kodama, and S. Seikai, "Experimental
evaluation of Gordon-Haus timing jitter of dispersion managed solitons," ECOC '99
1, 406 (1999).

29. F. Gires and P. Tournois, "Interferometre utilizable pour la compression d'impulsions
lumineuses modulees en frequence," C. R. Acad. Sci. Paris 258, 6112 (1964).

30. M. A. Duguay and J. W. Hansen, "Compression of pulses from a modelocked He-Ne
laser," Applied Physics Letters 14, 14 (1969).

31. D. Kopf, G. Zhang, R. Fluck, M. Moser and U. Keller, "All-in-one dispersion-
compensating saturable absorber mirror for compact femtosecond laser sources,"
Optics Letters 21, 486 (1996).

32. M. Moenster, U. Griebner, W. Richter and G. Steinmeyer, "Resonant saturable
absorber mirrors for dispersion control in ultrafast lasers," IEEE Journal of Quantum
Electronics 43, 174 (2007).



122



Chapter 4

HIGHLY NONLINEAR BISMUTH-OXIDE FIBER FOR

SUPERCONTINUUM AND ULTRASHORT PULSE

GENERATION

4.1 INTRODUCTION

Although the saturable Bragg reflectors (SBR) described in the prior chapters are a viable

and demonstrated technology for enabling the generation of broad spectra and ultrashort

pulses, they and the laser systems they enable are still at times prohibitively expensive and

not readily accessible to all researchers. In this chapter, we discuss an alternative approach

via supercontinuum generation.

In contrast to SBRs, which aid in generating broad spectra directly from modelocked

lasers, supercontinuum generation relies on relatively narrowband, high peak power seed

pulses being broadened extra-cavity in highly nonlinear fiber. If desired or necessary, a

subsequent compression, or dispersion compensation, stage can be added after

supercontinuum generation to re-form the broad spectra and produce ultrashort pulses in

time.

Just with the broad spectra alone, there are a variety of useful applications in medical

imaging [1], frequency metrology [2. 3. 4], ultrafast spectroscopy [5], device

characterization [6, 7], and telecommunications [8. 9]. For example, in

telecommunications, the supercontinuum generated in optical fiber is a convenient source



because it provides a very broad bandwidth that can be sliced, as required, into short pulses

for individual WDM channels. The pulse trains in each channel have the repetition rate of

the source laser, and, when properly adjusted, are chirp-free and have transform-limited

pulse widths. These features make the continuum source an attractive alternative to

numerous discrete laser diodes, particularly for high-bit-rate communications. These

numerous applications have sparked advances in the development of novel fiber systems,

such as photonic crystal fibers [10, 11 ], microstructure fibers [12], and other highly

nonlinear solid-core fibers [13. 14., 15, 16].

Producing broad spectra directly from a modelocked ultrafast laser or with additional

extra-cavity techniques, such as subsequent compression stages, is complex and expensive.

To illustrate and to highlight the impetus for the work in this chapter, consider two

examples. First, in our earlier work, ultrashort 20-fs pulses at 1.5 lpm, corresponding to a

spectral bandwidth of 190 nm, were generated directly from a Cr4+:YAG laser [17]. This

experiment used custom-designed double-chirped mirrors for dispersion compensation, as

well as a scarce gain crystal that could not be consistently grown at high quality.

Modelocking of the laser was not turn-key and required custom-made SBRs to start and

enable pulsing [18]. In the second example, 20-fs pulses, also at 1.5-jtm, were

demonstrated when a semiconductor laser, producing i-ps pulses, was followed by four

successive stages of soliton compression. This system was not only complex and

expensive, it also had a large footprint [ 9]. While these systems were able to produce

extremely short pulses along with broad spectra, they also required costly, bulky, and, in

the case of the Cr:YAG laser, unique, state-of-the-art components. An alternative that is

less complex and more accessible is supercontinuum generation in highly nonlinear fiber.

Large investments in the research of new nonlinear fibers have been made as a result of the

advantages outlined above. As mentioned before, photonic crystal fibers, microstructure

fibers, and other novel highly nonlinear solid-core fibers, such as chalcogenide glass and

bismuth-oxide glass fibers, have been developed and explored extensively. The high

nonlinearity of these fibers are a result of small core sizes enabled by high index contrasts,

as well as from novel material compositions. In contrast to standard single-mode fibers,

where the total dispersion is dominated by the material component, these new fibers have

significant waveguide dispersion effects that result in unique total dispersion profiles.

In this chapter, we present the results of supercontinuum generation and pulse compression

in a novel solid-core, normally dispersive, highly nonlinear bismuth-oxide fiber [14. 15.

16, 20, 21]. Short lengths of this fiber were used to generate broadband spectra at



telecommunications wavelengths. Using only a 2-cm length of the fiber, we were able to

produce spectra from 1200 nm to 1800 nm with a FWHM of 170 nm. Subsequent

compression with a simple grating pair yielded 25-fs pulses. For applications requiring

only broad spectra, smooth, unstructured, Gaussian-shaped supercontinuum spanning 1200

nm to 1800 nm was generated with a 1-m length of this fiber.

The work presented in this chapter was a collaborative effort. The novel bismuth-oxide

fiber was developed and provided to us by the Asahi Glass Company in Japan. The

experiments at MIT were performed together with Juliet Gopinath.

4.2 BACKGROUND AND THEORY

There are primarily two approaches for supercontinuum generation in optical fiber - with

anomalous dispersion fiber or with normal dispersion fiber.

As a quick review, in the anomalous dispersion regime, where group velocity dispersion

(GVD) is negative, shorter wavelengths, or blue components, travel faster than longer

wavelengths, or red components. While in the normal dispersion regime, where GVD is

positive, red spectral components travel faster than blue components. The effect of

dispersion is such that a transform-limited input pulse will become temporally dispersed

during propagation. Thus, upon passing through an anomalous dispersion material, for

example, blue components will arrive in the leading edge of the pulse and red components

in the trailing edge.

As a pulse propagates through fiber, the other effect at play is self-phase modulation

(SPM), which originates from the Kerr nonlinearity. SPM is the source of the spectral

broadening in fiber. As a pulse travels through a Kerr medium, SPM generates new

frequency components, which are red-shifted near the leading edge of the pulse and blue-

shifted near the trailing edge. The higher the nonlinearity of the fiber, the greater the SPM

and the spectral broadening it induces.

When dispersion is coupled with SPM in the anomalous dispersion regime, the interplay

between the two effects causes compression of the input pulse. Frequency components in

the leading edge of the pulse, which are blue compared to those in the trailing edge as a

result of the negative dispersion, are red-shifted by SPM, and the red frequency

components of the trailing edge are blue-shifted. The leading edge slows down and the



trailing edge speeds up, resulting in the pulse compressing. The soliton-like interactions

under such conditions can lead to both short pulses and broad spectra. In fact, the broadest

spectra are observed using anomalous dispersion fiber for supercontinuum generation.

However, pulse break-up, modulation instability, and a variety of subsequent nonlinear

effects that occur in this regime often produce structured and noisy spectra [22].

On the other hand, in normally dispersive fiber, the pulse lengthens as it propagates, while

at the same time, still accumulating additional frequency components from SPM. Under

these conditions, with a longer pulse, modulation instability and other nonlinear effects

associated with soliton interactions are avoided. Thus, broadening in normally dispersive

fiber results in less spectral structure and noise [22. 23]. In addition, because normal

dispersion acts to linearize the frequency chirp produced by SPM, the accumulated chirp of

a pulse propagating through normal dispersion fiber can be more easily compensated at the

output. Consequently, supercontinuum generation in normally dispersive fiber is also

more appropriate for pulse compression.

Pulse propagation in single-mode fiber is described by and can be modeled with the

nonlinear Schrodinger equation. From this formalism, it can be shown that the spectral

broadening in normal dispersion fiber is proportional to L/L, [24, 25]. Here, the

variables Ld and Ln, defined as the dispersion length and the nonlinear length, respectively,

provide the length scales over which dispersive or nonlinear effects become important for

pulse evolution. Their definitions are:

2 1
Ld 0 L1= (4.1)

Pave P0

where to is the input pulse width, 3ave is the average group velocity dispersion of the

fiber, y is the nonlinear parameter of the fiber, and Po is the peak power of the input pulse.

Using these definitions, we can expand the spectral broadening factor to get

Spectral Broadening oc =Ld /L (4.2)
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For reference, the nonlinear fiber parameter y is defined as:

2 = 1 
(4.3)

where n2 is the material nonlinear refractive index, X is the wavelength, and Aeff is the

effective core area of the fiber.

So, the amount of spectral broadening is determined by two exclusive sets of variables -

fiber parameters, Pave and y, and the parameters of your input light, to and P0. We can

maximize the spectral broadening by using fiber with very high nonlinearity and/or by

using input pulses with high peak power. Dispersion ultimately limits the amount of

spectral broadening that is possible, but the supercontinuum that is generated is still

smooth and controlled.

4.3 BISMUTH-OXIDE FIBER

The bismuth-oxide fiber we used in our experiment has a conventional step-index solid-

core structure with a nonlinearity of 1100 ± 15% (W-km)', approximately 400 times

greater than that of standard dispersion-shifted single-mode fiber and on par with that of

photonic crystal fibers and microstructure fibers. Here, however, the nonlinearity was

achieved with a solid core form. Figure 4.1 below shows a cross section of the bismuth-

oxide fiber.

This very high nonlinearity is a result of the high material nonlinear refractive index

coefficient of the bismuth-oxide glass - 1.1 x 10- 8 m2/W - and the small effective area of

the fiber. The fiber has a core diameter of 1.7 pm and an effective area of 3.3 Vpm2. This

small core size was made possible by the relatively high index contract of the core and

cladding materials. The refractive indices of the core and cladding were 2.22 and 2.13,
respectively. Without a high index contrast, the propagating light mode would otherwise

leak out of the very small core and into cladding.

127



25 pm

Figure 4.1 Cross-section of the highly nonlinear bismuth-oxide glass fiber [21 ]. Courtesy of
Asahi Glass Company.

By doping the core with In 20 3, the refractive index of the bismuth-oxide glass can be

increased. Another beneficial effect of adding In20 3 is that it also increases the difference

between the glass transition temperature Tg and the crystallization temperature Tx, This

parameter, (Tx - Tg), is characteristic of the thermal stability of the glass, and is an

important factor in the production of these fibers, with higher values being more favorable

for drawing fiber. The refractive index of the bismuth-oxide core can be approximated

using a Sellmeier equation of the following form:

b12
n = a +--- + -- 2  (4.4)

with a = 1.0, b = 3.93225, c = 0.04652, and d = -0.00796 for our fiber samples. The

refractive index as a function of wavelength is shown in Figure 4.2.
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Figure 4.2 Refractive index of the bismuth-oxide glass as a function of wavelength.

As mentioned before, the waveguide dispersion plays a more prominent role in this

bismuth-oxide fiber, due to the small core size and high index contrast. The total

dispersion of the bismuth-oxide fiber as a function of wavelength is plotted in Figure 4.3,
together with the material and waveguide components that it is comprised of. The

waveguide dispersion was calculated for the lowest order HE mode in a step-index fiber.

The mode propagation constant was solved on an iterative basis, and the mode index and

dispersion of the fiber were calculated in turn [26].

We see that the slope of the waveguide dispersion component offsets that of the material

dispersion, resulting in a relatively flat total dispersion profile over the large wavelength

range of 1200 nm to 1800 nm. The calculated result matched well to the measured

dispersion value of -250 ps/nm/km of the bismuth-oxide fiber sample at 1550 nm [15].

A simulation of the supercontinuum generation in the bismuth-oxide fiber was done,

assuming a fiber length of 2 cm, and 150-fs input pulse widths centered at 1540 nm with

2.6 kW peak powers. These parameters correspond to the input pulses used in our

experiments, and, together with the fiber parameters, yield dispersion length Ld and

nonlinear length Ln values of 2.58 x 10-2 m and 3.9 x 10-4 m, respectively. The resulting

output spectrum is shown in Figure 4.4 below.
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Figure 4.3 Calculated total dispersion profile of the highly nonlinear bismuth-oxide glass fiber
as a function of wavelength, along with its component parts - the material
dispersion and the waveguide dispersion.
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Figure 4.4 Simulation result of supercontinuum generation in
nonlinear bismuth-oxide glass fiber, with 150-fs input
kW peak powers.
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Because the nonlinear length is so short, 2 cm is sufficient length for the spectral
broadening to occur. The resulting 3-dB spectral width of the output is 200 nm. The
spectral shape is smooth and flat, and is suitable for pulse compression.

4.4 EXPERIMENTAL SETUP

3 cm B SMF Opica.Parametric

Autocorrelator
Spectrum Analyzer

NL Reflecting Grating Compressor
fiber objective

Figure 4.5 Experimental setup for supercontinuum generation in the bismuth-oxide glass fiber.

The experimental setup for supercontinuum generation is shown above in Figure 4.5. A
Spectra-Physics optical parametric oscillator (OPO), synchronously pumped at 82 MHz by

a Ti:sapphire laser, supplies the input seed pulses, which have 150-fs pulse widths and are

tunable from 1400 nm to 1600 nm. Note that similar pulse characteristics are also
available from more compact modelocked fiber lasers. The OPO pulses pass through an
isolator, and are then spatially filtered with a 3-cm length of single-mode fiber. Because of

its short length, the pulses were not significantly chirped and distorted. An aspheric lens,
with an NA of 0.5, is then used to couple the light into a length of the highly nonlinear
bismuth-oxide glass fiber. The output is collimated with a reflecting objective and
subsequently directed to an optical spectrum analyzer, autocorrelator, or grating

compressor, for characterization or pulse compression. The reflecting objective had

approximately 30% loss, but its use eliminated additional material dispersion effects that

would otherwise accompany another lens after the nonlinear fiber.



Two lengths of the highly nonlinear bismuth-oxide glass fiber, 2 cm and 1 m, were
extensively investigated in our experiments. The 1-m length of fiber was prepared using a
standard fiber cleaver at low tension (80 g). With the 2-cm length, however, clean and
even cuts of the end facets could not be achieved with a standard cleaver due to the short

length. As a result, the fiber had to be manually prepared and polished.

First, the fiber was stripped of its protective coating, and then placed into two connected 1-
cm ceramic ferrules and embedded in a thin layer of wax for stability. A photo of this
mount is shown in Figure 4.6.

Figure 4.6 A manually polished 2-cm length of the highly nonlinear bismuth-oxide fiber in its
custom ceramic ferrule mount.

The ends of the fiber were then cut and manually polished with an Ultra Tec polishing

machine. Polishing was a multi-step process using gradually finer and finer grades of

silicon carbide and diamond polishing films. Excessively aggressive films and polishing

times destroyed or disrupted beyond repair the bismuth-oxide fiber facets. Examples of

such defects are shown below in Figure 4.7.
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Figure 4.7 (a) Illustrative examples of defects on the fiber end facets created by polishing. (b)
Photo of a mis-polished end facet with line defects as well as debris.

Several polishing "recipes" were experimented with before finally finding one that yielded

end facets that were free of defects. The recipe is shown in Figure 4.8. The dimensions

indicated refer to the size of the abrasive agent used for polishing the end faces. All steps

were performed with a constant polishing speed of 60-100 RPM. Too high a polishing

speed, as well as overly long exposure to the polishing agent, could both impart irreparable

damage. It is essential to use clean water to prevent foreign particles from destroying the

Core



polish. Tap water and other water sources, contain particles (dirt) that can be as large as 15

jtm. Debris of this size will destroy a polished end facet. De-ionized or filtered water

eliminates this possibility.

Step Polishing Agent Time Lubrication

9 plm silicon carbide polishing film

3 pm silicon carbide polishing film

1 pm diamond polishing film

0.5 p.m diamond polishing film

ULTRAFILM B

seconds

seconds

seconds

seconds

seconds

Filtered water

Filtered water

Filtered water

Filtered water

ULTRAPOL B
polishing suspension

Figure 4.8 Polishing recipe for the 2-cm length of highly nonlinear bismuth-oxide fiber.

4.5 EXPERIMENTAL RESULTS

4.5.1 SUPERCONTINUUM GENERATION

Spectra from the 2-cm length of fiber are shown in Figure 4.9. The OPO input was

centered at 1540 nm, and the coupling loss was 6 dB. Supercontinuum is produced from

1200 nm to > 1700 nm, with an average output power of 32 mW and a 3 dB width of 170

nm. The optical spectrum analyzer had a wavelength range limited to <1700 nm. For an

average power of 32 mW exiting the nonlinear fiber, the measured pulse width was 865 fs.

For an output power of 21.4 mW, the pulse width was 759 fs. For an output power of 14

mW, the pulse width was 724 fs. For an output power of 7 mW, a 488 fs pulse width was

measured. The spectral widths and shapes match well with simulation results. As

expected, the greater the input power, the broader the spectral widths.



-30

-40 b

a
-50

-70

-80 *

1300 1400 1500 1600 1700

Wavelength (nm)

Figure 4.9 Variation with input pulse power of supercontinuum spectra generated in a 2-cm
length of highly nonlinear bismuth-oxide glass fiber for an incident wavelength of
1540 nm. Average powers exiting the nonlinear fiber were (a) 7 mW, (b) 14 mW,
(c) 21 mW, and (d) 32 mW.

Insufficient attenuation of cladding modes causes the interference seen in the center of the

spectra. Optical wave breaking is responsible for the shoulders apparent in the spectra

[25]. In the normal dispersion regime, this happens when the effects of self-phase

modulation (SPM) are much greater than the effects of group-velocity dispersion (GVD).

Both GVD and SPM impose a frequency chirp on the pulse as it travels down the fiber.

The frequency chirp resulting from GVD, however, is linear in time, whereas that from

SPM is not. Because of the nonlinear nature of the composite chirp, different parts of the

pulse propagate at different speeds. Red-shifted light near the leading edge of the pulse

overtake un-shifted light there. The opposite occurs for blue-shifted light near the trailing

edge. In both cases, the leading and trailing regions of the pulse contain light at different

frequencies that interfere. It is this interference that is the origin of the oscillations near the

pulse edges and the shoulders seen in the spectra.

Figure 4.10 shows typical supercontinuum spectra obtained for input wavelengths of 1450

nm, 1500 nm, and 1540 nm, with the 2-cm length of bismuth-oxide fiber. Note that the



spectra have been vertically offset for ease of viewing. The power was kept constant for

all three measurements. As expected, spectra generated at the three different wavelengths

look very similar. This result was indicative of the relatively flat dispersion profile of the

fiber shown in Figure 4.3. A more complete investigation of the long-wavelength end of

the spectrum was attained by using a tunable spectrometer, in addition to the optical

spectrum analyzer. Peter Rakich kindly provided and assisted us with the spectrometer. In

the case of the 1540 nm incident wavelength, the supercontinuum generated extends to

about 1800 nm.
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Figure 4.10 Variation with input wavelength of supercontinuum spectra generated in a 2-cm
length of highly nonlinear bismuth-oxide glass fiber. The spectra were generated
with comparable input powers and have been vertically offset for ease of viewing.
Measurements up to 1700 nm were taken with an optical spectrum analyzer, and
measurements beyond 1700 nm were taken with a spectrometer.

Now, if ultrashort pulses are the goal, then we need to augment the experimental setup

with an additional pulse compression stage, which will be the subject of the next section.

For those applications that require only broad spectra, a longer length of the highly

nonlinear bismuth-oxide fiber may be used. In this case, an aspheric lens was used to

collimate the output from the nonlinear fiber. Figure 4.11 shows spectra produced from a

1-m length of the bismuth-oxide fiber as a function of input power. The wavelength of the



incident light for these spectra was 1540 nm. The maximum average output power was 34

mW, and the corresponding pulse energy was 0.41 nJ. At this power, we estimate the

output pulse width to be 80 ps, using an analytical expression for chirped pulse

propagation derived from the nonlinear Schrodinger equation. The spectrum that was

generated with the 1-m length of nonlinear fiber was very similar to that produced in the 2-

cm length. However, the key here is that the cladding modes have been effectively

suppressed with the longer 1-m length. After propagating through the first 2 cm of the

bismuth-oxide fiber, the pulse broadens to 800 fs and the effects of SPM are greatly

reduced. The result is a smoother, more Gaussian-shaped output spectrum.
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Figure 4.11 Variation with input pulse power of supercontinuum spectra generated in a 1-m
length of highly nonlinear bismuth-oxide glass fiber for an incident wavelength of
1540 nm. Average incident powers and pulse energies were (a) 10 mW (0.12 nJ),
(b) 20 mW (0.24 nJ), and (c) 34 mW (0.41 nJ). Smoother, Gaussian-shaped
spectra are produced in the longer length of fiber.
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4.5.2 FEMTOSECOND PULSE COMPRESSION

In order to produce short pulses from the broad spectra we've generated, the pulses need to

be re-formed and compressed through the introduction of negative, or anomalous,

dispersion to compensate the positive dispersion accumulated while traveling through the

bismuth-oxide fiber. As a reminder, in the anomalous dispersion regime, blue spectral

components travel faster, hence arrive earlier, than red spectral components.

Two commonly used techniques - grating pairs and Brewster-cut prism pairs - can be used

to introduce this compensating negative dispersion for pulse compression. A third

alternative exists with the use of chirped mirrors, however, the total dispersive delay

produced by chirped mirrors is very limited. Chirped fiber Bragg gratings are yet another

compact and elegant possibility.

We give a quick review of the grating pair and prism pair techniques below for reference.

PULSE COMPRESSION WITH A GRATING PAIR

grating
normal

Figure 4.12 Diffraction by a reflection grating.

Gratings work similarly to mirrors. The maxima and minima of the reflected light depend

on constructive and destructive interference. A longer wavelength means a greater vertex
angle from the incident beam to the reflected and diffracted beam, in order to provide the

length needed to constructively interfere. Hence, for gratings, the longer the wavelength,

the greater the diffraction. This is expressed by the grating equation



mA = d (sin a + sin p)

, where m is the diffraction order, which is an integer; d is the groove spacing of the
grating; a is the angle of incidence; and f is the diffracted angle.

It is intuitive to see why a grating pair introduces negative group delay dispersion. In the

configuration of a pair of gratings as in Figure 4.13 below, the longer wavelengths (reds)

are forced to travel a longer distance than the shorter wavelengths (blues), since they are

diffracted at a larger angle. Hence, blue components arrive before the red components, and

we get negative dispersion.

Figure 4.13 Configuration of a grating pair used for pulse compression.

The expression for the group delay dispersion (GDD) introduced by a grating pair is:

l 2 L 1
GDDraing pair x 2,L (4.6)

grating pair (2 c) 2 d23/
1- sin a-

d

where L is the perpendicular distance between the gratings [27, 28].

(4.5)



Pulse Compression with a Prism Pair

While gratings work by diffraction, prisms introduce dispersion through refraction. Recall

from any introductory physics textbook the classic graphic of a prism dispersing white

light - blue is bent the most and red the least in the rainbow that emerges (Figure 4.14).

For prisms, the longer the wavelength, the smaller the refraction, that is, the lesser the

angular deviation - a behavior opposite from that of gratings.

Red

White
Light

S Blue

Figure 4.14 Prisms bend shorter wavelengths (blue) more than longer wavelengths (red).

Clirped PulseAkL

Figure 4.15 (a) Configuration of a Brewster-cut prism pair used for pulse compression. (b)
The effective expansion of the configuration in (a), where M represents the mirror.
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Similar to a grating pair, the group delay from a prism pair is geometrical and angular in

nature [29, 30]. However, the manner in which a prism pair is able to produce negative

dispersion is not as clear and not as intuitive, because now, the angular dispersion is

'flipped' from that of the gratings, and optical path lengths are involved. The math

however confirms this, and, in the end, after traversing a prism pair, red spectral

components do travel a greater optical length (presumably through the glass material) than

blue components. The geometric contribution of the prism pair provides negative group

delay. The expression for this group delay dispersion is:

GDD =xl (4.7)GDDgeometric = - 2  x (4.7)

where / is the apex-to-apex prism separation distance [30].

Insertion of the second prism in the configuration shown in Figure 4.15(a) adds an

adjustable amount of positive material dispersion. The expression for this component of

the GDD is the standard material dispersion GDD:

2 d2n
GDDmaeral d x L (4.8)2cmateral 2c 2 d 2

where L is the insertion path length in the second prism.

Together, the geometrical and material dispersion determine the overall dispersion of the

prism pair. This way, the dispersion of a prism pair is tunable. Altogether, the group delay

dispersion introduced by a prism pair is:

3 fdn 2 ,3 d2n
GDD =pr - 22 xl +22 n/A2 xL (4.9)

prism pair 7tC 2 d 2_Tc2 dA2

Note that the prisms are Brewster cut to minimize loss. The expressions above take this

into account.

Both techniques have their inherent advantages and disadvantages. Diffraction gratings

have greater resolving power, however, relative to prisms, they introduce more loss.



Prisms can handle higher intensities, have lower loss, and can provide adjustable

dispersion compensation, from negative through positive values.

Experimental Setup and Results

We investigated both prism pairs and grating pairs for compressing the broad spectra we

generated from the 2-cm piece of the nonlinear bismuth-oxide fiber. Pulse compression

experiments were performed for the spectra generated with the 1540-nm incident

wavelength.

We first attempted pulse compression with silicon prisms, which we believed were ideal

for our spectra given their low material loss and high dispersion. For the silicon prisms in

our setup, the group-velocity dispersion was -1781 fs2/cm of prism separation. We tried to

avoid the positive material dispersion component, and the third-order dispersion, as much

as possible by minimizing the insertion of the second prism. Third-order dispersion was -

1350 fs3/cm of insertion path length. However, complete dispersion compensation, and

hence pulse compression, could not be achieved, due to geometric limitations of the setup

and the residual third-order dispersion originating from the material dispersion component

of the prism pair. CaF2 and BaF2 prism pairs were also investigated. The CaF2 prisms

were unable to provide sufficient dispersion, and the BaF2 prisms had deteriorated with

water content and did not work for us.

Grating Compressor

75 lines/mi

Autocorrelator

Speaker

GaAs
Detector

Figure 4.16 Grating compressor and low-dispersion
compress and measure the spectrally
bismuth-oxide fiber.

broadband autocorrelator setups used to
broadened pulses from the nonlinear



A grating pair, providing -6400 fs2 of dispersion, was ultimately used to compress our

pulses. Two gold 75-lines/mm gratings, separated by 8.5 cm, were used in an

experimental setup like that shown in Figure 4.16 above. The compressor had 5 dB of

loss, with 6 mW of average power exiting the grating pair. The broadband interferometric

autocorrelator used to measure the compressed pulses consisted of two metallic inconel

beamsplitters, a speaker to dither the delay, and an off-axis parabolic mirror to focus light

onto a GaAs LED, which was used as a two-photon-absorption detector. An

autocorrelation trace of the compressed pulse from the nonlinear bismuth-oxide fiber and

grating pair is shown in Figure 4.17 below, along with the corresponding spectrum.
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Figure 4.17 Measured interferometric autocorrelation and spectrum of compressed pulses from

a 2-cm length of highly nonlinear bismuth oxide fiber. A pulse width of 25 fs was
extracted from the PICASO phase retrieval algorithm fit of the measured data.

Using the PICASO phase retrieval algorithm to fit the measured autocorrelation and

spectrum, the resulting compressed pulse width was calculated to be 25 fs, more than 5-

fold reduced from the starting pulse width of 150 fs from the OPO [31 ]. Assuming a sech

pulse envelope shape, the time-bandwidth product of our compressed pulses was 0.49.

The transform limit of the measured spectrum was 16 fs. Higher-order chirp, as well as the

roll-off in spectral efficiency of the gratings for wavelengths shorter than 1500 nm, likely

limited the compressed pulse width.



4.6 CONCLUSION

Very short lengths of highly nonlinear bismuth-oxide fiber have been used to generate

smooth broadband spectra at telecommunications wavelengths. Using only a 2-cm length

of this fiber, we were able to produce broadband spectra spanning 1200 nm to 1800 nm,

corresponding to a spectral broadening factor of 10. For applications that require only a

broad spectrum, we demonstrated smooth, Gaussian-shaped spectra of the same bandwidth

with a 1-m length of the fiber. With the 2-cm piece of bismuth-oxide fiber, and a grating

pair, compression of 150-fs seed pulses down to 25 fs was achieved. These results show

that highly nonlinear, step-index bismuth-oxide fiber is a promising tool for applications

requiring broad spectra and/or short pulses in the 1.5 pm wavelength region.
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Chapter 5

CONCLUSION

The theme of this thesis - broadband light sources at 1.5 tm - was presented through three

primary research efforts.

First, oxidized broadband III/V-based semiconductor saturable absorber mirrors were

developed for and implemented in a variety of ultrafast solid-state and fiber lasers. The

III/V SBR structures were fabricated with an improved AlAs oxidation process that

yielded stable large-area mirrors that were implemented in a number of lasers spanning the

visible to near-infrared wavelengths. Self-starting femtosecond modelocked operation was

achieved in Cr4+:YAG, Cr:forsterite, Ti:sapphire, Er:glass and bismuth-oxide erbium-

doped fiber lasers. Compact, reliable and capable of enabling turnkey operation, these

devices improve the accessibility of ultrafast lasers for the numerous applications outlined

in the Introduction. In addition, a silicon/germanium saturable Bragg reflector fabricated

with a CMOS compatible process was also demonstrated. Its nonlinear response was

characterized with femtosecond pump-probe measurements, which showed surprisingly

fast saturable absorption on a femtosecond scale and strong inverse saturable absorption at

large fluence values. The device was used to attain self-starting modelocked operation of a

Er:Yb:glass laser with an optical spectrum covering the entire C-band of optical

communications.



Second, SBR structures were developed and fabricated for use in short-cavity, high-

repetition rate lasers. Structure design was modified to optimize the saturation behavior in

such environments through the addition of resonant coating layers to enhance the

modulation depth, thereby reducing the saturation fluence, and also by proton

bombardment to reduce recovery times. Devices with modulation depths ranging from

1.7% to 11% have been fabricated. Fast and slow recovery times as low as 2 ps and 40 ps,

respectively, have also been measured. Preliminary testing of these designs in gigahertz

lasers have yielded promising results, and subsequent design iterations should continue

improving performance. In addition, novel SBR structures have been designed that

integrate dispersion compensation together with saturable absorption. These structures still

await fabrication, but their potential performance capability looks promising, especially for

generating short pulses together with achieving high repetition rates.

Third, and finally, controlled supercontinuum generation was demonstrated with a novel

highly nonlinear bismuth-oxide glass fiber. Fibers with some of the highest nonlinearities

reported, 1100 (W-km) -1 have been fabricated and supplied by the Asahi Glass Company

for our experiments. Compared to even more nonlinear chalcogenide glasses, bismuth-

oxide glass represents a pragmatic compromise that achieves high nonlinearity without the

need to handle toxic material. A short 2-cm length of nonlinear bismuth-oxide fiber was

used to spectrally broaden a 20-nm FWHM spectra to a 200-nm FWHM. Subsequent

pulse compression yielded 25-fs pulse widths, comparable to what was previously

achieved in an ultrafast Cr4+:YAG laser.

In summary, a variety of broadband optical sources at 1.5 ptm and devices that enable those

sources have been studied in this thesis. Saturable Bragg reflectors designed for ultra-

broadband operation and ultrashort pulse generation have been demonstrated in a variety of

self-starting laser systems producing femtosecond pulses. SBRs have also been designed

for high-repetition rate systems, and have undergone initial testing with promising results.

Controlled supercontinuum generation and femtosecond pulse compression was

demonstrated with highly nonlinear bismuth-oxide fiber.



APPENDIX A

MIRROR DESIGN CODE - ANALYSIS FORMALISM

A summary of the formalism and guiding equations utilized in the mirror design code is

provided here. More extensive coverage and elegant explanations can be found in

Electromagnetic Wave Theory by Kong [ 1].

The highly reflective broadband mirrors discussed in this these are composed of alternating

quarter-wave-thick layers of high and low refractive index materials. The reflectivity and

phase shift of such multilayer mirrors can be calculated by the matrix propagation method

described in Kong. With reflections occurring at the material interfaces, there are multiple

forward-propagating and backward-propagating in each layer. The beauty of Kong's

analysis is to assume a solution form and incorporate all the forward-propagating fields

into one amplitude coefficient and all the backward-propagating fields into another

amplitude coefficient, rather than keep track of all the secondary, tertiary, etc. reflections

in a layer. Electric fields in adjacent layers are governed by the following relation:

A2 e-kz,2d2 A etk ,Id,

Aek,2 k, 2d2  [21 iek,1d1 (A.1)

where A and B are the forward-propagating and backward-propagating tangential electric

fields for TE and tangential magnetic fields for TM, respectively. The propagation matrix

V21 transfers the fields between adjacent layers, and is dependent on wavelength.

Se-k,2(d2-d,) 2 -kz,2(d2-d, ) (A.2)V,2 () = 2(1+ P21)[R z,ek,(d2-d,) ek ,2(d-d,)



Here, d, and d2 are the thicknesses of Layer 1 and Layer 2. The other variables are defined

as follows:

2r n,
k - cosO (A.3)1m 2p

R21 - P2 1  (A.4)
1+ p 21

The normal component of the wavenumber k- is dependent on the angle of incident 0 and

the index of refraction n. The Fresnel reflection coefficient R2 1 depends on the material

properties of the adjacent layers, and changes for non-normal angles of incidence.

For TE, it is

P21,TE 2kzl (A.5)
P PL lkz, 2

For TM, it is

P21,TM 2kl (A.6)
T 1kz, 2

For normal incidence, p21 = nl /n2.

For a structure with multiple layers, such as our mirrors, one can determine the total effect

the structure has on incident light by propagating the V matrix all the way through the

structure, from the air to the substrate. The propagation matrix is given by

Vorta = -Vim (A.7)



The total effective propagation matrix V,otal of the structure then yields the complex

reflection coefficient of the whole multilayer structure, given by

rmrror e -- otal (2,(A.8)
mo Vo,a, (2,2)

The reflectivity is the amplitude squared of the field coefficient rmirror. And the phase shift

is given by D. The group delay dispersion introduced by the mirror can then be calculated

from the phase shift by

2 (I
)

GDD = -- (A.9)
g20)
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APPENDIX B

MIRROR DESIGN CODE

Copies of the key Matlab functions in the mirror design code package are attached here.

Functions and their purpose are summarized below. Typing 'help <name of function>' in the

Matlab command window will also display the necessary syntax for the input variables, and

what is calculated for the output.

Matlab m-files and functions

Main.m Used as the root program to run the reflectivity and group delay calculations.
Plotting commands and chart manipulations are performed here as well. This
is not a function.

R971.m The R***.m files, in general, contain mirror structures, as designated by their
growth numbers in the LAK lab. They perform the matrix analysis required
to generate reflectivity as a function of wavelength. They also output the
phase of the reflected light. These functions are called by Main.m. This
particular file shows a standard SBR mirror structure.

Rnew HMS3b.m

CalcGDD.m

GenV.m

n InGaAs.m

FieldProfile SBR.m

See above above. This particular file shows a resonantly-coated SBR mirror
structure

Calculates the group delay dispersion given inputs of wavelength and phase,
using numerical differentials.

The basic building block for the matrix analysis used to calculate the
reflectivity and phase profiles of the SBRs. Called by the R***.m files.

This and other n_***.m files provide the Sellmeier equation-based refractive
indices for the relevant III-V material systems. n_AlGaAs.m and
n InGaAsP.m are similar functions. Later generations of the R***.m files
used empirical data on material refractive indices, provided by Gale Petrich.
These are referred to in the code lines with *.mat.

Generates the square of the electric field standing wave pattern for a given
structure. Cannot directly transfer code from the R***.m to here, primarily
due to the graphical nature of the output.



%MAIN Plot reflection spectrum of the TE, TM, and combined mode

%components.
% MAIN is the controller program of the Mirror Code package. It can plot the

% reflection spectrum of the TE, TM and combined mode components of the called

% mirror structure.

% In addition, it can also generate
% mirror.

the respective phase, or dispersion, of the

% Functions called:
% R*
% CalcGDD

% HMS '03
% @Mirror Code

lambda = 1.200 : 0.0025 : 1.900;

%lambda = 0.850 : 0.001 : 2.000;

%lambda = 0.550 : 0.001 : 1.100;

n max = length(lambda);

theta = 0;
theta = theta*pi/180;

R TE = Rnew HMS4b(lambda,theta,l);
%R TM = Rnew HMS4b(lambda,theta,2);

%R TE2 = Rnew HMS4b(lambda,theta,l);
%R TM2 = RnewHMS4b(lambda,theta,2);

%Reflectivity and Phase Calculations

Rmag_TE = (abs(R_TE)).A2;
RphaseTE = unwrap(angle(RTE));

%Rmag_TM = (abs(R_TM)).A2;
%Rphase_TM = unwrap(angle(R_TM));

%Rtotal = Rmag TM + Rmag_TE;

% wavelengths in micron (for Cr:YAG)
% wavelengths in micron (for Cr:forsterite)

% wavelengths in micron (for Ti:Sapphire)

% angle of incidence, degrees (FT-IR 35 degrees)

% convert to radians

% reflection for TE mode
% reflection for TM mode

% reflection for TE mode
% reflection for TM mode

(recall R is a complex number)
% reflectivity
% phase

%RmagTE2 = (abs(R_TE2)).A2; % reflectivity

%Rmag_TM2 = (abs(RTM2)). 2;

%Rphase_TM2 = unwrap(angle(RTM2));
%Rtotal2 = Rmag_TM2 + Rmag_TE2;

rGDD TM = CalcGDD(lambda,Rphase_TM);
%rGDD TM2 = CalcGDD(lambda,Rphase_TM2);

%Generate plots

figure;
hold on;
plot(lambda,Rmag_TE,'r','LineWidth',[3.01);
% plot(lambda,Rmag_TE2,'b','LineWidth', [3.0]);

% plot(lambda,Rmag_TM,lambda,temp,'b');
% plot(lambda,Rtotal/2,'r','LineWidth', [2.0]);

% plot(lambda, Rtotal/2,'r',lambda,temp,'LineWidth', [2.0]);

% axis([lambda(l) lambda(n_max) 0 1.05]);

axis([1.45 1.65 0 1.00]);

xlabel ('Incident Wavelength (\mum)');

ylabel('Reflectivity')
% title('R1000 Oxidized - Design, FTIR Simulation');
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title('Reflectivity vs. Wavelength, Rne w HMS3, Normal Incidence');
% legend('TE + TM Theory w/ Loss','TE + TM Theory w/o Loss','R970a');

% legend('Design','R971a','R971c');
% legend('Design','Measurement');
% legend('HMS1','HMS2');
grid on;
% hold off;

figure;
hold on;
plot(lambda,rGDD_TE,lambda,rGDD_TM,'r');
%plot(lambda,rGDD_TM,'r','LineWidth', [3.01);
%plot(lambda,rGDD_TM2, 'b','LineWidth', [2.01);

%axis([lambda(l) lambda(n_max) -5000 5000]);
axis([1.45 1.65 -2000 2000]);
xlabel('Incident Wavelength (\mum)');
ylabel('GDD (fsA2)');
title('Group Delay Dispersion Profile, HMS ne w, Normal Incidence');

%legend('HMS3','HMS4');
grid on;
%hold off;
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function R = R971(lambda,theta,mode)

%R971 Complex reflection coefficient of the unoxidized R970 mirror structure.
% R = R971(LAMBDA,THETA,MODE) calculates the complex reflection coefficient R of

% the R971 mirror structure designed for Cr:YAG, for a particular range of

% wavelengths LAMBDA, angle of incidence THETA (relative to normal), and MODE
% (either TE or TM).
%

% The reflectivity R"2 and the associated phase can then be
% output R.

extracted from the

% Mode = 1 ---------- > TE
% Mode = 2 ---------- > TM

SBR structure: 109 nm InP / 10 nm InGaAs / 109 nm InP
7x 111 nm AlGaAs / 240*(0.90) nm AlxOy
111 nm AlGaAs
GaAs

% Functions called:
% GenV
% nInGaAsP
% nInGaAs
% n AlGaAs

% HMS '03
% $Orig: 11/17/2003
% @Mirror Code

num = length(lambda);

c = 0.90;

Quantum Well
Mirror

Substrate

% number of data points

% AlAs-to-AlxOy contraction (10% or 0.90 originally) ****

%Initialize variables
R = zeros(1,num);
V = zeros(2,2);
Vl = zeros(2,2);
V2 = zeros(2,2);
V3 = zeros(2,2);

%Define constants for reflectivity probl
nO = 1;
N = 7;

%Calculate reflection coefficient R
for m = 1 : num

kO = 2*pi*nO/lambda(m);
kx = kO*sin(theta); % transverse

%First the GaAs/InGaAs/GaAs QW
nl = n InGaAsP(0,0,lambda(m));
%n2 = 3.6;
n2 = n_InGaAs(0.5,lambda(m));
n3 = nl;

dl = 0.109;
d2 = 0.010;
d3 = 0.109;

V1 = GenV(n0,nl,0,dl,kO,kx,mode);
V2 = GenV(nl,n2,dl,dl+d2,kO,kx,mode)

% reflection coefficient
% propagation matrix
% temporary holders, scaffolding

% index of incident medium (air)
% number of layer pairs in the mirror

% cycle through for each wavelength

% wavenumber in air/vacuum
component constant due to phase-matching

% InP
% Turn off loss
% InGaAs
% InP

% in um

% manually do the quantum well



V3 = GenV(n2,n3,dl+d2,dl+d2+d3,kO,kx,mode);

V = V3*V2*V1;

%Now do the mirror
nh = n AlGaAs(0.3,lambda(m));
%nl = 1.66;
nl = 1.66;
ns = n A1GaAs(O.0,lambda(m)) ;
dh = 0.111;
dl = 0.240*c;

% high-index AlGaAs layer
% low-index AlxOy layer at 1.5 um ****

% GaAs substrate

%Note to self: I start cheating with the depths here.
%Remember it's only the difference in d that matters.

Vl = GenV(n3,nh,0,dh,kO,kx,mode);
V2 = GenV(nh,nl,dh,dh+dl,kO,kx,mode);

% manually do the first layer pair

V = V2*V1*V;

for n = 1 : (N-1)

Vl = GenV(nl,nh,dl,dl+dh,kO,kx,mode);
V2 = GenV(nh,nl,dh,dl+dh,k0,kx,mode);

V = V2*V1*V;

end

V1 = GenV(nl,nh,dl,dl+dh,kO,kx,mode); % into last AlGaAs layer

V2 = GenV(nh,ns,dl+d2+d3+N*(dh+dl)+dh,0,kO,kx,mode); % into substrate

Vtotal = V2*VI*V;

R(m) = -Vtotal(1,2)/Vtotal(l,l); % reflection coefficient

end
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function R = RnewHMS3b(lambda,theta,mode)

%RNEWHMS3B Complex reflection coefficient of the resonantly coated VA88 structure.
% R = RNEW HMS3B(LAMBDA,THETA,MODE) calculates the complex reflection coefficient
% R of the VA88 mirror structure designed for 1.5 um operation, for a particular
% range of wavelengths LAMBDA, angle of incidence THETA (relative to normal), and

% MODE (either TE or TM).

% The reflectivity RA2 and the
% output R.

associated phase can then be extracted from the

% Mode = 1 ---------- > TE
Mode = 2 ---------- > TM

% Designed for lambda c = 1550 nm

% Functions called:
% GenV
% nInGaAs
% n AlGaAs

% HMS '03

% $Orig: 07/26/2008

% @Mirror Code

num = length(lambda);

load InGaAsData.mat;
load GaAsData.mat;

%lambda = lambda GaAs;

%Initialize variables
R = zeros(l,num);
V = zeros(2,2);
Vl = zeros(2,2);
V2 = zeros(2,2);
V3 = zeros(2,2);

%Define constants for reflectivity probl
nO = 1;
N = 22;
N res = 5; % numb

%Calculate reflection coefficient R
for m = 1 : num

kO = 2*pi*nO/lambda(m);
kx = kO*sin(theta);

%First0 the resonant layers - GaA
nl res0 = n AlGaAs(0.50,1lambda(m)
nl res = n A1GaAs(0.95,lambda(m))
nh res = nr GaAs(m);
%nh res = n AlGaAs(0.0,lambda(m))
dl res0 = 0.1239;
dl res = 0.1329;
dhres = 0.1147;

% number of data points

% Gale empirical refractive indices

% already done in Main.m

% reflection coefficient
% propagation matrix
% temporary holders, scaffolding

.em
% index of incident medium (air)
% number of layer pairs in the mirror
er of resonant layer pairs on top of mirror

% cycle through for each wavelength

% wavenumber in air/vacuum
% transverse component constant due to
% phase-matching

s/AlGaAs
% higher Al content AlGaAs cap layer
% low-index AlGaAs layer

; % high-index GaAs layer
% in um

% Vl = GenV(nO,nh_res,0,dh_res,kO,kx,mode);% manually do the first layer pair
% V2 = GenV(nhres,nlres,dhres,dh_res+dl_res,kO,kx,mode);



V1 = GenV(nO,nl_res0,0,dl_resO,kO,kx,mode);% manually do the first layer pair
V2 = GenV(nl_res0,nh_res,0,dh_res,kO,kx,mode);

V = V2*Vl;

for n = 1 : (N_res-l)

Vl = GenV(nh_res,nlres,dh res,dl res+dhres,kO,kx,mode);
V2 = GenV(nl_res,nhres,dl_res,dlres+dh_res,kO,kx,mode);

V = V2*V1*V;

end

%First the GaAs/InGaAs/GaAs QW
nl = nr GaAs(m);
%nl = n AlGaAs(0.0,lambda(m));
n2 = nr InGaAs(m) + i*ni InGaAs(m);
%n2 = n InGaAs(0.537,lambda(m));
%n2 = real(n_InGaAs(0.537,lambda(m)))
n3 = n1;

0.1095;
0.010;
0.1095;

0.0832;
0.060;
0.0832;

0.1042;
0.020;
0. 1042;

V1 = GenV(nhres,nl,0,dl,kO,kx,mode);

V2 = GenV(nl,n2,0,d2,kO,kx,mode);
V3 = GenV(n2,n3,0,d3,kO,kx,mode);

% GaAs
% n2 = nr InGaAs(m);
% InGaAs
% use to turn off absorption loss
% GaAs

% in um

% in um

% in um

% manually do the quantum well (n_low
% of resonant coating to nl)

V = V3*V2*VI*V;

%Now do the mirror
nh = nr GaAs(m);
%nh = n AlGaAs(0.0,lambda(m));
nl - n_AlGaAs(0.95,lambda(m));
ns = nr GaAs(m);
%ns = n AlGaAs(0.0,lambda(m)) ;
dh = 0.1147;
dl = 0.1329;

% high-index GaAs layer
% low-index AlGaAs layer

% GaAs substrate
% in um

%Note to self: I start cheating with the depths here.
%Remember it's only the difference in d that matters. Future fix.

Vl = GenV(n3,nh,0,dh,kO,kx,mode);
V2 = GenV(nh,nl,0,dl,kO,kx,mode);

V = V2*Vl*V;

for n = 1 : (N-1)

Vl = GenV(nl,nh,0,dh,kO,kx,mode);
V2 = GenV(nh,nl,0,dl,kO,kx,mode);

% manually do the first layer pair



V = V2*V1*V;

end

V1 = GenV(nl,ns,dl_res+dh_res+(N_res-
1) * (dhres+dlres) +dl+d2+d3+N* (dh+dl) ,0, kO,kx,mode); % into substrate

Vtotal = V1*V;

R(m) = -Vtotal(l,2)/Vtotal(l,l); % reflection coefficient

end
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function rGDD = CalcGDD(lambda,phase)

%CALCGDD Group delay dispersion, given the wavelength and phase.

% RGDD = CALCGDD(LAMBDA,PHASE) calculates the reflected group delay dispersion

% RGDD given the wavelength LAMBDA and the corresponding phase delay PHASE. Note

% that the physics convention is used here. That is, the exponential in a field
% is i(k*x - w*t).

% GDD = d2(Phase)/dw2 = function below of d2(Phase)/dLambda2 and d(Phase)/dLambda

% HMS '03
% $Orig: 10/20/2003
% @Mirror Code

n_max = length(lambda);
dlambda = lambda(2) - lambda(1);
c = 0.30; % speed of light, in units of um/fs

dphase_dlambda = diff(phase)/dlambda;
dphase_dlambda(n_max) = dphase_dlambda(n_max-1);

d2phasedlambda2 = diff(dphase_dlambda)/dlambda;
d2phase_dlambda2(n_max) = d2phase_dlambda2(n_max-1);

rGDD = (lambda.^3).*dphase_dlambda/(2*piA^2*c2) + ...
(lambda.A4).*d2phase_dlambda2/(4*pi^2*cA2);

% in units of rad/um

% in units of rad/um^2

% in units of fs^2



function V = GenV(nl,n2,dl,d2,kO,kx,mode)

%GENV Forward propagation matrix for TE or TM mode.
% V = GENV_TE(N1,N2,D1,D2,KO,KX,MODE) generates the propagation matrix V from

% Region 1 to Region 2, whose refractive indices are given by inputs N1 and N2.

% The inputs D1 and D2 bound the region of interest, whose thickness is the

% quarter wavelength of the center wavelength for which the mirror was designed

% (1500 nm default).

% Source: J.A. Kong Electromagnetic Wave Theory, Chapter 3 Section 4.

% HMS '03
% $Orig: 10/11/2000
% $Mod: 04/25/2003
% @Mirror Code

V = zeros(2,2);

kzl = sqrt((kO*nl)A2 - kxA2);
kz2 = sqrt((kO*n2)A2 - kx^2);

if mode == 1 % TE mode

p21 = kzl/kz2;
R21 = (1-p21)/(1+p21);

V(1,1) = exp(-i*kz2*(d2-dl));
V(1,2) = R21 * exp(-i*kz2*(d2-dl));
V(2,1) = R21 * exp(+i*kz2*(d2-dl));
V(2,2) = exp(+i*kz2*(d2-dl));

V = (1/2)*(1+p21)*V;

p21 = ( (n2^2)*kzl ) / ( (nl^2)*kz2 );
R21 = (1-p21)/(1+p2 1) ;

V(1,1) = exp(-i*kz2*(d2-dl));
V(1,2) = R21 * exp(-i*kz2*(d2-dl));
V(2,1) = R21 * exp(+i*kz2*(d2-dl));
V(2,2) = exp(+i*kz2*(d2-dl));

% Fresnel reflection coefficient

% fill in propagation matrix

% TM mode

% Fresnel reflection coefficient

% fill in propagation matrix

V = (1/2)*(l+p21)*V;

end

else



function n = n InGaAs(x,rlambda)

%N INGAAS Index of refraction as a function of wavelength for InGaAs.

% N = N INGAAS(X,RLAMBDA) calculates the complex index of refraction N given the

% wavelength RLAMBDA and composition X.

% In(x)Ga(l-x)As:
% --------------

% x=1 for InAs
% x=0 for GaAs

% RLAMBDA in micron.

% Source: Multilayer program files

% HMS '03
% $Orig: 10/03/2003
% @Mirror Code

eo = 3.65 - 2.15*x;
ed = 36.1 - 19.9*x;
eg = 1.425 - 1.337*x + 0.27*x^2;
lamg = 1.24/eg;
eta = pi*ed / (2*eoA3*(eo^2 - egA2));
ef = sqrt(2*eoA2 - egA2);
ml = (ef^4 - egA4)*eta/(2*pi);
m3 = (ef^2 - eg^2)*eta/pi;

n = sqrt(l + ml + m3*(1.2398/rlambda)A2 + ...
eta/pi*(1.2398/rlambda) 4*log((efA2 - (1.2398/rlambda)2) / (eg2 -

(1.2398/rlambda) A2)));
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function [z,I,z_index,index] = FieldProfile_Rnew_HMS3(flambda)

%FIELDPROFILE_RNEW_HMS3 Field intensity profile for VA88 mirror structure.

% [Z,E,Z_INDEX,INDEX] = FIELDPROFILE_RNEW_HMS3(FLAMBDA) calculates the field
% "intensity" I as a function of depth into the mirror Z for cw wavelengths LAMBDA,
% as specified by the input.

% Note that I is merely IE(z) 1^2, hence it is not properly normalized and cannot
% be called the intensity.

% FIELDPROFILE RNEW HMS1 graphs the field intensity profile I and the index map

% INDEX as a function of depth Z.

Functions called:
GenV
n InGaAs
n AlGaAs

HMS '03
$Orig: 05/26/2008
@Mirror Code

%flambda = [1.5 1.55 1.6];
flambda = 1.55;
fnum = length(flambda);

nO = 1;
theta = 0;

%Mirror structure design
dlres = 0.1329;
in um
dh res = 0.1147;
dl = 0.200;
d2 = 0.060;
d3 = 0.415;
dh = 0.1147;
dl = 0.1329;

% cw wavelengths for field profiles ****

%Initialize field information matrices
znum = 100000; % number of field profile data points
zmin = 1.000; % minimum position for profile (um)
z_max = -(3*(dhres+dl_res)+dl+d2+d3+7*(dl+dh));% maximum position for profile (um)

z = z min : (z_max-z_min)/(znum-1) : z_max;

%Mirror is calculated all the way through, because we need the overall reflection
%coefficients. However, the 'z' variable is used to plot the field profile, so it
%doesn't have to be all the way through the mirror.

A = zeros(znum,fnum) ;
B = zeros(znum,fnum);
E = zeros(znum,fnum);

d = zeros(54,1);
d(1) = 0;
d(2) = d(1)-dl_res;
d(3) = d(2)-dh_res;
d(4) -- d(3)-dl_res;
d(5) = d(4)-dh_res;

% backward propagating E-field
% forward propagating E-field
% total E-field

% boundary depths
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d(6) = d(5)-dlres;
d(7) = d(6)-dh_res;
d(8) = d(7)-dl;
d(9) = d(8)-d2;
d(10) = d(9)-d3;
d(ii) = d(10)-dh;
d(12) = d(ll)-dl;
d(13) = d(12)-dh;
d(14) = d(13)-dl;
d(15) = d(14)-dh;
d(16) = d(15)-dl;
d(17) = d(16)-dh;
d(18) = d(17)-dl;
d(19) = d(18)-dh;
d(20) = d(19)-dl;
d(21) = d(20)-dh;
d(22) = d(21)-dl;
d(23) - d(22)-dh;
d(24) = d(23)-dl;
d(25) = d(24)-dh;
d(26) = d(25)-dl;
d(27) = d(26)-dh;
d(28) = d(27)-dl;
d(29) = d(28)-dh;
d(30) = d(29)-dl;
d(31) = d(30)-dh;
d(32) = d(31)-dl;
d(33) = d(32)-dh;
d(34) = d(33)-dl;
d(35) = d(34)-dh;
d(36) = d(35)-dl;
d(37) = d(36)-dh;
d(38) = d(37)-dl;
d(39) = d(38)-dh;
d(40) = d(39)-dl;
d(41) = d(40)-dh;
d(42) = d(41)-dl;
d(43) = d(42)-dh;
d(44) = d(43)-dl;
d(45) = d(44)-dh;
d(46) = d(45)-dl;
d(47) = d(46)-dh;
d(48) = d(47)-dl;
d(49) = d(48)-dh;
d(50) = d(49)-dl;
d(51) = d(50)-dh;
d(52) = d(51)-dl;
d(53) = d(52)-dh;
d(54) = d(53)-dl;

for 1 = 1 : fnum % cycle through each field wavelength

kO = 2*pi*nO/flambda(l); % spatial frequency

kx = kO*sin(theta); % transverse beta component

%Define indices of refraction of layers

nl res - n AlGaAs(0.95,flambda(l)); % low-index AlGaAs resonant coating layer

nh res = n AlGaAs(O.O,flambda(1)); % high-index GaAs resonant coating layer

nl = n_AlGaAs(O.O,flambda(1)); % GaAs

n2 = n InGaAs(0.537,flambda(1)); % InGaAs - turn on loss

%n2 = real(nInGaAs(0.537,flanmbda(l))); % InGaAs - turn off loss

n3 = nl; % GaAs
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nh = n_ AGaAs(O.O,flambda(1)); % high-index GaAs layer
nl = n A1GaAs(0.95,flambda(1)); % low-index AlGaAs layer

ns = n_AlGaAs(O.O,flambda(1)); % GaAs substrate

V10 = GenV(nO,nlres,,dl_res,kO,kx,l);
V20 = GenV(nlres,nhres,0,dhres,ko,kx,l)*VlO;
V30 = GenV(nh_res,nl_res,O,dl_resO,k,kx,)*V20;
V40 = GenV(nl_res,nhres,0,dhres,kO,kx,l)*V30;
V50 = GenV(nh_res,nl_res,0,dl_res,kO,kx,1)*V40;
V60 = GenV(nl_res,nh_res,0,dhres,k,k x,l)*V50;

V70 = GenV(nh_res,nl,0,dl,kO,kx,l)*V60;
V80 = GenV(nl,n2,0,d2,kO,kx,1)*V70;
V90 = GenV(n2,n3,0,d3,kO,kx,1)*V80;

V100 = GenV(n3,nh,O,dh,kO,kx,1)*V90;
V110 = GenV(nh,nl,O,dl,kO,kx,1)*V100;
V120 = GenV(nl,nh,O,dh,kO,kx,l)*Vll0;
V130 = GenV(nh,nl,O,dl,kO,kx,l)*V120;
V140 = GenV(nl,nh,O,dh,kO,kx,1)*V130;
V150 = GenV(nh,nl,O,dl,kO,kx,1)*V140;
V160 = GenV(nl,nh,O,dh,kO,kx,1)*Vl50;
V170 = GenV(nh,nl,O,dl,kO,kx, l)*Vl60;
V180 = GenV(nl,nh,O,dh,kO,kx,1)*V170;
V190 = GenV(nh,nl,O,dl,kO,kx,l)*V180;
V200 = GenV(nl,nh,O,dh,kO,kx,1)*V190;
V210 = GenV(nh,nl,O,dl,kO,kx,l)*V200;
V220 = GenV(nl,nh,O,dh,kO,kx,l)*V210;
V230 = GenV(nh,nl,O,dl,kO,kx,1)*V220;

V240 = GenV(nl,nh,O,dh,kO,kx,1)*V230;
V250 = GenV(nh,nl,O,dl,kO,kx,1)*V240;
V260 = GenV(nl,nh,0,dh,kO,kx, l)*V250;
V270 = GenV(nh,nl,O,dl,kO,kx,l)*V260;
V280 = GenV(nl,nh,O,dh,kO,kx,l)*V270;
V290 = GenV(nh,nl,O,dl,kO,kx,1)*V280;
V300 = GenV(nl,nh,O,dh,kO,kx,l)*V290;
V310 = GenV(nh,nl,O,dl,kO,kx,1)*V300;
V320 = GenV(nl,nh,O,dh,kO,kx,l)*V310;
V330 = GenV(nh,nl,O,dl,kO,kx, 1)*V320;
V340 = GenV(nl,nh,O,dh,kO,kx,1)*V330;
V350 = GenV(nh,nl,O,dl,kO,kx,1)*V340;
V360 = GenV(nl,nh,O,dh,kO,kx,l)*V350;
V370 = GenV(nh,nl,O,dl,kO,kx,1)*V360;

V380 = GenV(nl,nh,O,dh,kO,kx,1)*V370;
V390 = GenV(nh,nl,O,dl,kO,kx,1)*V380;
V400 = GenV(nl,nh,O,dh,kO,kx,l)*V390;
V410 = GenV(nh,nl,O,dl,kO,kx,l)*V400;
V420 = GenV(nl,nh,O,dh,kO,kx,l)*V410;
V430 = GenV(nh,nl,O,dl,kO,kx,l)*V420;
V440 = GenV(nl,nh,O,dh,kO,kx,l)*V430;
V450 = GenV(nh,nl,O,dl,kO,kx,1)*V440;
V460 = GenV(nl,nh,O,dh,kO,kx,l)*V450;
V470 = GenV(nh,nl,O,dl,kO,kx,1)*V460;
V480 = GenV(nl,nh,O,dh,kO,kx,l)*V470;
V490 = GenV(nh,nl,O,dl,kO,kx,l)*V480;
V500 = GenV(nl,nh,O,dh,kO,kx,1)*V490;
V510 = GenV(nh,nl,O,dl,kO,kx,1)*V500;
V520 = GenV(nl,nh,O,dh,kO,kx,l)*V510;
V530 = GenV(nh,nl,O,dl,kO,kx,1)*V520;

V540 = GenV(nl,ns,3*(dh_res+dlres)+dl+d2+d3+22*(dl+dh),O,kO,kx,l)*V530;



R(1) = -V540(1,2)/V540(1,1);

for m = 1 : znum

if z(m)>=O % run through the cases (can go as deep as wanted)

A(m,l) = R(1)*exp(+i*kO*z(m));
B(m,l) = exp(-i*kO*z(m)); % input amplitude = 1

elseif (z(m)<d(1)) & (z(m)>=d(2))

% Recall sign convention in GenV, d is the absolute depth
V = GenV(n,nl_res,-d(1),-z(m),kO,kx,l);
A(m,l) = (R(1)*V(1,1) + V(1,2));
B(m,l) = (R(1)*V(2,1) + V(2,2));

elseif (z(m)<d(2)) & (z(m)>=d(3))

V = GenV(nl res,nh res,-d(2) ,-z(m),kO,kx,1)*V10;
A(m,l) = (R(1)*V(1,1) + V(1,2));
B(m,l) = (R(1)*V(2,1) + V(2,2));

elseif (z(m)<d(3)) & (z(m)>=d(4))

V = GenV(nh res,nlres,-d(3),-z(m)kO,k x,1)*V20;
A(m,l) = (R(1)*V(1,1) + V(1,2));
B(m,l) = (R(1)*V(2,1) + V(2,2));

elseif (z(m)<d(4)) & (z(m)>=d(5))

V = GenV(nl_res,nh_res,-d(4),-z(m),kO,kx,1)*V30;
A(m,l) = (R(1)*V(1,1) + V(1,2));
B(m,l) = (R(1)*V(2,1) + V(2,2));

elseif (z(m)<d(5)) & (z(m)>=d(6))

V = GenV(nh_res,nl_res,-d(5),-z(m),kO,kx,1)*V40;
A(m,l) = (R(1)*V(1,1) + V(1,2));
B(m,l) = (R(1)*V(2,1) + V(2,2));

elseif (z(m)<d(6)) & (z(m)>=d(7))

V = GenV(nl res,nh res,-d(6),-z(m),kO,kx,1)*V50;
A(m,l) = (R(1)*V(1,1) + V(1,2));
B(m,l) = (R(1)*V(2,1) + V(2,2));

elseif (z(m)<d(7)) & (z(m)>=d(8))

V = GenV(nh res,nl,-d(7),-z(m),kO,kx,l)*V60;
A(m,l) = (R(1)*V(1,1) + V(1,2));
B(m,l) = (R(1)*V(2,1) + V(2,2));

elseif (z(m)<d(8)) & (z(m)>=d(9))

V = GenV(nl,n2,-d(8),-z(m),kO,kx,l)*V70;
A(m,l) = (R(1)*V(1,1) + V(1,2));
B(m,l) = (R(1)*V(2,1) + V(2,2));

elseif (z(m)<d(9)) & (z(m)>=d(10))

V = GenV(n2,n3,-d(9),-z(m),kO,kx,l)*V80;

169

% reflection coefficient



A(m,1) = (R(1)*V(1,1) + V(1,2));
B(m,1) = (R(1)*V(2,1) + V(2,2));

elseif (z(m)<d(10)) & (z(m)>=d(ll))

V = GenV(n3,nh,-d(10),-z(m),kO,kx,1)*V90;
A(m,l) = (R(1)*V(1,1) + V(1,2));
B(m,l) = (R(1)*V(2,1) + V(2,2));

elseif (z(m)<d(ll)) & (z(m)>=d(12))

V = GenV(nh,nl,-d(11,m)-z(m),kO,kx,)*V00;
A(m,l) = (R(1)*V(1,1) + V(1,2));
B(m,1) = (R(1)*V(2,1) + V(2,2));

elseif (z(m)<d(12)) & (z(m)>=d(13))

V = GenV(nl,nh,-d(12),-z(m),kO,kx,l)*V110;
A(m,l) = (R(1)*V(1,1) + V(1,2));
B(m,l) = (R(1)*V(2,1) + V(2,2));

elseif (z(m)<d(13)) & (z(m)>=d(14))

V = GenV(nh,nl,-d(13),-z(m),kO,kx,l)*V120;
A(m,l) = (R(1)*V(1,1) + V(1,2));
B(m,l) = (R(1)*V(2,1) + V(2,2));

elseif (z(m)<d(14)) & (z(m)>=d(15))

V = GenV(nl,nh,-d(14),-z(m),kO,kx,l)*V130;
A(m,l) = (R(1)*V(1,1) + V(1,2));
B(m,l) = (R(1)*V(2,1) + V(2,2));

elseif (z(m)<d(15)) & (z(m)>=d(16))

V = GenV(nh,nl,-d(15),-z(m),kO,kx,l)*V140;
A(m,l) = (R(1)*V(1,1) + V(1,2));
B(m,1) = (R(1)*V(2,1) + V(2,2));

elseif (z(m)<d(16)) & (z(m)>=d(17))

V = GenV(nl,nh,-d(16),-z(m),kO,kx,l)*V150;
A(m,l) = (R(1)*V(1,1) + V(1,2));
B(m,l) = (R(1)*V(2,1) + V(2,2));

elseif (z(m)<d(17)) & (z(m)>=d(18))

V = GenV(nh,nl,-d(17,m)-z(m),kO,kx,)*V60;
A(m,l) = (R(1)*V(1,1) + V(1,2));
B(m,1) = (R(1)*V(2,1) + V(2,2));

elseif (z(m)<d(18)) & (z(m)>=d(19))

V = GenV(nl,nh,-d(18),-z(m),kO,kx,1)*V170;
A(m,l) = (R(1)*V(1,1) + V(1,2));
B(m,l) = (R(1)*V(2,1) + V(2,2));

elseif (z(m)<d(19)) & (z(m)>=d(20))

V = GenV(nh,nl,-d(19),-z(m),kO,kx,1)*V180;
A(m,l) = (R(1)*V(1,1) + V(1,2));
B(m,1) = (R(1)*V(2,1) + V(2,2));
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elseif (z(m)<d(20)) & (z(m)>=d(21))

V = GenV(nl,nh,-d(20),-z(m),kO,kx,l)*V190;
A(m,l) = (R(1)*V(1,1) + V(1,2));
B(m,l) = (R(1)*V(2,1) + V(2,2));

elseif (z(m)<d(21)) & (z(m)>=d(22))

V = GenV(nh,nl,-d(21),-z(m),kO,kx,1)*V200;
A(m,l) = (R(1)*V(1,1) + V(1,2));
B(m,l) = (R(1)*V(2,1) + V(2,2));

elseif (z(m)<d(22)) & (z(m)>=d(23))

V = GenV(nl,nh,-d(22),-z(m),kO,kx,l)*V210;
A(m,l) = (R(1)*V(1,1) + V(1,2));
B(m,l) = (R(1)*V(2,1) + V(2,2));

elseif z(m)<d(23)

V = GenV(nh,n1,-d(23),-z(m),kO,kx,1)*V220;
A(m,l) = (R(1)*V(1,1) + V(1,2));
B(m,l) - (R(1)*V(2,1) + V(2,2));

end % end-if

end % end-for, all z values for a wavelength

end % end-for, all field profile wavelengths

E = A + B; % total field

I = (abs(E)).^2; % intensity

z index = [z min d(1) d(1) d(1) d(2) d(2) d(2) d(3) d(3) d(3) d(4) d(4) d(4) d(5)...

d(5) d(5) d(6) d(6) d(6) d(7) d(7) d(7) d(8) d(8) d(8) d(9) d(9) d(9) d(10) d(10)...

d(10) d(11) d(11) d(11) d(12) d(12) d(12) d(13) d(13) d(13) d(14) d(14) d(14)...

d(15) d(15) d(15) d(16) d(16) d(16) d(17) d(17) d(17) d(18) d(18) d(18) d(19)...
d(19) d(19)d(20) d(20) d(20) d(21) d(21) d(21) d(22) d(22) d(22) d(23) d(23)...
d(23) d(24)];

index = [nO nO 0 nl_res nl_res 0 nh_res nh_res 0 nl_res nl_res 0 nh_res nh_res 0
nl res nl res...0 nh res nh res 0 nl nl 0 n2 n2 0 n3 n3 0 nh nh 0 nl nl 0 nh nh 0 nl

nl- 0 nh nh 0 nl nl.. 0 nh nh 0 n1 nl 0 nh nh 0 nl nl 0 nh nh 0 nl nl 0 nh nh 0 nl
nl];

% just get rid of any absorption effects, makes the plot look nice
index = real(index);

%Plots and formatting
figure;
hold on;
%plot(z,I(:,l),z,I(:,2),z,I(:,3),'LineWidth',2);
plot(z,I(:,1),'LineWidth',2);
plot(z_index,index,'k');
xlabel('Mirror Depth z (\mum)');

ylabel('IE(z)I^2 / Index of Refraction');
title('E-Field Profile in HMS ne w SBR');
%legend('\lambda = 1.50','\lambda = 1.55','\lambda = 1.60');
legend('\lambda = 1.55');
%axis([z max zmin 0 4.5]);
axis([-1.8 0.8 0 4.5]);




