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Abstract

This thesis presents the theory, implementation, novel applications, and experimental
validation of a general-purpose framework for applying virtual modifications to an
articulated robot, or virtual articulations. These can homogenize various aspects of a
robot and its task environrhent into a single unified model which is both qualitatively
high-level and quantitatively functional.

This is the first framework designed specifically for the mixed real/virtual case.
It supports arbitrary topology spatial kinematics, a broad catalog of joints, on-line
structure changes, interactive kinostatic simulation, and novel kinematic abstractions,
where complex subsystems are simplified with virtual replacements in both space and
time. Decomposition algorithms, including a novel method of hierarchical subdivision,
enable scaling to large closed-chain mechanisms with 100s of joints.

Novel applications are presented in two areas of current interest: operating high-
DoF kinematic manipulation and inspection tasks, and analyzing reliable kinostatic
locomotion strategies based on compliance and proprioception. In both areas vir-
tual articulations homogeneously model the robot and its task environment, and ab-
stractions structure complex models. For high-DoF operations the operator attaches
virtual joints as a novel interface metaphor to define task motion and to constrain
coordinated motion (by virtually closing kinematic chains); virtual links can repre-
sent task frames or serve as intermediate connections for virtual joints. For compliant
locomotion, virtual articulations model relevant compliances and uncertainties, and
temporal abstractions model contact state evolution.

Results are presented for experiments with two separate robotic systems in each
area. For high-DoF operations, NASA/JPL's 36 DoF ATHLETE performs previously
challenging coordinated manipulation/inspection moves, and a novel large-scale (100s
of joints) simulated modular robot is conveniently operated using spatial abstrac-
tions. For compliant locomotion, two experiments are analyzed that each achieve
high reliability in uncertain tasks using only compliance and proprioception: a novel
vertical structure climbing robot that is 99.8% reliable in over 1000 motions, and a
mini-humanoid that steps up an uncertain height with 90% reliability in 80 trials. In
both cases virtual articulation models capture the essence of compliant/proprioceptive
strategies at a higher level than basic physics, and enable quantitative analyses of the
limits of tolerable uncertainty that compare well to experiment.

Thesis Supervisor: Daniela Rus
Title: Professor
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Chapter 1

Introduction

Normally the kinematic topology of an articulated robot-the structure of its links

and joints-is considered invariant'. Change is typically localized to motion in the

joints. This thesis explores the possibilities enabled by virtually relaxing that as-

sumption, i.e., by allowing virtual links and joints-virtual articulations-to be in-

terconnected with a model of the robot as it operates.

Some specific virtual articulations useful in particular situations have already been

reported in the literature [19, 8, 76, 127, 115, 1]. I consider the general case, and de-

velop a full-featured framework for kinostatic modeling and simulation of arbitrary-

topology three dimensional mixed real/vzrtual articulated systems. This framework

covers both open- and closed-chain kinematics, includes a rich set of mutation primi-

tives for topological dynamics, and provides real-time motion computation algorithms

that scale to large structures of up to hundreds of joints. I present the theory in de-

tail, and then show novel applications, using a full software implementation of the

framework, in two domains of current interest: human interfaces to operate coordi-

nated motion in robots with large numbers of joints, and qualitative and quantitative

models that capture the essence of reliable locomotion strategies based on compliance

and proprioception. Experiments are presented with two separate robotic systems in

each domain; three of these four systems are themselves novel contributions, and the

fourth is a new robot under development at NASA's Jet Propulsion Laboratory.

'Robots specifically designed for reconfiguration are one exception.



1.1 Virtual Articulations

To see how virtual articulations can help operate a robot with many joints, consider

an example with this latter robot. With 36 revolute joints in six identical limbs,

ATHLETE [167] is highly flexible and can in theory be applied in a broad range

of tasks. Often, an intended motion is easily visualized, but expressing it could

be arbitrarily tedious in prior interfaces (e.g. [103]). Virtual articulations can help.

Figure 1-1 shows a basic example: the operator would like to tilt the field of view of

a camera that is rigidly embedded in the robot's frame, effectively rotating the body

about a virtual axis ih space, with the legs moving as necessary. Using the mixed

real/virtual interface, my implementation of the framework, the intended rotation

axis can be graphically defined by attaching a virtual revolute joint between the

robot body and the ground. Rotating the joint drives the intended motion, and the

system automatically computes compatible motions for all the legs.

Much of the power of virtual articulations comes from their capacity to homogenize

various aspects of a robot and its task environment into a single unified model, leading

to the following thesis statement:

By homogeneously combining a robot with its task, virtual articulations enable

models that are both qualitatively high-level and quantitatively functonal.

The task constraint in the above example-to rotate the camera about a fixed

axis-is homogeneously modeled as a revolute joint, interleaved directly with the

joints and links of the robot itself.

Homogenization is also clearly seen in a second example, this time from the do-

main of compliant mechanisms. It has long been known that clever use of compliance

can confer reliability even under significant uncertainty-e.g., the remote compli-

ance center (RCC) wrist is a seminal compliant mechanism for reliable peg-in-hole

assembly [46, 32]. But there has been little work towards building a higher-level un-

derstanding of the relation between compliance and uncertainty tolerance [122, 93].

As illustrated in Figure 1-2, virtual articulations can help by modeling uncertainties,

compliances, and contacts in a single homogeneous model including the robot itself.



Figure 1-1: Operating ATHLETE in the mixed real/virtual interface.
Virtual articulations can be added by an operator as a means of constraining mo-
tion and defining task-relevant DoF. In this example, a virtual revolute joint (cir-
cled) is added to facilitate tilting the field of view of one of ATHLETE's cam-
eras, which are rigidly mounted to the robot (the camera itself is not visible in the
model-it is actually embedded in the frame). The camera roll can be explicitly
commanded by directly rotating the virtual joint; kinematically feasible whole-robot
motions are automatically computed on-line. Figure 5-7 shows a corresponding ex-
periment on the actual hardware. ATHLETE graphical model courtesy the RSVP
team, NASA/JPL/Caltech.

Such models can be significantly higher-level than afforded by basic physics, but can

still capture the essence of a compliant mechanism. And, when properly calibrated,

they can also make quantified predictions, such as the limits of tolerable uncertainty,

with reasonable fidelity.

1.2 Kinematic Abstractions

While virtual articulations are useful directly, I go a step further. Computational

abstraction is well known for managing complexity in algorithmic systems, but so

far there has been no corresponding formalism in kinematics. By applying virtual

articulations in a specific hierarchical framework, I show that a novel technique of

structure abstraction can be used to effectively hide the complexity of a kinematic sub-



Figure 1-2: Modeling compliant step climbing in the mixed real/virtual interface.
Virtual articulations can form a homogeneous model including uncertainties-here,
the unknown step height, modeled as a virtual prismatic joint; compliances (in this
case, all the robot joints are compliant); and contacts. Such models are useful to
aid qualitative understanding and communication, and can also make quantitative
predictions. Here, the minimum and maximum permissible step heights are pre-
dicted based on simulated first heel contact and fall, respectively. Figure 6-9 shows a
corresponding hardware experiment.

system in a way that corresponds to traditional abstraction in computation. Figure 1-

3 shows a simple example where a series chain of four revolute joints is abstracted as

a piston-like assembly, hiding the detailed motion of the middle link.

In some cases, complexity arises not from the structure of the robot itself, but

rather from the evolution of contact interactions between robot and environment. I

thus also introduce sequence abstraction to form higher-level virtual models that ab-

stract the potentially complex details of a broad class of such interactions. Whereas

structure abstractions operate in the spatial domain, sequence abstractions hide com-

plexity in the time domain. The virtual articulations at each foot of the humanoid in

Figure 1-2 are each sequence abstractions: the left (support) foot normally rests on

the lower platform, but tilts up when the robot begins to fall. The right foot is either

D
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Figure 1-3: Structure abstraction and kinematic constraint.
Virtual articulations can be used both for structure abstraction and to constrain
intended motion. The actual robot mechanism in (a) is an open chain of four rev-
olute joints. The operator is mainly interested in the piston-like behavior of the
endpoints. In the mixed real/virtual interface, this can be directly modeled as a
revolute-prismatic-revolute construction (b) which virtually replaces the model of the
actual mechanism (c,d), in the same way that an abstraction for an algorithm can be
considered to stand in for its implementation. Here, the detailed motion of the middle
link is hidden below the abstraction; left alone, this link is free to "flop around" (e);
the operator chooses to constrain it parallel to the piston axis by adding an assembly
of two virtual prismatic joints (f) below the abstraction barrier. The same constraint
can also be defined using a shorthand Cartesian-2 joint (g).

dangling or contacts the upper platform at the heel corner, depending on the step

height, which is unknown to the robot. In both cases multiple contact configurations

are modeled with a single persistent virtual assembly.

1.3 Organization of the Thesis

The remaining sections of this chapter give a brief summary of the implementation

of the mixed real/virtual interface and highlights of the contributions of the thesis.

Chapter 2 will situate these contributions relative to prior works in virtual artic-

ulations and related concepts. This high-level review is complimented later by more

focused discussions for each of the two application areas in Section 5.5 and 6.8, and

also for the novel systems I introduce in Appendices J, K, and L.



Chapters 3 and 4 describe the framework for mixed/real virtual models in detail.

The first focuses on the structure of the model and related topological mutation

algorithms; the second adds algorithms to compute motions during interactive use.

Chapter 5 develops the concept of using virtual articulations and structure ab-

straction as an operations interface for high-DoF robots, and presents applications

both for ATHLETE and for a novel modular robot I introduce called Multishady.

The latter is in simulation only, but shows the scalability of the motion computation

algorithms to topologically large closed-chain systems with hundreds of joints.

Chapter 6 presents the second class of applications, to compliant/proprioceptive

locomotion. The idea of sequence abstraction is developed here, as is a general proce-

dure for quantitatively studying the relationship between the compliances in a system

and the amount of uncertainty tolerance they afford. Two particular applications are

presented: Shady, a novel scratch-built compliant/proprioceptive structure climbing

robot; and Steppy, an off-the-shelf mini-humanoid for which I developed a unique

compliant/proprioceptive control strategy for climbing a step of uncertain height.

Chapter 7 summarizes the advances and limitations of the ideas presented in the

thesis, and describes potential future work. A number of appendices follow covering

various details both from the theory and from the applications.

1.4 System Implementation

A major part of the work behind this thesis was a full software implementation of

the framework, called the mixed real/virtual interface. This implementation includes

essentially all data structures and algorithms presented in Chapters 3 and 4 (any

omissions are noted in-context). Figure 1-4 shows a typical screenshot. The core

implementation is fully generic, and not tied to any particular robot or task. The

application examples in chapters 5 and 6 were all built directly within it-in most

cases that involved writing some scripts so that specific setups could be repeatedly

re-constructed during the experiments. Interfacing with the ATHLETE systems at

JPL also required some special-purpose data import/export code. Figure 1-5 shows



a breakdown of code by function, both in the core system and for the applications.

aemacsakltoids.eal.maftledu -MSbOn m JPt QLi liiO
8 slider-8.8
9 slider-0.9
0 slider-l.0

$6 - ()

asiamdril
MSi-ATLETE-JPL revision 30 2008-11-95

I~Si-ATHLETE revision 57 2009-01-20
nSi revision 334M 2009-01-20
Vonoatils revision 278 2009-01-03
J30G 1.1.1+
Java3D 1.5+
Java3D VL97 loader available
Java3D 3DS loader available
JRE 1.6.0 10-rc, 3YM 11.0-b15
A£1N revision 36 2008-09-13
RXTX available

$7 - *null

osiapicked trench-slide-i. class TREE JOINTS. 0 in cycle of 1
manipulating trench-slide-I

subtransform target
in parent frase
hit escape end nanipulation

$8 = ()
si> (cons-link a- nice-ne- link')

Figure 1-4: Screenshot of the mixed real/virtual interface.
At left, a Scheme read-eval-print loop serves as a textual command interpreter
for detailed interaction. At right, a graphics window, in this case showing ATH-
LETE with added virtual articulations. General click-and-drag interaction is imple-
mented for interacting with both links and joints. Virtual articulations can also be
added/removed/reconfigured directly in the graphical view.

Though the implementation was crucial for validating the theory and in imple-

menting the applications experiments, I do not focus on the details of the software

in the thesis. Its architecture is a fairly direct implementation corresponding to the

theoretical descriptions of the following aspects of the framework:

* the hierarchical linkage graph data structure and topological mutation algo-

rithms (Sections 3.2.4 and 3.6)

* the (t, 0) 3D rigid transform representation, with dynamic reparametrization

and exp/log maps (Section 3.3.3 and Appendices B and C)

* the prioritized damped least squares solver (Algorithm 4.1, and Appendix F)

for local assembly and differential control motions, including my design for six

particular priority levels (Section 4.7)



Implementation Breakdown by Source Lines of Code

U graphics, mouse, and keyboard
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Figure 1-5: Breakdown of sourcecode in the implementation.
Breakdown by major function of the 43k source lines of code in the implementation.
About 85% of the code is in Java, with the rest in Scheme. These metrics were
generated using David A. Wheeler's "SLOCCount".

* the Jacobian and residual computation algorithms (Section 4.9 and Appen-

dices G and H), though the implementation is optimized to exploit the typical

sparsity of the various binary projection matrices, which are just a convenient

way to express index bookkeeping, and are not represented directly in the code

* the simulation loop (Algorithm 4.12), effectively the "main loop" of the system.

A significant portion of the code deals with the many details of fast but attractive

on-line rendering of potentially large models. Processing mouse gestures also involves

some work: the mouse is a 2D device but in many cases it is used to manipulate

spatial objects with up to 6-DoF poses.

1.5 Contributions

At the highest level, there are three main contributions in this thesis:

1. the algorithms and data structures of the general purpose framework in Chap-

ters 3 and 4 for modeling and simulating mixed real/virtual articulated systems,

which supports novel kinematic abstractions in both space and time, and which

scales to topologically large systems while retaining interactive performance



2. the operations environment in Chapter 5 for high-DoF robots based on virtual

articulations and structure abstractions, enabling rapid graphical specification

of a broad class of coordinated motions which could be easy to visualize but

difficult to specify in prior interfaces

3. the technique in Chapter 6 of using virtual articulations and sequence abstrac-

tions to form homogeneous models of compliant/proprioceptive locomotion,

which can be qualitatively more concise than pure physical models but still

capture the essence of the system and make quantitative predictions.

Individual contributions within these are summarized in the following subsections.

1.5.1 Contributions of the Framework

Though other related modeling frameworks have previously been reported [38, 89,

52, 33, 43, 130, 171, 18], mine addresses some particular challenges that become

interesting in the mixed real/virtual case:

* Genericity-First, while real robots are severely limited by practical engineer-

ing considerations, with virtual articulations a larger variety of joint types

and topologies become both possible and interesting. I introduce a particu-

lar parametrization for 3D joint mobility based on translation and orientation

vectors and exponential and logarithmic maps thereof (Section 3.3.3). I prove

the completeness (Theorem 1) of a natural partition of this parameter space,

which I then use as the basis for a catalog of useful virtual joints, including all

lower pairs except helical. Second, my framework supports arbitrary mixes of

open and closed kinematic chains, allows both Cartesian and reduced coordinate

modeling (Section 3.2.3), and smoothly handles both under- and over-constraint

(Section 5.1).

* Mutability-To add, remove, and reconfigure virtual articulations on-line, I

present algorithms implementing a comprehensive set of structure mutation

primitives (Section 3.6). Such a complete and detailed set of algorithms for



topological dynamics in a kinematic model is unusual: previous modeling frame-

works typically dealt with structures that did not change topology on-line; the

few frameworks that do deal with structure-varying (reconfigurable) robots [108,

130, 91] are typically limited to attach/detach operations, and do not cover more

general topological evolution, including locking/unlocking joints, changing joint

mobility type, etc.

* Hierarchy-While control authority over the actual joints of a robot is limited

by the available actuators and the laws of physics, we are free to assign more ar-

bitrary semantics to virtual articulations. One way my framework exploits this

freedom is by defining a specific semantics for hierarchically encapsulated sub-

linkages (Section 3.5). This can help organize topologically large models, and

it also forms the basis for my technique of structure abstraction (Section 3.5.3).

* Scalability-As virtual articulations are added to a model, the total model size

can increase quickly. Also, some key applications for virtual articulations and

kinematic abstractions are driven by the challenges of actual robots which start

out with relatively large numbers of joints. The motion computation algorithms

in my framework thus scale to 100s of joints (Section 5.4) on commodity hard-

ware while maintaining interactive response times in the range of 10s of millisec-

onds. Two key decomposition algorithms support this: coupling decomposition

(Section 4.10) and hierarchical decomposition (Section 4.10.1).

In addition

* I take the unusual step of extending the core kinematic framework to also han-

dle kinostatic models that involve gravitational and elastic potential energy.

These are both necessary and sufficient for a broad class of interesting com-

pliant mechanisms, but are simpler than the more common physical dynamics

frameworks (e.g. [143]) that also include kinetic energy.

* I break the requisite motion computations into two particular problems: local

assembly and differential control, and I introduce a novel set of six particular



priority levels to solve these on-line under a task-priority framework based on

iterative local linearization, Jacobian pseudoinverse, and nullspace projection.

1.5.2 Contributions of the Operations Interface Applications

To the best of my knowledge, the research presented in Chapter 5 is the first example

in the literature of using virtual links and joints in a constructive graphical interface

to operate high-DoF robots. Often an intended coordinated motion is easy for an

operator to visualize, but expressing that intention could be frustrating and tedious

in more traditional operations interfaces (Section 5.3 describes such a traditional

interface for ATHLETE). Virtual articulations can graphically parametrize a wide

variety of kinematic tasks and can also constrain coordinated whole-robot motion.

The experiments which demonstrate the viability of this approach involve two

specific robots: ATHLETE and Multishady. While I was not involved in the develop-

ment of the ATHLETE robot itself, Multishady (Section 5.4 and Appendix K), used

in simulation to demonstrate the scaling potential of my framework up to 100s of

joints, is a novel concept for a bi-partite truss-like self-reconfiguring robot. This scal-

ing is enabled by my novel technique of structure abstraction (Section 3.5.3), which

(1) helps the operator subdivide the problem in the same way that traditional algo-

rithmic abstraction aids a software designer; and (2) enables the system to perform

hierarchical decomposition (Section 4.10.1) to keep the costs of motion computation

low, maintaining interactive response time.

1.5.3 Contributions of the Compliant Motion Applications

While the use of virtual joints to model instantaneous contacts and uncertainties has

previously been proposed [19], I show that in some interesting cases, sequence abstrac-

tions (Section 6.3) can be valid high-level approximations on much longer timescales,

even through various contact configurations. Though physics is technically sufficient

it can be overly detailed. Virtual articulation models with sequence abstractions can

be qualitatively useful to help "see the forest over the trees." And they can also



make quantitative predictions-I introduce a general strategy for using them to pre-

dict the limits of tolerable uncertainty, and show that these can compare favorably

to corresponding real-world tests on the actual hardware.

These ideas are again experimentally validated, and here, both of the systems

in the experiments, Shady (Section 6.6 and Appendix J) and Steppy (Section 6.7

and Appendix L), are substantially novel. Shady is a scratch-built structure climb-

ing robot that achieves experimentally demonstrated reliability using a combination

of mechanical compliance and a proprioceptive control strategy. While the Steppy

robot itself is an off-the-shelf mini humanoid, I developed and analyzed a novel com-

pliant/proprioceptive strategy for reliably climbing a step of significantly uncertain

height.



Chapter 2

Related Work

Virtual articulations, and to a lesser extent, kinematic abstractions, have been con-

sidered previously in the literature. This chapter reviews these earlier works and

highlights the main differentiators of this thesis. Overall, my approach is both sig-

nificantly more broad than prior reports of virtual articulations, which are usually

quite specific or embedded within the context of a particular robot or task; and also

substantially deeper in that I develop, implement, and experimentally validate a con-

crete set of algorithms for adding/removing/modifying virtual articulations and for

interacting with the resulting mixed real/virtual model.

The few existing prior works which mention ideas similar to my kinematic abstrac-

tions are mainly conceptual-they do not typically present associated algorithms or

experiments. My spatial abstractions are made concrete via a novel hierarchical de-

composition algorithm and tested in simulated experiments, and my temporal abstrac-

tions are demonstrated to be both qualitatively useful and quantitatively predictive

in hardware experiments with several specific robots.

2.1 Overview

The research context for this thesis as a whole splits into seven parts:

1. previous uses of virtual articulations reviewed next in Section 2.2



2. earlier ideas related to kinematic abstraction reviewed in Section 2.3

3. other similar systems including other kinematic modeling frameworks (Sec-

tion 2.4), geometric constraint solvers (Section 2.5.2), and physical dynamics

simulation (Section 2.5.1)

4. existing methods for operating high-DoF robots specific related work in

this application area is deferred to Section 5.5

5. other approaches to high-level modeling for compliant mechanisms

similarly deferred to Section 6.8

6. earlier robots related to the novel robotic systems I have developed: Shady

(context in Section J.1), MultiShady (Section K.3), and Steppy (Section L.1)

7. foundational works used as components such as the prioritized damped

least squares method I adopt from Baerlocher and Boulic [11] and Grassia's

dynamic reparametrization for orientation vectors [55]. These and other foun-

dational works are identified in the context of the appropriate chapters.

2.2 Virtual Articulations in Specific Applications

A literature search for prior uses of virtual articulations finds a handful of particular

applications: virtual joints (virtual links are somewhat less common) are proposed for

a specific robot or a specific task, or in some cases for a specific class of robots or tasks.

I categorize these prior works in terms of the benefit conferred by the virtual articula-

tions: resolving redundant motion, speeding inverse kinematics solution, maintaining

Jacobian rank, modeling link compliances, and modeling geometric uncertainties.

Redundancy Resolution A few authors have previously explored the idea of con-

straining the kinematic motion of redundant robots by adding chain-closing virtual

joints. Ivlev and Griser [75, 76] focused mainly on defining virtual chain closures

which help restrict the motion of redundant revolute serial-chains, for example to



avoid known obstacles in the environment. They treated only smaller examples which

could be solved analytically on paper. Bruyninckx [19] also showed one example where

a virtual closed chain minimizes the otherwise unconstrained twist motion about the

axis of a round tool on a revolute-jointed industrial manipulator. Bruyninckx's work

further touches on a few other aspects of virtual articulation and even temporal kine-

matic abstraction, as detailed below and in Section 6.8.

Faster Inverse Kinematics for Long Chains While even one extra degree of

mobility with respect to a task creates a kinematic redundancy, hyper-redundant

robots [29] are loosely defined to have larger numbers (10s or more) of extra DoF.

Often-studied systems in this field are long serial chains, typically of revolute joints.

Inverse kinematic computation can become expensive in these cases due to the large

number of joints, and some authors have previously observed that replacing individual

sub-chains with virtual assemblies can serve to reduce the computational complex-

ity. Ashrafiuon and Sanka [8] applied the idea to generate inverse kinematic control

algorithms for specific 9- and 10-DoF spatial revolute serial chains. Williams and

Mahew [168] similarly built an IK controller for a hybrid structure consisting of a se-

rial chain of parallel mechanisms (this structure bears some resemblance to the tower

experiment in Section 5.4). These ideas are related to my approach of structure ab-

straction (Section 3.5.3), but whereas my method is developed and implemented (via

the hierarchical decomposition algorithm, Section 4.10.1) for the general case, these

prior reports are specialized treatments applied by hand for specific robots. The vir-

tual joints are fixed off-line and only to help control algorithmic complexity of inverse

kinematic solution; they are invisible to the operator. My method of abstraction can

be useful both to the operator, to structure the design of the motion, and to the

system, by decoupling the inverse kinematics computation into smaller sub-problems.

Maintaining Jacobian Rank at Singular Configurations Oetomo, Ang, and

Lim [115] propose inserting virtual joints to virtually relieve the instantaneous loss of

mobility which can occur at a singular configuration. Constructions like this are also



possible in my system, though I have not explored this particular application.

Modeling Link Compliances In [1], Abele, Rothenbucher, and Weigold also in-

sert virtual joints, in this case to model compliances which in flexible links. This

could also be done in my system, though in the examples in Chapter 6 I have instead

focused on compliances that are co-located with actual joints, which are of much

greater magnitude than link flexibility in the robots which I consider.

Modeling Geometric Uncertainties Bruyninckx [19] uses virtual joints to model

some kinds of geometric uncertainty in compliant motion tasks, but focuses on smaller

perturbation-like uncertainties vs. gross uncertainties like the step height in my hu-

manoid stair-stepping experiment (Section 6.7, also see Section 6.8).

2.3 Prior Work in Kinematic Abstraction

Searching for prior reports of kinematic abstraction yields only a few works related

to my spatial structure abstractions and temporal sequence abstractions.

Abstraction in Space Davis [36] explored various forms of spatial geometric ab-

straction at a conceptual level, including an interesting but very cursory (one para-

graph) mention of the idea of a "kinematic device as black box." Zanganeh and

Angeles [176] present a more detailed and formal development of the idea of separat-

ing topologically large kinematic structures into sub-mechanisms, but their approach

does not specifically separate interface from implementation-it just demarcates sub-

mechanisms. My method of structure abstraction subsumes this capability ("simul-

taneous" sub-linkages, Section 3.5.1), but also allows separate interface mechanisms

which stand-in for an underlying implementation (Section 3.5.3).

Abstraction in Time It appears that few other authors have considered kine-

matic abstractions in the temporal domain, as I do in my method of sequence ab-

straction 6.3, though the idea of using kinematic models for contact was originally



popularized by Salisbury [99]. Bruyninckx [19] models contact using virtual joints,

but mainly addresses instantaneous contact configurations. Whereas such models

would need to be reconfigured as contacts are made and broken (or possibly even

after any motion), I show in Chapter 6 that in some cases sequence abstractions can

persist through changes in contact configuration and contact motions.

2.4 Prior Work in Kinematic Modeling

Chapters 3 and 4 develop a new kinostatic modeling framework that has particular

features to help support mixed real/virtual models. This section reviews prior frame-

works, all of which have some drawbacks for the purposes of this work. Overall, my

approach is more generic, mutable, scalable, and hierarchical-Section 3.1 expands

on these issues and the ways in which I address them.

In the 1950s, Denavit and Hartenberg [38] introduced a kinematic modeling frame-

work which is still widely used. It supports revolute, prismatic, and helical joints

(common uses are restricted to the first two only, cf. [145]) and both open and

closed chains, but it falls short for more general hybrid open/closed (i.e. mixed

serial/parallel) structures [81], and it cannot represent a true spherical joint with-

out gimbal lock. The overall scope of the DH and related approaches is significantly

narrower than my framework-on-line topological mutation is not addressed, there is

no included support for any kind of topological decomposition, no statics parameters

are included (mass/stiffness/gravity), and motion computation algorithms are not

considered.

Some more modern and comprehensive frameworks include Diaz-Calderon, Nesnas

et al's CLARAty Mechanism Model [43]; the OROCOS Kinematics and Dynamics

Library of Bruyninckx et al [18]; the kinematics components in Pryor, Taylor, Kapoor,

and Tesar's OSCAR [130]; and The Mathworks' SimMechanics [171]. The first three

of these are mainly for open-chain mechanisms only, with some small exceptions.

CLARAty Mechanism Model supports four- and six-bar planar closed chains, but not

more general hybrid topologies. In [130] OSCAR is demonstrated on a closed-chain



modular robot, but it appears this involved additional code to handle chain closures

and module connect/disconnect operations. Other than this one example, the first

three frameworks neither seem to support on-line topological structure changes.

SimMechanics is more general, and appears to overcome many of the drawbacks

of the other frameworks. However it does not include topological decomposition al-

gorithms or true kinematic abstractions that separate interface from implementation.

Fliickiger [52] reported a novel "virtual reality" interface for kinematic operation

of articulated robots, including serial, parallel, and hybrid topologies. Topological

modifications apparently required his system to be re-started, and he did not report

any use of true virtual articulations-the real robot links and joints were modeled

alone, and then manipulated in a virtual graphical environment using various kinds

of 3D user interface hardware.

2.5 Other Similar Systems

Many of the above environments also offer physical (Newtonian) dynamics modeling

and simulation, in addition to pure kinematics. This motivates a question: Why not

just use a real-time physics simulation package, such as the Open Dynamics Engine

(ODE) [143]? In fact, there is also a symmetric question at the other end of the

kinematics vs. physics modeling spectrum: Why not just use an interactive geomet-

ric constraint solver, such as in a modern computer aided design (CAD) program

like SolidWorks (a product of Dassault Systimes SolidWorks Corporation)? Both

approaches seem to have some feasibility, but each would lack particular desirable

features as called out in the next two sub-sections.

2.5.1 Physical Dynamics Simulation

Overall, physics based approaches generally require more parameter tuning (e.g. in-

ertia tensors, stiffness matrices, friction and damping coefficients) than simpler kine-

matic or even kinostatic models. This would potentially add additional burden on

the user as virtual elements are added, removed, and reconfigured. And, while algo-



rithms for efficiently simulating the physical dynamics of reduced coordinate models

(cf. Section 3.2.3) and closed kinematic chains [50] are known in the literature, cur-

rently available real-time physics engines (including ODE) are typically based on

Cartesian coordinate models (called "maximal coordinate methods" in [84]) and need

to be carefully tuned to efficiently and stably simulate kinematic chains, especially in

the presence of chain-closing joints [15].

Of course, if full physics simulation is performed, then one could also consider

adding virtual elements that are not strictly kinematic; for example, virtual springs

and dampers. This has been explored by Pratt et al [128, 127] as virtual model

control. In their reports, the virtual elements (typically springs and dampers; virtual

joints and links are not as prominent) are manually designed, tuned, and implemented

within custom control code on a case-by-case basis for each task of each mechanism.

Sticking to a kinematic model, with minimal (and optional) extensions for qua-

sistatics, enables topologically large-scale constructions with many closed chains, real-

time motion computation on commodity hardware even for systems with 100s of

joints, on-line structure changes1 , and kinematic abstractions in space and time.

2.5.2 Geometric Constraint Solving

Geometric constraint solvers [89, 17, 67], which automatically solve for a spatial

configuration of a collection of geometric objects satisfying a given set of constraints,

have long been studied-even Sutherland's first report of a computer drawing program

in [152] included constraints. Current implementations in mechanical CAD systems,

such as D-Cubed's Dimensional Constraint Manager [117, 66], support 3D "mating"

relationships: concentric surfaces of revolution, incident faces and edges, etc.

In this design domain, the canonical problem [89] is typically to find a well-

constrained rigid configuration. However, some systems allow under-constrained

assemblies (over-constraint is usually still forbidden) which can model articulated

robots, using mates as proxies for some kinds of kinematic joints. For example, a com-

1Lampariello, Abiko, and Hirzinger [91] and Nakamura and Yamane [108] have considered struc-
ture changes in the context of physical dynamics simulation.



bination of a concentric and a perpendicular incident-face constraint could correspond

to a revolute joint. The designer can then graphically interact with the model and

the system maintains all specified constraints. Open- and closed-chain mechanisms

can be constructed. However, the origin of the constraint solving problem, focused

on the well-constrained rigid case, has led to less-than-desirable methods for handling

under-constrained systems. Commonly, hidden constraints are inferred (e.g. [78]) to

convert the under-constrained problem into a well-constrained one. These inferences

are based on heuristics, and can be surprising.

In an informal test, I constructed a model of ATHLETE in a recent version of

SolidWorks and attempted a bi-manual operations example similar to the one shown

in Figure 5-8. The result was very hard to control, apparently due to hidden con-

straints which apparently locked certain joints in order to fully constrain the model.

It was also prone to non-continuous motion (jumping from one connected component

of the configuration space to another).

Using geometric constraints as a tool for defining and constraining motion has

also been proposed in the field of articulated figure animation (e.g. Phillips, Zhao,

and Badler [123]; Welman [163]; and Baerlocher [9]). In these works typically only

a few simple constraints are available, for example, point-on-plane and point-on-line.

The constraints are not themselves considered to be kinematic joints, and can only

be added between geometric objects situated within links of the original articulated

model. In my framework the operator is free to construct arbitrary additions including

both virtual links and a relatively large catalog of virtual joints.

2.6 Additional Categories of Related Work

This chapter has covered the first three of the seven categories of related work listed

in Section 2.1: previous uses of virtual articulations; earlier reports of kinematic

abstraction; and other similar systems, including kinematic modeling frameworks,

physics-based approaches, and geometric constraint solvers. The remaining categories

are covered later, in the specific sections called out in that list.



Chapter 3

Model Structure and Topological

Interaction Algorithms

This chapter presents the topological and structural aspects of my framework for

modeling articulated robots combined with virtual elements. These aspects enable

(1) building models of articulated robots and (2) dynamically adding and removing

virtual articulations and kinematic abstractions. This is the first half of a full descrip-

tion of the framework; the other half, the kinetics of how models move, is the topic

of Chapter 4. Also, the model developed in this chapter is purely kinematic-it does

not incorporate any representation of physical energy. Chapter 4 will add extensions

for elastic and gravitational potential energy, enabling the representation of a broad

class of kinostatic systems.

These chapters constitute the main theoretical foundation of this thesis. All of this

theory has been implemented and used in a complete software system to produce the

results in Chapters 5 and 6. Figure 3-1 shows the architecture of this implementation,

the mixed real/virtual interface, with the aspects covered in this chapter highlighted.

Together, this chapter and Chapter 4 present and analyze all the important data

structures and algorithms in the figure.
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The next section summarizes my approaches to the unique challenges of mixed

real/virtual modeling. The framework is then presented over the remaining four

sections, starting with Section 3.2 which describes the highest level of the representa-

tion, the kinematic graph with vertices corresponding to the model's links1 and edges

corresponding to the joints.

I leverage a particular exponential map mobility representation to support a useful

variety of joint types; this is explained next in Section 3.3. The development culmi-

nates in a new completeness proof for a partitioning of the space of 3D rigid body

motion, upon which I build a useful joint catalog.

A key innovation I introduce in this thesis is the capability to hierarchically subdi-

vide large models. Section 3.5 extends the framework to support this, and introduces

the technique of structure abstraction which can hide complexity in the operation

of very high-DoF robots by enabling complex kinematic sub-systems to be virtually

replaced with simpler abstractions.

Finally, Section 3.6 presents a complete set of structure mutation primitives that

can be invoked to (1) build up a model of any articulated robot, and (2) dynamically

add and remove virtual articulations and kinematic abstractions. These are important

because they constitute a concrete set of tools available to build models and to add

and remove virtual articulations. The presentation of such a set of operations is

uncommon since this level of on-line structural mutation is not typically necessary

for traditional robot modeling without dynamically added virtual elements.

3.1 Challenges of Mixed Real/Virtual Modeling

The main idea of virtual articulation and kinematic abstraction is to homogeneously

model a variety of phenomena using the same joint and link metaphors as are used

for the robot itself. Thus my framework is related to prior kinematic and kinostatic

robot modeling techniques, e.g. [38, 89, 52, 33, 43, 130, 171, 18]. However, the need

to conveniently support virtual elements calls to focus some aspects which are not

1I use the term "link" to refer to the rigid components (solid bodies) in the model.



necessarily important when modeling robots alone:

* Genericity: For practical reasons-load bearing, mechanical tolerance, manu-

facturability, mechanical complexity, etc.-actual articulated robots are often

special cases, and prior frameworks are often tailored to these cases. Common

restrictions include limitation to only revolute joints, and/or only simple chain

or tree topologies. The practical concerns that underlie these restrictions do

not necessarily apply to virtual articulations, so my framework handles an un-

usually general class of articulated systems, with a broad set of joint types and

no topological restrictions.

* Mutability: In practice most articulated robots have a fixed kinematic struc-

ture, so traditional frameworks usually do not include significant support for

on-line structure changes, though a few can model mechanical attach/detach

operations [108, 130, 91]. In contrast, many uses of virtual articulations and

kinematic abstractions rely directly on the ability to evolve the model's kine-

matic topology, and because these changes are virtual they can easily be more

intricate than just attach/detach. I thus take the unusual step of presenting

a rich and complete set of operations for evolving the structure of the model.

Certain design choices I make in the representation, such as root joints (Sec-

tion 3.2.3), specifically aid these operations.

* Scalability: For reasons of both practicality and cost, common articulated robots

have relatively few links and joints. For example, articulated manipulators for

manufacturing and factory automation rarely have more than 6 joints. Hu-

manoids and hyper-redundant robots can have 10s of joints, but usually not

more, and are still relatively rare. Thus, scaling to hundreds of articulations or

more is not a particular focus of prior frameworks (Pryor et al's work in [130]

is an exception here also, as is Redon and Lin's work in [132]). Again, virtual

articulations do not necessarily have the same kinds of penalties associated with

them, so it can be meaningful and reasonable to add them in relatively large

numbers (e.g. 100s), and my framework supports this.



Hierarchy: A key type of kinematic abstraction I explore is the notion of vir-

tually replacing a complex substructure with something simpler. Thus, my

representation can partition the whole model into sub-models, and can make

virtual substitutions thereto. To the best of my knowledge, no prior frameworks

directly support this. To ease the description, I initially skip the hierarchical

features, then add them in Section 3.5.

Finally, there are a few modeling aspects on which I do not focus; these could all

be added as extensions in future work:

* kinetic energy: This chapter first presents a purely kinematic framework, with

no modeling of physical energy. Chapter 4 will add extensions to also model

gravitational and elastic potential energy, which are needed for the proprio-

ceptive modeling applications in Chapter 6. I have not yet pursued further

extension to also model physical kinetic energy, for several reasons. One is

that general-purpose physics simulation systems (e.g. [143]) are now commonly

available and well studied. While many can model kinematic joints, they are

often primarily focused on rigid-body models with impacts rather than continu-

ous kinematic constraint, and their performance especially while handling large

numbers of closed kinematic chains can be poor [15]. In part because kinematic

chain closing is essential in using virtual articulations to constrain motion, I

have focused on my own simulation algorithms (Chapter 4), which are designed

expressly to handle closed chains. Another reason I have not yet considered

kinetic energy is simply that it has not been required for any of the applications

I have studied.

* collision detection: Many prior frameworks, especially in physics simulation,

include detailed models of the geometry of the bodies which form the articulated

mechanism, and compute collisions among them. This is a well-studied problem.

Also, while collision is always a consideration for models of real robots, virtual

elements can legitimately have no associated geometry, and thus no possibility of

collision. For these reasons I choose not to focus on collision, with the exception



of the high-level models of contact state evolution developed in Section 6.3.

* distinguishing virtual elements: It is not hard to distinguish real from virtual

model elements, e.g. by setting a flag. One use for such a distinction could

be to prioritize actual over virtual constraint in inconsistently overconstrained

cases, but I neither focus on this. Again, the main idea is to homogeneously

handle both the real and virtual parts of the model.

3.2 Linkages and The Kinematic Graph

An articulated system in my representation is called a linkage2 . In this section the

high-level topological structure of a linkage will first be introduced informally, followed

by a concise formal definition on page 53.

The binary connectivity of joints and the arbitrary connectivity of links naturally

suggest representing the topology of a linkage as a graph, as in Figure 3-2, where the

links are vertices and the joints are edges. Such graphs have been used at least since

the 1960s [44], but the graph itself does not define the full structure of the system.

One large gap, specification of the range of motion for each joint, is covered later

in Section 3.3.

Another gap is that any restrictions on allowable graph topologies must be made

explicit. For example, should cycles be allowed? What about disconnected graphs?

My answers to these particular questions are yes and no, respectively. Cycles are

crucial because it is precisely the mobility restriction capability of closed kinematic

chains that makes virtual articulations a useful tool for designing constrained motion

(recall Figure 1-3). And, though on first consideration it might seem that discon-

nected graphs would be the more general case, the homogenizing power of virtual

articulations is easily leveraged to ensure that the kinematic topology always re-

mains connected, with special un-constrained virtual joints automatically added and

removed as necessary to maintain connectivity. I describe my design for these root

2Some authors use this term more specifically, for example to refer only to articulated systems
whose mobility space is strictly 1-dimensional [73] or to systems with only rotating joints [37].
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Figure 3-2: Linkage graph examples.
At left, a mixed real/virtual model with superimposed linkage graph. At right, a sec-
ond linkage graph. Links-rigid parts of the model-form the vertices, and joints-
moving inter-link attachments-the edges of the graph. Such graphs have long been
used in kinematics and robotics; I make some particular design choices, including
the ever-presence of a spanning tree (dark edges) with the remaining closure joints
(light edges) closing kinematic chains. Edge direction gives the forward sense of a
corresponding joint transform that takes coordinates in a joint's child link frame to
the link frame of its parent. Special un-constrained virtual root joints (one shown
dashed, others hidden) connect each link directly to the ground link at the root of
the spanning tree.

joints below in Section 3.2.3; one main benefit of maintaining connectivity is that joint

transforms, associated to each edge in the graph, are always sufficient to compute the

pose of any link with respect to any other.

3.2.1 Spanning Tree Topology

When the kinematic graph is cyclic there may be multiple paths between a given

pair of links; a main design feature of my linkage representation is that the relative

pose of any two links can always be uniquely defined by the path between them

consisting only of joints in an identified spanning tree. This tree also induces a

natural directivity on the edges it contains: in my design such edges point towards

the root of the tree, and I also use (the same) edge direction to give the forward sense

of the associated joint transform. These properties will be used frequently, so some

notation and terminology is helpful (also see Figure 3-2).



Definition 1 Each joint (graph edge) j is directed so that it connects a pair of links

(p3, c3) called the parent and child link of j. The edge direction is from c, to p3.

Definition 2 Each link k (graph vertex) has an associated coordinate frame Fk called

the link frame of k. The link frame of the child (resp. parent) link of a joint j is

called the joint's child (resp. parent) frame F, (resp. Fp,).

Definition 3 For each joint j there is an associated rigid-body joint transform X 3

that defines the pose of the child frame with respect to the parent frame. X, is one

aspect of the mobility representation Oj for j, which will be detailed in Section 3.3

(cf. Eq. 3.9).

Definition 4 Exactly one of the links is identified as the ground link g.

Definition 5 Every link k # g has exactly one of its outgoing joints (i.e. a joint

whose child is k) identified as its parent joint pk, and g has no parent joint. To

complete the terminology, all of the incoming joints of a link k (i.e. joints whose

parent is k) are called child joints of k.

Definition 6 The set T of all parent joints of all links must form a directed spanning

tree with root g; i.e., all edges in T point towards g. Thus, a transform3 Xko-k 1

giving the pose of any link frame Fk, relative to any other link frame Fko is defined

by composing the joint transforms along the path g - kl followed by the inverse of

the composition of the transforms on the path g <- ko (transforms compose right to

left, and the products are taken in path order):

Xkoc-ki = Xz l X, =- x E l  X . (3.1)

zCg-ko zEg--ki \zeko--g Eg+--ki

Definition 7 If J is the set of all joints in the linkage, then the remaining joints

C = J \ T are chain closures. The membership of a joint in T is its disposition.

3 Xkok, takes coordinates in Fk, to coordinates in Fk,.



3.2.2 Names and Paths

Besides ensuring that the relative pose of any pair of links is never ambiguous, another

benefit of the spanning tree is that it enables a straightforward way to avoid ambiguity

when identifying entities in the user interface.

Let each link k and each joint j have a textual name nk resp. nj. One approach

to avoid name collision would simply be to require that all names are globally unique,

but this can become tedious for models that contain repeated substructures. Instead

we can leverage the tree path of the entity to reduce the possibility of collision.

Definition 8 The existence of the spanning tree means that there is always a path

n,. n .ri consisting of the names from the ground link g to any link or joint i.

Paths are always unique as long as no two child joints of any link have the same

name-a less stringent requirement than global uniqueness.

3.2.3 Root Joints

Always requiring a spanning tree may seem a strong constraint on allowable model

topology. What if the system to be modeled really is disconnected? Or, what if the

modeler does not wish to distinguish some joint in a kinematic cycle as a closure?

These issues are both solved in a relatively straightforward way by leveraging the

homogenizing power of virtual articulations.

Definition 9 In my framework there is a special unconstrained (i.e. allowing any 3D

rigid motion) virtual root joint connecting each link directly to the ground link. Root

joints are automatically created whenever a link is added, and deleted whenever the

associated link is removed. They may either be tree or closure joints; in the former

case the attached link is a free-floating root link. Figure 3-2 shows an example .

Though root joints are always present for every link, in most figures (and in the

interactive software) they are typically hidden from view.

Root joints aid in managing the life cycle of a link by providing a canonical joint

to which any link can return if it loses its parent joint. The connectivity requirement
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Figure 3-3: Cartesian vs. reduced coordinate modeling.
Left: using root joints to emulate Cartesian coordinate modeling. Each root joint has
tree disposition (dark arrows) and sets the pose of the connected link directly with re-
spect to the ground link. All other joints are closures (light arrows). Right: the same
linkage topology in a reduced coordinate model. Root joints are still present connect-
ing each link to the ground link even in the reduced coordinate model; however, they
are all unconstrained 6DoF closure joints, and to reduce clutter such unconstrained
root closures are normally not rendered.

is thus easily maintained, and in this sense root joints play a role as data structure

sentinels in the mutation operations given in Section 3.6.

Root joints can also be used to build Cartesian coordinate models instead of the

reduced coordinate models implied by deeper kinematic spanning trees. As shown in

Figure 3-3, in a fully Cartesian coordinate model all state is encapsulated in the root

joints, which are all tree joints and thus set the poses of the attached links; in a fully

reduced coordinate model all state is contained in the spanning tree joints, and the

tree may have depth greater than one [171]4 . It is thus possible to model a kinematic

cycle in my framework without making any particular joint "special" -- instead all

joints in the cycle are closures.

More generally, root joints enable the user to choose either Cartesian or reduced co-

ordinates for different parts of the model, while always maintaining the required kine-

matic spanning tree. Each technique has advantages and disadvantages, see e.g. [171]

for details. Reduced coordinate models are generally appropriate when the robot

itself is tree structured, as are many articulated robots in practice.

4The wording "absolute" vs "relative" is used in this reference instead of "Cartesian" vs "re-
duced"; in the field of physical dynamics the corresponding terminology is "maximal" vs "general-
ized."



Root joints also serve some roles in homogenizing non-topological interaction.

Click-and-drag manipulation of a link is easily reduced to manipulation of the pose

of its associated root joint, so the interaction code only needs to handle the case

of manipulating joints, even when the operator is actually dragging a link. Also,

it is sometimes desirable to lock the spatial pose of a link, and this can again be

accomplished by locking its root joint. The algorithms that implement manipulation

and locking are described in Chapter 4.

3.2.4 Formal Linkage Definition

The main topological aspects of (and constraints on) a linkage have now been covered,

and much terminology has been introduced that will be used throughout the rest of

the thesis. Definition 10, below, collects all of this information into a concise and

complete reference. In particular, many of the symbols used here are also used in the

algorithm pseudocode in Section 3.6 and in Chapter 4.

This definition is essentially a summary of what has already been stated, though

there is additional structure within 03, detailed below in Section 3.3. Also, three new

components, PL, dL, and Tj, are included as placeholders for hierarchical linkages and

potential energy modeling. These features will be explained in later sections; all are

optional and are disabled by setting the placeholder to 0.

Definition 10 A linkage is a structured graph represented as a 5-tuple

L = (KL, JL, gL, PL, dL) (3.2)

with KL, JL the sets of links and joints

gL E KL the ground link,

PL the parent (enclosing) linkage, if any, else 0 (Section 3.5)

dL the linkage disposition, if any, else 0 (Section 3.5)



with each joint j E JL a 5-tuple

(3.3)

with pj, c3 E KL parent and child links,

mobility representation O, (Section 3.3),

potential energy parameters T, if any, else 0 (Section 4.6),

n3 a name string s.t. P 1o = P31o ~0 n3 1 (sibling joint names unique),

and each link k e KL a triple

k = (pk, rk, nk) (3.4)

with pkfgs, rkgL E JL, PgL = rgL = 0 parent and root joints (none for ground link),

Prk = 9L, Crk = k (root joint connects non-ground link to ground),

j = Pk => k = c (parent-child referential consistency),

nk a name string,

and the edges of a directed spanning tree of L rooted at g are

T= U Pk}.
kEK

(3.5)

3.3 Joint Mobility

This section will fill in the details of O, the mobility of joint j, a pivotal aspect of

the framework. 0, identifies both the current joint transform X,, which sets the 3D

pose of the joint's child frame with respect to its parent frame, and the joint space

J,: the space of all relative poses that j will permit between its child and parent

frames. Nominally, X3 E J,, though it is also possible for a joint to be broken, as

described below.

At the lowest level, both Xj and J j will depend on particular parametrization of

the space of 3D rigid-body motions (displacements) via a translation and orientation

I = (p, c3, 03 , T3, n3)



vector pair (t, 0). Section 3.3.3 introduces this parametrization; it will not be required

before then.

The elements of the representation for J will first be developed informally, and

then collected formally with X, to construct O, in Definition 16.

3.3.1 Components of the Joint Space Representation

One contribution in this thesis is the definition in Section 3.3.4 of a catalog of joint

types Y s.t.

Y C SE(3), (3.6)

with SE(3) the Special Euclidean group of all 3D rigid body displacements

which define canonical mobility spaces for different kinds of joints. For example, there

will be an entry in the catalog for revolute joints, another entry for prismatic joints,

etc. To keep the catalog small (and finite)-in particular, to avoid requiring a separate

type for e.g. each pose of the rotational axis of a revolute joint, or separate types

for joints that differ only in their motion limits-I add three levels of indirection:

mobility limits, an inverszon flag, and positioning transforms.

The limits I, of a joint j will be defined in Section 3.3.5 to trim the canonical

mobility space Y, of j to produce the actual mobility space.

Definition 11 The actual mobility space, or just the mobility space, M, of a joint

j is a restriction of the canonical mobility space-identified by the joint type Y,-to

the joint limits I,:

Mj = Y,1I (3.7)

And, just as Xj E J, for an unbroken joint, the mobility space nominally contains

the mobility transform Mj, the factor of Xj which varies with the joint's pose.



Definition 12 The mobility transform M3 of j is the part of the pose of the joint

(technically, M3 is a factor of X,, as in Eq. 3.9) which varies when the joint moves. j

is unbroken iff M 3 E M,, otherwise j is broken.

For example, the mobility transform for a revolute joint would normally give its

current axial rotation.

To see why any joint would ever need to be broken, refer to Figure 3-2 (this is

a classic observation in kinematics). Without the labelled closure joint o, the pose

Xk 2 -k8 of link frame Fk8 with respect to Fk2 is unambiguously determined by the

connecting chains of tree joints (g +- ks, g 4- k2), and'Eq. 3.1. But with the closure

joint in the picture, it must also hold that Xo = Xk 2 -k8 .

There are a few reasonable ways to handle this situation; my design choice is that

Eq. 3.1 always takes priority, and thus the closure joint transform Xo is always defined

by the tree joints that support links ks and k2. Even if all of those tree joints are

unbroken, it is entirely possible that the resulting Xo will break the closure joint o.

Thus, in my representation the closure joints-and only the closure joints-may be

broken.

The mobility transform normally takes coordinates from child to parent frame.

However, it is useful to support the inversion of a joint, where this relationship is

reversed, and for that purpose I include an additional flag.

Definition 13 The mobility inversion flag

3 EC {+1, -1}. (3.8)

determines whether M, or its inverse defines the pose of the joint; cf. Eq. 3.9.

Such a flag is not the only way to implement inversion, but it does simplify some

operations. In particular, joint inversion via flipping q, does not require any change

to M,: whether or not j is inverted, it is always the case that M, E MA for an

unbroken joint. The full details of joint inversion are given in Algorithm 3.5 on

page 90.



The variable mobility transform Mj combines with two constant transforms to

produce the joint transform Xj, and the set of all Xj produced from Mj E Mj forms

the joint space Jj. The formal definitions are as follows:

Definition 14 The mobility space positioning transforms Cj and Pj are arbitrary

rigid body transforms that give constant offsets for the child and parent frames of j,

Fcj and FB,, respectively, relative to the child and parent mobility frames Fcmj and

Fpmj of j.

The joint transform Xj for joint j (Definition 3), is the serial composition of the

positioning transforms, interposed by the mobility transform, as shown in Figure 3-4:

(3.9)x, = PjM Cj.

Specifically, Cj takes coordinates in Fcj to Fcmj, Mjj takes coordinates in Fm, to

Fpmj, and P takes coordinates in Fpm, to F.

child link
frame I

rent link
frame

Figure 3-4: The mobility space positioning transforms.

This figure shows the detailed breakdown of sub-transforms and coordinate frames

associated with a single joint. The overall joint transform is the product of a chain of

three sub-transforms (Eq. 3.9). The outer two are positioning transforms which pose

the inner mobility transform in space. The mobility transform represents actual joint

motion, for example, the rotation of a revolute joint.

Definition 15 The joint space Jj of a joint j is a subspace of SE(3) induced by the



mobility space MA and the positioning transforms:

3 {X, = PM3,'C, M3 E MA} c SE(3).

Note that X, E ~ M3 E M,.

3.3.2 Formal Mobility Definition

Definition 16 Formally, the mobility representation 0, of joint j is a 6-tuple

03 = (M, Y1 3,1,3 P, C3 ) (3.11)

with mobility transform M E Y 11, if j is a tree joint, else M = 0 (see below)

Y the joint type and I, the joint limits,

0, E {+1, -1} the mobility inversion flag,

P,, C, the positioning transforms.

The reason the mobility transform for a closure joint j is not explicitly represented

(MA  = 0 if j is a closure joint) is that it is always implied by the mobility transforms

of supporting tree joints.

Definition 17 The support S, of j is the minimal sequence of joints from the parent

link p, to the child link c]. S, is partitioned into into the downchain S, 3 of joints

from p, to the least common ancestor link5 LCA(p., c3 ) and the upchain ST3 from

LCA(p,, c,) to c,:

Si = (St 3 , ST3 ) (3.12)

The mobility transform for a closure joint is computed from the mobility transforms

5I.e. the topologically nearest link in L that is an ancestor of both p, and c3 .

(3.10)



of the supporting tree joints based on Eq. 3.1 and 3.9:

for a closure joint j with support S, = (Stj, ST,)

M3 C.fJ , Xi )F (3.13)

with the products taken in chain order.

3.3.3 (t, 0) Parametrization of SE(3)

The development so far has treated rigid body transforms as black-boxes. In this

section the box is opened and I describe my representation for transforms, which is

based on separate vectors t and 0 for translation and rotation:

X E SE(3)= (t E R3 , 0 e B (3)) (3.14)

with B'(d) the closed ball of radius r centered at the origin in IRd

(I bend notation slightly, using the symbol for a transform X interchangeably with

its parametrization (t, 0)). t is a standard translation vector, and 0 is an orientation

vector. Orientation vectors are presented in detail in Appendix B; the main idea is

that the direction of 0 defines the axis and its length the amount of rotation.

If F, is the child frame and Fp the parent frame of a joint j with joint transform

X, = (t, 0) then

e t gives the location of the origin of F, in Fp, and

* 0 gives the rotation of F, in F,. Specifically, the axis of the extrinsic spatial

rotation that makes F, co-oriented with Fp contains the point t and is parallel

to 0 (both t and 0 are taken to be in frame Fp), and the amount of (right-hand-

rule) rotation about this axis is 11611 radians.

Figure 3-5 illustrates the transformation between two arbitrary coordinate frames

given by t and 0.
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Figure 3-5: (t, 0) transform representation.
t is a translation vector giving the location of the origin of a child frame in its parent
frame. 0 is an orientation vector: the direction gives the axis and the length the
amount (right hand rule, radians) of the spatial rotation of the child frame's axes in
the parent frame.

One main reason I use this representation is that, because it contains only six pa-

rameters, there are no implicit constraints. Other popular representations (cf. [98]),

including those based on unit quaternions and rotation matrices, contain more than

6 parameters-the total dimension of SE(3)-and account for this by requiring addi-

tional algebraic relationships to hold among them. This would put extra burden on

the numeric SOLVE algorithm in Chapter 4.

The trade-off is that the global topology of the (t, 0) parametrization space is

actually not the same as the topology of SE(3), which is non-Euclidean. I apply the

dynamic reparametrization technique recently popularized by Grassia in [55] to handle

this: whenever the state of a transform approaches a singularity in the parametriza-

tion space, a reparametrization is applied to a different set of parameters representing

the same transform, but avoiding the singularity. The details are given in Appendix B.

The other major advantages of the (t, 0) representation are (1) that it supports a

compact implementation for the catalog of joint types, developed below Section 3.3.4;



and (2) that it admits a straightforward representation for the limits of common

revolute and prismatic joints, Section 3.3.5.

Transform Computations

Three essential transform operations are composition (represented as multiplication of

transforms), inversion, and the transformation of coordinate vectors (points). These

are computed in the (t, 0) parametrization as follows, building on the corresponding

operations for orientation vectors and unit quaternions given in Appendices B and C,

respectively:

(t, 0,)(tu, 0,) = (vp(exp(8v)t, exp(-Ov)) + t , log(exp(Ov) exp(0,))) (3.15)

(t, 0) - 1 = (- vp(exp(-0)t exp(0)), -0) (3.16)

(t, )v = vp(exp(0)v exp(-0)) + t. (3.17)

The functions exp(0) and log(q) are the exponential and logarithmic maps defined in

Eqs. B.9 and B.10; vp(ql) and the operation t producing a quaternion from a vector

t E R3 are defined in Eq. C.4. These equations may seem cumbersome relative to other

representations, such as homogeneous transformation matrices, but it is not hard

to optimize their implementation in practice with judicious caching of intermediate

results (exp(0) in particular).

The residual computations in Chapter 4 use one more operation on transforms,

the algebraic difference

X1 - Xo = (tl, 01) - (to, 00) = (ti - to, 01 - o00) (3.18)

(X 1 - Xo is not itself considered to be a transform). Though it is well-known [13]

that there is no ideal distance metric on SE(3), it is nevertheless true that

X --+ X0o e IaXs - X0ol -- 0, (3.19)

as long as nearest orientation vector aliases are always selected (Section 4.9.1).



3.3.4 The Catalog of Joint Types

The domain D of the (t, 0) representation is the product space R3 x B3(wr), which

can be considered embedded in R6:

D = (R3 x B 3(7r)) C IR6, (3.20)

though because the space of orientations is not Euclidean, the standard linear algebra

of IR6 does not also apply to D.

Definition 18 The type Y, of a joint j can now be precisely defined as a (semantically

meaningful) subspace of the full (t, 0) parameter space D.

For example, the type of a revolute joint would be a 1-dimensional subspace of D in

which the only variable is the length of the rotation vector.

This section will present my method for producing a useful catalog Y of joint

types by intersecting axis-aligned subspaces of IR6 with D. This catalog is expressive,

in the sense that all joint types used in a broad class of common articulated robots

are included, including all the lower pairs (Appendix A) except helical, as well as

a selection of several higher pairs; and it is generative in the sense of a grammar:

an infinite set of novel constructions are possible. Expressiveness ensures virtual

articulations are convenient in constraining high-DoF motion (Chapter 5) and in

modeling contact, compliance, and uncertainty (Chapter 6). Generativity ensures

that, even though the catalog is relatively small, it will suffice for a wide variety of

robots and tasks.

Interestingly, a fairly powerful form of generativity is known even for linkages re-

stricted to rotating (revolute in 2D, spherical in 3D) joints [37]. Kempe's universality

theorem [80] states that even in this restricted context, it is possible to design a link-

age which "signs your name,"6 i.e. some link can be made to move along an arbitrary

polynomial curve (2D) or surface (3D) [79]. This level of generativity is thus "free"

because the joint catalog includes revolute and spherical joints.

6This particularly visual description is attributed to William Thurston [82].



The catalog will be developed in three parts. First the combinatorics of the

entire family of axis-aligned linear subspaces of 1D will be analyzed. Then the results

of this analysis will be collected in a formal definition of Y. Finally, the actual

implementation will be briefly introduced.

Combinatorics

Definition 19 Formally, the axis-aligned (linear) subspace A(a) of Rd identified by

the binary index vector a E {0, 1}d is the subspace

A(a) = {p = (po,... ,pd-1) E IRd I Voi<d (ai = 0) -= (p, = 0) (3.21)

with a = (ao,..., ad-) E {0, I}d

i.e. the i'th coordinate of p is zero if the i'th coordinate of a is zero, and is uncon-

strained otherwise.

For notational compactness, I use a d-bit binary integer a to refer to the corresponding

binary vector a E {0, 1}d, and when I speak of A(a) as a subspace of D I formally

mean

(A(a) n ) C Rd. (3.22)

In general there are are 2d axis-aligned subspaces of IRd, so for 1) C R 6 there is

a family of 26 = 64 subspaces to consider. Fortunately, not all are distinct for our

purposes: Theorem 1, below, will establish that they are partitioned into only 20

equivalence classes. This reduction is made possible by the fact that the positioning

transforms of a joint j, C, and P in Eq. 3.9, are sufficient to conjugate the mobility

transform Mj by an arbitrary rigid transform.

Definition 20 In this context, conjugation of a rigid transform M is the application

of a rigid transform A, followed by M, followed by A -1 , with the aggregate effect of

changing the coordinate frame in which M is applied.



Specifically, to conjugate M by an arbitrary transform A set C' = AC, and P,' =

P3A- 1, where C, and P were the original positioning transforms. Then

X 3 = P3MC = (P3A- 1)M(AC) = PJ'MC .  (3.23)

Conjugation can be used to establish isomorphisms among the axis-aligned sub-

spaces of D. For example, the subspace of x-translations A(100000) is mapped to the

subspace of y-translations A(010000) by the rigid transform Rz(ir/2) = (t = 0, 0 =

(0, 0, r/2)), i.e. a permuting rotation of w/2 about the z-axis.

Definition 21 In this context a permuting rotation, or permutation, is a rotation by

a multiple of 7r/2 radians about a coordinate axis.

In fact, conjugacy forms an equivalence relation' ~ on axis-aligned subspaces of

D. Let U, V, and W be such subspaces. Then U - U via conjugation by the identity

transform (reflexivity), U V by A implies V -U by A- 1 (symmetry), and U - V

by A and V - W by B implies U - W by BA (transitivity).

Definition 22 The equivalence classes under - are called conjugacy classes.

Theorem 1 There are exactly 20 conjugacy classes of the axis-aligned subspaces of

D. Four are one-member classes, 12 are three-member classes, and four are 6-member

classes.

PROOF By exhaustive enumeration. This will be more than just tedious as it will

introduce a nomenclature and symbology for the joint catalog.

First consider the subspaces A(000000) and A(111111). These form two of the

singleton conjugacy classes, called F (fixed) and G (general), because they are the

only zero resp. six-dimensional subspaces.

Next consider the 7 remaining translation-only subspaces A(xxx000). The three

single-translation subspaces are equivalent: translation along one axis is mapped to

7A more general version of this property is well known, and is covered in e.g. [147].



translation along another by a permutation about the third. These form a three-

member conjugacy class called P, the prismatic class. Similarly, the three two-

translation subspaces are pairwise equivalent by permutation about the common axis,

and form the three-member conjugacy class P 2 . Finally, the three-translation sub-

space is unique and forms a third singleton conjugacy class, P3 . p, P 2 , and P3 are

all distinct from each other because their included subspaces all differ in dimension,

and distinct from F and G for the same reason.

Similarly, there are 7 remaining rotation-only subspaces A(000xxx). The three

single-rotation subspaces are pairwise equivalent by permutation about a perpendic-

ular axis, and form the revolute conjugacy class R. Three subspaces allow rotation

about any axis through the origin in one coordinate plane, are pairwise equivalent by

permutation about the common axis (i.e. at the intersection of the planes), and form

the swing conjugacy class W. I call this swing rotation after [10], and I call the plane

containing the possible axes of rotation the swing plane. Finally, the three-rotation

subspace is unique and forms the fourth and final singleton conjugacy class, S (spher-

ical). R, W, and S are distinct from each other because their included subspaces

differ in dimension, and all are distinct from the previously defined classes either by

difference in total dimension or in the number of translational dimensions.

The 8 subspaces A(xxx111) have unconstrained rotation. We have already covered

two: G = A(111111) and S = A.(000111). The remaining six form two more three-

member conjugacy classes: PS permits one axis of translation, and P2S permits two.

Subspaces in PS are pairwise equivalent by permutation about the axis perpendicular

to their translation axes, and subspaces in P 2S are pairwise equivalent by permutation

about the common translation axis. By similar arguments the remaining six subspaces

A(111xxx) with unconstrained translation split into two three-member conjugacy

classes, P 3R and P3W with one resp. two-axis rotation. PS, P2S, P3 R, and P3 W

are distinct from each other and from previously defined classes by difference either

in number of translational or number of rotational dimensions.

So far we have covered 28 of the 64 total axis-aligned subspaces of D, and identified

all four of the singleton equivalency classes as well as 8 of the 12 three-member classes.



The remaining 36 subspaces have either one or two axes of translation and either one-

axis or swing rotation.

The 18 remaining one-rotation subspaces are divided into two categories depend-

ing on whether the rotation axis is perpendicular to one/both translation axis/axes.

There are two conjugacy classes in each case: C (cylindrical) and P 2R have a rota-

tion axis parallel to one resp. one of two translation axis/axes; PR and E (planar,

from the German ebene8 ) have a rotation axis perpendicular to one resp. both of

two translation axis/axes. C and E are each three-member classes of subspaces pair-

wise equivalent by permutation about the axis perpendicular to both rotation axes

in the pair; P 2R is a six-member class of subspaces pairwise equivalent by first a

permutation about the common translation axis in the pair (if necessary) and then

a permutation about the axis perpendicular to both rotation axes (if not already

parallel); PR is another six-member class of subspaces pairwise equivalent by first

a permutation about the axis perpendicular to both translation axes in the pair (if

not already parallel) and then a permutation about the axis perpendicular to both

rotation axes (if not already parallel). C and PR are distinct from each other due to

the parallelism/perpendicularity of the rotation axis relative to the translation axis,

and similar for P 2R and E. C and PR are each distinct from P 2R and E by differ-

ence in the number of translational dimensions, and similarly all four new of the new

classes are distinct from previously defined ones by difference in either the number of

translational or the number of rotational dimensions.

The final 18 subspaces all permit swing rotation. Adjoining swing rotation with

one translational axis results in two conjugacy classes PIIW and PIW depending

on whether the translation axis is parallel resp. perpendicular to the swing plane.

PIIW is a 6-member equivalency class and PIW is a three-member class; in each

class subspaces are pairwise equivalent by permutation about the axis perpendicular

to both translation axes in the pair. Adjoining swing rotation with two translational

axes results in the two final conjugacy classes P W and P W depending on whether

one of the translational axes is perpendicular to the swing plane. P2W is a three-

sP is already taken, and Reuleaux was German [73].



member equivalency class, and P2W is a six-member class; subspaces in P2W are

pairwise equivalent by conjugation about the common translation axis in the pair,

and subspaces in P W are pairwise equivalent by first a permutation about the

common translation axis in the pair (if necessary) and then a permutation about

the intersection line of the swing planes (if necessary). P 11W and PIW are distinct

from each other due to the relative parallelism/perpendicularity of the translation

axis relative to the swing plane, and similar for P2W and P2 W. P 1IW and PIW

are each distinct from p2 W and P2W by difference in the number of translational

dimensions, and similarly all four of these final classes are distinct from previously

defined ones by difference either in the number of translational or the number of

rotational dimensions.

Some additional observations:

* every space in every class contains the identity transform 0, because every axis-

aligned subspace contains 0 E D

* the 5 lower pair joints other than helical correspond to the equivalence classes

S, P, R, C, and E

* P, R, W, and S are indivisible, but the remaining 16 classes can be assembled

by serial composition thereof.

* Let R+R+R be the serial concatenation of three mutually perpendicular revolute

joints, and similarly, let W+R be the serial concatenation of a revolute followed

by a swing joint, again with perpendicular rotation axes. S 5 R+R+R and

S / W+R due to the possibility of gimbal lock both in R+R+R and in W+R

* R+R, the serial concatenation of two perpendicular revolute joints, is called

a universal joint. W = R+R, i.e. a swing joint is different from a universal

joint, due to differences in the induced twist, a concept which is introduced in a

similar situation in [10]. However, it is the case that W+R = R+R+R because

the additional revolute freedom allows the induced twist to be compensated.



Formal Definition of Y

Summarizing, the four one-member equivalence classes of axis-aligned subspaces of

D are

Y = {F, G, P 3, S}, (3.24)

the 12 three-member classes are

y3 = P, P 2, R, W, PS, P 2S, P 3 R, p3 W, C, E, P1 W, P W}, (3.25)

and the four 6-member classes are

yo = {P 2R, PR, P 11W, PIW}. (3.26)

Definition 23 The 20 equivalence classes essentially give the joint catalog

y = y1 u 3 uy 6 , (3.27)

except that the catalog is a set of joint types Y which are subspaces of SE(3), not

equivalence classes. This is simply addressed by picking a canonical member from

each class identifying a representative subspace of D, and thus SE(3), as shown in

table 3.1.

For brevity, I will consider the equivalence class to be a symbol for the representative

subspace. So for example, when Y = R is considered a joint type, it refers to the

subspace A(000001) (or sometimes just the index vector a = (0, 0, 0, 0, 0, 1) or binary

number a = 000001 depending on context).

Implementation

Computationally, the entire catalog could be encoded by a table with one entry per

type, with all other code implemented in a sufficiently general way to handle any

joint type uniformly. However, supporting an attractive and informative graphical

rendering for each joint type seems to require some additional special-case code per



joint type. Also, it is not strictly necessary to implement every joint type, both due to

the fact that only P, R, S, and W are indivisible and also due to Kempe's universality

theorem showing the generativity of linkages based on S (or R in 2D) alone. Thus

in the current software implementation I have chosen to provide only 11 of the full

catalog of 20 types

R, P, C, S, E, PR, PS, P 2S, P 2, P 3 , G, (3.28)

with convenient names given table 3.1 and graphical renderings as shown in Figure 3-

6.

representative index
equivalence class class size tx ty tz Ox y Oz implementation name

R 3 0 0 0 0 0 1 revolute

P 3 0 0 1 0 0 0 prismatic
C 3 0 0 1 0 0 1 cylindrical
S 1 0 0 0 1 1 1 spherical
E 3 1 1 0 0 0 1 planar

PR 6 1 0 0 0 0 1 pin-slider
PS 3 1 0 0 1 1 1 point-slider

P 2 S 3 1 1 0 1 1 1 point-plane
P 2  3 1 1 0 0 0 0 cartesian2
P3  1 1 1 1 0 0 0 cartesian3
G 1 1 1 1 1 1 1 general

F 1 0 0 0 0 0 0
P"R 3 1 1 1 1 0 0
P 2 R 6 1 1 0 1 0 0
W 3 0 0 0 1 1 0

P 3W 3 1 1 1 1 1 0
PW 3 0 0 1 1 1 0
PIIW 6 1 0 0 1 1 0
P W 6 1 0 1 1 1 0
P-W 3 1 1 0 1 1 0

Table 3.1: The joint catalog.
Only entries with an "implementation name" are available in the current software
implementation.
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Splanar in-slider point-slider point-plane

Cartesian-2 Cartesian-3 general

Figure 3-6: Joints available in the implementation.
Each joint type has a specific dynamic rendering in the 3D graphics window of the
mixed real/virtual interface. Connections to the child and parent links are shown as
Bezier curves; the link frames are rendered as red/green/blue axis triads.

3.3.5 Joint Motion Limits

Commonly, the mobility space Mj for a joint j is only a proper subspace of the

prototypical space given by its type Yj. For example, revolute joints in articulated

robots are usually limited to a minimum and maximum rotation angle. Another

use for joint limits is in modeling some types of contact changes, as explained in

Chapter 6. The final part of the mobility representation Oj is a representation Ij

for such limits, interpreted to "trim" or restrict the prototypical mobility space Yj as

symbolized in Eq. 3.7.



My method for representing joint limits is of the same flavor as the method used

to form the joint catalog: I, will identify another embedded subspace of R6; in this

case Ij is selected from the family of axis-aligned bounding boxes.

Given the variety of mobility space topologies in the joint catalog, this represen-

tation for I, balances generality with capability. Spherical and swing mobility are

known [10] in particular to present a challenge-what is the most meaningful and

concise way to specify limits for these multi-freedom rotations? Though this is an

interesting question, I choose to avoid the issue. It is true that practical mechani-

cal implementation of a spherical or swing joint would seem to require some motion

limits, and such limits are also important for accurate models of biological joints

(e.g. the human shoulder). However, spherical and swing joints seem to be quite

rare in real articulated robots, with the exceptions being spatial parallel mechanisms

(e.g. Gough-Stewart platforms), themselves relatively uncommon and specialized,

and perhaps a handful of more esoteric mechanisms. A more flexible limit represen-

tation which better addresses these cases is a possible future extension.

My representation does work well for the more common types of limited mobility-

prismatic, revolute, and combinations thereof.

Definition 24 The family of axis-aligned bounding boxes, with possibly infinite width

in each dimension is

BBd (I, u) = {p = (po,. . ,Pd-1) E Rd Vo<i<d 4l < pi u,} (3.29)

with limit vectors 1 = (lo, . . . , d-1), u = (Uo, . .. , Ud-) E (R ( {±oo})d (3.30)

VO<i<d 1i < u, and 1, = -oo == u, = +oo. (3.31)

Definition 25 I represent the bounding space Ij of a joint j by partitioning the

limit vectors into translation and rotation components, which enables an additional



constraint that is explained below:

1, = ((lt, le) , (Ut, Uo)) (3.32)

with (it, ut) and (lo, uo) satisfying Eqs. 3.30 and 3.31 (3.33)

and either le = (-oc, -oo, -c) and Uo = (+oc, +oo, +oc)
(3.34)

or BB 3 (lo, uo) C B 3 (2-r).

Then the bounding space is

BB 6 ((It, l), (Ut, 0 )) C R6 ,  (3.35)

and the formal semantics of the mobility space restriction are

with Y = A(ao,... , as) and I = ((lo,...,15), (Uo,... ,U5 ))

Y I = {(Po,... ,p) E R 6 V0< <6 if ai = 0 then p, = 0 else 1, < p, _ u,} . (3.36)

The ability to specify infinite bounds allows each axis of motion in a combined

prismatic-revolute mobility space-E, C, or P'Rk with j E {0, 1, 2, 3} and k E

{0, 1}-to be limited (or not limited) independently. The constraint 3.34 means that

either the orientation vector 0 is either limited to a subset of B 3(27r) or it is not

limited at all. Since dynamic reparametrization will always keep 0 within fB3(7),

this simplifies finding an in-limits alias of 0 while still allowing revolute joint limits

1 < Oz < u to be specified in a full -27 < 1 < u < 27 range (recall that the 2, and

0, components of a revolute joint's mobility are constrained to 0 already). Further

discussion of this constraint is given in Section 4.9.1.

This completes the presentation of all of the parts of the joint mobility represen-

tation.



3.4 Joint Space, Configuration Space, and DoF

We now make some observations about, and definitions of, properties of both the

mobility of a single joint and the combined mobility of all the joints in a linkage.

Some of the terminology here is fairly standard in kinematics, but it is still helpful to

see concretely how the various concepts are grounded in my framework.

3.4.1 Properties of the Mobility of a Single Joint

By construction, the mobility space MA for a single joint j is a manifold, possibly

with boundary, so it is a space with a well-defined dimension.

Definition 26 The number of degrees of freedom (DoF) f, of j is the dimension of

M,, and the number of degrees of invariance (Dol) ij of j is

i3 = 6 - f,. (3.37)

The DoF themselves are the coordinate axes of D corresponding to non-zero entries

in the binary index a of the prototypical axis-aligned subspace for the joint type Y,,

and similarly the Dol are the coordinate axes corresponding to the zero entries in a.

For example, for a cylindrical joint a = 001001, the fj = 2 DoF are (tz, Oz), and the

ij = 4 DoI are (tx, ty, Ox,).

Definition 27 The state x, of a tree joint j is a column vector of the f, components

of its mobility transform corresponding to its DoF, and the state yo of a closure joint

o is a column vector of all 6 components of its mobility transform. The invarant

error eio of a closure joint o is a column vector of the io components of its mobility

transform corresponding to its Dol.

Definition 28 For a single joint j, the configuration space Cj is equal to the mobility

space AM,. If j is unbroken then the mobility transform My is in C,, and is called a



configuration of j; I call any assignment to M,, even one which is not a configuration,

a pose of j.

In robotics the term "configuration space" often refers more specifically to the space of

collision-free configurations, but since no surface geometry is included in our model,

there are no collisions. As mentioned at the beginning of the chapter, I do not focus

on collision in most of this thesis, though it could be added in future extensions.

Joint Mobility Restriction and Generalization

The mobility space of a physical joint is typically fixed. However, there are contexts

where it is nevertheless useful to consider virtually changing restricting or enlarging

(generalizing) it. The possibilities are even more relaxed for virtual joints.

Definition 29 Let Y and I be the type and mobility of a joint with mobility space

M. (Virtually) changing to type Y' and/or limits I' s.t. the resulting mobility space

M' is a proper subspace of M, i.e.

(M' = Y'| p) C (M = Y ) , (3.38)

is joznt mobility restriction. The opposite procedure, (virtually) changing to type Y'

and/or limits I' s.t. M C M', is joint mobility generalization.

Restriction and generalization are directly enabled by the SETTYPE and SETLIMITS

mutation primitives, Algorithms D.7 and D.8.

3.4.2 Properties of Whole-Linkage Mobility

All of these definitions extend to a full linkage L. Let J be the set of joints and T C J

be the tree joints with a particular ordering

T = (to, - - , tlT-1) . (3.39)



Definition 30 Then the mobility space9 M of L is the product space of the individual

tree joint mobility spaces, in order:

(3.40)A4= H .t
o~i<TIrl

Definition 31 I call any point in M a pose of L.

M is a manifold, possibly with boundary, because it is the product space of such.

Definition 32 The number of DoF f of L is the dimension of M:

(3.41)f=Z f,
3ET

The number of Dol i of L is the sum of the number of Dol of the closure joints in L:

(3.42)i= i3.

Definition 33 The tree state x of L is the concatenation of the states of its tree

joints, in the order given above

xT X xT)EM CRf. (3.43)

Similarly, let

(3.44)

be an ordering of the c closure joints J \ T of L.

9The term "joint space" is often used for M, but I prefer "mobility space" to avoid confusion
with the case of a single joint, where I use different definitions for the terms (Eqs. 3.10 resp. 3.7).

C = (oo, * ,OIJ\Tll )



Definition 34 Then the closure state y of L is the concatenation of the states of

its closure joints in order, and the invariant error e, of L is the concatenation of the

invariant errors of the closure joints in order

yT = T yyT )i D E c R I 6CI (3.45)

T Te =eoo," " ,oe c,- E R (3.46)

e, is a projection II, of y,

ei = ry, (3.47)

with H, an [i x 61C|] binary matrix mapping y to ei by selecting only the Dol of each

closure joint. That is, each row p of II contains exactly one non-zero entry, say at

column q, where q corresponds to the p'th entry in the concatenated sequence of all

Dol of all joints in C.

Definition 35 A configuration of L is a point in M corresponding to a pose of the

linkage in which no closure joint is broken, and the configuration space C of L is the

subspace of M consisting of all its configurations

C C M s.t. VEM X E C x== x is a configuration. (3.48)

Unlike the case for a single joint, it is entirely possible that C # M.

3.4.3 Local vs. Global Properties of C

The global shape of C is a classic study in kinematics (e.g. [124])-it may be empty, it

may be disconnected, and it may contain both discrete and continuous components.

These are interesting and useful properties, but I do not focus on them. Instead, my

approach is to rely as much as possible on the shape of C local to the current state x



of the linkage. This makes my approach more related to the field of control than to

planning.

Definition 36 The forward kinematic mapping FK of L computes y given x

FK : M -- DIC| FK(X) = y, (3.49)

and is computable by composing appropriate instantiations of Eqs. 3.13, 3.15, and 3.16;

a detailed algorithm is given in Appendix G.

Figure 3-7 illustrates FK(x).

Figure 3-7: The forward kinematic mapping.
In this formulation, the forward kinematic mapping FK computes the closure state y
as a function of the tree state x. y is a concatenated vector of the closure joint (t, 8)
state vectors; x is a concatenated vector of the DoF of the tree joints.

The differentiability of the underlying operations implies that FK is itself differen-

tiable; an algorithm to compute derivatives of FK will be presented in Section 4.9.2.

Definition 37 C is the kernel (zero set) of the related forward invariant error map-

ping

ei = FKi(Z) = [iFK(x).FKi : Rf -- Ri (3.50)



And the local shape of C at x is approximated by the local linearization

J,(x) - e _ FK,(x). (3.51)
[txf] ax (X

Specifically, the neighborhood of C at x is approximated by the tangent space of

vectors Ax s.t.

0 = J(x)Ax. (3.52)

In robotics this approach dates back at least to Whitney's work in the late 1960s [164],

and it has also been popular in graphics, where Gleicher called it the "differential con-

trol" approach [54]. For our present study, it will be shown in subsequent chapters

that this local approach yields both a consistent theory for modeling virtual articu-

lations and kinematic abstractions and also a useful implementation.

The few global concepts I use are as follows.

Definition 38 If C = 0 then L is inconsistently over-constrained, or just inconsistent

or over-constrained. Otherwise I consider only the component of C containing the

current configurationio, and say that L is consistent. If this component is continuous

then L is (locally) under-constrained; this is the common case. Otherwise, if the local

component is discrete, i.e. a single point, then L is (locally) rigid.

3.5 Hierarchical Linkages

The framework presented so far is sufficient to model linkages of arbitrary topology,

but it does not include any strong way to structure, or subdivide, large graphs. Sub-

division can make sense in practice since many real-world robots contain repeated

kinematic sub-structure, e.g. multiple copies of identical legs. When possible, break-

ing a model up into decoupled components can also speed up motion computations

(cf. the ANALYZE algorithm in Chapter 4). Further, subdivision is important in using

virtual articulations in an operator interface for high-DoF mechanisms (Chapter 5)-

10We can assume that the current pose of a consistent linkage L is actually a configuration, because
the iterative solver acts to move any pose x onto C, and then to keep it there.



in many cases the operator can specify motions independently for smaller parts of

the model, and thus break up the job of motion specification. Taking this a step

further, virtual articulations combined with model hierarchy enable my technique of

structure abstraction (Section 3.5.3, below), where a complex kinematic subsystem is

abstracted as a simpler virtual mechanism capturing the intended motion.

A unique feature of my framework is that it supports these kinds of subdivision by

structuring the overall model into a hierarchy (tree) of properly nested sub-linkages.

Definition 39 Each sub-linkage L has the representation developed above (Def. 10

and its subsidiary components), with two modifications: some joints are crossing

joints, detailed below, which connect between links in differing sub-linkages, and

the ground link of a sub-linkage has a root joint, attaching it to the ground link of

the enclosing (parent) linkage. Sub-linkages contain a reference PL to this enclosing

linkage and a disposition dL E {0, driving, driven}; a sub-linkage with dL = 0 is

simultaneous. The top-level sub-linkage, at the root of the hierarchy, has PL = dL = 0.

The ground link of the top-level sub-linkage is referred to as go.

Figure 3-8 shows an example containing driving, driven, and simultaneous sub-linkages.

L

L

k kf

9k 92

Figure 3-8: A hierarchical linkage
Sub-linkage L 1 is driving, L2 is simultaneous, and L 3 is driven. Tree joints are repre-
sented by dark colored arrows; closure joints are light colored.



Definition 40 The flattening of a hierarchical linkage is a non-hierarchical linkage

which results from simply ignoring all sub-linkage boundaries.

3.5.1 Sub-linkage Disposition

The disposition of a sub-linkage determines whether

* it is considered rigid with respect to its enclosing linkage (driving)

* its enclosing linkage is considered rigid with respect to it (driven)

* it is considered mobile in the same context as its enclosing linkage (simultane-

ous).

Simultaneous sub-linkages can serve to demarcate a connected kinematic sub-system,

but do not actually change the way motion is computed. Driving and driven sub-

linkages enforce new constraints on the possible relative motion of the sub-linkage

with respect to its parent-in each case, one will act as if it were a single rigid link

with respect to the other. For physical linkages, such a subdivision may only be really

enforceable if the driving component is fully actuated (i.e. if there is rigid kinematic

control authority over all DoF). But we are free to define the actuation of virtual

articulations as we wish, so this kind of hierarchy is another area uniquely strong for

mixed physical/virtual systems.

This chapter covers the structure of, and topological operations on, hierarchical

linkages. Later, Section 4.10.1 in Chapter 4 will present a hierarchical decomposition

algorithm which computes motion of driving and driven sub-linkages.

3.5.2 Crossing Joints

In the hierarchical case an overall spanning tree must still exist, rooted at the ground

link go of the top-level sub-linkage, and spanning all links in all descendant sub-

linkages. To maintain this overall connectivity (and, generally, to be less than trivial),

there must be crossing joints which connect between links in different sub-linkages.



Definition 41 Each joint j in a hierarchical linkage either connects two links in the

same sub-linkage L, or is a crossing joint connecting a link in one sub-linkage L with

a link in the enclosing sub-linkage. In both cases j is a member of the set of joints of

L (only).

Note that crossing joints which e.g. connect links in different sibling sub-linkages, or

from a sub-linkage to an ancestor or descendant more distant than parent or child, are

not permitted. Only crossing joints to the parent or an immediate child sub-linkage

are allowed.

I make a distinction between crossing joints depending on their parent-child di-

rectionality.

Definition 42 An outcrossing joint connects its child link in a sub-linkage to a parent

link in the enclosing sub-linkage, and vice-versa for an incrossing joint.

In addition to the above constraint that crossing joints cross no more than one sub-

linkage boundary, some additional topological restrictions are also imposed on crossing

tree joints (there are no further constraints on crossing closures):

* Constraints on Outcrossing Tree Joints: Each sub-linkage L always has

exactly one outcrossing tree joint (except for the top-level sub-linkage, which

has none) connecting gL to a link in the enclosing linkage E. This ensures that,

considered individually, each sub-linkage has its own well-defined spanning tree.

Re-grounding (see Algorithm 3.6, MAKEGROUND, later in this chapter) the

sub-linkage automatically switches the outcrossing tree joint, and vice-versa.

* Constraints on Incrossing Tree Joints: There are no restrictions on in-

crossing tree joints for simultaneous or driving sub-linkages, but incrossing tree

joints are disallowed for driven sub-linkages. Otherwise, changing the relative

pose of links in the driven sub-linkage could change the relative pose of other

links in the enclosing linkage, violating the semantics that the enclosing linkage

is rigid with respect to a driven sub-linkage.



Also, the root joint of the ground link 9L of a sub-linkage L (other than the top-

most) is always an outcrossing joint connecting it to the ground link of the enclosing

linkage. The root joints of the other links in L connect to gL.

3.5.3 Structure Abstraction

In computing, it has long been accepted that large systems can be effectively struc-

tured by subdividing them into smaller parts, defining abstractions to represent the

interface each such part presents to the rest of the system. Ideally, the interface has

significantly less complexity than the implementation (the abstracted subsystem).

I now show a particular way to use hierarchical linkages and virtual articulations

to implement a version of abstraction in the domain of kinematics.

Definition 43 Structure abstraction is achieved by (a) encapsulating a connected

part A of a linkage L s.t. A becomes demarcated as a simultaneous sub-linkage of of

L, and (b) substituting a virtual linkage I for A in L, with I simultaneous in L and

A a driven sub-linkage of I. A is the abstracted sub-lnkage (the "implementation")

and I is its interface linkage.

Figure 3-9 shows an example. The concept parallels traditional abstraction in com-

puting: I should be simpler than A, but capture all of the behavior of A that would

be relevant to the surrounding mechanism.

Making A a driven sub-linkage of I is not the only possible way to define a notion

of abstraction in kinematics. For example, keeping A simultaneous could also make

sense. However, the design choice to make A driven defines a fairly strong form of

abstraction: motion of L, with I substituting for A, is independent of the actual

motion of A. This permits A to be effectively decoupled, a simplification that can

be helpful both (a) to an operator designing a motion for a high-DoF robot, and (b)

to the system as it computes motions for a large linkage via the SOLVE algorithm in

Chapter 4. Section 5.4 gives an example.

This decoupling power comes with a trade-off: there is no built-in constraint to

ensure that A can reach every configuration to which it may be driven by I.
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Figure 3-9: Structure abstraction.
In this example the "implementation" A, a series chain of four revolute joints, is
virtually replaced by a simpler piston-like "interface" I. Also see Figure 1-3.

Definition 44 I is a proper abstraction of A if all of the reachable configurations of

I, when embedded in the surrounding linkage L, drive reachable configurations of A.

It would be desirable to have an efficient algorithm that could determine, for any L,

I, and A, whether I is a proper abstraction. This may be possible in some special

cases, but unfortunately, the general case is easily shown to be hard.

Theorem 2 Determining whether an abstraction is proper is PSPACE-hard.

PROOF By reduction from the reachability problem for 2D revolute-joint linkages.

Kempe's theorem establishes that the interface linkage I could be constructed s.t.

the links which drive A could move to arbitrary spatial poses. But the problem of

determining the reachability of arbitrary configurations of A from a starting configu-

ration is known to be PSPACE-hard even for the restricted case of 2D linkages with

only revolute joints [34, 70].

Thus, if a proper abstraction is required, it is up to the designer of that abstraction to

ensure it. However, even improper abstractions can be useful when combined with the



constraint prioritization features of the SOLVE algorithm-if the closure invariants in

A are given higher priority (using sub-priorities, if necessary, Sec. 4.7.1) than those

of, say, the crossing joints between I and A, then the motion of A will remain feasible.

It will not exactly match the driving links in I, but because they are virtual, this can

be acceptable.

3.6 Interacting with Model Structure

We have now covered the details of what a linkage is, including both its structure and

its state. The rest of this chapter considers how particular linkage structures arise and

evolve. Algorithms for this level of topological mutation have not often been presented

in detail because there are typically costs (mechanical complexity, physical time, etc.)

incurred to support topological dynamics in purely physical (traditional) linkages.

But virtual articulations do not necessarily have these costs, and both operator-

interface and compliant motion modeling applications call for adding, removing, and

reconfiguring them on-line.

The main result here will be a set of structure mutation primitives that are con-

venient for common kinds of structural and topological changes. In some cases there

will be associated manipulation of joint pose (vs. structure or topology), though the

main discussion of linkage motion is left to Chapter 4.

The set of mutation primitives I present, summarized in table 3.2, is sufficient

to build any linkage structure. For conciseness, this chapter only contains the more

interesting operations-the remaining algorithms are collected in Appendix D. A set

of lower-level helper functions, listed in table 3.3, is also given in Appendix D.

3.6.1 Notation and Assumptions

The mutation primitive algorithms are given in pseudocode that is block-structured

and call-by-reference. Other than formal parameters, types are implied. Local vari-

ables are introduced with "let"; the symbol +- indicates assignment. Error is implied

whenever argument preconditions fail.



primitive name chapter page description

ADDLINK D 227 add a new link

SETLINKNAME D 227 change the name of a link
ADDJOINT D 227 add a new joint

SETJOINTNAME D 227 change the name of a joint
MAKETREE 3 87 change the disposition of a joint

MAKECLOSURE 3 88 change the disposition of a joint
SETPARENT 3 88 re-attach a joint

SETCHILD 3 89 re-attach a joint
REMOVEJOINT D 228 delete a joint
REMOVELINK D 228 delete a link

SETTYPE D 228 change the type of a joint
SETLIMITS D 229 change the limits of a joint

INVERT 3 90 invert a joint
MAKEGROUND 3 91 switch to a different ground link

REPOSITIONLINK D 229 move a link relative to adjacent joints
REPOSITIONJOINT D 229 move a joint relative to adjacent links

RESTRUCTURE D 230 modify joint positioning transforms

SPLIT D 230 insert a new link and joint in-place
MERGE D 230 delete a joint and its child link

ENCAPSULATE 3 92 carve out a new sub-linkage
DISSOLVE 3 92 merge a sub-linkage to its parent

Table 3.2: The structure mutation primitives.

Defs. 10 and 16 formally defined the linkage structure as a collection of several

kinds of tuples. The pseudocode often references or mutates specific components of

these tuples; where necessary the notation "Pw," indicates part p of a tuple within the

definition of whole w. For example, nj could refer to the name of a joint j, M. could

refer to its mobility transform11 , and n , would be the name of its parent link.

Assumptions

Many algorithms use set operations, including adding and removing members of a set

and checking set membership. The analyses assume these operations can be completed

in 0(1) time, though common hashcode-based implementations are actually only 0(1)

expected. The analyses also assume that the time required to iterate over the set of

"1 Technically, M, is a component of the mobility representation 0 3, which in turn is a component

of the representation of joint j.



helper name chapter page description

TREE? D 232 test joint disposition

CLOSURE? D 232 test joint disposition
ROOTLINK? D 232 check if a link is parented to its root

RoOTJOINT? D 232 check if a joint is a root
ROOTNAME D 232 generate a root joint name

OUTCROSSING? D 232 check if joint is outcrossing
INCROSSING? D 232 check if joint is incrossing

CROSSING? D 232 check if joint is incrossing or outcrossing
CLAMPV D 233 clamp a t or 0 vector
CLAMPX D 233 clamp a (t, 0) transform

CMT D 233 get a composite model transform

Table 3.3: Helper functions for the structure mutation primitives.

tree or closure joints adjacent to a link is proportional to the size of that set (and

not, e.g., to the size of the set of all joints in the linkage). This is easily handled in

the implementation with appropriate bookkeeping.

Maintaining Root Joints

A main design goal for the structure mutation primitives is that any sequence of

valid mutations should result in a linkage which satisfies all of the properties set

out in Definition 10 (and subsidiary definitions). In particular, the kinematic graph

must remain connected, and the set of link parent joints must always form a directed

spanning tree rooted at the ground link. In some cases, this involves checking for

(and refusing to perform) invalid actions, such as re-parenting a joint to a link that is

its own descendant. Where possible, however, validity is guaranteed by construction,

and a key feature supporting this is the ever-presence the root joint for each link

(Section 3.2.3). Root joints are maintained internally by the mutation algorithms.

They are always of type G, are never limited, and cannot be explicitly renamed,

re-attached, removed, inverted, repositioned, or merged.



3.6.2 Changing Joint Disposition and Reconnecting Joints

We now come to the first category of mutation primitives, which change the dispo-

sition (tree vs. closure) or the connectivity of a joint. Newly created joints (except

for root joints) are always closures (cf. ADDJOINT on page 227). If no joint is ever

changed to tree disposition then a pure Cartesian model results (Section 3.2.3), so

whenever a reduced coordinate model is intended, some joints must be made tree

joints. MAKETREE, Algorithm 3.1, does this by converting the prior tree parent of a

joint j's child link c to closure, and replacing the tree parent of c with j. j's mobility

transform is clamped to the allowed mobility space and limits as necessary. Thus, if

j was a broken closure before the call to MAKETREE, c (and any descendants) will

necessarily change global pose due to the clamping.

Algorithm 3.1: MAKETREE(j)
Input: closure joint j in linkage L (i.e. j E JL)
Output: j, now a tree joint
for i <-- p, to go do if i = c3 then error c, is an ancestor of p, else i -- ip
if OUTCROSSING?(j) then MAKEGROUND(C,)

else if INCROSSING?(j) and dL = driven then
error incrossing tree joint on driven sub-linkage

else if (c3 = gL) then MAKEGROUND(pj)
M -- CLAMPX((CMT(pm,) -CMT(cm 3))"i, Y, Ij)

MP, +-- 0 (previous parent of c, becomes a closure), Pc, J

return j

Unless c is the ground link or j is outcrossing, which are special cases, MAKETREE

is O(h) with h the spanning tree height of the parent link of j when updated CMTs are

available (see discussion with CMT on page 233). If updated CMTs are not available

then h is the maximum spanning tree height of the parent and child links of j.

When c is the ground link or j is outcrossing a re-grounding is triggered via

MAKEGROUND, given below, and in that case the time complexity of MAKETREE is

dominated by the call to MAKEGROUND.

MAKECLOSURE, Algorithm 3.2, is the complimentary operation to MAKETREE,

and converts a joint currently in the spanning tree to closure disposition. The child

link is re-parented to its root joint, whose mobility transform is updated so that the



link does not change global pose due to the change in topology.

Algorithm 3.2: MAKECLOSURE(j)
Input: tree joint j
Output: j, now a closure
Mrc, +- CMT(C3 ), M +- , Pc, t rc,
return j

MAKECLOSURE is 0(1), assuming updated CMTs are available, or O(h) where h

is the spanning tree height of the child link if its CMT must be re-computed.

SETPARENT and SETCHILD, Algorithms 3.3 and 3.4, are the main operations

for reconnecting existing joints, and thus for evolving the topological connectivity

of a linkage. SETPARENT first checks that the new parent is not a descendant of

the joint, and SETCHILD similarly checks that the new child is not an ancestor.

Both operations maintain the disposition of the joint. For SETPARENT this requires

no additional work, but to handle the case of changing the child of a tree joint,
SETCHILD temporarily makes the joint a closure, which will re-parent the prior child

to its root joint. Both operations also maintain the global poses of the adjacent links,

with SETPARENT putting the "slack," i.e. the difference between the relative pose

of the new parent and the joint's child vs that of the old parent and child, into the

positioning transform P, and SETCHILD putting the slack into C,.

Algorithm 3.3: SETPARENT(j, p)
Input: non-root joint j in linkage L (i.e. j E JL), link p E {KL U KL}
Output: j, now a child of p
if p E K, and c, E K,, then error at least one endpoint must be in L
if n, not unique in p then error name not unique
let t +- TREE?(j), Q +- CMT(pm 3 )
if t then
I for i -- p to go do if i = c then error p is a descendant of j else i ip
3 - p, P, P - CMT(p)-IQ

if t and p E K,, then MAKEGROUND(C3)

return j

SETPARENT is O(h) where h is the spanning tree height of the new parent link,

if updated CMTs are available, or the maximum of the heights of the new and old



Algorithm 3.4: SETCHILD(j, c)

Input: non-root joint j in linkage L (i.e. j E JL), link c E {KL U KP }
Output: j, now the parent of or a closure attached to c
if c E Kp, and pj E K,, then error at least one endpoint must be in L
let t +- TREE?(j), Q +- CMT(cm 3 )

if t then
if c E K, and dL = driven then

error incrossing tree joint on driven sub-linkage
for i +- P, to go do if i = c then error c is an ancestor of j else i -- ip
MAKECLOSURE(j)

Cj <- c, Cj - Q-1CMT(c)

if t then MAKETREE(j)
return j

parent otherwise. SETCHILD is O(h) where h is the height of the joint's parent if

updated CMTs are available, or the maximum of the heights of the parent, the current

child, and the new child otherwise.

3.6.3 Inverting Joints and Re-grounding

The next two mutation operations, INVERT and MAKEGROUND, are somewhat more

complex. INVERT, Algorithm 3.5, flips the topology of a joint in-place, so that its

prior parent becomes its new child, and vice-versa. For a closure joint this is a local

procedure: the mobility space positioning transforms are swapped and inverted, the

parent and child links are swapped, and the mobility inversion flag is flipped. The time

complexity in this case is 0(1). For a tree joint, inversion triggers a re-grounding-the

child link c of the joint to be inverted becomes the new ground link, and all the other

joints on the tree path from c to the prior ground are also inverted. For simplicity,

inversion is not supported for the case of crossing tree joints. The time complexity for

inverting a tree joint is O(h + IKI) where h is the spanning tree height of the parent

of the joint to be inverted. The O(IKI) term is due to the call to MAKEGROUND, at

which point c will always be a root link.

MAKEGROUND, Algorithm 3.6, switches the ground link of a linkage, and also has

two cases. The shorter one is when the new ground link 1 is not currently a root link,

i.e. is not parented directly to the current ground link via its root joint. In this case

w , .



Algorithm 3.5: INVERT(j)

Input: non-root joint j
Output: j, now inverted
let p -- p,, c -- c,
if CLOSURE?(j) then

if n, not unique in c then error name not unique
letC -- C,3, P -- P
P3 +- c, c3 +- p, C, +-- P- 1 , P, C- 1 , , +--

else
if CROSSING?(j) then error cannot invert crossing tree joint
let H be an empty sequence, i -- p
while -RoOTLINK?(i) and i # go do

if np, not unique in i then error name not unique
else append p, to H
i <-- ipp

end
foreach i in H in order do MAKECLOSURE(i)

MAKEGROUND(C)

foreach i in H in order do MAKETREE(i)

return j

MAKEGROUND actually defers to INVERT on the parent joint of 1. Though INVERT

will itself call back to MAKEGROUND, there is no circularity because at the time of

this re-entrant call, 1 will always be a root link. The time complexity in this case is

the same as that of INVERT (tree joint case) on the parent joint.

Making a current root link 1 the ground link involves three steps. First, the root

joints of all other links are re-parented to 1. Second, a root joint is connected from

the prior ground link to the new ground. Third, the root joint for 1 is re-attached

wherever the old ground link's root joint was attached. The time complexity in this

case is O(IKI).

3.6.4 Operations on Sub-Linkages

The final algorithms presented here, ENCAPSULATE and DISSOLVE, Algorithms 3.7

and 3.8, give essential operations for creating and removing sub-linkages. ENCAPSU-

LATE sub-divides an existing linkage by wrapping a sub-tree as a new sub-linkage;

DISSOLVE does the opposite by merging an existing sub-linkage into its parent.



Algorithm 3.6: MAKEGROUND(k)

Input: non-ground link k in linkage L (i.e. k E KL)
Output: k, now the ground link of L
if ROOTLINK? (k) then

foreach joint j s.t. pj = gL if ROOTJOINT? (j) do
if TREE? (j) then M +- M I Mj
p, -- k

end
let 0 = (MrYr,Ir, I r,Pr Cr) +- (Mr,G,0,+10, O) > Eq. 3.11

let r = (Pr, ,Or, r, nr) +- (k, gL, 0, 0, RooTNAME(gL)) >Eq. 3.3

Prk + PrgLL - r

add r to JL, remove rg from JL
rg L -- , gL +- k

if k = go then remove rk from JL
else INVERT(pk)
return k

To use this version of ENCAPSULATE to build a linkage with more than two

levels of hierarchy requires that the levels be encapsulated from the top down-

encapsulating an existing sub-linkage is not allowed. A version of ENCAPSULATE

which includes this capability is possible, but requires some more error checking to

ensure that all sub-linkages are properly nested. Also, with only ENCAPSULATE

and DISSOLVE, to mutate the disposition of a sub-linkage (e.g. from simultaneous

to driven) requires re-creating it. A convenience operation to mutate sub-linkage

disposition in-place is also possible, and again would consist mostly of verifying that

the crossing joints satisfy the topological constraints for the new disposition.

If updated CMTs are available then ENCAPSULATE is O(IKs + IJs), where Ks

and Js are the link and joint sets in the new sub-linkage. Otherwise it is O(IKs h +

I Js ) where h is the maximum spanning tree depth of any link in Ks. The running

time analysis for DISSOLVE is the same.

3.7 Summary

This chapter presented a new framework for modeling mixed real/virtual linkages (ar-

ticulated systems) with particular support for genericity, mutability, scalability, and



Algorithm 3.7: ENCAPSULATE( , X, d)

Input: non-ground link 7 in linkage L (i.e. 7 E KL)
set of crossing joints X C JL
disposition d E {driving, driven, 0}

Output: a new sub-linkage of L rooted at y
let Ks = {7}, Js = 0 be the sets of links and joints for the new sub-linkage
>DFS from y, pruning at X

let Q + (joint j I p, = - or (cj = 7 and CLOSURE?(j))} \ X
while Q f 0 do

foreach j E Q in order do
remove j from Q, add j to Js
if TREE? (j) then

add c3 to Ks
append {joint i I p, = c or (c, c, and CLOSURE?(i))} \ X to Q

end
end

end
foreach k E Ks do if k V KL then

error cannot encapsulate existing sub-linkage
foreach j E Js do

if j V JL then error cannot encapsulate existing sub-linkage
if j is crossing but does not satisfy constraints in Section 3.5.2 then

error invalid crossing joint j
end
foreach k E Ks \ {y} do pr, +- 7, Mk -- CMT(7)- 1cMT(k)
KL <- K ,L \ K, JL JL \ Js
return (Ks, Js,7, L, d) >new sub-linkage (Eq. 3.2)

Algorithm 3.8: DISSOLVE(L)

Input: non-topmost sub-linkage L
Output: parent sub-linkage PL with the contents of L merged in
foreach j E JL do add j to JL
foreach k E KL do add k to KpL, Pr.k 9  L, Mk I- CMT(gpL)- 1 CMT(k)
foreach sub-linkage S s.t. ps = L do ps - PL
return PL



hierarchy, all features which become especially important in the presence of virtual

links and joints. The first part of the chapter-through Section 3.5-developed the

denotational aspects of the model, i.e. what a linkage is, with the main structure

summarized in Definition 10 and its subsidiaries. The second part of the chapter-

Section 3.6-formalized the operational aspects of how the topology of a linkage can

evolve. Algorithms for computing the motion of linkages will be added in Chapter 4.

The way in which joint mobility is represented (Definition 16) is particularly im-

portant: I use a parametrization of SE(3) based on a translation and rotation vector

pair (t, 0), with dynamic reparametrization (Appendix B) for 0. This parametriza-

tion supports a useful catalog of various joint types (Section 3.3.4), including all

lower pairs except helical, and also admits a straightforward way to limit the motion

of important kinds of joints (Section 3.3.5).

Also novel is my detailed design for hierarchical linkages (Section 3.5) which can

help structure topologically large models, saving time both for the user and the motion

computation and simulation algorithms. One interesting use for this kind of hierarchy

is in my method of structure abstraction (Section 3.5.3), where a potentially complex

sub-linkage is virtually replaced by a simpler interface.

Everything presented in this chapter has been implemented in an integrated soft-

ware system (Figures 3-1 and 1-4) that serves both as a reference implementation

and as the platform upon which the applications presented in Chapters 5 and 6 were

testedl2

12 The current implementation does not actually include ENCAPSULATE and DISSOLVE, but sub-
stitutes a pair routines to attach and detach sub-linkages.
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Chapter 4

Linkage Motion and Topological

Decomposition Algorithms

Though it is possible to construct rigid I linkages (e.g. a planar triangular cycle of

three links and three parallel-axis revolute joints), in robotics we are generally inter-

ested in linkages that move. This chapter presents algorithms that compute motions

for linkages that are represented in the framework introduced in Chapter 3. These

algorithms have all been implemented and integrated into the software system used

for the applications detailed in Chapters 5 and 6. Figure 4-1 shows the architecture

of this implementation, with the aspects covered in this chapter highlighted.

For consistent linkages (recall the terminology defined in Section 3.4), a feasible

motion is given by a connected path in configuration space. For inconsistent linkages

we instead seek a path through the linkage mobility space which minimizes breakage

of closure joints; a related problem (for any linkage) is to find a path from a non-

configuration to a nearest configuration. In this chapter, these ideas are reduced

to two specific problems: local assembly (Def. 45) and differential control (Def. 48).

Algorithms 4.1 and 4.5, SOLVE and ANALYZE, work in concert to solve both of these

problems in a way that scales to large models with 100s of joints.

1Rigidity [56, 37] is actually a fairly subtle concept. When I speak of rigidity, I mean local

(infinitesimal) rigidity, Def. 38, unless otherwise stated.
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Local assembly comes into play not only in simulating robots that actually change

structure, such as self-reconfiguring modular robots, but also for simulation or con-

trol of a robot as virtual modifications are added, removed, and reconfigured on-line.

Differential control is a general formulation of both forward and inverse-kinematic

control, and directly supports various modes of operation for mixed real/virtual struc-

tures, including click-and-drag interaction and trajectory following. (For the inverse

case, i.e. when the operator requests motion of a link instead of operation of a joint,

recall from Section 3.2.3 that link manipulation is equivalent to manipulation of the

associated root joint.)

A related problem arises when simulating elastic and gravitational potential en-

ergy, which will also be introduced in this chapter (Section 4.6). This kinostatic

simulation is achieved by continuously seeking to minimize the total potential energy

stored in the system.

The SOLVE algorithm uses the differentiability of the (t, 0) representation (Sec-

tion B.4) to make local linear approximations of the model, and then iteratively solves

local assembly, differential control, and kinostatic simulation by gradient descent in

a least-squares sense with an SVD-based pseudoinverse. Nullspace projection is used

for prioritizing the various constraints, which may conflict. Though this approach is

well-known, several new innovations are introduced, including

* a design for six kinds of prioritized constraints-invariant, limit, lock, potential,

target, and posture (Section 4.7)-which integrate with the rest of my frame-

work, and which can help resolve motion in over-constrained cases

* an algorithm for analytically computing model Jacobians (Section 4.9.2) which

leverages pre-computed composite model transforms (CMTs) and the (t, 0)

transform representation

* coordinated heuristics for detecting convergence, stall, and divergence (Sec-

tion 4.8.2).

Because the time complexity of SOLVE is typically quadratic in the number of

joints (Section 4.8.3), it is important to break up large linkages into independently



SOLVE-able components when possible. ANALYZE considers the topology and struc-

ture of a linkage, and attempts to break it into smaller parts which can be handled

separately. It performs two kinds of decomposition: a coupling decompositzon sepa-

rates groups of tree joints supporting distinct sets of closures, and a novel hierarchical

decomposition splits driving and driven sub-linkages (Section 3.5) from their enclosing

linkage so they can be SOLVEd in the appropriate order.

The next two sections give the details of the local assembly and differential control

problems and their solution by prioritized damped least squares (PDLS). The subse-

quent sections cover default joint poses, DoF limits, locked joints, and elastic and

gravitational potential energy models, building up to a summary of my design for six

constraint priority levels in Section 4.7.

The SOLVE algorithm is then presented which implements the PDLS iteration

on these priority levels, followed by ANALYZE in Section 4.10 (though hierarchical

decomposition is essential to compute motions of driving and driven sub-linkages,

ANALYZE is otherwise an optimization-SOLVE can be applied alone to a whole non-

hierarchical linkage).

The chapter concludes with a description of a set of state znteraction modalities

(Section 4.11) which complement the structure mutation operations of Chapter 3-

whereas those support adding/removing/reconnecting joints, state interaction covers

operating and moving existing joints and links.

4.1 Local Assembly by Linear Optimization

Informally, the idea of local assembly (Figure 4-2) is to compute a path from a given

tree state x anywhere in the mobility space to a point x' on the configuration space

of a linkage (Def. 35). This action is called for when simulating the construction

of a linkage containing closed chains: when a chain-closing joint is first attached,

or whenever the type, limits, or positioning transforms of any joint within a closed

chain are modified, the state immediately after the modification will not necessarily

be a configuration-even if it was previously-because the shape of the configuration



space itself may have changed. In general the linkage must be re-assembled to a new

configuration x' near x.

i-

a b c d

Figure 4-2: The local assembly problem.
In (a), a virtual revolute joint has been added that closes a chain between the "ankles"
of two adjacent ATHLETE limbs. Initially, the chain is inconsistent because the
relative pose that was specified for the new revolute joint with respect to one of the
limbs differs from the actual current relative pose. A red curve indicates the error.
The system solves the local assembly problem by moving the legs to remove the error,
as shown in (b) and (c). Once the new topology is assembled, it can be operated (d)
as originally intended.

To develop a formal definition of local assembly, recall that the forward kinematic

mapping FK (Eq. 3.49) and the invariant error projection matrix II (Eq. 3.47) mul-

tiply to give the forward invariant error mapping FKi (Eq. 3.50) taking the current

tree state x to the resulting invariant error ei:

FK : R -+ Ri ei = FKi(X) = HiFK(X). (4.1)

If the linkage was consistent, we can assume that prior to the structural change ei = 0

(otherwise we can assume that Ileill was locally minimal). But the structural change

may have also induced a change in the invariant error mapping, say from FKi to FK,

and in general this will produce an e' = FK (x) s.t. Ilell > eill

Definition 45 Given an initial tree state a of a linkage L, and a structural modifica-

tion L' of L with forward invariant error mapping FK', the local assembly problem is

to find a modified tree state x' near x s.t. FK (x') is locally minimized. The notion of

"near" is intentionally left vague; in practice the path from x to x' will be computed



as a gradient descent.

The approach I take to solve this problem, first popularized in robotics by Whit-

ney [164] in the 1960s, is a local linear optimization based on the Jacobian pseudoin-

verse. FK' is locally modeled in the neighborhood of x by its Jacobian matrix

Ji'( )= aFK'() (4.2)
[xfl ax

FK'(X + AX) 2 FK'(2) + J,(x)Ax. (4.3)

Writing J2 (x) stresses the dependence of the Jacobian matrix both on FK' and on

x, but for brevity I will usually write simply J', with the latter dependency implied.

J' can be computed by multiplying the Jacobian JY of the full forward kinematic

mapping FK'(x) by the projection matrix I,:

with J' = FK'(x) (4.4)

Y O
J = FK'() = I, FK'(2) = /IIHJ. (4.5)

(In fact, all of the Jacobians in this chapter are based on the Jacobian of the forward

kinematic mapping. An algorithm for computing it is given in Section 4.9.2.)

If we set

x' = x + A (4.6)

then the local model can be considered a linear system with Ax the unknown vector:

o = FK'(X') = FK'(X + A ) r FK'(X) + JAx = e' + J' Ax

-e' = J'Ax. (4.7)

If this model is valid over a large enough neighborhood, and if J' is invertible, then
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we can solve Eq. 4.7 directly for Ax, e.g. by Gaussian elimination or by inverting J :

-Ji- e = Axi (4.8)

when the local model is sufficient and invertible.

But generally neither of these assumptions hold: we have to restrict the neighborhood

because the configuration space may be arbitrarily curved, and we have to allow non-

invertible Jacobians because the problem may be over- or under-constrained.

4.1.1 Iterative Damped Least Squares

We can limit the model to a local neighborhood by clamping the residual e' to a

maximum magnitude, solving, and then reformulating the whole problem at the new

tree state x'. The solution process thus becomes an iteration, so from here on I drop

the prime notation, e.g. writing simply e, instead of e'. The iteration is terminated

once the residual magnitude falls below some threshold. This addresses the first failed

assumption-that the local model is valid for a sufficient neighborhood-but does

require setting clamping and termination thresholds, which will be covered below.

The other failed assumption is that Ji is always invertible. To handle the case

that it is not, the (Moore-Penrose) pseudoinverse J,+ can be substituted. It is well

known [83] that this pseudoinverse always exists and solves systems of the form 4.7 in

a least-squares optimal sense: in the overconstrained singular case the L 2 (Euclidean)

norm of the residual is minimized, in the under-constrained singular case the L 2 norm

of the unknown Ax, is minimized, and in the well-constrained non-singular case J+

reduces to Ji-1.

Putting clamping together with the pseudoinverse, Eq. 4.8 can be adapted to

-J+CLAMP(ez, yi) = Axi (4.9)

with CLAMP(v, ) = min(y, v ) if v > 0, and CLAMP(0, ) = 0. (4.10)
Iterating this computation works-in theory-for any J, with two main caveats: the

Iterating this computation works-in theory-for any J, with two main caveats: the
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approach is susceptible to getting stuck in local minima, and the speed of convergence

is not guaranteed. In fact, local assembly only requires finding a local minimum-the

idea is that the operator should configure the linkage near the desired solution before

making the topological change which triggers a re-assembly. Convergence is neither

too problematic; Section 4.8.3 gives some details.

In practice, the A-damped pseudoinverse J+A is used instead of J+ for improved

numeric stability in near-singular configurations. Appendix E describes how to com-

pute J+A using the singular value decomposition (SVD).

Definition 46 Iteration 4.9 thus becomes .

-Je+ACLAMP(e, -i) = Ax%, (4.11)

which is called damped least squares (DLS) with residual clamping.

Buss recently gave a good review of this technique in [20], and observes that it was first

used (though likely without clamping) in robotics by Wampler [162] and Nakamura

and Hanafusa [107].

4.2 Adding Differential Control

We now move from local assembly to the differential control problem, which I formu-

late as an instance of waypoint following.

The idea of differential control is to find a feasible-or at least invariant error

minimizing-motion which tracks a given partial path through the mobility space.

Consider the motion of a linkage after a user has moved a link (Figure 4-3). If the

link is not part of any closed chains, then the forward kinematic mapping will not be

affected. Otherwise, to keep Ilel| (breakage of closure joints) minimized, the system

may be required to not (fully) move the link as the user has requested, and/or it may

be necessary to move some joints to compensate.

The first step to develop a formal definition of this problem is to form a vector z

comprising all the DoF of both the tree and the closure joints in a linkage L. Recall
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Figure 4-3: The differential control problem.
In this example the operator uses click-and-drag interaction with the mouse to in-

teractively pose the last link in an ATHLETE limb. The hex deck is locked, so the

system solves the differential control problem corresponding to the single-limb inverse
kinematics.

that Eqs. 3.39 and 3.44 gave specific orderings T and C for the tree and closure joints

comprising L, that the tree state x is a concatenation of the f DoF of the tree joints in

order (Eq. 3.43), and that the closure state y is a concatenation of the 61C combined

DoF and DoI of the CI closure joints in order (Eq. 3.45). i was also defined to be the

total number of closure joint DoI, and Hi as an [i x 61CI] binary projection matrix

selecting only the Dol from y.

Let the total number of DoF of the closure joints in L be

d = 61CI - i, (4.12)

and define a new [d x 61CI] binary projection matrix Ifc which compliments HI

by selecting only the DoF from y. Specifically, each row p of Hfc contains exactly

one non-zero entry, say at column q, where q corresponds to the p'th entry in the
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concatenated sequence of the DoF of all joints in C.

Definition 47 The total DoF state z of L is a column vector formed by appending

the closure joint DoF lfey to the tree joint DoF x, and Z is the corresponding total

ordering of all of the joints in L:

z = f + d (4.13)

zT = (xT, (lfcy)T) E Rz (4.14)

Z = (T, C) . (4.15)

Definition 48 Given a target waypoint pair Wt comprising (1) a z-bit binary vector

wt identifying an axis-aligned subspace (Def. 19 on page 63) of IRz and (2) a particular

point t therein 2

Wt = (Wt E {0, 1}z,t E IRt ) with t = Iwtlli, (4.16)

the differential control problem is to bring the components of z as close as possible

to the corresponding components of t without breaking the linkage. The definition

of "close" is left vague; in practice the sum of the squared errors are minimized.

The idea is that t represents a current desired target pose for a subset of the total

DoF z of L; to follow a path, Wt can be periodically replaced by the operator-e.g.

by dragging the mouse-with the system either interpolating intermediate waypoints

or just switching directly from one to the next.

Let It be a [t x z] binary projection matrix selecting the t current target DoF from

the z total DoF. Ht is induced by wt in a manner similar to the previously defined

projection matrices.

Definition 49 The target residual is

et = 1Itz - t (4.17)
2The notation wt II1 indicates the Manhattan norm of wt, i.e. the number of non-zero entries.
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where the operation -- is a difference taken using nearest aliases of the involved

rotation vectors. This will be made more precise below in Section 4.9.1, for now

consider - as equivalent to regular vector subtraction.

Definition 50 The forward target error mapping FKt is

FKt : Rf - IRt et = FKt(X) = t [fx1] t, (4.18)
fIfcFK(x)

Definition 51 The target Jacobian is the [t x f] matrix of partial derivatives of 4.18:

9et  [ [fxf]

Jt FKt(X) = IIt (4.19)
[txf] x [txz] Iclv

with If the [f x f] identity matrix.

4.2.1 Residual Compensation and Nullspace Projection

Just as DLS was applied to solve local assembly using the residual vector ei and

Jacobian J,, it can also be applied to solve differential control by using et and J.

However, separate DLS iterations for the two problems will produce different solution

vectors Ax, and Axt which must somehow be combined. The approach I take to

forming this combination is based on a nullspace projection matrix for J., a technique

first popularized in robotics in the late 1970s by Lidgeois [94], though not specifically

for the assembly and control problems as defined here. The idea is to produce a

modified Axt so that the sum

Ax = Ax, + Axt (4.20)

3 The nullspace of a matrix M is defined as the space of vectors x for which Mx = 0.
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results in an e, that is no larger than would have been produced by Ax, alone, but

also minimizes Iletll within that constraint. Solution of the assembly problem is thus

prioritized above solution of the control problem, i.e., a consistent linkage will always

remain unbroken, even if that means sacrificing some fidelity in path following.

This two-level priority scheme, sometimes generally called the task priority ap-

proach [26], was later extended to an arbitrary number of cascaded priority levels by

Siciliano and Slotine in [142], and recently some further improvements were reported

by Baerlocher and Boulic in [11]. This last formulation is the basis of the SOLVE

algorithm, as it turns out that more than two priority levels are useful in several

different contexts. I call this prioritized damped least squares (PDLS) and introduce

it here by giving the of the two-level solution for the local assembly and differential

control problems. Appendix F reviews the generalization to an arbitrary number of

priorities given in [11].

The Ax, in Eq. 4.20 is taken directly from Eq. 4.11. Axt is computed by a similar

iteration, but with two adjustments: the residual et is compensated by accounting for

the higher-priority effects of Ax, and the intermediate result for Axt is projected

onto the nullspace of J,:

- (Jr (I - + J))t"' (CLAMP(et, -y) + JtAxz) = Axe. (4.21)

The JtAx, term performs the compensation, and the factor (I - J+J,) accomplishes

the nullspace projection [11].

Insight can be gained into Eq. 4.21 by rearranging it to parallel Eq. 4.7 (clamping

is omitted for clarity):

- (Jr (I - +J))+At (et + JtAx) = Axt

- (et + JtAx,) = Jt (I - JJi) Axt. (4.22)

The residual (left side) of Eq. 4.22 now includes the effect, if any, of the higher-

priority adjustment Ax, on target following, and the forward model (right side) of the
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equation now ensures that when an L 2-minimal Axt is found (recall this minimization

is a property of the pseudoinverse) it will have no effect on the closure joint Dol.

Though this two-priority setup does address both of the primary problems-local

assembly and differential control-extension to more priorities will help support ad-

ditional features, including joint locking and potential energy simulation. Also, the

multi-priority PDLS implementation in [11] includes two additional capabilities: pos-

ture variation (Section F.1), and tree joint DoF limits (Section F.2). I apply the

former to bias motion towards a default tree pose, and I extend the latter to also

handle limits on closure joint DoF.

4.3 Setting a Default Pose with Posture Variation

I leverage the posture variation technique described in [11] (Section F.1) to draw

the joints of a linkage toward a lowest-priority default pose, which is useful e.g. in

cases where tracking the current target waypoint still leaves some ambiguity in the

motion of the linkage. However, [11] only covered the equivalent of tree joint DoF;

my formulation, which handles closure as well as tree joints, parallels target tracking

(Eqs. 4.16 and 4.17).

Definition 52 The current posture waypoint is a pair

W, = (w, E {0, 1}z,p E RP) with p = I wp ll, (4.23)

and the posture residual ep is computed4 via a new [p x z] binary projection matrix

Hip induced by wp in the same way that IIt was induced by wt:

ep = IIpz _- p. (4.24)

However, in this case the Jacobian will not be a [p x f] matrix, because the posture

variation components corresponding to tree joint DoF will be handled directly by

4The operation - was introduced on page 105.
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the final nullspace projection. ep must be partitioned into two sub-vectors, one for

closure joint DoF and one for tree joint DoF, which will be handled separately:

T (eT ,eT)ep ep t , eP c

s.t. pt, Pc are the lengths of ept and epc, respectively, pt + Pc = p.

Then the posture variation vector is

Axp = -ept.

(4.25)

(4.26)

Definition 53 If pc > 0, epc is the residual vector and Jpc the posture Jacobian

for a third and lowest posture priority level, computed by the forward posture error

mapping FKpc

FKpc : f --+ pc =p - FKpc(X) = rIpcrifcFK(X) - Pc

Jpc = o- = FKpc(2 pc) nfcJy.[pcxf] Ox ax x

(4.27)

(4.28)

pI, and Pc, used in the above equations, are

partitions of rI, and p:

[ipt

rip = [ptxf]

[pxz]

P = (pT,pc) .T

taken from corresponding tree/closure

(4.29)

(4.30)

Biasing linkage motion towards a default pose involving closure DoF is thus a first

use for more than two priority levels.
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4.4 Incorporating Limits on Joint DoF

Up to this point, we have glossed over an important constraint imposed by the joint

mobility model defined in Chapter 3: if a joint j has defined limits Ij, what mechanism

keeps the joint's pose within them? As for posture variation, [11] also presented a

technique for handling limits, but only on tree joints (Section F.2). I extend this to

also handle limits on closure joints, if any, by adding a fourth limiting priority level,

this time inserting the new level between the previously defined invariant and target

levels. I construct a quadratic penalty to drive limit-exceeding closure DoF back into

compliance. No penalty is assigned to in-limits DoF, resulting in a "bathtub"-type

differentiable penalty function (Eq. 4.32): while in-limits, the penalty is zero, but

upon exceeding a limit the penalty increases quadratically.

Let m be the total number of closure DoF with set limits (recall from Section 3.3.5

that a DoF is always either unlimited or has both upper and lower limits), and let

IIm be a [m x d] binary projection matrix selecting the m limited DoF from the d

total closure joint DoF. IIm is induced by the sequence of limited closure DoF in the

same manner as the previously defined Ut and II were induced by the binary vectors

wt and wp. Let lc and uc be the corresponding vectors of the m lower and upper

closure DoF limits, respectively.

Definition 54 The limit EXCESS function is

using v T = (vo0 , . ,m1_), IT = (0 . . • , Im-l), 1T = (UO, . . . , U-1)

Vt-ui ifv > uz

EXCESS(V, 1, U) = = (SO,.. m-1 s.t. s = 0 if u vi 1 (4.31)

vT - ri if v, < li.

Definition 55 The closure limit residual vector em is the square of the excess for
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each DoF, and is computed by the forward limit error mapping FKm:

FKm: ]f -- R m  em = FKm(X) = DIAG(Sc)Sc (4.32)

with s, = EXCESS(flmifcFK(X), ic, ,c)

and DIAG(V (V 0,..., Vm-1))= [ . - (4.33)

The limit Jacobian is the [m x f] matrix of partial derivatives of 4.32:

Jm - - FKm(x) = 2 DIAG(Sc)Iml-IfcJy. (4.34)
[mxf] ax ax

By inserting the limit level just below the (highest-priority) invariant level, the

solver will enforce joint limits to the greatest extent possible without violating the

Dol of any closure joints, and target and posture waypoints will only be pursued to

the extent possible without exceeding any DoF limits.

4.5 Locking Joints

It is often useful to temporarily hold the current pose of any joint. I call this locking

the joint, and implement it in a way similar to target tracking for closure joints, and

similar to limiting for tree joints. A new lock priority level is inserted just below

the limit level that drives locked closure joints to hold the DoF state they had when

originally locked. Locked tree joints, on the other hand, are removed entirely from

the problem, in this case by treating them as if they temporarily had type F (fixed,

i.e. zero DoF), with their mobility transform frozen. (In the implementation, tree

joints are not actually set to type F, but are handled topologically as part of the

ANALYZE algorithm. This will be detailed below.)

Let F be an ordering of the set of locked joints, partitioned into sub-sequences of
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tree and closure joints,

Fr J = (Ft, F) with Ft = r nT and Fr = Fr C, (4.35)

where J = T U C is the tree/closure partitioning of the joints in the linkage,

let k be the total number of DoF of all joints in F, and let kt and kc be the total

number of DoF of the joints in Ft and re, respectively, so k = kt + kc. Finally, let k

be a vector of the values of the k, locked closure DoF at time of locking.

A [k, x d] binary projection matrix IIk is induced by Er, similar to the way HII

was induced by wp for posture variation, that in this case selects the k, locked DoF

out of all closure DoF.

Definition 56 The lock residual vector ek is computed5 by the forward lock error

mapping FKk

FKk : f - Rk ek = FKk(X) = IkfcFK(x) - k, (4.36)

and the lock Jacobian is the [k, x f] matrix of partial derivatives of 4.36:

dek 0
Jk - ek - a FKk(X) = IIkIfcJy. (4.37)

[kcxf] aX ax

That handles locking for closure joints: the solver will attempt to freeze the DoF

of locked closures to the extent that goal does not conflict with maintaining both the

invariant and limit constraints, but compromising in target and posture tracking if

necessary.

4.6 Elastic and Gravitational Potential Energy

The framework presented so far is purely kinematic-there is no representation of

physical forces or energy. In some contexts, this is both sufficient and desirable,

but in other cases some modeling of physics is necessary to capture the essence of

SThe operation - was introduced on page 105.
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the problem. This section will detail the contents of T, the optional container for

any parameters relating to physical force and energy modeling for joint j, and the

computation of the motion of systems involving these quantities-simply by adding

another PDLS level. As introduced in Section 3.1, I have chosen only to handle a sub-

set of physical parameters which relate to the quasistatic effects of joint elasticity and

link mass, i.e. elastic and gravitational potential energy (EPE and GPE, respectively).

When is T, needed? A pure kinematic model is is sufficient whenever the robot

has enough actuation to enable the active operation of any feasible trajectory.

Definition 57 In this context, a rob6t is fully actuated for a task if any path through

the configuration space (of the robot plus any virtual articulations representing the

task) can be actively controlled on the robot by its own actuators.

The high-DoF operations examples in Chapter 5 are all fully actuated in this sense,

and utilize pure kinematic models. Pure kinematic modeling is desirable from at

least two perspectives. First, it can be less computationally expensive to compute

motions for pure kinematic models because they can often be decoupled into smaller

sub-systems than if phyisics was involved. Specifically, CONSTRAINED? (page 133),

needs to categorize an otherwise un-constrained closure joint j as constrained if it

has T, 5 0; and TRACESUPPORTS (page 135) will then include the supports of

j in ANALYZE, which in turn may not be able to produce as fine of a coupling

decomposition as may have otherwise been possible.

Second, it faster and simpler for an operator to specify and modify a purely kine-

matic model, simply because there are no physics-related parameters to be defined.

This becomes especially important in the mixed physical/virtual interface context

when virtual joints are added and removed-the extra time required to specify (and

to tune) their physics parameters could be significant vs. the time required to simply

position and attach them kinematically.

But since pure kinematic modeling would not be sufficient for the kinds of propri-

oceptive/compliant locomotion systems studied in Chapter 6, I added the ability to

model the essential physics of those systems. Because they are all statically stable-if
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actuation is stopped at any time, all motion of the system will also stop-all that is

required is to model the potential energy stored in the physical system (i.e. kinetic

energy can be ignored). The relevant potential energy storage breaks into just two

components: energy stored in elastic joints, and the gravitational potential energy of

links with non-negligible mass.

4.6.1 Modeling Elastic Potential Energy

Modeling elasticity is an interesting subject (e.g. [31]), and similar to the case for

joint limits (Section 3.3.5), a fully general model that works for all joint types would

be somewhat involved. But in practice, supporting just a subset of the possibili-

ties is sufficient for a wide array of common situations. I choose to model linear

spring elasticity for 1-DoF (i.e., revolute and prismatic) joints only (in fact, the only

elastic joints in any of the examples in Chapter 6 are revolute, and are reasonably

approximated as linear springs).

The elastic potential energy S, stored in such a joint depends on three values: the

current state d of the joint's DoF, a stiffness factor tj, and the stiffness rest state ( :

S 1 = ,(d - 3)2. (4.38)

This results directly from an integration of the linear spring law f = kx where f

is the spring restoring force, k is the spring constant, and x is the deflection of the

spring. Sj will always be non-negative provided that ,nj > 0.

4.6.2 Modeling Gravitational Potential Energy

Unlike joint elasticity, it is not hard to model Gravitational potential energy in the

general case. Technically, gravity affects links, not joints, as links model the solid

parts of a robot which would have mass. But because I include a special virtual root

joint rl for every link 1 (Section 3.2.3), it is trivial to bookkeep the potential energy in

T'r. This avoids adding extra complexity to the algorithms, and is another example

of the homogenizing capabilities of virtual articulations.
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For the root joint rl of a link I (GPE is only allowed on root joints), the gravita-

tional potential energy Gr,, depends on four values: the current joint transform X, 1

(which is also the CMT of 1), the center of mass (CoM) c,, of I in its link frame, the

mass mri of 1, and the gravity acceleration vector g, which is a new global constant:

Grz = -mrIg -(Xrcr) = -mrgT (Xlcri). (4.39)

This is an instantiation of the basic formula mgh for the gravitational potential of a

solid body, where m is the mass, g is the gravitational constant, and h is the height of

the body. In this formulation, g is encoded as the length of g, and g/||g|| defines the

"downward" direction in the global (ground link) frame. (Xrcri) is the transformation

of the link CoM to this same global frame, so the dot product in Eq. 4.39 effectively

computes "-gh" (negative because g is down, not up). Gr, will be non-negative as

long as m,, > 0 and h = -(g/JJg) - (X,,c,,) > 0; thus the computation is incorrect

(in reality GPE can never be negative) if h is negative; in practice it is not too hard

to structure the operation of the model so that this is avoided.

4.6.3 Formal Definition of T

Definition 58 Tj is a pair with different contents depending on whether EPE or

GPE is represented (a single joint can have either EPE or GPE, but not both):

(J 1y 3) if Y E {R, P} and j has elasticity

T3 = (ci, m,) if j is the root joint of a link 1 with mass (4.40)

0 otherwise (no potential energy)

with K, > 0 the stiffness factor, (, the stiffness rest state

c, the CoM of 1 in link frame, and m3 2 0 the link mass.

4.6.4 Minimizing Total Potential Energy

To simulate the motion of a linkage involving joints with T, z4 0, it is sufficient to add

a PDLS priority level with residual equal to the sum of the total potential energy in
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the system. I insert this level between the previously defined lock and target levels,

so that joint invariants, limits, and locked joints have higher priority than potential

energy minimization, but target tracking and joint default poses (posture) have lower

priority.

Let S C J be the set of non-root joints with T, $ 0, i.e. the set of all joints with

elastic potential energy models, and G C J be the set of all root joints with T # 0,
i.e. the set of all joints with gravitational potential energy models. Then the total

potential energy E in the system is

E= Es= S 3 ) + EG = G (4.41)

jES 3EG

Unlike previous PDLS levels, where the residual was a vector, in this case the

residual is simply the scalar E.

Definition 59 For conformity with the other levels, the potential energy residual e,

is a 1-vector, i.e.

e, = (E), (4.42)

unless there are no joints with T, 7A 0, in which case e, = 0 (i.e. the potential energy

level is skipped entirely).

Since all T, parameters (and g) are constant in the context of SOLVE, the only

variables affecting E are functions of the tree state x.

Definition 60 The potential energy Jacobian J, is computed as the sum of two [1 x f]

Jacobians, one for EPE and the other for GPE:

OE Es DEG

[lxf] ax - x Dx

= Js + JG. (4.43)
[lxf] [lxf]

To derive Js, recall Eq. 4.13 which defined z as the vector of combined tree and
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closure DoF. Then

OEs Oz OEs [fxf (4Js = o x OZ HfCJY(4.44)

_ [dxf]

and OEs/Oz is a [1 x z] vector filled with zeros except at indices corresponding to the

single DoF of joints j with defined EPE. The value at such an index is the derivative

of Eq. 4.38 with respect to that DoF value:

SS= 3, (d - 3). (4.45)
Od

JG can be derived in a similar form. Let Hft be a new [f x 61TI] binary projection

matrix selecting only the f DoF from the full combined 61T I DoF and Dol of all tree

joints (IIf performs the same projection, but for closure joints).

Definition 61 The total combined DoF and Dol vector g, is a column vector formed

by appending the closure state y to the expansion of the tree state x by projection

through -yT:

CT I ( (nx)T y) . (4.46)
[Ix6(ITI+ICI)]

Then

ftOGEG( O _ OEG I[6 1T xf] (4.47)

L[6|Clxf]

and OEGa/O is a [1 x 6(IT| + ICI)] vector filled with zeros except at indices corre-

sponding to the 6 DoF of a root joint ri with defined GPE. The sub-vector at such a

location is the derivative of Eq. 4.39 with respect to the 6 DoF, dG,r/ODX,. Noting

that transformation of cr by X,, can be expanded as

with X,, = (tr,, Or,)

Grj = -mr1gT (ROT(exp(Or))crz + tri) , (4.48)

where exp produces a unit quaternion from a rotation vector (Appendix B) and ROT
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produces a [3 x 3] rotation matrix from a unit quaternion (Appendix C),

dGri, a_ Gr _ Gr Gr,

[1x6] [1x3] [1x3]/

Mr gT mrTOROT(exp(rl)) aexp(Or) r " (4.49)
[1x3] [1x3] x( r [3x1]

[[3x3]x4] [4x3]

4.7 The Six Priority Levels

The six major sections above introduced a set of six ordered priority levels: invariant,

limit, lock, potential, target, and posture (the order of the sections was different).

Table 4.1 summarizes these and gives cross-references to the definitions for the cor-

responding quantities. Each level 1 is generically defined by its residual vector el, its

height hi, which is the length of el, and its [h, x f] Jacobian matrix J. These are,

in turn, induced by the structures described above. For example, the current target

waypoint Wt induces et and Jt. Note that hi may be zero for each level individually-

for example if there are no locked closure joints then the height of the lock level would

be zero. This effectively disables the level.

level 1 induced by height h residual el Jacobian J page

invariant C (Eq. 3.44) i ei (Eq. 4.1) Ji (Eq. 4.5) 98

limit C (Eq. 3.44) m em (Eq. 4.32) Jm (Eq. 4.34) 109
lock F, (Eq. 4.35), k kc ek (Eq. 4.36) Jk (Eq. 4.37) 110

potential T, (Eq. 4.40) v e, (Eq. 4.42) J, (Eq. 4.43) 111
target Wt (Eq. 4.16) t et (Eq. 4.18) Jt (Eq. 4.19) 105

posture Wp (Eq. 4.23) pC epc (Eq. 4.27) Jpc (Eq. 4.28) 107

Table 4.1: The six SOLVE priority levels, in order from highest to lowest.

4.7.1 Sub-Priorities

Sometimes it is useful to have an even finer partitioning of priorities-that is, to

enforce some constraints within a single level above others. This is easily done by la-

belling each constraint with a sub-priority in Z0+ so that a partial order is established
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on constraints within the level. For clarity, this detail is skipped in the pseudocode

for SOLVE, but it is available in the implementation.

4.8 The SOLVE Algorithm

A priority loop solving these six tasks forms the core of SOLVE, Algorithm 4.1. SOLVE

also includes an enclosing limiting loop (priority and limiting loops are introduced in

Appendix F) and finally a third, outermost convergence loop, which nominally iterates

until the magnitude of the total residual at each level 1 is .below a corresponding

convergence threshold cl:

V1 Ileill < e'. (4.50)

It is possible that convergence could take many iterations, so there is a check

to force termination of the convergence loop after a maximum amount of wall-clock

time has passed. It is also possible that progress could grind to a halt before the

convergence threshold is met, which would indicate that SOLVE has become stalled

in a local minimum. Finally, is even possible that SOLVE could diverge-for example,

if slightly reducing the residual of a high-priority level requires a large compromise in

the residual of a lower-priority level. SOLVE may be terminated in that case as well.

The full details of detecting convergence, stall, and divergence are given below.

In an interactive simulation context, SOLVE is automatically run after any change

to model structure or state, and periodically thereafter as long as the system remains

un-converged. This top-level sequencing is handled by the main simulation loop

(Section 4.12), which also interleaves other tasks, such as rendering, and any structure

and state updates requested by the user.

While SOLVE could process an entire linkage, taking a set of inputs delineating

a subset of a linkage is more flexible. This is mainly in preparation for the coupling

and hierarchical decompositions in Section 4.10, which will attempt to split a linkage

into smaller independently solvable pieces, but also serves two other purposes:

* Tree joints not in the support of any closure joint (Def. 17) never need to be
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treated by SOLVE. By design, the only time the system might need to change

the current state of such a joint is if the user changes the target, posture, or

quasistatic parameters associated with it (recall that the structure mutation

algorithms for changing its connectivity, type, and limits internally handle any

incurred state changes). These changes can be easily made outside of SOLVE

in the main simulation loop. Design choices, such as redirecting click-and-drag

interaction on a link to operation of its root joint, and similar handling in the

quasistatic extensions for link mass and gravity, ensure that tree joints which

support no closures are truly independent.

* Locked tree joints, i.e. those listed in rt, are suppressed and effectively invisible

to SOLVE.

Figure 4-4 illustrates the partition of a linkage into the part fed to SOLVE and the

remainder. The SOLVE input parameters Cs, Ts, and x, are restricted to only the

k k k
kk

Figure 4-4: The part of a linkage processed by SOLVE.
Locked tree joints and all open-chains are suppressed (faded out in this figure).

part of the linkage that should be processed. Specifically, if the sets of closure and

tree joints in the full flattened (Def. 40) linkage are C and T and the full tree state

is x, then C, C C, T, C T is the set of unlocked tree joints supporting the closures

in C8 , and x, contains the f, concatenated DoF of the tree joints in T,.

Forming the restricted inputs C,, T5, and x, involves some topological processing

on the full linkage, e.g. separating out joints that are not part of any closed chains.
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This will be taken care of in ANALYZE. For now, assume that Cs = C, that Ts is the

union of all unlocked closure joint supports, and that x, has been similarly restricted

from x. ANALYZE will also organize the correct handling of hierarchical linkages.

Cs, and the mobility models of its included joints, induce correspondingly re-

stricted invariant and limit levels. The remaining inputs to SOLVE induce the lower

four priority levels in table 4.1. We can also consider these to be correspondingly re-

stricted, which requires only a little extra bookkeeping in the implementation. These

restrictions are implied.

With its context now firmly defined, SOLVE is presented as Algorithm 4.1. Some

of the finer aspects, such as the approaches I take to determining A, and 71, and to

detecting termination of the convergence loop, are given next, followed by an analysis

of both the asymptotic and practical time costs.

4.8.1 Adaptive Step Size and Damping

The step size Yy and damping A1 parameters are critical to the performance of SOLVE-

too large a step or too little damping can cause instability, but small stepsize and

high damping conversely lead to slow convergence. Furthermore, optimal values for

these parameters depend both on a chosen metric and, significantly, on the particular

structure and state of the model at hand. For example, higher damping values may be

warranted when the model is in a near-singular configuration (i.e. with some singular

value approaching zero), and lower values otherwise.

These issues have been considered before. For example, Deo and Walker introduce

optimality criteria to compute damping factors [39]. I use a simpler heuristic approach

for A, presented by Maciejewski and Klein in [97] and also recommended in [11]. For

yl I present a novel adaptive speedup/slowdown approach based on heuristics that

integrate with both the A1 computations and with divergence detection (adaptive

stepsize approaches in general are common in this kind of numerical computation,

e.g. [85]).

The idea in [97] for automatically computing A1 is to approximate the worst-

case scaling effect that the smallest non-zero singular value amn could have on the
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Algorithm 4.1: SOLVE(Cs, Ts, xs, Fc, k, T, Wt, Wp)

> adapted from [11]
Input: closure joints Cs, unlocked tree joints Ts supporting C, (see text),

current tree state xs corresponding to the f, DoF of Ts,

locked closure joints F, and corresp. frozen DoF values k,
potential energy model T,
target and posture waypoints Wt, Wp

Output: a new tree state xs
let It, Ut be vectors of the tree joint DoF limits or ±oo for unlimited DoF

repeat > convergence loop
compute all el and J induced by SOLVE parameters at state x,

check for convergence, divergence, stall, or timeout
adapt all level clamping thresholds yi
let Ax <- 0, set all DoF unpinned
repeat > limiting loop (Section F.2)

let N +- If, foreach 0 < i < f, do if DoF i pinned then N[i, i] -- 0

foreach level 1 from highest to lowest do > priority loop (Ch. F)
ec -- CLAMP(el, 1) + J1Ax,, Jr - J1N

adapt level damping factor At
UEVT SVD(Jr), Jr+ 

4 VZ+UT, Jr+\ 4- VE+AIUT

AX, + Ax 8 - Jr+A le, N - N - JjJr
end
Ax8 <-- Ax, - NCLAMP(ept, yp) >apply posture variation

let st +- EXCESS(Xs + Axs, It, Ut)
foreach 0 < i < f, do if st[i] - 0 then DoF i is pinned

until no newly pinned DoF
s -- xs + Axa > dynamically reparametrizing (Section B. 5) as necessary

foreach 0 < i < f, do if DoF i pinned then set x,[i] to corresp. limit

until converged, diverged, stalled, or timeout
return xs
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magnitude of Axs, and then adjust A1 accordingly to keep this magnitude below some

threshold 6max

A1  0 if amin < IlecIl/6max (4.51)t omn( ec|/JSmax - umin) otherwise

Effectively, larger A, leads to smaller IlAxfll, and vice-versa. In the current imple-

mentation 6 max is exposed as part of the problem specification; values in the range

0.0025 to 0.025 gave good results for the models presented in this thesis.

Whereas A, gives a measure of control over the magnitude of the output Ax, of

the locking loop, the stepsize 7l controls the other end of the process, limiting the

magnitude of the input residual vectors el. I use an adaptive approach where each

71 is initialized to oc and then adjusted on-line as indicated from the behavior of the

prior iteration of the convergence loop. A slowdown is triggered whenever

* 1 Ax, 11 exceeds a threshold Oslowdown 6max proportional to the intended maximum

* or any A, exceeds a threshold Aslowdown

* or the system is diverging at one of the three highest priority levels-invariant,

limit, or lock (divergence detection is detailed below).

The mechanism for reducing the li in a slowdown is to first initialize any 7l that are

still oc to the current corresponding fIlAx, , and then to scale all 71 by a slowdown

factor aslowdown < 1, clamping each to a minimum limit of 7mY-.

Conversely, a speedup is triggered whenever

* IIAxzs is below a threshold /speedupbmax proportional to the intended maximum

* and all A1 are less than a threshold Aspeedup

* and the system is not diverging at any level.

A speedup is effected by scaling all 7y by a speedup factor Oaspeedup > 1, clamping each

to a maximum limit of 7max -
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Like 6max, the various speedup/slowdown parameters are also considered tuning

parameters. They are summarized in table 4.2 along with the values used for the

examples presented in this thesis.

value for robot value for quasistatic
parameter operations examples analysis examples

(Chapter 5) (Chapter 6)

1slowdown 2.0 2.0

/speedup 0.2 0.2
Aslowdown 1.0 1.0

Aspeedup 0.15 0.15

Oslowdown 0.5 0.5

aspeedup 2.0 2.0

7mn 0.001 0.00001

7"max 0.5 0.01

Table 4.2: Adaptive stepsize parameters.

4.8.2 Detecting Termination

The termination checks for the convergence loop also depend on various parameters,

and, in the case of divergence and stall, on any recent speedup/slowdown events.

I detect convergence by comparing the residual magnitude Ilell at each level to a

given threshold Ec (Eq. 4.50). In the current implementation I leave this threshold as

part of the problem specification, and I also allow the operator to use the Manhattan

norm instead of the Euclidean norm, with the reasoning that for a robot we may

sometimes care most about the maximum error of any individual joint.

The actual value of the convergence thresholds will depend on the geometric and

topological scale of each specific model, and also on the desired trade-off between

simulation accuracy and speed. I have found that for most of the examples related

to operating robots in this thesis (Chapter 5), which deal with robots with geometric

scales on the order of 10s-1000s of cm, an el value of 0.01 under a Manhattan norm

was sufficient. The quasistatic models in Chapter 6 required smaller thresholds of
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0.001 to 0.00001 to give sufficient accuracy and repeatability in the simulations, since

in those cases millimeter-scale motion was significant.

Divergence is detected in a manner similar to convergence, but in this case we

check for levels where Ilel| has increased from one iteration to the next. Also, such

divergence is permitted for the lowest three priority levels-potential, target, and

posture-since the operator might validly change the higher-priority constraints-

joint invariants, limits, or locking-in ways that conflict directly with trajectory fol-

lowing or the minimum attainable kinostatic potential energy. Two constants are

involved in the detection of divergence for any level: a tolerance p, and a scale factor

r1. The level residual magnitude Ilell is computed the same as for convergence check-

ing, but now we also require the magnitude at the prior level, say ielprevIl. Level 1 is

diverging iff (a)

Ile11 > p1 + T1I|elprev||, (4.52)

and (b) there was no adaptive stepsize speedup or slowdown in the prior convergence

iteration. As above, Pu and r are specified as part of the problem setup; the values

Pi = 0.001 and rl = 1.01 sufficed for all the examples I have considered.

Finally, stall is detected when (a) the magnitude IlAxI of the update vector is

less than a threshold 6mz, and (b) there was no adaptive stepsize speedup in the prior

convergence iteration. m,,,n is also considered part of the problem specification in the

current implementation, and I again allow the operator to substitute the Manhattan

for the Euclidean norm. For all the systems I considered 6 m,,, values in the range

0.001 to 0.01 were sufficient under a Manhattan norm.

4.8.3 Time Complexity and Convergence

Assuming dense matrices, the most asymptotically expensive operations in the prior-

ity loop (the innermost loop) for any particular level I are (1) the O(hlfl) operations

spent in matrix multiplies to compute Jr and to update N, and (2) the SVD and

pseudoinverse computations. See Appendix E for more on the cost of computing the

SVD; briefly, these computations are also O(h fl) when h, > fs, and O(h2 s) oth-
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erwise. hi > fs corresponds to an over-constrained priority level, and hi < fs to an

under-constrained level. Both are possible, but under-constraint is the common case,

again because in robotics applications we typically study linkages that have some

motion freedom. Thus the time complexity of each iteration of the the inner loop

is generally O(h lf, + hfs), but commonly hi is smaller than f, so this reduces to

O(h lf,): the matrix multiplies involving the [f, x f,] nullspace projector dominate.

The number of iterations of the priority loop is at most six, so these expressions are

also the extrinsic time complexity for the loop itself, with hi replaced by the maximum

level height:

O(hmaxfs) (4.53)

with hmax = max hi.
1

Turning to the limiting loop, in the worst case every DoF could be pinned one at a

time. But again this is unusual in practice, not only does it mean that the optimal pose

for every tree DoF is at a limit, but also that SOLVE discovers this one joint at a time.

Thus, at worst, the combined limiting and priority loops are O(hmaxf3 + hmaxf),

but the common case is that the number of limiting loop iterations is a constant (and

hmax < fs), reducing the typical extrinsic limiting loop run time to O(hmaxfl), the

same as the priority loop.

The number of iterations of the outermost convergence loop, and the number of

calls to SOLVE itself, recalling that it will be called periodically as long as the system

remains un-converged, is a question of convergence. This will be covered below.

Though matrix multiplication typically dominates the asymptotic time complexity

of the inner loop, in practical use with linkages up to 100s of joints the higher constant

factors associated with the SVD lead it to dominate in actual computation time. Some

example timing breakdowns are given for a large simulated linkage in Section 5.4.

There are alternatives to the SVD, some of which are faster, but the per-iteration

speed gains may come at the sacrifice of numerical stability, accuracy, and convergence

rate [20].
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Both the (common-case) quadratic asymptotic time complexity of SOLVE and the

practical runtime of the SVD are important factors limiting the scalability of the

system to large models, and are major drivers for coupling and hierarchical decom-

position, which can reduce the size of the part of the linkage presented to SOLVE.

Convergence and Local Minima

The core iteration in SOLVE is essentially a generalization of Newton-Rhapson it-

eration, and its convergence properties are considered to be similar [9]. In well-

conditioned cases, the magnitude of the residual can be halved at each iteration.

Unfortunately, there are also cases where a poor choice for the initial system state

will result in an iteration that fails to converge, though issues of failed (or slow)

convergence are usually avoidable in practical applications. This is supported both

by my experience and by others who use the method or its variants for articulated

system simulation [9, 20].

As with any local optimization approach, local minima must be avoided by higher-

level means. For example, in interactive operations contexts, the operator can set the

global shape of the commanded trajectory to avoid local minima. The situation can

be more challenging for applications in compliant motion, especially when quasistatic

modeling is used to represent link mass and joint stiffness. This can easily create a

complex potential energy landscape. One saving observation is that finding a local

minimum is not necessarily "wrong" in this context, since the passive physical system

would itself behave in the same way. In the implemented system I have neither

encountered any insurmountable local minimum issue.

4.9 Residuals and Jacobians

The specifications of the system model addressed by SOLVE are contained in the

per-level residual vectors el and Jacobians J. These, in turn, are functions of the

tree state x., and are computed essentially according to the formulas referenced in

table 4.1. A few aspects of these computations bear further discussion:
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* the restricted forward kinematic mapping y. = FK,(Xs) needs to be computed

for the part of the linkage under consideration by SOLVE

* in some cases the nearest-alias difference - needs to be found

* the kinematic Jacobian Jy must be computed.

Appendix G gives the details for computing the forward kinematic mapping using the

(t, 0) transform representation. The remaining items, - and J,, are covered in the

next two subsections.

4.9.1 Computing Nearest Alias Differences

Some of the residuals require finding the nearest alias difference - for a vector of joint

DoF. The three residuals in which this operation is used-target (Eq. 4.18), posture

(Eq. 4.27), and lock (Eq. 4.36)-each set goals on subsets of joint DoF. For each level,

these DoF goals can be visualized as a single point in IR6', where n is the number of

joints involved, formed by copying the current mobility state of each joint and then

overwriting each DoF that has a set goal. There is a complication with this picture,

though: the successive aliasing of 7r-wide shells of the rotation vector space for each

joint (cf. Appendix B) implies that there is a corresponding infinite family of aliases

for the current state of each joint, and hence also for the goal point.

The result of subtracting two DoF vectors will depend on the particular aliases

chosen. My approach to this is a modified subtraction - which uses the alias giving

the smallest (in an L2 norm) 6-dimensional difference vector for each individual joint

considered separately. Fortunately, the dynamic reparametrization scheme means we

only need to check two aliases for each joint: the canonical alias with rotation vector

in B 3 (ir), and the non-canonical alias in the next 7-wide annular shell B 3 (27r)\B3 (ir).

Non-canonical aliases must be checked because the nearest alias to a canonical rota-

tion could be either canonical or non-canonical (the algorithm CLAMPX on page 233

uses the same logic to find an in-limits alias).

Because - only checks two aliases for each joint, and because the shortest differ-

ence is found on a joint-by-joint basis, the computation of - adds only a constant
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factor above a standard vector difference.

4.9.2 Computing Jacobians

The final element necessary for SOLVE is the kinematic Jacobian JY, the matrix of

partial derivatives of FK. Computing this type of Jacobian is a common task in

articulated robotics [20, 55, 116]. However most algorithms given in the literature

* often handle only prismatic and revolute joints

* are not written in terms of the 6-dimensional (t, 0) parametrization and the

corresponding exponential and logarithmic maps for 0 (Appendix B)

* do not give details necessary for handling joints with inverted mobility spaces

* do not explicitly leverage the composite model transforms that are available

(e.g.) as a by-product of the above residual computations.

Given a procedure to compute FK (Appendix G), numeric estimation of Jy is

always possible: compute FK f + 1 times, once at x itself and then adding a small

delta to each component of x in turn, and finally divide the measured change in

each output component by corresponding the change in input. But such numeric

computation can be relatively expensive, and may not be as accurate as a direct

computation of the analytic derivatives of FK. This reduced accuracy could affect the

convergence rate of SOLVE.

In this section section an algorithm is presented for analytically computing the

Jacobian which addresses all of the above issues. What is really needed in SOLVE is

the restricted kinematic Jacobian

s= FK(XS), (4.54)

so the focus is on that. The extension to computing the full Jy, should it be needed,

is direct.
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Each entry in Js is the partial derivative of one component of the restricted closure

state ys with respect to one component of the restricted tree state x., evaluated at

the current value of xs. If cs = ICI then the lengths of y, and x, are 6cs and f8,

respectively, and J, is a [6c, x fs] matrix. J, is the local linearization of FK,:

Ay = FKs(xs + AxS) - FK,(xs) JAx 8s. (4.55)

Js is used in the computation of each of the priority level Jacobians J according

to the equations referenced from table 4.1 (these equations are written in terms of J,,

but Js can be substituted when the corresponding restrictions are also applied to the

rest of the equation). In most cases, J, is immediately left-multiplied by one or more

binary projection matrices, which effectively select only certain rows. Furthermore,

the columns of Js, which correspond to the concatenated set of the f, DoF of the

ts = IT I tree joints, can be considered a subset of a the columns of a larger [6cs x 6ts]

matrix J selected by a new [fs x 6ts] binary projection matrix Hfs:

J = J II . (4.56)
[6csxfs] [6cx6ts] [6tsxfs]

UPDATEJACOBIAN, Algorithm 4.2, computes this full J matrix; both for clarity and

for completeness. In the implementation, it is not actually necessary to do this full

computation, nor to explicitly represent or multiply any of the projection matrices-

they are but a means of mathematically presenting the computations-but only to

do some bookkeeping to compute just the necessary elements of J.

UPDATEJACOBIAN fills in J in a row-major order. Each span of 6 rows corresponds

to a unique closure joint c E C8, and similarly each span of 6 columns corresponds to

a unique tree joint t E Ts. By iterating c over the set of closure joints, the outermost

loop in UPDATEJACOBIAN scans down 6 rows at a time. For each c the inner loop

iterates t over the supporting tree joints, scanning across the columns in blocks of 6

and skipping blocks corresponding to non-supporting joints. If t is not in the support

of c then the corresponding [6 x 6] sub-matrix is 0. Otherwise, three parameters Q,
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R, and parallel are derived from the topological relationship of the mobility actions

of c and t, and the CMTs of their mobility frames. Details of these parameters and

their use to compute the [6 x 6] sub-Jacobian Jc-t are given in Appendix H.

For completeness, UPDATEJACOBIAN starts with a call to UPDATERESTRICTED-

CMTs. However when called from SOLVE, it can be arranged to always run directly

after residual computation, so the necessary CMTs will have already been updated.

Omitting the call to UPDATERESTRICTEDCMTS, the asymptotic running time of

UPDATEJACOBIAN is dominated by the zeroing of J in O(cst,).

The inner loop in UPDATEJACOBIAN needs to traverse only the unlocked tree

joints in the support chains for each closure joint. I use the notation

SIc = Sic \ rt, STC = STC \ Ft (4.57)
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Algorithm 4.2: UPDATEJACOBIAN(L, Cs, Ts)

Input: flattened linkage L, closure joints Cs, supporting unlocked tree joints Ts
Output: [6|CsI x 6|Ts|] Jacobian J as in Eq. 4.56
UPDATERESTRICTEDCMTS(L, Cs) >if not already updated
let J - 0
foreach closure joint c E C, do

foreach unlocked supporting tree joint t in (Sc, STc) in order do
if Oc < 0 then Q -- Xgo,,pm else Q go cme

if t E Sic then
if Oc < 0 then Q <-- (Xgopmt)- 1Q, R -- Xgocmt
else Q - (Xo,,cm,)- 1Q, R + Xgo-pm,
parallel (c = 0t)

else > passed LCA
if c < 0 then Q + (Xo*-cm,)- 1Q, R - Xgo+-pm
else Q -- (Xog0 pm)- 1Q, R -- Xgocmt
parallel < (c -#t)

if Oc < 0 then R + (Xgocm)- 1R else R +- (Xgopm)- 1R
compute Jc-t from Q, R, and parallel (Appendix H)
fill in [6 x 6] block corresponding to (c, t) in J from Jct

end
end
return J



to indicate the support chains for a closure joint c with locked tree joints removed.

For now assume this incurs no additional computational cost; the appropriate joint

sequences will be computed in ANALYZE.

4.10 The ANALYZE Algorithm

All of the computations necessary for SOLVE have now been presented. While SOLVE

can be applied directly to a full non-hierarchical linkage, the quadratic time complex-

ity of each priority iteration and the cost of the SVD make it important to try to

minimize the size of the part of the linkage that is processed: SOLVE can potentially

be invoked separately on different parts of the linkage with a lower total runtime

than if it were applied in a single call to the whole linkage. Also, SOLVE itself does

not enforce the relative motion constraints on driving and driven sub-linkages with

respect to their enclosing linkage.

Sometimes, decouplings are inherent in the structure of the model. For example, a

kinematic task 6 involving only the arms of a humanoid robot can be solved indepen-

dent of a second task involving only the legs. The first version of ANALYZE, presented

as Algorithm 4.5, computes this coupling decomposition. Section 4.10.1 extends this

to also incorporate a hierarchical decomposition which partitions sub-linkages along

driving/driven boundaries.

Decomposition methods have been previously studied in constraint solving [77, 67];

ANALYZE is related in particular to algorithms presented by Light and Gossard [95]

and by Welman [163], which also essentially perform coupling decompositions. How-

ever, ANALYZE is novel both in (1) its explicit use of the spanning tree/closure joint

linkage structure, and (2) its handling of locked joints which helps support hierarchical

decomposition (described below).

ANALYZE partitions the set of constrained7 closure joints into a set P of p disjoint

6I.e. a fully actuated (Def. 57) task where the robot pose is always determined by actuators,
overriding any other physical forces including gravity.

7CONSTRAINED?, Algorithm 4.3 on page 133, gives a precise definition of what makes a joint
constrained.
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components,

-P=(Co,.., C,_1) (4.58)

s.t. C = (Co U ... U Cp_1 U {all unconstrained closures}),

so that SOLVE can be invoked separately on each. A corresponding set T of sets of

unlocked supporting tree joints Ti is implied; for each C,

Tr= U (S,, U STC) (cf. Eq. 4.57). (4.59)
cEC,

The challenge is to form the finest partition P while ensuring that there is no overlap

between any two T:

V0 <,3<p i f j = (T n T) = 0. (4.60)

If there were such an overlap, then it would be possible that the state of some tree

joint is changed by distinct invocations of SOLVE, and these changes could possibly

conflict.

By construction, there is exactly one closure joint c for each topological cycle in

the kinematic graph for a linkage L, and the rest of the joints in each such cycle are

the support chains Sl and ST,. Ignoring the issue of locked joints for the moment,

we are looking for the bconnected components of L, considered as an undirected

graph8 : two distinct closures are in the same BCC iff their support cycles overlap, as

illustrated in Figure 4-5.

A classical result in graph theory is that BCCs can be found in O(IJI) [154];

ANALYZE is asymptotically slower in the worst case (analysis below), but unlike the

classical algorithm, it handles locked joints in a way that will support hierarchical

decomposition. Because locked tree joints are considered constant in SOLVE, ANA-

LYZE omits them from the support chains-recall that the unlocked supports S1 and

ST are exactly what SOLVE and UPDATEJACOBIAN need. ANALYZE will separate

sA biconnected component of an undirected graph is a maximal connected sub-graph which
remains connected even after the removal of any edge.
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Figure 4-5: Coupling decomposition.
In this example, the overall linkage is separated into two biconnected components.
Tree joints are drawn as dark lines; closure joints are light lines.

components which overlap only at locked joints.

ANALYZE operates in two phases. In the first phase, the recursive subroutine

TRACESUPPORTS, Algorithm 4.6, performs a DFS of the linkage spanning tree. Each

time a closure joint is encountered its supports are traced and stored in the SJ, ST, SJ,

and ST sequences. In addition, the set of closure joints supported by each tree joint

t is saved in supported-closurest, and the set of all constrained closures is collected in

U. TRACESUPPORTS is asymptotically O(IJI + |T| CI) (recall C = J\ T), due to (1)

the DFS and (2) tracing the O(ITI) support chain for each of the O(CI) constrained

closures.

TRACESUPPORTS makes use of two helper functions, CONSTRAINED? and LOCKED?,

Algorithms 4.3 and 4.4, to determine the status of each joint. With some simple book-

keeping, both of these functions can be implemented in 0(1).

Algorithm 4.3: CONSTRAINED?(j)
Input: joint j
Output: true iff j is constrained
return (Yj : G) or (Ij # 0) or j E IF >has Dol, limited DoF, or is locked

or (DoF of j) n wt = 0 >in current target waypoint
or (DoF of j) n wp # 0 >in current posture waypoint
or Tj A 0 > affects elastic or gravitational potential
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Algorithm 4.4: LOCKED?(j)

Input: joint j
Output: true iff j is locked
return (j E F)

The second phase of ANALYZE applies the recursive subroutine EXTRACTPART,

Algorithm 4.7, repeatedly until all of the constrained chain closures have been assigned

to one of the Ci in P. The total time spent in EXTRACTPART is O(|TI IC) because

(1) the O(ITI) support of each closure joint is traversed exactly once, and (2) the

O(ICI) set of supported-closures for each of the O(ITI) supporting tree joints is also

traversed once.

With these running times for each phase, the full ANALYZE algorithm is thus

O(lJ + IT| C|), or just O(|J12) since ITIIC[ is at worst proportional to |JI2 (an

example pathological case is given in Appendix G).
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Algorithm 4.5: ANALYZE(L)

Input: flattened linkage L
Output: partition P of constrained closure joints (Eq. 4.58)

corresponding set T of sets of supporting unlocked tree joints
complete support chains S1c, STc for each constrained closure
unlocked support chains S{, STc for each constrained closure

let T C J be the set of tree joints and C = J \ T the set of closures in L
foreach j E C do clear SJc, S$ , SIc, and ST,; mark j unassigned
foreach j E T do let supported- closures, 3-- 0; mark j unassigned
let U - 0 > the constrained closures wzll be collected here
U +-- TRACESUPPORTS(gO, U)
let P -0, T -0

while U # 0 do
let c be the first element of U
(U, Ci, Ti) +- EXTRACTPART(C, U, 0, 0)
add C, to P and Ti to T

end
return (P, T), support chains as side-effect



Algorithm 4.6: TRACESUPPORTS(, U)
Input: start link 1, collected constrained closures U
Output: U updated with any newly found constrained closures

support chains for the newly found constrained closures
foreach j s.t. pj = 1 do

let breadcrumbt -- j, i -- c3
if TREE? (j) then U -- TRACESUPPORTS(i, U)

else if CONSTRAINED? (j) then
add j to U
repeat > trace down SJ

P -- Pi, append p to Sj, i +- pp
if -LOCKED?(p) then append p to S,, add j to support

until breadcrumbi 5 0
>i is now the LCA of c3 and p,

repeat > trace up ST,
c -- breadcrumbi, append c to STj, i +- cc

if -LOCKED?(c) then append c to STj, add j to support
until c = j

end
end
breadcrumb ,- 0
return U, support chains as side-effect
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Algorithm 4.7: EXTRACTPART(C, U, C, T)

Input: initial closure c, remaining unexplored closures U
set C, of constrained closures in component
set T, of unlocked supporting tree joints supporting Ci

Output: U with C, removed, C,, and T,
remove c from U, add c to C,, mark c assigned

foreach unlocked supporting tree joint t in (Stc, Tc ) do

if t unassigned then
add t to T,, mark t assigned
foreach unassigned closure u in supported-closurest do

(U, C, Ti ) +- EXTRACTPART(U, U, C, Ti)
end

end
return (U, Cz, Ti)

ed- closuresp

ed- closuresc



4.10.1 Hierarchical Decomposition

With a few modifications, ANALYZE can be amended to also perform a hierarchical

decomposition so that (1) a driving sub-linkage is solved before the enclosing sublink-

age; (2) vice-versa for a driven sub-linkage; (3) a simultaneous sub-linkage is solved

together with its parent. These constraints on the sequencing of SOLVE calls can be

enforced by a new partial order on the (P, T) partition returned by ANALYZE.

Definition 62 Each solve component (C, T) E (P, T) will be assigned a solve round

in Zo+ corresponding to the partial order of SOLVE calls.

The ordering of calls to SOLVE within the same round is not constrained, but all calls

for one round must be completed before advancing to the next round.

Consider a graph £ with vertices corresponding to sub-linkages and edges to their

parent-child relationships. Because all sub-linkages must be properly nested, one

perspective is that £ is a tree rooted at the top-level sub-linkage. However, it is also

useful to consider the edges in £ to be directed according to sub-linkage disposition.

Specifically, let the edge connecting a driving sub-linkage to its parent be directed

toward the parent, vice-versa for a driven sub-linkage, and let the edge connecting

a simultaneous sub-linkage to its parent be bi-directed. L is thus a directed graph,

and its condensaton-the directed acyclic graph formed by collapsing each strongly

connected component (SCC) into a single vertex-defines the desired partial order.

Figure 4-6 illustrates these concepts.

The amendment of ANALYZE will produce a partition such that no solve compo-

nent extends beyond a single SCC of L. However, due to the coupling decomposition,

there may still be more than one solve component per SCC, and it is also possible

that a solve component extends beyond the boundaries of a simultaneous sub-linkage.

Finally, all, but not necessarily only, the solve components within the same SCC of

L are in the same solve round-there may be solve components in other SCCs also

in that round.

ASSIGNROUNDS, Algorithm 4.8, marks each sub-linkage with a unique identifier

of the SCC of L to which it belongs, and also labels it with its solve round. Each
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Figure 4-6: Hierarchical decomposition.
In this example, a hierarchical linkage (left) is decomposed according to the driv-
ing/driven relationships among its sub-linkages. The condensation graph of the re-
sulting directed graph, right, defines a partial order for solve components.

solve component inherits the solve round of the sub-linkage(s) containing it.

Definition 63 A sub-linkage is a source, i.e. it is in solve round 0, iff (1) it's the

top-level or any driving sub-linkage and (2) it has no driving descendant reachable

only via a chain of simultaneous sub-linkages.

ASSIGNROUNDS relies on two recursive sub-routines, FINDSOURCES and MARKSCCs

(Algorithms 4.9 and 4.10). The top-level call to FINDSOURCES performs a DFS on £

to find all source sub-linkages, and so is O(II), including all recursive calls. Each call

to MARKSCCs marks the SCC identifier and solve round on all sub-linkages in an

SCC. The total time spent across all calls to MARKSCCs is thus also O(I£I), making

ASSIGNROUNDS itself O(II).

Algorithm 4.8: ASSIGNROUNDS(C)
Input: sub-linkage graph £ with top-level sub-linkage Lo
Output: each sub-linkage is marked with its solve round
foreach sub-linkage L E C do roundL +- -1
let set of source sub-linkages U +- 0, number of SCCs n +- 0
FINDSOURCES(LO, U)

foreach L EU do n +- n + MARKSCCs(L, 0, n)
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Algorithm 4.9: FINDSOURCES(L, U)

Input: sub-linkage L, collected source sub-linkages U
Output: true if driven by descendant
let dbd -- false >driven by descendant
foreach sub-linkage M s.t. pM - L do

if FINDSOURCES(M, U) then dbd +- true
if - dbd and ((L = Lo) or (dL = driving)) then add L to U
return (dL = driving) or (dbd and (dL = 0))

Algorithm 4.10: MARKSCCs(L, r, i)
Input: sub-linkage L, solve round r, SCC identifier i
Output: the number of SCCs marked
solve-roundL <- r, SCCL - i
let n <- 1 >number of marked SCCs
foreach sub-linkage M s.t. PM = L do

if (roundM < 0) and (dM # driving) then
if dM = driven then n -- n + MARKSCCS(M, r + 1, i + n)
else n -- n + MARKSCCs(M, r,i) >M is simultaneous

end
end
if L = Lo then

if (roundPL < 0) and (dL # driven) then
if dL = driving then n <- n + MARKSCCS(pL, r + 1, i + n)
else n -- n + MARKSCCS(pl, r, i) >L is simultaneous

end
end
return n



Amending ANALYZE

Hierarchical decomposition is enabled by making three amendments to the previously

defined ANALYZE algorithm:

* a call to ASSIGNROUNDS is inserted at the beginning of ANALYZE

* a sort of the (C, T,) E (7P, T) in order of increasing solve round is inserted at

the end of ANALYZE

* the calls LOCKED?(p) and LOCKED?(c) in TRACESUPPORTS are replaced with

LOCKEDWRT?(p, j) and LOCKEDWRT?(c, j), respectively.

The first two amendments take care of setting up the solve rounds, and the last ensures

that ANALYZE always breaks SOLVE calls at driving/driven sub-linkage boundaries.

This is done by generalizing the notion of locking so that each tree joint can be

considered locked with respect to some closures but not to others: besides checking

if a tree joint t is explicitly locked, LOCKEDWRT?(t, c), Algorithm 4.11, also checks

if t and c are not in the same SCC (normally, crossing joints are treated as members

of the inner sub-linkage, but crossing joints on driving sub-linkages are an exception:

they are treated as if in the super-linkage).

Algorithm 4.11: LOCKEDWRT?(t, c)

Input: tree joint t in sub-linkage Lt (i.e. t E JLt)
closure joint c in sub-linkage L, (i.e. c E JLC)

Output: whether t is to be considered locked with respect to c

if t E Ft then return true
let i +- SCCL,
if CROSSING?(c) and (dL, = driving) then i +- scc Lc >see text

return (i f SCCL)

The running time of ANALYZE thus amended becomes O(IJI + ITIICI + ICl log ILI)

due to the sorting of solve rounds (of which there are at most £I, the total number

of sub-linkages).
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4.11 Interacting with Model State

Whereas Section 3.6 and Appendix D presented a comprehensive set of operations

for evolving the structure of a linkage model, corresponding operations to mutate

state are relatively simple because the heavy lifting-propagating the effects of the

mutations-is done by SOLVE.

There are just two essential categories of state change operations: changing DoF

target or posture values, and changing the potential energy model for a joint. Both

can be exposed to the user as simple discrete mutation operations, but for the first

category it is also helpful to provide more intuitive means such as

* click-and-drag manipulation-the operator selects links or joints with the mouse,

and drags them to effect motion in an intuitive way. Because the standard

mouse input device only reports two axes of translational motion, special at-

tention needs to be paid when the manipulated object has more than two DoF.

For example, different mouse buttons and/or keyboard modifiers can be used to

select the DoF to operate. Computationally, drag gestures are discretized and

used to repeatedly set new target waypoints for the manipulated DoF.

* special purpose input devices-mouse-based manipulation is general-purpose

and requires no special hardware, but can only control two axes of motion

simultaneously. This limitation can be addressed, for example, by providing

application-specific input devices with mobility that more closely matches that

of the manipulated linkage model. One example of such a device is presented

in Appendix I.

* trajectory following-here the operator essentially specifies a script for the mo-

tion of a set of DoF, for example, by entering a sequence of waypoints and the

time intervals that should elapse from one to the next. The system then ef-

fects the motion by successively generating target waypoints along the specified

trajectory.

All of these methods are available in the implementation, with examples given in
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Chapter 5.

A few new structure-changing operations are also implied by the constructs intro-

duced in this chapter. Adding a target or posture goal on a DoF which currently has

none is handled as a structure mutation, as is the operation of removing such a goal.

Joint locking and unlocking are also handled as structure mutations.

4.12 The Simulation Loop

The processing required to handle state and structure changes could be considered

both in batch and in interactive contexts. The focus here-and in the software imple-

mentation developed with this thesis-is on the latter, though same general techniques

should also be adaptable for non-interactive use.

At the top level, the interactive implementation is organized into a SIMULATION-

LooP, Algorithm 4.12. The main idea is to interleave the externally requested model

updates with calls to SOLVE to automatically evolve the model state. ANALYZE is

called after structure changes to (re-)partition the linkage, and SOLVE is then invoked

in turn for each resulting part. The wall-clock time limit in SOLVE helps ensure that

the simulation loop will not block excessively in any given iteration, so rendering can

also be interleaved in the loop.

The simulation loop effectively serializes access to the linkage data structures,

providing a baseline single-threaded synchronization model. Extensions should be

possible to exploit parallelism on multiprocessor or multicore systems. For example,

a rendering thread could potentially be overlapped with the simulation thread, and

multiple SOLVE calls on independent parts of the linkage could be executed in parallel.

Such ideas are future work.

4.13 Summary

While Chapter 3 developed the structure and topology of the linkage representation,

this chapter has added the other half of the picture by showing how to compute
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Algorithm 4.12: SIMULATIONLOOP(L)

useful motions of a linkage. Together, these make a comprehensive framework for

constructing, interacting with, and simulating models of articulated robots combined

with virtual articulations.

In developing computations for linkage motions which solve the local assembly

and differential control problems, this chapter has covered a lot of ground. These

problems were first given formal definitions, and their solution via local linearization

and proritized damped least squares was developed. I have not simply instantiated

this well-known technique, but specifically applied it to the particular challenges of

mixed real/virtual systems. In particular, a suite of six priority levels were introduced

that solve local assembly and differential control, with extended functionality for

specifying default linkage pose, handling DoF limits and locked joints, and minimizing

elastic and gravitational potential energy.

A SOLVE algorithm implementing the PDLS iteration of these priority levels was

presented, along with supporting algorithms and formulas for computing Jacobians,
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Input: linkage L
repeat

apply any pending structure and state changes to L, x, F, k, T, Wt, and Wp
(including those from user input devices and any active trajectory drivers)
if structure changed then (P, T) <- ANALYZE(L)
if state changed then

>update independent tree joints, see page 119
foreach tree joint j E J if supported-closures, 0 do

if j ' F, then > j not locked
if T 3  0 then set j to its potential energy minimum
else if (DoF of j)n wt # 0 then set indicated DoF to targets

end
end
UPDATEALLCMTS(L)

end
if at least 1/desired FPS since last render then render L
foreach (C, T) E (P, T) in order do

SOLVE(C, T 2 , x, F, k, T W, Wp)
if (C,, T,) last in round then UPDATEALLCMTs(L)

end
until program exit



residuals, and stepsize and damping factors. All necessary analytic details were pre-

sented based on the 6D (t, 0) rigid transform parametrization.

Because each iteration of SOLVE is essentially quadratic in the number of joints,

and to correctly sequence the motion of driving and driven sub-linkages, an ANALYZE

algorithm was also presented to compute coupling and hierarchical decompositions,

potentially breaking a large linkage into smaller independently solvable pieces.

All of the data structures and algorithms presented in this chapter (and in Chap-

ter 3) have been implemented, and the resulting integrated software constitutes the

testbed upon which the experiments in later chapters are based.
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Chapter 5

Operating High-DoF Robots

This chapter presents a set of applications examples for the models and algorithms

developed in Chapters 3 and 4, where virtual articulations and kinematic abstractions

form the basis for a new kind of operations interface for specifying and constraining

motion in high-DoF robots, i.e. robots with large numbers (10s to 100s) of joints.

This is one of two application domains explored in this thesis; Chapter 6 applies

virtual articulations and kinematic abstractions to substantially different problems in

the area of modeling compliant locomotion.

Due to their application flexibility, high-DoF robots are increasingly common.

This flexibility is especially attractive in space exploration, where the extreme costs

of transportation from Earth are balanced by maximizing versatility, reusability, and

redundancy in the delivered hardware. Such considerations have been a prime mo-

tivation for NASA/JPL's development of the 36-DoF All-Terrain Hex-Legged Extra-

Terrestrial Explorer (ATHLETE) [167], with which astronauts will collaborate in our

planned return to explore the Moon (Figure 5-2). A main feature of this chapter is the

set of examples in Section 5.3, where virtual articulations in the mixed real/virtual

interface are used to operate inspection and manipulation tasks on the ATHLETE

hardware that would have been challenging in prior systems [159].

What makes High-DoF operations difficult? One issue is that there are often

many ways the robot could move to achieve a task (i.e., there is often a high degree

of redundancy), and some motions may be better than others due to secondary goals.
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Sometimes a human operator can quickly visualize a desired motion, but in prior

interfaces the expression of this motion to the operations system could be a tedious

bottleneck. The approach described in this chapter allows the operator to graphically

specify a broad class of motions (recall the generativity conferred by Kempe's theo-

rem) using virtual articulations. For topologically large systems, structure abstraction

(Section 3.5.3) can be applied to hierarchically subdivide the problem.

The core idea is to use virtual articulations to (1) constrain and (2) parametrize

the intended motion (Figure 5-1, and recall Figures 1-3 and 1-1). Using the mixed

real/virtual interface, the operator.is presented with a graphical model of the robot

and a catalog of available virtual joints (Figure 3-6). To constrain motion for a partic-

ular task, the operator instantiates joints from this catalog and interconnects them to

the links of the actual robot-and/or to newly instantiated virtual links-thereby con-

structing arbitrary virtual extensions to the actual robot kinematics. Virtual joints

can be erected to parametrize specific task DoF; for example the long prismatic vir-

tual joint in Figure 5-6 parametrizes the length of a trenching motion. By closing

kinematic chains, virtual articulations can also constrain whole-robot motion, thus

narrowing the space of possible motions for a redundant task to those that satisfy

the operator's intentions. The virtual Cartesian-3 joint in Figure 5-6 is an example of

such a constraint. Virtual links can serve as interconnection points for more complex

constructions-the chain of two prismatic and two revolute virtual joints in Figure 5-6

is interspersed with three virtual links-and can also model task-related coordinate

frames or world objects, e.g. as in the inspection example in Figure 5-5.

The mixed real/virtual interface system computes local assembly motions as vir-

tual articulations are constructed. From there, the operator can move any joint or

link, and the system interactively solves the differential control problem in real-time

to find a compatible motion for all joints which best satisfies all constraints. For exam-

ple, in the trenching task, the operator can effectively command "trench from -0.9m

to +0.4m" by operating the corresponding virtual prismatic joint, or they may simply

drag the constrained end effector with the mouse. The motions can be validated in

simulation and then executed on the hardware, as we have done for ATHLETE.
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real joints and links

added virtual joint

added virtual links

Figure 5-1: Parametrizing and constraining motion with virtual articulations.
In this trenching task (also see Figure 5-6), a collection of virtual prismatic and

revolute joints parametrize the main task motion, while a virtual Cartesian-3 joint

constrains the deck to maintain its orientation.

Another key advance is that this approach to high-DoF operations is generally ap-

plicable to kinematic operations in articulated robots of any topology, allowing both

open- and closed-chains as well as both over- and under-constraint. To demonstrate

this topology-independence, in addition to ATHLETE, Section 5.4 gives a detailed

example of operating a large-scale deformation motion in a self-reconfiguring modular

robot. Two layers of structure abstraction are used in this case, which break up the

motion specification problem for the operator, and also enable the system to decom-

pose the full structure into smaller independently solvable parts (Section 4.10.1).

The next section discuss handling under- and over-constraint, two key challenges in

high-DoF operations. The assumptions and limitations of the virtual articulation ap-

proach are then summarized in Section 5.2, with the ATHLETE and self-reconfiguring

robot examples following in the subsequent two sections. Finally, Section 5.5 situates

this new work in the context of other previously reported methods.
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5.1 Handling Under- and Over-Constraint

Under-constrained systems are especially common in high-DoF robots, because often

they are applied in tasks which involve only a few degrees of constraint, whereas

there may be many more degrees of freedom available in (the active part of) the

robot. Unlike some prior approaches, which are aimed towards fully constraining the

motion [76, 78, 113], sometimes referred to as "redundancy resolution" in robotics

(e.g. [19], Section 7.6), my perspective is that the operator should be free to add as

much or as little constraint as desired.

At the lowest level, the least-squares nature of the PDLS solver (Chapter 4 and

Appendix F) gives a basic ability to find reasonable motions in any under-constrained

system: at each iteration a shortest step (by a Euclidean metric) is taken in joint

space, resulting in incrementally minimal motion. Said another way, at a fine scale,

the system will produce piecewise linear moves from one configuration to the next.

A more roundabout trajectory might also be feasible, but would likely be surprising.

On top of this foundation, the operator may construct chain-closing virtual artic-

ulations to express specific motion constraints, and thus reduce redundancy as much

as desired. Figure 1-3 gives a basic example, though this technique is pervasive in

the whole approach and is also demonstrated in every example in this chapter.

Over-constraint, where the feasible configuration space is actually empty, is also

a possibility. While at first this may seem a serious issue, in the presence of virtual

articulations, it may be allowable-if necessary, virtual closure joints can be broken.

Again, my perspective is to permit over-constraint, and to provide the operator with

tools to handle it at two levels.

The lowest-level handling of over-constraint is again conferred by the least-squares

nature of PDLS. If any individual priority level is over-constrained, then the least-

squares solution will minimize the squared error across all constraints in the level.

This is useful and can produce intuitive behavior from the operator's perspective. For

example, when multiple closure joints need to be broken, the amount of breakage can

be balanced across them all.
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The PDLS priority levels (Section 4.7) provide a higher-level tool for handling

over-constraint: satisfaction of constraints at a lower priority level will not compro-

mise satisfaction at higher levels, even when the constraints conflict. Consider the

spherical object inspection task in Figure 5-5. In this case we use a special-purpose

hardware device called TRACK to pose the limb holding the inspection camera. But

there is also a virtual spherical joint constraining the camera. TRACK has no hap-

tic feedback, so while the operator will generally try to pose it near to a feasible

configuration, invariably this will diverge from the strict spherical constraint surface,

over-constraining the limb. The spherical joint constraint is modeled at the invariant

level, and TRACK's pose is modeled at the target level, so the system will sacrifice

the latter for the former. The overall effect is as if the virtual spherical joint was phys-

ically present and rigidly constraining the motion, and as if there were a breakable

elastic connection between the pose of TRACK and the pose of the actual limb.

5.2 Assumptions and Limitations

While under- and over-constraint can be handled, this is not to say that the mixed

real/virtual interface can work any miracles for physical systems that are truly under-

or over-constrained. Essentially, to the extent that the under- or over-constraint can

be restricted to just the virtual articulations, they can be controlled as desired.

Many robots are applied in practice in fully-actuated contexts (Def. 57) and are

thus not physically under-constrained; the examples studied in this chapter all fall

into this category. While such systems can still be over-constrained, if they can be

assembled then at least the over-constraint is self-consistent.

Some under-actuated physical systems are statically determined in the sense that

their state will correspond to a local minimum of gravitational and elastic potential

energy. The quasi-static modeling capabilities of the mixed real/virtual interface can

compute realistic motion for such systems, though I have yet to use these features in a

high-DoF operations context (they are used in the compliant locomotion applications

examples in Chapter 6).
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Overall, some other limitations of using virtual articulations and structure ab-

straction to operate robots should be noted:

* the main thrust is to specify spatial motion trajectories; speed and force com-

manding, for example, are not directly addressed

* though Kempe's theorem ensures that a large class of trajectories will be con-

structable even given a limited catalog of joints, some will be out of reach.

For example, a true helical joint cannot be synthesized from the joint catalog

(Section 3.3.4) currently provided in the mixed real/virtual interface. Non-

holonomic constraints, including rolling contact, are also not possible.

* when structure abstractions are applied, care must be taken either to ensure

that they are proper (Def. 44), or that operating them outside the reachability

of their implementation causes no unwanted effect.

With its capabilities and limitations thus outlined, the next sections move on to

demonstrating the usefulness of the approach in two different robotic systems.

5.3 Experiments with ATHLETE

This section presents the first of two specific application studies, in this case using

virtual articulations to operate whole-robot motions in ATHLETE, a new robot under

development at NASA/JPL.

The All-Terrain Hex-Legged Extra-Terrestrial Explorer is under development for

use in future Lunar missions, where it will potentially aid human explorers in various

ways [165, 166, 167]. Figure 5-2 shows two instances of the current hardware.

ATHLETE weighs about 1000kg and has six identical limbs, each with six revolute

joints and a terminal wheel (Figure 5-3 shows the joint axes). All joints have harmonic

drivetrains and active-off brakes. The limbs attach to a hexagonal deck which is about

2.5m in (circumscribed) diameter and about 1.8m above the ground in nominal pose

(foreground in the figure).
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Various modes of locomotion are possible, including both walking (with the wheel

brakes applied) and rolling. The limbs may also be used for manipulation and inspec-

tion tasks, which is the focus of the operations interface presented in this chapter.

Figure 5-2: All-Terrain Hex-Legged Extra-Terrestrial Explorer (ATHLETE).
The prototypes shown here are 1/2 scale with respect to the projected flight hardware.
Image courtesy NASA/JPL/Caltech.

The six limbs of the robot are intended to be useful both in various kinds of

locomotion (terminal wheels allow both rolling and walking), and also for manipu-

lation and inspection tasks. Other researchers are considering the locomotion prob-

lems [62, 150, 144]; here, we focus on manipulation and inspection. The original

operations interface for these kinds of motions, based on fairly standard approaches

for prior systems both at JPL and more broadly in industrial robotics, consisted of

three primitives:

* MOVEJOINTS-simultaneous forward kinematic operation for all 36 kine-

matic DoF. Essentially equivalent to a board with 36 knobs, each commanding

the position of one joint.
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* MOVETOOL-inverse kinematics for one leg alone. A 6-DoF pose is specified

for the end effector (EE), which in ATHLETE corresponds to the terminal link

carrying the wheel. An analytic inverse kinematics algorithm computes a set

of corresponding joint angles to pose the EE as requested with respect to the

body (the hexagonal deck), which remains fixed in space.

* MOVEBODY-inverse kinematics for the body alone. All wheels are locked in

place, and a 6-DoF pose is specified for the hexagonal deck. These constraints

reduce directly to inverse kinematics problems for the six individual limbs, which

are moved accordingly to pose the deck.

While MOVE TOOL is obviously useful, because it can only control one leg at a

time, any task requiring multi-limb motion would need to be coordinated by some

additional mechanism. Both MOVEJOINTS and MOVE_BODY can move all the

limbs together, but the former has obvious shortcomings (it simply puts the full

burden of motion specification on the operator), and the latter is limited to controlling

body posture alone.

Even in the case of single-limb motion, MOVE TOOL is not always ideal. For

example, some tasks do not constrain all 6 DoF of the EE pose; consider a drilling

task-rotation of the EE about the drill axis may be unconstrained. And there

are often multiple discrete solutions for fully constrained poses, i.e., ATHLETE's

"elbows" can generally kink in different directions to reach the same EE pose. Thus,

as an initial contribution, I designed and built a direct-manipulation input device

that mimics one ATHLETE limb, called the Tele-Robotic ATHLETE Controller for

Kinematics (TRACK) [103] (Figure I-1). Appendix I gives some details.

Though master-slave direct manipulation is not a new idea, Matt Heverly, chief

mechanical engineer on the ATHLETE project and a frequent driver of the robot,

said [64] "This is a fantastic new [device] that will allow us to command ATHLETE

in a highly intuitive and efficient way." And, informally, another ATHLETE operator

commented that TRACK "is like giving someone an ice scraper where before all they

had were their fingernails." These comments highlight the tedium of using traditional

152



operations methods (MOVEJOINTS, MOVE_TOOL, MOVE_BODY) for a complex

and highly capable high-DoF system like ATHLETE. But TRACK neither solves the

whole problem-used alone, it still provides no mechanism for constraining motion

or for coordinating motion of multiple limbs.

The remainder of this section shows five examples where virtual articulations aid

the operation of specific whole-robot motions which are rapid for human operators

to conceptualize but difficult to express in more traditional interfaces. Four of these

were tested successfully on the hardware [159], one of which shows the combined use

of both TRACK and the mixed real/virtual interface (Figure 5-5).

The overall procedure for the hardware experiments was to

1. load a model of ATHLETE in the mixed real/virtual interface (Figure 5-3)

2. design all virtual articulations and motions in simulation, using the system to

compute local assembly and differential control motions

3. export the final robot motion as a joint space waypoint sequence (i.e. an auto-

matically generated sequence of MOVE JOINTS commands), generating a new

waypoint whenever any joint moves at least 2'

4. check the sequence in a previously validated simulator (JPL's ATHSIM)

5. execute the sequence as a position-controlled trajectory on the hardware

Four different scenarios were tested on the hardware (each was repeated at least

twice, though in this case the repeatability is actually a property of the hardware,

not the interface system):

* Figures 5-4 and 5-5: a limb-mounted camera inspects a roughly spherical object

while maintaining a constant distance

* Figures 5-1 and 5-6: a trench is inspected, with the support legs moving the

deck to extend reachable trench length

* Figure 5-7: a rigidly mounted side-facing camera is made to pan and tilt with

the motion both parametrized and constrained by virtual revolute joints
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Figure 5-3: ATHLETE model in the mixed real/virtual interface.
A model of ATHLETE was provided by the RSVP team at NASA/JPL/Caltech in
VRML format for use in the mixed real/virtual interface. The model is structured as a
tree: the root is the ground frame (lower center) which connects to a link representing
the ATHLETE hexagonal deck. From there, six branches of six revolute joints and
six links model the limbs. (The wheel rotations are also modeled, but were locked in
the experiments.)

* Figure 5-8: two limbs execute a pinching maneuver with the pinch distance and

angles controlled by virtual prismatic and revolute joints

One additional experiment-inspecting a crew module, shown in Figure 5-9-was

simulated, but we did not have the opportunity to implement it on the hardware.

For the object inspection task, the operator directly models the constant cam-

era distance constraint using a virtual spherical joint connecting the object (itself

represented as a virtual link) and the camera. The space of reachable viewpoints

is extended (vs. moving only the camera limb alone) by using the five other limbs
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to lean the hexagonal deck, but because the deck often carries a payload, it should

remain flat. This is expressed by a virtual Cartesian-3 joint connected between the

deck and the world frame. After configuring these virtual articulations the operator

can drag the camera, e.g. with the mouse, to scan the object.

Figure 5-4: Inspecting an object using the mixed real/virtual interface.

Descriptions of the other experiments are similar, though for the object inspection

experiment, one additional wrinkle was added: TRACK was integrated as a further

aid to motion specification. One complication was that, since TRACK is strictly

an open-loop device (it contains no haptic feedback), nothing prevents an operator

from moving it in ways which violate the constraints (in this case, the virtual spherical

surface). This example shows that the SOLVE priority levels (Section 4.7) can mitigate

the issue: the spherical joint closure constraint is higher-priority than the EE target

tracking command from TRACK. Thus, when the operator moves TRACK off the

constraint surface, the system will simply move the camera to a nearest feasible pose,

sacrificing fidelity of target tracking instead of breaking the joint.

For the bi-manual experiment the robot was partially supported by an overhead

crane, as simultaneously raising two limbs is not supported on the current hardware.

The crane served as a safety-backup in the other experiments.
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virtual spherical joint constrains camera

Figure 5-5: ATHLETE inspecting an object with a leg-mounted camera.
In this experiment a leg-mounted camera inspects an object from a wide range of viewpoints, while a virtual spherical joint
centered on the object maintains a fixed focal distance. The mixed real/virtual interface automatically computes postural
motions that greatly extend the range of reachable viewpoints vs. actuating a single leg alone. Also, for this task the TRACK
interface device (Appendix I) was combined with the virtual articulation system.
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Figure 5-6: ATHLETE performing a trenching motion.
In this experiment a scoop is mounted to one limb and could be used to dig a trench, though actual digging would require some
added force control. Virtual prismatic joints constrain and parametrize the length and depth of the trench, virtual revolute
joints set the angle of the scoop, and a Cartesian-3 joint keeps the deck at a constant orientation with respect to the ground (e.g.
in case that the deck is carrying an additional payload). Though a similar trenching motion could be operated using inverse
kinematics for the active limb alone, the addition of constrained postural motion approximately doubles the total possible trench
length.



Figure 5-7: Pan/tilt of an ATHLETE camera via postural motions.
ATHLETE has a number of side-facing cameras rigidly mounted to its deck. For an extended field of view, pan and tilt can
be emulated by postural motions where all legs cooperatively rotate the deck about the camera's center of focus. Such motion
can be operated with two crossed-axes virtual revolute joints. With this construction in place, quantified operations commands
such as "pan 30 degrees left, tilt 10 degrees down" have a specific meaning. The least-squares solver of the mixed real/virtual
interface finds a sufficient whole-robot motion (standard driving pose, Figure 5-2, is set as the default posture).



Figure 5-8: ATHLETE performing bi-manual manipulation motions.
In this bi-manual operations experiment, a virtual link models a movable object that could be grasped by pinching between two
adjacent wheels (actually grasping an object would require the addition of force control, which is not yet implemented). The
operator can simply drag this virtual link around in the mixed real/virtual interface; the system finds compatible kinematic
motions for the legs. Motion is automatically limited to the reachable workspace by constraint prioritization, since the joint
closure constraints are higher priority than the object pose target. Virtual prismatic and revolute joints additionally parametrize
the grip.



Figure 5-9: Simulation of ATHLETE inspecting a cylindrical crew module.
In some scenarios, a cylindrical crew module may be affixed to the deck. A leg-
mounted camera could be used to inspect its surface in a cylindrical scanning motion.
Here, a virtual prismatic joint controls the elevation of the scan, and a virtual revolute
joint controls the radial angle.

5.4 Scaling to 100s of Joints: Simulation of a Large

Modular Robot

This section presents a second application in high-DoF operations, here for a simu-

lated robot with 100s of joints, demonstrating the scalability of both the theory and

the implementation of the mixed real/virtual interface. Two layers of structure ab-

straction are applied in this example, breaking up the operator's motion specification

task and also enabling hierarchical decomposition for efficient motion computation.

The system in this section is a particular example of a self-reconfiguring mod-

ular robot. Modular SR robots, studied since at least the late 1980s [53, 105, 28],

are systems which can globally form arbitrary shapes by re-arranging many smaller

interconnected units [136, 135, 104]. This is another class of robot where large num-

bers of joints are possible-though hardware has so far been limited to a few 10s of

modules [90, 16], work has been done in simulation [174] with larger numbers of up
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to 1 million [51].

The SR system concept introduced here is itself novel, and consists of active

modules with the same kinematics as the Shady climbing and sun-shading robot

presented later in this thesis (Section 6.6), plus passive modules in the form of simple

bars [158, 42]. It is called Multishady because of its basis in the Shady kinematics.

Appendix K gives additional details and research context.

Multishady is a true SR system, and is capable of arbitrary topological reconfigu-

ration by attaching and detaching modules (Figure K-1). This kind of reconfiguration

has been a main study in SR theory (e.g. [174, 137, 22, 5]), and is summarized by

the shape metamorphosis problem [27]: given a start shape and a goal shape, find

a (ideally short) sequence of module attach/move/detach operations which achieves

the specified reconfiguration.

Chain-type modular robots [179], of which Multishady is an example, are also

capable of deformation motions where the inter-module connectivity remains con-

stant, and modules cooperatively use their internal kinematic DoF to effect a global

shape-change. Operating this type of motion-i.e. providing an interface where an

operator can conveniently specify general deformations in potentially large modu-

lar assemblies-has been under-explored; using virtual articulations to constrain and

parametrize coordinated motion is a natural fit. By their nature, SR systems can

assume arbitrary topologies, and one of the strong points of the virtual articulation

approach is topology independence. Structure abstraction (Section 3.5.3) is also par-

ticularly useful, in part because repeated sub-structures are common in large SR

constructions. (A related idea in topological reconfiguration is the concept of meta-

modules [157, 112, 137, 119].)

The main result in this section is interactive operation of a tower involving 120

Multishady joints and over 150 additional virtual joints (Figure 5-11). The tower is

built from a repeating block sub-structure. The operator first defines a particular

kind of constrained motion at the block level, explained in the next section, and

this induces the full-tower motions presented in the following section. Structure

abstraction plays a key role, and enables a hierarchical decomposition which keeps an
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otherwise sluggish motion computation snappy (Figure 5-12).

5.4.1 Hierarchical Control for a Tower Block

In the 2D Multishady concept each active module contains two rotating grippers

which can attach to passive bars (there is also a direct extension of the idea to 3D,

see Appendix K). Though each module is small, a large structure, such as a tower,

can potentially be constructed by assembling many modules. Doing this in reality

would involve serious structural considerations-the total tower size would effectively

be limited by the strength of the constituent modules. One way to mitigate this to

some extent may be to build the tower using multiple chains of modules in parallel,

i.e., building a thicker tower.

Here we consider the kinematic operation of a deformation in such a "thick" tower;

for example, if a camera was affixed to the link at the top of the tower, then it could be

moved about to inspect the supporting structure, as shown in Figure 5-11. Kinematic

operation is not the only concern-mechanical stress and strain also matters-but it

is still an interesting problem.

In this case two parallel chains run along the length of the tower, cross-braced

together at intervals. The tower thus has a repeating block sub-structure, and the

problem of operating it can be broken down along the same lines. Figure 5-10 zooms

in on one such block, and shows the motion constraints the operator has designed,

using two levels of kinematic abstraction. Extrinsically, the operator wants the tower

block to act as if it had two overall DoF: left/right tilting, and up/down expansion

and contraction. A highest-level abstraction is thus implied which replaces the entire

block with a chain of one revolute and one prismatic joint, shown at left in the figure.

But the actual Multishady modules making up the block-the implementation of this

abstraction-have more complexity. They form two legs, which can be considered as

four-bar linkages. Zooming in to a single leg, the desired extrinsic motion in this

case is effectively like a piston: the end-to-end distance of the constituent chain of

modules sets the length of the leg, and the endpoints can also pivot to allow the leg to

rotate. This implies a second level of abstraction, shown in the middle of the figure,
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where each leg is virtually replaced by a piston-like assembly of virtual prismatic and

revolute joints'. Finally, a Cartesian-2 constraint is added to keep the middle link of

each leg parallel with the axis of the leg, shown at right in the figure. In this case, the

abstractions can be kept proper (Def. 44) by sufficiently limiting the range of motion

of the joints in the interface linkages.

It is important to note that these particular motion constraints, and this particular

set of structure abstractions, are merely the designs of the operator in this instance.

Other constraints and abstractions are possible: the idea is that the operator con-

ceptualizes a desired motion, and then expresses it by designing virtual articulations

and structure abstractions.

Williams and Mahew [168] considered a similar bending-tower scenario, and even

structured the motion of their tower using a similar decomposition. Their study

was significantly smaller in topological scale (30 DoF total); their implementation

was apparently hard-coded for one particular structure; and their decomposition was

manually applied, whereas my hierarchical decomposition algorithm automatically

and assigns solvers to the decomposed sub-linkages.

5.4.2 Interactive Operation of a 15-Block Tower

Once the operator is satisfied with the operation of a single block, a number of them

can be strung together to model towers of varying height. This final assembly is

done at the highest level of abstraction, so that the top-level linkage is simply a

linear chain of alternating revolute and prismatic joints along the "backbone" of the

tower2 . The operator can then interactively specify a motion, e.g. by click-and-drag

interaction with the mouse, for any link or joint in the top-level linkage. The system

will solve the differential control problem in and respond with a deformation as shown

1The top joint of each leg is actually modeled as a point-slider joint, with the translational axis
perpendicular to the plane of the paper, because the mixed real/virtual interface does not currently
have a true 2D modeling mode. Though a revolute joint (with rotation axis perpendicular to the
page, as for the other revolute joints) would be technically correct here, it would also over-constrain
the linkage when considered in 3D. Such over-constraint is permissible, but degrades performance.

2This particular arrangement is reminiscent of the backbone-curve method that has been proposed
for controlling hyper-redundant robots [30], and also of the method presented in [168], but note that
structure abstraction is a more general concept.
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Figure 5-10: Operating a tower block with two levels of structure abstraction.

The actual modules comprising a tower block (right figure, solid geometry) can move

in a variety of ways. The operator intends only a subset of this motion. Extrinsically,
the block should only have two DoF: it should be able to tilt left and right and to

expand up and down (left figure). This forms the highest-level abstraction. Within

this, a secondary constraint is that each 4-bar leg linkage should effectively act like a

piston, with the middle link remaining parallel to the axis of the piston. Cartesian-2

joints, shown in the rightmost figure, enforce this constraint (also see Figure 1-3), and

the leg assemblies are then each abstracted using revolute and prismatic assemblies

as shown in the middle figure (also see Figure 3-9).

in Figure 5-11.

In this example, structure abstractions help the operator in the same way that

traditional algorithmic abstraction aids the architect of a large software system: they

break the problem up by enforcing high-level semantic invariants on sub-systems.

The designer (in either situation) is thus not required to address the whole detailed

problem at once.

These structure abstractions will also result in a hierarchical decomposition (Sec-

tion 4.10.1) with three SOLVE rounds: First, the backbone will move as the operator

has specified. Second, the top-level abstraction for each block will drive the mid-level

abstractions for each leg. Finally, those abstractions will drive the motion of the

modules that ultimately comprise the legs. The first round will consist of a single call

to SOLVE, and the size of the system will scale linearly as the tower grows in height.

The later rounds are different: there, growing the tower will result in a larger number

of independent calls to SOLVE, but the system size in each call will remain constant.

What if structure abstraction had not been used? In fact, the same tower motion
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Figure 5-11: Operating deformations in 5- and 15-block towers.
This figure shows the interactive operation of a large-scale simulated tower formed
by stacking block modules as shown in Figure 5-10. The large tower contains 15
blocks, with a total of 271 total joints (108 tree, 91 closure). 120 represent real
joints in the robot modules, and the remainder are virtual joints involved in the block
leg constraints and the structural abstractions. In these examples the operator is
dragging the top of the tower with the mouse (both position and orientation can
be controlled), and the mixed real/virtual interface solves the differential control
problem in real time to deform the tower. The block-level structural abstractions
are not only useful to the operator to sub-divide the motion specification problem;
they also enable significant hierarchical decomposition, which keeps the per-iteration
simulation computation time below 20ms even for the 15 block tower. A similar tower
operated without the abstractions required over 100ms (Figure 5-12).
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would theoretically result if the entire structure were constructed as a single flat (non-

hierarchical) linkage. But in this case there would be only one SOLVE round. Like the

first round in the hierarchical case, the size of the system in this giant call to SOLVE

would scale linearly as the tower grows in height, but the constant factors would be

greater, and it turns out that this makes a significant difference in computation time

for even towers of modest height (- 5 blocks).

To see this, I conducted an experiment where I built towers of varying heights,

up to 15 blocks, in four different ways. The resulting measured 3 computation times

are comparatively plotted in Figure 5-12. The "plain" tower used no hierarchy, and

it also omitted the constraining Cartesian-2 joints. The "constrained" tower added

the Cartesian-2 joints, and the "hierarchical" tower added the structure abstractions,

but not the Cartesian-2 joints. Finally, the "constrained hierarchical" tower included

both the abstractions and the Cartesian-2 joints, as originally presented.

In each case, adding the Cartesian-2 constraints increases the computation time,

and adding the structure abstractions decreases it. This is as expected, considering

the effects of each change on the size of the systems that are presented to SOLVE.

The most interesting comparison is between the "constrained" tower, the worst case,

and the "constrained hierarchical": the latter remains roughly on-par with the un-

constrained versions, at about 20ms per simulation iteration, which is acceptable for

interactive response. But all the additional Cartesian-2 closure joints severely impair

the performance of the system for the "constrained" tower by forcing SOLVE to handle

large systems; performance degrades to over 100ms per iteration for a 15 block tower,

which results in very sluggish response as the operator drags the tower.

These timings are of course relative to the speed of the workstation on which

they were run. Furthermore, the hierarchical decomposition does not change the

asymptotic cost of SOLVE, which is still (typically) quadratic in the number of joints

solved in any single system. But the lower constant factors for the hierarchical case

mean that in practice, larger systems can be handled before reaching the limits of

3Each test was run interactively, the only mode currently implemented in the mixed real/virtual
interface, on a lightly loaded workstation.
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interactivity.

As a final set of data points, Figures 5-13 and 5-14 show the breakdown in com-

putation time for the various parts of the SOLVE algorithm for each of the four

versions of the tower. All but the unconstrained hierarchical version show two inter-

esting features. First, there is a pronounced cross-over point in each of these three

graphs, where the pseudoinverse, nullspace projector, and restricted Jacobian compu-

tations all become relatively more expensive than most of the others. This is simply

explained-these computations all have quadratic dependence on the system size,

while the others are linear, but may have higher overhead. The second interesting

feature in these cases is that the SVD computation nearly always takes the largest

fraction of time by a significant margin. This is neither surprising-it too is quadratic

in the system size, and is known to have relatively high constant factors (Appendix E).

The unconstrained hierarchical tower does not show these features, or at least they

are not nearly as pronounced, because the absence of the added constraints keeps the

worst-case overall system size significantly smaller.

5.5 Context in High-DoF Operations

Though it does not appear that any prior authors have used virtual articulations

to build a general-purpose operations interface, there are some related systems. For

example, Fliickiger [52] describes a virtual reality operator interface, where a model of

the robot and its surroundings is provided to the operator for pose manipulation. The

mixed real/virtual interface goes beyond this by allowing the operator to virtually

change and augment the kinematic structure itself.

Sections 2.5.1 and 2.5.2 summarize the possibilities to use existing physics simu-

lation frameworks and interactive geometric constraint solvers, respectively, as sub-

stitutes for the mixed real/virtual interface. Both have significant drawbacks.

With respect to prior work in the specific field of operations methods, the new

ideas demonstrated in this chapter can be considered to fill a gap between existing

low-level methods, including forward and inverse kinematic control, and existing high-
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Figure 5-12: Simulation computation time for the modular tower.
This figure compares the average measured per-iteration simulation computation time
(in milliseconds) for four different versions of the modular tower, all as a function of
the tower height in blocks. To maintain interactive response to the operator, times in
the low 10s of ms are preferable. The different tower versions are explained in the text;
a main observation is that adding the block leg constraints causes the computation
time to rise dramatically unless structure abstractions are also added.

level methods such as goal-based motion planning and programing-by-demonstration.

5.5.1 Previous Low-Level Methods

Bare kinematic control without higher-level goals or constraints is potentially tedious

in the high-DoF case given the high dimension of the joint space (for ATHLETE, this

could mean manually turning all 36 MOVE_JOINTS knobs simultaneously). Task

priority and task space augmentation approaches [26] extend this to support high-DoF

motion, including specified constraints, but do not themselves offer any particular way

to design those constraints. The virtual articulation approach provides a concrete
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Figure 5-13: Unconstrained tower relative computation times.
See text for discussion.
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Simulation Computation Time Fractions
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Figure 5-14: Constrained tower relative computation times.
See text for discussion.
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framework in which a broad class of constraints can be graphically defined. And, for

topologically large systems, the new idea of structure abstraction provides a workable

means to break up the problem, easing both the operator's task and the computational

burden on the motion computation system.

At least two prior constraint specification approaches are worth noting. One,

primarily reported in the fields of graphics and animation, is to allow the operator

to introduce geometric constraints-tangency, incidence, parallelism, etc. [123, 163].

The virtual articulation approach was motivated in part by this past work, but shows

that, in robotics, where the base model itself is often an articulated system, a homo-

geneous model of only links and joints is sufficient in some practical applications.

Another idea has been to introduce optimization metrics, such as minimizing

energy consumption, avoiding joint limits, or maximizing manipulability [94, 131].

These techniques are useful, but can be relatively blunt instruments-there is typically

no direct way for the operator to arbitrarily customize the intended motion. Virtual

articulations are one language that does permit such customization: the operator can

constrain motion as much or as little as desired, and Kempe's theorem ensures that a

large class of motions can be specified even using a compact catalog of virtual joints.

5.5.2 Previous High-Level Methods

Goal-based motion planning, e.g. the classic "piano moving" problem of achieving

a target configuration among obstacles, is typically not directly applicable in cases

where the operator would also like to specify more detailed or continuous aspects of

the motion. Again, something more is needed if the operator needs to arbitrarily

customize the motion on the way to a primary goal configuration.

Another high-level technique, programming-by-demonstration, allows more spe-

cific motion specification, but is hard to apply when the robot topology diverges

from preexisting systems and biology. Thus it has been used with some success for

humanoids (e.g. [109]), or when mimicking hardware is available, as in our TRACK

device. But, short of extending TRACK into a full 36-DoF scale model, how to apply

the technique to the whole ATHLETE mechanism? Or for dynamic-topology self-

171



reconfiguring robots? Virtual articulations are not tied to any particular topology.

(Also, the experiment in Figure 5-5 shows that that an integration of programing-

by-demonstration with virtual articulations can have some of the advantages of both

methods.)

5.6 Summary

This chapter has presented a novel class of applications for virtual articulations and

kinematic abstractions: operating motion in articulated robots with large numbers

(10s to 100s) of DoF. This is a challenging problem because such robots are capable

of many different kinds of motion, though often this requires coordination of large

numbers of joints. Prior methods exist for specifying motions at both low and high-

levels of detail; the new method fills a gap in the middle by allowing the operator to be

as detailed as desired in specifying the motion, and is independent of any particular

robot or task topology.

The main idea is to use the mixed real/virtual interface to allow the operator to

dynamically add and remove virtual joints and links, and inter-connect them with a

model of the real robot. Virtual joints can both parametrize task motion and can

constrain coordinated motion, by closing kinematic chains. Virtual links can represent

task-relevant coordinate frames, and also serve as intermediate connection points for

constructions involving multiple virtual joints.

For topologically large robots, structure abstraction can be applied similar to the

way traditional algorithmic abstraction is used in the architecture of large software

systems. This allows the operator to break the motion specification task into smaller

sub-problems, and also enables the system to compute motions more rapidly via

hierarchical decomposition.

Detailed applications were demonstrated for two different high-DoF robots:

* ATHLETE is a 36-DoF robot under development by NASA/JPL for use on

the Moon. Several new kinds of inspection and manipulation motions were

demonstrated for this robot, both on the hardware and in simulation. All of
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these would have been challenging to operate in more traditional interfaces-the

intended motions are easily visualized, but communicating them to the system

would have been a bottleneck.

* Multishady is a concept for a new chain-type self-reconfiguring robot. The

mixed real/virtual interface was applied to operate deformation motions in an

interactive simulation of a large tower construction involving hundreds of joints.

Two levels of structure abstraction were used in this example, not only greatly

simplifying the operator's job, but also making the difference between a respon-

sive vs. Sluggish interactive simulation.

Together, these demonstrate the practicality and scalability of the models and

algorithms developed in Chapters 3 and 4, and of their implementation in the mixed

real/virtual interface. Operating robots is not the only domain where these ideas are

useful-Chapter 6 will present applications in the very different area of modeling and

analyzing compliant and proprioceptive locomotion.
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Chapter 6

Modeling Compliance and

Proprioception

This chapter presents a second class of applications for virtual articulations and kine-

matic abstractions: modeling and analyzing reliable locomotion strategies that utilize

compliance and proprioceptive sensing. This area is significantly different from the

high-DoF operations studied in Chapter 5-for example, the ability to model quasi-

static effects of joint stiffness and of gravity (Section 4.6) is essential here-but virtual

articulations again enable homogeneous models which capture the essence of complex

mechanisms. Whereas abstraction was previously used to hide complexity in the spa-

tial structure of a robot, this chapter introduces sequence abstraction, in which the

detailed temporal evolution of the topology of a mechanism is modeled at a higher

level with a virtual stand-in.

This chapter will also introduce two novel robotic systems, the climbing robot

Shady (Section 6.6 and Appendix J), and Steppy, a stair-stepping mini-humanoid

(Section 6.7 and Appendix L). Both of these systems incorporate specific compliances

and proprioception-sensing of the compliant motion-to achieve high reliability even

under significant uncertainty. Shady is experimentally demonstrated to be 99.8%

reliable in over 1000 climbing motions, and Steppy is over 90% reliable in 80 step-

climbing trials even though the step height is uncertain and can vary from zero up to

10% of the robot's own height.
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Using compliance to accommodate uncertainty has a long history, with highlights

such as the RCC wrist [46], force-based compliant and hybrid control [100, 35], and

passive dynamic/underactuated systems [101, 155]. The field is large: these papers

are representatives from broad classes of work which together total hundreds, if not

thousands, of publications. Lefebvre et al present a recent survey of active compliance

in particular in [93].

How, precisely, does compliance confer uncertainty tolerance? One current view-

point, which Paul termed morphological computation in [120], is that the passive

physical dynamics of a robot can be considered a form of computation1 . But this is

an informal idea-consider the following recent observations from Pfeifer, lida, et al:

One problem with the concept of morphological computation is that while

intuitively plausible, it has to date defied serious quantification efforts:

We would like to be able to ask "how much computation is actually being

done?" [121]. ... the notion of computation in the context of morphology

or dynamics may in fact require fundamental reconceptualization [122]

The true physics of these systems-involving potential and kinetic energy, friction,

contact, stiffness, damping, various forms of uncertainty, etc.-is often fairly complex

and detailed. Thus, studying a morphological computation such as the interaction of

Shady or Steppy with its respective environment (Figure 6-6 and 6-10) at the level of

basic physics may be like trying to study a chemical reaction using only the tools of

quantum mechanics-technically correct, but hard to see the forest for the trees.

The main idea of the application examples presented in this chapter is to demon-

strate that virtual articulations can form the basis for higher-level models which still

capture the essence of compliant and proprioceptive mechanisms. In particular, vir-

tual joints can model

* contacts between the robot and the environment, where space of low-friction

motion corresponds to the mobility of a virtual contact joint, and contact state

1Actually, this is just one facet of the current study of morphological computation.
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evolution (making/breaking contact) corresponds either to topological connec-

tion/disconnection of the virtual joint or to hitting its motion limits. For ex-

ample, the contact between Steppy's heel and the step is modeled using a com-

bination of a Cartesian-2 and a point-slider joint (Figure 6-11).

* uncertainties in the relative pose of objects in the environment (or even, poten-

tially, within the robot). When the uncertainty is mainly within some subspace

of relative poses, it can be possible to align that subspace with the mobility

space of a virtual joint, with virtual links modeling the objects themselves. A

prime example is the uncertain height of the step which Steppy climbs, modeled

with a virtual prismatic joint.

* compliances that may be co-located with the robot's joints or not. Though

co-located compliance can be modeled on the primary joint itself, as I do for

Steppy, in some cases it is useful to instead insert a virtual joint (in series with

the primary joint) for the sole purpose of modeling compliance, as I do for Shady

(Figure 6-4). For example, the latter arrangement allows separate expression of

the compliance limits vs. the primary kinematic motion limits.

I form such mixed real/virtual models both for Shady and for Steppy, and I show

that they can be useful both qualitatively, to help understand and communicate the

essence of a morphological computation at a higher level than basic physics, and

quantitatively-I instantiate the models in my mixed real/virtual interface system

and use its simulation capabilities to predict the maximum uncertainty that can be

tolerated in key stages of the locomotion of each robot. In both cases I compare the

simulation results to actual experimental data (Figures 6-7 and 6-12).

The next three sections will discuss proprioception and compliance, the idea

of sequence abstraction for modeling contact structure evolution, and using mixed

real/virtual models to quantitatively predict uncertainty limits. The subsequent two

sections document the Shady and Steppy application examples, with Sections 6.6.1

and 6.6.2 giving the details of sequence abstraction and uncertainty limit prediction

for Shady, and Sections 6.7.1 and 6.7.2 giving the same for Steppy. Specific related
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work for structure climbing and stair-stepping is summarized with the description of

each system; Section 6.8 gives further context in the broader study of compliance and

proprioception.

6.1 Proprioception

When humans or other animals perform a high-uncertainty locomotion task, such as

hiking on a rocky trail, it's not hard to be impressed with our actuation capabilities.

But also impressive are our sensing abilities, which allow us to estimate the geometry

and physical properties of the local terrain, our relation to it and to gravity, to select

and land footfalls, and to evaluate their spaces of transmissible force. Of the six

traditional senses-sight, smell, hearing, taste, touch, and balance-clearly vision,

touch, and balance play important parts. However, the traditional senses represent

just one of three sensing modalities [138]: exterioception. The other two modalities are

interoception, which covers sensing of our internal organs, and proprioception which is

the sense of position and force at our joints2 . I hypothesize that, in addition to vision,

touch, and balance, proprioception is also a key sense enabling reliable performance in

high-uncertainty locomotion. Proprioception is the sense by which the morphological

computation, performed in the mechanism of an articulated robot, can be "read out"

for use in higher-level control.

This hypothesis is supported by the demonstrated reliability of Shady and Steppy,

which rely on proprioception (and prior expectation) alone, albeit in fairly controlled

settings. In more general natural locomotion tasks, proprioception could be one

component of a bi-resolution strategy, where exterioception is used to form a coarse

map and plan, and proprioception aids in fine motion.

Compared to exterioception, proprioception is particularly attractive in several

ways:

* Minimality-proprioception can often use joint sensors which already exist for

2Sometimes the sense of balance is considered a proprioceptive, rather than exterioceptive, sense,
and joint sensing proper is called kinesthesia.
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purposes of closed-loop joint control

* Directness-proprioception can operate directly in the position domain which

is highly relevant to many tasks; since it is based on physical contact, it requires

fewer informational transformations than some other sensors (e.g. sonar, lidar,

vision, etc.), and is arguably not susceptible to occlusion

* Noise immunity-joint sensors are "surrounded" by the engineered system of

the robot, which can be easier to control to reduce sensor noise vs. exteriocep-

tors that rely on propagation of a waveform through space, or in the case of

tactile sensors, contact against a surface with highly variable properties.

Though proprioception can refer to sensing either force or position, I focus on the

latter. Position sensors, such as potentiometers and encoders, are more common and

lower-cost than similarly sensitive/reliable/durable force sensors. And the primarily

positional quality of locomotion tasks makes position the more direct sense.

6.2 Compliance

The potential usefulness of motion sensing at a joint is coupled directly to how com-

pliant the joint is.

Definition 64 The impedance [68] of a joint is the dynamic relation of (generalized)

force transmitted across it as a function of the velocity of its motion. Admittance is

the opposite relation: velocity as a function of force. Stiffness and compliance are

the quasi-static correlates to impedance and admittance, respectively: stiffness is the

force across a joint as a function of its pose, and compliance is the pose of a joint as

a function of the force across it [69].

The more compliant a joint is, the further it can be deflected by collisions with

the environment, all else being equal. Said another way, the mechanical state of

a robot with zero compliance would be completely determined by its higher-level
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control commands, and would afford no natural dynamics by which morphological

computation could proceed3 .

Conversely, the controllability of a joint-the ability of a robot's controller to im-

pose specific motion on the joint-decreases as the joint becomes more compliant.

Sensitive proprioception is thus facilitated by compliant joints, but this is in ten-

sion with maximizing control authority [126]. (The tug-of-war is modulated by the

additional transmission properties of the surrounding linkage, which can affect the

apparent compliance of the joint [68].)

The need to increase compliance to enable morphological computation and pro-

prioception may be an undesirable cost from some perspectives. A large fraction of

existing robots have historically been designed with low compliance for maximal con-

trol authority in controlled environments [126]; and designing actuators combining

both low-impedance capability with other desirable properties such as compact size

and high power density is not a totally solved problem. Nevertheless, research in

high-performance low- and variable-impedance actuation (e.g. [60, 125]) is encourag-

ing. Some useful systems can be built even with relatively low-performance schemes:

the fixed compliance in Shady comes from springs in its drivetrains; for Steppy, com-

pliance is varied on-line by changing the proportional gain constants in its position

loop servo controllers.

6.3 Contact Sequence Abstraction

While compliant and proprioceptive mechanisms can be individually interesting from

an engineering standpoint, scientifically, a more abstract perspective would be sat-

isfying. This section introduces one technique-sequence abstraction--for using vir-

tual articulations to model such mechanisms at a higher level than basic physics.

These models are useful qualitatively, to aid understanding and communication of

the essence of the mechanism, and they can also be used to make quantitative pre-

3In this statement, the contacts between robot and environment are also homogeneously consid-
ered to be joints, and may or may not be compliant. The examples in this chapter, and observations
by prior authors [99, 19], show that this can be a reasonable viewpoint.
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dictions, as detailed in the following section.

Often, key behavior occurs as contact is made and broken between different links.

The physical reality of such processes can be complex, potentially involving multiple

phases of differing contact configurations, dependence on detailed physical properties

(friction, damping, elastic and plastic deformation, etc.) of the contacting bodies,

and interplay between morphological and algorithmic (i.e. traditional) computing.

The idea of sequence abstraction is to replace such a temporal evolution by a

simpler virtual construction. Sometimes, this replacement can capture the full evolu-

tion with a single assembly. The idea is best illustrated with an example: Figure 6-3

shows the actual sequence of contact configurations Shady uses to grip a bar, involv-

ing four phases; Figure 6-4 shows an abstraction of this sequence as a single virtual

prismatic joint. Even though the contact evolution does not actually involve sliding

at any stage, the cumulative effect of the gripping process is nevertheless to adjust

the translation of the gripper along the bar.

Sequence abstraction, operating in the time domain, compliments the previously

introduced structure abstraction, which operates in space. In each case, the abstrac-

tions are created by a human designer, just as a software architect builds traditional

algorithmic abstractions. Both types of abstraction can be constructed in the current

implementation of the mixed real/virtual interface (the figures in this chapter show-

ing mixed real/virtual models, as in most of this thesis, are snapshots from the actual

software), but must be manually added and removed as applicable-automatically

deciding when to apply particular abstractions is a potential area of future work.

Because of its temporal nature, addition and removal can be more integral aspects

of a sequence abstraction vs. for a structure abstraction. In the Shady example, grip-

ping/ungripping is equivalent to connection/disconnection of the sequence abstrac-

tion. In some cases, making and breaking contact can be embedded into the sequence

abstraction via the judicious setting of joint limits-the sequence abstractions for

each of Steppy's feet, shown in Figure 6-10, use this technique.
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6.4 Predicting Uncertainty Limits

Homogeneous models, using virtual articulations (and sequence abstractions) to rep-

resent contacts, compliances, and uncertainties, can make quantitative predictions

about the capabilities of compliant/proprioceptive mechanisms. Though many ques-

tions can be asked, a core interest is often "how much uncertainty can be handled?"

I introduce the following general procedure for predicting the limits of tolerable un-

certainty:

1. model the relevant parts of the robot and task, including the elasticities of

any involved compliances (Section 4.6.1) and the masses of any significant links

(Section 4.6.2), in the mixed real/virtual interface

2. add sequence abstractions to model relevant contact interactions

3. parametrize major uncertainties with one or more virtual joints

4. identify key joint DoF limiting the compliant action, and their allowable range

of motion

5. operate the virtual joints representing the uncertainties to explore the reachable

workspace which does not violate the limits established in the previous step

Admittedly, the last two steps could be difficult, especially in more complex situations

with multiple compliant DoF. Two broad strategies for identifying the limiting DoF,

the penultimate step, are (a) to look for compliant joints that are both limited in

their allowed compliance and also relatively high in sensitivity to the uncertainties;

and (b) to introduce a joint where motion beyond some threshold corresponds to

static instability. The Shady model gives an example of the former, and the Steppy

model illustrates the latter.

The final step is a problem of workspace exploration. In the case of a single

degree of uncertainty, this can be as simple as a manual scan. This was all that was

necessary for Shady and Steppy. For more complex cases, traditional methods of

workspace exploration [3] could potentially be applied.
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6.5 Assumptions and Limitations

The above procedure for predicting uncertainty limits is not automated. While au-

tomatically inferring sequence abstractions is an interesting problem, they are useful

even when manually designed. A main goal of this chapter is to contribute a new

and general method for expressing and communicating high-level models of compliant

motion, and for these purposes, manually developing the model is a reasonable part

of the procedure.

Nor do I claim that the methods I develop in this chapter apply universally. In

general, they can be expected to apply to compliant motions which (1) do not involve

significant kinetic energy (i.e. are statically stable); (2) only involve contacts and

compliances which can be reasonably modeled with the available joint catalog (Sec-

tion 3.3.4); (3) have stiffness and gravity effects that can be modeled-and sufficiently

calibrated-using the methods in Section 4.6.1. For example, general curved-surface

rolling contact cannot be directly modeled, and non-zero stiffness is supported only

on 1-DoF (revolute and prismatic) joints.

Despite these limitations, I have found these techniques useful both for Shady

and Steppy. Both are interesting real robots, and the Steppy example in particular

shows that these techniques can be applied even to fairly complex humanoid mo-

tion. As detailed next, for each robot, sequence abstractions help build a high-level

qualitative models that hide low-level details. These models still have reasonable

quantitative fidelity-their predictions of uncertainty tolerance compare reasonably

well with experimental measurements on the actual hardware.

6.6 Application to Compliant Climbing

This section presents the first of two application studies in this chapter: contact

sequence abstraction and uncertainty limit prediction for a novel proprioceptive com-

pliant climbing robot using the mixed/real virtual interface.

The lab where the research in this thesis was conducted incorporates a large wall-
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window, about 4m tall and 8m wide, which has no shades to block glare from the sun.

Instead of installing traditional shades (at significant cost), we designed, constructed,

and experimentally tested a new compliant/proprioceptive climbing robot we call

Shady, shown in Figure 6-2 [41, 158]. Shady locomotes on the aluminum frame of

the windows and deploys a 0.6m diameter mylar sun-shade, thus providing active

personal shading without significantly decreasing ambient light.

The main research interest here is not sun-shading, but rather the climbing action

of the robot, which utilizes a combination of mechanical compliances and a proprio-

ceptive control strategy to achieve high reliability. Shady locomotion proceeds as a

series of grip-rotate-grip steps (Figure 6-1).

rotating grippers
+/- 3deg compliance

Figure 6-1: Concept of Shady locomotion.
Shady locomotes by alternately gripping and swinging on the members of a a struc-
tural framework, using two rotating grippers. The rotary actuators include mechani-
cal compliances that are used in combination with a proprioceptive control strategy.

Shady is specialised to the particular geometry of our lab's window frame; however

our group is also currently developing a similar robot with an additional central twist

DOF for climbing more general 3D frameworks [173]. Shady's kinematics form the

basis for a new self-reconfiguring robot concept we are also developing [41, 42], used

in another application example in this thesis (Section 5.4).
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We have performed extensive experiments [158] showing that the Shady is over

99.8% successful at completing locomotion primitives. Only two non-dangerous faults

occurred out of over 1296 movements comprising several long climbing sequences,

exercising all types of motion for the robot. A prior version of the hardware, which

used contact and proximity sensors instead of compliance and proprioception, was

only about 80% successful at a corresponding set of primitives.

Appendix J gives additional details on these experiments, as well as on the design

and research context of the system. The remainder of this section will zoom in on

two crucial aspects of Shady's operation: establishing a grip, and making a transition

from vertical to horizontal climbing (i.e., executing a 90' turn). First, a sequence

abstraction will be presented that models the relatively intricate grip procedure with

a single virtual joint. Next, an instantiation of this model in the mixed real/virtual

interface is used in simulation to predict the tolerable limits of uncertainty on the

actual vs. expected bar position, and this prediction is shown to match well with

experiment.

6.6.1 Transition Grip Sequence Abstraction

Since Shady always locomotes on the particular framework in our lab, uses a map to

form a coarse motion plan. But there is inevitably some uncertainty remaining in the

fine motion, e.g., due to map errors, misalignment of the initial pose, accumulated

slippage, unmodeled structural compliances, etc. If no sensing were performed to

correct for this then Shady would eventually fail to grip because the bar would be

too far from the expected position. While it is possible that the bar could be missed

entirely, a misaligned grip can also fail due to a walk-off effect, as shown in Figure J-4.
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wall-window with aluminum framework

0otatn gfppers~~-8m

Figure 6-2: The climbing robot Shady.

Left: A map of our lab's trapezoidal wall-window with a set of grip points reachable from a starting pose (light circles) and a

locomotion path (dark circles) to a commanded target location. Inset: CAD representation of Shady, mylar shade not shown.

Right: Photo of the hardware in action.



Shady avoids this eventuality by ensuring that each grip is aligned, using a com-

bination of compliance, proprioception, and a particular four-phase grip sequence,

illustrated in Figure 6-3 and given in detail as Algorithm J.1, GRIPREFINEMENT.

Essentially, each grip is established twice; the first time to propriocept the precise

bar location, and the second time for the final grip.

The actual mechanics of the grip sequence involve several contact situations, fric-

tion, material elasticity, and the interaction (via proprioception) of morphological

computation and the control algorithm which manages the sequence. However, the

ultimate effect is easily stated: the gripper is aligned to the bar and translated along

it as necessary, via symmetric rotation in of both grippers.

Figure 6-3: GRIPREFINEMENT (Algorithm J.1) running on the Shady hardware.

Four key frames are shown from a video of the GRIPREFINEMENT algorithm in action.

Top left: the initial un-gripped state; note that the gripper is misaligned slightly

downwards from the bar. Top right: the initial grip is established, and the actual

bar location is proprioceptively sensed; note the walk-off (see Figure J-4). Bottom

left: the initial grip is released and the robot has adjusted to the actual bar location.

Bottom right: final grip, without walk-off.
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I propose that a reasonable abstraction of the whole sequence, hiding the four

phases as well as the lower-level physical details, is a single virtual prismatic joint

connected in series between the closing gripper and a virtual link representing the

bar, as shown in Figure 6-4. The translational DoF of the joint is aligned with the

axis of the bar, representing the effective displacement that GRIPREFINEMENT will

produce (even though no actual physical sliding may occur at any step).

If the gripper rotation DoF are also modeled, as shown in the figure, then the

mixed real/virtual interface will automatically compute a local assembly (Section 4.1)

motion when the virtual joint is connected because it closes a kinematic cycle (as-

suming that the two bars are represented using a single virtual link, or at least

connected links as shown in the figure). This motion will have the same effect as

the GRIPREFINEMENT algorithm: the grippers will rotate as necessary to align the

closing gripper with the bar.

6.6.2 Transition Uncertainty Limits

Once the contact abstraction is assembled, local control (Section 4.2) can be invoked

to operate motion in the resulting closed-chain linkage. If the input for this motion

is arranged to be a virtual joint representing an uncertainty of interest, and if the

gripper rotation compliances are also modeled, the result is a setup that addresses

most of the steps presented above for predicting the limits of uncertainty tolerance.

The main remaining questions are: "what is the main uncertainty?" and "what effects

limit the compliant action?"

For Shady, the case of locomotion along a straight bar is not particularly difficult.

The straightness of the bar supplies a strong prior, and, provided that the robot's

own internal joint position controllers are sufficiently accurate, the uncertainty at

grip will be low. This holds independent of the absolute orientation of the bar due to

the gravity compensation procedures incorporated in Shady's control (Section J.3.1),

which automatically pre-load the compliances to avoid sag.

A more interesting case occurs when Shady makes a transition, e.g. from vertical

to horizontal climbing. In this case, any linear misalignment (slip) which may have
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Figure 6-4: Virtual articulation abstraction of the Shady grip sequence.
The actual grip sequence, shown in Figure 6-3, involves four separate stages. Further,
at each stage, the actual contact mechanics depend on detailed geometry, friction, and
material deformation. All of these details are hidden by a simple high-level model of
the whole contact process as the addition of a virtual prismatic joint (circled, upper
right) modeling the contact. The translational DoF is aligned with the upper bar,
corresponding to the effective translation of the gripper due to the GRIPREFINEMENT
process. Also shown in this figure are the virtual joints representing the compliant
rotations (circled, right and bottom) and the virtual joint representing the uncertain
position of the upper bar (circled, upper left). The CAD model of the robot geometry
is for visualization only; the mixed real/virtual interface simulation uses only the
articulation model. The marked quantities u and y are used in Eq. 6.1.
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accumulated while climbing along the vertical bar is equivalent to uncertainty in the

height of the horizontal bar. While such slip is generally low, it is not always exactly

zero; thus, the first question is answered: a situation with potentially significant

uncertainty occurs in a vertical-to-horizontal climbing transition, and that uncertainty

is the deviation of the height of the horizontal bar from its expected position.

For the second question, I hypothesized that the limiting effects in Shady would be

the maximum and minimum travels of the compliances, which are relatively small at

+±3 each. I thus configured a model of Shady, its compliances, the prismatic contact

sequence abstraction, and another prismatic joint representing the uncertainty in the

mixed real/virtual interface, and I simulated the motion of the uncertain joint while

watching the deflections of the compliant joints, as shown in Figure 6-6.

One important detail was to correctly model the pre-load of the compliance in the

supporting joint, as shown in Figure 6-5. With that added, I found that the maximum

travel u of the uncertain joint was about +15mm and -10mm, with the asymmetry

due to the pre-load: the lower bound is reached when the supporting gripper hits the

limit of its rotational compliance, which was already reduced due to the pre-load; the

upper bound occurs when the other (gripping) joint hits a compliance limit.

The uncertainty tolerance is thus parametrized and quantitatively predicted. To

establish the accuracy of this prediction I conducted a corresponding experiment on

the actual hardware, the results of which are shown in Figure 6-7. I first configured

Shady in the nominal pose for a vertical-to-horizontal transition, with the upper bar

at the expected position. Then, I intentionally introduced varying amounts of slip into

the position of the supporting gripper, with 3 trials for every 5mm increment of slip in

each direction (up and down), starting 2.5mm from nominal. To detect failure of a grip

I used both qualitative visual assessment and a quantitative comparison of the ground

truth slip vs. a back-computation of the sensed slip from the propriocepted deflections

in the gripper rotations after the first (test) grip in the GRIPREFINEMENT procedure.

If y is the sensed deflection (once the preload is subtracted, Y is theoretically equal

for both grippers, and this was supported to within a fraction of a degree in most
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trials) and u is the slip, then the computation is

c/vr + u = c cos(r/4 + -y) with c = 40.37cm the distance between rotation axes

= c(cos ir/4 cos y - sin -r/4 sin -y) = c/I (cos y - sin y)

u = c/V2(cos 7 - sin-y - 1) (6.1)

using small angle approximations cos -y - 1 and sin -y

u 4 c/ v ( - -y ) .

The results show that up to about +18mm and -12mm of slip can be tolerated, in

agreement to within 3mm of the predictions from the virtual articulation model. In

addition, within those limits, the back-computed slip based on proprioception was

generally within a few mm of ground truth.

Figure 6-5: Simulating gravity compensation in a Shady transition.
One nuance at a transition from vertical to horizontal climbing is due to the effects
gravity compensation (Section J.3.1). The compliance in the supporting (lower left)
gripper rotation must be pre-loaded due to the cantilevered mass of the robot body.
This decreases the amount of remaining compliance in one direction. The actual
amount of compensation is slight, about 10, but this is fully 1/3 of the available
compliance in that direction. Modeling both the mass of the moving part of the
robot (represented graphically as a translucent ball) and the actual stiffness of the
compliant joint enables the mixed real/virtual interface to simulate the compensating
rotation, which has been applied in the right snapshot, but not the left.
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Figure 6-6: Predicting uncertainty limits at a Shady transition.
This figure shows an instantiation of the uncertainty limit prediction process (Section 6.4) for the case of Shady making a
transition from vertical to horizontal climbing. The primary uncertainty here is the location of the horizontal bar relative
to the grip location on the vertical bar, modeled as a virtual prismatic joint with translation u (Figure 6-4 gives a close-up
view with labelled quantities). The joint compliances are modeled with rotation y, and the grip sequence of the upper bar is
abstracted with a virtual prismatic joint as developed in Section 6.6.1. The limits of tolerable uncertainty are found by manually
operating the joint representing the uncertainty, starting from u = 0, until any limit is hit in either of the compliant joints. For
positive motion this occurs at about u = 15mm, when the upper compliant joint hits a limit, but negative motion is limited to
u = -10mm, when the lower compliant joint hits a limit. The asymmetry is due to the preload of the lower compliant joint for
gravity compensation (Figure 6-5). These predictions are within 3mm of the actual measured limits (Figure 6-7).
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Figure 6-7: Shady transition experiment data.
This plot shows both the ground truth and the back-computation (Eq. 6.2) via pro-
prioception of the position of the upper bar, quantity u in Figure 6-4. The experiment
varies u above and below nominal in 11 steps, up to about ±25mm. The data show
two important results: first, the limits of tolerable uncertainty are roughly +18mm
and -12mm; second, within those limits, proprioceptive sensing is accurate to within
a few mm. Circled trials indicate limit-exceeding configurations where propriocep-
tion and ground truth diverge due to unmodeled effects, such as bending in structural
members of the robot. A corresponding prediction using a homogeneous model in the
mixed real/virtual interface (Figure 6-6) predicted uncertainty limits of +15mm and
-10mm.

6.7 Application to Compliant Stair-Stepping

This section presents a second application of virtual articulations and sequence ab-

straction in compliant/proprioceptive locomotion, in this case to the task of statically-

stable stair-stepping in 3D with an 18-DoF mini-humanoid called Steppy (Figure 6-8).

Steppy accommodates significant uncertainty in the height of the step, and, like

Shady, uses only compliance and proprioception to achieve high reliability (though not
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as high as Shady). An experiment with 80 trials indicated about a 90% success rate

where the height was only known a-priori to lie in the range 0 to 35mm, which is about

10% of the robot's own height (36cm). In each trial, Steppy starts in double support

facing the step on a lower horizontal platform, and ends in double support on an

upper horizontal platform, as shown in Figure 6-9. Success is defined as termination

of motion with the robot in stable double support on the upper platform.

Details of the apparatus and control strategy are given in Appendix L. Essen-

tially, Steppy assembles pre-defined motion plan fragments on-line based on position

feedback from its joints at certain key points where contact is expected with the step.

The impedance of some joints is selectively lowered at these points by decreasing the

proportional gain in the position servo control loop (Section L.1.1), allowing collision

with the step to backdrive the joints and thus provide information about the step

height.

Climbing a single step in a laboratory environment, where the only major un-

certainty is the step height, is not nearly as challenging as locomotion in natural

terrain. Nevertheless, the aim of this experiment was to extend and generalize the

compliant/proprioceptive methods employed in Shady to a broader class of articulated

robots. Also, to the best of my knowledge, this is the first report of a stair-climbing

humanoid that accommodates variation in step height up to nearly 10% of its own

height, with experimentally verified reliability. Additional research context for Steppy

is also reviewed in Appendix L.

In parallel with the presentation for Shady, the following two sub-sections will

detail (1) particular sequence abstractions for the contacts of Steppy's feet with the

environment, and (2) a simulation of Steppy in the mixed real/virtual interface, to-

gether with the contact sequence abstractions and a virtual joint parametrizing the

uncertain step height, used to predict the maximum and minimum permissible step

heights. These predictions are again compared with results from a corresponding

hardware experiment.
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Figure 6-8: Steppy and the variable-height step setup.
Left: Experimental setup for step climbing. Each platform is about 45 x 45cm, and
their relative height is adjustable with the indicated linear actuator. Two additional
actuators, which vary the platform angles, are currently used for levelling but may
also introduce additional degrees of uncertainty in potential future experiments. The
robot can operate fully un-tethered; the yellow bungee cords help prevent damage in
a fall. Right: Steppy, an 18-DoF 3D mini-humanoid, is based on the low-cost Robotis
Bioloid. Steppy stands about 36cm tall and weighs about 2.0kg. We have modified
the off-the-shelf hardware in several ways, as described in Appendix L, and added a
Bluetooth® remote-brain soft real-time control environment with 10Hz system-level
update rate. Leg joint axes a-f are hip yaw/roll/pitch, knee pitch, and foot pitch/roll.
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Figure 6-9: Steppy hardware taking a step.
Steppy autonomously and reliably climbs a step with uncertain height in the range 0-35mm, or about 10% of the robot's own
height, using a proprioceptive sensing strategy. The step geometry has been manually outlined in red.



6.7.1 Contact Sequence Abstraction

For Steppy, two contacts must be modeled, one for each foot. Figure 6-10 shows

my design for each. The left foot, which supports the robot until the upper step is

contacted, is modeled to contact the lower plate with a virtual revolute joint aligned

with its left edge. This is a significant simplification of the actual contact physics:

in reality, the foot is either resting flat on the plate, in which case a slightly sticky

silicone rubber coating on the bottom of the foot effectively immobilizes it; or, if

the robot has begun to tip, the foot is pivoted up on one of its edges or vertices.

Though there are a number of possible behaviors in the latter case-depending on

which edge or vertex is in contact, the specific pose of the robot (which will determine

the contact forces), and the frictional properties of the foot and plate-observations

of the hardware indicated that a common tipping mode is rotation about the left edge

of the foot.

The motion limits of this revolute contact joint are set so that the foot is aligned

flat with the plate at one extremum of travel. Thus, both contact configurations (flat

vs tipping) are abstracted with a single virtual joint; "switching" from one to the

other is equivalent to the joint entering or exiting a rotation limit.

A similar idea is applied to the contact of the other foot. Here, the robot's motion

during the proprioceptive phase of the step procedure (STEPPYSTEP, Algorithm L.1)

ensures that the right foot will be in one of two contact configurations: either it

will be dangling above the upper plate, or it will contact the plate at the left heel

corner. Both of these possibilities are captured in a single point-slider joint, with

the translational DoF perpendicular to the plate, and the spherical rotation DoF

centered at the heel corner. The lower limit of translation is set to correspond with

the heel corner contacting the plate. A final detail is that, unlike the support foot,

observation of the hardware indicated that the contact forces were not typically large

enough to prevent sliding in the plane of the plate. An additional Cartesian-2 joint,

inserted between the point-slider and the virtual link representing the plate, models

this 2D sliding freedom. The contact sequence abstraction for the right foot is the
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resulting virtual assembly of a point-slider and a Cartesian-2 joint, plus the requisite

intervening virtual link.

6.7.2 Step Height Uncertainty Limits

The primary uncertainty for Steppy is, by design, the height of the step. This is

naturally parametrized with a virtual prismatic joint which sets the step height (Fig-

ure 6-10). One reasonable question is "how low, and how high, can the step be?"

To make this a bit more precise, consider the detailed operation of the origi-

nal Steppy experiment, presented as Algorithm L.1, STEPPYSTEP. The robot is

sequenced through a series of poses which are designed to collide with successively

lower steps. Each such pose sets not only the positions of all robot joints, but also

their stiffnesses, by changing the proportional gain constants in the position loop

servo controls. Thus, a more specific question is "for a given robot pose, what are

the minimum and maximum permissible step heights?"

A lower bound on the minimum detectable height is the first height at which

contact is made at the right heel, i.e., when the point-slider joint hits the lower

limit of its translation. The maximum detectable height is upper-bounded by the

lowest height which causes the robot to lose static stability (i.e., to fall). This, in

turn, is lower-bounded by the minimum step height which causes the revolute joint

representing the left foot's contact to depart its motion limit. I hypothesized that

these bounding events were reasonably close to the actual detection limits.

Proceeding with these hypotheses, I conducted simulations using the mixed real/virtual

interface to simulate slowly increasing the step height upwards from zero, as shown

in Figure 6-11. Three separate poses were tested, the same poses as used in the ac-

tual STEPPYSTEP procedure. In each case, the heights were recorded at first contact

and at fall. The results are plotted in Figure 6-12, along with measurements from

corresponding experiments on the actual hardware. Three trials were performed on

the hardware for each pose, and 10 in simulation. As can be seen in the figure, four

out of the six main predictions from the simulations match the data collected from

hardware experiment to within about 5mm.
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Figure 6-10: Mixed real/virtual model of Steppy.
Each of Steppy's 18 revolute DoF are modeled in a tree topology, rooted at the torso.
The contact between the left foot and the lower plate is abstracted with a virtual
revolute joint-at one rotation limit the foot is parallel to the plate, and rotation
beyond a small threshold corresponds to tipping. The right foot may or may not
be in contact with the upper plate depending on the pose of the robot and the step
height (see Figure 6-11), and is abstracted with a serial assembly of a Cartesian-2
joint, for sliding in the plane of the upper plate, and a point-slider joint, which models
both the rotational freedom of the foot pivoting about its contact point, as well as the
making of contact when the translational DoF hits its lower limit. The step height,
which is unknown to the robot, is modeled with a virtual prismatic joint.
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Figure 6-11: Predicting uncertainty limits for a Steppy pose.
Given a specific pose for the robot, which in this case includes both position and stiffness commands for all joints, the minimum
detectable step height occurs when the right foot first makes contact, and the maximum height is the lowest height for which the
robot becomes unstable. Both can be quantified in terms of the DoF of virtual articulations modeling the contacts (shown in
more detail in Figure 6-10). The limits are manually explored by operating the virtual joint representing step height, increasing
slowly from 0 (left snapshot) to first contact (middle) and ultimately to fall (right). This procedure was performed for each of
three sensing poses involved in the step motion, with the results plotted in Figure 6-12 along with corresponding measurements
from a hardware experiment.



The predicted vs. observed fall heights for two poses do not match well. One

possible explanation is that the simulated model was not sufficiently calibrated to

the actual robot. Another effect seems to be at play, and this also explains why the

simulation differed in multiple trials for the same initial pose. I have as yet only

implemented an interactive version of the simulator; an off-line batch mode is future

work. This introduces some non-determinism because the amount of computation

allowed at each step is limited by wall-clock time. Since I use a standard preemptive

multitasking operating system, the actual computational cycles afforded to each step

of simulation can and do vary from run to run. Thus, the simulated state at the

end of each step can vary slightly between runs, and in sensitive cases these small

variations can become magnified as the simulation proceeds.

Step Height at First Heel Contact and at Fall
Simulation vs Experiment
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Figure 6-12: Results of Steppy simulation and hardware experiment.
This figure shows results from both simulations in the mixed real/virtual interface
and actual trials on the hardware. The procedure, shown in Figure 6-11, was to
set the robot pose (position and stiffness of all joints), and then slowly raise the
step until contact (lower plots) and fall (upper plots). Three separate poses were
tested, corresponding to actual poses used in the STEPPYSTEP sensing sequence
(Algorithm L.1). While the simulation matches hardware experiment well in most
cases, in a few the error is significant. See text for further discussion.
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6.8 Research Context in Compliance and Propri-

oception

This section considers the contributions of this chapter in the broader context of

research in compliance and proprioception. In terms of others who have specifically

considered using virtual articulations, the main prior work which stands out is Bruyn-

inckx's thesis [19]. That work also used virtual joints to model contacts, but mainly

in the instantaneous case: Bruyninckx's virtual assemblies are valid for a particular

contact configuration, but would typically need to be reconfigured after any motion.

In contrast, my approach shows that in some cases a virtual articulation sequence

abstraction can persist through both motions and changes in contact configuration.

Bruyninckx also explored using virtual joints to model uncertainties, but again mainly

takes a finer level of magnification than I do, and considers perturbation-type uncer-

tainties in the parameters of his model vs. gross geometric uncertainties (like the

step height in Figure 6-10). Finally, Bruyninckx does not seem to have also modeled

compliances using the same homogeneous virtual articulation models.

It seems that few prior researchers have used the term "proprioception", though in

some cases their work is nevertheless related. And, as covered in the introduction to

the chapter, there is a long history of compliance in robotics [46, 93]. Particular areas

of interest have been active compliance [100, 35], planning compliant motion [92, 172],

avoiding sensing entirely [48], and under-actuated mechanisms involving completely

passive DoF [101, 155]. The proprioceptive approach differs from sensorless work in

that it actively uses measurements of the compliant motion. Mechanisms like Steppy

and Shady also differ from many under-actuated systems in that most joints can

achieve significant impedance, but can still participate in proprioception.

While I explore the particular case where both sensing and compliance are co-

located with the primary joints of an articulated robot, many other researchers have

opted instead to add additional compliant elements and sensors at other parts of the

robot structure. For example, Lefebvre, De Schutter, Bruyninckx, and their collabo-

rators have recently presented a series of papers which develop a theory of planning
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active sensing strategies for autonomous compliant motion [92], including some ini-

tial hardware experiments for a manipulation task [102, 92]. Though Lefebvre et al's

framework may be conceptually applicable to joint compliance and proprioception,

they have mainly reported using rigid-joint robots combined with a passively com-

pliant end-effector and a 6-axis load cell. Also, it appears they have focused mostly

on planning exploratory motion and have not yet used the acquired data to adjust

subsequent task motion.

However, others have considered adjusting motion plans on-line based on informa-

tion gained from sensing during compliance; for example, Xiao and Volz introduced

a theory of on-line dynamic re-planning of localized patch-plans in [172], but did not

specifically consider proprioceptive sensing. In [40] Desai and Volz described the use

of movability tests, similar to the strategies in both Steppy and Shady, for detecting

termination in guarded motions. Spreng [146] extended this idea to an exploration of

ambiguous contact with probabilistic movability tests.

The specific relevance of Shady and Steppy with respect to other structure climb-

ing and stair-stepping robots is further detailed in Sections J.1 and L.1.

6.9 Summary

This chapter compliments Chapter 5 by demonstrating applications for virtual artic-

ulations and kinematic abstractions in a second area of robotics, in this case reliable

compliant/proprioceptive approaches to locomotion in uncertain environments. Both

of these applications chapters are built upon the models and algorithms developed

in Chapters 3 and 4, and show applications implemented in the mixed real/virtual

interface system.

The particular robots studied in this chapter are Shady, a novel structure climbing

robot, and Steppy, a mini-humanoid that climbs a step of uncertain height. Both

systems have been implemented in hardware and have experimentally demonstrated

reliability: Shady was 99.8% reliable in over 1000 climbing motions, and Steppy was

about 90% reliable in 80 stair-stepping trials. This reliability is conferred in each case
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by a combination of specifically designed compliances and control strategies based on

proprioception, the only sensing used in either system.

Virtual articulations can help study compliant locomotion by enabling homoge-

neous models where uncertainties, compliances, and contacts are all incorporated in

a single kinematic model with the robot and task. Unlike the high-DoF operations

applications studied in Chapter 5, quasi-static modeling of elastic and gravitational

potential energy is usually important in the complaint locomotion domain (the sys-

tems I consider are statically stable; faster-moving dynamic locomotion would likely

also require modeling of kinetic energy). Also, whereas the main abstraction of in-

terest for high-DoF operations was in the spatial domain, here I introduce sequence

abstraction, which applies in the time domain, and enables simple virtual models that

capture the essence of potentially detailed physical contact interactions.

I also introduce the perspective that proprioception can be considered a way for

control algorithms to "read out" the results of morphological computation performed

in the mechanism of the robot itself. While many particular compliant (and to a

lesser extent, proprioceptive) mechanisms have been reported in the literature, it is

still an open problem to build a scientific understanding of such systems that is deep,

quantitative, and generally applicable. While basic physics is technically sufficient

to model these systems, even laboratory examples can be very intricate at this level.

Virtual articulations and kinematic abstractions can help us see the forest over the

trees.
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Chapter 7

Conclusions and Future Work

This thesis has explored the possibilities enabled by virtually relaxing the usual as-

sumption that the kinematic topology of an articulated robot-the connectivity of

its links and joints-is fixed. The ability to add, remove, and reconfigure vzrtual

articulations on-line enables expressing motion constraints and parametrizing tasks

in the same language as the joints and links of the robot itself. This idea led to the

following thesis statement:

By homogeneously combining a robot with its task, virtual articulations enable

models that are both qualitatively high-level and quantitatively functional.

The algorithms and data structures presented in Chapters 3 and 4 helped support

this statement by forming a general purpose framework for modeling and real-time

kinostatic simulation of mixed real/virtual articulated systems. While some earlier

works have suggested virtual articulations in specific cases, this framework is the

first to specifically address the unique challenges of general real/virtual modeling and

simulation: it is unusually generic, supports a complete set of on-line topological

mutations, incorporates a novel hierarchical subdivision, and scales to topologically

large models. Allowing both real and virtual articulations also enables kinematic

abstractions in the spatial and temporal domains. Abstractions are well known for

managing complexity in algorithmic systems, but previously there was no correspond-

ing formalism in kinematics.
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The framework was fully implemented as the mixed real/virtual interface (Fig-

ure 1-4, and most other figures of 3D simulations in the thesis), and used as the

basis for supporting experiments with four different robots in two application do-

mains of current interest: operating high-DoF robots, and analyzing reliable com-

pliant/proprioceptive locomotion. In both areas virtual articulations homogeneously

model the robot and its task environment, and abstractions structure complex mod-

els. For high-DoF operations, the operator attaches virtual joints as a novel interface

metaphor to define task motion and to constrain coordinated motion. For compliant

locomotion, virtual articulations model relevant compliances and uncertainties, and

temporal abstractions model contact.

This next sections summarize the advances and limitations of the framework and

the approaches to high-DoF operations and compliant motion modeling it enables.

The chapter concludes with an overview of future work.

7.1 Advances

The re-usable framework for mixed real/virtual models in Chapters 3 and 4

is unusually generic in two ways: it includes a large catalog of joints, with all lower

pairs except helical; and it supports arbitrary topology models including both closed-

and open-chain kinematics and both under- and over-constraint. The joint catalog is

enabled by a proven-complete partition of a novel parametrization of the 3D special

Euclidean group (Sections 3.3.2, 3.3.4, and Theorem 1). Topological independence

is enabled by a reduced-coordinate modeling approach based on a kinematic graph

with an identified spanning tree, root joints, and closure joints (Section 3.2); and also

by a prioritized damped least-squares approach to motion computation (Chapter 4)

which allows both over- and under-constraint. Such genericity is particularly relevant

because part of the usefulness of virtual articulations is that they are not subject to

the practical engineering constraints of actual physical mechanisms.

On-line topological mutation is not commonly supported in kinematic frameworks,

but is important here for the addition and removal of virtual articulations. Section 3.6
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and Appendix D provide a comprehensive set of algorithms for topology changes.

Scaling to topologically large structures, with 100s of joints and many closed

chains, is also important: a main use of virtual articulations is to constrain motion in

such high-DoF cases, and virtual joints can themselves quickly add up and increase

overall model size. Two key decomposition algorithms work together to help en-

able this scaling: the coupling decomposition (Section 4.10) and a novel hierarchical

decomposition (Section 4.10.1). These can help support interactive kinostatic simula-

tion of local assembly (Section 4.1) and differential control (Section 4.2) motions by

breaking break the model up into independently sQlvable sub-components.

The novel interface for operating high-DoF robots in Chapter 5 used the

implementation of this framework as a graphical tool to operate robots with large

numbers (10s to 100s) of joints, filling a gap between prior low and high-level in-

terfaces. Virtual articulations parametrized task motion and also constrained and

coordinated whole-robot motion, and structure abstractions hid internal operation of

sub-mechanisms. Four new classes of coordinated motion were experimentally demon-

strated for NASA/JPL's 36-DoF ATHLETE, all of which would have been difficult

using prior methods. Constraint prioritization also enabled combining a novel direct

manipulation device with virtual motion constraints (Figure 5-5). A second example,

a simulation of a modular tower involving nearly 300 joints (Section 5.4), showed the

scaling potential for the system. Structure abstraction and hierarchical decomposition

helped manage complexity both for the operator and for the system.

The novel approach to concisely model compliant interaction in Chapter 6

used virtual articulations to homogeneously model compliance, contact, and uncer-

tainty. Sequence abstractions hid details of contact state evolution. It has long been

known that compliant mechanisms can perform reliably even under significant un-

certainty, but little work has been done to enable modeling and understanding this

relationship at a higher level than basic physics. Virtual articulations and kinematic

abstractions are qualitatively useful here-they can help see the forest for the trees.
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When sufficiently calibrated, kinostatic models can also enable quantitative prediction

of tolerable uncertainty, using the procedure in Section 6.4.

Two hardware experiments are studied: Shady, a novel scratch-built compli-

ant/proprioceptive vertical climbing robot, and Steppy, a mini-humanoid that climbs

a step of uncertain height. Both systems have experimentally demonstrated reli-

ability: Shady was 99.8% reliable in over 1000 climbing motions, and Steppy was

about 90% reliable in 80 stair-stepping trials. In both cases mixed real/virtual mod-

els predict the limits of tolerable uncertainty and capture the essence of the coupling

between compliance and uncertainty tolerance.

7.2 Limitations

Sections 5.2 and 6.5 called out the limitations of the framework as it applied to each

application domain. Overall:

* The constructable constraints depend on available virtual joints; for example,

the current joints cannot implement helical motion, rolling contact, or arbitrary

trajectory path following.

* The decomposition algorithms may not reduce asymptotic time complexity, but

by breaking the problem up they can lower the constant factors. Also, they can

only decompose certain topological structures.

* Like abstractions in software, kinematic abstractions are manually designed,

and depend on the ingenuity of the user. In general, it can be hard to prove

that a structure abstraction is proper (Theorem 2), though the ability to handle

over-constrained systems can make even improper abstractions usable.

* The framework includes link mass and stiffness for individual joint DoF. Non-

statically stable robots will also require dynamics.

* I take a mainly local approach (Section 3.4.3), and do not consider collision

detection or avoidance.
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o I do not address specific control of velocity.

7.3 Future Work

Human Subject Testing and Usability Features: A clear next step for the

high-DoF operations work is to perform usability experiments measuring both the

operator learning time for the mixed real/virtual interface vs. existing systems and

also the time required to design a complex motion in each. For these experiments to

be meaningful, a few additional critical usability features should first be implemented,

including snap-dragging [14], undo, and a more self-documenting drag-and-drop UI

for constructing virtual articulations and kinematic abstractions.

Automatically Generated Virtual Articulations and Kinematic Abstrac-

tions: It would clearly be interesting to explore algorithms to automate the process

of adding virtual articulations and kinematic abstractions. For the operations in-

terface domain this could, for example, provide a bridge between a specification of

geometric constraints (parallelism, perpendicularity, tangency, incidence, etc) and a

set of virtual articulations that implement them. For the compliant motion domain,

one idea would be to automatically infer sequence abstractions from the geometric

models of the contacting bodies and a coarse description of (or possibly experimental

data from) their relative motion in the task.

Prototype Model Libraries: Larger models often involve repeated sub-structures-

consider ATHLETE's six identical legs, or the symmetries in the modular tower ex-

ample. It could be useful to enable saving such sub-structures independently in a

library, from which they could be repeatedly instantiated to build new models.

Collision Detection/Avoidance: It would often be desirable to compute motions

that detect or avoid collision among the geometries associated with links (including

terrain surface models). One form of collision avoidance can be implemented by

simulating repulsive force fields, as described by Connelly, Demaine, et. al. in [21].
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The differentiability of this approach would make it a natural addition to the local

linear framework presented in this thesis (e.g., it collision avoidance could be inserted

as another priority level), though other approaches could be considered as well.

Optimality Criteria: It would also be possible to insert other differentiable opti-

mality criteria, such as manipulability maximization or joint limit avoidance, as new

priority levels. Pryor [131] gives a thorough development of a number of such criteria.

Solver Improvements: Though the prioritized damped least squares solver (Chap-

ter 4 and Appendix F) is already specifically designed to support a broad class of

kinematic topologies, it still involves some tuning parameters. Automatic heuristics

for setting these have been explored in the literature, and I implement some of these

(Section 4.8.1), but there is still room for improvement.

Force Control: Several of the experiments with ATHLETE, for example trenching

and bi-manual manipulation (Figures 5-6 and 5-8), suggested integrating some force

control with the motion trajectories computed in the mixed real/virtual interface.

Full Dynamics: It should be possible to extend the present kinostatic framework

into a full kinodynamic one. There is already some precedent for mixed real/virtual

dynamic models [128, 127] in the literature, and also for on-line structure changes in

dynamic articulated systems [108, 91].

7.4 Summary

This chapter began with a review of the thesis statement, and summarized how

this statement has been supported by the presented algorithms, data structures, and

experiments. The advances and the limitations of the mixed real/virtual framework,

and its applications to high-DoF operations and compliant motion modeling, were

then reviewed. Finally, the potential for future work was suggested in a number of

different directions.
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Appendix A

The Lower Pair Joints

In the late 19th century, Reuleaux proposed an important classification scheme for

mechanical joints [133]. He noted that in practical machinery, where joint constraint

must physically be implemented by contacting material components, it is often ad-

vantageous to maintain a two-dimensional surface of sliding contact. Reuleaux called

such joints lower pairs. Remarkably there are only six classes of joint mobility that

satisfy this criteria: revolute, prismatic, cylindrical, spherical, planar, and helical

(figure A-1). Reuleaux himself apparently did not prove the completeness of this set,

though for many years it was assumed complete-e.g. Denavit and Hartenberg state

the completeness of the six lower pairs as fact in their seminal 1955 paper [38]. The

first proof is usually attributed either to Waldron [160, 161] or to Herv6 [63]. O'Connor

and Srinivasan also include the completeness of the lower pairs as a corollary of their

more general completeness proof for the classes of connected Lie subgroups of the

rigid motion group [114].

Joints which maintain only curve or point-as opposed to full surface-contact

were termed higher pairs. These include, for example, cam-followers. And there are

certainly joints which are neither lower nor higher pairs: for example, a discrete joint

which takes on only a finite set of poses, or a joint that maintains non-slip rolling

contact or gear mesh.
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Figure A-i: The six classes of lower pair joint.
Top row, left to right: revolute, prismatic, helical. Bottom row: cylindrical, spherical,
planar. Figure adapted from [139].
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Appendix B

Orientation Vectors

It is well known that there are various ways to parametrize the space of 3D rotations-

rotation matrices, unit quaternions, Euler parameters, axis-angle, etc. (see e.g. [98]).

For reasons discussed in Section 3.3.3 I use the orientation vector approach [58] in

this thesis, combined with a differentiable exponential map from an orientation vector

0 to a unit quaternion

q = exp(8), (B.1)

the inverse logarithmic map

0 = log(q), (B.2)

and a method of dynamic reparametrization recently introduced by Grassia [55].

Orientation vectors are a particular instantiation of the axis-angle approach to ori-

entation parametrization, with the amount of rotation encoded as the length and the

rotation axis the direction of a 3D vector. The full details are given in Definition 65.

Definition 65 The direction 0 = 06/I011 of a non-degenerate orientation vector 0 E

IR3 \ 0 defines an axis of rotation, and the length II011 defines an amount of rotation,

or twist, according to the right hand rule, in radians, as illustrated in Figure 3-5. The

degenerate orientation vector 0 = 0 corresponds to the identity (i.e. no) rotation. In

either case, the effective twist 0 of 0 is

0 = 11011 mod 27r. (B.3)
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Euler's rotation theorem [98] establishes that such an axis and twist are sufficient to

represent any 3D rotation.

The orientation vector representation is a multiple-cover of the space of 3D rota-

tions, repeating on successive 27r-wide half-closed spherical annuli. Such an annulus

U2, i E Z + , is precisely defined as

U, B3 (2i7) \ B 3 (2(i - 1)7), (B.4)

with Bd(r) the open Euclidean ball of radius r centered at the origin in Rd.

Orientation vectors on the (included) inner boundary of any annulus U, all have

effective twist

0 = 2(i - 1)7 mod 27 = 0 (B.5)

and thus all correspond to the identity rotation. Except for the innermost annulus

U1 there is generally a continuum of such inner-boundary vectors, a fact which will

be important below. The remaining vectors in U, cover the space of all rotations

because (1) all axis directions are reachable and (2) all effective twists 0 < 0 < 27r

are included.

In fact, each U, is itself a double-cover of the space of all 3D rotations. Consider

the inner closed half-annulus

17 = B3 ((2i - 1)7) \ B 3(2(i - 1)r), (B.6)

with B (r) the closure of Bd(r).

U," is itself sufficient to cover the space of all 3D rotations. It includes all effective

twists in the range 0 < 0 < 7r, and the remaining rotation vectors in the outer open

half-annulus

UIA = B 3 (2ir) \ B3 ((2i - 1)7) (B.7)

with effective twists r < < 0 < 27 are equivalent to rotations about the opposing axis
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with effective twist 0' = 27r - 0. This fact will also be important below.

B.1 Computations via Unit Quaternions

An orientation vector 0 can be considered from both denotational and operational

viewpoints. Denotationally, 0 is current orientation of a 3D object in some ambient

coordinate frame; operationally 0 is a rotation action taking any 3D object from its

current orientation to a new one. The operational viewpoint is crucial, as there will

often be a need to compute (1) inverse rotations, (2) rotation compositions, and (3)

the application of a rotation to a set of points defining an object.

The computation to invert an orientation vector is trivial:

0 - 1 = -0. (B.8)

However, there seems to be no more direct way to compute rotation composition and

point rotation than to first convert to another representation [55]. For this purpose

I use unit quaternions, with an exponential map (Eq. B.1) taking 0 to an equivalent

unit quaternion q, and a logarithmic map (Eq. B.2) converting back. The essential

formulas for unit quaternion composition operations are reviewed in Appendix C.

B.2 The Exponential and Logarithmic Maps

The terms "exponential" and "logarithmic" derive from the fact that the space of

unit quaternions is a Lie group for which the orientation vectors can be considered a

Lie algebra. In general, the mapping from any Lie algebra to its Lie group is called

an exponential map, and the opposite mapping is a logarithmic map.

Definition 66 The particular exponential map from orientation vectors to unit quater-
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nions that I use is computed as [55]

exp : R3 -+ S3 C R4 0 - exp(0) = (q, q) =

=(cos s110112 ' 110 11 2
(B.9)

with q, the scalar and q = (qx, qy, qq) the vector part of q

and Sd the unit sphere centered at the origin in IRd

I compute the logarithmic map from unit quaternions to orientation vectors as

log : S3 C R4 - R 3 Slog(q) = log((q,, q)) = 0

2 atan2(1 q |, q)- if lqll > 0

0 otherwise.
(B.10)

Figure B-1 illustrates these mappings graphically.

Figure B-1: exp(0) and log(').
The exponential map takes orientation vectors to unit quaternions. The actual map-
ping is from RJ3 to the 4D sphere S3, which is difficult to draw, but motivated by
analogy using R 2 and the 3D sphere S 2.
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B.3 Singularities

Despite the appearance of a singularity at 11811 = 0 in Eq. B.9, in fact

sin ||o0 /2lim n 11 = 1/2. (B.11)
110110o 11011

Similarly, Eq. B.10 is differentiable at iq = 0 (i.e. when 0 = 0) because the unit-

magnitude constraint on q implies that q, = 1 - |1q 2 and

lim atan2(||q,./ 1 - |q1| 2 ) = 0. (B.12)

Thus, both the exponential and the logarithmic maps are differentiable in the neigh-

borhood of 0 = 0, which is the degenerate inner boundary of the spherical annulus

U1. Numerically stable computations for the derivatives will be given in the next

section, even for 60 0.

The singularities at the inner boundary of the other annuli are not so easily

avoided-the continua of orientation vectors on these boundaries all map to the single

quaternion (-1, 0, 0, 0). Fortunately, it suffices for our purposes to stay within U1 ,

which we can do with a technique of dynamic reparametrization, as described below

in Section B.5.

B.4 Derivatives

The algorithm presented in Chapter 4 to compute linkage motion relies on the com-

putation of the derivatives of exp(0) and log(q). These take the form of [4 x 3] and

[3 x 4] matrices, respectively:

with 0 = (Ox, Oy, Oz) and exp 0 = q = (q,, q, qy, qz)
-dqw dqw

exp - d(B.13)

7 ae dqz dqz
dOx "' dOz

[4x3]
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with q = (qw, qx, q, qz) and log q = 0 = (O, Oy, Oz)

0 log qa q -
Fd0 dO"1

dqw dqz

dqw dqz 

[3x4]

(B.14)

In [55], Grassia showed that the expressions for the entries in Eq. B.13 reduce to

only three forms:

with 0 = 1111, s 2 = sin(0/2), c2 = cos(0/2) and a, P E {x, y, z}

dqa

dO
dq,

dO3
dq,

dOoa

S2 2 C2

0 82 2
S2)

(B.15)02  (2O82

O2 S
2 0

Grassia pointed out that a reasonable approach in the region 0 - 0 is to switch to

approximations for the rational forms S2/0 and 1/02 (c2/2 - S2/0):

when 0 < /machine precision

S2 1 02

1 C2

02 2
S2) 1(02

0 24 40
(B.16)

-1).

This technique aids stability of the numerical computations when implemented in

limited precision (including standard floating-point) by avoiding division by small

numbers.

Grassia did not also present expressions for the entries in the derivative of the
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logarithmic map (Eq. B.14); I derive them as follows:

with S2 = IqII, C2 = qw, 0 = 2atan2(s 2, c2), and a, P {x, y, z}

d - + 2 2C2 -

dq S2 S2 S2

dO-q q0q 2c2 -- a pdq S 2 S2
dO0d_ = -2q.
dqw

(B.17)

In this case, for 80 0 replace the rational forms 0/s2 and 1/s2 (2c 2 - 9/S2) with

corresponding approximations:

when 0 < machine precision

0 48

S2 24 - 02

1 (2C2 - 32
~92 (B.18)S2 2 - 24

B.5 Dynamic Reparametrization

One of Grassia's main contributions in [55] is that, for incremental computations, a

restriction of 0 to the domain

o8 E U = B3 (7) (B.19)

gives sufficient coverage of the space of 3D rotations while avoiding all the problematic

singularity surfaces. The iterative SOLVE algorithm in Chapter 4 is precisely such

an incremental computation context-after each iteration all orientation vectors are

dynamically reparametrized, returning any 0 that the prior incremental update pushed
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outside B 3 (7) to an equivalent 0' E B3 (7) as follows:

8
assuming 11011 < 27, if not then first set 0 = (11011 mod 27)

11011

0'= 1 - 0 when 7r < 1111 < 27r. (B.20)

Thus, the incremental SOLVE algorithm can evolve the rotation state of any joint with-

out worry of "falling off the edge" of the parametrization domain given by Eq. B.19.

B.6 Taking Differences of Orientation Vectors

The term "orientation vector" is partly a misnomer because the space of 3D rota-

tions is not a Euclidean vector space. Normal vector-algebraic manipulations, such

as addition, do not necessarily correspond to meaningful operations on orientation

vectors.

That said, there are two instances in which algebraic manipulations on orientation

vectors are useful. One is finding the inverse of an orientation vector by negating it

(Eq. B.8). Second, I represent the difference e between two orientations algebraically,

though this difference is not itself an orientation vector:

e = 01 - 00. (B.21)

When taking such a difference, care must be taken to handle the fact that, due to the

multiple-cover of rotation space, there is a countable infinity of orientation vectors

which represent the same rotation. Typically it makes sense to select nearest aliases

of 01 and 00 which minimize e. I take this approach when computing residuals for

the Solve algorithm, Section 4.9.1 gives the details.
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Appendix C

Unit Quaternions

Unit quaternions are a powerful and convenient way to represent 3D rotations. They

gained popularity in graphics and robotics the 1980s when Shoemake [141] introduced

a practical quaternion scheme for correctly interpolating 3D rotations. Horn gives a

concise summary of quaternion computations in [71].

Here I review the quaternion manipulations and formulae that are used in this

thesis. Unit quaternions used alone have some drawbacks for our purposes, as dis-

cussed in Section 3.3.3. I use them in conjunction with the orientation vector rotation

representation (Appendix B).

The 3D rotation represented by a unit quaternion q = (q,, q) has a geometric

interpretation that is similar to an orientation vector: q is parallel to the axis of

rotation and has magnitude sin(0/2), where 0 is the right-hand-rule rotation about

the axis in radians, and q, is cos(9/2).

The inverse of the rotation represented by a unit quaternion q is given by the

conjugate iq*:

when IIq = 1

-1 o= r = (qw, q) = (q, -q). (C.1)

Composition of rotations and point rotation are both computed using quaternion
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multiplication:

r = pq. (C.2)

I.e. r identifies the rotation that results by first applying the rotation q followed by

the rotation o. For the application of a rotation r to a point v = (vx, v,, vz) E R"3

v' = vp( 0)*) (C.3)

with r = (0, r) and vp((rw, r)) = r, (C.4)

where v' is the result of rotating v by r.

These expressions employ quaternion multiplication but do not define how to

compute it. Horn gives a practical method based on simple functions-which I call

QMM and QMM*-that produce [4 x 4] matrices from a quaternion, so that quaternion

multiplication can be cast into the multiplication of a matrix and a vector. There are

two variations depending on whether the first or the second factor is converted into

a matrix:

= 0 0

= QMM(p)(q,qxqY, qz) T  = QMM*()(p~,pxpYpz) T  (C.5)
Pw P P Pz q1 w -q -qy -qz 1

QMM(P) -p QMM* = qx qw qz qy
Py Pz Pw PX qy -qz q qx

Pz -Py Px Pw qz -qy -qx qw

Eq. H.9 uses QMM and QMM*.

Finally, there is a well-known (e.g. see [2]) function, which I call ROT, that

produces a [3 x 3] orthogonal rotation matrix corresponding to a quaternion:

[ 1-2q 2-2qy -2qwqq+2qyqx 2qwq+2qzqx

ROT(q) = ROT((qw, qx, qy,qz)) = 2 qwqq 1-2-2-2q -2qqx+2qzqy (C.6)
L-2qwqy+2qxqz 2qwqx+wqyqz 1-2q--2q2 

Y

Eq. H.9 also uses ROT and its partial derivatives 9ROT(q)/8 . These can be repre-

sented as a [[3 x 3] x 4] tensor, i.e. as a stack of four [3 x 3] matrices, each of which

is the partial derivative of ROT with respect to one of the four components of its
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quaternion argument:

F RoT(
ROT(q) = I o

aqk [3x3]
[[3x3]x4]

OROT(q)

Oq,
with

OROT(q)

aq,

0
= 2qz

L-2qy

-4q,
S 2qx

-2q,

j) aROT(q)
aqx

[3x3]

-2qz 2qy
0 -2qx

2qx 0

2qx 2qw
0 2qz

2qz -4qy

ORoT(q) aR

Oqy
[3x3]

OROT(q)

aqx

aROT(q)

qz

OT(q)

[9q,
[3x3]

E 0 2qy 2qz
2qy -4qx -2q,|2qz 2q, -4qx

-4qz -2q,
2qw -4qz
2qx 2qy

2qx
2qy
0

The derivatives of the inverse, a(ROT(q))- 1/9q, are calculated similarly except each

plane in Eq. C.7 is individually transposed.
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Appendix D

Additional Structure Mutation

Primitives

This appendix collects all the remaining structure mutation primitives and helper

functions that were omitted from Chapter 3.

D.1 Adding Links and Joints

ADDLINK and SETLINKNAME, Algorithms D.1 and D.2, add a new link to the linkage

or change the name of an existing link, respectively. ADDLINK always produces a

new uniquely named root link co-located with the ground frame-the connectivity,

pose, and name of the new link may all be evolved by the application of further

mutation primitives. A unique associated root joint is also automatically created for

each new link. A name n is valid iff it is a string of alphanumeric characters, dash,

and underscore. Both ADDLINK and SETLINKNAME have 0(1) time complexity (see

assumptions in Section 3.6.1).

ADDJOINT and SETJOINTNAME, Algorithms D.3 and D.4, are the parallel oper-

ations for adding and re-naming a joint. Newly added joints are always initially chain

closures; they may be promoted to tree disposition by MAKETREE, Algorithm 3.1 on

page 87. Assuming that CMTs have been pre-computed, ADDJOINT and SETJOINT-

NAME are also O(1). If up-to-date CMTs are not available, an extra cost of O(h) is
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incurred in ADDJOINT, where h is the maximum spanning tree height of the parent

and child links of the new joint.

D.2 Removing Links and Joints

Removing a closure joint is straightforward, as closure joints play no critical function

in the linkage topology. The general strategy for REMOVEJOINT, Algorithm D.5, is

thus to first ensure the joint is a closure, returning the child link of a tree joint to

its root, and then to unlink the closure. Its run time is dominated by the call to

MAKECLOSURE.

Removing a link is slightly more involved, as all the adjacent joints will be left

dangling. In this implementation of REMOVELINK, Algorithm D.6, these joints are

also removed. In the process, any tree descendants of the link will be made root links.

REMOVELINK is O(ah), where a is the number of joints adjacent to the link and h

is either 1 if updated CMTs are available or the maximum spanning tree height of

any adjacent link.

D.3 Changing Joint Type and Limits

SETTYPE and SETLIMITS, Algorithms D.7 and D.8, mutate the type and limits of

a joint in-place. For tree joints, the mobility transform is also clamped to the new

mobility space. One particular use for these operations is for joint space restriction

and generalization (Section 3.4.1). Joint limits I are valid iff they satisfy Eqs. 3.33

and 3.34. I = 0 is a shorthand for all-infinite limits. Both SETTYPE and SETLIMITS

are 0(1).

D.4 Repositioning Links, Restructuring Joints

The joint mobility positioning transforms P and C, taking the child link frame to the

child mobility frame and the parent mobility frame to the parent link frame, respec-
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Algorithm D.1: ADDLINK(L)

Input: linkage L
Output: a new link k, which has been added to L along with its root joint
let n be a unique link name
let 0 = (M,,Yr,, I,, ,, P,,C,) - (0, G, 0, +1, 0, 0) >Eq. 3.11
let r = (pr,c,Or, r,, n,) +- (g, 0, O, 0, 0) > Eq. 3.3
let k = (pk, rk, ik) - (r,r, n) >Eq. 3.4
cr +- k, nr +- ROOTNAME(k)
add k to KL and r to JL
return k

Algorithm D.2: SETLINKNAME(k, n)

Input: link k, valid link name n
Output: k renamed to n

nk - n, nrk -- ROOTNAME(k)
return k

Algorithm D.3: ADDJOINT(L, Y, p, c)
Input: linkage L, joint type Y E Y, parent and child links p, c E KL
Output: a new closure joint j, which has been added to L
let n be a unique joint name
let C - CMT(p)- 1CMT(c) >child-to-mobility transform

let O = (Mj, Yj, , 3, P,, C,) -- (0, Y, 0, +I, 0, C) >Eq. 3.11

let j = (p, c, Oj, T,, nj) -- (p, c, O, 0, n) >Eq. 3.3
add j to J
return j

Algorithm D.4: SETJOINTNAME(j, n)
Input: non-root joint j, valid joint name n
Output: j renamed to n
if n not unique in p, then error name not unique
n 3 +- n

return j
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Input: non-ground link k in a linkage L (i.e. k E K)
Output: L with k removed
foreach joint j s.t. p, = k do REMOVEJOINT(j)
foreach joint j s.t. c, = k and CLOSURE?(j) do

if -ROOTJOINT?(j) then REMOVEJOINT(j)

KL <- KL \ {k}, JL - JL \ ({rTk U {Pk})
return L

tively, provide an important level of flexibility: they can be manipulated to give any

desired relative positioning of a joint's mobility space with respect to each adjacent

link frame. I provide two mutation primitives, REPOSITIONLINK and REPOSITION-

JOINT, Algorithms D.9 and D.10, which serve to move a link or joint while holding

the adjacent joints or links pinned in their current global poses. These reposition-

ing operations do not actually change the mobility state of the joint. For example,

REPOSITIONJOINT could be used to change the orientation of the rotation axis of

a revolute joint with respect to the adjacent links, but would not actually change

the joint's current amount of rotation. REPOSITIONLINK is O(ch) where c is the

number of child joints and h is 1 if updated CMTs are available, or the spanning

tree height of the link otherwise. REPOSITIONJOINT is O(h) where h is 1 if updated

CMTs are available, else the spanning tree height of the parent link.

Sometimes it is necessary to independently move the parent and child links of
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Algorithm D.5: REMOVEJOINT(j)

Input: non-root joint j in a linkage L (i.e. j E JL)
Output: L with j removed
MAKECLOSURE(j)

remove j from JL
return L

Algorithm D.6: REMOVELINK(k)

Algorithm D.7: SETTYPE(j,Y)
Input: non-root joint j, joint type Y E Y
Output: j, now of type Y
Y +-Y
if TREE? (j) then M <- CLAMPX(M 3 , Y, I3)
return j



a joint relative to the mobility space, i.e. to individually control the positioning

transforms. RESTRUCTURE, Algorithm D.11, performs this operation in 0(1) time.

D.5 Splitting Links and Merging Joints

The final two mutation primitives, SPLIT and MERGE, provide insertion and removal

semantics for links and joints that are more convenient in some cases than ADDJOINT,

ADDLINK, REMOVEJOINT, and REMOVELINK. They are strictly sugar-each could

be implemented via calls to those more basic primitives (though the time complexity

would increase due to the cyclicity error checking in SETPARENT and SETCHILD).

SPLIT, Algorithm D.12, inserts a combination of a new link and a new tree joint

behind an existing link k.The new link is initially co-located with k. Except for

the case of splitting the ground link, SPLIT is 0(1) expected if updated CMTs are

available, else O(h) expected with h the spanning tree height of the link to be split.

Algorithm D.10: REPOSITIONJOINT(j, Xgo-pm7)

Input: non-root joint j, composite model transform Xg0Spm,
Output: j, now repositioned
let X <-- CMT(pm)- 1 Xg0 _pm,
P - PX, C <-- X - C
return j
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Algorithm D.8: SETLIMITS(j, I)
Input: non-root joint j, valid joint limits I
Output: j, now with limits I

if TREE? (j) then My <-- CLAMPX(Mj, Yj, I3)
return j

Algorithm D.9: REPOSITIONLINK(k, Xgqo-k)

Input: non-ground link k, composite model transform Xgo_k
Output: k, now repositioned
let X -- CMT(k)-1 Xgo-k

if ROOTJOINT?(pk) then Mpk +- MkX else Cp, +- Cp, X
foreach joint j s.t. p3 = k do P -- X-1Pj
return k



Algorithm D.11: RESTRUCTURE(j, P, C)
Input: non-root joint j E J, transforms P and C
Output: j, now restructured
if P = 0 then P, +- P, if C 0 then C, -- C
return j

Algorithm D.12: SPLIT(k)
Input: link k in linkage L (i.e. k E KL)
Output: a new link k' inserted with a new tree joint behind k
let k' -- ADDLINK(L)

if k = gL then MAKEGROUND(k') else
/Mg - CMT(k)

if -ROOTLINK?(k) then ck -- k', pk' -- Pk
let j <-- ADDJOINT(G, k', k)

Pk <- j, M 3 <-- 0
return k'

SPLITting the ground link has the same cost as the root link case of MAKEGROUND.

MERGE, Algorithm D.13, performs the reciprocal operation to split: it deletes a

tree joint j and its child link c3 , re-attaching all other neighboring joints of c, to the

parent pj of j. MERGE is O(INI + 1O| + h) where N is the set of child joints of the

child link of the joint to be merged, 0 is the set of closure joints whose child is that

link, and h is 1 if updated CMTs are available or the maximum spanning tree height

of the parent and child links of the joint to be merged otherwise.
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Algorithm D.13: MERGE(j)
Input: non-root joint j
Output: the previous parent link p3 of j
let D +- {joint i I p, = c3}, N -- {joint i 1 c, = cj and CLOSURE?(i)}
foreach i in D do if n, not unique in p, then error name not unique
let X, <-- CMT(p 3) -

1CMT(c 3 )

foreach i in D do P, +- X,Pi, p, +- p3
foreach i in N if -ROOTJOINT?(i) do C, -- CX- 1 , c, <-- p3
REMOVELINK(c3 ), REMOVEJOINT(j)

return p,



D.6 Helper Functions

Some helper functions make the definitions of the main algorithms more concise.

With the exception of CLAMPV and CLAMPX, these do not perform any mutations.

The first two helpers, TREE? and CLOSURE?, Algorithms D.14 and D.15, are

conveniences to test the disposition of a joint. The time complexity of each is 0(1).

ROOTLINK? and RoOTJOINT?, Algorithms D.16 and D.17, are convenience pred-

icates to test for a root link (a link parented directly to ground through its root joint),

or whether a joint is a root joint. The time complexity of each is 0(1).

ROOTNAME, Algorithm D.18, generates a unique name for a root joint.

The clamping helper functions are the only ones which perform any mutation.

CLAMPV, Algorithm D.22, clamps either a t or 0 3-vector to a specified axis-aligned

subspace and limits, and CLAMPX, Algorithm D.23, builds on this to clamp a full

(t, 0) transform, implementing Eq. 3.36. Both have time complexity O(1). While not

explicitly handled in the pseudocode, I = 0 is a shorthand for all-infinite limits.

The final helper function, CMT, Algorithm D.24, computes the composite model

transform taking coordinates in any model frame to the link frame of the ground link

go of the top-most sub-linkage, effectively implementing Eq. 3.1. It is expressed here

as a self-contained recursive function that can compute the CMT for any coordinate

frame, even those associated with closure joints, without directly requiring the mobil-

ity transform Mj or joint transform X, for any closure joint (recall from Section 3.3.2

that these quantities are implicit).

CMT has time complexity O(h) where h is the length of the spanning tree path

from the indicated frame to the ground frame. However, the results may be cached,

reducing query time but adding some time cost for the bookkeeping-cached CMTs

may need to be invalidated after structure or state changes. Algorithm G.2 in Ap-

pendix G gives one method for such a precomputation. The current implementation

periodically re-computes all CMTs at about 15 Hz, as they are needed for rendering

at that rate anyway. When more frequent CMT updates are required, e.g. to compute

more than one numeric solve iteration between renders, they are explicitly initiated.
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Algorithm D.14: TREE?(j)

Input: joint j
Output: true iff j is a tree joint
return (Pc, = j)

Algorithm D.15: CLOSURE?(j)
Input: joint j
Output: true iff j is a closure joint
return (pc, # j)

Algorithm D.16: ROOTLINK?(k)
Input: link k
Output: true iff k is a root link
return (pk = rk)

Algorithm D.17: ROOTJOINT?(j)
Input: joint j
Output: true iff j is a root joint
return (Te, = j)

Algorithm D.18: ROOTNAME(k)
Input: link k
Output: a generated name for the root joint of k
let X - a unique numeric id >avoid name collision
return nk"-root-"X

Algorithm D.19: OUTCROSSING?(j)

Input: joint j in linkage L (i.e. j E JL)
Output: true iff j is outcrossing
return (c, E KL and p, E Kp,)

Algorithm D.20: INCROSSING?(j)
Input: joint j in linkage L (i.e. j E JL)
Output: true iff j is incrossing
return (p. E KL and c, N K,)

Algorithm D.21: CROSSING?(j
Input: joint j
Output: true iff j is crossing
return (OUTCROSSING?(j) or INCROSSING?(j))
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Algorithm D.22: CLAMPV(x, a, I)

Input: vector x E R3 , subspace index a E {0, 1}3 , limits I = (I E ]R3, u E R 3)
Output: x projected to A(a) and restricted to I
for 0 < i < 3 do

if ai = 0 then xi <- 0
else if xi < 1, then x, - 1, else if x, > ui then xi -- u,

end
return x

Algorithm D.23: CLAMPX(X, Y, I)
Input: transform X = (t, 8), joint type Y = A(a), limits I = ((It, lo), (ut, un))
Output: X clamped to YI1

with a = (at, ao), at, ao E {0, 1}3
t <-- CLAMPV(t, at, It, ut)
> check both aliases of 0 within B 3 (27r)

if 11011 > 0 then let 0' +- (1 - 27r/11011)0 else let 0' <- 0
let w -- CLAMPV(O, ao, (lo, uo)), w' <-- CLAMPV(O', ao, (lo, Un))
if 11w - 011 < 11w'- 0'11 then 0 <-- w else 0 - w'
if 1111 r then 0 - (1 - 2 7/11011)
return X

Algorithm D.24: CMT(f)
Input: identifier f for coordinate frame Ff
Output: composite model transform Xgof from frame Ff to Fgo
if f = go then return 0 >identity transform (base case)
else if f is a link then return CMT(ppf)Xpf >Xp from Eq. 3.9 (link CMT)

else if f = pm,, j a joint then return CMT(p,)P, > (parent mobility CMT)

else return CMT(c 1 )C,-1 >(child mobility CMT)
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Appendix E

Computing the Pseudoinverse

There are a number of ways to compute the pseudoinverse M + of an arbitrary matrix

M; I use the singular value decomposition, which is regarded to be among the most

accurate and numerically stable practical implementations [20]. If M is [m x n], the

SVD is a decomposition consisting of three matrices

U E VT = SVD(M) with k = min(m, n), (E.1)
[mxk] [kxk] [kxn]

where U and V are orthogonal and E is a diagonal matrix of singular values

E = -. (E.2)

ordered s.t. ao > o1 > - - -k-1 > 0. Since U and V are orthogonal, their inverses are

simply their transposes. And the inverse of E is just

1/0o-

-i = "i/., (E.3)
1/Ok-1

though taking 1/0 = oc would result in a matrix with infinite entries if any of the

singular values are 0. If we instead define E+ to be the same computation but with

1/0 taken to be zero, we can compute the pseudoinverse of M as

M + = VE+UT. (E.4)
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E.1 Damping

In theory the SVD pseudoinverse works even for M that are singular or near-singular.

But in practical implementations using limited precision-including floating point-

arithmetic there is a numeric issue for matrices that are near-singular. In this case

even the best limited-precision implementations can result in M + with inaccurate

large entries, which causes instability in the iteration. Essentially, for a near-singular

matrix, one or more of the singular values will be very small but not exactly zero,

and will not be accurately represented in limited precision arithmetic. When the

reciprocal of these entries is taken in the computation of E+ , the small inaccuracies

will be magnified into large ones.

One well-known way to address this is to introduce a damping factor A > 0, and

to replace E+ with

E+A = (E.5)
Ck 1

ak-1
("k- 1 )

2
+A

2

Definition 67 The A-damped pseudoinverse of M may then be computed as

M + = VE+AUT. (E.6)

E.2 Computing the SVD

I use the DGESDD algorithm from LAPACK [7] to compute the SVD. This algo-

rithm has been ported to various languages; since my system is mainly implemented

in Java, I use the netlib-java library [111], which provides a bridge to optimized im-

plementations where available without sacrificing portability. Like other typical SVD

implementations, DGESDD has asymptotic time complexity 0(1k2 ) where 1 is the

larger matrix dimension and k the smaller [23, 12].

I also measured the actual DGESDD runtime in the implementation, as shown

in table E.1. This informal test was performed on a modern mid-range laptop under
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normal working load, and is informative as it shows the scale of the SVD sizes we can

expect to compute in an interactive application under current real-world conditions.

For example, to maintain a minimum response time to the operator of say 100ms, up

to about 100 10x10 SVD, 10 100x100, or 4 500x100 could be computed in the available

time. In actuality, of course, there will be less time available because there are other

things to compute. In practice, such as in the examples detailed in Section 5.4,

the SVD often does account for a significant fraction (up to 30-40%) of the total

simulation computation time.

I rows cols average runtime

10 10 ims
100 100 10ms
500 100 25ms
500 500 1400ms

Table E.1: netlib-java DGESDD timings on a current mid-range laptop.
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Appendix F

Prioritized Damped Least Squares

Section 4.2.1 introduced the two-level task priority approach, with residual compen-

sation and nullspace projection, to combine the solution of two damped least squares

iterations. Siciliano and Slotine extended this to an arbitrary number of cascaded

priority levels in [142], and recently some further improvements were reported by

Baerlocher and Boulic in [11]. I call their method prioritized damped least squares

(PDLS).

One of the main contributions in [11] is that the formulas for residual compensation

and nullspace projection in Eq. 4.21 extend directly to a relatively efficient multi-

priority formulation, which takes as input a set of residual vectors el paired with

corresponding Jacobians J1 , one pair for each priority level 1. Per-level damping

factors A1 and clamping thresholds li are also inputs. Cast into the terminology

of my framework, their priority loop begins by initializing the change in tree state

Ax +- 0 and an [f x f] nullspace projector matrix N -- If (the [f x f] identity

matrix). Then, for each priority level from highest to lowest, compute

1. the restricted Jacobian Jr = J1N

2. the compensated residual e, = CLAMP(el, 1) + J1Ax

3. Ax + Ax - J+X~ec and N *N - J+ Jr.

(The time complexity and convergence properties of PDLS are covered with the SOLVE

algorithm in Section 4.8.)
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F.1 Posture Variation

After iteration of the priority loop for any level, N is an aggregate projector onto

the combined nullspace of all higher priority levels. Thus, when the loop terminates

after processing the lowest-priority level, N can be used to project one final tree state

differential vector Ax;z this time onto the nullspace of all priority levels. In some

cases this nullspace will be empty, but if not, the effect is to bias the tree pose of the

linkage in the direction of Axp, which was called a posture variation vector in [11].

F.2 Limits on Tree Joint DoF

A final feature presented in [11] is that the priority loop is wrapped in a surrounding

limiting loop which checks the final computed Ax, after handling all priority levels

and also the posture variation, to verify that when added to the current tree state

x, the resulting new tree state x + Ax keeps all tree joint DoF within limits. Each

DoF that does exceed its limits is pinned. The priority loop is re-executed as long as

newly-pinned DoF are found, each time excluding all pinned DoF from consideration

by changing the initial entry on the diagonal of the nullspace projection matrix N

from 1 to 0 for pinned DoF. The process continues until a priority loop completes

without pinning any DoF, and then the final Ax is adjusted so that x + Ax brings

each pinned DoF to the limit (upper or lower) that was hit.
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Appendix G

Computing the Forward Kinematic

Mapping

In Section 4.8, the current state vector y, for the set of closure joints C, processed

by SOLVE is needed for computing both residuals and Jacobians. The main idea for

computing y, is to (1) update the appropriate tree joint DoF from x, (2) update

all affected composite model transforms up to and including those for the parent and

child mobility frames of all closures in C8, and then (3) use those CMTs to back-

compute the necessary closure joint mobility transforms. Technically only the CMTs

for the mobility frames in the closure joints are required, but the other CMTs along

the support chains are also computed in order to get them.

FK, Algorithm G.3 below, performs this computation for an entire (flattened,

Def. 40) linkage in a depth-first traversal of the spanning tree from the ground link.

This effectively updates the full closure state y for the linkage; since a particular

call to SOLVE may only be for a part of a linkage, I also present an optimized FK,

algorithm which updates only the necessary CMTs for computing the restricted clo-

sure state y. Both algorithms are written in terms of corresponding CMT updates:

UPDATEALLCMTs and UPDATERESTRICTEDCMTS, Algorithms G.2 and G.4, re-

spectively. The resulting cached CMTs are useful not only for computing y but

also for other purposes, including rendering and the Jacobian computation algorithm

given in Section 4.9.2.
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The CMT update algorithms each ensure that the CMTs for a given node are com-

puted only after CMTs are computed for all spanning tree ancestors, which makes

the update for the CMTs within each node a local computation depending only on

the CMTs of frames in directly adjacent nodes. A shared sub-routine, UPDATEN-

ODECMTs (Algorithm G.1), performs this local computation in 0(1), making the

full UPDATEALLCMTS O(JI + IKI) where J is the set of joints and K the set of

links in a linkage. Since C C J, the time complexity of FK is dominated by the call

to UPDATEALLCMTs.

We now move to the restricted versions of these algorithms. UPDATERESTRICT-

EDCMTs has two modes of operation: on the first call after any structure change

it updates a cached ordered set R, of the set of links and joints whose CMTs must

be recomputed in later calls. Since many convergence iterations are often performed

between structure changes, the latter mode is most common, and UPDATERESTRICT-

EDCMTs is O(IRs| + IC, ) in this case, with R, C (K U J). However, when R, needs

to be recomputed the worst-case running time becomes

O(u log u) expected (G.1)

with u = IJ\ CIICI

due to (a) the depth sort, (b) duplicate removal (e.g.) using a hash, and (c) tracing

the full support cycle of each closure joint back to the least common ancestor of its

parent and child links (Def. 17) (assume that the support chains St and ST forming

these cycles are known; they are computed as a side-effect of the ANALYZE algorithm).

This upper time bound is reachable in a pathological case where (1) every closure joint

is attached in parallel between the same pair of links and (2) the only tree joints in

the linkage are on the support chains for these links. Closure joint supports do not

typically overlap in such a massive way, and even when they do, this computation is

only a log factor slower than ANALYZE, which also runs in this context.
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Algorithm G.1: UPDATENODECMTs(i)

Input: link or joint i
Output: updated CMTs for all coordinate frames in i
if i is a link then Xgo.-, X 0 _p3 X,
else if i is a tree joint then Xgo pm - XgopPi, X-- Xcgopm M

else Xgo-pm, Xgop,,i, Xgo-cmt - X 0- C 1 >i is a closure

Algorithm G.2: UPDATEALLCMTs(L)

Input: linkage L
Output: updated CMTs for all links and joints in the flattening of L

foreach link or joint i in a pre-order spanning tree DFS from go do
UPDATENODECMTs(i)

Algorithm G.3: FK(L, C, x)
Input: flattened linkage L with joints J, closure joints C, tree state x

Output: closure state y corresponding to C
foreach unlocked tree joint j do set DoF of j from x
UPDATEALLCMTS(L)
foreach j E C do set corresponding elements of y to M = X-1 cmCXo-pm,

return y

Algorithm G.4: UPDATERESTRICTEDCMTs(L, Cs)

Input: flattened linkage L, any subset of closure joints C,
Output: updated CMTs for all moving links and joints in the support of C,

if first call since any structure change then
let Rs be an ordered set of links and joints, initially empty

foreach j E C, do
foreach joint i E Si, do R Rs U {i, c%}

foreach joint i E ST, do R, - R, U {i, ci}

end
sort Rs in order of increasing tree depth (i.e. topological distance from go)

end
foreach link or joint i in Rs in order do UPDATENODECMTs(i)

foreach j E C, do UPDATENODECMTS(j)
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Algorithm G.5: FK(L, Cs, Ts, x8s)
Input: flattened linkage L; Cs, T, and x as for SOLVE

Output: closure state ys corresponding to Cs
foreach unlocked tree joint j E Ts do set DoF of j from xs

UPDATERESTRICTEDCMTs(L, Cs)
foreach j E C, do set corresponding elements of y, to M 3 = X-1cmXo-pm
return y,

iv , ,
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Appendix H

Computing the Sub-Jacobian Jc,-t

In Section 4.9.2, each [6 x 6] block J,-t of J gives the partial derivatives of the mobility

transform M, = (te, Oc) for a particular closure joint c with respect to the mobility

transform Mt = (tt, Ot) of a particular tree joint t:

at at

oMc - (tc, 6c) 0 [3x3] [3x3] (H.1)
[6x6] aMt a(tt, 0t) A A "

L [3x3] [3x3] J

If t is not in the support of c then JcMt = 0. Otherwise its computation depends

on the topological relationship of c and t, for which there are 8 combinatorial cases

depending on whether (1) t is in the support downchain or the upchain of c (Def. 17);

(2) c is inverted (i.e. 0, = -1); or (3) t is inverted. Fortunately these can be boiled

down to just two, depending on whether the forward sense of the mobility action of t

is parallel or anti-parallel to the forward sense of the action of c. UPDATEJACOBIAN

computes rigid transforms Q and R from the cached CMTs such that

M, = RMtQ when t II c (H.2)

M, = RM-lQ when t c. (H.3)

I.e., Q is the transform from the start frame for Me to the topologically nearest

mobility frame of t, and R is the transform from the other mobility frame of t to the
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destination frame of M,. Figure H-1 illustrates these relationships.

Mc

ti. iR ."

t Fpmj
b " l

k - .,, ...." ,
*k Q

Me~\ * ,, , / ( 3

C \k /

4k R ."
• ' I'

in¢ t ..: /

M' ~Fp pm,/

O\ M-. 'P

h'.

Pm"

Figure H-1: Topological cases for J,-t.
There are 8 possible combinatorial cases depending on whether (1) tree joint t is in
the support upchain (top row) or downchain (bottom row) of closure joint c; (2) c
has inverted mobility-cases (b), (d), (f), (h); (3) t has inverted mobility-cases (c),
(d), (g), (h). Cases (a), (d), (f), and (g) have t I c; the others have t 4 c. In this
figure links are labelled k; the closure joint c is shown at the top of each diagram,
broken down into three sub-transforms (child-to-mobility, mobility Me, and mobility-
to-parent, also see Fig. 3-4); and the tree joint t is similarly broken down. Dashed
arrows represent topological connectivity in the linkage graph. The thinner dotted Q
and R arrows indicate the corresponding transforms.

As explained in Appendix B, transforms in the (t, 0) representation do not com-

pose directly, but can be converted to the unit quaternion representation (t, exp(0)),

composed, and then converted back using the log map:

Mc = RMtQ when t II c

(tc, Oc) = (tr, Or) (tt, Ot)(tq, q)

(tc, exp(0B)) = (tr, exp(Or))(tt, exp(0t))(tq, exp(0q))

(t), 4)= (t, )(tt, S)(t7, q)

tc = tr + ,rtt + (rqt)tq

Oc = log(qc) = log(qrq't q)

applying Eq. 3.15

applying Eq. 3.15
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and similarly for the anti-parallel case

M, = RMt'Q when t 4 c

(tc, c 0j = (tr, r)(tt, qt)-l(tq, 0q)

tc = tr + (r 0 *)(tq - t)

0c = log(q) = log(,9 rq)

applying Eqs. 3.15 and 3.16

applying Eqs. 3.15 and 3.16.

Computing J,t thus reduces to computing partial derivatives of Eqs. H.4-H.7.

These can be collected in a general partitioned matrix form:

atc 1
I t a(t',&) a(t -) O(tt,qt)

oo1 = o(tcQ) T ) o(tt,ot)
aO, [6x7] [7x7] [7x6]

at atc at att at
[O c l oq oq oq oq lJ

a --LT _5-t 50t

3x3 43 4x3 X3 03x3tt q . a
0 qc oqaIt o t J

(H.8)

There are five non-trivial sub-matrices to compute in Eq. H.8. The components of

the [3 x 4] sub-matrix 60c/O4c are the partials of the logarithmic map, given in

Eq. B.17 in Section B.4. Similarly, the components of the [4 x 3] sub-matrix oqt/Ot

are the partials of the exponential map, given in Eq. B.15 in Section B.5. The three

remaining sub-matrices have different formulas depending on the parallelism of c and

t (quantities derived from Q and R are constants with respect to these derivatives):

when t II c
atc

= ROT(q,)
Ott
atc OROT(qt)

= ROT(qr) t

qtq

a = QMM(q,)QMM*(oq)

when t 4 c
= -ROT(q,)ROT(qt*)

Ott

Otc = - a() OT(q (tq-tt)

=-- = QMM(q,)QMM*(qq) [10 -x3]at Jt

QMM and QMM* refer to functions described by Horn in [71] that produce [4 x 4]
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(H.7)

[Je t 6 a(t6, 0) r]at
[6x6] O(tt O)

(H.9)



multiplication matrices from a quaternion, transforming quaternion multiplication

into the multiplication of a matrix and a vector. Appendix C gives their definition

(Eq. C.5).

ROT is a well-known function (e.g. see [2]) that produces the [3 x 3] orthogo-

nal rotation matrix corresponding to a quaternion. ROT and the partial derivatives

dROT(q)/9q and &(ROT(q))-/aq, which are represented as [[3 x 3] x 4] tensors, are

also given in Appendix C.
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Appendix I

The TRA CK Interface Device

As an initial contribution to ATHLETE operations (Sec. 5.3) I designed and fabri-

cated a hardware operator interface device called the Tele-Robotic ATHLETE Con-

troller for Kinematics (TRACK), Figure I-1. TRACK is a sensed but un-actuated

1:8 mechanical scale model of one ATHLETE limb. On-board sensors and electronics

continually read-out the model pose to a laptop or workstation via a standard Univer-

sal Serial Bus (USB) connection. TRACK provides ATHLETE operators a physical

representation of the limb which can be directly manipulated by hand into desired

poses and motions.

Previous input devices used for ATHLETE, including the PHANTOM@ haptic

device, do not mimic the limb structure and allow only for specifying the end-effector

(EE) configuration. In some contexts this does not uniquely identify a pose for the

rest of the leg. For example, in many cases, some rotation about the wheel axis is

permissible, so specifying a full spatial pose for the wheel still allows a continuous

space of leg postures. Even if such rotation is not allowed there is still generally

a discrete set of possible postures that realize a given EE spatial pose. TRACK is

useful in cases where the whole-leg posture must be unambiguously commanded,

for example, to maximize rigidity, available range of motion, or to avoid nearby

obstacles. Also, because TRACK mimics the link lengths and geometry of ATHLETE

as well as the joint angle limits, its kinematic workspace is representative of the actual

ATHLETE limb workspace.
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Two TRACK units were fabricated. One is retained at MIT. The other was deliv-

ered to JPL, incorporated with JPL's Ensemble operations software suite, and used

successfully in over 100 ATHLETE motions in a field test at Moses Lake, Washing-

ton (Figure I-1, upper right) [103]. TRACK has also been integrated with a version

of the mixed real/virtual interface system presented in this thesis, and used in an

experiment combined with virtual articulations (Fig. 5-5) [159].

Master-slave teleoperation is a well-established practice in robotics, so TRACK is

not intended to be a significant new scientific result. Rather it was conceived as, and

has been demonstrated to be, a useful practical tool to aid ATHLETE operations.

1.1 Features and Implementation

TRACK features

* rotary sensors (potentiometers) for each kinematic DoF in the ATHLETE limb,

and an extra rotary sensor for the wheel rotation

* spring-loaded friction bearings to hold joint pose against gravity

* joint mobility, link bounding volumes, and hence reachable workspace similar

to ATHLETE

* tri-color R/G/B LEDs for user feedback at each joint and the wheel

* two momentary-contact tactile pushbuttons for user input at each joint and the

wheel

* USB (1.1 and 2.0 compatible) communications and power

* on-board firmware with calibration storage and ASCII monitor

* host-side Java interface library compatible with GNU/Linux, Mac OS X, and

Windows.
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Figure I-1: Tele-Robotic ATHLETE Controller for Kinematics (TRACK).

TRACK is a sensed but un-actuated table-top scale model of one ATHLETE limb

which I built as an additional aid for human operators of ATHLETE. TRACK can be

directly manipulated a means of specifying a pose or a motion for a selected limb, and

was incorporated with JPL's Ensemble operations software suite and used successfully

in over 100 ATHLETE motions in a field test at Moses Lake, Washington [103]. It

has also been integrated with a version of the mixed real/virtual interface system

presented in this thesis, and used in an experiment combined with virtual articulations

(Fig. 5-5) [159].
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Effort was made in the design of TRACK to match the ATHLETE joint ranges of

motion, link geometry, and overall reachable workspace. For example, the TRACK

knee can tuck into the thigh, as in ATHLETE (Figure I-1 lower right). Still, a

few differences do exist. For example, the TRACK hardware may not be able to

reach every configuration that the actual ATHLETE hardware can reach due to cable

wrapping and to collision with the TRACK support shaft.

TRACK is powered via USB with a maximum current draw of approximately

75mA (the limit for a passive device like TRACK, which does not explicitly negotiate

for more current, is 100mA). A self-resetting fuse is included to protect the host USB

hardware under any unforeseen power conditions.

Communications is also performed over USB (compatible with USB 1.1 and 2.0).

The device will appear as a generic USB serial port when attached to a host, e.g.

/dev/ttyUSBO on GNU/Linux. The firmware communicates at 115.2kbps with 8

data bits, no parity, one stop bit (8N1), and no flow control. Normally a special-

purpose Java host library is used to communicate with the firmware over this port,

though it is also possible to exercise the various firmware functions with a generic

terminal program.

The USB-to-serial chip in TRACK is in the same family as chips commonly used

in USB-to-serial dongles, and may require non-standard drivers on some hosts. The

chip manufacturer provides these drivers if needed. No driver installation should be

required on modern GNU/Linux systems.

I.1.1 Joint Sensing and Mobility

TRACK joint angles are sensed with ALPS RDC506002A potentiometers designed for

low cost miniature robotics applications. They have no hardstops, 320' of electrical

range, and ±2% linearity (and are not mapped or otherwise calibrated for linearity in

TRACK). In the worst case this could mean that the joint angles are reported with

up to about ±60 of error; in practice the actual error appears to be much smaller.

The pot readings are digitized with 10 bits of precision, giving about 0.3' resolution.

The TRACK firmware samples all pots constantly at a configurable rate and then
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applies a moving-window averaging low-pass filter with configurable window size. The

default sample period is 10ms and the default window size is 16, which yields about

a 5Hz cutoff frequency. Jitter of about ±1 count is still to be expected in consecutive

steady-state filtered pot readings (i.e. as reported by the firmware to the host) as

in practice the pot will never physically be exactly at one count. The host polls

the firmware for mechanism state updates and is thus in control of the highest-level

update period; 100ms is a reasonable minimum host-to-firmware polling period as it

will satisfy Nyquist with respect to the firmware 5Hz low-pass filter. Longer host-

to-firmware polling periods are also reasonable since in practice with TRACK highly

dynamic motions will generally be transient anyway.

The firmware also stores, for each pot,

* An additive offset O which gives the raw counts when the corresponding ATH-

LETE joint is at zero rotation. These offsets constitute the zero calibration and

are stored in nonvolatile memory on the hardware.

* A sign bias S = ±1 that gives the correspondence between positive pot counts

and positive rotation of the associated joint. These bias values are intrinsic to

the hardware but are reported by the firmware to allow future design revisions.

Let R be the raw reading for a given pot. Then the corresponding ATHLETE joint

angle is computed as

joint angle' = S(R - 0)(333.30)/(210 - 1)

Methods are provided in the Java host library to perform this computation. The result

is un-ambiguous for physical configurations of the joint that are within the correspond-

ing ATHLETE softstop ranges, since the those ranges are never self-overlapping. In

some cases the TRACK hardware may be physically moved outside the correspond-

ing softstop range; as long as the pot is still within its 3200 electrical range, the joint

angle will be reported with the same sign as the nearest softstop.
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1.1.2 LEDs and Pushbuttons

Each TRACK joint, including the wheel, has a co-located constellation of two push-

buttons and one tri-color LED. The pushbuttons are rectangular with a definite ori-

entation: the longitudinal button at each joint is aligned parallel to the length of the

leg, and the transverse button is perpendicular to it. On/off control is provided for

each color of each LED.

The TRACK firmware and Java host library provide access to the pushbutton and

LED state, but the actual functions of the LEDs and pushbuttons are determined by

higher-level software. For example, in the Ensemble implementation, the red LEDs are

flashed to indicate that a TRACK joint is at a different angle than the corresponding

ATHLETE joint. Pressing any button brings a simulation of ATHLETE into the

same pose as TRACK, and from there the actual hardware can be commanded.
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Appendix J

The Climbing Robot Shady

Shady, introduced in Section 6.6, is a bilaterally-symmetric compliant/proprioceptive

structure climbing robot with two rotating grippers and a central circular deployable

sun-shade (Figures 6-1 and 6-2). This appendix summarizes the research context

of Shady with respect to other climbing robots, and gives additional details of the

robot's design, control, and testing.

J.1 Research Context

Many large terrestrial structures-towers, bridges, construction scaffolds-are sparse

assemblies of rigid bars connected together at structural nodes. This is also true of

many in-space structures such as antennae, solar panel supports, and space-station

members. I use the term truss or framework to refer to this type of structure in

general, and a long-term application of truss climbing robots is automated assembly,

repair, and inspection of trusses: one or more climbing robots could grip the bars and

locomote about the truss, conveying sensors, tools, or construction materials. The

robot could then either carry out the desired task on its own or cooperate with a

human [74, 110].

Truss climbing is a special case of structure climbing, with some particular chal-

lenges. Many previous structure climbing robots, e.g. as in Pack et al [118], and others

referenced therein, are intended to climb on assemblages of 2D planar surfaces. Only
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a few structure climbing robots, such as Nechba et al's "SM2" [110] and Staritz et al's

"Skyworker" [148], are also designed for climbing on truss-like structures where the

members are more nearly 1D links. Pole-climbing robots are also related [134, 6, 4].

The reliability of the climbing action is not quantified in these prior works, nor do any

of them incorporate intentional compliance. Shady is a new mechanism with a unique

compliant/proprioceptive control strategy and experimentally confirmed reliability.

The penalties for uncertainty are potentially higher for truss climbing than for

climbing on planar surfaces. Consider foot placement. On a large 2D surface, foot

placement can be resilient to significant parallel-plane misalignment, usually does not

require strong certainty of the perpendicular distance to the surface (as the foot can

often be extended until it hits the surface), and is similarly tolerant of orientation

uncertainties. However, the comparable task in truss climbing-gripping a thin struc-

tural member starting from a nearby but uncertain spatial pose-can be much more

sensitive: even small translation and orientation misalignments can result in a weak

or missed grip.

J.2 Design

Shady's grippers (Figure J-1) are symmetric 6-bar linkage mechanisms situated in

rotating "barrels". Actuated through central 50:1 worm gears, the grippers open to

over 7cm in about 5s and close on the 2.5cm window bar in about 15s'. Each 6-bar is

actually two coupled 4-bars: 0-1-2-5 and 2-3-4-5 (link 5 is the barrel), and these are

both in singularity when the gripper is closed on a window bar, resulting in very large

mechanical advantage and effectively zero backdriveablity at closure. Silicone rubber

grip pads develop over 46N measured compression force against the window frame

with very high stiction and no measurable slip when closed. When fully opened, the

gripper pads retract behind the bounding plane of the barrel, allowing the barrel to

brush past the window frame without collision.

'Closing takes longer due to the grip refinement algorithm, described later.
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fairing silicone grip pads singular
(embedded) joints 2.5cm

Figure J-1: Operation of the Shady grip mechanism.
Motion sequence (left to right) showing the symmetric 6-bar gripper linkages (actually coupled 4-bar pairs) closing on a window
frame member, actuated by rotation of a central worm gear. Link 5, the barrel, is shown only in the initial step; red crosses in
the second picture indicate the locations of pins fixing links 0, 2, and 4 to the barrel. When closed, the two four bar linkages
which make up the 6 bar are both in singularity (circled joints in-line).



Shady measures 40.4cm between barrel centers (59.4cm end-to-end), a scale se-

lected to match the geometry of the window frame on which Shady climbs. Barrel

rotations are effected at about 100/s by a series-elastic belt drive actuator incorporat-

ing a non-backdriveable worm gear (Figure J-3), leading to a maximum locomotion

speed of

one center-to-center body length 40.4cm cm
-- 1 , (J.1)ungrip time + 1800. 1 s/100 + grip time 5s + 18s + 15s s

which is acceptable in practice for this application-Shady can climb from the bottom

to the top of the window in under seven minutes, and the apparent position of the sun

moves much more slowly2 . Shady extends about 15cm (24cm including shade mech-

anism and belay hook) outwards from the window frame, and weighs 3.50kg. Most

of the mechanical components are made of ABS plastic formed on a rapid-prototype

machine, and the largest of these are hollow to reduce mass. Shady incorporates four

3.7A-H Li-Po batteries sufficient for over 6 hours of continuous un-tethered climbing

on a single charge, five in-house motor control boards which run low-level feedback

control loops, a top-level real-time processor, and a miniature Bluetooth® wireless

modem for communication with a command and control workstation. The barrel

rotation and gripper actuators are based on 6V Maxon A-Max 22 brushed DC mo-

tors with integral 19:1 planetary gearboxes, and the fan is actuated by a small Sanyo

12GN-NA4S DC gearmotor.

J.2.1 Mechanical Compliances

Shady contains three intentional mechanical compliances (springs): a central hinge

with about +6 0 ,-1 maximum travel (Figure J-2) that biases the grippers towards

the window frame, and two actuator torsion mounts composed of antagonistic pairs

of compression springs which enable about ±30 deflection on each barrel rotation

(Figure J-3). Potentiometers proprioceptively measure the compliant motion in the

two barrel rotations, but the hinge motion is not sensed.

2Also, the primary design goal for Shady is reliability, not speed.

258



hinge (at 174deg)

Figure J-2: Shady central hinge.

Shown extended 30 downwards on each side (the maximum travel), the passively

sprung central hinge biases the grippers towards the window frame (shade mechanism

not shown).

The antagonistic pair of springs on the barrel rotation motor, which is otherwise

free to rotate about the same axis as the timing pinion that it drives through a worm

gear, forms a series-elastic actuator [125]: the compression of the springs as measured

by the potentiometer is directly proportional to the actuator's applied torque, and can

be used in a feedback loop to control that torque. Commanding zero torque enables

us to selectively turn the normally non-backdriveable barrel rotation actuator into

a freely backdriveable mechanism (up to the saturation limits of the motor), useful

in handling/configuring the robot, and a critical component of the grip refinement

algorithm. We also utilize this torque control when preloading the mechanism to

avoid sag due to gravity, as described below.

J.3 Control

A major concern is grip failure due to uncertainty, i.e., falling off the framework. For

a planar climber like Shady, this can occur when in-plane pose uncertainty of the

connecting gripper is beyond the in-plane misalignment (Figure J-4, left) tolerance

of the grip mechanism, or alternately it could be due to a cumulative process where

successive grips "walk" the robot normal to the plane of the framework. This walk-

off effect may in some cases be mechanically avoidable by designing the gripper to
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barrel

idlers

+/- 3deg

Figure J-3: Shady rotation actuator.
Series-elastic [125] barrel rotation actuator with torsion-mounted motor. Block di-
agram indicates force/torque transmission among the various elements. Maximum
deflection is about +±3 of barrel rotation.

partially or fully envelop the cross-section of a framework member, for a form-closed

grip. In practice, however, some frameworks effectively present a fully convex cross-

section which prevents an enveloping grasp (Figure J-4), and our laboratory window

is such a case. We have also noted that there can be some cross-talk between these

two mechanisms: when the gripper is not well-centered to start, the rubber grip pads

can catch on the vertex of the window bar which is encountered first, preventing the

gripper from fully sliding down onto the bar (Figure J-4, right).

Algorithm J.1, GRIPREFINEMENT, leverages the barrel rotation compliances to

minimize these effects, and is executed each time a gripper is closed. Figure 6-3

gives key frames from a video of GRIPREFINEMENT running on the hardware. This

algorithm is proprioceptive, as it uses the barrel rotation springs not only to permit
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in-plane misalignment
(within tolerance)

ca
ca

crosstalk:
Ige catches,
uses walk-off normal direction

misalignment
(walk-off)

Figure J-4: Shady gripper tests.
In-plane gripper misalignment, normal direction misalignment (walk-off), and the

crosstalk effect. Convex cross-section formed by window frame and glass, highlighted,
prevents a mechanically enveloping grip.

Algorithm J.1: GRIPREFINEMENT(g)
Input: left or right gripper g
Let o be the other gripper, and measure its barrel's initial torque To
close g completely l>initial sensing grip
command o's barrel to torque To and g's barrel to zero torque
>the low-level motor controllers can servo torque, position, or power

command barrel rotation actuators to hold current positions
re-open g to 50% of the fully open state
re-close g at 20% speed >final grip
command g to rotate at 50% power for 0.5s >validation test
if g actually rotated more than 1.5' then error validation failed
command both barrels to zero torque

deflection but also to measure that deflection and the torque causing it. At the start

of the process, gripper g is currently open and has been commanded to close; the

other gripper is already closed, and is initially supporting the robot. The main idea

is to perform two separate grips. The first one is essentially a sensing operation, and

may be walked-off. The robot then adjusts based on the newly acquired fine position

data and re-grips. A final step at the end is to validate the grip by commanding a

small torque on the barrel of the just-attached gripper-if it were to actually rotate,

it must have closed on thin air.

GRIPREFINEMENT is crucial to reliable operation of the robot-a large proportion

of the hundreds of grips we have observed were initially offset in the normal direction

(i.e. walked-off) by up to about 8mm. In virtually all cases, GRIPREFINEMENT
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reduces this walk-off to less than about 2mm, and usually to Omm.

J.3.1 Avoiding Sag Under Gravity

The plane of our window frame is vertical (as with most windows), so gravity is an

important design consideration. The effect is minimal when in double support (both

grippers attached) but requires special consideration in single support-unless the

robot body is pointing either straight up or straight down, gravity will induce a static

torque on the connected barrel rotation with a magnitude dependent on the angle of

the body. If unaccounted, this torque would cause Shady to sag due to deflection in

the rotation actuator springs. We use the following procedure to preload the springs

and avoid this sag:

* Shady is always "launched" (i.e. initialized) in double support on a vertical bar,

and the most-recent single support torque Ts is initialized to 0.

* Whenever the robot leaves double support (opens a gripper), the barrel b of

the remaining connected gripper is commanded to a preload torque Tp where

Tp = Ts if b was the prior single-support barrel, and Tp = -T, otherwise. Once

the gripper is opened, b is commanded to hold position rather than torque, as

torque will vary if b is commanded to rotate.

* Whenever the robot enters double support (closes a gripper), the actual torque

on the barrel containing the already-closed gripper (i.e. the current single-

support barrel) is measured and saved in T.

This particular method of accounting T, does not require explicit knowledge of any

absolute orientation relative to the gravity vector, and will thus be immune to uncer-

tainty in measurement or estimation thereof. Under this preload method, virtually

all the movements we have observed show no perceptible sag upon gripper opening,

independent of orientation.
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J.3.2 Path Planning

Since Shady must always be supporting itself with at least one gripper, the reachable

shade locations are limited to an offset-band about the window framework. Shady,

and its fan, have been scaled appropriately so that this band covers most of the area

of the window.

We have developed a path-planning algorithm to determine a short locomotion

sequence to any target location in the reachable band. The user interacts with the

planner and can specify a target location for Shady by clicking on the screen.

The algorithm first performs a breadth-first search of reachable gripper locations

on the framework based on the kinematic structure of the robot, the geometry of the

framework, and the robot's starting point. This set of reachable grip points is discrete,

but may be infinite even in finite environments due to "spiral" motion sequences

about structural nodes which can return the robot to its original grip location plus

an arbitrarily small delta. Thus, we put a maximum bound on the search-grip

points close to already-found points are pruned. The final set of discovered grip

points induces a graph on which Dijkstra's algorithm is run, finding the shortest

grip sequence from Shady's current location to the grip point nearest (by Euclidean

distance) the desired shade location. Since the shade location may be anywhere in

the reachable band, the final step is to rotate Shady's body out over the window to

put the shade as close as possible to the requested shade point.

J.4 Experiments and Results

We have performed three types of experiments on the Shady hardware. First, we

tested GRIPREFINEMENT with successively greater in-plane angular and linear off-

sets to determine the maximum tolerable misalignment (Sections J.4.1 and 6.6.2).

Second, we placed Shady on the window frame and commanded a cyclic climbing tra-

jectory which exercised the grip, ungrip, and rotate motion primitives in all possible

orientations (Section J.4.2). Finally we commanded locomotion sequences out-and-

back across the window, similar to that depicted in the lower right of Figure 6-2
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(Section J.4.3).

In total, over 1296 individual grip, ungrip, and rotate motions were executed, with

only two failures (other than the grips which intentionally failed in the first test set),

a reliability rate of over 99.8%. The two faults which did occur were not dangerous:

the robot simply stopped and informed the operator that an unexpected state was

encountered. In both cases the most likely cause was an intermittent fault in one

encoder interface circuit. The command/control software permitted us to investigate

this problem over the RF link to the robot, to remotely re-initialize that encoder

circuit, and then to resume normal operations, all without requiring physical access

to the robot.

J.4.1 Gripper Misalignment Tests

Using the GRIPREFINEMENT algorithm, we conducted three experiments to deter-

mine the maximum misalignments that can be tolerated before a grip fails. In this

context, the connected barrel is gripped on the window frame, and the distal barrel

is initially ungripped. Two experiments involved changing the initial orientation of

the connected resp. distal barrels prior to gripping, and are described in this section.

A third experiment, described in the main text in Section 6.6.2, successively slid the

connected barrel along the supporting framework member.

In the first rotation test, we kept the distal gripper aligned to the robot body and

we rotated the connected barrel in 10 increments, commanding the distal barrel to

grip at each step. The maximum tolerated misalignment in this situation is about

30, which corresponds to about 2.1cm horizontal displacement at the distal barrel:

(40.4cm)(sin 30) 2.1cm, giving a healthy 4.2cm lateral uncertainty tolerance band

for gripping. The range of compliance is related to the maximum opening width of

the gripper, about 7cm, as compared with the 2.5cm window bar: (7cm - 2.5cm)/2 =

2.25cm.

In the second rotation test, we held the connected barrel fixed and incrementally

rotated the distal barrel. Up to 13' misalignment is tolerated here, giving a significant

260 tolerance band.
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These rotation tests were performed with the robot in a vertical configuration; we

expect the performance to be similar for other orientations.

J.4.2 Grip and Rotate Primitive Tests (Cyclic Climbing)

We designed a simple cyclic locomotion sequence which takes the robot one full cycle

around a structural node of the window frame in 48 grip/ungrip/rotate motions,

leaving it where it started. This sequence is designed to test each motion in all of the

orientations that would be encountered on our window frame. We ran it for almost

5 full loops around the node, a total of 984 primitive motions over nearly 5 hours.

The experiment was interrupted by human intervention only twice due to the two

faults described above. No significant normal-direction misalignment (walk-off) was

observed at the end of the run, nor was any significant in-plane shift apparent.

J.4.3 Out-and-Back Locomotion Sequences

As a final test, we commanded the robot to repeatedly climb the window from a

starting position near the bottom to a point near the top, deploy the fan, retract it,

and then to return to the starting position. The overall sequence was similar to that

depicted at the lower right in figure 6-2. We ran this experiment over four full cycles,

a total of 312 grip/ungrip/rotate primitive motions, with no locomotion faults and

no human intervention. Again, there was no significant walk-off after the experiment,

however the robot slipped about 4mm in-plane.
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Appendix K

The Self-Reconfiguring Robot

Multishady

Multishady, introduced in Section 5.4, is a self-reconfiguring robot concept based on

the Shady climbing robot (Section 6.6 and Appendix J). This appendix gives some

additional research context and details for Multishady.

K.1 Background and Motivation

Self-reconfiguring modular robots are systems that are physically connected and ca-

pable of actively making different geometric structures [136, 135, 104]. Most research

in this field has been focused on homogeneous systems in which all the modules

are identical (e.g. [105, 28, 174, 90, 16]). Multishady explores the concept of a bi-

partite self-assembling robot system consisting of passive structural modules plus

active robotic modules. Bi-partite systems are less common in the literature; one

prior work is Unsal, Kiliccote, and Khosla's "I-Cubes" system [156].

The passive modules in Multishady are structural bars which may either be fixed

in the world or free to move individually. The mobile active modules have the same

kinematics as the Shady climbing robot (Figure 6-1), and use their rotating grippers

to pick up or climb on the passive modules, organize and hold them in a desired shape,

or actively move them for self-assembly, self-reconfiguration, or self-repair purposes.
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The passive modules can be passed around by the active modules and coordinated to

form the skeleton of a large class of structure and linkage geometries. For example,

Figure K-1 show a simulation of the self-assembly of a tower, and Figure 5-11 shows

the tower actively deforming.

LLLumIidri II fi ifLI l

Figure K-1: Self-assembly of a tower with Multishady.
Snapshots from a manually-planned simulation showing the construction of a two-
legged walking structure (top row, rightmost) starting from a "packed" configuration
of active and passive modules (top row, leftmost); a walker locomoting on a truss seg-
ment (middle row); and a walker performing concave and convex transitions, walking
up a tower, and reconfiguring into a new structural block of the tower (bottom row).

A long-term application of self-reconfiguring systems like Multishady is in-space

structure construction. The modules will pack tightly in a spacecraft, yet they will

be able to self-assemble, self-reconfigure, self-repair, and adapt their collective mor-

phology to perform a variety of tasks-some known in advance (pre-launch) and

some dynamic (post-launch). And the system can act either as a tool to assem-

ble/repair/service other space structures, or as an active orbiting structure itself.

Other applications include terrestrial construction of increasingly more capable struc-

tures such as dynamic scaffolds and movable towers for construction tasks.

K.2 Practical Considerations

So far, Multishady has mainly been explored in concept and in kinematic simulation.

Though the idea is based on our Shady climbing robot, that hardware is scaled for

climbing on a particular structure, and is likely not appropriate for use directly in a
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system like Multishady. We expect that hardware with the same kinematics could be

designed and built in a way that is applicable to such cooperative applications. For

a system operating under terrestrial gravity, necessary changes include making the

module significantly smaller, increasing its power-to-mass ratio, changing the gripper

design, and possibly designing the system to distribute power through the structure.

Our research group has already begun developing hardware that addresses some of

these issues [42].

The Multishady concept presented in this thesis is a 2D system, but it extends

directly to a 3D version by adding a rotational DoF in the middle of the module [175].

K.3 Research Context

Multishady is related to prior work in not only in self-reconfiguring robots, but also

hyper-redundant robots and variable-geometry trusses.

K.3.1 Self-Reconfiguring Robots

Of all the self-reconfiguring modular robots which have been previously reported,

Multishady is most closely allied with systems based on rotary DOF and mechanical

connection mechanisms, for example: Murata, Kurokawa, et al's "3D Fracta" [106];

Kotay and Rus' "Molecule" [88, 87, 86]; Unsal, Kiliccote, and Khosla's bi-partite

"I-Cubes" [156] system; Duff, Yim, et al's PolyBot [47]; and Lund, Beck, Dalgaard,

Stoy et al's ATRON [96, 149].

A major difference is that in Multishady only some modules contain active DOF-

the rest serve as passive structural elements. In contrast, all of the above referenced

systems are either homogeneous (all modules identical and actuated) or are hetero-

geneous but still require actuation in all modules.
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K.3.2 Hyper-Redundant Robots

Research in the field of hyper-redundant robots has mainly explored non-reconfiguring

systems with high DOF and fixed kinematic topology, typically open chains. Both

planar systems-e.g. Burdick and Chirikjian's "snakey" (which is also a variable

geometry truss, see below) [29, 30]; Greenfield, Rizzi, Choset et al's modular snake

[57]-and full spatial mechanisms, e.g. Suthakorn and Chirikjian's binary-actuation

manipulator [151]; Wolf, Choset, et al's "Schmoopie" [170]-have been explored.

The planar systems typically have one (effective) kinematic DOF per link, and the

spatial systems may have two or more. Sometimes the links are internally parallel

mechanisms, an arrangement which has been called "hybrid serial-parallel" [61, 153,

151].

K.3.3 Variable Geometry Truss and Truss Climbing Robots

Variable geometry trusses (VGTs), can be viewed as a generalization of the serial-

chain hyper-redundant systems to more general kinematic topologies. Both fixed-

topology systems like the NASA/DOE "SERS DM" [169] and manually-reconfigurable

systems-notably Hamlin, Sanderson, et al's TETROBOT [61]--have been consid-

ered. Also related are robotic systems which assemble static trusses, for example,

Everest, Shen, et al's SOLAR [49], and Howe and Gibson's "Trigon" system [72].

Such self-assembling and self-reconfiguring truss systems are a promising direction for

robotic assembly of large structures in space-for example, see Doggett's overview of

automatic structural assembly for NASA [45].
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Appendix L

The Stair-Stepping Robot Steppy

Steppy, introduced in Section 6.7, is an experiment in compliant/proprioceptive stair-

stepping with 18-DoF mini-humanoid (Figure 6-8). This appendix summarizes the

research context of Steppy with respect to other work in humanoid stair-stepping,

and gives additional details of the robot's hardware, software, control, and testing.

L.1 Research Context

Starting with the Honda Asimo [65], stair climbing has been reported in several recent

humanoids, both in simulation and physical experiment [178, 140, 24]. Most of these

systems do not use joint proprioception and are based instead on contact, inertial,

and limb strain sensors (load cells). Reliability and tolerance to uncertainty are not

typically quantified, though Gutmann et all report implementing climbing steps with

apparently significant uncertainty using vision on a mini-humanoid in [59].

Both Zheng and Shen [180] and Chew, Pratt, and Pratt [25, 129] used joint com-

pliance and joint sensing to enable bipeds to navigate terrain of uncertain slope.

Those works both augmented the joint sensing with foot-sole contact sensors, and

considered gentle continuous slopes vs. a discrete step.
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L.1.1 Hardware and Software

Steppy (Figure 6-8) is based on the low-cost (~$1k) Robotis Bioloid system, is about

36cm tall, and weighs about 2.0kg. A few modifications were made to the stock

hardware:

* some components were added and re-arranged to stiffen the hip yaw rotation

* the soles (but not the edges) of the feet were coated with several layers of a spray-

on silicone conformal coating to increase stiction on the climbing platforms

* a Bluetooth@ module was added.

External fans were also added which cool the robot at all times, reducing the max-

imum temperature of the servos by about 300C. Without these fans (and careful

temperature monitoring) several servos reached temperatures above 90 0C and were

destroyed. The servos do not offer much torque or power margin relative to the

loads that can sometimes be imposed during locomotion, which can complicate ex-

periments by limiting the actuatable motions and poses to a subset of even those that

are statically stable.

Steppy can run un-tethered, though the experiments reported below were per-

formed with a power tether since the batteries last under an hour.

I implemented custom firmware for the on-board controller of the Bioloid to ex-

change afferent sensor data and efferent commands for all DoF to/from a remote-brain

workstation in soft real time at about 10Hz. The remote brain software has an in-

teractive GUI for manipulating the robot and for editing motion sequences, and can

also autonomously execute non-linear sequences as described below in Section L.2.

The Bioloid hardware was chosen primarily because, compared to other low-cost

mini humanoids currently available, the servos in the Bioloid system support a much

richer real-time command and control interface. All 18 servos are Robotis model

AX-12, and accept a range of data including position commands, slew rate limits,

and position loop proportional gains over a 1Mbps serial bus. The servos can also

report measurements including present position, speed, temperature, and a "load"
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value, though it is undocumented how this last measurement is derived. The actual

update rates for the various data items are also not specified, though it appears they

are significantly faster than the 10Hz remote brain update rate.

Controlling Compliance

The Robotis documentation implies that the internal servo control loop contains

proportional and derivative, but not integral, terms. I verified this, and calibrated the

proportional gain command value to natural units of static rotational stiffness at the

servo output, in an initial experiment on an isolated servo (Figure L-1). For this test

the servo was loaded with a known mass along a measured lever arm. Various P-gain

values (which Robotis inverts and calls "compliance slope") were then commanded,

and the resulting deflection was measured vs. the commanded servo position. This

experiment also revealed that the compliance slope register value can change the

effective static stiffness of the servo by a factor of about 8.

I manually fit the following approximate model to the data, to predict the com-

pliance as a function of the firmware command:

stiffness = (2 - 0.55(log(command)))3 kgcm (L.1)
degree

This is used in the quasistatic simulation in Section 6.7.2.

L.1.2 Adjustable Step Setup

The experimental setup, shown in Figure 6-8, includes two 45 x 45cm acrylic platforms

supported in cantilever by an aluminum structure, and is rigid enough to only deflect a

few millimeters under the weight of the robot. The foreground platform in the figure

is mounted to a rotary actuator which can change its pitch, and the background

platform is mounted to a series stack of two actuators, one controlling roll and the

other the step height. In the experiments reported here the rotary actuators were

used only to level the platforms, though angle variations may be incorporated in

future stepping experiments. All three actuators are highly rigid (they were designed
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Figure L-1: Testing the compliance of the AX-12 servo.
This plot shows experimentally measured static rotational stiffness at the AX-12 servo
output as a function of the "compliance slope" firmware command, which corresponds
to the inverse of the position loop proportional gain. Also shown is a model (Eq. L. 1)
that was manually fit to the data.

for machine tool axes) and may be operated either manually or by stepper motors.

The complete apparatus can be assembled in a day, costs under $2k, and requires

only off-the-shelf parts and minimal machining.

L.2 Experiments and Results

In general, the Steppy experiment was designed to minimize cost and complexity

while still achieving an interesting level of uncertainty tolerance using proprioception

in humanoid step climbing. Overall, the experimental procedure was:

1. manually design statically stable canonical motion sequences (Section L.2.1) for

climbing 3, 2, and 1cm steps; the prefixes of these sequences are all identical

until first contact with the upper platform

2. design a sensing sequence (Section L.2.2), starting from the pose at the end of
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the common prefix of the canonical sequences, which progressively lowers the

right heel while monitoring the deflection of the right hip pitch servo, whose

position loop proportional gain has temporarily been set to minimum

3. abort the sensing sequence once the step height has been determined closest

to 3, 2, or 1cm, and continue with the suffix of the corresponding canonical

sequence.

The 1, 2, and 3cm levels correspond to roughly 1/4, 1/2, and 3/4 the total 0-35mm

range of step height capability. Without loss of generality absolute step sizes will be

used henceforth.

For Steppy, each pose in a motion sequence is not just a set of actuator goal

position keyframes, but also includes position loop proportional gain commands and

slew rate limits for all actuators. Execution may be non-linear, with sequencing logic

that makes decisions based on proprioceptive joint position sensor data. The specific

sequencing logic for the step task is given as Algorithm L.1, STEPPYSTEP.

Algorithm L.1: STEPPYSTEP
execute the common prefix sequence
> right foot now suspended above upper platform

lower right hip pitch servo p to minimum stiffness
rotate p downwards a by a small fixed increment
l>heel collides with -3cm or -2cm step

proprioceptively measure actual angle 0 at p
if 0 < 03cm-threshold then finish with 3cm suffix sequence
else

rotate p downwards by additional small fixed increment
>heel collides with -2cm or '-cm step

re-measure actual angle 0 at p
if 0 < 0 2cm-threshold then finish with 2cm suffix sequence
else finish with 1cm suffix sequence

end

L.2.1 Canonical Sequences

The three canonical sequences were designed to maintain about twice the stiffness

in the support leg relative to the suspended leg. However, the robot is never truly
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rigid-even at maximum stiffness the joints still deflect. This, combined with the

broad flat feet of the robot and the overall design of the sequences, enables the

canonical sequences to passively accommodate up to about ±10mm of variation in

step height vs. the design height for the sequence. For example, the 2cm sequence,

unmodified and uncorrected, usually succeeds in climbing steps in the range 1-3cm.

Thus, while no individual canonical sequence works for all heights in the 0-3.5cm

range, it suffices to select one of the three.

L.2.2 Sensing Sequence

For the sensing sequence, I first considered trying to lower the right foot in parallel

with the upper platform. This is slightly tricky given the kinematic reachability of

the robot (with the added constraint of static stability), and moreover, it highlights

an interesting challenge: once the robot enters double support with both feet flat

on the ground, it is an overactuated kinematic cycle that is closed through the rigid

ground contact [177]. This is not necessarily a problem-one of the strong points

of the low-impedance proprioceptive approach is that the joints throughout such a

closed chain will deflect according to their compliances and the configuration of the

chain. Through a forward kinematic model, measurements of the deflections can yield

an estimate of the unknown geometry of the chain-closing link, i.e. the step itself.

In this case I opted to instead explore a more minimal strategy. The right leg is

straightened, and the active stiffness of the right hip pitch servo is set to minimum

(making it a factor of 3 lower than the rest of the joints in that leg and a factor of 6

lower than the other leg). That servo is then rotated downwards in two incremental

probing motions, resulting in an eventual collision of the left corner of the right heel

with the upper platform. The corner of the heel establishes a relatively low-friction

plastic-on-plastic sliding contact with the upper platform.

The first downward rotation of the right leg during the sensing sequence is intended

to enable discrimination of a 3cm step, and the second rotation is invoked as needed

to discriminate a 2cm step vs any lower step, for which the 1cm canonical sequence is

invoked. The right hip pitch servo deflection sensor readings were manually analyzed
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for three preliminary trials in each configuration. They repeatably differed by around

10 counts for neighboring configurations, and this discriminating difference was used

to formulate the thresholds in STEPPYSTEP.

L.2.3 Experimental Trials

10 autonomous trials were run for each step height at 5mm increments in the closed

interval 0-3.5cm (the 3cm canonical sequence was known not to perform well above

3.5cm), with the results for all 80 trials shown in table L.2.3. Each trial took about

90s. The robot terminated in stable double support on the upper platform in all

but seven of the 80 trials. The failures can be attributed to at least two causes: the

3cm canonical sequence is not always successful at the 3.5cm height, and the 1cm

canonical sequence is similarly not always successful at the 1.5cm height.

In most trials the detected step height was correct, in that it was a canonical

height closest to the actual height. This was not always the case, however: in 10

trials (marked * in the table) the height was detected at 3cm where it was actually

closer to either 1 or 2cm. This may have been due to an inadvertent perturbation

of the angle of the starting platform during these trials. These sensing errors did

not actually cause overall failure because the 3cm sequence nevertheless succeeded

at climbing these lower heights (it does not work well below 1cm though). For this

initial experiment the only actively handled uncertainty is the step height, so it is not

surprising that variations in other parameters can cause problems.
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Number of Successful/(Failing) Trials
with Detected Height of

3cm 2cm 1cm

O.Ocm 0 0 10

0.5cm 0 0 10

1.0cm 0 0 10

1.5cm 3* 4 0 (3)

2.0cm 7* 3 0

2.5cm 10 0 0

3.0cm 10 0 0

3.5cm 6 (4) 0 0

Table L.1: Steppy step-climbing experimental data.
10 autonomous trials were performed at each step height at 5mm increments in the
range 0-3.5cm (total 80 trials). For each trial the number of successes is listed, along
with the number of failures (falls), if any, in parenthesis. The vertical columns indicate
the step height as detected by the robot during the run; trials where this was not
actually nearest the actual step height are marked *
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