
Learning to Map Sentences to Logical Form

by

Luke S. Zettlemoyer

Submitted to the Department of Electrical Engineering and Computer
Science

in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY
ARCHIVES

September 2009

@Massachusetts Institute of Technology 2009. All rights reserved.
MASSACHUSltS INST/TT

OF TECHNOLOGY

SEP 3 0 2009

Author ... ..... ......... . ...... ............... ......... LIBRARIES

Department of Electrical Egineering and Computer Science
September 1, 2009

Certified by.
Michael Collins

Associate Professor
Thesis Supervisor

Certified by ............... ....
Lesie ack Kaelbling

Professor
Thesis Supervisor

Accepted by .. .. /
Terry P. Orlando

Chairman, Department Committee on Graduate Students





Learning to Map Sentences to Logical Form

by

Luke S. Zettlemoyer

Submitted to the Department of Electrical Engineering and Computer Science
on September 1, 2009, in partial fulfillment of the

requirements for the degree of
Doctor of Philosophy

Abstract

One of the classical goals of research in artificial intelligence is to construct systems
that automatically recover the meaning of natural language text. Machine learning
methods hold significant potential for addressing many of the challenges involved with

these systems. This thesis presents new techniques for learning to map sentences to
logical form - lambda-calculus representations of their meanings.

We first describe an approach to the context-independent learning problem, where
sentences are analyzed in isolation. We describe a learning algorithm that takes as

input a training set of sentences labeled with expressions in the lambda calculus. The

algorithm induces a Combinatory Categorial Grammar (CCG) for the problem, along
with a log-linear model that represents a distribution over syntactic and semantic
analyses conditioned on the input sentence.

Next, we present an extension that addresses challenges that arise when learning
to analyze spontaneous, unedited natural language input, as is commonly seen in
natural language interface applications. A key idea is to introduce non-standard
CCG combinators that relax certain parts of the grammar - for example allowing
flexible word order, or insertion of lexical items - with learned costs. We also present
a new, online algorithm for inducing a weighted CCG.

Finally, we describe how to extend this learning approach to the context-dependent
analysis setting, where the meaning of a sentence can depend on the context in which
it appears. The training examples are sequences of sentences annotated with lambda-
calculus meaning representations. We develop an algorithm that maintains explicit,
lambda-calculus representations of discourse entities and uses a context-dependent
analysis pipeline to recover logical forms. The method uses a hidden-variable variant

of the perception algorithm to learn a linear model used to select the best analysis.
Experiments demonstrate that the learning techniques we develop induce accurate

models for semantic analysis while requiring less data annotate effort than previous

approaches.

Thesis Supervisor: Michael Collins
Title: Associate Professor



Thesis Supervisor: Leslie Pack Kaelbling
Title: Professor



Acknowledgments

I owe thanks to many people.

My advisors, Leslie Kaelbling and Michael Collins, have provided unique perspec-

tives and invaluable input for the work described in this thesis and the many other

fun projects we have worked on together. My additional committee members, Tomas

Lozano-Perez and Fernando Pereira, provided valuable input and criticism.

I have had the pleasure to work with a number of wonderful people, including

the many members of the LIS and NLP research groups. In particular, I would like

to thank my direct collaborators: Regina Barzilay, Branavan, Harr Chen, Ashwin

Deshpande, Michael Haimes, Brian Milch, Hanna Pasula, Krisitan Kersting, and Wei

Lu; as well as my office mates: Meg Aycinena, Jenny Barry, Emma Brunskill, Brooke

Cowan, Sarah Finney, Natalia Hernandez Gardiol, Kaijen Hsiao, Owen Macindoe,

Nick Matsakis, James McLurkin, and Mike Ross.

As an undergraduate, I was first introduced to research by James Lester and

Robert St. Amant, for which I am very grateful.

Most importantly, I want to thank my friends, including the many wonderful

roommates I have had at the Bishop Allen Drive Cooperative; and family, especially

my wife, Paulina.



Contents

1 Introduction

1.1 Problem Scope ............

1.2 Challenges...... .........

1.3 Previous Approaches . . . . . . ...

1.4 Overview of Approach . . . . . . ..

1.4.1 Context-independent Learning

1.4.2 Learning Relaxed Parsers . .

1.4.3 Context-dependent Learning .

1.5 Contributions .............

1.6 Thesis Outline .............

2 Background

2.1 Semantics .........................

2.2 Combinatory Categorial Grammars . ..........

2.3 Structured Classification and Weighted Linear Models.

2.4 The Structured Perceptron Algorithm ..........

3 Related Work

3.1 Combinatory Categorial Grammars . ..........

3.2 Context Independent Analysis ..............

3.3 Context Dependent Analysis ...............

3.4 Computational Models of Language Acquisition . . . .

12

.. . . . 13

... .. . 14

.. . . . 15

.. . . . 17

.. . . . 18

.. . . . 19

.. . . . 21

.. . . . 22

.. ... . 23

37

. . . 37

. . . 38

. . . 40

. . . 41



4 Structured Classification with Probabilistic

4.1 Introduction . . .................

4.2 Background . . .................

4.2.1 Probabilistic CCGs . . . . . . . ...

4.2.2 Parsing and Parameter Estimation

4.3 Learning...... ..............

4.3.1 Lexical Learning . ..........

4.3.2 The Learning Algorithm . . . . . . .

4.4 Experiments ..................

4.5 Summary ....................

5 Learning Relaxed CCGs

5.1 Introduction .................

5.2 Parsing Extensions .............

5.2.1 Application and Composition Rules

5.2.2 Additional Rules of Type-Raising .

5.2.3 Crossed Composition Rules . . . .

5.2.4 An Example . ............

5.3 Model and Features . ............

5.4 An Online Learning Algorithm . . . . . . .

5.5 Experiments .................

5.5.1 Improving Recall . .........

5.5.2 Parameters in the Approach . . . .

5.5.3 Results ................

5.6 Summary ..................

6 Context-dependent Learning

6.1 Introduction .................

6.2 The Learning Problem . . . . . . . . . ..

6.3 Overview of Approach . ..........

6.4 Context-independent Parsing . . . . . . .

Categorial Grammars 42

.. . . . 42

. . . . . . . 44

.. . . . 44

. . . . . . . . . . 46

..... . 47

.. . . . 49

... . . . 50

.. . . . 54

..... . 57

58

.. . . . 58

.. . . . 60

. . . . . . . . . . . . 6 1

. . . . . . . . . . 62

. . . . . . . . 64

.. . . . 64

.. . . . 65

.. . . . 67

.... .. . 69

.. . . . . 69

. . . . . . . . . 70

.. ... . 70

... . . . 72

73

...... . 73

. . . . . . . . . 75

.. . . . 76

.. . . . . 78



6.4.1 Parsing with References

6.5 Contextual Analysis . .

6.5.1 Overview . . . .

6.5.2 Derivations . . .

6.5.3 Context Sets . .

6.6 A Linear Model . . . . .

6.7 Learning .........

6.8 Features .......

6.8.1 Parsing Features

6.8.2 Context Features

6.9 Evaluation . . . . . . ..

6.10 Summary . . . . . . ..

7 Conclusion

7.1 Future Work .

A A CCG Parsing Algorithm

A.1 The Algorithm .........

A.1.1 Pruning .........

A.1.2 Parsing with PCCGs . .

B A Beam Decoding Algorithm for

B.1 Pruning .............

B.2 Deletion .............

C The Domain Independent Lexicon

Bibliography

. . . . . . . . 80

.. . . . 80

. . . . . . . 83

. . . . . . . . 84

.. . . . 86

.. ... . 86

........ ...... . . .... . 8 8

.... .... ... . . . . . . . . . 8 8

..... .... .. . . . . . . . . . 8 8

.......... ..... . . . . . 8 9

...... .... ..... . . . . . 9 1

Context-dependent Analysis

95

96

98

100

101

102

103

104

105

... . . . . . . . . 78



List of Figures

2-1 Examples of sentences with their logical forms. . ............. 25

2-2 Two examples of simple CCG parses. . .................. 28

2-3 A CCG parse built with the application and composition rules..... 30

2-4 A CCG parse with type raising and coordination. . ........... 31

2-5 The structured perceptron algorithm. . .................. 35

4-1 Rules used in GENLEX. We use the term predicate to refer to a func-

tion that returns a truth value; function to refer to all other functions;

and constant to refer to constants of type e. Each row represents a

rule. The first column lists the triggers that identify some sub-structure

within a logical form. The second column lists the category that is cre-

ated. The third column lists categories that are created when the rule

is applied to the logical form at the top of this column. . ....... 51

4-2 The overall learning algorithm. ................... .. 52

4-3 The results for our method, and the previous work of COCKTAIL, when

applied to the two database query domains. P is precision in recovering

entire logical forms, R is recall ................... .... . 55

4-4 Ten learned lexical items that had highest associated parameter values

from a randomly chosen development run in the Geo880 domain. . . . 57

5-1 Three sentences from the ATIS domain .................. 59

5-2 A parse with the flexible parser. ................... .. 66

5-3 An online learning algorithm. ................... ... 68



6-1 ATIS interaction excerpts ................... .... 76

6-2 An online learning algorithm. ................... ... 87

A-1 A CCG parsing algorithm. ................... ..... 97

A-2 Initializing the parse chart. ................... ..... 97

A-3 Procedures for adding edges to the parse chart. . ............ 99

B-1 A beam decoding algorithm for context-dependent analysis....... . 102

C-1 Entries from the domain-independent fixed lexicon. . ........ . 104

10



List of Tables

5.1 Exact-match accuracy on the ATIS test set. . ............... 71

5.2 Partial-credit accuracy on the ATIS test set. . ............. 71

5.3 Exact-match accuracy on the Geo880 test set. . ............. 72

5.4 Exact-match accuracy on the ATIS development set for the full algo-

rithm and restricted versions of it. The second row reports results of

the approach without the features described in section 5.2 that con-

trol the use of the new combinators. The third row presents results

without the combinators from section 5.2.1 that relax word order. The

fourth row reports experiments without the type-raising combinators

presented in section 5.2.2. ................... ... . 72

6.1 Statistics of the ATIS training, development and test (DEC94) sets,

including the total number of interactions and sentences. Each inter-

action is a sequence of sentences. ................... . 89

6.2 Performance on the ATIS DEC94 test set. . ............... 90

6.3 Performance on the ATIS development set for varying context window

lengths M .................. ........ ...... 91



Chapter 1

Introduction

One of the classical goals of research in artificial intelligence is to construct systems

that automatically recover the meaning of natural language text. Modern linguistic

theories for representing and constructing meaning build on the idea of compositional

semantics first developed by Montague (1970b, 1970a, 1973). The meaning of a

sentence is represented as a logical expression, a logical form, that is constructed

from the meanings of the individual words it contains. These logical expressions are

commonly written in the lambda calculus, which provides a unified mechanism for

both representing the meanings of individual words and combining these meanings to

build logical forms for complete sentences.

In this thesis, I develop new techniques for learning to map sentences to logical

form - lambda-calculus representations of their meanings. Given a set of training

examples containing sentences and their corresponding logical forms, the learning

problem is to automatically induce a model that can be used to recover the meaning of

new, previously unseen sentences. I describe an approach that incorporates ideas from

recent linguistic formalisms that follow the Montague-style compositional semantics

tradition (Carpenter, 1997; Steedman, 1996, 2000). I develop learning techniques for

both the context-independent case, where sentences are analyzed in isolation, and the

context-dependent setting, where we analyze sequences of sentences whose meanings

can depend on the context in which they appear.

As an example in the context-dependent setting, consider the following sequence



of sentences annotated with logical forms (LFs). These sentences are typical of an

interaction that might be seen in a natural language interface to a flight information

database.

Sent. 1: Show me flights from Boston to Seattle.

LF 1: Ax.flight(x) A from(x, BOS) A to(x, SEA)

Sent. 2: leaving on Friday.

LF 2: Ax.flight(x) A from(x, BOS) A to(x, SEA) A day(x, FRI)

Sent. 3: Which one is the cheapest?

LF 3: argmin(Ax.flight(x) A from(x, BOS) A to(x, SEA) A day(x, FRI)

Ay.cost(y))

In this sequence, each logical form is a lambda-calculus expression that represents

the meaning of the corresponding sentence. For example, LF 1 specifies a set of entities

that are flights departing from Boston and arriving in Seattle. LF 3 is a quantified

expression that considers a set of entities defined by an embedded lambda-calculus

expression, and returns the one with the lowest cost.

Our goal is to learn a model that can be used to automatically convert each

sentence to the corresponding logical form.

1.1 Problem Scope

A system that robustly maps sentences to logical form would be useful for a wide

range of natural language tasks, such as natural language interfaces to databases

or dialog systems. In these settings, the user provides natural language input, for

example by asking questions or stating preferences. The system must automatically

convert the user's statements into a formal meaning representation that can be used

to further the current interaction.

The algorithms developed in this thesis are evaluated on the problem of natural

language interfaces to databases (NLIDBs) where the user asks a series of questions

that can be answered by listing facts from a database of interest. The sentences above



are a simple example of this type of interaction. However, we develop an approach

that we hope with generalize to broader classes of natural language understanding

problems.

NLIDBs are a natural application domain that has been studied at least since

the early work of Woods (1968). Each sentence has a clearly defined meaning; the

logical form defines a query that can be executed to recover the desired facts from

the database. Additionally, there is considerable previous work on the problem, as

we will discuss in Chapter 3, which provides a baseline for empirically evaluating

performance.

Although the work in this thesis is evaluated by considering NLIDBs, we hope

that the general approach will be applicable for other semantic analysis tasks. The

style of analysis - constructing logical forms with a linguistically plausible grammar

formalism - has been used for a number of different semantic analysis tasks. Early

examples include the blocks world dialog system of Winograd (1970) and the work

on story understanding by Charniak (1972). More recently, there have been efforts to

build general purpose understanding systems that recover logical forms, including the

core language engine (Alshawi, 1992) and a variety of approaches that use grammars

written in logical programming languages such as Prolog (Pereira & Shieber, 1987).

As we will describe in more detail in Section 1.3, one limitation for these more

general semantic analysis systems is the engineering effort required to build gram-

mars for specific applications. Machine learning methods, such as those developed

in this thesis, are primarily motivated by their ability to reduce the need for expen-

sive manual grammar engineering. Although our focus is on learning grammars for

NLIDBs, we expect that the learning techniques should generalize to other grammar

formalisms designed for more general semantic analysis tasks.

1.2 Challenges

Building systems that automatically recover logical forms with high accuracy is a

challenging task. Such systems must represent knowledge about language at multiple



levels and make decisions about how to best combine this information for each input

sentence. There are at least three levels that must be considered:

* Lexical: What are the meanings of the individual words? For example, the

word "flights" indicates that the predicate flight might appear in the logical

form while the word "cheapest" is associated with an argmin construction that

compares the cost value for some set of entities.

* Sentential: How do we combine the meaning of the words to construct a

meaning for a complete sentence? For example, there are many possible ways

of combining the lexical meanings of the words in a complex sentence such

as "Show me flights from Boston and New York to San Francisco or Oakland

that are nonstop." However, the system must select the one interpretation that

matches the desired meaning.

* Contextual: How does the context in which a sentence appears change its

meaning? For example, in a sentence such as "Which one is the cheapest?",

the logical form is partially defined by a contextually appropriate set of entities

that the word "one" references. A complete approach must be able to introduce

contextual dependencies of this type.

There is ambiguity at each level. Words can have multiple meanings, these mean-

ings can be combined in many ways, and there are many possible ways of resolving

references to the context. Selecting the correct analysis is a significant challenge.

1.3 Previous Approaches

Traditional approaches for constructing systems that address all of these challenges

require significant engineering effort. For example, the ATIS participants (e.g., (Sen-

eff, 1992; Ward & Issar, 1994; Levin et al., 2000)) spent many man-years developing

natural language interfaces for a flight reservation database. Other efforts, such as

the core language engine (CLE) (Alshawi, 1992), spent years building broad-coverage



grammars for mapping to logical form, that could then be adapted to specific appli-

cations such as interfaces to databases. In this section, we discuss one representative

ATIS system, the CMU Phoenix understanding module (Ward, 1991), and the CLE.

In both cases, we will see that there is a strong need for developing learning techniques

to ease the engineering effort required to build complete systems.

The CMU Phoenix system maps sentences to frames that represent their meaning.

Each frame represents a possible user request and contains a number of slots that may

be specified. For example, one frame might represent a request for a list of flights and

include slots that specify desired flight properties, such as the origin and destination

cities. Other frames might represent, for example, requests for the cheapest flight,

lists of airlines, or airport information. The analysis problem is to select a frame

and fill its slot values. The Phoenix system uses a set of hand-engineered finite state

machines that perform pattern matching on the input sentence to select phrases that

indicate which frame to select and how to fill its slots. Optionally, slot values can

be copied from frames recovered from previous sentences, according to a set of hand-

specifed rules. This type of approach can work well in practice, but has two main

restrictions. First, specifying all of the state machines and rules required to perform

complete analyses is very labor-intensive. Second, the range of possible logical forms

is restricted by the set of possible frames.

The core language engine (CLE) effort was an attempt to engineer a broad-

coverage grammar that can be used to construct unrestricted logical forms that specify

a relatively complete meaning representation. For example, the logical forms include

representations of tense, aspect, and modals (including knowledge and belief). The

CLE includes a context-free grammar that builds logical forms in parallel with syn-

tactic analysis. Lexical knowledge is encoded in a lexicon that specifies the part of

speech and semantic content of individual words. Meanings are constructed for com-

plete sentences with a deterministic parsing algorithm that uses hand-specified rules

to exclude incorrect syntactic or semantic analyses. Finally, context-dependence is

modeled with explicit referential expressions in the logical form that are replaced

with semantic content from the context according to a hand-engineered set of reso-



lution rules. The CLE models an impressive range of semantic phenomena but can

be difficult to apply to specific domains. The lexicon must be specified, along with

domain-dependent rules for parse selection and context resolution.

The machine learning techniques we develop in this thesis are designed to alle-

viate the knowledge engineering required for these types of systems. The analysis

framework we develop is inspired by the CLE-style approach of including a linguis-

tically plausible grammar that can produce unrestricted logical forms. We learn a

lexicon in a linguistically-motivated grammatical formalism along with probabilistic

models for parsing and context dependence. However, we restricted our attention,

for now, to a formalism that only models the types of semantic phenomena needed

for natural language interfaces to databases (excluding, for example, verb tense and

modals). We expect that the lessons learned for this restricted case will be useful

for designed learning algorithms that induce grammars for more general semantic

analysis problems.

1.4 Overview of Approach

In this thesis, I develop a machine learning approach for the problem of mapping sen-

tences to logical form. The algorithm learns an extension of Combinatory Categorial

Grammar (CCG) (Steedman, 1996, 2000) that includes a model for context-dependent

analysis. The result is a unified approach that:

1. represents lexical semantics for individual words,

2. includes a probabilistic parsing model for analyzing individual sentences, and

3. includes a probabilistic model for reasoning about context dependence.

The rest of this section provides an overview of the primary contributions of this

thesis. We first describe our approach to the context-independent learning problem,

where sentences are analyzed in isolation. Next, we describe an extension that ad-

dresses challenges that arise when analyzing spontaneous, unedited input. Finally,



we describe an extension of the learning approach to the context-dependent setting,

where the meaning of a sentence can depend on the context in which it appears.

1.4.1 Context-independent Learning

We will first consider the problem of context-independent learning. In this case, each

training example is a single sentence paired with a lambda-calculus expression. For

instance, one simple training example might be:

Sentence: Show me flights from Boston to Seattle.

Logical Form: Ax.flight(x) A from(x, BOS) A to(x, SEA)

As before, the lambda-calculus expression is the desired output that represents the

underlying meaning of the input sentence.

The first contribution of this thesis is an algorithm for learning to map sen-

tences to logical form. The algorithm takes as input a set of n training examples

{(wi, Z)li = 1... n}, where each example is a pair (w ,z,) containing a sentence wi

and its corresponding logical form z,. The output is a Probabilistic Combinatory

Categorial Grammar (PCCG) (Clark & Curran, 2003) that can be used to map new

sentences to logical form.

A PCCG is a probabilistic generalization of Combinatory Categorial Grammars

(CCGs) (Steedman, 1996, 2000). The use of PCCGs in our learning framework pro-

vides two key advantages. First, CCGs model a wide range of linguistic phenomena; in

particular, they provide an integrated treatment of semantics and syntax that makes

use of a compositional semantics based on the lambda calculus. Second, PCCGs pro-

vide a mechanism for coping with ambiguity in the underlying CCG. They include a

log-linear model that defines a distribution over possible logical forms for a given sen-

tence. This distribution gives us a principled method for selecting the best (highest

probability) analysis. Chapter 2 includes a more detailed description of PCCGs.

During learning, two parts of the PCCG are induced: a lexicon A and a parameter

vector 0. The lexicon contains a set of lexical items that pair individual words with

CCG categories that define syntactic and semantic information. For example, one



lexical item might pair the word flights with the category N : Ax.flight(x). This

category specifies that the word's syntactic type is N (it is a noun) and that its

meaning is the lambda-calculus expression Ax.flight(x) (which defines a set of entities

that are flights). The parameter vector 0 defines the log-linear distribution p(zlw; 0)

over possible logical forms z for each input sentence w. Together, the lexicon and

parameter vector represent solutions to the lexical and sentential reasoning challenges

described above: the lexicon represents the meanings of individual words and the

parameter vector defines how to best combine these meanings to construct complete

logical forms.

The learning problem as we have formulated it is particularly challenging because

the derivation that maps each sentence to its logical form is not annotated in the

training data. We do not label the lexical entries associated with the individual

words or how they should be combined. Providing this information would be very

labor-intensive; we have deliberately formulated the problem in a way that requires a

relatively minimal level of annotation. This choice represents a major departure from

previous work on learning CCGs and CRFs. We simultaneously solve both a struc-

ture learning problem (inducing the CCG lexicon) and a hidden-variable estimation

problem (learning the parameters 0 without access to full derivations).

1.4.2 Learning Relaxed Parsers

Learning a grammar in a detailed grammatical formalism such as CCG has the ad-

vantage that it allows a system to handle quite complex semantic effects, such as

coordination or scoping phenomena. In particular, it allows us to leverage the consid-

erable body of work on semantics within these formalisms, for example see Carpenter

(1997). However, a grammar based on a formalism such as CCG can be somewhat

rigid, and this can cause problems when a system is faced with spontaneous, unedited

natural language input, as is commonly seen in natural language interface applica-

tions. For instance, consider the following example, which is typical of the type of

sentences seen in the ATIS travel-planning domain (Dahl et al., 1994):



Sentence: Boston to Seattle the latest on Friday

Logical Form: argmin(Ax.flight(x) A from(x, BOS) A to(x, SEA) A day(x, FRI) ,

Ay.time(y))

This sentence exhibits characteristics which present significant challenges to the

previously described approach. For example, it has flexible word order, and includes

telegraphic language where words are omitted.

We present a learning algorithm that retains the advantages of using a detailed

grammar, but is also effective in dealing with phenomena seen in spontaneous natural

language, as exemplified by the ATIS domain. The learning problem is the same as

we described in the last section. The input is a training set of sentences paired with

logical forms. The outputs are a CCG lexicon A and a parameter vector 0. However,

we describe two contribution that are required to solve this learning problem when

the sentences are spontaneous and unedited.

The first contribution is an extended parsing approach that introduces additional

non-standard CCG operators. These operators relax certain parts of the grammar-

for example allowing flexible word order, or insertion of lexical items. This approach

has the advantage that it can be seamlessly integrated into the CCG learning algo-

rithm described above. In particular, we can learn costs for applying each of the new,

relaxed operations, thereby limiting their use only to the cases where they are useful

for constructing the correct logical form.

A second contribution is a new, online algorithm for CCG learning. The approach

involves perceptron training of a model with hidden variables. However it has the

additional twist of also performing grammar induction (lexical learning) in an online

(example-by-example) manner. In our experiments, we show that the new algorithm

is considerably more efficient than the algorithm described in the previous section;

this is important when training on large training sets, for example the ATIS data.



1.4.3 Context-dependent Learning

Finally, we extend our CCG learning approach to the full context-dependent learning

problem. In this case, we must learn to interpret sentences whose underlying meanings

can depend on the context in which they appear. For example, consider the interaction

we saw earlier:

Sent. 1: Show me flights from Boston to Seattle.

LF 1: Ax.flight(x) A from(x, BOS) A to(x, SEA)

Sent. 2: leaving on Friday.

LF 2: Ax.flight(x) A f rom(x, BOS) A to(x, SEA) A day(x, FRI)

Sent. 3: Which one is the cheapest?

LF 3: argmin(Ax.flight(x) A from(x, BOS) A to(x, SEA) A day(x, FRI) ,

Ay.cost(y))

The meanings of the second and third sentences must be determined based on the

context established by earlier sentences. For example, the fact that the flights should

be from Boston and to Seattle is context-dependent.

Our final contribution is an algorithm for learning context-dependent mappings

from sentences to logical form. Here, the learning problem is formulated differ-

ently; when analyzing a sentence, we need to consider the meanings of previous

sentences. The training set {lili = 1...n} contains n interactions. Each interac-

tion I, = ((wi, 1, zi,1),..., (w,n,, zz,n,)) is a sequence of ni sentences paired with logical

forms. For example, the sequence of sentences and logical forms presented above is

one possible interaction. The algorithm learns a parameter vector 0 that defines a

weighted-linear model for the context-dependent analysis problem, as we describe in

the rest of this section.

The context-dependent analysis problem is to construct a logical form that can

depend on the current interaction. For step j of an interaction i, we define the

context to be the sequence (zi,1,... Zij- 1) of logical forms for all of the previous

sentences. The analysis problem is to map the sentence wi,j and its context to the

desired logical form zi,j. We present an approach that uses a two-stage pipeline to



construct context-dependent logical forms. The first stage uses a probabilistic CCG to

construct a context-independent, underspecified meaning representation. The second

stage resolves this underspecified meaning representation by making a sequence of

modifications to it that depend on the logical forms in the current context.

In general, there are a large number of possible context-dependent analyses for

each sentence. To select the best one, we present a weighted linear model that is

used to make a range of parsing and context-resolution decisions. Since the training

data contains only the final logical forms, we model these intermediate decisions as

hidden variables that must be estimated without explicit supervision. Here, again,

we have made a deliberate decision to formulate the problem in a way that minimizes

annotation effort but leads to a more challenging learning problem. We show that

this model can be effectively trained with a hidden-variable variant of the perceptron

algorithm.

1.5 Contributions

This thesis develops learning algorithms for mapping sentences to logical form in both

the context-independent and context-dependent settings. The primary contributions

include:

* An algorithm for context-independent learning that induces a linguistically mo-

tivated grammar, and estimates the parameters of a probabilistic parsing model.

* A relaxation of the CCG formalism for parsing spontaneous, unedited input.

* An online, error-driven learning algorithm that performs lexical induction and

parameter estimation in an iterative, example-by-example manner.

* A context-dependent learning algorithm for constructing logical forms that can

depend on the context established by the meanings of the previous sentences in

the current interaction.



1.6 Thesis Outline

Chapter 2 provides background material, including a review of lambda calculus, CCG,

weighted linear models, and the perceptron leaning algorithm. Chapter 3 describes

related work for mapping sentences to logical form. Chapters 4-6 present algorithms

for the three leaning problems outlined above. Finally, Chapter 7 concludes and

describes possible future work.



Chapter 2

Background

This chapter gives background material underlying our learning approach. We first

describe the lambda-calculus expressions used to represent logical forms. We then

describe combinatory categorial grammar (CCG), and the extension of CCG to prob-

abilistic CCGs (PCCGs) through weighted linear models. Finally, we describe an

approach to parameter estimation with the structured perceptron algorithm.

2.1 Semantics

We represent logical forms with a lambda-calculus formalism similar to the one pre-

sented by Carpenter (1997). The system has three basic types: e, the type of entities;

t, the type of truth values; and r, the type of real numbers. It also allows func-

tional types, for example (e, t), which is the type assigned to functions that map from

entities to truth values.

Figure 2-1 shows three questions about US geography and their associated log-

ical forms. These sentences are from the Geo880 dataset, which we will describe

in Chapter 4. Each logical form is an expression from the lambda calculus. The

lambda-calculus expressions we use are formed from the following items:

* Constants: Constants can either be entities, numbers or functions. For

example, texas is an entity (i.e., it is of type e). The constant state is a function



a) What states border Texas
Ax.state(x) A borders(z, texas)

b) What is the largest state
argmaz(Ax.state(x), Axz.size(x))

c) What states border the state that borders the most states
Ax.state(x) A borders(x, arg max(Ay.state(y),

Ay.count(Az.state(z) A borders(y, z))))

Figure 2-1: Examples of sentences with their logical forms.

that maps entities to truth values, and is of type (e, t). The constant size is a

function that maps entities to real numbers, and is therefore of type (e, r) (in

the geography domain, size(x) returns the land-area of x).

* Logical connectors: The lambda-calculus expressions include conjunction

(A), disjunction (V), negation (-), and implication (--).

* Quantification: The expressions include universal quantification (V) and exis-

tential quantification (3). For example, zx.state(x) A borders(x, texas) is true if

and only if there is at least one state that borders Texas. Expressions involving

V take a similar form.

* Lambda expressions: Lambda expressions represent functions. For example,

Ax.borders(x, texas) is a function from entities to truth values, which is true of

those entities that border Texas.

* Additional quantifiers: The expressions involve the additional quantify-

ing terms count, argmax, and argmin. An example of a count expression

is count(Ax.state(x)), which returns the number of entities for which state(x)

is true. Argmax expressions are of the form argmax(Ax.state(x), Ax.size(x)).

The first argument is a lambda expression denoting some set of entities; the

second argument is a function of type (e, r). In this case the arg max operator

would return the set of items for which state(x) is true, and for which size(x)



takes its maximum value. Argmin expressions are defined analogously.

2.2 Combinatory Categorial Grammars

The parsing formalism underlying our approach is combinatory categorial grammar

(CCG) (Steedman, 1996, 2000). A CCG specifies one or more logical forms-of the

type described in the previous section-for each sentence that can be parsed by the

grammar.

The core of any CCG is a lexicon, A. In a purely syntactic version of CCG, the

entries in A consist of a word (lexical item) paired with a syntactic type. A simple

example of a CCG lexicon is as follows:

Utah := NP

Idaho := NP

borders := (S\NP)/NP

In this lexicon Utah and Idaho have the syntactic type NP, and borders has the

more complex type (S\NP)/NP. A syntactic type can be either one of a number of

primitive categories (in the example, NP or S), or it can be a complex type of the

form A/B or A\B where both A and B can themselves be a primitive or complex

type. We use the primitive categories N, NP, and S, which stand for the linguistic

notions of noun, noun-phrase, and sentence. Note that a single word can have more

than one syntactic type, and hence more than one entry in the lexicon.

In addition to the lexicon, a CCG has a set of combinatory rules, which describe

how adjacent syntactic categories in a string can be recursively combined. The sim-

plest such rules are rules of functional apphcation, defined as follows:

(1) The functional application rules:

a. A/B B = A (>)

b. B A\B - A (<)

Intuitively, a category of the form A/B denotes a string that is of type A but is

missing a string of type B to its right; similarly, A\B denotes a string of type A that



is missing a string of type B to its left.

The first rule says that a string with type A/B can be combined with a right-

adjacent string of type B to form a new string of type A. As one example, in our

lexicon, borders, (which has the type (S\NP)/NP) can be combined with Idaho

(which has the type NP) to form the string borders Idaho with type S\NP. The

second rule is a symmetric rule applying to categories of the form A\B. We can use

this to combine Utah (type NP) with borders Idaho (type S\NP) to form the string

Utah borders Idaho with the type S. We can draw a parse tree (or derivation) of Utah

borders Idaho as follows:

Utah borders Idaho

NP (S\NP)/NP NP

(S\NP)

S

Note that we use the notation -> and -< to denote application of rules 1(a) and

1(b) respectively.

CCGs typically include a semantic type, as well as a syntactic type, for each lexical

entry. For example, our lexicon would be extended as follows:

Utah := NP: utah

Idaho := NP: idaho

borders := (S\NP)/NP : Ax.Ay.borders(y, x)

We use the notation A : f to describe a category with syntactic type A and se-

mantic type f. Thus Utah now has syntactic type NP, and semantic type utah. The

functional application rules are then extended as follows:

(2) The functional application rules (with semantics):

a. A/B : f B: g z A: f(g) (>)

b. B : g A\B : f = A : f(g) (<)

Rule 2(a) now specifies how the semantics of the category A is compositionally

built out of the semantics for A/B and B. Our derivations are then extended to



a) Utah borders Idaho

NP (S\NP)/NP NP
utah Ax.Ay.borders(y, x) idaho

(S\NP)
Ay.borders(y, idaho)

S
borders(utah, idaho)

What states

(S/(S\NP))/N N
Af.Ag.Ax.f(x) A g(x) Ax.state(j

S/(S\NP)
Ag.Ax.state(x) A g(x)

border Texa

(S\NP)/NP NP
:) Ax.Ay.borders(y, x) texa

(S\NP)
Ay.borders(y, texas)

S

s

S

Ax.state(x) A borders(x, texas)

Figure 2-2: Two examples of simple CCG parses.

include a compositional semantics. See Figure 2-2(a) for an example parse. This

parse shows that Utah borders Idaho has the syntactic type S and the semantics

borders(utah, idaho).

A second set of combinators in CCG grammars are the rules of functional compo-

sition:

(3) The functional composition rules (with semantics):

a. A/B: f B/C: g -= A/C: Ax.f(g(x))

b. B\C :g A\B : f 4 A\C: Ax.f(g(x))

(> B)

(< B)

These rules allow for an unrestricted notion of constituency that is useful for modeling

coordination and other linguistic phenomena. As we will see, they also turn out to

be useful when modeling constructions with relaxed word order, as seen frequently in

domains such as ATIS.

In spite of their relative simplicity, CCGs can capture a wide range of syntactic and

semantic phenomena. As one example, see Figure 2-2(b) for a more complex parse.

Note that in this case we have an additional primitive category, N (for nouns), and



the final semantics is a lambda expression denoting the set of entities that are states

and that border Texas. In this case, the lexical item what has a relatively complex

category, which leads to the correct analysis of the underlying string. Additionally,

the parse in Figure 2-3 uses both functional application and functional composition

rules. The backward functional composition rule is used to combine analyses for the

substrings from Dallas and to Washington.1

A CCG grammar also includes type-raising and coordination combinators. The

type-raising rules are instances of the general forms

(4) The type-raising rules (with semantics):

a. A: g 4 T/(T\A) Af.f(g) (> T)

b. A: g T\(T/A) : f f. f(g) (< T)

where T and A are CCG categories. We use a set of instances that were found to

be useful on development sets. Specifically, we restrict T to be NP and let A be S,

S\NP, S/NP, or N\N.

Finally, there is a combinator that models coordination

(5) The coordination rule (with semantics):

A: g CONJ: b A: g > A: A ... b(f ... )(g...) (T)

This rule is a general template that combines any two categories of the same type

to produce a new category with the appropriate conjunction or disjunction b.

These addition rules provide a unified treatment of complex coordination phenom-

ena. For example, Figure 2-4 shows a parse of the phrase states that border Texas

and Idaho that uses type-raising and coordination rules. In this parse, the lexical

categories for the two noun phrases (Texas and Idaho) are type raised and then coor-

dinated to form a single category. That category then takes the lexical category for

the verb borders as an argument and produces the desired meaning. The ability to

build logical forms for phrases of this type is one of the advantages of adopting the

CCG formalism.

1Note that in this example a more conventional parse is also possible, where the two prepositional
phrases each modify flight, and only the functional application rules are used. We have included the
given parse to illustrate the use of functional composition rules.



the latest

NP/N
Af. arg max(f,

Ay.depart_time(y))

one way

N/N
Af.Ax. f(x)

Aoneway(x)

flight

N
Ax.flight(x)

N
Ax.one_way(x) A flight(x)

from

N\N/NP
Ay.Af.Ax.f(x)
Afrom(x, y)

dallas

NP
dallas

N\N
Af.Ax.f(x) A from(x, dallas)

to washington

N\N/NP NP
Ay.Af.Ax. f(x) washington

Ato(x, y)

N\N
Af.Ax.f (x) A to(x, washington)

<B
N\N

Af.Ax.f (x) A f rom(x, dallas) A to(x, washington)

N
Ax.one_way(x) A flight(x) A from(x, dallas) A to(x, washington)

NP
arg max(Ax.one_way(x) A flight(x) A from(x, dallas) A to(x, washington), Ay.depart_time(y))

Figure 2-3: A CCG parse built with the application and composition rules.

<B



states

Ax.state(x)

that

(N\N)/(S\NP)
Af.Ag.Ax.f(x) A g(x)

border

(S\NP)/NP
Ax.Ay.borders(y, x)

Texas

NP
texas

<T
(S\NP)\((S\NP)/NP)

Af. f(texas)

and

CONJ

Idaho

NP
idaho

<T
(S\NP)\((S\NP)/NP)

Af. f (idaho)

(S\NP)\((S\NP)/NP)
Af.f(texas) A f(idaho)

(S\NP)
Ay.borders(y, texas) A borders(y, idaho)

(N\N)
Ag.Axz.borders(x, tezas) A border(x, idaho) A g(x)

Ax.state(x) A borders(x, texas) A border(x, idaho)

Figure 2-4: A CCG parse with type raising and coordination.

D>



In our work, we make use of the application, composition, coordination, and type-

raising rules, as described above. In addition, we allow lexical entries consisting of

strings of length greater than one, for example

the Mississippi := NP : mississippi_river

This leads to a relatively minor change to the formalism, which in practice can be

very useful. For example, it is easier to directly represent the fact that the Mississippi

refers to the Mississippi river with the lexical entry above than it is to try to construct

this meaning compositionally from the meanings of the determiner the and the word

Mississippi, which refers to the state of Mississippi when used without the determiner.

2.3 Structured Classification and Weighted Linear

Models

In this thesis, we cast the CCG learning problem as a type of structured classification

problem. Structured classification tasks involve the prediction of output labels y from

inputs x in cases where the output labels have rich internal structure. Previous work

in this area has focused on problems such as sequence learning, where y is a sequence

of state labels (e.g., see (Lafferty, McCallum, & Pereira, 2001; Taskar, Guestrin, &

Koller, 2003)), or natural language parsing, where y is a context-free parse tree for a

sentence x (e.g., see Taskar et al. (2004)).

Weighted linear models are a simple and effective way to represent structured

classification problems. These models have three main components:

* A generator function GEN(x) that defines the output space for each input x.

Each y E GEN(x) is a potential output.

* A feature function 4(x, y) E Rd that defines an embedding for the input, output

pair (x, y). We will refer to each dimension of O(x, y) as a feature and say that

the complete model has d individual features.

* A parameter vector 0 E Rd that is the same dimension as the feature function.



We will call each entry in this vector a parameter and say that the complete

model has d parameters.

Given a weighted linear model, the prediction problem is to select the best output

for a given input. This optimal output y*(x) is defined to be:

y*(x) = arg max 8O.(x,y),
yEGEN(x)

where we simply select the output y that achieves the highest score according to the

dot product 0. - (x, y). Intuitively, this means that each parameter is associated with

a single feature and the overall score is just the sum of the products of each feature

with its associated parameter.

The second major problem for structured classification is how to set the parameters

0 given a training set of example input, output pairs. We will describe one approach

for this problem in Section 2.4

Weighted Linear CCGs Given the general framework for structured classifica-

tion, we can now describe a weighted linear model for CCG parsing. This model is

similar to several other approaches (Ratnaparkhi et al., 1994; Johnson et al., 1999;

Lafferty et al., 2001; Collins, 2004; Taskar et al., 2004).

The input x is a sentence and the output y is a CCG parse for x. The generator

function GEN(x) returns all possible CCG parses for x. In general, the set of parses

is determined by the CCG lexicon A. We will make this fact explicit by writing

GEN(x; A) whenever we refer to the generator function. The feature function q(x, y)

is now a function of a sentence and a CCG parse tree. In principle, 0 could include

features that are sensitive to arbitrary sub-structures within the pair (x, y). Finally,

0 is a parameter vector.

In general, the number of possible CCG parses in GEN(x; A) that must be con-

sidered when computing the best parse y*(x) is exponential in the sentence length.

This is a standard challenge in parsing. Efficient parsing algorithms exist when we

restrict the form of the features in O(x, y) to only test local aspects of the parse tree.



Examples of local features include ones that count the number of lexical entries of a

particular type, or ones that count the number of applications of a particular CCG

combinator. In our experiments we will use a parsing algorithm that is similar to

a CKY-style parser with dynamic programming. Dynamic programming is used but

each entry in the chart maintains a full semantic expression, preventing a polynomial-

time algorithm; beam search is used to make the approach tractable. Appendix A

provides the complete details of this algorithm.

Training a weighted linear CCG model involves learning the parameters 0 and

potentially also the lexicon A. As we will see, this thesis provides a method for

learning a (0, A) pair from a training set of sentences paired with lambda-calculus

expressions.

2.4 The Structured Perceptron Algorithm

Given a weighted linear model, the parameter estimation problem is to find a param-

eter vector 0 from a training set {(xI, yI) : i = 1... n} containing example inputs x,

and their cooresponding outputs y,. In this section, we review the structured per-

ceptron algorithm (Collins, 2002), which we will extend later in this thesis. This

algorithm provides a simple and effective solution to the parameter estimation prob-

lem for weighted linear models.

Figure 2-5 presents the complete structured perceptron algorithm. Learning is

online and error-driven. The algorithm considers each training example and computes

the best output under the current model. If this output if incorrect, a simple additive

update is applied to the parameters. This update will increase the score associated

with the correct output, which was not selected by the current model, and decrease

the score of the incorrectly selected output. This process continues for T passes over

the training data.2

This algorithm has a number of theoretical guarantees that apply to its conver-

2In practice, T can be a relatively small value that is usually set with experiments on development
data.



Inputs:
* Training examples {(x,, y,): i = 1... n}.
* Number of training iterations, T.

Definitions:
* The function q(x, y) represents the features described in section 2.3.

Initialization:
Set parameters 0 to zero.

Algorithm:

*For t = 1...T,i = 1.. .n:

* Let y' = arg maXyEGEN(x,) 0 (Xz, y) .
* If y' f y, :

* Set 0 = 0 + O(x,, yi) - ¢(x,, y')

Output: Parameters 0.

Figure 2-5: The structured perceptron algorithm.

gence and generalization behavior. These guarantees are based on a notion of linearly

separable data. The training set is linearly separable when there exists a setting of the

parameters 0 that correctly predicts all of the labeled outputs - for all i, y*(x) = y2.

In this case, the algorithm is guaranteed to find parameter settings that separate the

training data. A similar notion of nearly separable data can be defined for cases where

there exists a 0 that makes only a few errors on the training set. See the discussion

by Collins (2002) for the formal details. In practice, even when these conditions do

not hold, the algorithm can perform well.

Weighted CCG Learning In this thesis, we will develop a learning approach that

incorporates many ideas from the structured perceptron algorithm. However, we will

address two new challenges:

Lexical Learning: The structured perceptron algorithm assumes that the

function GEN(x) is fixed and known a priori. However, for a weighted CCG the

function GEN(x; A) that defines the set possible CCG parse trees depends on

the CCG lexicon A. We must simultaneously induce the lexicon A and estimate

the parameters 0.



* Hidden Variables: The structured perceptron algorithm assumes that each

training example is an (x, y) pair. For weighted CCG learning, y would need to

be the entire CCG parse tree. Instead, we will develop an approach in which

each training example is a pair (x, z), where z is a logical form. In general, there

can be many parse trees that produce the same logical form. We will treat the

selection of the correct parse tree as a hidden variable that must be estimated

at training time.

We will develop an algorithm that addresses these challenges while maintaining

the online, error-driven properties of the original approach.



Chapter 3

Related Work

This chapter describes several lines of related research. First, we review work in the

CCG literature. We then describe work that directly addresses the problem of map-

ping sentences to meaning representations, including both the context-independent

and context-dependent cases. Finally, we describe related work that focuses on com-

putational models of child language learning.

3.1 Combinatory Categorial Grammars

We build directly on research from the CCG literature. Steedman (1996, 2000) pro-

vides a comprehensive overview of CCG. Although we use a relatively simple CCG

setup, the formalism has many extensions that could be incorporated into our ap-

proach. For example, Baldridge (2002) describes a multi-modal generalization that

allows more fine-grained lexical control of parsing operations and Bozsahin (1998)

describes extensions for modeling languages with free word order.

The majority of work on machine learning for CCG has focused on the problem of

broad-coverage syntactic parsing. This work requires a training corpus of sentences

paired with CCG parse trees. Hockenmaier and Steedman (2007) describe CCGBank,

a version of the Penn Treebank (Marcus, Marcinkiewicz, & Santorini, 1993) that is

annotated with full CCG syntactic parse trees. This data set has enabled work on

probabilistic models for syntactic parsing with CCG (Hockenmaier & Steedman, 2002;



Clark & Curran, 2007). The model developed by Clark and Curran has the same log-

linear form as the models we use. However, our focus is on learning to recover logical

forms, which they do not consider.

There has also been some work on unsupervised learning of categorial grammars.

Watkinson and Manandhar (1999) describe an approach for learning the syntactic

categories of words given a corpus of sentences. This approach assumes a fixed set of

possible categories and induces a lexicon that can be used to parse all of the training

examples. However, it is evaluated on a relatively small set of simple sentences and

more work would be required to scale the approach larger data sets. Villavicencio

(2001) describes an approach for categorial grammar induction that models child

language learning, which we will describe in Section 3.4.

We know of only one approach (Bos, Clark, Steedman, Curran, & Hockenmaier,

2004) for learning CCG grammars that performs broad-coverage semantic analysis.

Here the learning is fully supervised. The authors assume access to the CCGBank.

They annotate the meaning of a small set of lexical items and demonstrate that the

approach achieves high coverage when building logical forms for new sentences. How-

ever, there are no gold-standard logical form annotations for the evaluation sentences

so there is no way to determine the accuracy of the approach. Scaling our approach

to this type of analysis task is an important area for future work.

3.2 Context Independent Analysis

There has been a significant amount of previous work on learning to map isolated

sentences to their underlying semantic representations. Most of this work can be

divided into two categories, based on the training sets that were used. One line of

work has developed techniques that are applied to data sets developed by Raymond

Mooney and his students (Zelle & Mooney, 1996; Tang & Mooney, 2001), including

the geography and jobs database domains we consider. Another line of work has

looked at sentences from the ATIS travel planning domain (Dahl et al., 1994). There

is relatively little work that has considered both.



Zelle and Mooney (1996) developed one of the earliest examples of a learning sys-

tem for semantic analysis. This work made use of a deterministic shift-reduce parser

and developed a learning algorithm, called CHILL, based on techniques from Induc-

tive Logic Programming, to learn control rules for parsing. The major limitation of

this approach is that it does not learn the lexicon, instead assuming that a lexicon

that pairs words with their semantic content (but not syntax) has been created in

advance. Later, Thompson and Mooney (2002) developed a system that learns a

lexicon for CHILL that performed almost as well as the original system. Tang and

Mooney (2001) developed a statistical shift-reduce parser that significantly outper-

formed these original systems. However, this system, again, does not learn a lexicon.

After this original line of work, a number of different approaches were developed

for the problem.

Wong and Mooney (2006, 2007b) developed an approach that incorporates tech-

niques previously used for statistical machine translation. They used word alignment

techniques to induce a lexicon and synchronous grammars to represent the correspon-

dence between sentences and logical form. One advantage of this model is that it can

be inverted and used for natural language generation (Wong & Mooney, 2007a).

Kate and Mooney (2006, 2007b) describe techniques that incorporate support

vector machine learning. They describe a method for training local classifiers that

are used to make decisions during semantic parsing. One advantage of this approach

is that it is easily generalized to the semi-supervised learning setting by incorporating

ideas from work on transductive SVMs (Joachims, 1999).

Ge and Mooney (2005, 2006, 2009) have developed techniques that incorporate

ideas from the syntactic parsing literature. They describe a joint model of both

Penn-treebank-style syntactic analyses and semantic analyses. In particular, they

show that access to a high-quality syntactic parser is useful for learning to perform

semantic analysis with fewer annotated training examples.

Lu et al. (2008) present an algorithm for learning a joint generative model of sen-

tences and meaning representations. The model generates hybrid trees that contain

both words and meaning representation symbols. The authors develop a learning



algorithm that is a variant of the inside-outside algorithm. They demonstrate empir-

ically that the approach induces hybrid tree distributions with no explicit grammar

that can significantly improve recall.

There has also been work on learning to analyze isolated sentences from the ATIS

data. Some early approaches applied the IBM translation models to the problem of

filling the slots of semantic frames (Papineni, Roukos, & Ward, 1997; Ramaswamy &

Kleindienst, 2000).

More recently, He and Young (2005) describe an algorithm that learns a proba-

bilistic push-down automaton that models hierarchical dependencies but can still be

trained on a data set that does not have full treebank-style annotations. One ad-

vantage of this approach is that it is robust to errors when integrated with a speech

recognition system (He & Young, 2006).

3.3 Context Dependent Analysis

There has been a significant amount of work on hand engineering natural language

interfaces to databases. There were a large number of successful systems developed

for the original ATIS task and other related tasks (e.g., (Carbonell & Hayes, 1983;

Seneff, 1992; Ward & Issar, 1994; Levin et al., 2000; Popescu, Armanasu, Etzioni,

Ko, & Yates, 2004)). Androutsopoulos, Ritchie, and Thanisch (1995) provide a com-

prehensive summary of this work.

Recent work in this area has focused on improved parsing techniques and designing

grammars that can be ported easily to new domains. Popescu et al. (2004) describe an

approach for automatically constructing an analysis system given access only to the

underlying database. The resulting system achieves high accuracy on a well defined

subset of sentence types but does not attempt to analyze more complex sentences.

We are only aware of one system that learns to construct context-dependent in-

terpretations (Miller, Stallard, Bobrow, & Schwartz, 1996). The Miller et al. (1996)

approach is fully supervised and produces a final meaning representation in SQL. It

requires complete annotation of all of the syntactic, semantic, and discourse decisions



required to correctly analyze each training example and uses these annotations to

learn individual decision trees for each possible choice point.

3.4 Computational Models of Language Acquisi-

tion

Our approach learns to recover syntactic knowledge about language given only sen-

tences and representations of their meaning. Given this formulation, it is related to

work on computational models of child language learning.

Siskind (1996) presents an algorithm that learns word-to-meaning mappings from

child-directed sentences that are paired with a set of possible meaning representations.

The central idea is that children observe language that is paired with a set of different

possible meanings and must decide which one provides the correct supervision when

learning the meaning of individual words. Kate and Mooney (2007a) describe an

algorithm for a similar ambiguous learning setup that extends their earlier work on

semantic parsing described above.

Villavicencio (2001) describes an approach for modeling child language learning

with categorial grammars. This approach uses a universal grammar that includes a

relatively small set of parameters that must be set to learn each new language. The

semantic learning setting is, again, one with ambiguous supervision. However, the

approach also learns syntactic properties of the language represented in the sentences,

such as the word order.

Exploring extensions of our CCG learning framework to these types of learning

problems is an important area for future work.



Chapter 4

Structured Classification with

Probabilistic Categorial Grammars

This chapter addresses the problem of mapping natural language sentences to lambda-

calculus encodings of their meaning. We describe a learning algorithm that takes as

input a training set of sentences labeled with expressions in the lambda calculus.

The algorithm induces a grammar for the problem, along with a log-linear model

that represents a distribution over syntactic and semantic analyses conditioned on

the input sentence. When applied to the task of learning natural language interfaces

to databases, the method learns parsers that outperform previous approches in two

benchmark database domains. This chapter is based on work originally described in

(Zettlemoyer & Collins, 2005).

4.1 Introduction

Recently, a number of learning algorithms have been proposed for structured clas-

sification problems. Structured classification tasks involve the prediction of output

labels y from inputs x in cases where the output labels have rich internal structure.

Previous work in this area has focused on problems such as sequence learning, where

y is a sequence of state labels (e.g., see (Lafferty et al., 2001; Collins, 2002; Taskar

et al., 2003)), or natural language parsing, where y is a context-free parse tree for a



sentence x (e.g., see Taskar et al. (2004)).

In this chapter we investigate a new type of structured classification problem,

where the goal is to learn to map natural language sentences to a lambda-calculus

encoding of their semantics. As one example, consider the following sentence paired

with a logical form representing its meaning:

Sentence: what states border texas

Logical Form: Ax.state(x) A borders(x, texas)

The logical form in this case is an expression representing the set of entities that

are states, and that also border Texas. The training data in our approach consists of

a set of sentences paired with logical forms, as in this example.

This is a particularly challenging problem because the derivation from each sen-

tence to its logical form is not annotated in the training data. For example, there

is no direct evidence that the word states in the sentence corresponds to the predi-

cate state in the logical form; in general there is no direct evidence of the syntactic

analysis of the sentence. Annotating entire derivations underlying the mapping from

sentences to their semantics is highly labor-intensive. Rather than relying on full

syntactic annotations, we have deliberately formulated the problem in a way that

requires a relatively minimal level of annotation.

Our algorithm automatically induces a grammar that maps sentences to logical

form, along with a probabilistic model that assigns a distribution over parses under

the grammar. The grammar formalism we use is combinatory categorial grammar

(CCG) (Steedman, 1996, 2000). CCG is a convenient formalism because it has an

elegant treatment of a wide range of linguistic phenomena; in particular, CCG has

an integrated treatment of semantics and syntax that makes use of a compositional

semantics based on the lambda calculus. We use a log-linear model-similar to models

used in conditional random fields (CRFs) (Lafferty et al., 2001)-for the probabilistic

part of the model. Log-linear models have previously been applied to CCGs by Clark

and Curran (2003), but our work represents a major departure from previous work on

CCGs and CRFs, in that structure learning (inducing an underlying discrete structure,



i.e., the grammar or CCG lexicon) forms a substantial part of our approach.

Mapping sentences to logical form is a central problem in designing natural lan-

guage interfaces. We describe experimental results on two database domains: Geo880,

a set of 880 queries to a database of United States geography; and Jobs640, a set of

640 queries to a database of job listings. Tang and Mooney (2001) described previ-

ous work on these data sets. Previous work by Thompson and Mooney (2002) and

Zelle and Mooney (1996) used a subset of the Geo880 corpus. We evaluated the al-

gorithm's accuracy in returning entirely correct logical forms for each test sentence.

Our method achieves over 95% precision on both of these domains, with recall of 79%

on each domain. These are highly competitive results when compared to the previous

work.

4.2 Background

In this section, we describe a probabilistic extension of CCGs. This approach is

closely related to the weighted linear models we saw in Section 2.3, the key distinction

being the that score of each parse is exponentiated and normalized to define a valid

probability distribution over parse trees.

4.2.1 Probabilistic CCGs

We now describe how to generalize CCGs to probabilistic CCGs (PCCGs). A CCG,

as described in Section 2.2, will generate one or more derivations for each sentence w

that can be parsed by the grammar. We will describe a derivation as a pair (z, y),

where z is the final logical form for the sentence and y is the sequence of steps taken

in deriving z. For example, in the following simple derivation:



Utah borders Idaho

NP (S\NP)/NP NP
utah Ax.Ay.borders(y, x) idaho

(S\NP)
Ay.borders(y, idaho)

S
borders(utah, idaho)

the final logical form z is borders(utah, idaho) and the derivation y is the CCG

parse used to construct it. A PCCG defines a conditional distribution P(z, ylw) over

possible (z, y) pairs for a given sentence w.

In general, various sources of ambiguity can lead to a sentence w having more

than one valid (z, y) pair. This is the primary motivation for extending CCGs to

PCCGs: PCCGs deal with ambiguity by ranking alternative parses for a sentence in

order of probability. One source of ambiguity is lexical items having more than one

entry in the lexicon. For example, New York might have entries NP: newyork_city

and NP: new_yorkstate. Another source of ambiguity is where a single logical form

z may be derived by multiple derivations y. This latter form of ambiguity can occur

in CCG, and is often referred to as spurious ambiguity; the term spurious is used

because the different syntactic parses lead to identical semantics.

In defining PCCGs, we make use of a conditional log-linear model that is sim-

ilar to the model form in conditional random fields (CRFs) (Lafferty et al., 2001)

or log-linear models applied to parsing (Ratnaparkhi et al., 1994; Johnson et al.,

1999; Clark & Curran, 2003). We assume a function ¢ mapping (z, y, w) triples

to feature vectors in R d. This function is defined by d individual features, so that

(z, y, w) = ( 1(z, y, w),..., d(z, y, w)). Each feature qj is typically the count of

some sub-structure within (z, y, w). The model is parameterized by a vector 0 E Rd.

The probability of a particular (syntax, semantics) pair is defined as

e¢(z,y,w).O
P(z, y w; 0) = (z,) e 4(zw)O (4.1)

The sum in the denominator is over all valid parses for w under the CCG grammar.



4.2.2 Parsing and Parameter Estimation

We now turn to issues of parsing and parameter estimation. Parsing under a PCCG

involves computing the most probable logical form z for a sentence w,

arg max P(z w; ) = arg max P(z,y yw; )
z

where the arg max is taken over all logical forms z and the hidden syntax y is marginal-

ized out by summing over all parses that produce z. We use dynamic programming

algorithms for this step, which are very similar to CKY-style algorithms for pars-

ing probabilistic context-free grammars (PCFGs). 1 Dynamic programming is feasible

within our approach because the feature-vector definitions q(z, y, w) involve local fea-

tures that keep track of counts of lexical items in the derivation y.2 Appendix A

provides a detailed discussion of the parsing algorithm.

In parameter estimation, we assume that we have n training examples, {(wI, z)

i = 1... n}. Each w, is a sentence in the training set, and zi is the lambda-calculus

expression associated with that sentence. The task is to estimate the parameter

values 0 from these examples. Note that the training set does not include derivations

y, and we therefore view derivations as hidden variables within the approach. The

log-likelihood of the training set is given by:

n

0(0) = logP(z wo;0)

z=1
= -log P(zy ;1), l

1CKY-style algorithms for PCFGs (Manning & Schutze, 1999) are related to the Viterbi algo-
rithm for hidden Markov models, or dynamic programming methods for Markov random fields.

2 We use beam-search during parsing, where low-probability sub-parses are discarded at some
points during parsing, in order to improve efficiency.



Differentiating with respect to 8, yields:

0o(0)
00 )(n ,y ) W )P(wjl, z; O )
i=1 y

-S3(y , )(y wE 63)
i=1 z,y

The two terms in the derivative involve the calculation of expected values of a feature

under the distributions P(y w,, z,; 6) or P(y, z w,; 0). Expectations of this type can

again be calculated using dynamic programming, using a variant of the inside-outside

algorithm (Baker, 1979), which was originally formulated for probabilistic context-free

grammars.

Given this derivative, we can use it directly to maximize the likelihood using

a stochastic gradient ascent algorithm (LeCun, Bottou, Bengio, & Haffner, 1998),3

which takes the following form:

Set 0 to some initial value

for k= 0...N-1

for i= 1...n

0 = 0 + ao logP(z Uw;O)
(l+ct) a0

where t = i + k x n is the total number of previous updates and N is a parameter that

controls the number of passes over the training data. The learning-rate parameters

c o and c ensure convergence by decaying the magnitude of the updates over time.

They are set empirically based on experiments with development data.

4.3 Learning

In the previous section we saw that a probabilistic Combinatory Categorial Gram-

mar (PCCG) is defined by a lexicon A, together with a parameter vector 0. This

3The EM algorithm could also be used, but would require some form of gradient ascent for the
M-step because it cannot be computed in closed form. Because of this, we found it simpler to use
gradient ascent for the entire optimization.



section describes an algorithm that learns a weighted CCG. The algorithm requires

two inputs:

* A training set of n examples, {(w,, zZ) : i = 1 . . . n}, where each training example

is a sentence wi paired with a logical form z,.

* An initial lexicon, A0 , as described in Section 4.4.

The training data includes neither direct evidence about the parse trees mapping

each w, to zi, nor the set of lexical entries which are required for this mapping. We

treat the parse trees as a hidden variable within the model. The set of possible parse

trees for a sentence depends on the lexicon, which is itself learned from the training

examples. Thus, at a high level, learning will involve the following two sub-problems:

* Induction of a lexicon, A, which defines a set of parse trees for each training

sentence w,.

* Estimation of parameter values 0, which define a distribution over parse trees

for any sentence.

The first problem can be thought of as a form of structure learning, and is a major

focus of the current section. The second problem is a more conventional parameter

estimation problem that can be solved with the stochastic gradient ascent algorithm

described in the last section.

The remainder of this section describes an overall strategy for these two problems.

The approach interleaves a structure-building step, GENLEX, with an online param-

eter estimation step, in a way that results in a PCCG with a compact lexicon and

effective parameter estimates for the weights of the log-linear model.

Section 4.3.1 describes the main structural step, GENLEX(w, z), which generates

a set of candidate lexical items that may be useful in deriving a logical form z from

a sentence w. Section 5.4 describes the overall learning algorithm, which prunes the

lexical entries suggested by GENLEX and estimates the parameters of the log-linear

model.



4.3.1 Lexical Learning

This section describes the function GENLEX, which takes a sentence w and a logical

form z and generates a set of lexical items. The goal is to define GENLEX(w, z) in

such a way that the set of lexical items that it generates allows at least one parse of

w that results in z.

As an example, consider the input sentence Utah borders Idaho paired with the

output logical form borders(utah, idaho). We would like to induce a lexicon that can

be used to construct the parse tree:

Utah borders Idaho

NP (S\NP)/NP NP
utah Ax.Ay.borders(y, x) idaho

(S\NP)
Ay.borders(y, idaho)

S
borders(utah, idaho)

which is a standard CCG analysis that produces the desired logical form.

To achieve this goal, we need GENLEX to produce a lexicon that includes the

three lexical items that were used in this parse, namely

Utah := NP: utah

Idaho := NP: idaho

borders := (S\NP)/NP: Ax.Ay.borders(y, x)

where we are modeling the word borders as a transitive verb that takes two arguments

and the words Utah and Texas as noun phrases that can be used to satisfy these

arguments.

As defined in this section, GENLEX will also produce spurious lexical items, such

as borders := NP : idaho and borders utah := (S\NP)/NP : Ax.Ay.borders(y, x).

Later, we will see how these items can be pruned from the lexicon in a later stage of

processing.



To compute GENLEX, we make use of a function, C(z), that maps a logical form

to a set of categories (such as NP: utah, or NP: idaho). GENLEX is then defined

as

GENLEX(w, z) = {x := y Ix E W(w),y E C(z)}

where W(w) is the set of all subsequences of words in w.

The function C(z) is defined through a set of rules that examine z and produce

categories based on its structure. Figure 4-1 shows the rules. Each rule consists of

a trigger that identifies some sub-structure within the logical form z. For each sub-

structure in z that matches the trigger, a category is created and added to C(z). As

one example, the second row in the table defines a rule that identifies all arity-one

predicates p within the logical form as triggers for creating a category N : Ax.p(x).

Given the logical form Ax.major(x) A city(x), which has the arity-one predicates

major and city, this rule would create the categories N : Ax.major(x) and N

Ax.city(x).

Intuitively, each of the rules in Figure 4-1 corresponds to a different linguistic sub-

category such as noun, transitive verb, adjective, and so on. For example, the rule in

the first row generates categories that are noun phrases, and the second rule generates

nouns. The end result is an efficient way to generate a large set of linguistically

plausible categories C(z) that could be used to construct a logical form z.

4.3.2 The Learning Algorithm

Figure 4-2 shows the learning algorithm used within our approach. The output of the

algorithm is a PCCG, defined by a lexicon A and a parameter vector 0. As input, the

algorithm takes a training set of sentences paired with logical forms, together with

an initial lexicon, A0 , which we will describe in Section 4.4.

At all stages, the algorithm maintains a parameter vector 0 which stores a real

value associated with every possible lexical item. The set of possible lexical items is

A* = Ao U U GENLEX(w, z,)
i=1



Rules Example categories produced from the logical form
Input Trigger Output Category arg max(Ax.flight(x) A from(x, boston), Ax.cost(x))

constant c NP : c NP : boston
arity one predicate p N: Ax.p(x) N : Ax.flight(x)
arity one predicate p S\NP : Ax.p(x) S\NP : Ax.flight(x)
arity two predicate P2 (S\NP)/NP : Ax.Ay.p 2(y, ) (S\NP)/NP : Ax.Ay.from(y, x)
arity two predicate P2 (S\NP)/NP : Ax.Ay.p 2 (x, y) (S\NP)/NP : Az.Ay.from(x, y)
arity one predicate pl N/N : Ag.Ax.pi(x) A g(x) N/N : Ag.Ax.flight(x) A g(x)

literal with arity two predicate 2 N/N : Ag.Ax.p 2 (x, c) A g(x) N/N : Ag.Ax.from(x, boston) A g(x)
and constant second argument c

arity two predicate p2 (N\N)/NP : Ay.Ag.Ax.p 2 (z, y) A g(x) (N\N)/NP : Ay.Ag.Ax.from(x, y) A g(x)
an arg max / min with second
an argmax/ rin with second NP/N : Ag. arg max / min(g, Ax.f(x)) NP/N : Ag. arg max(g, Az.cost(x))argument arity one function f

arity one function f S/NP : Ax.f(x) S/NP : Ax.cost(x)
arity one function f (N\N)/NP : Ay.Af.Ax.g(x) A f(x) >/< y (N\N)/NP : Ay.Af.Ax.g(x) A cost(x) > y

no trigger S/NP : Ax.x, S/N : Af.Ax.f(x) S/NP : Ax.x, S/N : Af.Ax.f(x)

Figure 4-1: Rules used in GENLEX. We use the term predicate to refer to a function that returns a truth value; function to
refer to all other functions; and constant to refer to constants of type e. Each row represents a rule. The first column lists the
triggers that identify some sub-structure within a logical form. The second column lists the category that is created. The third
column lists categories that are created when the rule is applied to the logical form at the top of this column.



Inputs:

* Training examples E = {(w,, z,) : i = 1... n} where each wi is a sentence, each z,
is a logical form.

* An initial lexicon A0

Procedures:

* PARSE(w, z, A, 0): takes as input a sentence w, a logical form z, a lexicon A, and
a parameter vector 0. Returns the highest probability parse for w with logical form
z, when w is parsed by a PCCG with lexicon A and parameters 0. If there is more
than one parse with the same highest probability, the entire set of highest probability
parses is returned. Dynamic programming methods are used when implementing
PARSE, see section 4.2.2.

* ESTIMATE(A, E, 0): takes as input a lexicon A, a training set E, and a parame-
ter vector 0. Returns parameter values 0 that are the output of stochastic gradient
descent on the training set E under the grammar defined by A. The input 0 is the ini-
tial setting for the parameters in the stochastic gradient descent algorithm. Dynamic
programming methods are used when implementing ESTIMATE, see section 4.2.2.

* GENLEX(w, z): takes as input a sentence w and a logical form z. Returns a set of
lexical items. See section 4.3.1 for a description of GENLEX.

Initialization: Define 0 to be a real-valued vector of arity IA*I, where A* = A0o U
Ul GENLEX(w,, zi). 0 stores a parameter value for each potential lexical item.
The initial parameters 0O are taken to be 0.1 for any member of A0, and 0.01 for all
other lexical items.

Algorithm:

* For t= 1...T

Step 1: (Lexical generation)

* For i = 1... n:

- Set A = A0 U GENLEX(w,, zi).

- Calculate 7r = PARSE(ws, z, A, ot-1).

- Define A, to be the set of lexical entries in 7.

* Set At = A0 u U~ 1  i

Step 2: (Parameter Estimation)

* Set Ot = ESTIMATE(At, E, 0t - 1)

Output: Lexicon AT together with parameters 0T .

Figure 4-2: The overall learning algorithm.



The goal of the algorithm is to provide a relatively compact lexicon, which is a

small subset of the entire set of possible lexical items. The algorithm achieves this by

alternating between two steps. The goal of step 1 is to search for a relatively small

number of lexical entries, which are nevertheless sufficient to successfully parse all

training examples. Step 2 is then used to re-estimate the parameters of the lexical

items that are selected in step 1.

In the t'th application of step 1, each sentence in turn is parsed with the cur-

rent parameters 0t- 1 and a special, sentence-specific lexicon which is defined as

A0 U GENLEX(w,, zi). This will result in one or more highest-scoring parses that

have the logical form z. 4 Lexical items are extracted from these highest-scoring parses

alone. The result of this stage is to generate a small subset Ai of GENLEX(w,, zi) for

each training example. The output of step 1, at iteration t, is a subset of A*, defined

as At = A0 U U=1 Ai.

Step 2 re-estimates the parameters of the members of At, using stochastic gradient

descent. The starting point for gradient descent when estimating t is 0t - l , i.e., the

parameter values at the previous iteration. For any lexical item that is not a member

of At, the associated parameter in Qt is set to be the same as the corresponding

parameter in 0 t - 1 (i.e., parameter values are simply copied across from the previous

iteration).

The motivation for cycling between steps 1 and 2 is as follows. In step 1, keeping

only those lexical items that occur in the highest scoring parse(s) leading to zi results

in a compact lexicon. This step is also guaranteed to produce a lexicon At C A*

such that the accuracy on the training data when running the PCCG (At, 0t -l ) is

at least as accurate as applying the PCCG (A*, t-1). In other words, pruning the

lexicon in this way cannot hurt parsing performance on training data in comparison

to using all possible lexical entries. To see this, note that restricting the lexicon

in this way cannot exclude any of the highest-scoring parses for wi that lead to

4Note that this set of highest-scoring parses is identical to the set produced by parsing with A*,
rather than the sentence-specific lexicon. This is because A0 U GENLEX(w,, z,) contains all lexical

items that can possibly be used to derive z,.



zZ. In practice, it may exclude some parses that lead to logical forms for w, that

are incorrect. Because the highest-scoring correct parses are still allowed, parsing

performance cannot deteriorate.

Step 2 also has a guarantee, in that the log-likelihood on the training data will

improve (assuming that stochastic gradient descent is successful in improving its

objective). Step 2 is needed because after each application of step 1, the parameters

0t - 1 are optimized for At- 1 rather than At, the current lexicon. Step 2 derives new

parameter values Ot which are optimized for At.

In summary, steps 1 and 2 together form a greedy, iterative method for simulta-

neously finding a compact lexicon and also optimizing the log-likelihood of the model

on the training data.

4.4 Experiments

Data We evaluated the learning algorithm on two domains: Geo880, a set of 880

queries to a database of U.S. geography; and Jobs640, a set of 640 queries to a

database of job listings. The data were originally annotated with Prolog style seman-

tics which we manually converted to equivalent statements in the lambda calculus.

Initial Lexicon The initial lexicon Ao includes lexical items that are derived di-

rectly from the database in the domain; for example, we have a list of entries {Utah :=

NP : utah, Idaho := NP : idaho, Nevada := NP : nevada,.. .} including every U.S.

state in the geography domain.

It also includes lexical items that are domain independent, and easily specified by

hand: for example, the definition for "what" in Figure 2-2(b) would be included, as

it would be useful across many domains. Appendix C provides more details about

the domain-independent lexicon.

Features and Parameter Initialization In these experiments we make use of

lexical features alone. For each lexical entry in the grammar, we have a feature /,

that counts the number of times that the lexical entry is used in y. For example, in



Geo880 Jobs640
P R P R

Our Method 96.25 79.29 97.36 79.29
COCKTAIL 89.92 79.40 93.25 79.84

Figure 4-3: The results for our method, and the previous work of COCKTAIL, when applied
to the two database query domains. P is precision in recovering entire logical forms, R is
recall.

the simple grammar with entries for Utah, Idaho and borders, there would be three

features of this type. While these features are quite simple, we have found them to be

quite successful when applied to the Geo880 and Jobs640 data sets. In later chapters,

we will see examples of more complex features.

The initial parameter values were 0.1 for all lexical items in A0, and 0.01 for all

other lexical items. These values were chosen through experiments on the develop-

ment data; they give a small initial bias towards using lexical items from A0 and favor

parses that include more lexical items.

Comparison We compare the structured classifier results to the COCKTAIL system

(Tang & Mooney, 2001). The COCKTAIL experiments were conducted by performing

ten-fold cross validation of the entire data set. We used a slightly different experi-

mental set-up, where we made an explicit split between training and test data sets.5

The Geo880 data set was divided into 600 training examples and 280 test examples;

the Jobs640 set was divided into 500 training and 140 test examples. The parameters

of the training algorithm were tuned by cross-validation on the training set. We did

two passes of the overall learning loop in Figure 4-2. Each time we used gradient

descent to estimate parameters, we performed three passes over the training set with

the learning-rate parameters a0o = 0.1 and c = 0.001.

We give precision and recall for the different algorithms, defined as

5This allowed us to use cross-validation experiments on the training set to optimize parameters,
and more importantly to develop our algorithms while ensuring that we had not implicitly tuned
our approach to the final test set.



Precision = # correct
total # parsed

Recall # correctRecall =
total # examples

where sentences are correct if the parser gives a completely correct semantics.

Results Figure 4.4 shows the results of the experiments. Our approach has higher

precision than COCKTAIL on both domains, with a very small reduction in recall.

When evaluating these results, it is important to realize that COCKTAIL is provided

with a fairly extensive lexicon that pairs words with semantic predicates. For example,

the word borders would be paired with the predicate borders(x, y). This prior infor-

mation goes substantially beyond the initial lexicon used in our own experiments.6

To better understand these results, we examined performance of our method

through cross-validation on the training set. We found that the approach creates

a compact lexicon for the training examples that it parses. On the Geo880 domain,

the initial number of lexical items created by GENLEX was on average 393.8 per

training example. After pruning, on average only 5.1 lexical items per training ex-

ample remained. The Jobs640 domain showed a reduction from an average of 697.1

lexical items per training example, to 6.6 items.

To investigate the disparity between precision and recall, we examined the behav-

ior of the algorithm when trained in the cross-validation (development) regime. We

found that on average, the learner failed to parse 9.3% of the training examples in the

Geo880 domain, and 8.7% of training examples in the Jobs640 domain. (Note that

sentences which cannot be parsed in step 1 of the training algorithm are excluded

from the training set during step 2.) These parse failures were caused by sentences

whose semantics could not be built from the lexical items that GENLEX created.

For example, the learner failed to parse complex sentences such as Through which

6 Note that the work of Thompson and Mooney (2002) does describe a method which automati-
cally learns a lexicon. However, results for this approach were worse than results for CHILL (Zelle
& Mooney, 1996), which in turn were considerably worse than results for COCKTAIL on the Geo250
domain, a subset of the examples in Geo880.



states := N Ax.state(x)
major := N/N: Af.Ax.major(x) A f(x)
population := N: A.population(x)
cities := N : A.city(x)
rivers := N: Ax.river(x)
run through := (S\NP)/NP : Ax.Ay.traverse(y, z)
the largest := NP/N : Af. argmax(f, Ax.size(x))
river := N: x.river(x)
the highest := NP/N: Af. arg max(f, Ax.elev(x))
the longest := NP/N : Af. argmax(f, Ax.len(x))

Figure 4-4: Ten learned lexical items that had highest associated parameter values
from a randomly chosen development run in the Geo880 domain.

states does the Mississippi run because GENLEX does not create lexical entries that

allow the verb run to find its argument, the preposition through, when it has moved

to the front of the sentence. This problem is almost certainly a major cause of the

lower recall on test examples. Exploring the addition of more rules to GENLEX is

an important area for future work.

Figure 4-4 gives a sample of lexical entries that are learned by the approach. These

entries are linguistically plausible and should generalize well to unseen data.

4.5 Summary

This chapter presented a learning algorithm that creates accurate structured classifiers

for natural language interfaces. We described a procedure, GENLEX, for creating a

large set of linguistically-plausible CCG lexical items. We then developed a learning

algorithm for probabilistic CCGs that prunes this lexicon while estimating parameters

of the log-linear parsing model. Finally, we demonstrated experimentally that this

approach is competitive with previous learning methods.



Chapter 5

Learning Relaxed CCGs

In this chapter, we reconsider the problem of learning to map sentences to lambda-

calculus representations of their underlying semantics. We focus on the challenges

that come with learning to analyze spontaneous, unedited natural language input,

as is commonly seen in natural language interface applications. A key idea is to

introduce non-standard CCG combinators that relax certain parts of the grammar

for example allowing flexible word order, or insertion of lexical items - with

learned costs. We also present a new algorithm for inducing a weighted CCG. This

approach uses the GENLEX procedure from the last chapter to induce a lexicon

and perceptron-style additive updates to estimate the parameters. The result is

an online, error-driven algorithm that considers each training example in turn and

makes changes to the model only when the current analysis is incorrect. Experimental

results for the approach on ATIS data show 86% F-measure in recovering fully correct

semantic analyses and 95.9% F-measure by a partial-match criterion, a more than 5%

improvement over the 90.3% partial-match figure reported by He and Young (2006).

This chapter is based on work originally described in (Zettlemoyer & Collins, 2007).

5.1 Introduction

This chapter describes an extension to the learning approach from Chapter 4, where

we saw how to induce a probabilistic Combinatorial Categorial Grammar (CCG) for



a) on may four atlanta to denver delta flight 257
Ax.month(x, may) A day_number(x, fourth) A from(x, atlanta) A to(x, denver) A

airline(x, delta_air _lines) A flight(x) A flight_number(x, 257)

b) show me information on american airlines from fort worth texas to philadelphia
Ax.airline(x, american_airlines) A from(x, fortworth) A to(x, philadelphia)

c) okay that one's great too now we're going to go on april twenty second dallas to
washington the latest nighttime departure one way
argmax(Ax.flight(x) A from(x, dallas) A to(x, washington) A month(x, april)A

day_number(x, 22) A during(x, night) A one_way(x), Ay.depart_time(y))

Figure 5-1: Three sentences from the ATIS domain.

mapping sentences to logical form. The use of a detailed grammatical formalism such

as CCG has the advantage that it allows a system to handle quite complex semantic

effects, such as coordination and scoping phenomena. In particular, it allows us

to leverage the considerable body of work on semantics within these formalisms, for

example see Carpenter (Carpenter, 1997). However, a grammar based on a formalism

such as CCG can be somewhat rigid, and this can cause problems when a system is

faced with spontaneous, unedited natural language input, as is commonly seen in

natural language interface applications. For example, consider the sentences shown

in Figure 5-1, which were taken from the ATIS travel-planning domain (Dahl et al.,

1994). These sentences exhibit characteristics which present significant challenges to

the previously described approach. For example, they have quite flexible word order,

and include telegraphic language where some words are effectively omitted.

We describe a learning algorithm that retains the advantages of using a detailed

grammar, but is highly effective in dealing with phenomena seen in spontaneous

natural language, as exemplified by the ATIS domain. A key idea is to extend the

approach by allowing additional non-standard CCG combinators. These combinators

relax certain parts of the grammar-for example allowing flexible word order, or

insertion of lexical items-with learned costs for the new operations. This approach

has the advantage that it can be seamlessly integrated into CCG learning algorithm

introduced in the previous chapter.

A second contribution of the work is a new, online algorithm for CCG learning.



The approach involves perceptron training of a model with hidden variables. In this

sense it is related to the algorithm of Liang et al. (2006). However it has the ad-

ditional twist of also performing grammar induction (lexical learning) in an online

(example-by-example) manner. In our experiments, we show that the new algorithm

is considerably more efficient than the algorithm described in Chapter 4; this is im-

portant when training on large training sets, such as the ATIS data used in this

chapter.

Results for the approach on ATIS data show 86% F-measure accuracy in recovering

fully correct semantic analyses, and 95.9% F-measure by a partial-match criterion

described by He and Young (2006). The latter figure contrasts with a figure of 90.3%

for the approach reported by He and Young (2006).1 Results on the Geo880 domain

also show an improvement in accuracy, with 88.9% F-measure for the new approach,

compared to 87.0% F-measure for the method described in Chapter 4.

In this chapter, we first describe the new parsing rules that relax the CCG gram-

mar. We then describe the online learning algorithm that incorporates these rules.

Finally, we present the evaluation.

5.2 Parsing Extensions

This section describes a set of CCG combinators which we add to the conventional

CCG combinators described in Section 2.2. These additional combinators are natural

extensions of the forward application, forward composition, and type-raising rules

seen in CCG. We first describe a set of combinators that allow the parser to signifi-

cantly relax constraints on word order. We then describe a set of type-raising rules

which allow the parser to cope with telegraphic input (in particular, missing function

words). In both cases these additional rules lead to significantly more parses for any

sentence x given a lexicon A. Many of these parses will be suspect from a linguistic

perspective; broadening the set of CCG combinators in this way might be consid-

ered a dangerous move. However, the learning algorithm in our approach can learn

1He and Young (2006) do not give results for recovering fully correct parses.



weights for the new rules, effectively allowing the model to learn to use them only in

appropriate contexts; in the experiments we show that the rules are highly effective

additions when used within a weighted CCG.

5.2.1 Application and Composition Rules

The first new combinators we consider are the relaxed functional application rules:

A\B : f B : g => A : f(g) (>)

B : g A/B : f A : f(g) ()

These are variants of the original application rules, where the slash direction on

the principal categories (A/B or A\B) is reversed.2 These rules allow simple reversing

of regular word order, for example

flights one way

N N/N
Ax.flight(x) Af.Ax.f(x) A one_way(x)

N
Ax.flight(x) A oneway(x)

Note that we can recover the correct analysis for this fragment, with the same lexical

entries as those used for the conventional word order, one-way flights.

A second set of new combinators are the relaxed functional composition rules:

A\B: f B/C: g 4 A/C: A .f(g(x)) (> B)

B\C : g A/B: f = A\C : Ax.f(g(x)) (< B)

These rules are variantions of the standard functional composition rules, where the

slashes of the principal categories are reversed.

2Rules of this type are non-standard in the sense that they violate Steedman's Principle of
Consistency (2000); this principle states that rules must be consistent with the slash direction of
the principal category. Steedman (2000) only considers rules that do not violate this principle-for
example, crossed composition rules, which we consider later, and which Steedman also considers, do
not violate this principle.



An important point is that that these new composition and application rules can

deal with quite flexible word orders. For example, take the fragment to washington

the latest flight. In this case the parse is

to washington the latest flight

N\N NP/N N
Af.Ax.f(x)A Af. arg max(f, Ax.flight(x)

to(x, washington) Ay.depart_time(y))
<B

NP\N
Af. arg max(Ax.f(x)A

to(x, washington), Ay.depart_time(y))

NP
arg max(Ax.flight(x) A to(x, washington),

Ay.depart_time(y))

Note that in this case the substring the latest has category NP/N, and this prevents

a naive parse where the latest first combines with flight, and to washington then

combines with the latest flight. The functional composition rules effectively allow the

latest to take scope over flight and to washington, in spite of the fact that the latest

appears between the two other sub-strings. Examples like this are quite frequent in

domains such as ATIS.

We add features in the model which track the occurrences of each of these four

new combinators. Specifically, we have four new features in the definition of 0; each

feature tracks the number of times one of the combinators is used in a CCG parse.

The model learns parameter values for each of these features, allowing it to learn to

penalise these rules to the correct extent.

5.2.2 Additional Rules of Type-Raising

We now describe new CCG operations designed to deal with cases where words are

in some sense missing in the input. For example, in the string flights Boston to New

York, one style of analysis would assume that the preposition from had been deleted

from the position before Boston.

The first set of rules is generated from the following role-hypothesising type shift-



ing rules template:

NP: c == N\N: Af.Ax.f(x) A p(x, c) (TR)

This rule can be applied to any NP with semantics c, and any arity-two function

p such that the second argument of p has the same type as c. By "any" arity-two

function, we mean any of the arity-two functions seen in training data. We define

features within the feature-vector b that are sensitive to the number of times these

rules are applied in a parse; a separate feature is defined for each value of p.

In practice, in our experiments most rules of this form have p as the semantics

of some preposition, for example from or to. A typical example of a use of this rule

would be the following:

flights boston to new york

N NP N\N
Ax. flight(x) bos Af.Ax.f (x)

Ato(x, new_york)
TR

N\N
Af.Ax.f(x) A f rom(x, bos)

N
Af.Ax.flight(x) A from(x, bos)

N
Ax.flight(x) A to(x, newyork) A from(x, bos)

The second rule we consider is the null-head type shifting rule:

N\N: f => N: f(Ax.true) (TN)

This rule allows parses of fragments such as American Airlines from New York, where

there is again a word that is in some sense missing (it is straightforward to derive a

parse for American Airlines flights from New York). The analysis would be as follows:



American Airlines from New York

N/N N\N
Af.Ax.f(x) A airline(x, aa) Af.Ax.f(x) A from(x, new_york)

TN
N

Ax.f rom(x, new_york)

N
Ax.airline(x, aa) A f rom(x, new_york)

The new rule effectively allows the prepositional phrase from New York to type-shift

to an entry with syntactic type N and semantics Ax.from(x, newyork), representing

the set of all things from New York.3

We introduce a single additional feature that counts the number of times this rule

is used.

5.2.3 Crossed Composition Rules

Finally, we include crossed functional composition rules:

A/B : f B\C: g = A\C: Ax.f(g(x)) (>B)

B/C : g A\B: f - A/C: Ax.f(g(x)) (<Bx)

These rules are standard CCG operators but they were not used by the parser de-

scribed in Chapter 4. When used in unrestricted contexts, they can significantly relax

word order. Again, we address this problem by introducing features that count the

number of times they are used in a parse. 4

5.2.4 An Example

As a final point, to see how these rules can interact in practice, see figure 5-2. This

example demonstrates the use of the relaxed application and composition rules, as

3Note that we do not analyze this prepositional phrase as having the semantics Ax.flight(x) A
from(x, new york)--although in principle this is possible-as the flight(x) predicate is not neces-
sarily implied by this utterance.

4In general, applications of the crossed composition rules can be lexically governed, as described
in work on Multi-Modal CCG (Baldridge, 2002). In the future we would like to incorporate more
fine-grained lexical distinctions of this type.



well as the new type-raising rules.

5.3 Model and Features

To select the best analysis for each input sentence, we use a weighted CCG, as defined

in Section 2.3. The models has three components:

* A parameter vector 0 C Rd.

* A CCG lexicon A.

* A feature function O(w, z) that maps a sentence w together with a CCG parse

z to a feature vector.

In the next section, we present an algorithm for learning the parameter vector

and lexicon. In this section we define the feature function O(w, z).

As described in section 5.2, we introduce features for the new CCG combinators.

This includes features that track the number of times each of the four flexible ap-

plication and composition rules are used in parse; a feature that tracks the number

of times the null-head type shifting rule is used; and finally features that track the

number of times the role-hypothesizing type shifting rule is used with each possible

value for p. In addition, we include features that track the number of times each

lexical item in A is used, as defined in Section 4.4. For example, we would have one

feature tracking the number of times the lexical entry flights := N : Ax.flight(x) is

used in a parse, and similar features for all other members of A.

Finally, we introduce new features that directly consider the semantics of a parse.

For each predicate f seen in training data, we introduce a feature that counts the

number of times f is conjoined with itself at some level in the logical form. For

example, the expression Ax.flight(x) A from(x, new_york) A from(x, boston) would

trigger the new feature for the from predicate signaling that the logical-form describes

flights with more than one origin city. We introduce similar features that track

disjunction as opposed to conjunction.



dallas to washington the latest on friday

NP (N\N)/NP NP NP/N (N\N)/NP NP
dallas Ay.Af.Ax.f(x) washington Af. arg max(f, Ay.Af.Ax.f(x) friday

Ato(x, y) Ay.depart_time(y)) Aday(x, y)
TR >

N\N N\N N\N
Af.Ax.f(x) A from(x, dallas) Af.Ax.f(x) A to(x, washington) Af.Ax.f(x) A day(x, friday)

<B TN
N\N N

Af.Ax.f(x) A from(x, dallas) A to(x, washington) Ax.day(x, friday)

NP\N
Af. arg max(Az.f(x) A from(x, dallas) A to(x, washington), Ay.depart_time(y))

NP
arg max(Ax.day(x, friday) A from(x, dallas) A to(x, washington), Ay.depart_time(y))

Figure 5-2: A parse with the flexible parser.



5.4 An Online Learning Algorithm

Figure 5-3 shows a learning algorithm that takes a training set of (xi, z,) pairs as

input, and returns a weighted CCG (i.e., a pair (0, A)) as its output. The algorithm

is online, in that it visits each example in turn, and updates both 0 and A if necessary.

It repeatedly iterates through the whole training set, performing a three step process

for each example. In Step 1, the input x, is parsed. If it is parsed correctly, the algo-

rithm immediately moves to the next example. In Step 2, the algorithm temporarily

introduces all lexical entries seen in GENLEX(x,, zi), and finds the highest scoring

parse that leads to the correct semantics z,. A small subset of GENLEX(xi, z,)-

namely, only those lexical entries that are contained in the highest scoring parse-are

added to A. In Step 3, a simple perceptron update (Collins, 2002) is performed. The

hypothesis is parsed again with the new lexicon, and an update to the parameters 8

is made if the resulting parse does not have the correct logical form.

This algorithm differs from the approach describe in Chapter 4 (ZC05) in two

important respects. First, the ZC05 algorithm performed learning of the lexicon A

at each iteration in a batch method, requiring a pass over the entire training set.

The new algorithm is fully online, learning both A and 0 in an example-by-example

fashion. This has important consequences for the efficiency of the algorithm. Second,

the parameter estimation method in ZC05 was based on stochastic gradient descent

on a log-likelihood objective function. The new algorithm makes use of perceptron

updates, which are simpler and cheaper to compute.

This algorithm assumes the same initial lexicon A0 that we saw in Chapter 4.

There are two types of entries. First, we compile entries such as Boston := NP :

boston for entities such as cities, times and month-names that occur in the domain or

underlying database. In practice it is easy to compile a list of these atomic entities.

Second, the lexicon has entries for some function words such as wh-words, and deter-

miners. These entries are likely to be domain independent, so it is simple enough to

compile a list that can be reused in new domains.



Inputs:
* Training examples {(w, z,) : i = 1... n} where each wi is a sentence, each z, is a
logical form.
* An initial lexicon A0o.
* Number of training iterations, T.

Definitions:
* GENLEX(w, z) takes as input a sentence w and a logical form z and returns a set
of lexical items as described in Section 4.3.1.
* GEN(w; A) is the set of all parses for w with lexicon A.
* GEN(w, z; A) is the set of parses for w with lexicon A, which have logical form z.
* The function O(w, y) represents the features described in section 5.3.
* The function L(y) maps a parse tree y to its associated logical form.

Initialization:
Set parameters 0 to initial values described in section 5.5.2. Set A = A0 .

Algorithm:

* For t 1= ... T,i= 1...n:

Step 1: (Check correctness)

* Let y* = arg maXyEGEN(x;A) ' (xi,) Y)

* If L(y*) = zi, go to the next example.

Step 2: (Lexical generation)

* Set A = AU GENLEX(x, zi)

* Let y* = arg maXyEGEN(x,,z,;A) 0. Q(Xi, y)

* Define Ai to be the set of lexical entries in y*.

* Set lexicon to A = A U A,

Step 3: (Update parameters)

* Let y' = arg maXyEGEN(x ;A) 0. (x 2, y)

* If L(y') 7 zi :

* Set 0 = 0 + ¢(x, y*) - (x,,y ')

Output: Lexicon A together with parameters 8.

Figure 5-3: An online learning algorithm.



5.5 Experiments

The main focus of our experiments is on the ATIS travel planning domain. For

development, we used 4978 sentences, split into a training set of 4500 examples, and

a development set of 478 examples. For test, we used the ATIS NOV93 test set which

contains 448 examples. To create the annotations, we created a script that maps the

original SQL annotations provided with the data to lambda-calculus expressions.

He and Young (2006) previously reported results on the ATIS domain, using

a learning approach which also takes sentences paired with semantic annotations

as input. In their case, the semantic structures resemble context-free parses with

semantic (as opposed to syntactic) non-terminal labels. In our experiments we have

used the same split into training and test data as He and Young (2006), ensuring that

our results are directly comparable.

He and Young (2006) report partial match figures for their parser, based on preci-

sion and recall in recovering attribute-value pairs. (For example, the sentence flights

to Boston would have a single attribute-value entry, namely destination = Boston.)

It is simple for us to map from lambda-calculus expressions to attribute-value en-

tries of this form; for example, the expression to(x, Boston) would be mapped to

destination = Boston. He and Young (2006) gave us their data and annotations, so

we can directly compare results on the partial-match criterion. We also report accu-

racy for exact matches of lambda-calculus expressions, which is a stricter criterion.

In addition, we report results for the method on the Geo880 domain. This allows

us to compare directly to the approach described in the last chapter, using the same

split of the data into training and test sets of sizes 600 and 280 respectively. We

use cross-validation of the training set, as opposed to a separate development set, for

optimization of parameters.

5.5.1 Improving Recall

The simplest approach to the task is to train the parser and directly apply it to

test sentences. In our experiments we will see that this produces results which have



high precision, but somewhat lower recall, due to some test sentences failing to parse

(usually due to words in the test set which were never observed in training data). A

simple strategy to alleviate this problem is as follows. If the sentence fails to parse,

we parse the sentence again, this time allowing parse moves which can delete words

at some cost. The cost of this deletion operation is optimized on development data.

This approach can significantly improve F-measure on the partial-match criterion in

particular. We report results both with and without this second pass strategy.

5.5.2 Parameters in the Approach

The algorithm in figure 6-2 has a number of parameters, the set {T, a, 3, 7}, which we

now describe. The values of these parameters were chosen to optimize the performance

on development data. T is the number of passes over the training set, and was set

to be 4. Each lexical entry in the initial lexicon A0 has an associated feature which

counts the number of times this entry is seen in a parse. The initial parameter value

in 0 for all features of this form was chosen to be some value a. Each of the new

CCG rules-the application, composition, crossed-composition, and type-raising rules

described in section 5.2-has an associated parameter. We set all of these parameters

to the same initial value /. Finally, when new lexical entries are added to A (in step 2

of the algorithm), their initial weight is set to some value y. Through experiments on

development data, we found that the values a = 0.1, 3 = -1.0, and 7 = -0.05 work

well in practice. These settings initially encourage encourage the use of lexical entries

from the initial lexicon, discourage adding new entries to the lexicon, and penalize

the use of the relaxed CCG parse rules.

5.5.3 Results

Table 5.1 shows accuracy for the method by the exact-match criterion on the ATIS

test set. The two pass strategy actually hurts F-measure in this case, although it

does improve recall of the method.

Table 5.2 shows results under the partial-match criterion. The results for our



Single-Pass Parsing
Two-Pass Parsing

Precision Recall Fl
90.61 81.92 86.05
85.75 84.6 85.16

Table 5.1: Exact-match accuracy on the ATIS test set.

Precision Recall Fl
Single-Pass Parsing 96.76 86.89 91.56
Two-Pass Parsing 95.11 96.71 95.9

He and Young (2006) - - 90.3

Table 5.2: Partial-credit accuracy on the ATIS test set.

approach are higher than those reported by He and Young (2006) even without the

second, high-recall, strategy. With the two-pass strategy our method has more than

halved the F-measure error rate, giving improvements from 90.3% F-measure to 95.9%

F-measure.

Table 5.3 shows results on the Geo880 domain. The new method gives improve-

ments in performance both with and without the two pass strategy, showing that the

new CCG combinators, and the new learning algorithm, give some improvement on

even this domain. The improved performance comes from a slight drop in precision

which is offset by a large increase in recall.

Table 5.4 shows ablation studies on the ATIS data, where we have selectively

removed various aspects of the approach, to measure their impact on performance.

It can be seen that accuracy is seriously degraded if the new CCG rules are removed,

or if the features associated with these rules (which allow the model to penalize these

rules) are removed.

Finally, we report results concerning the efficiency of the new online algorithm as

compared to the algorithm from Chapter 4 (ZC05). We compared running times for

the new algorithm, and the ZC05 algorithm, on the geography domain, with both

methods making 4 passes over the training data. The new algorithm took less than 4

hours, compared to over 12 hours for the ZC05 algorithm. The main explanation for



Single-Pass Parsing 95.49 83.2 88.93
Two-Pass Parsing 91.63 86.07 88.76

ZC05 96.25 79.29 86.95

Table 5.3: Exact-match accuracy on the Geo880 test set.

Precision Recall F1
Full Online Method 87.26 74.44 80.35

Without control features 70.33 42.45 52.95
Without relaxed word order 82.81 63.98 72.19

Without word insertion 77.31 56.94 65.58

Table 5.4: Exact-match accuracy on the ATIS development set for the full algorithm
and restricted versions of it. The second row reports results of the approach without
the features described in section 5.2 that control the use of the new combinators.
The third row presents results without the combinators from section 5.2.1 that relax
word order. The fourth row reports experiments without the type-raising combinators
presented in section 5.2.2.

this improved performance is that on many training examples,5 in step 1 of the new

algorithm a correct parse is found, and the algorithm immediately moves on to the

next example. Thus GENLEX is not required, and in particular parsing the example

with the large set of entries generated by GENLEX is not required.

5.6 Summary

We presented a new, online algorithm for learning a combinatory categorial grammar

(CCG), together with parameters that define a log-linear parsing model. We showed

that the use of non-standard CCG combinators is highly effective for parsing sentences

with the types of phenomena seen in spontaneous, unedited natural language. The

resulting system achieved significant accuracy improvements in both the ATIS and

Geo880 domains.

5Measurements on the Geo880 domain showed that in the 4 iterations, 83.3% of all parses were
successful at step 1.

Precision Recall F1



Chapter 6

Context-dependent Learning

This chapter considers the problem of learning context-dependent mappings from

sentences to logical form. The training examples are sequences of sentences anno-

tated with lambda-calculus meaning representations. We develop an algorithm that

maintains explicit, lambda-calculus representations of salient discourse entities and

uses a context-dependent analysis pipeline to recover logical forms. The method uses

a hidden-variable variant of the perception algorithm to learn a linear model used to

select the best analysis. Experiments on context-dependent utterances from the ATIS

corpus show that the method recovers fully correct logical forms with 83.7% accuracy.

This chapter is based on work originally described in (Zettlemoyer & Collins, 2009).

6.1 Introduction

In the last two chapters we developed approaches for learning to map isolated sen-

tences to logical form. For instance, a training example might be:

Sent. 1: List flights to Boston on Friday night.

LF 1: Ax.flight(x) A to(x, bos) A day(x, fri) A during(x, night)

Here the logical form (LF) is a lambda-calculus expression defining a set of entities

that are flights to Boston departing on Friday night.



In this chapter we develop an approach for the context-dependent learning prob-

lem. In this case, the underlying meaning of a sentence can depend on the context in

which it appears. For example, consider an interaction where Sent. 1 is followed by

the sentence:

Sent. 2: Show me the flights after 3pm.

LF 2: Ax.flight(x) A to(x, bos) A day(x, fri) A depart(x) > 1500

In this case, the fact that Sent. 2 describes flights to Boston on Friday must be

determined based on the context established by the first sentence.

We introduce a supervised, hidden-variable approach for learning to interpret

sentences in context. Each training example is a sequence of sentences annotated

with logical forms. Figure 6-1 shows excerpts from three training examples in the

ATIS corpus (Dahl et al., 1994).

In general, there are a large number of ways that the meaning of sentences can

depend on the context in which they appear. Webber (1979) presents a description of

more than twelve possibilities, including the use of pronouns (he, she, it), define noun

phrases (the flights), and verb phrase references (such as "do so"). In this chapter,

we focus on modeling the phenomena that appear in interfaces to databases, such as

the ATIS corpus. Although pronouns and definite nouns phrases appear, the most

common type of reference is one-anaphora, where sentences refer to descriptions of

previous set of flights. For example, they appear in sentences such as "Show me the

cheapest ones."

For context-dependent analysis, we develop an approach that maintains explicit,

lambda-calculus representations of salient discourse entities and uses a two-stage

pipeline to construct context-dependent logical forms. The first stage uses a prob-

abilistic Combinatory Categorial Grammar (CCG) parsing algorithm to produce a

context-independent, underspecified meaning representation. The second stage re-

solves this underspecified meaning representation by making a sequence of modifica-

tions to it that depend on the context provided by previous utterances.



In general, there are a large number of possible context-dependent analyses for

each sentence. To select the best one, we present a weighted linear model that is

used to make a range of parsing and context-resolution decisions. Since the training

data contains only the final logical forms, we model these intermediate decisions as

hidden variables that must be estimated without explicit supervision. We show that

this model can be effectively trained with a hidden-variable variant of the perceptron

algorithm.

In experiments on the ATIS DEC94 test set, the approach recovers fully correct

logical forms with 83.7% accuracy.

6.2 The Learning Problem

We assume access to a training set that consists of n interactions D = (I,..., In).

The i'th interaction Ii contains ni sentences, w , , l,..., wi,,. Each sentence wi, is

paired with a lambda-calculus expression zi,j specifying the target logical form. Fig-

ure 6-1 contains example interactions.

The logical forms in the training set are representations of each sentence's un-

derlying meaning. In most cases, context (the previous utterances and their inter-

pretations) is required to recover the logical form for a sentence. For instance, in

Example 1(b) in Figure 6-1, the sentence "show me the ones that leave in the morn-

ing" is paired with

Ax.flight(x) A from(x, bos) A to(x, phi) A during(x, morning)

Some parts of this logical form (from(x, bos) and to(x, phi)) depend on the con-

text. They have to be recovered from the previous logical forms.

At step j in interaction i, we define the context (z,l 1,... ,z,-1) to be the j -

1 preceding logical forms.1 Now, given the training data, we can create training

1In general, the context could also include the previous sentences w,,k for k < j. In our data,
we never observed any interactions where the choice of the correct logical form z,,, depended on the
words in the previous sentences, given the logical forms of the previous sentences.



Example #1:
(a) show me the flights from boston to philly

Ax.flight(x) A from(x, bos) A to(x, phi)
(b) show me the ones that leave in the morning

Ax.flight(x) A from(x, bos) A to(x, phi) A during(x, morning)
(c) what kind of plane is used on these flights

Ay.3x.flight(x) A from(x, bos) A to(x, phi) A during(x, morning) A aircraft(x) = y

Example #2:
(a) show me flights from milwaukee to orlando

Ax.flight(x) A from(x, mil) A to(x, orl)
(b) cheapest

argmin(Ax.flight(x) A from(x, mil) A to(x, orl), Ay.fare(y))
(c) departing wednesday after 5 o'clock

argmin(Ax.f light(x) A from(x, mil) A to(x, orl) A day(x, wed) A depart(x) > 1700 ,
Ay.fare(y))

Example #3:
(a) show me flights from pittsburgh to la thursday evening

Ax.flight(x) A from(x, pit) A to(x, la) A day(x, thur) A during(x, evening)
(b) thursday afternoon

Ax.flight(x) A from(x, pit) A to(x, la) A day(x, thur) A during(x, afternoon)
(c) thursday after 1700 hours

Ax.flight(x) A from(x, pit) A to(x, la) A day(x, thur) A depart(x) > 1700

Figure 6-1: ATIS interaction excerpts.

examples (x, 3, z,j) for i = 1... n, j = 1... n,. Each x,, is a sentence and a context,

xJ,3 = (wi,3, (zoi,, ... z,jl)). Given this set up, we have a supervised learning problem

with input x2,, and output z, -,.

6.3 Overview of Approach

In general, the mapping from a sentence and a context to a logical form can be quite

complex. In this section, we present an overview of our learning approach. We assume

the learning algorithm has access to:

e A training set D, defined in Section 6.2.



* A CCG lexicon. See Section 2.2 for an overview of CCG. Each entry in the

lexicon pairs a word (or sequence of words), with a CCG category specifying

both the syntax and semantics for that word. One example CCG entry would

pair flights with the category N : Ax.flight(x).

Derivations A derivation for the j'th sentence in an interaction takes as input a

pair x = (w], C), where C = (zi ... zj-1) is the current context. It produces a logical

form z. There are two stages:

* First, the sentence wj is parsed using the CCG lexicon to form an intermediate,

context-independent logical form w7.

* Second, in a series of steps, 7 is mapped to z. These steps depend on the current

context C.

As one sketch of a derivation, consider how we might analyze Example 1(b) in

Figure 6-1. In this case the sentence is "show me the ones that leave in the morning."

The CCG parser we will describe in Section 6.4.1 would produce the following context-

independent logical form:

Ax.!(e, t)(x) A during(x, morning)

The subexpression !(e, t) results directly from the referential phrase the ones; we

discuss this in more detail in Section 6.4.1, but intuitively this subexpression specifies

that a lambda-calculus expression of type (e, t) (a function from entities to truth

values) must be recovered from the context and substituted in its place.

In the second (contextually dependent) stage of the derivation, the expression

Ax.flight(x) A from(x, bos) A to(x, phi)

is recovered from the context, and substituted for the !(e, t) subexpression, producing

the desired final logical form, seen in Example 1(b).



In addition to substitutions of this type, we will also perform other types of

context-dependent resolution steps, as described in Section 6.5.

In general, both of the stages of the derivation involve considerable ambiguity -

there will be a large number of possible context-independent logical forms 7 for w,

and many ways of modifying each 7r to create a final logical form zj.

Learning We model the problem of selecting the best derivation as a structured

prediction problem (Johnson et al., 1999; Lafferty et al., 2001; Collins, 2002; Taskar

et al., 2004). We present a linear model with features for both the parsing and

context resolution stages of the derivation. In our setting, the choice of the context-

independent logical form 7 and all of the steps that map ir to the output z are

hidden variables; these steps are not annotated in the training data. To estimate

the parameters of the model, we use a hidden-variable version of the perceptron

algorithm. We use an approximate search procedure to find the best derivation both

while training the model and while applying it to test examples.

Evaluation We evaluate the approach on sequences of sentences (wl,..., wk). For

each w3, the algorithm constructs an output logical form zj which is compared to a

gold standard annotation to check correctness. At step j, the context contains the

previous z2, for i < j, output by the system.

6.4 Context-independent Parsing

In this section, we describe a set of extensions to the CCG formalism that allow the

parser to construct logical forms containing references, such as the !(e, t) expression

from the example derivation in Section 6.3.

6.4.1 Parsing with References

We use an exclamation point followed by a type expression to specify references in a

logical form. For example, !e is a reference to an entity and !(e, t) is a reference to



a function. As motivated in Section 6.3, we introduce these expressions so they can

later be replaced with appropriate lambda-calculus expressions from the context.

Sometimes references are lexically triggered. For example, consider parsing the

phrase "show me the ones that leave in the morning" from Example 1(b) in Figure 6-1.

Given the lexical entry:

ones := N: A.!(e,t)(x)

a CCG parser could produce the desired context-independent logical form:

Ax.!(e, t)(x) A during(x, morning)

Our first extension is to simply introduce lexical items that include references

into the CCG lexicon. They describe anaphoric words, for example including "ones,"

"those," and "it."

In addition, we sometimes need to introduce references when there is no explicit

lexical trigger. For instance, Example 2(c) in Figure 6-1 consists of the single word

"cheapest." This query has the same meaning as the longer request "show me the

cheapest one," but it does not include the lexical reference. We add three CCG

type-shifting rules to handle these cases.

The first two new rules are applicable when there is a category that is expecting

an argument with type (e, t). This argument is replaced with a !(e, t) reference:

A/B : f z A : f(A.!(e,t)(x))

A\B : f A: f(Ax.!(e,t)(x))

For example, using the first rule, we could produce the following parse for Exam-

ple 2(c)

cheapest

NP/N
Ag.argmin(Ax.g(x), Ay. fare(y))

NP
argmin(Ax.!(e, t)(x), Ay. fare(y))



where the final category has the desired lambda-caculus expression.

The third rule is motivated by examples such as "show me nonstop flights." Con-

sider this sentence being uttered after Example 1(a) in Figure 6-1. Although there

is a complete, context-independent meaning, the request actually restricts the salient

set of flights to include only the nonstop ones. To achieve this analysis, we introduce

the rule:

A : f A : .f(x) A !(e,t)(x)

where f is a function of type (e, t).

With this rule, we can construct the parse

nonstop flights

NIN N
Af.Ax.f (x) A nonstop(x) Ax.flight(x)

N
Ax.nonstop(x) A flight(x)

N
Ax.nonstop(x) A flight(x) A !(e,t)(x)

where the last parsing step is achieved with the new type-shifting rule.

These three new parsing rules allow significant flexibility when introducing refer-

ences. Later, we develop an approach that learns when to introduce references and

how to best resolve them.

6.5 Contextual Analysis

In this section, we first introduce the general patterns of context-dependent analysis

that we consider. We then formally define derivations that model these phenomena.

6.5.1 Overview

This section presents an overview of the ways that the context C is used during the

analysis.



References Every reference expression (!e or !(e, t)) must be replaced with an ex-

pression from the context. For example, in Section 6.3, we considered the following

logical form:

Ax.!(e, t)(x) A during(x, morning)

In this case, we saw that replacing the !(e, t) subexpression with the logical form for

Example 1(a), which is directly available in C, produces the desired final meaning.

Elaborations Later statements can expand the meaning of previous ones in ways

that are difficult to model with references. For example, consider analyzing Exam-

ple 2(c) in Figure 6-1. Here the phrase "departing wednesday after 5 o'clock" has a

context-independent logical form:2

Ax.day(x, wed) A depart(x) > 1700 (6.1)

that must be combined with the meaning of the previous sentence from the current

context C:

argmin(Ax.fight(x) A from(x, mil) A to(x, orl), Ay.fare(y))

to produce the expression

argmin(Ax.fight(x) A from(x, mil) A to(x, orl) A day(x, wed) A depart(x) > 1700,

Ay.fare(y))

Intuitively, the phrase "departing wednesday after 5 o'clock" is providing new

constraints for the set of flights embedded in the argmin expression.

We handle examples of this type by constructing elaboration expressions from the

z, in C. For example, if we constructed the following function:

2Another possible option is the expression Ax.!(e, t) A day(x, wed) A depart(x) > 1700. However,
there is no obvious way to resolve the !(e, t) expression that would produce the desired final meaning.



Af.argmin(Ax.fight(x) A from(x, mil) A to(x, orl) A f(x)

Ay. fare(y)) (6.2)

we could apply this function to Expression 6.1 and produce the desired result. The

introduction of the new variable f provides a mechanism for expanding the embedded

subexpression.

References with Deletion When resolving references, we will sometimes need to

delete subparts of the expressions that we substitute from the context. For instance,

consider Example 3(b) in Figure 6-1. The desired, final logical form is:

Ax.flight(x) A from(x, pit) A to(x, la) A day(x, thur) A during(x, afternoon)

We need to construct this from the context-independent logical form:

Ax.!(e, t) A day(x, thur) A during(x, afternoon)

The reference !(e, t) must be resolved. The only expression in the context C is the

meaning from the previous sentence, Example 3(a):

Ax.flight(x) A from(x, pit) A to(x, la) A day(x, thur) A during(x, evening) (6.3)

Substituting this expression directly would produce the following logical form:

Ax.flight(x) A from(x, pit) A to(x, la) A day(x, thur) A during(x, evening)

A day(x, thur) A during(x, afternoon)

which specifies the day twice and has two different time spans.

We can achieve the desired analysis by deleting parts of expressions before they



are substituted. For example, we could remove the day and time constraints from

Expression 6.3 to create:

Az.flight(x) A from(x, pit) A to(x, la)

which would produce the desired final meaning when substituted into the original

expression.

Elaborations with Deletion We also allow deletions for elaborations. In this

case, we delete subexpressions of the elaboration expression that is constructed from

the context.

6.5.2 Derivations

We now formally define a derivation that maps a sentence w, and a context C

{ zl,... , z,_1} to an output logical form za . We first introduce notation for expressions

in C that we will use in the derivation steps. We then present a definition of deletion.

Finally, we define complete derivations.

Context Sets Given a context C, our algorithm constructs three sets of expressions:

* Re(C): A set of e-type expressions that can be used to resolve references.

* R(e,t) (C): A set of (e, t)-type expressions that can be used to resolve references.

* E(C): A set of possible elaboration expressions (for example, see Expres-

sion 6.2).

We will provide the details of how these sets are defined in Section 6.5.3. As an

example, if C contains only the logical form

Ax.flight(x) A from(x, pit) A to(x, la)

then Re(C) = {pit, la} and R(e,t)(C) is a set that contains a single entry, the complete

logical form.



Deletion A deletion operator accepts a logical form 1 and produces a new logi-

cal form 1'. It constructs 1' by removing a single subexpression that appears in a

coordination (conjunction or disjunction) in 1. For example, if 1 is

Ax.flight(x) A from(x, pit) A to(x, la)

there are three possible deletion operations, each of which removes a single subex-

pression.

Derivations We now formally define a derivation to be a sequence d = (II, sl, ... , sm).

II is a CCG parse that constructs a context-independent logical form 7r with m - 1

reference expressions.3 Each s, is a function that accepts as input a logical form,

makes some change to it, and produces a new logical form that is input to the next

function s,~l. The initial s, for i < m are reference steps. The final sm is an optional

elaboration step.

* Reference Steps: A reference step is a tuple (1, 1', f, r, rl,..., rp). This opera-

tor selects a reference f in the input logical form I and an appropriately typed

expression r from either R~ (C) or R(e,t) (C). It then applies a sequence of p

deletion operators to create new expressions rl... rp. Finally, it constructs the

output logical form 1' by substituting rp for the selected reference f in 1.

* Elaboration Steps: An elaboration step is a tuple (1, 1', b, bl,... , bq). This

operator selects an expression b from E(C) and applies q deletions to create

new expressions b, ... bq. The output expression i' is bq(l).

In general, the space of possible derivations is large. In Section 6.6, we describe a

linear model and decoding algorithm that we use to find high scoring derivations.

6.5.3 Context Sets

For a context C = {zl, ... , zj_ 1}, we define sets Re(C), R(e,t)(C), and E(C) as follows.

3In practice, r rarely contains more than one reference.



e-type Expressions Re(z) is a set of e-type expressions extracted from a logical

form z. We define R,(C) = U;', Re(z.).

Re(z) includes all e-type subexpressions of z.4 For example, if z is

argmin(Ax.flight(x) A from(x, mil) A to(x, orl), Ay. fare(y))

the resulting set is Re(z) = {mil, orl, z}, where z is included because the entire

argmin expression has type e.

(e, t)-type Expressions R(e,t)(z) is a set of (e, t)-type expressions extracted from

a logical form z. We define R(e,t)(C) = U31 R(e,t)(zz).

The set R(e,t) (z) contains all of the (e, t)-type subexpressions of z. For each quan-

tified variable x in z, it also contains a function Ax.g. The expression g contains the

subexpressions in the scope of x that do not have free variables. For example, if z is

Ay.3x.flight(x) A from(x, bos) A to(x, phi) A during(x, morning) A aircraft(x) = y

R(e,t)(z) would contain two functions: the entire expression z and the function

Ax.flight(x) A from(x, bos) A to(x, phi) A during(x, morning)

constructed from the variable x, where the subexpression aircraft(x) = y has been

removed because it contains the free variable y.

Elaboration Expressions Finally, E(z) is a set of elaboration expressions con-

structed from a logical form z. We define E(C) = U3-' E(zi).

E(z) is defined by enumerating the places where embedded variables are found

in z. For each logical variable x and each coordination (conjunction or disjunction)

in the scope of x, a new expression is created by defining a function Af.z' where z'

has the function f(x) added to the appropriate coordination. This procedure would

4A lambda-calculus expression can be represented as a tree structure with flat branching for
coordination (conjunction and disjunction). The subexpressions are the subtrees.



produce the example elaboration Expression 6.2 and elaborations that expand other

embedded expressions, such as the quantifier in Example 1(c).

6.6 A Linear Model

In general, there will be many possible derivations d for an input sentence w in the

current context C. In this section, we introduce a weighted linear model that scores

derivations and a decoding algorithm that finds high scoring analyses.

We define GEN(w; C) to be the set of possible derivations d for an input sentence w

given a context C, as described in Section 6.5.2. Let O(d) E Rrm be an m-dimensional

feature representation for a derivation d and 0 E Rm be an m-dimensional parameter

vector. The optimal derivation for a sentence w given context C and parameters 0 is

d*(w; C) = arg max 0. q (d)
dEGEN(w;C)

Decoding We now briefly describe an approximate algorithm for computing d*(w; C).

Appendix B provides the full details.

The CCG parser uses a CKY-style chart parsing algorithm that prunes to the top

N = 50 entries for each span in the chart.

We use a beam search procedure to find the best contextual derivations, with

beam size N = 50. The beam is initialized to the top N logical forms from the CCG

parser. The derivations are extended with reference and elaboration steps. The only

complication is selecting the sequence of deletions. For each possible step, we use a

greedy search procedure that selects the sequence of deletions that would maximize

the score of the derivation after the step is applied.

6.7 Learning

Figure 6-2 details the complete learning algorithm. Training is online and error-

driven. Step 1 parses the current sentence in context. If the optimal logical form is



Inputs:
* Training examples {Iili = 1... n}. Each I, is a sequence {(w,j, zz,) : j=

1... ni} where w,, is a sentence and zi,3 is a logical form.
* Number of training iterations T.
* Initial parameters 0.

Definitions:
* The function 0(d) represents the features described in Section 6.8.
* GEN(w; C) is the set of derivations for sentence w in context C.
* GEN(w, z; C) is the set of derivations for sentence w in context C that produce
the final logical form z.
* The function L(d) maps a derivation to its associated final logical form.

Algorithm:

* For t = 1... T, i = 1... n: (Iterate interactions)
* Set C = {}. (Reset context)

* For j = 1 ... n,: (Iterate training examples)

Step 1: (Check correctness)

* Let d* = arg maXdEGEN(w,,3 ;C) .- (d) .

* If L(d*) = zij, go to Step 3.

Step 2: (Update parameters)

* Let d' = arg maXdEGEN(w,,,z,J;C) 0. -(d)

* Set 0 = 0 + 0(d') - 0(d*)

Step 3: (Update context)

* Append z,, to the current context C.

Output: Estimated parameters 0.

Figure 6-2: An online learning algorithm.



not correct, Step 2 finds the best derivation that produces the labeled logical form5

and does an additive, perceptron-style parameter update. Step 3 updates the context.

This algorithm is a direct extension of the one described in Chapter 5. It maintains

the context but does not have the lexical induction step that was previously used.

6.8 Features

We now describe the features for both the parsing and context resolution stages of

the derivation.

6.8.1 Parsing Features

The parsing features are used to score the context-independent CCG parses during

the first stage of analysis. We use the set described in Section 5.3, which includes

features that are sensitive to lexical choices and the structure of the logical form that

is constructed.

6.8.2 Context Features

The context features are functions of the derivation steps described in Section 6.5.2.

In a derivation for sentence j of an interaction, let 1 be the input logical form when

considering a new step s (a reference or elaboration step). Let c be the expression

that s selects from a context set Re(z,), R(e,t)(z,), or E(z,), where z2, i < j, is an

expression in the current context. Also, let r be a subexpression deleted from c.

Finally, let fi and f2 be predicates, for example from or to.

Distance Features The distance features are binary indicators on the distance

j - i. These features allow the model to, for example, favor resolving references with

lambda-calculus expressions recovered from recent sentences.

5For this computation, we use a modified version of the beam search algorithm described in
Section 6.6, which prunes derivations that could not produce the desired logical form.



Train Dev. Test All
Interactions 300 99 127 526
Sentences 2956 857 826 4637

Table 6.1: Statistics of the ATIS training, development and test (DEC94) sets, in-
cluding the total number of interactions and sentences. Each interaction is a sequence
of sentences.

Copy Features For each possible fl there is a feature that tests if fi is present in

the context expression c but not in the current expression 1. These features allow the

model to learn to select expressions from the context that introduce expected predi-

cates. For example, flights usually have a from predicate in the current expression.

Deletion Features For each pair (fi, f2) there is a feature that tests if fi is in the

current expression 1 and f2 is in the deleted expression r. For example, if fi = f2 =

days the model can favor overriding old constraints about the departure day with new

ones introduced in the current utterance. When fl = during and f2 = departtime

the algorithm can learn that specific constraints on the departure time override more

general constraints about the period of day.

6.9 Evaluation

Data In this section, we present experiments in the context-dependent ATIS do-

main (Dahl et al., 1994). Table 6.1 presents statistics for the training, development,

and test sets. To facilitate comparison with previous work, we used the standard

DEC94 test set. We randomly split the remaining data to make training and de-

velopment sets. We manually converted the original SQL meaning annotations to

lambda-calculus expressions.

Evaluation Metrics Miller et al. (1996) report accuracy rates for recovering correct

SQL annotations on the test set. For comparison, we report exact accuracy rates for

recovering completely correct lambda-calculus expressions.



Partial Match Exact
System Prec. Rec. F1 Acc.

Full Method 95.0 96.5 95.7 83.7
Miller et al. - - - 78.4

Table 6.2: Performance on the ATIS DEC94 test set.

We also present precision, recall and F-measure for partial match results that test

if individual attributes, such as the from and to cities, are correctly assigned. This

metric is defined in Section 5.5.

Initialization and Parameters The CCG lexicon is hand engineered. We con-

structed it by running the algorithm from Chapter 5 to learn a lexicon on the context-

independent ATIS data set and making manual corrections to improve performance on

the training set. We also added lexical items with reference expressions, as described

in Section 6.4.

We ran the learning algorithm for T = 4 training iterations. The parsing feature

weights were initialized as in Chapter 5. The context distance features were given

small negative weights (-0.1) to discourage analyses that use the context. All other

feature weights were initially set to zero.

Test Setup During evaluation, the context C = {zi... z,_ 1} contains the logical

forms output by the learned system for the previous sentences. In general, errors made

while constructing these expressions can propogate if they are used in derivations for

new sentences.

Results Table 6.2 shows performance on the ATIS DEC94 test set. Our approach

correctly recovers 83.7% of the logical forms. This result compares favorably to Miller

et al.'s fully-supervised approach (Miller et al., 1996) while requiring significantly less

annotation effort.

We also evaluated performance when the context is limited to contain only the M

most recent logical forms. Table 6.3 shows results on the development set for different



Partial Match Exact
Limited Context

Prec. Rec. F1 Acc.

M = 0 96.2 57.3 71.8 45.4

M = 1 94.9 91.6 93.2 79.8

M = 2 94.8 93.2 94.0 81.0
M = 3 94.5 94.3 94.4 82.1
M = 4 94.9 92.9 93.9 81.6

M = 10 94.2 94.0 94.1 81.4

Table 6.3: Performance on the ATIS development set for varying context window
lengths M.

values of M. The poor performance with no context (M = 0) demonstrates the need

for context-dependent analysis. Limiting the context to the most recent statement

(M = 1) significantly improves performance while using the last three utterances

(M = 3) provides the best results.

Finally, we evaluated a variation where the context contains gold-standard logical

forms during evaluation instead of the output of the learned model. On the devel-

opment set, this approach achieved 85.5% exact-match accuracy, an improvement of

approximately 3% over the standard approach. This result suggests that incorrect

logical forms in the context have a relatively limited impact on overall performance.

6.10 Summary

In this chapter, we addressed the problem of learning context-dependent mappings

from sentences to logical form. We developed a context-dependent analysis model

and showed that it can be effectively trained with a hidden-variable variant of the

perceptron algorithm. In the experiments, we showed that the approach recovers fully

correct logical forms with 83.7% accuracy.



Chapter 7

Conclusion

This thesis presented algorithms for learning to map sentences to logical form. We

described how to learn an extension of Combinatory Categorial Grammar (CCG)

(Steedman, 1996, 2000) that is augmented with a model for context-dependent anal-

ysis. The resulted was a unified approach that (1) represents lexical semantics for

individual words, (2) includes a probabilistic parsing model for analyzing individual

sentences, and (3) includes a probabilistic model for reasoning about context depen-

dence.

Chapter 4 presented an initial approach for the context-independent learning prob-

lem, where sentences are analyzed in isolation. We described a procedure, GENLEX,

for creating a large set of linguistically-plausible CCG lexical items. We then de-

veloped a learning algorithm for probabilistic CCGs that prunes this lexicon while

estimating parameters of the log-linear parsing model. Finally, we demonstrated

experimentally that this approach is competitive with previous learning methods.

In Chapter 5, we presented a new, online algorithm for learning a CCG, together

with parameters that define a linear parsing model. We showed that the use of non-

standard CCG combinators is highly effective for parsing sentences with the types

of phenomena seen in spontaneous, unedited natural language. The resulting system

achieved significant accuracy improvements in both the ATIS and Geo880 domains.

Finally, Chapter 6 addressed the problem of learning context-dependent mappings

from sentences to logical form. We developed a context-dependent analysis model



and showed that it can be effectively trained with a hidden-variable variant of the

perceptron algorithm. In the experiments, we showed that the approach recovers fully

correct logical forms with 83.7% accuracy.

7.1 Future Work

There are a number of potential areas for future work. The possibilities include exten-

sions to the learning approach and applications to other semantic analysis problems.

Algorithmic Extensions The CCG grammar induction techniques we developed

required two types of hand-engineered knowledge: the GENLEX rules and the initial

lexicon. In future work, both could be automatically induced. One possibility is to

develop an approach based on higher-order unification. We might first induce the

meaning of simple phrases, such as noun phrases. Then, we could use an unification

algorithm to find more complex categories that combine the simple ones and pro-

duce the desired logical forms. Automatically inducing a complete grammar would

make the approach applicable to languages other than English, with no additional

engineering effort.

Broad Coverage Semantic Analysis Another direction is to scale the approach

towards broad-coverage semantic analysis. This would require us to model and recover

many additional types of semantic phenomena. For example, we would need to model

events occurring in time and understand a range of complex verb tenses that rarely

occur in existing natural language interfaces to databases. Annotating the logical

forms of the training text will be a major challenge; there is no current consensus

for how to best represent the meaning of open-domain text. One important direction

will be to develop semisupervised and unsupervised algorithms to minimize the data

annotation requirements.

Dialog Systems The context-dependent analysis problem in Chapter 6 is a simple

dialog problem, where the user has complete control of the conversation and the sys-



tem passively answers questions. More general dialog systems are also possible. They

would require an integrated approach for recovering logical forms and performing

decision-theoretic reasoning about what to say to future the current interaction. One

possibility would be to develop first-order partially observable Markov decision pro-

cesses that represent the user's goals as hidden state. This would provided a unified

mechanisms for probabilistic pragmatic reasoning in conversations where the user's

statements can have complex meanings.



Appendix A

A CCG Parsing Algorithm

In this section, we describe a chart parsing algorithm for weighted Combinatory

Categorial Grammars (CCGs).

As described in Section 2.2, a CCG is defined by:

* A lexicon A. Each lexical item in A pairs a sequence of words with a CCG

category. For example, one lexical item might contain the words the Mississippi

and the category NP : mississippi_river.

* A set of combinators, including both unary type-raising rules and binary parsing

rules. A unary rule t(c) accepts a category c and produces a new category. A

binary rule b(cl, c2) accepts two categories and produces a new category. The

category cl is the left category, which precedes the right category c2. Both types

of rules return null if they are not applicable to input categories. These rules

are used to construct intermediate categories during parsing, as described in

Section 2.2.

The lexicon and combinators define the space of possible parse trees for an input

sentence w.

We describe a parsing algorithm for weighted CCGs, which additionally include:

* A parameter vector 0 E Rd.



* A feature representation q(w, y) E IRd that is a function of a sentence w and a

parse tree y.

Given a weighted CCG, we define the score of a sentence and a parse as the dot

product 0. -(w, y).

We describe two instances of the parsing problem. In the first, we are given a

sentence w and must find the highest scoring parse y for w. In the second, we are

given a sentence w and a logical form z and must find the highest scoring parse y

that has the final logical form z.

In both cases, we use a CKY-style parsing algorithm to construct a parse chart

that compactly represents a large set of possible parse trees. In practice, it is not

possible to represent every possible parse. Instead, we prune the chart given the

information available. Given only the sentence w, we prune low scoring intermediate

parses. When also given the final logical form z, we use a simple test to additionally

prune a large set of parses that could not produce z. The resulting approach is

efficient and considers a large subset of the possible parse trees.

A.1 The Algorithm

Given a sentence w containing n words and a weighted CCG, we now describe how

to construct a parse chart.

The chart contains edges that are organized into spans. Each span C[i, j] for

0 < i < j < n contains a set of edges that define the possible root categories for CCG

parse trees that span the words in w from index i to index j. Each edge e = (c, p, s)

is a tuple containing a CCG category c, the CCG combinator p used to construct

c, and a real-valued score s. Parse trees are extracted from a chart by selecting an

appropriate set of edges.

To allow for dynamically programming, we restrict the features in 0 to be a sum

of features defined on chart edges. For a CCG parse y defined by the set of edges E:

eEE= (e)
eeE



parse (){
add_lexical_items();
// n is the number of words in the sentence
for(span=2; span<n; span++){

for(start=0; span<n-span+l; start++){
end = start + span - 1;
apply_binary_combinators(start,end);
apply_type_raising(start,end);
prune(start,end);

}

Figure A-1: A CCG parsing algorithm.

add_lexical_items(){
for(span=2; span<n; span++){

for(start=0; span<n-span+l; start++){
end = start + span - 1;
foreach lexical item with words w[start,end] and CCG category c {

add_edge(start,end,c,null,{});
}
apply_type_raising(start,end);

}
}

Figure A-2: Initializing the parse chart.

This decomposition allows us to recursively compute the max score over all possible

subtrees that produce the same edge in the same span.

Figure A-i contains the procedure parse() that constructs the parse chart. This

procedure first adds edges for all of the lexical items that match the words in the

input sentence w, using the subprocedure add_lexical_items() in Figure A-2. It

then constructs all of the chart spans, starting from those of length two and increasing

to length n.

The edges in each span C[i, j] are constructed with a three step process. First,



we add all possible combinations of two contiguous subspans, using the procedure

apply_binary_combinators(i, j) in Figure A-3. Next, we apply type raising oper-

ators to all of these new edges, using the procedure apply_type_raising(i,j) in

Figure A-3. Finally, we prune the span C[i, j] to limit the number of subedges that

must be considered when constructing longer edges. This is done with the prune (i, j)

procedure, which we present in the next section.

The add_edge(i, j, c, o,B) procedure adds an edge e to the chart span C[i, j] for

a category c created by a CCG combinator o from the edges represented in the set

B. This procedure computes the score s(e) for the new edge e. For example, if o is a

binary operator, then the score is:

s(e) = max q(e) 0 + s(eI) + s(e 2)
e1,e2

where the max is over all pairs of edges (el and e2) that can be combined with operator

o to create a new edge with category c for the span C[i, j].

Given a parse chart, we can find the highest scoring parse by selecting the edge

in the span C[O, n - 1] with the highest score and recursively tracing back the edges

in the subspans that were used to construct it.

A.1.1 Pruning

In general, there will be a large number of possible edges for each chart span C[i, j].

We use the procedure prune(i,j) to prune this set while retaining high scoring

entries. We consider both the case where we are only given an input sentence w and

the case where we are additionally given a desired logical form z.

Given only w, we remove all but the N highest scoring edges in C[i, j]. This type

of beam pruning is a commonly used method in chart parsing algorithms that can

work well in practice.

When we are also given a target logical form z, we would like to prune edges that

could not possibly be used in a parse that would produce z. We use the following

strategy. Let f be a constant in the logical language, for example from or Texas.



apply_type_raising(start,end){
foreach edge e in C[start,endl]{

if e was created by type-raising, continue with next edge;
let c be the CCG category in e;
for each CCG type raising operator t {

let c_t = t(c);
if (c_t != null){
add_edge(start,end,c_t,t,{e});

}
}

}

apply_binary_combinators(start,end){
for (split = start; split<end-1; split++){

foreach edge el in C[start,split] with CCG category cl {
foreach edge e2 in C[split+1,end] with CCG category c2 {
foreach binary CCG Combinator b {

let c_b = b(cl,c2);
if (c_b != null){
add_edge(start,end,c_b,b,{el,e2});

}
}

}
}

}
}

add_edge(start,end,c,o,B){
create new edge e with category c and operator o;
calculate score s for e as local score

plus the sum of scores of edges in B;
foreach edge e_p with CCG Category c_p

and score s_p in chart span C[start,endl {
if (c equals c_p && s>s_p){

replace e_p with e;
return;

}
add e to the C[start,end];

}

Figure A-3: Procedures for adding edges to the parse chart.



Also, define N(f, z) to be the count of the number of times the constant f appears

in the logical expression z. For each edge e E C[i, j], let 1(e) be the lambda-calculus

expression in its CCG category. We prune all edges e where there exists a constant f

such that N(f, 1(e)) > N(f, z). We can safely prune all edges whose meanings have

more instances of some constant than the desired logical form. There are no parsing

operations that remove constants from the semantics.

A.1.2 Parsing with PCCGs

The procedure parse() in Figure A-1 can also be used for parsing with probabilistic

CCGs (PCCGs), which were defined in Section 4.2.1. The only difference is the way

that the score is computed for each edge. For PCCGs, the score includes a the sum

over the scores of all possible subtrees rooted with the edge, instead of a max.

We modify the add_edge procedure to sum over edge scores while compute the

score s(e) for a new edge e in chart span C[i, j]. We assume that e has CCG category

c, which was created with a CCG operator o. For example, if o is a binary operator,

then the score is:

s(e) = e"(e)0 - S(el) - S (e 2 )

el,e2

where the sum is over all pairs of edges (el and e2) that can be combined with operator

o to create a new edge with category c for the span C[i, j]. This sum is incrementally

computed as each new edge is added to the chart.

100



Appendix B

A Beam Decoding Algorithm for

Context-dependent Analysis

In this chapter, we present an algorithm for finding high scoring derivations for the

context-dependent analysis problem defined in Chapter 6. A derivation maps a sen-

tence w, and a context C = { z,..., z- 1} to an output logical form z3 . Each deriva-

tion is a sequence d = (II, si, ... , sm). II is a CCG parse that constructs a context-

independent logical form 7 with m - 1 reference expressions. Each s, is a function

that accepts as input a logical form, makes some change to it, and produces a new

logical form that is input to the next function s,+l. The final expression is the output

logical form zj.

As described in Section 6.6, we define the score of a derivation d to be the dot

product 0 - (d), given a parameter vector 0 and a feature function 0. We consider two

decoding problems. The first is to find the highest scoring derivation for a sentence

w, and a context C. The second problem is to find the highest scoring derivation for

w, and C that constructs a specific logical form z3.

Figure B-1 present a simple beam search algorithm decode () that applies to both

cases by incrementally constructing a list of the N highest scoring derivations. First,

we use the CCG parsing algorithm described in Appendix A to find the top N CCG

parses, and create a derivation for each. Next, we repeatedly expand the derivations

by appending derivation steps. Section 6.5.2 defines the two types of derivation steps

101



decode(){
call parse();

make a derivation for each of the N highest scoring parses;

while exists a derivation d with an unresolved reference {
remove d from the beam;

for each possible reference operator r {
create a new derivation d' by appending r to d;
add d' to beam;

}
prune();

foreach derivation d in the beam {
foreach elaboration operator e {

create a new derivation d' by appending e to d;
add d' to beam;

}
prune() ;

Figure B-1: A beam decoding algorithm for context-dependent analysis.

(reference and elaboration) and describes the space of possible steps at each point in a

derivation. After each expansion, the prune () procedure prunes the set of derivations

to include only the N highest scoring options.

In the rest of this chapter, we describe the details of the decode() algorithm.

First, we describe how to prune the beam. Then we present a method for performing

deletions, which must be done each time a derivation step is added.

B.1 Pruning

The prune () procedure ensures that the list of possible derivations contains no more

than N entries. We prune differently depending on the decoding problem - whether

we are given only a sentence w, and context C, or we are additionally given a target

logical form z,.

102



Given only wj and C, we simply remove all but the N highest scoring derivations.

When we are given a target logical form z3, we also prune derivations that could

not possibly produce z,. We use the same simple strategy as in Appendix A based on

counting the constants in the logical form. Let f be a constant in the logical language,

for example from or Texas. Also, define N(f, z) to be the count of the number of

times the constant f appears in the logical expression z. For each derivation d, let 1(d)

be the output lambda-calculus expression. We prune all derivations d where there

exists a constant f such that N(f, 1(d)) > N(f, z3 ). If the meaning associated with

the derivation has more instances of a constant than the desired logical form, we can

safely prune it. There are no derivation steps that remove constants from the output

semantics.

B.2 Deletion

In a derivation d, each new step s, involves using the context C to construct a logical

expression 1 that is combined with the output logical form defined by d. Section 6.5.2

defines the options for constructing 1 and integrating it into the analysis. One im-

portant subproblem is selecting a sequence of deletion operators to apply to 1. We

describe an approach in this section.

A deletion operator accepts a logical form 1 and produces a new logical form 1'.

It constructs 1' by removing a single subexpression that appears in a coordination

(conjunction or disjunction) in 1.

We use a greedy search procedure to select the sequence of deletions. Given the

initial logical expression 1, we repeated consider each possible deletion. We compute

the score of the new derivation d' that would result if the operator were applied and

select the operator that produces the highest score. This operator is applied and the

process repeats until we can no longer improve the score of the derivation.

103



Appendix C

The Domain Independent Lexicon

Figure C-1 shows example lexical entries from the domain-independent initial lexicon.

Each row includes a set of phrases that are assigned the same category. A vertical slash

(I) is a compact notation for either a forward slash (/) or back slash (\). The complete

fixed lexicon contains 185 entries. They include standard CCG lexical entries for

closed class words such as determiners, conjunctions, and quantifiers.

{and, but}
{or, and}
{is, are, does, ...}
{the, a, an,...}
{the number of, ...}
{how many, ...
{with the largest, ...}
{with the smallest, ...}
{do not, are not ...}
{and also, and their, ...}
{for, on, of, ...}
{every, all, ... }
{some, ...}
{no, ... }
{a, an, ...}
{no, ... }

CONJ : A
CONJ : v
(SINP)/(SINP) : Ag.g
NP/N : Af.f
NP/N : Af.count(Az.f(x))
(S/(SINP))/N : Ag.Af.count(Ax.f(x) A g(x))
(NP\N)/N : Ag.Af.argmaz(Ax.f(x), Az.g(x))
(NP\N)/N : Ag.Af.argmin(Az.f(z), Ax.g(x))
(S\NP)/(S\NP) : Af.Az.-,f(x)
(N\N)/N : Ag.Af.Az.Ay.f(x) A g(x) = y
(N\N)/N : Ag.Af.Ay.3z.f(x) A g(x) = y
(S/(SINP))/N : Af.Ag.Vz.f(x) - g(x)
(S/(SINP))/N : Af.Ag.3x.f(z) A g(x)
(S/(SINP))/N : Af.Ag.-,3z.f(z) A g(x)
((S\NP)\(S\NP/NP))/N : Af.AgAy.3x. f(x) A g(x, y)
((S\NP)\(S\NP/NP))/N : Af.AgAy.-3z.f(x) A g(x, y)

Figure C-1: Entries from the domain-independent fixed lexicon.

104



Bibliography

Alshawi, H. (1992). The Core Language Engine. The MIT Press.

Androutsopoulos, I., Ritchie, G., & Thanisch, P. (1995). Natural language interfaces

to databases-an introduction. Journal of Language Engineering, 1 (1), 29-81.

Baker, J. K. (1979). Trainable grammars for speech recognition. In Speech Commu-

nication Papers for the 97th Meeting of the Acoustical Society of America.

Baldridge, J. (2002). Lexically Specified Derivational Control in Combinatory Cate-

gorial Grammar. Ph.D. thesis, University of Edinburgh.

Bos, J., Clark, S., Steedman, M., Curran, J. R., & Hockenmaier, J. (2004). Wide-

coverage semantic representations from a CCG parser. In Proceedings of the

International Conference on Computational Linguistics.

Bozsahin, C. (1998). Deriving the predicate-argument structure for a free word order

language. In Proceedings of the Annual Meeting of the Association for Compu-

tational Linguistics.

Carbonell, J. G., & Hayes, P. J. (1983). Recovery strategies for parsing extragram-

matical language. American Journal of Computational Linguistics, 9.

Carpenter, B. (1997). Type-Logical Semantics. The MIT Press.

Charniak, E. (1972). Toward a model of children's story comprehension. Ph.D. thesis,

Massachusetts Institute of Technology.

Clark, S., & Curran, J. R. (2003). Log-linear models for wide-coverage CCG parsing.

In Proceedings of the Conference on Empirical Methods in Natural Language

Processing.

105



Clark, S., & Curran, J. R. (2007). Wide-coverage efficient statistical parsing with

CCG and log-linear models. Computational Linguistics, 33(4), 493-552.

Collins, M. (2002). Discriminative training methods for hidden markov models: The-

ory and experiments with perceptron algorithms. In Proceedings of the Confer-

ence on Empirical Methods in Natural Language Processing.

Collins, M. (2004). Parameter estimation for statistical parsing models: Theory and

practice of distribution-free methods. In Harry Bunt, John Carroll and Giorgio

Satta, editors, New Developments in Parsing Technology. Kluwer.

Dahl, D. A., Bates, M., Brown, M., Fisher, W., Hunicke-Smith, K., Pallett, D., Pao,

C., Rudnicky, A., & Shriberg, E. (1994). Expanding the scope of the ATIS task:

the ATIS-3 corpus. In ARPA HLT Workshop.

Ge, R., & Mooney, R. J. (2005). A statistical semantic parser that integrates syntax

and semantics. In Proceedings of the Conference on Computational Natural

Language Learning.

Ge, R., & Mooney, R. J. (2006). Discriminative reranking for semantic parsing. In

Proceedings of the COLING/ACL 2006 Main Conference Poster Sessions.

Ge, R., & Mooney, R. J. (2009). Learning a compositional semantic parser using an

existing syntactic parser. In Joint conference of the 47th Annual Meeting of

the Association for Computational Linguistics and the 4th International Joint

Conference on Natural Language Processing of the Asian Federation of Natural

Language Processing.

He, Y., & Young, S. (2005). Semantic processing using the hidden vector state model.

Computer Speech and Language.

He, Y., & Young, S. (2006). Spoken language understanding using the hidden vector

state model. Speech Communication, 48(3-4).

Hockenmaier, J., & Steedman, M. (2002). Generative models for statistical parsing

with combinatory categorial grammar. In Annual Meeting of the Association

for Computational Linguistics.

106



Hockenmaier, J., & Steedman, M. (2007). CCGbank: a corpus of CCG derivations

and dependency structures extracted from the penn treebank. Computational

Linguistics, 33(3), 355-396.

Joachims, T. (1999). Transductive inference for text classification using support vector

machines. In Proceedings of the International Conference on Machine Learning.

Johnson, M., Geman, S., Canon, S., Chi, Z., & Riezler, S. (1999). Estimators for

stochastic "unification-based" grammars. In Proc. of the Association for Com-

putational Linguistics.

Kate, R. J., & Mooney, R. J. (2006). Using string-kernels for learning semantic parsers.

In Proceedings of the 44th Annual Meeting of the Association for Computational

Linguistics.

Kate, R. J., & Mooney, R. J. (2007a). Learning language semantics from ambiguous

supervision. In Proceedings of the 22nd AAAI Conference on Artificial Intelli-

gence.

Kate, R. J., & Mooney, R. J. (2007b). Semi-supervised learning for semantic parsing

using support vector machines. In Human Language Technology Conference of

the North American Chapter of the Association for Computational Linguistics.

Lafferty, J., McCallum, A., & Pereira, F. (2001). Conditional random fields: Proba-

bilistic models for segmenting and labeling sequence data. In Proceedings of the

International Conference on Machine Learning.

LeCun, Y., Bottou, L., Bengio, Y., & Haffner, P. (1998). Gradient-based learning

applied to document recognition. Proceedings of the IEEE, 86(11), 2278-2324.

Levin, E., Narayanan, S., Pieraccini, R., Biatov, K., Bocchieri, E., Fabbrizio, G. D.,

Eckert, W., Lee, S., Pokrovsky, A., Rahim, M., Ruscitti, P., & Walker, M. (2000).

The AT&T darpa communicator mixed-initiative spoken dialogue system. In

Proceedings of the International Conference on Spoken Language Processing.

107



Liang, P., Bouchard-C6te, A., Klein, D., & Taskar, B. (2006). An end-to-end discrim-

inative approach to machine translation. In Proc. of the Annual Meeting of the

Association for Computational Linguistics.

Lu, W., Ng, H. T., Lee, W. S., & Zettlemoyer, L. S. (2008). A generative model

for parsing natural language to meaning representations. In Proceedings of The

Conference on Empirical Methods in Natural Language Processing.

Manning, C. D., & Schutze, H. (1999). Foundations of statistical natural language

processing. The MIT Press.

Marcus, M. P., Marcinkiewicz, M. A., & Santorini, B. (1993). Building a large anno-

tated corpus of english: The penn treebank. Computational Linguistics, 19(2),

313-330.

Miller, S., Stallard, D., Bobrow, R. J., & Schwartz, R. L. (1996). A fully statisti-

cal approach to natural language interfaces. In Proc. of the Association for

Computational Linguistics.

Montague, R. (1970a). English as a formal language. In Linguaggi nella societd e

nella tecnica, pp. 189-223.

Montague, R. (1970b). Universal grammar. Theoria, 36, 373-398.

Montague, R. (1973). The proper treatment of quantification in ordinary english. In

Approaches to Natural Language, pp. 221-242.

Papineni, K. A., Roukos, S., & Ward, T. R. (1997). Feature-based language under-

standing. In Proceedings of European Conference on Speech Communication

and Technology.

Pereira, F. C. N., & Shieber, S. M. (1987). Prolog and natural-language analysis.

Center for the Study of Language and Information.

Popescu, A.-M., Armanasu, A., Etzioni, O., Ko, D., & Yates, A. (2004). Modern

natural language interfaces to databases: Composing statistical parsing with

semantic tractability. In Proceedings of the International Conference on Com-

putational Linguistics.

108



Ramaswamy, G. N., & Kleindienst, J. (2000). Hierarchical feature-based translation

for scalable natural language understanding. In Proceedings of International

Conference on Spoken Language Processing.

Ratnaparkhi, A., Roukos, S., & Ward, R. T. (1994). A maximum entropy model for

parsing. In Proceedings of the International Conference on Spoken Language

Processing.

Seneff, S. (1992). Robust parsing for spoken language systems. In Proc. of the IEEE

Conference on Acoustics, Speech, and Signal Processing.

Siskind, J. M. (1996). A computational study of cross-situational techniques for

learning word-to-meaning mappings. Cognition, 61 (2-3).

Steedman, M. (1996). Surface Structure and Interpretation. The MIT Press.

Steedman, M. (2000). The Syntactic Process. The MIT Press.

Tang, L. R., & Mooney, R. J. (2001). Using multiple clause constructors in induc-

tive logic programming for semantic parsing. In Proceedings of the European

Conference on Machine Learning.

Taskar, B., Guestrin, C., & Koller, D. (2003). Max-margin markov networks. In

Neural Information Processing Systems.

Taskar, B., Klein, D., Collins, M., Koller, D., & Manning, C. (2004). Max-margin

parsing. In Proceedings of the Conference on Empirical Methods in Natural

Language Processing.

Thompson, C. A., & Mooney, R. J. (2002). Acquiring word-meaning mappings for

natural language interfaces. Journal of Artificial Intelligence Research, 18.

Villavicencio, A. (2001). The acquisition of a unification-based generalised categorial

grammar. Ph.D. thesis, University of Cambridge.

Ward, W. (1991). Understanding spontaneous speech: the phoenix system. In Pro-

ceedings of the Conference on Acoustics, Speech, and Signal Processing.

109



Ward, W., & Issar, S. (1994). Recent improvements in the CMU spoken language

understanding system. In Proceedings of the workshop on Human Language

Technology.

Watkinson, S., & Manandhar, S. (1999). Unsupervised lexical learning with categorial

grammars using the LLL corpus. In Proceedings of the 1st Workshop on Learning

Language in Logic.

Webber, B. (1979). A Formal Approach to Discourse Anaphora. Garland Publishing.

Winograd, T. (1970). Procedures as a representation for data in a computer program

for understanding natural language. Ph.D. thesis, Massachusetts Institute of

Technology.

Wong, Y. W., & Mooney, R. (2006). Learning for semantic parsing with statisti-

cal machine translation. In Proceedings of the Human Language Technology

Conference of the NAACL.

Wong, Y. W., & Mooney, R. (2007a). Generation by inverting a semantic parser that

uses statistical machine translation. In Proceedings of the Human Language

Technology Conference of the North American Chapter of the Association for

Computational Linguistics.

Wong, Y. W., & Mooney, R. (2007b). Learning synchronous grammars for semantic

parsing with lambda calculus. In Proceedings of the Association for Computa-

tional Lnguistics.

Woods, W. A. (1968). Procedural semantics for a question-answering machine. In

AFIPS '68 (Fall, part I): Proceedings of the December 9-11, 1968, fall joint

computer conference, part I, pp. 457-471.

Zelle, J. M., & Mooney, R. J. (1996). Learning to parse database queries using

inductive logic programming. In Proceedings of the National Conference on

Artificial Intelligence.

110



Zettlemoyer, L. S., & Collins, M. (2005). Learning to map sentences to logical form:

Structured classification with probabilistic categorial grammars. In Proceedings

of the Conference on Uncertainty in Artificial Intelligence.

Zettlemoyer, L. S., & Collins, M. (2007). Online learning of relaxed CCG grammars

for parsing to logical form. In Proc. of the Joint Conference on Empirical

Methods in Natural Language Processing and Computational Natural Language

Learning.

Zettlemoyer, L. S., & Collins, M. (2009). Learning context-dependent mappings from

sentences to logical form. In Proceedings of the Joint Conference of the As-

sociation for Computational Linguistics and International Joint Conference on

Natural Language Processing Processing.

111


