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Abstract

Compressed sensing is a non-adaptive compression method that takes advantage of
natural sparsity at the input and is fast gaining relevance to both researchers and

engineers for its universality and applicability. First developed by Candis et al.,
the subject has seen a surge of high-quality results both in its theory and applica-
tions. This thesis extends compressed sensing ideas to sensor networks and other
bandwidth-constrained communication systems. In particular, we explore the limits
of performance of compressive sensor networks in relation to fundamental operations
such as quantization and parameter estimation.

Since compressed sensing is originally formulated as a real-valued problem, quanti-
zation of the measurements is a very natural extension. Although several researchers
have proposed modified reconstruction methods that mitigate quantization noise for a
fixed quantizer, the optimal design of such quantizers is still unknown. We propose to
find the optimal quantizer in terms of minimizing quantization error by using recent
results in functional scalar quantization. The best quantizer in this case is not the
optimal design for the measurements themselves but rather is reweighted by a factor
we call the sensitivity. Numerical results demonstrate a constant-factor improvement
in the fixed-rate case.

Parameter estimation is an important goal of many sensing systems since users
often care about some function of the data rather than the data itself. Thus, it
is of interest to see how efficiently nodes using compressed sensing can estimate a
parameter, and if the measurements scalings can be less restrictive than the bounds
in the literature. We explore this problem for time difference and angle of arrival, two

common methods for source geolocation. We first derive Cramer-Rao lower bounds

for both parameters and show that a practical block-OMP estimator can be relatively

efficient for signal reconstruction. However, there is a large gap between theory and

practice for time difference or angle of arrival estimation, which demonstrates the

CRB to be an optimistic lower bound for nonlinear estimation. We also find scaling
laws 'for time difference estimation in the discrete case. This is strongly related to

partial support recovery, and we derive some new sufficient conditions that show a



very simple reconstruction algorithm can achieve substantially better s alings than
full support recovery suggests is possible.

Thesis Supervisor: Vivek K Goyal
Title: Esther and Harold E. Edgerton Associate Professor of Electrical Engineering
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Chapter 1

Introduction

Sensor networks are prevalent in today's technological landscape and have inspired

important engineering innovations in a variety of military, industrial, and environ-

mental applications. However, the nodes of these sensor networks must oftentimes

survey wide bands, requiring high-rate analog-to-digital conversion, expensive pro-

cessors, and large data flows to propagate information through the network. In the

case where the data of interest is sparse in some basis, meaning it has few degrees of

freedom, there is an opportunity to filter the measured signal intelligently and use a

sub-Nyquist sampling rate while still maintaining the fidelity of the data. Another

way of saying this is that it is possible to sample closer to the information rate of

the signal rather than being restricted above the Nyquist rate. Moreover, utilizing

the underlying sparsity allows for data compression, which eases the communication

load between nodes. Efficient techniques for exploiting sparsity in signal representa-

tion and estimation have caused an enthusiastic reexamination of data acquisition in

sensor networks.

Compressive sensor networks (CSN) exploit a new compression paradigm called

compressed sensing (CS) to non-adaptively filter and compress sparse signals. As

described in Section 2.1, CS refers to the estimation of a signal at a resolution higher

than the number of data samples by taking advantage of sparsity or compressibility

of the signal and randomization in the measurement process. CSN nodes contain

analog-to-digital converters (ADCs) that use CS principles such as signal spreading



and random sampling. This allows the ADCs to sample significantly slower than

the Nyquist rate, making the hardware simpler to design and cheaper to manufac-

ture. Moreover, we can transmit the compressed version of the input signal and ease

communication loads.

This thesis addresses extensions of compressed sensing to quantization and es-

timation, both important operations in sensor networks. We focus on fundamental

limits and practical algorithms, thereby abstracting out the actual data-collecting

machinery. Thus, although the thesis is related to CSN in theme, the questions we

study are of independent interest in the compressed sensing literature.

1.1 A Peek at Compressed Sensing

We present a quick summary of compressed sensing (CS) and introduce the nota-

tion that will be used in the thesis. We will provide a more detailed look at CS in

Section 2.1.

Consider a length-N input vector x that is K-sparse in some orthonormal basis

I, such that a length-N vector u = T- 1 x will have only K nonzero elements. Define

the sparsity pattern J to be the set of indices of the nonzero elements in u. Also

define the sparsity ratio to be a " KIN.

Now let a length-M measurement vector be y = 4x, where )E RMXN is the

sensing matrix. We define the downsampling rate to be d N/M. In general, since

d > 1, we cannot recover x from the measurements y since 1 is underdetermined.

The major innovation in compressed sensing for the case of sparse u is that the

recovery of x from y via some computationally-tractable reconstruction method can

be guaranteed asymptotically almost surely for random sensing matrices (. This

means the CS encoder is simply a matrix multiplication, making it linear and non-

adaptive. Moreover, the decoder is well-studied and implementable in practice.

Intuitively, compressed sensing works because the information rate is much lower

than the Nyquist rate and hence sampling via Shannon's famed theorem is redun-

dant. For certain choices of 4), specifically when the sparsity and sampling (T and



1 respectively) are incoherent, CS provides theoretical bounds on the performance of

signal or sparsity pattern recovery.

Many practical reconstruction methods, or decoders, have been proposed including

convex programs like basis pursuit and greedy algorithms like orthogonal matching

pursuit (OMP). The algorithms pertinent to the thesis are discussed in Section 2.1.3.

1.2 Thesis Outline

The thesis will explore optimality criteria and practical algorithms for certain aspects

of CSN. We tackle three problems that bound the performance of sampling, transmis-

sion and inference of sparse signals using a CS setup. These problems are addressed

in separate chapters in this thesis. Before that, we begin with some background on

compressed sensing, quantization and inference bounds in Chapter 2.

Chapter 3 addresses the design of optimal quantizers at the sensor's ADC to

minimize distortion due to quantization noise. Although quantization is a necessary

step in any practical ADC, it is oftentimes neglected in theoretical explorations. We

find an approximation to the optimal quantizer and quantify its performance.

Chapter 4 looks at the performance of estimators for time difference of arrival

(TDOA), angle of arrival (AoA), and signal reconstruction using the CSN framework.

We present heuristic algorithms for estimating such parameters at a fusion center

given the random measurement data from CSN nodes. We also derive Cramer-Rao

lower bounds to quantify the error variance of optimal estimators and compare them

to practical ones. TDOA and AOA are useful in tracking and surveillance, and this

chapter aims to see if CSN can be applied to these situations.

Finally, we look at scaling laws for discrete time difference estimation (dTDOA)

in Chapter 5. This specific case of the previous is concerned with sparse discrete-time

signals that are periodic and delayed (circularly shifted) by some integer amount. We

aim to find how the compression factor scales with signal length and sparsity so that

the time difference can be recovered with high probability.
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Chapter 2

Background

This thesis extends compressed sensing to two fundamental areas in communications:

quantization and inference. This chapter introduces compressed sensing in the context

of its history, theory and applications. Also, relevant concepts in quantization and

inference are discussed.

We first introduce the notation for the rest of the thesis. Scalars and vectors are

in lowercase, while matrices are in uppercase. Subscripts are used to indicate entries

of a vector or matrix. A random variable is always bolded while its realizations are

unbolded. This is used carefully to distinguish between when we care about the

variable being random or just the realizations of it for computational manipulations.

2.1 Compressed Sensing

Almost exclusively, we consider the setup described in Section 1.1. Except when

mentioned, we assume without loss of generality that T is the identity matrix IN and

hence the input vector x is sparse. The sensing matrix ( is chosen to satisfy certify

certain conditions to be discussed and the measurement vector is y = (x + r, where

r1 is measurement noise. As a reminder, x has length N with K nonzero entries and

y has length M.

In this section, we present some pointers to various works on compressed sensing.

For those interested in delving deeper into the literature, we recommend the March



2008 issue of the IEEE Signal Processing Magazine, especially [1], as a starting point.

2.1.1 History

Compressed sensing was developed in three landmark 2006 papers by Candis et al.

[2], Donoho [3], and Candis and Tao [4]. However, the idea of exploiting sparsity

in undersampled mixed measurements has a long and rich history. The substitution

of the natural to pseudonorm (xIIlo = number of nonzeros in x) with an 1 norm

(11z i1 - E zx,|) in the sparsity constraint to create a convex optimization problem is

well-known in many communities, including geophysics [5] and medical imaging [6].

This trick was later formalized in the harmonic analysis community, and the proofs in

these works relate strongly to the uncertainty principle [7, 8] and the idea of mutual

incoherence between the sparse and measurement bases [9, 10, 11].

In [2], Candes et al. contributed several key ideas to distinguish compressed sens-

ing from previous work. The most important of these is using random sensing as

both a practical way to reduce observed measurements and a tool for proving suffi-

ciency in the number of measurements needed for signal recovery. Also essential is

exploiting practical algorithms developed previously for sparse expansions of signals

(called atomic decomposition) to sparse signal recovery. In particular, the authors

considered a convex optimization (which simplified to a linear program) to find the

best sparse time signal given a random subset of frequencies, and determined that

the number of measurements for perfect signal recovery with high probability scales

as O(K log(N/K)).

Later papers by Donoho [3] and Candis and Tao [4], generalized compressed sens-

ing to signals sparse in arbitrary bases and a broader class of compressible signals

that satisfy

Jjxjjp = xil < R (2.1)

for some constant R and 0 < p < 1. For compressible signals, perfect recovery is im-

possible but the minimax error of the K-sparse solution found from using O(K log N)

random measurements is bounded by the error of the best K coefficients. Succinctly



stated, K log N random measurements is approximately as good as the K most in-

formative ones.

Later extensions to measurements with additive noise were proposed by Candes

et al. [12], Haupt and Nowak [13], and Cands and Tao [14].

2.1.2 Incoherence and the Restricted Isometry Property

In the first CS papers, sensing is almost always assumed to be random and most of

the derivations hinge on properties of random matrices. However, compressed sensing

can be applied much more generally and measurement scaling laws can be derived as

long as both the sparse basis I and sampling matrix ob obey either incoherence or

the restricted isometry property (RIP). We will now briefly describe both methods

and contrast them.

Coherence, introduced earlier in [9] for atomic decomposition, is an intuitive mea-

sure of similarity between two bases and corresponds to the largest correlation between

any atom pair. Mathematically, given matrices I) and I representing orthonormal

bases in IRN, the coherence p((I, T) is

p(o,9T) = max I(Ok, j)l, (2.2)
1<k,j<N

where Ok and 4j are columns (or atoms) of D and T respectively. The two bases

are considered incoherent if p( 4 , I) is small. Two applicable examples include the

time-frequency basis pair, with p(4, T) = 1, and random bases, which are incoherent

with most natural bases.

In CS, it is known that signal recovery via l1 minimization is only possible for

M 1 A2(D, I)K log N [15]. The number of measurements is minimized when the

sensing and sparsity are incoherent. This validates the scenarios presented in [2] and

[4] since in both situations the coherence term is close to 0(1). Moreover, coherence

allows one to determine what types of sensing approach the CS bounds and gives

intuition on how sparsity and sensing must be "orthogonal" to each other.

The restricted isometry property, described in [16], is satisfied by matrices I and



(D if the smallest possible 6 for

(1 - <)u1 K 4'II1 (1 + 6)IIZL12 (2.3)(1 - 6) u < 1 2 (2.3)

is not close to 1. This must hold for all K-sparse vectors u. An interpretation of these

inequalities is that the compression HD somewhat preserves the norm of all K-sparse

signals, allowing them to be recovered later.

For sampling matrices where RIP holds, the £l minimization will have bounded

error [12], meaning for some constant c,

Ilii - ull _ CIIUK - u1l, (2.4)

where UK is the best K-sparse estimate and fi is the fl-minimization solution. This

means that, for choices of 4 that satisfy RIP, exact reconstruction is possible for K-

sparse inputs. However, it also bounds compressible and noisy signals as well. It has

been shown that random matrices satisfy RIP for M - O(Klog(N/K)) and hence

be suitable for fl minimization.

Both incoherence and the RIP provides conditions on 4 and I for the CS model

to perform successful signal reconstruction. The RIP provides stronger statements

and can be extended easily to compressible signals. However, it is less intuitive and

much more difficult to validate. Incoherence is a weaker condition but can be useful

for choices of (D where RIP will not hold.

2.1.3 Reconstruction Algorithms

The reconstruction of the sparse input x from the measurement vector y and sensing

matrix 4) is a well-studied problem in the last few years. Reconstruction algorithms

usually fall into three categories: combinatorial searches, convex programs and greedy

algorithms.

The combinatorial methods are the most intuitive but unfortunately not compu-

tationally tractable. If the signal is known to be exactly K-sparse, then it must lie



on one of the K-sparse planes in RN. There are exactly (N) such subspaces and one

can do an exhaustive search to find the best solution constrained on them. Another

way of formulating this problem is to solve the combinatorial optimization problem

x = argminllxllo0, subject to y = x, (2.5)

where Ixllo is the to pseudonorm, or the number of nonzero terms [2]. This corre-

sponds to the ML estimator studied in [17, 18]. For this class, M O(K) measure-

ments are needed to perfectly reconstruct the original sparse signal in the noiseless

setting. In the noisy setting, [19] shows that M O(K log(N - K)) is a sufficient

condition for perfectly recovering the sparsity pattern.

Convex relaxations of the sparsity constraint reduce the computational costs dra-

matically and were discussed in the original CS papers. Specifically, a linear program

S= argminlxll, subject to y = zx, (2.6)

gives accurate signal recovery with overwhelming probability for P chosen randomly

provided M is large enough. This is known in the literature under the name ba-

sis pursuit [20]. As shown in [2], the £l minimization is successful almost surely

(compared to the to minimization being successful always) if the number of mea-

surements is O(Klog(N/K)). Later work sharpens this sufficient condition to M >

2K log(N/M) [21].

With additive Gaussian noise, perfect reconstruction of a K-sparse signal is impos-

sible. A modified quadratic program called lasso [22] is often used to find a solution

with bounded error for M O(K log(N - K)). Lasso takes the form

= arg min (Ily - x112T + 1IIxII) , (2.7)

with the regularization parameter pt dependent on the Gaussian noise variance. As a

sample result, lasso leads to proper detection of the nonzero indices, called sparsity

pattern recovery, with high probability if M '- 2K log(N - K) + K under certain



conditions on D, p, and the scaling of the smallest entry of x [17]. Several algorithmic

methods for determining the reconstruction from lasso for a given p have been studied

[22, 23], but the proper choice for At is an interesting design problem.

One method to visualize the set of solutions formed by lasso is homotopy contin-

uation [24]. HC considers the regularization parameter p at an extreme point (e.g.

very large p so the reconstruction is all zero) and sweeps p so that all sparsities and

the resulting reconstructions are obtained. It is shown that there are N values of P

where the lasso solution changes sparsity, or equivalently N + 1 intervals over which

the sparsity does not change. For p in the interior of one of these intervals, the re-

construction is determined uniquely by the solution of an affine system of equations

involving a submatrix of 4. In particular, for a specific choice p and observed random

measurements y,

2DTOj + p sgn(x) = 24)y, (2.8)

where DI,, is the submatrix of 4) with columns corresponding to the nonzero entries

J, c {1, 2, ... , N} of 2.

A final class of reconstruction algorithms is made up of greedy heuristics that

are known to be good for sparse signal approximations for overcomplete dictionaries

[25, 26]. In particular, an algorithm called orthogonal matching pursuit (OMP) is

shown to be successful in signal recovery for the scaling M - O(K log N) [27].

2.1.4 Extensions and Applications of CS

Compressed sensing has reinvigorated the study of sampling in applied mathematics,

statistics, and computational science. We will briefly mention some current work in

extending CS theory and applications.

Many researchers are trying to generalize the rather rigid constraints of the land-

mark papers on CS, which restricts the sparse signal to be discrete time and continu-

ous valued. Lu and Do [28], and Eldar [29] have extended the CS framework to analog

signals. Goyal et al. [30] and others consider practical communication constraints in

terms of quantization of the measurements, which we further extend in Chapter 3.



Other authors like Fletcher et al. [31] and Saligrama et al. [32] explore the asymp-

totic bounds of sparsity pattern recovery rather than signal recovery. Extensions to

simultaneous sparsity for multi-sensor compressed sensing has also be widely studied,

most commonly with an "e1 of the e2" sparsity cost in the measurement matrix of

sensor readings [33, 34].

Other current work focuses on improving existing reconstruction algorithms, both

in computational complexity and in the number of measurements needed. Some

interesting papers include thresholded basis pursuit [35], CoSaMP [36], and subspace

pursuit [37].

Finally, numerous applications have also been developed using the CS paradigm in

a variety of areas. Many researchers are applying CS to magnetic resonance imaging

[38] since fast sampling is essential. Other relevant EE-style applications include

finding users in a wireless network [39] and single-pixel imaging [40]. Moreover,

compressed sensing has found applications in fields as diverse as astronomy [41],

integrated circuits [42], and neuroscience [43].

2.2 Quantization

The quantization of real-world measurements is an essential consideration for digital

systems. When an analog signal x(t) is processed by an ADC, a digital (discrete-

value, discrete-time) signal x[n] is produced. In most cases, the sampling in time is

uniform but there is flexibility is choosing the values (or levels) of the discrete-valued

output. The best choice for the number and values of the levels is a developed field

of research that is surveyed in [44].

We define a quantizer Q as a mapping from the real line to a countable set of

points C = {ci}. In particular, if we partition the real line into a set of intervals

P = {P}, then Q(x) = ci if z E P. A more communications-flavored definition

of quantization is as a source-coding problem. Each point ci is associated with a

string of bits bi, and hence an input x is mapped to the string bi through a lossy

encoder S. A corresponding decoder S then maps bi to ci. The quantizer is therefore



Q(.) = S(S(.)). This view is inspired by the canonical works of Shannon [45] and

allows us understand the cost of quantization in terms of the expected rate, or length

of each bitstring.

The design of the codebook C and partition P has been studied extensively. The

case when each observation is considered independently is called scalar quantization.

Alternatively, sets of observations quantized together is called vector quantization.

Another category of variation is whether the bitstrings are of a single length, called

fixed-rate quantization, or can vary, called variable-rate or entropy-coded quantization.

In most real-world applications, fixed-rate scalar quantization is used. For simplicity,

the levels are usually chosen to be equidistant from one another, called uniform

quantization. However, other types of quantization can lead to significant gains.

2.2.1 Optimal Quantization

Usually, one wishes to design the quantizer Q to minimize some cost. In the literature,

the cost is usually the mean-squared error (MSE). Hence, for a probabilistic input y,

the quantizer is found by solving the optimization

minE [Ily - Q(y)112] . (2.9)
Q

For the fixed-rate case and a set of rates { Ri }, the constraint is the maximum number

of quantization levels for each yi being less than 2R,. For the entropy-coded case, the

entropy of the codebook for each yi is less than Ri.

Finding analytical results for quantization as formulated is difficult because the

function Q is not continuous. Therefore, we use the high-resolution approximation

with Ri large to form continuous representations of quantizers [46, 47]. We define

the (normalized) quantizer point density function to be A(t), such that A(t)6 is the

approximate fraction of quantizer reproduction points for yi in an interval centered

at t with width 6. In the fixed-rate case, using a surprisingly simple application

of Holder's inequality [48], the optimal point density for a given source distribution
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fy (.) is

f1/3(t)
Ai (t) = l3( (2.10)

f 1f/3

The distortion corresponding to this point density is

M

D({RM) 2-2R iE 1Yi (2.11)
[12A2 (y)l

To design a quantizer with a certain rate, we can simply partition the cumulative point

density into equidistant intervals and find the corresponding codeword. Figure 2-1

shows the point density and a sample quantizer for a source y.

A similar derivation applies for entropy-coded quantization. We will refer to [44]

for the details but point out the key result that the optimal point density A(t) is

constant on the support of yi.

2.2.2 Distributed Functional Scalar Quantization

In many applications, one might desire to minimize the quantization error of some

function g(y) rather than the source y itself. Distributed functional scalar quantiza-



tion (DFSQ) [49, 50] addresses how to design a set of quantizers to discretize each

entry of y. Unlike (2.9), the optimality criterion is now

min E [ g(y) - g(Q(y)) 2] , (2.12)

subject to similar codebook size or entropy constraints.

A canonical example illuminating the gains of DFSQ is separately scalar quan-

tizing a set of variables {yi} when we wish to minimize distortion on max({yi)).

Intuitively, we should have a higher concentration of codewords for larger values of

yi because there is a higher probability that it will be relevant. DFSQ quantifies this

optimal quantizer and we note a significant operational distortion-rate improvement.

To apply the theory discussed in [50], we need g(-) and fy(.) to satisfy certain

conditions:

C1. g(y) is (piecewise) smooth and monotonic for each yi.

C2. The partial derivative gi(y) = Og(y)/Oy; is (piecewise) defined and bounded

for each i.

C3. The joint pdf of the source variables fy(y) is smooth and supported in a

compact subset of RM.

For a valid g(-) and fy(-) pair, we define a set of functions

yi(t) = (E [g,(y)12 Yi = t]) 1/ 2 . (2.13)

We call i(t) the sensitivity of g(y) with respect to the source variable yi.

In the fixed-rate case, the optimal point density is

Ai(t) = C (2 (t)fyi (t)) 1/ 3 , (2.14)

for some normalization constant C. This leads to a total operational distortion-rate

M [ 72-2 _(yi)
D({Ri}) 2-2RE . (2.15)

iL1 2 k1)



The sensitivity yi(t) serves to reshape the quantizer, giving better resolution to re-

gions of yi that have more impact on g(y), thereby reducing MSE. One way of looking

at these results then is that this is simply an ordinary quantization design problem,

but with the pdf weighted by the sensitivity. We caution that this reweighting need

not integrate to unity so it is not a valid pdf.

In the entropy-coded case, the optimal point density is proportional to the sensi-

tivity (Ai(t) oc yi(t)). This leads to a distortion

M

D({Ri}) 1 I 22h(y)+2Elog2 '(Yi)2-2R'. (2.16)
i=1

The theory of DFSQ can be extended to a vector of functions, where cjR = g(J)(y)

for 1 < j < N. Since the cost function is additive in its components, we can show

that the overall sensitivity for each component Yi is

N
7 = N y (t), (2.17)

j=1

where 7 j)(t) is the sensitivity of the function g(j)(y) with respect to yi.

2.3 Inference Performance Bounds

In the inference literature, there are several performance bound families that quantify

the expected error variance of optimal parameter estimators. The simplest and most

popular of these is the Cramr-Rao lower bound (CRB), which is a measure of the

average curvature of the log-likelihood function for the observed data with respect

to the parameter in question. We will briefly define both Fisher information and the

CRB, using notation from [51].

Definition 2.1. Given a set of observations x parametrized by a non-random variable



0. t he Fzsher information 1(0) is defined as

1(0) = -E 2 Inp(x; 0) E In p(x; 0))2

Definition 2.2. In the multivariate case with a vector of parameters 0, the Fisher

zvformatwon matrix 1(0) is defined as

I(0) = E [ Inp(x;0)- lnp(x; 0) .

Definition 2.3. The Cramer-Rao lower bound is defined as the inverse of the Fisher

information. The error variance for any unbiased estimator 0 is bounded below by

the CRB, such that

Var M> -

In the multivariate case, the variance of an unbiased estimator 0, is bounded by

Var (o) > [I(0)I]i

Due to its simplicity, the CRB tends to be too optimistic of a bound. A variety

of papers show that the CRB is never tight in nonlinear parameter estimation except

in the asymptotic-SNR regime [52, 53]. Of relevance to this thesis, it is not tight for

TDOA and AOA estimation from measured data for realistic SNR scenarios. Even

more troubling, there is a well-known threshold effect at low SNR, when the actual

error variance deviates dramatically from the bound. There are several other classes

of bounds, including the Barankin [54], Ziv-Zakai [52] and Weiss-Weinstein [53], that

are tighter. However, they are more complex to analyze and implement.



Chapter 3

Quantization of Random

Measurements

One of the major limitations of the original formulation of compressed sensing is that

all quantities are purely continuous-valued, making the model unrealistic in prac-

tical systems like sensor networks. One emerging topic in CS research is applying

quantization to CS measurements for transmission or storage while maintaining re-

construction fidelity. Most current research focuses on the design of reconstruction

algorithms to reduce quantization error while keeping the quantizer design fixed. This

chapter considers the reverse case, when the reconstruction algorithm is known and

the quantizer is designed to minimize distortion. We utilize recent results in func-

tional quantization, described in Section 2.2.2, to approximate the best quantizer for

a CS system.

3.1 Related Work

Quantized compressed sensing (QCS) is fast gaining interest as researchers begin to

apply compressed sensing to practical systems. Current work can be separated into

two categories: ones that consider asymptotic reconstruction performance assuming

a mean-squared error (MSE) distortion metric, and ones providing algorithmic mod-

ifications to existing reconstruction methods for mitigating quantization error.



The first work for asymptotic performanlce of QCS is by Candes and Romberg [55]

and considers uniform scalar quantization on random measurements for compressible

signals. The authors find the worst-case distortion (using Kolmogorov entropy) for

uniform quantization is within a (log R)2 facto of the optimal encoding. Later work

show that, in exactly sparse signals, the penalty of using scalar quantization is much

more severe [56, 30]. Bounds for reconstruction distortion in the presence of quanti-

zation are presented in [57].

Algorithmically, several modifications to existing reconstruction methods have

been used to reduce quantization error. In [12], quantization is treated as iid bounded

noise, and reconstruction is found via a relaxed convex optimization

= argmin llxll , subject to ly - xl2 < c, (3.1)

where c is determined by the noise, or quantization rate. Extensions to this opti-

mization include adding a sign consistency constraint in the low-rate case [58], and

applying a different ,p norm on the fidelity constraint [59]. Other modifications in-

clude quantized subspace pursuit [57] and vector quantization through binning of

quantizer output indexes [60].

3.2 Contribution

As mentioned before, previous works take a reconstruction-centric view of quantiza-

tion. Our contribution is to reduce distortion by designing the quantizer intelligently

based on knowledge of the processing that will occur later to the values being quan-

tized. The key observation is that QCS measurements are used as arguments in a

nonlinear reconstruction function. Thus, designing a quantizer for the reconstruction

is not equivalent to designing a quantizer for the measurements, as demonstrated in

an example in Appendix 3.B.

To tackle this problem, we model the reconstruction as a vector-valued function

^k = G(y) dependent on the observed measurements y, and we wish to minimize
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Figure 3-1: A compressed sensing model with quantization of noisy measurements y.
The vector Ynl denotes the noiseless random measurements.

distortion resulting from quantization of y. Hence, this is exactly a functional quan-

tization problem (c.f. Section 2.2.2), but extended to the vector case. This extension

is straightforward because the cost is additive in the components of the output k and

because the proofs for functional quantization rely on standard calculus arguments.

Thus, the net sensitivity is simply the mean effect due to the sensitivities for each

scalar function and is represented by (2.17).

We then determine the sensitivity for the application of DFSQ to QCS and present

positive numerical results. For these results, we make specific choices on the source

and sensing matrix distributions and on the reconstruction method. Also, we focus

almost entirely on fixed-rate scalar quantization. However, the theory applies more

generally and we provide pointers for later extensions.

This work has been published in [61] and [62].

3.3 Problem Model

Figure 3-1 presents the QCS model. We use the notation discussed in Section 2.1

and assume that r is Gaussian noise. The transmitter samples the input using 4 and

encodes the measurements y into a bitstream by using encoder S with total rate R.

Next, a decoder S produces a quantized signal r from by. The overall quantizer is

denoted Q(-) = S(S(-)). Finally, a reconstruction algorithm G outputs an estimate ^.

The function G is a black box representing lasso, OMP or another CS reconstruction

algorithm. Note that G takes as input a vector of length M and outputs a vector of

length N.

We now present a probabilistic model for the input source and sensing matrix.



It is chosen to guarantee finite support on both the input and measurement vectors,

and hence prevent overload errors in the quantizer. Although this does not need to

hold in general, it will obviate discussions on overload and allow us to focus on the

important aspects of the analysis.

Assume the K-sparse vector x has random sparsity pattern J chosen uniformly

from all possibilities, and each nonzero component xi is distributed iid U(-1, 1). This

corresponds to the least-informative prior for bounded and sparse random vectors. Let

the additive noise vector rl be distributed iid Gaussian with zero mean and variance

a2 . Finally, assume 4 corresponds to random projections such that each column

j E IRW has unit energy (ljl 2 = 1). The columns of 4) thus form a set of N

random vectors chosen uniformly on the unit (M - 1)-hypersphere. The cumulative

distribution function (cdf) of each matrix entry Dij is described in the following

lemma:

Lemma 3.1. Assume Oj E R M is a random vector uniformly chosen on a unit

(M - 1)-hypersphere for M > 2. Then the cdf of each entry 4ij of the matrix 4 is

I 1-T(v,M), 0 < v <l1;

F 1 (v, M) = T(-v,M), -1 < v < 0;

0, otherwise,

where
F(M) CCOS(sinO)M_2

T(v, M) = (sin )M-2d

and F(-) is the Gamma function.

Proof. See Appendix 3.A. Ol

We find the pdf of 4ij by differentiating the cdf or using a tractable computational

approximation. Since y = )x, each measurement is

N

yi = ijxj zijxj
j=1 3EJ zij
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Figure 3-2: Distribution fy,(t) for (K, M, N) = (5, 71, 100). The support of yi is the
range [-K, K], where K is the sparsity of the input signal. However, the probability
is only non-negligible for small yi.

The distribution of each zij is found using derived distributions. By symmetry, these

pdfs are all identical and will be represented by fv.(t), which is bounded on [-1, 1].

The distribution of yi is then the (K - 1)-fold convolution cascade of f, (t) with itself.

Thus, the joint pdf fy(y) is smooth and supported for { yi < K}, satisfying one

of the three conditions of DFSQ listed in Section 2.2.2. Figure 3-2 illustrates the

distribution of yi for a particular choice of signal dimensions.

The reconstruction algorithm G is a function of the measurement vector y and

sampling matrix 4. For this work, we assume G(y, (P) is lasso with a proper relaxation

variable p, as formulated in (2.7). From the homotopy continuation view of lasso,

as discussed in Section 2.1.3, we see G(y, Q) is a piecewise smooth function that is

also piecewise monotonic with every yi for any fixed p~. Moreover, for every p the

reconstruction is an affine function of the measurements through (2.8), so the partial

derivative with respect to any entry yi is piecewise defined and smooth (constant in

this case). Hence, conditions C1 and C2 for DFSQ are satisfied and we can use the

sensitivity equations discussed earlier.



3.4 Optimal Quantizer Design

\Ve now pose the optimal fixed-rate quantizer design as a DFSQ problem. For a given

noise variance a 2, choose an appropriate p to form the best reconstruction R from the

iunquantized random measurements y. We produce M scalar quantizers for the entries

of y such that the quantized measurements k will minimize the distortion between

x = G(y, b) and R = G(r, P) for a total rate R. Note G can be visualized as a set of

N scalar functions kj = G(j)(r, D) that are identical in distribution due to the ran-

doinness in 4. Since the sparse input signal is assumed to have uniformly distributed

sparsity and D distributes energy equally to all measurements yi in expectation, we

argue by symmetry that each measurement is allotted the same number of bits and

that every measurement's quantizer is the same. Moreover, again by symmetry in

J, the functions representing the reconstruction are identical in expectation and we

argue using (2.17) that the overall sensitivity *ycs(-) is the same as the sensitivity of

any G(j)( , P). Computing (2.13) yields the point density Acs ().

To determine a functional form of lasso, we use homotopy continuation. For a

given realization of P and ri, HC can find that appropriate sparsity pattern J, for a

chosen p. Equation (2.8) is then used to find the partial derivative OG() (y, P)/Oyi,

which is needed to compute -ys(). The resulting differentials can be defined as

() ) ( U) (y, D)
Gi (y,)= y, (3.2)

We now present the sensitivity through the following theorem.

Theorem 3.1. Let the noise variance be a2 and choose an appropriate pt for the

sparsity K. Define y\i to be all the entries of vector y except yi. The sensitivity of

each entry yi, defined as y )(t), can be written as

1
( fy1((t) EY\i 61)Y , [i =,l t,



For a realhzatzon 1 and J, found through HC, fy, l(t(I) is the convolution cascade

of { zij - (-1 . (4 2)} for j E J. By symmetry arguments, ys(t) = -(3 ) (t) for any i

and j.

Proof. By symmetry arguments, we can consider any i and j for the partial derivative

in the sensitivity equation without loss of generality. Noting (3.2), we define

) (t , )) = Ey\i [ ('y,) 2 Y = t

and then modify (2.13) in the following steps:

W = (E [G=(Y ) 2 2

= (E. [Fj)(t, 4) yi = t])

Plugging in (3.3) will give us the final form of the theorem. Given a realization b,

Yi = Z J 4Dij~j = E ,J Zij z meaning zij - U(-4Dij, 41ij). The conditional probability

fyj,(yk') can be found by taking the (K - 1)-fold convolution of the set of density

functions representing the K nonzero zij's. O

The expectation in Theorem 3.1 is difficult to calculate but can be approached

through L Monte Carlo trials on 4, rl, and x. For each trial, we can compute the

partial derivative using (3.3). We denote the Monte Carlo approximation to that

function to be (L )(_). Its form is

^(L)(t) L 1 (fy, i(tI)e) [Gj) 2
/sW L f(t)1 [" ( y , (e,) (3.4)

with i and j arbitrarily chosen. By the weak law of large numbers, the empirical mean

of L realizations of the random parameters should approach the true expectation for



L large.

We now substitute (3.4) into (2.14) to find the Monte Carlo approximation to the

optimal quantizer for compressed sensing. It becomes

AL) (t) = C ( L)(t)fy))/3 , (3.5)

for some normalization constant C. Again by law of large numbers arguments,

AL) (t) -_+ Acs(t) (3.6)

for L large.

3.5 Experimental Results

We compare the CS-optimized quantizer, called the "sensitive" quantizer, to a uni-

form quantizer and "ordinary" quantizer which is optimized for the distribution of y

through (2.10). The ordinary quantizer would be best if we want to minimize distor-

tion between y and 9, and hence has a flat sensitivity curve over the support of y.

The sensitive quantizer Ac,(t) is found using (3.5) and the uniform quantizer Auni(t)

is constant and normalized to integrate to 1.

If we restrict ourselves to fixed-rate scalar quantizers, the high-resolution approxi-

mation for quantization distortion (2.11) can be used. The distortion for an arbitrary

quantizer Aq(t) with rate R is

D(R) 2-2RE s( 1)
[12A2(yi)

= 2R Yc2s(t)fyi(t)dt (3.7)12A2( dt. (3.7)

Using 1000 Monte Carlo trials, we estimate ycs(t) in Figure 3-3. Note that the

estimate is found through importance sampling since there is low probability of getting

samples for large yi in Monte Carlo simulations. The sensitivity is symmetric and
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Figure 3-3: Estimated sensitivity sy,(t) via Monte Carlo trials and importance sam-
pling for (K, M, N) = (5, 71, 100).

peaks away from zero because of the structure in (3.3). Some intuition is provided in

Appendix 3.C for the scalar case. The point density functions for the three quantizers

are illustrated in Figure 3-4.

Experimental results are performed on a Matlab testbench. Practical quantizers

are designed by extracting codewords from the cdf of the normalized point densities.

In the approximation, the ith codeword is the point t such that

(t')dt' i - 1/2

X(t')dt' 2.R"

where Ri is the rate for each measurement. The partition points are then chosen to

be the midpoints between codewords.

We compare the sensitive quantizer to uniform and ordinary quantizers using the

parameters a 2 = 0.3 and y = 0.1. Results are shown in Figure 3-5.

We find the sensitive quantizer performs best in experimental trials for this com-

bination of a 2 and p at sufficiently high rates. This makes sense because As(t) is a

high-resolution approximation and should not necessarily perform well at very low

rates. Numerical comparisons between experimental data and the estimated quanti-
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Figure 3-4: Estimated point density
(K, M, N) = (5, 71, 100).
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Figure 3-5: Results for distortion-rate for the three quantizers with ac2 = 0.3 and

P = .01. We see the sensitive quantizer has the least distortion.



zation distortion in (3.7) are similar.

3.A Proof of Lemma 3.1

Consider a unit hypersphere of dimension M - 1 centered at origin in the space of

RM". We draw N vectors Oj uniformly from the surface of the hypersphere and form

a matrix 4 E R M x N . VWe show that every entry of 4 is identically distributed and

the cdf of each entry Wij is

1-T(v,M), 0<v<1;

F, (v , M) = T(-v, M), -1 < v < 0;

0, otherwise,

where
(M p arccos(v)

T(v, M) - 2M-1 (sin 0)M - 2 dO

and F(-) is the Gamma function.

Proof. We begin by noting that an (M - 1) hypersphere (in IR) with radius R has

surface area

S(M, R) = ' (3.8)

where F(.) is the Gamma function.

Because we are drawing uniformly over the shell, the fraction of the hypersphere

in the region satisfying the constraint vi > v is Pr(vi > v). This is found through

the integration

Pr(vi > v) ) S(M - 1, sin O)dO
S(M, 1) J0

for v E [-1, 1].

Geometrically, the integration is over every (M - 2) hypersphere in the region

{v < vi _ 1} (or equivalently {arccos(v) > 0 > 0}). Figure 3-6 visualizes the

integration for the case M = 3.
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Figure 3-6: Integration over the circles that form the unit spherical shell for 0 < 0 <
arccos(v).

We simplify the integral using (3.8):

Pr(vi > v) = F ) arccos(v)2
M-1 (sin)M-2

2- 2 (si d)]p(M 2 1

M- 1

JF(")
I arccos(v)

(sin O)M - 2 dO

a T(v, M).

By symmetry, Pr(vi > v) = Pr(vi < -v) and hence the cdf is

Fv (v, M) = Pr(vi < v) =

1 -T(v, M),

T(-v, M),

0,

0<v<1;

-1 <v < 0;

o.w.

We use symmetry arguments to show each entry in v has the same distribution.



Since 4J is constructed from N independent v vectors, we can also use symmetry

arguments to show every entry ij is identically distributed. We now make some

remarks about the distribution of I4 ij:

1) Unfortunately, the distribution of bij is difficult to compute analytically (it is

a sum of hypergeometric functions). Instead, one can use numerical methods to find

both F, (v, M) and the probability density function (pdf) fv, (v, M).

2) The distribution is always symmetric around 0 and has a support of [-1, 1].

3) As M increases, the distribution becomes more peaked around 0 and ap-

proaches a Dirac delta.

4) Because every column vector must have unit norm, the entries in a column of

4 are not independent. However, since the columns are chosen independently, entries

across rows are independent.

One can easily generate v by just creating a random Gaussian M x N matrix

and then rescaling the columns to have unit norm. Figure 3-7 compares the results

from this lemma (red line) with the empirical distribution (blue bars) formed through

Monte Carlo trials for several values of M. We see the empirical results match the

theoretical distribution very well.

3.B Functional Quantization Example

We present a pedagogical fixed-rate scalar quantizer example to build intuition for

functional quantization. Assume yl and Y2 are uniform random variables, iid 11(0, 1).

They are quantized separately and we wish to minimize the distortion of the function

9(Y1, Y2) = Y12 + Y22

By (2.10), the best quantizer to minimize distortion for each yi is uniform. How-

ever, it is clear that this is not the optimal choice for g(y1, Y2) since a small pertur-

bation for larger yi leads to a larger distortion penalty in the function g.

Instead, we can find the "sensitive" quantizer for this example. By (2.13), the
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versus empirical distribution for different values of M to

sensitivities are -yi(t) = 2t, meaning the optimal point density is

5 t 2 / 3

3,

0,

t [0, 1];

O.W.
(3.9)

The quantization cells of this quantizer are visualized in Figure 3-8. As predicted,

larger values of yi have higher resolution because those values have more weight in

the distortion calculation.

Using (2.15), the resulting distortion of the sensitive quantizer is approximately

12 2 R  where R is the rate for each quantizer. This is better than the ordinary

quantizer (optimal for the observations), which leads to a distortion on g of 2 R

0.5 1

M=3

A(t) =
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Figure 3-8: Quantization cells of a sensitive quantizer for the function g(y1, Y2)

S2+y 12. The cells for larger values of yi are smaller and hence have better resolution.

3.C Scalar Lasso Example

We consider a scalar version of the quantized compressed sensing problem. This

example has little applicable purpose, but illuminates how the sensitive quantizer is

shaped for lasso.

Assume we implement the system shown in Figure 3-9. The scalar random variable

x is assumed to have the Laplacian pdf

fx (; m, b) = 2b exp Ib -

Meanwhile, r is additive Gaussian noise and the reconstruction function g is the

MAP estimator

= arg min (Ily - x112 + PIIxII1) (3.10)

that we call scalar lasso. Like lasso, it has a signal fidelity and sparsity tradeoff, with

the regularization parameter p determined by the noise variance.



Figure 3-9: Model for scalar lasso example. Assume x is a compressible source and
y = x + rt. The measurements are scalar quantized and then used to reconstruct Ri
through scalar lasso.

Functionally, the reconstruction is

X + P, x < ~;

g(x) = 0, X < -L < x < ; (3.11)

X-- /j, X > P

The scalar lasso function k = g(x) is shown in Figure 3-10, along with the ordinary

and sensitive quantizers. The ordinary scalar quantizer, where the point density

is optimized for f,(y), is represented by the diamonds. Meanwhile, the sensitive

quantizer also takes into account the sensitivity and is represented by the dots on

the same plot (using don't-care regions as described in [50]). Similar to the results

presented in the vector case (Section 3.5), the sensitive quantizer puts less weight

near zero due to lasso shrinkage.
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Figure 3-10: Scalar lasso and its quantizers. The functional form of lasso is repre-
sented by the solid green line and demonstrates lasso shrinkage in that the output
has less energy than the input. The ordinary quantizer is shown in the red diamonds
and the sensitive quantizer is represented by the blue dots.
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Chapter 4

Performance Bounds for

Estimation in CSN

One major application of sensor networks is surveillance and persistent monitoring

for signals of interest (SOI). If these SOIs are sparse in some basis, then compressive

sensor networks can be used to allow sampling much below Nyquist and a large

reduction in information storage and communication. Two methods in the literature

for geolocation of SOIs are time difference of arrival (TDOA) and angle of arrival

(AoA). For TDOA, the architecture is usually single-sensor multi-platform (SSMP),

and the data from each sensor is sent to a fusion center (FC) for location estimation.

For AoA, we consider a multi-sensor single-platform (MSSP) architecture, where the

platform does the computation onboard and outputs a direction estimate.

In this chapter, we derive performance bounds on estimators for both types of

geolocation. This work is a subset of a joint MIT-Lincoln Laboratory project [63]

that studies applications and theory for such networks. The algorithms developed in

the project are used as comparisons to the bounds.

4.1 Related Work

Numerous papers have studied performance bounds in the context of both time delay

[64, 65] and angle estimation [66] for geolocation. As discussed in Section 2.3, the



well-known SNR threshold effect of the Cramr-Rao bound (CRB) is observed for

these scenarios due to the nonlinearity of the estimation, meaning the CRB is an

overly optimistic bound for low-SNR regimes. More complex bounds such as Ziv-

Zakai perform better, as illustrated in [67].

Other relevant related works include recent investigations on performance bounds

for compressed sensing (CS) estimators [68, 69]. In both papers, the authors found

that the oracle CRB (with knowledge of the sparsity pattern) is approached by

maximum-likelihood (ML) estimators. However, there are no comparisons to more

practical CS reconstruction algorithms.

4.2 Contribution

We consider performance bounds on CSN nodes being used as delay or angle estima-

tors for geolocation and object tracking. Although related topics have been explored,

this specific question has not been addressed in the literature.

We use the bounds as a benchmark for the practical algorithms developed in [63].

These algorithms are outside the scope of the thesis and we defer to the Lincoln Labs

report for the details. However, numerical results are shown in Section 4.3.4 and 4.4.3

for comparison with bounds.

For TDOA and AoA, we find that there is a very large gap between the Cramer-

Rao bound, as described in Section 2.3, and the practical algorithms used in numeri-

cal simulations, especially at low SNR. This agrees with previous work in estimation,

which finds the CRB to be an optimistic lower bound, and recent research in per-

formance bounds for CS, which has only shown the computationally-intractable ML

estimator approaching the oracle CRB. Nevertheless, our work demonstrates some

interesting relationships between model parameters such as the signal dimensions,

sparsity ratio and delay factor in estimation performance. Also, it demonstrates that

practical signal reconstruction algorithms can approach the CRB.



xl(t)

Figure 4-1: Problem model for time difference of arrival. The original signal xl(t)
and its delayed version x 2(t) are observed by different sensors, compressed using 4,
and transmitted in noise. An estimator T determines the predicted delay " .

4.3 Time Difference of Arrival

4.3.1 Problem Model

Assume the SOI corresponds to a band-limited Fourier series with fundamental fre-

quency fo and Qmax < B. Further assume the signal is K-sparse in the Fourier basis,

meaning only K Fourier series coefficients are nonzero. Each nonzero coefficient is

random, and for the following derivations assume that the distribution is Gaussian

with zero mean and variance a . The SOI is observed at two locations with ana-

log signals xi(t) and x 2(t). The time delay between the two sensors is T, meaning

X2 (t) = (t - T). The two signals are then processed by identical and synced ADCs,

as shown in Figure 4-1. The ADCs are sampled above the Nyquist sampling period

T = B and produce outputs xz [n] and x2[n], corresponding to the original and delayed

discrete-time signals respectively.

Take two length-N data vectors xl and x 2 from time segments of xl [n] and x 2[n]

respectively. The two vectors are multiplied by an M x N matrix 4D corresponding to

a particular downsampling method with factor d = N/M. The noiseless measurement

vectors Yi are then transmitted through a channel with additive noise i ~ AF(0, 2NI).

The observed measurement vector at the receiver is denoted yi = Yi + ri = Ixi + r.i

The receiver then produces an estimate - of the timing delay between xl(t) and x 2(t)



using the observations y, and Y2. Note that the projection using 1 can be performed

before sampling without a change in the analysis.

Clearly, x1 [n] and x2[n] are highly correlated, and we can find the timing delay

by estimating the phase shift between the two signals. More specifically, for any

frequency component , 2[n] = cos(wn - -QT) if xi[n] = cos(wn), where w = QT.

The delay T is distinguishable up to the modulus of - since the signal is periodic.

However, the sum of signals is distinguishable up to the modulus of 2,GCD(Q1 ,0 2 ,.. ,k)'

which allows a larger range of T to be identifiable if the signal frequencies have a very

small greatest common denominator (GCD).

Moreover, if the frequency components are harmonics of the fundamental fre-

quency 1 (as assumed in the problem model), then the discrete Fourier transforms

(DFTs) of N samples will be related by the following:

X 2 [k] = X, [k]ef(k) 7,  (4.1)

-j27rk 0 < k < N/2;

f (k) = -J2(-) N/2 < k < N; (4.2)

0, O.w.

We can extract 7 exactly from X 1 and X2 in the noiseless, Nyquist-sampled case.

Surprisingly, for large N and random sparsity, the above relationship can be used to

find 7 even in the presence of noise and aliasing.

4.3.2 CRB for Time Difference

We aim to find a Cramer-Rao bound for the delay estimator # = T(yi, Y2) in Fig-

ure 4-1. Assume #- exploits (4.1) by taking the DFTs of xl and x2 , defined as X1

and X 2 respectively. As specified in the problem model, X 1 is K-sparse with some

random sparsity pattern J chosen uniformly among all possibilities. As a reminder,

the nonzero entries of X 1 are assumed iid jA(0, ax). Define the vector of parameters

to be 0 = (T, X 1 )T and the observed data be y = (yl, Y2)T . The likelihood function



of y is

p(y; 9) = p(y2 Y1, O)p(yl O)p(O)

= p(y2; 71yl, Xl)p(yl; TjXl; )p(X1)

= p(y 2 ; Tr X1)p(y IXli)p(Xl). (4.3)

There is a nice decoupling of yl and y2, which is surprising considering the cor-

relation between the two signals. This is because the parameters X 1 and ' provide

all the information needed to determine the likelihood functions from the observed

data. Since xi = IXi, where IF is the inverse DFT matrix, each measurement vector

is yi = 'IDXi + 7i = 4Xi + 77i. The conditional distributions are

p(ylIX1) , j(( X1, o'l); (4.4)

P(Y2; 7 T-XI) - Nf(4X2, VI). (4.5)

where X 2 is related to X 1 through (4.1).

We now introduce some notation to simplify the following derivations. Define

the rows of 4 to be $m, P =diag {f(k)}k and Q diag{ef(k) . The

Cram6r-Rao lower bound of the variance of - is then shown in Theorem 4.1.

Theorem 4.1. The variance of any unbiased delay estimator -" is bounded below by

the inverse of the Fisher information Itd(7), such that

-1

Var (f) > . ( (4AmPQJi)2 1

JiEJ m=1

Proof. Using Definition 2.3 in Section 2.3, the variance of any unbiased estimator is

bounded by the Fisher information (FI). For this problem model, the FI here is found

through the following steps:



Itd(F) = E Ilnp(y; 0) 2

SE {ln p(y 2 TIjX) + lnp(yiX 1I) + Inp(X)})]

SE In P(Y2; TX1 )

S2 ln 27 - (Y2m - mX 2 )2
Nm=l

1E (Y2m - mX2 )(mPX2 )
N m=l

-)j 2EYx Z 2m(mPX2)]
N m=l

Ex, 2 (mPX 2) 2

() EJ (N m Q&[ (P) X1J =N m=1

(g) 1 - aE 1 M )
N 0N m=1(hE ( mPQJ)2[Xi2

N m=1

where (a) follows from taking the logarithm of (4.3); (b) follows from the fact that

only the first term depends on 7; (c) follows from (4.5); (d) results from taking the

partial derivative; (e) comes from noting Y2 = 1X 2 + r12; (f) follows from taking the

expectation over 2 ; (g) uses the total probability theorem; (h) comes from moving

the expectation into the sum; (i) follows the assumption that the entries of X 1 have

zero mean and variance Ua; and (j) uses the fact that all sparsity patterns are equally



likely.

We make several observations using this theorem:

1) The expectation over J is computationally prohibitive to calculate. However,

Monte Carlo trials will approach the true expectation quickly.

2) The Fisher information Itd (T) scales linearly with the sparsity K. Since T is

extracted from the phase difference between X, and X 2 , a DFT with more nonzero

components will lead to more observations of T, and hence a better estimator.

3) Itd(7) decreases when the downsampling factor d increases. This agrees with

our intuition that more downsampling creates larger signal distortion and a less reli-

able estimate I-.

4) Itd(7) does not vary with N for fixed M and K, as the Fisher information only

depends on the nonzero entries of X 1 , not the total length.

5) Combining remarks 2 and 4, we conclude 1(r) will increase linearly with the

sparsity ratio a = KIN.

6) Itd T) increases linearly with SNR = a /2. It does not vary with the noise6) Itd('T) increases linearly with SNR -OrX N

variance given a fixed SNR.

4.3.3 CRB for Time Difference and Signal Reconstruction

Now assume X 1 is a deterministic signal that is estimated along with the time differ-

ence. We will not only bound the variance of the estimator +- but also the estimator

X for signal reconstruction. Assume the observed data is again y = (yl, y 2 )T and

the vector of parameters is 0 = (7, X 1)T, but this time all parameters are non-random.

The likelihood function is

p(y; 0) = P(y2; 0lyl)P(yl; 0)

= p(y2; 7, X lly)p(y1; 7, X 1 )

= P(Y2; T, XI)p(yl; X 1).



As discussed in Section 2.3, in this multi-parameter case we will need a Fisher

information matrix (FIM) to find the CRB. To compute it, we need the following

terms:

Xlk lnp(yllX1) = OX1 2 In 2=1 - X)2

M

-- 2 E ( y l m - $mXl)@mk
N m=1

M

r2 E lnmk'
N m=l

S M 2
Inp(y 2;7TIXi) = -X1 2 In 2 -

Xlk axlk 2 N

M 

2

1 M

2a Z (y2m - mX
m=1

-2 j(Y2 - mX2) -NmkE
UN m=1

1 ,2kr

S2 2 l2mPmke NT

N m=1

Inp(ylX1) = 0,

In p(y 2 ; T7X 1)
dT

SM

= 2 in 2crU 2E (2m - mX 2 )2
N m= 1

M

2 E (2m - mX 2)
N m=l

M N
1 2xn~r
_- Ei 2m E _ XnX2n I>-

UN =1 (n=1

Putting all the components together, we get

a lnp(y) = I Zhmm

aXlk 0 2 1 m k +
m= l

2M l rn e-J 2-k-- 2kNT

N m=l

UM N 27
in p(y10) = 02 E 72m E mnX2n -J

Nm=l n=l

The resulting Fisher information matrix Itd/sr(O) for both time difference and

N 
2

E 4 mnX2n (_j NT
n=1



signal estimation then looks like Itd/sr() ( A

A = E In p(y; 9) Inp(y; O)
I8 8 T I

= E [-{12 m92m

N
E 4smnX 2n
n=1

(

D , where

2-rn
D

1 M
2 EN 72m
N m=1

N~ 27rn( 4smnX2n (- ))}
n=1

S E [2m2] mnX 2n
m=l n=1

1 2 rn

2 l $ mnXne- NT

m=1 (n=1

.27rn'NT)
2

27rn
3 NT J

(B)p - E i Inp(y; 0) -T Inp(y; 8)

1 2ir kr
=E [{2 1M mk+0 +2 2 mmke- NT

N m=1 N m=1

1 M

2 72m
N m=1

( 1 mnX 2 n

n=1

S[2m
2 ~mpe NT mnX2n

m=1 n=l

y •mnX2n

n= 1

.2n))

(-j 2NT)

27rn
NT)

(C)lq= E In np(y; 0) 8Xlq Inp(y; 0)

1 M N ( 21rn
= E 0{ E 2m (&mnX2n (J NT }f M NN m=1 +n=1

2 77lm( mq + or 2 72m rqe-J-

N m=l N m=l1

-2 D mp 3 NT

N m=l



1 j 27rqr

2 (e q NT
N m=

N(
E4mnX2n

n= 1

(D)pq = E l~p, Inp(y; 0) xl lnp(y; )

1  1 2M }k

M Mirk7= E [ lm2 l +mpmp ± q 2 m (m2mprp,- NTNN m=1 N m=1

5 2 7 4 1 m + a2 7mq J 2m mqe--
Nm=l N m=l

M M 2r(p+q)-

4 E [1m
2] 

mpmq g E [2m2 4mpe mqe--j N

m= 1 r= 1

1 21r(p+q)7

= rp q (1 + e-  NT

N m=1

To summarize,

A = 1 mnA
N m=1 n=1

M
1 rp'

(B)pl = T mpe -- NT
N m=1

N m=1

1 M

(D)pq a 2 5 mpTmq 
N m=1

S2rnT
- NT

( 4 mn
n=1

n=1

,2

2rn_NT

X2n (j NT

X 2n (_ 2iN))

2 (p+q)-r

+ e-J NT )

Unfortunately, ltd/sr (O) is not invertible for two reasons. First, ( downsamples

the original signal and thus D is not full rank. Second, since the signal is known a

priori to be K-sparse, it does not make sense to consider the partial derivatives in

the zero entries in X 1. Instead, we consider an oracle CRB by projecting Itd/sr(O) to

the K-dimensional subspace spanned by the sparsity of the signal. This is equivalent

to taking a constrained Fisher information matrix described in [70] with constraint

set {X1, = 0, i ' J}. The resulting Dcons would be a full-rank K-by-K matrix which

2-n
JNT)



is invertible. Moreover, the constrained Fisher information matrix Icons( 0 ) contains

only partial derivative terms on the nonzero entries of X 1. Now, we can express the

submatrices of Icons(0) using the notation [A]j for a submatrix of A that contains the

J rows (or in the case of row vectors, the J entries).

M

Acons = 2 E ([4m]J[P]J[X2]j) T (['m]J[P]J[X2 J), (4.6)
m=1

Bcons = 2 ([~i [Q]J)T ([m]J[P][X2]) , (4.7)

Ocons = T  ([m J[X 2]) (]J[Q]) , (4.8)

Dc = 1 [ ]T ) + ([ ]J[Q]j)T [r][Q])]. (4.9)

The subsequent variance bounds on delay and reconstruction can be found using

Icons (0).

Theorem 4.2. For a given sparsity, the variance of any unbiased delay/signal-

reconstruction estimator 9 = (-i, Xl)T is bounded below by the inverse of the con-

strained Fisher information matrix Jcons(0) corresponding to the CRB of an oracle

bound that has the sparsity pattern J as side information. This bound is described by

Var () > [Icons(0)-1]11,

and

Var (kl) > [Jcons(O)-'](k+1)(k+1),

where Xlk corresponds to the estimator for the k-th nonzero entry of X 1.

Proof. We use Definition 2.3 in Section 2.3 to define the CRB. The FIM can be found

through (4.6)-(4.9). O

We now present some remarks about the theorem.

1) The estimator X1 is assumed to know the sparsity pattern so there is no

variance on the zero entries. Thus, Theorem 4.2 is forced to be an oracle bound,

similar to [69].



2) Both - and Xlk satisfy the same scaling laws as in Theorem 4.1 for K, d, SNR

and N. More specifically, the diagonal entries of the Fisher information increase with

increasing K, decreasing d and increasing SNR. It is not affected by N.

4.3.4 Comparison to Experimental Results

In simulations, we assume an OFDM point source transmission with 2dB signal-to-

noise ratio (SNR) sampled at 1GHz (demodulated with carrier frequency 2.2GHz).

Using the discrete-frequency approximation, N is 4096, leading to a DFT that is 66-

sparse. A bed of sensors receives the transmission, compresses the sampled data and

transmits to a FC. The sensors are assumed to be on the same axis at a distance of

333.3m, corresponding to a maximum delay of 1.111 ps. The FC has an estimator i-

that cross-correlates the reconstruction vectors ki and R2 using an OMP variant [71]

which takes as input measurement vectors yl and Y2. The time offset on R2 which

yields the maximum correlation is chosen as the delay estimate. Thus, the estimate is

discretized to the resolution of the sampling period T. We can increase the resolution

of the T estimation by upsampling the reconstruction signal vectors.

Four types of compression are considered in the experimental trials of TDOA, each

represented by a matrix (D as described in Section 4.3.1. The first method is simple

downsampling and (D is the identity matrix with all the rows taken out except every d-

th (where d is the downsampling factor). The second is a sampler that consists of two

ADCs with rates related by a ratio of 18/25. These ADCs are simple downsamplers

but used together to mimic random sampling. The third method is actual random

sampling, meaning 4 is an identity matrix with only a random set of rows not taken

out. The final method is random projections where the matrix is full and the entries

are random. Figure 4-2 illustrates the performance of the four estimators with the

time difference CRBs found in Section 4.3.2 (blue solid lines) and Section 4.3.3 (green

dashed lines).

We find a significant difference between both bounds and the experimental data.

We also find that the an estimator that aims to perform signal recovery can be

expected to do worse than just time difference estimation alone. This makes intuitive
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sense because the problems of signal reconstruction and time difference estimation

cannot be decoupled in this model. Hence, an estimator designed to have good signal

reconstruction might not be the optimal estimator for 7 alone.

We now provide some insight for the large difference between the lower bounds

and experimental results. One reason is that the estimators can at best distinguish

7 up to the sampling period T (or some fraction after upsampling). Thus, for large

enough SNR, the estimator output will have no variance but some fixed error offset

due to the discretization of 7. Another important factor for the disparity is that the

estimators use Orthogonal Matching Pursuit (OMP) to reconstruct x1 [n] and x 2[n],

and then infer 7, which may not be the optimal method.

There are also some issues with using a Cramer-Rao lower bound itself. In general,

the Cramer-Rao bound is only tight for unbiased estimators in the asymptotic regime.

Moreover, in the case where the source signal is a nonlinear function of the parameter

7, the CRB may not be tight even under those conditions. There is a well known

threshold phenomenon in the literature such that for SNR below some level, the

estimator deviates significantly from the CRB. In a cross-correlation estimator, this

is because the noise effectively swamps out relevant information and the estimator

chooses a value based on the a priori distribution of the parameter. In Figure 4-3, we

illustrate this threshold effect in one estimator. Although the bound is not necessarily

tight even at high SNR, the effect is more pronounced at low SNR.

Even though it is not tight, the CRB still proves to be useful in understanding

the scaling of estimators in the TDOA model. Specifically, the trends mentioned in

the remarks after Theorem 4.1 and Theorem 4.2 hold in simulation results. Tighter

bounds for this nonlinear estimation problem include Ziv-Zakai and Weiss-Weinstein,

which can be explored in future work.

The oracle bound derived in Section 4.3.3 also provides a lower bound on signal

reconstruction error. Figure 4-4 compares these bounds to experimental results and

reveals that reconstruction estimator is close to the bound. Since the observations

are linear functions of the signal parameters, the CRB can be tight in this case. Our

experiments validate the OMP algorithm is indeed close to the bound.
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SNR. This corresponds to the point where the cross-correlation begins to fail.
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ence estimation.

4.4 Angle of Arrival

4.4.1 Problem Model

We now turn our attention to geolocation via angle of arrival, also called direction of

arrival in the literature. In this case, the sensors are very close to each other on the

same platform. Using far field and point source approximations, the SOI is modeled

as a plane wave that passes through the sensor array with uniform power. Assume

the platform contains S sensors and the transmission is coming from angle q (relative

to some defined coordinate space). The platform considers the data from each sensor

and produces an estimate 4 of the direction of arrival.

Assume a reference sensor so is located at (0, 0) and every other sensor si is located

at (xz,, y,,) for 1 < i < S - 1. The distance di the plane wave travels to get from the

sensor si to so is xs, cos(O) + ys, sin(). Note also that di = c7i, where c is the speed

of light and 7i is the time difference between the transmission arriving at so and si.



X1

Figure 4-5: AoA problem model. We assume the transmission is sparse in a known
basis and satisfy far field and point source approximations.

To simplify the problem, assume that all the sensors are on the x-axis. This

reduces di = cTi = xi cos(O). The platform computes the estimated time difference 1 i

for each sensor and forms an AoA estimate Oi = arccos (Xi-i). Figure 4-5 illustrates

this setup for a pair of sensors.

4.4.2 CRB of Angle of Arrival

We previously formulated a CRB for TDOA in Section 4.3.2. We will now derive a

similar bound for AoA estimation as a function of the bound for TDOA.

We begin by again pointing out i = arccos (Lf. The variance of i can be

approximated by the variance of ij using a second-order Taylor expansion:

Var (f(x)) P (f'(E [x]))2 Var (x) . (4.10)



Theorem 4.3. Given Oi = arccos (fi), the variance an estimator ~i is

Var ((i)( 2 Var(i)

assuming the estimator 1 i is unbiased.

With S sensors, there will be S - 1 estimates for 4. If the noise at each sen-

sor is assumed to be independent, {$^}is-1 are independent estimators of the same

nonrandom parameter. By the weak law of large numbers and assuming each 4i is

unbiased,
S-1

This leads to the following theorem on a variance bound for the S-sensor AoA

estimator:

Theorem 4.4. In a platform with S sensors, the AoA estimator 4 has a variance

bounded by

1 -1 1 S-1 (

Var > (S - 1)2 Var ( j (S- 1)2 Z ( -) Var (f)

where Var (-i) is bounded in Theorem 2 and every 4i is unbiased.

We present the following remarks for Theorem 4.4:

1) The scaling of the CRB mentioned in the remarks after Theorem 4.1 hold.

2) If we note fii - T, then Var ( i) oC 1/(1 - cos 0i) 2 . This means that the

estimator performs worse when 0 is near 0 or 7r.

3) The approximation in Theorem 4.3 shows that the bound decreases quadrati-

cally with xi.



4.4.3 Comparison to Experimental Results

We find the CRB for the situation presented in Figure 4-5. We assume a frequency-

sparse signal in a basis with 512 equally-spaced digital frequencies. The signal has a

center frequency of 4GHz and bandwidth to center frequency ratio of 50%. The sensor

array has four sensors on a line spaced out by Amin/2, where Amin corresponds to the

wavelength of the largest frequency component in the band of interest. We further

assume the transmission is arriving from a random direction, meaning - (0, 27r).

Figure 4-6 presents performance lower bounds using Theorem 4.4. Unfortunately,

two issues make this bound problematic. First, we found the AoA bound as a function

of the TDOA bounds discussed in Section 4.3, which is known to be loose and flawed

because it is too naive to capture reconstruction losses due to band density. Thus,

the bound decreases with more of the band occupied while experimental results have

increasing error variance. Second, we estimated 4 as a function of the time differences

between pairs of sensors on the platform, which may not be the best method to use,

especially when 0 is near 0 or 7r. In those regimes, the variance is very large and leads

to bounds that are actually larger than the experimental results (which employs a

different model).
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Chapter 5

Scaling Laws for Discrete TDOA

The use of compressed sensing for geolocation of sparse transmissions in Chapter 4 can

alleviate storage and communication loads while preserving estimation performance.

It also exemplifies that many CS applications care about parameter estimation rather

than signal recovery. In these situations, it may be possible to use fewer measurements

than schemes proposed for stable signal reconstruction [2, 27] or support recovery

[17, 19].

This chapter focuses on a discrete time difference of arrival (dTDOA) estimation

problem, where the delay is from a countable set of possibilities. We also abstract

out the practical scenario discussed in Section 4.3.1 and hence focus only on finite-

dimensional vectors. In this scenario, we show measurement scaling laws are improved

when the objective is perfect delay estimation rather than signal recovery. Our suffi-

cient condition is based on a practical algorithm for partial support recovery.

5.1 Related Work

The discrete time difference estimation problem has been most notably studied as an

information-theoretic formulation to TDOA. In [72], a maximum empirical mutual

information (MMI) decoder is shown to have the same error exponent as a maximum-

likelihood (ML) decoder for delay estimation in discrete channels. This is strongly

related to work in image registration using MMI [73].



Also important for this problem is recent works on support recovery by Reeves

[74, 18] and Aeron et al. [75]. They show partial support recovery is a much simpler

problem than full support recovery and can lead to more favorable scaling laws on

measurements while using a computationally intractable maximum-likelihood estima-

tor. More practical algorithms are not discussed.

5.2 Contribution

This chapter shows improved scaling laws in the problem of dTDOA estimation com-

pared to previously known results. In particular, we show through law of large num-

bers arguments that the problem model illustrated in Figure 5-1 can be approximated

using a discrete memoryless channel and MMI decoder, and the error of the estima-

tion will decay exponentially with the scaling of N. We show that this holds even for

computationally cheap CS reconstruction algorithms.

Part of our proof extends previous work on partial support recovery. We comple-

ment Reeves' necessary and sufficient conditions for an ML estimator with a suffi-

cient condition on an almost trivial thresholded correlation estimator (TCE) discussed

in [19]. This result is essential to delay estimation but is also of independent interest.

A final point worth mentioning in this work is that it demonstrates the gains of

processing information with a goal in mind. By knowing a priori that the computation

is of parameter estimation rather than signal recovery, we can reduce the number of

measurements and relax the requirements on the signal acquisition stage.

5.3 Problem Model

Let us first define the notation that & = S(x, n) corresponds to downward circular

shift (or delay) of a vector x by n. Another way to describe this is in matrix form

with & = DnX, where D is the identity matrix with rows circularly shifted down by

fn.

In the discrete TDOA problem shown in Figure 5-1, assume that the length-N



Figure 5-1: A dTDOA model where the input vectors are compressed through random
projections. The delay T is an element of a discrete set {0, 1, ... N}. The estimator
T uses 4 1 and D2 as side information to find an estimate +.

input vector xl is K-sparse with sparsity pattern J. The vector x 2 is a shifted version

of xl by a delay T E {0, 1,... N - 1}, meaning x 2 = S(x 1 , T) = Drxl . The two signals

are then compressed separately through sampling matrices and transmitted in addi-

tive noise. The decoder T has the sampling matrices D1 and )2 as side information

and estimates the time difference 7 using the measurement vectors yi = 1Oiz + rli.

One possible decoder, shown in Figure 5-2, performs lasso-and-threshold on each

measurement matrix and produces K-sparse estimates i~ and i 2 . Using the corre-

sponding estimated sparsity vectors J1 and J2 , a cross-correlator predicts the delay

through the optimization

f = arg min (S(3 1, n), J 2) . (5.1)

We exclusively consider decoders that follow this structure, producing K-sparse esti-

mates for both signals through a block denoted T, and running a delay estimator Td

to find f. The block Ts can be lasso-and-threshold, OMP or thresholded correlation,

and Td can be cross-correlation, maximum a-posteriori (MAP), or maximum mutual

information (MMI).

An obvious scaling for the sample decoder is to require the number of measure-
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Figure 5-2: One possible decoder for dTDOA estimation. The lasso/threshold block
provides K-sparse estimates with sparsity pattern vectors Ji. The cross-correlation
block then finds the delay estimate f. For scalings where lasso estimates the sparsity
pattern correctly, the estimation error vanishes with increasing N.

ments to match Wainwright's sharp threshold of M > 2K log(N - K) + K + 1 for full

support recovery [17]. With the support correctly estimated, the cross-correlation es-

timator succeeds almost surely for N large and random sparsity. In fact, the only class

of sparsity pattern which causes the cross-correlation estimator to fail has nonzero

entries at periodic intervals, and its probability of occurrence decreases quickly with

increasing N.

However, perfect support recovery is not a necessary condition for proper esti-

mation of 7-. Indeed, the cross-correlation estimator can still succeed with a large

number of errors in the sparsity pattern, provided that the errors are random and

the error rate is controlled. We will explore partial support recovery in more depth

in the next section, and then relate it to delay estimation in Section 5.5.

We now present a probabilistic model for the input source and sensing matrix

that will be used for the analysis in this chapter. Assume the K-sparse vector xl has

random sparsity J 1 chosen uniformly from all possibilities. The distribution of the

nonzero entries are not necessary in the following derivations, but we need to bound

the smallest nonzero entry to be at least Xmin. Let the additive noise vectors ri be

distributed iid Gaussian with zero mean and variance a2. Finally, assume 4 has iid

Gaussian entries with zero mean and variance 1/M.

It is worth mentioning that the following derivations will not apply when I is not



identity and xl is not sparse. This is because the delay estimator operates solely on

the binary support vectors Ji, which is required to be exactly K-sparse.

5.4 Partial Support Recovery

We consider the problem of partial support recovery, building on previous work by

Reeves [18]. In these problems, assume the original signal x is K-sparse and has

support J. We overload J to also represent the binary vector associated with x, such

that

S= (5.2)
0, xi= 0.

As in any CS-flavored problem, the sparse input signal is compressed into a mea-

surement y through multiplication with a sampling matrix (4. Assume a reconstruc-

tion algorithm (e.g. lasso-and-threshold, thresholded correlation) recovers a K-sparse

& with sparsity pattern J. Then a natural metric for partial support recovery is

d(J, J) = 1 -IJ nJ/K, (5.3)

which corresponds to the percentage of indices of the true sparsity pattern that are

missed.

Borrowing notation from previous work, we call a sparsity pattern estimator

asymptotically reliable for an error rate 3 MD if there exists a constant c > 0 such

that the error probability satisfies

P {d(J, ) > 3MD < e- nc .

Hence, an asymptotically reliable estimator has controlled support error rate. Note

that we do not care about the false alarm error rate because it is similarly bounded

since the estimate is K-sparse.

A known result [18] says, under mild conditions on the problem model and linear

sparsity (K = aN with a constant), a sufficient condition for linear partial support



recovery using maxinum likelihood is M - O(K), which is significantly better than

the M - O(K log K) scaling needed for perfect support recovery. We show a similarly

favorable scaling in the case of TCE, a much simpler decoder.

The thresholded correlation estimator works as follows. Define 0j to be the 3-th

column of 4. Let the normalized correlation vector p satisfy

1p = j . (5.4)

The result is then thresholded using a parameter p such that only entries greater

than p are nonzero. The estimate's sparsity vector is then

= 1, p >p; (5.5)
0, 0.w.

A condition on y is that it produces a K-sparse J.

We now find the scaling of M so that TCE is asymptotically reliable up to an

error rate 3MD. We first denote the cdf of a chi-square distribution with parameter n

to be Fx2,,(t). We also define a function Ftrue(t; M, IIX\jmin 112, Xmin) in (5.8) to be the

pdf of pj for Jj = 1. Finally, the vector X\jmn is x with the smallest entry taken out.

The resulting scaling of measurements is then shown in the following theorem.

Theorem 5.1. Consider a sequence of dTDOA problems indexed by N with param-

eters K = aN and M > M'(N). Assume the norm of x E RIN is known and the

minimum magnitude entry is bounded by Xmin. If M'(N) is the solution to the tran-

scendental equation

2 l() F 1 (1 - OFA) = Fit (/MD; M'(N), Xmin) ,

there exists a sequence of thresholds M = p(N) such that the thresholded correlation

estimator is asymptotically reliable for error probability less than 3 MD-

Proof. See Appendix 5.A. O
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Figure 5-3: A decoder for dTDOA estimation. The thresholded correlation block
has sparsity error rate bounded by /MD through Theorem 5.1. This can then be
approximated using a binary asymmetric channel. The delay estimator is a MMI
decoder that succeeds with error vanishing exponentially.

The transcendental equation for each N is not possible to solve analytically but is

shown in numerical simulations (c.f. Section 5.6) to scale O(K), meaning it is better

than the sufficient condition for perfect support recovery in [19].

5.5 Time Difference Estimation

To relate partial support recovery to time difference estimation, we use the model

shown in Figure 5-3. The signal reconstruction block Ts uses TCE to produce a K-

sparse estimate i. Meanwhile, the delay estimation block Td is a MMI decoder, which

is defined in (5.6).

We begin by modeling the signal reconstruction block as a noisy channel. We

express the estimated sparsity binary vector Ji as a function of the true sparsity binary

vector Ji and have shown this estimate is asymptotically reliable with measurements

scaling linearly with N. By the symmetry of distributions on Ji and D, each entry

of Ji is equally likely to be in error. Hence, for N large and linear sparsity, this

estimator can be approximated by a memoryless binary asymmetric channel with

crossover probabilities that are at most /MD and OFA = MDa/ (1 - a).

Using the noisy channel argument, we utilize a nice result from Stein et al. [72]

on universal delay estimation. They show that, for any discrete memoryless channel,

the average error of an MMI estimator will exponentially vanish with N. This MMI



estimator works regardless of the channel, making it universal.

We define the MMI estimator Tmmi(J, J2 ) as solving the minimization

-2 = arg min H (S(Jl, n), j 2 ). (5.6)

Because the empirical entropy is the same for all circular shifts of a vector, maximizing

mutual information is equivalent to minimizing joint entropy, which is shown in (5.6).

As mentioned in Stein's work, the intuition behind the MMI estimator's success is

that the two sparsity vectors are independent when they are not shifted to be aligned.

The resulting empirical joint entropy is thus larger than when they are aligned and

dependent.

We now present a sufficient condition to guarantee delay recovery almost surely

using a CS encoder and the decoder from Figure 5-3.

Theorem 5.2. Assume the decoder is the same as the one shown in Figure 5-3 and

that the scaling of the number of measurements M is of that of Theorem 5.1. Then

the MMI decoder succeeds in recovering the delay almost surely for large N. More

specifically, the error probability decays exponentially with N.

Proof. We use the above reasoning to model the signal estimation step as a noisy

channel for the sparsity pattern, leading to the situation illustrated in Figure 5-4.

This is simply a variation of the model from [72], and we use their results to show

the MMI estimator is successful with error probability vanishing exponentially. O

5.6 Numerical Results

We validate the scalings for partial support recovery and demonstrate that delay

estimation is successful with an MMI decoder. For simulations, we assume the noise

variance is 1/M, all nonzero entries of x have value 1, and linear sparsity with a =

K/N = 0.04. We find the scalings of M by assuming OMD = 0.4 and solve the

transcendental equation constrained on M being an integer. This scaling proves to

be linear with K and a few sample points are shown in Table 5.1.



Figure 5-4: Modeling the decoder in Figure 5-3 as a noisy channel with MMI estima-
tion. The resulting delay estimation error vanishes exponentially.

K N M
2 50 21
4 100 35
8 200 64

20 500 149

Table 5.1: Scaling of M necessary to ensure TCE is asymptotically reliable up to

OMD = 0.4. The noise variance is 1/M and the nonzero components of x have value
1.
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Figure 5-5: Numerical simulations for the success of support recovery using TCE. The
color mapping indicates the expected percentage of the support predicted successfully
for choices of M and N. The black line indicates the scalings for OMD = 0.4 using
Theorem 5.1.

We then compare the scalings to runs of TCE using realizations of 4, J and

rt. The percentage of the support correctly estimated is then averaged over trials

and presented in Figure 5-5. We see a close match to the scalings derived from

Theorem 5.1.

Finally, we implement the TCE-MMI delay estimator shown in Figure 5-3. As-

suming random delay and the parameters used in the partial support recovery trials,

simulations show that the probability of error decreases rapidly with N. This is

illustrated in Figure 5-6.
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Figure 5-6: Numerical simulations of the TCE-MMI delay estimator for /MD = 0.4.

As N grows large, the estimator succeeds with higher probability.

5.A Proof of Theorem 5.1

We present the proof for Theorem 5.1, which finds a sufficient scaling of the number of

measurements to allow the thresholded correlation estimator (TCE) to be asymptot-

ically reliable up to an error rate IMD. First, we acknowledge that this proof strongly

parallels earlier work on full support recovery for TCE in the appendices of [19]. We

recall that, for the sparse input x, J is defined to be sparsity binary vector. We will

then define the set of nonzero indices to be Jtrue = {j I J(j) = 1}. We also recall that

the sampling matrix is denoted 4, and its j-th column is j.

Before we begin, some known results for chi-square random variables are reviewed.

A chi-square with parameter n is the sum of the squares of n zero-mean unit-variance

Gaussian random variables. Some simple properties of the chi-square is that it is non-

negative and has mean n. We denote the pdf and cdf of the chi-square distribution to

be fx2,n(t) and F2,n(t) respectively. Note that if the iid Gaussian random variables

{g}Nl, have variance V, then the resulting random variable Z g2 has cdf Fx,2(t/V).

We call these scaled chi-square random variables.

To prove the theorem, we consider the distributions of the entries of the normalized



correlation vector p, which is defined in (5.4). We define a vector r such that

meaning pj = rj2 . Each entry y, is distributed A(0, o2 + JxI 2/M) conditioned on

x. This is can be easily seen by noting y = Ox + rl and that each entry of di is iid

A(0, 1/M).

For j Jtrue,
M

r = E(j)Yi. (5.7)

Conditioned on 4j, rj is distributed Af(O, a 2 + jx ]2/M). Since this distribution does

not depend on Oj, the unconditioned distribution of rj is also 1(0, U2 + 11x112 /M).

For j $ k, rj and rk are uncorrelated, which implies that they are also independent.

Since pj = rj2, pj is a scaled chi-square random variable with parameter 1. Hence,

the entries of p are iid FX2, 1 (t/,2), where or = (2 + I HX 2/M.

For j G Jtrue,

r = i j I j

I 0 [ i xj + 0j, (y- Ojxj)]
Ilj l

= IljllxA + (Yi - x)

= 10j qxj + ej.

The random variable ||jl is the square root of a scaled chi-square random variable

with cdf Fx2,M(Mt 2 ). Meanwhile, ej will closely follow the computation above for

rk, k Jtrue but has variance r2 + flx\3112/M, where the norm is of x with the j-th

entry taken out. Similarly, ej and ek are uncorrelated for j # k, which implies that

they are also independent. Also, lI jx 3 and I Ok I are also independent conditioned

on x.

Since pj = rj2, the distribution of pj can easily be found. Let us define the cdf of



pj to be

Ftrue(t; M. IIx \l, x3). (5.8)

For j Z k, pj and Pk are independent since the underlying random variables are

independent.

We will now use the following lemma to bound the effect of thresholding entries

of p. We define the conditional indicator function I(.) where the argument is a

conditional statement.

Lemma 5.1. Consider a set of iid random variables {ui}N=l with cdf Fu(t). Then,

for realizations of the random varables and an error rate 3, there exists a threshold

p = F 1'(1 - 3) that satisfies

1 N

lim - J(ui >
N-moo N L

i=1

Similarly, for p = F-'(0),

li 1
N-*oo N

i=1

Proof. This is a simple extension of the Gilvenko-Cantelli theorem. O

To be asymptotically reliable, we need the following two conditions to hold:

limN I(pj < p) < MD, (5.9)
jEJtrue

1
lim E I(pj > p) < FA. (5.10)

j Jtrue

In the case where K = aN, the error rate OFA is MDa/(1- a). The threshold for the

first condition min(X3) will increase with increasing M, while the second threshold

Pout will decrease with increasing M. In order to be asymptotically reliable for the

error rate fMD, we need Pout jtmin(Xj) for every j. The smallest such M to achieve



this is when

[out = [imin(Xmin). (5.11)

To find the scaling of M, we apply Lemma 5.1 to both conditions for Xmin and set the

resulting thresholds equal to each other. This leads to the transcendental equation

in Theorem 5.1.



Chapter 6

Concluding Remarks

The introduction of compressed sensing has reinvigorated the study of sparsity and

has persuaded many researchers and engineers to rethink what is necessary to acquire

data. Specifically, less resources and processing are needed for data acquisition when

framed in the domain in which the information is naturally sparse or compressible.

This has far-reaching implications in a diverse range of fields and applications.

Loosely, this thesis explores the connection between compressed sensing and sensor

networks. More fundamentally, it is about the limits on performance of compressed

sensing systems for quantization and parameter estimation. Although particularly

pertinent in compressive sensor networks, these topics have also considerable inde-

pendent relevance.

In Chapter 3, we present a high-resolution approximation to the optimal quantizer

for storage or transmission of measurements in a CS system. We integrate ideas from

functional scalar quantization and the homotopy continuation view of lasso to find a

sensitivity function -ys(-) that determines the optimal point density function Acs(-) of

such a quantizer. Experimental results show that the operational distortion-rate is

best when using this so called "sensitive" quantizer.

Our main finding is that proper quantization in compressed sensing is not simply

a function of the distribution of random measurements (using either high-resolution

approximation or practical algorithms like Lloyd-Max). Rather, optimal quantization

takes into account the function to be performed on the data, and can be factored in the



quaintizer design using the functional sensitivity. In the case of lasso reconstruction,

the homotopy continuation method allows us to compute the sensitivity analytically

or through Monte Carlo simulations.

A significant amount of work can still be done in this area. Parallel developments

could be made for variable-rate quantizers. Also, this theory can be extended to other

probabilistic signal and sensing models, and CS reconstruction methods that satisfy

DFSQ conditions.

In the thesis, we also explore two fundamental limits for parameter estimation in

CSN. In Chapter 4, we present performance bounds for time difference and angle of

arrival estimation. In Chapter 5, we derive a sufficient condition in the number of

measurements that will guarantee successful delay estimation in the case where the

delay is from a countable set.

For TDOA and AoA performance bounds, we find the Crambr-Rao lower bound

is overly optimistic and is unattainable by practical algorithms, especially in the low-

SNR regime. However, we can still parse the bound to find interesting relationships

between model parameters and estimator performance. Also, we show that signal

reconstruction estimation through a block OMP algorithm is close to the CRB, which

matches previous results that use much more computationally expensive methods.

For scaling laws, we extend previous work on partial support recovery to practi-

cally feasible reconstruction algorithms. We show that the simple thresholded cor-

relation estimator can have controlled support error probability at much fewer mea-

surements than needed for full support recovery. This can be bootstrapped to known

results in discrete delay estimation techniques to show that the delay can be estimated

correctly almost surely with increasing N.

More work can be done on both performance bounds and scaling laws for CSN.

Future research into more complicated bound families such as Ziv-Zakai or Weiss-

Weinstein may be useful in forming tighter bounds that will be a better indicator for

the limits of TDOA and AoA estimation. Also, better delay estimators may also re-

duce the gap between practical algorithms and performance bounds under this model.

In scaling laws, we can improve the analysis for partial support recovery by consid-



ering other types of signal reconstruction that might lead to analytical scalings. Of

particular interest is how to bound support error rate for lasso reconstruction. A very

recent and promising result that may answer this question is a recent investigation

into the replica method [76] that breaks lasso into a set of scalar estimation problems.

Other types of reconstruction may yield similarly interesting results.

As a whole, compressed sensing has progressed at an amazing rate. However,

there remains the question of how practical applications such as sensor networks can

best integrate CS ideas into their architectures without imposing serious restrictions.

This thesis aims to address some of the fundamental limits of applying compressed

sensing to systems that not only collect but also process information. A major theme

of this thesis is that if one cares about some function of the data collected, then smart

processing and a different cost criteria may yield improved performance and relaxed

requirements on the hardware.
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