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Abstract

Given a function f on n inputs, we consider the problem of testing whether f belongs to
a concept class C, or is far from every member of C. An algorithm that achieves this goal
for a particular C is called a property testing algorithm, and can be viewed as relaxation
of a proper learning algorithm, which must also return an approximation to f if it is in
C. We give property testing algorithms for many different classes C, with a focus on
those that are fundamental to machine learning, such as halfspaces, decision trees, DNF
formulas, and sparse polynomials. In almost all cases, the property testing algorithm has
query complexity independent of n, better than the best possible learning algorithm.
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Chapter 1

Introduction

This thesis is about learning and testing, and the relationship between them. Although this

seems to be a topic for a different kind of thesis- perhaps one on education, rather than

mathematics or computer science- there is a twist. The objects of our study, the ones doing

the learning and testing, are not people, but machines.

What resources are required for a machine to learn a new concept? And what resources

are required for a machine to test whether its understanding of a concept is accurate? These

are the questions that lie at the heart of this thesis. They are difficult questions to formal-

ize, and we will not claim to provide definitive answers to them here, but we will look at

two reasonable and established ways that the theoretical computer science community has

modeled them, and compare the two models. What we will find is that for a variety of types

of concepts, there is a rich relationship between the problem of learning a new concept and

the problem of testing whether a concept has a given form. Techniques from one are often

applicable to the other, and in most cases, the testing problem requires significantly fewer

resources.

1.1 Computational learning theory

We formalize the notion of a concept by representing it as a classification function. For

example, consider the "concept" of email spam. Surely, we each know spam messages

when we see them. In fact for each of us, there is some function f, consisting of a complex



set of rules, that correctly classifies our emails as "spam" or "not spam" according to our

tastes. Unfortunately, this function f is not known to the computer that handles our email

(and often it's not consciously known to us!). We cannot expect the computer to read our

minds, but we can hope that by observing some emails that have already been classified, the

computer will be able to infer a good approximation to f, which it can use to automatically

classify emails in the future.

The spam scenario summarizes the goal of a learning algorithm: given access to ex-

amples labeled according to an unknown function f, design a hypothesis h that is a good

approximation to f. The hypothesis is considered "good," or close to f, if it is likely

to classify a random input the same as f. More formally, if Q is a distribution over

the domain of f, then we say that a hypothesis h is E-close to f with respect to Q if

Pr~o[f(x) - h(x)] < E.

In general, without making any assumptions, it is impossible to recover a good ap-

proximation to f without seeing nearly all of f (i.e. seeing labeled examples of the form

(x, f(x)) for nearly every input x). The reason, of course, is that the unseen part of f
could differ arbitrarily from any purported approximation. However, if one assumes that f

comes from some class of functions C, then the problem of approximating f may become

tractable. The question then becomes: for which concept classes C is this the case?

One of the most well-known ways to formalize this question is via the Probably Ap-

proximately Correct (PAC) model of Valiant [61]:

Definition 1 (PAC Learning). Let C and 7- be classes of functions. We say that C is PAC

Learnable by H- using algorithm A if when given

1. parameters 0 < , J < 1, and

2. access to points distributed according to a fixed distribution Q and labeled by an

unknown function f E C,

with probability at least 1 - 6, A outputs a hypothesis h E H that is e-close to f.

The model has many parameters, but the origin of the "PAC" name should be clear.

The "probably" comes from the fact that the learning algorithm succeeds with probability



at least 1 - 6, while the "approximately" comes from the fact that the learning algorithm

outputs an E-approximation.

The PAC model has many variants, a few of which will be important to us here. If the

algorithm A requires the ability to query f, we refer to it as learning with queries. If the

hypothesis class 7- is the same as C, we say that C is properly learnable. Finally, if the

distribution Q is the uniform distribution then we say that C is PAC learnable with respect

to the uniform distribution.

1.2 Property testing

The learning problem, as formalized by computational learning theory, is in some sense

a problem of emulation; the goal of a learning algorithm is to find a way to emulate any

function f, assuming it comes from a pre-specified class C. But instead of full-blown

emulation, we might simply want to determine something about f, without making any

prior assumptions. Specifically we might ask: given access to a unknown function f, can

we simply determine if it belongs to the class C? Although providing an exact answer to

this question requires seeing all of f, if we ask it in the right way, we might hope to get an

approximate answer.

Property testing, initiated by Rubinfeld and Sudan [54] and Goldreich, Golwasser, and

Ron [29], provides a framework for doing this. The goal of a property testing algorithm is

to accept an object if it has a certain property, and reject the object if it far from having the

property. In our case, the objects are functions, the property is membership in the class C,

and being far from having the property means being E-far from every function in C.

Definition 2 (Property Testing). A property tester for a class C is an algorithm that when

given query access to a function f, outputs

* YES with probability > 2/3 iff E C

* NO with probability _ 2/3 if f is e-far from all f' E C.

The complexity of a testing algorithm is measured both in terms of the number of

black-box queries it makes to f (query complexity) as well as the time it takes to process



the results of those queries (time complexity). Since queries are often assumed to be the

limiting resource, we will primarily concern ourselves with query complexity, but both

measures are important.

1.3 Learning versus testing

In [29], Goldreich et al. observed that the testing problem is essentially a relaxation of

the proper learning problem. This is because an algorithm for properly learning a class C

(more precisely, for properly learning C under the uniform distribution with queries) can

be converted into an algorithm for testing membership in C. To test whether a function

f is in C, we can simply run the proper learning algorithm with parameter e/2 to obtain

a hypothesis f', and then evaluate f and f' over 0(1/E) random examples to verify that

they are close. If f belongs to C, then the proper learning algorithm will find an e/2-

accurate hypothesis f', so a multiplicative Chernoff bound can be used to show that the

verification step passes; if f is c-far from C, then it is clearly impossible to find such an f',

so the verification step fails. (Note here that it is crucial the learning algorithm be proper.

Otherwise, even if the algorithm verifies that f' is close to f, there is no guarantee that f is

close to C.)

The disadvantage to using learning algorithms for testing is that proper learning algo-

rithms for virtually every interesting class of n-variable functions must make a number of

queries that depends on n. The reason is information-theoretic. Suppose a class C contains

k different functions that are all a constant distance c away from each other. In order for the

learning algorithm to output a good hypothesis when c < c/2, it must have the capacity to

output any of the k different functions, and thus must make at least [log k] queries merely

to specify which one. This means that learning algorithms even for such simple classes as

dictator functions (i.e. single boolean literals, a class that contains 2n functions, all at least

distance 1/2 from each other) must make Q(log n) queries. Thus, this raises the natural

question: when does testing require strictly fewer queries than learning? Is it possible to

test membership in a class C with a number of queries that is less than O(log n), or perhaps

even independent of n?



1.4 Our results

The main result of this thesis is that a large number of classes are testable with query com-

plexity independent of the dimension n, and polynomial in the other relevant parameters.

This asympototically beats the query complexity of the best possible learning algorithms

for these classes. Our primary focus is on classes of Boolean functions, but our techniques

are often not limited to the Boolean case. For some classes, such as s-sparse polynomials

over GF(2) and ±1-weight halfspaces, we prove more fine-grained results, showing lower

bounds as well as upper bounds. Table 1.1 summarizes our testing results, as well as a

selection of previously known results.

Here in more detail is a description of what we prove, along with an outline of the rest

of the thesis:

o In Chapter 3, we describe a general method for testing whether a function on n input

variables has a concise representation. The method, called "testing by implicit learn-

ing," combines ideas from the junta tests of [26] and [6] with ideas from learning

theory, and yields property testers that make poly(s/e) queries (independent of n)

for Boolean function classes such as s-term DNF formulas (answering the question

posed by [51]), size-s decision trees, size-s Boolean formulas, and size-s Boolean

circuits, as well as non-Boolean valued function classes such as size-s algebraic cir-

cuits and s-sparse polynomials over finite fields.

We also prove an Q(_/s) query lower bound for nonadaptively testing s-sparse poly-

nomials over finite fields of constant size. This shows that in some instances, our

general method yields a property tester with query complexity that is optimal (for

nonadaptive algorithms) up to a polynomial factor.

* In Chapter 4 we focus specifically on the problem of testing s-sparse GF(2) polyno-

mials. In contrast to the algorithm from Chapter 3, which makes poly(s, 1/E) queries

but has running time exponential in s and super-polynomial in 1/c, in Chapter 4 we

give an algorithm that makes poly(s, 1/c) queries and also runs in time poly(s, 1/c).

We achieve this result by extending the "testing by implicit learning" methodology



Class of functions Number of Queries Reference
Boolean functions f : {0, 1} -- {0, 1}

linear functions (parities) 0(1/c) [9]
Boolean literals (dictators),

conjunctions
s-term monotone DNFs 0(s2/6) [51]

O(J 2/6) [26]
J-juntas O(J/E) [6]

Q(J) (adaptive) [13]
decision lists 0(1/62) Chapter 3

size-s decision trees,
size-s branching programs,
size-s Boolean formulas,size-s Boolean formulas, -term DNFs (log s/ log log s) (adaptive)

s-term DNFs
O(s4/6 2 ), Q( i) Chapter 3

s-sparse polynomials over F2  O(poly(s, 1/)) (time) Chapter
O(poly(s, 1/e)) (time) Chapter 4

size-s Boolean circuits O(s 6/E 2) Chapter 3
functions with Fourier degree < d O( 2 6d/ 6 2), Q( V) Chapter 3

halfspaces O(poly(l/e)) Chapter 5

+1-weight halfpsaces ( /) Chapter 6
Q (log n)

Functions on Finite Fields f : F " y
O((s F )4/2),Ca

s-sparse polynomials over field of size IF '( /)for Fl = (1) Chapter 3

size-s algebraic circuits, 6(s4 og3 IF/ 2)  Chapter 3
size-s algebraic computation trees over F

Table 1.1: Selected previous and new testing results. All the bounds pertain to query
complexity, except where indicated by (time). The lower bounds are for non-adaptive algo-
rithms, except where indicated by (adaptive). Finally, the upper bounds in Chapter 3 are for
adaptive algorithms, though in all cases very similar bounds for non-adaptive algorithms
can be achieved (see Section 3.4).



from Chapter 3. While the learning component from Chapter 3 involves a brute-force

exhaustive search over a concept class, here the learning component is a sophisti-

cated exact learning algorithm for sparse GF(2) polynomials due to Schapire and

Sellie [55]. Applying the algorithm of [55] is nontrivial; it requires us to prove new

theorems about how sparse GF(2) polynomials simplify under certain restrictions of

"low-influence" sets of variables.

* In Chapter 5 we consider the problem of testing whether a function f is a halfspace,

i.e. a function of the form f (x) = sgn(w -x -8). We consider halfspaces over the con-

tinuous domain R1I (endowed with the standard multivariate Gaussian distribution)

as well as halfspaces over the Boolean cube {-1, 1}" (endowed with the uniform

distribution). In both cases we give an algorithm for testing halfspaces using only

poly(1) queries, again independent of the dimension n.

In turns out that halfspaces are not amenable to the "implicit learning" approach

from the previous chapters. Thus, to achieve our testing algorithms, we prove new

structural results about halfspaces. Two simple structural results about halfspaces

are at the heart of our approach for the Gaussian distribution: the first gives an exact

relationship between the expected value of a halfspace f and the sum of the squares

of f's degree-1 Hermite coefficients, and the second shows that any function that

approximately satisfies this relationship is close to a halfspace. We prove analogous

results for the Boolean cube {-1, 1}" (with Fourier coefficients in place of Hermite

coefficients) for balanced halfspaces in which all degree-1 Fourier coefficients are

small. Dealing with general halfspaces over {-1, 1}" poses significant additional

complications and requires other ingredients, including, again, utilization of work on

testing juntas.

* Finally, in Chapter 6, we consider the problem of testing whether a Boolean func-

tion f is a +1-weight halfspace, i.e. a function of the form f(x) = sgn(wixl +

w2x2 + ' + WnXn) where the weights wi take values in {-1, 1}. While one may be

tempted to conclude from the previous chapters that all natural classes of functions

are testable with query complexity independent of n, in Chapter 6 we show that this



is not the case. In particular, to test whether f is a + 1-weight halfspace versus e-far

from all such halfspaces we prove that nonadaptive algorithms must make Q(log n)

queries. We complement this lower bound with a sublinear upper bound showing

that O( /-n.poly( )) queries suffice.

1.5 Previous work

Both computational learning theory and property testing are rich fields that have inspired

an enormous amount of prior work. Here we will review just a small selection of this work,

specifically results on testing classes of functions that are of interest to the learning theory

community.

One important class of functions is the class of J-juntas, or functions that depend on

at most J variables. Fischer et al. [26] gave an algorithm to test whether a function f :

Xn -4 {0, 1} is a J-junta with query complexity polynomial in J and 1/c. Diakonikolas

et al. [17] later generalized their work to function with non-Boolean ranges, and Blais [6]

improved upon both of these results, giving an (adaptive) algorithm for testing J-juntas

with only O(J/c) queries. This nearly matches an Q(J) lower bound proved by Chockler

and Gutfeund [13].

One of the motivations for the work in this thesis is the work of Parnas et al. [51], who

gave algorithms for testing whether Boolean functions f : {0, 1}"-+ {0, 1} have certain

very simple representations as Boolean formulae. They gave an O(1/c)-query algorithm

for testing whether f is a single Boolean literal or a Boolean conjunction, and an O(s2/) -

query algorithm for testing whether f is an s-term monotone DNF. They also posed as

an open question whether a similar testing result can be obtained for the broader class of

general (non-monotone) s-term DNF formulas (we resolve this question in Chapter 3).

A variety of papers have looked at the problem of testing whether a function has a

special algebraic structure. Blum et al. [9] gave an O(1/e)-query algorithm for testing

whether a function can be represented as a linear form over a finite field. Their algorithm

was subsequently generalized in several works to test whether f can be represented as a

low-degree polynomial. In particular, [1, 33, 37] consider the case when f is defined over

-----------



a small finite field.

Other research in the area includes the work of Kearns and Ron [38], who gave testing

algorithms for the classes of interval functions over the continuous interval [0, 1] and for

neural networks and decision trees over the continuous cube [0, 1]n. However their results

differ from the "standard" property testing results in several ways; for one thing, they view

the dimension n as a constant and their algorithms have query complexity that depends

(exponentially) on n.

Some of the techniques in this thesis have already been used in subsequent work in

property testing and learning. In [30], Gopalan et al. show how to test whether a function

f has a sparse representation in the Fourier basis, and whether f is a function of a small

number of parities. Their techniques are similar in spirit to the junta testing techniques of

[26], and the ones we employ in Chapter 3. In [50], O'Donnell and Servedio consider the

problem of learning halfspaces from their degree-1 Fourier coefficients. They solve this

problem in part using the techniques from Chapter 5.
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Chapter 2

Notation And Preliminaries

Functions come in many shapes and forms. In this thesis our primary interest is classifi-

cation functions, or function that map to a finite range. Some classification functions of

particular interest to us are:

* Functions on the Boolean cube. Boolean functions are a cornerstone of theoretical

computer science, and the titular subject of this thesis. Throughout this document,

when we say "Boolean functions," we mean binary classification functions with

Boolean inputs. We typically represent these functions as f : {-1, 1}"-+ {-1, 1}.

* Functions on R". Occasionally (see Chapter 5), we will also consider binary classi-

fication functions with real-valued inputs. We will typically represent these functions

as f : R"n--,{-1, 1}.

* Functions on arbitrary product domains. Generalizing the previous two notions,

we sometimes (see Chapter 3) consider classification functions from an arbitrary

product domain to an arbitrary finite range, i.e. functions of the form f : X-t

where X = X1 x X 2 X ... x Xn and y is a finite set.

2.1 Decomposition of Functions

One of the most powerful ideas in theoretical computer science, and indeed all of math-

ematics, is that of decomposing a function into parts. A functional decomposition is par-



ticularly useful if the parts are orthogonal, or have limited interaction with each other.

Such a decomposition allows one to analyze the parts independently, and can often shed

new light on the structure of the function at hand. We now look at three different ways of

decomposing functions, one for each type of function discussed above.

2.1.1 The Fourier Decomposition

We can think of Boolean functions represented as f: {-1, 1}n-{-1, 1} as a subset of the

set of all functions of the form f : {-1, 1}"~--R. This set forms a 2n-dimensional inner

product space with inner product

(f, g) = E [f (x)g(x)]

where 2 is the uniform distribution on {-1, 1}". This inner product defines a natural norm

on functions given by Ifl , f = ).

An orthonormal basis for this inner product space is provided by the set of 2' parity

functions or characters, i.e. functions of the form Xs(x) = lis xi where S c [n]. It is

trivial to verify that this basis is indeed orthonormal, in other words I Xs I = 1 for all S,

and (Xs, Xs,) = 0 for all S' 5 S. Thus, every function in the space can be expressed as a

linear combination of parity functions:

Fact 3 (Fourier Decomposition). Every function f : {-1, 1}n-I-+ has a unique decompo-

sition of the form

f(x)= f(S)xs(x)
SC[n]

where the f (S)'s are Fourier coefficients given by f (S) = (f(x), Xs(x)).

We will often be interested in f's degree-1 coefficients, i.e., f (S) where ISI = 1. For

notational ease, we will sometimes write these as f (i) rather than f ({i}).

A simple consequence of the orthonormality of the characters is that the inner product

of two functions is given by the inner product of their Fourier coefficients. This gives us

the following:



Fact 4 (Plancherel and Parseval's Inequalities). For any functions f, g : {-1, 1}n -R we

have Plancherel's Equality:

(f, g) = E[f(x)g(x)] = f(S)g(S)
SC[n]

and in the special case when f = g we have Parseval's Equality:

lfll2 = S (s)2
SC [n]

In particular when f is Boolean (with range {-1, 1}) this implies E f(S)2 = 1.

2.1.2 The Hermite Decomposition

Now we turn our attention to classification functions with real-valued inputs. We represent

these as f : Rn"-{ -1, 1} and think of them as a subset of all functions of the form f :

Rn--+R. We treat the set of square-integrable such functions as an inner product space. As

before, we use the inner product

(f,g) = E [f(x) g (x)]

but here Q is the standard n-dimensional Gaussian distribution (that is, each component of

x drawn from Q is distributed according to the standard normal random variable N(O, 1)).

Again, this inner product defines the natural norm given by Ilf I = (f, f).

In contrast to the last section, where the parity functions formed an orthonormal ba-

sis for function from {-1, 1}n -- R, here it is not as easy to find an orthonormal basis

for functions from Rn-"*R. In fact, even in the case when n = 1, the associated in-

ner product space is infinite dimensional, and finding a complete orthonormal basis is

non-trivial. Suffice it to say, for n = 1 there is a sequence of polynomials called Her-

mite polynomials that form a complete orthonormal basis for the space. The first few of

them are po - 1,pl(x) = ,p2  = ( - 1)/P/,..., and in general they can be de-

fined via exp(Ax - A2/2) = Ed=o(Ad/viT.d)Pd(x) where A is a formal variable. In the



case of general n, given S E N, we have that the collection of n-variate polynomials

Hs(Z) := -i=1 ps (xi) forms a complete orthonormal basis for the space. Thus we have

the following analogue of Fact 3:

Fact 5 (Hermite Decomposition). Every square-integrable function f : Rn -*IR has a

unique decomposition as

f (x) = f(S)Hs(x)
SENn

where the f(S)'s are Hermite coefficients given by f (S) = (f, Hs).

We note that it follows immediately from the orthonormality of the Hs's that Plancherel

and Parsevel's identities (the analogue of Fact 4, where the sums are taken over all S E Nn )

also holds in this setting.

While Hermite coefficients seem more difficult to analyze than Fourier coefficients, we

remark that we will almost always be interested in only "degree-0" and "degree-1" Hermite

coefficients, and these are the same as the corresponding Fourier coefficients. To be precise,

there is a single "degree-0" coefficient f (0), which is just equal to E[f(x)], and there are

n "degree-i" coefficients f(ei), which are just equal to E[f(x)zi]. The only difference

is that the expectations here are taken over the n-dimensional Gaussian distribution rather

than the uniform distribution over the Boolean cube.

2.1.3 The Efron-Stein Decomposition

Now we turn our attention to more general functions of the form f : X--y where X =

21 x X2 x ... x 2n and y is a finite set. One way to represent such functions is by thinking

of the range Y as a subset of RIYI, and identifying element y in y with the standard unit

basis vector ei in RIYI . We call these functions of the form f : X-y pure-valued functions

and think of them as a subset of f : X-*-Y (henceforth, for notational convenience, we

will implicitly assume y = {el, ...elY } unless otherwise stated, and we will abbreviate

RIYI by simply writing R Y ).

Let Q = 1 x Q2 x ... x Q be a product probability space over X. Then the set of

functions of the form f : X-*Ry forms the inner product space L2 (Q, Ry) under the inner



product

(f, g) = E [(f(x), g()R]

wher (-, -)Ry denotes the standard inner product over IR. Note that this is essentially the

same as the previous inner products we've defined, however inside the expectation we take

(f (x), 9()) y instead of f(x) -g(x), since the range of the functions is a vector rather than

a scalar. As before, the inner product gives way to the norm If l = f), and it is easy

to see that pure-valued functions have norm 1.

It turns out that even in this more general setting, the functions in L 2 (Q, IY) can be

decomposed quite elegantly due to the following theorem:

Theorem 6 (Efron-Stein Decomposition [19]). Every function in L 2 (Q, IRY ) has a unique

decomposition of the form

f(x) = f (x)
sc [n]

such that the following properties hold:

* Each f depends only on the coordinates in S.

* For every S' _ S and any y C X, we have Exn[f (x) I xs, = ys,] = 0, where xs'

and ys, denote the inputs x and y restricted to the coordinates in S'.

The Efron-Stein decomposition is an orthogonal decomposition. That is, for any function

f(x), and any two components of its Efron-Stein decomposition fs(x) and fT(x) where

S = T, we have (fS, fT) = 0. Note however that this is not the same as having an

orthonormal basis. The components of the decomposition vary for each f. They do not

form a basis for L 2 (Q, RY), and they do not necessarily have norm 1. Fortunately, the

orthogonality of the decomposition is enough to guarantee us the following generalized

version of Parseval's equality:

Fact 7 (Generalized Parseval's Identity). For every function f E L 2 (Q, RY), we have

IflI2 =1 IfSI 2
SC [n]



In particular when f is a pure-valued function, EsC[n] I fS 2 = 1

Remark The careful reader will note that so far we have actually introduced two ways of

representing Boolean functions. Earlier we used the representation f : { -1, 1 }-{ -1, 1}

while in this section we've suggested the representation f : {-1, 1}-" {el, e2 }. Both

representations are useful in different contexts. With either representation the Efron-Stein

decomposition exists, however the decomposition depends on the representation. When f

is represented as f : {-1, 1} -- {-1, 1}, the Efron-Stein decomposition is given by the

Fourier decomposition (that is, fS = f(S)xs for each S C [n]). In this sense the Efron-

Stein decomposition is a generalization of the Fourier Decomposition to functions which

are not necessarily Boolean.

2.2 More on Functions: Distance, Influence, and Juntas

We now introduce some more notation regarding functions. First, we need a way of mea-

suring the distance between functions:

Definition 8 (Distance). For functions f, g : X--+ and a probability measure Q, we say

that f and g are e-far if

Pr [f(x) g(x)] > c

Otherwise we say f and g are c-close.

We will often omit the Q in the subscript when the context is clear. In particular, when

f is a Boolean function we will implicitly assume that the probability is evaluated with

respect to the uniform distribution over the Boolean cube. Similarly, when f is over Rn

we will implicitly assume the probability is with respect to the standard n-dimensional

Gaussian distribution.

As we have already seen in the definition of the Efron-Stein decomposition, for inputs

x = (x 1, ... , Xn) C X we will often be required to refer to subsets of coordinates. Here we

develop some convenient shorthand for notating this.



For the elements x = (X 1, ... , Xn) E X and the set S C [n], we let xs represent the

ordered list (xi : i E S), and for x, y e X we use the notation xsy to represent the

element z E X where zs = xs and zS = ys.

For a subset S C [n] and a setting w of the coordinates in S, the restricted function

f,(x) refers to the function on n - IS I coordinates defined by fixing the coordinates in S

according to w, and evaluating f on the rest (in other words, f,(x) = f(wsx)).

Finally, for a product probability measure Q = Q1 x ... x n we define Q(S) to be

the product probability measure over just the coordinates in S (i.e. Q(S) = lies Qi).

Correspondingly, we use the notation x ~ Q(S) to indicate that x is an |SI-coordinate

input drawn randomly from Q(S).

2.2.1 Influence

We now come to one of the most important definitions in this thesis, that of the influence of

a set of variables of a function f. The influence is a measure of the set's ability to control

the output of the function.

In order to define influence, we must first define variance:

Definition 9 (Variance). The variance of a function f : X--Ry  with respect to a probability

measure Q is

V [f(x)] = E [1f(x) 2] - E[f(x)]

This is a generalization of the standard notion of the variance. Usually the variance of

a random variable X is given by E[X 2] - E[X]2, but here the || - || has been added since

the range of f is potentially a vector rather than a scalar. Notice that functions which are

pure-valued or which map to {-1, 1} have norm 1, so the variance of such functions is

given by 1 - IIEx_~[f(x)] 112 and is therefore bounded between 0 and 1.

We are now ready to define influence:

Definition 10 (Influence). For a function f E L2(Q, IRY), the influence of the set S C [n]

of coordinates under the probability measure Q is defined as

Inff(S) = E [ V [fz(x)]]
3(s) X~Q(S)

33



Let us take a moment to reflect on this definition. The closer a function is to constant,

the closer its variance to is to zero. Thus, the influence of S is a measure of how "non-

constant" you expect the function to be when you randomly restrict the coordinates outside

of S. If the function does not depend on the coordinates in S at all, then Inff (S) will be

zero; otherwise it will be something larger.'

This definition of influence is intuitive, but rather hard to work with on its own. For the

functions we care about, influence can be nicely expressed as a probability:

Proposition 11. Let f : X-*Y be a pure-valued function. Then for any set S C [n] we

have

Inff(S) = Pr [fz(x) = fz(y)]
nZN42(S)
z,y~'42()

Proof. The proof follows easily from the definitions and the fact that I f I = 1 for pure-

valued functions.

Inff(S) = E [ V [fz(x)]]
Z-Q(S) X-Q(S)

= E [1 - II E [fz()] 12]
ZN4(S) X Q(S)

E [1- E [(fz(x), fz (y))Y]]
z~N() X,y 0()S)

= 1- Pr [fz(x) =f(y)]
ZNY(S)

Proposition 11 is important enough that it motivates the definition of a small subroutine

1There are multiple different definitions of "influence" in the literature, so the one we give here merits
some discussion. Our definition of influence is a direct generalization of the quantity called variation in [25].
It is also, as we show in Proposition 11, consistent with the the definition of influence given in [6] (whereas
[6] proposes the equation in Proposition 11 as a definition, here it is a consequence of the definition). Our
definition is also consistent with the notion of single-coordinate influence discussed in Proposition 14.

We choose our definition of influence because it unifies the definitions in much of the literature. How-
ever, we point out that for sets S of more than one coordinate, our definition is different from the def-
inition of influence given by Kahn, Kalai, and Linial [34]. They define influence to be the probabil-
ity over the setting of coordintes not in S that the resulting restricted function is not constant (in other
words, Ezn(g)[lf ()notconstant]). For functions that we care about (with norm 1), this is equivalent to
Ez~(g) [[Vx~n(s) [fz (x)]]], thus the quantity that they call influence is always greater than or equal to our
influence. Their definition of influence makes sense for some applications, but our definition makes sense for
others, in particular, as we shall see in the next section, for analyzing distance to juntas.



called the Independence-Test, shown here in Figure 2.2.1. The independence test was first

defined by Fischer et. al. in [25], and we will use it ourselves in Chapters 3 and 4. It is

easy to see from Proposition 11 that the probability the test rejects is exactly Inff(S).

Independence Test (inputs are S C [n], and black-box access to f: X y)

1. Choose z ~ Q(S) and x, y - Q(S).

2. If fz(x) = fz(y), accept. Otherwise, reject.

Figure 2-1: The subroutine Independence-Test.

The independence test gives us an easy algorithmic way to estimate the influence of

a set of variables, but from an analytic standpoint it does not tell us much about how to

analyze the influence. For this, it turns out that we can relate the influence of a function to

its Efron-Stein (or Fourier) decomposition using the following remarkable formula:

Proposition 12 (Decomposition of Influence). For any f E L2(Q, RY) and any S C [n]

Inff(S) = E IfT12
T: SnT#f

A proof of Proposition 12, or its equivalent with Fourier coefficients in place of Efron-

Stein magnitudes, is elementary and appears in several places in the literature (see, for

instance, [6] for a proof in this setting).

An immediately corollary of Proposition 12 is the monotonicity and subadditivitiy of

influence:

Corollary 13 (Monotonicity and Subadditivity). For f E L2(Q2, RY) and any S, T C [n]

Inf (S) < Inf (S U T) < Inff(S) + Inf (T)

Single-Coordinate Influence for Boolean Functions

We will often be interested in the special case of the influence when f is a Boolean function

and the set S consists of a single coordinate i. In this case we will use the shorthand

Inff(i) instead of Inff({i}) to denote the influence of variable i. The influence of a single



coordinate is a well-studied quantity in computer science, dating back to the seminal works

of Ben-Or and Linial [3], and Kahn, Kalai, and Linial [34], who showed that every balanced

Boolean function has a coordinate with influence at least Q(log n/n).

Typically, for a Boolean function the influence of coordinate i is defined as the prob-

ability that on a random input, flipping bit i changes the function's value. In fact, if the

function is represented appropriately, this definition is just a special case of our definition.

This is made precise by the following:

Proposition 14 (Single-Coordinate Influence). Let f : {-1, 1}n -{-1, 1} and i E [n].

Then the influence of variable i is given by

Inff(i)= Pr[f(xi- ) = f(zi+)

where x i- and xi+ denote x with the i 'th bit set to - 1 or 1 respectively.

Proof According to our definition of influence, we have Inff(i) = E [ V [fz(x)]].

Here the restricted function fz is just a function of the single coordinate i. It is easy to see

that fz has variance 1 if fz (x-) fz (x +) and variance 0 otherwise. Hence the expectation

of the variance is just equal to Prx [f(x i- ) 5 f(xi+)] and the proof is complete. O

In Chapters 5 and 6 we will be particularly interested in functions which are unate:

Definition 15 (Unate functions). A Boolean function f : {-1, 1}" -- {-1, 1} is unate if it

is monotone increasing or monotone decreasing as a function of variable xi for each i.

It turns out that for unate functions, single-coordinate influences have a particularly

nice relationship to Fourier coefficients:

Fact 16. If f : {-1, 1} - {-1, 1} is unate then Inff (i) = If (i) .

We will prove this fact explictly in Lemma 152 in Chapter 6.

2.2.2 Juntas

An important special type of function that we will refer to over and over again in this thesis

is the junta:



Definition 17 (Juntas). A function f is a junta on J C [n] if f only depends on the coordi-

nates in J.

It follows immediately from the definition of juntas and influence that the property of

being a junta on J is characterized by the variables outside of J having no influence:

Proposition 18. A function f is a junta on J if and only if Inff ([n]\ J) = 0.

In fact this characterization is somewhat robust, as the following proposition shows:

Proposition 19. Let f : X-+y and suppose that for some set J, we have Inf f([n]\J) < C.

Then f is e-close to a junta on J. In fact it is E-close to the junta given by

h(x) = Plur[f(x jzj)]

where Plur denotes the "plurality" or "most-common-output" operator (with ties broken

arbitrarily).

The following proof is taken from [6], generalizing an argument from [25]. It is in-

cluded here only for completeness:

Proof ([6])

Pr[f(x) # h(x)] = 1 - E[(f(x), h(x))]

S1- E [(E[f(xjz)], h(x))RY]

= 1 - E [ E[f(xjzj)] [E[f(xjzj)][1

< 1 - E [E[f (xjzj)] ]
= 1- z fs

scJ

S:Sn([n]\J) O

= Inff([n]\J)

The first equality follows from the fact that f and h are pure-valued. The second fol-

lows from the fact that h only depends on the coordinates in J and linearity of expecta-



tion. The third equality from the fact that (Ez[f(xjzj)], h(x))y = JEz[f(xjz )] 11 and

|Ez [f(xjz)]II, = 1 for pure-valued functions. The inequality is a special case of Holder's

inequality. The following equality follows from the fact that E [f (x jzj)] = EscJ fs (x).

The next equality uses Parseval, and finally the last equality is Proposition 12. O

2.3 Probability Bounds

In addition to the standard Markov and Chernoff bounds, we will often make use of the

following claims:

Proposition 20. If X is a random variable taking values in the range [-1, 1], its expecta-

tion can be estimated to within an additive ±-c, with confidence 1-6, using O(log(1/6)/c 2)

queries.

Proof This follows from a standard additive Chernoff bound. We shall sometimes refer to

this as "empirically estimating" the value of E[X]. O

Proposition 21 (Fischer et al. [26]). Let X = -i=l Xi be a sum of non-negative indepen-

dent random variables X, and denote expectation of X by a. If every Xi is bounded above

by t, then

Pr[X < ra] < exp ((e - 1)

for every n > 0.



Chapter 3

Testing for Concise Representations

3.1 Introduction

In this chapter we study the problem of testing whether a function has a concise represen-

tation. Our main result is a general algorithm that can be used to test whether an unknown

function belongs to one of many different representation classes, as long as the representa-

tion class satisfies certain conditions. We show that this algorithm yields property testers

for many classes that were not previously known to be testable. These include Boolean

function classes such as decision lists, size-s decision trees, size-s branching programs,

s-term DNF (resolving an open question of Parnas et al. [51]), size-s Boolean formulas,

size-s Boolean circuits, and s-sparse polynomials over F2, as well as non-Boolean classes

such as size-s algebraic circuits, size-s algebraic computation trees, and s-sparse polyno-

mials over finite fields. For each of these classes the testing algorithm uses poly(s, 1/E)

many queries, independent of the number n of inputs to the function (the running time is

exponential in s, though linear in n). These testing results are included in the top part of

Table 1.1. We note that our general algorithm can also be easily shown to yield property

testers for all of the classes tested in [51]; the query complexities would be slightly larger

than in [51], but would not require a specialized algorithm for each problem.

We also prove a lower bound; we show that any non-adaptive algorithm to test s-sparse

polynomials over finite fields of constant size must make Q(\/s) queries. Since this is

within a polynomial factor of our upper bound, this result shows that in at least one instance



our general algorithm yields a tester that is nearly optimal. (For testing other representation

classes, there is a larger gap between our upper and lower bounds. We give some simple

but fairly weak lower bounds for other representation classes in Section 3.7.)

Our techniques. Our approach combines ideas from the junta test of Fischer et al. [26]

with ideas from learning theory. As mentioned in the introduction to this thesis, the basic

idea of using a learning algorithm to do property testing goes back to Goldreich et al. [29],

who observed that any proper learning algorithm for a class C can immediately be used

as a testing algorithm for C. However, it is well known that proper learning algorithms

for virtually every interesting class of n-variable functions must make at least Q2(log n)

queries. Thus this testing-by-learning approach did not previously yield any strong results

for testing interesting function classes.

We get around this impediment by making the key observation that many interesting

classes C of functions are "well-approximated" by juntas in the following sense: every

function in C is close to some function in Cj, where Cj C C and every function in Cj

is a J-junta. For example, every s-term DNF over {0, 1}" is r-close to an s-term DNF

that depends on only s log s/7 variables, since each term with more than log s/7 variables

can be removed from the DNF at the cost of at most 7/s error. Roughly speaking, our

algorithm for testing whether f belongs to C works by attempting to learn the "structure"

of the junta in Cj that f is close to without actually identifying the relevant variables on

which the junta depends. If the algorithm finds such a junta function, it accepts, and if it

does not, it rejects. Our approach can be characterized as testing by implicit learning (as

opposed to the explicit proper learning in the approach of Goldreich et al. [29]), since we

are "learning" the structure of the junta to which f is close without explicitly identifying

its relevant variables. Indeed, avoiding identifying the relevant variables is what makes it

possible to have query complexity independent of n.

We find the structure of the junta f' in Cj that f is close to by using the techniques

of [26]. As in [26], we begin by randomly partitioning the variables of f into subsets and

identifying which subsets contain an influential variable (the random partitioning ensures

that with high probability, each subset contains at most one such variable if f is indeed in

C). Next, we create a sample of random labeled examples (x1 , yl), (x2, y2), ..., (Xm, yM),
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where each x is a string of length J (not length n; this is crucial to the query complexity

of the algorithm) whose bits correspond to the influential variables of f, and where yi

corresponds with high probability to the value of junta f' on x'. Finally, we exhaustively

check whether any function in Cj - over J input variables - is consistent with this labeled

sample. This step takes at least ICjI time steps, which is exponential in s for most of

the classes we test; but since ICjI is independent of n, we are able to get away with an

overall query complexity that is independent of n. (The overall time complexity is linear

as a function of n; note that such a runtime dependence on n is inevitable since it takes n

time steps simply to prepare a length-n query string to the black-box function.) We explain

our testing algorithm in more detail in Section 3.2 and prove correctness of the algorithm

in Section 3.3. We apply the theorem to obtain new testing results for different classes of

Boolean and non-Boolean functions in Section 3.5.

Finally, we prove our lower bound for testing s-sparse polynomials over finite fields in

two stages. We first show that any non-adaptive algorithm that can successfully distinguish

a linear form Zxi + -.. + xis (over s randomly selected variables from xl,... , xn) from

a linear form xi, + - + xis+p (over s + p randomly selected variables, where p is the char-

acteristic of the finite field) must make 12(-) queries. This is a technical generalization

of a similar result for F2 in [26]; the heart of our proof is an extension of a convergence

type result about random walks over Z' with arbitrary step distribution to random walks

over Z q . (As an interesting side product, the latter also partially answers a question posed

in [26] as to what groups possess a similar convergence type property.) We then prove that

every s-sparse polynomial g over finite field IF is "far" from every affine function with at

least s + 1 non-zero coefficients. This result does not have an analogue in [26] (that pa-

per establishes a lower bound on distinguishing size-s parities from size-(s + 2) parities,

and it is trivially true that every size-s parity is far from every size-(s + 2) parity) and its

proof requires several ideas; our argument uses random restrictions chosen according to a

distribution that depends on the structure of the polynomial g. We present these results in

Section 3.6.

Notational Note: The techniques in this chapter are applicable to functions with non-

Boolean domain and range. We will denote functions in this chapter as f : X"-Y, where



X and y are finite sets, and we will let Q denote the uniform distribution over X". (Note

that this is a slight abuse of notation from the preliminaries section, where we represented

the domain as a product X x ... x X, of n potentitally different sets, and we placed no

restrictions on the probability measure Q).

Bibliographic Note: The results in this chapter originally appeared in [17], however the

presentation here has been simplified. While [17] contained a technique for generalizing

the junta test of Fischer et. al. [25] to functions with non-Boolean range, here we use the

Efron-Stein decomposition instead, obviating the need for the previous technique. This was

inspired by Eric Blais's junta test in [6], and we are grateful to him for the improvement.

3.2 The test and an overview of its analysis

In this section we present our testing algorithm and give an intuitive explanation of how it

works. We close this section with a detailed statement of our main theorem, Theorem 23,

describing the correctness and query complexity of the algorithm.

3.2.1 Subclass approximators

Let C denote a class of functions from X" to Y. We will be interested in classes of functions

that can be closely approximated by juntas in the class. We have the following:

Definition 22. For r > 0, we say that a subclass C(T) C C is a (7, J(T))-approximatorfor

C if

* C(T) is closed under permutation of variables, i.e. if f(xl,... , x) E C(7) then

f (xl , ... , x,) is also in C(7)for every permutation a of [n]; and

* for every function f E C, there is a function f' E C(Tr) such that f' is T-close to f

and f' is a J(r) -junta.

Typically for us C will be a class of functions with size bound s in some particular

representation, and J(T) will depend on s and 7. (A good running example to keep in mind

is X = {0, 1}, y = {-1, 1}, and C is the class of all functions that have s-term DNF



Identify-Critical-Subsets (input is black-box access to f : X n - Y and 6 > 0)

1. Partition the variables xl,... , xn into r random subsets by assigning each of

x 1,..., n, equiprobably to one of I1,..., I,.

2. Choose s random subsets A1,...,A, C [r] of size J(r*) by uniformly choosing
def

without repetitions J(T*) members of [r]. Each set Ai determines a block B =

UjeAi Ij. (Note that we do not guarantee that the blocks are disjoint.)

3. Apply h iterations of the independence test (see Figure 2.2.1) to each block Bi.
If all of the independence test iterations applied to block Bi accept, then Bi is
declared to be influence-free, and all the subsets Ij with j E Ai are declared to be
influence-free on its behalf.

4. If:

(a) at least half of the blocks B 1,... ,Bs are influence-free; and

(b) except for at most J(T*) subsets, every subset in the partition I1,... ,I is
declared influence-free on behalf of some block,

then output the list I, ... , Ii of those subsets that are not declared to be
influence-free. (We call these the critical subsets.) Otherwise, halt and output
"Not in C."

Figure 3-1: The subroutine Identify-Critical-Subsets.

representations. In this case we may take C(7) to be the class of all s-term log(s/T-)-DNFs,

and we have J(T) = s log(s/T).) Our techniques will work on function classes C for which

J(T) is a slowly growing function of 1/T such as log(1/T). In Section 3.5 we will consider

many different specific instantiations of C and corresponding choices of C(7T).

We write C(T)k to denote the subclass of C(Tr) consisting of those functions that depend

only on variables in {x 1,..., xk}. We may (and will) view functions in C(7)k as taking k

instead of n arguments from X.

3.2.2 Explanation of our testing algorithm

Our algorithm for testing whether a function f : X"--Y belongs to C or is c-far from C is

given in Figures 3-1 through 3-3. Given e > 0 and black-box access to f, the algorithm

performs three main steps:



Construct-Sample (input is the list Ii, ... , j output by Identify-Critical-Subsets and
black-box access to f)

1. Repeat the following m times to construct a set S of m labeled examples (x, y) E
XJ(*) x y, where X = {wo,W1, 2 ... , WX-1}:

(a) Draw z uniformly from X n.Let X, defi zi = q}, for each 0 _ q _

(b) For f 1,...,j
def

i. w = 0

ii. For k = 1,..., [rig IX1
def

A. 0Xo union of (X, n Ii,) taken over all 0 < q < X I - 1 such that
the k-th bit of q is zero

B. X1 def union of (X, n Ii,) taken over all 0 < q < X I - 1 such that
the k-th bit of q is one

C. Apply g iterations of the independence test to Xo. If any of the g
iterations reject, mark X0 . Similarly, apply g iterations of the inde-
pendence test to X1; if any of the g iterations reject, mark X1 .

D. If exactly one of X 0, X1 (say Xb) is marked, set the k-th bit of w to
b.

E. If neither of Xo, X1 is marked, set the k-th bit of w to unspecified.

F. If both X0, X1 are marked, halt and output "no".

iii. If any bit of w is unspecified, choose w at random from {0, 1, ... , jXi -
1).

iv. If w 0 [0, IX - 1], halt and output "no."

v. Set zx = w,.

(c) Evaluate f on z, assign the remaining J(T*) - j coordinates of z randomly,
and add the pair (x, f(z)) to the sample of labeled examples being con-
structed.

Figure 3-2: The subroutine Construct-Sample.



1. Identify critical subsets. In Step 1, we first randomly partition the variables x1, ... ,

Xn, into r disjoint subsets II,..., I,. We then attempt to identify a set of j < J(r*)

of these r subsets, which we refer to as critical subsets because they each contain

a "highly relevant" variable. (For now the value T* should be thought of as a small

quantity; we discuss how this value is selected below.) This step is essentially the

same as the 2-sided test for J-juntas from Section 4.2 of Fischer et al. [26]. We will

show that if f is close to a J(T*)-junta then this step will succeed w.h.p., and if f is

far from every J(r*)-junta then this step will fail w.h.p.

2. Construct a sample. Let Ii, ... , Iij be the critical subsets identified in the previous

step. In Step 2 we construct a set S of m labeled examples {(x 1, y'),..., (xm , ym)},

where each xi is independent and uniformly distributed over XJ(T*). We will show

that if f belongs to C, then with high probability there is a fixed f" E C(7*)J(,) such

that each y' is equal to f"(x). On the other hand, if f is far from C, then we will

show that w.h.p. no such f" E C(7*)J(,*) exists.

To construct each labeled example, we again borrow a technique outlined in [26].

We start with a uniformly random z E X n.We then attempt to determine how the

j highly relevant coordinates of z are set. Although we don't know which of the

coordinates of z are highly relevant, we do know that, assuming the previous step

was successful, there should be one highly relevant coordinate in each of the critical

subsets. We use the independence test repeatedly to determine the setting of the

highly relevant coordinate in each critical subset.

For example, suppose that X = {0, 1} and I, is a critical subset. To determine the

setting of the highly relevant coordinate of z in critical subset I1, we subdivide I, into

two sets: the subset Xo C I1 of indices where z is set to 0, and the subset X 1 = I,\X,

of indices where z is set to 1. We can then use the independence test on both X0 and

X1 to find out which one contains the highly relevant variable. This tells us whether

the highly relevant coordinate of z in subset II is set to 0 or 1. We repeat this process

for each critical subset in order to find the settings of the j highly relevant coordinates

of z; these form the string x. (The other J(r*) - j coordinates of x are set to random



Check-Consistency (input is the sample S output by Identify-Critical-Subsets)

(a) Check every function in C(7*) j(7) to see if any of them are consistent with sample
S. If so output "yes" and otherwise output "no."

Figure 3-3: The subroutine Check-Consistency.

values; intuitively, this is okay since they are essentially irrelevant.) We then output

(x, f(z)) as the labeled example.

3. Check consistency.

Finally, in Step 3 we search through C(T*)J(T*) looking for a function f" over XJ(T*)

that is consistent with all m examples in S. (Note that this step takes Q(IC(T*)J( -) )

time but uses no queries.) If we find such a function then we accept f, otherwise we

reject.

3.2.3 Sketch of the analysis

We now give an intuitive explanation of the analysis of the test.

Completeness. Suppose f is in C. Then there is some f' E C(T*) that is T*-close to f.

Intuitively, T*-close is so close that for the entire execution of the testing algorithm, the

black-box function f might as well actually be f' (the algorithm only performs < 1/7*

many queries in total, each on a uniform random string, so w.h.p. the view of the algorithm

will be the same whether the target is f or f'). Thus, for the rest of this intuitive explanation

of completeness, we pretend that the black-box function is f'.

Recall that the function f' is a J(T*)-junta. Let us refer to the variables, xi, that have

Inff (xi) > 0 (recall that Inff (xi) is a measure of the influence of variable xi, and 0 is some

threshold to be defined later) as the highly relevant variables of f'. Since f' is a junta, in

Step 1 we will be able to identify a collection of j < J(r*) "critical subsets" with high

probability. Intuitively, these subsets have the property that:

* each highly relevant variable occurs in one of the critical subsets, and each critical

subset contains at most one highly relevant variable (in fact at most one relevant

variable for f');



* the variables outside the critical subsets are so "irrelevant" that w.h.p. in all the

queries the algorithm makes, it doesn't matter how those variables are set (randomly

flipping the values of these variables would not change the value of f' w.h.p.).

Given critical subsets from Step 1 that satisfy the above properties, in Step 2 we con-

struct a sample of labeled examples S = {(x 1, yl),... , (x, ym)} where each x' is in-

dependent and uniform over XJ(' ). We show that w.h.p. there is a J(r*)-junta f" E

C(r*)J(,*) with the following properties:

* there is a permutation c : [n] - [n] for which f"(x,(1),... ,x(J(~(-))) is close to

f'(x1,. . . , X, );

* The sample S is labeled according to f".

Finally, in Step 3 we do a brute-force search over all of C(r*)J(,*) to see if there is a

function consistent with S. Since f" is such a function, the search will succeed and we

output "yes" with high probability overall.

Soundness. Suppose now that f is e-far from C.

One possibility is that f is e-far from every J(r*)-junta; if this is the case then w.h.p.

the test will output "no" in Step 1.

The other possibility is that f is e-close to a J(r*)-junta f' (or is itself such a junta).

Suppose that this is the case and that the testing algorithm reaches Step 2. In Step 2,

the algorithm tries to construct a set of labeled examples that is consistent with f'. The

algorithm may fail to construct a sample at all; if this happens then it outputs "no." If the

algorithm succeeds in constructing a sample S, then w.h.p. this sample is indeed consistent

with f'; but in this case, w.h.p. in Step 3 the algorithm will not find any function g E

C(T*)J(T,) that is consistent with all the examples. (If there were such a function g, then

standard arguments in learning theory show that w.h.p. any such function g E C(T*)J(T*)

that is consistent with S is in fact close to f'. Since f' is in turn close to f, this would

mean that g is close to f. But g belongs to C(7*)J( *) and hence to C, so this violates the

assumption that f is e-far from C.)



3.2.4 The main theorem (Theorem 23)

We now state our main theorem, which is proved in detail in Section 3.3. The algorithm A

is adaptive, but in Section 3.4 we discuss how to make it non-adaptive with only a slight

increase in query complexity.

Theorem 23. There is an algorithm A with the following properties:

Let C be a class of functions from X' to Y. Suppose that for every 7 > 0, C(T) C C

is a (T, J(r))-approximator for C. Suppose moreover that for every c > 0, there is a T

satisfying

62

-< in(X" . J() 2 in2 (J(r)) Inln(J(T)) ln 2 ( C(T)J(,)) i n( nX in C(T)J(.T) )

(3.1)

where ri > 0 is a fixed absolute constant. Let T* be the largest value r satisfying (3.1)

above. Then algorithm A makes:

2sh + (2gJ(T*) [ig JX1 + 1)m

*)2 2 g J() n(C*)J )

(InIJ(*) 2n ( J*)I))

many black-box queries to f, and satisfies the following:

* If f C then A outputs "yes" with probability at least 2/3;

* If f is e-far from C then A outputs "no" with probability at least 2/3.

Here are some observations to help interpret the bound (3.1). Note that if J(T) grows

too rapidly as a function of 1/7, e.g. J(T) = Q(1/VJ7), then there will be no 7 > 0

satisfying inequality (3.1). On the other hand, if J(7) grows slowly as a function of 1/T,

e.g. log(1/T), then it is may be possible to satisfy (3.1).



In all of our applications J(T) will grow as O(log(1/T)), and In IC(7))J() I will always

be at most poly(J(T)), so (3.1) will always be satisfiable. The most typical case for us will

be that J(T) < poly(s) log(1/T) (where s is a size parameter for the class of functions in

question) and In IC(7)J(7) < poly(s) -polylog(1/-r), which yields 7* = O(E2)/poly(s)

and an overall query bound of poly(s)/0(E2).

3.3 Proof of Theorem 23

Let us describe how the parameters s, h, g and m mentioned above (and others) are set.

(The table below should perhaps be glossed over on a first reading, but will be useful for

subsequent reference.) Given e > 0, let 7* be as described in the theorem statement. We

set:

def 25(7) 2

r = 25J(T*) 2

S = 25J(7*)(7 + In r)

def
E2 =

def ln6IC(T*)j(,*)I

def 1
E1 200m

Sdef IJ(T*)
6er

def In(100mJ(T*)[lg Xi])

hdef (3+2 In s)0

E(J(T*)2 )

E(J(T*) In J(T*))

T(E)

O(E/ ln(IC(7T*)( ) i))

e(c/(ln(IC(T*)j(_) I) J(T7*)))

S(J(T*)ln(C(-* JI()J( *) n ( J(T*) ln(IC(T*)J(T* )))

e( 1 in(jC(T*)j() I)J(T*) In J(7 *) In J(T*))

where e is the base of the natural logarithm. Note that c1 + 62 < I.

Observe that for some suitable (small) absolute constant n > 0, our setting of parame-

ters and choice of T* yields the following bounds that we will use later:

* 2mgJ(T*) [ig Xi] -T 7* < 1/100 (used in Lemma 31)

* 2sh 7T < 1/100 (used in Corollary 30),

* m(el + 7*) < 1/100 (used in Lemma 31).



3.3.1 Step 1: Identifying critical subsets.

Step 1 of the algorithm consists of running the procedure Identify-Critical-Subsets, re-

produced for convenience in Figure 3-1. This procedure performs 2sh queries to f. The

procedure is nearly identical to the "two-sided" junta test of Section 4.2 of Fischer et al.

with two small differences. The first is that we have adjusted various constant factors

slightly (we need a smaller failure probability because we are using this in the context of a

larger test). The second is that Identify-Critical-Subsets outputs the list of subsets that are

declared to be not influence-free (whereas the Fischer et al. test simply accepts or rejects

f), since we will need these subsets for the rest of our test.

We now prove two quick lemmata that will be useful in establishing the soundness and

completeness of the algorithm.

Lemma 24. Let f be a function with at most J(r*) variables xi that have Inff({i}) _ 0.

Then with probability at least 1 - 1/400, each of the variables xi that have Inff({i}) > 0

occurs in some subset Ie that is not declared influence-free by Identify-Critical-Subsets.

Proof Fix a variable xi such that Inff({i}) 2 0. Let It denote the subset to which xi

belongs. By the monotonicity and subadditivity of influence (Lemma 13) we have that

0 < Inff({i}) < Inff (I) < Inff(Bk)

where Bk is any block such that f E Ak. This implies that for any such block Bk, the

probability that all h iterations of the independence test accept is at most (1 - 6 )h < 2 <

T . So the probability that any block that contains xx is declared influence-free is at

most 400J( By a union bound over all at most J(7*) variables xi that have Inf f({i}) _ 0,

the probability that any block that contains such a variable causes any subset It containing

the variable to be declared influence-free is at most 1/400. Ol

Lemma 25. Let V be any set of < J(-*) variables from x1, ... , . Then with probability

at least 1 - 1/25, every subset It, 1 < £ < r, contains at most one variable from V.

Proof For any fixed pair of variables in V, the probability that they end up in the same

subset 1i is 1/r. Thus by a union bound the probability that any pair of variables from V



end up in the same subset is at most

I |V|) V| J(7*)2  1
r 2 2 - r 25

Let IC C [n] denote a set of coordinates satisfying Inff(C) < cl. Lemma 19 states that

the following function:

h(x) Plur[f (xkzy)] (3.2)
z

is 1l-close to f.

Let j denote the set of those coordinates on which f has binary influence at least 0. To

prove the soundness of Identify-Critical-Subsets, we must prove that if f passes Identify-

Critical-Subsets with probability greater than 1/3, then it is El-close to a J(T*)-junta. This

is accomplished by showing that 1,1 < J(T*), and that j can be used in place of KC above,

i.e., Inff (f) < Ej. Then we can invoke Lemma 19 to finish the proof. In addition, we will

also prove some properties about the subsets I 1,,..., Ii output by the algorithm.

Lemma 26. If f passes Identify-Critical-Subsets with probability higher than 1/3, then:

(i) 1 < J(T*);

(ii) Inf f(F) < El,

and f is thus cl-close to a J(T*)-junta by Lemma 19.

Let h be defined as in Equation (3.2) using J as the set 1C. Suppose that f passes

Identify-Critical-Subsets with probability greater than 1/3. Then given that f passes, the

sets output by the algorithm, I i ,.. , Iij, have the following properties with probability at

least 6/7:

(iii) Every xi E j occurs in some subset Ii, that is output;

(iv) Every subset Ii, 1 <_ < j, contains at most one variable from J.

Proof Condition (i): (paraphrasing Prop. 3.1 and Lemma 4.3 of [26]) Suppose 1J| >

J(r*). Then with probability at least 3/4 (using the same argument as in the proof of



Lemma 25), the number of subsets i, containing an element from J is at least J(T*) + 1.

For any fixed subset Ii, that contains an element from J and any fixed block B containing

Ih,, the probability of B being declared influence-free is bounded by:

(1 - 0 )h = (1 - 0)(3+ 2 1ns )/O <
20s(J(7*) + 1)'

Union bounding over the at most s blocks to which the subset ii, can belong, and union

bounding over J(T*) + 1 subsets that contain an element from J, we have that with proba-

bility at least 1 - 9 > 1, at least J(r*) + 1 subsets are not declared influence-free and con-

sequently f does not pass Identify-Critical-Subsets. Thus, if f passes Identify-Critical-

Subsets with probability at least 1/3, it must be the case that IJ < J(*).

Condition (ii): (paraphrasing Prop. 3.1 and Lemma 4.3 of [26]) Suppose Inff(J) >

E1. We will show that each block Be has high influence with high probability. This will

imply that the number of blocks not declared influence-free is larger than s/2 with high

probability, so the test will reject with probability at least 2/3.

In order to show that each block has reasonably high influence, we will make use of the

following technical tool which was defined by Fischer et al. [26].

Definition 27. Let f be a function that maps X n to {-1, 1}, and let J C [n] be a set of

coordinates. For each coordinate i E [n], we define the unique variation of i with respect

to J as

Urf(i) def Inff([i]\f) - Inff([i - 1]\ ),

and for I C [n] we define the unique variation of I as

Urf,(I) dEf Ur (i).
ieI

The most important property of the unique variation that distinguishes it from the other

notions of influence is that for any set of coordinates, its unique variation simply equals the

sum of the unique variation of each of its coordinates. This makes it easy to compute the

expected value of the unique variation on a random subset of coordinates. Furthermore, the

following properties hold.



Lemma 28 (Fischer et al. [26]).

* For any coordinate i E [n], Urf({i}) < Inff({i}).

* For every set I C [n] of coordinates, Urf(I) < Inff(I\J).

* Urf([n]) = Urf([n]\J) = Inff([n]\J).

Proof The proof is straightforward from the definition and Proposition 12. O

Now fix any value £ E [s]. The block Be is a random set of variables independently

containing each variable xx coordinate with probability J(r*)/r. Let Urf(I) be the unique

variation of a set I with respect to J (see Definition 27). Then the expected value of the

unique influence of Be is

J(T*) J(T*) E J(-*)E[Urf(B)] J(TUrf()= Inff() > J(*)

By Lemma 28 and Lemma 21 (taking rI = 1/2e, t 0= and c = J() in Lemma 21), we

have

Pr Inf (B,) < J*) < Pr Ur (B,) < J(*) < exp E= e- 3 < --
S 2er I- [ 2er I <2erO 12

Hence the probability that the influence of Be is less than elJ(T*)/2er = 30 is less than

1/12. This implies that the expected number of blocks with influence less than 30 is smaller

than s/12. From Markov's inequality we get that with probability at least 1 - 1, there are

less than s/2 blocks with influence smaller than 30.

The probability of a block with influence greater than 30 being declared influence free

is at most:

(1 - 30) h = (1 - 30)(3+ 21 n s )/O < - (9 + 6 In s ) <
1000s'

and therefore with probability at least 1 - none of these blocks are declared influence

free. So with overall probability at least 1 - (1 + 100) > q, more than s/2 blocks are

declared influence-free and the test rejects.

Condition (iii): We may suppose that f passes Identify-Critical-Subsets with proba-

bility greater than 1/3. Then we know that |J| _ J(T*) by Condition (i). By Lemma 24,



given that f passes Identify-Critical-Subsets, the probability that some xi E J does not

occur in some subset Ij, output by the algorithm is at most 3/400. (The bound is 3/400

rather than 1/400 because we are conditioning on f passing Identify-Critical-Subsets,

which takes place with probability at least 1/3.)

Condition (iv): As above we may suppose that f passes Identify-Critical-Subsets

with probability greater than 1/3. By Condition (i) we know that |J < J(-*), so we

may apply Lemma 25. Hence conditioned on f passing Identify-Critical-Subsets (an

event which has probability at least 1/3), the probability that any subset Ii, output by the

algorithm includes more than one relevant variable of h is at most 3/25.

Summing the probabilities, we get that conditions (iii) and (iv) are true with probability

at leat 1- ( + 3) > E. oE

Fischer et al. establish completeness by showing that if f is a junta then with probability

at least 2/3 conditions (a) and (b) are both satisfied in Step 4. However we need more than

this, since we are going to use the subsets I 1,..., Ii later in the test. We will prove:

Lemma 29. Suppose that f is a J(T*)-junta. Let IC be the set of variables satisfying

Inff({i}) > 0. Then with probability at least 6/7, algorithm Identify-Critical-Subsets

outputs a list of j < J(T*) subsets Ii ,... , i with the property that:

(i) each variable xi E KC occurs in some subset Ie that is output;

(ii) Inff( () < iE;

(iii) Every subset Iji, 1 < f < j, contains at most one relevant variable for f .

Proof Condition (a): Fix any partition Ii,... ,I,. If f is a J(-*)-junta, then it is indepen-

dent of all but at most J(7*) subsets in the partition. Hence for any fixed f, the probability



over the selection of the blocks that f is independent of Bj is at least:

(r - J(*) /
J(r*) (J(T*)

r- 2J(r7* ) J(

( 2J(T* J(T*)
r - J(7*)

> 1 - J(T*)

> -
r - J(r*)

- 24

The probability that f depends on more than half of the blocks is therefore smaller than 224

using the Markov inequality. (See [26], Lemma 4.2).

Condition (b) fails with probability at most:

1 ( 1  )25J(*)(7+1nr)

S 1 25J(T*) = ( 25J(T*)

1 1
1000r 1000'

(see [26], Lemma 4.2, which uses s = 20J(3 + In r) instead).

Condition (i): Since we assume that f is a J(r*)-junta we may apply Lemma 24, and

thus the probability that any variable x that has Inff({i}) > 0 occurs in a subset If that is

declared influence-free by Identify-Critical-Subsets is at most 1/400.

Condition (ii): Let L denote the relevant variables for f that are not in IC, and let T

denote [n] \ (IC U L). By Lemma 13 we have

E J(7*)
Inff(£) < EInff({i}) J(*)6e 25J(*))2 < 6 1.

We have that K = £ U T, so by Lemma 13 we get

Inff() = Inff(L U T) < Inf (£) + Inff (T) = Inff(£) < El.

Condition (iii): Suppose there are precisely j' < J(T*) many relevant variables. Then

by Lemma 25, the probability that any subset I1,..., Ir ends up with two or more relevant

variables is at most 1/25.



Summing failure probabilities, we find that all the required conditions are fulfilled with

probability at least 1 - (1/12 + 1/1000 + 1/400 + 1/25) which is greater than 6/7. l

We are ultimately interested in what happens when Identify-Critical-Subsets is run on

a function from C. Using the above, we have:

Corollary 30. Suppose f is T-*-close to some J(T*)-junta f'. Then with probability at least

5/6, algorithm Identify-Critical-Subsets outputs a list of j < J(r*) subsets lix, ij

with the property that

(i') each variable x which has Inff ({i}) > 0 occurs in some subset I' that is output;

(ii') Inff (T) < E1;

(iii') Every subset Ii,, 1 < f < j, contains at most one relevant variable for f'.

Proof Observe that each of the 2sh queries that Identify-Critical-Subsets performs is on

an input that is selected uniformly at random from X" (note that the query points are not all

independent of each other, but each one considered individually is uniformly distributed).

Since f and f' disagree on at most a T* fraction of all inputs, the probability that Identify-

Critical-Subsets queries any point on which f and f' disagree is at most 2sh 7* < 1/100.

Since by Lemma 29 we know that conditions (i'), (ii') and (iii') would hold with probability

at least 6/7 if the black-box function were f', we have that conditions (i), (ii) and (iii) hold

with probability at least 6/7 - 1/100 > 5/6 with f as the black-box function. O

3.3.2 Step 2: Constructing a sample.

Step 2 of the algorithm consists of running the procedure Construct-Sample. The algo-

rithm makes (2gj [ig X ] + 1)m many queries to f, and either outputs "no" or else outputs

a sample of m labeled examples (x, y) where each x belongs to XJ(*).

We introduce some notation. Given functions f : X-- and f' : XJ-*y with

j _ n and a permutation c : [n] -- [n], we write f % f' to indicate that Vx E Xn :

f'(xo(1), ... , xc(j)) = f(xl,... , x), If f : X'n-+ is a function with j relevant variables,

we use fj to mean the function over j variables that results by mapping the i-th relevant



variable under f to the i-th character of a j-character string over X; i.e. if a is a permu-

tation which induces such a mapping, then fj is the function satisfying f O fj. Given

a function f : XJ-- and permutation a : [n]-[n], we write fyr to denote the j-junta

satisfying fr d f.

Lemma 31. Given f : X--y and some J(T*)-junta f' that is T*-close to f, let KC be

the set of variables satisfying Inff ({i}) > 0. Suppose Construct-Sample is given oracle

access to f and inputs Ii, ... , Ii, with j < J(T*), where:

1. Each variable xi E KC is contained in one of Iil , . • , Iij;

2. Inff,(KC) < Ei;

3. Every subset Ii,, 1 < f < j, contains at most one relevant variable for f'.

Let h be the function defined as in Equation 3.2 using the set 1C. Let ' C KC be the set of

relevant variables for h, and let a : [n][--[n] be some permutation which maps the variable

from 7- in bin Ii, to bit f. Then with probability at least 1 - 3/100, Construct-Sample

outputs a set of m uniform, random examples labeled according to a J(-r*)-junta g which

depends on no variables outside of IC and satisfies Przexn [g" (z) # f'(z)] < E1.

Proof By Lemma 19 we have that Przcxn [h(z) # f'(z)] < Eq. We now show that except

with probability less than 3/100, Construct-Sample produces a set S of m examples that
def

are uniform, random, and labeled according to g hj(,,) (note that g h).

Consider a particular iteration of Step 1 of Construct-Sample. The iteration generates

an example x that is uniform random and labeled according to g if

(a) for every bin Ii, which contains a variable from 7-, Step 1 (b)ii constructs the index

w such that X, contains that variable;

(b) for every bin Ii, that contains no variable from 7-, in every iteration of Step 1 (b)ii(C)

at most one of X0 , X1 is marked, and the value w that is considered in Step 1 (b)iv lies

in [0, IX - 1]; and

(c) h(z)= f(z).



Item (a) ensures that if Ii contains a variable from H, then x takes the value of that

variable under the assignment z (and, since z is a uniform random value, so is xe). Item (b)

ensures that if Ij, contains no variable from ', Construct-Sample does not output "no"

and assigns xt a uniform random value, because x either gets a fresh uniform random value

in Step 1 (b)iii or gets the value of z (which is uniform random). Together, these ensure that

g(x) = g(z, (1),... ), z(,r,))), and item (c) ensures that the label for the example x will be

h(z) = g(x).

It remains to bound the probability that any of (a), (b), or (c) fail to hold. Suppose first

that every query of every iteration of the independence test is answered according to f'.

Then item (3) implies that (a) can only fail to hold if we do not manage to figure out some

bit of w in Step 1 (b)ii for some £ for which i, contains a variable from - (which means

that all g executions of the independence test pass for that bit failed), and it also implies that

condition (b) holds (it is possible for a bit of w to be unspecified, but not for both X0 , X1 to

be marked or for w to be set to an out-of-range value). Thus the probability that either (a)

or (b) fails to hold is at most

j [lg IX] (1 - 0)9 + 2jg[lg X|] 7*,

where the first term bounds the probability that all g [ig I X I] executions of the independence

test pass for some £ and the second term bounds the probability that any execution of the

independence test queries a point z such that f (z) 7 f'(z). Finally, the probability that (c)

fails to hold is at most c1 + 7*.

Now considering all m iterations, we have that the overall probability of either out-

putting "no" or obtaining a bad example in the m-element sample is at most mj [ig X 1] (1-

O)+2jgm [Ig X1] -.T*+(el+F7*)m < 1/100+1/100+1/100, and the lemma is proved. IZ

3.3.3 Step 3: Checking consistency.

The final step of the algorithm, Step 3, is to run Check-Consistency. This step makes no

queries to f.

The following two lemmata establish completeness and soundness of the overall test
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and conclude the proof of Theorem 23.

Lemma 32. Suppose that f E C. Then with probability at least 2/3, algorithm A outputs

yes.

Proof Let f' be some J(7*)-junta in C(T*) that is r*-close to f. By Corollary 30, we

have that except with probability at most 1/6, f passes Identify-Critical-Subsets and the

inputs I,. . . , Ii given to Construct-Sample will satisfy conditions (i')-(iii'). Let IC be

the set consisting of those variables that have binary influence at least 0 under f'. We

use Lemma 31 to conclude that with probability at least 1 - 3/100, Construct-Sample

outputs m uniform, random examples labeled according to some J(T*)-junta g satisfying

Prz[g (z) f'(z)] E1 . Let a' map the variables in K to the same values as a, but also

map the remaining, possibly relevant variables of f' to the remaining J(r*) -j bits. Clearly

Prz[g'(z) € f'(z)] < cl, and since the relevant variables of go' (which are contained in

IC) are a subset of the relevant variables of f', we have that Prx [g(x) # (f ')j*)(x)] < E1.

Assuming that Construct-Sample outputs m uniform random examples labeled ac-

cording to g, they are also labeled according to f ) e C(T*)J(T*) except with probabil-

ity at most cim. Summing all the failure probabilities, we have that Check-Consistency

does not output "yes" with probability at most 1/6 + 3/100m < 1/3, and the lemma is

proved. O

Lemma 33. Suppose that f is c-far from C. Then the probability that algorithm A outputs

"yes" is less than 1/3.

Proof We assume that f passes Identify-Critical-Subsets with probability greater than

1/3 (otherwise we are done), and show that if f passes Identify-Critical-Subsets, it will

be rejected by Construct-Sample or Check-Consistency with probability at least 2/3.

Assume f passes Identify-Critical-Subsets and outputs Ii, ... , Ii,. Using Lemma

26, we know that except with probability at most 1/7, J, the set of variables with binary

influence at least 0 under f, satisfies:

* Inff(J) < 1;

* each variable in J is contained in some bin Ii, that is output;



e each bin i, contains at most one variable from J.

As in Lemma 31, we construct a function h using the variables in J according to Equation

3.2 in Section 3.3.1. Let R C J be the set of relevant variables for h, and let c : [n]--*[n] be

as in Lemma 31. We have that Przxc[h(z) # f(z)] < Ec. We show that with probability

greater than 1 - 2/100, Construct-Sample either outputs "no" or a set of m uniform,
def

random examples labeled according to g = h(.

Consider a particular random draw of z E X" As in Lemma 31, this draw will yield a

uniform, random example x E XJ('*) for g as long as

(a) for every bin i, which contains a variable from N, Step 1 (b)ii constructs the index

w such that X, contains that variable;

(b) for every bin I, that contains no variable from N, in every iteration of Step 1 (b)ii(C)

at most one of X 0, X1 is marked, and the value w that is considered in Step 1 (b)iv lies

in [0, IX - 1]; and

(c) h(z)= f(z).

The probability of (c) failing is bounded by c1. The probability of (a) failing is at most

j [lg X I] (1 - 0/2)9 < . If neither (a) nor (c) occurs, then the example satisfies (a), (b)

and (c) unless it fails to satisfy (b), but if it fails to satisfy (b) Construct-Sample outputs

"no" in Step l(b).ii.F or Step 1(b).iv. a Thus if f passes Identify-Critical-Subsets, we

have that with probability at least

1-1/7- 1/100 - m> 1-1/7 - 2/100 > 1 - 1/6

Construct-Sample either outputs "no" or it outputs a set of m uniform random examples

for g.

Suppose Construct-Sample outputs such a set of examples. We claim that with prob-

ability at least 1 - 1/6 over the choice of random examples for g, Check Consistency

will output "no". Suppose that Check Consistency finds some g' E C(7*)j(r*) consis-

tent with all m examples. Then g' cannot be 62-close to g. (Otherwise, we have that

-- ---------



Prz[g "(z) Z g (z)] _< 2, from which it follows that Prz[g (z) # f(z)] < 62 + El <

since g'(z) is c-close to f. But g' E C(T*)J(,*), so g" e C(T*) C C which contra-

dicts our assumption that f is e-far from C.) By choice of m, the probability there ex-

ists a g' E C(T*)j(,*) consistent with all m examples that is not E2-close to g is at most

IC(T*)J(*) (1- C2)m = 1/6. Thus, if f passes Identify-Critical-Subsets, then Construct-

Sample and Check-Consistency output "yes" with probability less than 1/6 + 1/6 < 1/3.

This proves the lemma. O

3.4 Making the algorithm non-adaptive

The algorithm A presented in the previous section is adaptive. In this section, we show that

A can be made non-adaptive without considerably increasing its query complexity.

The only part of our current algorithm that fails to be non-adaptive is Step 2, the

Construct-Sample subroutine, which relies on knowledge of the critical subsets identified

in Step 1. To remove this reliance, one approach is to modify the Construct-Sample sub-

routine (in particular the f or-loop in step 1(b)) so that it iterates over every subset rather

than just the critical ones. This modified subroutine can be run before the critical subsets

are even identified, and the queries it makes can be stored for future use. Later, when the

critical subsets are identified, the queries made during the iterations over non-critical sub-

sets can be ignored. Since there are E(J(T*) 2) total subsets compared to the O(J(T*))

critical ones, the cost of this modified algorithm is an additional factor of e(J(T*)) in the

query complexity given in Theorem 23. For all of our applications, this translates to only a

small polynomial increase in query complexity (in most cases, merely an additional factor

of e(s)).

We briefly sketch a more efficient approach to nonadaptivity; this is done essentially by

combining Steps 1 and 2. Specifically, each of the m examples that we currently generate

in Step 2 can be generated using the techniques from Step 1. To generate a single example,

we take a random assignment to all of the variables, and we split each set Ii of variables

into [X| sets Ii,,, where Ii,, consists of those variables in Ii that were assigned w. We

get 8O(IXJ(r*)2) sets of variables. Now, as in the Identify-Critical-Subsets subroutine,



we create k = O(J(7*) log(lX J(-r*))) blocks, each consisting of exactly IX J( -*) sets

Ii,, chosen at random. We run the independence test (I log(km)) times on each of these

blocks, and declare influence free those not rejected even once. If for each critical subset 1i,

at least X I - 1 sets I,, are declared influence free on behalf of some block, the remaining

Ii,, which are not declared influence free give us the values of the influential variables. One

can show that this happens with probability 1 - O(1/m). Therefore when the procedure is

repeated to generate all m examples, the probability of overall success is constant. Without

going into a detailed analysis, the query complexity of this modified algorithm is essentially

the same as that given in Theorem 23, namely 0 (~ J(-*)2 ln 2(IC(r*)j(,*) )). Thus,

for all of our applications, we can achieve non-adaptive testers with the same complexity

bounds stated in Theorems 34 and 38.

3.5 Applications to Testing Classes of Functions

The algorithm A in Theorem 23 can be applied to many different classes of functions that

were not previously known to be testable. The following two subsections state and prove

our results for Boolean and non-Boolean functions, respectively. These testing results are

collected in Table 1.1.

3.5.1 Boolean Functions

Theorem 34. For any s and any e > 0, Algorithm A yields a testing algorithm for

1. decision lists using 6(1/62) queries;

2. size-s decision trees using 0(s4/E2) queries;

3. size-s branching programs using 0(S4/62) queries;

4. s-term DNF using 0(s 4/E 2) queries;

5. size-s Boolean formulas using O(s4/62) queries;

6. size-s Boolean circuits using 0(s 6/e 2) queries;



7. functions with Fourier degree at most d using 0( 2 "6d/2) queries.

Proof We describe each class of functions and apply Theorem 23 to prove each part of the

theorem.

Decision Lists. A decision list L of length m is described by a list (Vl, bi), ... , (fm, bm),

bm+, where each fi is a Boolean literal and each bi is an output bit. Given an input x E

{0, 1}" the value of L on x is bj, where j > 1 is the first value such that 1j is satisfied by

x. If ej is not satisfied by x for all j = 1, ... , m then the value of L(x) is bm+l.

Let C denote the class of all Boolean functions computed by decision lists. Since

only a 1/2j fraction of inputs x cause the (j + 1)-st literal fj in a decision list to be

evaluated, we have that the class C((T) def {all functions computed by decision lists of
def

length log(1/T)} is a (7, J(T))-approximator for C, where J(-) log(1/T). We have

IC()j(T)I < 2 -4log(1/T)(log(1/T))!. This yields T* = O(E2), so Theorem 23 thus yields

part (1) of Theorem 34.

Decision Trees. A decision tree is a rooted binary tree in which each internal node is

labeled with a variable xi and has precisely two children and each leaf is labeled with an

output bit. A decision tree computes a Boolean function in the obvious way: given an input

x, the value of the function on x is the output bit reached by starting at the root and going

left or right at each internal node according to whether the variable's value in x is 0 or 1.

The size of a decision tree is simply the number of leaves of the tree (which is one more

than the number of internal nodes).

Let C denote the class of all Boolean functions computed by decision trees of size at

most s. It is obvious that any size-s decision tree depends on at most s variables. We may

thus take C(r) def C and we trivially have that C(r) is a (7, J(r))-approximator for C with
def

J() = s.

Now we bound IC(T)J(T) I by (8s)s. It is well known that the number of s-leaf rooted

binary trees in which each internal node has precisely two children is the Catalan number

C -1 = 1(2s-12) which is at most 4s . For each of these possible tree topologies there are

at most s"-1 ways to label the s - 1 internal nodes with variables from xl,... , x,. Finally,

there are precisely 2s ways to choose the leaf labels. So the total number of decision trees



of size s over variables , ... . , x is at most 4 - ss- 1 - 2s < (8 s)" .

We thus have 7* = O(E2/s 4) in Theorem 23, and we obtain part (2) of Theorem 34.

Branching Programs. Similar results can be obtained for branching programs. A branch-

ing program of size s is a rooted s-node directed acyclic graph with two sink nodes labeled

0 and 1. Each internal node has fanout two (and arbitrary fan-in) and is labeled with a vari-

able from xl,..., x,. Given an input x, the value of the branching program on x is the

output bit reached as described above.

Let C denote the class of all s-node branching programs over {0, 1}". As with decision
def def

trees we may take C(T) = C and J(T) s. We show that C(7)T(7) sS(s ± 1)2s

The graph structure of the DAG is completely determined by specifying the endpoints

of each of the two outgoing edges from each of the s internal vertices. There are at most

s + 1 possibilities for each endpoint (at most s - 1 other internal vertices plus the two sink

nodes), so there are at most (s + 1)2s possible graph structures. There are at most s' ways

to label the s nodes with variables from {x1,... , x,}. Thus the total number of possibilities

for a size-s branching program over xl,... , x, is at most ss(s + 1)2s.

Again we have 7* = O(e 2/ 4), SO Theorem 23 yields part (3) of Theorem 34.

DNF Formulas. An s-term DNF formula is an s-way OR of ANDs of Boolean literals. A

k-DNF is a DNF in which each term is of length at most k.

It is well known that any s-term DNF formula over {0, 1}' is T-close to a log(s/T)-DNF

with at most s terms (see e.g. [62] or Lemma 35 below). Thus if C is the class of all s-term

DNF formulas over {0, 1}, we may take C(7) to be the class of all s-term log(s/T)-DNF,

and we have that C(7) is a (7, J(r))-approximator for C with J(7) = slog(s/r). An easy

counting argument shows that |C()j(,) I < (2s log(s/T))s log (s/T). We get 7* = O(E2/ 4),

so Theorem 23 yields part (4) of Theorem 34.

Boolean Formulas. We define a Boolean formula to be a rooted tree in which each internal

node has arbitrarily many children and is labeled with either AND or OR and each leaf is

labeled with a Boolean variable xi or its negation Ti. The size of a Boolean formula is the

number of AND/OR gates it contains.

Let C denote the class of all Boolean formulas of size at most s. Similar to the case of
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DNF, we have the following easy lemma:

Lemma 35. Any size-s Boolean formula (or size-s circuit) over {0, 1}" is T-close to a

size-s formula (or size-s circuit) in which each gate has at most log(s/T) inputs that are

literals.

Proof If a gate g has more than log(s/T) many inputs that are distinct literals, the gate is

T/s-approximated by a constant function (1 for OR gates, 0 for AND gates). Performing

such a replacement for each of the s gates in the circuit yields a T-approximator for the

overall formula (or circuit). LO

We may thus take C(T) to be the class of all size-s Boolean formulas in which each

gate has at most log(s/T) distinct literals among its inputs, and we have that C(T) is a
j(7-) def

(T, J(T))-approximator for C with J(T) s log(s/r). An easy counting argument shows

that IC(Tr)J() I < (2s log(s/T))slog(s/)+s; for each of the s gates there is a two-way choice

for its type (AND or OR) and an at most s-way choice for the gate that it feeds into.

There are also at most log(s/T) literals from xl,... , X log(s/T), 1, ... , 7s log(s/r) that feed

into the gate. Thus there are at most (2s log(s/T))1og (S/ )+l possibilities for each of the s

gates, and consequently at most (2s log(s/T))slog(s/T)+s possibilities overall. Again we get

7-* = O( 2/s 4 ), which gives part (5) of Theorem 34.

Boolean Circuits. An even broader representation scheme is that of Boolean circuits.

A Boolean circuit of size s is a rooted DAG with s internal nodes, each of which is la-

beled with an AND, OR or NOT gate. (We consider circuits with arbitrary fan-in, so each

AND/OR node is allowed to have arbitrarily many descendants.) Each directed path from

the root ends in one of the n + 2 sink nodes xl, .. . , x, 0, 1.

For C the class of all size-s Boolean circuits, using Lemma 35 we may take C(r) to

be the class of all size-s Boolean circuits in which each gate has at most log(s/T) distinct

literals among its inputs, and we have that C(T) is a (T, J(T))-approximator for C with

J() def slog(s/7). It is easy to see that IC(T)j(,)I < 22S2+ 4 s . To completely specify a

size-s Boolean circuit, it suffices to specify the following for each of the s gates: its label

(three possibilities, AND/OR/NOT) and the set of nodes to which it has outgoing edges (at



most 22s+2 possibilities, since this set is a subset of the s + 2 sink nodes and the s internal

nodes).

This results in 7* = O(C2/s 6), and consequently Theorem 23 yields part (6) of Theo-

rem 34.

Functions with bounded Fourier degree. For convenience here we take X = {-1, 1}.

Recall that every Boolean function f : {-1, 1 }n- { -1, 1} has a unique Fourier repre-

sentation, i.e. a representation as a multilinear polynomial with real coefficients: f(x) =

sc n] f (S) lies x. The coefficients f (S) are the Fourier coefficients of f. The Fourier

degree of f is the degree of the above polynomial, i.e. the largest value d for which there is

a subset S| = d with f (S) # 0.

Let C denote the class of all Boolean functions over {-1, 1}n with Fourier degree at

most d. Nisan and Szegedy [48] have shown that any Boolean function with Fourier degree

at most d must have at most d2d relevant variables. We thus may take C(T) d=f C and

J(T) d d2d. The following lemma gives a bound on IC(7)J(T) 1:

Lemma 36. For any d > 0 we have IC(T)j(7) I < 222d

Proof. We first establish the following simple claim:

Claim 37. Suppose the Fourier degree of f : {-1, 1}" -+ {-1, 1} is at most d. Then every

nonzero Fourier coefficient of f is an integer multiple of 1/ 2d- 1

Proof Let us view f : {-1, 1 }n _ {-1, 1} as a polynomial with real coefficients. Define

the polynomial p(xl,..., xn) as

p(x, Xn) f(2xl- 1,...,2Xn,- 1)+12

The polynomial p maps {0, 1}" to {0, 1}. Since f is a multilinear polynomial of degree

at most d, so is p. Now it is well known that there is a unique multilinear polynomial

that computes any given mapping from {0, 1}" to {0, 1}, and it is easy to see that this

polynomial has all integer coefficients. Since

f(Xl,..., Xn) = 2p + x 12  , -1 + x;,) 12 2 )

I I -I -' , "1 ~ - -------



it follows that every coefficient of f is an integer multiple of 2d 1a, and the claim is proved.

To prove Lemma 36 we must bound the number of distinct Boolean functions with

Fourier degree at most d over variables Xl,..., Xa2d. First observe that there are at most

D = (d2) < (d2d)d monomials of degree at most d over these variables.

If f : {-1, 1}d2d - {-1, 1} has Fourier degree at most d, then by Claim 37 every

Fourier coefficient is an integer multiple of 1/ 2 d-1. Since the sum of squares of all Fourier

coefficients of any Boolean function is 1, at most 22d-2 of the D monomials can have

nonzero Fourier coefficients, and each such coefficient takes one of at most 2d values. Thus

there can be at most

( 2D 2 (2d-2 < (D2d)2 2d 2 < 2d2 .22 d22d-2

many Boolean functions over xl, . . . , Xd2d that have Fourier degree at most d. O

We thus get that 7* = O(c2 /26 d), and Theorem 23 yields part (7) of Theorem 34. Ol

3.5.2 Non-Boolean Functions

Theorem 38. For any s and any e > 0, Algorithm A yields a testing algorithm for

1. s-sparse polynomials over finite field F using O((s IF )4 /, 2 ) queries;

2. size-s algebraic circuits overfinite ring orfield F using O(s4 log3 IFl/C 2 ) queries;

3. size-s algebraic computation trees over finite ring or field IF using O(s4 log3 IFI/c 2)

queries.

Proof We describe each class of functions and apply Theorem 23 to prove each part of the

theorem.

Sparse Polynomials over Finite Fields. Let F denote any finite field and let y = IF. An s-

sparse polynomial over F is a multivariate polynomial in variables xl,... , x with at most

s nonzero coefficients.



Let us say that the length of a monomial is the number of distinct variables that occur

in it (so for example the monomial 3x lx has length two). We have the following:

Lemma 39. Any s-sparse polynomial over F is -r-close to an s-sparse polynomial over F

in which each monomial has length at most IF ln(s/T).

Proof If a monomial has length £ greater than |F ln(s/T), then it can be 7/s-approximated

by 0 (for a uniform random x E F", the probability that the monomial is not 0 under x is

(1 - 1/ F )e). Performing this approximation for all s terms yields a T-approximator for

the polynomial. O

For C = the class of all s-sparse polynomials in n variables over finite field F, we

have that the class C(7) of all s-sparse polynomials over finite field F with all monomials

of length at most |F| ln(s/r) is a (T, J(-r))-approximator with J(r) = sIF Iln(s/r). The

following counting argument shows that

C(7)j(7)) (s IF313 n(s/T))sFlln(s/r).

Consider a single monomial M. To specify M we must specify a coefficient in F, a subset

of at most £ of the J(-) possible variables that have nonzero degree (at most J(r)e possi-

bilities), and for each of these variables we must specify its degree, which we may assume

is at most F| - 1 since alFI = a for every a in finite field F. Thus there are at most

F (J(r) IF| ) possibilities for each monomial, and consequently at most IFls(J(Tr)|F ) =

IFs(s F 2 ln(s/T))sjF ln(s/r) < (s Fl3 ln(s/T))FI ln(s/) possible polynomials overall.

Setting 7* = O(c 2/(s IF )4) and applying Theorem 23 yields part (1) of Theorem 38.

Algebraic Circuits. Let F denote any finite ring or field and let Y = F. A size-s algebraic

circuit (or straight line program) over F" is a rooted directed acyclic graph with s internal

nodes (each with two inputs and one output) and n + k leaf nodes for some k > 0 (each

with no inputs and arbitrarily many outputs). The first n leaf nodes are labeled with the

input variables xl,... , Xn, and the last k leaf nodes are labeled with arbitrary constants ozi

from F. Each internal node is labeled with a gate from {+, x, -} and computes the sum,

product, or difference of its two input values (if F is a field we allow division gates as well).



Let C denote the class of all Boolean functions computed by algebraic circuits of size at

most s over variables xl,... , x,. (Here we analyze the simpler case of circuits with +, x,

- gates; our analysis can easily be extended to handle division gates as well.) Any size-s

algebraic circuit depends on at most 2s variables. We may thus take C(T) cef C and we

trivially have that C(T) is a (7T, J(T))-approximator for C with J(T) def 2s. Now we show

that IC(T)J(T)I < (751F12S2) s.

A size s algebraic circuit can read at most 2s leaves as each internal node has two inputs.

Thus it can read at most 2s constant leaves, and at most 2s input leaves. To completely

specify a size-s algebraic circuit, it suffices to specify the 2s constant leaf nodes and the

following for each of the s gates: its label (at most three possibilities) and the two nodes to

which it has outgoing edges (at most (5s)2 possibilities, since it can hit two of the at most

4s leaves and the s internal nodes). Thus there are at most IIF2s(75s2)s different algebraic

circuits.

Equation 3.1 in Theorem 23 is satisfied for small T's, but we do not care how large the

optimum 7* is as J(T) does not depend on T. Eventually, Theorem 23 yields part (2) of

Theorem 38.

Algebraic Computation Trees. Let F denote any finite ring or field and let y = F. A

size-s algebraic computation tree over input variables xl,..., x, is a rooted binary tree

with the following structure. There are s leaves, each describes an output value which is

either a constant, an input variable, or one of the variables computed in the ancestors of

the leaf. Each internal node has two children and is labeled with y, where y, = yu o yw

and yu, y, are either inputs, the labels of ancestor nodes, or constants, and the operator o

is one of {+, -, x, } (the last one only if F is a field). An input that reaches such a node

branches left if y, 0 and branches right if y, # 0.

Let C denote the class of all functions computed by algebraic computation trees of size

at most s over xl,..., x,. Any size-s algebraic computation tree depends on at most 3s

def def
variables. So similar to algebraic circuits, we can take C(7) - C and J(T) = 3s. Now we

show that IC(7r)J(T) I 16s(IFI + 4s)3

As in the boolean case, the number of s-leaf rooted binary trees in which each internal

node has precisely two children is at most 4'. A tree has s - 1 internal nodes and s leaves.



For each of these possible tree topologies there are at most 4(1IFl + 4s)2 ways to label the

s- 1 internal nodes (with one of 4 operations on two constants, variables or ancestor nodes).

Finally, there are at most (|F1 + 4s)S ways to choose the leaf labels. So the total number of

decision trees of size s over variables Xl,..., x3s is at most 48" (4(I1F + 4s) 2 ) -1 . (jIIF +

4s) < 16 (IFI + 4s)3s

As before we do not care what the optimal r* in Theorem 23 is. Finally, we obtain query

complexity O(s4 log3 IFI/E 2) by Theorem 23, that is, we obtain part (3) of Theorem 38. O

3.6 Lower bounds for testing sparse polynomials

One consequence of Theorem 23 is a poly(s/c)-query algorithm for testing s-sparse poly-

nomials over finite fields of fixed size (independent of n). In this section we present a

polynomial lower bound for non-adaptive algorithms for this testing problem. Our main

result in this section is the following theorem:

Theorem 40. Let IF be any fixed finite field, i.e. F = 0(1) independent of n. There exists

a fixed constant E > 0 (depending on |IFl) such that any non-adaptive e-testing algorithm

for the class of s-sparse polynomials over IFn must make Q( /F) queries.

To prove Theorem 40 we use Yao's principle [63] in (what has become) a standard way

for proving lower bounds in property testing (e.g. see [23]). We present two distributions

DYES and DNO, the former on inputs satisfying the property (i.e. s-sparse polynomials from

F" to F), the latter on inputs that are e-far from satisfying it, and show that any deterministic

(non-adaptive) algorithm making "few" queries cannot distinguish between a random draw

from DYES versus a random draw from DNO. By standard arguments (see for example

Lemma 8.1 in [23]), it suffices to argue that for any query set Q C Fn of cardinality

q = 0(\/s) the induced distributions on Fq (obtained by restricting the randomly chosen

functions to these q points) have statistical distance less than 1/3.

Throughout this section we write IF to denote the finite field with P elements, where

P = pk is a prime power. We consider the following two distributions over functions

mapping nF to IF:



* A draw from DYEs is obtained as follows: independently and uniformly (with repe-

titions) draw s variables xi ,... , is from x, ... , x,, and let f(x) = xi, + - - - + xis

* A draw from DNO is obtained as follows: independently and uniformly (with repeti-

tions) draw s + p variables xil,... , xi+p from x 1 , ... ,x, and let f(x) = xi, + - +

Xis+p *

It is clear that every draw from DYES is an s-sparse polynomial over F, and that for any

n = w((s + p)2 ) almost all the probability mass of DNO is on functions with s + p distinct

nonzero coefficients.

Theorem 40 then follows from the following two results:

Theorem 41. Let A be any non-adaptive algorithm which is given black-box access to a

function f : F' -- F and outputs either "yes" or "no." Then we have

Pr [Af outputs "yes"] - Pr [Af outputs "yes"] < -
f EDYES f DNo 3

unless A makes Q(x/ ) queries to the black-box function f.

Theorem 42. Let

() def (pp2+poP2+26
(P) 1/(P(2P =I/

Fix any s < n - 1. Let g be an s-sparse polynomial in F[xl,..., x,]. Then g is 1(P)-far

from every affine function over F in which s + 1 or more variables have nonzero coefficients,

i.e. every function of the form

allx + " + asrxs+r + b (3.3)

where 0 # ai E F, b E F, and r > 1.

Theorem 41 shows that any non-adaptive algorithm that can successfully distinguish a

random linear form xi, + -- x, from a random linear form xZi + + xis+p must make

Q(V/-) queries; this is a technical generalization of a similar result for F 2 in [26]. Theo-

rem 42 establishes that every function xi, + " +xis+p is far from every s-sparse polynomial



over IF. Together these results imply that any testing algorithm for s-sparse F polynomials

must be able to distinguish length-s linear forms from length-(s +p) linear forms, and must

make Q( §) queries. We prove these theorems in the following subsections.

We note that it is conceivable that a stronger version of Theorem 42 might be true in

which 1(P) is replaced by an absolute constant such as 1/3; however Theorem 42 as stated

suffices to give our desired lower bound.

3.6.1 s-sparse linear forms are indistinguishable from (s + p)-sparse

linear forms.

First, let us recall the definition of statistical distance:

Definition 43 (statistical distance). Let S be afinite set and P, Q be probability measures on

(S, 2s). The statistical distance between P and Q is defined by II]-Q|| d=f maxACs JP(A) -

Q(A)I.

The following fact is an immediate consequence of the definition:

Fact 44. IP - QI - EXEs P(x) - Q(x) - Exes (P(x) - Q(x)).

We now explain how Theorem 41 can be reduced to a convergence-type result about

random walks on the group Z q (Theorem 45 below). We remark that the argument given

here is an immediate generalization of the corresponding argument in Section 6 of [26].

Our main technical contribution is in fact the proof of Theorem 45.

Recall that a non-adaptive testing algorithm queries a fixed subset Q of the domain F",

where IIF = P = pk is a prime power. To prove Theorem 41, it suffices to argue that for

any query set Q C F 1 of cardinality q = I Q = O( /) the induced distributions on Fq

(obtained by restricting the randomly chosen functions to these q points) have a statistical

distance less than 1/3.

Let us now describe the distributions induced by DYEs and DNO on F. Let rl,..., r, E

F" be the queries, and let M be a q x n matrix with rows rl, . . , rq. To choose an element

xe E according to the first (induced) distribution, we choose at random (with repetitions)



s columns of M and sum them up. This gives us an element of Fq. The same holds for the

second distribution, the only difference being that we choose s + p columns.

For x E Fq  Z2q, let P(x) be the probability of choosing x when we pick a column of

M at random. Consider a random walk on the group Z k, starting at the identity element,

in which at every step we choose an element of the group according to P and add it to the

current location. Let Pt be the distribution of this walk after t steps. Observe that Ps and

Ps,+ are exactly the distributions induced by DYES and DNO. We want to show that for s

sufficiently large compared to q, the distributions Ps and IP,+ are close with respect to the

statistical distance. To do this, it suffices to prove the following theorem:

Theorem 45. Let r be a prime, q E IN* and P be a probability measure on Z q. Consider

the random walk X on Z q with step distribution P. Let Pt be the distribution of X at

step t. There exists an absolute constant C > 0 such that for every 0 < 6 < 1/2, if

t > C ~ ' T r 4 logr - q2 log2 (q + 1) then -t - Pt+r 6.

Indeed, since the underlying additive group of the field IF is Zk,, by applying the above

theorem for r = p and q' = kq the result follows. We prove Theorem 45 in the following

subsection.

3.6.2 Periodicity in random walks

To prove Theorem 45, we start with some basic definitions and facts about random walks

on (finite) groups. For a detailed treatment of the subject, see [16] and references therein.

For basic facts about Fourier Analysis on finite groups, see [58, 60].

Let (G, +) be a finite group. For any probability measures P, Q on G, the convolution

(P • Q) of P and Q is the probability measure on G defined by:

(P* Q)(y) = P(x)Q(x + y)
xeG

Let P1, . .. , P , be probability measures on G. The convolution product of the Pi's, is

defined as follows:



def

{ }i=j f j P { =j+i, if n > j

Similarly, P*n, the n-fold convolution product of P with itself is defined by: 1* def P

and P*l def p*(n-1) * P, if n > 1.

A distribution (probability measure) P? on G induces a random walk on G as follows:

Denoting by Xn its position at time n, the walk starts at the identity element of G (n = 0)

and at each step selects an element n E G according to P and goes to Xn+ = (n +

Xn. Denote by Pn the distribution of Xn. Since Xn is the sum of n independent random

variables with distribution P, it follows that Pn = p*n.

We will be interested in such random walks on finite abelian groups and in particular

on the group (Zq, +) , where + denotes componentwise addition modulo r. We remark

that for abelian groups, the convolution operation is commutative. In fact, commutativity

is crucially exploited in the proof of the theorem.

For a function f : Z q --4 C, we define its Fourier transform f : Zq  C by

(x) def 1 f()()(XY)

where Wr e e2i/r and for x, y E Zq we denote (x, y) def x) mod r.

Fact 46. Let P, Q be probability measures on Zq. Then, P Q(y) = rq . IP(y) • (y),

y E Zq.

For p > 1 and f : Z C, the 1, norm of f is defined by f I, d~f {ExCZ [ f(x) P] IP.
defThe inner product of f, g Z - C is defined as: (f, g) = EXEZq [f(x)g(x)].

Fact 47 (Parseval's identity). Let f: Zr -- C. Then, I l (f, f) = z f (x).

Proof of Theorem 45.

The special case of this theorem for r = 2 was proved by Fischer et al. [26]. Our proof is a

technical generalization of their proof. Moreover, our proof has the same overall structure



as the one in [26]. However, one needs to overcome several difficulties in order to achieve

this generalization.

We first give a high-level overview of the overall strategy. Any given x E (Z)*

partitions the space into r non-empty subspaces Vix = {y Z : (y, x) = i} for

i = 0, 1,..., r - 1. We say that an x E (Zq)* is degenerate if there exists some i whose

probability measure P(V ) is "large". (We note that the definition of degeneracy in the

proof of [26] is quite specialized for the case r = 2. They define a direction to be degen-

erate if one of the subspaces Vox, V x has "small" probability. Our generalized notion - that

essentially reduces to their definition for r = 2 - is the conceptually correct notion and

makes the overall approach work.)

We consider two cases: If all the Fourier coefficients of P are not "very large" (in

absolute value), then we can show by standard arguments (see e.g. [16]) that the walk is

close to stationarity after the desired number of steps. Indeed, in such a case the walk

converges rapidly to the uniform distribution (in the "classical" sense, i.e. lipt - UII -* 0

as t approaches infinity).

If, on the other hand, there exists a "very large" Fourier coefficient of P?, then we ar-

gue that there must also exist a degenerate direction (this is rather non-trivial) and we use

induction on the dimension q. It should be noted that in such a case the walk may not con-

verge at all in the classical sense. (An extreme such case would be, for example, if P was

concentrated on one element of the group.)

Remark: It seems that our proof can be easily modified to hold for any finite abelian

group. (We remind the reader that any such group can be uniquely expressed as the direct

sum of cyclic groups.) Perhaps, such a result would be of independent interest. We have

not attempted to do so here, since it is beyond the scope of our lower bound. Note that,

with the exception of the inductive argument, all the other components of our proof work

(in this generalized setting) without any changes. It is very likely that a more complicated

induction would do the trick.

Now let us proceed with the actual proof. We make essential use of two lemmata. The

first one is a simple combinatorial fact that is used several times in the course of the proof:



Lemma 48. Let n be a positive integer greater than 1 and E (0, 1/2] be a constant.

Consider a complex number v E C expressible as a (non-trivial) convex combination of the

n-th roots of unity all of whose coefficients are at most 1-E. Then, we have v| _ 1- c/2n 2.

Proof We can write v = - vjUi, with n = e2 ri /n , vj > 0, Ejno v 1 and

maxj vj < 1 - E. For the proof it will be helpful to view the wi's as unit vectors in the

complex plane (the angle between two "adjacent" such vectors being ,n = 27r/n).

By assumption, it is clear that at least two distinct coefficients must be non-zero. We

claim that the length of the vector v is maximized (over all possible "legal" choices of

the vj's) when exactly two of the coefficients are non-zero, namely two coefficients corre-

sponding to consecutive n-th roots of unity.

This is quite obvious, but we give an intuitive argument. We can assume that n > 5;

otherwise the claim is straightforward. Consider the unit vector e (this vector corresponds

to one of the w A's) whose coefficient Ve in v is maximum. We want to "distribute" the

remaining "mass" 1 - ve to the other coordinates (n-th roots) so as to maximize the length

|v[. First, observe that vectors whose angle with e is at least 7r/2 do not help; so we can

assume the corresponding coefficients are zero. Now consider the set of vectors "above"

e (whose angle with e is less than 7r/2). We can assume that their "mass" (i.e. sum of

coefficients) is concentrated on the unit vector ea adjacent to e (whose angle with e is

minimum); this maximizes their total contribution to the length of the sum. By a symmetric

argument, the same holds for the set of vectors "below" e (denote by eb the corresponding

adjacent vector). Finally, it is easy to see that in order to maximize the total contribution

of ea and eb to the length of the sum, one of them must have zero weight (given that their

total mass is "fixed").

Now let us proceed with the proof of the upper bound. By symmetry, it is no loss

of generality to assume that vo, v1 > 0 with vo > v1. The claim now follows from the

following sequence of elementary calculations:

ilCiil;i_ ;;; il__~____ ;;~i__;l;(_/~~; __~ j_; :i_*:_i::__iili______?__ITX:iF;_______



v 2 = v + v + 2vov cos 1 - 2vovl (1 - cos 0,)

= 1 - 2vo(1 - vo) (1 - cos(2-/n))

< 1 - 2e(1 - c )(1 - cos(27r/n))

< 1 - e(1 - cos(27r/n))

< 1 - /n 2

The last inequality above follows by observing that cos(27r/n) < 1 - 1/n 2, n > 2. The

elementary inequality / - x 1 - x/2 completes the argument. Ol

Our second lemma is an analytical tool giving a (relatively sharp) upper bound on the

statistical distance between two distributions. It should be noted that this result is a variant

of the "upper bound lemma" [16], which has been used in numerous other random walk

problems.

Lemma 49 (upper bound lemma, [16]). In the context of Theorem 45, for any t > 0, we

have:

t -Pt+r 1 Ie (X) 2t

XC(Zq).r

Proof We have:

t - 1Pt+ 12 = (r2q/4). 112t- t+,Pt-< (rq/4) IIIPt - IPt+r1

S(rq/4) S It(x)- p t+r (x) 2

XGZr

= (r 3q/4). E j q(t-1)(i(X))t- rq(t+r-1) ((X))t+r 2

xE(Zq)*( 4)* &(x)atr(x) 2

< S: ja(x) 12t
XE(Zr)*

(3.4)

(3.5)

(3.6)

(3.7)

(3.8)

(3.9)



Step (3.4) follows directly from the definitions of the statistical distance and the 11 norm.

Step (3.5) easily follows from the Cauchy-Schwarz inequality and step (3.6) from the Parse-

val identity. For Step (3.7) notice that ]Pt(y) = rq(t- 1) ((y)) t and I(0) = 1/r q. Step (3.8)

is immediate by the definition of a and Step (3.9) follows from the triangle inequality. OE

Let Xt E Z. be the position of the random walk at time t and Pt its distribution. By

assumption Xo = 0. As previously mentioned, Pt = P*t. It is easy to show that the

statistical distance IIt - Pt+r is monotone non-increasing in t; we are interested in the

first time t = t(r, q) for which Pt and Pt+r are 6-close.

Notation. For q E IN, define b(q) q2 log2(q 1), d(r) f 4 logr, Sdf 1 jb(j),
def def

S dlimj__ S and tq ef C 3 d(r)b(q).

Throughout the proof, we assume for simplicity that tq is an integer. If P is a probability
defmeasure on Zq and P is its Fourier transform, we denote a(x) = rqp(x). A word con-

cerning absolute constants. The letter C will always denote an absolute constant, but as is

customary the value of C need not be the same in all its occurrences. Also note that S is

an absolute constant, so C can depend on S.

Theorem 45 follows from the following claim:

Claim 50. There exists a universal constant C > 0 such that for any 0 < 6 < 1/2, any

t > t and any probability measure P on Zq it holds | IPt - PIt+r < _ Sq < J.

We will prove the claim by induction on q.

Base case (q = 1). Given an arbitrary probability measure P on the discrete circle Z,,

n E IN*, we will show that, for all t > tl = C1 . n4 log n, it holds IPt - Pt+n < .

Set eo := and consider the following two cases below:

Case I (There exists a k E Zn such that P(k) 1 - co.) In this case, we claim that for all

t E IN* it holds IPt - Pt+n I < nco = 6/S. (In fact, this holds independently of the value

of the time t.) This should be intuitively obvious, but we give an argument.



Recall that the statistical distance IPt - Pt+c is a monotone non-increasing function

of t for any constant c. Hence, ||Pt - Pt+n I IP - Pn+1 Iand it suffices to argue that IP -

IPn+1 < nEo. The crucial fact is that for all i E Z we have Pn+1i(i) (1-no) .P(i). This

directly implies that P-PnII EiEZn ((iP)-n+l(i))+ < n f O{{i:j(i)>,+l(i)} P(i) <

neo -Eie" (i = nco.

To see that the aforementioned fact is true, observe that for any i E Zn, conditioned on

the walk being at position i at time t = 1, with probability at least (1 - e)" each of the next

n steps is k, so with probability at least (1 - co)n > 1 - nco the walk is at position i again

at time t = n + 1.

Case II (For all k E Z it holds P(k) < 1 - co.) Note that, for k E Zn, we can write

a(k) = I-O1 P(1) w 1k, where wn = e2 i/n. Since P is a probability measure, it follows

that a(O) = 1. Now observe that for k E Z*, ca(k) is a convex combination of n-th roots

of unity with coefficients at most 1 - co. Hence, an application of Lemma 48 gives the

following corollary:

Corollary 51. For all k E Z*, it holds Ic(k) < 1 - 3.

We have now set ourselves up for an application of Lemma 49. For any t E IN with t > tl,

we thus get:

jIIPt - P 2112 < n 3 c(i) 12t

< n 2 (1 2t < n 2 1 2Sn3 t

S 2 -( )2ti 2e-Cnlognlog(1/6)/S

where we used the elementary inequality 1 - x < e- x, for x E [0, 1]. For large enough C,

we have Pt - Pt+n 12 < (6/S)2 and the base case is proved.

Induction Step: Assume that the claim holds for q - 1, i.e. that for any t > tq,_ and any

probability measure P on Z q- 1 it holds Pt - Pt+r| < p - Sq-1. We will prove that the

claim also holds for q.



For xE (Z) * and i = 0, 1,..., r - 1 define V x de {y E Z : (y, x) = i}. At this point we

are ready to formally define the notion of degenerate direction:

Definition 52. We say that x E (Zq)* is a degenerate direction if there exists an i E

{0, 1,..., r - 1} such that P(Vix ) 2 1 26qV- r2b(q)

We distinguish the following two cases below:

Case I (For all x E (Zq)* it holds a(x) < 1 - 6q Note that, since P is a probability\Tr 4b(q) " Nt ta s i r iit

distribution, we have a(0) = 1. Now, for t > tq Lemma 49 yields:

IPt - Pt+ 112 < 7-q 1 l~e)12t
(Z)*

r2q1 q 2t < rq 2tq

S /- r4b )" < 1 2q  __
_ _- r- b(q)) </(r4b(q)

< r2q(e - 7 )2tq = 2qe-2qlog r log /S

Similarly, if C is large enough, we have Pt - I+trll < 6/S <5 Sq.

Case II (There exists some x0 E (Z)* such that a(o(x0 ) 1 q- .)
r V-Vr4b(q)

Since r is a prime, we may assume without loss of generality that xo = E1 = (1Oq0_).

Then, for i = 0, 1,..., r - 1, we have Vi - = {y - (Y1, Y2, ... , q) y i};

note that each V is isomorphic to Z - 1.

Now observe that we can write a(Xo) = IP(V)w j with 4 P(V) = 1, (V) 0.

That is, a (xo) is a convex combination of r-th roots of unity whose absolute value is at least

S- E/2r2 , where e : . Thus, (the contrapositive of) Lemma 48 implies that there1 - -r2b(q
)

must exist some j E {0, 1,..., r - 1} with P(V) > 1 2- q (i.e. xO is degenerate).

Clearly, it is no loss of generality to assume that j = 0, i.e. IP(Vo) > 1 - 25q
V/'Cr2b(q)

"

For i = 0, 1,..., r - 1 and j = tq, tq + r, consider the conditional probability measures

P} = (]j I~ ). All the 2r distributions obtained in this manner can be viewed as distributions

on Z q- 1 . By the law of total probability, we can write: Pj = -i Pj (Vi) -Pi.r i=O 3"

1_



Since P(V) > 1 - , it follows that IPt(Vi) - Pt+r(V)l < 26q for all
V- r

2
b(q)' - ,

i E {0, 1,..., r - 1}. (In fact, this holds independently of the value of the time t). This can

be shown by an argument similar to that in Case I of the induction basis.

We will show using the induction hypothesis that for i = 0, 1,..., r - 1 and t > tq it

holds:

P - t+r (Sq-l + 2(q)
t tr <-S bq

We claim that this will conclude the proof. This follows from the following chain of in-

equalities:

r-1 r-1

IPt - Ptr11 Z 1 Pt (V) - Pt+r(Vi)l I Z Pt(Vi). (it- Ptr) (3.10)
i=0 i=0

< q + - (Sql + (q) (3.11)
v'Cb(q) S 2b(q)

< -S (3.12)
S

Step (3.10) follows easily from the triangle inequality (recall that the statistical distance

is a norm) and by using the fact that the P's are distributions. For Step (3.11) observe that

the second summand in (3.10) is a convex combination and Step (3.12) assumes that C is

large enough.
S(Sq_ q ). The proofs for the

To finish the proof we show that _ 1 The proofs for the

r - 1 remaining cases are very similar.

For i = 0, 1,..., r - 1 denote Pi = (P Vi). Let Nj = (NJ,..., Nj - 1) be a random

vector such that the random variable NJ (1 = 1, 2,..., r - 1) counts the number of times

the walk makes a step x E Z q with xl = 1 during the first j steps. Consider a vector

S = ( 1 ,2, ... , Sr-1) such that s d ef s i < j and E- k - 0 mod r. Then, we

have:

(IP9 Nj = s) = ({* T 1i) )) * (p)s)



where by {* J} we denote the convolution product. The above equality holds for the

following reason: The distribution on the left hand side is the distribution on Vo Z - 1

given that the walk makes st steps x with xl = 1 (1 = 1, 2,..., r - 1) (and j - Is steps

with xl = 0). The equality follows by commutativity.

Therefore, by the law of total probability, we can write IPQ as the following convex

combination of conditional distributions:

IPO.2
= s] ({*fJr-1 i) )) * (pO)*-ISI)

(ZlN kskO mod r) and (Isii=)
(E'-' kcsk=O mo r) and (Isllj)

Using this fact, we can bound 11 P - Po+r I for t = tq as follows:

IIIPo - Po rI 1 Pr[Nt Nt+,] + Pr[ Ntl > 4qr 2 log rv log(1/6)

+ Pr[Nst s] -({Jl )* }) * [(pO)*(t-sl) (pO)*(t+r-s)]

s such that

(Ek=l ksk 0 mod r)

(Is _ 4qr2 log rV/Clog(1/6))

The first summand is equal to the probability that a non-trivial step in the first coordinate

(i.e step x with xl 0) was made in one of the times t + 1,..., t + r and this is at most

26q/VCrb(q) (because P(Vo) > 1 - 26q/ /-r2b(q)).

To upper bound the second summand, we observe that Nt = E- 1 Nt is a binomial

random variable with parameters t = tq and p < 26q//Cr2 b(q). Thus, by a standard

Chernoff bound, we get that the second summand is also very small, so that the sum of the

first two summands is at most - q for large enough C.

Now consider the third summand. Since |s < 4qr 2 log rx/-log(1/6), it follows that

tq - ISI 2 tq_1 and the induction hypothesis implies:



(f* * sJ}l(Pi)si) < [)po*t-IsI) - (Po)*(t r1

S

The first inequality follows from the fact that {* r -l T (PFi)*s is a distribution. There-

fore, the expression .S-_1 is an upper bound for the third summand and the proof is

complete.

3.6.3 s-sparse polynomials are far from longer affine forms

Recall that the length of a monomial is the number of distinct variables that occur in it

(so for example xx 4 has length two). Recall that an affine function is simply a degree-1

polynomial.

Let f : F F F be any function. We say that the influence of variable xi on f is

Inf (i) Pr [f (x 1 ,. . . ,Xi- i, i+,1,... ,Xn) # f(x 1 , - ,Xi-1 y, i+1, ... n)].

If f is a single monomial of length £ that contains the variable xl, then the influence of

xl on f is (1 - p) (the probability that the other £ - 1 variables besides xl all take nonzero

values is (1 - #)-1, and then there is a 1 - I probability that the value of xl changes

when we re-randomize). Similarly, if g is an s-sparse polynomial in which x1 occurs in r

monomials of length l, .. , ,, then the influence of xl is at most

I- +)--+ (-

P P

The total influence of f is the sum of the influences of all variables. Each monomial of

length £ in a polynomial g contributes at most f(1 - p) to the total influence of f (i.e. if

a polynomial has k monomials of lengths 1,..., k then the total influence of g is at most

f1(i - 1 + + fk(1 - 1 )fk.



Note that each variable in an affine function of the form (3.3) has influence 1 - 1, and

the total influence of such a function is precisely (s + r)(1 - ).

The following fact will be useful:

Fact 53. Let f, g : F' -+ F be two functions such that for some variable xi we have

IInff(i) - Infg(i)| = 7. Then f is 7/2-far from g.

Proof We may assume without loss of generality that Infg(i) = Inff(i) + 7. Let x denote

a uniform random input from F and let x' denote x with the i-th coordinate re-randomized.

We have

Pr[g(x) 7 g(x')] < Pr[g(x) 7 f(x)] + Pr[f(x) 7 f(x')] + Pr[f(x') g(x')].
X'XI XX

!  XX/ XX/

Rearranging, we get

7 = Pr[g(x) g(x')] - Pr[f(x) 7 f(x')]

< Pr[g(x) 4 f(x)] + Pr[f(x') 7 g(x')] = 2 Pr[g(x) 7 f(x)]
XX/ XX/ XX/

where the final inequality holds since both x and x' are uniformly distributed. This gives

the fact. O

Finally, recall that in any polynomial g(xl,..., xn) over F, we may assume without

loss of generality that no variable's degree in any monomial is greater than P - 1. (The

multiplicative group is of size P - 1 and hence aP = a for every a C F.)

Proof of Theorem 42.

The high-level idea of the proof of Theorem 42 is as follows. Let M be a particular mono-

mial in g, and consider what happens when g is hit with a restriction that fixes all variables

that do not occur in M. M itself is not affected by the restriction, but it is possible for a

longer monomial to "collapse" onto M and obliterate it (i.e. if M is xlx 2 and g contains

another monomial M' = -x lxx x, then a restriction that fixes x3 +- 1 would cause M' to

I



collapse onto M and in fact obliterate M). We show that g must have a short monomial M

(which, however, has degree at least 2) with the following property: for a constant fraction

of all possible restrictions of variables not in M, no longer monomial collapses onto M.

This implies that for a constant fraction of all such restrictions p, the induced polynomial

gp is "substantially" different from any affine function (since gp - a polynomial of degree at

least two - is not identical to any affine function, it must be "substantially" different since

there are only length(M) surviving variables), and hence g itself must be "far" from any

affine function.

Now we give the actual proof. Let g be an s-sparse polynomial in IF[x,... , ] and

let A(x) be a fixed affine function given by equation (3.3). We will show that g must be

D (P)-far from A and thus prove the theorem.

First note that without loss of generality we may assume g has no term of degree 1.

(Suppose g has t such terms. Let g' be the polynomial obtained by subtracting off these

terms. Then g' is (s - t)-sparse and is 4(P)-close to the affine function A'(x) obtained

by subtracting off the same terms; this affine function has at least s + r - t nonconstant

terms. So we can run the following argument on g' with s - t playing the role of "s" in the

lemma.)

Now we observe that g must satisfy

Infg(1) + ... + Infg(s) > (1 - 41(P))s(1 - ,). (3.13)

If this were not the case, then some variable Tx in xl,... , x would necessarily have influ-

ence at most (1 - 44(P))(1 - 1) on g. Since the influence of x on (3.3) is 1 - 1, by

Fact 53 this would mean that g is at least 21(P)(1 - I) > 45(P)-far from (3.3), and we

would be done.

Notation. We will henceforth refer to monomials in g of length less than P 2 as short

monomials, and we write S to denote the set of all short monomials in g. For P 2 < f < P8 ,

we refer to monomials in g of length £ as intermediate monomials, and we write I to denote

the set of all intermediate monomials in g. Finally, for f > P8 we refer to monomials in g

of length f as long monomials, and we write L to denote the set of all long monomials.



Observe that

* Each monomial in g that is intermediate or long contributes at most 1/4 to Infg(1) +

. .. + Infg (s). This is because each monomial of length £ > P 2 contributes at most

f(1 - -) to this sum, and for integer f the value max>p2 f(1 - -) is achieved at

f= P 2 where the value is at most 1/4 (the upper bound holds for all integer P > 2).

* Each short monomial in g contributes at most P/e to Infg(1) + - - -+ Infg(s). This is

because maxe>l (1 - L)e < P/e (the max is achieved around f r P).

Since the RHS of (3.13) is at least (1 - -)s, we have the following inequalities:

+I I > 1 2 s and II + ILI < s
4 e - P

(the second inequality holds simply because there are at most s long monomials). These

inequalities straightforwardly yield IS| 2 p.

Let me denote the number of monomials in g that have length exactly £. Note that we

have e>Ps me = LI < s.

Given two monomials M1 , M 2 that occur in g, we say that M1 covers M 2 if all variables

in M1 are also in M 2 (note we do not care about the degrees of the variables in these

monomials). We refer to such a pair (M1 , M 2) as a coverage; more precisely, if M1 is of

length f we refer to the pair (M1 , M2) as an f-coverage. (One can view each f-coverage as

an edge in a bipartite graph.)

Let S' C S be the set of those monomials M in S which are "maximal" in the sense

that no other monomial M' E S (with M' f M) covers M. ..

Claim 54. We have IS'I > s/(3PP2).

Proof Since S is finite it is clear that S' is nonempty; suppose the elements of S' are

M 1,..., Mk. Each of the (at least s/(3P) many) elements of S is covered by some Mi.

But each Mi is of length £ for some f < P 2 - 1, and hence can cover at most P monomials

(any monomial covered by Mi is specified by giving e exponents, each between 0 and P- 1,

for the f variables in Mi). E

- -l ~ - - -- l~- -rm~r- -- ---------- ~l



Fix any f > P2. Each fixed monomial of length f participates in at most ( 2) p2

(Cp)p2 many i-coverages of monomials in S'. (There are ( 2) ways to choose a subset of

P 2 variables, and once chosen, each variable may take any exponent between 0 and P - 1.)

Consequently, the length-e monomials in g collectively participate in at most m (fP)P 2

many f-coverages of variables in S' in total. By Claim 54, it follows that

me(£P)P
2  3mC p 2 p2P2

E [# £-coverages M is in] < me(P)p - 3m
MES' s/(3P 2 ) s

By Markov's inequality, we have

Pr [# e-coverages M is in > 3metp 2+2p2P2/s] < 1/f2.
MES'

So for each £ > P 2, we have that at most a 1/ 2 fraction of monomials in S' are covered

by at least 3meP2+2 p2P2 /s many length-e monomials. Since E >p2 1/f2 < 1/2, we have

that at least half of the monomials in S' have the following property:

* For all > P2, at most 3me~P2+2p2P2 / many length-f monomials cover M. (t)

Fix M to be some particular monomial with property (t). Since M belongs to S', we

know that no short monomial in g covers M; we now show that for a constant fraction of

all restrictions p of variables outside of M, no intermediate or long monomial in gp covers

M. (Once this is accomplished, we will be almost done.)

First observe that for any value £ with P 2 < e < ps, using the fact that mls is at most

1, we have that at most

3fP2+2p2P
2 < 3p1OP

2 +16 < plP
2 +18

many length-{ monomials cover M. So in total there are at most (ps - P 2 + 1)plOP2+18 <

plOP 2+26 many intermediate monomials that cover M; let T denote the set of these inter-

mediate monomials. Each intermediate monomial in T has length strictly greater than the

length of M, so each such monomial contains at least one variable that is not in M. Let

V be a set of at most P 1OP 2+ 26 variables such that each monomial in T contains at least



one variable from V, and let pl be the restriction that sets all variables in V to 0 and leaves

all other variables unfixed. Note that for each long monomial in g, applying pl either kills

the monomial (because some variable is set to 0) or leaves it unchanged (no variable in the

monomial is set) in g,. Thus the result of applying pl is that no intermediate monomial in

gp, covers M.

Now let P2 denote a random restriction over the remaining variables which leaves free

precisely those variables that occur in M and fixes all other variables independently to

uniformly chosen elements of F. Suppose M' is a long monomial (of length f > P8 ) from

g that survived into g,,. It must be the case that M' contains at least f - P 2 variables that

are neither in M nor in V, and consequently the probability that M' is not killed by P2 (i.e.

the probability that all variables in M' that are not in M are set to nonzero values under

P2) is at most (1 - ~)-P 2 . Consequently the expected number of length-f monomials in

gp, that cover M and are not killed by P2 is at most 3meP 2 p2P2 (1 _ yep 2/ Summing

over all f > ps, we have

E[# long monomials that cover M and survive PIP 2] (3.14)
P2

3mfp
2 P2p

2 (1 1 fp2

S >p - max 3p2 2P2 1_ ) P2  (3.15)
S J>p8

We have >E,>p8s m~ 1. A routine exercise shows that for all P > 2, the max in (3.15)

is achieved at £ = P8 where the value is at most 1/2 (in fact it is far smaller). So (3.14) is

certainly at most 1/2, and we have

E[# long monomials that cover M and survive P1P2] < 1/2.
P2

So the probability that any long monomial that covers M survives PiP2 is at most 1/2. Since

we already showed that no short or intermediate monomial in gpIP2 covers M, it follows

that with probability at least 1/2 over the random choice of P2, no monomial in g91p2 covers

M except for M itself.

I



Now let p denote a truly random restriction that assigns all variables not in M uni-

formly at random and keeps all variables in M free. Since the variables in V will be as-

signed according to P2 with probability 1 /ppl0P 2 +
26, we have that with probability at least

1/( 2 PplOp 2+ 26) > / (pl P 2 +26 +1) over the random choice of p, no monomial in gp covers

M. Suppose p is such a restriction. Since M itself clearly survives the restriction p, we

have that the function gp (a function on length(M) < P 2 - 1 many variables) is different

from the function Ap - this is simply because the polynomial gp contains the monomial M,

which is not of degree 1, whereas all monomials in A, have degree 1. Hence the functions

gp and A, differ on at least one of the (at most) PP 2-1 possible inputs.

So, we have shown that for at least a 1/(PPlp2+26 l ) fraction of all restrictions of the

variables not occurring in M, the error of g under the restriction in computing A is at least

1/PP2_1. This implies that the overall error of g in computing A is at least

1/(Pplp2)+26 = (P)

and we are done with the proof of Theorem 42. O

3.7 Lower Bounds for Boolean Function Classes

By adapting techniques of Chockler and Gutfreund [13], we can also obtain (log s) lower

bounds for many of the other testing problems listed in Table 1.1. More precisely, we prove

lower bounds on the query complexity of testing size-s decision trees, size-s branching

programs, s-term DNF, and size-s Boolean formulas (Theorem 55), and Boolean functions

with Fourier degree at most d (Theorem 58).

Theorem 55. Let c = 1/1000. Any c-testing algorithm for any of the following classes of

functions over {0, 1}" must make Q(log s/ log log s) queries: (i) size-s decision trees; (ii)

size-s branching programs; (iii) s-term DNF; (iv) size-s Boolean formulas.

Proof The proof combines a counting argument with the result of Chockler and Gutfreund

[13] showing that Q(J/k) queries are required to distinguish between J-juntas and (J+ k)-

juntas over {0, 1}". More precisely, consider the following distributions:



1. DNO is the uniform distribution over all functions (on n variables) that depend on (at

most) the first (J + k) variables.

2. DYES is the distribution obtained in the following way. Choose a k-element subset

Ik uniformly and randomly from the set {1,..., J + k}. Then choose a uniformly

random function from the set of all functions on n variables that depend on (at most)

the variables indexed by the set [J + k] \ -1k.

Chockler and Gutfreund show that with very high probability a random draw from DNO

is far from every J-junta, whereas clearly every draw from DYES is a J-junta. Given any

putative testing algorithm, the distributions DYES, DNO over functions induce two distri-

butions CYES, CNO over "query-answer histories". Chockler and Gutfreund show that for

any (even adaptive) algorithm that makes fewer than Q(J/k) queries, the statistical differ-

ence between CYES and CNO will be at most 1/6. This implies that any successful testing

algorithm must make Q(J/k) queries.

We adapt this argument to prove Theorem 55 as follows. Let Cs be a class of functions

for which we would like to prove a lower bound (e.g. C8 could be the class of all Boolean

functions over n variables that are computed by decision trees of size at most s). We

choose J (as a function of s) such that any J-junta is a function in Cs; with this choice the

distribution DYES described above is indeed a distribution over functions in the class. We

choose k (as a function of J) so that with very high probability, a random function drawn

from DNO (i.e. a random function over the first J + k variables) is e-far from every function

in C8. This gives an Q(J/k) lower bound for testing whether a black-box function is in C,

or is 6-far from every function in C.

For all of the classes addressed in Proposition 55 we can take J = log2 s and k =

E(log J). We work through the analysis for size-s decision trees, sketch the analysis for

size-s branching programs, and leave the (very similar) analysis for s-term DNF and size-s

Boolean formulas to the interested reader.

Decision Trees (of size s): We set J = log2 s and k = log2 J. It is clear that any J-junta

can be expressed as a size-s decision tree.
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Lemma 56. Fix c = 1/1000. With very high probability, a random (J + log J)-junta over

the first (J + log J) variables is e-far from any size-s decision tree over the first (J + log J)

variables.

Proof For any size-s decision tree over the first (J + log J) variables, the number of
1e2J+logJ 2J+10g J

(J + log J)-juntas (over these variables) e-close to it equals =o ). For

E = 1/1000, this is at most 2 0 .1-2 J+log 
J = 2 (J/10)2 J (recall that the sum of the binomial

coefficients n/ (n) is O(C(a)"), where C(a) = al / (  a- )

Now we upper bound the number of size-s decision trees over the first J + log J vari-

ables. There are at most 4' = 22 "2J) distinct decision tree topologies for trees with s leaves.

For each topology there are at most (J + log J) < 2 2sloglogs = 2 (2logJ)2J different la-

bellings of the nodes.

Thus, the number of (J + log J)-juntas that are e-close to any decision tree of size s

(over the first J + log J variables) is at most 2 (J/l+2 log J)2 . This is a vanishingly small

fraction of the total number of (J + log J)-juntas over the first (J + log J) variables, which

is 22J+10g J = 2 J ' 2 J

We are not quite done, since we need that with very high probability a random function

from DNO is E-far from every size-s decision tree, not just from size-s decision trees over

the first (J + log J) variables. This follows easily from the previous lemma:

Corollary 57. For c = 1/1000, with very high probability a random (J + log J)-junta over

the first (J + log J) variables is e-far from any size-s decision tree (over n variables).

Proof Let f be any (J + log J)-junta over the set {l,... , XJ+log J}. Suppose that g is a

size-s decision tree over {x 1 ,..., Xn} that is c-close to f. It is not hard to show that then

there exists a size-s decision tree g' over the relevant variables {Xz,..., XJ+logJ} that is

e-close to f as well (g' can be obtained from g by fixing all the irrelevant variables to the

values that maximize g's agreement with f). O

We have thus established part (i) of Theorem 55.

Branching Programs: We only sketch the required analysis. We set J = log 2 s and

k = 10 log 2 J. Any J-junta can be expressed as a size-s branching program. Simple



counting arguments show that for c = 1/1000, a random (J+ k)-junta over {x1,..., XJ+k

is with high probability c-far from every size-s Branching Program over {(l,..., zJ+k }.

An analogue of Corollary 57 completes the argument.

This completes the proof of Theorem 55. EO

Remark: We note that these simple arguments do not seem to give any non-trivial testing

lower bound for the class of Boolean circuits of size s. It would be interesting to obtain

lower bounds for this class.

Finally, we point out the following:

Theorem 58. Let 0 < c < 1/2. Any non-adaptive e-testing algorithm for the class of

Boolean functions over {0, 1}" with Fourier degree d must make f2(vd) queries.

Proof Consider the following two distributions over Boolean functions on {-1, 1}n:

1. DNO is the uniform distribution over all (d+2) parities of exactly d + 2 variables from

2. DYES is the uniform distribution over all (n) parities of exactly d variables from

X1 ... 7 Xn.

Every function in the DYES distribution clearly has Fourier degree, whereas every func-

tion in the DNO distribution has distance precisely 1/2 from every function with Fourier

degree d (this follows immediately from Parseval's identity). Fischer et al. showed that

any non-adaptive algorithm for distinguishing draws from DYES versus DNO must make

Q(Vd) draws; this immediately gives the desired result. Ol

3.8 Conclusion

There are many open questions raised by the work in this chapter. One is whether our lower

bounds can be strengthened. Can poly(s) query lower bounds be obtained for classes such

as size-s decision trees, s-term DNF, etc?

I



On the upper-bound side, our results are all achieved via a single generic algorithm that

is not geared toward any particular class of functions. For many classes of interest, the

query complexity of this algorithm is poly(s, 1/E), but the running time is exponential in

s. This raises the natural question: can we also improve the running time for any of these

classes? One approach to achieving better runtimes is to replace our "implicit learning"

step with a more efficient proper learning algorithm (the current learning algorithm sim-

ply gathers random examples and exhaustively checks for a consistent hypothesis in the

concept class C(T*)j(*,)). For some specific concept classes, proper learning is known to

be NP-hard, but for other classes, such as s-sparse GF(2) polynomials, polynomial-time

proper learning algorithms are known. In next chapter, we leverage this fact to get a tester

for s-sparse GF(2) polynomials that is both query and time efficient.





Chapter 4

Efficiently Testing Sparse GF(2)

Polynomials

4.1 Introduction

In the previous chapter, we gave a general technique called "testing by implicit learning,"

which we used to test a variety of different function classes that were not previously known

to be testable. Intuitively, these classes correspond to functions with "concise representa-

tions," such as s-term DNFs, size-s Boolean formulas, size-s Boolean circuits, and s-sparse

polynomials over constant-size finite fields. For each of these classes, the testing algorithm

in the last chapter made only poly(s, 1/c) queries (independent of n).

The main drawback of the previous algorithm is that for each of the classes mentioned

above, the algorithm's running time is 2"(s) as a function of s, and w(poly(1/c)) as a

function of E.' Thus, a natural question is whether any of these classes can be tested with

both time complexity and query complexity poly(s, 1/c).

In this chapter we focus on the class of s-sparse polynomials over GF(2). Polyno-

mials over GF(2) (equivalently, parities of ANDs of input variables) are a simple and

well-studied representation for Boolean functions. It is well known that every Boolean

'We note that the algorithm also has a linear running time dependence on n, the number of input variables;
this is in some sense inevitable since the algorithm must set n bit values just to pose a black-box query to f.
Our algorithm has running time linear in n for the same reason. For the rest of the chapter we discuss the
running time only as a function of s and e.



function has a unique representation as a multilinear polynomial over GF(2), so the spar-

sity (number of monomials) of this polynomial is a very natural measure of the complexity

of f. Sparse GF(2) polynomials have been studied by many authors from a range of dif-

ferent perspectives such as learning [8, 27, 55, 10, 12], approximation and interpolation

[35, 31, 53], the complexity of (approximate) counting [20, 36, 41], and property testing

[17].

The main result of this chapter is a testing algorithm for s-sparse GF(2) polynomials

that is both time-efficient and query-efficient:

Theorem 59. There is a poly(s, 1/e)-query algorithm with the following performance

guarantee: given parameters s, E and black-box access to any f: {0, 1}n--f{0, 1}, it runs

in time poly(s, 1/c) and tests whether f is an s-sparse GF(2) polynomial versus -far from

every s-sparse polynomial.

This answers the question left open by the previous chapter, by exhibiting an interesting

and natural class of functions with "concise representations" that can be tested efficiently,

both in terms of query complexity and running time.

We obtain our main result by extending the "testing by implicit learning" approach.

The "implicit learning" step from the previous chapter used a naive brute-force search for

a consistent hypothesis; here we employ a sophisticated proper learning algorithm due to

Schapire and Sellie [55]. It is much more difficult to "implicitly" run the [55] algorithm

than the brute-force search. One of the main technical contributions in this chapter is a new

structural theorem about how s-sparse GF(2) polynomials are affected by certain carefully

chosen restrictions; this is an essential ingredient that enables us to use the [55] algorithm.

We elaborate on this below.

Techniques. In the last chapter we showed that for many classes of functions defined by

a size parameter s, it is possible to "implicitly" run a (very naive) proper learning algo-

rithm over a number of variables that is independent of n, and thus obtain an overall query

complexity independent of n. More precisely, weobserved that for many classes C every

f E C is "very close" to a function f' E C for which the number r of relevant variables

is polynomial in s and independent of n; roughly speaking, the relevant variables for f'

1~1



are the variables that have high influence in f. (For example, if f is an s-sparse GF(2)

polynomial, an easy argument shows that there is a function f' - obtained by discarding

from f all monomials of degree more than log(s/T) - that is T-close to f and depends on

at most r = s log(s/T) variables.) They then showed how, using ideas of Fischer et al. [26]

for testing juntas, it is possible to construct a sample of uniform random examples over

{0, 1}i which with high probability are all labeled according to f'. At this point, the proper

learning algorithm we employed was a naive brute-force search. Our algorithm tried all

possible functions in C over r (as opposed to n) variables, to see if any were consistent

with the labeled sample. Thus we obtained a testing algorithm with overall query complex-

ity poly(s/E) but whose running time was dominated by the brute-force search. For the

class of s-sparse GF(2) polynomials, our algorithm used O(s4/E2 ) queries but had running

time at least 2(s) - ( 1 /e)1oglog( 1/ )

The high-level idea of this chapter is to employ a much more sophisticated - and ef-

ficient - proper learning algorithm than brute-force search. In particular we would like to

use a proper learning algorithm which, when applied to learn a function over only r vari-

ables, runs in time polynomial in r and in the size parameter s. For the class of s-sparse

GF(2) polynomials, precisely such an algorithm was given by Schapire and Sellie [55].

Their algorithm, which we describe in Section 4.2.2, is computationally efficient and gen-

erates a hypothesis h which is an s-sparse GF(2) polynomial. But this power comes at a

price: the algorithm requires access to a membership query oracle, i.e. a black-box oracle

for the function being learned. Thus, in order to run the Schapire/Sellie algorithm in the

"testing by implicit learning" framework, it is necessary to simulate membership queries

to an approximating function f' E C which is close to f but depends on only r variables.

This is significantly more challenging than generating uniform random examples labeled

according to f', which is all that was required before

To see why membership queries to f' are more difficult to simulate than uniform ran-

dom examples, recall that f and the f' described above (obtained from f by discarding

high-degree monomials) are T-close. Intuitively this is extremely close, disagreeing only

on a 1/m fraction of inputs for an m that is much larger than the number of random exam-

ples required for learning f' via brute-force search (this number is "small" - independent of



n - because f' depends on only r variables). Thus before, it sufficed to use f, the function

to which we actually have black-box access, rather than f' to label the random examples

used for learning f'; since f and f' are so close, and the examples are uniformly random,

with high probability all the labels will also be correct for f'. However, now that member-

ship queries are required, things are no longer so simple. For any given f' which is close

to f, one can no longer assume that the learning algorithm's queries to f' are uniformly

distributed and hence unlikely to hit the error region - indeed, it is possible that the learn-

ing algorithm's membership queries to f' are clustered on the few inputs where f and f'

disagree.

In order to successfully simulate membership queries, we must somehow consistently

answer queries according to a particular f', even though we only have oracle access to f.

Moreover this must be done implicitly in a query-efficient way, since explicitly identifying

even a single variable relevant to f' requires at least Q(log n) queries. This is the main

technical challenge we address.

We meet this challenge by showing that for any s-sparse polynomial f, an approximat-

ing f' can be obtained as a restriction of f by setting certain carefully chosen subsets of

variables to zero. Roughly speaking, this restriction is obtained by randomly partitioning

all of the input variables into r subsets and zeroing out all subsets whose variables have

small "collective influence" (more precisely, small variation in the sense of [26]). It is im-

portant that the restriction sets these variables to zero, rather than a random assignment;

intuitively this is because setting a variable to zero "kills" all monomials that contain the

variable, whereas setting it to 1 does not. Our main technical theorem (Theorem 64, given

in Section 5.5.1) shows that this f' is indeed close to f and has at most one of its relevant

variables in each of the surviving subsets. We moreover show that these relevant variables

for f' all have high influence in f (the converse is not true; examples can be given which

show that not every variable that has "high influence" in f will in general become a rele-

vant variable for f'). This property is important in enabling our simulation of membership

queries. In addition to the crucial role that Theorem 64 plays in the completeness proof for

our test, we feel that the new insights the theorem gives into how sparse polynomials "sim-

plify" under (appropriately defined) random restrictions may be of independent interest.

------- --



Organization. In Section 4.2.2 we describe in detail the "learning component" of the algo-

rithm. In Section 4.3 we state Theorem 64, which provides intuition behind the algorithm

and serves as the main technical tool in the completeness proof. In Section 4.4, we present

our testing algorithm, Test-Sparse-Poly, along with a high-level description and sketch of

correctness. The proof of Theorem 64 is presented in section 4.5, while the completeness

and soundness proofs are given in sections 4.6 and 4.7, respectively.

4.2 Notation and Background

In this chapter we require some additional notation and background.

4.2.1 Low-influence, high-influence, and well-structured subsets

First we define the notion of low- and high-influence subsets with respect to a partition of

the set [n] and a parameter a > 0.

Definition 60. For f : {0, 1}"-{-1, 1}, a partition of [n] into {Ij_}=, and a parameter

a > 0, define L(a) def { E [r] Inff(Ij) < a} (low-influence subsets) and H(a) def

[r] \ L(a) (high-influence subsets). For j E [r] and i E Ij, if Inff(i) > a we say that the

variable xi is a high-influence element of j.

Next, the notion of a well-structured subset will be important for us:

Definition 61. For f : {0, 1 } f-+ {- 1, 1 } and parameters a > A > 0, we say that a subset

I C [n] of coordinates is (a, A)-well structured if there is an i E I such that Inff(i) > a

and Inff(I \ {i}) < A.

Note that since a > A, by monotonicity, the i E I in the above definition is unique.

Hence, a well-structured subset contains a single high-influence coordinate, while the re-

maining coordinates have small total influence.



4.2.2 Background on Schapire and Sellie's algorithm

In [55] Schapire and Sellie gave an algorithm, which we refer to as LearnPoly, for exactly

learning s-sparse GF(2) polynomials using membership queries (i.e. black-box queries)

and equivalence queries. Their algorithm is proper; this means that every equivalence

query the algorithm makes (including the final hypothesis of the algorithm) is an s-sparse

polynomial. (We shall see that it is indeed crucial for our purposes that the algorithm is

proper.) Recall that in an equivalence query the learning algorithm proposes a hypothesis

h to the oracle: if h is logically equivalent to the target function being learned then the

response is "correct" and learning ends successfully, otherwise the response is "no" and

the learner is given a counterexample x such that h(x) z f(x).

Schapire and Sellie proved the following about their algorithm:

Theorem 62. [[55], Theorem 10] Algorithm LearnPoly is a proper exact learning al-

gorithm for the class of s-sparse GF(2) polynomials over {0, 1}n . The algorithm runs

in poly(n, s) time and makes at most poly(n, s) membership queries and at most ns + 2

equivalence queries.

We can easily also characterize the behavior of LearnPoly if it is run on a function

f that is not an s-sparse polynomial. In this case, since the algorithm is proper all of its

equivalence queries have s-sparse polynomials as their hypotheses, and consequently no

equivalence query will ever be answered "correct." So if the (ns + 2)-th equivalence query

is not answered "correct," the algorithm may infer that the target function is not an s-sparse

polynomial, and it returns "not s-sparse."

A well-known result due to Angluin [2] says that in a Probably Approximately Cor-

rect or PAC setting (where there is a distribution D over examples and the goal is to con-

struct an e-accurate hypothesis with respect to that distribution), equivalence queries can

be straightforwardly simulated using random examples. This is done simply by drawing

a sufficiently large sample of random examples for each equivalence query and evaluting

both the hypothesis h and the target function f on each point in the sample. This either

yields a counterexample (which simulates an equivalence query), or if no counterexample

is obtained then simple arguments show that for a large enough (O(log(1/6)/E)-size) sam-
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pie, with probability 1 - 6 the functions f and h must be c-close under the distribution D,

which is the success criterion for PAC learning. This directly gives the following corollary

of Theorem 62:

Corollary 63. There is a uniform distribution membership query proper learning algo-

rithm, which we call LearnPoly'(s, n, c, 6), which makes Q(s, n, E, 6) poly(s, n, 1/c,

log(1/6)) membership queries and runs in poly(Q) time to learn s-sparse polynomials

over {0, 1}" to accuracy c and confidence 1 - 6 under the uniform distribution.

4.3 On restrictions which simplify sparse polynomials

This section presents Theorem 64, which gives the intuition behind our testing algorithm,

and lies at the heart of the completeness proof. We give the full proof of Theorem 64 in

section 4.5.

Roughly speaking, the theorem says the following: consider any s-sparse GF(2) poly-

nomial p. Suppose that its coordinates are randomly partitioned into r = poly(s) many

subsets {Ij }>l. The first two statements say that w.h.p. a randomly chosen "threshold

value" a 1/poly(s) will have the property that no single coordinate i, i E [n], or sub-

set lj, j E [r], has Infp(i) or Inf,(Ij) "too close" to a. Moreover, the high-influence

subsets (w.r.t. a) are precisely those that contain a single high influence element i (i.e.

Infp(i) > a), and in fact each such subset Ij is well-structured (part 3). Also, the num-

ber of such high-influence subsets is small (part 4). Finally, let p' be the restriction of p

obtained by setting all variables in the low-influence subsets to 0. Then, p' has a nice struc-

ture: it has at most one relevant variable per high-influence subset (part 5), and it is close

to p (part 6).

Theorem 64. Let p : {0, 1}"--{-1, 1} be an s-sparse polynomial. Fix 7 E (0, 1) and A
def def

such that A < A0 = T/(1600s 310g(8 3/T)) and A = poly(T/s). Let r = 4Cs/A, for a

suitably large constant C. Let {Ij~ }=. be a random partition of [n]. Choose a uniformly

at random from the set A(T, A) d f { + (8 - 4)A : f E [K]} where K is the largest

integer such that 8KA < -. Then with probability at least 9/10 (over the choice of a

and { Ij }=), all of the following statements hold:
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1. Every variable xi, i E [n], has Infp(i) [a - 4A, a + 4A].

2. Every subset Ij, j E [r], has Infp(Ij) 0 [a - 3A, a + 4A].

3. For every j E H(a), Ij is (a, A)-well structured.

4. |H(a)I < slog(8 3/T).

Let p' = Po+-uL(a)I (the restriction obtained by fixing all variables in low-influence

subsets to 0).

5. For every j C H(ca), p' has at most one relevant variable in Ij (hence p' is a IH(a ) I-

junta).

6. The function p' is T-close to p.

Theorem 64 naturally suggests a testing algorithm, whereby we attempt to partition the

coordinates of a function f into "high-influence" subsets and "low-influence" subsets, then

zero-out the variables in low-influence subsets and implicitly learn the remaining function

f' on only poly(s, 1/c) many variables. This is exactly the approach we take in the next

section.

4.4 The testing algorithm Test-Sparse-Poly

In this section we present our main testing algorithm and give high-level sketches of the ar-

guments establishing its completeness and soundness. The algorithm, called Test-Sparse-

Poly, takes as input the values s, c > 0 and black-box access to f: {0, 1}---_{-1, 1}. It is

presented in full in Figure 1.

The first thing Test-Sparse-Poly does (Step 2) is randomly partition the coordinates

into r = O(s4/T) subsets. In Steps 3 and 4 the algorithm attempts to distinguish subsets

that contain a high-influence variable from subsets that do not; this is done by using the

independence test to estimate the influence of each subset (see Lemma 11).

Once the high-influence and low-influence subsets have been identified, intuitively we

would like to focus our attention on the high-influence variables. Thus, Step 5 of the
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Algorithm Test-Sparse-Poly(f, s, c)
Input: Black-box access to f : {0, 1} f {-1, 1}; sparsity parameter s > 1; error
parameter e > 0
Output: "yes" if f is an s-sparse GF(2) polynomial, "no" if f is e-far from every
s-sparse GF(2) polynomial

1. Let 7 = A(E), A = O(poly(T, 1/s)), r = o(s/A),6 = O(poly(T, 1/s)).a

2. Set {Ij) =l to be a random partition of [n].

3. Choose a uniformly at random from the set A(7, A) { + (8f - 4)A : 1 <
£ < K} where K is the largest integer such that 8KA < T.

4. For each subset I,... , , run the independence test M ef ln(200r) times and

let Inf (Ij) denote 2 x (fraction of the M runs on Ij that the test rejects). If any

subset Ij has Inff(Ij) E [a - 2A, a + 3A] then exit and return "no," otherwise
continue.

5. Let L(a) C [r] denote {j E [r] : Inff(1j) < a - 2A < a} and let H(a) denote

[r] \ L(a). Let f' {0, 1}"-*{-1, 1} denote the function fo 0,u ,( I.

def
6. Draw a sample of m = . In 12 uniform random examples from {0, 1}" and eval-

uate both f' and f on each of these examples. If f and f' disagree on any of the m
examples then exit and return "no." If they agree on all examples then continue.

7. Run the learning algorithm LearnPoly'(s, H(a)l, /4, 1/100) from [55] us-

ing SimMQ(f, H(a), {I}jj(,),, , A, z, 6/Q(s, IH(a ) , ,/4, 1/100)) to simu-

late each membership query on a string z E {0, 1}IH(a)I that LearnPoly' makes.
If LearnPoly' returns "not s-sparse" then exit and return "no." Otherwise the
algorithm terminates successfully; in this case return "yes."

aMore precisely, we set -r = /600, A = min{Ao, (/8 2 ) (6/ ln(2/6))}, r = 4Cs/A

(for a suitable constant C from Theorem 64), where Ao df r/(1600s3 log(8s3 /r)) and 6

1/ (100s log(8s3/-)Q(s, S 1og(8s 3 /T), E/4, 1/100))

Figure 4-1: The algorithm Test-Sparse-Poly.
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Algorithm Set-High-Influence-Variable(f, I, a, A, b, 6)
Input: Black-box access to f : {0, 1}n-+,{ -1, 1}; (a, A)-well-structured set I C [n];
bit b E {0, 1}; failure parameter 6.
Output: assignment w E {0, 1} to the variables in I such that wi = b with probability
1-6

1. Draw z uniformly from {0, 1}I . Define Iod {j E I: xzj = 0} and I fj E
I: xj - 1}.

2. Apply c = 2 In() iterations of the independence test to (f , 10). If any of the c
iterations reject, mark 1o. Do the same for (f, II).

3. If both or neither of Io and II are marked, stop and output "fail".

4. If Ib is marked then return the assignment w = x. Otherwise return the assignment
w - 7 (the bitwise negation of x).

Figure 4-2: The subroutine Set-High-Influence-Variable.

algorithm defines a function f' which "zeroes out" all of the variables in all low-influence

subsets. Step 6 of Test-Sparse-Poly checks that f is close to f'

The final step of Test-Sparse-Poly is to run the algorithm LearnPoly' of [55] to learn a

sparse polynomial, which we call f", which is isomorphic to f' but is defined only over the

high-influence variables of f (recall that if f is indeed s-sparse, there is at most one from

each high-influence subset). The overall Test-Sparse-Poly algorithm accepts f if and only

if LearnPoly' successfully returns a final hypothesis (i.e. does not halt and output "fail").

The membership queries that the [55] algorithm requires are simulated using the SimMQ

procedure, which in turn uses a subroutine called Set-High-Influence-Variables.

The procedure Set-High-Influence-Variable (SHIV) is presented in Figure 4-2. The

idea of this procedure is that when it is run on a well-structured subset of variables I, it

returns an assignment in which the high-influence variable is set to the desired bit value.

Intuitively, the executions of the independence test in the procedure are used to determine

whether the high-influence variable i E I is set to 0 or 1 under the assignment x. Depending

on whether this setting agrees with the desired value, the algorithm either returns x or the

bitwise negation of x (this is slightly different from Construct-Sample, the analogous

subroutine from Chapter 3, which is content with a random x and thus never needs to

negate coordinates).
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Algorithm SimMQ(f, H, {Ij }jEH, , A, , 6)
Input: Black-box access to f : {0, 1}"-+{-1, 1}; subset H C [r]; disjoint subsets

{Ij }jH of [n]; parameters ac > A; string z E {0, 1}1HI; failure probability 6
Output: bit b which, with probability 1 - 6 is the value of f' on a random assignment x
in which each high-influence variable i E Ij (j E H) is set according to z

1. For each j E H, call Set-High-Influence-Variable(f, 1j, a, A, zj, 6/ HI) and get
back an assignment (call it wj) to the variables in Ij.

2. Construct x {0, 1}n as follows: for each j E H, set the variables in Ij according
to w j . This defines xx for all i E UjEHIj. Set xi = 0 for all other i E [n].

3. Return b = f (x).

Figure 4-3: The subroutine SimMQ.

Figure 4-3 gives the SimMQ procedure. When run on a function f and a collection

{Ij })jH of disjoint well-structured subsets of variables, SimMQ takes as input a string z

of length HI which specifies a desired setting for each high-influence variable in each Ij

(j E H). SimMQ constructs a random assignment x E {0, 1}" such that the high-influence

variable in each Ij (j E H) is set in the desired way in x, and it returns the value f'(x).

4.4.1 Time and Query Complexity of Test-Sparse-Poly

As stated in Figure 4-1, the Test-Sparse-Poly algorithm runs LearnPoly'(s, H(a)|, E/4,

1/100) using SimMQ(f, H(ca), {j}jjEI(a) a, A, z, 1/(100Q(s, IH(a), z, 1/100))) to

simulate each membership query on an input string z E {0, 1}IH(0)I. Thus the algorithm

is being run over a domain of IH(a) variables. Since we certainly have IH(a) < r <

poly(s, ), Corollary 63 gives that LearnPoly' makes at most poly(s, 1) many calls to

SimMQ. From this point, by inspection of SimMQ, SHIV and Test-Sparse-Poly, it is

straightforward to verify that Test-Sparse-Poly indeed makes poly(s, 1) many queries to

f and runs in time poly(s, 1) as claimed in Theorem 59. Thus, to prove Theorem 59 it

remains only to establish correctness of the test.
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4.4.2 Sketch of completeness

The main tool behind our completeness argument is Theorem 64. Suppose f is indeed an

s-sparse polynomial. Then Theorem 64 guarantees that a randomly chosen ca will w.h.p.

yield a "gap" such that subsets with a high-influence variable have influence above the gap,

and subsets with no high-influence variable have influence below the gap. This means that

the estimates of each subset's influence (obtained by the algorithm in step 4) are accurate

enough to effectively separate the high-influence subsets from the low-influence ones in

step 5. Thus, the function f' defined by the algorithm will w.h.p be equal to the function p'

from Theorem 64.

Assuming that f is an s-sparse polynomial (and that f' is equal to p'), Theorem 64

additionally implies that the function f' will be close to the original function (so Step 6

will pass), that f' only depends on poly(s, 1/c) many variables, and that all of the subsets

Ij that "survive" into f' are well-structured. As we show in section 4.6, this condition

is sufficient to ensure that SimMQ can successfully simulate membership queries to f".

Thus, for f an s-sparse polynomial, the LearnPoly' algorithm can run successfully, and

the test will accept.

4.4.3 Sketch of soundness

Here, we briefly argue that if Test-Sparse-Poly accepts f with high probability, then f

must be close to some s-sparse polynomial (we give the full proof in section 4.7). Note

that if f passes Step 4, then Test-Sparse-Poly must have obtained a partition of variables

into "high-influence" subsets and "low-influence" subsets. If f passes Step 6, then it must

moreover be the case that f is close to the function f' obtained by zeroing out the low-

influence subsets.

In the last step, Test-Sparse-Poly attempts to run the LearnPoly' algorithm using f'

and the high-influence subsets; in the course of doing this, it makes calls to SimMQ. Since

f could be an arbitrary function, we do not know whether each high-influence subset has at

most one variable relevant to f' (as would be the case, by Theorem 64, if f were an s-sparse

polynomial). However, we are able to show (Lemma 78) that, if with high probability all
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calls to the SimMQ routine are answered without its ever returning "fail," then f' must be

close to a junta g whose relevant variables are the individual "highest-influence" variables

in each of the high-influence subsets. Now, given that LearnPoly' halts successfully, it

must be the case that it constructs a final hypothesis h that is itself an s-sparse polynomial

and that agrees with many calls to SimMQ on random examples. Lemma 79 states that, in

this event, h must be close to g, hence close to f', and hence close to f.

4.5 Proof of Theorem 64

In Section 4.5.1 we prove some useful preliminary lemmas about the influence of indi-

vidual variables in sparse polynomials. In Section 4.5.2 we extend this analysis to get

high-probability statements about influence of subsets {Ij}j=l in a random partition. We

put the pieces together to finish the proof of Theorem 64 in Section 4.5.3.

Throughout this section the parameters 7, A, r and a are all as defined in Theorem 64.

4.5.1 The influence of variables in s-sparse polynomials

We start with a simple lemma stating that only a small number of variables can have large

influence:

Lemma 65. Let p : {0, 1}"-{-1, 1} be an s-sparse polynomial. For any 6 > 0, there are

at most s log(2s/6) many variables xi that have Infp(i) > 6.

Proof Any variable xi with Infp(i) > 6 must occur in some term of length at most

log(2s/6). (Otherwise each occurrence of xx would contribute less than 6/s to the influ-

ence of the i-th coordinate, and since there are at most s terms this would imply Infp(i) <

s - (6/s) = 6.) Since at most s log(2s/6) distinct variables can occur in terms of length at

most log(2s/6), the lemma follows. O O

Lemma 66. With probability at least 96/100 over the choice of a, no variable xi has

Infp(i) E [a - 4A, a + 4A].
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Proof The uniform random variable a has support A(T, A) of size > 50s log(8s3/T).

Each possible value of ca defines the interval of influences [a - 4A, a + 4A]. Note that

a - 4A 7/(4s 2). In other words, the only variables which could lie in [a - 4A, a + 4A]

are those with influence at least 7/(4S2 ). By Lemma 65 there are at most k = s log(8s3/T)

such candidate variables. Since we have at least 50k intervals (two consecutive such in-

tervals overlap at a single point) and at most k candidate variables, by the pigeonhole

principle, at least 48k intervals will be empty. O E

Lemma 65 is based on the observation that, in a sparse polynomial, a variable with "high"

influence (influence) must occur in some "short" term. The following lemma is in some

sense a quantitative converse: it states that a variable with "small" influence can only appear

in "long" terms.

Lemma 67. Let p : {0, 1} -{-1, 1} be an s-sparse polynomial. Suppose that i is such

that Inf,(i) < 7/(s2 + s). Then the variable xi appears only in terms of length greater

than log(s/T).

Proof By contradiction. Assuming that xi appears in some term of length at most log(s/r),

we will show that Inf,(i) > 7/(s 2 + s). Let T be a shortest term that xi appears in. The

function p can be uniquely decomposed as follows: p(xI, x2..., x) = xi . (T' + pi) + P2,

where T = xi -T', the term T' has length less than log(s/r) and does not depend on xi, and

Pi, P2 are s-sparse polynomials that do not depend on x. Observe that since T is a shortest

term that contains xi, the polynomial pi does not contain the constant term 1.

Since T' contains fewer than log(s/T) many variables, it evaluates to 1 on at least a 7/s

fraction of all inputs. The partial assignment that sets all the variables in T' to 1 induces

an s-sparse polynomial p' (the restriction of pi according to the partial assignment). Now

observe that p' still does not contain the constant term 1 (for since each term in pl is of

length at least the length of T', no term in pl is a subset of the variables in T'). We now

recall the following (nontrivial) result of Karpinski and Luby [36]:

Claim 68 ([36], Corollary 1). Let g be an s-sparse multivariate GF(2) polynomial which

does not contain the constant-i term. Then g(x) = 0 for at least a 1/(s + 1) fraction of all

inputs.
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Applying this corollary to the polynomial p', we have that p' is 0 on at least a 1/(s + 1)

fraction of its inputs. Therefore, the polynomial T' + pi is 1 on at least a (T/s). 1/(s + 1)

fraction of all inputs in {0, 1}"; this in turn implies that Inf,(i) > (r/s) - 1/(s + 1)

7/(S2 + S). O O

By a simple application of Lemma 67 we can show that setting low-influence variables

to zero does not change the polynomial by much:

Lemma 69. Let p : {0, 1}n--+{-1, 1} be an s-sparse polynomial. Let g be a function ob-

tained from p by setting to 0 some subset of variables all of which have Infp(i) < 7/(2s2).

Then g and p are T-close.

Proof Setting a variable to 0 removes all the terms that contain it from p. By Lemma 67,

doing this only removes terms of length greater than log(s/T). Removing one such term

changes the function on at most a 7/s fraction of the inputs. Since there are at most s terms

in total, the lemma follows by a union bound. O O

4.5.2 Partitioning variables into random subsets

The following lemma is at the heart of Theorem 64. The lemma states that when we

randomly partition the variables (coordinates) into subsets, (i) each subset gets at most one

"high-influence" variable (the term "high-influence" here means relative to an appropriate

threshold value t <K a), and (ii) the remaining (low-influence) variables (w.r.t. t) have a

"very small" contribution to the subset's total influence.

The first part of the lemma follows easily from a birthday-paradox type argument, since

there are many more subsets than high-influence variables. As intuition for the second part,

we note that in expectation, the total influence of each subset is very small. A more careful

argument lets us argue that the total contribution of the low-influence variables in a given

subset is unlikely to highly exceed its expectation.

Lemma 70. Fix a value of c satisfying the first statement of Theorem 64. Let t def

AT/(4C's), where C' is a suitably large constant. Then with probability 99/100 over

the random partition the following statements hold true:
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e For every j E [r], Ij contains at most one variable x with Infp(i) > t.

* Let t 
dI f {i I Infp(i) < t}. Then, for all j E [r], Infp(I <t ) < A.

Proof We show that each statement of the lemma fails independently with probability at

most 1/200 from which the lemma follows.

By Lemma 65 there are at most b = s log(2s/t) coordinates in [n] with influence more

than t. A standard argument yields that the probability there exists a subset Ij with more

than one such variable is at most b2/r. It is easy to verify that this is less than 1/200, as

long as C is large enough relative to C'. Therefore, with probability at least 199/200, every

subset contains at most one variable with influence greater than t. So the first statement

fails with probability no more than 1/200.

Now for the second statement. Consider a fixed subset Ij. We analyze the contribution

of variables in 1t to the total influence Infp(Ij). We will show that with high probability

the contribution of these variables is at most A.

Let S = {i E [n] Infp(i) < t} and renumber the coordinates such that S = [k'].

Each variable xi, i E S, is contained in Ij independently with probability 1/r. Let

X1,... , Xk, be the corresponding independent Bernoulli random variables. Recall that, by

sub-additivity, the influence of Ift is upper bounded by X = Ek' Infp(i) -Xi. It thus suf-

fices to upper bound the probability Pr[X > A]. Note that E[X] = Ek' Inf,(i) -E[Xi] =

(1/r) - Z11Inf(i) < (s/r), since =1l Infp(i) fi= Inf,(i) < s. The last inequality

follows from the following simple fact (the proof of which is left for the reader).

Fact 71. Let p : {0, 1}n"--{-1, 1} be an s-sparse polynomial. Then - 1, Infp(i) < s.

To finish the proof, we need the following version of the Chernoff bound:

Fact 72 ([46]). For k' E IN*, let al,... ,a k, E [0, 1] and let X 1,... , Xk, be independent

k/ def
Bernoulli trials. Let X' = E = ajXj and u = E[X'] > 0. Then for any y > 1 we have

Pr[X' > y ] < ( ).

We apply the above bound for the X's with ai = Infp(i)/t E [0, 1]. (Recall that the

coordinates in S have influence at most t.) We have z = E[X'] = E[X]/t < s/(rt) =

C's/CT, and we are interested in the event {X > A} - {X' > A/t}. Note that A/t =
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4C's/ . Hence, y > 4C and the above bound implies that Pr[X > A] < (e/(4C)) 4C's/T <

(1/4C 4)C's/7.

Therefore, for a fixed subset Ij, we have Pr[Infp(I-t ) > A] < (1/4C4)C's/T. By a

union bound, we conclude that this happens in every subset with failure probability at most

r - (1/4C4)c's/T. This is less than 1/200 as long as C' is a large enough absolute constant

(independent of C), which completes the proof. O O

Next we show that by "zeroing out" the variables in low-influence subsets, we are likely

to "kill" all terms in p that contain a low-influence variable.

Lemma 73. With probability at least 99/100 over the random partition, every monomial

of p containing a variable with influence at most a has at least one of its variables in

UjL(ca)Ij.

Proof. By Lemma 65 there are at most b = s log(8s3 /T) variables with influence more

than a. Thus, no matter the partition, at most b subsets from {Ij }>1 contain such variables.

Fix a low-influence variable (influence at most a) from every monomial containing such a

variable. For each fixed variable, the probability that it ends up in the same subset as a high-

influence variable is at most b/r. Union bounding over each of the (at most s) monomials,

the failure probability of the lemma is upper bounded by sb/r < 1/100. O Ol

4.5.3 Proof of Theorem 64

Proof (Theorem 64) We prove each statement in turn. The first statement of the theorem

is implied by Lemma 66. (Note that, as expected, the validity of this statement does not

depend on the random partition.)

We claim that statements 2-5 essentially follow from Lemma 70. (In contrast, the va-

lidity of these statements crucially depends on the random partition.)

Let us first prove the third statement. We want to show that (w.h.p. over the choice of

a and {Ij}j ) for every j E H(a), (i) there exists a unique ij E Ij such that Infp(ij) > a

and (ii) that Infp(Ij \ {i<}) _ A. Fix some j E H(a). By Lemma 70, for a given value

of a satisfying the first statement of the theorem, we have: (i') Ij contains at most one
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variable xij with Infp(ij) > t and (ii') Infp(Iy \ {ij}) < A. Since t < 7'/4s2 < a (with

probability 1), (i') clearly implies that, if I has a high-influence element (w.r.t. a), then it

is unique. In fact, we claim that Infp(ij) > a. For otherwise, by sub-additivity of influence,

we would have Infp(Ij) Infp(Ij \ {ij}) + Infp(ij) < A + a - 4A = a - 3A < a, which

contradicts the assumption that j E H(a~). Note that we have used the fact that a satisfies

the first statement of the theorem, that is Infp(iy) < a = Infp(ij) < a - 4A. Hence, for

a "good" value of a (one satisfying the first statement of the theorem), the third statement

is satisfied with probability at least 99/100 over the random partition. By Lemma 66, a

"good" value of a is chosen with probability 96/100. By independence, the conclusions of

Lemma 66 and Lemma 70 hold simultaneously with probability more than 9/10.

We now establish the second statement. We assume as before that a is a "good" value.

Consider a fixed subset Ij, j E [r]. If j E H(a) (i.e. Ij is a high-influence subset) then,

with probability at least 99/100 (over the random partition), there exists ij E Ij such that

Infp(ij) > a + 4A. The monotonicity of influence yields Infp(Ij) Infp(ij) _2 a + 4A. If

j E L(a) then Ij contains no high-influence variable, i.e. its maximum influence element

has influence at most a - 4A and by the second part of Lemma 70 the remaining variables

contribute at most A to its total influence. Hence, by sub-additivity we have that Infp(Ij) <

a - 3A. Since a "good" value of a is chosen with probability 96/100, the desired statement

follows.

The fourth statement follows from the aforementioned and the fact that there exist at

most s log(8s3/T) variables with influence at least oa (as follows from Lemma 65, given

that a > -7/(4s2 )).

Now for the fifth statement. Lemma 73 and monotonicity imply that the only variables

that remain relevant in p' are (some of) those with high influence (at least oa) in p, and,

as argued above, each high-influence subset Ij contains at most one such variable. By a

union bound, the conclusion of Lemma 73 holds simultaneously with the conclusions of

Lemma 66 and Lemma 70 with probability at least 9/10.

The sixth statement (that p and p' are T-close) is a consequence of Lemma 69 (since p'

is obtained from p by setting to 0 variables with influence less than a < 7/(2s2)). This

concludes the proof of Theorem 64. O O
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4.6 Completeness of the test

In this section we show that Test-Sparse-Poly is complete:

Theorem 74. Suppose f is an s-sparse GF(2) polynomial. Then Test-Sparse-Poly ac-

cepts f with probability at least 2/3.

Proof. Fix f to be an s-sparse GF(2) polynomial over {0, 1}". By the choice of the A

and r parameters in Step 1 of Test-Sparse-Poly we may apply Theorem 64, so with failure

probability at most 1/10 over the choice of a and I1,..., 1, in Steps 2 and 3, statements

1-6 of Theorem 64 all hold. We shall write f' to denote f o,-u G~IJi. Note that at each

successive stage of the proof we shall assume that the "failure probability" events do not

occur, i.e. henceforth we shall assume that statements 1-6 all hold for f; we take a union

bound over all failure probabilities at the end of the proof.

Now consider the M executions of the independence test for a given fixed lj in Step 4.

Lemma 11 gives that each run rejects with probability lInf (Ij). A standard Hoeffding

bound implies that for the algorithm's choice of M = ln(200r), the value Inf f(1)

obtained in Step 4 is within ±A of the true value Inff(Ij) with failure probability at most

. A union bound over all j E [r] gives that with failure probability at most 1/100, we

have that each Inff(lj) is within an additive +A of the true value Inff(Ij). This means

that (by statement 2 of Theorem 64) every Ij has Inff(lj) [a - 2A, a + 3A], and hence

in Step 5 of the test, the sets L(a) and H(a) are identical to L(a) and H(a) respectively,

which in turn means that the function f' defined in Step 5 is identical to f' defined above.

We now turn to Step 6 of the test. By statement 6 of Theorem 64 we have that f and

f' disagree on at most a T- fraction of inputs. A union bound over the m random examples

drawn in Step 6 implies that with failure probability at most Tm < 1/100 the test proceeds

to Step 7.

By statement 3 of Theorem 64 we have that each Ij, j E H(a) - H(a), contains

precisely one high-influence element ij (i.e. which satisfies Inff (ij) > a), and these are all

of the high-influence elements. Consider the set of these H(a)I high-influence variables;

statement 5 of Theorem 64 implies that these are the only variables which f' can depend on

(it is possible that it does not depend on some of these variables). Let us write f" to denote
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the function f" {0, 1}1H(f)1 -{1, 1} corresponding to f' but whose input variables are

these I H(a) I high-influence variables in f, one per Ij for each j H(oa). We thus have

that f" is isomorphic to f' (obtained from f' by discarding irrelevant variables).

The main idea behind the completeness proof is that in Step 7 of Test-Sparse-Poly, the

learning algorithm LearnPoly' is being run with target function f". Since f" is isomorphic

to f', which is an s-sparse polynomial (since it is a restriction of an s-sparse polynomial

f), with high probability LearnPoly' will run successfully and the test will accept. To

show that this is what actually happens, we must show that with high probability each call

to SimMQ which LearnPoly' makes correctly simulates the corresponding membership

query to f". This is established by the following lemmas:

Lemma 75. Let f, I, a, A be such that I is (a, A)-well-structured with A < a6/(2 ln(2/6)).

Then with probability at least 1 - 6, the output of SHIV(f, I, , a, b, 6) is an assignment

w E (0, 1}I which has wi = b.

Proof We assume that Ib contains the high-influence variable i (the other case being very

similar). Recall that by Lemma 11, each run of the independence test on Ib rejects with

probability Inff(Ib); by Lemma 13 (monotonicity) this is at least Inffy(i) > o/2. So the

probability that Ib is not marked even once after c iterations of the independence test is at

most (1 - a/2)c < 6/2, by our choice of c. Similarly, the probability that Ib is ever marked

during c iterations of the independence test is at most c(A/2) < 6/2, by the condition of

the lemma. Thus, the probability of failing at step 3 of SHIV is at most 6, and since i E Ib,

the assignment w sets variable i correctly in step 4. O O

Lemma 76. With total failure probability at most 1/100, all the Q(s, IH(ca) , E/4, 1/100)

calls to SimMQ(f, H(a), {Ij}jEH(a), a, A, z, 1/(100Q(s, H(a)l,c/4,1/100))) that

LearnPoly' makes in Step 7 of Test-Sparse-Poly return the correct value of f" (z).

Proof Consider a single call to the procedure SimMQ(f, H(a), {Ij}jjcE(a), a, A, z,

1/(100Q(s, H(a) 1, e/4, 1/100))) made by LearnPoly'. We show that with failure proba-

bility at most 6' d 1/(100Q(s, H(ca)l, E/4, 1/100) this call returns the value f"(z), and

the lemma then follows by a union bound over the Q(s, H(a) , c/4, 1/100) many calls to

SimMQ.
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This call to SimMQ makes |H(a)| calls to SHIV(f, I,a, A,zj, 6'/H(a) ), one for

each j E H(a). Consider any fixed j E H(a). Statement 3 of Theorem 64 gives that Ij

(j E H(a)) is (c, A)-well-structured. Since a > 4, it is easy to check the condition of

Lemma 75 holds where the role of "6" in that inequality is played by 6'/| H(a) , so we may

apply Lemma 75 and conclude that with failure probability at most 6'/1 H() (recall that by

statement 4 of Theorem 64 we have |H(a) < s log(8s 3/r)), SHIV returns an assignment

to the variables in Ij which sets the high-influence variable to zj as required. By a union

bound, the overall failure probability that any Ij (j E H(oz)) has its high-influence variable

not set according to z is at most 6'. Now statement 5 and the discussion preceding this

lemma (the isomorphism between f' and f") give that SimMQ sets all of the variables that

are relevant in f' correctly according to z in the assignment x it constructs in Step 2. Since

this assignment x sets all variables in UjLZIj to 0, the bit b = f(x) that is returned is the

correct value of f"(z), with failure probability at most 6' as required. EO OE

With Lemma 76 in hand, we have that with failure probability at most 1/100, the

execution of LearnPoly'(s, |H(a) , c/4, 1/100) in Step 7 of Test-Sparse-Poly correctly

simulates all membership queries. As a consequence, Corollary 63 thus gives us that

LearnPoly'(s, IH(a) , E/4, 1/100)) returns "not s-sparse" with probability at most 1/100.

Summing all the failure probabilities over the entire execution of the algorithm, the overall

probability that Test-Sparse-Poly does not output "yes" is at most

Theorem 64 Step 4 Step 6 Lemma 76 Corollary 63

1/10 + 1/100 + 1/100 + 1/100 + 1/100 < 1/5,

and the completeness theorem is proved. (Theorem 74) U El

4.7 Soundness of the Test

In this section we prove the soundness of Test-Sparse-Poly:

Theorem 77. If f is E-far from any s-sparse polynomial, then Test-Sparse-Poly accepts

with probability at most 1/3.
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Proof To prove the soundness of the test, we start by assuming that the function f has

progressed to step 5, so there are subsets 11,..., Ir and H(a) satisfying Inff(Ij) > a + 2A

for all j E H(a). As in the proof of completeness, we have that the actual influences of

all subsets should be close to the estimates, i.e. that Inff (Ij) > a + A for all j E H(a)

except with with probability at most 1/100. We may then complete the proof in two parts

by establishing the following:

* If f and f' are ca-far, step 6 will accept with probability at most 6a.

* If f' is Cb-far from every s-sparse polynomial, step 7 will accept with probability at

most 6 b.

Establishing these statements with Ca = Eb = E/2, 6a = 1/12 and 6b = 1/6 will allow us to

complete the proof (and we may assume throughout the rest of the proof that Inff (I) > a

for each j C H(a)).

The first statement follows immediately by our choice of m = In1 with a = E/2

and 6a = 1/12 in Step 6. Our main task is to establish the second statement, which we do

using Lemmas 78 and 79 stated below. Intuitively, we would like to show that if LearnPoly'

outputs a hypothesis h (which must be an s-sparse polynomial since LearnPoly' is proper)

with probability greater than 1/6, then f' is close to a junta isomorphic to h. To do this,

we establish that if LearnPoly' succeeds with high probability, then the last hypothesis on

which an equivalence query is performed in LearnPoly' is a function which is close to

f'. Our proof uses two lemmas: Lemma 79 tells us that this holds if the high influence

subsets satisfy a certain structure, and Lemma 78 tells us that if LearnPoly' succeeds with

high probability then the subsets indeed satisfy this structure. We now state these lemmas

formally and complete the proof of the theorem, deferring the proofs of the lemmas until

later.

Recall that the algorithm LearnPoly' will make repeated calls to SimMQ which in turn

makes repeated calls to SHIV. Lemma 78 states that if, with probability greater than 62, all

of these calls to SHIV return without failure, then the subsets associated with H(a) have a

special structure.

116



Lemma 78. Let J C [n] be a subset of variables obtained by including the highest-

influence element in Ij for each j E H(a) (breaking ties arbitrarily). Suppose that

k > 300 H(a)l/E2 queries are made to SimMQ. Suppose moreover that Pr[ every call

to SHIV that is made during these k queries returns without outputting 'fail'] is greater

than 62 for 62 = 1/ (k). Then the following both hold:

* Every subset Ij forj H( (a) satisfies Inff(Ij \ J) < 2e 2/IH((a)I; and

* The function f is c2-close to the junta g : {0, 1}|H()I--{-1, 1} defined as as:

g(x) d Plur[f'(xjZT)].
z

Given that the subsets associated with H(oa) have this special structure, Lemma 79 tells

us that the hypothesis output by LearnPoly' should be close to the junta g.

Lemma 79. Define QE as the maximum number of calls to SimMQ that that will be made

by LearnPoly' in all of its equivalence queries. Suppose that for every j E H(a), it holds

that Inf f(l \ J) < 2E2 /|H(a)I with E2 < 80.QE" Then the probability that LearnPoly'

outputs a hypothesis h which is e/4-far from the junta g is at most 63 = 1/100.

We now show that Lemmas 78 and 79 suffice to prove the desired result. Suppose that

LearnPoly' accepts with probability at least 6b = 1/6. Assume LearnPoly' makes at least

k queries to SimMQ (we address this in the next paragraph); then it follows from Lemma

78 that the bins associated with H(a) satisfy the conditions of Lemma 79 and that f' is

E2-close to the junta g. Now applying Lemma 79, we have that with failure probability at

most 1/100, LearnPoly' outputs a hypothesis which is E/4-close to g. But then f' must be

(62 + e/4)-close to this hypothesis, which is an s-sparse polynomial.

We need to establish that LearnPoly' indeed makes k > 300 H(a)I/62 SimMQ queries

for an 62 that satisfies the condition on 62 in Lemma 79. (Note that if LearnPoly' does not

actually make this many queries, we can simply have it make artificial calls to SHIV to

achieve this. An easy extension of our completeness proof handles this slight extension of

the algorithm; we omit the details.) Since we need E2 < a/800QE and Theorem 62 gives

us that QE = ( H(a)Is + 2) - 1 In 300(IH(a) s + 2) (each equivalence query is simulated
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using 4 in 300(1 H(a) Is + 2) random examples), an easy computation shows that it suffices

to take k = poly(s, 1/c), and the proof of Theorem 77 is complete. O

Before proving Lemma 79 and Lemma 78, we prove the following about the behavior

of SHIV when it is called with parameters a, A that do not quite match the real values

a', A' for which I is (a', A')-well-structured:

Lemma 80. If I is (cz', A')-well-structured, then the probability that SHIV(f , I, a, A, b, 6)

passes (i.e. does not output "fail") and sets the high influence variable incorrectly is at

most (6/2)a'/ a . (1/c) -A' -ln(2/6).

Proof The only way for SHIV to pass with an incorrect setting of the high-influence vari-

able i is if it fails to mark the subset containing i for c iterations of the independence test,

and marks the other subset at least once. Since Vr(i) > a' and Vr(I \ i) < A', the proba-

bility of this occurring is at most (1 - a'/2)c -A' - c/2. Since SHIV is called with failure

parameter 6, c is set to 2 in 2. O D

We now give a proof of Lemma 79, followed by a proof of Lemma 78.

Proof (Lemma 79) By assumption each Inff(Ij \ J) < 2e 2/IH(a)l and Inff(Ij) > a,

so subadditivity of influence gives us that for each j E H(a), there exists an i E Ij such

that Inff(i) > ca - 2c2/IH(a) . Thus for every each call to SHIV made by SimMQ, the

conditions of Lemma 80 are satisfied with Inff (i) > a - 2E2/IH(a)I and Inff(Ij \ J) <

2e2/IH(a)I. We show that as long as E2 < 0, the probability that any particular query

z to SimMQ has a variable set incorrectly is at most 63/ 3QE.

Suppose SHIV has been called with failure probability 64, then the probability given

by Lemma 80 is at most:

(6 4 / 2 )1-2 2/(aH(a)I) 2 In (2) 2E2/-H(a) I, (4.1)
We 64

We shall show that this is at most 3/3 H(a)|QE = 1/300QE H(a)1. Taking IE2
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a/ 8 00QE simplifies (4.1) to:

1 3 2
( ( 6 4 / 2 )1-2 2 /(a-|H(a)) - In -

300QEH(o)l 4 64'

which is at most 1/300 H(a)IQE as long as

(2/ 6)1-2C2/ 
2/ (a" IH(a )

C 
) > In 2

4 64

which certainly holds for our choice of E2 and the setting of 64 = 1/100kIH(a) 1. Each call

to SimMQ uses IH(a) calls to SHIV, so a union bound gives that each random query to

SimMQ returns an incorrect assignment with probability at most 1/ 30 0 QE.

Now, since f' and g are E2-close and E2 satisfies E2QE < 63/3, in the uniform random

samples used to simulate the final (accepting) equivalence query, LearnPoly' will receive

examples labeled correctly according to g with probability at least 1 - 263/3. Finally, note

that LearnPoly' makes at most H(oz) s + 2 equivalence queries and hence each query is

simulated using In 3(IH(a)1s+2) random examples (for a failure probability of (3 for
63 IH(a)|s+2

each equivalence query). Then LearnPoly' will reject with probability at least 1 - 63/3

unless g and h are e/4-close. This concludes the proof of Lemma 79. OZ O

Proof (Lemma 78) We prove that if Inff(Ij \ J) > 26 2 /|H(a)l for some j c H(a), then

the probability that all calls to SHIV return successfully is at most 62. The closeness of f'

and g follows easily by the subadditivity of influence and Proposition 3.2 of [26].

First, we prove a much weaker statement whose analysis and conclusion will be used

to prove the proposition. We show in Proposition 81 that if the test accepts with high

probability, then the influence from each variable in any subset is small. We use the bound

on each variable's influence to obtain the concentration result in Proposition 82, and then

complete the proof of Lemma 78.

Proposition 81. Suppose that k calls to SHIV are made with a particular subset I, and

let i be the variable with the highest influence in I. If Inff(j) > 62/100 H(a)I for some

j E I \ i, then the probability that SHIV returns without outputting 'fail'for all k calls is

at most 6* = e-k/18 + e- c
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Proof Suppose that there exist j,j' C I with Inff(j) > Inff(j') > E2/100 H(a). A

standard Chernoff bound gives that except with probability at most e- k/18, for at least

(1/3)k of the calls to SHIV, variables j and j' are in different partitions. In these cases,

the probability SHIV does not output 'fail' is at most 2(1 - E2/100 H(a) )c, since for

each of the c runs of the independence test, one of the partitions must not be marked. The

probability no call outputs 'fail' is at most e - k/18 + 2(1 - E2/100 H(a) |)ck/3. Our choice

of k > 300 H(a)I/E2 ensures that (l/e)ck2/300IH( )l I (1/e). E

Since in our setting I Ij may depend on n, using the monotonicity of influence with the

previous claim does not give a useful bound on Inff (I\ i). But we see from the proof that if

the influence of each partition is not much less than Inff(I\i) and Inff(I\i) > 2E2 / H(0a) l,

then with enough calls to SHIV one of these calls should output "fail." Hence the lemma

will be easily proven once we establish the following proposition:

Proposition 82. Suppose that k calls to SHIV are made with a particular subset I having

Inff(I \ i) > 2E2 /IH()l and Inff(j) < C2 /100 H(a) for every j E I \ i. Then with

probability greater than 1 - J** = 1 - e- k/ 18, at least 1/3 of the k calls to SHIV yield both

Inff(I1) > r Inff(I \ i)/2 and Inff(lo) > rInff(I \ i)/2, where Tj = 1/e - 1/50.

Proof We would like to show that a random partition of I into two parts will result in parts

each of which has influence not much less than the influence of I \ i. Choosing a partition

is equivalent to choosing a random subset I' of I \ i and including i in I' or I \ I' with equal

probability. Thus it suffices to show that for random I' C I \ i, it is unlikely that Inff(I')

is much smaller than Inff (I \ i).

This does not hold for general I, but by bounding the influence of any particular variable

in I, which we have done in Proposition 81, and computing the unique variation (see

Definition 27 from Chapter 3) of I', we may obtain a deviation bound on Inff(I').

Now Inff (I') is lower bounded by a sum of independent, non-negative random vari-

ables whose expectation is given by

E[E Urf(j) ] = (1/2)Urf(j) = Inff(I \ i)/2 d=
jEI' j=1
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To obtain a concentration property, we require a bound on each Urf(j) < Inff(j), which

is precisely what we showed in the previous proposition. Note that Urf(i) = 0, and recall

that we have assumed that p > E2/ H(a)I and every j E I \ i satisfies Inff(j) < p/100.

Now we may use the bound from [26] in Proposition 3.5 with q = 1/e - 2/100 to

obtain:
100

Pr[E Urf(j) < 7/p] < exp( (1e - 1)))] < 1/e2

jEI'

Thus the probability that one of Io and 11 has influence less than rp is at most 1/2. We

expect that half of the k calls to SHIV will result in Io and 11 having influence at least rp,

so a Chernoff bound completes the proof of the claim with 6** < e- k/18 . This concludes

the proof of Proposition 82. O O

Finally, we proceed to prove the lemma. Suppose that there exists some I such that

Inff (I \ i) > 2E2/|H(a) . Now the probability that a particular call to SHIV with subset I

succeeds is:

Pr[marked(lo); - marked(I1)] + Pr[marked(11 ); - marked(lo)].

By Propositions 81 and 82, if with probability at least 6* + 6** none of the k calls to SHIV

return fail, then for k/3 runs of SHIV both Inff(I 1) and Inff(10 ) are at least r/E2/H(a)I >

e2/41 H(a)I and thus both probabilities are at most (1 - 62/41 H(a))c.

As in the analysis of the first proposition, we may conclude that every subset I which

is called with SHIV at least k times either satisfies Inff(I \ i) < 2C2/|H(a)I or will cause

the test to reject with probability at least 1 - 6** - 26*. Recall that 6* = e-+ ek/18; since

SHIV is set to run with failure probability at most 1/IH(o) k, we have that 62 is 1/(k).

This concludes the proof of Lemma 78. O O

4.8 Conclusion and future directions

An obvious question raised by this work is whether similar methods can be used to effi-

ciently test s-sparse polynomials over a general finite field F, with query and time com-
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plexity polynomial in s, 1/e, and IF|. The algorithm from Chapter 3 uses O((sl F) 4/E2)

queries to test s-sparse polynomials over F, but has running time 2w(sJFI) . (1 /e)oglog(1/e)

(arising, as discussed in Section 4.1, from brute-force search for a consistent hypothesis.).

One might hope to improve that algorithm by using techniques from this chapter. However,

doing so requires an algorithm for properly learning s-sparse polynomials over general fi-

nite fields. To the best of our knowledge, the most efficient algorithm for doing this (given

only black-box access to f : Fn-+F) is the algorithm of Bshouty [11] which requires

m = sO (lPllog IF I) log n queries and runs in poly(m, n) time. (Other learning algorithms are

known which do not have this exponential dependence on IF , but they either require evalu-

ating the polynomial at complex roots of unity [42] or on inputs belonging to an extension

field of F [31, 35].) It would be interesting to know whether there is a testing algorithm that

simultaneously achieves a polynomial runtime (and hence query complexity) dependence

on both the size parameter s and the cardinality of the field IFI.

Another goal for future work is to apply our methods to other classes beyond just poly-

nomials. Is it possible to combine the "testing by implicit learning" approach with other

membership-query-based learning algorithms, to achieve time and query efficient testers

for other natural classes?
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Chapter 5

Testing Halfspaces

5.1 Introduction

A halfspace is a function of the form f(x) = sgn(wixl + . -- + wanX, - 0). Halfspaces are

also known as threshold functions or linear threshold functions; for brevity we shall often

refer to them here as LTFs. More formally, we have the following:

Definition 83. A "linear threshold function," or LTF is a Boolean-valued function of the

form f(x) = sgn(wlxl + ... + wx, - 0) where wl, ..., w , 0 C R. The wi's are called

"weights," and 0 is called the "threshold." The sgn function is 1 on arguments > 0, and

-1 otherwise.

LTFs are a simple yet powerful class of functions, which for decades have played an

important role in fields such as complexity theory, optimization, and machine learning (see

e.g. [32, 64, 7, 49, 45, 57]).

In this chapter, we focus on the halfspace testing problem: given query access to a

function, we would like to distinguish whether it is an LTF or whether it is E-far from any

LTF. Our main result is to show that the halfspace testing problem can be solved with a

number of queries that is independent of n. In doing so, we establish new structural results

about LTFs which essentially characterize LTFs in terms of their degree-0 and degree-1

Fourier coefficients.

We note that any learning algorithm - even one with black-box query access to f -
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must make at least Q2() queries to learn n unknown LTF to accuracy E under the uniform

distribution on {-1, 1}" (this follows easily from, e.g., the results of [40]). Thus the com-

plexity of learning is linear in n, as opposed to our testing bounds which are independent

of n.

We start by describing our testing results in more detail.

Our Results. We consider the standard property testing model, in which the testing algo-

rithm is allowed black-box query access to an unknown function f and must minimize the

number of times it queries f. The algorithm must with high probability pass all functions

that have the property and with high probability fail all functions that have distance at least

E from any function with the property. Our main algorithmic results are the following:

1. We first consider functions that map R"-{-1, 1}, where we measure the distance

between functions with respect to the standard n-dimensional Gaussian distribution.

In this setting we give a poly(!) query algorithm for testing LTFs with two-sided

error.

2. [Main Result.] We next consider functions that map {-1, 1}n-{-1, 1}, where (as is

standard in property testing) we measure the distance between functions with respect

to the uniform distribution over {- 1, 1}n. In this setting we also give a poly(!) query

algorithm for testing LTFs with two-sided error.

Results 1 and 2 show that in two natural settings we can test a highly geometric prop-

erty - whether or not the -1 and +1 values defined by f are linearly separable - with

a number of queries that is independent of the dimension of the space. Moreover, the de-

pendence on is only polynomial, rather than exponential or tower-type as in some other

property testing algorithms.

While it is slightly unusual to consider property testing under the standard multivari-

ate Gaussian distribution, we remark that our results are much simpler to establish in

this setting because the rotational invariance essentially means that we can deal with a 1-

dimensional problem. We moreover observe that it seems essentially necessary to solve the

LTF testing problem in the Gaussian domain in order to solve the problem in the standard
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{-1, 1}" uniform distribution framework; to see this, observe that an unknown function

f : {-1, 1}"n _ {-1, 1} to be tested could in fact have the structure

f(xl ... Xdm)= ( x  ' ' + 1x m  X(d-1)m+l + ''+ XZdm

in which case the arguments to f behave very much like d independent standard Gaussian

random variables.

We note that the assumption that our testing algorithm has query access to f (as opposed

to, say, access only to random labeled examples) is necessary to achieve a complexity

independent of n. Any LTF testing algorithm with access only to uniform random examples

(x, f(x)) for f : {-1, l}"n_-{-1, 1} must use at least Q (log n) examples (an easy argument

shows that with fewer examples, the distribution on examples labeled according to a truly

random function is statistically indistinguishable from the distribution on examples labeled

according to a randomly chosen variable from {xl,..., Xn}).

Characterizations and Techniques. In Chapter 3, we described the "implicit learning"

approach to testing. However, that approach does not apply directly to LTFs, since in

general implicit learning requires that the functions in question be "well approximated" by

juntas, and LTFs clearly are not. To test LTFs we must take a new tack.

We establish new structural results about LTFs which essentially characterize LTFs in

terms of their degree-0 and degree-i Fourier coefficients. For functions mapping {-1, 1}n

to {-1, 1} it has long been known [14] that any linear threshold function f is completely

specified by the n + 1 parameters consisting of its degree-0 and degree-i Fourier coeffi-

cients (also referred to as its Chow parameters). While this specification has been used to

learn LTFs in various contexts [5, 28, 56], it is not clear how it can be used to construct

efficient testers (for one thing this specification involves n + 1 parameters, and in testing

we want a query complexity independent of n). Intuitively, we get around this difficulty by

giving new characterizations of LTFs as those functions that satisfy a particular relationship

between just two parameters, namely the degree-0 Fourier coefficient and the sum of the

squared degree-i Fourier coefficients. Moreover, our characterizations are robust in that if

a function approximately satisfies the relationship, then it must be close to an LTF. This is

125



what makes the characterizations useful for testing.

In Section 5.3 we consider functions mapping RIn to {-1, 1}, where we view Rn as

endowed with the standard n-dimensional Gaussian distribution. Our characterization is

particularly clean in this setting and illustrates the essential approach that also underlies the

much more involved Boolean case. On one hand, it is not hard to show that for every LTF

f, the sum of the squares of the degree-i Hermite coefficients of f is equal to a particular

function of the mean of f - regardless of which LTF f is. We call this function W; it is

essentially the square of the "Gaussian isoperimetric" function.

Conversely, Theorem 100 shows that if f : IRn--+{-1, 1} is any function for which

the sum of the squares of the degree-1 Hermite coefficients is within -c+3 of W(E[f]),

then f must be O(c)-close to an LTF - in fact to an LTF whose n weights are the n

degree-i Hermite coefficients of f. The value E[f] can clearly be estimated by sampling,

and moreover it can be shown that a simple approach of sampling f on pairs of correlated

inputs can be used to obtain an accurate estimate of the sum of the squares of the degree-1

Hermite coefficients. We thus obtain a simple and efficient test for LTFs under the Gaussian

distribution and thereby establish Result 1.

In Section 5.4 we take a step toward handling general LTFs over {-1, 1}n by develop-

ing an analogous characterization and testing algorithm for the class of balanced regular

LTFs over { -1, 1}n; these are LTFs with E[f] = 0 for which all degree-i Fourier co-

efficients are small. The heart of this characterization is a pair of results, Theorems 112

and 113, which give Boolean-cube analogues of our characterization of Gaussian LTFs.

Theorem 112 states that the sum of the squares of the degree-i Fourier coefficients of any

balanced regular LTF is approximately W(0) = _. Theorem 113 states that any function

f whose degree-1 Fourier coefficients are all small and whose squares sum to roughly _

is in fact close to an LTF - in fact, to one whose weights are the degree-i Fourier coeffi-

cients of f. Similar to the Gaussian setting, we can estimate E[f] by uniform sampling and

can estimate the sum of squares of degree-1 Fourier coefficients by sampling f on pairs of

correlated inputs. An additional algorithmic step is also required here, namely checking

that all the degree-1 Fourier coefficients of f are indeed small; it turns out that this can be

done by estimating the sum of fourth powers of the degree-1 Fourier coefficients, which
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can again be obtained by sampling f on (4-tuples of) correlated inputs.

The general case of testing arbitrary LTFs over {-1, 1)" is substantially more complex

and is dealt with in Section 5.5. Very roughly speaking, the algorithm has three main

conceptual steps:

* First the algorithm implicitly identifies a set of 0(1) many variables that have "large"

degree-i Fourier coefficients. Even a single such variable cannot be explicitly identi-

fied using o(log n) queries; we perform the implicit identification using 0(1) queries

by adapting an algorithmic technique from [25]. This is similar to the implicit learn-

ing approach from Chapter 3.

* Second, the algorithm analyzes the regular subfunctions that are obtained by restrict-

ing these implicitly identified variables; in particular, it checks that there is a single

set of weights for the unrestricted variables such that the different restrictions can

all be expressed as LTFs with these weights (but different thresholds) over the unre-

stricted variables. Roughly speaking, this is done using a generalized version of the

regular LTF test that tests whether a pair of functions are close to LTFs over the same

linear form but with different thresholds. The key technical ingredients enabling this

are Theorems 127 and 128, which generalize Theorems 112 and 113 in two ways (to

pairs of functions, and to functions which may have nonzero expectation).

* Finally, the algorithm checks that there exists a single set of weights for the restricted

variables that is compatible with the different biases of the different restricted func-

tions. If this is the case then the overall function is close to the LTF obtained by

combining these two sets of weights for the unrestricted and restricted variables. (In-

tuitively, since there are only 0(1) restricted variables there are only 0(1) possible

sets of weights to check here.)

Outline of the Chapter. In Section 5.2 we describe a subroutine for estimating sums of

powers of Fourier and Hermite coefficients, based on the notion of Noise Stability. Sec-

tion 5.3 contains our algorithm for testing general LTFs over Gaussian Space. Section 5.4

contains an algorithm for testing balanced, regular LTFs over {-1, 1)}, a "warm-up" to

127



our main result. Finally, Section 5.5 contains our main result, a general algorithm for test-

ing LTFs over {-1, 1}"

5.2 Tools for Estimating Sums of Powers of Fourier and

Hermite Coefficients

In this section we show how to estimate the sum ZE= f(i)2 for functions over a boolean

domain, and the sum Ei=1 f(ei)2 for functions over gaussian space. This subroutine lies at

the heart of our testing algorithms. We actually prove a more general theorem, showing how

to estimate I-i=l f(i)P for any integer p > 2. Estimating the special case of Ej f(i)4

allows us to distinguish whether a function has a single large I f(i) , or whether all f(i)

are small. The main results in this section are Corollary 90 (along with its analogue for

Gaussian space, Lemma 93), and Lemma 92.

5.2.1 Noise Stability

Definition 84. (Noise stability for Boolean functions.) Let f, g {-1, 1}"-{-1, 1}, let

r7 E [0, 1], and let (x, y) be a pair of r-correlated random inputs - i.e., x is a uniformly

random string and y is formed by setting yj = xi with probability Tr and letting yi be

uniform otherwise, independently for each i. We define

S,(f, g) = E[f(x)g(y)].

Fact 85. In the above setting, S,(f, g) = EsC[n] f (S)(S)rlIS.

Definition 86. (Noise stability for Gaussian functions.) Let f, g : Rn--IR be in L2 (Rn)

with respect to the Gaussian measure, let Tr E [0, 1], and let (x, y) be a pair of r-correlated

n-dimensional Gaussians. L.e., each pair of coordinates (xi, yi) is chosen independently as

follows: x is a standard 1-dimensional Gaussian, and yj = rl7 x + 1 - 2 zi, where zi
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is an independent standard Gaussian. We define

S,(f, g) = E[f(x)g(y)].

Fact 87. In the above setting, S,(f, g) = EscNn f (S)g(S)rl sI, where SI denotes E'_, Si.

5.2.2 Estimating sums of powers of Fourier coefficients

For x = (xx , ... , x,) and S C [n] we write xs for the monomial lis xi. The following

lemma generalizes Fact 85:

Lemma 88. Fix p > 2. Let f, ... , f, be p functions fi : {-1, 1}n {-1, 1}. Fix any set

T C [n]. Let x1, ... , xP- be independent uniform random strings in {-1, 11} and let y be

a random string whose bits are independently chosen with Pr[yi = 1] =1 for i T and

Pr[y = 1] = + ± for i E T. Let 0 denote coordinate-wise multiplication. Then

E[fi(xl)f 2 (x 2 )... fp -l ( x- 1 )fp ( x 1 x 2 O ... x p -1 y)] rSf 1(S)f 2 ().. f(S).
SCT

Proof. We have

p-1

E[(J fi (x))fbp (x 1 bX2 p-1 y)]
i=1

= E[ jif(Si)(Xi)s) fp(Sp)(x
1 0 Z 2  

... 0 Xp-1 0 Y)s]
Si .... Sp C [n] i=1

= ( fiS) -E[(xl)slAsp ... (xP- 1 )s _1AsP(y)sP]
Si,...,SPc[n] i=1

Now recalling that x1, ..., xP- 1 and y are all independent and the definition of y, we have

that the only nonzero terms in the above sum occur when S1 = - = Sp-1 = Sp, c T; in

this case the expectation is 4lSPI. This proves the lemma. El

Lemma 89. Let p > 2, and suppose we have black-box access to fl, ... , f : {-1, 1}n--

{-1, 1}. Then for any T C [n], we can estimate the sum of products of degree-i Fourier
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coefficients

E f (i) ... f,(i)
iET

to within an additive q, with confidence 1 - 6, using O(p - log(1/6)/7r4) queries.

Proof Let xi,... , x2 be independent uniform random strings in {-1, 1}n and let y be as

in the previous lemma. Empirically estimate

E[fi(xl)f 2(x 2 ) ... f (xP)] and

E[fi(xl)f 2(x 2) . . . f 1(X )f(x O X2 0 Xp - 1 0 Y)]

(5.1)

(5.2)

to within an additive ±+2, using O(log(1/6)/ 4) samples for each random variable (and

hence O(p - log(1/6)/7 4 ) queries overall). By the previous lemma these two quantities are

exactly equal to

and SE qISf (S) f2(S) ... fr(S)
SCT

respectively. Subtracting the former estimate from the latter yields

ISI>O,SCT

to within an additive O(T2), and this itself is within 772 of

E 7h(S) ... f(s)
ISI=1,SCT

because the difference is

SSIf (S)(S)2...IS>>1,ST

ISI>1 ,SCT

< 2 1 5 )
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where (5.3) is Cauchy-Schwarz and (5.4) uses the fact that the sum of the squares of the

Fourier coefficients of a Boolean function is at most 1. Thus we have r- E ficT 1 (i) ... f(i)

to within an additive O(2); dividing by T1 gives us the required estimate within O(r/). O

Taking all fl's to be the same function f, we have

Corollary 90. Fix p > 2 and fix any T C [n]. Given black-box access to f : {-1, 1 }n

{-1, 1}, we can estimate EieT f(i)P to an additive ±i7, with confidence 1 - 6, using

O(p - log(1/6)/7 4 ) queries.

Proposition 91. If every i E T has If(i) < c, then -iT f(i)4 < a 2  iET f(i) 2 < 2 .

Lemma 92. Fix any T C [n]. There is a O(log(1/6)/71 6)-query test Non-Regular(r, 6, T)

which, given query access to f {-1, 1}-- {-1, 1}, behaves as follows: with probability

1 - 6,

* If If (i) > 7for some i E T then the test accepts;

* If every i E T has If(i) < 7-2 /4 then the test rejects.

Proof The test is to estimate EiCT f(i)4 to within an additive 7T4 /4 and then accept if and

only if the estimate is at least T 4 /2. If f(i) > 7- for some i then clearly E>1 fi(i)4 > 7 4

so the test will accept since the estimate will be at least 3T4/4. On the other hand, if each

i E T has If(i)| < T 2 /4, then EiET f(i)4 < 7 4/16 by Proposition 91 and so the test will

reject since the estimate will be less than 57-4 /16. Ol

5.2.3 Estimating sums of powers of Hermite coefficients

Here we let f(ei) denote the i-th degree-1 Hermite coefficient of f : R n -- R as described

in Section 5.3.

For the Gaussian distribution we require only the following lemma, which can be

proved in a straightforward way following the arguments in Section 5.2.2 and using Fact 87.

Lemma 93. Given black-box access to f : R - {-1, 1}, we can estimate -- = f (ei)2 to

within an additive r, with confidence 1 - 6, using O(log(1/6)/774 ) queries.

131



5.3 A Tester for General LTFs over IR

In this section we consider functions f that map Rn" to {-1, 1}, where we view R n as

endowed with the standard n-dimensional Gaussian distribution. A draw of x from this

distribution over IRn is obtained by drawing each coordinate xi independently from the

standard one-dimensional Gaussian distribution with mean zero and variance 1.

Our main result in this section is an algorithm for testing whether a function f is an LTF

vs E-far from all LTFs in this Gaussian setting. The algorithm itself is surprisingly simple.

It first estimates f's mean, then estimates the sum of the squares of f's degree-i hermite

coefficients. Finally it checks that this latter sum is equal to a particular function W of the

mean.

The tester and the analysis in this section can be viewed as a "warmup" for the results

in later sections. Thus, it is worth saying a few words here about why the Gaussian setting

is so much easier to analyze. Let f : IRn _{-1, 1} be an LTF, f(x) = sgn(w -x - 0), and

assume by normalization that Ilwll = 1. Now note the n-dimensional Gaussian distribution

is spherically symmetric, as is the class of LTFs. Thus there is a sense in which all LTFs

with a given threshold 0 are "the same" in the Gaussian setting. (This is very much untrue

in the discrete setting of {-1, 1}n.) We can thus derive Hermite-analytic facts about all

LTFs by studying one particular LTF; say, f(x) = sgn(el -x - 0). In this case, the picture

is essentially 1-dimensional; i.e., we can think of simply ho : I-{-1, 1} defined by

ho(x) = sgn(x - 0), where x is a single standard Gaussian, and the only parameter is

0 E R. In the following sections we derive some simple facts about this function, then give

the details of our tester.

5.3.1 Gaussian LTF facts.

In this section we will use Hermite analysis on functions.

Definition 94. We write q for the p.d.f of a standard Gaussian; i.e., q(t) = e- 2 /2

Definition 95. Let ho : R-{-1, 1} denote the function of one Gaussian random variable

x given by ho(x) = sgn(x - 0).
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Definition 96. The function p : U {±o}-- [-1, 1] is defined as p(0) = ho(O) = E[ho].

Explicitly, p(0) = -1 + 2 fo 0.

Note that p is a monotone strictly decreasing function, and it follows that 1 is invertible.

Note also that by an easy explicit calculation, we have that he(1) = E[ho(x)x] = 20(0).

Definition 97. We define the function W [-1, 1] [0, 2/7r] by W(v) = (20(- 1 (,))) 2.

Equivalently, W is defined so that W(E[ho]) = h(1)2 .

The intuition for W is that it "tells us what the squared degree-i Hermite coefficient

should be, given the mean." We remark that W is a function symmetric about 0, with a

peak at W(0) =

Proposition 98. If x denotes a standard Gaussian random variable, then

1. E[|x - 01] = 20(0) - Op(0).

2. I' < V-2/r everywhere, and IW'| < 1 everywhere.

3. If Iv = 1 - 7 then W(v) = E(r/2 log(1/r~)).

Proof The first statement is because both equal E[ho(x)(x - 0)]. The bound on p's deriva-

tive holds because y' = -20. The bound on W's derivative is because W'(v) = 40(0)0,

where 0 = p-l(v), and this expression is maximized at 0 = +1, where it is .96788 ... < 1.

Finally, the last statement can be straightforwardly derived from the fact that 1 - p(0) ~

20(0)/101 for 101 > 1. E

Having understood the degree-0 and degree-i Hermite coefficients for the "1 dimen-

sional" LTF f : Rn-{-1, 1} given by f(x) = sgn((x - 0), we can immediately derive

analogues for general LTFs:

Proposition 99. Let f IRn-{-1, 1} be the LTF f(x) = sgn(w - x - 0), where w E in.

Assume without loss of generality that Iw II = 1 (we can do so, since the sign of w -x - 0

is unchanged when multiplied by any positive constant). Then:

1. f (0) = E[f] =p (0). 2. f (ei) = vW(E[f ])w. 3. E (ej)2 = W(E[f]).
i=1
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Proof The first statement follows from the definition of Ap(0). The third statement follows

from the second, which we will prove. We have f (ei) = Ex[sgn(w - x - O)xz]. Now

w -x is distributed as a standard 1-dimensional Gaussian. Further, w -x and xi are jointly

Gaussian with covariance E[(w -x)xi] = wi. Hence (w -x, xi) has the same distribution as

(y, wiy + ,1 - w - z) where y and z are independent standard 1-dimensional Gaussians.

Thus

E[sgn(w x - O)xl] = E[sgn(y - 6)(wiy + 1- )]

= who(1) + E[sgn(y - 0) - z]

= w W(E[ho]) +

= v/W(E[f])wi

as desired. LO

The second item in the above proposition leads us to an interesting observation: if

f(x) = sgn(wix + - - + wxn - 0) is any LTF, then its vector of degree-1 Hermite

coefficients, (f(el),..., f (en)), is parallel to its vector of weights, (w 1,..., Wn).

5.3.2 The Tester.

We now give a simple algorithm and prove that it accepts any LTF with probability at least

2/3 and rejects any function that is O(e)-far from all LTFs with probability at least 2/3. The

algorithm is nonadaptive and has two-sided error; the analysis of the two-sided confidence

error is standard and will be omitted.

Given an input parameter E > 0, the algorithm works as follows:

1. Let A denote an estimate of E[f] that is accurate to within additive accuracy + 3.

2. Let &2 denote an estimate of En1 f(ei)2 that is accurate to within additive accuracy

3. If | .2 - W(f) < 2E3 then output "yes," otherwise output "no."
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The first step can be performed simply by making 0(1/c 6) independent draws from

the Gaussian distribution, querying f on each draw, and letting P be the corresponding

empirical estimate of E[f]; the result will be ±3-accurate with high probability. The

second step of estimating 1i f (e) 2 was described in section 5.2.

We now analyze the correctness of the test. The "yes" case is quite easy: Since f is

within ±i 3 of E [f], and since I W'I < 1 for all x (by Proposition 98 item 2), we conclude

that W(i) is within +C3 of the true value W(E[f]). But since f is an LTF, this value is

precisely EZ7 f(ei)2, by Proposition 99 item 3. Now &2 is within ±f 3 of EL fi(ei)2,

and so the test indeed outputs "yes".

As for the "no" case, the following theorem implies that any function f which passes

the test with high probability is O(e)-close to an LTF (either a constant function ±1 or a

specific LTF defined by E[f] and f's degree-i Hermite coefficients):

Theorem 100. Assume that IE[f]| < 1 - C. If E i 1 f(ei) 2 - W(E[f])I < 463 , then f

is O() -close to an LTF (in fact to an LTF whose coefficients are the Hermite coefficients

f(e)).

Proof Let cr = >3 f(ei) 2 , let t = p-(E[f]), and let h(x) = 1E f(ei)xi - t. We

will show that f and the LTF sgn(h) are O(c)-close, by showing that both functions are

correlated similarly with h. We have

E[fh]= (ei)2 - tE[f] = -tE[f],

where the first equality uses Plancherel. On the other hand, by Proposition 98 (item 1), we

have

E[|hl] = 20(t) - tp(t) = 2 (p-(E[f])) - t E[f] = W(E[f]) - t E[f], and thus

4e3
E[h(sgn(h) - f)] = E[|h - fh] = VW(E[f]) - 4 < Cc 2,

VW(E[f])-

where C > 0 is some universal constant. Here the first inequality follows from the fact:

Fact 101. Suppose A and B are nonnegative and IA- BI < r. Then I --- /B'I < r//-B.
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Proof IV - V- = + . l

with W(E[f]), "2 , 4 3 in place of A, B, and q. The second follows from the assumption

that I E[f]I < 1 - E, which by Proposition 98 (item 3) implies that /W(E[f]) > Q().

Note that for any x, the value h(z)(sgn(h(x)) - f(x)) equals 21h(x)l if f and sgn(h)

disagree on x, and zero otherwise. So given that E[h(sgn(h) - f)] < CE2, the value of

Pr[f(x) 4 sgn(h(x))] is greatest if the points of disagreement are those on which h is

smallest. Let p denote Pr[f Z sgn(h)]. Recall that h is defined as a linear combination of

xi's. Since each xi is chosen according to a gaussian distribution, and a linear combination

of gaussian random variables is itself a gaussian (with variance equal to the sum of the

square of the weights, in this case 1), it is easy to see that Pr[ h| 5 p/2] < 1p < p/2.

It follows that f and sgn(h) disagree on a set of measure at least p/2, over which Ihl is at

least p/2. Thus, E[h(sgn(h) - f)] > 2 - (p/2) - (p/2) = p 2/2. Combining this with the

above, it follows that p < vJ - e, and we are done. O

5.4 A Tester for Balanced Regular LTFs over {-1, 1})

It is natural to hope that an algorithm similar to the one we employed in the Gaussian case

- estimating the sum of squares of the degree-1 Fourier coefficients of the function, and

checking that it matches up with W of the function's mean - can be used for LTFs over

{-1, 1}n as well. It turns out that LTFs which are what we call "regular" - i.e., they

have all their degree-1 Fourier coefficients small in magnitude - are amenable to the basic

approach from Section 5.3, but LTFs which have large degree-1 Fourier coefficients pose

significant additional complications. For intuition, consider Maj(x) = sgn(zl + - - - + Xn)

as an example of a highly regular halfspace and sgn(xi) as an example of a halfspace which

is highly non-regular. In the first case, the argument x1 + .- - + x, behaves very much like

a Gaussian random variable so it is not too surprising that the Gaussian approach can be

made to work; but in the second case, the +l-valued random variable x1 is very unlike a

Gaussian.

We defer testing general LTF's over {-1, 1}n to Section 5.5, and in this section we

present a tester for balanced, regular LTFs.
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Definition 102. We say that f : {-1, 1}n-{--1 11 is T-regular if If (i) I < Tfor alli E [n].

Definition 103. We say that an LTF f: {-1, 1}"--{-1, 1} is "balanced" if it has thresh-

old zero and E[f] = 0. We define LTF,,l to be the class of all balanced, T-regular LTFs.

The balanced regular LTF subcase gives an important conceptual ingredient in the test-

ing algorithm for general LTFs and admits a relatively self-contained presentation. As we

discuss in Section 5.5, though, significant additional work is required to get rid of either

the "balanced" or "regular" restriction.

The following theorem shows that we can test the class LTF,, with a constant number

of queries:

Theorem 104. Fix any T > 0. There is an O(1/7s)-query algorithm A that satisfies the

following property: Let e be any value E > CT1/6, where C is an absolute constant. Then

if A is run with input c and black-box access to any f : {-1, 1}n - {-1, 1},

* iff E LTF,n, then A outputs "yes" with probability at least 2/3;

* if f is -far from every function in LTF,,T then A outputs "no" with probability at

least 2/3.

The algorithm A in Theorem 104 has two steps. The purpose of Step 1 is to check that

f is roughly T-regular; if it is not, then the test rejects since f is certainly not a T-regular

halfspace. In Step 2, A checks that Z f(i)2 2 . This check is based on the idea (see

Section 5.4.2) that for any regular function f, the degree-1 Fourier weight is close to 2 if

and only if f is close to being an LTF. (Note the correspondence between this statement

and the results of Section 5.3 in the case E[f] = 0.)

We now describe algorithm A, which takes as input a parameter E > CT 1/6:

1. First A estimates E f (i)4 to within an additive ±T2 . If the estimate is greater than

27 2 then A halts and outputs "no," otherwise it continues.

2. Next A estimates E=, f (i)2 to within an additive ±C 1 T
1 / (where C1 > 0 is an

absolute constant specified below). If this estimate is within an additive +2C171/ 3 of

2 then A outputs "yes", otherwise it outputs "no."
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A description of how the sums of powers of degree-i Fourier coefficients can be esti-

mated was given in Section 5.2, see Corollary 90 in particular.

In Section 5.4.1 we discuss how regular LTFs over {-1, 1}n can be approximated by

functions of the form sgn(X - 0) where X is a single Gaussian random variable. In Sec-

tion 5.4.2, we prove two theorems showing that balanced regular LTFs are essentially char-

acterized by the property E f(i)2 . In Section 5.4.3 we prove correctness of the

test.

5.4.1 Approximating Regular LTFs as Gaussian Threshold Functions.

In this section we show that regular LTFs over {-1, 1}" behave essentially like functions of

the form sgn(X - 0), where X is a single Gaussian random variable. In sections 5.4.2 and

5.4.3 we will be particularly interested in the case when 0 = 0, however in later sections

we will be interested in arbitrary 0, hence we prove more general versions of the theorems

here.

Before getting started, we make a notational note. Throughout the rest of this chapeter

we will be dealing with approximations, and therefore it will be convenient to have a quick

way to indicate when a is an approximation of b to "within an O(r) factor." Thus we make

the following definition:

Definition 105. For a, b E R we write a i b to indicate that |a - bj O(rj).

Now we state the well-known Berry-Esseen theorem, a version of the Central Limit

Theorem with error bounds (see, e.g., [21]):

Theorem 106. Let (x) = cll + ... + cn be a linear form over the random ±1 bits

xi. Let T be such that Ci 5 T for all i, and write a = V c. Write F for the c.d.f of

(x)/u; i.e., F(t) = Pr[e(x)/ua t]. Then for all t E R,

1
IF(t) - D(t)l O(T/a) 1

where 1D denotes the c.d.f of X, a standard Gaussian random variable. In particular if

A IR is any interval then Pr[f (x)/ E A] - Pr[X E A].
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We will sometimes find it useful to quote a special case of the Berry-Essen theorem

(with a sharper constant). The following can be found in [52]:

Theorem 107. In the setup of Theorem 106, for any A > 7 and any 0 E IR it holds that

Pr[l (x)- 01 < A] < 6A/a.

The following is an almost immediate consequence of the Berry-Esseen theorem:

Proposition 108. Let f (x) = sgn(c -x - 0) be an LTF such that - c = 1 and Icil T

for all i. Then we have E[f] y p(O), where p is the function defined in Definition 96.

Next we prove the following more difficult statement, which gives an approximation

for the expected magnitude of the linear form c -x - 0 itself:

Proposition 109. Let £(x) = cii be a linear form over {-1, 1}n and assume ci I 7T

for all i. let a = ?C and let 0 E R. Then

T

E[£ - 01] 1 E[aX - 01],

where X is a standard Gaussian random variable.

Proof The result is certainly true if a = 0, so we may assume o > 0. Using the fact that

E[R] = fo Pr[R > s] ds for any nonnegative random variable R for which E[R] < oo,

we have that

E[e - 0] = j Pr[ -01 > s]ds

= j Pr[> 0 + s] +Pr[ < 0- s]ds

= (1 - F((o + s)/c) + F((O - s)/u) ds (5.5)

where we have written F for the c.d.f. of £(x)/. We shall apply Berry-Esseen to f(x).

Berry-Esseen tells us that for all z E R we have |F(z) - 1'(z)| < O(rT/a)/(1 + z 3). Note

that
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E E[|cxil 3 ] = ICi
i=1 i=1

n

i=1

= TU
2

It follows that (5.5) < (A) + (B), where

(A) j 1 - D((6 + s)/u) + 1((0 - s)/a) ds

and

(B) = O(r/a) l( +s)/ 1 + 1( - s)/aU ds.

It is easy to see that

(B) = O(r/u) - 1 + 3x/
a  dx = O(T).

For (A), observe that (A) can be re-expressed as

SPr[X > (0 + s)/a] + Pr[X < (0 - s)/o]ds = j Pr[ X - 01 > s] ds.

Again using the fact that E[R] = fo7 Pr[R > s] ds for any nonnegative random variable R

for which E[R] < oc, this equals E[|oX - 01]. This gives the desired bound. ]

Multidimensional Berry-Esseen

We now discuss a multidimensional generalization of the Berry-Esseen Theorem (Theo-

rem 106) that will be useful in our tester for general LTFs over { -1, 1}l. The argument

here is very similar to an argument in [39], and is included only for completeness. It won't

be used until Section 5.5, thus for now the reader may safely skip ahead to Section 5.4.2

The following theorem appears as Theorem 16 in [39] and Corollary 16.3 in [4]
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Theorem 110. Let X 1,..., X,, be independent random variables taking values in Rk satis-

fying:

* E[Xj] = O,j = 1...n

*n1 Y Cov(Xj) = V, where Cov denotes the variance-covariance matrix

* A is the smallest eigenvalue of V, A is the largest eigenvalue of V

* P3 -1 E I E[IXj 11 < 00

Let Qn denote the distribution of n- 1/ 2 (Xl + .-- + X,), let 4o,v denote the distribution

of the k-dimensional Gaussian with mean 0 and variance-covariance matrix V, and let

r = CA- 3/2p3r-1/ 2, where C is a certain universal constant.

Then for any Borel set A,

IQn(A) - Do,v(A)I < rj + B(A)

where B(A) is the following measure of the boundary of A : B(A) = 2 sup Io,v((OA)"' +
yER

k

y), where T/' = A 1/2
1 and (OA)"' denotes the set of points within distance rI' of the topo-

logical boundary ofA.

The following application of Theorem 110 will be useful for our purposes. The argu-

ment is the same as that used in the proof of Proposition 10.1 in [39].

Theorem 111. Let £(x) = clX 1 + - - - + Cnx, be a linear form such that E Ci
2 = 1. Let 7

be such that Ici I < T for all i. Let (x, y) be a pair of p-correlated random binary strings.

Then for any intervals I1 C IR and 12 C R we have

Pr[(f(x), f(y)) E (A, B)] Pr[(X, Y) E (I,12)]

where (X, Y) is a pair of p-correlated Gaussians.

Proof We will apply Theorem 110. First, for i = 1, ...n we define the random variables

Li = (/cix, v; ciYi). It is easy to see that E[Lj] = (0, 0) and Cov(Li) = nc [ P 

pl
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for each i. Thus V = n-l Ej=1 Cov(Lj) = 1 . The eigenvalues of V areA = 1- ppl

and A = 1 + p.

Note that Li = - Ci with probability 1, so

n

P3 - 1 S E[|Xj113 ]
j=1

= 23/2n' 1/2 Ci 3

S23/2 l /2 - maxi Cl Ci 2

< 23/ 2 n1 /27

Thus is 0((1 - p)- 3 /27). If |p bounded away from 1, then this is O(T).

It is easy to check that the topological boundary of I1 x 12 is O(ri'). Since r' = (1 +

p)1/2rl, this is also O(T). Thus IPr[((x), j(y)) E (A,B)] e Pr[(X,Y) E (11,12)]l <

O(T) and the theorem is proved.

O

5.4.2 Two theorems about LTF,T.

The first theorem of this section tells us that any f E LTF,,, has sum of squares of degree-

1 Fourier coefficients very close to _. The next theorem is a sort of dual; it states that

any Boolean function f whose degree-1 Fourier coefficients are all small and have sum of

squares 2 is close to being a balanced regular LTF (in fact, to the LTF whose weights71r

equal f's degree-1 Fourier coefficients). Note the similarity in spirit between these results

and the characterization of LTFs with respect to the Gaussian distribution that was provided

by Proposition 99 item 3 and Theorem 100.

Theorem 112. Let f E LTF,,,. Then f(i)2 - _ O(T 2/3 ).

Proof Let p > 0 be small (chosen later). Theorem 5 of [39] states that for f E LTF,, and

p [-1, 1] we have

2
Sp(f, f) = 1 - - arccos(p) ± 0(T(1 - p)-3/2)71"
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Combining this with Fact 85, and substituting arccos(p) = ! - arcsin(p), we have

2
Z plslf(S)2 = 2 arcsin p 0O(T).
s 7r

On the LHS side we have that f(S) = 0 for all even ISI since f is an odd function, and

therefore, ES plS f(S) 2 - P |Sl=l f(S)2 < P3  IS|> 3 f(S)2 < p3 . On the RHS, by a

Taylor expansion we have 1 arcsin p =p + O(p3 ). We thus conclude

n 2
pE f(i)2 = -p ± O(p3 + T).
i=1 7F

Dividing by p and optimizing with p = (T71 / 3 ) completes the proof. O

Theorem 113. Let f : {-1, 1}'n {-1, 1} be any function such that If(i) < T for

all i and I I1 f (i)2 - < 1. Write £(x) := -i=1 f(i)xi. Then f and sgn({(x)) are

O(7y 1±)-close.

Proof. First note that if -y > 1/3 then the claimed bound is trivially true, so we will prove

the theorem assuming < 1/3. Let L := i-1 f(i)2; note that by our assumption on y

we have L > . We have:

n

(2/7) - -y < f(i)2 = E[ff] < E [f 1] (5.6)
i=1

< 2 L + O(T) (5.7)

< -7V/2/7 -+ + 0() < (2/7r) + 0(7) + O(T).

The equality in (5.6) is Plancherel's identity, and the latter inequality is because f is a ±1-

valued function. The inequality (5.7) holds for the following reason: (x) is a linear form

over random ± 's in which all the coefficients are at most 7 in absolute value. Hence we

expect it to act like a Gaussian (up to 0(-) error) with standard deviation L, which would

have expected absolute value /-2-/r L. See Proposition 109 for the precise justification.

Comparing the overall left- and right-hand sides, we conclude that E[ |] - E [f] O(-) +

0(T).

Let c denote the fraction of points in {-1, 1}" on which f and sgn(f) disagree. Given
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that there is a E fraction of disagreement, the value E[ e ] - E [ff] is smallest if the disagree-

ment points are precisely those points on which'| (x) takes the smallest value. Now again

we use the fact that f should act like a Gaussian with standard deviation L, up to some

error O(T/L) < 0(27); we can assume this error is at most e/4, since if e < O(T) then the

theorem already holds. Hence we have (see Theorem 106 for precise justification)

Pr[|H I E/8] = Pr[[e/L I E/8L] 5 Pr[|N(0, 1) 5 E/8L] + e/4 < e/8L + e/4 < E/2,

since L 2 1/2. It follows that at least an e/2 fraction of inputs x have both f(x) #
sgn(£(x)) and |f(x)l > E/8. This implies that E[| ] - E[ff] 2 2 - (e/2) - (e/8) = 2/8.

Combining this with the previous bound E[ ] - E[ff] < O(Y) + O(T), we get 62/8 <

O(y) + 0(T) which gives the desired result. O1

5.4.3 Proving correctness of the test.

First observe that for any Boolean function f {-1, 1}n -- {-1, 1}, if If(i) I< 7 for all

i then iET f (i)4 < T_2 -iT f(i)2 < '_2, using Parseval. On the other hand, if If(i) >
271/2 for some i, then E' 1 f(i)4 is certainly at least 167 2.

Suppose first that the function f being tested belongs to LTF,,,. As explained above,

in this case f will with high probability pass Step 1 and continue to Step 2. By Theo-

rem 112 the true value of El f(ji)2 is within an additive O(T2/3 ) Of 2; since this additive

0(T 2 /3 ) term is at most C1T 1/3 for some constant C1, the algorithm outputs "yes" with high

probability. So the algorithm behaves correctly on functions in LTFn, -.

Now suppose f : {-1, 1}" - {-1, 1} is such that the algorithm outputs "yes" with

high probability; we show that f must be E-close to some function in LTF,,,. Since there is

a low probability that A outputs "no" in Step 1 on f, it must be the case that each If (i) I is

at most 2T 1/ 2 . Since f outputs "yes" with high probability in Step 2, it must be the case that

-i=1 f(i)2 is within an additive O(T1 /3 ) of Z. Plugging in 271/2 for "7" and O(7 1/3) for

"y" in Theorem 113, we have that f is CT1/ 6-close to sgn(e(x)) where C is some absolute

constant. This proves the correctness of A.

To analyze the query complexity, note that Corollary 90 tells us that Step 1 requires
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O(1/ 8 ) queries, and Step 2 only O(1/7 4/3), so the total query complexity is O(1/78 ).

This completes the proof of Theorem 104. O

5.5 A Tester for General LTFs over { -1, 1}"

In this section we give our main result, a constant-query tester for general halfspaces over

{-1, 1}". We start with a very high-level overview of our approach.

As we saw in Section 5.4, it is possible to test a function f for being close to a balanced

T-regular LTF. The key observation was that such functions have EZl f(i)2 approxi-

mately equal to I if and only if they are close to LTFs. Furthermore, in this case, the

functions are actually close to being the sign of their degree-1 Fourier part. It remains to

extend the test described there to handle general LTFs, which may be unbalanced and/or

non-regular. We will first discuss how to remove the balancedness condition, and then how

to remove the regularity condition.

For handling unbalanced regular LTFs, a clear approach suggests itself, using the W(.)

function as in Section 5.3. This is to try to show that for f an arbitrary T-regular function,

the following holds: E i f(i)2 is approximately equal to W(E[f]) if and only if f is close

to an LTF - in particular, close to an LTF whose linear form is the degree-1 Fourier part

of f. The "only if" direction here is not too much more difficult than Theorem 113 (see

Theorem 128 in Section 5.5.2), although the result degrades as the function's mean gets

close to 1 or -1. However the "if" direction turns out to present significant difficulty.

In the proof of Theorem 112, the special case of mean-zero, we appealed to a result

from [39]. This results said that for balanced, regular LTFs, the sum ,S plSlf(S)2 is close

to2 arcsin p. [39] proved this result using two propositions. First they showed showed that

balanced LTFs with small weights must have Es plSl f(S)2 close to Z arcsin p. Then they

showed that balanced, regular LTFs must have small weights. While it is not too hard to

appropriately generalize the first of [39]'s arguments to unbalanced LTFs, generalizing the

second is considerably more complicated. It requires us to upper-bound the weights of an

LTF as a function of both the regularity parameter and the mean of the function. We do this
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with Theorem 118, which we prove in Section 5.5.1:1

We now discuss removing the regularity condition; this requires additional analytic

work and moreover requires that several new algorithmic ingredients be added to the test.

Given any Boolean function f, Parseval's inequality implies that J := {i : If(i) 2 72> has

cardinality at most 1/T4 . Let us pretend for now that the testing algorithm could somehow

know the set J. (If we allowed the algorithm 8 (log n) many queries, it could in fact exactly

identify some set like J. However with constantly many queries this is not possible. We

ignore this problem for the time being, and will discuss how to get around it at the end of

this section.) If the set J is known, then the testing algorithm can set the variables in J to

fixed values, and consider the induced function over the remaining variables that results.

Our algorithm first checks whether it is the case that for all but an E fraction of restric-

tions p of J, the restricted induced f, is c-close to a constant function. If this is the case,

then f is an LTF if and only if f is close to an LTF which depends only on the variables in

J. So in this case the tester simply enumerates over "all" LTFs over J and checks whether

f seems close to any of them. (Note that since J is of constant size there are at most

constantly many LTFs to check here.)

It remains to deal with the case that for at least an c fraction of restrictions of J, the

restricted function is c-far from a constant function. In this case, it can be shown using

Theorem 118 that if f is an LTF then in fact every restriction of the variables in J yields

a regular subfunction. So it can use the testing procedure for (general mean) regular LTFs

already described to check that for most restrictions 7r, the restricted function f, is close to

an LTF - indeed, close to an LTF whose linear form is its own degree-1 Fourier part.

This is a good start, but it is not enough. At this point the tester is confident that most

restricted functions f, are close to LTFs whose linear forms are their own degree-1 Fourier

parts - but in a true LTF, all of these restricted functions are expressible using a common

linear form. Thus the tester needs to test pairwise consistency among the linear parts of the

different f,'s.

To do this, recall that our approach for testing whether the regular function f, is close

1Readers familiar with the notion of influence (Definition 10) will recall that for any LTF f we have
Inff (i) = If(i) I for each i. Thus Theorem 118 may roughly be viewed as saying that "every not-too-biased
LTF with a large weight has an influential variable."
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to an LTF will be to check that there is near-equality in the inequality E ls=1 fi(S)2 <

W(E[f,]). If this holds for both f, and f,,, the algorithm can further check that the degree-

1 parts of f, and fi, are essentially parallel (i.e., equivalent) by testing that near-equality

holds in the Cauchy-Schwarz inequality Els=1 f,(S)f,(S) /W(E[f,]) W(E[f,]).

Thus to become convinced that most restricted f,'s are close to LTFs over the same linear

form, the tester can pick any particular 7r, call it 7r*, and check that E Zl= 1 f,.(S)fr(S)

VW(E[f,.])- W(E[f,]) for most other 7r's. (At this point there is one caveat. As men-

tioned earlier, the general-mean LTF tests degrade when the function being tested has mean

close to 1 or -1. For the above-described test to work, f,. needs to have mean somewhat

bounded away from 1 and -1, so it is important that the algorithm uses a restriction 7r* that

has I E[f] I bounded away from 1. Fortunately, finding such a restriction is not a problem

since we are in the case in which at least an E fraction of restrictions have this property.)

Now the algorithm has tested that there is a single linear form f (with small weights)

such that for most restrictions 7r to J, f, is close to being expressible as an LTF with

linear form f. It only remains for the tester to check that the thresholds - or essentially

equivalently, for small-weight linear forms, the means - of these restricted functions are

consistent with some arbitrary weight linear form on the variables in J. It can be shown that

there are at most 2poly (IJD) essentially different such linear forms w - r - 0, and thus the tester

can just enumerate all of them and check whether for most 7r's it holds that E [f,] is close to

the mean of the threshold function sgn(C - (0 - w -7r)). This will happen for one such linear

form if and only if f is close to being expressible as the LTF h(ir, x) = sgn(w -7 + e - 0).

This completes the sketch of the testing algorithm, modulo the explanation of how the

tester can get around "knowing" what the set J is. Looking carefully at what the tester

needs to do with J, it turns out that it suffices for it to be able to query f on random

strings and correlated tuples of strings, subject to given restrictions 7r to J. This can be

done essentially by borrowing a technique from the paper [25] (see the discussion after

Theorem 132 in Section 5.5.4).

In the remainder of this section we make all these ideas precise and prove the following,

which is our main result:

Theorem 114. There is an algorithm Test-LTFfor testing whether an arbitrary black-box
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f : {- 1, 1 }n- { -1, 1} is an LTF versus e-far from any LTE The algorithm has two-sided

error and makes at most poly(l1/) queries to f.

Remark 115. The algorithm described above is adaptive. We note that similar to [25],

the algorithm can be made nonadaptive with a polynomial factor increase in the query

complexity (see Remark 134 in Section 5.5.4).

Section 5.5.1 gives the proof of Theorem 118. Section 5.5.2 gives two theorems es-

sentially characterizing LTFs; these theorems are the main tools in proving the correctness

of our test. Section 5.5.3 gives an overview of the algorithm, which is presented in Sec-

tions 5.5.4 and 5.5.5. Section 5.5.6 proves correctness of the test.

5.5.1 On the structure of LTFs: relating weights, influences and biases

In this section we explore the relationship between the weights of an LTF and the influences

of the LTF's variables. Intuition tells us that these two quantities should be directly related.

In particular, if we assume that the weights of LTFs are appropriately normalized, then

LTFs without any large weights should not have any highly influential variables, and LTFs

without any highly influential variables should not have any large weights. This intuition is

in fact correct, however proving the former statement turns out to be much easier than the

latter.

To start, we state the following very simple fact (an explicit proof appears in, e.g.,[22]).

Fact 116. Let f = sgn(wlxl + - - - + wn, - 0) be an LTF such that wll 2 Iwil for all

i E [n]. Then IInff(1) Ilnff(i) Ifor all i E [n].

Using this fact together with the Berry-Esseen theorem we can prove an upper bound

on the influences of LTFs with bounded weights:

Theorem 117. Let f(x) = sgn(--l 1 wixi - 0) be an LTF such that Ei w = 1 and

6 2 Iwi for all i. Then f is O(6)-regular; i.e., Inff(i) < O(6) for all i.

Proof Without loss of generality we may assume that 6 = |wl _ wil for all i. By

Fact 116 we need to show that Inff(1) < 0(6). Now observe that

Inff(1) = Pr [w 2 2 +... + WnXn - 0 < 6]. (5.8)
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If 6 > 1/2 then clearly Inff(1) < 26 so we may assume 6 < 1/2. By the Berry-Esseen

theorem, the probability (5.8) above is within an additive 0(6/v1- 62) = 0(6) of the

probability that IX - 0 < 6, where X is a mean-zero Gaussian with variance 1 - 62. This

latter probability is at most O(6/1 - 62) = 0(6), so indeed we have Inff(1) < 0(6). O

Proving a converse to this theorem is significantly harder. We would like to show that

in an LTF, the variable with largest (normalized) weight also has high influence. However,

any lower bound on the size of that variable's influence must depend not only on the size

of the associated weight, but also on the mean of the LTF (if the LTF is very biased, it may

contain a variable with large weight but low influence, since the LTF is nearly constant).

We quantify this dependence in the following theorem, which says that an LTF's most

influential variable has influence at least polynomial in the size of the largest weight and

the LTF's bias.

Theorem 118. Let f(x) = sgn(wixl + ' + wnXn - 0) be an LTF such that ji w = 1

and 65 = Iwl > Iwi for all i E [n]. Let 0 < E < 1 be such that E[f] I< 1 - c. Then

|f(1)l Q(666log(1/e)).

The remainder of Section 5.5.1 is devoted to proving Theorem 118. We note that even

the 0 = 0 case of the theorem, corresponding to E = 1, is somewhat tricky to prove. It

appeared first as Proposition 10.2 of [39]. A substantially more intricate proof is required

for the general statement; indeed, the arguments of [39] occur in somewhat modified form

as Cases 1.a and 1 .b of our proof below.

It is an interesting open question whether the dependence on e in Theorem 118 can

be improved. It is easy to give an upper bound on Inff(1) in terms of either 6 or 6: it is

immediate that Inff(1) < 0(c), and from Theorem 117 we have that Inff(1) < 0(6).

However there is a gap between 0(6 + E) and Q(6&6 log(1/E)). We suspect that E(6c) may

be the optimal bound for Theorem 118.
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Useful tools for proving Theorem 118.

We first observe that

Inff(1) = Pr [w 2x2 + ... + WnXn - 01 < 5]. (5.9)

We shall prove Theorem 118 by lower bounding the right hand side of (5.9).

At many points in the proof of Theorem 118 we will use the following fact, which is a

simple consequence of "Poincar6's inequality. "

Fact 119. Let g : {-1, l} -- { -1, 1} be an LTF g(x) = sgn(-E 1 wixx - 0) with

lwil > Iwil for all i = 1,..., . Then Infg(l) > V[g]/?.

Proof Poincar6's inequality says that the sum of a function's influences is at least its vari-

ance, i.e. that -,1 Inf,(i) > V[g] for any Boolean function g. Since Iwll 2 wiI for all i

(Fact 116), we have Infg(1) 2 Infg(i), and the fact follows. O

The following easily verified fact is also useful:

Fact 120. Let g : {-1, 1}j -+ {-1, 1} be an LTF g(x) = sgn(,=l wixi - 0) with

Iwl > 101. Then V[g] = Q(1).

Proof Since wllI > 0 1, one of the two restrictions obtained by fixing the first variable

outputs 1 at least half the time, and the other outputs -1 at least half the time. This implies

that 1/4 < Pr[g(x) = 1] < 3/4, which gives V[g] = Q(1). l

We will also often use the Berry-Esseen theorem, Theorem 106. For definiteness, we

will write C for the implicit constant in the O(-) of the statement, and we note that for

every interval A we in fact have I Pr[e(x)/a E A] - Pr[X E A] I < 2C /a.

Finally, we will also use the Hoeffding bound:

Theorem 121. Fix any 0 - w E IR' and write I w for ,W +... + w . For any -y > 0,

we have

Pr [w. x ylwll] <e - 72/2 and Pr [w . x -wlll e- 2 /2
xE{-1,1}

n zEf{-1,1}
n
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The idea behind Theorem 118.

We give a high-level outline of the proof before delving into the technical details. Here and

throughout the proof we suppose for convenience that 6 = w| 2 Iw21 _ ... wn > 0.

We first consider the case (Case 1) that the biggest weight 6 is small relative to E. We

show that with probability Q(c2), the "tail" wpxo + ... + wsx of the linear form (for a

suitably chosen 3) takes a value in [0 - 1, 0 + 1]; this means that the effective threshold for

the "head" w2x2 + .. + Wl-1x0-1 is in the range [-1, 1]. In this event, a modified version

of the [39] proof shows that the probability that w2x 2 + - • + wO-1x0-1 lies within ±6 of

the effective threshold is Q(6); this gives us an overall probability bound of Q(6e2) for (5.9)

in Case 1.

We next consider the case (Case 2) that the biggest weight 6 is large. We define the

"critical index" of the sequence wl,..., w, to be the first index k E [n] at which the

Berry-Esseen theorem applied to the sequence wk, .. , w, has a small error term; see Def-

inition 125 below. (This quantity was implicitly defined and used in [56].) We proceed to

consider different cases depending on the size of the critical index.

Case 2.a deals with the situation when the critical index k is "large" (specifically larger

than E(log(1/e)/E4). Intuitively, in this case the weights wl, ... ..,k decrease exponentially

and the value Ej >k, w is very small, where k' = 8(log(1/e)/E 4). The rough idea in this

case is that the effective number of relevant variables is at most k', so we can use Fact 119

to get a lower bound on Inf(1). (There are various subcases here for technical reasons but

this is the main idea behind all of them.)

Case 2.b deals with the situation when the critical index k is "small" (smaller than

4cl def E 2isaro
E(log(1/e)/c4)). Intuitively, in this case the value k = j>k wj is large, so the random

variable wkXk + " + wnx behaves like a Gaussian random variable N(0, Uk) (recall that

since k is the critical index, the Berry-Esseen error is "small"). Now there are several

different subcases depending on the relative sizes of Ork and 0, and on the relative sizes

of 6 and 0. In some of these cases we argue that "many" restrictions of the tail variables

k,... , Xn yield a resulting LTF which has "large" variance; in these cases we can use

Fact 119 to argue that for any such restriction the influence of x1 is large, so the overall
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influence of x1 cannot be too small. In the other cases we use the Berry-Esseen theorem

to approximate the random variable wkxk + - - + wnx by a Gaussian N(O, 9k), and use

properties of the Gaussian to argue that the analogue to expression (5.9) (with a Gaussian

in place of wkxk + • • • + WnXn) is not too small.

The detailed proof of Theorem 118.

We suppose without loss of generality that E[f] = -1 + e, i.e. that 0 > 0. We have the

following two useful facts:

Fact 122. We have 0 < 0 < 21n(2/).

Proof The lower bound is by assumption, and the upper bound follows from the Hoeffding

bound and the fact that E[f] = -1 + e. 1

Fact 123. Let S be any subset of variables ,. . . , x. For at least an e/4 fraction of

restrictions p that fix the variables in S and leave other variables free, we have E[f,] 2

-1 + E/4.

Proof If this were not the case then we would have E[f] < (e/4) -1+ (1- e/4) (- 1+E/4) <

-1 + E, which contradicts the fact that E[f] = -1 + e. Ol

Now we consider the cases outlined in the previous subsection. Recall that C is the

absolute constant in the Berry-Esseen theorem; we shall suppose w.l.o.g. that C is a positive

integer. Let C1 > 0 be a suitably large (relative to C) absolute constant to be chosen later.

Case 1: 6 < 2/C 1 . We will show that in Case 1 we actually have Inff (1) = fQ(66 2 ).

defn 2 1Let us define T c= {,... , n} where 3 E [n] is the last value such that -i= wi 2 .

Since each |wiI is at most 62/Cl < 1/C1 (because we are in Case 1), we certainly have that

ECT w~ E [ , ] by choosing C1 suitably large.

We first show that the tail sum iK T wix lands in the interval [0 - 1, 0 + 1] with fairly

high probability:

Lemma 124. We have

Pr wxi E [0 - 1,0+ 1] > 2/18.
iET
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Proof Let OT denote (ECiT w )1/2 As noted above we have / < T V. We

thus have

Pr w1i E [0 - 1, 0+ 1]
JET

= Pr[UT 1ZwixiE U1[0 - 10+]]
iT T

( ([aT10 -- OT 1 , -T10 + T 1]) - 2C6oT1(5.10)

> (([OT10 - T1, -T10 + T1]) - 2vC6(5.11)

where (5.10) follows from the Berry-Esseen theorem using the fact that each wi KI 3.

If 0 < 0 < 1, then clearly the interval [a81 0 - -1, U1 0 + al'] contains the interval

[0, 1]. Since 1([0, 1]) 2 1, the bound 6 < E2/C1 easily gives that (5.11) is at least C2/18 as

required, for a suitably large choice of C1.

If 0 > 1, then using our bounds on a,' we have that

" ([v . 0 - 4/3, V . 0+ 4/3)

> 4([ V .o - V4/ ,, V o2 ])

> 4/3 . O(v. 0)

> 4/3 -b(2Vln(2/c))

4 1 2 2

= v7 4 >-
3~ 49

(5.12)

(5.13)

Here (5.12) follows from Fact 122 and the fact that ¢ is decreasing, and (5.13) follows from

definition of 0(.). Since 5 < 2/C1, again with a suitably large choice of C1 we easily have

2/2C6 < E2/18, and thus (5.11) is at least E2/18 as required and the lemma is proved. O

Now consider any fixed setting of xz,..., , such that the tail -iET wixi comes out in

the interval [0 - 1, 0 + 1], say -ieT WiXi = 0 - T where 7TI < 1. We show that the head

w2 2 + ... + w,_lx 1 -_ lies in [T - 6, T + 6] with probability Q(6); with Lemma 124, this

implies that the overall probability (5.9) is Q(6E2 ).

Let a letS d f { ,..., - 1}, and let Rd { 2 , . , a- 1}. Since6 < c2/C1,

we have that E w2 < 1/8, so consequently 1/8 < EjsE w < 1/2. Letting as denote

( cis w) 1/ 2, we have V2 < a-' 1 2v/2.
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defWe now consider two cases depending on the magnitude of w,. Let C2 C1/4.

Case 1.a: w,| I 6/C2. In this case we use the Berry-Esseen theorem on S to obtain

Pr wiE E [T - 6, T + 61 Pr a wixi E [ - , T + 6]
iES iES

> ([a1T - as 6, 17 + Us 6]) - 2C(/C2)-1

(5.14)

Using our bounds on T and as', we have that the D(-) term of (5.14) is at least (/J) •

q(2v2) > 6/100. Since the error term 2C(6/C 2) u 1 is at most 6/200 for a suitably

large choice of C1 relative to C (recall that C2 = C1/4), we have (5.14) 2 6/200. Now

for any setting of x,... , _1 such that EiZs wixi lies in [T - 6, T + 6], since each of

w2 ,... , WI- is at most 6 there is (at least one) corresponding setting of x2 , x . . ,7 _l

such that ic(Rus) wixi also lies in [T - 6, T + 6]. (Intuitively, one can think of successively

setting each bit Xl, x 2,... j ,..., x 2 in such a way as to always keep E -i wixi in

[7 - 6, T + 6]). So the overall probability that w2x2 2 + W-p 1xl lies in [T - 6, T + 6]

is at least (6/200) -2- a+2 = Q(6), and we are done with Case 1.a.

Case 1.b: wc > 6/C2. Similar to Case 2 of [39], we again use the Berry-Esseen theorem

on S, now using the bound that Iwi < 56 for each i E S and bounding the probability of a

larger interval [7 - C26, T + C26]:

Pr [wxi E [xi i - C2, T + C06 T-2

icS

( ([Uas1 T - as-C26, - 1sT + U-1C 26]) - 2C6-s1 (5.15)

I([2f - V/0 2 6, 2v/2]) - 4/02C (5.16)

In (5.15) we have used the Berry-Esseen theorem and in (5.16) we have used our bounds on

o-s1 and T. Now recalling that 65 < 2/C1 < 1/C1 and C2 = C1/4, we have V0C26 < 2v/,
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and hence

(5.16) > V/C 26 0 (2v/2) - 4v/2C6 > C3 (5.17)

where the second inequality follows by choosing C1 (and hence C2) to be a sufficiently

large constant multiple of C. Now for any setting of z,... , zx_1 such that Eis Wi i = t

lies in [7 - C 26, T + C26], since 1/C w2 1 2 , ... , w -1i < 6, there is at least one setting

of the bits z 2,. .. _l for which t + -- 1~ wixi lies in [T - 6, T + 6]. (Since, as is easily

verified from the definitions of oz and C2, we have (ac - 2)6/C2 > C26, the magnitude of

w2 , - - -, w- 1 is large enough to get from 7 - C26 to 7; and since each Iwi is at most 6,

once the interval [7 - 6, 7 + 6] is reached a suitable choice of signs will keep the sum in the

right interval.) So in Case 1.b. the overall probability that w2X2 + ... + w-1Z_ 1 lies in

[7 - 6, 7 + 6] is at least C6 2-a+2 = Q2(6), and we are done with Case 1.b..

We turn to the remaining case in which 3 is "large:"

Case 2: 6 > 62/C1. Let us introdu ce the following definition which is implicit in [56]:

Definition 125. Let wl, .. . , w~ be a sequence of values such that |Wl > ... > w > 0.

The critical index of the sequence is the smallest value of k E [n] such that

< C3662.  (5.18)
Zj=k 2

Here C03 > 0 is a (suitably small) absolute constant specified below. (Note that the LHS

value Clwk/ Z k w2 is an upper bound on the Berry-Esseen error when the theorem

is applied to wkXk + • + Wnxn.)

Throughout the rest of the proof we write k to denote the critical index of w,... , wn.

Observe that k > 1 since we have

C wi = Ce2 C6c2
Wh= C > f > b > C36 2

n  
2 C 1 - C 1

where the final bound holds for a suitably small constant choice of C3.
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We first consider the case that the critical index k is large. In the following C4 > 0

denotes a suitably large absolute constant.

Case 2.a: k > C4 ln(1/E)/E4 + 1. In this case we define k' d [C4 ln(1/E)/E4] + 1. Let us
defalso define Uk' = ,  w. The following claim shows that rk' is small:

3
Claim 126. We havek' k,-< l1c

Proof For i E [n] let us write Wi to denote E7 wj ; note that W1 = 1 and Wi = w? +

W+. For ease of notation let us write ( to denote &2C3/C.

Since we are in Case 2.a, for any 1 < i < k' we have wi > (Wi = (w? + (Wi+l, or

equivalently (1 - ()w? > (Wi+,. Adding (1 - ()Wi+l to both sides gives (1 - ()(w? +

W+,) = (1 - ()Wi > Wi+1. So consequently we have

k' < (1- ' - 1 _ (1- C4 1n/E)/ 4  (- 4C3/(CC))411)E4

where in the third inequality we used 6 > E2/C1 (which holds since we are in Case 2) and

the fourth inequality holds for a suitable choice of the absolute constant C4. This proves

the claim. Ol

At this point we know 6 is "large" (at least c2/C1) and Uk' is "small" (at most - ). We

consider two cases depending on whether 0 is large or small.

Case 2.a.i: 0 < e2/(2C). In this case we have 0 < 0 < 6/2. Since 4 9k' < c2/(2Ca) <

6/2, the Hoeffding bound gives that a random restriction that fixes variables xk,,..., X,

gives IWk' Xk + ... - - + W, > 4 k' with probability at most e-8 < 1/100. Consequently

we have that for at least 99/100 of all restrictions p to Xk,,... , x?, the resulting function f,

(on variables x,. . . , Xk'-_l) is fp(x) = sgn(wlxl + ..- + Wk'1Xk-_ 1 - Op) where -6/2 <

0, < 6. Facts 119 and 120 now imply that each such f, has Inff, (1) = Q(1)/k' = Q(1) -

E4/ ln(1/E), so consequently Inff(1) is also Q(1) . e4/ log(1/E), which certainly suffices for

Theorem 118. This concludes Case 2.a.i.

Case 2.a.ii: 0> 2 2/(2C1). We now apply the Hoeffding bound (Theorem 121) to wk',Xk +

. . + wnxn with 7 = 2 ln(8/). This gives that wk'xk, + .. + WnXn < -2 /1n-(8/ )- k,
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with probability at most E2/8. Since 2 ln(8/c) k, < 62/(2C1) < 0, we have that for

at least a 1 - E2/8 fraction of all restrictions p to Xk,, -. , xn, the resulting function f, (on

variables Xl,... ,Xk-1) is fp,() = sgn(wixl + --- + Wkl'-1lkl - Op) where 6, > 0.

i.e. E[f,] < 0. Together with Fact 123, this implies that for at least an E/4 - c2/8 > c/8

fraction of restrictions p, we have -1 I + /4 < E[f,] < 0. Each such f, has V[f,] = (),

so by Fact 119 has Inff (1) = Q (E)/k' = Q(0/log(1/E)). Consequently we have that

Inff (1) = Q(E6 / log(1/)) which is certainly Q(66 / log(1/E)). This concludes Case 2.a.ii.

Case 2.b: k < C4 log(1/6)/6 4 + 1. We now define Ouk Z=k w2 and work with this

quantity. First we consider a subcase in which Uk is "small" relative to 0; this case can be

handled using essentially the same arguments as Case 2.a.ii.

Case 2.b.i: Uk < 0/(2V n(8/6)). As above, the Hoeffding bound (now applied to wkXk +

-+ wnn) gives that wkxk + .. + WnXn < -2 v/n(8/) • Ok with probability at most

62/8, so for at least a 1 - E2/8 fraction of restrictions p to Xk,... , n we have E[f,] < 0.

Using Fact 123, the argument from Case 2.a.ii again gives that Inff(1) = (e6/ log(1/E)),

and we are done with Case 2.b.i.

Case 2.b.ii: OUk > 6/(2 vln(8/E)). In this case we shall show that N(0, ak), the zero-mean

Gaussian distribution with variance ak, assigns at least 2C0362 probability weight to the

interval [0 - 6/2, 0 + 3/2]. In other words, writing 4~ to denote the c.d.f. of N(0, ak), we

shall show

@Dk ([0 - 6/2, 0 + 6/2]) > 3C362. (5.19)

Given (5.19), by the Berry-Esseen theorem and the definition of the critical index we obtain

Pr wk E [ - J/2, 0 + 6/2]i > 3C362 - 20C362 = C3362. (5.20)

For any restriction p that gives WkXk + ' + WnXn [0 - 6/2, 0 + 6/2], Fact 120 gives

V[f,] = Q(1) and hence Fact 119 gives Inff,(1) = Q(1)/k = Q(6 4 / log(1/e)). By (5.20)

we thus have Inff(1) = Q(C36 66 log(1/6)), which is the desired result.

def
We turn to proving (5.19). Let O

5
k denote the c.d.f. of N(O,Uk), i.e. O ( ) =
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(1/ak /2)e- 2 /2 . We first observe that since ck 2 6/(2 Vln 8/), we have

09k(0) > Q(l/Uk) . 62 > 6C362, (5.21)

where the second bound holds for a suitably small choice of the absolute constant C3 and

uses rk < 1.

We consider two different cases depending on the relative sizes of 6 and 0.

Case 2.b.ii.A: 6/2 > 0. In this case we have that [0, 6/2] C [0 - 6/2, 0 + 6/2] and it suffices

to show that 4k ([0, 6/2]) > 362C3.

If 6 aUk, then we have

DUok ([0, 6/2]) > Iuk ([O, Uk/2]) 2 3C3 2 3C3662

by a suitable choice of the absolute constant C3. On the other hand, if 6 < ak then we have

)0'k ([0, 6/2]) (65/2)k(6/2) _ (6/ 2 ) Ok (Uk/2) > 3C36 2 3C36e2

for a suitable choice of the absolute constant C3. This gives Case 2.b.ii.A.

Case 2.b.ii.B: 6/2 < 0. In this case we have

k ([0 - 6/2, 0 + 6/2]) _ 4uk ([0 - 6/2 , 0]) > (6/2) -Ok (0) 3036E2

where the final inequality is obtained using (5.21). This concludes Case 2.b.ii.B, and with

it the proof of Theorem 118. O

5.5.2 Two theorems about LTFs

In this section we prove two theorems that essentially characterize LTFs. These theorems

are the analogues of Theorems 112 and 113 in Section 5.4.2.

The following is the main theorem used in proving the completeness of our test. Roughly

speaking, it says that if fi and f2 are two regular LTFs with the same weights (but possi-
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bly different thresholds), then the the inner product of their degree-i Fourier coefficients is

essentially determined by their means.

Theorem 127. Let fi be a T-regular LTF Then

0(i)2 - W(E[fl]) 7
1/6 .  (5.22)

i=1

Further, suppose f2 -1, 1}n-{ 1, 1} is another T-regular LTFs that can be expressed

using the same linear form as fi; i.e., fk (x) = sgn(w • x - Ok) for some w, 01, 02. Then

fl(i)(i) - W(E[f])W(E[f 2]) < 1/6. (5.23)
i=1

(We assume in this theorem that 7 is less than a sufficiently small constant.)

Proof We first dispense with the case that I E[fi]l > 1 - 71/10. In this case, Proposition

2.2 of Talagrand [59] implies that f1 (i) 2 < O(7r2/10 lo0g(1/7-)), and Proposition 98

(item 3) implies that W(E[f 1 ]) < O(72/10 log(1/7)). Thus

= f 1 (i) 2 - W(E[f]) O(71/51 log(1/r)) < 71/6,

so (5.22) indeed holds. Further, in this case we have

n f(i)f 2 Cauchy-Schwarz (() 2  2 - (i)2 < O(T 1/ 5 log(1/7)) 1,
i= 1 i= 1 i= 1

and also W(E[fl])W(E[f 2]) < O(T1/5 log(I/T)) • _. Thus (5.23) holds as well.

We may now assume that I E[fl] < 1 - 71/10 .Without loss of generality, assume that

the linear form w defining fi (and f2) has ||w| = 1 and w1I> I wil for all i. Then from

Theorem 118 it follows that

7 > Inffl(1 ) _ Q(wl7-6/10 log(1/7r))
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which implies that wl < 0(r7"2/ 5). Note that by Proposition 108, this implies that

E[f 2/5
E[fk] M (0k), k=1, 2. (5.24)

Let (x, y) denote a pair of r9-correlated random binary strings, where r = 7 1/5 . By

definition of S,, we have

S,(f, f2) = 2 Pr[(w -x, w -y) E A U B] - 1,

where A = [Oi, 00) x [2, c00) and B = (-oo, 01] x (-o, 02]. Using a multidimensional

version of the Berry-Esseen theorem (see Theorem 111 in Section 5.4.1), the fact that

[wi < 0(7 2/5) holds for all i implies

72/5
Pr[(w -x, w y) EAU B] . Pr[(X, Y) EAU B],

where (X, Y) is a pair of 9-correlated standard Gaussians. (Note that the error in the above

approximation also depends multiplicatively on constant powers of 1 + r and of 1 - r7, but

these are just constants, since 1r|7 is bounded away from 1.) It follows that

f272/5
S,(fi, f2) S7 Oh, 02)7 (5.25)

where ho, : R---+{-1, 1} is the function of one Gaussian variable hok (X) = sgn(X - Ok).

Using the Fourier and Hermite expansions, we can write Equation (5.25) as follows:

fh (0) f2 (0) 1+ 7 h(i)f2 (|S 1 f2(S) (S)

i=1 IS>2

72/5

Sho(0) ho2(0)+ 7.9-ho(1)ho2(1) + 2 Jhol(j)ho2(J)
j>2
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Now by Cauchy-Schwarz (and using the fact that r7 > 0) we have

7'1s fi(S)f2 (S) < SI fi((S)2 5 IS f 2 (S) 2

S|>2 ISI 2

< 2 (S)2 2(S)2

S S

= 2

The analogous result holds for ho, and ho2. If we substitute these into Equation (5.26)

and also use
S72/5

ho (0) = E[hOk] = p(Ok) E[fk] = fk(0)

which follows from Equation (5.24), we get:

( (0 f2WT hol(1)h 2(1) = r . 20(01) -20(02)
i=1

where the equality is by the comment following Definition 96. Dividing by 17 and using

T 2/ 5/r1 + 77 = 2T1/5 in the error estimate, we get

n - - 1/5

E j f(i) f2(i) 20(01) 20(02) = /W(P(O1))W(P(02))
i=1

Since we can apply this with fl and f2 equal, we may also conclude

(5.27)

n 2 71/5
Sfki(i 2  W (k))

i=1
(5.28)

for each k = 1, 2.

Using the Mean Value Theorem, the fact that W'| < 1 on [-1, 1], and Equation (5.24),

we conclude
n 2 71/5

E fk(i) 2  W(E[fk])
i=1

for each k = 1, 2, establishing (5.22). Similar reasoning applied to the square of Equa-
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tion (5.27) yields

f l f2 W(E[f])f(W(E[f])(

implying (5.23). The proof is complete. O

The next theorem is a sort of converse of the previous theorem, and will be the main

theorem we use in proving the soundness of our test. The previous theorem stated that

if f and g were LTFs with the same weights, the inner product of their degree-1 fourier

coefficients is close to a particular value. Roughly speaking, this theorem says that for any

Boolean function g and any 7r-regular Boolean function f that satisfies certain conditions,

if the inner product of the degree-i Fourier coefficients of f and g is close to the "right"

value (from the preveious theorem), then g is close to an LTF (in particular the LTF whose

weights are the degree-i Fourier coefficients of f.).

Theorem 128. Let f, g : {-1, 1 }n{-1, 1}, and suppose that:

1. f is T-regular and I E[f]| < 1 - 72/9;

2. 1 En f(i)2 _ W(E[f]) _ 7;

3. 1 (~ 1 f(i) (i))2 - W(E[f])W(E[g])I < 7, and EnZ f (i)g(i) > -7.

Write £(x) for the linear form ,(f (i)/)xj, where a = n f(i)2 . Then there exists

0 E R such that g(x) is O(7 1/9 )-close to the function sgn(£(x) - 0). Moreover, we have

that each coefficient (f (i) /a) of f(x) is at most O(77/9).

Proof We may assume I E[g] I< 1 - T1/9, since otherwise g is 71/ 9-close to a constant

function, which may of course be expressed in the desired form. Using this assumption,

the fact that I E [f] I 1 - 72/ 9, and the final item in Proposition 98, it follows that

W(E[g]) 2 Q(7 2/ 9 ) and W(E[f]) _ Q(7-4 / 9 ). (5.29)

The latter above, combined with assumption 2 of the theorem, also yields

a > Q (72T/9). (5.30)
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Note that the second assertion of the theorem follows immediately from the T-regularity of

f and (5.30).

Let 0 = p- 1(E[g]). We will show that g is 0(71 /9 )-close to sgn(h), where h(x) =

f(x) - 0, and thus prove the first assertion of the theorem.

Let us consider E[gh]. By Plancherel and the fact that h is affine, we have

E[gh] = E (j(S)h(S)= E - 0 E[g]. (5.31)
ISl<l i=1

On the other hand,

E[gh] < E[hl] E[IX - 01] = 24(0) - p(0) = /W(E[g]) - 0 E[g], (5.32)

where the inequality is because g is +l-valued, the following approximation is by Propo-

sition 109, the following equality is by Proposition 98, and the last equality is by definition

of 0. Combining Equation (5.31) and Equation (5.32) we get

E[|hl] - E[gh] <( W(E[g]) - -(i)f(i)) + 0( - ). (5.33)

We now wish to show the parenthesized expression in (5.33) is small. Using Fact 101 and

the first part of assumption 3 of the theorem, we have

E f(i)i) - W(E[f]) W(E[g])]) < < 0(T6/9), (5.34)
i=1 | |WW(E[f]))W]((E[g])

where we used (5.29) for the final inequality. We can remove the inner absolute value on the

left of (5.34) by using the second part of assumption 3 and observing that 2T is negligible

compared with O(T 6/9), i.e. we obtain

f(i)g(i) - W(E[f]) W(E[g]) < 0(T6/9), (5.35)

We can also use Fact 101 and the first part of assumption 2 of the theorem to get |a -
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W(E[f]) T/ 7/W(E[f]) O(r7 / 9). Since |W(E[g]) = 0(1), we thus have

SW(E[g) - vW(E[f]) W(E[g]) < O(r7/9). (5.36)

Combining (5.36) and (5.35), we have

E f(i) (i) - a W (E[g]) < O(T6/9).
i=1

Dividing through by a and using (5.30), this gives that

f(i)f(i) -/W(E[g]) < O(r4/9).
i=1 -

Substituting this into (5.33) yields

E[l h] - E[gh] < O(T4/9). (5.37)

Let c denote the fraction of points in {-1, 1}n on which g and sgn(h) disagree. Suppose

first that that E < 127/a. Since a >2 (72/9) by (5.30), in this case we have that e <

0(T 7/9 ). Thus we may assume that e > 12/a. We may apply Theorem 107 as follows

since ca/12 > 7 > maxi If(i)

Pr[ h(x)| < Ea/12] < 6ca/12 - c
a 2

It follows that at least an E/2 fraction of inputs x have both g(x) j sgn(h(x)) and Ih(x)I >

ca/12. This implies that E[lhl] - E[gh] 2 2. (e/2) - (Ea/12) = c2 a/12. Combining this

with the previous bound (5.37), and recalling that a > Q(T 2 / 9), we get that 62 < O(T 2/9)

and thus Ec O(71/9). This proves that g is O(T1/9)-close to sgn(h), as desired. O

5.5.3 Overview of the testing algorithm

We are given E > 0 and black-box access to an unknown f {-1, 1}" -- {-1, 1}, and our

goal is to test whether f is an LTF versus e-far from every LTE
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Our testing algorithm Test-LTF operates in three phases. The first two phases make

queries to the black-box function f; the third phase is a deterministic test making no

queries.

In the first phase the algorithm "isolates" a set J that consists of s "influential" coordi-

nates. Essentially, this set J consists of those coordinates i such that I f(i) I is large. We call

this phase Isolate-Variables; in Section 5.5.4 we present the Isolate-Variables algorithm

and prove a theorem describing its behavior.

We note that one can show that it is possible to identify a set J as described above

using E(logn) queries using an approach based on binary search. However, since we

want to use a number of queries that is independent of n, we cannot actually afford to

explicitly identify the set J (note that indeed this set J is not part of the output that Isolate-

Variables produces). The approach we use to "isolate" J without identifying it is based in

part on ideas from [25].

In the second phase, the algorithm generates a set 7ri,..., rM of i.i.d. uniform ran-

dom strings in {-1, 1}); these strings will play the role of restrictions of J. The algorithm

then uses the output of Isolate-Variables to estimate various parameters of the restricted

functions f,1,..., fXM. More specifically, for each restriction ri , the algorithm estimates

the mean E[fi], the sum of squares of degree-1 Fourier coefficients Ek f i(k)2 , and the

sum of fourth powers of degree-1 Fourier coefficients Ek fi (k) 4 ; and for each pair of

restrictions 7r, 7j, the algorithm estimates the inner product of degree-i Fourier coeffi-

cients Ek J fni (k) f, (k). We call this phase Estimate-Parameters-Of-Restrictions; see

Section 5.5.4 where we present this algorithm and prove a theorem describing its behavior.

After these two query phases have been performed, in the third phase the algorithm does

some computation on the parameters that it has obtained for the restrictions 7r1,..., i7rM ,

and either accepts or rejects. In Section 5.5.5 we give a description of the entire algorithm

Test-LTF and prove Theorem 114.
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Isolate-Variables (inputs are 7, 6 > 0, and black-box access to f : {-1, 1}n

{-1, 1})

1. Let f = [1/(F 166)]. Randomly partition the set [n] into f "bins" (subsets
B 1,... , B) by assigning each i E [n] to a uniformly selected Bj.

2. Run Non-Regular(T2 , 6/, Bj) (see Lemma 92) on each set By and let I be the
set of those bins Bj such that Non-Regular accepts. Let s - I .

3. Output (B, ... , Be, I).

Figure 5-1: The subroutine Isolate-Variables.

5.5.4 The querying portions of the algorithm

Isolating variables.

We require the following:

Definition 129. Let B 1, . . . , Be be a partition of [n] and I be a subset of {BIB, . . . , Be}. We

say that (B 1, . . . , Be, I) is isolationist if the following conditions hold:

1. If maxiEB I(i) I > T2 then Bj E I;

2. If Bj E I then maxieB, If(i)1 > 7 2 /4;

3. If Bj E I then the second-largest value of I f(i) I for i C Bj is less than 74/32.

Given (B 1,... B, I) we define the set J to be

J U {armax f(k) 1}. (5.38)
B G1 EBj

The following lemma is useful:

Lemma 130. Let f : {-1, 1}n __ {-1, 1} be any function. With probability 1 - 0(6),

the sets B 1 , . . . , Be have the following property: for all j, the set Bj contains at most one

element i such that f(i) > T74/32.

Proof. Parseval's identity gives us that there are at most 1024/78 many variables i such

that If (i)l 2 7 4 /32. For each such variable, the probability that any other such variable is

166



assigned to its bin is at most (1024/7 8 )/ < 10247 s6. A union bound over all (at most

1024/78 many) such variables gives that with probability at least 1 - 0(6), each variable

xi with If (i) > T74 /32 is the only variable that occurs in its bin. This gives the lemma. O

Theorem 131. Let f : {-1, 1}'-+ -{-1, 1}, and let 7, 6 > 0 be given. Define smax = 16/7 4

and C = [1/(7166)1. Then with probability 1 - 0(6),

1. Algorithm Isolate-Variables outputs a list (B 1, ... , Be, I) that is isolationist;

2. The corresponding set J has IJ = II < smax, and J contains all coordinates i E [rn]

such that If(i) > 72.

The algorithm makes O(1/(6748)) queries to f.

Proof Part (1) of the theorem follows from Lemma 130 and Lemma 92. Note that Lemma

130 contributes 0(6) to the failure probability, and since the algorithm runs Non-Regular

f times with confidence parameter set to 6/e, Lemma 92 contributes another 0(6) to the

failure probability.

We now show that if part (1) holds then so does part (2). Observe that since (B 1, ... ,

Be, I) is isolationist, for each Bj E I there is precisely one element that achieves the

maximum value of If (k) ; thus jJ Bj -= 1 for all Bj E I and IJI = I|. It is easy

to see that J I < 16/7 4; this follows immediately from Parseval's identity and part 2 of

Definition 129.

For the query complexity, observe that Isolate-Variables makes O(1 / (166)) calls to

Non-Regular(T2 , 6/C, Bj), each of which requires O(1/732) queries to f, for an overall

query complexity of

queries. O

Estimating Parameters of Restrictions.

Theorem 132. Let f : {-1, 1}" - {-1, 1, 7, rl, 6 > 0, M E Z+, and let (B 1,... ,B, I)

be an isolationist list where I1I = s smax = 16/74. Then with probability at least 1 - 6,
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Estimate-Parameters-Of-Restrictions (inputs are 7, r7, 6 > 0, M E Z+ , an isolationist
list (B 1,..., Bt, I) where III = s, and black-box access to f: {-1, 1}n - {-1, 1})

0. Let 6' := O( - log( 2)).

1. For i = 1,..., M let ir' be an i.i.d. uniform string from {-1, 1}.

2. For i = 1,..., M do the following:

(a) Make N, := O(log(1/6')/r/2) calls to Random-String(7r i, I, 6', f) to obtain
N, strings w. Let i be the average value of f (w) over the N, strings.

(b) Make N, := O(log(1/6')/17 2) calls to Correlated-4Tuple(, vri , 7 , 6', f, r7)
to obtain N, pairs of 4-tuples (w1, x1, y, lz), (w2, x2, y 2, 2). Run algorithm
Estimate-Sum-Of-Fourths on the output of these calls and let i be the
value it returns. If ji < 0 or ~i > 1 then set Ri to 0 or 1 respectively.

3. For i,j = 1,..., M do the following: Make Np := O(log(1/6')/ 2) calls to
Correlated-Pair( i, 7rJ, I, 6', f, rl) to obtain Np pairs of pairs (w1 , x 1), (w2, x 2).
Run algorithm Estimate-Inner-Product on the output of these calls and let ',j

be the value it returns. If |1 ij > 1 then set iJ to sgn(P'J).

4. For i = 1,... , M, set (i)2 to (P,i)2.

Figure 5-2: The subroutine Estimate-Parameters-Of-Restrictions subroutine.

algorithm Estimate-Parameters-Of-Restrictions outputs a list of tuples (r1 , 1, ll1),

... , (TM , 1M, "M, RM) and a matrix (P 'J)l1<i,jM with the following properties:

1. Each 7'i is an element of {-1, 1}); further the strings (ri)i>21 are i.i.d. uniform ele-

ments of {-1, 1}.

2. The quantities i, p" are real numbers in the range [- 1, 1], and the quantities 5i, i,

are real numbers in the range [0, 1].

3. For the set J corresponding to (B 1,... , Bt, I) as in (5.38), the following properties

hold. (In (a)-(d) below, f, denotes the restricted function obtained by substituting

r 's bits for the coordinates of J as follows: for each k = 1,... , s, the restriction

assigns the value I7r to the (unique) variable in J n Bk.)

(a) For each i = 1,...,M,

I- E[f l ]< .
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(b) For each i = 1,..., M,

|Ri - E f7,(S)41 17.
I 4=1

(c) For all 1 < i, j < M,

ISI=1

(d) For each i = 1, . . . , M,

(- Z f7 (S)2 < m

The algorithm makes O ( 26) queries to f.

Proof of Theorem 132.

The proof of Theorem 132 follows as a sequence of lemmas. First a word of terminology:

for x c {-1, 1}n , and 7r a restriction of the variables in J, we say that z is compatible with

7r if for every j c J the value of zj is the value assigned to variable j by w.

The goal of Step 2(a) is to obtain estimates ii of the means E[fi] of the restricted func-

tions f,. Thus to execute Step 2(a) of Estimate-Parameters-Of-Restrictions we would

like to be able to draw uniform strings x E {-1, 1}" conditioned on their being compatible

with particular restrictions r of the variables in J. Similarly, to estimate sums of squares,

fourth powers, etc. of degree-1 Fourier coefficients of restricted functions, recalling Sec-

tion 5.2 we would like to be able to draw pairs, 4-tuples, etc. of bitwise correlated strings

subject to their being compatible with the restriction

The subroutine Correlated-4Tuple, described below, lets us achieve this. (The subrou-

tines Random-Pair and Correlated-Pair will be obtained as special cases of Correlated-

4Tuple.) The basic approach, which is taken from [25], is to work with each block Bj

separately: for each block we repeatedly draw correlated assignments until we find ones

that agree with the restriction on the variable of J in that block. Once assignments have
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been independently obtained for all blocks they are combined to obtain the final desired 4-

tuple of strings. (For technical reasons, the algorithm actually generates a pair of 4-tuples

as seen below.)

Lemma 133. Each time Correlated-4Tuple(r 1 , r2, I, 6', f) is invoked by the subroutine

Estimate-Parameters-Of-Restrictions, with probability 1 - 0(6') it outputs two 4-tuples

(w 1 , x1 , yl, z 1 ), (w 2, x 2 2, z2 ), each in ({-1, 1 }n)4, such that:

* For k = 1, 2 we have that wk, xk, yk and zk are all compatible with 7rk on J;

* For k = 1, 2, for each i J, the bits (wk)i, (xk)i, (yk)i are each independent uniform

±1 values independent of everything else;

* For k = 1, 2, for each i 0 J, the bit (zk)i is independently equal to (wl)i 0 (x'l) 0

(y1 )i with probability + 1 .

Proof. We will assume that the set I is isolationist, since Correlated-4Tuple is only in-

voked by Estimate-Parameters-Of-Restrictions with isolationist I. Fix any By E I, and

consider a particular execution of Step 1(a). Let fj denote the unique element of J n By.

By Definition 129 we have that if (j) 2 7 2 /4 and If (k)I < 74/32 for all k E By such

that k Z -j. Now consider the corresponding execution of Step 1(b). Assuming that Non-

Regular does not make an error, if fj E P then Non-Regular will accept by Lemma 92,

and if fj 0 P then by Lemma 92 we have that Non-Regular will reject. It is not hard to see

(using the fact that _ 2 0) that the element fj belongs to P with probability E(1), so the

probability that O(log(s/6')) repetitions of l(a) and 1(b) will pass for a given Bj without

any "accept" occurring is at most cO(log(s/6 ' )), where c is an absolute constant less than 1.

Thus the total failure probability resulting from step 2 ("stop everything and fail") is at

most s2- (log(s/ 5 ') ) < 65. Since each invocation of Non-Regular errs with probability at

most 6'/(s log(s/6')) and there are O(s log(s/6)) invocations, the total failure probability

from the invocations of Non-Regular is at most 0(6').

Once Step 3 is reached, we have that for each j,

* Each of wj k, xj k, yik is a uniform independent assignment to the variables in Bj

conditioned on (wik)tj, (xjk)j, (yjk) , each being set according to the restriction 7rk;
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Correlated-4Tuple (Inputs are 71 , 2 E {-1, 1 s , a set I of s bins, 6' > 0, black-box
access to f : {-1, 1}n - {-1, 1}, and 1 > 0. Outputs are two 4-tuples (w1, x 1, yl, z)
and (w2, x2 2, 2), each in ({-1, 1}) 4.)

1. For each By E I, do the following O(log(s/6')) times:

(a) Draw six independent uniform assignments (call them wl j , x1j , ylj and
w 2j, y2j) to the variables in By. Let z l j be an assignment to the same
variables obtained by independently assigning each variable in By the same
value it has in wl j  x1 ' 1 yU with probability . + and the opposite value

2 2

with probability - 7]. Let z 2j be obtained independently exactly like z lj

(in particular we use w lj ® x l j 0 y1j, not w2j 0 x2j 0 y2j, to obtain z2j). Let

P = {i By: (wk)i = (jk)i = (k)i = (jk)i = for k = 1, 2}.

i.e. P is the set of those i E Bj such that for k = 1, 2, assignments
wjik, xjk, Yk and zj k all set bit i the same way that restriction 7rk sets xkf.

(b) Run Non-Regular(T2/4, 6'/(s log(s/6')), P, f).

2. If any call of Non-Regular above returned "accept," let (wlJ, lj,ylj, zi),

(w 2j, 2j, y2j z2j) denote the pair of assignments corresponding to the call that
accepted. If no call returned "accept," stop everything and FAIL.

3. For k = 1, 2 let (wk, xk, k, zk ) be obtained as follows:

* For each i UBjIy,j set (wk)i, (Xk)i, (yk)i independently to ±1. Similar
to l(a) above, set both (zl)i and (z 2), independently to wl 0 x1 0 y with
probability - + pI7.

* For each bin B, E I, set the corresponding bits of w according to w'; the cor-
responding bits of x according to x'; the corresponding bits of y according
to y ; and the corresponding bits of z according to z-.

Return the 4-tuples (w', x, y1, z 1) and (w2 , 2 y 2 , 2).

Figure 5-3: The subroutine Correlated-4Tuple.
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* Each bit zJ is compatible with ir. For each variable i / fj in Bj, the bit zk is

independently set to w i 0 x 0 y1 with probability + r.

By independence of the successive iterations of Step 1 for different Bj's, it follows that

the final output strings (wl, x1, yl, z1 ) and (w2 , x 2, y2 z 2 ) are distributed as claimed in the

lemma. l

Remark 134. The overall algorithm Test-LTF is nonadaptive because the calls to Non-

Regular (which involve queries to f) in Correlated-4Tuple are only performed for those

Bj which belong to I, and the set I was determined by the outcomes of earlier calls to

Non-Regular (and hence earlier queries to f ). The algorithm could be made nonadaptive

by modifying Correlated-4Tple to always perform Step 1 on all f blocks B 1,... , Be.

Once all these queries were completed for all calls to Correlated-4Tuple (and thus all

queries to f for the entire algorithm were done), the algorithm could simply ignore the

results of Step 1 for those sets Bj that do not belong to I. Thus, as claimed earlier, there is

an nonadaptive version of the algorithm with somewhat - but only polynomially - higher

query complexity (because of the extra calls to Non-Regularfor sets Bj I).

The subroutine Random-String(r i , I, 6', f) can be implemented simply by invoking

the subroutine Correlated-4Tuple(ri 7 i I, 6, f, 0) to obtain a pair (w', x, yl , z 1 ) and

(w 2, x 2 y2, z 2), then discarding all components but w'. This string w I is uniform condi-

tioned on being consistent with the restriction 7r'. We then easily obtain:

Lemma 135. If (B 1, . . . , Bt, I) is isolationist, then with probability at least 1 - 6' (where

' := O(MN,6J')), each of the M values , ... , "M obtained in Step 2(a) of Estimate-

Parameters-Of-Restriction satisfies 1i - E[f] <I r.

Proof. Step 2(a) makes a total of MN, many calls to Correlated-4Tuple, each of which

incurs failure probability 0(6'). Assuming the calls to Correlated-4Tuple all succeed, by

the choice of N each of the M applications of the Chernoff bound contributes another 6'

to the failure probability, for an overall failure probability as claimed. Ol

Now we turn to part 3(b) of Theorem 132, corresponding to Step 2(b) of Estimate-

Parameters-Of-Restrictions. We have:
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Lemma 136. There is an algorithm Estimate-Sum-Of-Fourths with the following prop-

erty: Suppose the algorithm is given as input values rl, 6 > 0, black-box access to f, and

the output of N, many calls to Correlated-4Thuple(7r, r, I, 6, f, 7). Then with probability

1 - 6 the algorithm outputs a value v such that

Iv- E f-(k)4 1 < 17 .
ki[n],ktJ

Proof. The algorithm is essentially that of Lemma 89. Consider the proof of Lemma 89 in

the case where there is only one function f, and p = 4. For (5.1), we would like to empir-

ically estimate E[f(a 1)f(a 2)fr(a3 )f(a 4)] where a l , ... , a4 are independent uniform

strings conditioned on being compatible with 7. Such strings can be obtained by taking

each a 1 = w 1 , a 2 - W2 ,a3 =_ 1 and a 4 = X 2 where (w I ,X , YX ), (W 2 , 2 y 2 , z 2 ) is the

output of a call to Correlated-4Tuple(r, 7r, I, 6, f, r7).

For(5.2), we would like to empirically estimate

E[f_,(oza)f7,a 2 ) f,(,- ( 3)) (f4)

where each of a 1, a 2, a3 is independent and uniform conditioned on being compatible with

7r, and a4 is compatible with r and has each bit (a4)i for i J independently set equal

to (a 1  a 2 0 a3 )i with probability 1 + 17. By Lemma 133, such strings can be obtained

by taking 1 = W1 , a 2 
= X1  3 = y 1 , and a 4 = 1. The corollary now follows from

Lemma 89. O

Observing that the two restrictions that are arguments to Correlated-4Tuple in Step

2(b) are both i, Lemma 138 directly gives us part 3(b) of Theorem 132:

Lemma 137. If (B 1,..., Be, I) is isolationist, then with probability at least I - 6' (where

6' := O(MN,6')), each of the M values i' obtained in Step 2(b) of Estimate-Parameters-

Of-Restrictions satisfies Ri - s lS=1 f@i(S) 4 1 < r.

Now we turn to parts 3(c)-(d) of Theorem 132, corresponding to Steps 3 and 4 of the

algorithm. The subroutine Correlated-Pair(i, rJ, I, 6', f, 7) works simply by invoking

Correlated-4Tuple(r i , 7rj, I, 6', f, 71) to obtain a pair (wl, zl, yl, z1) (w 2 X2 y2 z 2 ) and
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outputting (ul,zl), (u 2 , 2 ) where each uk = (wk ® xk ® yk). The following corollary of

Lemma 89 describes the behavior of algorithm Estimate-Inner-Product:

Lemma 138. There is an algorithm Estimate-Inner-Product with the following property:

Suppose the algorithm is given as input values rl, 6 > 0, black-box access to f, and the

output of Np many successful calls to Correlated-Pair(ir1, 7r2 , I, 6, f, ,). Then with prob-

ability 1 - 6 the algorithm outputs a value v such that

|v - E f T(k)fg2(k)| < 7.
kC[n],kgJ

Proof Again the algorithm is essentially that of Lemma 89. Consider the proof of Lemma

89 in the case where there are p = 2 functions f~a and f,2. For (5.1), we would like

to empirically estimate E[fl (C)fr2 (a2 )] where a', a2 are independent uniform strings

conditioned on being compatible with restrictions 7r1 and 7r2 respectively. Such strings can

be obtained by taking each ak to be uk where (ul, z 1), (u2, z 2 ) is the output of a call to

Correlated-Pair(r', 7r2, 7, , f).

For (5.2), we would like to empirically estimate E[f,, (Oa) f 2 (O2)] where al is uniform

conditioned on being compatible with q71 and a2 is compatible with 7r2 and has each bit

(o2)i for i J independently set equal to (al)i with probability - + 1. By Lemma 133

and the definition of Correlated-Pair, such strings can be obtained by taking al = u 1 and

C2 = z2. The corollary now follows from Lemma 89. O

Lemma 138 gives us parts 3(c)-(d) of Theorem 132:

Lemma 139. If (B 1, ..., Be, I) is isolationist, then with probability at least 1 - 3 (where

JS3 := O(M 2N6')) both of the following events occur: each of the M 2 values (pij)2

obtained in Step 3 of Estimate-Parameters-Of-Restrictions satisfies

I' - >E f<(S)fji(S) r
IsI=1
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and each of the M values (i)2 obtained in Step 4 satisfies

I (i)2 - E f (S) 2 <
ISI=l

This essentially concludes the proof of parts 1-3 of Theorem 132. The overall failure

probability is 0(6' + 6' + 6'); by our initial choice of 6' this is 0(6).

It remains only to analyze the query complexity. It is not hard to see that the query

complexity is dominated by Step 3. This step makes M 2 Np = O(M 2/T 2 ) invocations

to Correlated-4Tuple(r i , 7 7, I, 6', f, r); at each of these invocations Correlated-4Tuple

makes at most

O(smax log(smax/6') = 0(1/r 4 )

many invocations to Non-Regular(T2/4, 6', P, f), each of which requires

O(log(smax log(smax/6')/6')/T 32)) = O(1/7 32)

queries by Lemma 92. Thus the overall number of queries is at most

)( M2

This concludes the proof of Theorem 132. O

5.5.5 The full algorithm

We are given black-box access to f {-1, 1}n * {-1, 1}, and also a "closeness param-

eter" E > 0. Our goal is to distinguish between f being an LTF and f being C-far from

every LTF, using poly(l/e) many queries. For simplicity of exposition, we will end up dis-

tinguishing from being O(e)-far from every LTE The algorithm for the test is given below,

followed by a high-level conceptual explanation of the various steps it performs.

Note that all parameters described in the test are fixed polynomials in c. Further, the

query complexity of both Isolate-Variables and Estimate-Parameters-Of-Restrictions is

polynomial in all parameters (see Theorems 131, 132). Thus the overall query complexity
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Test-LTF (inputs are e > 0 and black-box access to f : {-1, 1}n _ {-_1, 1})

Let - = EK, a "regularity parameter", where K is a large universal constant to be spec-
ified later. a Let 6 be a sufficiently small absolute constant. We will also take r = 7-
(the error parameter for Estimate-Parameters-Of-Restrictions), smax = 16/7 4 , and
M = poly(smax) log(1/6)/E 2 .

1. Run Isolate-Variables(T, 6) to obtain output (B1, ... , B, I). This implicitly de-
fines some set J C [n] and explicitly defines its cardinality (the same as the cardi-
nality of I), some s with s < smax.

2. Run Estimate-Parameters-Of-Restrictions(T, n7, 6, M, (B1,... , Be, I), f). This
produces a list of restrictions -ri E {-1, 1}s and real values i2, (a )2 " P,j where
1<i,j<M.

3. At this point there are two cases depending on whether or not the fraction of i's
for which Il j > 1 - e is at least 1 - e:

(a) (The case that for at least a 1 - E fraction of i's, |Ii| 2 1 - E.)

In this case, enumerate all possible length-s integer vectors w with entries up
to 2 (s log s) in absolute value, and also all possible integer thresholds 0 in the
same range. For each pair (w, 0), check whether sgn(w - 7i - 0) = sgn(~i)
holds for at least a 1 - 20c fraction of the values 1 < i < M. If this ever
holds, ACCEPT. If it fails for all (w, 0), REJECT.

(b) (The case that for at least an e fraction of i's, Iil| < 1 - .)

In this case, pick any i* such that ~i* I < 1 - e. Then:

i. Check that i'* < 2T. If this fails, REJECT.
ii. Check that I(i*)2 _ W( i*) I 27 1/ 12 . If this fails, REJECT.

iii. Check that both I(p*,i)2 _ W(i*)W( 7i) I < 271/12 and *,i _> -n hold
for all 1 < i < M. If this fails, REJECT.

iv. Enumerate all possible length-s vectors w whose entries are integer mul-
tiples of SF/s, up to 20(slogs) /n(1/T) in absolute value, and also all
possible thresholds 0 with the same properties. For each pair (w, 0),
check that ip - /( - w .7ri) I 5 V/ holds for all ri's. If this ever
happens, ACCEPT. If it fails for all (w, 0), REJECT.

aWe will eventually take K = 108.

Figure 5-4: The algorithm Test-LTF.
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is poly(1/c). As given, the test is adaptive, since Estimate-Parameters-Of-Restrictions

depends on the output of Isolate-Variables . However, in remark 134 we discuss how the

test can easily be made nonadaptive with only a polynomial blowup in query complexity.

In Section 5.5.6 we will show that indeed this test correctly distinguishes (with proba-

bility at least 2/3) LTFs from functions that are O(E)-far from being LTFs. Thus our main

testing result, Theorem 114, holds as claimed.

Conceptual explanation of the test.

Here we provide a high-level description of the ideas underlying the various stages of the

test. The following discussion should not be viewed in the light of mathematical statements

but rather as narrative exposition to aid in understanding the test and its analysis. (It may

also be useful to refer back to the sketch at the beginning of Section 5.5.)

In Step 1, the idea is that J is (roughly) the set of variables i such that If (i)l > T72

In Step 2, each 7i is an i.i.d. uniform random restriction of the variables in J. Each

value 7j is an estimate of E[fi], each (ai)2 is an estimate of -Zk fi(k)2 , each ;i is an

estimate of --k fi (k) 4, and each pl, is an estimate of Ek f"i(k) f , j(k).

The idea of Step 3(a) is that in this case, almost every restriction 7r of the variables in

J causes f, to be very close to a constant function 1 or -1. If this is the case, then f is

close to an LTF if and only if it is close to an LTF which is a junta over the variables in J.

Step 3(a) enumerates over every possible LTF over the variables in J and checks each one

to see if it is close to f.

If the algorithm reaches Step 3(b), then a non-negligible fraction of restrictions i7 have

SE[f,] I bounded away from 1. We claim that when f is an LTF, this implies that at least

one of those restrictions should be T-regular, and moreover all restrictions should be VF-

regular (these claims are argued using Proposition 142 and Theorem 118, respectively).

Step 3(b)(i) verifies that one such restriction 7i * is indeed V/T-regular.

Step 3(b)(ii) checks that the sum of squares of degree-i Fourier coefficients >Ek fri* (k) 2

is close to the "correct" value W(E[f,i ]) that the sum should take if fi were a V--regular

LTF (see the first inequality in the conclusion of Theorem 127). If this check passes, Step

3(b)(iii) checks that every other restriction fi is such that the inner product of its degree-i
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Fourier coefficients with those of fi*, namely Ek J fi (k) f i (k), is close to the "correct"

value W(E[fi])W(E[f ,]) that it should take if fi and f,. were LTFs with the same

linear part (see Theorem 127 again).

At this point in Step 3(b), if all these checks have passed then every restriction f, is

close to a function of the form sgn(e(x) - 0,) with the same linear part (that is based on the

degree-1 Fourier coefficients of fi-, see Theorem 128). Finally, Step 3(b)(iv) exhaustively

checks "all" possible weight vectors w for the variables in J to see if there is any weight

vector that is consistent with all restrictions f,. The idea is that if f passes this final check

as well, then combining w with f we obtain an LTF that f must be close to.

5.5.6 Proving correctness of the test

In this section we prove that the algorithm Test-LTF is both complete and sound. At

many points in these arguments we will need that our large sample 7, 1,..., 7rM of i.i.d.

uniform restrictions is representative of the whole set of all 2' restrictions, in the sense that

empirical estimates of various probabilities obtained from the sample are close to the true

probabilities over all restrictions. The following proposition collects the various statements

of this sort that we will need. All proofs are straightforward Chernoff bounds.

Proposition 140. After running Steps 0,1 and 2 of Test-LTF, with probability at least

1 - 0(5) (with respect to the choice of the i.i.d. 7rl,... , 7rM 's in Estimate-Parameters-Of-

Restrictions) the following all simultaneously hold:

1. The true fraction of restrictions -r of J for which I E[f,] I 1 - 2c is within an

additive e/2 of the fraction of the 7ri 's for which this holds. Further, the same is true

about occurrences of I E[f,] > 1 - E/2.

2. For every pair (w*, 0*), where w* is a length-s integer vector with entries at most

2O ( logs) in absolute value and 0* is an integer in the same range, the true fraction of

restrictions 7 to Jfor which

I E[f ] - sgn(w* 7r - 0*)1 3/5
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is within an additive E of the fraction of 7i 's for which this holds. Further, the same

is true about occurrences of sgn(E[f-,]) = sgn(w* - 7 - 0*).

3. For every fixed restriction 7* to J, the true fraction of restrictions i7 to J for which

we have

I( f- (S)f (S))2 - W(E[f,.])W(E[f,])| < 3r1/12

ISI=1

is within an efraction of the true fraction of 7i 'sfor which this holds.

4. For every fixed pair (w*, 0*), where w* is a length-s vector with entries that are

integer multiples of /f/s at most 2 0(sog s) -n1) in absolute value and 0* is an

integer multiple of VT/s in the same range, the true fraction of restrictions 7r to J

for which

I E[f-] - p(0* - w*. 7r)1 < 6V/-

is within an additive e of the fraction of 7"'s for which this holds.

Proof All of the claimed statements can be proved simply by using Chernoff bounds (using

the fact that the Wi's are i.i.d. and M is large enough) and union bounds. For example,

regarding item 4, for any particular (w*, 0*), a Chernoff bound implies that the true fraction

and the empirical fraction differ by more than e with probability at most exp(-Q2(E2M)) <

6/2P"ly(s), using the fact that M > poly(s) log(1/6)/E. Thus we may union bound over all

2Poly(s) possible (w*, 0*) to get that the statement of item 4 holds except with probability at

most 6. The other statement and the other items follow by similar or easier considerations.

O

Completeness of the test.

Theorem 141. Let f : {-1, 1}n - {-1, 1} be any LTF Then f passes Test-LTF with

probability at least 2/3.

Proof Steps 1 and 2 of the test, where querying to f occurs, are the places where the

test has randomness. We have that Step 1 succeeds except with probability at most 6;

assuming it succeeds, the set J becomes implicitly defined according to (5.38). Step 2 also
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succeeds except with probability at most 6; assuming it succeeds, we obtain restrictions 7ri

and estimates I, (ai )2, ,j that satisfy the conclusion of Theorem 132, with T := T.

Finally, in Proposition 140 (which relates the empirical properties of the restrictions to the

true properties), all conclusions hold except with probability at most 0(6). Thus all of

these assumptions together hold with probability at least 1 - 0(6), which is at least 2/3

when we take 6 to be a sufficiently small constant. Note that we have not yet used the fact

that f is an LTF.

We will now show that given that all of these assumptions hold, the fact that f is an

LTF implies that the deterministic part of the test, Step 3, returns ACCEPT. We consider

the two cases that can occur:

Case 3(a): for at least a 1 - c fraction of i's, |i > 1 - E. Since Theorem 132 implies

that I P - E[f,i]| < 7, and since 7 < E, in this case we have that for at least a 1 - c fraction

of the i's it holds that E[fi] 1 - E - 7 2 1 - 2E. Applying Proposition 140 item 1,

we get that I E[f,] I 1 - 2E for at least a 1 - 2E fraction of all 2' restrictions 7r on J. It

follows that f is 2E - + (1 - 2E) -E < 2e-close to being a junta on J.

We are assuming that f is an LTF, and we know that it is 2E-close to being a junta on

J. We can conclude from this that f is 2E-close to being an LTF on J. To see why, assume

without loss of generality that J = {1,..., r}. We know that the junta over { -1, 1}'

to which f is closest is given by mapping xl,..., X to the most common value of the

restricted function fxl . ... x,. But this most common value is certainly sgn(wlzl + -- +

WrXr - 0), since Wr+lXr+l + -.. + w~zx is centered around zero.

So we know that f is 2e-close to being an LTF on J. Write this LTF as g(7) = sgn(w* •

7 - 0*), where w* is an integer vector with entries at most 20 (S log ) in absolute value and

0* is also an integer in this range. (Since J < s, any LTF on J can be expressed thus by

the well-known result of Muroga et al. [47].) Since f is 2E-close to g, we know that for at

least a 1 - 10e fraction of the restrictions 7r to J, f,(x) takes the value g(7r) on at least a

4/5 fraction of inputs x. I.e., I E[f,] - sgn(w* 7r- 0*) < 3/5 for at least a 1 - 10c fraction

of all 7r's. Using Proposition 140 item 2 we conclude that I E[f, ] - sgn(w* -7r - 0*)1 <

3/5 for at least a 1 - 20c fraction of the "ri's. But for these 7r's we additionally have
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|Pi - sgn(w* .- r - 0*)| 3/5 + r < 1 and hence sgn( i) = sgn(w* -. i - 0 *) . Thus

Step 3(a) returns ACCEPT once it tries (w*, 0*).

Case 3(b): for at least an E fraction of i's, 1'i < 1 - c. In this case we need to show

that Steps i.-iv. pass.

To begin, since Iji - E[f, < < e/2 for all i, we have that for at least an E fraction

of the i's, I E[f,]| 1 - E/2. Thus by Proposition 140 item 1, we know that among all 2s

restrictions 7r of J, the true fraction of restrictions for which I E[f,2] < 1 - C/2 is at least

E/2.

We would also like to show that for most restrictions 7r of J, the resulting function f,

is regular. We do this in the following proposition:

Proposition 142. Let f : {-1, 1}) {-1, 1} be an LTF and let J D {j : If(i) > P3}.

Then f, is not (/3/r)-regularfor at most an r fraction of all restrictions r to J.

Proof. Since f is an LTF, If (j)| = Inff(j); thus every coordinate outside J has influence

at most 3 on f. Let k be a coordinate outside of J of maximum influence. Note that since

f is an LTF, k is a coordinate of maximum influence for f, under every restriction r to J;

this follows from Fact 116. But Inff(k) = Avg,(Inff (k)) = Avg,(If,(k) ) and so

3 > Inff(k) = Avg,(regularity of f,).

The result now follows by Markov's inequality. O

Continuing case 3(b), note that J contains all coordinates j with If (j) > T2 , so we

know from Proposition 142 that f, is T-regular for at least a 1 - 7 fraction of the 2" restric-

tions 7r to J. Since 7 < cE/2, we conclude that there must exist some restriction 7o to the

coordinates in J for which both I E[fto I < 1 - e/2 and f,, is T-regular.

Express f as f(7r, x) = sgn(w' 7r + £ - x - 0'), where 7r denotes the inputs in J, x

denotes the inputs not in J, and £ is normalized so that I £|| = 1 (note that normalization

is different than the typical one we've been using, hence the use of the variables w' and 0'

instead of w and 0). We've established that the LTF f,,(x) = sgn(£ -x - (0' - w'. 7r0))
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has I E[fro]| I_ 1 - E/2 and is T-regular. Applying Theorem 118, we conclude that all

coefficients in f are, in absolute value, at most O(-/(66 log(l/E))) < Q (Ft); here we use

the fact that K > 12. In particular, we've established:

Claim 143. There is a linear form f with I = 1 and all coefficients of magnitude at most

(v/-), such that the following two statements hold: 1. For every restriction 7r to J, the

LTF f, is expressed as f,(x) = sgn( -x - (0' - w'- 7r)). 2. For every restriction i7 to J,

f, is V-I-regular.

The second statement in the claim follows immediately from the first statement and

Theorem 117, taking the constant in the Q(.) to be sufficiently small.

We now show that Steps 3b(i)-(iv) all pass. Since f, is V/--regular for all 7, in

particular fi- is f/T-regular. Hence ECll=S fi- (S)4 < T (see Proposition 91) and so

ki* < 7 + _9 27. Thus Step 3b(i) passes.

Regarding Step 3b(ii), Claim 143 implies in particular that f,* is VT-regular. Hence

we may apply the first part of Theorem 127 to conclude that E1 1= 1 f-i* (S)2 is within 71/12

of W(E[f*1*]). The former quantity is within n of (ai*)2; the latter quantity is within r of

W(~i*) (using |W'I < 1). Thus indeed (3i*)2 is within 71/12 + 77 + , < 271/12 Of W(i*),

and Step 3b(ii) passes.

The fact that the first condition in Step 3b(iii) passes follows very similarly, using the

second part of Theorem 127 (a small difference being that here we can only say that

W(E[f,i.])W(E[fi]) is within, say, 3r of W(Ki*)W(i')). As for the second condition

in Step 3b(iii), since f is an LTF, for any pair of restrictions 7r, 7r' to J, the functions f, and

fs, are LTFs expressible using the same linear form. This implies that f, and f,, are both

unate functions with the same orientation, a condition which easily yields that f, (j) and

f, (j) never have opposite sign for any j. We thus have that Slsl= fi (S) fi (S) > 0 and

so indeed the condition p*,i > -r holds for all i. Thus Step 3b(iii) passes.

Finally we come to Step 3b(iv). Claim 143 tells us that for every restriction 7i, we

have f,(x) = sgn(f - x - (0' - w' - 7i)), where f is a linear form with 2-norm 1 and

all coefficients of magnitude at most Q(/7). Applying Proposition 108 we conclude that

I E[f,]-1 (0'-w'.rir) I < holds for all i (again, ensuring the constant in the Q(.) is small
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enough). Using the technical Lemma 144 below, we infer that there is a vector w* whose

entries are integer multiples of \/T/s at most 2
O (slogs) V/In(1/7) in absolute value, and an

integer multiple 0* of JF/s, also at most 2 0(slogs) vn(I/T) in absolute value, such that

I E[f,i]- p(0*- w* .7ri) < 4x holds for all 7 iT. By increasing the 4/7 to 4v/T+T < 5v,

we can make the same statement with ji in place of E[fi]. Thus Step 3(b)(iv) will return

ACCEPT once it tries (w*, 0*). O

Lemma 144. Suppose that I E[f,] - p(O' - w'. 7) < V/1 holds for some set H of 's. Then

there is a vector w* whose entries are integer multiples of /T/s at most 2 0(s log s) Vin(1/T)

in absolute value, and an integer multiple 0* of v/s, also at most 20(slogs) vln(1T) in

absolute value, such that I E[f,] - p(O* - W* 7r) < 4,71/6 also holds for all ir E H.

Proof Let us express the given estimates as

{E[f,] - V/ p(0' - w' 7r) < E[f,] + v}riEn (5.39)

We would prefer all of the upper bounds E [f,] + V/ and lower bounds E [f,] - VF in these

double inequalities to have absolute value either equal to 1, or at most 1 - v/-. It is easy

to see that one can get this after introducing some quantities 1 < K,, K, < 2 and writing

instead

{E[f,] - Kv < p('t(0 - w' r) < E[f,] + K V+}En . (5.40)

Using the fact that p is a monotone function, we can apply 1 -1 and further rewrite (5.40)

as

{c, < 0' - w'. r < C}En ,  (5.41)

where each |c,C, IC is either oo (meaning the associated inequality actually drops out) or

is at most up-(-1 + V/-T) _ O(vln(1/T)). Now (5.41) may actually be thought of as a

"linear program" in the entries of w' and in 0' - one which we know is feasible.

By standard results in linear programming [15] we know that if such a linear program

is feasible, it has a feasible solution in which the variables take values that are not too large.
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In particular, we can take as an upper bound for the variables

L maxA det(A)|
| minB det(B) '

where B ranges over all nonsingular square submatrices of the constraint matrix and A

ranges over all square submatrices of the constraint matrix with a portion of the "right-side

vector" substituted in as a column. Note that the constraint matrix from (5.41) contains only

+1's and that the right-side vector contains numbers at most O(v ln(1/T)) in magnitude.

Thus the minimum in the denominator of (5.42) is at least 1 and the maximum in the

numerator of (5.42) is at most O(Vln(1/)) - (s + 1)!; hence 2 < 2 0(slogs) Vlin(i1/).

Having made this conclusion, we may recast and slightly weaken (5.40) by saying that

there exist a pair (w", 0"), with entries all at most 2 in absolute value, such that

{E[f,] - 2V < p(O" - w" - 7) < E[f,] + 2V}n

Finally, suppose we round the entries of w" to the nearest integer multiples of V/-ls form-

ing w*, and we similarly round 0" to 0*". Then (0" - w" 7r) - (0* - w*. 7) 1 2v/ for

every 7r. Since pL' < V/ 2/T < 1 we can thus conclude that the inequalities

{E[f,] - 4 < p(0* - w* 7r) < E[f,] + 4V 7re

also hold, completing the proof. O

Soundness of the test.

Theorem 145. Let f : {-1, 1}n-{-1, 1} be a function that passes Test-LTF with prob-

ability more than 1/3. Then f is O(c)-close to an LTF

Proof As mentioned at the beginning of the proof of Theorem 141, for any f, with prob-

ability at least 1 - 0(6) Step 1 of the algorithm succeeds (implicitly producing J), Step 2

of the algorithm succeeds (producing the 7ri ' s, etc.), and all of the items in Proposition 140

hold. So if an f passes the test with probability more than 1/3 > 0(6), it must be the case

that f passes the deterministic portion of the test, Step 3, despite the above three conditions
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holding. We will show that in this case f must be O(E)-close to an LTF. We now divide

into two cases according to whether f passes the test in Step 3(a) or Step 3(b).

Case 3(a). In this case we have that for at least a 1 - c fraction of w7i 's, | i| > 1 - E and

hence I E[fi]l > 1 - E - j > 1 - 2E. By Proposition 140 item lwe conclude:

For at least a 1 - 2E fraction of all restrictions 7r to J, I E[f,] _ 1 - 2E. (5.43)

Also, since the test passed, there is some pair (w*, 0*) such that sgn(w* -7i - 0) = sgn(i)

for at least a 1 - 20c fraction of the 7i's. Now except for at most an E fraction of the 7"r's

we have E[fi]| 2> 1 - 2E> and J - E[f,]I < whence sgn(i) = sgn(E[f,]).

Hence sgn(w* - 7i - 0*) = sgn(E[f,i]) for at least a 1 - 20e - c > 1 - 21c fraction of the

7r's. By Proposition 140 item 2 we conclude:

For at least a 1 - 22E fraction of all restrictions 7 to J, sgn(E[f,]) = sgn(w* - 7 - 0*).

(5.44)

Combining (5.43) and (5.44), we conclude that except for a 22C + 26 < 24E fraction of

restrictions i7 to J, f, is c-close, as a function of the bits outside J, to the constant sgn(w* •

7 - 0*). Thus f is 24E + (1 - 24c)c < 25E-close to the J-junta LTF r H- sgn(w* - 7 - 0*).

This completes the proof in Case 3(a).

Case 3(b). In this case, write 7* for ir *. Since <i*i _ 1 - E, we have that E[f .]l

1 - E + 7r < 1 - C/2. Once we pass Step 3(b)(i) we have ;i* < 27- which implies

sS= 1 fr* (S)4 < 2T + r7 < 37. This in turn implies that f,. is (3T) 1/4 < 27 1/4-

regular. Once we pass Step 3(b)(ii), we additionally have I lS=1 f,-(S)2 - W(E[f,.])| <

27 1 / 12 +r+ < 37 1 / 1 2 , where we've also used that W(i*) is within 77 of W(E[f,*]) (since

Iw' < 1).
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Summarizing, f,. is 2rl/ 4-regular and satisfies

IE[f,.]l < 1-c/2,and

E f.(S)2 - W(E[f]) 371/12 (5.45)
IsI=1

Since Step 3(b)(iii) passes we have that both ( i*,)2 - W(ii*)W( ii)l < 27 1/1 2 and

p >*,i -T hold for all i's. These conditions imply

I(E f~( 7(S) f(S)) 2 - W(E[f,*])W(E[fri]) < 271 /12 + 47 < 371/12
IsI=1

and

fr*(S)f7i(S) > -277
IS1=1

hold for all i. Applying Proposition 140 item 3 we conclude that for at least a 1 - E fraction

of the restrictions 7 to J, both

Sl-E f(S)f7(S) - W(E[f.])W(E[fx]) < 31/12 and

E fs*(S)f7,(S) > -27 (5.46)
IsI=1

We can use (5.45) and (5.46) in Theorem 128, with f,* playing the role of f, the good

f,'s from (5.46) playing the roles of g and the "T" parameter of Theorem 128 set to 371/12

(This requires us to ensure K > 54.) We conclude:

There is a fixed vector e with I I|| = 1 and I | 0(T 7 /10 8 ) for each j

such that for at least a 1 - 6 fraction of restrictions 7r to J,

f,(x) is O(lll/0s8)-close to the LTF g,(x) = sgn(-, x - 0,). (5.47)

We now finally use the fact that Step 3(b)(iv) passes to get a pair (w*, 9*) such that

V -_ p(O* - w* 7ri) < 5x - I E[fi] - ,(0* * - 7 i)| < 6 /F holds for all 7ri's. By
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Proposition 140 item 4 we may conclude that:

For at least a 1 - E/2 fraction of restrictions 7r to J, I E[f,] - p(O* - w* 7)1 < 6V/r.

(5.48)

Define the LTF h : {-1, 1}-"{-1, 1} by h(7r, x) = sgn(w* - 7r + f- x - 0*). We will

complete the proof by showing that f is O(71 /1 0 8 )-close to h.

We have that the conclusions of (5.47) and (5.48) hold simultaneously for at least a

1 - 2e fraction of restrictions 7; call these the "good" restrictions. For the remaining

"bad" restrictions r' we will make no claim on how close to each other f,, and h,, may

be. However, these bad restrictions contribute at most 2e to the distance between f and h,

which is negligible compared to 0(71/108). Thus it suffices for us to show that for any good

restriction 7r, we have that f, and h, are oh-so-close, namely, O(7 1/10 8 )-close. So assume

7r is a good restriction. In that case we have that f, is O(7r1/1 0 8)-close to g,, so it suffices

to show that g, is O(7 1/1 08)-close to h,. We have h,(x) = sgn(E - x - (0* - w*. )), and
,7/108

since fe = 1 and Ifj I< O(a 7/ 10s) for each j, Proposition 108 implies that E[h,] -

-1(0* -w* -. ). Since r is a good restriction, using (5.48) we have that E[h,] E[f,]. This
(1/108

certainly implies E[h,] E[g,] since f, and g, are O(atl/lS)-close. But now it follows

that indeed g, is O(cl/ 108l)-close to h, because the functions are both LTFs expressible with

the same linear form and thus either g, > h, pointwise or h, > g, pointwise, either of

which implies that the distance between the two functions is proportional to the difference

of their means.

Finally, we've shown that f is O(7 1/1 08)-close to an LTF.E Taking K = 108 completes

the proof. O
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Chapter 6

Testing +l-Weight Halfspaces

6.1 Introduction

In the previous chapter, we gave an algorithm for testing whether a boolean function

f : {-1, 1}" -- {-1, 1} is a halfpsace using only poly(l/e) queries. In this chap-

ter, we consider the problem of testing whether a function f belongs to a natural sub-

class of halfspaces, the class of l±1-weight halfspaces. These are functions of the form

f (x) = sgn(wixl + w2x 2 + ''" + WZn) where the weights wi all take values in {-1, 1}.

Included in this class is the majority function on n variables, and all 2n "reorientations" of

majority, where some variables mx are replaced by -xi. Alternatively, this can be viewed

as the subclass of halfspaces where all variables have the same amount of influence on

the outcome of the function, but some variables get a "positive" vote while others get a

"negative" vote.

For the problem of testing ±l-weight halfspaces, we prove two main results:

1. Lower Bound. We show that any nonadaptive testing algorithm which distinguishes

S1-weight halfspaces from functions that are E-far from 1-weight halfspaces must

make at least Q(log n) many queries. By a standard transformation (see e.g. [24]),

this also implies an Q(log log n) lower bound for adaptive algorithms. Taken together

with the results of the last chapter, this shows that testing this natural subclass of

halfspaces is more query-intensive then testing the general class of all halfspaces.
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2. Upper Bound. We give a nonadaptive algorithm making O(/ - poly(1/e)) many

queries to f, which outputs (i) YES with probability at least 2/3 if f is a ±l-weight

halfspace (ii) NO with probability at least 2/3 if f is c-far from any ±1-weight half-

space.

We note that it follows from [40] that learning the class of ± l-weight halfspaces

requires Q(n/c) queries. Thus, while some dependence on n is necessary for test-

ing, our upper bound shows testing ±l-weight halfspaces can still be done more

efficiently than learning.

Although we prove our results specifically for the case of halfspaces with all weights

±1, we remark that similar results can be obtained using our methods for other similar sub-

classes of halfspaces such as {-1, 0, 1}-weight halfspaces (+l-weight halfspaces where

some variables are irrelevant).

Techniques. As is standard in property testing, our lower bound is proved using Yao's

method. We define two distributions DYES and DNo over functions, where a draw from

DYES is a randomly chosen l±1-weight halfspace and a draw from DNO is a halfspace

whose coefficients are drawn uniformly from {+1, -1, + V3, - v-}. We show that a ran-

dom draw from DNO is with high probability Q(1)-far from every ±l-weight halfspace,

but that any set of o(log n) query strings cannot distinguish between a draw from DYES

and a draw from DNo.

Our upper bound is achieved by an algorithm which uniformly selects a small set of

variables and checks, for each selected variable xi, that the magnitude of the corresponding

singleton Fourier coefficient f (i) is close to to the right value. We show that any func-

tion that passes this test with high probability must have its degree-i Fourier coefficients

very similar to those of some ± 1-weight halfspace, and that any function whose degree-i

Fourier coefficients have this property must be close to a ±l-weight halfspace. At a high

level this approach is similar to some of what is done in the previous chapter, but here we

incur a dependence on n because of the level of accuracy that is required to adequately

estimate the Fourier coefficients.
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6.2 A Q (log n) Lower Bound for ±+ -Weight Halfspaces

In this section we prove the following theorem:

Theorem 146. There is a fixed constant c > 0 such that any nonadaptive -testing algo-

rithm A for the class of all ±l-weight halfspaces must make at least (1/26) log n many

queries.

To prove Theorem 146, we define two distributions DYES and DNO over functions.

The "yes" distribution DYEs is uniform over all 2 l±1-weight halfspaces, i.e., a function

f drawn from DYES is f(x) = sgn(rixz + - - - rnXn) where each ri is independently and

uniformly chosen to be ±1. The "no" distribution DNO is similarly a distribution over

halfspaces of the form f(x) = sgn(slzx + ... snX), but each si is independently chosen

to be ± V/- or ± -3/2 each with probability 1/4.

To show that this approach yields a lower bound we must prove two things. First,

we must show that a function drawn from DNO is with high probability far from any

±l-weight halfspace. This is formalized in the following lemma:

Lemma 147. Let f be a random function drawn from DNO. With probability at least 1 -

o(1) we have that f is e-far from any ±1l-weight halfspace, where e > 0 is some fixed

constant independent of n.

Next, we must show that no algorithm making o(log n) queries can distinguish DYES

and DNO. This is formalized in the following lemma:

Lemma 148. Fix any set x1 ,... ,x q of q query strings from {-1, 1}". Let DYES be the

distribution over {-1, 1}q obtained by drawing a random f from DYES and evaluating it

on x ,... , xq. Let DNO be the distribution over {-1, 1 }q obtained by drawing a random

f from DNO and evaluating it on x,. .. , X q. If q = (1/26) log n then | DYES - DNoII1 =

o(1).

We prove Lemmas 147 and 148 in subsections 6.2.1 and 6.2.2 respectively. A standard

argument using Yao's method (see e.g. Section 8 of [24]) implies that the lemmas taken

together prove Theorem 146.
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6.2.1 Proof of Lemma 147.

Let f be drawn from DNO, and let sl,..., s, denote the coefficients thus obtained. Let

T denote {i : si = 1/2 and T2 denote {i : 3/2i = }. We may assume that

both |T 1I and IT2 lie in the range [n/2 - /n log n, n/2 + /n log n] since the probability

that this fails to hold is 1 - o(1). It will be slightly more convenient for us to view f as

sgn(/-2(sll + - - + snxn)), that is, such that all coefficients are of magnitude 1 or v/3.

It is easy to see that the closest ± 1l-weight halfspace to f must have the same sign

pattern in its coefficients that f does. Thus we may assume without loss of generality that

f's coefficients are all +1 or +V3-, and it suffices to show that f is far from the majority

function Maj(x) = sgn(xi + - - -+ xn).

Let Z be the set consisting of those z E {-1, 1 }T (i.e. assignments to the variables in

T1) which satisfy ST, = iEcT zi E [ /2, 2 -n-2]. Since we are assuming that T1

n/2, using Theorem 106, we have that IZ/21T I = C1 ± o(1) for constant C1 = D(2) -

4 (1) > 0.

Now fix any z E Z, so Zie T zi is some value V, -n/2 where V, E [1, 2]. There

are 2 n-ITiI extensions of z to a full input z' E {-1, 1}". Let CMaj(z) be the fraction of

those extensions which have Maj(z') = -1; in other words, CMaj(z) is the fraction of

strings in {-1, 1}T2 which have iET2 zi < -VzV n/2. By Theorem 106, this fraction

is 4(-V.) + o(1). Let Cf(z) be the fraction of the 2"-ITi extensions of z which have

f(z') = -1. Since the variables in T2 all have coefficient V-, Cf(z) is the fraction of

strings in {-1, 1}T2 which have EiT 2 zi < -(V / ) Jn-/2, which by Theorem 106 is

There is some absolute constant c > 0 such that for all z E Z, Cf(z) - CMaj(z) > c.

Thus, for a constant fraction of all possible assignments to the variables in T1, the functions

Maj and f disagree on a constant fraction of all possible extensions of the assignment to all

variables in T U T2. Consequently, we have that Maj and f disagree on a constant fraction

of all assignments, and the lemma is proved. I
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6.2.2 Proof of Lemma 148.

For i= 1,...,n letY' e {-1, 1}q denote the vector of (x,. .. , x), that is, the vec-

tor containing the values of the ith bits of each of the queries. Alternatively, if we view

the n-bit strings x 1,..., x as the rows of a q x n matrix, the strings Y1,...,Y n are the

columns. If f(x) = sgn(alxl + + anXn) is a halfspace, we write sgn(Ei 1 aii) to

denote (f(x 1), ... , f(xq)), the vector of outputs of f on x,... ,X ; note that the value

sgn(-K 1 aiYi) is an element of {-1, 1}q

Since the statistical distance between two distributions D 1, D2 on a domain D of size N

is bounded by N -maxxv I Dl(x) - D2(x)I, we have that the statistical distance DYES -

DNo 1 is at most 2 q -maxQE{_l,1}q Pr, [sgn(E 1 riYi) = Q] - Prs[sgn(= 1 SiYi)

Q] . So let us fix an arbitrary Q E {-1, 1 }q; it suffices for us to bound

Pr[sgn(E riY') = Q] - Pr[sgn( siY) = Q] . (6.1)
r i=1 s i=1

Let InQ denote the indicator random variable for the quadrant Q, i.e. given x GE Rq the

value of InQ(x) is 1 if x lies in the quadrant corresponding to Q and is 0 otherwise. We

have

(6.1) = E[InQ(- riYi)] - E[InQ(- siYi)] (6.2)
r i=1 s i=1

We then note that since the Yi vectors are of length q, there are at most 2q possibilities in

{-1, 1 }q for their values which we denote by Y',... , Y 2 .We lump together those vectors

which are the same: for i = 1,..., 2q let ci denote the number of times that Yi occurs in

Y1,..., yn. We then have that E 1 riY i = EV aiYi where each ai is an independent

random variable which is a sum of ci independent +1 random variables (the rj's for those

j that have Yj = Yi). Similarly, we have n=l siY i = 2 bijY where each bi is an

independent random variable which is a sum of ci independent variables distributed as the

sj's (these are the sj's for those j that have YJ = Yi). We thus can re-express (6.2) as

2
q  2

q

E[InQ(E aiY)] - E[InQ(I biY )] . (6.3)
a i=1b i=1

Let us define a sequence of random variables that hybridize between E1,~ aiY 2 and
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E2q bY i . For 1 < f < 2 q + 1 define

2
q  2

q

Z := bY 2 + CaY ,  so ZI= aiY and Z2 q+i= Z bY . (6.4)
i<e i>e i=1 i=1

As is typical in hybrid arguments, by telescoping (6.3), we have that (6.3) equals

E[E InQ(Zt) - InQ(Z+i)] = E[InQ(Z) - InQ(Zet+)]
a,b e=1 f=1 a,b

= lE [InQ(We + ateY) - InQ(W + beY7)] (6.5)
f=1 a,b

where We := i<, biY i + Z,>, aiYe . The RHS of (6.5) is at most

2q max E [InQ(W + ateY) - InQ(W + bteY)]|.
e=1,...,2q a,b

So let us fix an arbitrary £; we will bound

E[InQ(W + afeY) - InQ(W + beYt)] < B (6.6)
a,b

(we will specify B later), and this gives that |DYES - DNO 1 4B by the arguments

above. Before continuing further, it is useful to note that We, at, and bt are all independent

from each other.

Bounding (6.6). Let N := (n/2q)1/3 . Without loss of generality, we may assume that the

the ci's are in monotone increasing order, that is cl _ c2 < ... < C2q. We consider two

cases depending on the value of ce. If ce > N then we say that ct is big, and otherwise we

say that ce is small. Note that each ci is a nonnegative integer and cl + •.. + C2q = n, so at

least one ci must be big; in fact, we know that the largest value c2q is at least n/2 .

If ce is big, we argue that at and be are distributed quite similarly, and thus for any

possible outcome of We the LHS of (6.6) must be small. If ct is small, we consider some

k # f for which ck is very big (we just saw that k = 2q is such a k) and show that for any

possible outcome of at, be and all the other contributors to We, the contribution to W from

this ck makes the LHS of (6.6) small (intuitively, the contribution of ck is so large that it
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"swamps" the small difference that results from considering at versus be).

Case 1: Bounding (6.6) when ce is big, i.e. ce > N. Fix any possible outcome for We

in (6.6). Note that the vector Ye has all its coordinates ±1 and thus it is "skew" to each of

the axis-aligned hyperplanes defining quadrant Q. Since Q is convex, there is some interval

A (possibly half-infinite) of the real line such that for all t E R we have InQ(W + tYe) = 1

if and only if t E A. It follows that

I Pr[InQ(W+aeYe) = 1]-Pr[InQ(W+beY) = 11 = I Pr[ae E A]-Pr[be E A]|. (6.7)
ae be

Now observe that as in Theorem 106, at and be are each sums of ce many independent

zero-mean random variables (the rj's and sj's respectively) with the same total variance

a = VC and with each r rj, sj I < 0(1). Applying Theorem 106 to both ae and be, we get

that the RHS of (6.7) is at most O(1/V) = O(1/ N). Averaging the LHS of (6.7) over

the distribution of values for We, it follows that if ce is big then the LHS of (6.6) is at most

O(1/ v-N).

Case 2: Bounding (6.6) when ce is small, i.e. ce < N. We first note that every possible

outcome for ae, be results in lae - be < O(N). Let k = 2q and recall that ck > n/2 q. Fix

any possible outcome for ae, be and for all other aj, bj such that j # k (so the only "unfixed"

randomess at this point is the choice of ak and bk). Let W, denote the contribution to We

from these 29 - 2 fixed aj, by values, so We equals W + akYk (since k > £). (Note that

under this supposition there is actually no dependence on bk now; the only randomness left

is the choice of ak.)

We have

I Pr[InQ(W + aeYe) = 1] - Pr[InQ(We + beYe) = 1]
ak ak

= Pr[InQ(W' + aY~' + akYk) = 1] - Pr[InQ(W + beye + akY k ) = 1]1 (6.8)
ak ak

The RHS of (6.8) is at most

Pr[the vector Wj +aY e +akYk has any coordinate of magnitude at most lae - be]. (6.9)
ak
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(If each coordinate of W, + aegY + ak k has magnitude greater than |at - bi|, then each

corresponding coordinate of W + beYe + akYk must have the same sign, and so such an

outcome affects each of the probabilities in (6.8) in the same way - either both points are

in quadrant Q or both are not.) Since each coordinate of yk is of magnitude 1, by a union

bound the probability (6.9) is at most q times

max Pr[ak e A]. (6.10)
all intervals A of width 21a-b e  ak

Now using the fact that ae- be| = O(N), the fact that ak is a sum of ck > n/ 2
q independent

±l-valued variables, and Theorem 107, we have that (6.10) is at most O(N)/ -r/2q. So

we have that (6.8) is at most O(Nqv )//n. Averaging (6.8) over a suitable distribution

of values for al, bl,..., akl., ak-1, b-1, k+, bk+l, ... , a2 , b2q, gives that the LHS of (6.6) is

at most O(Nq 12_)/v n.

So we have seen that whether ct is big or small, the value of (6.6) is upper bounded by

max{O(/llv), O(NqV") /V}.

Recalling that N = (n/2q)1/3 , this equals O(q(2q/n)1/6), and thus |DYES - DNO 1

O(q213q/6 /nu 6 ). Recalling that q = (1/26) log n, this equals O((log n)/n/ 12) = o(1),

and Lemma 148 is proved.

6.3 A O(V ) Upper Bound for +1-Weight Halfspaces

In this section we present the ± 1-Weight Halfspace-Test algorithm, and prove the follow-

ing theorem:

Theorem 149. For any 36/n < e < 1/2 and any function f: {-1, 1}"-{-1, 1},

* if f is a +l-weight halfspace, then +l-Weight Halfspace-Test(f, e) passes with

probability > 2/3,

* if f is e-far from any l±1-weight halfspace, then l±1-Weight Halfspace-Test(f, e)

rejects with probability > 2/3.
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The query complexity of± 1-Weight Halfspace-Test(f , ) is O(/n- log 1). The algorithm

is nonadaptive and has two-sided error.

The main tool underlying our algorithm is the following theorem, which says that if

most of f's degree-1 Fourier coefficients are almost as large as those of the majority func-

tion, then f must be close to the majority function. Here we adopt the shorthand Maj, to

denote the majority function on n variables, and M to denote the value of the degree-1

Fourier coefficients of Maj,.

Theorem 150. Let f : {-1, 1}n-,{-1, 1} be any Boolean function and let e > 36/n.

Suppose that there is a subset of m > (1 - c)n variables i each of which satisfies f (i) >

(1 - E)[M. Then Pr[f(x) # Maj(x)] < 32V1.

In the following subsections we prove Theorem 150 and then present our testing algo-

rithm.

6.3.1 Proof of Theorem 150.

We start with the following well-known lemma, whose proof serves as a warmup for The-

orem 150:

Lemma 151. Every f {-1, 1}" -* {-1, 1} satisfies E'Z= f(i)| .nM,.

Proof Let G(x) = sgn(f(1))x1 + .. + sgn(f(n))x, and let g(x) be the l1-weight half-

space g(x) = sgn(G(x)). We have

n n

E I f(i)| = E[fG] < E[IGI] = E[G(x)g(x)] = Z Mn,
i=1 i-i=1

where the first equality is Plancherel (using the fact that G is linear), the inequality is

because f is a ±l-valued function, the second equality is by definition of g and the third

equality is Plancherel again, observing that each (i) has magnitude M, and sign sgn(f(i)).

Ol

Proof of Theorem 150. For notational convenience, we assume that the variables whose

Fourier coefficients are "almost right" are x 1 , x 2, ... , Xm. Now define G(x) = xl + x2 +
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S- zXn, so that Maj, = sgn(G). We are interested in the difference between the following

two quantities:

n

E[ G(x) ] = E[G(x)Maj,(x)] = Z G(S)Majn(S) = Maj(i) = nM,,
S i=1

n m n

E[G(x)f(x)] = G(S)f(S) = (i) = i) + (i)
S i=1 i=1 i=m+l

The bottom quantity is broken into two summations. We can lower bound the first

summation by (1 - e)2nMn > (1 - 2E)nMn. This is because the first summation contains

at least (1 - e)n terms, each of which is at least (1 - e)Mn. Given this, Lemma 151 implies

that the second summation is at least -2cnMn. Thus we have

E[G(x)f(x)] > (1 - 4c)nMn

and hence

E[ GI - Gf] < 4ncn, 4EV- (6.11)

where we used the fact (easily verified from Parseval's equality) that Mn < I

Let p denote the fraction of points such that f = sgn(G), i.e. f 7 Maj,. If p < 32V/

then we are done, so we assume p > 32/E- and obtain a contradiction. Since E > 36/n, we

have p > 192/ V. Let k be such that c = (4k + 2)/V, so in particular k > 1. It is well

known (by Stirling's approximation) that each "layer" {zx {-1, 1}" : x1 + - - -+ xn = f}

of the Boolean cube contains at most a fraction of {-1, 1} , and consequently at most

a fraction of points have G(x) _ 2k. It follows that at least a p/2 fraction of points

satisfy both |G(x)| > 2k and f(x) f Maj,(x). Since IG(x)l - G(x)f(x) is at least 4k

on each such point and IG(x)l - G(x)f(x) is never negative, this implies that the LHS of

(6.11) is at least

2 4k > (16V) - (4k) 2 (16/)(2k + 1) = (16/) =2 2
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but this contradicts (6.11). This proves the theorem.

6.3.2 A Tester for ±l-Weight Halfspaces

Intuitively, our algorithm works by choosing a handful of random indices i E [n], esti-

mating the corresponding If (i) values (while checking unateness in these variables), and

checking that each estimate is almost as large as Mn. The correctness of the algorithm is

based on the fact that if f is unate and most f(i)l are large, then some reorientation of f

(that is, a replacement of some xi by -xi) will make most f(i) large. A simple application

of Theorem 150 then implies that the reorientation is close to Maj, and therefore that f is

close to a ±1-weight halfspace.

We start with some preliminary lemmas which will assist us in estimating If(i)I for

functions that we expect to be unate.

Lemma 152.

f (i) = Pr[f(xi- ) < f(xi+)] - Pr[f(xi - ) > f(xi+)]
x x

where xi- and x i + denote the bit-string x with the i th bit set to - 1 or 1 respectively.

We refer to the first probability above as the positive influence of variable i and the

second probability as the negative influence of i. Each variable in a monotone function has

only positive influence. Each variable in a unate function has only positive influence or

negative influence, but not both.

Proof (of Lemma 152) First note that f (i) = Ex[f(x) x], then

E[f(x)i] Pr[f(x) = 1,xi = 1] + Pr[f(x) = -1,i = -1]

-Pr[f(x) = -1,x = 1] - Pr[f(x) = 1,xi = -1].
x X

Now group all x's into pairs (xi - , xi+) that differ in the it h bit. If the value of f is the same

on both elements of a pair, then the total contribution of that pair to the expectation is zero.

On the other hand, if f (x - ) < f (xi + ), then x i - and x i+ each add -7 to the expectation, and

if f(x i- ) > f(xi +) , then xi- and x i+ each subtract 1. This yields the desired result. O
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Lemma 153. Let f be any Boolean function, i E [n], and let If (i) = p. By drawing

m = 3- log ~ uniform random strings x G {- 1, 1 }n and querying f on the values f(xi+)

and f (x'-), with probability 1 - 6 we either obtain an estimate of f (i) I accurate to within

a multiplicative factor of (1 ± c), or discover that f is not unate.

The idea of the proof is that if neither the positive influence nor the negative influence

is small, random sampling will discover that f is not unate. Otherwise, If(i)| is well

approximated by either the positive or negative influence, and a standard multiplicative

form of the Chernoff bound shows that m samples suffice.

Proof (of Lemma 153) Suppose first that both the positive influence and negative influence

are at least 2. Then the probability that we do not observe any pair with positive influence

is < (1 - )m < e - cpm/ 2  - (3/2E)lo g(2/6) < , and similarly for the negative influ-

ence. Therefore, the probability that we observe at least some positive influence and some

negative influence (and therefore discover that f is not unate) is at least 1 - 21 = 1 - 6.

Now consider the case when either the positive influence or the negative influence is

less than 2. Without loss of generality, assume that the negative influence is less than '.

Then the positive influence is a good estimate of If(i) . In particular, the probability that

the estimate of the positive influence is not within (1 + L)p of the true value (and therefore

the estimate of If(i)I is not within (1 + E)p), is at most < 2e-m pe2/3 = 2e-log = 6 by the

multiplicative Chernoff bound. So in this case, the probability that the estimate we receive

is accurate to within a multiplicative factor of (1 ± c) is at least 1 - 6. This concludes the

proof. O

Now we are ready to present the algorithm and prove its correctness.

Proof (of Theorem 149) To prove that the test is correct, we need to show two things: first

that it passes functions which are +l-weight halfspaces, and second that anything it passes

with high probability must be E-close to a ±1l-weight halfspace. To prove the first, note that

if f is a ±1l-weight halfspace, the only possibility for rejection is if any of the estimates of

If (i)| is less than (1- )M\ . But applying lemma 153 (with p Mn, E = 4, 6 = ), the

probability that a particular estimate is wrong is < -, and therefore the probability that

any estimate is wrong is < 1. Thus the probability of success is > .5
any esimt iswon6s<
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+l-Weight Halfspace-Test (inputs are e > 0 and black-box access to f : {-1, 1}n --
{-1, 1})

1. Let E = (E)2

2. Choose k = In 6 = O(,) many random indices i E {1, ... , n}.

3. For each i, estimate If (i). Do this as in Lemma 153 by drawing m = 24og12k

O( log 1 ) random x's and querying f (x+ ) and f (x i- ). If a violation of unate-
ness is found, reject.

4. Pass if and only if each estimate is larger than (1 - L) M.

Figure 6-1: The algorithm ±l-Weight Halfspace-Test.

The more difficult part is showing that any function which passes the test whp must be

close to a ±1-weight halfspace. To do this, note that if f passes the test whp then it must

be the case that for all but an E' fraction of variables, If (i) > (1 - C')Mn. If this is not

the case, then Step 2 will choose a "bad" variable - one for which If (i)l < (1 - e')Mn

- with probability at least .Now we would like to show that for any bad variable i, the

estimate of I f(i)| is likely to be less than (1 - -)M. Without loss of generality, assume

that f(i) = (1 - E')IM, (if If (i) is less than that, then variable i will be even less likely

to pass step 3). Then note that it suffices to estimate If(i)| to within a multiplicative factor

of (1 + ) (since (1+ )(1 - E')Mn < (1 - )MIr). Again using Lemma 153 (this time

with p = (1 - E') M,, E = L, = ) we see that 12 log 12k < 24 log 12k samples

suffice to achieve discover the variable is bad with probability 1 - !. The total probability

of failure (the probability that we fail to choose a bad variable, or that we mis-estimate one

when we do) is thus < + 1 < .

The query complexity of the algorithm is O(km) = O(v/-1Y log - ) = O(Vn. -L log 1).

6.4 Conclusion

We have proven a lower bound showing that the complexity of testing ±i1-weight halfspaces

is at least Q(log n) and an upper bound showing that it is at most O(V/-n. poly(!)). An open
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question is to close the gap between these bounds and determine the exact dependence on

n. One goal is to use some type of binary search to get a poly log(n)-query adaptive testing

algorithm; another is to improve our lower bound to n ( ) for nonadaptive algorithms.
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