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Abstract

Epilepsy is a chronic disorder of the central nervous system that predisposes individ-
uals to experiencing recurrent seizures. It affects 3 million Americans and 50 million
people world-wide.

A seizure is a transient aberration in the brain's electrical activity that produces
disruptive physical symptoms such as a lapse in attention and memory, a sensory hal-
lucination, or a whole-body convulsion. Approximately 1 out of every 3 individuals
with epilepsy continues to experience frequent seizures despite treatment with multi-
ple anti-epileptic drugs. These intractable seizures pose a serious risk of injury, limit
the independence and mobility of an individual, and result in both social isolation
and economic hardship.

This thesis presents novel technology intended to ease the burden of intractable
seizures. At its heart is a method for computerized detection of seizure onset. The
method uses machine learning to construct patient-specific classifiers that are capable
of rapid, sensitive, and specific detection of seizure onset. The algorithm detects the
onset of a seizure through analysis of the brain's electrical activity alone or in concert
with other physiologic signals. When trained on 2 or more seizures and tested on
844 hours of continuous scalp EEG from 23 pediatric epilepsy patients, our algorithm
detected 96% of 163 test seizures with a median detection delay of 3 seconds and a
median false detection rate of 2 false detections per 24 hour period.

In this thesis we also discuss how our detector can be embedded within a low-
power, implantable medical device to enable the delivery of just-in-time therapy that
has the potential to either eliminate or attenuate the clinical symptoms associated
with seizures.

Finally, we report on the in-hospital use of our detector to enable delay-sensitive
therapeutic and diagnostic applications. We demonstrate the feasibility of using the
algorithm to control the Vagus Nerve Stimulator (an implantable neurostimulator
for the treatment of intractable seizures), and to initiate ictal SPECT (a functional
neuroimaging modality useful for localizing the cerebral site of origin of a seizure).
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Chapter 1

Introduction

1.1 Epilepsy

Epilepsy is a chronic disorder of the central nervous system that predisposes individ-

uals to experiencing recurrent seizures. A seizure is a sudden, transient aberration

in the brain's electrical activity that produces disruptive symptoms. These symp-

toms range between a lapse in attention, a sensory hallucination, or a whole-body

convulsion. In the book "Brainstorms: Epilepsy in Our Words" [49], individuals with

epilepsy describe what it is like to have a seizure:

I only experience my seizures as I am falling off to sleep...my symptoms

include a shock-like feeling inside my head, a twitch of one or more limbs,

a shock that makes the trunk of my body jump.

I experience a combination of deja vu with extreme fear. Nothing I do

takes me out of the deja vu...the general feeling is of being in front of an

oncoming train with no way to escape.

Epilepsy is not a single disease, but a family of syndromes that share the feature

of recurrent seizures. Epilepsy may develop as a result of inheriting a mutation in

a molecular mechanism that regulates neuron behavior, migration, or organization.

Alternatively, it may develop as a result of brain trauma such as a severe blow to the

head, a stroke, a cerebral infection, or a brain malignancy [8].



Fifty million people world-wide are diagnosed with epilepsy. In the United States

epilepsy affects 3 million people and is the third most common neurologic disorder

after Alzheimer's disease and stroke. In an unfortunate subset of 1.2 million indi-

viduals, frequent, unpredictable seizures persist despite treatment by one or multi-

ple anti-epileptic drugs. These types of seizures are known as medically intractable

seizures.

The worst part of having seizures is knowing that they can happen anytime

and even though drugs control mine most of the time they occasionally

break through.

Medically intractable seizures severely limit the independence and mobility of an

individual and, as a consequence, can result in social isolation and economic hardship.

Most concerning is that refractory seizures significantly increase an individual's chance

of experiencing burns, lacerations, skull fractures, and even sudden unexpected death

[16, 17].

I knew, also instantaneously, that I must keep this affliction secret, and

that this condition and the dark secret of it set me apart from others. I

was to live my life feeling this isolation and separation.

The negative influence of uncontrolled seizures extends beyond the individual to

affect their family members, friends, and the whole of society. The families and friends

of people with epilepsy experience chronic anxiety and rearrange their lives to ensure

the safety of their loved one. Society incurs an annual loss of 12.5 billion dollars in

health care costs and losses in productivity [6]. There is a need for novel therapies

that better control seizures as well as technology that helps both the individual and

their family to cope with the consequences of seizures.

Computerized seizure onset detection will enable the engineering of novel ther-

apeutic and alerting systems that may ease the burden of intractable seizures. A

therapeutic system capable of detecting and reacting to the onset of a seizure could

administer a local electrical [60], thermal [47], or neurochemical [69] stimulus that



halts the progression of a seizure prior to the development of clinical symptoms.

Moreover, just-in-time, local therapy could relieve patients of the toxic side-effects

that accompany systemic administration of multiple anti-epileptic drugs. An alerting

system equipped with seizure onset detection could warn the patient of the seizure

prior to the development of debilitating symptoms, or could notify a family member

so that the consequences of a seizure are limited. Knowledge that a reliable warn-

ing will be issued rapidly following seizure onset may restore within individuals the

confidence to overcome the limits on life that accompany seizures.

In this thesis, we describe a patient-specific algorithm capable of rapidly detecting

seizure onset through analysis of the brain's electrical activity alone or in concert

with other physiologic signals. Moreover, we demonstrate the feasibility of using

our detector to control the Vagus Nerve Stimulator (an implantable neurostimulator

for the treatment of intractable seizures), and to initiate ictal SPECT (a functional

neuroimaging modality useful for localizing the cerebral site of origin of a seizure).

In this chapter, we describe different types of seizure detectors and their potential

role in diagnosistic, therapeutic, and alerting applications. We also highlight the

challenges associated with the computerized detection of seizures using the brain's

electrical activity. Finally, we review the methodology and performance of previously

published algorithms and highlight how our approach contributes to the field of seizure

detection.

1.2 Seizure Detection Algorithms and Applications

A seizure detector can be classified as either a seizure onset detector or as a seizure

event detector. The purpose of a seizure onset detector is to recognize that a seizure

has started with the shortest possible delay, but not necessarily with the highest

possible accuracy. In contrast, the purpose of a seizure event detector is to identify

seizures with the greatest possible accuracy, but not necessarily with the shortest de-

lay. Seizure onset detectors are suited for applications requiring a rapid response to

a seizure, while seizure event detectors are suited for applications requiring an accu-



rate account of seizure activity over a period of time. The following sections present

applications of both detector types and discuss how the specifics of an application

dictate how to balance detection delay against accuracy of detection.

1.2.1 Applications of Seizure Onset Detection

Computerized seizure onset detection can facilitate the initiation of delay-sensitive di-

agnostic, therapeutic, and alerting procedures. Within the realm of diagnosis, seizure

onset detection could be used to quickly initiate functional neuroimaging studies de-

signed to localize the cerebral origin of a seizure. In this case, rapid initiation is

important since the accuracy of such imaging studies diminishes the greater the delay

between seizure onset and infusion of the imaging radiotracer [10]. Within the realm

of therapy, seizure onset detection could be used to trigger neurostimulators designed

to affect the progression of a seizure [60]. In this application, rapid initiation is im-

portant since the likelihood of affecting a seizure seems to decrease the longer the

delay between the onset of a seizure and the start of stimulation [22]. Finally, within

the realm of alerting, seizure onset detection could prompt a patient or care provider

to ensure safety or administer a fast-acting anticonvulsant. In this scenario, waiting

too long to alert the patient or care provider increases the chances that symptoms of

the seizure will leave them unable to respond.

1.2.2 Applications of Seizure Event Detection

Computerized seizure event detectors can enable physicians to better titrate therapy

(pharmacologic or otherwise) over time. Currently, anti-seizure therapy is dispensed

based on a individual's account of the number of and severity of the seizures they

experienced between clinic visits. Unfortunately, too many patients produce an inac-

curate tally [24], which may lead a physician to prescribe too much, too little, or the

incorrect medication. Prescribing too much medication results in toxic side-effects

while prescribing too little means a continuation of frequent seizures. A wearable

device capable of computerized seizure event detection within the ambulatory setting



could provide physicians with a summary of the number, frequency, duration and

time of day an individual experiences seizures. By correlating this information with

different medication regimens a physician could more quickly converge on a treatment

plan that maximally benefits the individual.

1.2.3 Application Dependant Performance

For a seizure onset detector the speed with which a seizure is recognized can be

increased at the expense of seizure detection accuracy. The degree to which one

favors detection speed or accuracy is dictated by the problem to be solved. For

instance, an application such as automatically infusing a radiotracer for the purpose of

a neuroimaging study requires excellent detection accuracy even if it is at the expense

of latency. In contrast, applications such as automatically initiating neurostimulation

call for emphasizing detection speed over accuracy because of the benign effect of

delivering many types of neurostimulation outside of the seizure state [60].

1.3 Why is Seizure Detection Challenging?

Seizure onset and event detection is most often accomplished through analysis of the

Electroencephalogram (EEG). The EEG is a multichannel recording of the electrical

activity generated by collections of neurons within the brain; different channels reflect

the activity within different brain regions. When the EEG is measured using non-

invasive electrodes arrayed on an individual's scalp it is referred to as scalp EEG; and

when it is measured using electrodes placed on the surface of the brain or within its

depths it is referred to as intracranial EEG.

The property of scalp and intracranial EEG that most complicates the seizure

detection task is its variability across individuals with epilepsy [18], both in the

seizure and non-seizure states. Typically, following the onset of a seizure, a set of EEG

channels develops rhythmic activity that reflects underlying neuronal hypersynchrony.

Both the location of the involved EEG channels as well as the spectral content of the

rhythmic activity varies across individuals. Furthermore, the EEG signature of one



patient's seizure may closely resemble the signature of abnormal, non-seizure EEG

gathered from the same patient or from a different patient [46].

Within the scalp EEG the seizure detection task is further complicated by the

physical properties of the signal. The scalp EEG is most sensitive to the activity

of neurons on the brain surface; consequently, the activity of neurons within deep

brain structures has almost no influence on the scalp EEG. When the epileptic neural

network is deep within the brain, the scalp EEG may reflect physical sequelae of

the seizure, such as repetitive eye-blinks (eye flutter) or muscle contractions, before

reflecting hypersynchronous neural activity. Seizures of this type are difficult to detect

with high specificity and low latency since activity such as eye flutter and muscle

contractions are routinely observed as an individual partakes in the activities of daily

life.

Another property of scalp EEG that makes seizure detection challenging is its sus-

ceptibility to contamination by non-physiologic sources. The sway of EEG electrode

cables, alterations in the electrode-skin interface, and the coupling of AC harmonics

from electric machinery can all produce spectral changes that affect the performance

of a seizure detector.

1.4 Related Work

Research into seizure detection methods began with the development of seizure event

detectors [18]. The detectors developed were meant to detect the seizures of any indi-

vidual with epilepsy, i.e., they were patient non-specific. The variability within EEG,

along with the challenges discussed in Section 1.3, severely limited the detection ac-

curacy of these patient non-specific detectors. To improve performance, investigators

developed patient-specific event detectors, i.e., detectors that could be tailored to the

EEG of an individual [44]. These detectors exhibited improved performance because

seizure and non-seizure EEG recorded from an individual exhibits less variability as

shown in Chapter 3. Years later, the development of diagnostic and therapeutic ap-

plications that require initiation following seizure onset motivated the development



of seizure onset detection algorithms.

1.4.1 Scalp EEG Seizure Event Detectors

One of the earliest patient non-specific seizure event detectors was the one developed

by Gotman [18] in 1982. The Gotman algorithm searches for the hallmark sign of

seizures: sustained rhythmic activity. The algorithm sequentially searches a number

of EEG channels for the presence of rhythmic activity with a dominant frequency

between 3-20 Hz and an amplitude at least 3 times greater than that of a background

window; whenever the degree of rhythmicity exceeds a threshold on at least two

channels and persists for 4 seconds a seizure is declared.

The Gotman algorithm successfully detects seizures whose evolution includes sus-

tained rhythmic activity with a fundamental below 20 Hz; it is not successful in

detecting seizures consisting of EEG containing a mixture of frequencies or those

with low amplitude high frequency activity. Since the scalp EEG of individuals with

epilepsy contains pathologic, normal, and artifact-induced bursts of rhythmic activ-

ity, a significant fraction of detections produced by the Gotman algorithm are not

associated with seizures [18]. A recent evaluation of the Gotman algorithm on 652

hours of scalp EEG that included 126 seizures from 28 patients [48] demonstrated

that this approach detects 50% of test seizures and declares 0.5 false detections per

hour.

Since Gotman's work, investigators have developed seizure event detectors that

utilize more sophisticated signal processing to characterize the rhythmicity associated

with seizures as well as more sophisticated schemes for determining whether that

activity is representative of an ongoing seizure. An example of such efforts is the

Reveal seizure detector developed by Wilson [64]. The Reveal algorithm decomposes

2 second EEG epochs from each input channel into time-frequency atoms using the

Matching Pursuit algorithm. Reveal then employs hand-coded and neural network

rules to determine whether features derived from the atoms of a channel are consistent

with a seizure taking place on that channel. The thresholds for some of the neural

network rules are determined using both archetypal seizures from individuals with



epilepsy and background EEG from individuals without epilepsy.

In [64] Wilson reported that the Reveal algorithm detected 76% of 672 seizures

gathered from 426 individuals with epilepsy, and that it declared false detections at

a rate of 0.11 false detections per hour when tested on data from individuals without

epilepsy. When the Reveal algorithm is made patient-specific [65, 66], they reported

that it improved the specificity of the original algorithm from 0.62 false-detection per

hour to 0.34 false detections per hour while improving the sensitivity to 78%. The

Reveal algorithm has a sensitivity superior to that of the classic Gotman algorithm,

but as we show in Chapter 3, it has poor specificity when processing the scalp EEG

of patients with abnormal, non-seizure rhythmic activity.

1.4.2 Scalp EEG Seizure Onset Detectors

Saab developed a patient non-specific seizure onset detector [48]. Saab's algorithm

uses features derived from a wavelet decomposition of each EEG channel to estimate

the probability of a seizure event. Whenever the probability exceeds a user defined

threshold for a given period of time, the algorithm declares the onset of a seizure.

When evaluated on 652 hours of scalp EEG that included 126 seizures from 28 pa-

tients, Saab's algorithm detected 78% of seizures with a median detection latency of

9.8 seconds and a false detection rate of 0.86 false detections per hour. Saab reported

that missed seizures included those with onsets characterized by focal activity, mixed

frequencies, or short duration; and that false detections were mainly caused by short

bursts of rhythmic activity, rapid eye blinking, and chewing.

Qu developed the first patient-specific seizure onset detection algorithm [43, 44,

45, 46]. Qu's patient-specific algorithm relies on a nearest-neighbor classifier to assign

a list of features, or feature vector, to the seizure or non-seizure class. The classifier is

trained on seizure and non-seizure feature vectors from a single individual. The fea-

ture vector consists of measures of the EEG's average amplitude, dominant frequency,

and rhythmicity. The classifier sequentially classifies feature vectors derived from the

available EEG channels, and declares a seizure if the set of positively classified chan-

nels matches half of those chosen by an expert. When tested by Qu on 29.7 hours and



47 seizures from 12 patients, the method detected 100% of seizures with an average

delay of 9.35 seconds and a false alarm rate of 0.03 false detections per hour. The

non-seizure EEG that Qu used to calculate the false detection rate of his algorithm

was formed by concatenating segments of EEG extracted at regular intervals from

several days of data. When compared to Saab's work, Qu's work illustrates that a

patient-specific approach can result in improved sensitivity and specificity, but not

necessarily an improvement in detection latency.

Meier developed a seizure onset detection system that is patient non-specific but

is seizure-specific [35]. Meier grouped seizures in a database into 6 categories based

on the frequency of the dominant rhythm that appears following seizure onset. He

then trained a set of support-vector machines, one for each seizure type, to determine

whether a feature vector extracted from an EEG epoch is consistent with one of the

seizure types. Rather than extract and then classify feature vectors from one channel

after another, Meier extracts a single feature vector that includes the average, across

channels, of signal properties such as the number of zero-crossings, wavelet coefficient

power, and cross-correlation. When evaluated on 91 seizures and 1,360 hours of non-

seizure EEG from 57 patients, Meier's algorithm detected 96% of the test seizures

with an average detection delay of 1.6 seconds and false alarm rate of 0.45 false

detections per hour. Meier's approach depends on the test seizure being a member

of one of the 6 defined categories as well as it being recorded using the same number

and position of channels used to record the training seizures. Seizures whose onsets

lack the development of rhythmic activity and instead reflect physical sequelae of the

seizure, such as eye-flutter, do not fall within the defined categories; consequently,

such seizures will be detected later or not at all.

1.5 Thesis Contributions

In this thesis we develop a patient-specific algorithm for detecting seizure onset that

improves technically upon existing methods in the following ways:

e Enhanced Performance: When trained on 2 or more seizures from the same



patient and tested on 844 hours of continuous scalp EEG from 23 pediatric

subjects, our algorithm detected 96% of 163 test seizures with a median de-

tection delay of 3 seconds (average 4.6 seconds) and a median false detection

rate of 0.07 false detections per hour (average 0.13 false detection per hour).

When evaluated on the same data set, the Reveal algorithm [64] detected 61%

of seizures with a false detection rate of 1.6 false detections per hour.

Relative to Saab's algorithm [48], our algorithm exhibits a shorter detection

delay, a higher seizure detection rate, and a lower false detection rate.

Relative to Qu [46], our detector exhibits a shorter detection delay, comparable

seizure detection rate, and a higher false detection rate. Unlike Qu's algorithm,

ours does not require an expert to identify relevant EEG channels. Furthermore,

to estimate the seizure detection rate of our method, we used a larger data set

than that used by Qu (163 seizures from 23 patients vs 47 seizures from 12

patients). We also used all 844 hours of non-seizure EEG in order to reliably

estimate the false detection rate of our algorithm. In contrast, Qu tested his

algorithm on 29.7 hours of non-seizure EEG formed by concatenating EEG

segments extracted at regular intervals from several days of data.

Relative to Meier [35], our detector has a longer detection delay, equal seizure

detection rate, and a lower false detection rate. However, unlike Meier's algo-

rithm, ours is not restricted to detecting a defined set of seizure types from a

particular population of individuals with epilepsy.

It is important to note that each of Saab, Qu, and Meier used different data

sets from our own when evaluating the performance of their algorithms.

* Uses Multiple Physiologic Signals: Our method can automatically learn

how to use multiple sources of physiologic information to detect seizures when-

ever the scalp EEG alone is unreliable. This capability is important for the

detection of seizures whose onsets lack the development of rhythmic activity

and instead reflect physical sequelae of the seizure such as eye-flutter, muscle

contractions, or changes in heart rate. Such seizures are not easily grouped into



the categories defined by Meier [35] and therefore will be detected later or not

at all.

* Minimal User Intervention: Our algorithm does not require a user to define

the values of key algorithm parameters. In our approach, a user only needs

to define the onset of activity associated with a seizure in a set of physiologic

signals. The relationships between these signals that distinguish the seizure and

non-seizure periods are automatically learned.

* Suitable for Implantable Medical Devices: Our algorithm can be adapted

for the detection of seizure onset within intracranial EEG, and can be imple-

mented on the low-power hardware of an implantable neurostimulator. When

evaluated on 81 hours of intracranial EEG containing 61 seizures and gath-

ered from 17 adult subjects, our algorithm detected 60/61 seizures within 9.3

seconds, declared a total of 28 false detections, and consumed 12pA when im-

plemented on the hardware in [2]. When evaluated on the same data set and

hardware, a patient non-specific algorithm based on [38] detected 41/61 seizures

within 18.7 seconds, declared a total of 17 false detections, and consumed 32pA.

In this thesis we also discuss the application of our patient-specific algorithm to

the following delay-sensitive therapeutic and diagnostic applications:

* Non-invasive Closed-Loop Control of the Vagus Nerve Stimulator:

Using our seizure onset detector we designed and clinically evaluated the first

non-invasive system that initiates Vagus Nerve Stimulation (VNS) in response

to detecting the onset of a seizure using multiple physiologic signals [57]. As an

example of the system's capabilities, during an 81 hour clinical test of the system

on a patient, the computerized system detected 5/5 seizures and initiated VNS

within 5 seconds of the appearance of ictal discharges in the EEG.

* Computerized Initiation of Ictal SPECT Studies: Using our seizure onset

detector we designed and clinically evaluated a system for initiating a functional

neuroimaging study following seizure onset. The neuroimaging modality, ictal



SPECT, is used to radiographically localize the cerebral origin of a seizure. Our

system could initiate injection of the radiotracer used for ictal SPECT within

19.3 ± 2.3 seconds in 8/8 prospective trials, while the clinical team required

27.7 + 8.5 seconds, and failed to initiate ictal SPECT in one of the trials.

1.6 Thesis Outline

This thesis is organized as follows: In Chapter 2 we provide background material on

seizures and both the scalp and intracranial electroencephalograms. Next, in Chapters

3-5, we develop and analyze the performance of a machine-learning based, patient-

specific algorithm for the detection of seizure onsets within scalp EEG. In Chapter

6, we illustrate how the detector in Chapter 3 can be extended with information

from other physiological signals in order to detect seizures whose onset does not

immediately involve the development of rhythmic activity within the scalp EEG.

We then present applications of our seizure detection methodology. In Chapter 7

we illustrate how the methods developed in Chapters 3 and 6 were integrated into a

real-time system that initiates vagus nerve stimulation in response to detecting the

onset of a seizure. Chapter 8 illustrates how the method developed in Chapter 3 was

used in a real-time system that infuses the radiotracer used in ictal SPECT following

seizure onset detection. Finally, in Chapter 9, we adapt the feature extraction and

classification stages of our detector so that it may be embedded within a low-power,

implantable medical device.



Chapter 2

Seizures and the

Electroencephalogram

This chapter reviews the pathophysiology underlying seizures as well as their clin-

ical manifestation and categorization. This chapter also reviews properties of the

electroencephalogram and the electrographic characteristics of seizures.

2.1 Epileptic Seizures

Neurons are cells within the brain capable of generating, propagating, and process-

ing electric signals. Neurons connect to other neurons in order to form functional

networks, and the brain can be viewed as a collection of interacting neural networks.

The inputs to a neural network can be excitatory or inhibitory. Excitatory inputs

promote activity among neurons within a network and inhibitory inputs suppress it

[30].

Epileptic seizures are transient periods involving the hyperactivity and hypersyn-

chronization of a large number of neurons within one or more neural networks. These

transient states arise because of a perturbation that creates an imbalance favoring the

excitation of a neural network over its inhibition. The imbalance may arise because

of defects within a neuron, such as an ion channel dysfunction; defects in connections

between neurons, such as deficient inhibitory neurotransmitter synthesis; or defects in



neural network organization, such as the formation of aberrant excitatory connections

between neurons. Defects within neurons, neuronal connections, or neural network

orginization may result from a genetic disorder or from trauma to the central nervous

system during life.

Epileptic seizures are broadly classified according to their cerebral site of origin

and spread. Focal seizures arise from a localized region of the brain's cortex and have

clinical manifestations that reflect that region of the brain. As an example, a focal

seizure originating in the temporal lobe, the part of the brain that processes emotions

and short-term memory, may result in feelings such as euphoria, fear, and deja vu or

hallucinations of taste or smell. Focal seizures may spread to involve other regions of

the brain or the entire brain. As an example, a seizure originating in the left motor

cortex may result in jerking movements of the right upper extremity. When the

seizure spreads to adjacent areas and then the entire brain, whole-body convulsions

ensue.

Generalized seizures begin with abnormal electrical activity that appears to en-

compass the entire cerebral cortex. The manifestations of such widespread abnormal

electrical activity often includes the loss of consciousness. Motor manifestation of

these seizures may include whole-body rigidity and jerking (generalized tonic-clonic

seizure) or whole-body loss of muscle tone (atonic seizure). A seizure that begins

focally and then generalizes is referred to as a secondarily generalized seizure.

2.2 Scalp Electroencephalogram

The scalp electroencephalogram (scalp EEG) is a non-invasive measure of the elec-

trical potentials generated by the activity of tens of millions of neurons within the

brain. The scalp EEG is usually measured through electrodes that are symmetrically

arrayed on the scalp as shown in Figure 2-1. An EEG signal, or channel, is formed

by taking the difference between potentials measured at two electrodes. For exam-

ple, the channel FP1 - F7 is formed by taking the difference between the potentials

measured at the electrodes FP1 and F7. Each EEG channel summarizes activity



localized within a region of the brain; for instance, the channel FP1 - F7 reflects

neural activity originating within the frontal lobe of the left hemisphere. The onset

of a focal seizure involves a change in activity on the few scalp EEG channels that

lie above or near the site of the brain giving rise to a seizure; on the other hand, the

onset of a generalized seizure involves activity on all scalp EEG channels.

The physics of EEG generation constrains both the origin and characteristics of

neural activity visible within the scalp EEG. In particular, the neurons that con-

tribute the most to the scalp EEG are those closest to the scalp surface; in contrast,

the activity of neurons buried within deep brain structures is not observable. Further-

more, the cerebrospinal fluid and skull surrounding the brain act as attenuators that

greatly diminish the amplitude of higher frequency neural oscillations. An important

consequence of these physical limitations is that certain types of seizures, namely

those involving a small, deep region within the brain cannot be observed using the

scalp EEG.
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Figure 2-1: EEG electrodes arrayed symmetrically across the scalp provide a temporal
and spatial summary of the synchronous firing of tens of millions of neurons within
the brain.

Electroencephalographers describe EEG activity in terms of its spatial distribution

on the scalp (frontal, posterior, lateral, and bilateral) as well as its dominant frequency

component. An EEG wave is classified as having a delta component if its dominant

frequency component f is < 4 Hz, a theta component if 4 < f < 8 Hz, an alpha

component when 8 < f < 12 Hz, a beta component when 12 < f < 30 Hz, or a

gamma component when f _ 30 Hz. For example, the alpha wave in EEG parlance



refers to a 10 Hz rhythm that appears most prominently on posterior channels when

a subject closes their eyes and relaxes.

Scalp EEG activity is modulated by the state of vigilance of an individual. In

particular, the dominant frequency and spatial distribution of EEG activity during the

awake state is different than that during sleep. As an example, Figure 2-2 illustrates

awake EEG activity interrupted by an eye-blink at 37 seconds. The awake EEG

background is primarily composed of low frequency activity. The eye-blink results in

a downward deflection of the EEG signal on the channels {FP1-F7, FP1-F3, FP2-

F4, FP2 - F8}. Figure 2-3 illustrates EEG activity recorded during sleep. The 11

Hz oscillation, observed most prominently on the channel FP2 - F4 between 12-14

seconds, is known as a sleep spindle.
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Figure 2-2: Example of 10 seconds of awake EEG interrupted by an eye-blink at
37 seconds. The eye-blink results in a downward deflection on the EEG channels
{FP1 - F7, FP1 - F3, FP2 - F4, FP2 - F8}.

Scalp EEG is also easily corrupted by both physiological and non-physiological

artifacts. Physiological artifacts include sweat, chewing, eye-blinks, and scalp mus-

cle contractions. Non-physiological artifacts include power-line noise and EEG cable

motion. As an example, Figure 2-4 illustrates how chewing affects the scalp EEG.

Chewing results in rhythmic, high-frequency activity that is most prominently ob-

served on channels on either side of the scalp (e.g. F7 - T7 and F8 - T8).
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Figure 2-3: Example of 10 seconds of sleep EEG interrupted by 11 Hz oscillations
known as sleep spindles. The sleep spindles are most visible on the channel FP2 - F4
between 8-10 and 12-14 seconds.
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Figure 2-4: Example of 10 seconds of awake EEG interrupted by the rhythmic, high-
frequency activity associated with chewing. The high-frequency activity caused by
chewing can be seen on the EEG channels F7 - T7 and F8 - T8.
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2.2.1 Seizures Within the Scalp Electroencephalogram

Within the scalp EEG, seizures manifest as a sudden redistribution of spectral energy

on a set of EEG channels. The spectral energy redistribution is caused by hypersyn-

chrony of neurons within an epileptic neural network, and consists of an appearance

or disappearance of frequency components within the 0-25 Hz band [19]. However,

which spectral components vanish or rise to prominence varies across patients. Fur-

thermore, the EEG channels demonstrating the spectral energy change also varies

across patients since it is a function of the cerebral site of origin of a seizure.

As an example, Figure 2-5 and Figure 2-6 illustrate seizures from patients A and

B respectively. The seizure in Figure 2-5 begins at 1723 seconds and consists of

flattening of the EEG signal across all channels followed by the appearance of a beta

band rhythm on the channels {F3 - C3, C3 - P3}. Then, over the course of a few

seconds, the amplitude of this rhythm increases as its frequency decreases and settles

within the theta band.
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Figure 2-5: Example of a seizure within the scalp EEG of Patient A. The seizure,
which begins at 1723 seconds, involves flattening of the EEG signal across all channels

followed by the appearance of a beta band rhythm on the channels {F3-C3, C3-P3}.

The seizure in Figure 2-6 begins at 6313 seconds with the onset of a theta band



rhythm that is most prominent on the channels {F7 - T7, T7 - P7}. Other EEG

channels also exhibit a change following seizure onset. The channel {C3 - P3} de-

velops a theta band rhythm while the channel {FP2 - F8} develops a delta band

rhythm.
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Figure 2-6: Example of a seizure within the scalp EEG of Patient B. The seizure,
which begins at 6313 seconds, involves the appearance of a theta band rhythm on the
channels {F7 - T7, T7 - P7}.

Between seizures, the EEG of an individual with epilepsy may exhibit abnormal

rhythmic activity or discharges. The spatial and spectral characteristics of these dis-

charges varies across patients. Figure 2-7 illustrates an abnormal discharge within the

EEG of Patient A. The discharge, which involves most EEG channels, falls between

2884-2892 seconds, and is characterized by a repeating pattern of high-amplitude

spikes followed by broad waves. While these discharges are seen frequently in the

awake EEG of Patient A, they are not accompanied by the physical symptoms as-

sociated with Patient A's seizure (Figure 2-5). Consequently, a detector designed to

react to the seizures of Patient A should not produce an alarm upon the onset of one

of these discharges. In another patient, this type of activity may be associated with

physical symptoms, as is visible in the seizure illustrated in Figure 5-25.

Figure 2-8 illustrates abnormal rhythmic activity observed within the EEG of
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Figure 2-7: Example of an abnormal discharge within the scalp EEG of Patient A.

The discharge, which occurs between 2884-2892 seconds, involves a repeating pattern

of high-amplitude spikes followed by broad waves that can be seen on most EEG
channels.

Patient B. In this case, a theta band rhythm is observed on the frontal channels

{FP1 - F3, F3 - C3} during the awake state between 6126-6130 seconds. This

activity is both frequent and abnormal, but it is not accompanied by the physical

symptoms associated with Patient B's seizure (Figure 2-6). Once again, a detector

designed to react to the seizures of Patient B should not produce an alarm upon the

onset of this rhythmic activity.

The previous examples illustrate the variability in the spectral and spatial signa-

ture of seizure and non-seizure activity across patients. This variability is the primary

reason why patient non-specific detectors exhibit poor sensitivity and specificity for

seizure events [18]. In contrast, for a given individual, seizures that emerge from the

same cerebral site exhibit similar clinical symptomatology and electrographic spatial

and spectral characteristics. As an example, Figures 2-9 and 2-10 illustrate more

seizures recorded from patients A and B respectively. Note the similarity in the spa-

tial and spectral character of these seizures and those illustrated in Figures 2-5 and

2-6.

The long-term stability of an individual's seizure signature has not been studied
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Figure 2-8: Example of abnormal rhythmic activity within the scalp EEG of Patient
B. The rhythmic activity, which occurs between 6126-6130 seconds, involves a theta
band rhythm on the frontal channels {FP1 - F3, F3 - C3}.
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Figure 2-9: A second seizure within the scalp EEG of Patient
which begins at 6210 seconds, resembles the seizure shown in

A. The second seizure,
Figure 2-5.
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Figure 2-10: A second seizure within the scalp EEG of Patient B. The second seizure,
which begins at 2381 seconds, resembles the seizure shown in Figure 2-6.

rigorously. However, in our experience, seizures recorded months apart from patients

without a progressive brain disorder exhibit very similar spectral and spatial char-

acteristics. As an example, Figures 2-11 and 2-12 illustrate two seizures that were

recorded approximately 10 months apart from Patient C. Both seizures begin with

rapid eye-blinking, at 1488 seconds and 992 seconds respectively, which manifests in

the EEG as high-amplitude, downward deflections on the channels {FP1- F3, FP2 -

F4, FP1 - F7, FP2 - F8}. Later, both seizures exhibit a 3-4 Hz theta wave most

prominently on the EEG channel T4 - T6 at 1492 seconds and 998 seconds respec-

tively.

2.3 Intracranial Electroencephalogram

Similar to scalp EEG, the intracranial Electroencephalogram (iEEG) provides a spa-

tial and temporal summary of the electrical activity of a population of neurons. Since

intracranial EEG electrodes are placed on the brain cortex or deep within brain struc-
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Figure 2-11: Example of a seizure within the scalp EEG of Patient C. The seizure,
which begins at 1486 seconds, involves rapid eye-blinking followed by the appearance
of a 3-4 Hz theta wave on the channel T4 - T6.
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Figure 2-12: Example of a seizure recorded from Patient C approximately 10 months
after recording the seizure in Figure 2-11.



tures, the intracranial EEG signal summarizes the activity of a smaller population of

neurons and is immune to corruption by many of the physiologic and environmental

artifacts that plague scalp EEG. Because they are highly invasive, iEEG electrodes

can only be implanted in a limited number of brain sites at any given time; so in-

tracranial EEG offers higher spatial resolution but spatial coverage that is worse than

that of scalp EEG.

The higher spatial resolution of iEEG allows one to notice the neuronal hyper-

synchrony associated with a seizure tens of seconds before the same phenomenon is

noticeable within the scalp EEG [39]. At the same time, the higher spatial resolution

of iEEG permits the recording of a wider gamut of abnormal, non-seizure activity

that is not visible within the scalp EEG [26, 59, 62]. This activity can confound the

seizure detection process.

2.3.1 Seizures Within the Intracranial Electroencephalogram

The manifestation of seizures within the intracranial EEG involves a sudden redis-

tribution of spectral energy on a set of iEEG channels. The spectral energy change

typically consist of an appearance or disappearance of frequency components within

0-65 Hz band [20]. This frequency range is wider than that associated with scalp

EEG because of the absence of the attenuating effect of the cerebrospinal fluid and

skull. Prior to the spectral energy change, discrete events such as a spike or train of

spikes may appear.

As was the case with scalp EEG, the manifestation of seizures within the iEEG

varies significantly across patients. To observe this variability consider Figure 2-

13. The top panel corresponds to a seizure from Patient D while the bottom panel

corresponds to a seizure from Patient E. The seizure of Patient D begins at 5 seconds

and consists of a few spikes that transition into a high-amplitude spike train with a

period of 1 Hz. The seizure of Patient E also begins at 5 seconds and consists of a

few spikes followed by low-amplitude, high-frequency activity.

Outside the context of a seizure the intracranial EEG of an individual with epilepsy

may contain a wide variety of rhythmic activity with characteristics that resemble



1000

800

400

200-

0

-200

0 5 10 15 20 25 30 35 40 45
Time (Seconds)

800

600

400

200

-200

0 5 10 15 20 25 30 35

Time (Seconds)

Figure 2-13: Example of seizures within the iEEG of patients D (top panel) and C

(bottom panel). The seizure of Patient D begins at 5 seconds and consists of a few

spikes that evolve into a high-amplitude spike train. The seizure of Patient E begins

at 5 seconds and consists of a few spikes followed by low-amplitude, high-frequency

activity.

those of a seizure. As an example, consider Figure 2-14. The top panel of Figure

2-14 illustrates a seizure recorded from Patient F while the bottom panel illustrates

a burst of rhythmic activity recorded from the same patient. An algorithm sensitive

only to changes in spectral energy without regard to the frequency range or channels

on which those changes occur [38] may falsely declare the activity in the bottom panel

as a seizure.

For a given patient, the spectral character of seizures within the iEEG is similar

from one seizure to the next provided that the seizures originate from the same

cerebral site [14, 29]. As an example, consider the two seizures from Patient D

illustrated in Figure 2-15. Both seizures begin with a few spikes that transition into

a high-amplitude spike train with a period of 1 Hz. However, the spatial character

of seizures within the iEEG, that is which iEEG channels are involved, tends to

vary more than in the setting of scalp EEG. More specifically, for a given patient,

neighboring iEEG channels may alternate in exhibiting the first signs of iEEG activity

associated with the onset of a seizure from the same brain region.
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Figure 2-14: The iEEG of Patient F contains rhythmic activity that is associated
with a seizure (top panel) as well as rhythmic activity that is not associated with any
clinical symptoms (bottom panel).
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Figure 2-15: Example of two seizures within the iEEG of Patient D. Both seizures
begin at 5 seconds and consist of a few spikes that evolve into a high-amplitude spike
train.
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2.4 Summary

Seizures are transient periods of neural network hyperactivity and hypersynchrony.

The clinical symptoms that accompany a seizure depend both on its cerebral site of

origin as well as its pattern of spread to surrounding brain regions. The scalp and

intracranial electroencephalograms, which measure the aggregate electrical activity

of populations of neurons, can be used to detect seizures. The scalp EEG offers poor

spatial resolution but high spatial coverage while the intracranial EEG offers high

spatial resolution but less spatial coverage.

Within both the scalp and intracranial electroencephalograms seizures manifest

as a redistribution of spectral energy on a set of channels. The manner with which

spectral energy is redistributed varies significantly across patients. For a given indi-

vidual, seizures from the same cerebral site generally exhibit stereotyped onset and

evolution.
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Chapter 3

Patient-Specific Seizure Onset

Detection using the Scalp EEG

In this chapter we present the architecture of a novel algorithm for detecting the onset

of a seizure within the scalp EEG. The algorithm treats the seizure onset detection

problem as a binary classification task that is to be solved within a patient-specific

context. The feature vector used by the algorithm encodes the time evolution of

spectral and spatial properties of the scalp EEG.

3.1 Overview of Binary Classification

Binary classification is the process of assigning an observation to one of two classes or

categories in a manner that optimizes a chosen performance objective; for instance,

minimizing the probability of an erroneous classification. As an example of binary

classification, consider the problem of determining the absence or presence of an

aircraft using returned radar pulses. In this scenario the observation is the radar

pulse, which represents the presence (Class C1) or absence (Class C2) of an aircraft.

In the seizure onset detection problem the observation is an EEG epoch and the two

classes are seizure activity (Class Ci) and non-seizure activity (Class C2).

Determining the class membership of an observation involves two steps. First,

salient properties or features that most discriminate between instances of each class



are extracted from the observation and assembled into a vector of features. In the

case of radar signal processing, the features may be the energy within a series of

returned radar pulses. Next, a classifier that is trained to recognize the difference

between feature vectors extracted from instances of each class determines the class

membership of the observation based on its associated feature vector.

The success of a binary classification task depends strongly on which features are

extracted from an observation as well as on the classifier used to determine class

membership. Features that have a distribution of values for observations belonging

to class C1 and another, very different distribution for observations belonging to class

C2 result in good performance. A classifier capable of deducing from training data

a simple rule that accurately distinguishes between feature vectors extracted from

instances of each class is also important to good performance.

3.2 Feature Vector Design

Seizures are dynamic processes. The onset of a seizure induces within the scalp EEG

a sudden change in the spectral energy distribution of a set of EEG channels. As the

seizure progresses, the spectral and spatial character of the EEG continues to evolve.

The following sections detail how the feature vector used in our detector is designed

to encode the time evolution of spectral and spatial properties within the scalp EEG.

3.2.1 Spectral Features

Following the onset of most seizures, scalp EEG channels that record brain activity

within regions involved in the seizure exhibit rhythmic activity. The spectral structure

of this rhythmic activity may be composed of multiple frequency components. As an

example, Figure 3-1 illustrates a seizure that begins following 2994 seconds, and

Figure 3-2 illustrates the frequency spectrum of the channel FP2 - F4 between 2994-

2999 seconds. For this seizure, the rhythmic activity on the channel FP2 - F4 is

composed primarily of frequency components at 2, 5, and 11 Hz.

Considering several spectral components that constitute an EEG epoch, and not
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Figure 3-1: Example of a seizure whose onset is associated with rhythmic activity
that contains a mixture of prominent frequency components. Seizure onset follows
2994 seconds and mostly involves channels on the right side of the head (channels
with even numerals).
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Figure 3-2: Frequency spectrum of the channel FP2 - F4 following the
seizure illustrated in Figure 3-1. The spectrum contains large spectral
at 2, 5, and 11 Hz.
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simply the dominant spectral component as was done in early seizure detection al-

gorithms [18], is important in detecting seizure onsets with high specificity. The

dominant frequency of a seizure onset epoch may overlap the dominant frequency of

an epoch of non-seizure activity, but what differentiates the two is the presence or

absence of less dominant spectral components. The following examples illustrate this

point.

Figure 3-3 illustrates the spectrum of an eye-blink superimposed on the seizure

spectrum (Figure 3-2). The two spectra overlap in the frequency range 0-4 Hz, but

the spectrum of the seizure activity contains an 11 Hz component that is absent from

the spectrum of the eye-blink.
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Figure 3-3: Superposition of the frequency spectra of an eye-blink and the rhythmic
activity observed on the channel FP2 - F4 following the onset of the seizure in

Figure 3-1. The seizure spectrum contains an 11 Hz component that is absent from
the spectrum of the eye-blink

Figure 3-4 illustrates the spectrum of a sleep spindle superimposed on the seizure

spectrum. In this case, the two spectra overlap in the frequency range 10-12 Hz, but

the seizure spectrum contains larger low-frequency spectral components.

Finally, Figure 3-5 illustrates the spectrum of chewing superimposed on the seizure

spectrum. The two spectra overlap within the frequency range 0-12 Hz, but the seizure

spectrum contains less high-frequency content relative to the chewing spectrum.
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Figure 3-4: Superposition of the frequency spectra of a sleep spindle and the rhythmic
activity observed on the channel FP2 - F4 following the onset of the seizure in Figure
3-1. The seizure spectrum contains low-frequency spectral components that are larger
than those in the spindle spectrum.
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Figure 3-5: Superposition of the frequency spectra of chewing and the rhythmic
activity observed on the channel FP2 - F4 following the onset of the seizure in

Figure 3-1. The seizure spectrum contains less high-frequency content relative to the
chewing spectrum.



Our feature vector encodes the spectral structure of an L second epoch from EEG

channel k by passing the epoch through the M-band filterbank shown in Figure 3-6,

and then measuring the energy in the subband signals Si, i = 1,..., M. The energy

in the subband signal Si from channel k is represented by the feature Ci,k. The

filterbank spans the frequency range 0.5-24 Hz since within this range one observes

most physiologic and pathophysiologic scalp EEG activity [19].

EEG Channel k ...

4-

S1 S 3 S SM

Compute Energy in Subband Signal Si

X1,k X2,k X3,k XM,k

Figure 3-6: M-band filterbank that measures the energy within the spectral compo-
nents of an L second epoch taken from a single EEG channel.

As an example, Figure 3-7 illustrates how energies within the frequency bands

defined by an M = 8 filter filterbank can differentiate between the spectra of seizure

and non-seizure activity. The energy within the frequency bands defined by the

rightmost three filters (thick line) differentiate between the seizure spectrum (red)

and the spectrum associated with chewing (blue).

3.2.2 Spatial Features

The set of EEG channels on which EEG activity is observed, which is referred to as

its spatial distribution, can be important in differentiating between seizure onset and

non-seizure activity.
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Figure 3-7: Energy within the frequency bands defined by the rightmost three filters
(thick line) of the filterbank differentiates between the seizure spectrum (red) and
chewing spectrum (blue)
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Figure 3-8: The spatial distribution of EEG activity can be used to differentiate
seizure from the non-seizure activity. The sleep spindles between 2989-2992 seconds
do no involve activity on the channels C4 - P4 and T8 - P8. In contrast, the seizure
activity following 2994 seconds involves both of these channels.



As an example, Figure 3-8 illustrates sleep spindles between 2989-2992 seconds,

and seizure activity following 2994 seconds. The sleep spindle and seizure activity are

both rhythmic, but the seizure involves EEG channels (C4 - P4 and T8 - P8) that

are not involved in the sleep spindle event. Consequently, the absence of activity on

a set of channels during a non-seizure event and its presence during seizure onset can

serve to differentiate EEG activity beyond what is possible using spectral information

alone.

To simultaneously capture the spectral and spatial information contained within

an L second EEG epoch at time t = T, we concatenate the M spectral energies

extracted from each of N EEG channels to form a composite feature vector XT with

M x N elements. The process of generating XT is illustrated in Figure 3-9. It is

important to note that the feature vector XT automatically captures relationships

between the spectral structure of different EEG channels. Previous algorithms relied

on experts to define those relationships [44, 46].

Spectral Features Spectral and Spatial
Features

~x1,1

Xl,N
EEG Ch N ... . x

- .. . X2,N

Figure 3-9: Formation of an intermediate feature vector XT that captures the spectral
and spatial properties of an epoch at time t = T



3.2.3 Time Evolution

The feature vector XT developed in section 3.2.2 uses all EEG channels to capture

the spatial and spectral content of an EEG epoch at time t = T, but it does not

capture how the current epoch relates to those in the recent past. Consequently, the

feature vector XT cannot represent how a seizure emerges from the background EEG

nor how it evolves during the onset period. In order to capture the relation between

feature vectors across time we form a composite feature vector XT that is the result

of concatenating feature vectors from W non-overlapping epochs. This is similar to

what was done in [7] for off-line intracranial seizure onset detection. The feature

vector XT is constructed as shown in equation 3.1, where XT is a spectral and spatial

feature vector extracted from an epoch of length L seconds at time t = T.

XT = [X,_T(wL ... XT-2L XT-L XT] (3.1)

Encoding the temporal evolution of EEG through the formation of Xr is not

analogous to forming a single feature vector XT using a longer epoch length L. In the

former approach, discrete events are preserved and in the latter the spectral signature

of discrete events within the longer epoch is smeared.

To appreciate the value of capturing the temporal evolution of the feature vectors

XT consider deriving the composite feature vector XT for the seizure shown in Figure

3-10 using only the channel F3 - C3 (recall that in the actual detector all channels

are used). In this example the epoch length used to from XT is L = 2 seconds long

and the feature vector XT is formed by concatenating W = 3 feature vectors: XT-4,

XT-2, and XT.

The seizure in Figure 3-10 involves a sequence of events that can be modeled

through the feature vector XT. The seizure begins at 1723 seconds with a spike

followed by a period of low amplitude EEG known as an electrodecrement. Next, a

beta band rhythm appears most prominently on the channel F3 - C3, and, over the

period of a few seconds, increases in amplitude and decreases in frequency towards
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Figure 3-10: Scalp EEG seizure involving a sequence of discrete spectral events. The
first event, at 1723 seconds, is a spike involving all EEG channels. Next, all EEG
channels exhibit a period of low-amplitude EEG. Finally, at 1725 seconds, a beta
band rhythm that increases in amplitude and decreases in frequency appears on the
channel F3 - C3.

the theta band.

To more clearly demonstrate the series of spectral events that constitute the seizure

in Figure 3-10, we show the spectrogram of channel F3 - C3 in Figure 3-11. A

spectrogram is a plot of the spectral content of a signal as function of time. In a

spectrogram spectral components with greater energy are shown in darker colors and

those with less energy in brighter colors. In Figure 3-11 one can see a high energy

event with spectral content up to 30 Hz between 3.5-4.5 seconds, this corresponds

to the spike at 1723 seconds in Figure 3-10. Between 4.5-6.5 seconds a decrease in

energy (brighter colors) in the frequency band 0-10 Hz is observed, this corresponds

to the electrodecrement between 1723-1725 seconds in Figure 3-10. Finally, between

6.5-13.5 seconds one observes a negatively sloped, dark colored line representing a

spectral component that begins with a frequency of 20 Hz and decreases towards a

frequency of 5 Hz. This corresponds to the onset and evolution of the beta band

rhythm at 1725 seconds in Figure 3-10.

Figures 3-12 and 3-13 illustrate how the composite feature vector XT is able to

model the sequence of events associated with both seizure onset and evolution. In

Figure 3-12 note how XT, which is composed of the triplet of feature vectors XT- 4 ,
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Figure 3-11: Spectrogram of Channel F3 - C3 illustrating sequence of events that

compose the onset and evolution of the seizure in Figure 3-10.
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Figure 3-12: Spectrogram of channel F3 - C3 illustrating how the feature vector

XT models the transition from background to seizure onset. The feature vector XT

captures the period of low amplitude activity, XT-2 captures the spike, and XT-4

captures the background EEG activity preceding the spike.
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Figure 3-13: Spectrogram of channel F3 - C3 illustrating how the feature vector XT
models the evolution of a seizure. The feature vector XT captures the beta band
rhythm, XT-2 captures the period of low amplitude activity, and XT-4 captures the
spike.

XT-2, and XT spans the transition from background to seizure activity. The feature

vector XT captures the period of low amplitude activity, XT-2 captures the spike,

and XT-4 captures the background EEG activity preceding the spike. When shifted

forward in time as shown in Figure 3-13, the composite feature vector X7 models

the seizure's evolution. The feature vector XT captures the beta band rhythm, XT-2

captures the period of low amplitude activity, and XT-4 captures the spike.

3.3 Feature Vector Classification

To classify the feature vector XT as representative of seizure or non-seizure activity

we used the Support-Vector Machine (SVM) algorithm [9]. The SVM algorithm uses

training seizure and non-seizure feature vectors to learn a decision boundary that

separates these two classes of activity. Once the decision boundary is learned, the

SVM algorithm determines the class membership of a newly observed feature vector

Xr based on which side of the boundary the vector falls.

In its simplest form, the SVM algorithm determines a decision boundary in the



form of a high-dimensional plane, or hyperplane, in the space of features. The hy-

perplane is chosen to maximize the classification margin, which is the geometric

distance between the hyperplane and the boundary cases of each class [61]. The

boundary cases are known as support-vectors. If the classes cannot be well separated

by a hyperplane, as is the case in the seizure onset detection problem, the SVM can

be used to determine a quadratic or circumferential decision boundary. Conceptually,

the SVM determines a nonlinear boundary in the input feature space by solving for

a linear boundary in a higher-dimensional feature space induced by a kernel.
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Figure 3-14: Two-dimensional seizure (red) and non-seizure (blue) feature vectors
extracted from a single iEEG channel. The first dimension of this feature space
is defined by the energy in the spectral band 0-16 Hz and the second dimension
corresponds to the energy in the 25 + 11 Hz band. The seizure vectors extracted from
the first 7 seconds of the seizure are numbered 1-5.

As an example, Figure 3-14 plots, in a two-dimensional feature space, iEEG seizure

feature vectors (red circles) and non-seizure feature vectors (blue crosses) extracted

from a single iEEG channel. The first dimension of this feature space is defined by

the energy in the spectral band 0-16 Hz and the second is the energy in the 25 ± 11

Hz band. The seizure feature vectors (red circles) form two clusters: one cluster with

fewer feature vectors that lies in close proximity to the non-seizure feature vectors,

and a second cluster with a much greater number of feature vectors that lies far away

from the non-seizure vectors. The seizure vectors closest to the non-seizure vectors



are associated with the seizure onset period and those further away are associated

with later stages of the seizure. In Figure 3-14, the seizure vectors numbered 1-5 are

extracted from the first 7 seconds of a seizure.

Figure 3-15 shows the linear decision boundary separating the iEEG seizure feature

vectors from the non-seizure vectors. As can be seen the two classes are not well

separated by a linear decision boundary as there are numerous crosses on the side of

the hyperplane designated for seizure feature vectors.
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Figure 3-15: Linear decision boundary separating seizure (red) and non-seizure (blue)
feature vectors extracted from a single iEEG channel. The decision boundary was
determined using the SVM learning algorithm.

Figure 3-16 shows a nonlinear decision boundary separating the same iEEG seizure

and non-seizure feature vectors. The nonlinear boundary, which is computed using

a radial basis kernel, is able to better separate the seizure and non-seizure feature

vectors.

The earliest seizure vector that is correctly classified by either the linear or non-

linear decision boundary is the third seizure vector. The SVM learning algorithm

allows the user to specify the value of a parameter J that controls the relative cost of

misclassifying seizure and non-seizure vectors. If the value of J is set so that the cost

of misclassifying a seizure vector far exceeds the cost of misclassifying a non-seizure

vector, then the SVM learning algorithm could produce a boundary that can cor-
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Figure 3-16: Nonlinear decision boundary separating seizure (red) and non-seizure
(blue) feature vectors extracted from a single iEEG channel. The decision boundary
was determined using a radial basis kernel and the SVM learning algorithm.

rectly classify the first and second seizure vectors at the expense of classifying more

non-seizure vectors incorrectly.

The mapping function f(-) that establishes whether a feature vector falls within

the region of the feature space defined by seizure activity is expressed as shown in

equation 3.2 in the case of a linear boundary

f(X) = Seizure if WTX + f > 0 (3.2)

f(X) = Non-seizure if WTX +3 P 0

Where the vector W, which is the normal to the separating hyperplane, and the

bias term 3 are parameters determined by the SVM learning algorithm [9]. In the

case of a nonlinear boundary determined using a radial basis kernel, the discriminant

function takes the form shown in equation 3.3. The coefficients aci, support-vectors X,

and bias term p/3 are again determined by the SVM learning algorithm. The parameter

y, which controls how tightly the nonlinear boundary circumscribes a class, is user-

defined.



Nsv

f(X) = Seizure if {- a exp(-yllX - Xjj12)} +± > 0 (3.3)
i=1

Nsv

f(X) = Non-seizure if { ai exp(-,y|X - XiI 2)} + < 0
i= 1

The number of support-vectors Nsv is partly governed by the complexity of the

classification task. As the similarity between an individual's seizure and non-seizure

activity increases more support-vectors are needed in order to define a more complex

decision boundary, and as a result the computational cost of equation 3.3 increases.

The support-vector machine algorithm is well-suited for the task of seizure onset

detection because its learning mechanism focuses on determining a decision boundary

that separates the boundary cases of each class; recall that the boundary cases of the

seizure class are associated with the onset of the seizure. Support-vector machines

have also been shown to perform well in high-dimensional classification tasks [27] and

in the setting where one class has a smaller number of training examples [1].

3.4 Patient-Specific Detector Architecture

The block diagram in Figure 3-17 illustrates the processing stages of the patient-

specific detector. The detector passes L-second epochs from each of N EEG channels

through a filterbank. In turn, the filterbank computes for each channel M features

that correspond to the energies within M frequency bands. The M features extracted

from each of the N channels are then concatenated to form a M x N element vector

XT that automatically captures the spectral and spatial relations between channels.

Next, the W feature vectors XT, XT-L,..., and XT-(w-1)L are concatenated to form

the feature vector XT. This vector, which contains W x Mx N elements, automatically

captures the time evolution of spectral and spatial relations among the input EEG

channels.

Finally, the feature vector Xr is assigned to the seizure or non-seizure class using a
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Figure 3-17: Patient-specific seizure onset detector architecture.

two-class support-vector machine classifier with cost factor J, radial basis kernel with

parameter -y, and trade-off between classification margin and error C. The detector

declares a seizure after one feature vector XT is assigned to the seizure class.

Since seizure and non-seizure activity are generally stereotypical for a patient and

highly variable across patients (Chapter 2), the support-vector machine is trained

on training seizure and non-seizure vectors from a single patient. The training non-

seizure vectors are extracted from H hours of continuously recorded scalp EEG. The

seizure vectors are derived from the first S seconds following the onset of K training

seizures.

Figure 3-18 illustrates how successive non-seizure training vectors are extracted

from a non-seizure training record when L=2 and W=3. For these parameter values,

a six second window is shifted, one second at a time, across a non-seizure record. For

each positioning of the six second window within the non-seizure record, a training

non-seizure feature vector X is generated. More specifically, in Figure 3-18, the time

interval 0-6 seconds is broken up into three, non-overlapping 2 second epochs that are

used to generate the feature vectors X 2 , X4 , and X 6 . These vectors are then grouped



to form the first training non-seizure feature vector X6. Next, the time interval 1-7

seconds is broken up into three, non-overlapping 2 second epochs that are used to

generate the feature vectors X3, X5, and X7. These vectors are then grouped to form

the second training non-seizure feature vector A7. The third training non-seizure

feature vector Xs is formed by grouping the feature vectors X 4 , X 6, and X8 extracted

from the time interval 2-8 seconds. The training non-seizure vector 's overlaps the

training vector '6 in composition.
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Figure 3-18: Generating training non-seizure feature vectors.

The process used to generate training seizure vectors is similar to that used to

generate training non-seizure vectors. Figure 3-19 illustrates how successive seizure

training vectors are extracted from a training seizure when L=2 and W=3. In Figure

3-19, seizure onset is at time 0 seconds. The first training seizure vector X2 is formed

by grouping the feature vectors extracted from the six second window spanning the

time interval between -4 and +2 seconds. The second training seizure vector A3 is

formed by grouping the feature vectors extracted from the six second window spanning

the time interval between -3 and +3 seconds. This process is repeated until one has



advanced S seconds into the seizure.
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Figure 3-19: Generating training seizure feature vectors.

Table 3.1 summarizes the parameters that control our patient-specific detection

algorithm.

3.5 Instantiating Detector Parameters

In this section we assign values to the detector parameters listed in Table 3.1. In

Chapter 5 we illustrate how perturbing the assigned value of some of these parameters

impacts seizure onset detection performance.

3.5.1 EEG Epoch Length: L

Most of the spectral energy of physiologic and pathophysiologic scalp EEG activity

falls within the 0.5-24 Hz frequency band [19]. In order to resolve the lowest end of

the this frequency range, the detector extracts spectral features from a L = 2 second



Table 3.1: Patient-specific Detector Parameters

epoch. Other

EEG epochs.

seizure detection algorithms have used 2.5 second [46] and 6 second [37]

3.5.2 Number of EEG Channels: N

All available EEG channels are provided as inputs to the seizure detection algorithm.

The scalp EEG data set used to evaluate the algorithm, which is described in Chapter

4, contained N = 18 EEG channels. However, in [54], Shih shows that limiting the

detector presented in this chapter to using N = 5 channels does not significantly

impact seizure detection performance.

3.5.3 Number of filters: M

The detector uses an M = 8 uniform bandwidth filterbank. The fiterbank spans the

0-25 Hz frequency range using filters that are 3 Hz wide. In Chapter 5 we demonstrate

the impact of using a filterbank with M < 8 filters.

3.5.4 Number of feature vectors in XT: W

The detector groups W = 3 feature vectors to form the feature vector X-. With

W = 3, the detector examines the evolution of the EEG over a period of 6 seconds

Parameter Description
L EEG epoch length
N Number of EEG channels
M Number of filters in filterbank
W Number of feature vectors that form XT
SSVM radial basis kernel parameter
J Relative cost of misclassifications
C Trade-off between classification margin and error
H # of hours used to extract training non-seizure vectors
S # of seconds into seizure used to extract training seizure vectors
K 0 of seizures used to extract training seizure vectors



when determining whether or not to declare a seizure. As will be shown in Chapter

5, using fewer vector to form XT increases false detections, and using more vectors

increases detector latency.

3.5.5 SVM Parameters: y, J, and C

The SVM used by the detector is trained using the SVMLight software package [28]

with a cost factor J = 1, RBF kernel parameter of 7 = 0.1, and trade-off between

classification margin and error C = 1. We showed in [55, 56] that these values, after

adjusting for SVM software package differences, work well on an independent data set

consisting of 139 seizures and 49 hours of non-seizure EEG recorded from 36 pediatric

epilepsy patients.

3.5.6 Training Parameters: H, K, and S

The detector should be trained on non-seizure vectors extracted from H > 24 hours

of non-seizure EEG so that it is exposed to awake, sleep, abnormal, and artifact-

contaminated EEG. The detector should be trained on as many seizures originating

from the same seizure focus; however, as shown in Chapter 5, performance gains

are marginal for K > 3 seizures. For any given seizure, the detector is trained on

seizure vectors extracted from the first S = 20 seconds of a seizure. Seizure onset

is marked by an electroencephalographer and corresponds to the onset of rhythmic

activity associated with a clinical seizure. In Chapter 5 we demonstrate the impact

of training on S < 20 seconds.



76



Chapter 4

Scalp EEG Data and Testing

Methodology

In this chapter we describe the scalp EEG data and testing methodology used to

estimate the latency, sensitivity, and specificity of the patient-specific seizure onset

detector described in Chapter 3.

4.1 Scalp EEG Data Set

The data set used to evaluate the performance of our patient specific detector consists

of continuous Scalp EEG recordings from 23 pediatric patients (age < 18) undergoing

medication withdrawal for epilepsy surgery evaluation at Children's Hospital Boston.

The EEG was sampled at 256 Hz and recorded using an 18-channel, 10-20 bipolar

montage. According to the 10-20 bipolar montage, EEG electrodes are arrayed on the

scalp as shown in Figure 2-1, and the EEG channels formed are those illustrated in

the EEG tracings discussed in Chapter 2. Overall, this 23 patient data set contained

844 hours of continuously recorded EEG and 163 seizures.

The scalp EEG data set is segmented into records. A record is typically one hour

long. Records that do not contain a seizure are called non-seizure records and those

that contain one or more seizures are called seizure records.



4.2 Performance Metrics

Three metrics will be used to characterize the performance of our seizure onset de-

tector.

1. Electrographic Seizure Onset Detection Latency EOLaten,,,. The electro-

graphic onset of a seizure refers to the onset of scalp EEG changes associated

with a seizure. The clinical onset of a seizure refers to the onset of its physical

or cognitive symptoms. In scalp EEG, the electrographic onset of a seizure may

or may not precede its clinical onset; in contrast, in iEEG, the electrographic

onset of a seizure tends to precede its clinical onset. EOLate,, refers to the

delay between electrographic onset and detector recognition of seizure activity.

By definition EOiten > 0.

2. Sensitivity S refers to the percentage of test seizures identified by a detector.

3. False Alarms Per Hour FA refers to the number of times, over the course

of an hour, that a detector declares the onset of seizure activity in absence of

an actual seizure.

4.3 Performance Metric Measurement

To estimate our detector's performance on data recorded from a patient, we use a

leave-one-record-out cross-validation scheme. For the purposes of this discussion, Let

NNS denote the number of non-seizure records and let Ns denote the number of

seizure records.

Measuring EOLateny and S

The detector is trained on the NNS non-seizure records of a patient (median NNS =

33) as well as Ns - 1 records containing a seizure (median Ns = 5). The detector

is then tasked with detecting seizures in the mth seizure record; the record that was

withheld from the training set. This process is repeated Ns times so that each of



the Ns seizure records is tested once; a seizure record is never simultaneously in the

training and testing sets.

Let Sm E {0, 1} be a binary variable that denotes whether the detector noted the

mth -seizure, and let EOLatency,m denote the latency with which the detector notes

that seizure's electrographic onset. Let FAs,m be the number of false alarms declared

while processing the mth seizure record. Finally, let K denote the total number of

detected seizures. Equation (4.1) shows how these quantities are combined into an

estimate of the detector's performance for a given patient.

1 NS

S E Sm (4.1)
m=1

EOLatene = m * EOLatency,m

Measuring FA

A detector is trained on the Ns seizure records of a patient as well as NNs - 1

non-seizure records. The detector is then tasked with processing the nt
h non-seizure

record; the record that was withheld from the training set. This process is repeated

NNS times so that each of the NNs non-seizure records is tested once; a non-seizure

record is never simultaneously in the training and testing sets. Let FANs,n be the

number of false alarms declared while processing the nth non-seizure record. Equation

(4.2) is used to estimate the detector's false alarm rate.

NNS Ns

FA = NN+ Ns * ( FAN, + FAs,m) (4.2)
n=l m=l
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Chapter 5

Performance

In this chapter we evaluate the performance of the detector described in Chapter

3 using the scalp EEG data and testing methodology described in Chapter 4. We

also analyze how varying certain detector parameters impacts detector performance.

Finally, we compare the performance of our algorithm to that of a state-of-the-art

patient non-specific seizure detector.

5.1 Patient-Specific Detector Performance

5.1.1 Latency

Figure 5-1 illustrates the percentage of test seizures detected within a specified la-

tency. As can be seen, 50% of the 163 test seizures are detected within 3 seconds,

71% within 5 seconds, and 91% within 10 seconds. The mean latency with which the

detector declared the onset of a test seizure is 4.6 seconds.

Figure 5-2 illustrates the latency with which the detector declared the onset of

each seizure for each of the 23 subjects. A seizure is represented by a blue dot, and

the height of a dot represents the latency associated with a seizure detection. If more

than one seizure was detected with the same latency, then the numeral next to a dot

indicates the number of seizures it represents. For most patients, the majority of

seizures are detected within 5 seconds.
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Figure 5-1: Percentage of 163 test seizures detected within a specified latency. The

detector notes the onset of 50% of all test seizures within 3 seconds.

For Patient 15 one of the seizures is detected with a 55 second delay. The reason

for the long detection latency is that the EEG at the onset of this seizure differed

in spectral and spatial characteristics from training seizures. Figure 5-3 illustrates a

typical training seizure. The seizure begins following 272 seconds with a theta band

rhythm that is most prominently seen on the channel T7 - P7. Figure 5-4 illustrates

the seizure that the algorithm failed to detect promptly. This seizure, which begins

at 876 seconds, involves a train of spikes on the channel P7 - 01.

5.1.2 Sensitivity

Figure 5-5 shows the sensitivity with which the patient-specific algorithm detects

the test seizures of each of the 23 subjects. Overall, 96% of 163 test seizures were

detected.

5.1.3 Specificity

Figure 5-6 shows the number of false detections declared by the patient-specific de-

tector in a period of 24 hours for each of the 23 subjects. For most patients (18 of
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Figure 5-2: Latency with which the detector notes the onset of seizures for each of
the 23 test subjects. Each dot represents a seizure. A numeral is placed next to dots
that represent more than one seizure. For most patients, the majority of seizures are
detected within 5 seconds.
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Figure 5-3: Example of a seizure within the scalp EEG of Patient 15. The seizure,
which begins at 272 seconds, consists of a theta band rhythm that is most prominently
seen on the channel T7 - P7.
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Figure 5-4: Example of another type of seizure observed within the scalp EEG of
Patient 15. This seizure, which begins at 876 seconds, consists of a train of spikes
on the channel P7 - 01. The detector fails to detect the onset of this seizure since
its spectral and spatial characteristics differ from those of training seizures. Training
seizures resemble the seizure shown in Figure 5-3.
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Figure 5-5: Sensitivity of the patient-specific seizure detector. Red bars show the
number of test seizures available for each subject, and black bars show the number
of test seizures recognized by the detector. Overall, the detector recognized 96% of
163 test seizures.
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Figure 5-6: Specificity of the patient-specific seizure detector. For most patients (18
of 23), the detector declares between 0 and 5 false detections per 24 hours.

For Patient 13 the algorithm declares 20 false detections per 24 hour period. The

reason for the high false alarm rate is the presence of short bursts of rhythmic activity

that match the seizure onset signature both in spectral and spatial character. Figure

5-7 illustrates the onset of a typical seizure recorded from Patient 13. The seizure

begins following 640 seconds with a delta band rhythm that is most prominent on the

channel FP1 - F7. Figure 5-8 illustrates the burst of rhythmic activity that resulted

in a false detection. The burst, which occurs between 233-235 seconds, also consists

of a delta band rhythm that is most prominent on the channel FP1 - F7. The main

feature that distinguishes the seizure from the burst is the seizure's temporal extent.

To improve the specificity of the detection algorithm for Patient 13, one could declare

a seizure only when activity suspected of being a seizure persists for a duration of

time that exceeds the average length of the bursts of rhythmic activity. The cost of

such a modification will be an increase in detection latency.

For the two patients with the highest number of false detections, patients 12 and
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Figure 5-7: Example of a seizure within the scalp EEG of Patient 13. The seizure,
which begins at 640 seconds, consists of a delta band rhythm that is most prominent
on the channel FP1 - F7.
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Figure 5-8: Example of a short burst of rhythmic activity within the scalp EEG of

Patient 13. The burst, which occurs between 233-235 seconds, consists of a delta band

rhythm that is most prominent on the channel FP1 - F7. Since the burst resembles

the seizure in Figure 5-7, the detector declares a false detection following the onset
of the burst.



13, we note that false detections tend to occur in a small fraction of the 1 hour records

processed by the detector. Figure 5-9 illustrates that 75% of the test records (24 of

33 hours) resulted in 0 false detections in the case of Patient 13. For Patient 12, 68%

of the test records (11 of 16 hours) resulted in 0 false detections.

--- Patient 13
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Figure 5-9: False detections declared by the detector are not uniformly distributed
across test records. For Patient 13, 75% of the test records resulted in 0 false detec-
tions. For Patient 12, 68% of the test records resulted in 0 false detections.

5.2 Varying Patient-Specific Detector Parameters

5.2.1 Varying the Number of Filters: M

On the scalp EEG data set discussed in section 4.1 we profiled the performance of our

patient-specific detector as a function of uniformly splitting the bandwidth 0-25 Hz

using 2, 4, and 8 equal bandwidth filters. In these experiments the number of filters

M used to generate the feature vector XT varies, but the number of feature vectors

that are grouped to form XT is fixed at W=3.

Increasing the number of filters within the filterbank does not greatly impact the

detection latency or the sensitivity of the detector. The average, across 23 subjects,



latency of detectors with 2, 4, and 8 filter filterbanks was 4.4, 4.7, and 4.8 seconds

respectively, and all detectors had a sensitivity of 96%. Increasing the number of

filters appears to improve the specificity of a detector as shown in Figure 5-10. The

average specificity of a detector that uses a two-filter filterbank is greater than 8 false

detections per 24 hours, and that of a detector with an eight-filter filterbank is less

than 4 false detections per 24 hours.

4

Number of Fhers

Figure 5-10: The false detection rate of the detector decreases as number of filters
used to construct XT is increased from 2 to 8. A two-filter filterbank yields a false

detection rate of 8 false detections per 24 hours. An eight-filter filterbank results in
a false detection rate smaller than 4 false detections per 24 hours.

5.2.2 Varying the Number of Feature Vectors in XT: W

On the scalp EEG data set discussed in section 4.1 we profiled the performance of

our patient-specific detector as the number feature vectors W used to form XT is

changed. In these experiments a M = 8 filter filterbank was used to generate the

feature vectors XT, XT-L,..., XT-(W-1)L that are embedded within Xr.

The sensitivity of the patient-specific detector remained 96% as the number of



feature vectors within XT was increased from 2 through 4. However, as W is increased

the false detection rate of the detector decreases while its latency increases as shown

in Figure 5-11. In order to detect seizures with an average latency shorter than 5

seconds one should set W = 3.

3.5 4 4.5 5 5.5

Latency (Seconds)

Figure 5-11: Increasing the number of feature vectors within Xr decreases the detec-
tor's false detection rate and increases its detection delay. To detect seizures with an
average latency shorter than 5 seconds one should set W = 3.

5.2.3 Varying the Number of Training Seizures: K

The performance of the detector improves as more seizures are included in the training

set. Figure 5-12 illustrates how the average detection latency and miss rate decrease

with an increasing number of training seizures for five randomly selected patients.

With a single training seizure, the detector has a latency greater than 7 seconds and

misses more than 45% of the test seizures. With three training seizures, the detector

has a latency close to 4 seconds and misses less than 5% of test seizures. The addition

of a fourth seizure improves the detector's latency to 3.5 seconds but does have a great

impact on the detector's miss rate.
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Figure 5-12: Increasing the number of training seizures decreases the detector's miss
rate and its detection delay. Including more than three training seizures results in a
marginal improvement in detector's miss rate.

5.2.4 Varying Training Time into a Seizure: S

In this section we examine how the performance of the detector changes when training

on seizure feature vectors derived from the first S = 6, 12, 18, or 24 seconds of training

seizures. Figure 5-13 shows that the detector's average latency does not improve

significantly for S > 12 seconds. Moreover, the detector's sensitivity exceeds 90%

for S > 18 seconds as shown in Figure 5-14. Finally, Figure 5-15 shows that the

detector's false detection rate increases as the value of S is increased.

One explanation for the increase in false detections with increasing S assumes

that the decision boundary developed by the SVM learning algorithm encloses a

single, contigous region of the feature space as illustrated in Figure 3-16. With this

assumption, increasing S forces the SVM to develop a wider decision region in order to

enclose feature vectors from the early and late portions of a seizure. Such a boundary

is more likely to result in false detections since it does not tightly circumbscribe the

training seizure vectors.
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Figure 5-13: Including seizure vectors derived from the first S > 12 seconds of each
training seizure does not improve seizure detection delay significantly. For S > 12
seconds the detector's mean latency is less than 3 seconds.
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Figure 5-14: Including seizure vectors derived from the first S > 18 seconds of each
training seizure does not improve seizure detection rate significantly. For S > 18
seconds the detector recognizes more than 95% of all test seizures.
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Figure 5-15: Increasing S increases the detector's false detection rate.

5.3 Patient-Specific and Non-specific Seizure De-

tection

In this section we compare the performance of our patient-specific detector to the

performance of the Reveal algorithm, a patient non-specific detector. Recall that Re-

veal examines one EEG channel at a time and then employs hand-coded and neural

network rules to determine whether features derived from a time-frequency decompo-

sition of a channel are consistent with a seizure event. The thresholds for some of the

neural network rules are determined using both archetypal seizures from individuals

with epilepsy and background EEG from individuals without epilepsy.

5.3.1 Performance Comparison

We evaluated the performance of the Reveal algorithm under a sensitive and a specific

setting. Under the sensitive setting, the Reveal algorithm declares a seizure whenever

5 seconds of EEG resembles training seizures with a score of 0.9 out of 1. Under the

specific setting, a seizure is declared whenever 20 seconds of EEG resembles training



seizures with a score of 0.9 out of 1.

Under the sensitive setting, the Reveal algorithm detected 74% of 152 test seizures

while our patient-specific method detected 96% of the test seizures. Figure 5-16

shows, for each patient, the number of seizures detected by our method and the

Reveal algorithm.

Performance Comparison: Sensitivity
a Reveal Sensitive Setting U Patient Specific Detector M Total Number Of Seizures
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Figure 5-16: Comparison of the number of test seizures recognized by the Reveal

(sensitive setting) and patient-specific algorithms. Black bars show the number of
test seizures available for each subject, red bars show the number of test seizures rec-
ognized by the patient-specific algorithm, and blue bars show the number of seizures
recognized by the Reveal algorithm. The Reveal algorithm detected 74% of 152 test
seizures and our patient-specific method detected 96% of all test seizures.

The specificity of the Reveal algorithm was poor as illustrated by the number

of false detections declared in a 24 hour period (Figure 5-17). For some patients

the Reveal algorithm declared an excess of 100 false detections per 24 hour period.

Figure 5-18 expands the y-axis of Figure 5-17 so that the false detection rates of the

patient-specific detector are visible.

Under the specific setting, the sensitivity of the Reveal algorithm decreased to

61%. A comparison, for each patient, of the number of seizures detected by our
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Figure 5-17: Comparison of the number of false detections declared

(sensitive setting) and patient-specific algorithms. For some patients
gorithm declared an excess of 100 false detections per 24 hour period.
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Figure 5-18: Comparison of the number of false detections declared by the Reveal

(sensitive setting) and patient-specific algorithms. Expanded y-axis.



method and the Reveal algorithm is shown in Figure 5-19. As expected, the specificity

of Reveal improves under this setting but it remains worse than that of the patient-

specific detector as shown in Figures 5-20 and 5-21.
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Figure 5-19: Comparison of the number of test seizures recognized by the Reveal
algorithm (specific setting) and our patient-specific algorithm. Black bars show the
number of test seizures available for each subject, red bars show the number of test
seizures recognized by the patient-specific algorithm, and blue bars show the number
of seizures recognized by the Reveal algorithm. The Reveal algorithm detected 61%
of 152 test seizures and our patient-specific method detected 96% of all test seizures.

5.4 Case Studies

The following examples illustrate why a patient-specific approach can yield better

seizure detection performance.

5.4.1 Latency

Figure 5-22 illustrates a seizure recorded within the scalp EEG of Patient G. The

onset of the seizure occurs at 701 seconds and consists of beta band activity that is
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Figure 5-20: Comparison of the number of false detections declared by the Reveal
(specific setting) and patient-specific algorithms. For some patients the Reveal algo-
rithm declared an excess of 100 false detections per 24 hour period.
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Figure 5-21: Comparison of the number of false detections declared by the Reveal
(specific setting) and patient-specific algorithms. Expanded y-axis.



most prominent on the channels {F4 - C4, C4 - P4, F8 - T8, T8 - P8}. Twenty-nine

seconds into the seizure, large amplitude theta band activity can be seen on all EEG

channels as shown in Figure 5-23.
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Figure 5-22: Seizure recorded within the scalp EEG of Patient G. The seizure, which
begins at 701 seconds, consists of beta band activity that is most prominent on the
channels {F4 - C4, C4 - P4, F8 - T8, T8 - P8}.

In this case, our patient-specific detector demonstrated improved detection la-

tency relative to the Reveal algorithm. The patient-specific detector, on average,

recognized that a seizure was ongoing within 7 seconds of its electrograpihc onset.

On the other hand, the Reveal algorithm detected the presence of seizure activity

21.5 seconds following seizure onset. The Reveal algorithm could not detect the sub-

tle EEG change associated with seizure onset, but could detect the high-amplitude,

generalized activity that emerged towards the end of the seizure.

5.4.2 Sensitivity

Figure 5-24 illustrates a seizure recorded within the scalp EEG of Patient H. The

seizure begins at 977 seconds with rapid eye-blinking that manifests as large, down-

ward deflections on the channels FP1 - F3, FP2 - F4, FP1 - F7, FP2 - F8. Later,
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Figure 5-23: Large amplitude theta band activity can be seen on all EEG channels
twenty-nine seconds after the onset of the seizure shown in Figure 5-22.

at 983 seconds, the eye-blinks are accompanied by theta band activity on the channels

{T4 - T6, T6 - 02}.

In this case, the Reveal algorithm failed to detect any of the test seizures. A

possible explanation for Reveal's poor sensitivity is the overlap of eye-blinks on the

frontal channels (channels with the letter F) with seizure discharges on the temporal

channels (channels with the letter T). Patient non-specific algorithms, such as the

Reveal algorithm, are generally designed to classify EEG epochs containing rapid

eye-blinks as corrupt and unlikely to contain a seizure. In contrast, our patient-

specific detector could detect these seizures because it learned that the key feature

that differentiates seizure-associated eye-blinks from others is the presence of seizure

discharges on the temporal channels.

5.4.3 Specificity

Figure 5-26 illustrates a seizure recorded within the scalp EEG of Patient J. The

onset of this seizure invovles a generalized spike at 12231 seconds that is followed

by generalized rhythmic activity. Both the Reveal and patient-specific algorithms
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Figure 5-24: Seizure recorded within the scalp EEG of Patient H. The seizure, which
begins at 977 seconds, consists of rapid eye-blinking that is later accompanied by
theta band activity on the channels {T4 - T6, T6 - 02} at 983 seconds.

were successful in detecting the onset of seizures recorded from Patient J. However,

the Reveal algorithm exhibited poor specificity because it declared false detections

whenever the rhythmic activity illustrated in Figure 5-26 occurred. This rhythmic

activity is commonly observed within the awake EEG of Patient J. The patient-specific

detector correctly classified the rhythmic activity as belonging to the non-seizure class

because it had been labeled as such in the training set.



Figure 5-25: Seizure recorded within the scalp EEG of Patient J. The onset of this

seizure invovles a generalized spike at 12231 seconds that is followed by generalized

rhythmic activity.
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Figure 5-26: Rhythmic activity commonly observed within the awake scalp EEG of

Patient J.
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Chapter 6

Seizure Onset Detection Using

Physiologic Signal Fusion

Using the scalp electroencephalogram (scalp EEG) to detect seizure onsets that are

not associated with rhythmic EEG activity is challenging. In this chapter we illus-

trate how supplementing information extracted from the scalp EEG with information

extracted from a second physiologic signal can improve the detection of these types

of seizures.

6.1 Why Use a Second Physiologic Signal?

As discussed in Chapter 2, seizures involve the hyperactivity and hypersynchrony of

a population of neurons. At the level of the scalp EEG, this coherent neural firing

gives rise to rhythmic activity with a dominant frequency between 0-25 Hz. However,

when the underlying neural hypersynchrony involves a neural network deep within

the brain, the earliest scalp EEG changes may not reflect the underlying neuronal

hypersynchrony, but physical consequences of the seizure such as rapid eye-blinks or

muscle contractions. Once the entrained nerual mass is large enough, rhythmic ac-

tivity reflective of neuronal hypersynchrony becomes manifest within the scalp EEG.

Detecting seizures of this kind using the scalp EEG is challenging since the EEG

changes observed following seizure onset are also seen routinely during non-seizure
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states. In fact, classic seizure detection methods insert processing stages to remove

such activity [34, 48] because detecting it would result in poor specificity.

In order to detect these types of seizures a detector requires information beyond

that within the scalp EEG to ascertain whether or not a seizure is taking place.

The additional information can be derived using a second physiologic signal whose

dynamics are influenced by the seizure. The second physiologic signal and the scalp

EEG will complement each other and improve seizure onset detection if the changes,

in each of these signals, that suggest the onset of a seizure rarely coincide during non-

seizure states and often coincide at the time of an actual seizure. Patient-specificity

remains essential to the success of this approach since the manner with which the

scalp EEG and the secondary signal change during seizure and non-seizures states

varies across patients.

6.2 The Electrocardiogram as a Second Signal

A variety of physiologic signals may be used to supplement the scalp EEG in order to

improve seizure detection performance. For example, seizures resulting in repetitive

motor activity may become readily detectable if scalp EEG data is supplemented with

accelerometer sensor data [40]. For other types of seizures, especially those originating

within or spreading to the temporal lobes, seizures are associated with electrocardio-

graphic changes. The most common ECG change associated with seizures is a heart

rate acceleration (tachycardia) [33].

6.3 Patient-Specific, EEG-ECG-based Seizure De-

tection

As was the case in Chapter 3, a classifier will be used to determine whether an

observed feature vector is representative of an individual's seizure or a non-seizure

state; however, in this chapter, the feature vector will contain information extracted

from both the EEG and ECG.
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Figure 6-1: Block diagram of patient-specific seizure onset detector that combines
features extracted from the EEG and ECG signals.

The block diagram in Figure 6-1 illustrates the architecture of the combined EEG

and ECG patient-specific seizure onset detector. The detector passes a L second

epoch from N = 16 EEG channels and a lead-II ECG channel through a feature

extractor. The feature extractor uses a filterbank with M = 8 filters to compute for

each EEG channel the energy in eight overlapping frequency bands; the frequency

bands are each 3 Hz wide and span 0-25Hz. The 8 features extracted from each of

the 16 channels are then concatenated to form a 128 dimensional feature vector XT

that automatically captures the spectral and spatial correlations between channels.

The feature extractor uses the ECG channel to extract a feature vector XT,ECG

that is composed of two features. The first feature, X1,ECG, corresponds to the mean

heart rate within the L second epoch. The second feature, X2,ECG, corresponds to

the difference between the instantaneous heart rate measured at the start and end

of the L second epoch. Outside the context of a seizure, X2,ECG = 0 as successive,

instantaneous heart rate measurements within the L second epoch will oscillate about

a mean heart rate. In contrast, for patients experiencing seizure-associated tachycar-
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dia, X2,ECG > 0 since the instantaneous heart rate at the end of the epoch will exceed

that at the start of the epoch.

Next, W = 3 EEG feature vectors XT, XT-L, and XT-2L as well as the ECG

feature vector XT,ECG are concatenated to form a single feature vector XT. This

feature vector encodes the time evolution of spectral and spatial properties of the

scalp EEG as well as heart rate and heart rate change information extracted from the

ECG. This encoding is automatically generated without user intervention. Finally,

the feature vector XT is assigned to the seizure or non-seizure state using a two-class

support vector machine (Chapter 3).

6.4 Case Studies

In this section we present two case studies that illustrate how a detector that combines

information extracted from the scalp EEG and surface ECG can perform better than

a detector that only uses information extracted from the scalp EEG.

6.4.1 Data

The data set used to assess our detection methodology was gathered from two pa-

tients. From the first patient, an adult woman with refractory complex partial

seizures, 66 hours of continuous EEG-ECG that includes 10 seizures were collected.

From the second patient, an adult male with a childhood-onset epilepsy syndrome

known Lennox-Gastaut, 34 hours of continuous EEG-ECG that includes 3 seizures

were collected.

6.4.2 Case 1

Figure 6-2 shows an EEG tracing of a typical seizure recorded from the first subject.

The onset of the seizure, at 1486 seconds, involves rapid eye-blinking (eye flutter),

which manifests in the EEG as high-amplitude deflections on the channels {FP1 -

F3, FP2 - F4, FP1 - F7, FP2 - F8}.
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Figure 6-2: Example of a seizure within the scalp EEG of Case 1. The seizure,
which begins at 1486 seconds, involves rapid eye-blinking that results in downward
deflections on frontal EEG channels (e.g. {FP1 - F3, FP2 - F4}). Coincident with
the onset of rapid eye-blinking, the patient's heart rate accelerates as shown in Figure
6-3. Later, at 1492 seconds, a 3-4 Hz theta wave appears on the EEG channel T4-T6.

With the onset of eye-flutter, the patient's heart rate accelerates as can be seen on

the bottom channel in Figure 6-2 and in the heart rate profile in Figure 6-3. Finally,

at 1492 seconds, 3-4 Hz theta waves appear on the EEG channel T4 - T6, while the

patient's heart rate remains elevated. Electrographic signs of the seizure end around

1510 seconds, but clinical symptoms of the seizure persist for another 2-3 minutes.

Performance Comparison

To evaluate the utility of combining EEG and ECG information in this case, we

compared the performance of two detectors. One detector classifies a feature vector

synthesized using EEG and ECG as in Figure 6-1, and the other classifies a feature

vector synthesized using EEG features as in Figure 3-17 of Chapter 3. Both detectors

are trained on the S = 20 seconds following the onset of eye-flutter within training

seizures, and both detectors process L = 5 second epochs. The SVM used within

the detector that combined EEG and ECG features was trained with 7 = 0.007 and
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Figure 6-3: Seizure onset, at 1486 seconds, is associated with an acceleration of the
patient's heart rate.

J = 5, while the SVM used within the detector that only used EEG was trained

with y = 0.003 and J = 5. The SVM parameters were chosen to bias each detector

towards recognizing seizure onset with a short delay.

Figure 6-4 illustrates the mean, minimum, and maximum latency with which

each detector declares the ten test seizures, and Figure 6-5 shows the false alarm rate

exhibited by each detector while analyzing the 66 hours of non-seizure test data.

In this case, the detector that combined EEG and ECG information detected

seizures with a mean detection latency (2.7 seconds) that is shorter than that of the

detector which relied solely on EEG information (4.2 seconds). Furthermore, the

detector that fused EEG and ECG information had a false detection rate (less than

5 false detections per 24 hours) that is lower than that of the detector which relied

on EEG information alone (more than 10 false detections per 24 hours).

6.4.3 Case 2

Figure 6-6 shows an EEG tracing of a typical seizure recorded from the second subject.

The onset of the seizure, at 56 seconds, consists of an electrodecrement involving all
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EEG + ECG

Figure 6-4: Comparison of the minimum, maximum, and mean detection delays of two

detectors. One detector classifies a feature vector composed solely of EEG features,
while the other uses a feature vector that combines EEG and ECG features. The

detector that fuses features extracted from the EEG and ECG signals has a shorter

mean detection delay.

EEG + ECG

Figure 6-5: Comparison of the false detection rates of two detectors. One detector

classifies a feature vector composed solely of EEG features, while the other uses a

feature vector that combines EEG and ECG features. The detector that fuses features

extracted from the EEG and ECG signals has a smaller false detection rate.
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EEG channels and lasting for 12 seconds. Next, at 68 seconds, 1-2 Hz generalized,

rhythmic activity develops and persists for another 30 seconds. Clinically, throughout

the period of the electrodecrement the patient experiences tonic contraction of major

muscle groups.
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Figure 6-6: Example of a seizure within the scalp EEG of Case 2. The seizure, which

begins at 56 seconds, involves a 12 second period of low-amplitude EEG activity

across most EEG channels. At the same time, the patient's heart rate accelerates

as shown in Figure 6-7. Later, at 68 seconds, 1-2 Hz generalized, rhythmic activity

develops.

With the onset of the electrodecrement, the patient's heart rate accelerates as can

be seen on the bottom channel in Figure 6-6 and in the heart rate profile in Figure

6-7. Throughout most of the period of generalized, rhythmic activity the patient's

heart rate remains elevated.

Performance Comparison

To evaluate the utility of combining EEG and ECG information in this case, we

compared the performance of two detectors. One detector classifies a feature vector

synthesized using EEG and ECG as in Figure 6-1, and the other classifies a feature
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Figure 6-7: Seizure onset, at 56 seconds, is associated with an acceleration of the
patient's heart rate.

vector synthesized using EEG features as in Figure 3-17 of Chapter 3. Both detectors

are trained on the S = 20 seconds following the onset of the electrodecrement within

training seizures, and both detectors process L = 2 second epochs. Similar to Case 1,

the SVM used within the detector that combined EEG and ECG features was trained

with y = 0.007 and J = 5, while the SVM used within the detector that only used

EEG was trained with y = 0.003 and J = 5.

Figure 6-8 illustrates the mean, minimum, and maximum latency with which each

detector declares the 3 test seizures. Figure 6-9 shows the false alarm rate exhibited

by each detector while analyzing the 34 hours of non-seizure test data.

In this case, the detector that combined EEG and ECG information detected

seizures with a mean detection latency (6 seconds) that is comparable to that of the

detector which relied solely on EEG information (5 seconds). However, the detector

that fused EEG and ECG information had a false detection rate (4 false detections

per 24 hours) that is lower than that of the detector which relied on EEG information

alone (more than 10 false detections per 24 hours).
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Figure 6-8: Comparison of the minimum, maximum, and mean detection delays of two
detectors. One detector classifies a feature vector composed solely of EEG features,
while the other uses a feature vector that combines EEG and ECG features. The two
detectors have comparable seizure detection delays.
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Figure 6-9: Comparison of the false detection rates of two detectors. One detector
classifies a feature vector composed solely of EEG features, while the other uses a
feature vector that combines EEG and ECG features. The detector that fuses features
extracted from the EEG and ECG signals has a smaller false detection rate.
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6.5 Importance of Patient-Specificity

We evaluated the performance of the Reveal algorithm (section 1.4.1) on Cases 1

and 2 to demonstrate the importance of both physiologic signal fusion and patient-

specificity to detecting the class of seizures discussed in this chapter. The Reveal

algorithm is only capable of processing EEG signals and is patient non-specific. When

tested on Case 1, the Reveal algorithm detected 1 of 10 seizures. When tested on

Case 2, the Reveal algorithm missed the electrodecrement in 2 out of 3 test seizures,

and instead detected the generalized 1-2 Hz activity that develops near the end of

the test seizures.
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Chapter 7

Seizure-Triggered Vagus Nerve

Stimulation

In this chapter we illustrate the feasibility of applying the seizure detection method-

ology developed in Chapters 3 and 6 to the initiation of a delay-sensitive therapeutic

application. More specifically, the delivery of vagus nerve stimulation following seizure

onset.

7.1 Vagus Nerve Stimulation

For most of the history of epilepsy, pharmacologic, surgical, and diet-based treatments

were the only therapeutic options available to patients with refractory epilepsy. In

1997, the United States Food and Drug Administration approved the use of Vagus

Nerve Stimulation (VNS) as an adjunctive therapy for the treatment of refractory

seizures; the Vagus Nerve Stimulator became the first implantable device for the

treatment of epilepsy [3, 50, 51]. The VNS pulse generator is implanted in an infra-

clavicular, subcutaneous pocket and delivers stimuli to the midcervical portion of the

left vagus nerve.

Vagus Nerve Stimulation therapy is delivered in two modes. In automatic mode,

the implanted pulse-generator automatically delivers vagus nerve stimuli at pro-

grammed intervals. In on-demand mode, the patient or their caregiver initiates vagus
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nerve stimulation in response to symptoms of a seizure. Initiating on-demand stimu-

lation requires holding a permanent magnet for 1-2 seconds over the implanted pulse

generator.

Several clinical trials have been conducted to assess the therapeutic efficacy of

automatic mode vagus nerve stimulation. The E03 and E05 trials demonstrated

that automatic mode VNS reduces seizure frequency by more than 50% in more

than 20% of patients within 3 months of device implantation [21, 23]. The XE5

trial demonstrated that the efficacy of automatic vagus nerve stimulation is both

long-lasting and improves significantly with time [11]. Based on these and other

studies, vagus nerve stimulation was deemed a safe and effective adjunctive therapy

for intractable epilepsy.

Pre-clinical studies involving rat [67] and canine [68] models of seizures demon-

strated that initiating vagus nerve stimulation during a seizure could terminate it or

lessen its severity. Clinical studies designed to quantify the therapeutic impact of

on-demand mode vagus nerve stimulation have also been conducted. Hammond [22]

recorded an EEG tracing illustrating the abrupt termination of an electrographic and

behavioral seizure following the initiation of on-demand VNS. Morris [25] retrospec-

tively analyzed seizure diaries from the E04 trial [32] and noted that 53% of patients

capable of receiving on-demand stimulation reported experiencing seizure termina-

tion or diminution. Similarly, Boon [4] noted that two-thirds of patients receiving

on-demand stimulation reported being able to interrupt seizures. While the results in

[25] and [4] are encouraging, it is important to note that they were determined using

patient and caregiver accounts of seizures as opposed to EEG tracings illustrating

seizure termination or diminution.

A significant proportion of VNS therapy patients depend on others to initiate

on-demand stimulation because the physical or cognitive symptoms of a seizure leave

them unable to do so themselves[4]. Depending on a caregiver to initiate on-demand

stimulation has two consequences: 1) it denies patients the therapeutic benefit of

on-demand stimulation in the absence of caregivers, and 2) it leads to an inconsistent

ability to terminate or attenuate seizures since caregivers may not always be able
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to initiate on-demand stimulation immediately upon the clinical (let alone the elec-

trographic) onset of a seizure. Since there is anecdotal evidence suggesting that the

likelihood of affecting seizure progression decreases as the time between seizure onset

and the start of stimulation increases [22], this delay in detection may have significant

consequences.

A system that automatically initiates on-demand mode VNS following comput-

erized seizure onset detection could relieve caregivers, increase a patient's sense of

independence and security, and more frequently terminate or diminish seizure symp-

toms in individuals with seizures that respond to on-demand stimulation. The system

may also benefit patients who never realized they were on-demand responders since

neither they nor their caregivers were able to initiate stimulation following the onset

of a seizure.

In this chapter, we describe the design and clinical evaluation of a non-invasive

computerized system that automatically initiates on-demand VNS following the de-

tection of a prespecified seizure. The computerized system detects these events

through the patient-specific seizure detection methodology developed in Chapters

3 and 6.

7.2 Methods

7.2.1 System Overview

Figure 7-1 shows a block diagram of the computerized system; all the components

of the computerized system are external to the patient. The computerized system

is composed of a commercial acquisition system (Digitrace 1800 Plus from SleepMed

Inc.) that collects the EEG and ECG of a patient, a computer that analyzes the

EEG and ECG in real-time using the algorithms presented in Chapters 3 and 6, and

an electromagnet that is worn by the patient and positioned so that it rests over the

implanted VNS pulse generator.

When the computerized system detects the onset of a seizure, it energizes the
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Figure 7-1: Block diagram of closed-loop vagus nerve stimulation system.

electromagnet worn by the patient. The magnetic field produced by the electromagnet

triggers the implanted generator to initiate on-demand stimulation of the vagus nerve.

The electromagnet initiates on-demand stimulation through the same mechanism that

is triggered when a permanent magnet is held over the implanted generator.

7.2.2 Study Protocol

The clinical evaluation of the computerized system followed a protocol approved

by the Committee on Clinical Investigations at the Beth Israel Deaconess Medical

Center (BIDMC), Boston, Massachusetts, USA, and the Massachusetts Institute of

Technology (MIT), Cambridge, Massachusetts, USA. Study participants were adult,

long-term users of VNS who reported no adverse effects from on-demand VNS. Par-

ticipants were admitted to the BIDMC General Clinical Research Center (GCRC) for

a period lasting up to five days. Admission to the GCRC took place after study staff

obtained informed consent, and confirmed that energizing the computerized system's

electromagnet reliably initiates on-demand stimulation. No changes to antiepileptic

drug (AED) regimens or VNS stimulation parameters were made during the study

period.

During the admission period Video, EEG, and ECG signals were recorded. After
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the first 24 hours of the study, an electroencephalographer reviewed the collected

EEG and highlighted seizure events. Next, the computerized system was trained to

detect the identified seizure events using the EEG gathered in the first 24 hours of

the study. On subsequent days of the study, the computerized system was set to

automatically activate the participant's VNS generator whenever real-time detection

of the target seizure occurred.

7.3 Case Studies

In this section we examine three cases that involved the initiation of on-demand vagus

nerve stimulation in response to computerized seizure onset detection.

7.3.1 Patient A

Patient A Medical History

Patient A and Case 1 of Chapter 6 correspond to the same individual. Patient A is

a 39-year-old woman with a long history of refractory complex partial seizures. At

the time of admission to our study, she was experiencing 30-40 seizures per month.

Patient A's seizures last for 1-2 minutes and consist of repeatedly asking questions

and blank stares; her seizures are not accompanied by automatisms or tonic-clonic

movements. Following a seizure, patient A is confused for a few minutes and requires

reorientation by friends or family. Since Patient A does not experience a warning at

the onset of a seizure, she does not use the on-demand mode VNS.

Patient A Seizures

Figure 7-2 illustrates an EEG tracing of a typical seizure recorded from patient A.

The onset of the seizure, at 1486 seconds, involves rapid eye-blinking (eye flutter)

which manifests in the EEG as high-amplitude deflections on the channels {FP1 -

F7, FP1 - F3, FP2 - F8, FP2 - F7}. Coincident with the onset of eye-flutter is

an acceleration of the patient's heart rate, as seen on the bottom channel in Figure
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7-2, and plotted in Figure 7-3. Finally, at 1492 seconds, 3-4 Hz theta waves appear

in the EEG on the temporal channel T4 - T6. Electrographic signs of the seizure

end around 1510 seconds, but clinical symptoms of the seizure persist for another 2-3

minutes.

Eye Flutter

Fpl-F3
F3-C3
C3-P3
P3-01
Fp2-F4 I
F4-C4

C4-P4
P4-02
Fpl-F
F7-T3
T3-T5
T5-01
Fp2-F8
F8-T4
T4-T6
T6-02

ECG
14 18 149 1492 1494 1496 1498 1500 1502 14 150 1508 151

Time (Seconds)

HR Acceleration Theta Waves

Figure 7-2: Example of a seizure within the scalp EEG of Patient A. The seizure,
which begins at 1486 seconds, involves rapid eye-blinking that results in downward
deflections on frontal EEG channels (e.g. {FP1 - F3, FP2 - F4}). Coincident with
the onset of rapid eye-blinking, the patient's heart rate accelerates as shown in Figure
7-3. Later, at 1492 seconds, a 3-4 Hz theta wave appears on the EEG channel T4-T6.

A total of 5 prerecorded seizures as well as two days of prerecorded awake and

sleep EEG were available to train a patient-specific detector to differentiate between

the seizure and non-seizure EEG of Patient A. The training seizure and non-seizure

data were recorded six months prior to patient A's admission to the study.

Patient-Specific, EEG-ECG-based Initiation of VNS

The earliest events that define Patient A's seizures are eye-flutter within the EEG and

a heart rate acceleration within the ECG. In order to reliably initiate VNS following

the coincidence of these events we used the detector architecture shown in Figure 7-4.

This architecture is similar to that developed in Chapter 6 except that the feature
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Figure 7-3: Seizure onset, at 1486 seconds, is associated with an acceleration of the
patient's heart rate.

vector used by the detector involves only spectral and spatial information extracted

from the EEG (no time evolution) and heart rate and heart rate change information

extracted from the ECG.

Figure 7-5 illustrates a seizure detected using the architecture illustrated in Figure

7-4. Seizure onset begins with rapid eye blinking at 992 seconds. The detector

declared seizure onset at 996 seconds, which is 4 seconds after the onset of eye-flutter

and 2 seconds before the onset of theta wave activity. Beginning at 1002 seconds a

spike-train appears on the "VNS" channel confirming the initiation of vagus nerve

stimulation. In this case, VNS was initiated 1 second after the onset of theta wave

activity. The heart rate acceleration that triggered the detector is shown in Figure

7-6; note its similarity to the training heart rate profile illustrated in Figure 7-3. The

computerized system automatically detected and initiated VNS on four other seizures

as described in [57].
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Figure 7-4: Block diagram of patient-specific seizure onset detector that combines
features extracted from the EEG and ECG signals.

Seizure Detected

Fpl-F3

F3-C3

C3-P3

P3-01

Fp2-F4

F4-C4

C4-P4

P4-02

Fpl-F7

F7-T3

T3-T5

T5-01

Fp2-F8

F8-T4

T4-T6

T6-02

VNS

ECG

988 990 992 994 996 998 1000 1002 1004 1006 1008 1010 1012 1014

Time (Seconds)

VNS Active

Figure 7-5: Initiation of VNS following computerized detection of the onset of a
seizure from Patient A. Seizure onset begins with rapid eye blinking at 992 seconds.
The detector declared seizure onset at 996 seconds, and initiated VNS in response.
Beginning at 1002 seconds, a spike-train appears on the "VNS" channel confirming
the initiation of vagus nerve stimulation.
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Figure 7-6: Seizure onset, at 992 seconds, is associated with an acceleration of the

patient's heart rate.

Comparing Stimulated and Non-stimulated Seizures

The computerized system did not initiate on-demand VNS following the onset of one

of patient A's seizures. This was done intentionally so that we could compare the

electrographic and behavioral character associated with stimulated seizures and a

non-stimulated seizure.

We did not detect a difference in the electrographic or behavioral character of

stimulated and non-stimulated seizures. Three possible explanations for this include:

1) the on-demand stimulus was not initiated early enough in the course of the seizure,

2) the on-demand VNS stimulus parameters (pulse current, frequency, and duration)

were not set appropriately 3) Patient A is not a responder to on-demand mode VNS.

7.3.2 Patient B

Patient B Medical History

Patient B is a 41-year-old woman with a long history of simple partial, complex partial

and secondarily generalized seizures. At the time of her admission to our study, she

was experiencing 5-6 seizures per month. Patient B's secondarily generalized seizures
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consist of a tonic phase followed by a clonic phase, and finally a post-ictal phase. The

tonic-clonic phase lasts for 1 minute. The post-ictal phase, which is characterized by

generalized EEG slowing, lasts for 30 minutes. According to patient B's caregiver,

initiating VNS early in the ictal phase results in reduced anxiety and confusion during

the post-ictal phase.

Patient B Seizures

During the study period, patient B experienced two secondarily generalized seizures.

The first was used to train the computerized system, and the second to investigate

the impact of initiating on-demand VNS early in the course of patient B's seizure.

Figure 7-7 illustrates an EEG trace of the first seizure. The seizure begins following

the 1340 seconds with an electrodecrement most prominent on the occipital channels

{P3 - 01, P4 - 02}. Next, at 1348 seconds, a 3-5 Hz occipital rhythm emerges

from the electrodecrement and rapidly generalizes. By 1360 seconds, muscle activity

associated with the tonic-clonic phase of the seizure becomes visible. The tonic-clonic

phase of the first seizure lasted for 55 seconds and the post-ictal phase lasted for 29

minutes. During the post-ictal phase, the patient was unaware of her surroundings

and very anxious. The computerized system, using a detector of the form illustrated

in Figure 7-8, was trained to recognize the occipital rhythm and muscle activity

associated with the tonic-clonic phase of the seizure.

Patient-Specific, EEG-based Initiation of VNS

Figure 7-9 shows an EEG trace of the seizure that triggered the system to initiate

on-demand VNS. The seizure begins with an electrodecrement at 1485 seconds. The

computerized system failed to detect the onset of the focal occipital rhythm at 1490

seconds. Instead, at 1501 seconds, it detected the muscle activity associated with

the tonic-clonic phase of the seizure. Evidence of initiating on-demand VNS cannot

be seen near the time of seizure detection because the VNS channel is obscured by

muscle artifact. However, at the conclusion of the tonic-clonic phase, evidence of VNS

generator activity can be seen on the VNS channel as shown in Figure 7-10.
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Figure 7-7: Typical EEG change associated with onset of Patient B's seizure. The
seizure, which begins at 1340 seconds, involves an electrodecrement most prominent
on the occipital channels P3 - 01 and P4 - 02. Next, at the 1348 seconds, a 3-5
Hz occipital rhythm emerges from the electrodecrement and rapidly generalizes. By
1360 seconds, muscle activity associated with the tonic-clonic phase of the seizure
becomes visible.
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Figure 7-8: Block diagram of patient-specific seizure onset detector that uses features
extracted from the EEG signal.
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Figure 7-9: Initiation of VNS following computerized detection of the onset of a
seizure from Patient B. The seizure begins with an electrodecrement at 1485 seconds.
At 1501 seconds, the computerized system detected the muscle activity associated
with the tonic-clonic phase of the seizure and initiated VNS in response. Evidence
of VNS generator activity can be seen on the VNS channel at the conclusion of the
seizure as shown in Figure 7-10.
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Figure 7-10: The spike-train seen on the VNS channel between 1555-1565 seconds
confirms the automatic initiation of vagus nerve stimulation following the onset of
the seizure illustrated in Figure 7-9.
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Comparing Stimulated and Non-stimulated Seizures

Similar to the first seizure, the tonic-clonic phase of the second seizure lasted for 65

seconds and the post-ictal phase for approximatly 30 minutes. We believe that the

length and character of these phases was unaltered because the computerized system

initiated on-demand VNS during the generalized (tonic-clonic) portion of the seizure

rather than at the focal stage of the seizure. However, behaviorally, relative to the

first seizure, patient B was significantly less anxious during the post-ictal phase. Our

observation that applying on-demand VNS during the seizure improves post-ictal

recovery from the seizure is consistent with the experience of patient B's caregiver.

7.3.3 Patient C

Patient C Medical History

Patient C and Case 2 of Chapter 6 correspond to the same individual. Patient C is

a 24 year-old man with Lennox-Gastaut syndrome. At the time of his admission to

our study, he was experiencing daily, generalized tonic seizures. The tonic phase of

the seizure lasts between 10-20 seconds and the post-ictal phase for approximately an

hour. Since Patient C does not experience a warning prior to the onset of a seizure

he does not use the on-demand mode of VNS.

Patient C Seizures

Figure 7-11 illustrates an EEG trace of a typical seizure recorded from Patient C.

The onset of the seizure, at 248 seconds, involves an electrodecrement that includes

all EEG channels and lasts for 14 seconds. During the electrodecrement the patient

experiences generalized, tonic muscle contractions. At 262 seconds, both the elec-

trodecrement and tonic contractions end and the EEG exhibits generalized rhythmic

activity. The computerized system, using a detector of the form illustrated in Figure

7-8, was trained to recognize the electrodecrement associated with the tonic phase of

the seizure.
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Figure 7-11: Example of a seizure within the scalp EEG of Patient C. The seizure,
which begins at 248 seconds, involves a 14 second period of low-amplitude EEG
activity across most EEG channels. Later, at 262 seconds, generalized, rhythmic
activity develops.

EEG-based Initiation of VNS

Figure 7-12 shows a seizure that triggered the system to initiate on-demand VNS.

The system noted seizure activity at 59 seconds (3 second latency) and initiated

vagus nerve stimulation in response. Beginning at 69 seconds, one can see a spike-

train on the VNS channel indicating successful initiation of vagus nerve stimulation;

the spike-train can be seen to continue in Figure 7-13.

Comparing Stimulated and Unstimulated Seizures

We did not detect a change in the electrographic or behavioral character of Patient

C's seizure following the initiation of on-demand VNS. Three possible explanations

for this include: 1) the on-demand stimulus was not initiated early enough in the

course of the seizure 2) the on-demand VNS stimulus parameters (pulse current,

frequency, and duration) were not set appropriately 3) Patient C is not a responder

to on-demand mode VNS.
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Figure 7-12: Initiation of VNS following computerized detection of the onset of a
seizure from Patient C. The seizure begins with an electrodecrement at 56 seconds.
The computerized system noted seizure activity at 59 seconds and initiated vagus
nerve stimulation in response. Evidence of VNS generator activity can be seen on the
VNS channel starting at 69 seconds.

Figure 7-13: The spike-train seen on the VNS channel (first channel from the bottom),
between 68-84 seconds, confirms the automatic initiation of vagus nerve stimulation
following the onset of the seizure illustrated in Figure 7-12.
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Chapter 8

Seizure-Triggered Single Photon

Emission Computed Tomography

In this chapter we illustrate the feasibility of applying the seizure detection methodol-

ogy developed in Chapter 3 to the initiation of a delay-sensitive diagnostic application.

More specifically, the infusion of a neuroimaging radiotracer following seizure onset.

8.1 SPECT in Epilepsy

Surgical management of medically intractable seizures requires the identification and

resection of an individual's seizure focus, the cerebral site that gives rise to a seizure.

Defining the seizure focus usually involves electrical characterization of seizures through

EEG, anatomical imaging of the brain through magnetic resonance imaging (MRI),

and functional imaging of the brain during the seizure and non-seizure states using

Single Photon Emission Computed Tomography (SPECT) [5].

A SPECT image reflects differences in blood flow, or perfusion, to various regions

within the brain. Since the seizure focus tends to be hypermetabolic during a seizure,

demanding a greater share of cerebral blood flow relative to surrounding regions, a

SPECT image taken at the time of a seizure (an ictal SPECT) reveals the seizure

focus as a region of hyperperfusion as shown in Figure 8-1. In order to obtain an ictal

SPECT image that highlights the seizure focus well, a radiotracer must be injected
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Figure 8-1: SPECT Image taken outside the seizure state (Interictal) and during
the seizure state (Ictal I). During a seizure the seizure focus is hyperperfused and
appears as a bright spot in a SPECT Image. The third image (Ictal II) is the result
of subtracting the first two images.

into a patient soon after the electrical onset of a seizure [63]. To do this one could

have: 1) an EEG technician continuously monitor a patient's EEG in real-time in

order to rapidly detect and declare the electrical onset of a seizure 2) a trained nurse

remain near the patient so that the correct radiotracer dose is safely and promptly

administered following declaration of seizure onset by the EEG technician.

Such an approach is costly and nearly impossible to do well when multiple patients

need an ictal SPECT within a hospital's Epilepsy Monitoring Unit. In practice, a

trained nurse uses a syringe to inject the radiotracer dose after a caregiver near the

patient observes the clinical manifestations of a seizure. This results in appreciable

injection delays because the seizure's clinical onset tends to lag its electrographic

onset; early signs of the seizure's clinical onset are subtle; and the trained nurse is far

away from the patient. In our experience injections are started 10-130 seconds after

seizure onset as shown in Figure 8-2. Large delays lead to poor localization of the

seizure focus due to the visualization of secondarily activated foci in addition to the

primary seizure focus.

A system capable of automatically detecting the electrical onset of a seizure and

dispensing the appropriate dose of radiotracer using a drug infusion pump could result

in shorter and less varied radiotracer injection delays. Overcoming the technical and

logistical challenges inherent to the practice of ictal SPECT may increase both the

utility and efficacy of ictal SPECT as a tool for seizure focus localization. This will
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Figure 8-2: Delay associated with injecting the ictal SPECT radiotracer ranges be-
tween 10-130 seconds for 18 pediatric patients undergoing ictal SPECTs at Children's
Hospital Boston.

particularly benefit epilepsy surgery candidates dependent on functional neuroimag-

ing for the definition of seizure foci that are difficult to visualize using anatomical

imaging modalities such as MRI.

In this chapter we describe the design and clinical evaluation of a computerized

system that automatically initiates radiotracer infusion following the detection of the

electrical onset of a seizure. The computerized system detects seizure onset through

the patient-specific methodology developed in Chapter 3. Other automated ictal

SPECT systems [15, 53] did not involve computerized detection of the electrical onset

of a seizure. Instead, the clinical onset of a seizure prompted a health care provider to

remotely initiate radiotracer infusion using a computer-controlled drug pump. When

the system described in [15] was evaluated on 26 patients, radiotracer injection delays

ranged between 3-48 seconds.



8.2 Methods

8.2.1 System Overview

Figure 8-3 shows a block diagram of the computerized system. The computerized

system is composed of a commercial acquisition system (BioLogic Inc.) that collects

the EEG of a patient, a computer that analyzes the EEG in real-time using the

patient-specific algorithm developed in Chapter 3, and a computer-controlled drug

pump that dispenses the ictal SPECT radiotracer.

------------------------------------------
Computerized System

Ictal SPECT EEG
Patient EEG Acquisition Seizure Detection

Drug Infusion
Pump

:------------------------------------------

Figure 8-3: Block diagram of system for automatic infusion of ictal SPECT radio-
tracer.

When the computer detects the onset of a seizure through the analysis of the EEG

signal stream, it computes the appropriate dose of radiotracer to infuse. The dose is

a function of how long after radiotracer preparation the seizure occurs. Finally, the

computer issues a command to the drug pump to dispense the radiotracer dose as a

bolus into the patient.

8.2.2 Study Procotol

The clinical evaluation of the computerized system followed a protocol approved by

the Institutional Review Board at Children's Hospital Boston (CHB), Boston, Mas-

sachusetts, USA. The protocol involved two groups that were simultaneously active,
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but which were blinded to each other's activities. The first group (Group 1) included

a patient scheduled for an Ictal SPECT as part of his/her hospital admission, and

the medical staff responsible for carrying out that ictal SPECT according to CHB

protocol. The second group (Group 2) included the computerized system. The two

groups are shown in Figure 8-4.

GROUP #1: Routine Ictal SPECT Study Medical Staff, Patient I

I

EEG

Ictal SPECT Study
I Patient

I

EEG

Medical Staff waits to inject radiotracer upon
notification of seizure onset by caregiver.

GROUP #2: Computerized System

Seizure Detector

I
F4 Water (radiotracer surrogate)

Plastic Receptacle (patient surrogate) I

Figure 8-4: Protocol for evaluating automatic system for infusion of ictal SPECT
radiotracer. See section 8.2.2 for details.

Group 1 carried out a routine ictal SPECT procedure in accordance with the CHB

ictal SPECT protocol. That protocol involved inserting an intravenous line into the

patient for radiotracer delivery; recording live scalp EEG from the patient as shown

in link 1 of Figure 8-4; awaiting notification of the clinical onset of the patient's

seizure by an attending caregiver; confirming seizure activity on the recorded EEG;
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and finally mobilizing a trained nurse to the patient's room to deliver the appropriate

radiotracer dose as well as a volume of saline to flush the intravenous line connected

to the patient.

The scalp EEG captured from the patient in Group 1 was forwarded in real-time

to the computerized system in Group 2 as shown by links 1 and 2 of Figure 8-4. The

system processed the EEG using the patient-specific detector discussed in Chapter

3. The detector was trained using seizure and non-seizure data recorded between the

time of admission and the ictal SPECT study. Upon detecting the electrographic

onset of a seizure, the system determined the appropriate dose to be delivered and

instructed the drug pump to initiate radiotracer delivery as shown in links 3 and 4 of

Figure 8-4. The pump delivered a volume of water (a surrogate for the radiotracer)

into a plastic receptacle (a surrogate for the patient). The volume of water equaled

the sum of the appropriate radiotracer dose and the volume of saline injected by the

nurse to flush the patient's intravenous line.

8.3 Results of Clinical Evaluation

We evaluated the performance of the computerized system during eight ictal SPECT

trials. Figure 8-5 shows the time elapsed between electrographic seizure onset and

dispensing of the radiotracer dose for both the computerized system (column 2) and

the ictal SPECT clinical team (column 3); also shown in Figure 8-5 is the delay with

which the computerized system first recognizes the electrographic onset of a seizure

(column 1).

We find that our computerized system recognized the electrographic onset of a

seizure within 5.1 ± 2.8 seconds and that it completed dispensing the appropriate

radiotracer volume within 19.3 ± 2.3 seconds. We attribute the large delay between

recognition of seizure onset and pump infusion of the requisite volumes to the slow

rate with which the pump selected for the study dispenses fluid. A faster pump would

have resulted in a shorter delay. The ictal SPECT clinical team completed infusion of

the radiotracer within 27.7 ± 8.5 seconds. For patient number 7, the first seizure went
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unnoticed by the clinical team (absent column 3 of Figure 8-5), but was detected by

the computerized system. Missing the first seizure of patient 7 prompted the need

for a second ictal SPECT study, which both the clinical team and system detected.

Automatic vs Manual Ictal SPECT

U Pump Completes Radiotracer Injection and Flush 0 Nurse Completes Radiotracer Injection and Flush

1 2 3 4 5 6

Patient Number

Figure 8-5: Comparison of delay between seizure onset and completion of radiotracer

infusion by the clinical team (Group 1) and the computerized system (Group 2).

The computerized system incorrectly dispensed the surrogate radiotracer on 4

occasions over the course of 33 hours. Figure 8-6 shows the latency with which each

of the eight seizures were detected (blue bars) as well as the number of false positives

(FP) and total number of hours processed per ictal SPECT study (text above blue

bars). Two of the eight ictal SPECT trials accounted for all the false detections

generated by the computerized system. This result suggests that with careful patient

selection the system can be used to initiate radiotracer infusion without concern that

injections stem from false detections.
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Chapter 9

Patient-Specific Seizure Onset

Detection using iEEG

In this chapter we adapt the patient-specific detector developed in Chapter 3 for the

purpose of detecting the onset of a seizure using the intracranial Electroencephalo-

gram (iEEG). Since the preferred embodiment of an intracranial seizure onset detector

involves implementation on a low-power, computationally-constrained device, we for-

mulate the algorithm with this constraint in mind. In this chapter we also compare

the performance of our algorithm to that of a state-of-the-art, patient non-specific

intracranial seizure onset detector.

9.1 Why Detect Seizure Onset Using iEEG?

As discussed in Chapter 2, the intracranial Electroencephalogram provides a spatial

and temporal summary of the electrical activity of a population of neurons. However,

unlike the scalp EEG, intracranial EEG provides a summary with higher spatial

resolution since each iEEG electrode samples the activity of a smaller population

of neurons. The higher spatial resolution of iEEG allows one to notice the neuronal

hypersynchrony associated with a seizure tens of seconds before the same phenomenon

is noticeable within the scalp EEG [39]. At the same time, the higher spatial resolution

of iEEG permits the recording of a wider gamut of abnormal, non-seizure activity that
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is not visible within the scalp EEG [26, 59, 62].

An implantable medical device capable of detecting and reacting to the onset of a

seizure within the iEEG can facilitate applications that are not possible using devices

lacking seizure detection capabilities. The device could 1) alert patients of the electri-

cal onset of a seizure before the development of clinical symptoms 2) align a stimulus

with the onset of a seizure to suppress the seizure 3) maintain an account of seizure

activity so that physicians can objectively determine the efficacy of a therapeutic

device.

Performing rapid and reliable seizure onset detection within an implantable med-

ical device is challenging. Algorithms for detecting seizure onset within iEEG signals

must be capable of detecting seizures given substantial variability of seizure charac-

teristics across patients, and overlap between the features of seizure and non-seizure

activity within the iEEG of a patient. At the same time, such algorithms need to

consume a small amount (- 50W) of the total power budget of the medical device.

9.2 Patient-Specific Detector Architecture

The implantable neurostimulator on which we sought to implement a seizure onset

detector is described fully in [2]. This neurostimulator is composed of an analog front-

end and a digital back-end. The analog front-end is capable of processing two iEEG

channels. For each channel, the analog front-end can extract the spectral power within

two bands with configurable center frequency and bandwidth. The digital back-end,

which has limited computational capabilities, can be used to implement decision logic

that ascertains the presence or absence of seizure activity.

The architecture of our patient-specific detector for the hardware in [2] is illus-

trated in Figure 9-1. The detector configures the neurostimulator's analog front-end

to extract, from each of two iEEG channels, the power within the frequency bands

0-16 Hz and 15-37 Hz. Next, within the neurostimulator's digital back-end, the detec-

tor samples the spectral power produced by the front-end and forms a 4-dimensional

feature vector that encodes spectral and spatial dependencies between the input chan-
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nels. Finally, the detector classifies the observed feature vector using a support-vector

machine (SVM) trained to differentiate between a patient's seizure and non-seizure

activity using parameters y = 0.1, J = 17, and a value of C left at the default value

of the SVMLight software package [28]. Implementation of a support-vector machine

with a nonlinear decision boundary required simplification of the SVM discriminant

function using the methodology discussed in the following section.
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9.2.1 Cost of Support-Vector Machine Classification

When the support-vector machine learning algorithm is used to determine a linear

decision boundary, the resulting discriminant function (equation 9.1) requires little

computation to implement. In the case of the detection architecture shown in Figure

9-1, this discriminant function would involve 4 addition and 4 multiplication opera-

tions.

f(X) = Seizure if WTX + f > O

f(X) = Non-seizure if WTX + 3 < 0

(9.1)

In the case of a nonlinear boundary, determined using a radial basis kernel, the

resulting discriminant function (equation 9.2) is more complex. The discriminant
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function contains a number of terms, Nsv, equal to the number of support-vectors de-

termined by the support-vector machine learning algorithm. The number of support-

vectors is partly governed by the complexity of the classification task. As the similar-

ity between an individual's seizure and non-seizure activity increases, more support-

vectors are needed in order to define a more complex decision boundary, and as a

result the computational cost of equation 9.2 increases. In our experience, for a de-

tector with the architecture illustrated in Figure 9-1, Nsv ranges between 50 and

300. This precludes implementation of the discriminant function in equation 9.2 on

the hardware described in [2].

Nsv

f(X) = Seizure if {- a, exp(- lX - X,112)} + 0 > 0 (9.2)
Z=1

Nsv

f(X) = Non-Seizure if {- a, exp(-7|lX - X,112)} + 0 < 0

In the following section, we broadly outline the steps involved in a model order

reduction technique developed by Scholkopf [52]. This technique allows the nonlinear

discriminant function in equation 9.2 to be expressed using Msv < Nsv terms.

Reducing The Number of Support-Vectors

Conceptually, the support-vector machine determines a nonlinear boundary in the

space of feature vectors by determining a maximum margin, linear boundary in the

higher-dimensional space induced by the kernel. Denote a feature vector in the feature

space as X, and its image in the higher-dimensional space as O(X,) where 0(.) is a map

from the feature space to the higher-dimensional space. In the higher-dimensional

space the linear boundary is defined by its normal vector W, which can be expressed

as a linear combination of the higher-dimensional image of Nsv support-vectors as

shown in equation 9.3.
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Nsv

W = ao(X) (9.3)

In order to obtain a nonlinear decision boundary in the feature space that uses

Msv < Nsv terms, we seek a normal vector W that is close to W in the sense that

1 W - W 112 is small. Moreover, W should be expressed as a combination of the

higher-dimensional image of Ms new support-vectors S, as shown in equation 9.4.

Since the L2-norm of the difference between W and W is being minimized, the higher

dimensional images of feature vectors need not be computed because expansion of the

expression being minimized yields inner-products of higher-dimensional vectors that

can be evaluated using a kernel.

Msv

-=77,S (9.4)
2=1

The Msv new support vectors S, are obtained through a sequential process. The

first, scaled vector r~S 1 is chosen as the best single vector approximation of W through

solving the following minimization problem

71iS1 = Mim q(S) - W 112 (9.5)

The next scaled vector / 2S 2 is chosen as the best single vector approximation of

the residual vector Y = W - q S 1 through solving the following optimization problem

m2S2 = min 11 q(S) - Y 112 (9.6)

This process is repeated until the set of new support vectors 71S, i = 1... Msv

is complete. With the new set of support vectors we can reexpress the discriminant
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function in equation 9.2 using Msv instead of Nsv terms as shown in equation 9.7.

f(X) = Seizure if

f(X) = Non-Seizure if

(9.7)
Msv

{ I,2 exp(-y|X - Sj 2 )} + 0 > 0

Z=l
MSV

{ E 1 exp(--ylX - S'l12)} + 0 < 0

As an example, Figure 9-2 shows the superposition of a nonlinear boundary re-

quiring Nsv = 50 terms (solid line) and an approximation of that boundary using

Msv = 8 terms (dashed line). In our evaluation of the patient-specific detector

described in section 9.2 we restricted equation 9.7 to M=8 terms.

O 0 o . "

S0.6 0

0.2 -

0 0.2 0.4 0.6 0.8 1
Energy (0-16Hz)

Figure 9-2: Superposition of a nonlinear SVM boundary requiring Nsv 50 terms
(solid line) and an approximation of that boundary using Msv = 8 terms (dashed
line).

9.3 Patient Non-specific Detector Architecture

The patient non-specific detector evaluated in this chapter is a simplification of the

Osorio-Frei seizure detector [38]. The architecture of this detector is shown in Figure

9-3. The detector monitors, for each channel, the ratio of current and background

energy in the 15-37 Hz frequency band; the current energy is computed using a window

of 2 seconds while the background energy is computed using a window of 30 minutes.
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Whenever the ratio of foreground to background energy on any channel exceeds a

threshold R for T seconds a seizure is declared.

Foreground
IEEG " Energy Ratio>R
Channel 1 For

"---. [ Background TSeconds

Energy

Foreground
IEEG Energy I Ratio R
Channel ,2 For

Background TSeonds
.. . Energy

Figure 9-3: Block diagram of patient non-specific seizure detection algorithm.

9.4 iEEG Data Set

The data set used to evaluate the performance of the two detectors included 81

hours of intracranial EEG collected from 17 adult subjects. On average, 4.5 hours

of recording time containing 3 seizures were available per patient. For each patient,

an electroencephalographer identified the onset time of all seizures as well as the

two iEEG channels demonstrating the earliest signs of seizure activity. These two

channels were the only channels processed by both algorithms.

9.5 Performance Comparison

The performance of the patient-specific detector using both linear and nonlinear

SVMs was compared to the performance of the patient non-specific detector set to

declare a seizure following T = 3 seconds and T = 10 seconds.

Figure 9-4 illustrates the average latency with which the patient-specific and non-

specific detectors declare the onset of a seizure for each of the 17 subjects. The
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patient-specific detector that used a nonlinear SVM (reduced to use MNSV=8 terms)

detected 60/61 seizures within 8.5 ± 5.1 seconds. The same detector using a linear

SVM detected 60/61 seizures within 9.3 ± 4.8 seconds. The patient non-specific

algorithm detected 55/61 seizures within 10.5 ± 8.7 seconds. Note that the patient

non-specific detector failed to detect the seizures of Patient 3, which accounts for the

absence of a bar.

O Patient-Specific Nonlinear SVM E Patient-Specific Linear SVM 1 Patient Non-Specific T=3 Sec

40

35

30

S25

20
20

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

Patient Number

Figure 9-4: Comparison of the detection latencies of the patient-specific and patient
non-specific seizure detectors. The patient-specific detector that used a nonlinear
SVM detected seizures within 8.5 ± 5.1 seconds. The same detector using a linear
SVM detected seizures within 9.3 + 4.8 seconds. The patient non-specific algorithm
(with T=3) detected seizures within 10.5 ± 8.7 seconds.

Figure 9-5 illustrates the number of false detections declared by the detectors for

each of the 17 test subjects (40 hours of test data). The patient-specific detector

employing a nonlinear SVM made 19 false detections; the same detector using a

linear SVM made 28 false detections. The patient non-specific detector made 126

false detections.

When the patient non-specific detector was set to declare a seizure following T=10

seconds, it made 17 false detections as illustrated in Figure 9-6 alongside the patient-

specific method's false detections. Furthermore, with T=10 seconds the patient non-

specific algorithm detected 41/60 seizures within 18.7 + 10.8 seconds as shown in
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Figure 9-5: Comparison of the number of false detections declared by the patient-
specific and patient non-specific seizure detectors during 40 hours of non-seizure data.
The patient-specific detector with a nonlinear SVM declared 19 false detections. The
same detector using a linear SVM declared 28 false detections. The patient non-
specific detector (with T=3) declared 126 false detections.

Figure 9-7 alongside the patient-specific detector latencies.

This comparison demonstrates that the patient-specific approach detects a larger

percentage of seizures with both a lower false-detection rate and smaller detection

latency when compared to the patient non-specific approach.

9.6 Reduced and Non-Reduced Support-Vector Ma-

chines

In this chapter the number of support-vectors used in equation 9.7 was reduced to

AMsv = 8 using the method developed by Scholkopf [52]. In this section we com-

pare the performance of discriminant functions that use different number of support-

vectors in order to show that little performance is lost as a result of reducing the

number of support-vectors used to classify an observed feature vector.

Figures 9-8 and 9-9 compare the performance of support-vector machines that
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Figure 9-6: Comparison of the number of false detections declared by the patient-
specific and patient non-specific seizure detectors during 40 hours of non-seizure data.
The patient-specific detector with a nonlinear SVM declared 19 false detections. The
same detector using a linear SVM declared 28 false detections. The patient non-
specific detector (with T=10) declared 17 false detections.
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Figure 9-7: Comparison of the detection latencies of the patient-specific and patient
non-specific seizure detectors. The patient-specific detector that used a nonlinear
SVM detected seizures within 8.5 + 5.1 seconds. The same detector using a linear
SVM detected seizures within 9.3 ± 4.8 seconds. The patient non-specific algorithm
(with T=10) detected seizures within 18.7 + 10.8 seconds.
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use Msv = 8 and Msv = 16 support-vectors with a support-vector machine that

is allowed to use all support-vectors. On average, the support-vector machine that

used all support-vectors required 321 support-vectors. Figure 9-8 illustrates that

significantly reducing the number of support-vectors does not impact a detector's

latency, and Figure 9-9 shows that the support-vector machines with fewer support-

vectors declared only a few extra false detections.

08 Support Vectors 16 Support Vectors nAIl Support Vectors
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Figure 9-8: Comparison of latency of detectors that use support-vector machines with
different number of support-vectors
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Figure 9-9: Comparison of number of false detections declared by
support-vector machines with different number of support-vectors
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9.7 Case Studies

The following examples illustrate why a patient-specific approach can yield better

seizure onset detection performance.

9.7.1 Latency

1500

1000

500

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44
Time (Seconds)

Figure 9-10: Example of a seizure within the iEEG of Patient 6. The seizure, which
begins at 2 seconds, consists of a few spikes that evolve into a high-amplitude spike
train. The patient-specific detector recognized the seizure at 16 seconds, while the
patient non-specific detector did so at 40 seconds.

Figure 9-10 shows an iEEG tracing of a typical seizure from Patient 6. The

seizure, which begins at 2 seconds, consist of a few spikes that evolve into a high-

amplitude spike train. The patient-specific detector recognized the seizure at 16

seconds, while the patient non-specific detector did so at 40 seconds. Presumably,

the patient non-specific detector had a long latency because the dominant frequency

component present at seizure onset (1 Hz) is outside the frequency band monitored by

the patient non-specific detector (15-37 Hz). The patient-specific detector was able

to detect the seizure rapidly because it learned from training seizures the importance

of low frequency information.
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9.7.2 False Detections

Figure 9-11 shows an iEEG tracing of a seizure from Patient 5. The seizure, which

begins at 6 seconds, consist of a high-frequency rhythm that increases in amplitude

and decreases in frequency as the seizure progresses. Both the patient-specific and

patient non-specific detectors could rapidly detect the onset of this patient's seizure.
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Figure 9-11: Example of a seizure within the iEEG of Patient 5. The seizure, which

begins at 6 seconds, consists of a high-frequency rhythm that increases in amplitude

and decreases in frequency as the seizure progresses.

During the non-seizure state, the iEEG of Patient 5 contained bursts of rhythmic

activity such as that seen in Figure 9-12. The patient-specific detector did not declare

these bursts as false detections because it had learned, through training, that they are

a feature of the patient's baseline activity. On the other hand, the patient non-specific

detector declared many of these bursts as seizure events even though they have spatial

and spectral characteristics that differ significantly from those of the actual seizure.

9.8 Predicting Clinical Seizure Onset

Detecting the electrical onset of a seizure using iEEG could be used to alert a patient

to a seizure prior to the development of debilitating clinical symptoms. The success

of this application depends on the separation between the the electrical onset of a

seizure within iEEG and the onset of clinical symptoms. This separation varies across
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Figure 9-12: Example of a burst of rhythmic non-seizure activity within the iEEG
of Patient 5. The patient non-specific detector declared this burst as a seizure event
even though its spatial and spectral character differs significantly from that of the
seizure shown in Figure 9-11.

patients. Figure 9-13 shows when, relative to the clinical onset, the patient-specific

and patient non-specific detectors declare the onset of a seizure for each of the 17 test

subjects. Negative latencies correspond to detections that preceded the clinical onset

of a seizure and positive latencies correspond to detections that followed the clinical

onset. An alarm raised by our patient-specific detector could provide patients 3 and

6 more than thirty seconds to prepare for the clinical onset of a seizure.

9.9 Implementation

Both the patient-specific and non-specific algorithms were implemented on the neu-

rostimulator described in [2]. As discussed in section 9.2, the analog front-end of

the stimulator is capable of processing two iEEG channels, and for each channel, ex-

tracting the spectral power within two bands with configurable center frequency and

bandwidth. The digital back-end samples the analog power profile, assembles these

samples into a feature vector, and classifies the feature vector using a support-vector

machine. This signal chain is illustrated the Figure 9-14.

By delegating the feature extraction to the analog front-end, the digital back-end

remains idle until it is necessary to sample the power profile and test for the presence
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Figure 9-13: Detection delay relative to the clinical onset of a seizure. An alarm
based on detecting the electrical onset of a seizure using our patient-specific method
could provide some patients, such as patients 3 and 6, enough time to prepare for the
clinical onset of a seizure.
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Figure 9-14: Implementation of our machine-learning based, patient-specific detector
on the hardware described in [2]. An analog front-end processes two iEEG channels,
and for each channel, extracts the spectral power within two configurable frequency
bands. A digital back-end samples the analog power profile, assembles these samples
into a feature vector, and classifies the feature vector using a support-vector machine.
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of seizure activity. This sampling can occur at a rate as low as 1 Hz. Had feature

extraction been delegated to the digital back-end, then sampling would have had to

occur at a rate suitable for iEEG signals, which is typically 200-250 Hz.

Our measurements indicate that the total current consumed by the patient non-

specific detector was 321 A. The patient-specific detector consumed 12PA when using

a linear SVM and 56jiA when using a nonlinear SVM. These measurements suggest

that the patient-specific detector employing a linear SVM exhibits the most favorable

combination of accuracy, latency, and power consumption.
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Chapter 10

Conclusion and Future Work

In this chapter, we conclude the thesis with a summary of its goals and contributions

followed by proposed improvements and directions for future work.

10.1 Goals and Contributions

The goal of this thesis was to design, evaluate, and clinically test a seizure onset

detection algorithm. The algorithm we developed contributes technically to the field

of seizure detection in the following ways:

" Enhanced Performance: In Chapter 3 we presented a machine-learning

based, patient-specific seizure onset detector. The detector uses a support-

vector machine to classify a feature vector that automatically encodes the time

evolution of spectral and spatial features within the scalp EEG. When trained

on 2 or more seizures and tested on 844 hours of continuous scalp EEG from

23 pediatric subjects, our algorithm detected 96% of 163 test seizures with a

median detection delay of 3 seconds (average 4.6 seconds) and a median false

detection rate of 0.07 false detections per hour (average 0.13 false detection per

hour).

* Uses Multiple Physiologic Signals: In Chapter 6 we showed how the de-

tector presented in Chapter 3 can be extended with information from another
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physiologic source whenever the scalp EEG alone is an unreliable indicator of

seizure onset. This capability is important for the detection of seizures whose

onsets lack the development of rhythmic activity and instead reflect physical

sequelae of the seizure.

* Minimal User Intervention: Our algorithm does not require a user to define

the values of parameters such as which EEG channels to monitor for seizure

activity. In our approach, a user only needs to define the onset of activity asso-

ciated with a seizure in a set of physiologic signals. The relationships between

these signals that distinguish the seizure and non-seizure periods are automat-

ically learned.

* Suitable for Implantable Medical Devices: In Chapter 9 we showed that

the algorithm presented in Chapter 3 can be adapted for the detection of seizure

onsets within intracranial EEG, and can be implemented on the low-power

hardware of an implantable neurostimulator. When evaluated on 81 hours of

intracranial EEG containing 61 seizures and gathered from 17 adult subjects,

our algorithm detected 60/61 seizures within 8.5 seconds and declared a total

of 19 false detections.

In this thesis we also used our algorithm to enable delay-sensitive therapeutic

and diagnostic applications:

* Non-invasive Closed-Loop Control of the Vagus Nerve Stimulator: In

Chapter 7 we showed how our algorithm can be used to initiate vagus nerve

stimulation in response to detecting the onset of a seizure using multiple phys-

iologic signals. As an example of the system's capabilities, during an 81 hour

clinical test of the system on a patient, the computerized system detected 5/5

seizures and initiated VNS within 5 seconds of the appearance of ictal discharges

in the EEG.

* Computerized Initiation of Ictal SPECT Studies: In Chapter 8 we

showed how our algorithm can be used to initiate a functional neuroimaging
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study following seizure onset. The neuroimaging modality, ictal SPECT, is

used to radiographically localize the cerebral origin of a seizure. Our system

could initiate injection of the radiotracer used for ictal SPECT within 19.3 t 2.3

seconds in 8/8 prospective trials, while the clinical team required 27.7 + 8.5 sec-

onds, and failed to initiate ictal SPECT in one of the trials.

10.2 Future Work

10.2.1 Feature Vector Enhancement

The feature vector developed in this thesis captures relationships between channels by

concatenating univariate spectral features derived from each EEG channel. Recently,

bivariate features that directly measure relationships between EEG channels, such as

phase synchrony, have been shown to be effective in seizure prediction [36]. More-

over, graph-theoretic features of a network representation of EEG, such as clustering

coefficient C (measure of local connectedness) and shortest path length L (measure

of overall network integration), have been shown to distinguish between the seizure

and non-seizure state [42]. Future work will investigate whether the addition of these

features to our feature vector improves the latency, sensitivity, or specificity of the

detector presented in Chapter 3.

10.2.2 Detecting Seizure Cessation

The detector presented in Chapter 3 signals the onset of a seizure, but is not designed

to signal the end of a seizure. Detecting the cessation of a seizure allows one to

compute seizure duration, and the length of the time interval between the end of

one seizure and the beginning of the next seizure. These quantities have clinical

significance. Seizures that persist for more than 10 minutes, or a cluster of seizures

that are closely spaced in time signal a possible transition into status epilepticus [13].

Status epilepticus refers to a life-threatening condition in which the brain enters a

state of persistent seizure activity. The detector in Chapter 3 learned the transition
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between non-seizure and seizure activity using a feature vector that encodes the time

evolution of spectral and spatial features within the scalp EEG. Future work will

investigate whether the transition from seizure back to non-seizure activity can also

be learned using a similar feature vector.

10.2.3 Closed-Loop, Non-invasive Brain Stimulation

In this thesis we illustrated the feasibility of initiating vagus nerve stimulation follow-

ing the detection of seizure onset using non-invasive physiologic signals. Future work

will investigate the feasibility and therapeutic benefit of using our detection algo-

rithms to initiate other neurostimulation modalities such as as repetitive transcranial

magnetic stimulation (rTMS), transcranial direct current stimulation (tDCS), and

trigeminal nerve stimulation (TNS) [12]. This research will complement the develop-

ment of detect-and-treat systems that deliver cortical or deep-brain stimulation based

on the analysis of invasive physiologic signals (iEEG) [31, 41, 58].
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