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Abstract — This paper presents a model-based data fusion 

framework that allows systematic fusing of multi-sensor multi-

source traffic network data at real-time. Using simulation-

based Dynamic Traffic Assignment (DTA) models, the 

framework seeks to minimize the inconsistencies between 

observed network data and the model estimates using a variant 

of the Hooke-Jeeves Pattern Search. An empirical validation is 

provided on the Brisa A5 Inter-City Motorway in the West 

coast of Portugal. The real-time network data provided by loop 

detectors, video cameras and toll counters is collected and 

fused within DynaMIT, a state-of-the-art DTA system. State 

estimation is first performed, yielding consistent 

approximation of the network condition. This is then followed 

by network state forecast, showing significantly improved 

Normalized Root Mean Square Error (RMSN) over alternative 

predictive systems that do not use real-time information to 

correct themselves. 

Keywords: Multi-Sensor Fusion, Simulation and Modeling,  

Travel Information and Guidance, Traffic State Analysis and 

Prediction 

I.  INTRODUCTION  

Recent developments in sensor technologies and their 
applications have fundamentally changed the landscape of 
traffic state analysis using DTA models. Modern sensors 
deployed throughout the network provide rich set of 
information on traffic network conditions. There are usually 
different types of sensors, each providing local inferences on 
certain factors for specific parts of a network.  

In order to take full advantage of all available data, one 
must develop appropriate methods within DTA models to 
fuse the data into information so it can be used by travelers. 
However, conventional DTA predictive systems face great 
challenges when dealing with large arrays of modern traffic 
sensors. This is because existing systems need to work with a 
network of sensors that have the following characteristics: 1) 
Deployed with uneven density within a network. 2) 
Heterogeneous; 3) Provide highly correlated data; 4) Report 
at non-uniformed resolutions; 5) Report at different 
frequencies.  

This paper describes a data fusion framework using DTA 
models. The framework allows systematic combining of 
multiple sensor sources to generate complete traffic network 
state using micro-simulation. An implementation of the 
framework is developed and validated on a real world inter-
city highway in Portugal. 

The remaining part of this paper is organized as follows. 
Section II presents a literature review of the state-of-the-art. 
Section III discusses the proposed data fusion framework 
using DTA model. Section IV presents a case study and 
experiment results. Section V concludes this study. 

II. RELATED WORKS 

The topic of multi-sensor data fusion within DTA models 
has been discussed extensively in the literature. Ashok and 
Ben-Akiva [1][2] formulated the real-time OD estimation 
and prediction problem as a state-space model and solved it 
using a Kalman Filtering algorithm. The authors’ use of 
deviations of OD flows from their historical values provides 
an elegant framework for incorporating structural OD 
information (generated during off-line calibration) into the 
on-line process. The approach has been implemented in the 
DynaMIT DTA system (Antoniou et al. [3]; Ben-Akiva et al. 
[4]). Bierlaire and Crittin [5] outlined an efficient solution 
algorithm for the OD estimation problem. Van der Zijpp [6] 
combined volume counts with trajectory information 
obtained from automated license-plate surveys for the 
estimation of OD flows. A measurement equation for the 
trajectory counts is specified and split probabilities are 
estimated from combined link volume counts and trajectory 
counts. 

Antoniou et al. [7] presented a methodology for the 
incorporation of AVI information into the OD estimation and 
prediction framework, which was later extended by 
Antoniou et al. [8] to allow for the consideration of any type 
of available surveillance data. Zhou and Mahmassani [9] 
developed a non-linear ordinary least-squares estimation 
model to combine and fuse AVI counts, link counts and 
historical demand information and solved this as an 
optimization problem. 

Antoniou et al. [10] formulated the problem of on-line 
calibration of the speed-density relationship as a flexible 
state-space model and presented applicable solution 
approaches. Three of the solution approaches [Extended 
Kalman Filter (EKF), Iterated EKF, and Unscented Kalman 
Filter (UKF)] are implemented and applications of the 
methodology with freeway sensor data from two networks in 
Europe and the U.S. are presented.  

Antoniou [11] developed an approach that jointly 
formulates the on–line calibration problem as a state–space 
model comprising transition and measurement equations. A 
priori values provide direct measurements of the unknown 
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parameters (such as origin–destination flows, segment 
capacities and traffic dynamics models’ parameters), while 
surveillance information (for example, link counts, speeds 
and densities) is incorporated through indirect measurement 
equations. The state vector is defined in terms of deviations 
of the calibration parameters and inputs from available 
estimates.  Applicable solution algorithms are presented and 
compared in Antoniou et al.  [12]. 

Balakrishna [13] and Balakrishna et al. [14] formulated 
the off-line calibration problem of DTA models as an 
optimization problem that jointly estimates demand and 
supply parameters. Furthermore, Balakrishna proposed the 
SPSA algorithm for solving this problem. The advantage of 
SPSA is that it offers superior computational performance 
and excellent scalability properties. 

Vaze et al. [15] applied Simultaneous Perturbation and 
Stochastic Approximation (SPSA) method to the off-line 
DTA calibration problem. In their study sensor data 
involving vehicle count and Advanced Vehicle Identification 
(AVI) are used. 

Wang and Papageorgiou [16] presented a general 
approach to the real-time estimation of the complete traffic 
state in freeway stretches. They use a stochastic macroscopic 
traffic flow model in a state-space formulation, which they 
solve using an Extended Kalman Filter. The formulation 
allows dynamic tracking of time-varying model parameters 
by including them as state variables to be estimated. Random 
walk is used as transition equations for the model 
parameters. A detailed case study of this methodology is 
presented in [17]. 

III. MODEL-BASED DATA FUSION 

The difficulties of fusing sensor data in a complex traffic 
network often come from heterogeneity, correlation, non-
uniform distribution of/among the sensors. To develop a 
framework of multi-sensor multi-source data fusion, we 
begin by presenting the simulation-based DTA models that 
are used to realistically estimate and predict traffic 
conditions. These simulation models work in real-time and 
support dynamic traffic control, incident management, route 
guidance, and demand prediction. Figure 1 shows a typical 
DTA simulation system. 

The system accepts three types of inputs: 1) Surveillance 
information. These are the real-time sensor data from 
multiple sources; 2) A-priori parameter values. These are the 
default model parameters that are obtained priori to the 
deployment of the system. Such parameters are usually 
obtained from a process of model training that is undertaken 
before the deployment of the system, and are therefore an 
indication of the model’s long-term average performance. 3) 
Network representation and historical data. These are the 
specifications of the network, sensors, OD-demand, travel 
time, flow rate, and social economic factors, etc.  

At the center of the system is the state estimation and 
prediction. These processes typically involve a number of 
iterations of interactions between demand simulator and 
supply simulator. The demand simulator consists of the 
Origin to Destination (OD) flows and the models that capture 
travel demand choice behavior (e.g. route choice, mode 

choice, and departure time). The supply simulator is usually 
a meso-scopic traffic simulation model that loads the output 
of demand simulator and produces simulated ground-truth 
outputs such as simulated travel time, point vehicle count, 
link/segment speed, and link/segment density.  

 

 

Figure 1.  A typical DTA system. The system takes surveillance 

information, a priori parameters, and historical data and conducts state 

estimation and state prediction [4]. 

A. Framework 

The inputs described above are used to “correct” results 
computed by the demand and supply simulators. The 
corrections take place when there are observed 
inconsistencies between the inputs and their simulated 
counter-parts. Example of such observed inconsistencies are: 
1) observed sensor link speed and simulated link speed, 2) 
observed sensor point to point travel time and simulated 
point to point travel time, 3) observed sensor vehicle count 
and simulated vehicle count. Such inconsistencies are due to 
two types of errors in the model: 1) Errors between the true 
model parameters and the default model parameters, such as 
true link free flow speeds and the model’s default link free 
flow speeds. 2) Errors between true model input value and 
the actual value used, such as the true OD demand level and 
the actual level used in the model.  

For real-time multi-sensor multi-source data fusion, the 
first type of inconsistencies and its remedies are of particular 
interests. Conventional approaches that only address the 
second type of error at real-time tend to perform poorly 
compared to the state-of-the-art, which jointly minimizes 
both types of errors [11][13]. To construct the correction 
procedure, DTA models first need to be modified such that 
each sensor source has its simulated counter-part. This is 
done by first examining the sensors that are already deployed 
on a network, and then add implementations of “virtual 
sensor” that are functionally identical to these deployed 
sensors within the DTA model. For example, if there is a 
sensor on a network that reports point vehicle counts, one 
shall add an implementation of a “virtual sensor” at the same 
location in the DTA model that reports point vehicle counts. 

The DTA model often comprises a large number of 
parameters and inputs to adjust. These parameters and inputs 
affect directly the performance of the model, and therefore, 
affect the reported values from the “virtual sensors”. To 
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correct the inconsistencies between real-time sensor data and 
those reported by our “virtual sensors”, one will need to alter 
the model parameters and inputs accordingly. Formally, the 
framework can be formulated in the following way: 
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In words, we are estimating values for the input data 

nxx ,,1  and model parameters mββ ,,1  at time interval h, so 

that the sum of the following three components is 

minimized: 1) Inconsistencies between sensory observations 

hM and their simulated model counter-part hM , which is 

obtained from a DTA model that takes input data, model 

parameters and real-time surveillance information; 2) 

Inconsistencies between input data nxx ,,1  and their a priori 

beliefs; 3) Inconsistencies between the model parameters 

mββ ,,1  and their a prior beliefs. In addition, each x and β are 

constraint to a feasible region for each time interval h.  

The use of a priori values in a real-time data fusion 

framework is worth explanations. The prior beliefs of the 

input data a
n

a
xx ,,

1
 and the model parameters a

m
a

ββ ,,
1

 are 

usually obtained by a process known as offline calibration 

[13][14]. In offline calibration, surveillance data from a long 

period of time is used. The surveillance log is thus expected 

to reflect the typical network behaviors.   

 

Figure 2.  The process flow diagram of off-line calibration and on-line 

calibration of DTA models [18]. 

However, this is not good enough. The input data and 

model parameters generated by offline-calibration process 

represents a long-term average of network conditions and are 

therefore insensitive to prevailing conditions. Such 

conditions, such as peak-hour traffic, road incidents, special 

events, adverse weathers conditions, usually last for a 

relatively shorter period. To make the predictive system 

sensitive to fluctuation of local traffic conditions, real-time 

surveillance data must be collected and fused within a DTA 

model. This is done by applying equations (1) - (3) at 

operational time. This process of combining various sensor 

sources at operational time to obtain consistent network state 

estimation is known as model online calibration. Figure 2 

shows schematic of both off-line and on-line calibrations. 

Equations (1) - (3) may be solved by a number of direct 
optimization algorithms. These methods evoke on the 
objective equation and outputs optimized model inputs and 
parameters. A list of these methods and their application to 
the DTA model calibration problem can be found at [15]. 
This paper, however, implements the proposed framework 
using a variant of the heuristic-based Pattern Search 
algorithm.  

B. Solution Approach 

The optimization procedure that solves equations (1) - (3) is 
based on Hooke and Jeeves [19]. The algorithm only 
requires function evaluations and does not require 
derivatives. The algorithm works by creating a set of search 
directions iteratively. (The created search direction spans 
across the entire search space). In an N-dimensional 
inputs/parameters calibration problem, this requires at least 
N linearly independent search directions. Among the N 
possible combinations of searches some combinations might 
reach the minima faster than others. The algorithm comprises 
of two types of moves 1) Exploratory move and 2) Pattern 
move. The exploratory move systematically finds the best 
point in the vicinity of the current point. Results obtained by 
exploration are used to perform pattern moves. The 
following procedures are adopted from [20].  

1) Exploratory move 

Assuming that a current solution (the initial vector of 

parameters and inputs subject to calibration) is obtained and 

denoted by cx , the perturbation amount for variable i ( c
ix ) is 

denoted by i . The exploratory move algorithm is given in 

Algorithm A. 

 

ALGORITHM A THE EXPLORATORY MOVE THAT EXPLORES THE 

VICINITY OF THE CURRENT POINT IN SEARCH SPACE 

Calculate )(xff  , )( iixff   and )( iixff   Step 1 

Find ),,min(min  ffff . Set X corresponds to minf . Step 2 

Is i = N? If no, set i=i+1 and go to step 1; Else x is the result 

and go to step 4 

Step 3 

If cxx  , success; Else failure Step 4 

Figure 3.  In the exploratory move, the current point is perturbed in 

positive and negative directions along each variable one at a time, and the 

best point is recorded. The current point is changed to the best point at the 

end of each variable perturbation. If the best point is the same point as the 

beginning point the exploration move is a failure. If the best point is a 

different point then the exploration move returns success. 

2) Pattern move 

The pattern move calculates a new point from the current 

best point along a direction connecting the previous best 

point )1( k
x and the current base point )(k

x as follows: 

)( )1()()()1( 
 kkkk

p xxxx  (5) 
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The newly calculated point may result in better or worse 

objective function values. If the new point results in a better 

value the pattern move is a success and the pattern move 

process is repeated with the new point. Otherwise the new 

point is rejected and i is reduced. The exploratory process 

restarts with a new i . The entire Pattern Search algorithm is 

given in Algorithm B. 

 

ALGORITHM B PATTERN MOVE ALGORITHM MOVES CURRENT 

POINT TOWARDS THE DIRECTION OF THE EXPLORED POINT  

Choose starting point 0x , variable increments i (i=1,2,…,N),  

step reduction factor a>1, termination parameter,  . Set k = 0. 

Step 1 

Performe an exploratory move with kx as the base point. Let x 

be the outcome of the exploratory move. If exploratory move is 

a success, set xxk 1 and go to step 4; Otherwise go to step 3. 

Step 2 

If  ||||   terminate and return the best x found. Otherwise 

i = i / a for I = 1, 2,…, N and go to step 2. 

Step 3 

Set k = k+1 and perform the pattern move: 

)( )1()()()1( 
 kkkk

p xxxx  

Step 4 

Perform another exploratory move using 
)1( k

px as the base 

point. Let the result be 
)1( k

x  

Step 5 

If )()(
)1( kk

xfxf 


go to step 4; Otherwise go to step 3. Step 6 

Figure 4.  The search strategy is simple and the algorithm has low memory 

requirements; Only two points need to be stored at any iteration, 
kx and

1kx 
. 

IV. CASE STUDY AND RESULTS 

A. The Brisa A5 Motorway 

The network used in this analysis is the Brisa A5 
motorway. (A5 - Auto-estrada da Costa do Estoril) It is a 25 
km inter-urban expressway section between Lisbon and 
Cascais. The motorway is primarily equipped with toll 
collection systems, surveillance camera counters and 
inductive loop detectors. The schematics of these sensor 
locations are shown in Figure 5.  

 

Figure 5.  This figure shows sensor types and sensor locations. The three 

types of sensors are: loop detectors (CT826 - 831), toll collectors (CTT101 

- 103), and surveillance video camera (CTV1 - 6). 

B. Data Collection 

Data from multiple types of sensors for two specific days 
were collected – April-28-2009 (Collection A) and April-27-
2009 (Collection B). In addition, we are in the possession of 
Collection C, which was recorded in April 2008. The data 

collected in 2009 contains a whole day collection of sensor 
CT826-831, CTT101-103. The data collected in 2008 
contains a whole day collection of sensor CT826-831, CTT 
101-103 and CTV1-6. The data from both collections are 
then manually aggregated into fixed processing intervals of 
10 minutes. The loop detectors’ counts are aggregated every 
10 minutes and reported. The same aggregation process is 
applied to the counters deployed at toll gate and video 
surveillance stations. The choice of relatively long 
aggregation interval such as 10 minutes is motivated by a 
number of practical considerations, such as the accuracy and 
stability of OD flow estimations and speed–density 
relationships [13]. 

C. Choice of DTA System 

DynaMIT is a state-of-the-art DTA system for traffic 
estimation and prediction developed at MIT Intelligent 
Transportation System Laboratory. The system is composed 
of two sub-systems. The first sub-system, state estimation 
combines the available surveillance data with historical 
information to estimate the current state of the entire 
network. Pre-Trip demand is simulated. This allows drivers 
with different characteristics to dynamically change their 
departure time, travel mode, and trip route. This is followed 
by OD flow estimation and network estimation. The 
estimated network condition is then compared to surveillance 
information. Inconsistent estimations are rejected and new 
iterations of estimation are initiated.  The second sub-system 
is state prediction. During the pre-trip prediction stage, the 
DTA model predicts future traffic patterns while accounting 
for the drivers’ responses to the provided guidance and 
traffic information. The predictions are based on estimates 
generated from the state estimation stage. The pre-trip 
prediction stage is then followed by a stage of OD prediction 
and network state prediction. The disseminated network 
information includes predicted flow rate, travel time, link 
speed and density.  

D. Objectives 

The first objective of this experiment is to demonstrate 
the effectiveness of the proposed data fusion framework by 
showing consistently low RMSN from a set of experimental 
trials. The second objective of this experiment is to 
demonstrate the advantage of using real-time data fusion to 
correct for local traffic perturbation in DTA models so that 
DTA models can yield more accurate forecasts versus 
conventional offline calibrated models which do not account 
for real time sensory data. To achieve these objectives, a 
number of experiments using the collected data were 
performed.  RMSN is used as the performance descriptor in 
the experiments. RMSN measures the discrepancy between 
DynaMIT’s estimates and the real observations of the sensor 
data. The formula is as follows.  



 



N

N

y

yyN

RMSN

2)ˆ(  
(6) 

Figure 6.  RMSN: Where y is the observed sensor value and y


is the 

simulated sensor value from DynaMIT, N is the total number of 

observation over the analysis period. 
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E. Offline Calibration Using Collection A 

DynaMIT is first calibrated offline using data collection 
A. The offline calibrated model is then tested on the same 
collection without out using DynaMIT’s online calibration 
capabilities. As expected, the model showed low RMSN 
during the intervals used for the experiment from 13:00 to 
14:00. The data fusion model (DynaMIT with real-time 
sensor data feed in) was also tested on the same data 
collection for the same time period. The data fusion version 
of DynaMIT outperformed the offline only version in state 
estimation. However as expected, the predictions’ RMSNs 
for both models are low and comparable. (See Table I) 

TABLE I.  RMSN STATISTICS OF OFFLINE ONLY AND DATA FUSION 

MODELS FROM THEIR TRAINING DATA SET (COLLECTION A) 

RMSN Estimation 10-mins 20-mins 30-mins 

Offline Only (%) 15.7% 15.5% 16.8% 17.0% 

Data Fusion (%) 8.8% 15.2% 13.7% 15.1% 

Improvement (%) 44.1% 1.86% 18.5% 11.1% 

 

F. Online Validation Using Collection B 

TABLE II.  ESTIMATION RMSN OF OFFLINE ONLY MODEL ACROSS 

CT AND CTT SENSORS USING VALIDATION DATA COLLECTION B 

Sensor ID 

C
T

8
2

6
 

C
T

8
2

9
 

C
T

8
3

1
 

C
T

T
1

0
1
 

C
T

T
1

0
2
 

C
T

T
1

0
3
 

Offline 

Only 
63.0% 34.5% 31.3% 6.4% 25.1% 12.4% 

TABLE III.  PERCENTAGE DIFFERENCE BETWEEN TWO RAW DATA 

COLLECTIONS FOR SIX SENSOR VALUES BETWEEN 13:00 TO 14:00 

 

13:00 

13:10 

13:10 

13:20 

13:20 

13:30 

13:30 

13:40 

13:40 

13:50 

13:50 

14:00 

CT826 64.0% 1.1% 22.5% -53.1% 62.9% 10.1% 

CT829 57.0% 7.9% 13.6% -64.7% 58.3% 1.0% 

CT831 54.7% 2.1% 20.3% -121.3% 59.1% 7.0% 

CCT101 -16.7% 1.3% -18.1% 17.6% -1.2% 6.1% 

CCT102 -13.9% 7.3% -10.0% 14.5% -2.0% 2.3% 

CCT103 -9.8% 5.2% -9.6% 10.2% -1.6% 1.6% 

 

Next, we took both models and validated them using a 
data set (Collection B) that is different from the training set 
(Collection A). The offline only model that was calibrated 
using collection A was first ran. The estimation RMSN was 
then calculated for each of the sensors. For sensor CT829, 
CT831 CTT102 and CTT103, the estimations shown in 
Table II suggest high RMSN for the offline only model, 
suggesting deteriorated performance in estimation. The 
inconsistencies between the offline only model’s estimates 
and the real world observed sensor data can be explained by 
the natural traffic fluctuations between the two days when 
data was collected. Practically speaking, the traffic 
fluctuation between two consecutive weekdays can be 
significant. To demonstrate this nature, Table III presents the 
variability of the raw sensor observations in terms of the 
percentage differences between the two days of data 
collection for each of the six sensors.   

The overall RMSN for the state estimation and the three 
step predictions for both the offline only and the data fusion 
models are summarized in Table IV. The Offline calibrated 
model performed poorly overall due to traffic pattern shifts. 
However, the data fusion version of DynaMIT yielded much 
lower RMSN, demonstrated robust performance in 
overcoming changes in traffic conditions. In addition, the 
RMSN for the data fusion model is comparable to that 
reported in Table I. 

TABLE IV.  RMSN STATISTICS OF OFFLINE AND DATA FUSION 

MODELS FROM VALIDATION DATA SET (COLLECTION B) 

RMSN Estimation 10-mins 20-mins 30-mins 

Offline Only (%) 19.6 19.7 21.6 21.8 

Data Fusion (%) 8.9 15.2 14.1 16.3 

Improvement (%) 54.8 23.1 34.4 25.1 

 

G. Further Validation Using Random Perturbations 

The difference between data collection A and B suggests 

significant traffic pattern fluctuations between days. As 

demonstrated above, DTA models must be able to correct 

themselves frequently while online in order to maintain 

accurate forecasts. In fact, significant fluctuations not only 

exist between normal days, but can also be caused by a 

number of complex external factors that are unobservable to 

the model. To examine the performance of data fusion 

models under such traffic fluctuations, an artificial 

perturbation experiment was developed using Collection C. 

The experiment consisted of 200 simulation iterations of the 

data fusion model. During each iteration, an artificially 

generated sensor data matrix was used for the data fusion 

model to produce RMSN statistics. 

 Let kernel matrix  be the K by M sensor data matrix 

from Collection C, where K is the number of time intervals 

in this analysis and M is the number of sensors sources. Let 

iW  be an M by M diagonal perturbation matrix whose 

diagonal consists of M uniform random numbers between 

0.25 and 1.25 each generated independently for iteration i. 

(Perturbations of sensory observation in the range of -75% to 

+125%) The final constructed perturbation observation 

matrix for iteration i is given by iW . The sample average 

and variance RMSN of the 200 iterations for both models are 

shown in Table V and VI. 

TABLE V.  MEAN RMSN COMPARISON BETWEEN OFFLINE ONLY 

AND DATA FUSION MODELS WITH 200 RANDOM PERTURBATIONS 

RMSN Mean Estimation 10-mins 20-mins 30-mins 

Offline Only (%) 23.0% 23.0% 22.9% 23.1% 

Data Fusion (%) 12.9% 17.5% 18.8% 19.7% 

Improvement(%) 44.0% 24.0% 18.1% 14.6% 

TABLE VI.  COMPARISON THE VARIANCE OF RMSN BETWEEN 

OFFLINE ONLY AND DATA FUSION MODELS WITH 200 RANDOM 

PERTURBATIONS 

RMSN Variance Estimation 10-mins 20-mins 30-mins 

Offline Only (%) 0.19% 0.24% 0.22% 0.21% 

Data Fusion (%) 0.11% 0.12% 0.11% 0.11% 
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V. CONCLUSION AND PROSPECTS 

In this paper, a DTA model based multi-sensor multi-
source data fusion framework is presented and empirically 
validated on the Portuguese A5 motorway.  

In order to systematically fuse surveillance data from 
multiple sources and multiple observations over a network, a 
novel method is developed. Our contribution is in developing 
a way to use detailed simulation-based DTA models, 
implement corresponding “virtual sensor” in the model, and 
then subsequently compare the inconsistencies between data 
obtained from real network sensors and those “virtual 
sensors”. In this way, we transformed the original data fusion 
problem into an optimization task, with the model inputs and 
parameters being the subjects. The key advantage of our 
approach is that we are able to accept any types of sensor, 
that are deployed anywhere in the network, and that report at 
any time interval.  

The case study demonstrated an application of the 
proposed framework in combining multi-sensor and multi-
source traffic data from a real-world inter-city motorway. 
The case study suggests that DTA models with real-time data 
fusion capability tend to yield 1) Consistently low RMSN 2) 
Lower RMSN when compared to DTA models that are 
calibrated offline without online model adjustment. In 
addition, this result appears to be consistent in both artificial 
and real data trials. 

Finally, the data-fusion framework was executed in real 
time. This requires efficient optimization algorithms within 
the framework. Although demonstrated real-time 
performance in a medium and non-trivial real-world 
network, the Pattern Search algorithm is not very efficient in 
terms of function evaluations. Application of this framework 
to larger network requires effective generalization of the 
optimization procedure to higher dimensional space. Hence 
alternative, less computationally cumbersome methods must 
be investigated in different framework implementations. The 
immediate next step of this study will research and compare 
different methods under the proposed data fusion framework. 
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