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ABSTRACT

This paper considers a simple on–off random multiple access channel, where 𝑛 users communicate simultaneously
to a single receiver over 𝑚 degrees of freedom. Each user transmits with probability 𝜆, where typically 𝜆𝑛 <
𝑚 ≪ 𝑛, and the receiver must detect which users transmitted. We show that when the codebook has i.i.d.
Gaussian entries, detecting which users transmitted is mathematically equivalent to a certain sparsity detection
problem considered in compressed sensing. Using recent sparsity results, we derive upper and lower bounds
on the capacities of these channels. We show that common sparsity detection algorithms, such as lasso and
orthogonal matching pursuit (OMP), can be used as tractable multiuser detection schemes and have significantly
better performance than single-user detection. These methods do achieve some near–far resistance but—at high
signal-to-noise ratios (SNRs)—may achieve capacities far below optimal maximum likelihood detection. We then
present a new algorithm, called sequential OMP, that illustrates that iterative detection combined with power
ordering or power shaping can significantly improve the high SNR performance. Sequential OMP is analogous
to successive interference cancellation in the classic multiple access channel. Our results thereby provide insight
into the roles of power control and multiuser detection on random-access signaling.

Keywords: compressed sensing, convex optimization, lasso, maximum likelihood estimation, multiple access
channel, multiuser detection, orthogonal matching pursuit, power control, randommatrices, single-user detection,
sparsity, thresholding

1. INTRODUCTION

In wireless systems, random access refers to the users autonomously deciding whether to transmit depending
on their own traffic requirements and estimates of the network load. While random access is best known for its
use in packet data communication in wireless local area networks, this paper considers random access for simple
on–off messaging. On–off random access signaling can be used for a variety of control tasks in wireless networks
such as user presence indication, initial access, scheduling requests and paging.

We consider a simple random multiple access channel where 𝑛 users transmit to a single receiver, each
independently with probability 𝜆. Each user is assigned a single codeword, and when it is “on” it transmits a
scalar multiple of that codeword. We wish to understand the capacity of these channels, by which we mean the
total number of degrees of freedom 𝑚 needed to reliably detect which users transmit as a function of 𝑛, 𝜆, and
the channel conditions. We also wish to establish performance bounds for specific decoding algorithms.

This on–off random access channel is related to the multiple access channel (MAC) in network information
theory.1, 2 In traditional MAC analysis, each user can employ a capacity-achieving code. In contrast, this type
of coding is not possible with on–off signaling. In addition, “uncoded” multiuser detection results require that
the received constellation is discrete and known at the receiver, which is not possible for non-coherent reception
as is typically required for random access communication.3, 4

Our analysis is instead based on identifying a connection between the on–off random access channel and
the recovery of the sparsity pattern of a signal from noisy random linear measurements. The feasibility of
recovering sparse, approximately sparse, or compressible signals from a relatively small number of random linear
measurements has recently been termed compressed sensing.5–7 Results in compressed sensing generally provide
bounds on the ℓ2 estimation error of a signal as a function of the number of measurements, the signal sparsity
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and other factors. However, what is relevant for the random on–off multiple access channel is detecting the
positions of the nonzero entries. This problem is addressed in several recent works.8–12

By exploiting recent compressed sensing results and providing an analysis of a new algorithm, we are able to
provide a number of insights:

∙ Performance bounds with ML detection: Recent results provide simple upper and lower bounds on the
number of degrees of freedom required to detect the users reliably assuming maximum likelihood (ML)
detection.9, 11–13 One of the consequences of these bounds is that, unlike in the classic MAC analysis,
the sum rate achievable with random access signaling can be strictly less than the rate achievable with
coordinated transmissions with the same total power.

∙ Potential gains over single-user detection: ML detection can be considered as a type of multiuser detection.
Current commercial designs, however, almost universally use simple single-user detection. The single-user
detection performance can be estimated by bounds for thresholding.11, 14 The bounds show that ML
detection offers a potentially large gain over single-user detection, particularly at high SNRs. The gap
at high SNRs can be explained by a certain multiple access interference limit experienced by single-user
detection.

∙ Lasso- and OMP-based multiuser detection and near–far resistance: ML sparsity detection is a well-known
NP-hard problem.15 However, there are practical, but suboptimal, algorithms such as the orthogonal
matching pursuit (OMP)16–19 and lasso20 methods in sparse estimation that can be used for multiuser
detection for on–off random access channels. In comparison to single-user detection, we show that these
methods can offer improved performance when the dynamic range in received power levels is large. This
near–far resistance feature is similar to that of standard MMSE multiuser detection in CDMA systems.21

∙ Improved high SNR performance with power shaping: While both lasso and OMP offer improvements over
single-user detection, there is still a large gap in the performance of these algorithms in comparison to
ML detection at high SNRs. Specifically, at high SNRs, ML achieves a fundamentally different scaling in
the number of degrees of freedom required for reliable detection than that required by lasso, OMP and
single-user detection.

We show, however, that when accurate power control is available, the ML scaling can be theoretically
achieved with a simplified version of OMP, which we call sequential OMP (SeqOMP). The method is
analogous to the classic successive interference cancellation (SIC) method for the MAC. Specifically, users
are deliberately targeted at different received power levels and then detected and cancelled out in descending
order of power.

While SeqOMP shows significant gains over single-user detection, for most practical problem sizes it does
worse than standard OMP, even without power shaping. However, we show, at least by simulation, that
power shaping can improve the performance of OMP as well.

The connection between sparsity detection methods such as OMP and the SIC technique for the MAC has
also been observed in the recent work of Jin and Rao.22 A related work by Wipf and Rao also gave some empirical
evidence for the benefit of power shaping when used in conjunction with sparse Bayesian learning algorithms.23

The results in this paper make the connections between sparsity detection and the random access MAC more
precise by giving conditions on the detectability of the sparsity pattern and characterizing the optimal power
shaping distribution.

The remainder of the paper is organized as follows. The setting is formalized in Section 2. In particular, we
define all the key problem parameters. Results that can be derived from existing necessary and sufficient condi-
tions for sparsity pattern recovery are then presented in Section 3. We will see that there is a potentially-large
performance gap between single-user detection and the optimal ML detection. Existing “practical” multiuser
detection techniques perform significantly better than single-user detection in that they are near–far resistant.
However, their performance saturates at high SNRs, falling well short of ML detection. Section 4 presents a new
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detection algorithm, sequential orthogonal matching pursuit (SeqOMP), that has near–far resistance under cer-
tain assumptions on power control. Furthermore, with optimal power shaping, it does not suffer from saturation
at high SNRs. Conclusions are given in Section 5. The reader is referred to a longer document for numerical
experiments, connections to MAC capacity, and a proof of the main theoretical result.24

2. ON–OFF RANDOM ACCESS CHANNEL MODEL

2.1 Problem Formulation

Assume that there are 𝑛 transmitters sharing a wireless channel to a single receiver. Each user 𝑗 is assigned a
unique, dedicated codeword represented as an 𝑚-dimensional vector a𝑗 ∈ ℂ𝑚, where 𝑚 is the total number of
degrees of freedom in the channel. By degrees of freedom we simply mean the dimension of the received vector,
which represents the number of samples in time or frequency depending on the modulation. In any channel use,
only some fraction of the users, 𝜆 ∈ (0, 1), transmit their codeword. The fraction 𝜆 will be called the activity
ratio and any user that transmits will be called active.

The signal at the receiver from each user 𝑗 is modeled as 𝑥𝑗a𝑗 where 𝑥𝑗 is a complex scalar. If the user is
not active, 𝑥𝑗 = 0. If the user is active, 𝑥𝑗 would represent the product of the transmitted symbol and channel
gain. Note that by making 𝑥𝑗 a scalar we have assumed flat fading. The total signal at the receiver is given by

y =
𝑛∑

𝑗=1

a𝑗𝑥𝑗 +w = Ax+w, (1)

where w ∈ ℂ𝑚 represents noise. The matrix A ∈ ℂ𝑚×𝑛 is formed by codewords a𝑗 , A = [a1 ⋅ ⋅ ⋅ a𝑛], and will
be called the codebook. The vector x = [𝑥1 ⋅ ⋅ ⋅𝑥𝑛]

𝑇 will be called the modulation vector, and its components
{𝑥𝑗}𝑛𝑗=1 are referred to as the received modulation symbols. Note that 𝑥𝑗 succinctly encapsulates the channel
gain, transmit power, and phase.

Given a modulation vector x, define the active user set as

𝐼true = { 𝑗 : 𝑥𝑗 ∕= 0 } , (2)

which is the “true” set of active users. The size of the active user set is related to the activity ratio through

𝜆 =
1

𝑛
∣𝐼true∣. (3)

The goal of the receiver is to determine an estimate 𝐼 = 𝐼(y) of 𝐼true based on the received noisy vector y.

We will be interested in estimators that exploit minimal prior knowledge of the modulation vector x other than
it being sparse. In particular, we limit our attention to estimators that do not explicitly require a priori knowledge
of the complex modulation symbols 𝑥𝑗 . We make this assumption since the channel gain is typically unknown or
uncertain at the receiver; users conducting random access communication are unlikely to be concurrently sending
a persistent pilot reference. Knowledge of a discrete alphabet for each 𝑥𝑗 obviously changes the receiver’s
task dramatically.3 For example, this knowledge would enable perfect cancellation of a user’s signal without
orthogonalization, so the number of active users could exceed the number of degrees of freedom.

We consider large random codebooks where the entries of A are i.i.d. complex normal 𝒞𝒩 (0, 1/𝑚). We
assume the noise vector is also Gaussian: w ∼ 𝒞𝒩 (0, (1/𝑚)𝐼𝑚). Given an estimator, 𝐼 = 𝐼(y), the probability
of error,

𝑝err = Pr
(
𝐼 ∕= 𝐼true

)
, (4)

is taken with respect to random codebookA, the noise vectorw, and the statistical distribution of the modulation
vector x. We want to find estimators 𝐼 that bring 𝑝err close to zero. An alternative could be to allow a nonzero
constant fraction of detection errors. This may change scaling behavior considerably.25, 26

We identify two factors that influence the ability to detect the active user set. The first is the total SNR:

SNR = E
[∥Ax∥2]/E [∥w∥2]. (5)
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Since the components of the matrix A and noise vector w are i.i.d. 𝒞𝒩 (0, 1/𝑚), for deterministic x,

SNR = ∥x∥2. (6)

In the case of random x, this is the conditional SNR given x.

The second term is the minimum-to-average ratio

MAR =
min𝑗∈𝐼true ∣𝑥𝑗 ∣2

∥x∥2/𝜆𝑛 . (7)

Since 𝐼true has 𝜆𝑛 elements, ∥x∥2/𝜆𝑛 is the average of {∣𝑥𝑗 ∣2 ∣ 𝑗 ∈ 𝐼true}. Therefore, MAR ∈ (0, 1] with the upper
limit occurring when all the nonzero entries of x have the same magnitude. MAR is a deterministic quantity
when x is deterministic and a random variable otherwise.

One final value that will be important is the minimum component SNR, which, for a given x, is given by

SNRmin =
1

E∥w∥2 min
𝑗∈𝐼true

E∥a𝑗𝑥𝑗∥2 = min
𝑗∈𝐼true

∣𝑥𝑗 ∣2, (8)

where a𝑗 is the 𝑗th column of A. The quantity SNRmin has a natural interpretation: The numerator is the signal
power due to the smallest nonzero component in x while the denominator is the total noise power. The ratio
SNRmin thus represents the contribution to the SNR from the smallest nonzero component of x.

The final equality in (8) is a consequence of E∥a𝑗∥2 = E∥w𝑗∥2 = 1. Observe that (6) and (7) show

SNRmin = min
𝑗∈𝐼true

∣𝑥𝑗 ∣2 = 1

𝜆𝑛
SNR ⋅MAR. (9)

2.2 MAR and Power Control

For wireless systems, the factor MAR in (7) has an important interpretation as a measure of the dynamic range
of received power levels. With accurate power control, all users can be controlled to arrive at the same power.
In this case, MAR = 1. However, if power control is difficult due to fading or lack of power control feedback,
there can be a considerable dynamic range in the received powers from different users. In this case, some users
could arrive at powers much below the average making MAR closer to zero.

One of the results in this paper is a precise quantification of the effect of MAR on the detectability of the
active user set. Specifically, we will show that low MAR can make reliable detection significantly more difficult
for certain algorithms. The problem is analogous to the well-known near–far effect in CDMA systems, where
users with weak signals can be dominated by higher-power signals.21

2.3 Synchronization and Multi-Path

It is important to recognize that an implicit assumption in the above model is that the transmissions from
different users are perfectly synchronized. At a minimum, the timing offsets from the users are exactly known
at the receiver and there is no multipath.

Of course, in many wireless applications, exact synchronization is not possible and the receiver must estimate
the timing delay of the transmission as part of the detection process. In most practical receivers, timing offsets
are estimated by discretizing the delay search space, typically to a quarter or half-chip resolution. The receiver
then searches over a finite set of delay hypotheses depending on the range of timing uncertainty. In the presence
of multipath, the receiver could detect multiple delay hypotheses.

To model this search in the theoretical framework of this paper, we would need to model each timing shift
of the codeword as a different codeword. The total number of codewords would then grow to the number of
users times the number of delay hypotheses per user. While the algorithms we will present can be applied in
this manner to deal with the asynchronous case, there are several theoretical issues with extending the analysis.
In particular, this extended codebook would lack the independence of codewords that the simpler model has by
construction. We will thus just consider only the synchronous case for the remainder of this paper.
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finite SNR ⋅ MAR SNR ⋅ MAR → ∞

Necessary for ML 𝑚 > 1
MAR⋅SNR𝜆𝑛 log(𝑛(1− 𝜆)) 𝑚 > 𝜆𝑛

Fletcher et al.11 (elementary)

Sufficient for sequential 𝑚 > 4
log(1+SNR)𝜆𝑛 log(𝑛(1− 𝜆)) 𝑚 > 5𝜆𝑛

OMP with power shaping From Theorem 4.1 (Section 4.5) From Theorem 4.1 (Section 4.6)

Sufficient for (more subtle) 𝑚 > 𝜆𝑛 log(𝑛(1− 𝜆))

lasso Wainwright28 Wainwright8, 28

Sufficient for unknown 𝑚 > 𝜆𝑛 log(𝑛(1− 𝜆))

OMP Fletcher and Rangan27

Sufficient for single- 𝑚 > 4(1+SNR)
MAR⋅SNR 𝜆𝑛 log(𝑛(1 − 𝜆)) 𝑚 > 4

MAR
𝜆𝑛 log(𝑛(1− 𝜆))

user detection (12) Fletcher et al.11

Table 1. Summary of results on degree of freedom scalings for asymptotic reliable detection for various detection algorithms.
Only leading terms are shown. See body for definitions and additional technical limitations.

3. PERFORMANCE WITH CURRENT SPARSITY DETECTION METHODS

The problem of detecting the active user set is precisely equivalent to a sparsity pattern recovery problem. To
see this, note that the modulation vector x is sparse, with nonzero components only in positions corresponding
to the active users. The problem at the receiver is to detect these nonzero positions in x from noisy linear
observations y in (1).

In this section, we develop asymptotic analyses for detection of the active users based on previous results
on sparsity pattern recovery. We model x as deterministic, so the quantities 𝜆, SNR, MAR and SNRmin are also
deterministic. Since our formulation allows simple translation of previous results, we state these translations
without detailed justifications.8, 9, 11, 27 Several results are here adjusted by a factor of two because we have
complex, rather than real, degrees of freedom.

Our results are expressed as scaling laws on the number of degrees of freedom for asymptotic reliable detection
of the active user set. We define this as follows:

Definition 3.1. Suppose that we are given deterministic sequences 𝑚 = 𝑚(𝑛) and x = x(𝑛) ∈ ℂ𝑛 that vary
with 𝑛. For a given detection algorithm 𝐼 = 𝐼(y), we then define the probability of error 𝑝err in (4) where the
probability is taken over the randomness of the codebook A and the noise vector w. Given the number of degrees
of freedom 𝑚(𝑛) and modulation vector x(𝑛), the probability of error will then simply be a function of 𝑛. We say
that the detection algorithm achieves asymptotic reliable detection when 𝑝err(𝑛) → 0.

Table 1 summarizes the results from this section and previews results from Section 4.

3.1 Optimal Detection with No Noise

To understand the limits of detection, it is useful to first consider the minimum number of degrees of freedom
when there is no noise. Since the activity ratio is 𝜆, x will have 𝑘 = 𝜆𝑛 nonzero components. For a lower bound
on the minimum number of degrees of freedom needed for reliable detection, suppose that the receiver knows
the number of active users 𝑘 as side information.

With no noise, the received vector is y = Ax, which will belong to one of 𝐽 =
(
𝑛
𝑘

)
subspaces spanned by 𝑘

columns of A. If 𝑚 > 𝑘, then these subspaces will be distinct with probability 1. Thus, an exhaustive search
through the subspaces will reveal which subspace y belongs to and thus determine the active user set. This shows
that with no noise and no computational limits, having more degrees of freedom than active users is sufficient
for asymptotic reliable detection.
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Conversely, if no prior information is known at the receiver other than x being 𝑘-sparse, then having more
degrees of freedom than active users is also necessary. If 𝑚 ≤ 𝑘 = 𝜆𝑛, then for almost all codebooks A, any 𝑘
columns of A span ℂ𝑚. Consequently, any received vector y = Ax is consistent with any 𝑘 users transmitting.
Thus, the active user set cannot be determined without further prior information on the modulation vector x.

3.2 ML Detection with Noise

Now suppose there is noise. Since x is an unknown deterministic quantity, the probability of error in detecting
the active user set is minimized by maximum likelihood (ML) detection. Since the noise w is Gaussian, the ML
detector finds the 𝑘-dimensional subspace spanned by 𝑘 columns of A containing the maximum energy of y.

The ML estimator was first analyzed by Wainwright.9 The results in that work, along with the fact that
𝑘 = 𝜆𝑛, show that there exists a constant 𝐶 > 0 such that if

𝑚 ≥ 𝐶max

{
1

MAR ⋅ SNR𝜆𝑛 log(𝑛(1− 𝜆)), 𝜆𝑛 log(1/𝜆)

}
= 𝐶max

{
1

SNRmin
log(𝑛(1− 𝜆)), 𝜆𝑛 log(1/𝜆)

}
(10)

then ML will asymptotically detect the correct active user set. The equivalence of the two expressions in (10) is
due to (9). Also, Fletcher et al.11 show that, for any 𝛿 > 0, the condition

𝑚 ≥ 1 + 𝛿

MAR ⋅ SNR𝜆𝑛 log(𝑛(1 − 𝜆)) + 𝜆𝑛 =
1 + 𝛿

SNRmin
log(𝑛(1 − 𝜆)) + 𝜆𝑛 (11)

is necessary. Observe that when SNR ⋅ MAR → ∞, the lower bound (11) approaches 𝑚 ≥ 𝜆𝑛, matching the
noise-free case as expected.

The necessary condition for ML appears in Table 1 with smaller terms and the infinitesimal 𝛿 omitted for
simplicity.

3.3 Single-User Detection

The simplest and most common method to detect the active user set is single-user detection of the form

𝐼SUD = { 𝑗 : 𝜌(𝑗) > 𝜇 } , (12)

where 𝜇 > 0 is a threshold parameter and 𝜌(𝑗) is the correlation coefficient:

𝜌(𝑗) =
∣a′𝑗y∣2

∥a𝑗∥2∥y∥2 . (13)

Single-user detection has been analyzed in the compressed sensing context in several recent works.11, 14, 29

Fletcher et al.11 show the following result: Suppose

𝑚(𝑛) >
(1 + 𝛿)𝐿(𝜆, 𝑛)(1 + SNR)

SNR ⋅MAR
𝜆𝑛 =

(1 + 𝛿)𝐿(𝜆, 𝑛)(1 + SNR)

SNRmin
(14)

where 𝛿 > 0 and

𝐿(𝜆, 𝑛) =
[√

log(𝑛(1− 𝜆)) +
√
log(𝑛𝜆)

]2
. (15)

Then there exists a sequence of detection thresholds 𝜇 = 𝜇(𝑛) such that single-user detection achieves asymptotic
reliable detection of the active user set. As before, the equivalence of the two expressions in (14) is due to (9).

Comparing the sufficient condition (14) for single-user detection with the necessary condition (11), we see
two distinct problems in single-user detection:
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∙ Constant offset: The scaling (14) for single-user detection shows a factor 𝐿(𝜆, 𝑛) instead of log((1 − 𝜆)𝑛)
in (11). It is easily verified that, for 𝜆 ∈ (0, 1/2),

log((1 − 𝜆)𝑛) < 𝐿(𝜆, 𝑛) < 4 log((1 − 𝜆)𝑛), (16)

so this difference in factors alone could require that single-user detection use up to four times more degrees
of freedom than ML for asymptotic reliable detection.

Combining the inequality (16) with (14), we see that the more stringent, but simpler, condition

𝑚(𝑛) >
(1 + 𝛿)4(1 + SNR)

SNR ⋅MAR
𝜆𝑛 log((1− 𝜆)𝑛) (17)

is also sufficient for asymptotic reliable detection with single-user detection. This simpler condition is
shown in Table 1, where we have omitted the infinitesimal 𝛿 quantity to simplify the table entry.

∙ Multiple access interference limit: In addition to the 𝐿(𝜆, 𝑛)/ log(𝑛(1 − 𝜆) offset, single-user detection
also requires a factor of 1 + SNR more degrees of freedom than ML. This 1 + SNR factor has a natural
interpretation as multiple access interference: When detecting any one component of the vector x, single-
user detection sees the energy from the other 𝑛− 1 components of the signal as interference. We can think
of this additional noise as multiple access interference, by which we mean the interference caused from
different components of the signal x interfering with one another in the observed signal y through the
codebook matrix A. This multiple access interference is distinct from the additive noise w. It increases
the effective noise by a factor of 1 + SNR, which results in a proportional increase in the minimum number
of degrees of freedom.

Multiple access interference results in a large performance gap at high SNRs. In particular, as SNR → ∞,
(14) reduces to

𝑚(𝑛) >
(1 + 𝛿)𝐿(𝜆, 𝑛)

MAR
𝜆𝑛 log((1− 𝜆)𝑛). (18)

In contrast, ML may be able to succeed with a scaling 𝑚 = 𝑂(𝜆𝑛) for high SNRs, which is fundamentally
better than the 𝑚 = Ω(𝜆𝑛 log((1 − 𝜆)𝑛) required by single-user detection.

3.4 Lasso and OMP Estimation

While ML has clear advantages over single-user detection, it is not computationally feasible. However, one
practical method used in sparse signal estimation is the lasso estimator,20 also called basis pursuit denoising.30

In the context of the random access channel, the lasso estimator would first estimate the modulation vector x
by solving the convex minimization

x̂ = argmin
x

(∥y −Ax∥22 + 𝜇∥x∥1
)
, (19)

where 𝜇 > 0 is an algorithm parameter that “encourages” sparsity in the solution x̂. The nonzero components
of x̂ can then be used as an estimate of the active user set.

The exact performance of lasso is not known at finite SNR. However, Wainwright8 has exactly characterized
the conditions for lasso to work at high SNR. Specifically, if 𝑚, 𝑛 and 𝜆𝑛 → ∞, with SNR ⋅ MAR → ∞, the
scaling

𝑚 > 𝜆𝑛 log(𝑛(1 − 𝜆)) + 𝜆𝑛+ 1, (20)

is necessary and sufficient for asymptotic sparsity recovery.

Another common approach to sparsity pattern detection is the greedy OMP algorithm.16, 18, 19 This has been
analyzed by Fletcher and Rangan in a setting with SNR approaching infinity.27 They show that, when A has
Gaussian entries, a sufficient condition for asymptotic reliable recovery is

𝑚 > 𝜆𝑛 log(𝑛− 𝑘), (21)
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identical to the lasso scaling law. Variants of OMP improve this scaling.31, 32

The conditions (20) and (21) are both shown in Table 1. As usual, the table entries are simplified by including
only the leading terms.

The lasso and OMP scaling laws, (20) and (21), can be compared with the high SNR limit for the single-user
detection scaling law in (18). This comparison shows the following:

∙ Removal of the constant offset: The 𝐿(𝜆, 𝑛) factor in the single-user detection expression (18) is replaced
by a log(𝑛(1− 𝜆)) factor in the lasso scaling law (20) and OMP scaling law (21). Similar to the discussion
above, this implies that lasso and OMP could require up to 4 times fewer degrees of freedom than single-user
detection.

∙ Near–far resistance: In addition, both the lasso and OMP methods do not have a dependence on MAR;
thus, in the high SNR regime, they have a near–far resistance that single-user detection does not. This
gain can be large when there are users whose received powers are much below the average (low MAR).

The near–far resistance of lasso and OMP is analogous to that of MMSE multiuser detection in CDMA
systems.21 In that case, when the number of degrees of freedom 𝑚 exceeds the number of users 𝑛, a
decorrelating detector can null out strong users while recovering weak ones. An interesting property that
we see in the random access case is that near–far resistance may be possible when 𝑚 < 𝑛, provided that
𝑚 is sufficiently greater than the number of active users, 𝜆𝑛.

∙ Limits at high SNR: We also see from (20) and (21) that both lasso and OMP are unable to achieve the
scaling 𝑚 = 𝑂(𝜆𝑛) that may be achievable with ML at high SNR. Instead, both lasso and OMP have
the scaling, 𝑚 = 𝑂(𝜆𝑛 log((1 − 𝜆)𝑛)), similar to the minimum scaling possible with single-user detection,
which suffers from a multiple access interference limit.

3.5 Other Sparsity Detection Algorithms

Recent interest in compressed sensing has led to a plethora of algorithms beyond OMP and lasso. Empirical
evidence suggests that the most promising algorithms for sparsity pattern detection are the sparse Bayesian
learning methods developed in the machine learning community by Tipping33 and introduced into signal pro-
cessing applications by Wipf and Rao,34 with related work by Schniter et al.35 Unfortunately, a comprehensive
summary of these algorithms is far beyond the scope of this paper.

Instead, we will limit our discussion to the lasso and OMP methods since these are the algorithms with
the most concrete analytic results on asymptotic reliable detection. Moreover, our interest is not in finding
the optimal algorithm, but merely to point out general qualitative effects such as near–far and multiple access
interference limits which should be considered in evaluating any algorithm.

4. SEQUENTIAL ORTHOGONAL MATCHING PURSUIT

The analyses in the previous section suggest that ML detection may offer significant gains over the provable
performance of current “practical” algorithms such as single-user detection, lasso and OMP, when the SNR is
high. Specifically, as the SNR increases, the performance of these practical methods saturates at a scaling in the
number of degrees of freedom that can be significantly higher than that for ML.

In this section, we show that if accurate power control is available, an OMP-like algorithm, which we call
sequential orthogonal matching pursuit or SeqOMP, can break this barrier. Specifically, the performance of
SeqOMP does not saturate at high SNR.
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4.1 Algorithm

Algorithm 1 (SeqOMP). Given a received vector y and threshold level 𝜇 > 0, the algorithm produces an
estimate 𝐼SOMP of the active user set with the following steps:

1. Initialize the counter 𝑗 = 1 and set the initial active user set estimate to empty: 𝐼(0) = {∅}.
2. Compute P(𝑗)a𝑗 where P(𝑗) is the projection operator onto the orthogonal complement of the span of

{aℓ, ℓ ∈ 𝐼(𝑗 − 1)}.
3. Compute the correlation,

𝜌(𝑗) =
∣a′𝑗P(𝑗)y∣2

∥P(𝑗)a𝑗∥2∥P(𝑗)y∥2 . (22)

4. If 𝜌(𝑗) > 𝜇, add the index 𝑗 to 𝐼(𝑗 − 1). That is, 𝐼(𝑗) = 𝐼(𝑗 − 1) ∪ {𝑗}. Otherwise, set 𝐼(𝑗) = 𝐼(𝑗 − 1).

5. Increment 𝑗 = 𝑗 + 1. If 𝑗 ≤ 𝑛 return to step 2.

6. The final estimate of the active user set is 𝐼SOMP = 𝐼(𝑛).

The SeqOMP algorithm can be thought of as an iterative version of single-user detection with the difference
that, after an active user is detected, subsequent correlations are performed only in the orthogonal complement
to the detected codeword. The method is identical to the standard OMP algorithm except that SeqOMP passes
through the data only once. For this reason, SeqOMP is actually computationally simpler than standard OMP.

As simulations in our longer document24 illustrate, SeqOMP generally has much worse performance than
standard OMP. It is not intended as a competitive practical alternative. Our interest in the algorithm lies in
the fact that we can prove positive results for SeqOMP. Specifically, we will be able to show that this relatively
poor algorithm, when used in conjunction with power shaping, can achieve a fundamentally better scaling at
high SNRs than what has been proven is achievable with methods such as OMP.

4.2 Sequential OMP Performance

The analysis in Section 3 was based on deterministic vectors x. To characterize the SeqOMP performance, it
is simpler to use a partially-random model where the active user set is random while the received modulation
signal power ∣𝑥𝑗 ∣2, conditioned on user 𝑗 being active, remains deterministic. We reuse the notation 𝜆 because
its meaning remains almost the same.

We assume that each user is active with some probability 𝜆 ∈ (0, 1), which we now call the activity probability.
The activities of different users are assumed to be independent. Thus, unlike in Section 3, 𝜆𝑛 represents the
average number of users that are active, as opposed to the actual number.

Let 𝑝𝑗 denote the received modulation symbol power

𝑝𝑗 = ∣𝑥𝑗 ∣2, (23)

conditional that user 𝑗 is active. We will call the set {𝑝𝑗}𝑛𝑗=1 the power profile, which we will treat as a
deterministic quantity. Since each user transmits with a probability 𝜆, the total average SNR is given by

SNR = 𝜆
∑𝑛

𝑗=1 𝑝𝑗 . (24)

This factor is also deterministic.

Given a power profile, we will see that a key parameter in estimating the performance of the SeqOMP
algorithm is what we will call the minimum signal-to-interference and noise ratio (SINR) defined as

𝛾 = min
ℓ=1,...,𝑛

𝑝ℓ/𝜎
2(ℓ), (25)
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where 𝜎2(ℓ) is given by
𝜎2(ℓ) = 1 + 𝜆

∑𝑛
𝑗=ℓ+1 𝑝𝑗 . (26)

The parameters 𝛾 and 𝜎2(ℓ) have simple interpretations: Suppose that the SeqOMP algorithm has correctly
decoded all the users for 𝑗 < ℓ. Then, in detecting the ℓth user, the receiver sees the noise w with power
E∥w∥2 = 1 and, for each user 𝑗 > ℓ, an interference power 𝑝𝑗 with probability 𝜆. Hence, 𝜎2(ℓ) is the total
average interference power seen when detecting ℓth user, assuming perfect cancellation. Since user ℓ arrives at
a power 𝑝ℓ, the ratio 𝑝ℓ/𝜎

2(ℓ) in (25) represents the average SINR seen by user ℓ. The value 𝛾 is the minimum
SINR over all 𝑛 users.

Theorem 4.1. Let 𝜆 = 𝜆(𝑛), 𝑚 = 𝑚(𝑛) and the power profile {𝑝𝑗}𝑛𝑗=1 = {𝑝𝑗(𝑛)}𝑛𝑗=1 be deterministic quantities
that all vary with 𝑛 satisfying the limits 𝑚− 𝜆𝑛, 𝜆𝑛 and (1− 𝜆)𝑛 → ∞, and 𝛾 → 0. Also, assume the sequence
of power profiles satisfies the limit

lim
𝑛→∞ max

𝑖=1,...,𝑛−1
log(𝑛)𝜎−4(𝑖)

∑𝑛
𝑗>𝑖 𝑝

2
𝑗 = 0. (27)

Finally, assume that for all 𝑛,

𝑚 ≥ (1 + 𝛿)𝐿(𝑛, 𝜆)

𝛾
+ 𝜆𝑛, (28)

for some 𝛿 > 0 and 𝐿(𝑛, 𝜆) defined in (15). Then, there exists a sequence of thresholds, 𝜇 = 𝜇(𝑛), such that
SeqOMP will achieve asymptotic reliable detection of the active user set in that

𝑝err = Pr
(
𝐼SOMP ∕= 𝐼true

)
→ 0,

where the probability is taken over the randomness in the activities of the users, the codebook A, and the noise
w. The sequence of threshold levels can be selected independent of the sequence of power profiles.

The theorem provides a simple sufficient condition on the number of degrees of freedom as a function of the
SINR 𝛾, activity probability 𝜆 and number of users 𝑛. The condition (27) is somewhat technical, but is satisfied
in the cases that interest us. The remainder of this section will discuss some of the implications of this theorem.

4.3 Near–Far Resistance with Known Power Ordering

First, suppose that the power ordering 𝑝𝑗 is known at the receiver so the receiver can detect the users in order
of decreasing power. If, in addition, the SNRs of all the users go to infinity so that 𝑝𝑗 → ∞ for all 𝑗, then it can
be verified that 𝛾 > 1/(𝜆𝑛). In this case, the sufficiency of the scaling (28) shows that

𝑚 ≥ (1 + 𝛿)𝜆𝑛𝐿(𝑛, 𝜆) + 𝜆𝑛

is sufficient for asymptotic reliable detection. This is identical to the lasso performance except for the factor
𝐿(𝜆, 𝑛)/ log((1 − 𝜆)𝑛), which lies in (0, 4) for 𝜆 ∈ (0, 1/2). In particular, the minimum number of degrees of
freedom does not depend on MAR; therefore, similar to lasso and OMP, SeqOMP can theoretically detect users
even when they are much below the average power.

With SeqOMP, simply knowing the order of powers is sufficient to achieve near–far resistance when the SNR
is sufficiently high. Unlike for single-user detection, unequal received powers do not hurt the performance of
SeqOMP, as long as the order of the powers are known at the receiver. The feasibility of knowing the power
ordering is addressed in Section 4.9 below. We will now look at the effect of the power profile on the performance.

4.4 Performance with Constant Power

Consider the case when all the powers 𝑝𝑗 are equal. To satisfy the constraint (24), the constant power level must
be 𝑝𝑗 = SNR/(𝜆𝑛). From (25), the minimum SINR is 𝛾 = 𝛾const, where

𝛾const =
SNR

𝜆(𝑛+ (𝑛− 1)SNR)
≈ SNR

𝜆𝑛(1 + SNR)
, (29)
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and the approximation holds for large 𝑛.

It can be verified that the constant power profile satisfies the technical condition (27) provided 𝜆 is bounded
away from zero and the SNR does not grow too fast. Specifically, the SNR must satisfy SNR = 𝑜(𝑛/ log(𝑛)). In
this case, we can substitute 𝛾 = 𝛾const in (28) to obtain the condition

𝑚 >
(1 + 𝛿)(1 + SNR)𝐿(𝜆, 𝑛)

SNR
𝜆𝑛+ 𝜆𝑛

for asymptotic reliable detection. The condition is precisely the condition for single-user detection in (17) with
MAR = 1 and an additional 𝜆𝑛 term.

Thus, for a constant power profile, Theorem 4.1 does not show any benefit in using SeqOMP.

4.5 Optimal Power Shaping

The constant power profile, however, is not optimal. Suppose that accurate power control is feasible so that the
receive power levels 𝑝𝑗 can be set by the receiver. In this case, we can maximize the SINR 𝛾 in (25) for a given
total SNR constraint (24). It is easily verified that any power profile 𝑝𝑗 maximizing the SINR 𝛾 in (25) will
satisfy

𝑝ℓ = 𝛾
(
1 + 𝜆

∑𝑛
𝑗=ℓ+1 𝑝𝑗

)
(30)

for all ℓ = 1, . . . , 𝑛. The solution to (30) and (24) is given by

𝑝ℓ = 𝛾(1 + 𝜆𝛾)𝑛−ℓ, (31)

where 𝛾 = 𝛾opt is the SINR,

𝛾opt = 𝜆−1
[
(1 + SNR)1/𝑛 − 1

]
≈ (𝜆𝑛)−1 log(1 + SNR). (32)

Here, the approximation holds for large 𝑛. Again, some algebra shows that, when 𝜆 is bounded away from zero,
the power profile 𝑝𝑗 in (31) will satisfy the technical condition (27) when log(1 + SNR) = 𝑜(𝑛/ log(𝑛)).

The power profile (31) is exponentially decreasing in the index order ℓ. Thus, users early in the detection
sequence are allocated exponentially higher power than users later in the sequence. This allocation insures that
early users have sufficient power to overcome the interference from all the users later in the detection sequence
that are not yet cancelled. This power shaping is analogous to the optimal power allocations in the classic MAC
when using a SIC receiver.2

The ratio of the optimal SINR 𝛾opt to the SINR with a constant power profile 𝛾const is given by

𝛾opt
𝛾const

=
(1 + SNR) log(1 + SNR)

SNR
.

This ratio represents the potential increase in SINR with exponential power shaping relative to the SINR with
equal power for all users. The ratio increases with SNR and can be large when the SNR is high. For example,
when SNR = 10 dB, 𝛾opt/𝛾const ≈ 2.6. When SNR = 20 dB, the gain is even higher at 𝛾opt/𝛾const ≈ 4.7.

Based on Theorem 4.1, this gain in SINR will result in a proportional decrease in the minimum number of
degrees of freedom. Specifically, if we substitute the SINR 𝛾opt in (32) into (28), we see that that the condition

𝑚 ≥ (1 + 𝛿)𝐿(𝑛, 𝜆)

log(1 + SNR)
𝜆𝑛+ 𝜆𝑛 (33)

is sufficient for SeqOMP to achieve asymptotic reliable detection of the active users, when the users use expo-
nential power shaping (31).

As before, if 𝜆 < 1/2 then 𝐿(𝑛, 𝜆) < 4 log(𝑛(1− 𝜆) and the sufficient condition (33) can be simplified to

𝑚 ≥ 4(1 + 𝛿) log(𝑛(1 − 𝜆))

log(1 + SNR)
𝜆𝑛+ 𝜆𝑛, (34)

the leading term of which appears in Table 1 with the 𝛿 omitted.
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4.6 SNR Saturation

As discussed earlier, a major problem with both single-user detection and lasso multiuser detection was that
their performance “saturates” with high SNR. That is, even as the SNR scales to infinity, the minimum number
of degrees of freedom scales as 𝑚 = 𝑂(𝜆𝑛 log((1−𝜆)𝑛). In contrast, optimal ML detection can achieve a scaling
𝑚 = 𝑂(𝜆𝑛) when the SNR is sufficiently high.

An important consequence of (33) is that SeqOMP with exponential power shaping can overcome this bound.
Specifically, if we take the scaling of SNR = Θ(𝜆𝑛) in (34) and assume that 𝜆 is bounded away from zero we
see that asymptotically, SeqOMP requires only 𝑚 ≥ 5𝜆𝑛 degrees of freedom. In this way, unlike single-user and
lasso detection, SeqOMP is able to obtain the scaling 𝑚 = 𝑂(𝜆𝑛) when the SNR → ∞.

4.7 Power Shaping with Sparse Bayesian Learning

The fact that power shaping can provide benefits when combined with certain iterative detection algorithms
confirms the observations in the work of Wipf and Rao.23 That work considers signal detection with a certain
sparse Bayesian learning (SBL) algorithm. They show the following result: Suppose x has 𝑘 non-zero components
and 𝑝𝑖, 𝑖 = 1, 2, . . . , 𝑘, is the power of the 𝑖th largest component. Then, for a given codebook matrix A, there
exist constants 𝜈𝑖 > 1 such that if

𝑝𝑖 ≥ 𝜈𝑖𝑝𝑖−1, (35)

the SBL algorithm will correctly detect the sparsity pattern of x.

The condition (35) shows that a certain growth in the powers can guarantee correct detection. The parameters
𝜈𝑖 however depend in some complex manner on the matrix A, so the appropriate growth is difficult to compute.
They also provide strong empirical evidence that shaping the power with certain profiles can greatly reduce the
number of degrees of freedom needed.

The results in this paper add to Wipf and Rao’s observations showing that growth in the powers can also
assist sequential OMP. Moreover, for the SeqOMP case, we can explicitly derive the optimal power profile for
certain large random codebook matrices.

This is not to say that SeqOMP is better than SBL. In fact, empirical results of Wipf and Rao suggest that
SBL will outperform OMP, which will in turn do better than SeqOMP.34 As we have stressed before, the point
here of analyzing SeqOMP is that we can easily derive concrete analytic results. These results may provide
guidance for more sophisticated algorithms.

4.8 Robust Power Shaping

The above analysis shows certain benefits of SeqOMP used in conjunction with power shaping. However, these
gains are theoretically only possible at infinite block lengths. Unfortunately, when the block length is finite,
power shaping can actually reduce the performance.

The problem is that when an active user is not detected in SeqOMP, the user’s energy is not cancelled out
and remains as interference for all subsequent users in the detection sequence. With power shaping, users early
in the detection sequence have much higher power than users later in the sequence, so missing an early user can
make the detection of subsequent users difficult. At infinite block lengths, the probability of missing an active
user can be driven to zero. But, at finite block lengths, the probability of missing an active user early in the
sequence will always be nonzero, and therefore a potential problem with power shaping.

Agrawal et al. observed a similar problem when SIC is used in a CDMA uplink.36 To mitigate the problem,
they proposed to adjust the power allocations to make them more robust to decoding errors early in the decoding
sequence. The same technique, which we will call robust power shaping, can be applied to the SeqOMP as follows.

In the condition (30), it is assumed that all the energy of users with index 𝑗 < ℓ have been correctly detected
and subtracted. But, following Agrawal et al., suppose that on average some fraction 𝜃 ∈ [0, 1] of the energy of
users early in the detection sequence is not cancelled out due to missed detections. We will call 𝜃 the leakage
fraction. With nonzero leakage, the condition (30) would be replaced by

𝑝ℓ = 𝛾
(
1 + 𝜃𝜆

∑ℓ−1
𝑗=1 𝑝𝑗 + 𝜆

∑𝑛
𝑗=ℓ+1 𝑝𝑗

)
. (36)

Proc. of SPIE Vol. 7446  744607-12

Downloaded from SPIE Digital Library on 19 Mar 2010 to 18.51.1.125. Terms of Use:  http://spiedl.org/terms



0 0.2 0.4 0.6 0.8 1
1

1.5

2

2.5

3

3.5

4

4.5

5

Leakage fraction θ

S
N

IR
 in

cr
ea

se
 γ

(θ
)/

γ(
1)

SNR = 20 dB
SNR = 10 dB
SNR = 0 dB

0 20 40 60 80 100
−5

0

5

10

15

20

User index

R
X

 p
ow

er
 ta

rg
et

, 1
0l

og
10

(p
j)

θ=0
θ=0.1
θ=1

(a) (a)

Figure 1. (a) Increase in SINR, 𝛾(𝜃)/𝛾const = 𝛾(𝜃)/𝛾(1), as a function of the leakage fraction 𝜃. (b) Robust power shaping:
Power profiles for various leakage values 𝜃. For all the curves, the number of users is 𝑛 = 100, SNR = 20 dB, and activity
probability is 𝜆 = 0.1.

For given SNR, 𝜃 and 𝜆, the linear equations (24) and (36) can be solved to obtain the optimal power profile,
given by

𝑝𝑗 =
(1− 𝜃)𝛾

1 + 𝜆𝜃𝛾

(
1 + 𝜆𝛾

1 + 𝜆𝜃𝛾

)𝑛−𝑗

, (37)

where 𝛾 = 𝛾(𝜃) is the optimal SINR given by

𝛾(𝜃) =
1

𝜆(1− 𝜃)

[(
1 + SNR

1 + 𝜃 SNR

)1/𝑛
− 1

]
≈ 1

𝜆𝑛(1− 𝜃)
log

(
1 + SNR

1 + 𝜃 SNR

)
. (38)

The approximation here is valid for large 𝑛.

Fig. 1(a) plots the SINR, 𝛾(𝜃), as a function of the leakage fraction 𝜃. The SINR is plotted relative to 𝛾const
in (29), which is the SINR that one obtains with a constant power profile. The increase in SINR is maximized
when the leakage fraction, 𝜃 = 0. When 𝜃 = 0, 𝛾(𝜃) = 𝛾exp, the SINR (32) for the exponential power shaping.
This is the optimal SINR, but assumes that there are no missed detections.

As the leakage fraction 𝜃 is increased, the SINR 𝛾(𝜃) decreases, which is price for the robustness to missed
detections. In the limit as 𝜃 → 1, the optimal power profile, 𝑝𝑗 in (37), approaches a constant and the corre-
sponding SINR converges to 𝛾const. However, even at a reasonable leakage fraction, say 𝜃 = 0.1, the SINR 𝛾(𝜃)
can still be significantly larger than 𝛾const.

It is illustrative to actually look at the optimal power profiles as a function of 𝜃. Fig. 1(b) plots the optimal
power profile, 𝑝𝑗 in (37), for leakage values of 𝜃 = 0, 0.1 and 1. In the plot, 𝑛 = 100, SNR = 20 dB, and 𝜆 = 0.1.
It can be seen that when 𝜃 = 0, there is a large range of almost 20 dB in the target receive powers from the first
to last user. While this power profile it optimal when there are no missed detections, the power allocations can
be very damaging if an active user is missed. In an extreme case, for example, if the first user is active but not
detected and not cancelled it will cause an interference level 20 dB above the signal level of the last user. As
the leakage fraction 𝜃 is increased, the range of powers is decreased, which improves the robustness to missed
detection at the expense of reduced SINR.

4.9 Practical Power Control Considerations

In the original description of the problem in Section 2, we said that we would restrict our attention to estimators
that do not require a priori knowledge of the modulation vector x. However, although SeqOMP does not require
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knowledge at the receiver of the channel phases, the above analysis shows that knowledge of the order of the
conditional received powers is necessary to achieve near–far resistance. Additionally, eliminating the multiple
access interference limit requires that powers are explicitly targeted to a certain profile.

The use of power control for on–off random access communication requires some justification. On–off random
access signaling is most likely to be used when the users do not already have some ongoing communication.
For example, in cellular systems, it is used for initial access or requests to transmit. If the users were already
transmitting, the one bit could be embedded in the other communication and on–off random access signaling
would not be needed. Consequently, fast feedback power control would likely not be available for such on–off
random access transmissions since the users are not likely to have a continuous transmission to measure the
received power. Thus, in practice, power control is likely achievable only by open-loop methods. Open-loop
power control is used for example in cellular systems where each mobile estimates the path loss in the downlink
and adjusts its access power appropriately in the uplink. Open-loop power control is most accurate when the
uplink and downlink are time-division duplexed (TDD) in the same band.

5. CONCLUSIONS

Sparse signal detection is a valuable framework for understanding on–off random access signaling. Results can
provide simple capacity estimates and clarify the role of power control and multiuser detection. Methods such as
OMP and lasso, which are widely used in sparse signal detection problems, can be applied as multiuser detection
methods for on–off random access channels. Analysis shows that these methods may offer improved near–far
resistance over single-user detection in high SNRs. Optimal ML detection may theoretically offer further gains in
the high SNR regime, but is not computationally feasible. However, some gains at high SNR may be practically
achievable through power shaping and SIC-like techniques such as OMP.
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