
MIT Open Access Articles

Optimal Strategies of the Iterated Prisoner's
Dilemma Problem for Multiple Conflicting Objectives

The MIT Faculty has made this article openly available. Please share
how this access benefits you. Your story matters.

Citation: Mittal, S., and K. Deb. “Optimal Strategies of the Iterated Prisoner's Dilemma Problem
for Multiple Conflicting Objectives.” Evolutionary Computation, IEEE Transactions on 13.3 (2009):
554-565. © 2009 Institute of Electrical and Electronics Engineers.

As Published: http://dx.doi.org/10.1109/tevc.2008.2009459

Publisher: Institute of Electrical and Electronics Engineers

Persistent URL: http://hdl.handle.net/1721.1/54742

Version: Final published version: final published article, as it appeared in a journal, conference
proceedings, or other formally published context

Terms of Use: Article is made available in accordance with the publisher's policy and may be
subject to US copyright law. Please refer to the publisher's site for terms of use.

https://libraries.mit.edu/forms/dspace-oa-articles.html
http://hdl.handle.net/1721.1/54742

554 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 13, NO. 3, JULY 2009

Optimal Strategies of the Iterated
Prisoner’s Dilemma Problem for Multiple

Conflicting Objectives
Shashi Mittal and Kalyanmoy Deb

Abstract— In this paper, we present a new paradigm of
searching optimal strategies in the game of iterated prisoner’s
dilemma (IPD) using multiple-objective evolutionary algorithms.
This method is more useful than the existing approaches, because
it not only produces strategies that perform better in the iterated
game but also finds a family of nondominated strategies, which
can be analyzed to decipher properties a strategy should have
to win the game in a more satisfactory manner. We present
the results obtained by this new method and discuss sub-
strategies found to be common among nondominated strategies.
The multiobjective treatment of the IPD problem demonstrated
here can be applied to other similar game-playing tasks.

Index Terms— Evolutionary algorithms, games, multiobjective
optimization, prisoner’s dilemma.

I. INTRODUCTION

THE PRISONER’S dilemma is a well known game that
has been extensively studied in economics, political sci-

ence, machine learning [1], [2], and evolutionary biology [3].
In this game, there are two players, each of whom can make
one of the two moves available to them: cooperate (C) or
defect (D). Both players choose their moves simultaneously
and independent of each other. Depending upon the moves
chosen by either player, each of them gets a payoff. A typical
payoff matrix is shown in Fig. 1.

When both players cooperate, they are awarded at an equal
but intermediate level (the reward R). When only one player
defects, he receives the highest possible payoff (the temptation
T), while the other player gets the sucker’s payoff (the sucker
S). When both players defect, they receive an intermediate
penalty (the penalty P).

Several interesting properties of the game can be imme-
diately observed. It can be seen that this is a nonzero sum
game: that is, the sum of the payoffs of the two players is
not always a constant. In a one-shot game, both players will

Manuscript received May 6, 2006; revised February 22, 2007. Current
version published June 10, 2009. K. Deb was supported by the Academy of
Finland and the Helsinki School of Economics during his stay in Finland under
the Finland Distinguished Professor (FiDiPro) program. He also would like
to express his sincere thanks to the Academy of Finland and the Foundation
of Helsinki School of Economics (Grant 118319) for supporting this work
during his stay in Finland under the FiDiPro program.

S. Mittal is with the Operations Research Center, Massachusetts Institute
of Technology, Cambridge, MA 02139 USA (e-mail: mshashi@mit.edu).

K. Deb is with the Department of Business Technology, Helsinki School of
Economics, 00250 Helsinki, Finland, and is also with the Indian Institute of
Technology Kanpur, Kanpur 208016, India (e-mail: deb@iitk.ac.in).

Digital Object Identifier 10.1109/TEVC.2008.2009459

Player 2

Defect

S = 0 T = 5

T = 5 S = 0 P = 1 P = 1Defect

Decision

R: Reward S: Sucker T: Temptation P: Penalty

Cooperate

Cooperate R = 3 R = 3

1

P
l
a
y
e
r

Fig. 1. Classical choice for payoff in prisoners dilemma (player 1s payoffs
are given first).

choose to defect, because this move is guaranteed to maximize
the payoff of the player no matter what his opponent chooses.
However, it can be seen that both players would have been
better off by choosing to cooperate with each other (hence the
dilemma).

In game theory, the move (D, D) of the players is termed
as a Nash equilibrium [4], which is a steady state of the game
in which no player has an incentive to shift from its strategy.
Nash [5] proved that any n-player game has a Nash equilib-
rium, when randomization in choosing the moves is permitted.
However, as is clear from the prisoner’s dilemma game, a Nash
equilibrium may not necessarily be the social optimum.

The situation becomes more interesting when the play-
ers play this game iteratively (called the iterated prisoner’s
dilemma or IPD) and the payoffs are accumulated over each
iteration. If both players play the game for infinite number of
turns, and the payoff of each player is the discounted sum of
the payoffs at each turn of the game, then it is possible to have
an equilibrium which is better than (D, D). The equilibrium
outcomes in iterated games are defined by folk theorems [6].
For prisoner’s dilemma, there are infinitely many equilibrium
outcomes; in particular, it is possible to have an equilibrium
outcome in which both players always cooperate.

Suppose that there are a number of players, and each player
plays the iterated game with other players in a round robin
fashion, the scores being cumulated over all the games. The
winner of the game is the player with the maximum payoff
at the end of the round robin tournament. The problem that
we consider in this paper is to find optimal strategies that
will ensure victory in such a tournament against a fixed set

1051-8215/$25.00 © 2009 IEEE

Authorized licensed use limited to: MIT Libraries. Downloaded on November 16, 2009 at 15:11 from IEEE Xplore. Restrictions apply.

MITTAL AND DEB: OPTIMAL STRATEGIES OF THE ITERATED PRISONER’S DILEMMA PROBLEM FOR MULTIPLE CONFLICTING OBJECTIVES 555

of opponents. This has been a widely studied problem by
game theorists and artificial intelligence experts alike. Axelrod
was the first to study this problem in detail [1], [7], [8].
He used a single-objective evolutionary algorithm (EA) for
finding the optimal strategies. This is discussed in Section II.
Since Axelrod, there have been several studies on this problem
[9]–[13]. Evolutionary algorithms have also been investigated
for finding optimal strategies in the spatial iterated prisoner’s
dilemma game [14], [15], and also for the case where there
are intermediate moves available to the players or noise has
been added in the environment [16].

However, in all these studies the problem of finding optimal
strategies has been viewed as a single-objective optimization
problem. That is, the objective is to find strategies that
maximize their own score in a round robin tournament. In
this paper, we present a new approach of finding optimal
strategies by considering the problem as a multiple objective
optimization problem. In its simplest form, the objective of
maximizing self-score and the objective of minimizing an
aggregate opponent score should result in a conflicting sce-
nario. There exist a number of motivations for considering the
usual IPD problem as a multiobjective optimization problem.

1) The use of conflicting objectives of the game and treat-
ing the problem as a true multiobjective optimization
problem may result in a number of interesting tradeoff
optimal strategies that may provide useful information
of playing the IPD in its generic sense than what a
single optimal strategy derived from optimizing a single
objective will provide.

2) In solving difficult optimization problems [17], [18], it is
recently experienced that the use of additional objectives
as helper objectives tends to provide a better search
power to an optimization procedure than the sole use of
a single objective. Since multiple tradeoff solutions are
preserved in the search process in the case of multiple
conflicting objectives, the sustained diversity among the
solutions help to find better solutions, thereby allowing
a better convergence near the true optimum of the prob-
lem. A goal of this paper is also to investigate whether a
multiobjective application can find better solutions than
that obtained by a single-objective application.

3) Such an multiobjective approach has not been previously
investigated in the IPD literature and due to advancement
of evolutionary multiobjective optimization (EMO) lit-
erature and their innovative applications in various other
optimization tasks [18], [19], it is worth an attempt to
investigate the outcome of a systematic EMO application
to this important problem.

4) Since a multiobjective optimization task finds a number
of tradeoff optimal or near-optimal (high-performing)
solutions, an analysis of these solution has often resulted
in revealing important insights about the underlying
problem in many application studies [20]. A major
motivation of this paper is to hope to unveil any such
important properties or strategies that will predominantly
exist among the tradeoff high-performing solutions of
the IPD game. Such information is difficult to achieve
by any other means and, if exist, will provide valuable

information about what high-level strategies a player
may keep in mind while playing the game with max-
imum performance.

5) Most games, including IPD, are multiobjective in nature,
involving goals related to maximizing payoff of the
player, minimizing payoff of the opponent player, max-
imizing the difference in payoffs between a player’s
own and that of the opponent, minimizing the average
or maximum payoff of opponents, if played against a
number of opponents, and so on. In traditional game the-
ory, all the objectives are combined into a single payoff
function for the players. However, these objectives can
be combined in several different ways. By looking at the
different objectives from a multiobjective optimization
point of view, it is possible to get optimal strategies for
all possible combinations of the objectives, by simply
looking at the strategies in the tradeoff curve.

In the remaining sections, we first briefly discuss Axelrod’s
original single-objective study in Section II. Thereafter, we
discuss this approach in detail in Section III. The details of
the simulation results are discussed in Sections IV, V, and VI.
A brief summary of the significance of the obtained results and
conclusions of the study are presented in Section VII.

II. AXELROD’S STUDY

Axelrod organized two tournaments [7] and invited strate-
gies from a number of experts and game theorists for solving
the IPD problem. To his surprise, he found that the winner in
both the tournaments used a very simple strategy, namely the
‘Tit for Tat’. This strategy cooperates on the first move, and
then simply copies the opponent’s last move in its subsequent
moves. That such a simple strategy turned out to be the
winner was quite surprising, and Axelrod set out to find other
simple strategies with the same or greater power. Axelrod
adopted a simple but elegant way for encoding strategies [1],
and then used a single-objective evolutionary algorithm to
obtain optimal strategies. His encoding scheme remained a
standard way of handling the IPD problem and is described
in somewhat detail here. In this paper, we also adopt a similar
encoding scheme.

For each move in the game, there are four possibilities: both
players can cooperate (CC or R for reward), the second player
can defect while the first cooperates (C D or S for sucker),
the first player can defect while the second cooperates (DC
or T for temptation), or both players can defect (DD or P for
penalty). To code a particular strategy, the particular behavioral
sequence is coded as a three-letter string. For example, R R R
would represent the sequence where both players cooperated
over the previous three moves and SS P would represent the
sequence where the first player was played for a sucker twice,
and then finally defected. This three-letter sequence is then
used to generate a number between 0 and 63, by interpreting
it as a number in base 4. One such possible way is to assign
a digit value to each of the characters in following way:
DD = P = 0, DC = T = 1, C D = S = 2, and
CC = R = 3. In this way, P P P would decode to 0, and
SS R will decode to (2 · 42 + 2 · 41 + 3 · 40) or 43. With the

Authorized licensed use limited to: MIT Libraries. Downloaded on November 16, 2009 at 15:11 from IEEE Xplore. Restrictions apply.

556 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 13, NO. 3, JULY 2009

Say, previous three moves are:

Move 3

Move 2

Move 1

Player 1 Player 2

D

C

DD

D

D

Code

P

T

P

CDDCC...................CDC DDDCDD

An example EA Solution:

64 positions

Outcome: (C) or Cooperate

Player 1 chooses 5th position

6 pos.
(for initial move)

PTP=(010)_4 = 4

Fig. 2. Encoding a strategy for IPD used by Axelrod and also used here.

knowledge of past three moves, a player will then require one
of two possible moves (a cooperate “C” or a defect “D”) to
be supplied by a GA solution. With these two options in each
of 64 positions, a particular strategy can be defined by a 64-
bit binary GA string of C (cooperate) and D (defect), where
the i th C or D corresponds to the i th behavioral sequence
dictated by the three-letter sequence of past three moves.
Since a particular move depends on the previous three moves,
the first three moves in a game are undefined in the above
scheme. To account for these moves, six bits (with C and D,
initially assigned at random) are appended to the above 64-
bit string to specify a strategy’s premises, or assumption about
the pre-game behavior. Together, each of the 70-bit strings thus
represent a particular strategy, the first 64 are used for rules
and the next six are used for the premises. Fig. 2 shows such
an example EA string. For the example string in the figure,
the three-letter code comes out to be PT P for the previous
three initial moves (given in the figure). This decodes to four,
thereby meaning that player 1 should play the (4 + 1) or 5th
move (decoded value starts at zero, hence the addition of one)
specified in the first 64-bit GA string. In this case, the fifth
bit is C, meaning that the player 1 will cooperate.

Axelrod used the above encoding scheme to find optimal
strategies using a single-objective genetic algorithm. He found
that from a random start, the GA discovered strategies that
not only performed quite well, but also beat the overall
performance of ‘Tit for Tat’ strategy, mentioned earlier.

The encoding scheme used in this paper is the same as that
mentioned above. However, in addition to a single-objective
EA, we use an evolutionary multiobjective algorithm (EMO)
to find optimal strategies. For most part of the paper, the
following two objectives are chosen: 1) maximization of
the self-score and 2) minimization of the opponent’s score.
Here the opponent’s score means the cumulative score of all
opponents, when playing against a particular strategy.

III. USING MULTIPLE OBJECTIVE

EVOLUTIONARY ALGORITHMS

Most studies of IPD considered a single objective of maxi-
mizing a player’s own score. In this paper, for the first time,

we treat the problem as a bi-objective optimization problem
of maximizing the player’s own score and simultaneously
minimizing the opponent’s score.

A. Motivation

The original formulation of the prisoner’s dilemma game
was represented as a single-objective optimization problem;
that is, the main purpose was to find a strategy which maxi-
mizes a player’s self-score. Such an objective will result in a
single optimal strategy against a given set of opponents which
would be good in terms of the player’s own score, but will not
care anything about opponents’ scores. If in a game, a player
plays with a strategy that is supposed to credit the player with a
score of 400 (say) and also simultaneously allows an opponent
to score 395 (say), and although the player wins the game,
the satisfaction may be not enough. Moreover, often such
games can be noisy and may involve some uncertainties. In
such scenarios, the deterministic optimal strategy may not be
very pragmatic. Such consideration for uncertainties calls for a
robust optimization technique [21], [22]. But, in this paper, we
consider a direct approach of introducing a second objective
of minimizing the cumulative opponent’s score to hopefully
arrive at strategies that will keep a safe margin between self
and opponents’ scores. Thus, the IPD problem is re-looked
here as a bi-objective optimization problem.

There is another advantage of casting the problem as a bi-
objective optimization problem. Since the prisoner’s dilemma
game is a nonzero sum game, it is possible that there is a
tradeoff between these two objectives, meaning that a strategy
good for maximizing one’s own score may result in a relatively
high score of its opponents and vice versa. Later, we will
show that this is actually the case for the problem chosen
in this paper. Therefore, using a multiobjective evolutionary
approach may actually allow us to find a set of tradeoff
optimal strategies that can provide us with a better insight
to the optimal strategies of playing the game as compared to
a single-objective formulation. This is because using multiple
conflicting objectives not one but a number of tradeoff optimal
solutions can be found. These nondominated tradeoff solutions
so obtained can then be analyzed to look for any pattern
or insights about optimal strategies for the IPD. If any such
patterns are discovered, they would provide important sub-
strategies (rules or recipes) for playing the game for maximum
self-score and minimum opponents’ score.

In many practical situations, that can be modeled as a game,
the issue of balancing one’s own payoff against the opponent’s
can become important. This frequently arises in war-type
situations, where one side may try to magnify the difference in
payoff for propaganda purposes. In [23], for example, such a
situation arising in missile defenze is presented. In that paper,
the co-evolution in prisoner’s dilemma, in which there can be
intermediate levels of cooperation, has been studied.

B. NSGA-II Algorithm

For multiple objective optimization we use the NSGA-II
algorithm [24]. NSGA-II has been successfully applied to
many other multiple objective optimization problems [25] as
well. Interested readers may refer to the original study of

Authorized licensed use limited to: MIT Libraries. Downloaded on November 16, 2009 at 15:11 from IEEE Xplore. Restrictions apply.

MITTAL AND DEB: OPTIMAL STRATEGIES OF THE ITERATED PRISONER’S DILEMMA PROBLEM FOR MULTIPLE CONFLICTING OBJECTIVES 557

NSGA-II for getting an algorithmic concept of an EMO proce-
dure. A source code (in C programming language) of NSGA-II
is also available from http://www.iitk.ac.in/kangal/soft.htm.

IV. SIMULATIONS AND TEST CASES

Both single-objective EA and EMO were used for getting
optimal strategies. The simulation for both the algorithms
followed these steps. In each generation, a certain number
of strategies were generated, and each strategy was made to
play against 16 other players (narrated in the Appendix), but a
strategy did not play against itself. These opponent strategies
have been used extensively in previous studies on IPD. Each
game consisted of 150 moves. Then the strategies were sorted
in the decreasing order of their cumulative scores, and the next
generation was created using a recombination and a mutation
operator. The payoff matrix was the same as that shown in
Fig. 1.

Clearly, in one particular game using the payoff values
shown in Fig. 1, a player can score a maximum of (5×150) or
750 [if (s)he always defects, and the opponent always cooper-
ates], and a minimum of 0 [if (s)he always cooperates, while
the opponent always defects]. None of these two extremes
is usually achieved in practice. According to Dawkins [3], a
more useful measure of a strategy in the context of IPD is how
close it comes to the benchmark score, which is the score a
player will have if both the players always cooperate. In this
case of the IPD problem, the benchmark score is found to be
(3 × 150) or 450 in this case. For example, if the score of a
player, averaged over all the players (s)he played, is 400, then
(s)he has scored 89% of the benchmark score. This is a more
useful way of denoting the score of a player, since it is more
independent of the particular payoff matrix used, as well as
the number of players against which the player played. In all
the results presented in the next section, we will refer only
to the average score of a player in a game, or the score as a
percentage of the benchmark score.

V. SIMULATION RESULTS USING SINGLE-OBJECTIVE EA

First, we present the results obtained using a single-
objective EA. Since solutions are represented using a bit string,
we have used the usual binary tournament selection operator
[25], a single-point crossover operator, and a bitwise mutation
operator [2]. In all simulations, we have used a crossover
probability of 0.9 and mutation probability of 1/70, so that,
on an average, only one bit in a string of 70 bits gets mutated
at a time.

The single-objective EA used is quite similar to the one used
by Axelrod [1]. Two independent runs of the single-objective
EA were performed: one, in which the self-score of the player
was maximized, and the other in which the opponent’s score
was minimized. For each of the runs, the population size was
fixed at 40 and the number of generations was 20 000, although
the performance stabilized much earlier. The plot of the scores
for the first 200 generations when the EA was run are shown
in Figs. 3 and 4.

For maximizing the self-score alone using a single-objective
EA, the fitness measure of a sample is its self-score, hence

100 150
320

340

360

380

400

420

440

0 50 200

Fi
tn

es
s

Generation

Fig. 3. Plot of the mean fitness (shown in solid line) and maximum (self-
score) fitness (shown in dotted line) of population in the first 200 generations,
when self-score is maximized.

100

150

0 50 100 150 200

Fi
tn

es
s

Generation

200

250

300

350

400

Fig. 4. Plot of the mean fitness (shown in solid line) and minimum
(opponent’s score) fitness (shown in dotted line line) of population in the
first 200 generations, when opponent score is minimized.

the fitness score is to be maximized. As is clear from the
graphs, in the first case the mean fitness increases steadily with
generation counter, and around 200 generations the maximum
self-score of a solution in the population is 441, which is
98% of the benchmark score. When the EA is run for longer
generations, the maximum fitness converges at 446 (99.1%
of the benchmark score) and does not increase further. This
is a typical trend observed in optimization studies, including
using GAs, in which the progress happens fast in the beginning
followed by a relatively slow progress, as it becomes more and
more difficult to find better solutions near the optimal solution
in difficult optimization problems.

When the obtained optimal strategies are fielded in a round
robin tournament, these strategies win with a big margin.
Tables I and II show the outcome (average of 20 runs) of two
tournaments. In the first tournament, there are 16 strategies
and “Tit for Tat” is the winner with an average score of 387
(with a margin of 12.2% of the benchmark score). In the
second tournament, when the single-objective optimal strategy
obtained by the maximization of the self-score is fielded, it
wins by a huge margin, scoring as high as up to 99.1% of the
benchmark score. This is in line with the results obtained by

Authorized licensed use limited to: MIT Libraries. Downloaded on November 16, 2009 at 15:11 from IEEE Xplore. Restrictions apply.

558 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 13, NO. 3, JULY 2009

TABLE I

TOURNAMENT 1 WITH THE 16 PLAYERS

Player Average score
Tit for Tat 387
Soft Majority 379
Tit for two tats 379
Spiteful 376
Hard Tit For Tat 370
Always Cooperate 359
Periodic Player CCD 354
Naive Prober 353
Pavlov 351
Periodic Player CD 351
Remorseful Prober 351
Random Player 323
Hard Majority 317
Suspicious Tit for Tat 310
Periodic Player DDC 309
Always Defect 305

TABLE II

TOURNAMENT 2 WITH THE SINGLE-OBJECTIVE

OPTIMUM STRATEGY INCLUDED

Player Average score
Strategy SO 446
Tit for Tat 390
Hard Tit For Tat 374
Soft Majority 369
Tit for two tats 369
Spiteful 363
Naive Prober 360
Remorseful Prober 357
Always Cooperate 350
Periodic Player CCD 335
Pavlov 334
Periodic Player CD 334
Suspicious Tit for Tat 318
Hard Majority 311
Random Player 309
Periodic Player DDC 296
Always Defect 296

Axelrod. We refer to the strategy obtained by maximizing the
self-score as “Strategy SO.”

When the opponent score alone is minimized with a single-
objective EA, the minimum fitness stabilizes at 112 (24.9%
of benchmark score), as shown in Fig. 4. The strategies so
obtained perform poorly in a round robin tournament (their
performance is quite similar to that of the “Always Defect”
strategy). We refer to this strategy as “Strategy SO-min.”
Table III shows the average score of the players when this
strategy is included in the tournament. It can be seen that
this strategy performs as bad as the “Always Defect” strategy.
As such, it seems that there is little incentive in minimizing
the opponent score alone. However, this objective along with
maximizing the self-score objective has a remarkable benefit,
which we shall discuss in Section VI.

A. Niched EA

Before leaving the single-objective optimization study alto-
gether, we apply a single-objective GA with a niching-cum-
speciation strategy to investigate whether this method could

produce better strategies than that obtained by the previous
algorithm. The use of a niching strategy, in effect, reduce the
selection pressure introduced by the selection operator of an
EA. Thus, a niched EA is expected to maintain diversity in the
population, thereby facilitating an increased chance of conver-
gence to one or more optima [26]. We also employ a speciation
strategy by restricting mating between similar solutions [27].
The algorithm used niching and speciation in the sample
space, together with a stochastic universal selection (SUS)
operator for maximizing the self-score. The niching procedure
is the sharing approach [26], which requires a user-defined
parameter σshare. We have followed the guidelines provided
in the literature [28] and used different σshare values, ranging
between 5 and 30. The mating restriction operator ensures that
two parent solutions used for crossover has at least σshare bits
in common. If no two strings with above requirement were
found in the population, the crossover is not performed and
the first parent is simply copied in the offspring population.

All other EA parameters were the same as before. The
strategies obtained using the niching-cum-speciation procedure
to maximize the self-score were found to be inferior to the
previous single-objective procedure. The maximum fitness
of the final population obtained was in the range 410–420
(whereas the earlier EA run without niching and speciation
found a maximum self-score of 446), and the mean score of the
population settled around 370 in a long run of this algorithm.
This shows that using the niching-cum-speciation strategy in
single-objective GA of maximizing self-score is not found to
be helpful in improving the quality of the solution to this
problem. Although a niching operator helps to maintain diver-
sity in a population and a speciation operator helps to create
meaningful solutions, an appropriate setting of the additional
parameter (σshare) becomes an important task. Despite trying
with a wide range of σshare values, our limited study is unable
to produce any solution having a better self-score than that
obtained without the use of any niching or speciation operator.
The sharing scheme used here needed a proportionate selection
operator (SUS used here) that introduces a selection pressure
for the better population members, which is difficult to control.
Although the solution obtained by the niching-cum-speciation
EA is not a bad solution (better than the originally known “Tit
for Tat” solution having an average score of 387), it is inferior
to the solution obtained without these additional operators. The
controlled selection pressure achievable with the tournament
selection and EA parameters used in the original EA run was
able to find a better solution.

In the next section, we use a different diversity-preserving
strategy in which the problem is cast as a bi-objective problem
with two apparently conflicting objectives in the hope of
finding better scoring strategies of the IPD problem without
requiring to supply any new additional parameter.

VI. SIMULATION RESULTS USING MULTIOBJECTIVE EA

The parameters used in NSGA-II are as follows: population
size of 200 and maximum number of generations of 20 000.
Optimized results were found much earlier, but to make sure
that no further improvement is possible, we have run NSGA-II

Authorized licensed use limited to: MIT Libraries. Downloaded on November 16, 2009 at 15:11 from IEEE Xplore. Restrictions apply.

MITTAL AND DEB: OPTIMAL STRATEGIES OF THE ITERATED PRISONER’S DILEMMA PROBLEM FOR MULTIPLE CONFLICTING OBJECTIVES 559

TABLE III

TOURNAMENT 3 WITH THE SO-MIN STRATEGY INCLUDED

Player Average score
Tit for Tat 372

Soft Majority 375

Tit for two tats 365

Spiteful 363

Hard Tit For Tat 356

Naive Prober 341

Always Cooperate 337

Remorseful Prober 336

Periodic Player CCD 335

Periodic Player CD 334

Pavlov 344

Random Player 309

Hard Majority 306

Suspicious Tit for Tat 300

Always Defect 296

Strategy SO-min 296

Periodic Player DDC 296

till 20 000 generations. In all cases, we have performed more
than one simulations using different initial populations and
obtained similar results. Here, we only show the results of a
typical simulation run.

A. Evolution of Pareto-Optimal Strategies

Starting from a random population (marked with “+”), the
strategies ultimately converged to a nondominated front shown
using “x” in Fig. 5. The figure shows that the NSGA-II is
able to successfully steer the initial population towards the
Pareto-optimal region iteratively with generation and is able
to find a good range of tradeoff strategies. The figure also
shows that there is a remarkable tradeoff relationship between
the two objectives: larger values of self-score and smaller
values of opponent’s score. The reader should note that we
refer to Pareto-optimal strategies here only with respect to
optimization over the strategies used in this paper (given in
the Appendix), rather than with respect to optimization over
the space of all possible strategies. However, the opponent
strategies used in this paper are some of the commonly used
strategies in the IPD literature. If any other strategy must be
played against, a similar optimization task can be performed
by including it in the list of opponent strategies. Neverthe-
less, this paper demonstrates the usefulness of including an
additional objective in finding optimal IPD strategies.

After applying the NSGA-II to obtain the nondominated
front, next we employed a simplified local search procedure
(changing the bit positions from C to D or D to C systemat-
ically one at a time till no further improvement is possible)
from each member of this front with a composite single objec-
tive function derived from the location of different points on
the obtained frontier [25]. It was found that there was little or
no improvement on the solutions. Therefore, the nondominated
front found using NSGA-II is indeed very close to the true
optimal front. The use of local search from EMO solutions
ensures that the final solution is at least locally optimal.

O
pp

on
en

t s
co

re

Self-score

100

150

200

250

300

350

400

450

500

100 150 200 250 300 350 400 450 500

Fig. 5. Initial random solution (shown with “+”) and the nondominated front
(shown in “x”), when NSGA-II is run for 20 000 generations.

Always cooperate

Strategy MO

Tit for tat

100

150

200

250

300

350

400

450

500

100 150 200 250 300 350 400 450 500

O
pp

on
en

t s
co

re

Player score

Pareto optimal front and other solutions

Always defect

Strategy SO

Fig. 6. Nondominated solutions, together with the single objective EA results
(the upper and the left vertexes of the triangle) and a few other strategies.

In Fig. 6, the nondominated front obtained with NSGA-II
and solutions of a few other strategies, including the
single-objective EA results (discussed earlier), are shown.
Table IV shows five different tradeoff solutions obtained
using NSGA-II. The most significant outcome of the EMO
is, however, the evolution of strategies that perform much
better than those obtained using earlier methods. The strategy
with the maximum self-score (the maximum score, 451 is
slightly better than that for the optimal strategy obtained using
single-objective EA, 446) had a mean opponent score (214)
that was significantly lower than that for the single-objective

Authorized licensed use limited to: MIT Libraries. Downloaded on November 16, 2009 at 15:11 from IEEE Xplore. Restrictions apply.

560 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 13, NO. 3, JULY 2009

TABLE IV

FIVE CHOSEN STRATEGY STRINGS FROM NSGA-II SOLUTIONS, INCLUDING THE BEST SELF-SCORE (FIRST ROW) AND

WORST OPPONENT SCORE (LAST ROW)

Strategy string Self-score Opponent score

DDDDDDCCCDDCDDDDDDCDDDDCDCCDDCDDDDCDCCCDDCDCDCDCDDCCDDDDCDDDDDCCCDCCDD 455 227

DDCCDDDDCDDDDDDDDDCDDDDCDCCDDCDDDCCDCCCDDCDCDCDDDDCCDDDDCDDDDDCCCDCCCD 415 169

DDCDDDDCCDCDDDDDDDCDDDDCDCCCDCDDDCCDCCCDDCDDDCDDDDCCDDDDCDDDDDCCCDCCDC 381 135

DDCDDDDCCDCDDDDDDDCDDDDCDCCCDCDDDDCDCCCDDCDCDCDDDDCDDDDDDDDDDDCCCDCCCD 328 123

DDCDDDDDCDDCDDDCDDCDDDDCDCCDDCDDDDCDCCCDDDDDDCDCDDCDDDDDCDCDDDCCCCCCDC 298 112

TABLE V

TOURNAMENT 4 WITH STRATEGY MO INCLUDED

Player Average score
Strategy MO 448

Tit for Tat 391

Hard Tit For Tat 375

Soft Majority 370

Tit for two tats 370

Spiteful 363

Naive Prober 358

Remorseful Prober 344

Always Cooperate 337

Periodic Player CCD 336

Periodic Player CD 334

Pavlov 334

Suspicious Tit for Tat 319

Hard Majority 312

Random Player 310

Periodic Player DDC 296

Always Defect 296

optimal strategy (244). Fig. 6 shows the single-objective
optimum strategy (Strategy SO) and the multiple-objective
optimal self-score strategy (Strategy MO). Strategy MO so
obtained not only outperformed other strategies in a round
robin tournament (see Tables V and VI), but also defeated the
Strategy SO (Table VI). This clearly shows that the addition
of minimizing opponent’s score as a helper objective in an
EMO is able to find better self-score strategies as compared
to the single-objective EA of maximizing self-score alone.
Since an EMO maintains a good diverse population due to
the consideration of two conflicting objectives and the use
of a diversity preserving mechanism, the search power of
EMO is usually better than that in a single-objective EA. In
complex optimization problems in which the search of the
individual optimal solution is difficult using a single-objective
optimization algorithm, a two or more objective consideration
may lead to a better optimum, in general.

Note that the score for Strategy MO given in Table VI is
slightly less than the self-score of this strategy when it is
obtained using the NSGA-II algorithm. This is because the
scores presented in each tournament are averaged over several
tournaments (this is done to negate the effect of the variation
in scores due to the presence of randomized strategies in the
tournament), whereas when computing the optimal strategy

TABLE VI

TOURNAMENT 5 WITH BOTH STRATEGY MO AND

STRATEGY SO INCLUDED

Player Average score
Strategy MO 434

Strategy SO 428

Tit for Tat 394

Hard Tit For Tat 378

Naive Prober 364

Soft Majority 361

Tit for two tats 361

Spiteful 351

Remorseful Prober 349

Always Cooperate 330

Suspicious Tit for Tat 326

Periodic Player CCD 319

Periodic Player CD 319

Pavlov 319

Hard Majority 307

Random Player 295

Always Defect 288

Periodic Player DDC 285

using NSGA-II algorithm, the tournament is held only once
in each generation. Therefore the score for the Strategy MO
is slightly lower in the tournament scores.

The other extreme solution on the Pareto-optimal front
(the one corresponding to the minimum opponent’s score)
is the same as that obtained by minimizing the opponent’s
score in Table III, and has the same performance as the
“Always Defect” strategy. Interestingly, even though many bit
positions in the string for this strategy are C (shown in the
last row of Table IV), they are not used during the round
robin tournament. The most frequently used bit positions for
this strategy are D, thereby behaving almost like the “Always
Defect” strategy.

B. Sensitivity of the Strategy With the Best Self-Score

To further analyze the best self-score strategy for the
frequently repeated bit positions, we performed the following
experiment. If the position i is frequently used, and the strategy
at this position in the strategy string is C, it is changed to D and
vice versa. Only one position in the strategy string is changed
at a time. This experiment was carried out on the Strategy MO.

When this is done for positions 0, 1, 4, 5, etc., where the
original strategy is to defect (D) and in the new strategy string

Authorized licensed use limited to: MIT Libraries. Downloaded on November 16, 2009 at 15:11 from IEEE Xplore. Restrictions apply.

MITTAL AND DEB: OPTIMAL STRATEGIES OF THE ITERATED PRISONER’S DILEMMA PROBLEM FOR MULTIPLE CONFLICTING OBJECTIVES 561

the strategy is changed to cooperate (C), then there is a slight
decrease in the self-score of the player from 448 to around 440.
This is expected, since at certain moves in the game the player
gets the sucker’s payoff (player 1 cooperates and player 2
defects). In the round robin tournament, the modified strategy
still wins by a large margin against the other 16 players, but
does not perform as good as the original strategy.

A more interesting situation arises when the strategies for
the bit positions 29 and 63 are changed from C to D. In
the first case, the self-score of the player falls drastically to
361 and its rank in the round robin tournament falls to five,
while in the latter case the self-score falls to 370 and the
rank to two. A closer analysis of the frequent usage of bit
positions revealed that 29 is used most frequently against the
players “Soft Majority” and “Hard Majority.” The position 29
decodes to T RT , which means that the opponent cooperated
on all the previous three moves, while player 1 defected on
the first and the third moves and cooperated on the second
move. Such a strategy pattern fools the “Majority” players by
giving them the illusion that the most moves played against
them are C. Thus the “Majority” players are exploited by the
evolved strategies by this pattern of moves. When the strategy
at 29 is changed from C to D, the modified strategy and the
“Majority” players indulge in a series of mutual defections,
which considerably decreases the self-score of the modified
player. When the strategy at position 63 is changed from C
to D, then the modified strategy enters into mutual defections
with the “Tit for Tat” and the prober players, again leading to
a significant decrease in the self-score.

This experiment shows that it is very important to cooperate
at crucial points, to either sustain a chain of mutual coopera-
tion (as is the case with position 63) or to fool the opponent
player (the case with position 29). This sensitivity analysis
also demonstrates that the obtained best self-score strategy by
NSGA-II is at least locally optimal, as a local perturbation of
this strategy makes a deterioration of the self-score.

C. Maximizing Difference Between Self-Score and
Opponent Score

One possible way of incorporating both the above-
mentioned objectives is to maximize the difference between
the self-score and the opponent score. We carried out this
single-objective optimization using a genetic algorithm. The
parameters of this single-objective optimization are the same
as those mentioned in Section V. The maximum difference
between the two scores settles down to 230 when the EA
is run for a large number of generations. However, the best
self-score strategies obtained by this optimization method
have a low self-score of 370. When this strategy (referred
to as “MaxDiff” strategy) are fielded in a round robin
tournament, their performance is well below the strategies
obtained by maximizing self-score (in Sections V and VI
so far), as shown in Table VII. In Fig. 7, this strategy is
shown together with the Pareto-optimal front obtained using
NSGA-II. First of all, the plot shows that the MaxDiff strategy
is dominated by the Pareto-optimal front, indicating that it
does not perform better than some of the strategies obtained

TABLE VII

TOURNAMENT 6 WITH THE MAXDIFF STRATEGY INCLUDED

Player Average score
Tit for Tat 372

MaxDiff 370

Soft Majority 369

Tit for two tats 369

Spiteful 362

Hard Tit For Tat 357

Always Cooperate 350

Naive Prober 341

Remorseful Prober 336

Periodic Player CCD 336

Pavlov 334

Periodic Player CD 334

Hard Majority 311

Random Player 308

Suspicious Tit for Tat 301

Always Defect 295

Periodic Player DDC 295

248

247

245
244

246
226

207

247

228
226

NSGA−II

Max. Diff.

230

50

100

150

200

250

300

250

Self-score

O
pp

on
en

t s
co

re

300 350 400 450 500

Fig. 7. MaxDiff strategy shown along with the Pareto-optimal front.

using NSGA-II. Hence it is not sufficient to simply maximize
a single goal of the difference between the self-score and the
opponent scores to get good strategies for IPD. The difference
between the self and opponent scores are marked for a few
selected solutions on the NSGA-II frontier. It is clear that
the intermediate portion of the front possesses strategies
having a large difference in scores. The single-objective
GA was not able to find the strategy having the maximum
difference (a value of 248) in self and opponent scores found
by NSGA-II. This once again demonstrates that the NSGA-II
diversity-preserving feature is able to find a better strategy
than a single-objective GA. It is this positive aspect of a
multiobjective EA applied to a difficult problem that we
highlight in this paper. There is another important benefit for
finding multiple tradeoff solutions which we discuss next.

Authorized licensed use limited to: MIT Libraries. Downloaded on November 16, 2009 at 15:11 from IEEE Xplore. Restrictions apply.

562 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 13, NO. 3, JULY 2009

St
ra

te
gy

Bit position

0

2

4

6

8

10

12

 14

16

18

0 10 20 30 40 50 60 70

Plot for the most frequently used bit positions in the strategy string

Fig. 8. Plot of the frequently used bit positions in the strategy strings. The
cooperative moves are shown with white boxes, while the defecting moves are
shown in black boxes. The upper half of the plot corresponds to frequently
used bit positions for players with randomly chosen strategies, whereas the
bottom half corresponds to those of the Pareto-optimal strategies.

D. Common Properties of Pareto-Optimal Strategies

Nondominated strategies obtained by the proposed proce-
dure are locally optimal and each corresponds to a certain
tradeoff between the two conflicting objectives considered in
this paper. Since they are all high-performing solutions, it is
expected that they will possess some interesting properties that
may be common to all such solutions. An understanding and
deciphering of such properties has revealed interesting insights
in a number of optimization tasks [20]. We attempt to perform
such a study with the tradeoff solutions obtained for the IPD
problem here.

To have a closer look at the tradeoff strategies, the number
of times each bit position in the string was used in a round
robin tournament was recorded, and plotted for different strate-
gies. Fig. 8 shows the combined plot for six Pareto-optimal
strategies (chosen from Fig. 6), and for six random strategies
(for comparison). In the plot, the frequency distribution for six
Pareto-optimal strategies are given in the lower half (strategies
marked as 1 to 6 with self-score decreasing along the positive
y-axis), and for six randomly chosen strings in the upper half
(strategies marked as 10 to 15). The cooperative moves are
shown in white boxes, and the defecting moves are shown
in black boxes. Only those bit positions that were used
more than 20 times (out of 150 moves) in the round robin
tournament are shown. In our particular encoding scheme,
DD = P = 0, DC = T = 1, C D = S = 2, and
CC = R = 3. The plot reveals that only a few of the bit
positions of a strategy are used more than 20 times. Also,
the Pareto-optimal strategies show some interesting similarities
with respect to the usage of a particular bit position. For
example, positions 0, 1, 4, 5, 17, 18, 21, and 55 turn out
to be “Defecting” in all of the six Pareto-optimal solutions.
There are also some trends in “Cooperating,” such as 29 and
63 bit positions, coming out as common strategies of these
high-performing solutions. We discuss a few of them in the
following:

min–max

NSGA−II

min−avg

100

150

200

250

300

350

400

450

500

100 150

Self-score

O
pp

on
en

t s
co

re

150 200 250 300 350 400

Fig. 9. Pareto-optimal front obtained when maximum of the opponent score is
minimized (maximum opponent score is represented by ’X’ and corresponding
average score is represented by diamonds) against the Pareto-optimal front
obtained earlier (shown in circles).

1) Bit Position 0 Resulting in a Defect: This decodes to
PPP, i.e. both the players have been defecting with each
other over the previous three moves. Since both players are
defecting, it is expected that the player 1 should also defect
as a good strategy for preventing the opponent’s score to be
high in the subsequent moves.

2) Bit Position 1 Resulting in a Defect: This decodes to
PPT. The opponent defected on the first two moves, but did
not do so in the third move, while player 1 defected in all the
three moves. In this case, the strategy is to defect, so as to
“exploit” the foolish opponent.

3) Bit Positions 4 and 5 Resulting in a Defect: These bit-
positions decode to PTP and PTT, respectively. These cases
are similar to the previous case, and again the moves are to
defect to exploit the opponent.

4) Bit Position 17 Resulting in a Defect: This implies TPT.
That is, player 1 has defected on all the previous three moves,
but the opponent was foolish enough to cooperate. Clearly,
in this case, player 1 should defect to exploit the opponent’s
foolishness.

5) Bit Position 55 Resulting in a Defect: This is implies
RTR. This again a case of exploitation, since the opponent
cooperated on all the previous three moves even though
player 1 defected once. Hence the move in this situation is
to defect.

6) Bit Position 63 Resulting in a Cooperation: This implies
RRR, that is, the players have cooperated on all the previous
three moves. Since both the players are cooperating, the best
move in this case is to continue cooperating.

The eighth solution in the figure on y-axis is for the single-
objective optimum strategy of maximizing self-score alone.
Interestingly, the frequently used moves in this strategy is
similar to the first strategy of the bi-objective Pareto-optimal
solutions (with the highest self-score). Thus, a recipe for

Authorized licensed use limited to: MIT Libraries. Downloaded on November 16, 2009 at 15:11 from IEEE Xplore. Restrictions apply.

MITTAL AND DEB: OPTIMAL STRATEGIES OF THE ITERATED PRISONER’S DILEMMA PROBLEM FOR MULTIPLE CONFLICTING OBJECTIVES 563

TABLE VIII

SCORES FOR THE LEAVE-ONE-OUT TEST PROCEDURE, AND ITS COMPARISON WITH THE SCORES OF STRATEGY MO

Leave-One-Out scores Strategy MO scores
Player Self-score Opponent score Result Self-score Opponent score Result
Always Cooperate 600 225 win 746 6 win
Always Defect 147 162 lose 147 162 lose
Tit for Tat 447 447 draw 446 446 draw
Suspicious Tit for Tat 445 450 lose 444 449 lose
Pavlov 443 88 win 452 77 win
Spiteful 151 161 lose 151 161 lose
Random Player 396 101 win 476 71 win
Periodic Player CD 448 78 win 448 78 win
Periodic Player DDC 344 114 win 347 107 win
Periodic Player CCD 450 325 win 547 57 win
Tit for Two Tats 158 148 win 599 224 win
Soft Majority 590 230 win 590 230 win
Hard Majority 585 235 win 588 233 win
Hard Tit for Tat 157 162 lose 302 482 lose
Naive Prober 441 446 lose 439 444 lose
Remorseful Prober 356 106 win 415 285 win

maximizing self-score by minimizing the opponent’s score is
to learn to defect when the opponent is either defecting or
foolishly trying to cooperate when player 1 is continuously
defecting. Another recipe to follow is to cooperate with the
opponent when the opponent has indicated its willingness to
cooperate in the past moves.

Another matter to note is that, as the self-score decreases
(as solutions go up on the y-axis from 1 to 6), the strategies
chose to become more defecting and the frequency of
cooperation reduces. To minimize the opponent’s score, the
payoff matrix indicates that player 1 should defect more
often. When this happens, self-score is also expected to be
low against intelligent players, because both players will
engage in defecting more often.

For random strategies (marked as 10 to 15 in Fig. 8), no such
pattern is observed. It can be seen that, for the Pareto-optimal
strategies, most of the bit positions are either sparingly used, or
are not used at all. For example, the strategy with the least self-
score always makes defecting moves, even though there are
many C in its strategy string, showing that it behaves almost
like the Always Defect strategy, which we have discussed
before as well.

E. Maximizing Self-Score and Minimizing Maximum of
Opponent Score

We also carried out another simulation in which we used
NSGA-II to minimize two other objectives: maximize self-
score, and minimize the maximum of the opponent scores (in
the previous case, we had minimized the average score of
the opponents, instead). The Pareto-optimal front obtained is
shown in Fig. 9 by marking the obtained strategies (maximum
opponent score) with a star. When the average score over all
opponent players are computed and plotted for these strategies
(marked with a diamond), they are found to be dominated by
previous Pareto-optimal solutions. The second objective value
of Pareto-optimal solutions using this method is worse than
before, as the maximum of the opponents’ scores is going

to be always more than average of opponents’ scores. A good
spread in solutions is still obtained, but since this new objective
is nondifferentiable and hence may not represent a smooth
landscape, the obtained front in this case is not as smooth as
before. As discussed above, the solutions obtained are also
inferior from earlier solutions. Based on this paper, we may
conclude that minimizing the average score of opponents is
a better optimization strategy than minimizing the maximum
score obtained by any opponent.

F. Cross-Validation of the Optimization Procedure

Since we are evolving optimal strategies by optimizing
against a fixed set of 16 players, it is possible that the
optimal strategies so obtained are “overspecialized;” that is,
the evolved strategies may not perform well against other
players which were not used during the optimization phase. To
cross-validate the effectiveness of the optimization procedure,
we performed the “Leave-One-Out” test, which is a standard
test used for evaluating machine learning techniques. In this
test, during the optimization phase, one of the 16 players
is not used, and then the evolved optimal strategy is pitted
against this omitted player in a tournament. We compare
the performance of the optimal strategy against the left out
player, to the performance of the Strategy MO (which is
obtained when all the players are included in the optimization
phase) against this player. The optimization procedure used in
the Leave-One-Out test is the same as before, i.e. NSGA-II
evolved up to 20 000 generations. The results are are shown in
Table VIII for each of the 16 opponents left out one at a time.

The table shows that the win-lose-draw record in the Leave-
One-Out test procedure is exactly the same as that for the
Strategy MO. This shows that our optimization procedure does
not lead to overspecialization of the evolved strategies. The
average of self-score over all the players for the Leave-One-
Out phase is 385, which is considerably less than that for
Strategy MO (446); however, the average of the opponent
score (217) is almost the same as that for Strategy MO

Authorized licensed use limited to: MIT Libraries. Downloaded on November 16, 2009 at 15:11 from IEEE Xplore. Restrictions apply.

564 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 13, NO. 3, JULY 2009

(220). It is expected that the self-score in the Leave-One-Out
phase will be lower than that of Strategy MO. However, even
with a lower self-score, the win-loss record remains exactly
the same. The difference in scores in the case of Random
Player and Remorseful Prober can be attributed to random
factors, since both these strategies are driven by randomness
in them. Difference in scores also arises in the case of more
“cooperating” players like Always Cooperate, Periodic Player
CCD, and Tit for Two Tats. The evolved strategy in these cases
did not exploit these cooperating strategies to the maximum
possible extent. This indicates that it may be important to have
prospective cooperating players during the optimization phase.

Before concluding this section, it will be worthwhile to
compare the performance of the optimal strategies obtained
using our procedure vis-a-vis the Tit for Tat strategy against
unseen opponents. In the Leave-One-Out procedure, the strat-
egy with the highest self-score has an average score of 385,
which is almost the same as the score of 387 for the Tit
for Tat strategy (see Table I). But whereas the average self-
score of Tit for Tat strategy is usually the same as the average
opponent score (see Fig. 6), the average opponent score in the
Leave-one-out procedure is 217, which is much less than the
average self-score. Once again this shows the robustness of our
procedure: on average, the optimal strategies will perform at
least as well as the Tit for Tat strategy with respect to self-score
against unseen opponents, and much better with respect to the
opponent score.

VII. CONCLUSION

We have presented a new paradigm for searching optimal
strategies in the age-old yet important IPD problem using
multiobjective optimization procedures. Such an optimization
strategy has not been used before in the literature for this
problem. It has been revealed that such a solution strategy has
several advantages over the existing single-objective methods
for finding useful optimal game-playing strategies.

1) The use of a bi-objective consideration of maximizing a
player’s own payoff and minimizing the average payoff
of opponents has been able to find a better game-playing
strategy than the sole consideration of maximizing a
player’s own payoff.

2) The obtained tradeoff frontier has outperformed many
existing strategies (those given in the Appendix), which
includes the well-known “Tit for Tat,” when all these
strategies are used in the optimization procedure.

3) The suggested optimization procedure has been found
to be robust, in the sense that even if one of the
16 opponents were not considered in the optimization
process, the resulting strategy is still able to outperform
the left-out strategy, thereby showing the generalizing
ability of the suggested optimization procedure.

4) The use of a pair of objectives (maximizing own payoff
and minimizing average opponent’s payoff) has outper-
formed other useful objective pairs considered in this
paper.

5) An investigation of the sub-strategies commonly existing
among obtained tradeoff solutions has resulted in a num-
ber of useful information about playing the IPD game

successfully. For example, we find that all strategies on
the nondominated front defect at bit positions 0, 1, 4,
5, 17, and 55. An analysis of these sub-strategies has
provided us salient insights for playing the IPD with
satisfaction. Such important information is not possible
to achieve from a single solution obtained by using a
single-objective EA alone. Such information is useful in
playing the game efficiently.

6) Another interesting observation obtained from the
results is that it is important to cooperate at certain
preconditions of the IPD game. We notice that when
the strategy at position 29 (T RT) or 63 (R R R) is
changed from C to D, there is a significant drop in
the self-score of Strategy MO. We then analyzed the
reason behind this drop and observe that cooperation
is important at certain times either to fool the opponent
into cooperating and then exploiting it, or to sustain a
chain of mutual cooperation for gaining payoffs. For a
one-shot game, the optimal strategy for the two players
is clearly to defect. Our results provide insights on
obtaining cooperative behavior with appropriate payoffs
in the iterated version of the game.

Hopefully, there will be far-reaching implications of this
paper in IPD problem, and such a systematic multiobjective
optimization approach will find further application in other
related game-playing problems in the near future.

There are several ways in which the work presented here can
be extended. It will be interesting to examine the multiobjec-
tive evolution of IPD game strategies under the co-evolutionary
setting, where each strategy is evaluated by placing it against
other strategies in the population. One other approach that may
be tried is to change the profile of the players when evolving
the optimal strategy. Then it would be interesting to see which
properties of the optimal strategy are stable with change in
opponent pool and what properties are possibly required in a
robust strategy. We leave these for future research.

APPENDIX

Details about the different strategies used in the round-robin
tournament are given below.

1) Always Cooperate: Cooperates on every move.
2) Always Defect: Defects on every move.
3) Tit for Tat: Cooperates on the first move, then simply

copies the opponent’s last move.
4) Suspicious Tit for Tat: Same as Tit for Tat, except that

it defects on the first move.
5) Pavlov: Cooperates on the first move, and defects only

if both the players did not agree on the previous move.
6) Spiteful: Cooperates, until the opponent defects, and

thereafter always defects.
7) Random Player: Makes a random move.
8) Periodic player CD: Plays C, D periodically.
9) Periodic player DDC: Plays D, D, C periodically.

10) Periodic player CCD: Plays C, C, D periodically.
11) Tit for Two Tats: Cooperates on the first move, and

defects only when the opponent defects two times.
12) Soft Majority: Begins by cooperating, and cooperates as

long as the number of times the opponent has cooperated

Authorized licensed use limited to: MIT Libraries. Downloaded on November 16, 2009 at 15:11 from IEEE Xplore. Restrictions apply.

MITTAL AND DEB: OPTIMAL STRATEGIES OF THE ITERATED PRISONER’S DILEMMA PROBLEM FOR MULTIPLE CONFLICTING OBJECTIVES 565

is greater than or equal to the number of times it has
defected, else it defects.

13) Hard Majority: Defects on the first move, and defects
if the number of defections of the opponent is greater
than or equal to the number of times it has cooperated,
else cooperates.

14) Hard Tit for Tat: Cooperates on the first move, and
defects if the opponent has defects on any of the previous
three moves, else cooperates.

15) Naive Prober: Like Tit for Tat, but occasionally defects
with a probability of 0.01.

16) Remorseful Prober: Like Naive Prober, but it tries to
break the series of mutual defections after defecting.

REFERENCES

[1] R. Axelrod, “The evolution of strategies in the iterated prisoner’s
dilemma,” in Proc. Genetic Algorithms Simulated Annealing, Los Altos,
CA: Morgan Kaufmann, 1987.

[2] D. E. Goldberg, Genetic Algorithms for Search, Optimization, and
Machine Learning. Reading, MA: Addison-Wesley, 1989.

[3] R. Dawkins, The Selfish Gene, 2nd ed. New York: Oxford Univ. Press,
1989.

[4] M. Rubenstein and M. Osborne, A Course in Game Theory. Cambridge,
MA: MIT Press, 1994.

[5] J. F. Nash, “Equilibrium points in n-person games,” in Proc. Nat.
Academy Sci., vol. 36. 1950, pp. 48–49.

[6] D. Fudenberg and E. Maskin, “The folk theorem in repeated games with
discounting or incomplete information,” Econometrica, vol. 54, no. 3,
pp. 533–554, 1986.

[7] R. Axelrod and W. Hamilton, “The evolution of cooperation,” Sci.,
vol. 211, no. 4489, pp. 1390–1396, 1981.

[8] R. Axelrod, The Evolution of Cooperation. New York: Basic Books,
1989.

[9] D. Fogel, “Evolving behaviors in the iterated prisoner’s dilemma,”
Evol. Comput., vol. 1, no. 1, pp. 77–97, 1983.

[10] M. Nowak and K. Sigmund, “A strategy of win-stay, lose-shift that
outperforms tit-for-tat in the prisoner’s dilemma game,” Nature, vol. 364,
no. 6432, pp. 56–58, 1993.

[11] B. Beaufils, J. P. Delahaye, and P. Mathieu, “Our meeting with gradual, a
good strategy for the iterated prisoner’s dilemma,” in Proc. Artificial Life
V: Proc. 5th Int. Workshop Synthesis Simulation Living Syst., Cambridge,
MA: MIT Press, 1996, pp. 202–209.

[12] D. Bragt, C. Kemenade, and H. Poutré, “The influence of evolutionary
selection schemes on the iterated prisoner’s dilemma,” Comput. Econ.,
vol. 17, no. 2–3, pp. 253–263, 2001.

[13] D. Jang, P. Whigham, and G. Dick, “On evolving fixed pattern strategies
for iterated prisoner’s dilemma,” in Proc. 27th Conf. Australasian
Comput. Sci., Dunedin, New Zealand, 2004, pp. 241–247.

[14] M. R. Frean and E. R. Abraham, “A voter model of the spatial prisoner’s
dilemma,” IEEE Trans. Evol. Comput., vol. 5, no. 2, pp. 117–121, Apr.
2001.

[15] H. Ishibuchi and N. Namikawa, “Evolution of iterated prisoner’s
dilemma game strategies in structured demes under random pairing in
game playing,” IEEE Trans. Evol. Comput., vol. 9, no. 6, pp. 552–561,
Dec. 2005.

[16] S. Y. Chong and X. Yao, “Behavioral diversity, choices and noise in the
iterated prisoner’s dilemma,” IEEE Trans. Evol. Comput., vol. 9, no. 6,
pp. 540–551, Dec. 2005.

[17] K. Deb, P. Jain, N. Gupta, and H. Maji, “Multiobjective placement
of electronic components using evolutionary algorithms,” IEEE Trans.
Components and Packaging Technol., vol. 27, no. 3, pp. 480–492,
Sep. 2004.

[18] J. D. Knowles, D. W. Corne, and K. Deb, Multiobjective Problem Solving
From Nature (Springer Natural Computing Series). New York: Springer-
Verlag, 2008.

[19] C. A. C. Coello, D. A. Van Veldhuizen, and G. Lamont, Evol. Algorithms
for Solving Multiobjective Problems. Boston, MA: Kluwer, 2002.

[20] K. Deb and A. Srinivasan, “Innovization: Innovating design principles
through optimization.” in Proc. Genetic Evol. Comput. Conf. (GECCO-
2006), New York: The Association of Computing Machinery (ACM),
2006, pp. 1629–1636.

[21] J. Branke, “Creating robust solutions by means of an evolutionary
algorithm,” in Proc. Parallel Problem Solving Nature (PPSN-V), 1998,
pp. 119–128.

[22] K. Deb and H. Gupta, “Introducing robustness in multiobjective opti-
mization,” Evol. Comput. J., vol. 14, no. 4, pp. 463–494, 2006.

[23] P. J. Darwen and X. Yao, “Co-evolution in iterated prisoner’s dilemma
with intermediate levels of cooperation: Application to missile defense.”
Int. J. Comput. Intell. Applicat., vol. 2, no. 1, pp. 83–107, 2002.

[24] K. Deb, S. Agrawal, A. Pratap, and T. Meyarivan, “A fast and elitist
multiobjective genetic algorithm: NSGA-II,” IEEE Trans. Evol. Comput.,
vol. 6, no. 2, pp. 182–197, Apr. 2002.

[25] K. Deb, Multiobjective Optimization Using Evolutionary Algorithms.
Chichester, U.K.: Wiley, 2001.

[26] D. E. Goldberg and J. Richardson, “Genetic algorithms with sharing
for multimodal function optimization,” in Proc. 1st Int. Conf. Genetic
Algorithms Their Applicat., 1987, pp. 41–49.

[27] K. Deb, “Genetic algorithms in multi-modal function optimization,”
M.S. thesis, Department of Engineering Mechanics, University of
Alabama, Tuscaloosa, AL, 1989.

[28] K. Deb and D. E. Goldberg, “An investigation of niche and species
formation in genetic function optimization,” in Proc. 3rd Int. Conf.
Genetic Algorithms, 1989, pp. 42–50.

Shashi Mittal received the Bachelor of Technology
degree in computer science and engineering at the
Indian Institute of Technology Kanpur, India. He
is currently a graduate student at the Operations
Research Center, Massachusetts Institute of Technol-
ogy, Cambridge.

His research interests are in the area of combina-
torial optimization and game theory.

Kalyanmoy Deb received the Bachelor’s degree
in mechanical engineering from the Indian Institute
of Technology, Kharagpur, India. He received the
Masters and Ph.D. degrees from the University
of Alabama, Tuscaloosa, in 1989 and 1991,
respectively.

He was with the Engineers India Limited, New
Delhi. He is currently the Deva Raj Chair Professor
at the Indian Institute of Technology, Kanpur, and
currently visiting Helsinki School of Economics
as a Finland Distinguished Professor. His main

research interests are in the areas of computational optimization, modeling
and design, and evolutionary algorithms. He has written two text books
on optimization and has published or presented more than 240 papers in
international journals and conferences. He has pioneered and is a leader in
the field of evolutionary multiobjective optimization. He is Associate Editor
and on the editorial board of a number of major international journals.

Dr. Deb is a Fellow of the Indian National Academy of Engineering,
the Indian National Academy of Sciences, and the International Society of
Genetic and Evolutionary Computation. He is the recipient of the prestigious
Shanti Swarup Bhatnagar Prize in Engineering Sciences in India for the
year 2005. He has also received the Thomson Citation Laureate Award
from Thompson Scientific for having the highest number of citations in
computer science during 1996–2005 in India. He was a recipient of the
Fredrick Wilhelm Bessel Research award from the Alexander von Humboldt
Foundation, Germany, in 2003.

Authorized licensed use limited to: MIT Libraries. Downloaded on November 16, 2009 at 15:11 from IEEE Xplore. Restrictions apply.

