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Abstract. In this paper we study the homogeneous conic system F : Ax = 0, x ∈ C \ {0}. We choose a point

s̄ ∈ intC∗ that serves as a normalizer and consider computational properties of the normalized system Fs̄ : Ax =

0, s̄T x = 1, x ∈ C. We show that the computational complexity of solving F via an interior-point method depends

only on the complexity value ϑ of the barrier for C and on the symmetry of the origin in the image set Hs̄ := {Ax :

s̄T x = 1, x ∈ C}, where the symmetry of 0 in Hs̄ is

sym(0, Hs̄) := max{α : y ∈ Hs̄ ⇒ −αy ∈ Hs̄} .

We show that a solution of F can be computed in O(
√

ϑ ln(ϑ/sym(0, Hs̄)) interior-point iterations. In order to

improve the theoretical and practical computation of a solution of F , we next present a general theory for projective

re-normalization of the feasible region Fs̄ and the image set Hs̄ and prove the existence of a normalizer s̄ such

that sym(0, Hs̄) ≥ 1/m provided that F has an interior solution. We develop a methodology for constructing a

normalizer s̄ such that sym(0, Hs̄) ≥ 1/m with high probability, based on sampling on a geometric random walk with

associated probabilistic complexity analysis. While such a normalizer is not itself computable in strongly-polynomial-

time, the normalizer will yield a conic system that is solvable in O(
√

ϑ ln(mϑ)) iterations, which is strongly-polynomial-

time. Finally, we implement this methodology on randomly generated homogeneous linear programming feasibility

problems, constructed to be poorly behaved. Our computational results indicate that the projective re-normalization

methodology holds the promise to markedly reduce the overall computation time for conic feasibility problems; for

instance we observe a 46% decrease in average IPM iterations for 100 randomly generated poorly-behaved problem

instances of dimension 1000 × 5000.

1. Introduction

Our interest lies in computational characteristics of the following homogeneous convex feasibility
problem in conic linear form:

F :

{
Ax = 0

x ∈ C\{0} ,
(1)

where A ∈ L(IRn, IRm) is a linear operator and C is a closed convex cone.
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It is well known that the standard form conic feasibility problem

{
Āx = b̄

x ∈ K

is a special case of F under the assignments C ← K × IR+, A ← [
Ā,−b̄

]
and the qualification that

we seek solutions in the interiors of the cones involved. Furthermore, this setting is general enough
to encompass convex optimization as well.

In the context of interior-point methods (IPMs), the system F has good computational complex-
ity if an IPM for solving F has a good iteration bound. Choose a point s̄ ∈ intC∗ (the interior of
the dual cone of C), and note that F is equivalent to the normalized problem Fs̄ : Ax = 0, s̄T x =
1, x ∈ C. We show that the computational complexity of solving F can be bounded as a function
of only two quantities: (i) the symmetry of the image set Hs̄ := {Ax : s̄T x = 1, x ∈ C} about
the origin, denoted by sym(0,Hs̄), and the complexity value ϑ of the barrier function for C. These
results are shown in Section 3 after some initial definitions and analysis are developed in Section 2.

In Section 4 we present a general theory for re-normalizing the conic system Fs̄ to an equiv-
alent system Fŝ via projective transformation of the image set (that also projectively transforms
the feasible regions of the normalized problem). The re-normalization transforms the conic sys-
tem into one with computational properties with certain guarantees; we use the term “projective
re-normalization” to describe such a projective transformation. Under the assumption that F has
an interior solution, there must exist projective re-normalizations that transform Fs̄ into equiva-
lent systems that are solvable in strongly-polynomial time in m and ϑ. The quality of the pro-
jective re-normalization depends on the ability to compute a point v̂ that is “deep” in the set
H◦

s̄ = {v : s̄−AT v ∈ C∗}. Several constructive approaches for computing such points are discussed,
including a stochastic method based on a geometric random walk.

The geometric random walk approach is further developed in Section 5, with associated proba-
bilistic complexity analysis. In Section 6 we present results from computational experiments designed
to assess the practical viability of the projective re-normalization method based on geometric ran-
dom walks. We generated 300 linear programming feasibility problems (100 each in three sets of
dimensions) designed to be poorly behaved. We present computational evidence that the method is
very effective; for the 100 problems of dimension 1000 × 5000 the average IPM iterations decreased
by 46% and average total running time decreased by 33%, for example. Section 7 contains summary
conclusions and next steps.

We point out that a very different methodology for modifying F was proposed in [5] that is a
linear (not projective) transformation of the range space of A and that aims to improve Renegar’s
condition measure C(A) (but does not improve the complexity of the original problem).

Acknowledgement. The authors gratefully acknowledge the referees and Associate Editor for their
advice on improving the paper.
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1.1. Notation

Let e = (1, . . . , 1)T ∈ IRd denote the vector of ones in dimension d. Given a closed convex set
S ⊂ IRd with 0 ∈ S, the polar of S is S◦ := {y ∈ IRd : yT x ≤ 1 for all x ∈ S} and satisfies
S◦◦ = S, see Rockafellar [28]. Given a closed convex cone K ⊂ IRd, the (positive) dual cone of K is
K∗ := {y ∈ IRd : yT x ≥ 0 for all x ∈ K} and satisfies K∗∗ = K, also see [28]. For a general norm
‖ · ‖, let B(c, r) and dist(x, T ) denote the ball of radius r centered at c and the distance from a point
x to a set T , respectively.

2. Normalization, Complexity, and Barrier Calculus

2.1. Assumptions

Regarding the conic feasibility problem (1), we make the following assumptions:

Assumption 1. C is a regular closed convex cone, i.e., intC �= ∅ and C contains no line.

Assumption 2. F has a solution, i.e.,

F := {x ∈ IRn : Ax = 0, x ∈ C\{0}} �= ∅ .

Assumption 3. rank(A) = m.

It follows immediately from Assumption 1 that C∗ is also a regular cone, see Rockafellar [28].
Assumptions 2 and 3 together assure that F has a solution and A contains no redundant equations.

2.2. Normalization, Image Set, and Symmetry

Let s̄ ∈ intC∗ be chosen. Then x ∈ C\{0} if and only if x ∈ C and s̄T x > 0, and we can write F

equivalently as the normalized problem:

Fs̄ :

⎧⎪⎨
⎪⎩

Ax = 0
s̄T x = 1

x ∈ C,

The feasible region of Fs̄ is Fs̄ := {x ∈ IRn : Ax = 0, x ∈ C, s̄T x = 1}.
We will measure the computational behavior of F using a worst-case computational complexity

upper bound on the number of iterations that a suitably designed interior-point method (IPM) needs
to compute a solution of F . We will show that the complexity of computing a solution of F can be
bounded quite simply using the symmetry of the origin in the image set of Fs̄, which we now define.

The image set H = Hs̄ of Fs̄ is defined as:
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H = Hs̄ := {Ax : x ∈ C , s̄T x = 1} .

Note that Assumptions 1, 2 and 3 imply that 0 ∈ H and that H has dimension m.

We consider the symmetry of a point in a convex set as defined originally by Minkowski [20], see
also the references and results in [2]. Let S ⊂ IRd be a convex set. Define:

sym(x̄, S) := max {t | y ∈ S ⇒ x̄ − t(y − x̄) ∈ S} ,

which essentially measures how symmetric S is about the point x. Define

sym(S) := max
x̄∈S

sym(x̄, S) ,

and x∗ is called a symmetry point of S if sym(x∗, S) = sym(S).

2.3. Logarithmically-Homogeneous Barrier Calculus

We presume that we have a ϑ-logarithmically homogeneous (self-concordant) barrier function f(·)
for C, see [22].

Remark 4. We will use the following properties of a ϑ-logarithmically homogeneous barrier:
(i) ū ∈ intC if and only if −∇f(ū) ∈ intC∗

(ii) f∗(s) := − infx∈intC{sT x + f(x)} is a ϑ-logarithmically homogeneous barrier for C∗

(iii) s̄ ∈ intC∗ if and only if −∇f∗(s̄) ∈ intC
(iv) −∇f(ū)T ū = ϑ and −∇f∗(s̄)T s̄ = ϑ for ū ∈ intC and s̄ ∈ intC∗

(v) ∇f(ū) = −H(ū)ū for ū ∈ intC, where H(·) is the Hessian of the barrier f(·)
(vi) ū = −∇f∗(s̄) if and only if s̄ = −∇f(ū)
(vii) −∇f(ū)T y ≥ √

yT H(ū)y for ū ∈ intC and y ∈ C.

Properties (i)-(vi) above are restatements of results in [22] or [27], whereas (vii) is borrowed from
the proof of Lemma 5 of [24]. We presume that function values, gradients, and Hessians of f(·) and
f∗(·) are computable.

3. Complexity Bound on F

Let s̄ ∈ intC∗ be chosen, and let Fs̄ be as defined in Section 2.2 with image set H = Hs̄ as in Section
2.2. In this section we show that the computational complexity of a standard interior-point method
(IPM) for computing a solution of F depends only on sym(0,H) and the complexity value ϑ of the
barrier function f(·) for C. In order to establish this result we first present the model that will be
solved by the IPM.
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Let s̄ ∈ intC∗ be chosen, and assign x̄ ← − 1
ϑ∇f∗(s̄). Construct the simple optimization problem:

OP : t∗ := max
x,t

t

s.t. Ax +(Ax̄)t = 0
s̄T x = 1
x ∈ C .

(2)

It follows from Remark 4 that x̄ ∈ intC and s̄T x̄ = 1, and that (x, t) = (x̄,−1) is a feasible solution
of OP. Furthermore, (x̄,−1) is the analytic center associated with OP for the barrier function f(·),
i.e., (x̄,−1) is the optimal solution of the problem of minimizing the barrier function f(x) over
the feasible region of OP. We will use (x̄,−1) as a starting point with which to initiate a standard
short-step primal-feasible interior-point method (IPM) for improving the objective function value of
(2) until we have computed a point (x, t) that satisfies t ≥ 0, whereby x̃ := (x + tx̄) is a feasible
solution of F .

Theorem 1. Let s̄ ∈ intC∗ be chosen. The standard short-step primal-feasible interior-point algo-
rithm applied to (2) will compute x̃ satisfying Ax̃ = 0, x̃ ∈ intC in at most

O

(√
ϑ ln

(
ϑ

sym(0,Hs̄)

))

iterations of Newton’s method.

The proof of this theorem uses the following proposition.

Proposition 1. Let t∗ be defined in (2). Then t∗ ≥ sym(0,Hs̄).

Proof. Recall from Remark 4 that x̄ ← − 1
ϑ∇f∗(s̄) satisfies x̄ ∈ intC and s̄T x̄ = 1. Therefore

Ax̄ ∈ Hs̄ and hence −sym(0,Hs̄)Ax̄ ∈ Hs̄, whereby there exists x ∈ C satisfying s̄T x = 1 and
Ax = −sym(0,Hs̄)Ax̄, and therefore t∗ ≥ sym(0,Hs̄).

Proof of Theorem 1: Let OP η denote the optimization problem (2) with the objective function
replaced by ηf(x)+t where f(·) is the barrier function of Remark 4. Because the point (x̄,−1), whose
objective value in (2) is −1, is the analytic center of the feasible region of OP, it follows from the
arguments on pages 47-48 of [27] that the barrier method can be initiated at (x̄,−1) using the initial
barrier parameter η = η0 ≥ c1/(1+t∗) for some absolute constant c1. Furthermore, since the optimal
value of OP is t∗, and the IPM will stop when the current feasible point (x, t) satisfies t ≥ 0, the
final optimality gap is t∗ and will be attained when the barrier parameter η reaches η = ηf = c2ϑ/t∗

for some absolute constant c2. Therefore, the ratio of the final to the initial barrier parameter is
O(ϑ(1 + t∗)/t∗) ≤ O(ϑ/sym(0,Hs̄)) from Proposition 1, and it follows from the linear convergence
theory of interior-point methods that the iteration bound will be O(

√
ϑ ln(ϑ/sym(0,Hs̄))).

Note that the complexity bound is trivially valid even when sym(0,Hs̄) = 0, using the standard
convention that 1/0 = ∞. An alternate proof of Theorem 1 that does not use big-O notation can be
found in the appendix of [1].



6 Alexandre Belloni, Robert M. Freund

Fig. 1. The image set Hs̄ and the points Ax̄, 0, and −t∗Ax̄.

Figure 1 can be used to gain some intuition into both Proposition 1 and Theorem 1. The figure
portrays the image set Hs̄, which contains 0 as a consequence of Assumption 2. Furthermore, Ax̄ ∈ Hs̄

by design of x̄. The optimal value t∗ of (2) is the largest value of t for which −tAx̄ ∈ Hs̄. Figure 1
and Proposition 1 show that t∗ ≥ sym(0,Hs̄), and so t∗ will be large if sym(0,Hs̄) is large. Since the
interior-point algorithm starts at the analytic center (x̄,−1) with objective value t = −1 and will
stop when the current iterate (x, t) satisfies t ≥ 0, the ratio of the initial to the final optimality gap
is (1 + t∗)/t∗ ≤ 1 + 1/(sym(0,Hs̄)).

In Section 4, we will show how projective transformations can be used to modify sym(0,H) and
hence improve the computational complexity of the system Fs̄.

4. Re-Normalizing F by Projective Transformation

Herein we present a systematic approach to transforming the problem Fs̄ to an equivalent problem
Fŝ for a suitably chosen vector ŝ ∈ intC∗, with the goal of improving the symmetry of 0 in the
associated image set Hŝ. We first review some relevant facts about the symmetry function sym(·):

Remark 5. Let S ⊂ IRm be a nonempty closed bounded convex set. The following properties of
sym(·, S) are shown in [2]:
(i) Let A(x) := Mx + g, M nonsingular. If x̄ ∈ S, then sym(A(x̄),A(S)) = sym(x̄, S).
(ii) If 0 ∈ S, then sym(0, S) = sym(0, S◦).
(iii) sym(S) ≥ 1

m .

Under Assumption 2, 0 ∈ Hs̄, whereby Hs̄ is a closed convex set containing the origin. Therefore
H◦

s̄ , the polar of Hs̄, is also a closed convex set containing the origin, and H◦◦
s̄ = Hs̄. In fact, there

is a simple form for H◦
s̄ , as the following proposition shows.

Proposition 2. Let s̄ ∈ intC∗ be chosen. Then H◦
s̄ = {v ∈ IRm : s̄ − AT v ∈ C∗}.
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Proof. We have:

H◦
s̄ = {v : vT y ≤ 1 for all y ∈ Hs̄}

= {v : vT Ax ≤ 1 for all x that satisfy s̄T x = 1, x ∈ C}
= {v : vT Ax ≤ s̄T x for all x that satisfy s̄T x = 1, x ∈ C}
= {v : (s̄ − AT v)T x ≥ 0 for all x ∈ C}
= {v : s̄ − AT v ∈ C∗} .

It is curious to note from Proposition 2 that while checking membership in Hs̄ is presumably not
easy (validating that 0 ∈ Hs̄ is an equivalent task to that of solving F ), the set H◦

s̄ is in fact easy to
work with in at least two ways. First, 0 ∈ intH◦

s̄ , so we have a known point in the interior of intH◦
s̄ .

Second, checking membership in H◦
s̄ is a relatively simple task if we have available a membership

oracle for C∗.

Motivated by Theorem 1 which bounds the computational behavior of F in terms of the symmetry
of the origin in Hs̄, we now consider replacing s̄ by some other vector ŝ ∈ intC∗ with the goal of
improving sym(0,Hŝ). We proceed as follows. Taking s̄ ∈ intC∗ as given, suppose we choose some
v̂ ∈ intH◦

s̄ = {v ∈ IRm : s̄ − AT v ∈ C∗}, and define ŝ := s̄ − AT v̂, therefore ŝ ∈ intC∗. We replace s̄

by ŝ, obtaining the modified normalized feasibility problem:

Fŝ :

⎧⎪⎨
⎪⎩

Ax = 0
ŝT x = 1

x ∈ C ,

with modified image set:
Hŝ = {Ax : x ∈ C , ŝT x = 1}

and polar set:
H◦

ŝ = {v ∈ IRm : ŝ − AT v ∈ C∗} .

The following shows that sym(0,Hŝ) inherits the symmetry of v̂ in the original polar image set
H◦

s̄ .

Theorem 2. Let s̄ ∈ intC∗ be given. Let v̂ ∈ intH◦
s̄ be chosen and define ŝ := s̄ − AT v̂. Then

sym(0,Hŝ) = sym(v̂, H◦
s̄ ) .

Proof. We have:

H◦
s̄ − {v̂} = {u = v − v̂ : s̄−AT v ∈ C∗} = {u : s̄−AT v̂ −AT u ∈ C∗} = {u : ŝ−AT u ∈ C∗} = H◦

ŝ .

It then follows from (ii) of Remark 5 that

sym(0,Hŝ) = sym(0,H◦
ŝ ) = sym(0,H◦

s̄ − {v̂}) = sym(v̂, H◦
s̄ ) ,

where the last equality above readily follows from (i) of Remark 5.
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Note that the following projective transformations map Fs̄ and Fŝ onto one another:

x′ ← x

ŝT x
and x ← x′

s̄T x′ . (3)

Furthermore, Theorem 2 has an interesting interpretation in the context of projective transforma-
tions and polarity theory which we will discuss shortly.

Our present goal, however, is to use Theorem 2 constructively to develop a method for transform-
ing Fs̄. Suppose we can compute a point v̂ ∈ H◦

s̄ with good symmetry in H◦
s̄ ; letting α := sym(v̂, H◦

s̄ )
we seek v̂ for which α > sym(0,Hs̄) and is relatively large, for example, α = Ω(1/m). Then replace
s̄ by ŝ := s̄ − AT v̂ and work instead with with Fŝ. Theorem 2 states that the transformed system
will have sym(0,Hŝ) = α, i.e., the transformed system will take on the symmetry of v̂ in H◦

s̄ . This
is most important, since it then follows from Theorem 1 that the transformed system Fŝ will have
complexity that will depend on α as well. We formalize this method and the above conclusion as
follows:

Projective Re-Normalization Method (PRM)
Step 1. Construct H◦

s̄ := {v ∈ IRm : s̄ − AT v ∈ C∗}
Step 2. Find a suitable point v̂ ∈ H◦

s̄ (with hopefully good symmetry in H◦
s̄ )

Step 3. Compute ŝ := s̄ − AT v̂

Step 4. Construct the transformed problem:

Fŝ :

⎧⎪⎨
⎪⎩

Ax = 0
ŝT x = 1

x ∈ C

(4)

Step 5. The transformed image set is Hŝ := {Ax ∈ IRm : x ∈ C , ŝT x = 1}, and sym(0,Hŝ) =
sym(v̂, H◦

s̄ ).

Figure 2 illustrates the strategy of the Projective Re-Normalization Method. On the left part
of the figure is the image set Hs̄, and notice that Hs̄ is not very symmetric about the origin, i.e.,
sym(0,Hs̄) << 1. However, under the projective transformation given by the projective plane in the
slanted vertical line, Hs̄ is transformed to a box that is perfectly symmetric about the origin, i.e.,
sym(0,Hŝ) = 1. (In general, of course, we can at best attain sym(0,Hŝ) = 1/m.)

The following corollary follows from Theorem 2 and the above discussion, using Theorem 1:

Corollary 1. Let s̄ ∈ intC∗ be chosen, and suppose that the Projective Re-Normalization Method
has been run, and let α := sym(v̂, H◦

s̄ ). The standard primal-feasible interior-point algorithm applied
to the re-normalized problem (4) will compute x̃ satisfying Ax̃ = 0, x̃ ∈ intC in at most

O

(√
ϑ ln

(
ϑ

α

))

iterations of Newton’s method.
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Fig. 2. Projective transformation of the image set Hs̄ to improve the symmetry of 0 in the transformed image set.

While it is obvious that Fs̄ and Fŝ are related through the pair of projective transformations (3),
it is perhaps not so obvious that the image sets Hs̄ and Hŝ are related via projective transformations:
Hs̄ maps onto Hŝ with the following projective transformations between points y ∈ Hs̄ and y′ ∈ Hŝ:

y′ = T (y) :=
y

1 − v̂T y
and y = T−1(y′) =

y′

1 + v̂T y′ . (5)

This pair of projective transformations results from a more general theory concerning the polarity
construction, translations, and projective transformations as follows, see Grünbaum [11] for example.
Let S be a closed convex set containing the origin. (S = Hs̄ in our context.) Then S◦ is a closed convex
set containing the origin and S◦◦ = S. Let v̂ ∈ intS◦ be given. Then (S◦−{v̂}) is the translation of S

by v̂, and also is a closed convex set containing the origin, and its polar is (S◦−{v̂})◦. It is elementary
arithmetic to show that S and (S◦ − {v̂})◦ are related through the projective transformations (5),
namely (S◦ − {v̂})◦ = T (S) and S = T−1((S◦ − {v̂})◦). In other words, translation of the polar set
corresponds to projective transformation of the original set, see Figure 3. This correspondence was
previously used in [7,8].

If F has an interior solution, it follows from Assumptions 1, 2, and 3 that 0 ∈ intHs̄, whereby H◦
s̄

will be bounded and sym(0,Hs̄) = sym(0,H◦
s̄ ) > 0. Furthermore, we know from (iii) of Remark 5

that there exists a point v whose symmetry value in H◦
s̄ is at least 1/m. Notice that if we can generate

a point v̂ ∈ H◦
s̄ with very good symmetry in H◦

s̄ in the sense that α := sym(v̂, H◦
s̄ ) = Ω(1/m), we

can then compute x̃ of Corollary 1 using at most O
(√

ϑ ln (ϑ · m)
)

Newton steps, which is strongly
polynomial-time. And even if we merely satisfy α := sym(v̂, H◦

s̄ ) > sym(0,Hs̄), we still may improve
the computational effort needed to solve F by working with Fŝ rather than Fs̄.

Of course, the effectiveness of this method depends entirely on the ability to efficiently compute
a point v̂ ∈ H◦

s̄ with good symmetry. The set H◦
s̄ has the convenient representation H◦

s̄ = {v ∈
IRm : s̄ − AT v ∈ C∗} from Proposition 2; furthermore, we have a convenient point 0 ∈ intH◦

s̄ with
which to start a method for finding a point with good symmetry; also, testing membership in H◦

s̄

depends only on the capability of testing membership in C∗. Thus, the convenient description of
H◦

s̄ suggests that excessive computation might not be necessary in order to compute a point v̂ with
good symmetry in H◦

s̄ . We explore several different approaches for computing such a point v̂ in the
following subsection.
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Fig. 3. Translation of the polar set corresponds to projective transformation of the original set.

Remark 6. One implication of Corollary 1 is that the efficiency of computing only a “barely-deep”
(in the symmetry measure) point in a convex body starting from a given (interior) point implies that
F can be solved with similar efficiency. To see why this is true, recall that H◦

s̄ := {v : s̄−AT v ∈ C∗}
has a convenient representation, and in fact 0 ∈ intH◦

s̄ . From Corollary 1, if we could use v = 0 as a
starting point to find a point v̂ ∈ H◦

s̄ satisfying sym(v̂, H◦
s̄ ) ≥ 2−m in strongly-polynomial-time, we

could then compute a solution of F in strongly-polynomial-time. More formally, we have:

Suppose that an interior solution of F exists, and that there is an absolute constant c > 0
and a polynomial T (n,m, ϑ) such that a point v̂ ∈ H◦

s̄ := {v : s̄ − AT v ∈ C∗} satisfying
sym(v̂, H◦

s̄ ) ≥ e−mc

can be computed in T (n,m, ϑ) operations. Then F can be solved in
O(T (n,m, ϑ) +

√
ϑ ln(ϑ)n3mc) operations.

While this result follows immediately from Corollary 1, it also is directly implied by the discussion
on pages 47-48 of Renegar [27]. In the context of linear inequalities, this suggests that unless linear
programming is strongly-polynomial-time, the problem of computing a barely-deep point in H◦

e :=
{v : AT v ≤ e} is not solvable in strongly-polynomial-time. This result is comparable with that of
Khachiyan for the rounding problem on H◦

e [15].
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4.1. Strategies for Computing Points with Good Symmetry in H◦
s̄

If F has an interior solution, it follows from Assumptions 1, 2, and 3 that 0 ∈ intHs̄, whereby H◦
s̄

will be bounded and sym(0,H◦
s̄ ) > 0. Recall that a symmetry point of a convex set S ⊂ IRm is a

point x∗ whose symmetry is optimal on S. From (iii) of Remark 5 we know that sym(x∗, S) ≥ 1/m.
When C = IRn

+, a symmetry point of H◦
s̄ can be computed by approximately solving n + 1 linear

programs using the method developed in [2]. Thus even for the case of C = IRn
+ the computational

burden of finding a point with guaranteed good symmetry appears to be excessive. In fact, the
seemingly simpler task of just evaluating sym(x, S) at a particular point x = x̄ might be hard for
a general convex body S, see [2]. Therefore, one is led to investigate heuristic and/or probabilistic
methods, or perhaps methods that compute other types of points that lie “deep” in a convex body.
Table 1 presents the symmetry guarantee for several types of deep points in a convex body; the
computational effort for C = IRn

+ (wherein H◦
s̄ is the intersection of n half-spaces) is shown in the

third column of the table. We now briefly discuss each of these three possible choices for such points.

4.1.1. Analytic Center Approach. Starting at v = 0, we could use the damped Newton method
outlined in [22] to compute an approximate analytic center of H◦

s̄ using the barrier function b(v) :=
f∗(s̄ − AT v). We know from the theory of self-concordant barriers that the analytic center va of
H◦

s̄ has symmetry value at least 1/
√

ϑ(ϑ − 1) (see Lemma 5 of the Appendix of Nesterov, Todd,
and Ye [24]). Each iteration of the algorithm would be of comparable computational burden as an
interior-point iteration for the problem (2) and so it would probably be wisest to perform only a few
iterations and hope that the final iterate vf would have good symmetry value in H◦

s̄ nevertheless.

4.1.2. Löwner-John Center Approach. The Löwner-John theorem guarantees the existence of an
m-rounding of H◦

s̄ , i.e., an ellipsoid E centered at the origin and a point vj with the property that
{vj} + E ⊂ H◦

s̄ ⊂ {vj} + mE, see [10]. Such a point vj is called a Löwner-John center and it
follows that sym(vj ,H◦

s̄ ) ≥ 1/m. In the case when C is either the nonnegative orthant IRn
+ or is

the cartesian product of second-order cones, we can compute such an approximate Löwner-John
center by computing the center of the maximum volume inscribed ellipsoid in H◦

s̄ via semidefinite
programming (see Zhang and Gao [30], for example, for the case when C = IRn

+). The problem with
this approach is that the computational effort is likely to be substantially larger than that of solving
the original problem Fs̄, and the approach is limited to the case when C is the cartesian product of
half-lines and/or second-order cones.

4.1.3. Center of Mass Approach. The center of mass (or centroid) of a convex body S ⊂ IRm

will have guaranteed symmetry of at least 1/m, see Hammer [12]. Even when C = IRn
+, computing

the center of mass of H◦
s̄ is #P-hard, see Dyer and Frieze [4]. However, if we instead consider

nondeterministic algorithms, then the recent work of Lovász and Vempala [17–19] points the way
to computing points near the center of mass with high probability with good theoretical efficiency.
This approach will be developed in more detail in Section 5.
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Central Point Symmetry Guarantee Computational Effort when C = IRn
+

Symmetry Point 1/m ≈ LP × (n + 1)

Analytic Center 1√
ϑ(ϑ−1)

≈ LP

Löwner-John Center 1/m ≈ SDP

Center of Mass 1/m #P-Hard (deterministic)

≈ polynomial-time (stochastic)

Table 1. Summary Properties of Strategies for Computing Deep Points in H ◦̄
s

5. Approximate Center of Mass of H◦
s̄ and its Symmetry

In this section we present some general results about sampling from the uniform distribution on a
given convex body S ⊂ IRd, which are relevant for our particular case where S = H◦

s̄ and d = m. We
proceed as follows. A function f : IRd → IR+ is said to be logconcave if log f is a concave function. A
random variable Z ∈ IRd is called a logconcave random variable if the probability density function
of Z is a logconcave function. Note that logconcave random variables are a broad class that includes
Gaussian, exponential, and uniformly distributed random variables on convex sets.

The center of mass (or centroid) and covariance matrix associated with Z are given respectively
by

μZ := E[Z] and ΣZ := E[(Z − μZ)(Z − μZ)T ] .

The matrix ΣZ is symmetric positive semi-definite. If ΣZ is positive definite it can be used to define
the ellipsoidal norm:

‖v‖ΣZ
:=

√
vT Σ−1

Z v .

The following are very useful properties of logconcave random variables.

Lemma 1. [16,25,26] The sum of independent logconcave random variables is a logconcave random
variable.

Lemma 2. [17] Let Z be a logconcave random variable in IRd. Then for any R ≥ 0:

P
(
‖Z − μZ‖ΣZ

≥ R
√

d
)
≤ e−R.

Now let X be a random variable in IRd uniformly distributed on a convex body S, i.e., the
probability density function of X is given by

f(x) =
1

Vol(S)
1S(x) , (6)

where 1S(·) is the indicator function of the set S. For simplicity, we denote its center of mass
and covariance matrix respectively by μ and Σ, and note that Σ is positive definite since S has a
non-empty interior. Let BΣ(x, r) denote the ball centered at x with radius r in the norm ‖ · ‖Σ .
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Lemma 3. [17] Let X be a random variable uniformly distributed on a convex body S ⊂ IRd. Then

BΣ

(
μ ,

√
(d + 2)/d

)
⊂ S ⊂ BΣ

(
μ ,

√
d(d + 2)

)
.

Assume that we are given M independent uniformly distributed random points v1, v2, . . . , vM

on the convex body S. We define the sample mean the usual way:

v̂ :=
1
M

M∑
i=1

vi .

Lemma 4. Let v̂ be the sample mean of M independent uniformly distributed points on the convex
body S ⊂ IRd. Then

sym(v̂, S) ≥
√

(d + 2)/d − ‖v̂ − μ‖Σ√
d(d + 2) + ‖v̂ − μ‖Σ

.

Proof. Consider any chord of S that passes through v̂. It is divided by v̂ into two segments of
length s1 and s2. From Lemma 3 it follows that BΣ

(
μ ,

√
(d + 2)/d

)
⊂ S ⊂ BΣ

(
μ ,

√
d(d + 2)

)
.

Thus, we can bound the ratio of s1 to s2 by

s1

s2
≥

√
(d + 2)/d − ‖v̂ − μ‖Σ√
d(d + 2) + ‖v̂ − μ‖Σ

.

Corollary 2. Let v̂ be the sample mean of M independent uniformly distributed points on the convex
body S ⊂ IRd. Then for any t ≥ 0 it holds that P(‖v̂ − μ‖Σ ≥ t) ≤ e−t

√
M
d .

Proof. Let Y =
√

Mv̂. Since v1, v2, . . . , vM are independent uniformly distributed random vari-
ables on S, E[Y ] =

√
Mμ and Σ is the covariance matrix of Y . Moreover, using Lemma 1, Y is a

logconcave random variable since it is a sum of independent logconcave random variables. Applying

Lemma 2 using R = t
√

M
d we obtain:

P (‖v̂ − μ‖Σ ≥ t) = P
(
‖
√

Mv̂ −
√

Mμ‖Σ ≥ t
√

M
)

= P
(
‖Y − E[Y ]‖Σ ≥ R

√
d
)
≤ e−R = e−t

√
M
d .

Theorem 3. For any δ ∈ (0, 1) and setting M = �4d (ln(1/δ))2�, let v̂ be the sample mean of M

independent uniformly distributed points on the convex body S ⊂ IRd. Then

sym(v̂, S) ≥ 1
2d + 3

with probability at least 1 − δ.
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Proof. Using Corollary 2 with M = 4d (ln(1/δ))2 and t = 1/2 we obtain P(‖v̂ − μ‖Σ ≥ 1/2) ≤ δ,
whereby P(‖v̂ − μ‖Σ ≤ 1/2) ≥ 1 − δ . Finally, using Lemma 4 we obtain:

sym(v̂, S) ≥ 1 − 1/2
d + 1 + 1/2

=
1

2d + 3

with probability at least 1 − δ.

Remark 7. The proof of Theorem 3 can be extended to show that setting M =
⌈(

1+ 1−ε
d

ε

)2

d
(
ln(1/δ))2

)⌉
we obtain sym(v̂, S) ≥ 1−ε

d with probability at least 1 − δ.

Keeping in mind the fact that sym(S) can only be guaranteed to be at most 1/d (and this
bound is attained, for example, for a d-dimensional simplex), we see that Theorem 3 provides an
upper bound on the number of points that must be sampled to obtain a point v̂ whose symmetry
is bounded below by Ω(1/d) with high probability. Specializing to the case of S = H◦

s̄ and d = m,
under Assumptions 1, 2, and 3 and the additional assumption that F has an interior solution xo

(i.e., Axo = 0, xo ∈ intC), it follows that 0 ∈ intHs̄ and hence H◦
s̄ is a convex body. In this

case Theorem 3 provides a mechanism for achieving sym(v̂, H◦
s̄ ) = Ω(1/m), and hence achieving

sym(0,Hŝ) = Ω(1/m) with high probability (from Theorem 2). It follows from Corollary 1 and
Theorem 3 that in the context of the Projective Re-Normalization Method presented in Section 4,
with high probability (i.e., probability at least 1 − δ) we attain a complexity bound for solving Fŝ

of O(
√

ϑ ln(m · ϑ)) iterations of Newton’s method.

In order to make Theorem 3 constructive, we need a method for sampling on S = H◦
s̄ that

(approximately) obeys a uniform distribution. There are many recent results on this problem for
general convex bodies S, see, e.g., [17], [18], and [19]. Herein we focus on the “Hit-and-Run” geometric
random walk (see [18]) that generates iterates X1,X2, . . ., as follows:

Geometric Random Walk Algorithm
Step 1. Initialize with X0 ∈ S, k = 0
Step 2. Choose s uniformly on the unit sphere Sd−1 in IRd

Step 3. Let Xk+1 be chosen uniformly on the line segment S ∩ {Xk + ts : t ∈ IR}
Step 4. Set k ← k + 1, goto Step 2

In [18] it is proved that to achieve an ε-approximation to the uniform distribution density function
(6) in the L1 norm, it is sufficient that

N = O

(
d3

(
R

r

)2

ln
(

R

ε · dist2(0, ∂S)

))
,

where r,R satisfy B2(w, r) ⊂ S ⊂ B2(v,R) for some w, v ∈ S, and B2(c, δ), dist2(v, T ) are the
Euclidean ball centered at c with radius δ and the Euclidean distance from v to T , respectively.

Note that Step 3 of the algorithm requires that one computes the end points of the line segment in
S that passes through Xk and has direction s. This can be done by binary search using a membership
oracle for S. In our case S = H◦

s̄ = {v : s̄−AT v ∈ C∗} and the required membership oracle for S is
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met if we have a membership oracle for C∗. For self-scaled cones the endpoints computation in Step
3 is a standard computation: when C = IRn

+ the endpoints computation is a min-ratio test, when
C is the cross-product of second-order cones the endpoints computation uses the quadratic formula,
and when C is the positive semidefinite cone the endpoints computation requires the largest and
smallest eigenvalues of a matrix.

6. Computational Results on Randomly Generated Poorly-Behaved Problems

We performed computational experiments to assess the practical viability of the projective re-
normalization method (PRM). We tested the PRN on 300 artificially generated homogeneous linear
programming feasibility problems (i.e., C = IRn

+). These 300 problems were comprised of 100 prob-
lems each of dimensions (m,n) = (100, 500), (500, 2500), and (1000, 5000), and were generated so as
to guarantee that the resulting problems would be poorly behaved. Each problem is specified by a
matrix A and the chosen value of s̄. We first describe how A was generated. Given a pre-specified
density value DENS for A, each element of A was chosen to be 0 with probability 1−DENS, otherwise
the element was generated as a standard Normal random variable. We used DENS = 1.0, 0.01, and
0.01 for the problem dimensions (m,n) = (100, 500), (500, 2500), and (1000, 5000), respectively. The
vector s̄ was chosen in a manner that would guarantee that the problem would be poorly behaved
as follows. Starting with s0 = e, we created the polar image set H◦

s0 = {v : AT v ≤ e}. We randomly
generated a non-zero vector d ∈ IRm and performed a min-ratio test to compute t̄ > 0 for which
t̄AT d ∈ ∂H◦

s0 . Then s̄ is determined by the formula:

s̄ = s0 − (1 − 4 × 10−5)t̄AT d .

This method is essentially the reverse process of the PRN, and yields sym(0,Hs̄) ≤ 4 × 10−5.

We implemented the projective re-normalization method (PRN) using the following simplified
version of the stochastic process described in Section 5: starting from v0 = 0 ∈ intH◦

s̄ we take K steps
of the geometric random walk algorithm, yielding points v1, . . . , vK , and computed v̂ := 1

K

∑K
i=1 vi,

and then set ŝ = s̄−AT v̂. We set K = 30. It is also well known that this simple method yields v̂ → μ

as K → ∞ and that the convergence results are similar to those described in Section 5. Nonetheless,
the theoretical analysis is more technical and requires additional notation and so is omitted here.
See [6] and [9] for discussion and further references.

We solved the 300 original problem instances of OP (stopping as soon as t ≥ 0), as well as
the resulting instances after re-normalization, using the interior-point software SDPT3 [29]. Table 2
summarizes our computational results. Because these problems are feasibility problems the number of
IPM iterations is relatively small, even for the original problems. Notice that average IPM iterations
shows a marked decrease in all three dimension classes, and in particular shows a 46% decrease in
average IPM iterations for the 100 problem instances of dimension 1000 × 5000. The total running
time (which includes the time for re-normalization using the geometric random walk) also shows a
marked decrease when using the projective re-normalization method, and in particular shows a 33%
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decrease for the 100 problem instances of dimension 1000 × 5000. The last two columns of Table 2
shows the average value of t∗. Given that (x, t) = (x̄,−1) is a feasible starting point for OP (and
for SDPT3), t∗ is a good measure of the computational difficulty of a problem instance – a problem
is poorly behaved to the extent that t∗ is close to zero. Here we see, regardless of any IPM, that t∗

increases by a factor of roughly 400, 800, and 600 for the problem dimensions (m,n) = (100, 500),
(500, 2500), and (1000, 5000), respectively. These results all demonstrate that by taking only a small
number of steps of the geometric random walk algorithm, one can greatly improve the behavior of
a poorly-behaved problem instance, and hence improve the practical performance of an IPM for
solving the problem instance.

Dimensions Average IPM Iterations Average Total Running Time (secs.) Average Value of t∗

Original After Original After Original After

m n Problem Re-Normalization Problem Re-Normalization Problem Re-Normalization

100 500 8.52 4.24 0.5786 0.2983 0.0020 0.8730

500 2500 9.30 5.17 2.4391 2.0058 0.0012 1.0218

1000 5000 9.69 5.20 22.9430 15.3579 0.0019 1.1440

Table 2. Average Performance of SDPT3 on the 300 Problem Test-bed of Linear Programming Feasibility Problems.

Computation was performed on a laptop computer running Windows XP.

We also explored the sensitivity of the computational performance of the PRN to the number
of steps of the random walk. Figure 4 shows the median number of IPM iterations as well as the
90% band (i.e., the band excluding the lower 5% and the upper 5%) of IPM iterations for the 100
problems of dimension 100× 500 before and after re-normalization. Notice that only 10 steps of the
random walk are needed to reduce the median and variance of the IPM iterations to a very low level.
As the number of random walk steps increase, the number of IPM iterations quickly concentrates
and converges to a value below the 0.05 quantile for the original problem instances.

Figure 5 shows the median value of t∗ as well as the 90% band of t∗ values for the 100 problems of
dimension 100× 500 before and after re-normalization. As discussed earlier, t∗ is a good measure of
problem instance behavior: larger values of t∗ indicate that the problem instance is better behaved,
especially for computation via an IPM. The figure indicates that there is almost no improvement
in the median value of t∗ after 50 steps of the random walk. Note that Figure 5 is almost a mirror
image of Figure 4, verifying intuition that IPM iterations should be inversely proportional to log(t∗).

Figure 6 shows the median total running time as well as the 90% band of total running times
for the 100 problems of dimension 100 × 500 before and after re-normalization. Notice that the
median running time of the system with re-normalization rapidly decreases with a flat bottom in
the range 10-100 steps of the random walk, after which the cost of the random walk steps exceeds the
average benefit from computing a presumably better re-normalization. Also notice, however, that
the variation in running time decreases with the number of random steps, which may offer some
advantage in lowering the likelihood of outlier computation times by using more random walk steps.
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7. Summary/Conclusions/Other Matters

In this paper we have presented a general theory for transforming a normalized homogeneous conic
system Fs̄ to an equivalent system Fŝ via projective transformation induced by the choice of a point
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Fig. 6. Total running time versus number of steps of the geometric random walk for the 100 problem instances of

dimension 100 × 500.

v̂ ∈ H◦
s̄ . Such a projective transformation serves to re-normalize the conic system into a system

that has computational behavior with certain guarantees. We have given a characterization of the
computational behavior of the transformed system as a function of the symmetry of v̂ in the image
set H◦

s̄ = {v : s̄ − AT v ∈ C∗}. Because H◦
s̄ must contain a point v whose symmetry is at least 1/m,

if we can find a point whose symmetry is Ω(1/m) then we can re-normalize the conic system to one
whose computational complexity will be strongly-polynomial in m and the complexity value ϑ of the
barrier function f(·) of the cone C. We have presented a method for generating such a point v̂ using
sampling on geometric random walks on H◦

s̄ with associated complexity analysis. Finally, we have
implemented this methodology on randomly generated homogeneous linear programming feasibility
problems, constructed to be poorly behaved. Our computational results indicate that the projective
re-normalization methodology holds the promise to markedly reduce the overall computation time
for conic feasibility problems; for instance we observe a 46% improvement in average IPM iterations
for the 100 problem instances of dimension 1000 × 5000. The next step in this line of research will
be to develop a suitable adaptation of the methods developed herein to solve conic optimization
problems, and to test such an adaptation on conic optimization problems that arise in practice.
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7.1. The Infeasible Case

The theory presented herein is based on the assumption that F has a solution. When F does not
have a solution, then one can consider the alternative/dual system:

Fa :

{
AT v + s = 0

s ∈ C∗\{0} .

This system can then be re-formatted as:

F
′
a :

{
Bs = 0

s ∈ C∗\{0} ,

for a suitably computed matrix B whose null-space is the orthogonal complement of the null-space
of A. Note that F

′
a is of the same format as F and the results for F can be easily adapted to F

′
a.

(Actually, the computation of B is not necessary. Given x̄ ∈ intC, consider the analogous image
sets for Fa and F

′
a defined as Hx̄ := {AT v + s : s ∈ C∗, x̄T s = 1, v ∈ IRm} and H

′
x̄ := {Bs : s ∈

C∗, x̄T s = 1}. Then sym(0,Hx̄) = sym(0,H
′
x̄) even though Hx̄ is unbounded, and one can work

with Hx̄ and problem Fa directly.) Nevertheless, it may be more fruitful and revealing to develop
a different projective re-normalization theory designed directly for the dual form Fa, and this is a
direction for future research.

7.2. Conic Optimization

Given the structural equivalence of a homogeneous conic system (1) and conic optimization of the
form maxx{cT x : Ax = b, x ∈ C} under a regularity condition, one is led to the question of how to
adapt/apply the projective re-normalization methodology herein to the optimization setting. The
naive approach of simply homogenizing the primal and dual strong duality conditions will not work,
as the resulting system will not have an interior solution, and the origin will lie on the boundary
of the resulting image set. A more appropriate approach is to solve for an ε-optimal solution; this
approach still has numerical challenges and is the subject of ongoing research.

7.3. Related Complexity Matters

When the projective re-normalization methodology is implemented using a random walk to find a
deep point in H◦

s̄ , then the combined re-normalization and interior-point solution method can be
viewed as a probabilistic algorithm with associated polynomial-time complexity with high proba-
bility. Viewed this way, the methodology proposed and tested herein is an addition to a growing
number of polynomial-time probabilistic algorithms for convex feasibility and/or optimization, see
Bertsimas and Vempala [3], Kalai and Vempala [13], and Kelner and Spielman [14].
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Nesterov [21] has suggested the following “dual approach” to solving (1): starting at v0 = 0
compute an approximate analytic center va of H◦

s̄ , which is the essentially unconstrained problem
minv{f∗(s̄ − AT v) : s̄ − AT v ∈ intC∗}. It is elementary to show from the barrier calculus that as
soon as a point v is computed whose Newton step (Δv,Δs) satisfies

√
(Δs)T H∗(s)Δs < 1 (where

s = s̄−AT v and H∗(s) is the Hessian of f∗(·) at s), then the Newton step multipliers yield an interior
solution of F . Regarding the complexity of this scheme, it follows from an analysis that is almost
identical to that yielding inequality (2.19) of [27] that the number of Newton steps of a short-step IPM
to compute an approximate analytic center is: O(

√
ϑ ln(ϑ/sym(0,H◦

s̄ ))) = O(
√

ϑ ln(ϑ/sym(0,Hs̄)))
(from (ii) of Remark 5), which is of the same order as the complexity for solving F developed
herein in Theorem 1. These complexity bounds depend on sym(0,Hs̄) to bound the complexity
of traversing the central path via a short-step method. As is shown in Nesterov and Nemirovski
[23], a generically more accurate complexity bound can be found by analyzing the central path
via its Riemannian geometry. However, as is demonstrated in the current paper, sym(0,Hs̄) lends
itself to analysis, characterization, and ultimately manipulation and reduction via the constructive
projective re-normalization method shown herein. An interesting research challenge is to develop
analogous tools/methods to work with and reduce the Riemannian distance of the central path as
developed in [23].
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