
MIT Open Access Articles

An Efficient Rescaled Perceptron Algorithm for Conic Systems

The MIT Faculty has made this article openly available. Please share
how this access benefits you. Your story matters.

Citation: Belloni, Alexandre, Robert M Freund, and Santosh Vempala. “An Efficient Rescaled
Perceptron Algorithm for Conic Systems.” MATHEMATICS OF OPERATIONS RESEARCH 34.3
(2009): 621-641. ©2009 INFORMS.

As Published: http://dx.doi.org/10.1287/moor.1090.0388

Publisher: Institute for Operations Research and the Management Sciences (INFORMS)

Persistent URL: http://hdl.handle.net/1721.1/54782

Version: Author's final manuscript: final author's manuscript post peer review, without
publisher's formatting or copy editing

Terms of use: Attribution-Noncommercial-Share Alike 3.0 Unported

https://libraries.mit.edu/forms/dspace-oa-articles.html
http://hdl.handle.net/1721.1/54782
http://creativecommons.org/licenses/by-nc-sa/3.0/

An Efficient Re-scaled Perceptron Algorithm for Conic Systems

Alexandre Belloni
Fuqua School of Business, Duke University, One Towerview Drive, Box 90120, Durham, NC 27708-0120

email: abn5@duke.edu http://www.duke.edu/~abn5/

Robert M. Freund
MIT Sloan School of Management, E53-357, 50 Memorial Drive, Cambridge, Massachusetts 02142

email: rfreund@mit.edu http://web.mit.edu/rfreund/www

Santosh Vempala
College of Computing, Klaus 2222, Georgia Tech, 266 Ferst Drive, Atlanta, Georgia 30332

email: vempala@cc.gatech.edu http://www.cc.gatech.edu/~vempala/

The classical perceptron algorithm is an elementary row-action/relaxation algorithm for solving a homogeneous
linear inequality system Ax > 0. A natural condition measure associated with this algorithm is the Euclidean
width τ of the cone of feasible solutions, and the iteration complexity of the perceptron algorithm is bounded by
1/τ2, see Rosenblatt 1962 [20]. Dunagan and Vempala [5] have developed a re-scaled version of the perceptron
algorithm with an improved complexity of O(n ln(1/τ)) iterations (with high probability), which is theoretically
efficient in τ , and in particular is polynomial-time in the bit-length model. We explore extensions of the concepts
of these perceptron methods to the general homogeneous conic system Ax ∈ int K where K is a regular convex
cone. We provide a conic extension of the re-scaled perceptron algorithm based on the notion of a deep-separation
oracle of a cone, which essentially computes a certificate of strong separation. We show that the re-scaled
perceptron algorithm is theoretically efficient if an efficient deep-separation oracle is available for the feasible
region. Furthermore, when K is the cross-product of basic cones that are either half-spaces or second-order cones,
then a deep-separation oracle is available and hence the re-scaled perceptron algorithm is theoretically efficient.
When the basic cones of K include semi-definite cones, then a probabilistic deep-separation oracle for K can be
constructed that also yields a theoretically efficient version of the re-scaled perceptron algorithm.

Key words: Convex Cones ; Perception ; Conic System ; Separation Oracle

MSC2000 Subject Classification: Primary: 52A20 , 90C60 ; Secondary: 90C25

OR/MS subject classification: Primary: Convexity ; Secondary: Random Walk

1. Introduction. We consider the problem of computing a solution of the following conic system

{
Ax ∈ int K

x ∈ X
(1)

where X and Y are n- and m-dimensional linear subspaces, respectively, A : X → Y is a linear operator
and K ⊂ Y is a regular closed convex cone. We refer to this problem as the “conic inclusion” problem,
we call K the inclusion cone and we call F := {x ∈ X : Ax ∈ K} the feasibility cone. The goal is to
compute an interior element of the feasibility cone F . Important special cases of this format include
feasibility problem instances for linear programming (LP), second-order cone programming (SOCP) and
positive semi-definite programming (SDP).

The ellipsoid method ([12]), the random walk method ([3]), and interior-point methods (IPMs) ([11],
[14]) are examples of methods which solve (1) in polynomial-time. Nonetheless, these methods differ
substantially in their representation requirement as well as in their practical performance. For example,
a membership oracle suffices for the ellipsoid method and the random walk method, while a special barrier
function for K is required to implement an IPM. The latter is by far the most successful algorithm for
conic programming in practice: for example, applications of SDP range over several fields including
optimal control, eigenvalue optimization, combinatorial optimization and many others, see [22].

In the case when X = IRn and K = IRm
+ , we recover the original setting of a homogeneous system of

linear inequalities. Within this context, another alternative method is the perceptron algorithm [20]. It is
well-known that this simple method terminates after a finite number of iterations which can be bounded
by the square of the inverse of the width τ of the feasibility cone F . Although occasionally attractive from
a practical point of view due to its simplicity, the perceptron algorithm is not considered theoretically
efficient since the width τ can be exponentially small in the size of the instance in the bit-length model.
Dunagan and Vempala ([5]) combined the perceptron algorithm with a sequence of re-scalings constructed

1

2 Belloni, Freund, and Vempala: Re-scaled Conic Perception
Mathematics of Operations Research xx(x), pp. xx–xx, c©200x INFORMS

from near-feasible solutions. These re-scalings gradually increase τ on average and the resulting re-scaled
perceptron algorithm has complexity O(n ln(1/τ)) iterations (with high probability), which is theoretically
efficient.

Herein we extend the re-scaled perceptron algorithm proposed in [5] to the conic setting of (1). Al-
though the probabilistic analysis is similar, this is not the case for the remainder of the analysis. In
particular, we show that the improvement obtained in [5] arises from the use of a deep-separation oracle,
which is stronger than the usual separation oracle used in the classical perceptron algorithm. In the case
of a system of linear inequalities studied in [5], there is no difference between the implementation of both
oracles. However, this difference is significant for more general cones.

We investigate in detail ways to construct a deep-separation oracle for several classes of cones, since
it is the driving force of the re-scaled perceptron algorithm. We establish important properties of the
deep-separation oracle and its implementation for several classes (including the case when K is the cross-
product of half-spaces and second-order cones). When the basic cones comprising K include semi-definite
cones, we present a probabilistic version of a deep-separation oracle that also yields a theoretically efficient
version of the re-scaled perceptron algorithm.

We start in Section 2 with properties of convex cones, oracles, and the definition of a deep-separation
oracle. Section 3 generalizes the classical perceptron algorithm to the conic setting, and Section 4 extends
the re-scaled perceptron algorithm of [5] to the conic setting. Section 5 contains the probabilistic and
complexity analysis of the re-scaled perceptron algorithm, which reviews some material from [5] for
completeness. Section 6 is devoted to methods for constructing a deep-separation oracle for both specific
and general cones.

The perceptron algorithm is a greedy procedure that updates the current proposed solution by using
any violated inequality. The number of iterations is finite but can be exponential. The modified percep-
tron algorithm (proposed in [4], used in [5]) is a similar updating procedure that only uses inequalities
that are violated by at least some fixed threshold. Although this procedure is not guaranteed to find
a feasible solution, it finds a near-feasible solution with the guarantee that no constraint is violated by
more than the threshold and the number of steps to convergence is proportional to the inverse square of
the threshold, independent of the conditioning of the initial system. The key idea in [5] is that such a
near-feasible solution can be used to improve the width of the original system by a multiplicative factor.
As we show in this paper, this analysis extends naturally to the full generality of conic systems.

The main difficulty is in identifying a constraint that is violated by more than a fixed threshold by
the current proposed solution, precisely what we call a deep-separation oracle. This is not an issue in
the linear setting (one simply checks each constraint). For conic systems, the deep-separation itself is
a conic feasibility problem! It has the form: find w ∈ K∗, the dual of the original inclusion cone, such
that w satisfies a single second-order conic constraint. Our idea is to apply the re-scaled perceptron
algorithm to this system which is considerably simpler than F . What we can prove is that when K is
composed of basic cones that are either half-spaces or second-order cones, such a deep-separation oracle
is readily available. When the basic cones comprising K include semi-definite cones, we show that there
is a probabilistic version of a deep-separation oracle. This probabilistic deep-separation oracle still yields
a theoretically efficient version of the re-scaled perceptron algorithm.

2. Preliminaries

2.1 Notation For simplicity we confine our analysis to finite dimensional linear spaces. Let X and
Y denote linear spaces with finite dimension n and m, respectively, with inner product operators denoted
generically by 〈·, ·〉. All norms are induced by inner-products: ‖v‖ :=

√
〈v, v〉. For x̄ ∈ X, B(x̄, r) will

denote the ball centered at x̄ with radius r, and analogously for Y . Let cl S and int S denote the closure
and interior of a set S, respectively. Let A : X → Y denote a linear operator, and A∗ : Y → X denote
the adjoint operator associated with A.

2.2 Convex Cones Let C be a convex cone. The dual cone of C is defined as
C∗ = {d : 〈x, d〉 ≥ 0, for all x ∈ C} (2)

and extC denotes the set of extreme rays of C. A cone is pointed if it contains no lines. We say that C is
a regular cone if C is a pointed closed convex cone with non-empty interior. It is elementary to show that

Belloni, Freund, and Vempala: Re-scaled Conic Perception
Mathematics of Operations Research xx(x), pp. xx–xx, c©200x INFORMS 3

C is regular if and only if C∗ is regular. Given a regular convex cone C, we use the following geometric
(condition) measure:

Definition 2.1 If C is a regular cone in X, the width of C is given by

τC , max
x,r

{
r

‖x‖ : B(x, r) ⊂ C

}
.

Furthermore the center of C is any vector z̄ that attains the above maximum, normalized so that ‖z̄‖ = 1.

We will be particularly interested in the following three classes of cones: the non-negative orthant
IRk

+ := {x ∈ IRk : x ≥ 0}, the second order cone denoted by Qk := {x ∈ IRk : ‖(x1, x2, . . . , xk−1)‖ ≤ xk},
and the cone of positive semi-definite matrices Sk×k

+ := {X ∈ Sk×k : 〈v, Xv〉 ≥ 0 for all v ∈ IRk} where
Sk×k := {X ∈ IRk×k : X = XT }. Both IRk

+ and Qk are defined on IRk whose inner product is the usual
scalar product 〈v, w〉 = vT w =

∑m
i=1 viwi. From this inner product it is straightforward to show that

both IRk
+ and Qk are self dual, and that their widths are 1/

√
k and 1/

√
2, respectively. The semidefinite

cone Sk×k
+ is defined on the linear space of symmetric matrices Sk×k. For this space, it will be convenient

to depart from our standard notation and represent points in Sk×k using capital letters such as X, for
example. For Sk×k we assign the trace inner product 〈W,V 〉 = Trace (WT V) =

∑
i,j∈{1,...,k}WijVij ,

yielding the Frobenius norm as the inner-product norm ‖X‖ =
√
〈X, X〉 =

√∑
i,j∈{1,...,k}X2

ij . (The trace
inner product and consequential Frobenius norm are standard in the modern treatment of semidefinite
optimization, see [22].) Using the trace inner product one easily establishes that Sk×k

+ is self-dual and
the width of Sk×k

+ is 1/
√

k. We also define the Löwner partial ordering “º” on Sk×k as X º W if and
only if the matrix X −W ∈ Sk×k

+ .

The following characterization will be used in our analysis.

Lemma 2.1 Suppose that C ⊂ Y is a closed convex cone and M ∈ L(X, Y). Let G = {x : Mx ∈ C} and
let T = {M∗λ : λ ∈ C∗}. Then cl (T) = G∗.

Lemma 2.1 is a special case of a more general result about dual cones involving linear operators, see
Theorem 3.1 of Berman [2]. The following proof of Lemma 2.1 is included for completeness.

Proof. (⊆) Let λ ∈ C∗. Then for every x satisfying Mx ∈ C, 〈x,M∗λ〉 = 〈Mx, λ〉 ≥ 0, since
Mx ∈ C and λ ∈ C∗. Thus, cl (T) ⊆ G∗ since G∗ is closed.

(⊇) First note that cl (T) is a nonempty closed convex set. Assume that there exists y ∈ G∗\cl (T).
Thus there exists h 6= 0 satisfying 〈h, y〉 < 0 and 〈h,w〉 ≥ 0 for all w ∈ cl (T). Notice that 〈h,M∗λ〉 ≥ 0
for all λ ∈ C∗, which implies that Mh ∈ C and so h ∈ G. On the other hand, since y ∈ G∗, it follows
that 〈h, y〉 ≥ 0, contradicting 〈h, y〉 < 0. ¤

The question of sets of the form T being closed has been recently studied by Pataki [15]. Necessary
and sufficient conditions for T to be a closed set are given in [15] when C∗ belongs to a class called “nice
cones,” a class which includes polyhedra and self-scaled cones. Nonetheless, the set T may fail to be
closed even in simple cases, as the following example shows.

Example 2.1 Let C∗ = Q3 = {(λ1, λ2, λ3) | ‖(λ1, λ2)‖ ≤ λ3} and M =

−1 0
0 1
1 0

. In this case,

T = {M∗λ | λ ∈ C∗} = {(−λ1 + λ3, λ2) | ‖(λ1, λ2)‖ ≤ λ3}. It is easy to verify that (0, 1) /∈ T but
(ε, 1) ∈ T for every ε > 0 (set λ1 = 1

2ε − ε
2 , λ2 = 1, and λ3 = 1

2ε + ε
2), which shows that T is not closed.

The following property of convex cones is well-known, but is presented and proved herein both for
completeness as well as for conformity to our notation.

Lemma 2.2 Suppose that C ⊂ Y is a closed convex cone. B(z, r) ⊆ C if and only if 〈d, z〉 ≥ r‖d‖ for all
d ∈ C∗.

4 Belloni, Freund, and Vempala: Re-scaled Conic Perception
Mathematics of Operations Research xx(x), pp. xx–xx, c©200x INFORMS

Proof. Suppose B(z, r) ⊂ C. Let d ∈ C∗, d 6= 0. Then, z − r d
‖d‖ ∈ C and since d ∈ C∗,〈

d, z − r d
‖d‖

〉
≥ 0. Thus, 〈d, z〉 ≥ r 〈d,d〉

‖d‖ = r‖d‖. Conversely, suppose 〈d, z〉 ≥ r‖d‖ for every d ∈ C∗.
Let v satisfy ‖v‖ ≤ r. Assume z + v /∈ C, then there exists d ∈ C∗, 〈d, z + v〉 < 0. Therefore 〈d, z〉 <
−〈d, v〉 ≤ r‖d‖, which contradicts 〈d, z〉 ≥ r‖d‖. ¤

Lemma 2.3 Let B : X → X be a self-adjoint invertible linear operator. Let FA = {x ∈ X : Ax ∈ K}
and FAB = {x ∈ X : ABx ∈ K}. Then F∗AB = B∗F∗A.

Proof. From Lemma 2.1 we have F∗AB = cl ({B∗A∗λ : λ ∈ K∗}) = cl (B∗{A∗λ : λ ∈ K∗}).
Therefore we need to prove that

cl (B∗{A∗λ : λ ∈ K∗}) = B∗cl ({A∗λ : λ ∈ K∗})
which follows since B∗ is invertible and Theorem 9.1 from [19]. ¤

2.3 Oracles In our algorithms and analysis we will distinguish two different types of oracles.

Definition 2.2 An interior separation oracle for a convex set S ⊂ IRn is a subroutine that given a point
x ∈ IRn, identifies if x ∈ int S or returns a vector d ∈ IRn, d 6= 0, such that

〈d, x〉 ≤ 〈d, y〉 for all y ∈ S .

Definition 2.3 For a fixed positive scalar t, a deep-separation oracle for a cone C ⊂ IRn is a subroutine
that given a non-zero point x ∈ IRn, either

(I) correctly identifies that
〈d, x〉
‖d‖‖x‖ ≥ −t for all d ∈ extC∗

or

(II) returns a vector d ∈ C∗, d 6= 0, satisfying
〈d, x〉
‖d‖‖x‖ ≤ −t.

Definition 2.2 is standard in the literature, whereas Definition 2.3 is new as far as we know. Our
motivation for this definition arises from a relaxation of the orthogonality characterization of a convex
cone. For d, x 6= 0 let cos(d, x) denote the cosine of the angle between d and x, i.e., cos(d, x) = 〈d,x〉

‖d‖‖x‖ .
Notice that x ∈ C if and only if cos(d, x) ≥ 0 for all d ∈ C∗ if and only if cos(d, x) ≥ 0 for all d ∈ extC∗.
The latter characterization states that 〈d,x〉

‖d‖‖x‖ ≥ 0 for all d ∈ extC∗. Condition (I) of the deep-separation
oracle relaxes the cosine condition from 0 to −t. The following example illustrates that the perceptron
improvement algorithm described in [5] corresponds to a deep-separation oracle for a linear inequality
system.

Example 2.2 Let C = {x ∈ IRn : Mx ≥ 0} where M is an m × n matrix none of whose rows are zero.
Notice that C∗ = {M∗λ : λ ≥ 0} is the conic hull of the rows of M , and the extreme rays of C∗ are a
subset of the rows of M . Therefore a deep-separation oracle for C can be constructed by identifying for
a given x 6= 0 if there is an index i ∈ {1, . . . , m} for which 〈Mi,x〉

‖Mi‖‖x‖ ≤ −t and returning Mi/‖Mi‖ in
such a case. Notice that we do not need to know which vectors Mi are extreme rays of C∗; if m is not
excessively large it is sufficient to simply check the aforementioned inequality for every row index i.

Remark 2.1 It might seem odd that condition (I) involves “only” the extreme rays of C∗. However,
in many particular conic structures arising in practice, a super-set of the extreme rays of the dual cone
C∗ is at least partially accessible, as is the case when C = {x : Mx ≥ 0} where this super-set is
comprised of the row vectors of M . Indeed, suppose we replace condition (I) by the seemingly more
convenient condition “ 〈d,x〉

‖d‖‖x‖ ≥ −t for all d ∈ C∗.” Utilizing Lemma 2.1, this condition is met by checking
−t ≤ minλ{〈M∗λ, x/‖x‖〉 : ‖M∗λ‖ ≤ 1, λ ≥ 0}, and taking a dual yields −t ≤ maxw{−‖w − x/‖x‖‖ :
Mw ≥ 0}. We see that this latter optimization problem simply tests if x/‖x‖ is at most distance t from
the cone C, which itself is at least as hard as computing a non-trivial point in C.

Belloni, Freund, and Vempala: Re-scaled Conic Perception
Mathematics of Operations Research xx(x), pp. xx–xx, c©200x INFORMS 5

Remark 2.2 It turns out that conditions (I) and (II) might each be strictly satisfiable. Let C = {x :

Mx ≥ 0} where M =

−2 3

3 −2
0 1

. Then C has an interior solution, and let t = 3/4. It is straight-

forward to check that x = (−1,−1) satisfies 〈Mi,x〉
‖Mi‖‖x‖ > −t for every i, whereby condition (I) is satisfied

strictly. Furthermore, d̄ = (1, 1) ∈ C∗ and satisfies 〈d̄,x〉
‖d̄‖‖x‖ < −t, thus showing that condition (II) is also

satisfied strictly. Of course d̄ /∈ extC∗, thus highlighting the importance of the role of extreme rays.

3. Perceptron Algorithm for a Conic System The classical perceptron algorithm was proposed
to solve a homogeneous system of linear inequalities (1) with K = IRm

+ . It is well-known that the algorithm
has finite termination in at most

⌊
1/τ2

F
⌋

iterations, see Rosenblatt 1962 [20]. This complexity bound can
be exponential in the bit-model.

Our starting point herein is to show that the classical perceptron algorithm can be easily extended to
the case of a conic system of the form (1).

Perceptron Algorithm for a Conic System
(a) Let x be the origin in X. Repeat:

(b) If Ax ∈ int K, Stop. Otherwise, call interior separation oracle for F at x, returning
d ∈ F∗, d 6= 0, such that 〈d, x〉 ≤ 0, and set x ← x + d/‖d‖.

This algorithm presupposes the availability of an interior separation oracle for the feasibility cone F .
In the typical case when the inclusion cone K has an interior separation oracle, this oracle can be used
to construct an interior separation oracle for F : if x /∈ int F , then Ax /∈ int K and there exists λ ∈ K∗,
λ 6= 0, satisfying 〈λ,Ax〉 ≤ 0, whereby d = A∗λ satisfies 〈d, x〉 ≤ 0, d ∈ F∗, and d 6= 0. (If d = 0, it is
straightforward to show that int F = ∅.)

Exactly as in the case of linear inequalities, we have the following iteration bound for this algorithm.

Lemma 3.1 The perceptron algorithm for a conic system will compute a solution of (1) in at most
⌊
1/τ2

F
⌋

iterations.

Proof. Consider the potential function π(x) = 〈x, z̄〉 /‖x‖, and note that π(x) ≤ 1 for all x 6= 0,
where τF is the width of the feasibility cone F and z̄ is the center of F . If the algorithm does not stop
at (b), we update x to x + d̄ where d̄ := d/‖d‖, whereby

〈
x + d̄, z̄

〉
= 〈x, z̄〉+

〈
d̄, z̄

〉 ≥ 〈x, z̄〉+ τF ,

and
‖x + d̄‖2 = 〈x, x〉+ 2

〈
x, d̄

〉
+

〈
d̄, d̄

〉 ≤ 〈x, x〉+ 1,

since
〈
x, d̄

〉 ≤ 0,
〈
d̄, d̄

〉
= 1, and

〈
d̄, z̄

〉 ≥ τF from Lemma 2.2.

After k iterations, the potential function is at least kτF/
√

k. After more than
⌊
1/τ2

F
⌋

iterations, the
potential function would be greater than one, a contradiction. Thus, the algorithm must terminate after
at most

⌊
1/τ2

F
⌋

iterations, having computed a solution of (1). ¤

Example 3.1 Consider the semidefinite cone K = Sk×k
+ and the linear operator A : IRn → Sk×k.

Suppose that Ax /∈ int K. In order to compute a direction d ∈ F∗, we start by computing any eigenvector
v of the symmetric matrix Ax associated with a non-positive eigenvalue. Then the vector d = A∗(vvT)
will satisfy

〈d, x〉 =
〈
A∗(vvT), x

〉
=

〈
vvT , Ax

〉
= tr(vvT Ax) = vT (Ax)v ≤ 0,

and for all y ∈ F we have:
〈d, y〉 =

〈
vvT , Ay

〉
= vT (Ay)v ≥ 0,

i.e., d ∈ F∗, and 〈d, x〉 ≤ 0. If (1) has a solution it easily follows that d 6= 0 and d can be used in (b) of
the perceptron algorithm for a conic system.

6 Belloni, Freund, and Vempala: Re-scaled Conic Perception
Mathematics of Operations Research xx(x), pp. xx–xx, c©200x INFORMS

4. Re-scaled Conic Perceptron Algorithm In this section we present and analyze a version of
the perceptron algorithm whose complexity depends only logarithmically on 1/τF . To accomplish this we
will systematically re-scale the system (1) using a linear transformation related to a suitably constructed
random vector that approximates the center z̄ of F . The linear transformation we use was first proposed
in [5] for the case of linear inequality systems (i.e., K = IRm

+). Herein we extend these ideas to the conic
setting. Table 1 contains a description of our algorithm, which is a structural extension of the algorithm
in [5].

Remark 4.1 In what follows F denotes the original feasibility cone defined by the initial operator A
and the K. By re-scaling on each iteration, the algorithm will define a new linear operator A and the
feasibility cone associated with it will be denoted by FA = {x ∈ X : Ax ∈ K}.

Re-scaled Perceptron Algorithm for a Conic System

Step 1 Initialization. Set B = I and σ = 1/(32n). Set J = 0.

Step 2 Perceptron Algorithm for a Conic System.
(a) Update iteration counter: J ← J + 1.
(b) Let x be the origin in X. Repeat at most

⌊
(1/σ2)

⌋
times:

(c) If Ax ∈ int K, Stop. Otherwise, call interior separation oracle for FA at x,
returning d ∈ F∗A, d 6= 0, such that 〈d, x〉 ≤ 0, and set x ← x + d/‖d‖.

Step 3 Stopping Criteria. If Ax ∈ int K then output Bx and Stop.

Step 4 Perceptron Improvement Phase.
(a) Let x be a random unit vector in X. Repeat at most

⌊
(1/σ2) ln(n)

⌋
times:

(b) Call deep-separation oracle for FA at x with t = σ.
If 〈d, x〉 ≥ −σ‖d‖‖x‖ for all d ∈ extF∗A (condition I), End Step 4. Otherwise, oracle returns
d ∈ F∗A, d 6= 0, such that 〈d, x〉 ≤ −σ‖d‖‖x‖ (condition II); set d̄ = d/‖d‖ and x ← x− 〈

d̄, x
〉
d̄.

If x = 0 restart at (a).
(c) Call deep-separation oracle for FA at x with t = σ. If oracle returns condition (II), restart at (a).

Step 5 Stopping Criteria. If Ax ∈ int K then output Bx and Stop.

Step 6 Re-scaling. A ← A

(
I +

xxT

〈x, x〉
)

, B ← B

(
I +

xxT

〈x, x〉
)

, and Goto Step 2.

Table 1: One iteration of the re-scaled perceptron algorithm is one pass of Steps 2-6.

The re-scaled perceptron algorithm is initialized in Step 1, after which it passes through Steps 2-6
unless it stops with a solution (in Steps 2, 3, or 5). At Step 6 the matrices A,B are updated and the
algorithm loops back to Step 2. The variable J counts the number of times that the algorithm visits
Step 2. We consider an “iteration” of the re-scaled perceptron algorithm to be one pass of Steps 2-6 (or,
when the algorithm stops with a solution, simply Step 2 through to the stopping step). Thus J counts
the number of iterations. We point out for emphasis that J is a random variable.

Note that the perceptron improvement phase (Step 4) requires a deep-separation oracle for FA instead
of the interior separation oracle for FA as required by the perceptron algorithm. For the remainder of
this section we presuppose that a deep-separation for FA is indeed available. In Section 6 we show how
to construct a deep-separation oracle for a variety of useful cones.

Belloni, Freund, and Vempala: Re-scaled Conic Perception
Mathematics of Operations Research xx(x), pp. xx–xx, c©200x INFORMS 7

We now present our analysis of the re-scaled perceptron algorithm. The following lemma presents
intermediate bounds on the width of the feasibility cone FA, from below, of consecutive iterations of the
algorithm. Note in the conclusion of the lemma that the quantity ‖ẑ‖ appears in the denominator; hence
the result is intermediate. We will show later, in Lemma 5.2 of Section 5, upper bounds on ‖ẑ‖ and hence
more definitive bounds on the width of FA over consecutive iterations.

Lemma 4.1 Let z̄ denote the center of the feasibility cone FA, normalized so that ‖z̄‖ = 1. Let Â denote
the linear operator obtained by re-scaling A in Step 6. Then

τFÂ
≥ (1− σ)√

1 + 3σ2‖ẑ‖τFA

where ẑ = z̄ + 1
2

(
τFA

−
〈

x
‖x‖ , z̄

〉)
x
‖x‖ , and x is the output of the perceptron improvement phase.

Proof. For convenience, let τ := τFA
.At the end of the perceptron improvement phase, we have a

vector x satisfying
〈d, x〉
‖d‖‖x‖ ≥ −σ for all d ∈ extF∗A.

Let x̄ = x/‖x‖. Then 〈d, x̄〉 ≥ −σ‖d‖ for all d ∈ extF∗A. From Lemma 2.2, it holds that

〈d, z̄〉
‖d‖‖z̄‖ =

〈d, z̄〉
‖d‖ ≥ τ for all d ∈ F∗A,

i.e. 〈d, z̄〉 ≥ τ‖d‖ for all d ∈ F∗A. Notice that A∗λ ∈ F∗A for all λ ∈ K∗, whereby

〈λ,Az̄〉 = 〈A∗λ, z̄〉 ≥ τFA
‖A∗λ‖ for all λ ∈ K∗.

Note that ẑ = z̄ + 1
2 (τ − 〈x̄, z̄〉)x̄, and let τ̂ := (1−σ)√

1+3σ2 τ . We want to show that

〈v, ẑ〉 ≥ τ̂‖v‖ for all v ∈ extF∗
Â
. (3)

If (3) is true, then by convexity of the function f(v) = τ̂‖v‖− 〈v, ẑ〉 it will also be true that 〈v, ẑ〉 ≥ τ̂‖v‖
for any v ∈ F∗

Â
. Then from Lemma 2.2 it would follow that B(ẑ, τ̂) ⊂ FÂ, whereby τFÂ

≥ τ̂
‖ẑ‖ as desired.

Let v be an extreme ray of F∗
Â
. Using Lemma 2.1, there exists a sequence {λi}i≥1, λi ∈ K∗, Â∗λi → v

as i →∞. By Lemma 2.3 we also have that A∗λi → u ∈ extF∗A. Since (3) is trivially true for v = 0, we
can assume that v 6= 0 and hence A∗λi 6= 0 for i large enough. Next note that

‖Â∗λi‖2 = ‖A∗λi‖2 + 2
〈
A∗λi, x̄

〉2
+ 〈x̄, x̄〉 〈A∗λi, x̄

〉2
= ‖A∗λi‖2

1 + 3

(〈
A∗λi, x̄

〉

‖A∗λi‖

)2

and 〈
Â∗λi, ẑ

〉
=

〈
A∗λi, ẑ

〉
+ 〈x̄, ẑ〉 〈A∗λi, x̄

〉

=
〈
A∗λi, z̄

〉
+ (τ − 〈x̄, z̄〉) 〈

A∗λi, x̄
〉

+ 〈x̄, z̄〉 〈A∗λi, x̄
〉

≥ τ‖A∗λi‖+ τ
〈
A∗λi, x̄

〉

= τ

(
1 +

〈
A∗λi, x̄

〉

‖A∗λi‖

)
‖A∗λi‖.

(4)

Therefore

〈
Â∗λi, ẑ

〉

‖Â∗λi‖ ≥ τ
1 + ti√
1 + 3t2i

where ti = 〈A∗λi,x̄〉
‖A∗λi‖ . Note that ti ≤ 1 and 〈u, x̄〉 ≥ −σ‖u‖ since

u ∈ extF∗A, and so
〈u, x̄〉
‖u‖ ≥ −σ. By continuity, for any ε > 0 it holds that ti ≥ −σ − ε for i sufficiently

large. Thus, ti ∈ [−σ − ε, 1] for i large enough.

For t ∈ [0, 1], we have 1+t√
1+3t2

≥ 1+t√
1+2t+t2

= 1, and for t ∈ [−σ − ε, 0], the function g(t) = 1+t√
1+3t2

≥
1−σ−ε√

1+3(σ+ε)2
since

dg(t)
dt

=
1− 3t

(1 + 3t2)3/2
≥ 0

8 Belloni, Freund, and Vempala: Re-scaled Conic Perception
Mathematics of Operations Research xx(x), pp. xx–xx, c©200x INFORMS

for t ∈ [−σ − ε, 0], that is, g(t) is increasing on [−σ − ε, 0]. Therefore, for i large enough we have
〈
Âλi, ẑ

〉

‖Â∗λi‖ ≥ τ
(1− σ − ε)√
1 + 3(σ + ε)2

.

Passing to the limit as λi → v we obtain

〈v, ẑ〉
‖v‖ ≥ τ

(1− σ − ε)√
1 + 3(σ + ε)2

whereby
〈v, ẑ〉
‖v‖ ≥ τ

(1− σ)√
1 + 3σ2

= τ̂ .

¤

5. Probabilistic Analysis. As mentioned before, the probabilistic analysis of our conic framework
is similar to the analysis with linear inequalities in [5]. Although a few changes are required, all the
main ideas are still valid. For the sake of completeness, we go over some results of [5]. Our exposition
intentionally separates the probabilistic analysis from the remaining sections.

The first lemma of this section was established in [4] for the case of linear inequalities, and here is
generalized to the conic framework. Roughly speaking, it shows that the perceptron improvement phase
generates near-feasible solutions if started at a good initial point, which happens with at least a fixed
probability p = 1/8.

Lemma 5.1 Let z be a feasible solution of (1) of unit norm. With probability at least 1
8 , the perceptron

improvement phase (Step 4) visits Step 4(a) only once, and returns a vector x satisfying:

(i) 〈d, x〉 ≥ −σ‖x‖ for every d ∈ extF∗A, ‖d‖ = 1, and

(ii) 〈z, x/‖x‖〉 ≥ 1√
n
.

Proof. Let x0 be the random unit vector in IRn that is the starting value of the perceptron im-
provement phase. For any given unit vector v, P(

〈
v, x0

〉 ≥ 1/
√

n) ≥ 1/8; a proof is given in the appendix
of [5]. In particular, for the given feasible solution z of unit norm, P(

〈
z, x0

〉 ≥ 1/
√

n) ≥ 1/8. Notice that
in the perceptron improvement phase we have

〈
x− 〈

d̄, x
〉
d̄, z

〉
= 〈x, z〉 − 〈

d̄, x
〉 〈

d̄, z
〉 ≥ 〈x, z〉

where d̄ = d/‖d‖, since
〈
d̄, x

〉 ≤ 0 and
〈
d̄, z

〉 ≥ 0 (since d ∈ F∗A and z ∈ FA). Thus, 〈z, x〉 does not
decrease at each inner iteration of the perceptron improvement phase (Step 4(b)). Also, in each inner
iteration of the perceptron improvement phase (Step 4(b)), the norm of x decreases by at least a constant
factor: 〈

x− 〈
x, d̄

〉
d̄, x− 〈

x, d̄
〉
d̄
〉

= 〈x, x〉 − 2
〈
d̄, x

〉2 +
〈
d̄, x

〉2 〈
d̄, d̄

〉

= 〈x, x〉 − 〈
d̄, x

〉2 = 〈x, x〉 − 〈
d̄, x/‖x‖〉2 〈x, x〉

≤ 〈x, x〉 (1− σ2),

since
〈
d̄, x/‖x‖〉 ≤ −σ < 0 and ‖d̄‖ = 1.

Thus, after more than
⌊
(1/σ2) ln(n)

⌋
iterations, we would have 〈x,z〉

‖x‖ > 1, which is a contradiction
since z is a unit vector.

Therefore, with probability at least 1/8 we draw a unit random vector x with 〈z, x〉 ≥ 1/
√

n (so (ii)
holds). If this is the case we cannot deeply-separate our point

⌊
(1/σ2) ln(n)

⌋
times in Step 4(b). So our

final point satisfies condition (i).

¤
Lemma 5.1 establishes that points obtained after the perceptron improvement phase are near-feasible

for the current conic system. The next lemma clarifies the implications of using these near-feasible points
to re-scale the conic system.

Belloni, Freund, and Vempala: Re-scaled Conic Perception
Mathematics of Operations Research xx(x), pp. xx–xx, c©200x INFORMS 9

Lemma 5.2 Let A and Â denote the linear operators of two consecutive iterations of the re-scaled per-
ceptron algorithm. Suppose that n ≥ 2, τFA

≤ 1/32n, and σ ≤ 1/32n. Then

(i) τFÂ
≥

(
1− 1

32n
− 1

512n2

)
τFA

;

(ii) With probability at least 1
8 , τFÂ

≥
(

1 +
1

3.02n

)
τFA

.

Proof. Let x be the output of the perceptron improvement phase. For simplicity, let τ := τFA
,

τ̂ := τFÂ
, and x̄ = x/‖x‖. Using Lemma 4.1, we have

τ̂ ≥ (1− σ)√
1 + 3σ2‖ẑ‖τ (5)

where ẑ = z̄ + 1
2 (τ − 〈x̄, z̄〉)x̄. Next note that

‖ẑ‖2 = 1 + (τ − 〈x̄, z̄〉) 〈x̄, z̄〉+
1
4
(τ − 〈x̄, z̄〉)2 = 1 +

τ2

4
+ 〈z̄, x̄〉

(
τ

2
− 3

4
〈z̄, x̄〉

)
. (6)

Viewing this equation as a quadratic function in 〈z̄, x̄〉, which is maximized at the value 〈z̄, x̄〉 = τ/3, we
obtain

‖ẑ‖2 ≤ 1 +
τ2

4
+

τ2

12
= 1 +

τ2

3
.

Thus, we have from this inequality and (5) that

τ̂ ≥ τ(1− σ)√
1 + 3σ2

√
1 + τ2/3

≥ τ(1− σ)
(

1− 3σ2

2

)(
1− τ2

6

)
,

where the second inequality uses Proposition 7.1 of the Appendix to bound the square root terms in the
denominator. Now invoking the inequalities τ, σ ≤ 1/(32n), we have:

τ̂ ≥ τ(1− σ)
(
1− 3σ2

2

)(
1− τ2

6

)

≥ τ
(
1− σ − 3σ2

2 − τ2

6

)
(since (1− a)(1− b)(1− c) ≥ 1− a− b− c for a, b, c ≥ 0)

≥ τ
(
1− 1

32n − 3
2×322n2 − 1

6×322n2

)

= τ
(
1− 1

32n − 1
322n2

(
3
2 + 1

6

))

≥ τ
(
1− 1

32n − 1
512n2

)
.

Now let us assume that 〈z̄, x̄〉 ≥ 1/
√

n, which happens with probability at least 1/8. In this case, again
viewing (6) as a quadratic in 〈z̄, x̄〉, the quadratic is maximized at 〈z̄, x̄〉 = 1√

n
, which yields

‖ẑ‖2 ≤ 1− 3
4n

+
τ

2
√

n
+

τ2

4
.

Thus, we have from this inequality and (5) that

τ̂ ≥ τ(1− σ)
√

1 + 3σ2
√

1− 3
4n + τ

2
√

n
+ τ2

4

≥ τ(1− σ)
(

1− 3σ2

2

)(
1 +

3
8n

− τ

4
√

n
− τ2

8

)

where the second inequality uses Proposition 7.1 of the Appendix to bound the square root terms in the
denominator. Now invoking the inequalities τ, σ ≤ 1/(32n), we have:

τ̂ ≥ τ

(
1− 1

32n

) (
1− 3

2048n2

)(
1 +

3
8n

− 1
128n1.5

− 1
8192n2

)
≥ τ

(
1 +

1
3.02n

)
,

where the last inequality follows from Proposition 7.2 of the Appendix.

¤
The following theorem bounds the number of iterations and the number of oracle calls made by the

re-scaled perceptron algorithm. Recall that an iteration is one pass of Steps 2-6, and the variable J in
the algorithm counts the number of iterations.

10 Belloni, Freund, and Vempala: Re-scaled Conic Perception
Mathematics of Operations Research xx(x), pp. xx–xx, c©200x INFORMS

Theorem 5.1 Suppose that n ≥ 2 and (1) has a solution, and that δ ∈ (0, 1) is given. Then, with
probability at least 1 − δ, the re-scaled perceptron algorithm will compute a solution of (1) in no more
than

T = max
{

4096 ln
(

1
δ

)
, 139n ln

(
1

32nτF

)}
= O

(
n ln

(
1
τF

)
+ ln

(
1
δ

))

iterations. Moreover, with probability at least 1− δ, the algorithm makes at most O(T n2 ln(n)) calls of
the deep-separation oracle for FA and at most O(T n2) calls of the interior separation oracle for FA.

Proof. Our proof is slightly different than that of Theorem 3.4 in [5]. Let A denote the event
{J > T}, where J is the total number of iterations of the re-scaled perceptron algorithm (i.e., visits to
Step 2). Then to prove the theorem we must show that P(A) ≤ δ. We proceed as follows. Let U denote
the total number of times that the re-scaled perceptron algorithm calls Step 4(a), hence U ≥ J − 1, and
let i index these calls. After each visit to Step 4(a) exactly one of three cases can occur: (i) the algorithm
ends Step 4 with the resulting update in Step 6 satisfying conclusion (ii) of Lemma 5.1, (ii) the algorithm
ends Step 4 with the resulting update in Step 6 not satisfying the conclusion (ii) of Lemma 5.1, or (iii)
the algorithm does not end Step 4 and therefore restarts Step 4(a). For i = 1, . . . , U , let Vi be the binary
random variable whose value is 1 if the ith call of Step 4(a) ends in case (i), and is 0 otherwise. Lemma
5.2 implies that P(Vi = 1) ≥ 1/8. If U < T , define Vi for i = U + 1, . . . , T to be a Bernoulli random
variable that takes values 1 and 0 with probabilities 1/8 and 7/8, respectively. Now define V =

∑T
i=1 Vi,

and it follows that E[V] ≥ T/8. Let B denote the event {V < 15
16E[V]}. Applying a Chernoff bound (see

Theorem 4.2 of [13]) with ε = 1/16, we have:

P(B) = P(V < (1− ε)E[V]) < e−ε2E[V]/2 = e−E[V]/512 ≤ e−T/4096 ≤ δ ,

since E[V] ≥ T/8 and T ≥ 4096 ln(1/δ).

Now note that

P(A) = P(A ∩B) + P(A ∩Bc) ≤ P(B) + P(A ∩Bc) < δ + P(A ∩Bc) .

Therefore the theorem will be proved if we can show that P(A∩Bc) = 0, which we now do by contradiction.

Indeed, suppose that events {U > T} and Bc are realized (note that A ⊂ {U > T}), then we have
U > T and V ≥ 15

16E[V]. For i = 0, . . . , T , let τi denote the width of the feasibility cone after i calls to
Step 4(a) (hence τ0 = τF). For all i = 0, . . . , U − 1 it holds that 1/(32n) > τi (otherwise Step 2(b) finds
a feasible solution and the algorithm stops), whereby 1/(32n) > τT since T < U . It follows from Lemma
5.2 that Vi = 1 implies τi+1 ≥ τi(1 + 1/(3.02n)). If Vi = 0, then either case (ii) or case (iii) above occur,
the former yielding τi+1 ≥ τi

(
1− 1

32n − 1
512n2

)
from Lemma 5.2, and the latter yielding τi+1 = τi (i.e.,

no update is performed). Therefore

τT ≥ τ0

(
1 + 1

3.02n

)V (
1− 1

32n − 1
512n2

)T−V

≥ τF
(
1 + 1

3.02n

)15E[V]/16 (
1− 1

32n − 1
512n2

)T−15E[V]/16

≥ τF
(
1 + 1

3.02n

) 15T
128

(
1− 1

32n − 1
512n2

)T− 15T
128

= τF
[(

1 + 1
3.02n

) 15
128

(
1− 1

32n − 1
512n2

) 113
128

]T

≥ τFeT/139n

≥ 1/(32n) ,

where the second-to-last inequality follows from Proposition 7.4 of the Appendix, and the last inequality
follows since T ≥ 139n ln(1/(32nτF)). This contradicts the fact that 1/(32n) > τT which was shown
above; hence P(A ∩ Bc) ≤ P({U > T} ∩ Bc) = 0 and the main bound is proven. It follows that
J ≤ U ≤ T with probability at least 1 − δ. Therefore, with probability at least 1 − δ, the number
of calls to the separation oracle for FA (Step 2) is at most b1024n2T c and the number of calls to the
deep-separation oracle for FA (Step 4(a)) is at most b1024n2 ln(n) T c. ¤

Remark 5.1 It is instructive to compare the complexity bound in Theorem 5.1 with that of the ellipsoid
method (see [10]). Let Ws and Wd denote the number of operations needed for an oracle call to an interior
separation oracle and a deep-separation oracle, respectively, for the feasibility cone F (or FA). The
complexity of the ellipsoid method for computing a solution of (1) is O(n2 ln(1/τF)) iterations, with each
iteration requiring (i) one call to an interior separation oracle for F , and (ii) O(n2) additional operations,

Belloni, Freund, and Vempala: Re-scaled Conic Perception
Mathematics of Operations Research xx(x), pp. xx–xx, c©200x INFORMS 11

yielding a total operation count of O((n4 + n2Ws) ln(1/τF)). The corresponding complexity bound for the
re-scaled perceptron algorithm is O(n ln(1/τF) + ln(1/δ)) iterations, where each iteration requires (i)
O(n2) calls to an interior separation oracle, (ii) O(n2 ln n) calls to a deep-separation oracle, and O(n2)
additional operations, yielding a total operation count of O((n2Ws+n2 ln nWd+n2)(n ln(1/τF)+ln(1/δ))).
If we make the reasonable presumption that either δ is a fixed scalar or τF << δ, and that Wd ≥ Ws,
we see that the ellipsoid method has superior complexity by a factor of at least n ln n, with this advantage
growing to the extent that Wd >> Ws (as is the case when K is either composed of second-order or
positive semi-definite cones, see Section 6). However, the re-scaled perceptron algorithm is still attractive
for at least two reasons. First, it has the possibility of acceleration beyond its worst-case bound. And
second, we believe that the method is of independent interest for its ability to re-dilate the space in a way
that improves the width of the feasibility cone. It may be possible to exploit the mechanisms underlying
this phenomenon in other algorithms yet to be developed.

6. Deep-separation Oracles for FA and their Extensions, for Some Inclusion Cones K
The re-scaled perceptron algorithm presupposes the availability of a deep-separation oracle for the fea-
sibility cone FA. Herein we discuss how to construct such a deep separation oracle for FA for certain
inclusion cones and their cross-products. Before doing so, we first extend the concept of a deep-separation
oracle in two ways.

Definition 6.1 For a fixed positive scalar t and a fractional value α ∈ (0, 1], an α-deep-separation oracle
for a cone C ⊂ IRn is a subroutine that given a non-zero point x ∈ IRn, either

(I) correctly identifies that
〈d, x〉
‖d‖‖x‖ ≥ −t for all d ∈ extC∗

or

(II) returns a vector d ∈ C∗, d 6= 0, satisfying
〈d, x〉
‖d‖‖x‖ ≤ −αt.

Definition 6.1 only differs from Definition 2.3 in the inequality in condition (II), where now αt is used
instead of t. In order to properly use this relaxed oracle, it is only required to modify the iteration
bound used in Step 4(a) of the re-scaled perceptron algorithm as follows:

Step 4(a) Let x be a random unit vector in X. Repeat at most
⌊
(1/(α2σ2)) ln(n)

⌋
times:

For example, by setting α = 1/2 in the constructions later in this section will therefore increase the
iteration bound of Step 4 by a constant factor; all other analysis remains valid with no modifications.
We also extend the concept of a deep-separation oracle probabilistically as follows.

Definition 6.2 For a fixed positive scalar t, a fractional value α ∈ (0, 1], and a probability of failure γ,
an (α, γ)-deep-separation oracle for a cone C ⊂ IRn is a subroutine that given a non-zero point x ∈ IRn,
either

(I) identifies that “
〈d, x〉
‖d‖‖x‖ ≥ −t for all d ∈ extC∗” holds with probability at least 1− γ

or

(II) returns a vector d ∈ C∗, d 6= 0, satisfying
〈d, x〉
‖d‖‖x‖ ≤ −αt.

Definition 6.2 only differs from Definition 6.1 in the correctness of assertion (I), where now this
assertion is incorrect with probability at most γ.

We now discuss how to modify the re-scaled perceptron algorithm to utilize an (α, γ)-deep-separation
oracle with associated complexity bounds similar to those of Theorem 5.1. For a given overall probability
of failure δ and value of σ = 1/(32n), let i = 1, . . . , index the visits of the re-scaled perceptron algorithm
to Step 4(a). For each i, pre-assign a probability of failure γ = pi for the (α, γ)-deep-separation oracle
called in Steps 4(b) and/or 4(c) immediately following the ith visit to Step 4(a), as follows:

pi =
3δα2σ2

10i2 ln(n)
.

12 Belloni, Freund, and Vempala: Re-scaled Conic Perception
Mathematics of Operations Research xx(x), pp. xx–xx, c©200x INFORMS

Noting that each visit to Step 4(a) results in at most b(1/(α2σ2)) ln(n)c calls of the (α, γ)-deep-separation
oracle, the probability that one or more of these oracle calls associated with the ith visit to Step 4(a) will
return an incorrect assertion is at most:

(1/(α2σ2)) ln(n)pi ≤ 3δ

10i2
.

Therefore, over all iterations of the re-scaled perceptron algorithm, the probability that one or more
(α, γ)-deep-separation oracle calls will return an incorrect assertion is at most:

U∑

i=1

3δ

10i2
≤

∞∑

i=1

3δ

10i2
=

3δπ2

10× 6
<

δ

2
,

where the random variable U is the total number of times that the re-scaled perceptron algorithm calls
Step 4(a), and the infinite series equality for π2/6 is well-known (see page 8 of [9]). Therefore, the
probability of failure of the re-scaled perceptron algorithm due to incorrect assertions of the (α, γ)-deep-
separation oracle is at most δ/2. The other source of failure of the re-scaled perceptron algorithm is
due to the possibility that sufficiently many initial random unit vectors x chosen in Step 4(a) will not
satisfy the cosine inequality 〈z, x〉 ≥ 1/

√
n. But as the analysis in Section 5 showed (specifically Theorem

5.1), the probability of failure of the re-scaled perceptron algorithm due to failure of enough iterations to
satisfy the cosine inequality is at most δ/2 if the algorithm is run for

T̂ =
⌈
max

{
4096 ln

(
1

δ/2

)
, 139n ln

(
1

32nτF

)}⌉
= O

(
n ln

(
1
τF

)
+ ln

(
1
δ

))

iterations, which is of the same order as the bound in Theorem 5.1. Therefore we can achieve the same
order complexity bound using an (α, γ)-deep-separation oracle as with the other deep-separation oracles
of Definitions 2.3 or 6.1.

The computational cost of using low values of failure probabilities γ = pi in the (α, γ)-deep-separation
oracle bears further scrutiny. Let us presume (as will be the case in our application of the (α, γ)-deep-
separation oracle in Section 6.4) that the complexity of running the (α, γ)-deep-separation oracle on γ is
O(ln(1/γ)) where the constants may depend on other problem scalars but not on γ, i.e., the complexity
grows at most linearly in ln(1/γ). The largest computational cost of any of the calls of the (α, γ)-deep-
separation oracle will be bounded by O(maxi ln(1/pi)) = O(ln(1/pU)) where again the random variable U
is the total number of times that the re-scaled perceptron algorithm calls Step 4(a). Re-tracing the steps
of the proof of Theorem 5.1 but using T̂ instead of T , one can show that the re-scaled perceptron algorithm
will compute a solution of (1) in no more than T̂ visits to Step 4(a) (i.e., U ≤ T̂) with probability at least
1− δ. Therefore, with probability 1− δ the algorithm is successful within T̂ iterations and furthermore
U ≤ T̂ , and hence the computational cost of any call to the (α, γ)-deep-separation oracle will be at most

O(ln(1/pT̂)) ≤ O
(
ln

(
10T̂ 2 ln(n)

3δσ2α2

))

≤ O
(
ln

(
nT̂
δα

))

≤ O
(
ln

(
n ln(1/τF)

δα

))
.

For the rest of this section, the term “deep-separation oracle” will refer to either Definition 2.3, 6.1,
or 6.2, where the particular definition will be clear from context.

We consider instances of (1) that are themselves intersections of conic inclusions of families of the three
canonical inclusion cones of modern convex optimization: the nonnegative orthants IRl

+, the second-order
cones Qk, and the semidefinite cones Sk×k

+ . We consider a specific instance to contain some subset of the
following inclusions (but trivially must contain the fifth inclusion):

ALx ∈ int IRl
+

AQix ∈ int Qni i = 1, . . . , q

Ix ∈ int Sp×p
+

ASix ∈ int Ski×ki
+ i = 1, . . . , s

x ∈ X .

(7)

Note that we distinguish the third conic inclusion in (7) from the fourth more general semidefinite inclusion
since the linear operator in the former is the identity operator. We will show below that this third inclusion

Belloni, Freund, and Vempala: Re-scaled Conic Perception
Mathematics of Operations Research xx(x), pp. xx–xx, c©200x INFORMS 13

has particularly nice structure for a deep-separation oracle and for the re-scaled perceptron algorithm
itself. Note that (7) is an instance of (1) for K = IRl

+ ×Qn1 × · · · ×Qnq × Sp×p
+ × Sk1×k1

+ × · · · × Sks×ks
+ .

The starting point of our analysis is a simple observation about intersections of feasibility cones. Suppose
we have available deep-separation oracles for each of the feasibility cones F1 and F2 of instances:

{
A1x ∈ int K1

x ∈ X
and

{
A2x ∈ int K2

x ∈ X
(8)

and consider the problem of finding a point x that satisfies both conic inclusions:

A1x ∈ int K1

A2x ∈ int K2

x ∈ X .
(9)

Let FA = {x : A1x ∈ K1, A2x ∈ K2} = {x : Ax ∈ K} where K = K1 ×K2 and A is defined analogously.
Then FA = F1 ∩ F2 where Fi = {x : Aix ∈ Ki} for i = 1, 2. It follows from the calculus of convex cones
that F∗A = F∗1 + F∗2 , and therefore

extF∗A ⊂ (extF∗1 ∪ extF∗2) . (10)

This observation leads to an easy construction of a deep-separation oracle for FA = F1 ∩ F2 if one has
available (α, γi)-deep-separation oracles for Fi for i = 1, 2:

(α, γ1 + γ2)-Deep-separation Oracle for F1 ∩ F2

Given: scalar t > 0 and x 6= 0, call the (α, γi)-deep-separation oracles for Fi, i = 1, 2, at x.
If both oracles assert Condition I, then assert Condition I.
Otherwise at least one oracle reports Condition II and provides d ∈ F∗i ⊂ F∗A, d 6= 0,
such that 〈d, x〉 ≤ −αt‖d‖‖x‖; return d and Stop.

Remark 6.1 If (α, γi)-deep-separation oracles for Fi are available and their complexity is O(Ti) opera-
tions for i = 1, 2, then the oracle for F1 ∩ F2 given above is an (α, γ1 + γ2)-deep-separation oracle, and
its complexity is O(T1 + T2) operations.

Utilizing Remark 6.1, in order to construct a deep-separation oracle for the feasibility cone of (7) it
will suffice to construct deep-separation oracles for each of the conic inclusions therein, which is what we
now examine.

6.1 Deep-separation Oracle for FA when K = IRm
+ We consider FA = {x : Ax ∈ IRm

+}.
Example 2.2 has already described a deep-separation oracle for FA when the inclusion cone is IRm

+ . It is
easy to see that this oracle can be implemented in O(mn) operations.

6.2 (1/2)-Deep-separation Oracle for FA when K = Qk For convenience we amend our
notation so that FA = {x : ‖Mx‖ ≤ gT x} for a given real (k− 1)× n matrix M and a real n-vector g, so

that FA = {x : Ax ∈ Qk} where the linear operator A is specified by Ax :=
[

Mx
gT x

]
. We will construct

an efficient α = (1/2)-deep-separation oracle (Definition 6.1) by considering the following optimization
problem:

t∗ := mind dT x

s.t. ‖d‖ = 1
d ∈ F∗A .

(11)

If x ∈ FA, then t∗ ≥ 0 and clearly condition I of Definition 6.1 is satisfied. If x /∈ FA, then t∗ < 0
and we can replace the equality constraint in (11) with an inequality constraint. We obtain the following
primal/dual pair of convex problems with common optimal objective function value t∗:

14 Belloni, Freund, and Vempala: Re-scaled Conic Perception
Mathematics of Operations Research xx(x), pp. xx–xx, c©200x INFORMS

t∗ := mind xT d = maxy −‖y − x‖

s.t. ‖d‖ ≤ 1 s.t. y ∈ FA

d ∈ F∗A
(12)

Now consider the following (1/2)-deep-separation oracle for FA when K = Qk.

(1/2)-Deep-Separation Oracle for FA when K = Qk, for x 6= 0 and parameter t > 0
If ‖Mx‖ ≤ gT x, return Condition I, and Stop.
Solve (12) for feasible primal and dual solutions d̄, ȳ with duality gap ḡ satisfying ḡ/‖x‖ ≤ t/2

If xT d̄/‖x‖ ≥ −t/2, report Condition (I), and Stop.
If xT d̄/‖x‖ ≤ −t/2, then return d = d̄, report Condition (II), and Stop.

To see the validity of this method, note that if ‖Mx‖ ≤ gT x, then x ∈ FA and clearly Condition (I)
of Definition 6.1 is satisfied. Next, suppose that xT d̄/‖x‖ ≥ −t/2, then t∗ ≥ −‖ȳ − x‖ = xT d̄ − ḡ ≥
−‖x‖t/2 − ‖x‖t/2 = −‖x‖t. Therefore xT d

‖x‖‖d‖ ≥ −t for all d ∈ F∗A, and it follows that Condition (I)

of Definition 6.1 is satisfied. Finally, if xT d̄/‖x‖ ≤ −t/2, then d̄T x
‖d̄‖‖x‖ ≤ −t/2 and d̄ ∈ F∗A, whereby

Condition (II) of Definition 6.1 is satisfied using d̄.

The computational complexity of this deep-separation oracle depends on the ability to efficiently
solve (12) for feasible primal/dual solutions with duality gap ḡ ≤ t‖x‖/2. For the case when K =
Qk, it is shown in [1] that (12) can be solved very efficiently to this desired duality gap, namely in
O(mn2 + n ln ln(1/t) + n ln ln(1/ min{τFA

, τF∗A})) operations, using a combination of Newton’s method
and binary search. Using t = σ := 1/(32n) this is O(mn2 + n ln ln(1/ min{τFA

, τF∗A})) operations for the
relaxation parameter σ needed by the re-scaled perceptron algorithm.

6.3 Deep-separation Oracle for F = Sp×p
+ We consider the instance of (7) that contains the

third conic inclusion “ Ix ∈ Sp×p
+ ” and for convenience we temporarily alter our notation herein so that

X ∈ Sp×p is a point under consideration. A deep-separation oracle for Sp×p
+ at X 6= 0 for the scalar t > 0

is constructed by simply checking the condition “X + t‖X‖I º 0.” If X + t‖X‖I º 0, then condition I
of the deep-separation oracle is satisfied. This is true because the extreme rays of F∗ = (Sp×p

+)∗ = Sp×p
+

are the collection of rank-1 matrices vvT , and
〈
vvT , X

〉

‖X‖‖vvT ‖ =
vT Xv

‖X‖‖vvT ‖ ≥
−t‖X‖vT v

‖X‖‖vvT ‖ = −t

for any v 6= 0. On the other hand, if X+t‖X‖I 6º 0, then compute any v satisfying vT Xv+t‖X‖vT v < 0,
and return D = vvT , which will satisfy

〈D, X〉
‖X‖‖D‖ =

vT Xv

‖X‖vT v
≤ −t ,

thus satisfying condition II. Notice that the work per oracle call is simply to check the eigenvalue condition
X + t‖X‖I º 0 and possibly to compute an appropriate vector v.

In order to convey the key insights of the analysis, throughout this section we assume that we can
compute exactly the minimum eigenvalue and an associated eigenvector. We defer to the appendix the
complete complexity analysis when we can only approximate these quantities.

While a deep-separation oracle for Sp×p
+ is straightforward to construct and hence can be used for

the third conic inclusion “ Ix ∈ Sp×p
+ ” of (7), the re-scaling step (Step 6) of the re-scaled perceptron

algorithm will modify this inclusion to “ Bx ∈ Sp×p
+ ” for some matrix B in Step 6 of the first iteration as

well as at Step 6 of all subsequent iterations, thus destroying the special structure of the inclusion that led
to the simple deep-separation oracle described above. However, it turns out that the re-scaled perceptron
algorithm can be slightly modified to handle the inclusion “ Ix ∈ Sp×p

+ ” without a deep-separation oracle
for this inclusion, i.e., using only a deep-separation oracle for the other inclusions in the problem instance.
For ease of exposition we return to our standard notation denoting our variable by x, etc., and we write

Belloni, Freund, and Vempala: Re-scaled Conic Perception
Mathematics of Operations Research xx(x), pp. xx–xx, c©200x INFORMS 15

our instance of (7) as

A1x ∈ int K1

Ix ∈ int K2

x ∈ X ,
(13)

where K2 := Sp×p
+ , and note that K2 is self-dual. Suppose that we have run k + 1 iterations of the re-

scaled perceptron algorithm for this problem instance, and let x̄1, x̄2, . . . , x̄k+1 denote the iterate sequence
of normalized (‖x̄i‖ = 1) output vectors x at the end of Step 4 of the re-scaled perceptron algorithm,
yielding the re-scaling matrices B0 = I, B1, B2, . . . , Bk, where Bi = (I + x̄1x̄

T
1)(I + x̄2x̄

T
2) · · · (I + x̄ix̄

T
i),

i = 1, . . . , k. Here x̄k+1 is the output based on the re-scaling matrix Bk and the re-scaled problem
instance:

A1Bkx ∈ int K1

Bkx ∈ int K2

x ∈ X .
(14)

From the perceptron improvement phase (Step 4), we have no guarantee that Bkx̄k+1 ∈ K2. However, if
such is the case, we have the following result which will be useful algorithmically:

Lemma 6.1 Suppose that K2 is self-dual, and that Bix̄i+1 ∈ K2 and ‖x̄i+1‖ = 1 for i = 0, . . . , k. Then
BiB

∗
i d ∈ K2 for all d ∈ K∗

2 for i = 0, . . . , k + 1.

Proof. We proceed by induction on i. Since B0 = B∗
0 = I the statement trivially holds for i = 0

due to the self-duality of K2. Next assume the statement is true for a given i ≤ k. Therefore for all
d ∈ K∗

2 we have:
Bi+1B

∗
i+1d = Bi(I + x̄i+1x̄

T
i+1)(I + x̄i+1x̄

T
i+1)B

∗
i d

= BiB
∗
i d + 3Bix̄i+1x̄

T
i+1B

∗
i d ∈ K2

by the induction assumption and the hypothesis that Bix̄i+1 ∈ K2. ¤
Lemma 6.1 states that if every point x̄i+1 used to re-scale A satisfies Bix̄i+1 ∈ K2, we have that BiB

∗
i

maps the semidefinite cone into itself. As we show below this allows for updates on x that removes the
need of a deep-separation oracle but does not harm the complexity analysis.

In order to take advantage of Lemma 6.1, we now show how to modify the perceptron improvement
phase (Step 4) of the re-scaled perceptron algorithm to guarantee that Bix̄i+1 ∈ K2 for all i. The
deep-separation oracle for {x : Bkx ∈ K2} is replaced by the following “update algorithm”.

“Update Algorithm”
Given the current iterate x:
Step 1 If Bkx /∈ K2(= Sp×p

+)
Step 1(a) Let d = vvT ∈ K2 where v is an eigenvector of a negative eigenvalue of Bkx
Step 1(b) Set θ := −〈d,Bkx〉 /‖B∗

kd‖2 and update the iterate as x+ ← x + θB∗
kd

Step 1(c) Set x ← x+ and goto Step 1.
Step 2 Report x.

Lemma 6.2 Replacing the deep-separation oracle for {x : Bkx ∈ K2} by the “Update Algorithm” does
not affect the computational complexity of the outer loops of the re-scaled perceptron algorithm.

Proof. Suppose that we have just completed k iterations of the re-scaled perceptron algorithm, and
let zk denote the center of the re-scaled problem instance (14). Suppose that we are now in Step 4 of
iteration k + 1. Let us examine the case where the starting vector x of Step 4(a) satisfies

〈
zk, x

〉
/‖x‖ ≥

1/
√

n > 0 (which happens with probability at least 1/8). In this case consider any x generated in Step
4(b). If Bkx /∈ K2(= Sp×p

+), we let d = vvT ∈ K2 where v is an eigenvector of a negative eigenvalue of
Bkx, and replace

x+ ← x + θB∗
kd (15)

where θ := −〈d,Bkx〉 /‖B∗
kd‖2. It then follows that

〈
x+, zk

〉
=

〈
x, zk

〉
+ θ

〈
B∗

kd, zk
〉 ≥ 〈

x, zk
〉

16 Belloni, Freund, and Vempala: Re-scaled Conic Perception
Mathematics of Operations Research xx(x), pp. xx–xx, c©200x INFORMS

since Bkzk ∈ K2 and hence
〈
d, Bkzk

〉 ≥ 0. Furthermore, from the particular choice of θ we have

‖x+‖2 = ‖x‖2 + 2θ 〈x,B∗
kd〉+ θ2‖B∗

kd‖2 = ‖x‖2 − 〈d,Bkx〉2
‖B∗

kd‖2 ≤ ‖x‖2 ,

and hence the potential function
〈
zk, x

〉
/‖x‖ is non-decreasing if we replace x by x+. If all previous

iterates satisfied Bixi+1 ∈ K2, i = 1, . . . , k − 1, then we have from Lemma 6.1 (using k − 1 instead of k)
that

Bkx+ −Bkx = θBkB∗
kd ∈ K2

and furthermore from the choice of θ we have

vT (Bkx+)v = vT (Bkx + θBkB∗
kd)v =

〈
Bkx + θBkB∗

kd, vvT
〉

= 〈Bkx + θBkB∗
kd, d〉 = 0 .

Therefore Bkx+ º Bkx and Bkx+ has at least one fewer negative eigenvalue than Bkx. It follows that
after repeating the replacement at most p times we ensure that the final replacement value x+ satisfies
Bkx+ ∈ K2. Inductively this shows that we can run the perceptron improvement phase generating
values of x+ that satisfy Bkx+ ∈ K2 whose potential function value for the perceptron improvement
methodology is improved. Therefore there is no need for a deep-separation oracle for the feasibility
cone F2 = {x : Bkx ∈ K2} and it suffices only to have a deep-separation oracle for the feasibility cone
F1 = {x : A1Bkx ∈ K1}.

This modified version of the perceptron improvement phase has the same internal iteration bound
(repeat at most bln(n)/σ2c Step 4(b)) and therefore leaves unchanged the overall complexity bound of
Theorem 5.1 for the re-scaled perceptron algorithm. (Note that the complexity bound of the proposed
oracle, which incorporates possibly many updates of the form (15), will also depend on p but the oracle
does not affect the number of outer iterations T .) ¤

6.4 (1/2, δ)-Deep-separation Oracle for FA when K = Sp×p
+ In this subsection we present a

methodology for a (1/2, δ)-deep-separation oracle for FA = {x : Ax ∈ Sp×p
+ } for the conic system:

{
Ax ∈ int Sp×p

+

x ∈ X .
(16)

Our analysis uses the data-perturbation condition measure model of Renegar [17], which we now briefly
review. Considering (16) as a system with fixed cone K = Sp×p

+ and fixed spaces X and Y , then
A ∈ L(X, Y) where L(X, Y) is the space of linear operators from X to Y . Let ‖ · ‖O denote the operator
norm on L(X, Y), namely ‖V ‖O := max0 6=x∈X ‖V x‖/‖x‖ for V ∈ L(X, Y), where the norms on X and
Y are the inner product norms. Let M⊂ L(X,Y) denote those linear operators A ∈ L(X,Y) for which
(1) has a solution. For A ∈M, let ρ(A) denote the “distance to infeasibility” for (1), namely:

ρ(A) := min
∆A

{‖∆A‖O : A + ∆A /∈M} .

Then ρ(A) denotes the smallest perturbation of our given operator A which would render the system (1)
infeasible. Next let C(A) denote the condition measure of (1), namely C(A) = ‖A‖O/ρ(A), which is a
scale-invariant reciprocal of the distance to infeasibility. We note that ln(C(A)) is tied to the complexity
of interior-point methods and the ellipsoid method for computing a solution of (1), see [18] and [6].

Given the inclusion cone K = Sp×p
+ , the feasibility cone for (1) is FA = {x : Ax ∈ K}. Given the

relaxation parameter t > 0 and a non-zero vector x ∈ IRn, consider the following conic feasibility system
in the variable w:

(St,x) :

t‖x‖‖A∗w‖+ 〈w, Ax〉 < 0

w ∈ int Sp×p
+

(17)

Note that if w̃ solves (17), then d̃ = A∗w̃ ∈ F∗A from Lemma 2.1, and rearranging the first inclusion in

(17) yields 〈d̃,x〉
‖x‖‖d̃‖ < −t; therefore d̃ satisfies Condition II of the deep-separation oracle (Definition 2.3).

Furthermore, if (17) has no solution, then it is straightforward to show that Condition I of Definition 2.3
is satisfied. This leads to the following approach to constructing a deep-separation oracle for FA:

Belloni, Freund, and Vempala: Re-scaled Conic Perception
Mathematics of Operations Research xx(x), pp. xx–xx, c©200x INFORMS 17

given x 6= 0, t > 0, compute a solution w̃ of (17) or certify that no solution exists. If (17)
has no solution, report Condition I and Stop; otherwise (17) has a solution w̃, return
d := A∗w̃, report Condition II, and Stop.

Now notice that (17) is a homogeneous conic feasibility problem of the form (13), as it is comprised of the
conic inclusion “(t‖x‖A∗w, 〈w,−Ax〉) ∈ Qn+1” plus a constraint that the variable w must lie in Sp×p

+ .
Therefore we can apply the results of Section 6.3 if the first inclusion of (17) gives rise to an efficient
deep-separation oracle. But indeed the first conic inclusion is a second-order cone inclusion, for which
there is an efficient α = (1/2)-deep-separation oracle as shown in Section 6.2. Therefore, in the case when
(17) has a solution, the results in Sections 6.2 and 6.3 yield a method for doing the requisite computations
for Condition II of a (1/2)-deep-separation oracle for FA.

However, in the case when (17) does not have a solution, it will be necessary to develop a means to
certify this infeasibility. To do so, we will run the re-scaled perceptron itself on (17) for a prescribed
number of iterations, and assert that (17) does not have a solution, and hence that Condition of I of a
deep-separation oracle for FA is satisfied, if we do not compute a solution of (17) within this prescribed
number of iterations. The following oracle specifies this approach in detail, where the oracle presumes
the knowledge of an upper bound L on C(A):

(1/2, δ)-deep-separation Oracle for FA when K = Sp×p
+ for x 6= 0

and parameter t̂ > 0, δ ∈ (0, 1], and bound L ≥ C(A)
Set t := t̂/2 and run the re-scaled perceptron algorithm to compute a solution w̃ of (17) for at
most T̂ := max

{
4096 ln

(
1
δ

)
, 139n ln

(
3L
√

p

16nt̂

)}
iterations.

If no solution is computed within T̂ iterations, report “assert Condition I is satisfied” and Stop.
If a solution w̃ of (17) is computed, return d := A∗w̃, report Condition II, and Stop.

We will prove:

Theorem 6.1 Suppose that K = Sp×p
+ . Then the above oracle is a (1/2, δ)-deep-separation oracle for

FA.

The oracle described above requires an upper bound L on C(A). One can use successive doubling of
L in conjunction with the iteration bound of Theorem 6.1 to construct a deep-separation oracle for FA

that does not rely on an upper bound on C(A). Last of all, as shown in Proposition 7.5 of the Appendix,
the width of F itself can be lower-bounded by Renegar’s condition measure:

τFA ≥
τK

C(A)
. (18)

This can be used in combination with the above oracle and successive doubling to construct a (1/2, δ)-
deep-separation oracle for FA in the case when K = Sp×p

+ with an iteration complexity bound that
depends polynomially on n, ln(p), ln(C(A)), and ln(1/δ). Note that the construction of this oracle is less
straightforward than in the case when K is composed of half-spaces and/or second-order cones described
earlier (Sections 6.1 and 6.2). It is an interesting and open question whether, in the case of K = Sp×p

+ , a
more straightforward and/or more efficient deep-separation oracle for FA can be constructed.

Before proving Theorem 6.1, we first analyze the width of the feasibility cone of (17), denoted as
F̃(t,x) := {w : t‖x‖‖A∗w‖+ 〈w, Ax〉 ≤ 0, w ∈ K∗}. We have:

Proposition 6.1 For a given t ∈ (0, 1/2) and x 6= 0, suppose that S(t,x) has a solution and let u ∈ (0, t).
Then

τF̃(u,x)
≥ τK∗(t− u)

3C(A)
,

where C(A) = ‖A‖O/ρ(A) and ρ(A) is the distance to infeasibility of (16).

Proof. For simplicity we assume with no loss of generality that ‖x‖ = 1 and ‖A‖ = 1. Since S(t,x)

has a solution, let ŵ satisfy t‖A∗ŵ‖ + 〈ŵ, Ax〉 < 0, ŵ ∈ int K∗, and ‖ŵ‖ = 1. It follows directly from
Theorem 2 of [7] that ‖A∗ŵ‖ ≥ ρ(A), where recall that ρ(A) is the distance to infeasibility of A in (16).

18 Belloni, Freund, and Vempala: Re-scaled Conic Perception
Mathematics of Operations Research xx(x), pp. xx–xx, c©200x INFORMS

Let w◦ be the center of K∗, whereby B(w◦, τK∗) ⊂ K∗ and ‖w◦‖ = 1. For any d satisfying ‖d‖ ≤ 1 and
any β ≥ 0 it follows that ŵ + βw◦ + αd ∈ K∗ so long as α ≤ βτK∗ . Also,

u‖A∗(ŵ + βw◦ + αd)‖+ 〈ŵ + βw◦ + αd, Ax〉 ≤ u‖A∗ŵ‖+ βu + αu + 〈ŵ, Ax〉+ β + α
≤ (u− t)‖A∗ŵ‖+ βu + αu + β + α
≤ (u− t)ρ(A) + βu + αu + β + α
≤ 0

so long as α ≤ α̂ := (t−u)ρ(A)
u+1 − β. Therefore

τF̃(u,x)
≥

min
{

(t−u)ρ(A)
u+1 − β, βτK∗

}

‖ŵ + βw◦‖ ≥
min

{
(t−u)ρ(A)

u+1 − β, βτK∗
}

1 + β
.

Let β := (t−u)ρ(A)
2(u+1) and substituting in this last expression yields

τF̃(u,x)
≥ (t− u)ρ(A)τK∗

2 + 2u + (t− u)ρ(A)
≥ (t− u)ρ(A)τK∗

3
=

(t− u)τK∗

3C(A)

since ρ(A) ≤ ‖A‖ = 1 and 0 < u ≤ t ≤ 1/2. ¤
Proof of Theorem 6.1. The oracle attempts to solve (St̂/2,x) where t̂ is the relaxation parameter

given in the oracle. If the oracle computes a solution w̃ of (St̂/2,x), then it is straightforward to show

using Lemma 2.1 that d := A∗w̃ satisfies d ∈ F∗A and 〈d,x〉
‖d‖‖x‖ ≤ −t̂/2, thus satisfying condition II of

Definition 6.2. Next, suppose that it is not true that 〈d,x〉
‖d‖‖x‖ ≥ −t̂ for all d ∈ extF∗A, then (St̂,x) has a

solution. Set u = t̂/2, and define

T := max

{
4096 ln

(
1
δ

)
, 139n ln

(
1

32nτF̃(u,x)

)}
.

Then Theorem 5.1 states that the probability that the re-scaled perceptron algorithm will fail to compute
a solution of (Su,x) within T iterations is at most δ. If we can prove that T ≤ T̂ , then the probability
that algorithm will fail to compute a solution of (St̂/2,x) within T̂ iterations is also at most δ, which
implies that the oracle will (incorrectly) assert that Condition I is true is at most δ. This will complete
the proof.

It therefore remains to show that T ≤ T̂ under the supposition that (St̂,x) has a solution. We have
L ≥ C(A) and F̃(t̂,x) 6= ∅, and it follows from Proposition 6.1 that

1
32nτF̃(u,x)

≤ 3C(A)
32nτK∗(t̂− u)

≤ 6L

32nt̂τK∗
=

3L
√

p

16nt̂

(since τ∗K = τK = τSp×p
+

= 1/
√

p), whereby T ≤ T̂ .¤

Acknowledgment. We would like to thank David Gamarnik for discussions leading to a refined
proof of Theorem 5.1. The second author acknowledges that this research has been partially supported
through the Singapore-MIT Alliance and AFOSR Grant FA9550-08-1-0350. We are also in debt with the
referees and associate editor for the quality of their reports, suggestions, and judgement.

7. Appendix We present some basic arithmetic inequalities that are used in the proofs in the body
of the paper.

Proposition 7.1 If t ∈ (−1, 2], then 1√
1+t

≥ 1− t/2.

Proof. For t ∈ (−1, 2] it follows that 3t2/4 ≥ t3/4, whereby 1 ≥ 1−t2+t2/4+t3/4 = (1−t/2)2(1+t),
and taking square roots and rearranging terms yields the result. ¤

Proposition 7.2 If n ≥ 2, then
(

1− 1
32n

)(
1− 3

2048n2

)(
1− 1

8192n2
+

3
8n

− 1
128n1.5

)
≥ 1 +

1
3.02n

.

Belloni, Freund, and Vempala: Re-scaled Conic Perception
Mathematics of Operations Research xx(x), pp. xx–xx, c©200x INFORMS 19

Proof. Letting f(n) denote the function on the left side of the inequality to be proved, we have for
n ≥ 2:

f(n) ≥ (
1− (

1
32n + 3

2048n2

)) (
1 + 3

8n −
(

1
8192n2 + 1

128n1.5

))

≥ 1− (
1

32n + 3
2048n2

)
+ 3

8n −
(

1
8192n2 + 1

128n1.5

)− 3
8n

(
1

32n + 3
2048n2

)

≥ 1− 1
32n − 3

4096n + 3
8n − 1

16384n − 1
128

√
2n
− 3

8n

(
1
64 + 3

8192

)

= 1 + 1
n

[
3
8 − 1

32 − 3
4096 − 1

16384 − 1
128

√
2
− 3

512 − 9
65536

]

≥ 1 + 1
3.02n .

¤

Proposition 7.3 If a, b, c are scalars satisfying a + b > 0, b > 0, and c > 0, then
(
1 +

a

b

)c

≥ e(
ac

a+b) .

Proof. Using the concavity of the function ln(·) we have ln(1 + α) ≤ α for any α > −1. Using this
inequality we obtain c · ln (

1 + a
b

)
= −c ln

(
1− a

a+b

)
≥ ac

a+b , and exponentiating yields the result. ¤

Proposition 7.4 If n ≥ 2, then
(

1 +
1

3.02n

) 15
128

(
1− 1

32n
− 1

512n2

) 113
128

≥ e(
1

139n) .

Proof. Direct substitution establishes the result for n = 2, 3, 4, so it remains to show the result for
n ≥ 5. First define the function

g(n) :=
15n

1 + 3.02n
− 113n(33/1024)

n− 33/1024
,

and observe that g(n) is the difference of two terms, the first of which is increasing in n and the second is
decreasing in n, therefore g(n) is increasing in n. It then follows for n ≥ 5 that g(n) ≥ g(5) ≥ .99316 ≥
128/139, where the latter inequality follows from direct substitution. We now prove the result of the
proposition. We have for n ≥ 5:

(
1 + 1

3.02n

) 15
128

(
1− 1

32n − 1
512n2

) 113
128 ≥ (

1 + 1
3.02n

) 15
128

(
1− 33

1024n

) 113
128 (since n ≥ 2)

≥ e(
15

128(1+3.02n))e−(113(33/1024)
128(n−33/1024))

= e(
1

128n)[15n
1+3.02n− 113n(33/1024)

n−33/1024]

= e(
1

128n)[g(n)]

≥ e(
1

128n)[128
139] = e(

1
139n) ,

where the second inequality uses Proposition 7.3 to bound the first term using a = 1, b = 3.02n, and
c = 15/128, and the second term using a = −33/1024, b = n, and c = 113/128. ¤

Proposition 7.5 Suppose that (1) has a solution. Then τFA
≥ τK

C(A) .

Proof. The proof is an application of Theorem 7 of [7]. Translating to the setting herein, Theorem
7 of [7] states that

v−1 ≥ ρ(A) (19)

20 Belloni, Freund, and Vempala: Re-scaled Conic Perception
Mathematics of Operations Research xx(x), pp. xx–xx, c©200x INFORMS

where
v := minx ‖x‖

s.t. Ax− z̄ ∈ K ,

where z̄ ∈ K is the vector of unit norm that is the “norm approximation vector” of K∗. However, it
is shown in the proof of Proposition 2.1 of [6] that z̄ is simply the center of the cone K, and hence
B(z̄, τK) ⊂ K. Also note from the definition of v that

v−1 = minx θ

s.t. Ax− θz̄ ∈ K
‖x‖ ≤ 1 .

Note that any optimal value x in the above optimization problem will satisfy ‖x‖ ≤ 1 and
B(x, v−1τK/‖A‖) ⊂ K, whereby τFA

≥ v−1τK/‖A‖. It then follows that τFA
≥ v−1τK/‖A‖ ≥

ρ(A)τK/‖A‖ = τK/C(A). ¤

7.1 Deep-separation oracle with approximate eigenvalues and eigenvectors In this Ap-
pendix we analyze the deep-separation for K = Sp×p

+ when one can only approximate the minimum
eigenvalue and associated eigenvector. Let x be the current iterate such that

Bkx /∈ K

and let λ = 〈v, Bkxv〉 =
〈
vvT , Bkx

〉
< 0 denote the minimum eigenvalue of Bkx and v a corresponding

eigenvector. Without loss of generality we can assume ‖x‖ = 1 (note that λ scales linearly with ‖x‖).
Let λ̂ and v̂ denote the numerical approximations for λ and v.

We will divide the analysis in two cases: |λ| small, and |λ| large. (This is needed since it might be
hard to approximate |λ| numerically when it is arbitrary small.)

First we consider the case that |λ| is “small”, namely we assume that

Bkx < −µBkB∗
kI

where I ∈ Sp×p
+ denotes the appropriate identity matrix, and µ := σ2

8
‖x‖
‖B∗kI‖ with σ = 1/(32n). (Note that

this can be tested efficiently, see discussion below.) In this case it is easy to add a positive component
to all directions without affecting the potential function

〈
x+, zk

〉
/‖x+‖ too much. More precisely, the

updated iterate

x+ ← x + µB∗
kI

satisfies
〈
x+, zk

〉
=

〈
x, zk

〉
+ µ

〈
B∗

kI, zk
〉

=
〈
x, zk

〉
+ µ

〈
I,Bkzk

〉 ≥ 〈
x, zk

〉
+ µ‖Bkzk‖/√n

since Bkzk ∈ Sp×p, and

‖x+‖2 = ‖x‖2 + 2µ 〈x, B∗
kI〉+ µ2‖B∗

kI‖2 ≤ ‖x‖2
(

1 +
σ2

8

)2

.

Note that this does not affect the bound on τFÂ
obtained in (i) on Lemma 5.2. On the other hand for

(ii), with probability at least 1/8 we have that (as defined in Lemma 5.2) 〈z̄, x̄〉 ≥ 1√
n

(
1− σ2

8

)
so that

‖ẑ‖2 ≤ 1− 3
4

(
1√
n
− σ2

8n1/2

)2

+ τ
2

(
1√
n
− σ2

8n1/2

)
+ τ2

4

= 1− 3
4n + τ

2
√

n
+ τ2

4 − τσ2

16n1/2 − 3σ4

256n + 3σ2

16n .

The bound on Proposition 7.2 needs to be slightly modified (assuming n ≥ 10) to

Belloni, Freund, and Vempala: Re-scaled Conic Perception
Mathematics of Operations Research xx(x), pp. xx–xx, c©200x INFORMS 21

f(n) ≥ (
1− (

1
32n + 3

2048n2

)) (
1 + 3

8n −
(

1
8192n2 + 1

128n1.5 + 3σ2

32n

))

≥ 1− (
1

32n + 3
2048n2

)
+ 3

8n −
(

1
8192n2 + 1

128n1.5 + 3σ2

32n

)
− 3

8n

(
1

32n + 3
2048n2

)

≥ 1− 1
32n − 3

20480n + 3
8n − 1

81920n − 1
128

√
10n

− 3
3200n − 3

8n

(
1

320 + 3
20480

)

= 1 + 1
n

[
3
8 − 1

32 − 3
20480 − 1

81920 − 1
128

√
10
− 3

3200 − 3
2560 − 9

163840

]

≥ 1 + 1
2.958n ≥ 1 + 1

3.02n .

Therefore the analysis of the outer number of iterations does not change by this truncation. However,
the number of iterations on Step 4 (Perceptron Improvement Phase) needs to account for this decrease
in the potential. The truncation makes all the eigenvalues non-negative. Therefore either we terminate
Step 4 or the deep-separation oracle returns a direction d ∈ F∗A. In this case the potential function is
improved by a factor of

√
1− σ2. At this point one could possibly call the truncation procedure again.

This implies that every two iterations the improvement in the potential would be of at least

1√
1− σ2

(
1 + σ2

8

) ≥
(

1 +
σ2

2

)(
1− σ2

8

)
≥ 1 +

σ2

4
.

Therefore it suffices to alter the number of loops within Step 4(a) to be at most
⌊
(2/σ2) ln(n)

⌋
.

Next assume that |λ| is large, namely

Bkx � −µBkB∗
kI

which implies that

λ ≤ −µ 〈v,BkB∗
kIv〉 = −µ

〈
B∗

kvvT , B∗
kI

〉 ≤ −µ√
n

since BkB∗
k(vvT) ∈ Sp×p by Lemma 6.1 and BkB∗

k(vvT) < vvT .

In this case we compute λ̂ and v̂, and set d̂ = (v̂v̂T) ∈ Sp×p
+ . Next define the next iterate as

x+ ← x + 2θB∗
kd (20)

where θ := −
〈
d̂, Bkx

〉
/‖B∗

k d̂‖2 = −λ̂/‖B∗
k d̂‖2. It then follows that

〈
x+, zk

〉
=

〈
x, zk

〉
+ 2θ

〈
B∗

k d̂, zk
〉

=
〈
x, zk

〉
+ 2θ

〈
d̂, Bkzk

〉
≥ 〈

x, zk
〉

since Bkzk ∈ K and hence
〈
d̂, Bkzk

〉
≥ 0. Furthermore, from the particular choice of θ we have

‖x+‖2 = ‖x‖2 + 4θ
〈
x,B∗

k d̂
〉

+ 4θ2‖B∗
k d̂‖2 = ‖x‖2 ,

and hence the potential function
〈
zk, x

〉
/‖x‖ is non-decreasing if we replace x by x+.

As before, if all previous iterates satisfied Bixi+1 ∈ K, i = 1, . . . , k− 1, then we have from Lemma 6.1
(using k − 1 instead of k) that

Bkx+ −Bkx = θBkB∗
k d̂ ∈ K

and furthermore from the choice of θ we have

vT (Bkx+)v = vT (Bkx + 2θBkB∗
k d̂)v =

〈
Bkx + 2θBkB∗

k d̂, vvT
〉

=
〈
Bkx, vvT

〉
+ 2θ

〈
B∗

k v̂v̂T , B∗
kvvT

〉

= λ− 2λ̂
〈

B∗k v̂v̂T

‖B∗k v̂v̂T ‖ ,
B∗kvvT

‖B∗k v̂v̂T ‖
〉

= λ− 2λ̂
(
1−

〈
B∗k v̂v̂T

‖B∗k v̂v̂T ‖ ,
B∗k(vvT−v̂v̂T)
‖B∗k v̂v̂T ‖

〉)
≥ −λ/8

if we ensure that
〈

B∗k v̂v̂
‖B∗k v̂v̂‖ ,

B∗k(vvT−v̂v̂T)
‖B∗k v̂v̂T ‖

〉
≤ 1

4 and |λ̂ − λ| ≤ |λ|
4 where λ ≥ µ

4
√

n
. Therefore the same

argument described in the end of Section 6.3 still applies.

22 Belloni, Freund, and Vempala: Re-scaled Conic Perception
Mathematics of Operations Research xx(x), pp. xx–xx, c©200x INFORMS

The last issue is the computation complexity of λ̂ and v̂ within the needed precision. Note that
B∗

k v̂v̂T < v̂v̂T so that ‖B∗
k v̂v̂T ‖ ≥ ‖v̂‖ = 1, ‖B∗

k‖ ≤ 2k, and µ ≥ 1
2k+12n3 . Therefore a simple bound on

the needed precisions are

‖v − v̂‖ ≤ 1
2k+2

and |λ− λ̂| ≤ 1
2k+14n3

.

Since k is bounded by T and the computational complexity of approximating v and λ is logarithmic
on the desired precision, the oracle can be implemented in polynomial time (see Ye [23], Renegar [16],
Vavasis and Zippel [21], and Fu, Luo and Ye [8] for the complexity result).

References

[1] A. Belloni and R. M. Freund, On the second-order feasibility cone: primal-dual representation and
efficient projection, SIAM Journal on Optimization 19 (2008), no. 3, 1073–1092.

[2] A. Berman, Cones, matrices, and mathematical programming, Springer-Verlag, New York, 1973.
[3] D. Bertsimas and S. Vempala, Solving convex programs by random walks, Journal of the ACM 51

(2004), no. 4, 540–556.
[4] A. Blum, A. Frieze, R. Kannan, and S. Vempala, A polynomial-time algorithm for learning noisy

linear threashold functions, Algorithmica 22 (1998), no. 1, 35–52.
[5] J. Dunagan and S. Vempala, A simple polynomial-time rescaling algorithm for solving linear pro-

grams, Mathematical Programming (2007), no. DOI 10.1007/s10107-007-0095-7.
[6] R. M. Freund and J. R. Vera, Condition-based complexity of convex optimization in conic linear form

via the ellipsoid algorithm, SIAM Journal on Optimization 10 (1999), no. 1, 155–176.
[7] , Some characterizations and properties of the “distance to ill-posedness” and the condition

measure of a conic linear system, Mathematical Programming 86 (1999), no. 2, 225–260.
[8] M. Fu, Z.-Q. Luo, and Y. Ye, Approximation algorithms for quadratic programming, Journal of

Combinatorial Optimization 2 (1998).
[9] I. S. Gradshtein and I. M. Ryzhik, Table of integrals, series, and product, Academic Press, 2007.

[10] M. Grötschel, L. Lovász, and A. Schrijver, Geometric algorithms and combiantorial optimization,
second ed., Springer-Verlag, Berlin, 1994.

[11] N. Karmarkar, A new polynomial-time algorithm for linear programming, Combinatorica 4 (1984),
no. 4, 373–395.

[12] L.G. Khachiyan, A polynomial algorithm in linear programming, Soviet Math. Dokl. 20 (1979), no. 1,
191–194.

[13] R. Motwani and P. Raghanav, Randomized algorithms, Cambridge University Press, 1995.
[14] Y. Nesterov and A Nemirovskii, Interior-point polynomial algorithms in convex programming, Society

for Industrial and Applied Mathematics (SIAM), Philadelphia, 1993.
[15] G. Pataki, On the closedness of the linear image of a closed convex cone, Technical Report, University

of North Carolina, TR-02-3 Department of Operations Research 1992.
[16] J. Renegar, On the worst-case arithmetic complexity of approximating zeros of polynomials, Journal

of Complexity 3 (1987).
[17] J. Renegar, Some perturbation theory for linear programming, Mathematical Programming 65 (1994),

no. 1, 73–91.
[18] , Linear programming, complexity theory, and elementary functional analysis, Mathematical

Programming 70 (1995), no. 3, 279–351.
[19] R. T. Rockafellar, Convex analysis, Princeton University Press, Princeton, New Jersey, 1970.
[20] F. Rosenblatt, Principles of neurodynamics, Spartan Books, Washington, DC, 1962.
[21] S.A. Vavasis and R. Zippel, Proving polynomial time for sphere-constrained quadratic programming,

Department of Computer Science, Cornell University, Ithaca, NY, Technical Report (1990).
[22] H. Wolkowicz, R. Saigal, and L. Vandenberghe, Handbook of semidefinite programming, Kluwer

Academic Publishers, 2000.
[23] Y. Ye, On affine scaling algorithms for nonconvex quadratic programming, Mathematical Program-

ming 56 (1992).

