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Abstract 
Advanced High Strength Steels (AHSS) are becoming increasingly popular in automotive design 
because of possible weight savings due to the high strength.  However, traditional methods are 
not capable of predicting fracture in AHSS, leading to expensive redesign due to poor prediction 
of stamping and crashworthiness.  Many scenarios in which fracture is a concern in automotive 
applications are in the range of quasi-static through intermediate strain rates (up to 850/s).  
Studies with high-speed hydraulic equipment and Hopkinson bars have shown that there is a 
dependence of fracture on strain rate, and that it may be a complex relationship.  Recent work on 
quasi-static fracture has shown that the dependence of ductility on the stress triaxiality and Lode 
parameter must be accounted for, but this dependence has not been investigated in the dynamic 
range.  The aim of the current thesis is to contribute a new methodology based on an 
instrumented drop tower that will allow for testing of ductility for low to intermediate strain rates 
over stress triaxialities ranging from one third to two thirds.  The methodology begins with a 
very in-depth understanding of plasticity based on multi-axial experiments, continues with qusi-
static punching experiments, and finishes with dynamic punching experiments.  In the punching 
experiments, a thin sheet is clamped into a circular die and loaded in membrane tension through 
out-of-plane punching.  The state of stress is changed from equi-biaxial to approximately 
uniaxial through the introduction of cutouts in the sides the membrane specimen.  The quasi-
static punching experiments are verified against a multi-axial fracture testing technique 
previously demonstrated by other researchers. 
  
From application of the aforementioned methodology to a steels used in sheet metal forming and 
crashworthiness, the current thesis has shed insight into the dependence of ductility on stress 
triaxiality, Lode parameter, and strain rate for quasi-static to intermediate strain rates.   
 
Thesis Supervisor:  Tomasz Wierzbicki 
Title:  Professor of Applied Mechanics 
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0A   Initial cross-sectional area of the specimen 

1c , 2c , 3c  Calibration constants for modified Mohr-Coulomb fracture criterion 
C   Coefficient for the power hardening plasticity law 
F, G, H Coefficients for Hill plasticity model corresponding to normal terms 

HF   Horizontal force 

VF   Vertical force 
L, M, N Coefficients for Hill plasticity model corresponding to shear terms 
M  Mass 

0N   Generalized membrane stress 

CSn   Calibration constant for Cowper-Symonds plasticity law 

Hn   Exponent for the power hardening plasticity law 
P   Vertical force applied to a punch 
r   Radial coordinate in a circular plate 

R   Yield stress ratio, ( ) 0σ
σε ≡pR  

bR   Radius of punch for Hasek test 

cR   Radius of contact between a hemispherical punch and an indented plate 

NR   Radius of cutouts in sides of plate for Hasek test 

0R   Radius of die for Hasek test 
t   Time 

0t   Initial thickness of a plate 

ft   Time at first fracture 

0V   Impact velocity of dynamic experiments 
X  Width coordinate of the specimens 
Y  Hight coordinate of the specimens 
 
AHSS  Advanced High Strength Steel 
DIC  Digital Image Correlation 
DP780  Dual-Phase AHSS with an ultimate tensile strength of at least 780 MPa 
FEA  Finite Element Analysis 
FFLD  Fracture Forming Limit Diagram 
FLD  Forming Limit Diagram 
ICL  Impact and Crashworthiness Laboratory 
IPPT  Polish Academy of Sciences 
MIT  Massachusetts Institute of Technology 
MMC  Modified Mohr-Coloumb fracture criterion 
SHB  Split Hopkinson Bar; also known as Kolsky bar 
TRIP  TRansformation Induced Plasticity AHSS 
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Chapter 1 
 
 

Introduction  
 
 
1.1 Motivation 
 
The family of Advanced High Strength Steels (AHSS) are increasingly being implemented into 
automotive body parts, where they hold the potential to reduce the vehicle weight while 
maintaining the strength and stiffness of the car.  As well, continued pressure on automotive 
manufacturers for improved fuel economy increases the interest in reducing sheet metal 
thicknesses to the lowest possible.  However, the analysis of failure in AHSS has proven 
difficult.  For example, the parts shown in Fig. 1.1 are of nominally the same material, and even 
though the one on the right featured better ductility and a higher hardening exponent, it fractured 
while the other one did not (Schmid, 2008).  Clearly, traditional analyses can not be used to 
assess the failure behavior of these materials for stamping and crash simulations.  A newer 
method is needed that can better predict the fracture of AHSS sheets under stamping and crash 
deformation. 
 
Meanwhile, the intermediate range of strain rates between 1/s and 100/s is important for crash 
studies (Zhao, 2007).  It is hoped that this thesis will help the understanding of fracture in low to 
intermediate strain rates to improve crash analysis and design. 
 

 
Figure 1.1:  The same part stamped out of the same grade of AHSS provided by different 
suppliers.  Traditional analysis would predict that the part on the right would perform better.  
(Schmid, 2008) 
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1.2 Research Objective and Scope of Work 
 
The current thesis will characterize the quasi-static plastic and fracture properties of a sample 
AHSS.  The applicability of the chosen fracture model will be shown, and the fracture model will 
be extrapolated into another dimension: strain rate.   Strain rates in the range of quasi-static 
through intermediate (850/s) will be the focus of the current study.  Because of the equipment 
available at the Impact and Crashworthiness Laboratory (ICL) at the Massachusetts Institute of 
Technology (MIT), the experiments will focus on application of a spring-assisted drop tower for 
the dynamic portion of the experiments. 
 
The current study will focus on one particular material that is deemed representative.  Dual Phase 
(DP) 780 was chosen as the basis for this study and represents a popular class of steels for 
automotive structures. 
 
1.3 Background  
 
1.3.1  Ductile Fracture 
 
Researchers have traditionally seen the fracture locus of the ductility as a functional depending 
on the state of stress.  An example of such a dependency is shown in Eq. (1.1). 
 
 ( )θηε ,fp

f =           (1.1) 
 
where η  (the stress triaxiality) and θ  (the Lode angle) are defined in Eq. (1.2) and (1.3), 
respectively. 
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where Iσ , IIσ , and IIIσ  are principal stresses with IIIIII σσσ ≥≥ , ξ  is the third invariant of 

the stresstensor, mσ  is the mean stress ( )IIIIII σσσ ++
3
1 , VMσ  is the von Mises stress.  

Physically, the stress triaxiality can be seen as the normalized pressure while the Lode parameter 
can be seen as the tendency of one of the principal stresses to dominate over the other two.  For 
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example, the state of uniaxial tension corresponds to a stress triaxiality of one third and a Lode 
angle of unity while the state of equi-biaxial tension corresponds to a stress triaxiality of two 
thirds and a Lode angle of negative unity.  Pure shear is zero for both stress triaxiality and Lode 
angle. 
 
Ductile fracture has been studied in-depth since the 1960’s.  McClintock (1968) and Rice and 
Tracey (1969) both attempted to create novel fracture loci through the use of closed-form 
analytical solutions.  Both teams arrived at a very similar conclusion, which formed the basis for 
decades of fracture theories: ductility depends strongly on the hydrostatic pressure, or stress 
triaxiality in normalized form, applied to the region in question.  The Rice and Tracey team also 
noticed that their solution depends on the Lode parameter, but they found that it was a weak 
dependence and disregarded it.  The McClintock and Rice/Tracey fracture theories were 
subsequently homogenized into a single theory by Hancock and Mackenzie (1976), which 
formed the basis for yet further development.  
 
A parallel development was the invention of a physics-based method started by Gurson (Gurson, 
1977, Needleman and Tvergaard, 1984).  This method considers the initiation and growth of 
voids in the material as these voids affect first the plastic flow properties of the material and 
subsequently the softening and failure of the material.  This class of fracture models requires the 
density of initial voids as input and is therefore more difficult to implement. 
 
In Xue’s Ph.D. thesis (2007), he showed that ductility is a function of both stress triaxiality and 
the Lode parameter.  While the finding that fracture depends on the Lode parameter goes as far 
back as Rice and Tracey, Xue found that the dependence is strong enough that it needs to be 
accounted for in realistic simulations.  His model was subsequently simplified by Bai (Bai, 
2008), who made the assumption that the material follows the Mohr-Coulomb assumption for 
fracture, even for ductile materials.  Bai’s fracture locus is shown in Fig. 1.2.  Both Xue’s and 
Bai’s theories were developed for and validated with bulk materials but not necessarily sheet 
metals.    
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Figure 1.2:  Fracture model proposed by Y. Bai, in which ductility depends on stress triaxiality 
(η ) and the deviatoric state parameter (θ ).  After Bai, 2008. 
 
1.3.2 Sheet Metal Forming 
 
The sheet metal community has developed its own methodologies and frameworks in parallel to 
the academic development of fracture.  Fracture in sheet metals has traditionally been assessed 
through the completion of a battery of Nakazima tests.  The Nakazima test features a set of sheet 
metal strips of various widths that are clamped into a circular die and punched transversely by a 
hemisphere.  Through this method, the specimens are deformed in membrane loading under a 
variety of different combinations of in-plane strain (and consequently different combinations of 
multi-axial stresses).  Several tested Nakazima specimens are shown in Fig. 1.3.  The strain is 
traditionally assessed post-mortem by the measurement of squares or circles that were inscribed 
into the material before the experiment and a composite fracture/necking envelope is represented 
in two dimensions on a Forming Limit Diagram (FLD), shown in Fig. 1.4.  The FLD shows the 
locus of points of fracture or necking, expressed as the major fracture strain versus the minor 
fracture strain.  Hasek improved upon the Nakazima test in 1978 by introducing arced cutouts 
into the specimen rather than using straight strips (Hasek, 1978).  The cutouts allowed the 
experiments to achieve approximately the same combinations of in-plane strains as with the 
Nakazima experiments, but the curvature caused fracture to occur closer to the center and 
therefore closer to the desired combination of principal strains.  Some post-test Hasek 
experiments are shown in Fig. 1.5.   
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Figure 1.3:  Post-test Nakazima specimens.  A full battery of experiments is shown on top, and 
particular cases are highlighted on the bottom to show that the location of fracture is not at the 
center.  (Hasek, 1978) 
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Figure 1.4:  An example Fracture Forming Limit Diagram (FLD) representing the traditional 2-
Dimensional approach to fracture in which the fracture envelope is interpreted as a limiting 
curve of the major fracture strain as compared to the minor fracture strain.  After Chen and 
Zhou (2008). 
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Figure 1.5:  Hasek’s improvement over the Nakazima experiment, in which his specimens have 
curved sides with different cutout radii in them so that fracture always occurs close to the center.  
(Hasek, 1978) 
 
1.3.3  Intermediate Strain Rates 
 
The effect of intermediate strain rates on plasticity and fracture has been difficult to measure 
because intermediate strain rates are measured at time scales smaller than traditional quasi-static 
methods of force/extension measurements are capable of measuring while they are measured for 
time durations longer than traditional Hopkinson bars are capable of.  One key method of 
measuring material properties in this range is through the use of high-speed hydraulic equipment, 
e.g. Larour et. al. (2004) and Roos and Mayer (2003).  However, this equipment comes with 
severe limitations in its ability to properly measure both displacement and force signals (Bleck 
and Larour, 2003).  Some of these limitations can be easily seen in Fig. 1.6, which shows stress-
strain curves from two different investigating teams.  In both cases, the teams used high-speed 
hydraulic equipment to load the specimen and a combination of piezoelectric load cells and 
strain gages on the specimen to measure the force on the specimen.  In both cases, the 
investigators found a large oscillatory response due to the dynamics of the fixtures superposed 
onto the material data. 
 
 

 
Figure 1.6: Stress vs. strain curves from two different universities as measured by high-speed 
hydraulic equipment showing oscillatory force signals.  Left after Larour et. al. (2004).  Right 
after Roos and Mayer (2003). 
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A number of researchers have attempted to quantify the effect of strain rate on fracture (for 
example, Johnson and Cook, 1985, Mirza et. al., 1996, Alves and Jones, 1999, Hopperstad, 
Borvik, et. al., 2003, and Larour et. al, 2004) with mixed results.  Johnson and Cook found a 
dependence, which they quantified into what is probably the most popular strain-rate dependent 
fracture law.  Johnson and Cook’s fracture locus, shown in Eq. (1.4), indicates a monotonic 
increase of ductility with strain rate.   
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Mirza et. al. (1996) found that there was no dependence of ductility on strain rate for iron or 
aluminum alloy, but there is a dependence for mild steel under certain states of stress, in which 
the failure mode transfers from ductile to brittle.  However, it is difficult to see the impact of this 
transition on the ductility from the fracture strain data that the authors present.  Alves and Jones 
(1999) found that there was no dependence of ductility on strain rate for mild steel.  
 
Larour et. al. (2004) reported the effect of strain rate on fracture for DP600LN, and some of their 
results are shown in Fig. 1.7.  This data is hindered by the aforementioned limitations of high-
speed hydraulic testing equipment, and this data only represents one state of stress: uni-axial 
tension.  It is impossible to determine how the shape of the fracture locus like that shown in Fig. 
1.2 changes with only one state of stress.  Also, there is a large scatter on the last data point on 
the curve, which was measured with both Hopkinson bar and high-speed hydraulic test frame.  
The large difference between the same data measured with a high-speed hydraulic frame and 
Hopkison bar opens all of the data up to interpretation.  However, the data in Fig. 1.7 shows that 
there is a dependence of strain rate on ductility. 
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Figure 1.7: Ductility data for DP600HR as measured by Larour et. al. (2004) in uniaxial 
tension.  Closed points represent measurements with a high-speed hydraulic frame, and open 
points (only at the highest strain rates) represent measurements made with a split Hopkinson 
bar. 
 
Hopperstad, Borvik, et. al. (2003) attempted to determine the effect of both stress triaxiality and 
strain rate on Weldox 460 E structural steel.  Some of their findings are shown in Fig. 1.8.  A key 
feature is that there appears to be a very large dependence of ductility on strain rate for the 
uniaxial state of stress but not for other states of stress.  The authors indicate that they do not 
know why this may happen.  This data emphsizes the weakness of the work by Laurour et. al, in 
which only one state of stress is tested. 
 
With the exception of Larour et. al., all of the above-mentioned teams did their fracture work on 
bulk materials and adjusted stress triaxiality by notches in axisymmetric specimens.  Larour et. 
al. made no attempt to adjust stress triaxiality, but instead relied on uni-axial specimens.   
 
The combination of the data from Larour et. al. and Hopperstad, Borvik, et. al. shows a far more 
complex dependence of ductility on strain rate than would be expected from Johnson and Cook’s 
analysis.  As well, there is nothing currently in the literature that accounts for the joint 
dependence of ductility on stress triaxiality, Lode parameter, and strain rate. 
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Figure 1.8: Ductility data measured by Hopperstad, Borvik, et. al (2003) for Weldox 460 E.  The 
dynamic preloads (20 kN and 40 kN) correspond to increasing strain rate.  It was observed by 
the experimenters that the ductility for the pure uniaxial stress state appeared to have a large 
dependence on strain rate while other cases were very insensitive to it. 
 
Therefore, a method is being proposed in which a drop tower spans and augments the data 
between fast hydraulic systems equipped with traditional force/displacement measurement 
equipment on the low end and much faster Hopkinson bar data on the high end.  This research 
will also aim to calibrate a fracture locus for multiple strain rates and determine the evolution of 
the shape and amplitude of said fracture locus with strain rate. 
 
1.4 Research Strategy 
 
The research is divided into several tasks which build upon one another.  The chronology and 
interdependence of the techniques will be outlined here, and then each technique will be 
developed in further detail in subsequent sections.  Some key themes are present in multiple 
chapters, so some key definitions and formulas are repeated where appropriate. 
 
Each step is necessary for the one immediately after it.  The ultimate goal of the research is to 
better understand the effect of strain rate on ductile fracture, with application to sheet steel.  In 
order to do this, a method will be needed that can test the steel to fracture over a wide range of 
strain rates and stress states.  The Hasek test done in a drop tower was chosen for this.  However, 
the drop tower is not applicable below a certain testing velocity, so a series of tests in an 
electromechnaical load frame will be used in addition to the drop tower to span a larger range of 
strain rates.  The Hasek tests have yet to be demonstrated in conjunction with the current state-
of-the-art fracture methodology, the Mohr-Coulomb fracture locus, which was developed using 
butterfly fracture specimens.  Therefore, butterfly fracture tests, which have been successfully 
use to calibrate the Mohr-Coulomb fracture locus, will be completed (See the section “Butterfly 
Fracture Tests”).  Use of the butterfly fracture tests relies on a precise knowledge of the plastic 



29 

properties of the material.  Therefore, there will first be a detailed characterization of the material 
under quasi-static and dynamic loading (see the sections for quasi-static and dynamic 
characterization of plasticity).  This procedure is outlined chronologically in Fig. 1.9. 

Static Butterfly 
FractureStatic Plasticity

Static Butterfly 
Fracture

Static Punch 
Fracture

Dynamic 
Plasticity

Dynamic Punch 
Fracture

 
Figure 1.9: Plan of research showing interdependence of various steps. 
 
1.4.1:  Quasi-static Plasticity 
 
The methodology, experiments, and results for the quasi-static plasticity section is given in 
Chapter 2 and very briefly summarized here.  They key contribution of this section of the thesis 
is to provide very detailed isotropic plasticity data for use by analytical tools or by the finite 
element method to better understand all of the other experiments. 
 
In the first part, plasticity data was determined through the tensile testing of dogbone specimens 
that were cut in different orientations with respect to the rolling direction of the sheet.  From this 
data, the Lankford parameter was calculated for three tensile directions, and the plate was 
determined to be in-plane isotropic. 
 
The plasticity of the material was further developed through a series of experiments developed 
by Mohr and Oswald (2007).  In the approach of Mohr and Oswald (2007), a very short but wide 
specimen is subjected to a number of different combinations of shear and tension.  This specimen 
was designed by finding a geometry in which the stress and strain fields are sufficiently 
homogenous that they can be determined by closed form equations from force and displacement 
measurements.  Jacquemin (2007) subsequently extended this methodology to characterize for 
anisotropy by taking specimens from multiple orientations relative to the parent sheet. 
 
The current research uses the original Mohr-Oswald geometry tested in two directions (rolling 
and cross-rolling) relative to the parent sheet.  Five different combinations of shear and tension 
are tested for each orientation, ranging from pure tension to pure shear, with three combined 
tension/shear cases.  Additionally, this thesis proposes a specimen design similar to Mohr and 
Oswalds (2007) geometry without a reduced thickness.  Because of the requirement that the area 
is reduced from the grip sections to the gage section so that frictional forces in the grips can 
balance the stress in the gage section, the full-thickness specimen has a less wide gage section.  
The development and assessment of the full-thickness specimen is also presented in Chapter 2. 
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1.4.2: Quasi-static Fracture Tests (Butterfly Specimen) 
 
The methodology, specimen, and results relating to the butterfly specimen are given in detail in 
Chapter 3.  This section of the thesis is intended to provide a baseline fracture locus against 
which the punch style methods can be assessed.  The key features of this procedure will be 
summarized here. 
 
After the material was characterized for plasticity, it was characterized for fracture in quasi-static 
strain rates according to the butterfly procedure developed by Bai (2008).  Bai’s (2008) method 
was chosen because it has previously been well validated and had the unique feature that it was 
able to achieve a very large range of different stress triaxialities with the same specimen.  It also 
initiates fracture in the center of the gage section (as opposed to free surfaces), minimizing the 
effects of manufacturing on the ductility of the specimen.  Bai’s (2008) method focused on the 
application of various types of loading to a butterfly-shaped specimen that features a lofted 
cutout at the center, see Fig. 1.10. 

 
Figure 1.10:  Butterfly fracture specimen with double-curvature geometry that produces fracture 
in the center and is resistant to edge effects. After Bai (2008). 
 
Unfortunately, the butterfly specimen is not readily applicable to dynamic loading.  This was 
found by simulating the butterfly geometry in an idealized drop tower test.  The top of the 
butterfly specimen was constrained not to move, while the bottom was assigned a large mass and 
an initial downward velocity, see Fig. 1.11.  The force on the top and bottom of the specimen 
were recorded, and they are shown as a time history in Fig. 1.12.  As can be seen in the force 
data, the specimen never achieves equilibrium between the top and bottom.  This is due to the 
complex geometry in the center, which serves to diffract the stress waves passing through the 
specimen.  The fact that the specimen never achieves equilibrium and the very transient nature of 
the force time history imply that it will be nearly impossible to convert force data from this 
specimen into stress data when the specimen is loaded dynamically.  This realization helped to 
motivate a desire for a different type of test that could span a large range of stress states but is 
less susceptible to dynamic effects. 
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Figure 1.11:  Finite element model used to evaluate the butterfly specimen geometry for 
application to dynamic testing 
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Figure 1.12:  Time history of forces recorded on the butterfly specimen when the top was fixed 
and the bottom was given a mass and initial velocity.  This shows that the specimen is not in 
equilibrium. 
 
1.4.3: Quasi-static Fracture Tests (Punch experiments) 
 
A more full description of the Hasek experiments and their results is presented in Chapter 3.  
This section of the thesis will provide a bridge from the butterfly specimens to the dynamic 
experiments.  Because it is quasi-static, it can be readily compared to the butterfly experiments.  
The favorable dynamics of the experiment allow it to be extend into the dynamic range. 
 
The Hasek Test is a method of testing for fracture by laterally indenting a circular plate by a 
hemispherical punch.  The state of stress in the specimen can be adjusted from almost uniaxial to 
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equi-biaxial by introducing cutouts in the plate.  This test has the advantage that it is much better 
suited than the butterfly experiments to dynamic loading.  Unfortunately, the Hasek test has a 
key limitation that the state of stress can not be directly measured.  For this purpose, force and 
punch depth were recorded, and correlated with a finite element model of the test case.  The state 
of stress, strain, and strain rate for every point in the test will thus be taken from the finite 
element model.  Alternatively, the state of stress expressed as stress triaxiality can be inferred 
directly from the state of strain and only a single parameter from the plasticity model.  This 
method is presented in Chapter 3.  It is also compared against the butterfly experiment in the 
same chapter. 
 
1.4.4:  Dynamic Plasticity Tests 
 
The work done on validating the dynamic plasticity model is presented in Chapter 4.  This 
section is intended to evaluate a plasticity model so that the dynamic experiments can be 
interpreted through the use of FEA. 
 
Just as interpretation of the quasi-static Hasek test requires a good plasticity model, interpretation 
of the dynamic Hasek test requires a good strain-rate dependent plasticity model.  Most of the 
work on strain rate dependent plasticity in the literature has been done with either a split 
Hopkinson bar or with a high-speed hydraulic apparatus.  See, for example, Van Slycken et. al. 
(2007), Zhao and Gary (1996), Johnson and Cook (1985), Nemat-Nasser et. al. (1999), Rusinek 
et. al (2003), Roos and Mayer (2003) and Larour et. al. (2004).  However, the current work 
concentrates on the intermediate range of strain rates done in a drop tower.   
 
There is a large number of strain-rate dependent plasticity models available in the open literature 
(e.g. Cowper and Symonds (1958), Zhao (1997), Bronkhorst et. al. (2006), Johnson and Cook 
(1985), Cheng et. al. (2001), Fallansbee and Kocks (1988), and Rusinek et. al. (2007)).  These 
plasticity models have varying levels of complexity.  The simplest approaches are one like that 
of Johnson and Cook (1985) or Bodner and Symonds (1978), who propose that the strain rate can 
be accounted for as a multiplier of the hardening curve, Eq. (1.5).   
 

( ) ( )pp R εεσσ 0=          (1.5) 
 
Many papers by Symonds (e.g. Cowper and Symonds (1958), Symonds and Chon (1974), and  
Bodner and Symonds (1978)) present a power law relationship for the factor ( )pR ε , which is 
shown in Eq. (1.6). 
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This form has become commonly referred to as the Cowper-Symonds law.  Within Chapter 4, 
the Cowper-Symonds law will be fit to test data for Dual Phase steel, and a parametric study will 
be done to assess the impact of different levels of strain rate sensitivity on the correlation of test 
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with simulation.  Finally, the strain rate of the experiments will be assessed as temporal and 
spatial distributions, then averages, and the importance of the value of ( )pR ε  is discussed. 
 
1.4.5: Dynamic Punch Fracture Tests 
 
The dynamic punch experiments are discussed in detail in Chapter 5.  That chapter capitalizes on 
all of the prior work (plasticity, quasi-static fracture experiments) to establish a new method for 
determining the fracture of sheet steels under intermediate strain rates.  Further, this chapter 
presents the data obtained for a sample material (DP780) and interprets it in the context of the 
three-dimensional fracture locus. 
 
The fracture punch tests in Chapter 3 were done in a relatively slow but high-capacity screw-
driven loading frame.  After the punch fracture tests were validated against butterfly fracture 
tests in quasi-static loading, the punch fracture test procedure was extended to various strain 
rates by doing the tests in a drop tower.  The available drop tower is capable of speeds up to 15.5 
m/s or masses up to 80 kg.  It is shown in Fig. 1.13.  The strain rate can be adjusted over a wide 
range (theoretically greater than 2000/s, with a small enough punch and die) by changing the 
initial velocity, drop mass, punch diameter, and specimen diameter.     
 

 
Figure 1.13:  Drop tower available at the Impact and Crashworthiness Laboratory at MIT.  This 
drop tower is capable of speeds up to 15.5 m/s or masses up to 80 kg. 
 
Simonsen (2000) created an analytical solution for a circular plate subjected to lateral punch by a 
hemispherical punch.  His solution allowed for the calculation of a reaction force given a punch 
depth and the maximum strain in the plate.  Based on this, a MATLAB routine was created that 
numerically solves the dynamic equations of motion as the drop mass impacts the plate.  The 
strain rates can be found by numerically differentiating the strain data with respect to time.  This 
software was run iteratively to find the range of strain rates for various drop masses, velocities, 
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die diameters, and punch diameters.  Examples of the findings are shown in Fig. 1.14, which 
shows the extremely high strain rates that can be accomplished with the maximum drop velocity, 
the smallest punch, and the smallest die. 
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Figure 1.14:  Strain rates that the drop tower is capable of achieving for punching a circular 
plate with various punch radii (Rb) and die radii (R0).  The plot on the left corresponds to the 
maximum drop mass with the corresponding maximum drop velocity.  The plot on the right 
corresponds to the maximum drop velocity with the corresponding drop mass.    
 
1.5 Conclusions 
 
A gap exists in the literature in which little research is being done on the effect of stress 
triaxiality, Lode parameter, and strain rate on ductility.  A procedure for filling this gap has been 
outlined in this introductory chapter and will be developed in greater detail throughout the 
remaining chapters of this thesis. 
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Chapter 2 
 
 

Characterization of Plasticity 
 
2.1   Abstract 
 
Tests were performed on three types of biaxial plasticity sheet steel specimens:  full-thickness 
with an optimized 2-D profile, symmetrically reduced thickness with a nearly rectangular gage 
area, and reduced thickness with nearly rectangular gage area in which thickness was reduced 
only from one side.  While the shape of the specimens with a nearly rectangular area had 
previously been optimized by Mohr and Oswald (2008), the full-thickness specimen was 
optimized and first presented here.  The 2-D geometry of the full-thickness has been iteratively 
optimized through testing and analysis, and further iterations are believed to give only minimal 
improvements with the currently available hardware.  Simulation of the full-thickness specimen 
and comparison of the full-thickness specimen against the symmetrical reduced thickness 
specimens shows that the full-thickness specimen can not accurately be used with traditional 
analysis to determine plasticity parameters of sheet steels.  However, the width of this specimen 
was limited by machine force capacity, and a higher-capacity machine would allow a larger 
width and consequently closer approximation to the assumptions of traditional closed-form 
analysis.  If the full-thickness specimen is used, then it must be used with iterative simulation of 
a multi-element, geometrically accurate finite element model for calibration of plasticity.  
Alternatively, simulation of tests on the full-thickness specimen will serve as a validation tool for 
an existing characterization for in-plane plasticity of a sheet steel.  Using the above methods plus 
traditional dog bone specimens, the plasticity parameters of an Advanced High Strength Steel 
(AHSS) sheet metal DP780 was calibrated with the symmetrically reduced thickness specimen, 
and then compared with full-thickness specimens.  It was found that the steel could be 
adequately characterized for in-plane properties with both von Mises and Hill 48 models, but 
only the Hill 48 was able to capture the reduction in thickness due to tensile strain. 
 
2.2 Introduction 
 
An experimental technique for biaxial testing of Advanced High Strength Steel sheets was 
previously demonstrated by Mohr and Oswald (2008).  In this technique, a short and wide 
specimen with a reduced gage thickness is subjected to different combinations of tension and 
shear.  However, through the process of rolling, steel sheets can produce through-thickness 
textural inhomogeneity and thus differences in mechanical properties through the thickness of 
steel sheets (Park, Park, and Chin, 2002).  Therefore, creation of a specimen that does not require 
thickness reduction holds the potential to increase the fidelity of testing by accounting for the 
mechanical properties of the full thickness of the material. 
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Wide availability of computer-controlled abrasive jet machines as well as availability of 
computer-controlled wire Electrical Discharge Machining (EDM) makes the production of two-
dimensional shapes in arbitrarily hard steels quite easy.  Removal of material from the thickness 
requires either the use of a second technique, like Sinker EDM or conventional milling.  
Electrical Discharge Machining operates through the melting of material, so this process 
typically features layers of melted and re-cast layers and a heat-affected zone where the 
mechanical properties have been changed (Bleys et. al., 2006).  When the machined surface is 
the two-dimensional profile of a sheet metal specimen (as in the case of a wire EDM), this effect 
is insignificant, as it is a tiny fraction of the width of the material.  However, when the material 
removal is in the thickness direction, then the heat-affected area can be a more significant 
fraction of the remaining thickness.  As well, the sinker EDM typically results in a larger heat 
affected zone than a wire EDM (Bleys et. al., 2006).  Conventional machining has its own 
limitations, especially in Advanced High-Strength Steels, which can have a relatively high 
specific energy to fracture, which correlates to temperature rise due to machining.  Conventional 
machining of steels can produce work hardening of the machined surface, residual stresses, and 
heating of the machined surface (Outeiro et. al., 2006).  Moreover, Outeiro et. al. (2006) show 
that the residual stresses associated with machining can penetrate to a depth of 0.1 mm for a first-
pass cut and more for a multi-pass cut.  With the symmetrical removal of material and 0.5 mm 
thickness of the Mohr and Oswald (2008) specimen, the residual stresses could account for 40% 
of the thickness.  The additional process of either sinker EDM or conventional machining would 
require additional equipment and skills, and it could add significant lead time and expense to a 
testing program.  A two-dimensional specimen that does not rely on the removal of material in 
the thickness direction will be sought to avoid loss of information about through-thickness 
inhomogeneity and reduce machining affects on the specimen surface, additional cost, and 
additional lead-time.  . 
 
The work described in this paper aims to characterize the plasticity of a sample sheet steel (Dual-
Phase DP780 provided by US Steel) with both the well-established technique featuring a 
reduced-thickness gage section and a new method that has not reduction in thickness.  The 
effects of through-thickness inhomogeneity will also be assessed by comparing specimens in 
which the thickness was reduced symmetrically from both faces of the material against 
specimens in which the thickness was reduced by removing exactly half of the thickness from 
one side, thus preserving one of the original surfaces of the material in the gage section.  First, 
standard uniaxial tension tests are performed to estimate material hardening curves and 
anisotropic parameters. 
 
Traditional flat dog-bone specimens have a reduced width but not thickness.  The present 
technique aims at extending the applicability of full thickness specimens into biaxial testing. 
 
2.3 Uniaxial Tension Experimental Technique 
 
Six standard uniaxial tension tests conforming to ASTM E 8M were performed.  Dogbone 
samples were extracted from sheets at 0, 45, and 90 degrees with respect to the rolling direction; 
two specimens were taken for each direction.  The specimens were removed by an Omax 
abrasive jet machine.  All specimens were tested to fracture on an MTS 200 kN 
electromechanical load frame equipped with a 200 kN load cell and wedge grips.   
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Displacements are measured through VIC-2D, which is a Digital Image Correlation (DIC) 
package made by Correlated Solutions, Inc (West Columbia, SC).  With this method, the 
specimen is painted white and then sprayed with a black speckle pattern.  The VIC-2D software 
is able to track the displacement of arbitrary positions in each of the pictures by comparing the 
deformed image to the original.  A DIC subset of 29 was used for all experiments.  Using the 
DIC method, the vertical displacement of two points on the horizontal centerline of the specimen 
was measured as well as the lateral displacement of two points on the vertical centerline. 
 
Forces measured by the load cell and displacements measured by DIC were converted into true 
stress and true strain.  The true stress versus true strain data are presented in Fig. 2.1.   
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Figure 2.1:  True stress versus true strain test data for DP780 for specimens cut 0, 45, and 90 
degrees with respect to the rolling direction of the sheet material. 
 
2.4 Determination of Anisotropy 
 
The uniaxial tests were used to determine the anisotropy of the material by the determination of 
the Lankford parameter, defined in Eq. (2.1).   
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where p

wdε is the width plastic strain under uniaxial tension, p
tdε  is the thickness plastic strain 

under uniaxial tension, and the subscript α  indicates the angle with respect to the rolling 
direction.  To find the Lankford parameter, the thickness strain must first be determined.  This 
value was found by measuring the in-plane axial and width strains and applying the assumption 
of plastic incompressibility.  The Lankford parameter itself was found by taking a least-squares-
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fit slope between the width plastic strain and the thickness plastic strain in a region where the 
relationships were very close to linear.  The relationships were linear throughout most of the 
experiment; elimination of the nonlinear parts only precluded the use of the data immediately 
following yield and after necking.  Lankford’s parameter as a function of tensile direction 
relative to the rolling direction is shown in Fig. 2.2.  The fact that the Lankford parameter is not 
unity and not equal for all directions implies that the material is anisotropic.   
 
If a Hill ’48 anisotropic model is assumed, then the Lankford parameters can be quickly 
converted into Hill parameters using the associated flow rule.  Hill’s equivalent stress is shown 
in Eq. (2).   
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where F, G, H, L, M, and N are material constants.  The fact that r0=r90 implies transverse 
anisotropy, meaning that the in-plane behavior of the material is mostly isotropic and that 
anisotropy comes primarily from its out-of-plane behavior.  This observation implies that we can 
find the normal anisotropy parameters through Eq. (3), which gives the Hill parameters 
F=G=0.436 and H=0.564. 
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Figure 2.2:  Lankford parameter as a function of angle with respect to the rolling direction of the 
material.  Note that the Lankford parameter is identical for the 0 and 90 degree conditions, but it 
is not unity for any conditions. 
 



39 

2.5 Biaxial Experimental Technique  
 
The experimental technique was treated in detail in Mohr and Oswald (2008), but it will be 
summarized here.  The experimental technique for the full-thickness specimen is identical to that 
of the reduced-section specimen with the exception of the geometry and specimen preparation. 
 
2.5.1 Specimen preparation 
 
Three different types of specimens were prepared for the current series of experiments.  One of 
the types is the same as that proposed by Mohr and Oswald (2008).  In this geometry, the gage 
section is ten times wider than the gage height, and the gage section is approximately 
rectangular, see Fig. 2.3.  Wider and thicker grips are supplied to achieve the necessary ratio of 
friction in gripping to sectional force in the gage section.  Small geometric features are 
introduced in the corners of the rectangle, where the gage section joins to the grip section, to 
abate premature fracture due to tension in the corners.  This geometry was optimized to eliminate 
shear buckling in shear loading conditions, premature fracture in the corners, and stress and 
strain field inhomogeneities due to geometry. 
 
The second specimen geometry under consideration is a specimen that is a purely two-
dimensional cutout from sheet metal.  This geometry has a wide gage section, but somewhat less 
wide than the Mohr and Oswald specimen due to limitations in the maximum force of the 
available test frame.  Also, the lack of reduction in thickness has necessitated a more dramatic 
width reduction from grip section to gage section in order for the friction in gripping to balance 
the forces due to stresses on the gage section of the material.  A deeper gripping area increases 
the total frictional force acting on the gripping area.  A more developed transition section from 
the gripping section into the gage section is used to distribute the stresses into the gage section as 
uniformly as possible while still allowing for a large area reduction.  This geometry has also 
been iteratively optimized through simulation and experiment to address all of the potential 
problems mentioned for the aforementioned geometry.  Both the Mohr and Oswald (2008) and 
the full-thickness specimen are shown in Fig. 2.3. 
 
A third type of specimen, which is a close relative to the Mohr and Oswald (2008) specimen is 
shown in Fig. 2.4.  In this geometry, the thickness of the gage section is reduced by removing 
material only from one face.  This results in an asymmetrical specimen that preserves one of the 
faces and eliminates the centerline of the material.  Comparison of the results from this type of 
specimen to those of the original Mohr and Oswald (2008) specimen is anticipated to show the 
importance of through-thickness inhomogeneity.    
 
Specimens were extracted parallel to and perpendicular to the rolling direction of the steel sheets 
for both the symmetrical and asymmetrical versions of the Mohr and Oswald (2008) geometry.  
For the full-thickness geometry, specimens were only extracted with the tensile axis parallel to 
the rolling direction. 
 
All specimens were cut from the same sheet of DP780 steel, provided by the United States Steel 
Corporation headquartered in Pittsburgh, PA.  For the reduced-thickness specimens, the 
thickness in the gage section was subsequently reduced by a conventional end mill.  Before each 
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test, all specimens were inspected, measured, and cleaned with acetone.  Additionally, all 
specimens were prepared for strain measurement by Digital Image Correlation (DIC) by being 
painted white and then being speckled with black spray paint in the gage sections.  Grip sections 
were masked to prevent paint from interfering with the gripping of the specimens. 
 

 
Figure 2.3:  The Mohr and Oswald (2008) specimen (left) with a reduced gage section and the 
new full-thickness specimen (right). 
 

 
 
Figure 2.4: Profile drawings of two versions of the reduced-thickness specimen geometry are 
shown.  In the original geometry (left), the thickness was reduced by removing material from 
both faces, resulting in a symmetrical configuration.  In the altered version (right), material was 
removed from only one face to achieve the same final thickness. 
 
2.5.2 Tension/Shear apparatus 
 
A custom-made loading frame that can apply arbitrary combinations of tension and shear forces 
was employed for these experiments.  The device, shown in Fig. 2.5, is designed with two 
independent hydraulic actuators.  One of the actuators is arranged vertically and is used to apply 
tension and compression.  The other one is arranged to apply horizontal forces to specimens so 
that it can apply shear forces to the specimen.  Two load cells are arranged vertically to measure 
vertical forces or moments about an axis perpendicular to the two actuators.  A third load cell is 
arranged horizontally to measure the shear forces.     
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Figure 2.5:  The Tension/Shear biaxial testing machine, as shown in schematic form (left) and in 
hardware (right).  The major components are vertical actuator (1), horizontal actuator (2), grips 
(3), specimen (4), dual vertical load cells (5), horizontal load cell (6), sliding table assembly (7), 
and camera for displacement measurement by Digital Image Correlation (DIC) (8). 
 
2.5.3 Loading conditions 
 
In analogy to classical Arcan experiments, the loading angle is defined as a function of the ratio 
between tensile force and shear force; see Eq. (2.4).  In this coordinate system, a 0-degree angle 
represents the pure shear condition while the 90-degree angle represents the pure tension 
condition.    
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F1tan −≡β           (2.4) 

 
Because the cross-sectional area for all of the specimens for a given geometry was approximately 
the same, a so-called von Mises force is defined by Eq. (2.5).   
 
 22 3 HVVM FFF +≡          (2.5) 
 
All specimens were loaded with a constant β and the von Mises force increasing at a rate of 4.3 
kN/min.  This caused the specimens to yield and neck at approximately the same time and 
resulted in each experiment having approximately 240 data points before necking. 
 
2.5.4 Measurement 
 
As with the uniaxial tension specimens, displacements are measured through the VIC-2D 
software.  Approximately 300 digital pictures of the specimen are taken as it is deforming.  A 
DIC subset of 29 was used for all experiments.  Two points, which are centered horizontally on 
the specimen and vertically equidistant from the center of the specimen were measured for all 
experiments.  In the reduced-thickness specimens, the two points were 2 mm apart, and the 
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points were 5 mm apart for the full-thickness experiments.  The points are represented for a 
typical full-thickness specimen in Fig. 2.6. 
 
Horizontal forces were measured with the horizontal load cell.  Frictional forces due to the 
design of the sliding table had previously been measured and found to be negligible (Mohr and 
Oswald, 2008).  Vertical forces were measured as the sum of the two vertical load cells. 
 

140 pixels = 5 mm
centered vertically 
and horizontally 
on specimen

 
Figure 2.6: Typical picture taken for DIC purposes of the full-thickness specimen showing the 
two points used for strain measurement.  The distance between the two points is as close to 5 mm 
apart as possible while still being an integer number of pixels.  The points are centered 
horizontally, and they are equidistant from the vertical center.   
  
2.6 Determination of Stress and Strains for Biaxial Cases 
 
The principles of measuring stress and strain for both the full-thickness and the reduced-
thickness materials are the same.  As the procedure for the reduced-thickness specimen is already 
described in-depth in Mohr and Oswald (2008), only the full-thickness will be developed here. 
 
The only means for direct measurement of stress is division of the vertical and horizontal forces 
by the cross-sectional area of the specimen.  This assumption implies that the stress is 
approximately constant across the cross-section of the area.  However, it is necessary for the 
stresses to be zero at the free boundary, and it is therefore known that the stresses are not 
uniform throughout the cross section.  McClintock and Zhang (1993) observed such a boundary 
zone when studying fracture of thin metal strips.  Therefore, a study of the stress distribution 
with finite elements was undertaken to determine and optimize the applicability of the 
assumption of constant stress and strain fields.  In this study, a finite element model of the full-
thickness specimen with shell elements whose typical edge length is 0.5 mm was subjected to 
similar tension and shear combinations as the experiments.   
 
In this evaluation of the full-thickness specimen, two key ways of viewing the stress are 
important: global stress measured through parameters that can be measured in an experiment, 
and local stresses that represent the true stresses acting on the center of the specimen.  The global 
stresses are determined by extracting from the finite element simulation only parameters that can 
be extracted for an experiment, e.g. vertical or horizontal force, and operating on them with 
traditional expressions.  For example, the tensile true stress was found by dividing the force by 
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the initial area and multiplying by one plus the tensile engineering stress.  Local stresses are 
merely the stress extracted from the center element.  In an ideal experiment, the stresses would 
be constant across the width, and the stress on the central element would be the same as the 
average stress, and that would be the same as the stress determined from traditional methods. 
 
A finite element model for the β=450 condition is shown in Fig. 2.7, displaying the constancy of 
the stress distribution.  The profile of normal and shear stresses acting on all of the elements 
across the width for a vertically centered row of elements is shown in Fig. 2.8 for two different 
force magnitudes.    In Fig. 2.8, the Cauchy stresses reported by each of the elements across the 
width have been normalized by the average true stress that was calculated as if it were an 
experiment.  The coordinate in the width direction is normalized by the width.  Both Figures 2.7 
and 2.8 show a region at the periphery of the width in which the stresses are very different from 
the average stress across the width.  Iteration on the design has shown that these areas of large 
stress variation are approximately the same length in millimeters regardless of the width, so 
widening the specimen will continue to deliver better results.  However, the chosen geometry 
requires forces that are very close to the capacity of the available machine.  Regardless of the 
width limitations, it can be seen from Fig. 2.8 that for β=450 at the magnitudes of force shown, 
the stress distribution across the width of the specimen is very close to the ideal condition in 
which the stress is constant across the width and equal to the force that would be calculated from 
global parameters.  However, it can also be seen from Fig. 2.8 that the stress distribution evolves 
with applied force, so the errors of the specimen are not anticipated to be constant over the entire 
stress versus strain curve. 
 

X

Y

 
Figure 2.7:  Finite element model of the full-thickness specimen subjected to loading β=450 and 
an imposed von Mises force of 35 kN (approximately the maximum experienced in testing before 
necking or fracture).  The colors indicate the von Mises stresses acting on the specimen. 
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Figure 2.8: Cross-sectional distribution of shear and normal stresses in a full-thickness 
specimen at the vertical center line with β=450 at an imposed von Mises force of 25 kN (top) and 
35 kN, approximately the maximum experienced in testing (bottom). The bottom plot corresponds 
to data taken from the stress state shown in Figure 2.7. 
 
In addition to stress measurement, global strain measurement (i.e. the strain that is measureable 
in the experiment) must also be evaluated.  As was indicated in the “Measurement” section, a 
DIC system is available which can measure the movement of two arbitrary points on the 
specimen relative to each other in two dimensions.  The finite element model used in this study 
was meshed such that there are two horizontally centered nodes that are +/-2.5 mm from the 
vertical center of the specimen.  The horizontal and vertical positions of these two nodes were 
retrieved from the results and used to evaluate the logarithmic strain in the specimen.  The global 
(average) stress versus global logarithmic strain (i.e. the values that can be calculated from force 
sensor data and traditional analysis) for β=450 are plotted in Fig. 2.9 and compared with the 
Cauchy stress and logarithmic strain of the center element resolved into tension and shear 
components.  As the global stress and strain represent parameters that can be determined from 
experimentation and the local ones represent the actual stress calculated locally by the finite 
element software, the difference between the two curves can be seen as the error of the specimen 
due to geometrical effects.  The two tick marks (“X” and “+”) indicated in Fig. 2.9 correspond 
exactly to the states of stress shown in Fig. 2.8.  Similar comparisons between globally and 
locally determined stresses and strains for different β angles are shown in Fig. 2.10. 
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Figure 2.9:  Analysis of a simulation comparing of Cauchy stresses and logarithmic strains on 
an element in the center of the specimen (local) with stresses calculated from forces acting 
globally on the specimen and motion of nodes measured +/-2.5 mm away from the center 
(global).  The global case is intended to represent data available in an experiment.  The 
condition shown corresponds to β=450, and the points indicated with “X” and “+” correspond 
to the states of stress shown in Figure 2.8. 
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Figure 2.10: Globally-determined stress versus strain curves as compared to stresses and strains 
acting on an individual element.  The globally-determined stress versus strain curves have been 
determined exclusively from parameters that can be directly measured in testing. 
 
2.7 Plasticity Calibration 
 
In a prior section, parameters of the Hill 1948 plasticity model were determined together with a 
hardening curve from uniaxial test data.  The question is: is the traditional approach based on 
uniaxial test data will provide accurate results in the case of biaxial loading.  To answer this 
question, an iterative procedure was developed in which the traditional data was used as the 
starting point in the iteration procedure.  Introducing small changes in the hardening curve and 
the values of the Hill 1948 parameters, an improved set of parameters is obtained.   
 
The plasticity model was calibrated through a procedure featuring the iterative modification of 
plasticity characterization and comparison of results between experiment and simulation.   
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Mohr and Oswald (2008) have shown that with their geometry, the stress fields in the specimen 
are sufficiently uniform that the engineering stresses and strains on a characteristic element 
within the material can be calculated by Eq. (2.6) – (2.9).  Therefore, one can choose a single 
representative element. 
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The finite element model consisted of a single ABAQUS S4R shell element that was 1 mm 
cubed.  The element had an associated material model defined in true stress versus true strain 
coordinates.  A single node on the bottom of the element was constrained not to move, and the 
other bottom node was constrained such that it could move, but a portion of the loading from the 
fixed boundary condition was shared with it.  Forces were applied to a node on the top of the 
element so that the element had the same level of engineering stresses that the specimen 
experienced during the experiment.  The two nodes on the top of the element were constrained 
together so that the applied forces were shared appropriately across the top.  This finite model 
was not intended to be geometrically representative of the specimen, but rather serve as a means 
of using ABAQUS to solve the material model for all of the states of loading applied to the 
specimen.  The uniformity of stress shown by Mohr and Oswald (2008) justifies this analysis. 
 
In the current thesis, the material plasticity was calibrated by a multi-step iterative approach.  For 
the first iteration, the plasticity model was assumed to be identical to that found with the uniaxial 
tensile tests the uniaxial tests reported earlier in this paper.  A finite element analysis was then 
run for each of the conditions for which experimental data was available, and the results of the 
finite element analysis were exported as engineering stress and strain relationships.  The 
engineering force versus strain relationships were compared against the engineering stress versus 
strain relationships for all cases for both normal and shear conditions.  In this analysis, the 
engineering stress versus strain relationships were not regarded as stress relationships, but rather 
normalized force and displacement relationships against which correlation could be judged.  If 
the engineering stress versus strain relationships did not agree sufficiently well for all cases, then 
the material law in ABAQUS was modified, and another iteration was completed. 
 
The results from uniaxial tests presented earlier in this paper provided evidence that an 
anisotropic model was necessary, but the simplicity of the von Mises model was desired.  For 
this reason, both the von Mises model and the Hill 1948 model were calibrated for this material 
with the iterative procedure described above.  The comparison of the engineering stress versus 
strain curves for the simulations with a von Mises material are compared to the experiments in 
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Figure 2.11.  The comparisons of experiment with simulation for the Hill 1948 material model 
are shown in Figure 2.12. 
 
The hardening curves for both the von Mises material and the Hill material are compared with 
the uniaxial test data from Fig. 2.1 in Fig. 2.13.  The elastic parameters along with the Hill 
anisotropic parameters are presented in Table 2.1, and the resulting hardening curves for both the 
von Mises and Hill characterizations are presented in Table 2.2.  This material can also be 
described very well with the power-law plasticity model shown in Eq. (2.10). 
 

HnCεσ =           (2.10) 
 

where C and Hn are material calibration constants and are 1208. MPa and 0.133, respectively.  
As can be seen by comparing Figures 2.11 and 2.12, there is very little difference between the 
two characterizations for the material when tested in-plane.  The results from the iterative 
calibration of the biaxial stress-strain relationships and the analysis on the uniaxial tensile 
specimen both indicate that the anisotropy for this material comes primarily from its out-of-plane 
behavior, and that its in-plane behavior is approximately isotropic. 
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Figure 2.11:  Comparison of ABAQUS single-element simulation with a von Mises material 
against experiments for Mohr and Oswald (2008) specimen.   
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Figure 2.12: Comparison of ABAQUS single-element simulation with a Hill ’48 material against 
experiments for Mohr and Oswald (2008) specimen.   
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Figure 2.13:  Comparison of true stress versus true strain hardening curves found through 
iterative procedure for both the von Mises material and the Hill material against uniaxial test 
data.  The iterative procedure was performed on experiments with the Mohr and Oswald (2008) 
specimen. 
 
Table 2.1: Hill anisotropic parameters  

E [Gpa] n [-] F G H L M N
200 0.4363 0.4357 0.5643 1.5 1.5 1.34770.3  

 
Table 2.2: Hardening curves for both Hill and von Mises characterizations 

Plastic Strain
[-] Hill Mises
0 489.3 515.

0.001 522.1 549.6
0.002 550.4 579.4
0.004 588.5 619.5
0.008 651.1 685.4
0.016 712.9 750.4
0.024 745.5 784.7
0.032 770.5 811.
0.04 790.8 832.4
0.05 807.8 850.3
0.1 860.5 905.8
0.2 917.7 966.
0.4 978.5 1030.6
0.6 1007. 1060.7
1 1064. 6177.

Yield Stress, MPa
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2.8 Full-Thickness Model Validation 
 
To validate the plasticity models determined above, a test was performed and simulated that 
represented a state of stress not employed in the calibration.  This experiment captured the equi-
biaxial state of stress due to membrane stretching.  The experimental apparatus is summarized in 
Fig. 2.14.  In this apparatus, a circular plate was clamped into a circular die, then punched with a 
hemispherical punch.  The radius of the die (R0) was 24.6 mm; the radius of the punch (Rb) was 
22.2 mm. The punch was loaded with a 200 kN electromechanical loading frame.  The force was 
measured with a 200 kN MTS load cell.  Displacements were measured through VIC-3D, which 
is a Digital Image Correlation (DIC) package made by Correlated Solutions, Inc (West 
Columbia, SC).  This system is different from VIC-2D in that it uses two cameras (rather than 
one) and is able to measure out-of-plane motion.  A MATLAB script was created that interprets 
the VIC-3D displacement field output by first identifying the center of the specimen, then 
creating a history of the out-of-plane displacement of the center point. 
 
The finite element model used the S4R shell element in ABAQUS to simulate the experiment 
with both the von Mises and the Hill material models determined iteratively, as described above.  
The die and the punch were modeled as rigid analytical geometry.  Comparison of the test data 
for the force-deflection relationship against the simulations is presented in Fig. 2.16.  It can be 
seen that both material models produce very good results for this condition. 

 

bR

P

0R

bR

P

0R

 
Figure 2.14: Experimental apparatus for punch test in schematic form (left) and in physical form 
(right) 
 

The punch and die are shown 
in gray, represented as 
analytical geometry.

The specimen was 
represented as shell 
elements.

 
Figure 2.15: Finite element model of punch tests showing the key geometrical features. 
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Figure 2.16: Comparison of punch experiment with FEA prediction with calibrated model and 
with von Mises material.  Both the von Mises and Hill models are able to capture the in-plane 
behavior. 
 
2.9 Evaluation of Through-Thickness Inhomogeneity 
 
The comparison of the engineering stress versus strain curves obtained experimentally for both 
the original symmetrical Mohr and Oswald (2008) specimens and the asymmetrical specimens is 
shown in Fig. 2.17.  The asymmetrical specimen had lower stresses than the symmetrical one in 
some cases, but not others.  In other cases, they agreed exactly.  The difference between the 
cases can be seen as scatter in the experimental measurements, and the material is therefore 
concluded to have negligible through-thickness inhomogeneity in the plasticity parameters. 



54 

(b) Tensile axis perpendicular to rolling direction
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Figure 2.17: Comparison of symmetrical and asymmetrical specimens 
 
2.10 Comparison of Full Thickness Specimen to Reduced Thickness Specimen 
 
A comparison of the test results from the Mohr and Oswald (2008) specimen with the reduced 
thickness against the full-thickness specimen is shown in Fig. 2.18.  Assuming that the Mohr and 
Oswald (2008) specimen gives a reasonably accurate representation of the stress and strain 
behavior of a central element, we can see that the full-thickness specimen consistently under-
predicts the stress for a given strain for all loading angles.  This outcome can be attributed to the 
stress concentrations due to the specimen geometry and was predicted by the finite element 
analysis presented in Fig. 2.10.  Based on the finite element model and its verification through 
testing, some conclusions can be reached on the accuracy of the of the full-thickness specimen in 
predicting the stress and strain states of the material.   
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Figure 2.18: Comparison of test data with Mohr and Oswald (2008) specimen with the full-
thickness specimen presented in this paper. 
 
The full-thickness specimen performs better in representing tensile stress than shear stress.  The 
tensile state of stress as determined from the global force measurements is consistently within 
5% of the stress of a central element.   Use of the full-thickness specimen tends to under-predict 
the shear stress in conditions of low shear stress.  This effect can be seen especially by inspecting 
the condition of β=67.5 in Fig. 2.10.  The error in for both tensile stresses and shear stress 
typically starts off high and decreases throughout the deformation, so the stress values 
determined for higher states of strain are more reliable.   
 
Analysis of the full-thickness specimen typically under-predicts the tensile strain by 
approximately 5% for all cases.  Of the conditions investigated (β=0, 22.5, 45, 67.5, and 90) 
shear strain was inconsequential for the case of β=90 and within 1% error for the case of β=67.5.  
For all other cases, the error of the shear strain was under-predicted by approximately 5%. 
  
2.11 Conclusions 
 
The Advanced High Strength Steel DP780 was calibrated for both von Mises and Hill 48 
plasticity models.  Both models fit the data very well for in-plane loading for various 
combinations of tension and shear.  Both models also agree very well with an experiment for 
equi-biaxial tension.  However, careful analysis of the Lankford parameters has shown that an 
anisotropic model (e.g. Hill 48) is necessary for capturing out-of-plane behavior.  The material 
did not exhibit significant variations in mechanical properties through the thickness, so the Mohr 
and Oswald (2008) specimen was deemed appropriate for this material. 
 
The proposed full-thickness specimen is promising for approximate flow parameters, but it has 
enough stress concentrations that iterative simulation with a simplified finite element model or 
traditional methods of calculating stress and strain from experimental data do not produce 
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sufficiently accurate measurements for good characterization.  However, the full-thickness 
specimen could provide a reasonable basis for iterative calibration featuring a finite element 
model with more detailed geometric representation of the specimen.  Alternatively, comparison 
of test data taken from the full-thickness specimen against a finite element simulation of the 
experiment can be used as a rigorous validation of an in-plane plasticity model.  Due to the 
constraints in developing the full-thickness specimen, the current geometry is considered to be 
close to optimal for the available test equipment.  Further improvements in stress homogeneity 
due to geometrical optimizations are not anticipated within the constraints of the available testing 
equipment.  However, the specimen improved consistently with increased width, and the width 
of the test section was constrained by the maximum force of the available test equipment.  A 
higher capacity biaxial test frame could allow for enough increase in width that this specimen 
can be re-optimized to produce considerably better results and be applicable for general 
calibrations. 
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Chapter 3 
 
 

Characterization of Quasi-Static Fracture 
 
 
3.1 Abstract 
 
An Advanced High Strength Steel (AHSS) was characterized for fracture with two different 
methods, and the results are compared. The first method, representative of procedures used in the 
sheet metal forming industry, features specimens with different shapes being punched out of 
plane by a hemispherical punch.  By changing the shape of the specimen, different the states of 
stress (triaxiality and Lode parameter) in the specimen are obtained.  In the other method, the 
specimen featured a lofted cutout geometry in the center, all of the specimens were the same 
shape, and the state of stress was changed by applying different combinations of shear and 
tensile forces to the specimen.   
 
Comparison between the two methods showed that while the states of stress achieved in the 
methods spanned different ranges of triaxiality and Lode parameter, both methods agreed very 
well for the modified Mohr Coulomb fracture surface with the same set of calibration 
parameters.  One key limitation of the punching test was that it produced stress triaxialities over 
such a limited range that the calibration based solely on the punching test was valid for only a 
small range.  However, the method featuring the lofted cutout spanned a large enough range of 
stress triaxiality and Lode parameter that it was more widely applicable.  The addition of one 
shear test to the punch tests would greatly improve the range of its applicability. 
 
3.2 Introduction 
 
A summary of the historical development of a fracture methodology has been given in Chapter 1.  
The introduction in this chapter will focus only on areas specifically relevant to this chapter.  The 
current fracture locus, known as the Modified Mohr-Coulomb (MMC) fracture criterion, was 
first presented by Bai (2008).  This relationship is shown in equation form in Eq. (3.1) and 
graphically in Fig. 3.1. 
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where 1c , 2c , and 3c  are material constants to be found from a suitable calibration procedure.    
C  and Hn  are the constants from the power hardening law ( HnCεσ = ).  The stress variables η  
(stress triaxiality) addθ  (Lode parameter) were defined earlier. 
 
 

 
Figure 3.1:  Fracture model proposed by Y. Bai, in which ductility depends on stress triaxiality 
(η ) and the deviatoric state parameter (θ ).  After Bai, 2008. 
 
The MMC criterion showed very good agreement with a variety of different scenarios and built 
upon a long history of fracture development.  As well, the procedure developed for calibration of 
the MMC (biaxial testing of a special butterfly specimen) had shown promise for producing an 
accurate calibration.  However, the MMC criterion as well as the calibration procedure were 
primarily designed and validated for bulk materials.   
 
The sheet metal industry had developed its own methodologies culminating in the Hasek test, 
which is a battery of experiments in which a sheet metal membrane is punched laterally to 
necking and fracture.  The sheet metal industry had a strong history with the Forming Limit 
Diagram (FLD) and the Fracture Forming Limit Diagram (FFLD), which are beginning to 
encounter limitations in their ability to predict fracture in simulation. 
 
Calibration of the MMC with both butterfly and punch-style experiments could lend insight into 
both the applicability of Bai’s (2008) approach to sheet metal fracture as well as the limitations 
of the traditional approach of punching tests coupled with FLD’s and FFLD’s. 
 
3.3 Hasek Experimental Setup 
 
Hasek’s (1978) punching fracture experiment features a sheet metal specimen clamped into a 
circular die.  The state of stress in the specimen is controlled through diametrically-opposed 
arced cutouts on the specimen, located on the circumference of the die.  A schematic 
representation of the specimen is shown in Fig. 3.2. By changing the radius of the cutout, the 
state of stress in the material due to punching can be changed from equi-biaxial (the radius of the 
cutout NR  is zero) to almost uni-axial ( NR  is very close to the die radius 0R ).  A schematic 
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representation of Hasek’s (1978) specimens and the experimental configuration can be seen in 
Fig. 3.2.  For all cases presented in this thesis, mmRb 225.22=  and  mmR 5.240 = .  The cutout 
radii ( NR ) tested are listed in Table 3.1.  All of the Hasek specimens were cut with the tensile 
axis perpendicular to the rolling direction. 
  
Traditionally, fracture strain on punch-style sheet metal fracture tests was found through the 
deformation of inscribed circles or squares on the surface of the material.  With this method, 
strains could only be measured post-mortem.  In the current investigation, there was interest in 
measuring the surface strains throughout the experiment, so Digital Image Correlation (DIC) was 
used.  The die was raised up from the bottom of the machine by a stiff steel fixture, and a first-
surface mirror tilted 45 degrees from the horizontal was inserted underneath the die so that the 
deformation would be visible to the cameras.  A picture of the setup is shown in Fig. 3.3.  The 
VIC-3D software from Correlated Solutions, Inc. in Columbia, SC was used to interpret the 
stereo-optic digital pictures into deformations and strain fields.  For all cases, the pictures were 
recorded as uncompressed .tif images that were 1300 pixels wide by 1030 pixels tall.  This 
resulted in each pixel corresponding to approximately 0.06 mm.  All specimens were speckled to 
create a random pattern that the DIC algorithm could track.  For the Hasek experiments 
presented here, the speckle pattern was created with DYKEM Steel Blue Layout Fluid prayed 
over bare metal.  Layout fluid was used in lieu of spray paint because spray paint (even high-
quality fabric spray paint) has shown a tendency to shear from the metal due to the very high 
strains possible in equi-biaxial tests.  The layout fluid had the serendipitous advantage that 
because it is semi-transparent, more unique patterns could be achieved when speckles overlap 
because the overlapping speckles have a different level of opacity (seen as darkness in grayscale 
pictures) than non-overlapping speckles. 
 

NR 0R
bR

P

0R

bR

P

0R

 
Figure 3.2:  Hasek specimen geometry ranging from equi-biaxial ( 0=NR ) to almost uni-axial 
( 0RRN ≅ ), depending on the cutout radius (left) and the schematic representation of the circular 
clamped die and loading of these specimens by a hemispherical punch (right). 
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Table 3.1: Values of cutout radii ( NR ) tested in the quasi-static regime 

 

Case 1 2 3 4 5 6 7 8 9

22.154 19.692 17.846 16.000 14.154 12.308 9.846 4.923 0.000
0.904 0.804 0.728 0.653 0.578 0.502 0.402 0.201 0.000

][mmRN
][/ 0 −RRN  

 
For all conditions listed in this paper, the contact between the punch and the specimen was 
lubricated by five layers of 0.05 mm thick Teflon, with metal-free anti-seize lubricant between 
each layer.  This combination of Teflon and lubricant has been found to produce negligible 
friction.  For all specimen geometries, the specimen cracked in the center, and the crack ran 
parallel to the rolling direction of the material.  This is considered to reflect a sufficiently low 
friction because prior tests that featured less or no Teflon had cracks that were off-center. The 
post-test specimens are shown in Fig. 3.4. 
 

Load Cell

Die

450 Mirror

Cameras for 
DIC

 
Figure 3.3:  Physical implementation of the Hasek test featuring two cameras for Digital Image 
Correlation (foreground), a first-surface mirror underneath the specimen to reflect the image of 
the specimen being deformed (below the die), and a punch mounted onto a 200 kN load cell on 
an Electro-Mechanical screw-driven testing machine.  
 

 
Figure 3.4: Battery of Hasek experiments after fracture. 
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3.4 Analysis of the Hasek Experiments 
 
The goal of the current testing program is to find the effect of stress triaxiality and Lode 
parameter on fracture.  Therefore, it is of key interest to measure these parameters from the data 
available: force and surface strains.  These parameters are calculated in this paper directly from 
the strain data available from DIC.   
 
Because DIC measures only strains, and stress triaxiality and Lode parameter are defined in 
terms of stress, a plasticity model is first needed.  The material used in this study has been 
identified as transverse isotropic Hill 1948 material in Chapter 2.  Hill’s 1948 equivalent stress is 
shown in Eq. (3.2).   
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Transverse anisotropy implies the Hill parameters F=G and H=1-F, and for the current material, 
F=0.436.  The material being tested is sheet metal, which implies plane stress throughout most of 
the deformation.  Also, only surface strains are being measured, and the stress at the free surface 
of the specimen will always be in the state of plane stress.  Also, because the material the 
anisotropy of the material comes from the out-of-plane direction, it can be treated as isotropic in 
plane.  Therefore, the stress and strain space can be freely rotated into principal stress/principal 
strain space.  In this paper, principal stresses and strain states will be denoted by subscript 
Roman numerals with  I II IIIσ σ σ≥ ≥ .  The equivalent stress is simplified for principal plane 
stress with the transverse anisotropic condition, as shown in Eq. (3.3).  The work conjugate 
incremental equivalent plastic strain is given in Eq. (3.4). 
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The Levy-Mises flow rule is shown in Eq. (3.5).   
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Assuming that elastic strains are negligible, application of the Levy-Mises flow rule and the 
definition of the strain rate ratio produces the relationships given in Eq. (3.6) and (3.7).  
Application of the definition of the strain rate ratio to the incremental equivalent plastic strain 
produces the relationship in Eq. (3.8) 
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where the strain-rate ratio (α ) given in Eq. (3.9) is assumed. 
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The definition of the mean stress is given in Eq. (3.10).  The Von Mises stress for principal, 
plane stress space is given in Eq. (3.11).  The definition of the stress triaxiality is given in Eq. 
(3.12).   
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Substitution of Eq. (3.7), (3.8), (3.10), and (3.11) into Eq. (3.12) gives an expression for the 
stress triaxiality expressed only in terms of the anisotropy constant F and the strain rate ratio α , 
shown in Eq. (3.13). 
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The Lode parameter is defined in Eq. (3.14) in terms of the third invariant of the stress tensor, 
θ .  The plane stress assumption ( 0=IIIσ ) implies that the Lode parameter is uniquely related to 
the stress triaxiality, Eq. (3.15).  
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The DIC software automatically determines strains from the deformation of the specimen and 
resolves them into principal strains.  The strain that the system delivers is Lagrange strains.  The 
Lagrange strains are converted into logarithmic strains through the relationship: 
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All of the tests were processed with the DIC system with a subset of 35 and a step of 5.  The 
subset represents the size of a square, in pixels, that is used to correlate the location on one image 
to the next.  The step indicates the number of pixels between point that is tracked.  Further details 
can be found in Sutton et. al. (2000). 
 
Each of the experiments was analyzed with VIC-3D with the same user settings.  Text files were 
exported from VIC-3D into text formats.  A MATLAB script was written that interpreted the 
VIC-3D output.  The MATLAB script found the point of maximum deflection (assumed to be 
the center of the specimen), then evaluated the stress triaxiality and effective plastic strain at that 
point for a series of photograph sets associated with different times of the test.  The MATLAB 
software then evaluated the strain average of the stress triaxiality and Lode parameter, given in 
Eq. (3.17).  This strain averaging technique reflects the methodology set for in Bao (2003). 
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This analysis produced the effective plastic strain to fracture along with averaged Lode 
parameters and stress triaxialities for each case, which will form the basis for a fracture 
calibration based on Lode parameter and stress triaxiality.   
 
Note that with Eq. (3.17), the average is processed over the effective plastic strain, which is a 
time-like parameter.  Stress triaxiality, Lode angle, and strains are not spatially averaged, but 
only taken for the center point, which is considered to be the most critical point. 
 
3.5 Comparison of DIC and FEA for Fracture Punch Experiments 
 
As an alternative to the interpretation of DIC data into stress space, an Abaqus implicit FEA 
model was also used to interpret the effective plastic strain, stress triaxiality, and Lode parameter 
associated with each experiment.  The model for one condition is shown in Fig. 3.5.  All models 
consisted of the same three components: a hemisphere, a die, and the specimen.  The hemisphere 
and die were both modeled as analytical rigid geometry; the faceted surfaces shown in Fig. 3.6 
are only for visualization.  The specimen was modeled with quadrilateral shell elements with 11 
integration points through the thickness.  Each model was adjusted geometrically to reflect the 
specimen it was simulating for both thickness and the size of the cutouts, when appropriate.  
Contact was specified between the punch and the specimen and between the die and the 
specimen.  The material model described at the beginning of this section was applied to the 
specimen.  Force and displacement were recorded for each specimen and correlated to those 
measured in experimentation.  An example of this correlation is shown in Fig. 3.6 for the two 
most extreme cases and one in the middle.   
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The punch and die are shown 
in gray, represented as 
analytical geometry.

The specimen was 
represented as shell 
elements.

 
Figure 3.5:  Finite element model of the experiment, showing the specimen along with the 
analytical rigid die and punch.  Note that the faceting on the analytical rigid surfaces is only for 
display. 
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Figure 3.6:  Sample correlation of force-deflection curves comparing test and the finite element 
simulation for the two extreme cases plus one in the middle. 
 
A comparison between the stress triaxialities and Lode parameters calculated from simulation 
and from analysis of DIC is shown in Fig. 3.7.  This comparison has some very interesting 
features.  First of all, the qualitative agreement is very good between the simulation and the DIC, 
and the magnitude is approximately correct.  Also, major features that are present in the 
experiment were capture by both the simulation and the DIC interpretation.  For example, in the 
case of 65.0/ 0 =RRN , it can be seen that the stress state starts off as approximately equi-biaxial 
( 3/2=α ), but then changes with very little change in effective stress when the effective strain 
reaches 0.1.  This feature is captured by both the simulation and the DIC, and it is explained by 
close inspection of the FE simulation.  In this case, the very tip of the punch encounters the 
center of the specimen, far from the edges that are introduced by the cutouts.  At this point, it 
acts as if it is equi-biaxial (similar to the specimen with no cutouts).  As the hemisphere 
continues to punch into the specimen, eventually the deformed region of the plate reaches to the 
cutouts of the specimen.   At that point, the strain in the center of the specimen doesn’t change 
appreciably as the punch continues to advance, and the state of stress changes to account for the 
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interaction of the deformation field with the edges introduced by the cutouts.  This effect is 
particularly dramatic when seen in terms of the Lode parameter, which changes from almost 
negative unity to almost positive unity. 
 
As another point of evaluating the simulation and DIC analysis, an analytical solution exists for 
the stress triaxiality of the equi-biaxial case; if 0/ 0 =RRN , then 1=α , and 3/2=η .  Not only 
is this theoretical value reproduced by both the DIC analysis and the finite element analysis, but 
the correlation is so close that only one of them can be seen on the plot.   
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Figure 3.7:  History of the evolution of stress triaxiality (left) and Lode parameter (right) for the 
two extreme cases (top) and an intermediate case (bottom).  The Lode angle and stress triaxiality 
for the test were determined directly from DIC measurements whereas the simulation was taken 
from an Abaqus simulation of the experiments. 
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3.6 Evaluation of Shell FEA Model for Simulation of Punch Experiments 
 
In order to verify the applicability of a shell element model and the assumption that fracture 
would start at the outside surface, a detailed model meshed with solid elements was created and 
executed for three critical punch experiments.  The specimen was meshed with 16 elements 
through the thickness, resulting in the through-thickness element edge length of approximately 
0.063 mm for all specimens.  The typical in-plane edge length near the center for the middle and 
full-circle cases were approximately 0.3mm, and the typical in-plane edge length near the center 
for the narrow case was approximately 0.12mm.  The models exploited quarter symmetry for 
reduced simulation time.  Each of them was modeled with the same rigid surfaces and geometry 
as for the shell simulation.  The three solid models are shown in Fig. 3.8. 
 

 
Figure 3.8: Quarter-symmetric solid FEA models of the three critical cases. 
 
The force versus deflection curves for the three models is compared in Fig. 3.9 for the shell 
simulation, solid simulation, and for the experiment itself.  It can be seen that the shell model 
agrees well with experiment in all cases, and the solid model compares well for the middle and 
equi-biaxial (full circle) cases.  It is determined that the shell model is adequate for simulation of 
this scenario. 
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Figure 3.9: Force versus deflection curves comparing both shell and solid Finite Element models 
with experimental data. 
 
In the prior analysis, both in DIC and the shell element, there was an implicit assumption that the 
bottom of the plate (furthest from the punch) represented the most critical surface.  In the case of 
the DIC, this assumption was manifested by taking pictures of the bottom of the plate.  In the 
case of the shell model, the assumption was manifested by using the integration point furthest 
from the punch.  The assumption that the bottom of the plate is most critical can be evaluated 
with the solid element model.  The effective plastic strain for all of the elements through the 
thickness of the plate is plotted against the punch displacement in Fig. 3.10.  The bottom element 
is dark black.  As can be seen in the figure, the bottom element exhibits the most strain 
throughout the travel of the punch up to a point close to fracture.  In the case of the equi-biaxial 
case, the bottom element experiences the most strain throughout the entire experiment.  In the 
case of the other two, when one of the other elements overtakes the bottom element close to the 
end of the experiment, it does not experience much more strain than the bottom element.  As 
well, it should be noted that while the top of the plate is under higher hydrostatic pressure (lower 
stress triaxiality) because it is interacting with the punch while the bottom of the plate has no 
through-thickness stress.  Therefore, it is believed that the assumption that the bottom of the 
plate is critical is a good engineering approximation. 
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Figure 3.10:  Time histories of effective plastic strain for all 16 elements through the thickness in 
the center of the specimen.  The dark black line corresponds to the time history of the element on 
the die side of the plate, furthest from the punch. 
 
3.7 Butterfly Experimental Setup 
 
The butterfly test was first described by Mohr and Henn (2007) and subsequently modified by 
Bai (2008), who added a complex lofted surface cut into the center to assure that fracture always 
occurred at the same location.  More results currently exist in the literature for Bai’s geometry 
than Mohr and Henn’s, so Bai’s will be used for this study.  The butterfly test was designed for 
fracture experiments in which it was subjected to combined tension and shear loading.  The 
geometry of Bai’s butterfly specimen is shown in Fig. 3.11.  The most important geometric 
feature of the specimen is the complex geometry of the center, which was defined as a lofted 
surface consisting of arcs spaced 2 mm apart in the X direction in the specimen coordinates.  The 
loft lines for this surface are shown in Fig. 3.11.  Another way of representing this surface is by 
Eq. (3.18). 
 

⎭
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⎫

⎩
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⎧ −++= 22min

2,2min YrtrtZ grips       (3.18) 

 
where Z is the thickness coordinate, gripst  is the thickness of the grip section (the full thickness of 
the sheet metal in the current paper), mint  is the lowest thickness in the gage section (the middle), 
Y is the height coordinate, and r is the radius of the arc defining the loft lines, given in Eq. (3.19). 
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The center point of the arcs defining the loft lines is given in Eq. (3.20). 
 

2
mintrZcp +=          (3.20) 

 
The profile of the specimens was machined with a numerically controlled end mill.  The gage 
section was machined with a hemispherical “ball-end” mill on a three-axis numerically 
controlled milling machine. 
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Figure 3.11:  Geometry of the butterfly specimen with the coordinate system and origin indicated 
(top and bottom left) and the lofting lines defining the gage section (bottom right). 
 
The specimens were tested on the dual-actuator testing machine shown in Fig. 3.12.  The key 
feature of this machine is that it has two perpendicular actuators: one for shear (horizontal) 
motion and one for tension/compressions (vertical) motion.  These two actuators can be moved 
independently in either force or displacement control.  In analogy with the traditional Arcan 
apparatus, an angle β  is defined in Eq. (3.21) which gives the ratio of the vertical force (or 
displacement) to the horizontal force (or displacement). 
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The forces were recorded by the horizontal load cell and the sum of the two vertical load cells.  
For all tests, the motion was recorded by a single camera and interpreted in planar motion by the 
VIC-2D software.  Only displacements were desired for this experiment (as opposed to the state 
of strain at the fracture location), so the gage section was not painted.  Because the area that was 
painted was not highly deformed during the experiment, white SAE fabric paint was first sprayed 
on, and the random speckle pattern was generated by black SAE fabric paint.  The pictures were 
recorded as uncompressed .tif images that were 1300 pixels wide by 1030 pixels tall.  This 
resulted in each pixel corresponding to approximately 0.0117 mm.  The vertical and horizontal 
displacements were recorded by a virtual extensometer horizontally centered on the specimen 
with points at the top and the bottom.  In addition, the rotation of the top and bottom of the 
specimen was measured by two virtual extensometers (top and bottom), which were arranged 
horizontally and centered on the specimen.  Between the three virtual extensometers, the data 
was interpreted into four different signals:  the vertical displacement of the top relative to the 
bottom, the horizontal displacement of the top relative to the bottom, the rotation of the bottom 
about a point centered on the bottom, and the rotation of the top about a point centered on the 
top.  The six points (three extensometers) are indicated on a typical picture from the DIC system, 
shown in Fig. 3.13.  In this study, nine conditions were measured:  force control for -10, 0, 22.5, 
45, 67.5, 90 degrees, and position control for 0, 45, 90 degrees.  All conditions were performed 
with the rolling direction 0 and 90 degrees relative to the tensile axis.  All conditions were 
performed twice to show reproducibility.  The fractured force control specimens are shown in 
Fig. 3.14. 
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Figure 3.12:  Biaxial testing machine in schematic form (left) and in physical form (right).  Key 
components are vertical actuator (1), horizontal actuator (2), clamps (3), specimen (4), dual 
vertical load cells (5), horizontal load cell (6), sliding table assembly (7), and camera for DIC 
(8). 
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Figure 3.13:  Characteristic picture taken from the DIC system with the locations of the tracked 
points indicated. 
 

 
Figure 3.14:  Butterfly specimens that have been tested to failure including double-redundancy 
of loading angles -10, 0, 22.5, 45, 67.5, and 90 degrees and specimens cut with the tensile axis 0 
and 90 degrees relative to the rolling direction. 
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3.8 Analysis and Simulation of the Butterfly Experiments 
 
Each experiment was simulated with an implicit Abaqus FEA model with a unique geometry and 
boundary conditions representative of the experiment.  The mesh for a characteristic finite 
element model is shown in Fig. 3.15.  The grip section was represented as a rigid body at the top 
and bottom of the mesh.  The bottom rigid body was constrained not to translate, but to have a 
rotation about an axis parallel to the Z axis centered on the bottom of the specimen.  The rotation 
of the Z axis was constrained to be the same as the rotation measured by the DIC system in the 
experiments.  The rigid body on the top of the specimen was constrained to move in the X and Y 
direction according to the measurements by the DIC system.  It was also constrained to rotate 
about an axis that was parallel to the Z axis but centered on the top of the specimen.  This 
rotation was also given based on the measurements of the DIC system.  These boundary 
conditions are also shown in Fig. 3.15. The plasticity model used for all simulations is the one 
given in Chapter 2.   
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Figure 3.15:  A characteristic finite element model used for analysis of the experiments.  Note 
that only the section of the model visible to the DIC camera was modeled, and the boundary 
conditions on the top and bottom of the model were taken directly from DIC data. 
 
For each specimen, the geometry of the FEA model was modified for four separate 
measurements: minimum thickness of the gage section, thickness of the grip section, width of the 
gage section, and height of the measured area.  It was considered necessary to modify the 
geometry of each FEA model because the area of the specimens ranged from -9% of the average 
to 13% of the average due to manufacturing variability.  This is to be expected because “good” 
tolerance in custom machining in the United States is considered to be 0.001 inches, which is 
0.0254 mm.  If this tolerance is taken on both sides of the specimen, then it is doubled and 
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accounts for 0.05 mm, which is 10% of the nominal thickness of the specimen.  The gage section 
was measured before the experiments in three locations by point micrometers.  The geometric 
representation of the lofted cut in FEA was then moved in or out of the thickness to achieve the 
average measured thickness.  The lofted cut was not deformed or rotated in any way.  This 
modeling assumption reflects the view that the largest inaccuracy would be in the positioning of 
the specimen in the milling machine and the determination of the vertical “zero” position by the 
machinist rather than by inaccuracies in the machine’s control systems.  The thickness of the grip 
section was measured once with point micrometers, and the geometric representation in FEA was 
assigned to this measurement.  The width was measured with digital calipers.  The radius that is 
5 mm in Fig. 3.11 was increased or decreased to obtain the correct width.  This choice in how to 
account for a non-nominal width reflects the view that errors in machining the profile were due 
to the cutter being a non-nominal diameter (by a very small amount) rather than errors in the 
control of the numerically-controlled machine that generated the profile.  Finally, the height of 
the section that was modeled was taken as the initial height of the DIC virtual extensometer.  
Because the geometry of each of the simulations was slightly different, the mesh of each of them 
was different.  However, the same software and input parameters were used for each mesh, and 
each geometry was approximately the same.  Therefore, the meshes all had approximately the 
same edge lengths and aspect ratios.  The centermost element of one sample case had a width (X 
length) of 0.1562 mm, a height (Y length) of 0.0801 mm, and a thickness (Z length) of 0.0805 
mm.  This can be compared to the model presented by Bai (2008), in which the smallest element 
was mm08.003.015.0 ×× .  The current mesh is considered superior to that of Bai’s simulation 
because although it does not have the same very high resolution in the Y direction, it has better 

aspect ratio (the ratio 
minL

LMax  is 5 for Bai and 2 for this model), and the resolution in the Y 

direction appears not to be necessary. 
 
For each simulation, the effective plastic strain, pressure, 2nd invariant, and 3rd invariant were 
extracted from the centermost element of the FEA model (considered by Bai to be the critical 
element) and interpreted into stress triaxiality and Lode parameter and averaged as per the 
definitions given earlier in this paper.  The point of fracture was considered in the experiments to 
be the time at which the force suddenly decreased, and it was at this point in the simulation that 
the effective plastic strain was taken for the fracture strain.   
  
3.9 Comparison of Hasek experiments with Butterfly Experiments 
 
The results of the Hasek (DIC interpretation) and butterfly experiments are shown in Fig. 3.16, 
as projected into the ductility versus stress triaxiality and ductility versus Lode parameter planes.  
At the initial viewing, they do not seem to agree.  This can be largely blamed on the fact that the 
butterfly specimens experience a fully three dimensional state of stress whereas the Hasek 
specimens stay in a state of plane stress throughout the experiment, at least at the surface where 
the DIC measures them.  Because the butterfly specimens break the plane stress assumption, they 
can not be compared in only two dimensions.  Fig. 3.17 presents the 3-D comparison of the 
Hasek and butterfly specimens against a calibration of Eq. (3.1).  As can be seen, most of the 
data points for both types of experiments agree very well with the fracture theory.  A key 
difference between the calibrated fracture locus and the test points is that the Hasek test 
corresponding to the lowest stress triaxiality lies substantially below the surface. 
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Figure 3.16:  Projections of the measured fracture data onto ductility versus stress triaxiality 
(left) and ductility versus Lode parameter (right).  The data points indicated with an “X” 
indicate Hasek tests; the data points indicated with red circles indicate butterfly tests run under 
displacement control; the data points indicated by blue circles indicate butterfly tests run under 
position control. 

 
Figure 3.17:  Calibrated Mohr-Coulomb fracture surface with key calibration points.  The pink 
line indicates the plane stress assumption.  Pink circles indicate Hasek data points, and 
diamonds indicate position control butterfly tests. 
 
There is interest in knowing if the modified Mohr-Coulomb fracture locus can be calibrated only 
with tests like the Hasek test.  It has been previously demonstrated that the butterfly tests provide 
enough data over a sufficient range that the Mohr-Coulomb fracture locus can be calibrated and 
effective over a wide range of strain rates (Bai, 2008).  Therefore, the fracture locus was 
iteratively re-calibrated with various experiments removed to see what the minimum requirement 
of experimental data was to achieve a good calibration.  Because all of the Hasek experiments 
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used specimens cut with the tensile axis perpendicular to the rolling direction, only butterfly 
specimens with the tensile axis perpendicular to the rolling direction were considered for this 
study.  The fracture locus was then calibrated, and this condition is the condition with “All” 
experiments included in Table 3.2.  Next, all butterfly experiments that used force control were 
excluded.  This is because the specimen slightly softens after necking, and the testing machine 
collects very few points when running in force control mode while the force is decreasing.  There 
was concern that the force control experiments may underestimate the ductility due to this effect.  
By comparing the “Hasek plus displacement control butterflies” condition with the “All” 
condition in Table 3.2, we can see that running the experiments in force control mode appeared 
to provide no large effect on the outcome.  Next, the fracture locus was calculated with only 
Hasek experiments.  As can be seen in Table 3.2, this provided unacceptably large errors in the 
calibration parameters, which leads to the conclusion that Hasek experiments alone can not 
calibrate the fracture locus.  This effect can be seen geometrically in Fig. 3.17, where the Hasek 
experiments lie approximately in a line in the Lode parameter versus stress triaxiality plane, and 
they provide very little information about how the fracture locus surface should be oriented 
relative to that line, i.e. what the “pitch” of the surface should be relative to the Lode parameter 
axis.  Next, to provide information on ductility that has a much lower stress triaxiality than the 
Hasek tests and is not on the same line that the Hasek tests are on, a butterfly experiment 
corresponding to pure shear was introduced with the Hasek experiments.  This showed very good 
agreement with the calibration in which all experiments were included.  Eliminating some Hasek 
tests to find the minimum necessary Hasek tests for calibration showed that only two Hasek tests 
(the one with the full diameter and the one with the deepest cutouts) plus a shear butterfly test are 
necessary for a successful fracture correlation.  Based on this conclusion, the fracture locus is 
presented again in Fig. 3.18 with only the necessary experiments, both in its three-dimensional 
form and also as projected onto the stress triaxiality versus ductility plane. 
  
Table 3.2: Parameters for the Mohr-Coulomb fracture model when different tests are excluded 
from the calibration. 

Experiments included

0.191 738.8 1 0.% 0.% All
0.195 728.8 1 2.% -1.3% Punch plus displacement control butterflies
0.214 740. 1 11.7% 0.2% Punch
0.198 729.5 1 3.5% -1.3% Punch plus shear butterflies
0.195 729.1 1 2.1% -1.3% Three punch conditions plus shear butterflies
0.212 739.9 1 10.6% 0.1% Three punch conditions
0.195 729. 1 1.8% -1.3% Two extreme punch conditions plus shear butterflies
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Shear tests
(not done with punch)

 
Figure 3.18:  Two representations of the most critical fracture test data: full three-dimensional 
representation (left) and onto the ductility versus stress triaxiality plane (right). 
 
3.10 Conclusions 
 
A new procedure has been presented for the determination of ductility in terms of stress 
triaxiality and Lode parameter from sheet metal punching experiments.   
 
These efforts have clearly shown that punching style experiments agree very well with butterfly 
experiments when compared in the full three-dimensional space of stress triaxiality, Lode 
parameter, and ductility.  Moreover, it has been shown to be misleading to represent the fracture 
locus in only two dimensions.  The Mohr-Coulomb fracture criterion has been shown to be 
applicable to Advanced High Strength Steels.   
 
Another key outcome of this work is that punching style tests are not adequate in themselves to 
calibrate the Mohr-Coulomb fracture criteria.  At least one point with a significantly lower stress 
triaxiality is highly recommended, and the condition of pure shear appears to fit the requirement 
very well.   
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Chapter 4 
 
 

Assessment of Dynamic Plasticity 
 
 
4.1 Abstract 
 
A survey of data available in the literature has demonstrated that steels have shown a 
considerable variation in the effect of strain rate on plasticity, ranging from a 5% increase in 
flow strength at 500 s-1 to a 60% increase in flow strength at the same strain rate, depending on 
the material.  A novel experimental technique is being developed at ICL in order to determine 
strain rate sensitivity of different sheet metals subjected to intermediate to high range of strain 
rates.  This technique has been applied to DP780 steel at strain rates of the order of 300 to  
500 s-1, which is exactly the range of interest to the present thesis.   The results show little or no 
effect of strain rate on plasticity.  Finite element simulations of a series of dynamic punch 
experiments confirmed this finding by showing that it is not necessary to model the effect of 
strain rate on plasticity for this steel in this range of strain rates to achieve good correlation.  
While the material being used as an example for this thesis does not show a dependency of 
plasticity on strain rate, it is recommended that rigorous dynamic plasticity experiments be 
conducted to evaluate the effect of strain rate on plasticity for full generality. 
 
4.2 Introduction 
 
The effect of strain rate on plasticity for intermediate strain rates continues to be a subject that 
vexes researchers.  For example, data from a large study that includes leading researchers in the 
field is presented in Fig. 4.1.  As part of this study, Yan and Urban (2003) and their collaborators 
measured the stress versus strain curve of same material (TRIP600-CR) with three different force 
measurement methods.  Data from a traditional load cell provided very wavy results.  Split 
Hopkinson Bar (SHB) data proved somewhat more favorable, but it was noisy and ended 
prematurely due to the limited pulse duration possible on the researchers’ equipment.  A third 
method, in which the dogbone specimen is manufactured with an unusually long grip section and 
a strain gage is mounted in the grip section to measure forces, is shown in the plot.  While these 
three methods give reasonably good correlation with each other, all three curves have much to be 
desired.  A typical method of working with these results is to fit an analytical function to the 
plasticity part of the curve and then use the fitted results to represent the plasticity of the data.  
Based on the differences between a quasi-static stress-strain curve and a dynamic stress strain 
curve, a yield stress ratio, R, is defined in Eq. (4.1). 
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The existence of such a parameter implies a decomposition of an equivalent stress into two major 
terms, as shown in Eq. (4.2): one term 0σ to define the hardening curve, and one (R) to 
determine the effect of strain rate on fracture. 
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Cowper and Symonds (1958) proposed one such yield stress ratio (R), which is defined in Eq. 
(4.3). 
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Based on results like those of Fig. 4.1 and the decompositions given above, plots like 4.2 are 
compiled, showing a scaling factor for the yield stress to account for the effect of strain rate. 
Note that all of the curves shown in Fig. 4.2 are for steel. These results show that a meaningful 
effect of strain rate on plasticity should be expected for most experiments performed on steel.   
 

Load cell

Strain gage
SHB

 
Figure 4.1: Sample stress versus strain curves determined for TRIP600-CR at 500 s-1 with 
different measurement technologies.  The “load cell” indicates the measurement from a 
conventional load cell.  “Strain gage” indicates the force measurement made by a strain gage 
mounted on an extended grip section.  “SHB” indicates measurements made by split Hopkinson 
bar.  After Yan and Urban (2003). 
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Figure 4.2:  The effect of strain rate on yield strength for a variety of automotive sheet steels.  
Data from Choi et. al. (2002), Lee and Wang (2007), Qiu et. al. (1999), Talonen et. al. (2005), 
and  Yan and Urban (2003). 
 
4.3 Dynamic Shear Experiments 
 
A device for plasticity testing in shear for both static and dynamic conditions is being developed 
by Bordier (2009) of the Impact and Crashworthiness Lab at MIT.  Pictures of the shear 
specimen and corresponding fixture are shown in Fig. 4.3.  In the static case, the deformation of 
the specimen in the provided windows was recorded with a QImaging Retiga 1300i camera.  For 
the dynamic case, the deformation was recorded with a Phantom 7.1 high-speed camera.  
Displacements within the gage section were measured with DIC-2D by Correlated Solutions, 
Inc., and the displacments were converted into equivalent plastic strain through Hill’s formulas, 
which are detailed in Chapter 2.  Bordier (2009) tested the DP780 sheets in static (10-3 s-1) and 
dynamic (305 and 564 s-1), and the measured stress-strain curves are shown in Fig. 4.4.  The 
strain rate histories of the dynamic curves from Fig. 4.4 are given in Fig. 4.5. 
 
This type of experiment has the limitation that a mass associated with gripping must be 
accelerated to the speed of the drop mass over a very short period of time, resulting in 
longitudinal waves in the force sensor, which appear in the measurements as force oscillations, 
which translates into oscillations in the stress signal.  The mass of the part of the grips that is 
subject to such accelerations has been minimized; however, it must be finite to properly grip the 
specimen and prevent buckling.  With these limitations in mind, the dynamic curves determined 
by Bordier (2009) show very little change relative to the static conditions measured by Bordier 
(2009) or the model developed in Chapter 2 (listed as “Model” in the figure).  This indicates that 
for this range of strain rates, it is not necessary to model the effect of strain rate on plasticity. 
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Figure 4.3: Fixture and double shear specimen for a dynamic shear test.  The specimen (left) is 
secured by a very thin clamp in the center (center) and on the outside by a larger fixture (right).  
The larger fixture acts as the ground while the center fixture transmits an impact load through 
the center of the specimen and prevents buckling.  Photos courtesy of Bordier (2009). 
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Figure 4.4:  Equivalent stress versus equivalent strain curves determined from static and 
dynamic experiments conducted in the new apparatus, showing very little effect of strain rate on 
the hardening curves.  The waviness of the curves is attributable to the dynamics of the 
experiments.  Data courtesy of Bordier (2009). 
 



81 

0

100

200

300

400

500

600

700

0 0.05 0.1 0.15 0.2 0.25 0.3

1sε −⎡ ⎤⎣ ⎦

[ ]ε −

564s-1

205s-1

 
Figure 4.5: History of strain rate through one of the dynamic double shear experiments. 
 
4.4 Parametric Assessment of Strain Rate Effect 
 
The data for DP800 from an unknown steel supplier was published by Yan and Xu (2003).  This 
data is shown as dark dots in Fig. 4.6 and fitted with the Cowper-Symonds plasticity law.  The 
constants for this fitting are 1

0 12217 −= sε  and 33.3=CSn .  The original data is plotted as black 
dots in Fig. 4.6, and the curve fit through the points is labeled 23% in Fig. 4.6 because it 
corresponds to a 23% increase in yield strength at a strain rate of 100 s-1.  For the purpose of a 
parametric study, a family of curves is generated by retaining the same CSn  and adjusting 0ε  
such that values of 2.5%, 5%, and 10% increase are experienced at a strain rate of 100 s-1. 
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Figure 4.6:  The effect of strain rate on yield strength for DP800, compared with a Cowper-
Symonds fit.  A family of curves is also plotted that will be used in a parametric study to assess 
the effect of strain rate effects on deformation.  Note that the curve titles (e.g. 23%) relate to the 
increase in yield strength at 100 s-1. 
 
A series of experiments were run in which plates with various cutouts were clamped into a 
circular die and punched out of plane by a hemisphere attached to a falling mass.  These 
experiments were essentially dynamic versions of the experiments described in Chapter 3, except 
that only force time histories were recorded.  The dynamic experiments will be developed more 
fully in Chapter 5, in which they are used for fracture testing.   
 
This family of Cowper-Symonds relationships are applied to explicit finite element models of the 
experiments, and the results are compared with the test data in Fig. 4.7.  More details of the finite 
element model can be found in Chapter 5.  Comparison of the simulation with the experiments 
shows that the simulations that correlate best with experiments are the ones that have a strain rate 
independent material model. 
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Figure 4.7:  Comparison of test data with simulations of the same test with different 
contributions of strain rate on plasticity.  The strain rate independent model (0%) appears to 
deliver the best results. 
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4.5 Discussion 
 
In light of the above developments, it will be of interest to better understand what strain rates are 
experienced by the specimen during a typical experiment.  Therefore, the strain rate was studied 
for the dynamic experiment in which a circular plate was impacted with an initial velocity of 
13.93 m/s and a mass of 7.27 kg, corresponding to a strain rate for the center element (averaged 
with respect to plastic strain) of 782 s-1.  The effective plastic strain for a ray of elements 
extending from the center of the plate to the edge was exported for analysis.  The studied 
elements are highlighted in Fig. 4.8.  The strains were then numerically differentiated with 
respect to time by the finite difference method to obtain the strain rate.  The radial distribution of 
strain rates is shown in Fig. 4.9 for three different times in the simulations.   
 

 
Figure 4.8:  Finite element model of equi-biaxial experiment with the elements used for 
averaging highlighted in red. 
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Figure 4.9: Strain rate distribution over the radius for three different time points in the 
simulation.  The solid lines represent the spatial distribution while the dashed lines represent the 
spatial average. 
 
The spatial average of strain rate was evaluated for all of the times of the simulation according to 
Eq. (4.4).   
 

 ∫=
0

0
2
0

2 R
pp

SpAvg rdr
R

εε          (4.4) 

 
This spatial average is shown graphically as dashed lines in Fig. 4.9.  It is interesting that the 
spatial averages shown in Fig. 4.9 are counter-intuitively low, and this is because the averaging 
in polar coordinates weights points furthest from the center stronger than those close to the 
center.  The spatial average is compared against the strain rate of the center element in Fig. 4.10.  
In that figure, it can be seen that due to the low strain rate contributions of the elements at the 
periphery, the average strain rate is approximately one third that for the center element.  The 
temporal average is then taken of the spatial average, according to Eq. (4.5).   
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The resulting temporal spatial average of the whole specimen for the duration of the experiment 
was [ ]1188 −= sp

TAvgε . 
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Figure 4.10:  Strain rate history of the centermost element and the spatial average. 
 
The same parametric study with the Cowper-Symonds models shown in Fig. 4.6 was evaluated 
for the spatial average strain rate.    A comparison of the strain rate history and the spatially 
averaged strain rate history for simulations with all five material models is shown in Fig. 4.11.  
In this plot, the spatially averaged strain rates are indistinguishable from each other.  The strain 
rates of the center element are close, but not as close as the spatially averaged strain rates.  The 
importance of the difference between the various material models was evaluated by evaluating 
the temporal spatial average for each of them and plotting them as a function of the material law 
in Fig. 4.12.  This curve has a very low slope, with the difference between the most and least 
strain rate sensitive model being only 7% of the temporal spatial average strain rate. 
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Figure 4.11:  Strain rate history of the centermost element and the spatial average as compared 
to a family of similar simulations with varying effects of strain rate on plasticity. 
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Figure 4.12: Temporal spatial average of strain rate for five different simulations, each with a 
different strain rate sensitive plasticity model.  The plasticity models are the same as those 
summarized in Fig. 4.4, and they are denoted by their R value at 100s-1. 
 
4.6 Conclusions 
 
The steel being examined in this thesis is anomalous in that it does not show strain rate 
sensitivity well into the intermediate range.  This finding has been demonstrated both directly 
through dynamic shear tests and indirectly through a parametric study.  However, a review of the 
literature pertaining to the effect of strain rate on plasticity shows that this effect must be 
accounted for in the general case.  While it is reasonable to proceed with modeling the sample 
steel with strain rate insensitive parameters even for the dynamic cases, it is advisable in general 
to rigorously calibrate the effect of strain rate on plasticity for steels.  The new technique 
described in this chapter can be used for that purpose.   
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Chapter 5 
 
 

Characterization of Dynamic Fracture 
 
 
5.1 Abstract 
 
A new methodology is developed that will allow for the determination of failure parameters over 
a range of stress triaxialities from 0.4 to 0.67 and a range of strain rates from quasi-static through 
intermediate (up to 800 /s in this study).  The chosen material presented a very complex 
relationship between material ductility, stress triaxiality, and strain rate.  The presented 
methodology is based on a method for quasi-static failure testing of thin sheets first presented by 
Hasek (1978).  In this method, specimens with different arced side cutouts are clamped into a 
circular die and subjected to lateral punching by a hemispherical punch. Through membrane 
stretching of the specimens, the material is tested to fracture through a variety of stress states. 
This experimental method is analyzed by means of the inverse method, and then extended into 
the strain rate dimension through instrumented drop tower Hasek experiments. Strain rate and 
strain rate history are controlled in the drop tower experiments by variation of the drop velocity, 
mass, and test geometry. 
 
5.2 Introduction 
 
The history of ductile fracture, including some recent attempts to assess the affect of strain rate 
on fracture, was introduced in Chapter 1.  It was shown in Chapter 1 that even recent attempts to 
determine the effect of strain rate on fracture resulted in some ambiguous results, and nobody has 
quantified the effect of stress triaxiality, Lode angle, and strain rate on fracture. 
 
Punching methods popular in the sheet metal forming industry were also introduced in Chapter 
1.  A particular punching method (the Hasek method) that features membrane loading of a 
specimen with cutouts was demonstrated and favorably compared with a different fracture 
method in Chapter 3.  One of the key conclusions from Chapter 3 was also that the Hasek 
experiments were highly redundant, and that only two or three of them are truly relevant.   
 
It is from this context of an existing static fracture envelope from prior chapters along with 
ambiguous prior results that the current chapter begins. 
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5.3 Dynamic Hasek Experiments 
 
The dynamic experiments were conducted in an Instron Dynatup 9250HV drop tower.  This drop 
tower is equipped with springs so that the drop mass can accelerate faster than gravity.  Because 
of the spring assist, the drop speed depends on the drop mass.  The maximum velocity for the 
drop tower is 14 m/s for its lightest mass (7.11 kg) and 6 m/s for its heaviest mass (85 kg).  The 
drop tower is also equipped with a tup, which is a strain gage-based force sensor mounted on the 
bottom of the drop mass.  The machine measures velocity immediately prior to impact with a 
velocity flag.  Because the mass and initial velocity are known and the measured force is 
assumed to act on the bottom of the mass, the displacement can be estimated from double 
integration of Newton’s second law.  However, this method is only an approximation because 
small measurement errors in the measurement of force accumulate quickly when numerically 
integrated.   
 
The same die and punch were used as with the static portion of this study.  The contact between 
the punch and the specimen was lubricated as it was in the static case, with five layers of 0.05 
mm thick Teflon and layers of metal-free anti-seizing lubricant between each layer.  Fig. 5.1 
gives an overview of the important drop tower components and experimental setup.  The tested 
conditions are listed in Table 5.1.  All data for the dynamic portion of this study was collected 
with an analog low-pass pre-filter of 100 kHz (the highest available frequency) before being 
digitized.  Data sampling rates ranged from 2.05 MHz to 546 kHz, depending on the condition 
that was being run.   
 

Springs

Guide rails

Drop mass

Velocity flag 
detector

Force sensor

Drop mass 
arrestors

Hemispherical 
punch

Die

Clamping block
 

Figure 5.1:  Experimental setup for the dynamic Hasek tests.  The die and hemispherical punch 
were the same as those used in the static case.   
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Table 5.1:  Test conditions used for calibration of dynamic fracture locus 

Quasi-Static 0.45 0.000025 -- 0.0024
Quasi-Static 0.33 0.000025 -- 0.0028
Quasi-Static 0 0.000025 -- 0.002
Mid 0.45 2.25 7.72 164
Mid 0.33 3.11 11.06 309
Mid 0 3.67 85.06 215
High 0.45 4.94 7.36 443
High 0.33 3.25 30.47 631
High 0 13.93 7.27 782

][
0
−R

RN ]/[0 smV ][kgM ][ 1−sε

 
 
Table 5.1 shows that a different mass and velocity combination was used for every single case.  
This choice was driven by an attempt to accomplish approximately the same average strain rate 
and strain rate history for each of the experiments.  Use of the same drop mass and impact 
velocity for the specimens with different cutouts would result in different strain rate histories and 
therefore make it more difficult to compare between cases.  For example, the strain rate history 
for each of the three cutout geometries given an impact velocity of 14 m/s and a mass of 7.11 kg 
is shown in Fig. 5.2.  Not only do these histories provide results that are difficult to compare with 
one another, but the very high strain rates experienced by the middle case cause ambiguities 
when attempting to locate the time of fracture and the corresponding state of stress and strain.  
Because the strain rates of the high speed equi-biaxial case could not be increased without 
changes to the geometry (e.g die radius) or drop tower (e.g. higher maximum speed), it was 
decided to keep the equi-biaxial cases and optimize the other two cases to agree with the equi-
biaxial cases.  An additional benefit is that the equi-biaxial case appears to have experienced a 
strain rate that is the most constant among all of the cases.  Therefore, the cases were optimized 
through iterative simulations (optimizing mass and velocity combinations) to match the other 
two cases as closely as possible for the history of the curves in the effective plastic strain rate 
versus effective plastic strain coordinate system.  The results are shown in Fig. 5.3.  The choice 
to operate in the space of effective plastic strain rate versus effective plastic strain comes from 
the fact that stress triaxiality and Lode angle have historically been averaged with respect to 
effective plastic strain, so the strain rate would be evaluated in a similar way.  Therefore, 
optimizing in this space (as opposed to, for example, effective plastic strain rate versus time) 
would produce average strain rates that are closest for all three cases. 
 
It can be seen in Fig. 5.2 that the case with the intermediate cutouts had the highest strain rate.  
This is counterintuitive because this case was geometrically in between the case with the biggest 
cutouts and the case with no cutouts at all.  It can be seen in Fig. 5.3 that when the impact 
velocity for the intermediate case is reduced to have approximately the same strain rate as the 
equi-biaxial case that it features a transition from lower strain rates to higher strain rates at an 
effective plastic strain of approximately 0.4.  Both of these phenomena are easily explained with 
the same physical understanding.  While the narrowest specimen (the one with the deepest 
cutouts) and the equi-biaxial case tend not to localize, the middle case tends to localize its strain 
in a narrow strip right across the center.  This localization can be seen as an in-plane 
phenomenon (unlike necking) that is due to the deformation being concentrated because of the 
shape of the cutouts. The higher strain rate in Fig. 5.2 is attributed to the fact that the strain rate 
is measured at the center, where the strain has localized.  The transition seen in Fig. 5.3 is due to 
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the localization, where the lower strain rate corresponds to uniform straining and the higher 
strain rate corresponds to the strain rate after localization in the necked region.  For these 
reasons, this transition feature is unavoidable for the intermediate geometry, and this geometry 
should be avoided if possible.   
 
Examples of tested specimens from multiple strain rates and with all three cutout geometries are 
shown in Fig. 5.4. 
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Figure 5.2: The strain rate histories achieved when all three geometries are tested with the same 
impact velocity and mass, in this case a mass of 7.11 kg and a velocity of14 m/s.  
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Figure 5.3:  The strain rate histories for two sets of three experiments with approximately equal 
average strain rates.  Notice that while the equi-biaxial case and the narrowest case tend not to 
localize, the middle case tends to localize, producing a shift from lower strain rates to higher 
strain rates at a plastic strain of approximately 0.4. 
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Figure 5.4:  Twelve dynamic tests consisting of two tests each for three different geometries and 
two different combinations of mass and impact velocity.  Note that all of the specimens shown 
have been bent back into form for DIC analysis, though the area immediately around the 
fracture was not strained after the test. 
 
5.4 Analysis and Simulation of the Experiments 
 
The longest duration of the dynamic experiments was less than 5 ms, so the available cameras 
were not able to capture any pictures during the test for DIC purposes.  Therefore, the dynamic 
experiments were not able to be analyzed in the same method that was presented for the static 
cases.  Instead, finite element models were created for all models (static and dynamic) and run.  
The static models were presented in Chapter 3 and were solved with an implicit solution scheme. 
While the rigid punch and die geometry were identical to that of the static cases, the geometry of 
each specimen was modified to match the dimensions measured for the specimens.  The dynamic 
experiments were simulated with an explicit finite element solver because of its dynamic nature.  
Also, this set of experiments was simulated by assigning a mass and initial velocity 
representative of the drop mass to the impacting hemispherical punch.  Because the displacement 
measurement of the drop tower is considered only to be an estimate for reasons mentioned 
before, correlation was done for force versus time curves rather than force versus displacement.  
A sample finite element model of one of the dynamic cases is presented in Fig. 5.5.  The material 
model used for the simulations is described in Chapter 2.  The correlation between experiment 
and the finite element simulation of each experiment is given in Fig. 5.6 for the dynamic cases.  
Overall, the correlation between the simulations and the experiments was exceptional, leading to 
confidence that the simulations could be used to interpret the experimental results. 
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The punch and die are shown 
in gray, represented as 
analytical rigid geometry.

The specimen was represented 
as shell elements.

 
Figure 5.5:  Finite element model of the experiment, showing the specimen along with the 
analytical rigid die and punch.  Note that the faceting on the analytical rigid surfaces is only for 
display. 
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Middle Strain Rates = 164-309 /s 

Figure 5.6:  Comparison of dynamic experiments with the simulations of the same experiments 
for the set of highest strain rates tested (top) and the set of middle strain rates tested (bottom). 
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The state of stress for each model was extracted from the four elements closest to the center.  For 
each of these elements, the effective plastic strain was plotted as a time history, and the specimen 
that had the highest effective plastic strain was selected.  This procedure was followed because 
in-plane strain localization could easily bifurcate from one side of the center to the other, and this 
procedure was intended to capture the element that exhibited the most strain localization.  Once 
the critical element was selected, the effective plastic strain, von Mises stress, third invariant, and 
pressure were exported for further processing.  The stress parameters were processed into a time 
history of stress triaxiality and Lode parameter through the equations defined in Chapter 3.  The 
effective plastic strain was differentiated with respect to time by typical finite difference method 
to obtain strain rate.  The strain rate, stress triaxiality, and Lode parameter were then averaged.  
Averaging of stress triaxiality, Lode angle, and strain rate follows the same method described for 
quasi-static results.  Eq. (3.17) from the quasi-static section is repeated here as Eq. (5.1), and Eq. 
(5.2) is given as the average strain rate, along the same method.  This reflects the methodology 
set for in Bao (2003). 
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Once again, it is emphasized that these averages reflect quasi-temporal averages of a single point 
on the specimen that was deemed critical.  They do not reflect spatial averages.  The variation of 
stress triaxiality and Lode parameter with applied strain is shown in Chapter 3. 
 
The fracture strain for each case was found by taking the fracture time determined from the 
experiment and extracting the effective plastic strain from the most critical element (described 
above) at that time. 
 
5.5 Experimental Dynamic Fracture Locus 
 
The average stress triaxialities and ductilities from section 5.4 are plotted in Fig. 5.7 for all of the 
conditions tested.  Each dot, X, and triangle on this plot represents a different experiment, where 
the triaxiality is the average triaxiality for the most critical point in that experiment, and the 
ductility is the effective plastic strain for the same element at the time in the simulation that 
corresponds to fracture in the experiment.  The condition of plane stress creates a unique 
relationship between Lode angle and stress triaxiality, so the punch tests (which are plane stress, 
at least at the outer surface) can reasonably be plotted in the two-dimensional projection found in 
Fig. 5.7.  However, one must refer to the three-dimensional representation shown in Fig. 5.8 in 
order to fully understand the implications of the findings.  All of the punch-style experiments fall 
on the pink line in Fig. 5.8, which represents the plane stress assumption.  As can be seen, the 
punch experiments are confined to a narrow band of stress triaxiality, but span most of the Lode 
parameter in this coordinate system.  Therefore, the differences observed due to strain rate 
effects in punch experiments can be seen as operating mostly around an axis parallel to the stress 
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triaxiality axis.  The stress triaxiality of 0.45 (the case with the deepest cutouts in the specimen) 
corresponds to the Lode angle of almost unity.  The stress triaxiality of 0.67 (the case of no 
cutouts in the specimen) corresponds to the Lode angle of negative unity.  Therefore, the slight 
increase of ductility for the narrow specimens and decrease of ductility for the equi-biaxial case 
results in a twisting of the fracture locus.   With this twisting, the ductility in positive Lode 
angles decreases while the ductility in negative Lode angles increases.  This relationship is far 
more complex than has previously been reported in the literature; however, this is the first time 
that the effect of strain rate on fracture has been viewed in light of a stress triaxiality and Lode 
angle dependence. 
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Figure 5.7: Fracture locus of DP780 showing the effect of strain rate under different stress 
triaxialities. 
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Figure 5.8:  Relating figure 5.7 back to the quasi static fracture locus shows that increased 
strain rate tends to twist the fracture surface about an axis approximately parallel to the stress 
triaxiality axis.  
 
5.6 Dynamic Modified Mohr-Coulomb Fracture Locus 
 
The Modified Mohr-Coulomb Fracture Locus, originally derived by Bai (2008) can be easily 
modified for both the effect of strain rate on plasticity and the potential effects of strain rate on 
fracture.  To understand how these effects are introduced, the derivation done by Bai (2008) will 
be revisited.  The Mohr-Coulomb fracture criterion says that fracture occurs when the 
combination of the shear and normal stress on the fracture surface reaches a critical value, Eq. 
(5.3). 
 
 ( ) 21max cc fn =+ στ          (5.3) 
 
In the space of stress invariants, Eq. (5.3) becomes 
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To transform the above equation into a criterion based on effective strain to failure, a constitutive 
law is required.  In Bai’s (2008) derivation, he used a constitutive law that depended on the Lode 
angle (θ ).  However, it was shown not to be necessary for the material with a quadratic yield 
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condition.  It is assumed that the dependence of the equivalent stress on the equivalent strain and 
the strain rate can be written in a seperable form.  In addition, the strain hardening curve is 
represented by a power hardening law. 
 

( ) ( )εεεεσσ fC Hn== ,ˆ         (5.5) 
 
Eliminating σ between Eq. (5.4) and (5.5) gives the following for of fracture locus. 
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The present equation extends the quasi-static fracture locus derived by Bai (2008) to the dynamic 
one.  In the special case in which the function ( )εf  is given by the Cowper-Symonds law,  
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Eq. (5.6) becomes 
 

( )

( ) ( )
H

CS

n

n
p
f

c
c

c
C

1

1

2
1

1

02

6
sin

3
1

6
cos

3
1

1
6

sec1

−

⎪⎭

⎪
⎬
⎫

⎥
⎥

⎦

⎤

⎢
⎢

⎣

⎡

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
++⎟⎟

⎠

⎞
⎜⎜
⎝

⎛+

⎪⎩

⎪
⎨
⎧

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
⎥
⎥

⎦

⎤

⎢
⎢

⎣

⎡

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+=

πθηεπθε

πθ
ε
ε

ε
ε

   (5.8) 

 
where the parameters ( )ε1c  and ( )ε2c  are no longer constant but depend on the strain rate.  The 
key parameter relevant to the findings of the prior section is ( )ε1c , which is responsible for 
rotating the fracture surface.  The parameter ( )ε2c  scales the fracture locus; it will slightly 
increase to compensate for the effect of ( )ε1c  decreasing the fracture locus. 
 
The damage will accumulate according to the damage accumulation rule described in Eq. (5.9). 
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which includes the effect of strain rate, as found in Eq. (5.6). 



99 

 
5.7 Range of Strain Rates Possible with Current Method 
 
To better understand the range of velocities that can be measured on the drop tower, a program 
was written in MATLAB that would estimate the strain rates achievable with various test 
parameters.  The program is based around the force-displacement solution for a hemispherical 
punch into a plate suggested by Simonsen and Lauridsen (2000) and subsequently modified by 
Lee (2005).  The nomenclature for this analysis is given in Fig. 5.9. 

bR

P

0R cR

δ
ψ

 
Figure 5.9: Schematic and nomenclature for analytical solution of the punching of a circular 
plate.  After Lee (2005) 
 
The relationship between cR  (the radius at which the punch is no longer in contact with the 
plate) and ψ  (the angle at which the punch is no longer in contact with the plate) can be easily 
determined from basic geometry, Eq. (5.10). 
 
 ( )ψsinbc RR =          (5.10) 
 
Simonsen and Lauridsen (2000) gave the expression for the generalized membrane stress, given 
in Eq. (5.11) and the relationship between the contact angle ψ  and the punch force (P) in Eq. 
(5.12). 
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Simonsen and Lauridsen (2000) provided an expression for the punch deflection δ  in terms of 
the contact angle ψ , but the one provided by Lee (2005) was found to be more accurate, so 
Lee’s was used, see Eq. (5.13). 
 



100 

( ) ( )
( )

( )
( ) ⎥

⎥
⎦

⎤

⎢
⎢
⎣

⎡

−

+
+⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛

−
−

−

−−
+= 22

0

5.1

0

222
0

0 39

12
3
2

ln
9
1

36
132

2 ξξ

ξξ

ξ

ξ

ξ

ξ
ξ

ξξψξψδ cc

c

c

c

ccc

R
 (5.13) 

 

where the dimensionless radii are 
0

0 R
Rb≡ξ  and 

0R
Rc

c ≡ξ . 

 
This system was analyzed as a single-degree-of-freedom dynamic system in which the stiffness 
is given by Eq. (5.13).  The differential equation governing the dynamics of the drop mass 
encountering the specimen is given by Eq. (5.14): 
 

( ) δδ MP =           (5.14) 
 
The discrete form of Eq. (5.14) is Eq. (5.15): 
 

ii MP δ=           (5.15) 
 
where the mass M is constant throughout the experiment.  The acceleration δ  is found by 
application of Eq. (5.16). 
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Substituting Eq. (5.16) into Eq. (5.15) and solving for 1+iδ  gives Eq. (5.17): 
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Once the displacement was found for time step i+1, the corresponding force was found by 
applying Eq. (5.12) and (5.13). 
 
Based on the assumption of membrane tension and vertical displacement of material points, 
Simonsen (2000) proposed that the normal strain in the radial and thickness directions could be 
approximated as Eq. (5.18), and the tangential and shear strains could be approximated as Eq. 
(5.19). 
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Once the strain was found, the radial strain rate was approximated according to Eq. (5.20): 
 

t
ii

i Δ
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= −1εε
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For all cases, the tΔ  was taken to be 0.012 milliseconds, which resulted in a different amount of 
integration steps, depending on how long each of the conditions was. 
 
Because the case of a hemisphere pushing into a circular plate without cutouts was the only 
condition that an analytical solution existed for, that was the only condition that was analyzed in 
this way.  The circular plate absorbs more energy than any of the cases with cutouts, so it is 
anticipated that it will have the lowest strain rate.  The results are summarized in Fig. 5.10, 
which shows the effect of various geometrical effects on the maximum strain rates achievable by 
the current drop tower for the highest drop mass and for the highest velocity of the machine.  
Note that the die radius used in this study was 24.5 mm (closest to the red dot-dash line), and that 
the ratio bRR /0  used in the current study was 1.1.  Ratios of bRR /0  less than 1 are impossible 
because the radius of the punch would be greater than the radius of the die. 
 

mmRb 3.6=

mmRb 2.22=
mmRb 0.45=

mmRb 3.6=

mmRb 2.22=
mmRb 0.45=

 
 
Figure 5.10:  Strain rates that the drop tower is capable of achieving for punching a circular 
plate with various punch radii (Rb) and die radii (R0).  The plot on the left corresponds to the 
maximum drop mass with the corresponding maximum drop velocity.  The plot on the right 
corresponds to the maximum drop velocity with the corresponding drop mass.    
 
An important conclusion from this section is that there is a very wide range of strain rates 
achievable if different die and punch diameters are chosen.  The strain rates achievable in the 
drop tower in the current thesis were bounded between 163-827 s-1 because the strain rate was 
modified only through changes in initial velocity and mass.  Die and punch radii were chosen 
beforehand and held constant for all conditions.  The lower bound came from the constraint that 
there is a maximum mass available in the drop tower, so there is a minimum critical energy to 
fracture.  For example, some of the low strain rate conditions were exactly at the critical energy 
to fracture.  Still lower strain rates could have been achieved by using a lower-diameter die.  The 
upper bound of the strain rates was limited by the maximum velocity of the drop tower.  This 
bound could have been increased by using a smaller die. 
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5.8 Conclusions 
 
A novel methodology has been laid out whereby fracture in sheet metals can be tested over a 
wide range of stress states and strain rates.  The stress state can be varied over a wide range of 
Lode parameters and a narrow range of stress triaxialities.  A range of dynamic strain rates 
spanning 163-827 s-1 has been demonstrated, and a much wider range is achievable given 
different punch and die choices.  
 
The new procedure is based on an inverse method, in which simulations of experiments are used 
to determine critical testing parameters.  The application of this inverse method requires a good 
plasticity model that accounts for all mechanical effects experienced in the experiment, including 
strain rate effects.  For these effects, the reader is referred to Chapters 2 and 4. 
 
A very complex relationship between stress triaxiality, Lode parameter, strain rate, and ductility 
has been found.  This relationship shows that the fracture three dimensional fracture locus twists 
with strain rate, resulting in reduced ductility with positive Lode angles and increased ductility in 
negative Lode angles. 
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Chapter 6 
 
 

Conclusions and Future Work 
 
 
6.1 Introduction 
 
This chapter is divided into two major sections: conclusions and future work.  The conclusions 
review some of the major accomplishments of the prior chapters.  The section on future work 
reviews some possible directions that this work could take in the future and comments briefly on 
some of it that is already underway.  While this work is believed to be complete, there are always 
paths that can be further developed and new questions that are raised.  The section on future 
work is intended to help address some of these questions. 
 
6.2 Conclusions 
 
There are a number of important conclusions that fall out from the prior chapters, and they will 
be summarized below.  The conclusions fall into two main categories: general conclusions and 
particular conclusions.  The general conclusions represent major contributions to the literature 
and are intended to provide guidance and experience to future researchers.  They tend to focus on 
methodology.  The particular conclusions are findings about the particular material that was 
tested and are believed to be of interest to those who would apply this data in simulations or do 
further research on DP780 by US Steel. 
 
6.2.1 General Conclusions 
 
An overall methodology has been laid out and demonstrated for the determination of the effect of 
strain rate on fracture for a variety of multi-axial states of stress.  This method relies very heavily 
on punching-style experiments.  Along the way, the static fracture locus was determined by a 
parallel method in which a butterfly-shaped specimen is subjected to various combinations of 
tension and shear.  It has been shown that other than for a shear fracture experiment, the butterfly 
method is redundant with the punch-style experiment.  Therefore, a procedure similar to that 
presented in Chapter 1 is outlined in Fig. 6.1 with the exception that it excludes butterfly 
experiments for the fracture characterization.  It is noted in Fig. 6.1 that dynamic plasticity must 
be studied.  While the sample material in this thesis appeared to be strain rate insensitive over the 
range of strain rates studied, it is necessary to assess the effect of strain rate on plasticity in the 
general case, in which the material may experience a much higher sensitivity.  The present 
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experimental technique would work equally well for strain rate sensitive and strain rate 
insensitive materials. 
 
It should be noted that because the punch tests are not fully capable of spanning the states of 
stress necessary to model fracture that a new shear experiment is recommended for the future.  
The development of a shear fracture experiment will be the subject of future research. 
 

Static Plasticity

Static Punch 
Fracture

Dynamic 
Plasticity

Dynamic Punch 
Fracture

 
Figure 6.1:  Recommended procedure for the determination of a dynamic fracture envelope. 
 
In addition to the procedure that was developed, Chapter 3 demonstrated that punch style and 
butterfly style experiments agree quite well when plotted in the three dimensional space of stress 
triaxiality, Lode parameter, and ductility.  This has brought the academic community together 
with the sheet metal forming community, and it has also shown the necessity of a three-
dimensional fracture locus, rather than the two-dimensional locus traditionally used by the sheet 
metal forming industry.   
 
It was also shown in Chapter 3 that while the butterfly experiments are sufficient to calibrate a 
three-dimensional fracture locus, punch-style experiments alone are not.  A single point (most 
preferably shear) is necessary in addition to the punch-style experiments for a full three-
dimensional calibration of the fracture locus.  However, it has been shown that more than two or 
three Hasek experiments are redundant.  Therefore, there is a recommendation to the sheet metal 
community to reduce the number of punch experiments traditionally done and instead add an in-
plane shear fracture test. 
 
In Chapter 5, it was shown that the dependence of ductility on stress triaxiality, Lode angle, and 
strain rate is far more complex than previously thought.  While positive Lode angles reduce 
ductility, negative Lode angles tend to increase ductility. 
 
Chapter 2 unveiled the use of a biaxial plasticity specimen that has no thickness reduction in the 
gage section.  This specimen holds the potential to contribute to the understanding of full-sheet 
plasticity parameters rather than assuming that material properties are homogenous through the 
thickness of the sheet. 
 
6.2.2 Particular Conclusions 
 
Chapter 2 demonstrated that US Steel DP780 can be characterized as a Hill ’48 material with in-
plane isotropy.  A full hardening curve and Hill coefficients were delivered in that chapter. 
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Chapter 3 delivered the MMC coefficients for US Steel DP780, and showed the applicability of 
this model for both punch-style and butterfly-style experiments. 
 
Chapter 4 demonstrated a method being developed by Bordier (2009) for dynamic double shear 
plasticity testing and showed that the test material is very close to strain rate independent for the 
range of strain rates up to almost 600 s-1. 
 
6.3 Future Work 
 
The first and most straightforward application of this thesis would be to simply apply it to a 
different material.  Application of this methodology to a different material would show if the 
findings regarding the dependence of fracture on strain rate are generalizable to other grades of 
AHSS, other steels, or metals in general. 
 
Another pressing need is for further development of the effect of strain rate on plasticity in the 
intermediate range.  As outlined in Chapter 1, researchers are struggling to develop tensile 
testing experiments in the intermediate range that do not suffer from large vibrations due to 
dynamics.  Some researchers use upsetting tests either in high-speed hydraulics or in split 
Hopkinson bars, but upsetting tests can be challenging for the in-plane direction for sheet metals. 
 
Work is already underway to develop more advanced techniques for testing the effect of strain 
rate on plasticity within the Impact and Crashworthiness Laboratory (ICL).  One contribution is 
the work of an undergraduate, (Chan, 2009), in which a fixture and specimen was designed for 
tensile testing in the drop tower.  With this fixture, the specimen is bent into a “U” shape, with 
dogbone specimens on the vertical sides of the “U”, which are subjected to tension when the 
hemispherical end of the drop tower tup pushes into the bottom of the “U”.  See Fig. 6.2 for a 
schematic of this fixture.  This fixture promises to exactly span the intermediate range, with 
maximum strain rates near 1000 s-1.  However, this device remains unproven and has several 
technical hurdles yet to overcome.  The first and largest technical hurdle will be the fact that the 
impact of the hemispherical tup onto the bent sheet metal specimen will result in bending waves 
propagating through the specimen.  While the bending waves can be partially accounted for by 
mounting strain gages on both faces of the specimen, simulations have shown that they will 
continue to introduce unwanted dynamic effects into the experiment.   
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Figure 6.2: Fixture and specimens developed for tensile testing of sheet metals in a drop tower.  
The schematic shows how the drop mass impacts onto a curved specimen that is clamped on the 
top (left).  The CAD model shows the clamping fixture, force sensor, and impacting tup in the 
context of the drop tower (center).  The image on the right shows the curved specimen with 
dogbone specimens machined into the sides.  After Chan (2009). 
 
Another avenue of finding the effect of strain rate on plasticity is a dynamic shear test currently 
being developed by Bordier (2009).  The experimental setup and preliminary work by Bordier’s 
(2009) was described in Chapter 4.  As mentioned in Chapter 4, the design is quite promising, 
but it is not yet fully mature and validated.  This line of research will continue under the efforts 
of Bordier. 
 
It was shown in Chapter 5 that the drop tower punch method of fracture characterization is 
capable of higher and lower strain rates than those tested in the current work.  It would be of 
interest to take advantage of the effect of changing die sizes to explore strain rates higher and 
lower than those tested.  While the figures in Chapter 5 showed a very large range of punch 
radius to die radius, it is recommended that this ratio be kept approximately constant to achieve 
similar histories of stress state.  This is because a sufficiently small punch relative to the die 
would result in approximately equi-biaxial conditions even in specimens with large cutouts 
through most of the experiment. 
 
Finally, collaboration has already begun with the group of Professor R. Radovitzky at MIT to use 
the existing experiments as validation for a Cohesive Zone approach to fracture. 
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Appendix A 
 
 

Calibration of a Drop Tower Force Sensor 
 
 
A.1 Abstract 
 
A procedure was obtained from Instron (Banik, 2003) and applied to re-calibrate the 200 kN 
force sensor provided with the drop tower.  As compared with the load cell installed on the MTS 
testing machine, the Instron drop tower force sensor was slightly nonlinear and measured 
approximately 17% less force than was applied. 
 
A.2 Introduction 
 
Force sensors can drift over years.  The force sensors provided with the drop tower used for the 
main experimental work for this thesis were last calibrated in 2003 and were already three years 
overdue for a new calibration by the start of major drop tower testing.  As well, the calibration 
certificates provided with the force sensors indicated that the force sensors had a slightly 
nonlinear force versus voltage output.  Preliminary drop tests had shown forces that were lower 
than expected.  The procedure “Work Instruction: Dynatup Force Verification Procedure Using 
Impulse DAQ Software,” written by M. Banik at Instron and dated September 15, 2003 was used 
for the calibration of the 200 kN force sensor. 
 
A.3 Procedure 
 
Under construction 
Before the force sensor could be calibrated, a plan needed to be developed to allow for the sensor 
to be loaded to high forces (in excess of 50 kN) with little risk of the sensor buckling, being 
overloaded, or being otherwise damaged.  It was decided that the force sensor should not be 
simply crushed between platens because the stiffness of such a system could possible cause 
either the Instron force sensor or the MTS load cell to be overloaded accidentally.  An early 
attempt at reducing the stiffness of the system was to introduce wood or bulk polymers (e.g. one 
inch thick nylon) between the MTS load cell and the Instron force sensor.  However, these 
materials were too strain rate sensitive, and it required constant adjustment of the crosshead 
location in order to maintain a force steady enough for readout.  Instead, an aluminum part was 
created with a large through-hole and a chamfer at the top of the through-hole.  This part was 
crushed between a flat platen on top and a hardened hemispherical punch on the bottom.  (The 
chamfer was against the hemisphere.)  The configuration is shown in Fig. A.1.  The aluminum 
proved to be rate insensitive enough to allow a constant force while the whole system proved to 
be flexible enough that it was easily loaded to the appropriate force through displacement 
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control.  However, ONLY THE THUMB WHEEL WAS USED TO CONTROL THE 
DISPLACEMENT OF THE MTS CROSSHEAD; THE ARROWS (FAST JOG) WERE NOT 
USED AND ARE ILL-ADVISED.  It is strongly recommended that anyone calibrating the force 
sensor with this procedure practice by configuring the system and very slowly using the thumb 
wheel of the MTS machine to go to target forces below the capacity of either MTS load cell or 
Instron force sensor.  
 
This procedure has only been validated up to 80 kN, and safety can’t be assured higher than that.  
It is critical that the load path be well centered and that appropriate safety precautions be taken in 
the event that the elastic energy of the system is unexpectedly released. 

   
Figure A.1: Hardware and installation of the Instron force sensor in series with the MTS load 
cell. 
 
The tup cable was extended by adding an additional DSUB-9 cable so that it could reach from 
the MTS load frame to the ISCU attached to the drop tower.  The platens and force sensor were 
arranged in the MTS load frame in the configuration shown above.  The file Impulse.ini on the 
drop tower computer was modified so that a test could be run for 30 seconds.  The velocity flag 
detector was located at an appropriate position, and the drop mass was picked up so that the flag 
was at an appropriate height above the flag detector.  A “velocity test” was set up in the Impulse 
software on the dropt tower computer.  The drop tower data acquisition was started by dropping 
the mass so that the velocity flag went through the detector.  During the course of the next thirty 
seconds, the Instron force sensor was then loaded to a target force.  The force measured by the 
MTS load cell system was then recorded by hand based on the readout of the computer 
associated with the MTS system.  The force recorded by the Instron force sensor was retrieved 
from the Impulse software after the test.  This procedure was repeated several times to find many 
pairs of MTS load cell versus Instron force sensor force measurements.  The details of this 
procedure relating to the operation of the drop tower and Impulse software can be found in Banik 
(2003).  
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A.4 Results 
 
The Instron data acquisition software (called Impulse) requires the input of a “tup calibration 
factor,” which allows the user to adjust the calibration factor slightly for different anticipated 
maximum forces.  By executing the above procedure with different tup calibration factors, it 
became clear that the tup calibration factor merely scales the data.  Therefore, it was found that 
the data could be retrospectively changed from one tup calibration factor to another simply by 
multiplying the data by a ratio of the desired one to the one used during the experiment.  
Therefore, all results of the calibration were taken at the same tup calibration factor, or they were 
multiplied by the appropriate factor to act as if they had been.  The tup calibration factor used for 
the calibrations was 117.219 kN.   
 
The forces measured on the MTS load cell are plotted against the forces measured by the Instron 
force sensor (“tup”) in Fig. A.2.  Ideally, the relationship will start at the origin and have a slope 
of unity, and this relationship is plotted in the figure and labeled “ideal.”  The difference between 
the measured points and the ideal curve can be clearly seen.  Because of the slightly nonlinear 
nature of the Instron force sensor, a quadratic equation with a zero intercept was fit through the 
data.  Use of the quadratic equation is believed to eliminate the need for different tup calibration 
factors for different anticipated force magnitudes in the experiments.  Applying the quadratic 
correction equation to the measured Instron force sensor data resulted in the corrected data also 
shown in Fig. A.2.  The correction equation is given in Eq. (A.1). 

0

10

20

30

40

50

60

70

80

90

0 10 20 30 40 50 60 70 80
Max tup force [kN]

M
ax

 M
TS

 fo
rc

e 
[k

N
]

Raw test data
Ideal
Corrected

 
Figure A.2: Calibration results of the MTS Load cell versus the Instron force sensor (“tup”) 
showing original measurement and the same measurement when adjusted with the suggested 
quadratic equation. 
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(A.1) 
 

A.5 Recommendations 
 
The equation A.1 should be applied to all force data measured on the drop tower by the 200 kN 
force sensor.  The 15 kN force sensor should be calibrated in a similar fashion.  Both force 
sensors should be verified before any large testing series and periodically.  The calibration of the 
200 kN force sensor should be verified if attempting to measure forces much greater than 80 kN.
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