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ABSTRACT

When a rotating axisymmetric container is emptied through

a concentric hole in the bottom, an instability manifested as

an azimuthally travelling wave is observed. This wave has a

crest that stretches from the inner exit hole to the outer

bounding wall and travels in a prograde sense. Experiments

demonstrated that this wave had a distinct behaviour as a func-

tion of rotation rate of the container, f/2, when the exit hole

and pumping rates were fixed. The experiments showed that there

were four regions of the wave amplitude and wave frequency as

functions of f. Two of these regions had a wave frequency that

was independent of the rotation rate of the container and the

other two had a wave frequency that was dependent upon the ro-

tation rate of the container.

Analytical studies showed that the wave traveled at a speed

near the shallow water wave speed and that the solutions to the

perturbation equations were singular when the radial velocity

was zero or the Froude number unity. Suggested applications of

these results are to deep oceanic sill flows, to fluid with-

drawal by ocean thermal energy converting plants and to the

emptying of fuel tanks on rockets.

Dr. John A. Whitehead, Jr., Thesis Supervisor.
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FIGURE CAPTIONS

No. Title Page

2.1 A cutaway schematic of the apparatus used for the
investigation of the wave. The letters refer to
the following:

H the water
P the pump
C the catch basin

Sl the inner screen wall
G the gravel filler
S the shaft of the table
0 the loop of feeder hose
R the exit hole

The table rotated at frequency f/2. Note the
shape of the free surface of the fluid in the
tank. 14

2.2 A schematic of the setup using the strobe light
to obtain pictures of particle paths. The
letters refer to the following:

T the tank
L the strobe light

CN the camera
H the water
S the shaft
P the pump

The tank rotated at frequency f/2. 14

2.3 This is the apparatus used for experiments in
the rotating stratified flows. The top layer,
1, was placed in the tank and then spun up to
frequency f/2. The second and third layers were
then put in while the tank was rotating, through
the use of the funnel, F. The denser fluid
would come up through the gravel bed, G, there-
by being forced into solid body rotation with
the table. The water was then withdrawn at a
rate of 8 cm 3/sec into a reservoir, R, by the
pipe, W. The entire apparatus was mounted on a
one meter turntable. The densities in the layers
are:

1. p = 0.9975 gm/cm 3

2. p = 1.0053 gm/cm 3

3. p = 1.0125 gm/cm 3 17



No. Title Page

2.4 This shows a typical result of an experimsntal
run. This was for the large pump (640 cm /sec)
and a 4.8 cm radius exit hole. The height of
the fluid is measured near the diffuser and ex-
hibits an f2 behaviour. It appears that there
is an onset of the wave at approximately f = 1
rad/sec, though it will be shown in Figure 11
that a wave actually appears earlier but is
hidden here due to instrument noise. The wave
then persists throughout the frequency range
of this experiment though it does change char-
acter at approximately f = 2 rad/sec and f =
2.6 rad/sec. The frequency of the table was
slowly increased every 15 seconds from f = 0
rad/sec to f = 4 rad/sec over a span of 35
minutes. The rotation rate was then decreased
back to zero and though the same pattern emerged,
it appears that the cutoff is at the frequency
of approximately f = 0.8 rad/sec. The numbers
1-5 on the graph will be explained in the fol-
lowing figure. 20

2.5 Plots of pressure versus time at values of f
corresponding to the indicated places in Fig-
ure 5. The tick marks below each curve were
recorded directly from a switch on the turn-
table and correspond to one table revolution.
The hole was at r = 4.8 cm, the diffuser at ri
= 15.0 cm and the probe at r2 = 14 cm. The
time scale at the bottom is in seconds, and
the height of the wave diminishes as can, be
seen from the scaling on the right. Impbrtant
features to note are that the wave is not
locked to the rotation of the table and that
the shape of the wave changes dramatically
with frequency. The wave profiles in case 1
are very much like a bore whereas in 3 they
are tooth-like. The jagged small scale be-
haviour in 4 and 5 is due mainly to instru-
ment noise. Later experiments in the range
of 4 and 5 showed almost an infinitesimal
sinusoid. 22
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2.6- A series of experiments with different size
2.9 pumps and exit holes were made. The pres-

sure measurements were recorded along with
table rotations on a strip chart. Frequencies
and amplitudes of the wave were measured from
the graph and plotted against the rotation rate
of the table. The frequency of the waves were
corrected for Doppler shifting by the formula
Vw = VM - v(r)/r where Vm is the measured fre-
quency of the wave, vw is the actual frequency
of the wave and v(r) is the steady state azi-
muthal velocity obtained by Whitehead and
Porter (1976). Transitions in frequency are
often paralleled by transitions in amplitude.
The frequency of the wave and the amplitude
are plotted on the ordinate and the rotation
rate of the table is plotted on the abscissa. 25-32

2.6 This was the case of the small pump (400 cm3/
sec) and hole of radius 3.81 cm. Note that
the frequency of the wave remains almost con-
stant at v = 3.3 rad/sec until f = 1.1 rad/sec.
Here the wave dies in amplitude before coming
back as a finite amplitude wave with a fre-
quency which behaves as f-59 . This frequency
behaviour persists even as the amplitude de-
creases once more. 25

2.7 As in the previous figure the small pump was
used, but the hole was increased to 4.8 cm.
The amplitude roughly remains constant over
the entire frequency range considered. The
wave frequency is constant at v = 3.4 rad/sec
until the break which occurs at f = 1.72
rad/sec and therea er it exhibits a slope
proportional to f. 27

2.8 The large pump (640 cm3/sec) and 3.81 cm radius
hole were used in this experimental run. The
wave was of finite amplitude and equal in mag-
nitude to the water depth over the region
f = 0.55 rad/sec to f = 1.2 rad/sec. At
f = 1.34 rad/sec there is a transition in am-
plitude to a regime that strongly resembles
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the beating of two frequencies. The "beating"
region is marked on the graph by the shaded
region. The top bounding line on that region
was the maximum amplitude of the wave and the
bottom boundary line was the minimum amplitude
of the wave. This region was not present in
the previous figures. Then at f = 2 rad/sec
the finite amplitude wave returns and then be-
gins to decrease as the rotation rate of the
table is increased. Even though the amplitude
goes through three different transitions the
wave frequency still exhibits the type of be-
haviour observed in the previous figures. It
remains roughly constant at v = 4 rad/sec and
then at f = 2.01 rad/sec (the same point as
the "beating" occurred) the wave frequency
begins to increase at a rate of f-5 2 . 29

2.9 The most unusual of all results occurred for
the large pump (640 cm3/sec) and hole radius
of 4.8 cm. It has a region called the "micro-
wave" range where the amplitude was just
measurable. This had a high frequency of
6.3 rad/sec and was stable. At f = 1 rad/
sec a finite amblitude wave is set on and the
frequency of the wave is reduced to 4.3 rad/
sec. At f = 2.05 rad/sec there is again the
"beating" effect and the wave begins to die
away until at approximately f = 2.88 rad/sec
there is a large finite amplitude wave with
a frequency dependence of f -47. 32

2.10- These are made from the strobe light photo-
2.11 graphs of particle positions in the wave

tank. All cases are for the large pump
(640 cm3/sec) and a hole radius of 4.8 cm.
It was impossible from the photographs to
ascertain the position of the wave crest at
any given time. The circle is the exit hole.
The frequency in the right hand bottom corner
corresponds to the table rotation and cor-
responds to a wave frequency and amplitude
which may be obtained from Figure 2.9. 36-37
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2.10 The three separate tracks demonstrate that
the flow is by no means steady. Some flows
exhibit the spiraling predicted by theory
while others behave as if the flow were not
rotating at all. The time between dots is
.025 sec. 36

2.11 This figure is a remarkable plot in that
there exists a flow shown by the spiraling
pattern where the fluid velocity has a radial
component outward. The time between dots is
.025 sec. 37

2.12- This series of diagrams is made using the
2.14 same parameters as in the previous two photo-

graphs. However, instead of a strobe light
a 16 mm movie of the wave was made. The time
between dots is .05 seconds. 38-40

2.12 There was a bore present in this case and the
flow was sometimes radially in and at other
times in the form of a spiral depending upon
the position of the wave. 38

2.13 This wave also exhibits, as did Figure 13,
the flow reversal.

2.14 This shows the flow at high rotation rate when
the wave was very small in amplitude and most
effects were due just to that explained by
steady state theory. 40

2.15 This is a photograph of the stratified experi-
ment. There exists on the outside of the cone
of fluid a rather fuzzy coating (arrow) that
rotated rapidly in the prograde sense. It is
suggested that this might be the stratified
case for the instability. 42

3.1 Experimental observations of the height at
some rotation rate f minus the height for the
same pumping rate at f = 0 times a correction
factor

2

C = 8g r2/(l 2)(ry)
r 2
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3.1 (Contd.)

In all runs the radius of the hole ro = 4.8 cm,
radius of the diffuser r1 = 15.0 cm; (o) - Q =
136 cm3/sec, r2 = 13.8 cm where r2 is radius of
the height measuring probe; (-) - Q = 533 cm 3 /
sec, r2 = 13.3 cm. The interval between the
two W's exhibited a traveling wave on the flow
for Q = 533 cm3/sec. The six circles in the
upper right may have been influenced by an
Ekman-layer flux as discussed in the text. 46

3.2 This is a Fourier decomposition of the waves
as exemplified in curves 1 and 3 of Figure 2.5.
Line B corresponds to a wave frequency of
4.64 rad/sec and C to a wave of frequency of
5.20 rad/sec. Both have been normalized by
their means so that the amplitude, A, is 1 at
f = 0 rad/sec. Though one is a shorter
record than the other, the salient features
are evident. The amplitude of the sawtooth
wave is higher in the lower frequencies than
that of the bore whereas at higher frequen-
cies the bore has a higher amplitude thus
stressing the nonlinear effects. From f = 1
rad/sec to f = 2 rad/sec the fall off in the
B-type wave is one-half whereas it is one-
fifth for the C-type. 54

3.3 The figure shows the exit hole centered about
the origin 0 and the wave crest extending out
to the radius rl. The radial and azimuthal
vectors are r and 8, respectively. nis the
normal to the wave crest. u = u(r), the
radial velocity and v = v(r) - vr, the azimu-
thal velocity of water in the wave frame of
reference. 55

3.4 This shows the radial distance of the wave
crest, R, as a function of -6. The solid line
D is the wave crest measured from the exDeri-
ment where Q = 640 cm 3/sec, ro = 4.8 cm and
f = 1.5 rad/sec. The dotted line, T, is the
theoretical calculation. The value went
complex at R = 6 cm. 56
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1.0 INTRODUCTION

Under certain conditions when a fluid is spun up in a cylin-

drical container and emptied through a hole centered in the con-

tainer's bottom, an instability in the flow occurs in the form of

an azimuthally travelling wave. The observation of this instabil-

ity was made during an investigation of the steady state critical

withdrawal of a fluid from a rotating cylinder. In this investi-

gation Whitehead and Porter (1976) studied the inviscid, vertically

integrated Navier-Stokes equations and were able to obtain a

theoretical prediction of the way in which the fluid emptied out

of the container. They then built a laboratory experiment analogous

to the steady state emptying problem and while making measurements

to test the theory, observed an instability manifested as this

azimuthally travelling wave. The crest of the wave stretched from

the exit hole to the outside wall of the container and propagated

in the prograde sense. The wave had a frequency approximately

five times that of the rotating container and its amplitude varied

for different parameters from an infinitesimal height to heights

equal to the fluid depth.

The results of the investigation of this instability have in-

teresting applications outside the specific field of rotating

critical flows. For example, it is possible that the mechanism

that feeds this instability is also at play in the deep sill flows

between the major ocean basins. Some suggestive evidence for this

is from current meter data taken at the Windward Passage which

shows strong bursts in velocity over periods of days. These bursts



are intermittently added to a steady mean flow that exists at

the sill (Stalcup, personal communication). Another possible

oceanic application is in the operation of the ocean thermal

energy converting power plants (OTEC) (Anderson and Anderson 1966,

Zener 1973) which will withdraw large quantities of water from

below the thermocline. This not only gives rise to the question

of how important.the earthis rotation will be in the withdrawal

of the water but also to the question of whether or not this in-

stability will affect the plant's function. One last applica-

tion from a rather different field of study is the emptying of

fuel tanks on rockets. If the fluid has a slight spin as it is

being emptied it may be that the wave can be onset and thereby

provide an unfavorable torque on the vehicle.

The following sections of this paper are concerned with the

details of both the experimental and theoretical results. The

experimental results in Section II entail both a detailed descrip-

tion of the apparatus used and the results of the experiments per-

formed. Section III is the theoretical section and begins with a

review of the steady state solution for critical withdrawal by

Whitehead and Porter. Attempts are made using dimensional analysis,

kinematic conditions and the full, time-dependent Navier-Stokes

equations to obtain the controlling parameters of the flow. The

last part, Section IV, is a summary with suggested applications

of the results to fluid withdrawal problems,
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2.0 THE EXPERIMENT

2.1 Wave Apparatus

The apparatus allowed a steady uniform flow from the out-

side wall of a right circular cylinder to a concentric inner

exit hole to be maintained while the rotation rate of the ap-

paratus was varied (see figure 2.1). The right circular tank

was constructed of 1/8" plexiglass. The height and outside

radius of the tank were 17 cm and 20 cm, respectively. The top

of the tank was open and the bottom of the tank was flat. A

concentric hole 4.8 cm in radius was cut in the bottom.

A diffuser which formed the inner wall of the apparatus

allowed the fluid to flow uniformly in from the outside wall.

The diffuser had a window screen wall that stood 15 cm high and

had a radius of 15 cm. This wall was positioned concentrically

in the tank leaving a space between the outer plexiglass wall

and the inner screen wall. The interstitial space was filled

with gravel of mean diameter 1 cm. Imbedded in this gravel was

a loop of hose, closed at one end and connected to rubber tubing

at the other end. The tubing was connected to a submersible

pump. The hose of outside diameter 2.5 cm ran around the cir-

cumference of the screen wall and had holes of diameter .25 cm

drilled in it every 2.4 cm.

The entire apparatus described above was mounted over a

catch basin that contained the submersible pump as well as the

fluid. When the pump was turned on the fluid was drawn up and

forced through the tubing, into the loop of hose imbedded in
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the gravel. The fluid flowed out the holes that were drilled

in the hose, into the porous medium, and out the screen wall.

An axisymmetric flow was obtained as the fluid entered uniform-

ly with a velocity vector normal to the screen wall. The radi-

ally inward flow was terminated at the exit hole where the fluid

fell through to the catch basin where it began its journey once

more.

The variable parameters of the experiment were the rotation

rate, the exit hole size and the pumping rate. The rotation

rate was varied by mounting the entire apparatus on a variable

speed turntable. A slowly revolving d.c. motor was connected

to the table's transmission allowing the rotation rate of the

table to be changed slowly and continuously. A typical accel-

eration was from f = 0 rad/sec to f = 4 rad/sec in a one and

one-half hour period. The d.c. motor could be reversed to run

the same experiment with the rotation rate decreasing. The exit

hole size was varied by constructing false bottom inserts with

holes 1.27 cm, 2.54 cm, 3.81 cm, and 4.8 cm in radius. The

pumping rate was varied by the use of two different pumps with

flow rates of 640 cm 3/sec and 400 cm 3/sec. (See Appendix A

for a discussion of errors in measurements.)

The height of the fluid measured at a point and the table

revolution were simultaneously recorded on a strip chart re-

corder. The measuring system for the fluid height was a "tyco"

LP pressure transducer, linear to 1% over its 1 psi pressure

range. The transducer was connected by a .2 cm outside dia-

meter stainless steel tube, 23 cm in length, to the tank's



bottom. The signal from the transducer was recorded on a two

channel strip chart recorder. In addition there was a magnetic

switch on the turntable that recorded each table revolution on

the other channel of the recorder. The table frequency, wave

frequency, wave amplitude and fluid depth were calculated from

the information recorded on the strip chart.

2.2 Lagrangian Tracers

A variation on the apparatus described in Section 2.1

allowed the fluid motion to be observed by use of Lagrangian

tracers (Figure 2.2). A camera mounted over the apparatus in

the rotating frame of reference was used to obtain pictures of

the position of small pieces of paper. The shutter of the

camera was left open and a strobe light mounted on the side of

the apparatus was turned on. Thus a time lapse photograph of

particle position was made. This experiment used only the large

pump and the largest exit hole. No wave front information was

obtained. The particle paths for a few of the runs are plotted

in figures 2.10 and 2.11.

2.3 Stratified Experiment

A different experiment was run that was an attempt at the

stratified analogue of the experiment described in Section 2.1.

The apparatus used in this experiment was a plexiglass tank

that stood 31 cm high and had a square bottom measuring 38 cm on

the side (see figure 2.3). The bottom of the tank had a gravel

bed with a hose imbedded in it. The hose ran up along the

corner of the tank and then to a funnel supported dead center
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over the tank. The lightest fluid of density .9975 gm/cm3 was

then poured into the tank and spun up. A second fluid of salt-

induced density 1.0053 gm/cm3 was introduced through the rock

bed at the bottom by pouring the fluid into the funnel while

the apparatus was in rotation. This allowed the fluid to

come into the tank in solid body rotation. A third fluid of

density 1.0125 gm/cm3 was introduced last. A withdrawal pipe

of outside radius 1.27 cm was inserted in the fluid along the

axis of rotation and it extended down to the middle layer. A

siphon was started that emptied the fluid out at a rate of

8 cm 3/sec. A camera mounted on a tripod in the lab frame re-

corded the fluid withdrawal. A result is shown in figure 2.15.

2.4 Experimental Results

An experimental run consisted of slowly increasing the

rotation rate of the table while keeping all other parameters

constant. Having fixed the hole size and pumping rate, the

recording devices and the motor drive on the transmission were

activated. Once the wave was onset it was possible to de-

termine the frequency of the wave, v, and the frequency of the

table f/2 from the record made. The wave had a crest stretch-

ing from the inner hole to the outer wall and traveled in a

prograde sense. The amplitude of the wave and the frequency

of the wave were then plotted as functions of the table rota-

tion f in figures 2.6-2.9.



Figure 2.4 represents a typical result from the strip

chart recorder. The figure shows the fluid height plotted on

the ordinate of the graph with f plotted on the abscissa of

the graph and the actual time into the experiment on the axis

at the top. The noise in this experiment was approximately

.1 cm. The speed of the chart paper was slow such that the

actual oscillations of the wave are not discernible, but their

crests and troughs are easily demarked. This experiment had as

parameters the large pump (640 cm3/sec) and large hole (4.8 cm).

One of the first features to be observed is the mean trend which

2 2
follows the curve f exactly. This f behaviour is predicted

by. the steady state theory.

Superimposed on the mean height is the prominent wave. As

f increases from f = 0 rad/sec to f = 1 rad/sec there is no ap-

parent wave. After f = 1 rad/sec there is the onset of a finite

amplitude wave with the amplitude at times equal to the water

depth. At f = 2 rad/sec there is an onset of a different type

of wave. This wave is somewhat hidden in this graph, but has the

characteristic form for the beating between waves of two differ-

ent frequencies. The finite amplitude wave is attained again at

the frequency of f = 2.25 rad/sec and lasts until f = 2.6 rad/sec

where the finite amplitude dies away and just a small amplitude

wave remains. This small amplitude wave remains until the ex-

periment is terminated at f = 4 rad/sec. Upon decreasing the

table rotation rate the same results are obtained with the ex-

ception that the points where the transitions occur are at lower

frequencies and not as sharp as on the up trace.
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The transition in wave frequency paralleled the transitions

in amplitude, For this case the wave frequency remained constant

from f = 1 to f = 2 rad/sec and increased as approximately the

square root of f after f = 2 rad/sec. The important features

to be gleaned from the above example is (1) the range in f where

the wave's frequency remained constant, (2) that there was a

transition in which the wave frequency was a function of f, and

(3) that this transition in frequency was paralleled by a trans-

ition in amplitude,

The wave profile changed its character as a function of

table frequency also. Figure 2.5 shows that at low frequencies

(wave 1, figure 2.5), when the wave was of finite amplitude,

the wave profile had the shape of a bore with a sharp leading

edge and a sloping back (the numbers refer to numbers marked

on figure 2.4). As the frequency of the table was increased to

f = 2.4 rad/sec the wave labeled 3 in the graph became the

classical triangular type. As the. frequency was increased even

more the amplitude of the wave became almost hidden in the

noise of the instrument as exemplified by 5 in figure 2.5.

From this figure one can gain an understanding of the type and

shape of the waves that were appearing.

In summary, as the frequency of the table was slowly in-

creased there appeared a number of transitions both in amplitude

and in wave frequency of the instability. As f was increased

the amplitude went from zero to a finite value, to a form re-

sembling the beating between two waves, to a finite value again
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and then down to a very small value. During these transitions

in amplitude there were sometimes concurrent transitions in fre-

quency. The wave frequency was independent of table rotation

for a certain range in f and it increased as approximately the

square root of f over a different range in f. It was hard to

tell if all amplitude transitions were accompanied by an actual

transition in wave frequency.

The table frequency, wave frequency and amplitude of the

wave were all computed from the recording made by the strip

chart recorder. The calculations of the amplitude of the wave

and the rotational frequency of the table are straightforward.

The calculation of wave frequency required a correction for

Doppler shifting. The probe used to measure the wave was

positioned inside of the wire wall where there was a v component

of velocity. Hence, the equation for the Doppler correction was

v = v - v(r) (See Appendix B for compari- (2.a)
m r son of actual v and vm .)

Where v is the actual wave frequency, vm is the measured wave

frequency, and v(r) is the steady state azimuthal velocity as

is computed in Section 3.1, and r is the radius measured from

the axis of rotation. The amplitude and wave frequencies were

then plotted up as functions of the table rotation rate f.

Calculations showed that the results were the same, independent

of whether or not the rotation rate was increasing or decreas-

ing, therefore only the up trace was used in the computations.

Four experiments were run with two different exit holes

and two different pumping rates. These are discussed in the
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following four sections with a review of the amplitude response

as a function of f and then a review of the wave frequency re-

sponse as a function of f. A conclusion with all salient facts

is then presented in closing each discussion of the experiment.

2.5 Experiment #1 Small Pump, 3.8 cm hole

In the first experiment with the small pump (400 cm 3/sec)

and 3.8 cm hole there were two transitions in amplitude that

had corresponding transitions in wave frequency (see figure 2.6).

The signal jumped to a large amplitude wave at f = .44 rad/sec.

This large amplitude wave, which was more of a large triangular

type wave than a bore, persisted until f = 1.2 rad/sec where

the amplitude began to decrease to almost zero. At f = 1.5 rad/sec

the large amplitude wave returns and remains strong until f =

2.2 rad/sec where its amplitude slowly decreases as a function

of f until f = 4 rad/sec.when the experiment was stopped. It is

important to note that no apparent "beating" took place in the

course of the experiment and that the transition in amplitude

occurred at f = 1.4 rad/sec.

The transitions in frequency of the wave mirrored the trans-

itions of the amplitude. The wave frequency was independent of

table rotation from the range f = .44 rad/sec to f = 1.38 rad/

sec. The frequency, v equalled 3.3 rad/sec. At the same point

at which the transition occurred in amplitude a transition

occurred in frequency. At f = 1.38 rad/sec the wave frequency

jumped to approximately v = 5 rad/sec and afterwards steadily

increased as a function of f*. This slope was determined by

a least squares fit to the data after the transition point.
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The two most important results from this experiment were

that the transitions in amplitude were accompanied by transi-

tions in frequency and that the wave frequency had an entirely

different behaviour on each side of the transition. The wave

frequency was independent of the table rotation until f = 1.38

59rad/sec whereafter the wave frequency increased as f*. An

important negative result was that of the absence of "beating."

2.6 Experiment #2 Small Pump, ~4.8 cm hole

The second experiment, that of the small pump (400 cm 3/sec)

and large hole (4.8 cm) was important in that no transitions

occurred in amplitude even though transitions appeared in fre-

quency (see figure 2.7). The wave was onset at f = .73 rad/sec

and remained at an amplitude of about -1 cm until the termina-

tion of the experiment at f = 4.3 rad/sec. There were no

apparent transitions, fihite amplitude responses, or "beating"

throughout the entire range of table rotation rates.

The frequency of the instability for this experiment had

a behaviour similar to that of the first experiment. The wave

frequency of the instability was independent of the table fre-

quency for the range f = .73 rad/sec to f = 1.7 rad/sec at a

value of v = 3.4 rad/sec. From a frequency of 1.7 rad/sed un-

til the termination of the experiment the wave frequency in-

59
creased as f.

The two most important results from this experiment were

that there were no apparent transitions in amplitude and that

the response and behaviour in frequency were very similar to
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that of the first experiment, The wave attained an amplitude

of approximately .1 cm and showed a transition in frequency at

1.7 rad/sec. A constant frequency preceded the transition and

an f dependent frequency followed the transition.

2.7 Experiment #3 Large Pump, 3.81 cm hole

The amplitude response of this experiment with the large

pump (640 cm3 /sec) and 3.81 cm hole goes through three different

transitions (see figure 2.8). At a frequency of f = .46 rad/sec

there is a large finite amplitude bore that travels in the pro-

grade sense. This bore remains at an amplitude of .6 cm until

f = 1.33 rad/sec. It is at this frequency of 1.33 rad/sec where

the wave goes into what looks like a beating between two waves

of different frequency. What causes this beating? Could it be

that there is a small tide, due to the table not being perfectly

level, that is being added to the ambient wave and therefore

giving rise to this beating? If we consider the process of add-

ing two waves of equal amplitude together linearly by the follow-

ing formula

cos W t + cos W 2t = 2 cos wt cos Awt

with (2.b)
1 +W 2  _ 1 ~ 32

2 Al 2

then the classical result of beating between two frequencies is

obtained. Let 2= .67 rad/sec be the frequency of the tide and

W= 4.2 rad/sec be the frequency of the wave. These values give

for w and Aw values of 2.45 rad/sec and 1.76 rad/sec, respectively.
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The actual measured values are Aw = 4.6 rad/sec and i = .62 rad/

sec. Thus it appears that what looks like "beating" between

two waves is not that at all but must be some response of the

instability itself, After this "beating" event the amplitude

begins to die away as f is increased. At f = 2.01 rad/sec the

finite amplitude wave returns and reaches an amplitude of

.7 cm. For values greater than f = 2.01 rad/sec the wave's

amplitude slowly decreases as f increases until the experiment

is terminated.

In the previous experiment some of the transitions in amp-

litude were paralleled by transitions in frequency and it appears

that this same result may be ascertained from the three transi-

tions that occur in this experiment. Using the amplitude as a

guide, the frequency range may be- broken into three regions.

Those regions are (1) f= .46 rad/sec to f = 1.33 rad/sec,

(2) f = 1.33 rad/sec to f = 2,01 rad/sec, and (3) f = 2.01 rad/

sec to 3.4 rad/sec when the experiment was stopped. In the first

region the wave had a constant frequency of v = 4.2 rad/sec. In

the second region (where the "beating" occurred) the frequency

42of the wave behaved as f*. And in the third region the wave

had an f.52 dependence in frequency. It is hard to actually

observe this break in slope of the frequency dependence. If the

region from f = 1.33 rad/sec to f = 3.4 rad/sec was used to

compute the f dependence of wave frequency, then a dependence

of f'54 would be found. Therefore, it is hard to state ex-

plicitly that there is or is not a transition in frequency be-

tween the "beat" behaviour and the finite amplitude behaviour.



There appears to be good evidence for two transitions and

weaker evidence for a third transition in this experiment. As

in previous experiments there is a region where v is independent

of the rotation rate of the table and also a region where the

wave is of large amplitude and increasing in frequency as ap-

proximately the square root of f. It may be that the "beating"

has a frequency behaviour different from the behaviour when f is

large though that remains- to be proved. The "beating" that

occurred in this experiment was shown to be a property of the

instability rather than a beating between two waves of different

frequencies.

2.8 Experiment #3 Large Pump, 4.8 cm hole

The experiment performed with the large pump (640 cm 3/sec)

and large hole (4.8 cm) had an amplitude response which not only

showed results similar to the previous experiment but an entirely

new region altogether (see figure 2.9). This new region is

given the name "microwave" region, not due to its wavelength but

rather to its amplitude. Its amplitude is approximately .02 cm

and is constant at this value over the range from f = .56 rad/sec

to f = 1.06 rad/sec. At f = 1.06 rad/sec a finite amplitude

bore is onset. This bore persists until f = 2.09 rad/sec where

the "beating" appears once more. During the "beating" the wave

amplitude reaches a maximum of .9 cm and a minimum of .4 cm.

The beating is confined to the region between f = 2,09 rad/sec

and 2.88 rad/sec. At f = 2.88 rad/sec a finite amplitude wave

is set on with an amplitude reaching 1.3 cm, the largest
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recorded. This finite amplitude persisted until f = 3.5 rad/

sec where the wave disappeared for the range up to f = 4.2 rad/

sec where the experiment was terminated.

Unlike experiment #3 in Section 2.7, the frequency range

of this experiment breaks up clearly into four regions. These

regions are (1) the region from f = .5 rad/sec to f = 1.06 rad/

sec, (2) f = 1.06 rad/sec to f = 2.09 rad/sec, (3) f = 2.09 rad/

sec to f = 2.88 rad/sec, and (4) f = 2.88 rad/sec to f = 3.32

rad/sec, where v = 6.3 rad/sec, v = 4,2 rad/sec, va f*71 and

vaf'4 , respectively. The large break in slope between the

last two regions lends credence to the frequency transition al-

ways paralleling the amplitude transition. If the region from

2.09 rad/sec to f = 3.32 rad/sec is taken as one region then

the slope of v is f 8 4 . This result is a poor fit to the data

and therefore the result is found that there are indeed a total

of four regions.

In this last experiment it is found that there exist. four

distinct regions in both amplitude and frequency. These four

regions pertain to the "microwave" behaviour, finite amplitude

bore behaviour, "beat" type behavior and finite amplitude wave

behaviour.

2.9 Experimental Conclusions

There exist four distinct regimes labelled here the micro-

wave region, finite amplitude bore region, the beat region, and

the finite amplitude wave region. These four regions corres-

pond to a constant wave frequency for the first two types and



an f dependence for the last two types. Though all these types

appeared in the last experiment, all four did not appear in the

other three experiments. A summary of the results of the ex-

periments are given in Table 1. The "beat" type behaviour did

not occur in the small pump parameter range. The "microwave"

occurred only for the large pump and large hole. The most im-

portant results to sum up are that the waves were for certain

regions in each experiment independent of the table rotation

rate and that in different regions they were dependent upon a

function that behaved as approximately the square root of f.

When smaller holes were used, i.e., less than 3.81 cm, no waves

appeared whatsoever.

2.10 Lagrangian Tracer Results

Knowing the flow regime in the experiment helps to de-

termine to what extent the wave influences the steady state

thereby helping in formulating the problem. Figures 2.12-2.14

show the particle paths for experiments with a large exit hole

(4.8 cm), large pump (640 cm 3/sec) and various rotation rates

where a bore appeared. The most obvious characteristic is

that of the unsteady behaviour of the particles. A number of

different particle traces appear in each of the figures. The

long spiral track follows the path that is predicted by the

steady state theory. There also occur in these figures flows

that are almost entirely radially inward. These behave almost

as if there were no rotation present. Two very anamolous

cases of flow reversal appear in figure 2.11, There occurs



Table 1

"Microwave"

SP, 3.8 cm

SP, 4.8 cm

LP, 3.8

LP, 4.8

SP

LP

cm

cm f = 0.56
v = 6.2

= Small Pump, 400

= Large Pump, 640

Bore

f = 0.44
v = 3.3

f = 0.73
v = 3.4

f = 0.46
v = 4.0

f = 1.06
v = 4.2

cm3/sec

cm 3/sec

"Beat" Wave

f = 1.33

va f.42

f = 2.09

Va f.71

f Dependent
Wave

f = 1.38

v .59

f = 1.72

f f.59

f = 2.01

VU f .52

f = 2.88

va f*47

f = twice the table rotation rate [rad/sec]

v = wave angular frequency [rad/sec]
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in the spiral case of this figure a flow that has a component

that is radially outward for part of the spiral. There also

occurs in the radially inward flow a reversal in the azimuthal

direction.

Figures 2.13 and 2,14 correspond more to the case when

there was a wave present rather than a bore. As in figure 2.11

so also in figure 2.13 there appears a region where the flow

is radially outward. Figure 2.14 is a case where the wave is

of small amplitude and the result is that the mean flow domi-

nates the flow regime. From these figures one may conclude that

there exists both radial and azimuthal reversals in velocity.

This is especially true at the lower rotation rates when fluid

depth is equal to the wave amplitude. As the rotation rate in-

creases the effect of the wave decreases and just the mean flow

dominates.

2.11 Stratified Experiment

The stratified experiment shows only qualitatively what

might be the stratified analogue of the experiment described

above. After the withdrawal pipe was turned on and the gyre

fully developed there appeared to be a wobbling of the gyre

about the pipe. A wisp of this may be seen in figure 2.15.

We can only suggest that this might be the instability mani-

fested as a wave traveling in a prograde sense on this critical

flow.
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3.0- THEORY

3.1 Steady State Problem

The steady state emptying problem was solved analytically

by Whitehead and Porter (1976). The time independent, inviscid,

vertically integrated Navier-Stokes equations in polar coordi-

nates were used. Axisymmetry was assumed. The independent

variable is r, the radius from the axis of rotation. The de-

pendent variables were u, the radial velocity, v the azimuthal

velocity, and hthe height of the fluid. The gravitational

acceleration is represented by the symbol g. The equations of

motion then become

au v 2 f 2.r2

r - - fv = -g r (h -8g (3.a)

and

u( + - + f) = 0, (3.b)
9r r

the radial momentum equation and the azimuthal momentum equa-

tion, respectively. The continuity equation is then

d
d(r u h) = 0 . (3.c)

These equations are solved by ascerting that the fluid is

flowing always radially inward or outward, i.e., u is never

zero. If u does not equal zero, then the equation in parenthe-

sis in 3.b must equal zero, and a solution for v is obtained.

The solution of the differential equation in (3.b) is

v(r) = - 2r (3.d)
r 2-



The constant, c, in (3.d) may be determined from the boundary

condition v(r 1 ) = 0, where r1 is the radius of the diffuser.

The statement that u is not equal to zero is analogous to the

statement made in Whitehead, Leetmaa, and Kno (1973), that

says the potential vorticity is equal to zero. The solution

for v is substituted into equation (3.a) and with the use of

the continuity equation (3.c) an algebraic equation in h is

obtained,

gh 3 - gHh 2 + 2 0. (3.e)
8'i r

Where

2 2 2 2 2 2
H~h u1  f r f r r

H = h + 1- + - -- (3f)1 2g 8g 8g 2 'r

Q is the flux of fluid through the pump and the subscript 1 re-

fers to values at the diffuser wall.

This cubic in h may then be algebraically solved to obtain

solutions of h and u. Equation (3.e) is of the same form as is

the equation for inertial withdrawal of a non-rotating fluid

from a cylindrical container except that the form Aof H is dif-

ferent. A plot of (3.e) in solution space shows that the solu-

tion cannot extend to all values of r. There exists a point

where r is an extremum, i.e., = 0. This defines the critical

point in the flow where the change is made between sub- and

super-criticality. With the boundary conditions given, the

solutions of u(r), v(r), and h(r) are uniquely determined.

There does exist a region of parameters in which the

Ekman layer is capable of emptying the fluid faster than critical



withdrawal is. If it is assumed that all the transport is in

the Ekman layer, then

Q = 2frv6, (3.g)

where

6 = (p/2f)l/2  (3.h)

The symbol p is the viscosity. Q is the flux and is constant.

If geostrophy is assumed, v, of equation (3.g) may be used and

the geostrophic equation can be integrated to obtain h in the

form

2 2 2
= ___ r1 3/ Q2f 1 f (r- ro)

h = ln( 1 )f3/2 + r) + 1g
1 2P7 ro0 4-rT2p r2 r 2 8g '

1

(3.i)

This solution shows for the experimental parameter range the

viscous boundary layer is capable of emptying the fluid faster

than is the critical control, when the rotation rate is approxi-

mately f = 6 rad/sec. None of the experiments described so far in

this paper have had parameters in that range of f.

An experiment was performed to test the theory by measur-

ing the upstream depth and comparing it to theory, thereby veri-

fying the depth averaging and inviscid assumptions. The results

are in figure 3.1. This graph shows that for various pumping

rates and rotation rates the data fall near the theoretical curve.

At high rotation there is some discrepancy where the data points

fall below the theoretical curves. This is due to the Ekman

layer withdrawal dominating at high rotation rates. All the
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data were scaled by the factor C that takes into account not only

the pumping rate but also the position of the probe used to

measure the height of the upstream depth.

3.2 Dimensional Analysis

By use of dimensional analysis a time scale is obtained

that is used to scale the full Navier-Stokes equations. The

important parameters to be used, that completely determine the

system, are r the exit hole radius, r1 the outside radius, g

the gravitational acceleration, Q the rotation rate of the table,

and Q the flux of the fluid through the system. These param-

eters may be used to define three different time scales. These

time scales are

2
= g r2/Q

2= g/r ,j)

and

3
W 3  Q/r .

If the transition frequencies, i.e., the frequency when the wave

is onset and the frequency when the wave frequency becomes f

dependent, are plotted as functions of r and Q, then it can be

shown that the scaling that most reduces the curves to a single

graph is w . A scaling does not necessarily tell one about the

physics involved, but it is a first step in ascertaining which

terms in the full equations are important. With the scaling

above the time scale is computed to be T = .3 sec for the large
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pump and large hole and T = .08 sec for the small pump and large

hole. With this time scale the Navier-Stokes equations are

investigated.

3.3 Navier-Stokes Equations

With a time scale defined, the full time dependent Navier-

Stokes equations can be scaled to discover which, if any, of

the terms may be dropped to simplify the equations. The inde-

pendent variables are t, the time, r, the radius measured from

the axis of rotation, and 0, the azimuthal variable. The de-

pendent variables are u, the radial velocity, v, the azimuthal

velocity, and, h, the height of the fluid. The gravitational

acceleration is denoted by the symbol-g. The time dependent,

inviscid, vertically integrated, Navier-Stokes equations then

become

.3h + - 3ruh + 1 3vh -0 ,(3.k)
3t r 3r r DO

2 2 2
u U v 31, v - fv f 2r2
+ u + fv = -g -(h- 8g (3.1)

Dt 3r r 36 r3r 8

and

+ Uv + v 3v + uv + fu g 3h (3.m)
t 3r r 3O r r a6

A perturbation technique is used in equations(3.k)-(3.m)

by re-defining the dependent variables as

h = h(r) + h'(.r,0,t),

u = u(r) + u'(r,G,t), (3,n)

and v = v(r) + v' (rG,t).



49

By substitution of the terms in (3.n) into the equations (3.k)-

(3.m) a number of double terms appear that are of the forms pq,

p q, and p'q'. The double primed terms are assumed to be smaller

than those of the other type and are dropped. The remaining

terms are then scaled by the following factors,

Q
= 2Trr H

0 0

fr2

0

r r0 r,

u , U' = U u',U0u

v' = V~v'V0v

t = ( t
gr

0

h' = h h'
0

Dropping the tilde, the scaled equations are:

+ B u au' + u, au +

t a r 3r

3v' r v' uv'+ B u +
9 t 3r r

*2
V r V

Cv - u u'- 2 Uo v - 2 0
r 30 U r 2 U 0U r r2U

v 9v'] Uo 1 Dh'
+ - =-F ,

r 36 V r 3
J o

'1= -F h
a r

(3.o)

(3.p)

and

ah' + l 3ruh'
r+ B r

-F H U V
+ 3vh' o o ruth +o 3v'h;

+h 2  Br r 6 '
0 (3.q)

where

2
B= Q 14 H '

2Trr g 0

'Q0h

r 00

Q r 2
C f,1

2r 0g
and

and
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If the parameters of the experiment are used to determine the

values of the scaling terms, then the term denoted by an aster-

isk is the only term sufficiently small that it could be ignored.

Unfortunately, this does not allow the equation to be simplified

enough to obtain an analytical solution.

Since only one term can be dropped from our dimensional

analysis of the problem, and that term does not simplify matters,

it shall be kept in the analysis. The dimensional equations

are reclaimed and a wave-like behaviour is assumed in which the

terms th and are replaced by imp' and imp' respectively.

With this assumption the full equation is,

A U BO' , (3.r)
3r

where

u O g
A = 0 u O0

h O ui

3u .v 2v+f
-Bo -im - - + f Or r r

. u imv -gim
r l r r

h 3h -h imh i - u Du
r r r r 3r

and

u'U' = Lv'i
h'

The point at which this set of equations is singular is found

by taking the determinant of A. When the determinate of A
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equals zero, then the equations are singular. Det A= u(u -gh) = 0

when u = 0 or when u = /gK. The later statement is just that

the Froude number is equal to one and this occurs only at the

lip of the exit hole. On the other hand, u = 0 could happen as

the flow reverses, as seen from the Lagrangian tracers, Sec-

tion 2.10. The numerical solution of this set of simultaneous,

first order, ordinary differential equations is beyond the

scope of this investigation. If these equations were solved,

then the point at which the instability occurs could most

likely be found.

3.4 Wave Front

By purely kinematic considerations a set of equations may

be derived that are able to test the formula for the wave

speed. The wave speed is assumed to be that of the shallow

water wave speed and therefore of the form /gh. The crest of

the wave is defined by the function s(r), where, S(r) - 0 = 0.

The crest travels in the azimuthal direction at an angular

velocity of vr, where r is the distance from the axis of rota-

tion. If the crest is viewed from the wave frame of reference,

the picture developed is a stationary crest with the fluid flow-

ing rapidly under the crest. The diagram in figure 3.3 shows

that the wave is traveling in the n direction and since it is

stationary, it must be exactly balanced by the n component of

flow of the fluid underneath it.

This configuration may be stated mathematically as

{-u(r)r + (v(r) - vr)6}-n = -/g .3 (3.s)



The normal vector to the wave crest is defined as

V(S(r) - 0)
n = V(S(r) - 0)

(3.t)

r - -

( S 2 1

r

By use of the definition of n in equation (3.s) S' can be

solved for in terms of u, v, and h, i.e.,

aS _ -u(v-vr) ± /(u2+(v-vr)2 - gh)gh
r = I2 . (3.u)

r(u - gh)

This differential equation becomes singular when the Froude

number is unity.

The analytical solution for the steady state formulation

of v was used. The depth of the fluid, h, was approximated by

using the Bernoulli head rather than the actually computed fluid

depth, due to the algebraic complexity of h's form and to the

fact that the Bernoulli head is a good approximation to h. The

solution of equation (3.u) was solved numerically by use of the

Runge-Kutta method. As figure 3.4 shows, the solution follows

the actual measured wave crest quite well, but the solution goes

complex at r = 6 cm. The implications of this result are that

the wave does travel at a speed near that of the shallow water

wave speed. This formulation gives no information concerning

the physics of the instability.

The result of the analysis above has actually little in-

formation in it due to the reversals in flow observed and the



nonlinearity of the wave. The flow reversals from figures 2.11

and 2.13 show that there do exist points where u and v are

equal to zero giving rise to a complex equation in (3.u). This

complex behaviour throws doubt on the validity of the formu-

lation of the problem. Another important point is shown by

Fourier decomposing the wave. Figure 3.2 shows the decomposi-

tion of the bore and triangular type wave. The bore shows there

is a lot of information at frequencies that are higher than

just that of the first mode. This underlines the nonlinearity

of the system.

The theoretical section of this paper showed that various

approaches began to allow some information to be gleaned, but

that the next step should be the numerical solution of the full

equations. A dimensional analysis showed that the most prob-

2able time scaling for the equations was Q/gr . Using this in
0

the linearized perturbation equations showed that the equations

could not be easily converted to a tractable analytic form.

They did show that the equations were singular when u = 0 and

when the Froude number was unity. The solution of those equa-

tions would help to ascertain what terms are responsible for

the instability. The kinematic approach allowed only the weak

statement that the wave propagated near the speed of the shallow

water wave. But the dubious result was weakened by the fact

of flow reversals.
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4.0 SUMMARY

When a rotating axisymmetric container is emptied through

a concentric hole in the bottom.,an instability manifested as

an azimuthally travelling wave is observed. The wave has a

crest that stretches from the inner exit hole to the outside

wall and travels in the prograde sense. As a function solely

of rotation rate the wave goes through a number of transitions

in both amplitude and frequency when the exit hole size and

pumping rate are fixed.

The experiments were conducted with different hole sizes

and pumping rates. As a function of rotation rate there ap-

peared to be three and maybe four unique regimes that the wave

possessed. These four regions are (1) the "microwave" region,

(2) the finite amplitude bore region, (3) the region that appears

as the beating between two waves of different frequencies, and

(4) the finite amplitude wave region. Regions two and four

listed above are the only regions that were common to each ex-

periment. The waves are independent of table rotation for the

first two type waves and are dependent- (as approximately the

square root of f) on the table rotation rate for the last two

types listed above. These are the general results, the exact

parameters and their experimental results are summed up in

Table 1.

Physically what one is seeing is probably an instability

caused by the feedback mechanism at the exit hole. How deep

the water is at the lip determines how fast it empties and how

fast it empties influences how deep it is upstream. Results



were found using kinematics that showed that the wave traveled

at approximately the shallow water wave speed, i.e., /gh. A

perturbation analysis was also carried out that showed the

equations were singular when u = 0 or when the Froude number

equalled unity. The condition of the Froude number being unity

occurred at the lip. The solutions of these equations will

most probably lead to the calculation of when the instability

is onset.

The interest in this problem lies not only in it being an

apparent instability in a critical flow problem but also in its

possible applications to geophysical and engineering problems.

The geophysical problem is that concerned with flow over

oceanic sills. All the major ocean basins are connected through

a number of sills and deep ocean straits. It is conceivable

that the same mechanism that is at play in the emptying of this

container could also be at work in the oceanic deep sills.

This may be part of the explanation for the "bursting" observed

in the current meter records from deep ocean sills. An example

of this is the Windward passage sill in the Caribbean Sea.

Current meter data from there shows bursts of large quantities

of water out of the basin (Stalcup and Metcalf, private

communication)

Two engineering problems where this instability might be

of interest is in the operation of ocean thermal energy plants

(OTEC) and in the emptying of fuel tanks on rockets. In the

case of OTEC, where large quantities of water are drawn up from

below the thermocline, the question is raised of not only how



important the earth's rotation is in the formulation of the

steady state case, but also of whether this instability could

be onset, thereby decreasing the plant's efficiency. In the

case of rocket tanks emptying, it might be that the fluid being

emptied had been given a spin and as it is withdrawn it reaches

the stage where a bore is onset. This bore may impart an un-

desirable momentum to the craft.

In summary, an instability was observed that had a number

of different transitions in wave amplitude and wave frequency

as a function of rotation rate. Applications of this phenomenon

can be made to geophysical and engineering problems as well

as the investigation of how fluids are critically withdrawn.
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APPENDIX A

The errors in measurements presented in the paper are good

to within the last significant digit shown. The actual errors

for the measurements are presented in this appendix.

The density of fluid that was measured in the stratified

experiment was accomplished by measuring the fluid's index of

refraction. This method yielded results that were accurate to

3
within .0005 gm/cm .

The pumping rates were measured under various conditions

and found to yield results that were accurate to about 5%.

The method used to obtain these measurements was to time how

long it took for the basin to fill once the exit hole was

blocked. In this manner the pumping rate could be measured for

various heads. The resulting flow rates were 640 ± 30 cm 3/sec

for the large pump and 400 ± 34 cm 3/sec for the small pump.

The table frequency measurements were found to be accurate

to within .5%. The magnetic switch on the table and the re-

corded record of table rotation on the strip chart were accurate

enough that the only errors in measurement were in reading the

results off the chart. This error was reduced to less than .5%

by the use of a measuring device accurate to .05 mm.

The frequency of the wave was found to have a measured

error of less than 1%. The transducer used had a response of

approximately .004 sec and the chart recorder's response was

similarly small, such that these effects were not important in

the measurement. Thus the only error of importance was in



measuring the record off the strip chart. This proved to be

accurate to less than 1%.

The amplitude of the wave was measured by use of a ruler

and an error of 10% was assumed. The measured values were

accurate to within 1% but the actual time variation in wave

amplitude varied over 10% of the average. The actual varia-

tion in amplitude is thus the chief factor in the error.

The computation of the slopes of the lines in figures 2.6-

2.9 were accomplished by a least squares fit of the data. The

correlation coefficient was, in the worst case, .97. For the

sample size tank this is a 4% error leading to an indetermin-

acy in the slope of approximately ±.03.



APPENDIX B

The computation of the wave frequency was corrected for

Doppler shifting (see page 23). This Appendix lists the data

that was plotted up in figures 2.6-2.9. Though the Doppler

shifting correction changed the values some, the salient fea-

tures of the wave frequency were still prominent. The region

of v indeDendent of f and the breaks in slope are still ob-

servable in the uncorrected data.



DATA EXPERIMENT #1

(Small Pump, 3.8 cm Hole)

f(rad/sec) v m(rad/sec) v(rad/sec)

.44

.51

.60

.70

.77

3.22
3.36
3.40
3.41
3.41

1.90
1.93
2.09
2.13
2.22

2.36
2.39
2.47
2.60
2.69

2.80
2.88
3.04
3.13
3.22

3.29
3.43
3.51
3.63
3.76

.15

.27

.30

.30

.29

.29

. 31

.38

.44

.84

.86

.06

.22

.15

.42

5.63
5.71
5.82
6.06
6.08

6.33

6.51
6.49
6.78
6.76

6.90
7.12
7.56
7.67
7.87

7.77
7.83
8.09
8.17
9.05

6.72
6.90
6.90
7.20
7.20

7.36
7.60
8.06
8.18
8.40

8.31
8.40
8.67
8.77
9.67



DATA EXPERIMENT #2

(Small Pump, 4.8 cm Hole)

f(rad/sec) v (rad/sec) v(rad/sec

0.73
0.81
0.87
0.96
1.03

1.11
1.18
1.28
1.36
1.48

1.59
1.64
1.72
1.83
1.90

2.01
2.05
2.13
2.26
2.26

2.39
2.45
2.56
2.63
2.76

2.82
2.92
3.00
3.13
3.33

3.38
3.47
3.55
3.63
3.85

3.94
4.04
4.20

3.36
3.43
3.51
3.63
3.55

3.59
3.63
3.63
3.67
3.72

3.76
3.80
4.23
4.43
4.48

4.73
4.99
5.15
5.32
5.32

5.37
5.60
5.72
5.85
6.03

6.03
6.23
6.51
6.62
6.79

6.99
7.03
7.36
7.28
7.76

7.72
7.82
8.28

3.24
3.30
3.36
3.47
3.38

3.40
3.43
3.42
3.44
3.48

3.50
3.53
3.95
4.13
4.17

4.40
4.65
4.80
4.95
4.95

4.98
5.20
5.30
5.42
5.58

5.57
5.74
6.02
6.10
6.24

6.43
6.45
6.77
6.68
7.12

7.07
7.16
7.58



DATA EXPERIMENT #3

(Large Pump, 3.8 cm Hole)

f(rad/sec) vm (rad/sec) v(rad/sec)

.46

.52

.64

.73

.86

3.80
4.09
4.18
4.18
4.43

4.43
4.43
4.43
4.43
4.68

3.72
4.01
4.08
4.06
4.29

4.27
4.25
4.23
4.22
4.47

4.46
4.70
4.69
4.84
6.00

6.06
6.08
6 .32
6 .53
6.68

6.97
7.19
7.17

7.64

7.63
7.61
8.13

2.36
2.47
2.59
2.76

2.84
2.96
3.13
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DATA EXPERIMENT #4

(Large Pump, 4.8 cm Hole)

f(rad/sec) v m(rad/sec) v(rad/sec

0.56
0.60
0.66
0.78
0.92

0.98
1.06
1.21
1.30
1.46

1.56
1.69
1.85
1.97
2.09

2.17
2.26
2.47
2.59
2.66

2.66
2.88
3.00
3.13
3.26

3.32

5.88
6.09
6.12
6.30
6.36

6.35
4.26
4.26
4.31
4.39

4.37
4.35
4.58
4.61
4.64

4.96
5.05
5.37
5.42
5.66

6.01
6.39
6.56
6.57
6.74

6.89

4.63
4.63
4.89
4.94
4.99

5.32
5.43
5.78
5.85
6.10

6.45
6.86
7.06
7.09
7.28

7.44
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