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ABSTRACT

The distribution of dissolved silica in the deep
western North Atlantic Ocean is presented. The potential
temperature-dissolved silica relationship is compared
with the potential temperature salinity relationship in
the North Atlantic Deep Water. Geographical variations
in the potential temperature-dissolved silica relation-
ship are discussed with particular emphasis on the low
silica signal of the Western Boundary Undercurrent (WBUC).
The WBUClis shown to have a significant influence on the
potential temperature-dissolved silica relationship from
the tail of the Grand Banks of Newfoundland to Cape
Hatteras.

It is suggested that a region of enhanced mixing is
present west of 65°W that is responsible for the observed

changes in the dissolved silica distribtution.
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ABSTRACT

The distribution of dissolved silica in the deep westexrn
North Atlantic Ocean is presented. The potential temperature-~
dissolved silica relationship is compared with the potential
temperature salinity relationship in the North Atlantic Deep : -
Water. Geographical variations in the potential temperature-
dissolved silica relationship are discussed with particular
emphasis on the low silica signal of the Western Boundary
ﬁndercﬁrrent (WwBUC) . The-WBUC is shown to have a significant
influence on the potential température~dissolved silica
relationship from the tail of tﬁé Grand Banks of Newfoundland
to Cape Hatteras.

It is suggested that a reéion of enhanced mixing is pre-

\ -
sent west of 65°W that is responsible for the observed changes

in the dissolved silica distribution.
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I. Introduction

The distribution of dissolved silica in the deep western
North Atlantic Ocean may be used to identify water masses
with distinct characteristics within the potential tempera-
ture and salinity range of the ubiquitous North Atlantic deep
water.

The most prominent feature of the silica distribution is
a narrow band of low silica along the continental rise. This
low silica feature shall be identified as the Western Boundary
Undercurrent (WBUC) in keeping with the literature (Richard-
son (1977)). It shall be demonstrated that the WBUC can be
traced from the tail of the Grand Banks of Newfoundland to
Cape Hatteras. With the data presented below, a "global"
view of the WBUC shall be provided.

In the past, observations of the WBUC have consisted of
hydrographic sections across the continental rise for which
the geostrophic transport was computed. Either neutrally
buoyant floats or moored current meters were used to set ab-
solute velocities (Swallow and Worthington (1961), Volkmann
(1962), Richardson (1977), Clarke, Hill, Reiniger, and Warren
(1978)). Occasionally, dissolved silica was measured and it
could be demonstrated that the water observed did have a
northern origin (Richardson (1977), Clarke, Hill, Reiniger,
and Warren (1978)).

Eight month long current meter records along 70°W show

a steady westward flow on the uppzr continental rise (Luyten,



1977). Unfortunately, one cannot be sure whether the west-
ward flow is the WBUC (i.e., low silica) or is part of a
broad westward flow in the slope water region (Webster (1969)).

This brings up an important problem with the historical
observations of WBUC. Stommel (1957) postulated the exis-
tence of a deep southward flowing western boundary current
in the Atlantic Ocean. His model was based on the hypothesis
that some thermohaline process caused sinking of water in
arctic regions and upwelling in antarctic regions. To con-
serve mass, he argued that a deep flow would be present along
the western boundary.

In the following year, Swallow and Worthington (1961)
cccupied hydrographic sections and tracked neutrally buoyant
floats near Cape Romaine, North Carolina. In the hydrographic
data, they found that the deep isotherms sloped downward off
shore indicating the presence of westward shear. When they
observed that the neutrally buoyant floats moved westward, it
was assumed that the WBUC had been found. The current meter
data from 70°W shows that even wherz the flow is relatively
steady toward the west, it is not always so. 0O«zcasional re-
versals in the flow are not uncommon. Thus one must b=
z#ttious in the interpretation of few day-long float tracks.

It should also be noted that the spatial coverage of the
data from which we car observe the WBUC is not uriform. The
only long-term current met=:s on the continental rise were
at 70°W. BHydrographic sections wi:il. some method of determin-

ing absolute velocities are only availan’e near 70°W and Cape
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Hatteras. The results of a section at 50°W are not considered
realistic for reasons discussed in the text. Thus we are left
with only a limited set of observations of the WBUC. There is
nc direct evidence for a continuously flowing current that
passes arcund the tail of the Grand Banks of Newfoundland and
follows the continental rise toward the west. To the contraxy,
the current mete: ¢ata and the variations in the transport
calculations suggest that wratever flow there is, is not
steady.

The distribution of dissolved silica will be used to
demonstrate that the WBUC can be identified in terms of its
water mass characteristics. The effects of the WBUC can be
traced along the continental rise from the tail of the Grand
Banks of Newfoundland to Cape Hatteras. However, the struc-
ture of the flow cannot be determined from the available data.

Evidence is presented below which suggests that a
region of enhanced mixing is present west of 65°W and has a

pronounced effect upon the dissolved silica distribution.

ITI. Background

2.1 Historical uses of dissolved silica as a water mass

tracer

It has only been in the past three decades that one has
been able to map out the distribution of dissolved silica.
On the basis of sparse data, Sverdrup, Johnson, and Fleming

(1942) concluded that the concentration of dissolved silica
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increased monotonically with depth everywhere in the world
oceans. They pointed out that the silica values in the
Atlantic Ocean were in general, lower than those of the other
oceans. Cooper (1952) examined the sources and sinks of dis-
solved silica and suggested that the concentration of silica
in the deep water should be in equilibrium and might be use-
ful as a water mass tracer. Without any observations to rely
on, Cooper assumed that the tundra drainage in the Arctic
would result in a high silica content of the waters of the
North Polar Sea. He then reasoned that there would be a flow
of high silica water in the Greenland and Irminger Currents
which could be easily detected by its silica content. While
recent observations have indeed shown that there exists high
silica water inthe Baffin Basin (S:‘LO2 > 80ug A/% - Corwin and
McGill (1963), Grant (1970)), there is no evidence of it
getting over the sill and into the Labrador Basin. In fact,
the Norwegian and Labrador Seas are characterized by a low
silica signal (SiO2 v 10-15 pg A/%). As it shall be demon-
strated, these waters are easily detected along the western
boundary of the western North Atlantic Ocean.

Armstrong (1965) showed the distinctly lower concentra-
tions of silica in the deep Atlantic Ocean, when compared to
the world oceans. He concluded that this was a result of
the unique exchange of bottom waters that occurs in the
Atlantic Ocean and suggested that "...our understanding of
water movements and of mixing processes in the Atlantic Ocean
would be greatly increased by more knowledge of the silica

content of Arctic waters."



Metcalf (1969) showed that the concentration of dis-
solved silica could be used to identify Antarctic Bottom
Water, North Atlantic Deep Water, and Antarctic Intermediate
Water. He also suggested that silica might be useful in
studying the NADW where little variation in the potential
temperature-salinity relationship is found.

Carmack (1973) found that silica was a valuable tracer
in the Antarctic. He found that he could distinguish be-
tween water masses that appeared indistinguishable on the

basis of 0-S data alone.
2.2 The deep western North Atlantic Ocean

It is well known that there is a tight correlation be-
tween potential temperature and salinity in the deep western
North Atlantic Ocean for potential temperatures below 3.0°C
(Worthington and Metcalf (1961), Wright and Worthington
(1970)). Most of the water characterized by this 6-S corre-
lation for 6 > 1.9°C have been classified as North Atlantic
Deep Water (NADW) (Wright and Worthington (1970)). There is
little geographic variation in the 6~S distribution of the
western North Atlantic in this potential temperature range
(Worthington and Wright (1970)). This has made it difficult
for physical oceanographers to study the deep general circu-
lation in terms of potential temperature and salinity
characteristics.

Near the continental rise, geostrophic calculations and

direct velocity measurements (neutrally buoyant float and
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moored current meters) allowed observers to deduce the ex-
istence of a deep southward flowing current (Swallow and
Worthington (1961); Volkmann (1962); Richardson (1977)).
This flow has become known as the Western Boundary Under-
current and is responsible for the equatorward movement of
deep water from the Norwegian and Labrador Seas (Stommel
(1957) ; Richardson (1977); Clarke, Reiniger, Hill, and
Warren (1978)).

Metcalf (1969) demonstrated the usefulness of the dis-
solved silica content of deep water as a water mass tracer.
Using the available data, he constructed a map of the con-
centration of dissolved silica on the 2.0°C potential tem-
perature surface. His figure is reproduced as Fig. 1. The
principal feature of this map is the general north-south
gradient of dissolved silica. The paucity of data prevents
a detailed analysis of the distribution but this map does
suggest that dissolved silica is a useful tracer of the
general circulation of the North Atlantic Ocean.

Richardson (1977) and Worthington (personal communica-
tion) found that there is a drop in the silica concentration
along potential isotherms as one approaches the continental
rise.

Worthington (1976) has proposed a model of the general
circulation of the North Atlantic Ocean, in which he postu-
lated the existence of two anti-cyclonic gyres. One to the
north of the Grand Banks of Newfoundland, and the second

comprised of the Gulf Stream and its return flow bounded to
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the south by the Mediterranean salt tongue. 1In the deep
water Worthington based his interpretation partly on the
change in the dissolved silica distribution in the deep water
across the proposed boundary between the two gyres. His fig-

ure showing characteristic deep 6-Si0, plots for the two

2
gyres is reproduced as Fig. 2. Worthington's model also
allows for a WBUC passing around the tail of the Grand Banks
of Newfoundland and along the continental rise until it
crosses beneath the Gulf Stream near Cape Hatteras. He al-
lows for no exchange of water between the WBUC and the south-
ern gyre.

Clarke, Hill, Reiniger, and Warren (1978) have criti-
cized Worthington's model. They claim that in the deep water,
no evidence exists for two distinct gyres, and that the
silica distribution (from a survey of their own) indicates
that there is an exchange of water between the "Northern
Gyre" area and the Sargasso Sea.

In this work the distribution of dissolved silica in
the deep western North Atlantic Ocean, based on several sec-
tions occupied during the last two decades, shall be pre-
sented. A large portion of the data is from the last six
years. After presenting a summary of the data and methods
of analysis used, we shall describe the water mass character-
istics present and form a consistent picture of the geo-
graphical variations in the silica distribution. It shall

be demonstrated that there are significant variations of

the silica distribution within the NADW. These variations
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will allow us to trace the origins of some components of the
NADW which cannot be distinguished on the basis of 8-S char-
acteristics. The distribution of silica on potential temper-
ature surfaces shall be examined and these distributions
compared with models of the general circulation. ‘In addition
the WBUC shall be examined by following its silica signal
along the continental rise from the tail of the Grand Banks
to Cape Hatteras. Evidence shall be presented for isopycnal
mixing along the WBUC path, resulting in downstream dilution
of the low silica WBUC water.

The data coverage of the western North Atlantic Ocean
has expanded greatly over that which was available to Metcalf
(1969) and Worthington and Wright (1972). More structure in
the silica distribution can be discerned here than was pos-
sible previously. The time span over which the data was
collected must certainly be kept in mind. ©Little is known
of the temporal variations of the deep water properties.

That a consistent picture of the deep silica distribution
can be presented is taken to indicate that these temporal
variations are indeed small.

It must, of course, be kept in mind that local anomalies
do exist. They may be either due to temporal, spatial, or
possibly instrumental effects. As discussed in Appendix I
large anomalies which contradict surrounding data must be
suspect, but more reasonable local features are retained in
the data set and are accepted as essential characteristics
of the ocean. Where these features stand out they will be

noted.
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IITI. Data and Methods

The data used in this report was obtained by searching
the WHOI and NODC oceanographic files for cruises in which
temperature, salinity, and dissolved silica were measured.

Only those cruises where salinities were measured by a con-
ductivity bridge (i.e., three decimal place precision) were
used. This basically restricted the data set to cruises

since 1958. The data used is summarized in Table lffig,é). The
data from one cruise, KNORR 12, was rejected for reasons
given in Appendix I.

In a few cases, duplicate sections (i.e., two or more
sections at the same location) existed in the data. The
section with more closely spaced stations was used. In add-
ition, cruises for which samples were analyzed at sea were
preferred to those during which the samples were frozen. Aall
of the data used in this report was analyzed at sea with
either a spectrophotometer or autoanalyzer.

For all cruises except AII 100 (see below) the data were
accepted as they existed in the files. Observations denoted
as questionable by the observers were discarded. Plots of
e—SiO2 and S-—Sio2 were formed and observations which dis-
agreed with the main body of data were rejected (see discus-

sion of 6-Si0., data). All of the data (again with the

2
exception of AII 100 as noted below) were from previously
published sources (see Table I) and had been edited on the
basis of the mean 6-S distribution of the North Atlantic

Ocean.
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Table I.
Year Ship Cruise Location Previous Publication
1958 DISCOVERY II I.G.Y. 2 24° 30' N* Metcalf (1969)
32° 15" N* Worthington and Wright (1970)
1961 ATLANTIS 265 40° 15' N*
1961 CHAIN 20 Woods Hole-Bermuda Worthington and Wright (1970)
1966 ATLANTIS II 18 near 36°N,66°W Metcalf (1969)
and 36°N,63°w
1971 TRIDENT Cape Hatteras Richardson (1977)
1972 HUDSON 50°W and around Clarke, Hill, Reiniger and
the tail of the Warren (1978)
Grand Banks
1972 CHAIN 104 around the tail of Clarke, Hill, Reiniger and
the Grand Banks Warren (1978)
1972 KNORR 30 GEOSECS stations* Broeker, Takahashi and Li(1976)
27-34
1975 KNORR 48 64° 30'w Worthington (in preparation)
1977 KNORR 66 55°wW Worthington(in preparation)
1978 ATLANTIS II 100 70°W

* used only in the preparation of the maps of dissolved silica on potential
temperature surfaces
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The section from cruise AII 100 was occupied by the
author in the spring of 1978. The samples were collected
with a 24-bottle rosette of Niskin bottles on a Neil Brown
CTD. For this work only the temperature data from the CTD
was used. The salinities were determined at sea on a Guild-
line Autosal salinometer and the dissolved silica was de-
termined with a spectrophotometer. The data were edited by
plotting both salinity and silica versus pressure and remov-
ing those points from which both salinity and silica values
indicated contamination of the sample. For the thirteen
stations occupied, the worst had eight "contaminated" samples
and the best had none (there were 24 samples per station).
The final 6-S data set was then compared to the Worthington-
Metcalf (1969) mean 6-S curve and no other questionahle salin-
ities were obvious below 4.0°C.

The contour plots presented in Section V were prepared
by linearly interpolating the 6—8102 data for each station

to the 6 wvalues used.

IV. Water Mass Characteristics
4.1 Potential temperature salinity characteristics

As previously stated, the deep western North Atlantic
Ocean is characterized by a tight potential temperature salin-
ity correlation. Figure 4 is a composite plot of deep 6-S
observations for those stations indicated. The boundaries

of the North Atlantic Deep Water are indicated (Worthington
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and Wright (1970)). Below the inflection point at 6 ~ 1.85°C
a low salinity tail is present indicating the effects of
Antarctic Bottom Water (Wright and Worthington (1970); Broeker,

Takahashi, and Li (1976)).
4.2 Potential temperature-silica characteristics

Figure 5 is a composite plot of deep observations of
potential temperature and dissolved silica for those stations
indicated. It should be noted that within the potential tem-
perature range of the North Atlantic Deep Water (6 > 1.9°C),
we find the maximum scatter in the 6-Si02 plot.

Note also that for 6 < 1.85°C there is a sharply increas-
ing silica tail corresponding to the low salinity tail of the
Antarctic Bottom Water (AABW) (Broeker, Takahashi, and Li
(1976)). This high silica branch is confined to the south
of the tail of the Grand Banks of Newfoundland. One can see
the difference clearly when the data are separated into groups
of data from either side of the tail of the Grand Banks (see
Figures 6a and 6b). fﬁose stations east of 50°W show no AABW.
This geographical 1limit to the northward influence of the AABW
is similar to that used by Wright and Worthington (1970) in
their volumetric potential temperature, salinity census of
the North Atlantic Ocean. The AABW was seen clearly in the
North American Basin, but not in the Labrador Basin (Figures
7a and 7b were reproduced from Wright and Worthington (1970)).

Wright and Worthington (1970) also found that in the

Labrador Basin (but absent in the North American Basin) there
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was a relatively saline (with respect to the Antarctic Bottom
Water) and cold (6 < 1.9°C) water mass (Denmark Straits,
Overflow Water (DSOW)). In agreement with this we find that
for 6 < 1.9°C, east of 50°W (Figure 6b), there is a low silica
branch on the G—Sio2 plot. This water is not generally ob-
served west of 50°W (see exception noted below).

The two branches of the 6-Si0O, plot come together at

2
6 ~ 1.9°C as did the two branches of the 0-S distribution
(Wright and Worthington (1970)). Worthington and Wright (1970)
showed that at 1.8°C and below there is no direct path between
the AABW and the DSOW. It is between 1.8°C and 1.9°C a direct
path first exists (Figures 8a and 8b).

The data presented above suggest that for 6 < 1.9°C both
salinity and dissolved éilica can be used to identify the AABW
and the DSOW.

In the range of the NADW (6 > 1.9°C) one may take advan-
tage of the wide variation of dissolved silica (whereas there
is very little variation of salinity) to distinguish between
water masses of different origin within the NADW.

In the data from east of 50°W (Figure 6b) there is a
distinct gap in the data from 6 = 1.9° to 3.4°C. The higher

silica branch runs from 6 ~ 3.4°C and SiO, ~ 18 ug A/% to

2

8 ~ 1.9°C and SiO, v 32 ug A/% where it joins in with the

2
AABW and the DSOW. In this same potential temperature range,

there exists a lower silica branch running from 6 ~ 3.4°C,

SiO2 v 16 ug A/% to 6 ~ 1.9°C, SiO2 ~ 18 pg A/%. This lower

silica water may be traced back into the Labrador and
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Norwegian Seas (Grant (1970)), and is presumed to be the
source of the Western Boundary Undercurrent (WBUC) (Richard-
son (1976); Clarke, Hill, Reiniger, and Warren (1978)).
West of 50°W, the distribution is quite different
(Figure 6a) in the NADW range of potential temperature.
There are only a few observations to the low side of the
majority of the observations. The distinct gap seen to the
east is not evident here. In fact, most of the "anomalous"
observations come from two cruises. The section along 50°W
shows the two branched distributions clearly and also shows
some of the DSOW water at 6 v 1.8°C (Figure 9). This sec-
tion was grouped with the western group because of the AABW

seen for 6 < 1.9°C and SiO, > 30 ug A/%. The other source

2
of the anomalous data is AII 18 (Figure 10). These data

also show evidence of DSOW (6 n~ 1.85°C, SiO, ™~ 24 ug a/%).

2
These are the only observations of the water mass at a point
so far west. Since these observations of the DSOW are so
isolated, it is assumed that there was an intrusion of this
water mass into the area at the time these data were
collected.

With the two sections discussed above deleted, the
6 - SiO2 distribution west of 50°W consists of a broad line
of values from 6 = 3.5°C and Sio2 = 14 pyg A/%2 to 6 = 1.9°C

sio2 = 30 ug A/% where it meets the AABW (Figure 11).

We stated previously that it was, in general, the lower

values of silica that were found closer inshore. This will

become more clear when the charts of silica on constant
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potential temperature surfaces are discussed in Section V.
The reason for the lower values inshore is assumed to be the
influence of the WBUC (Richardson (1976); Worthington (1976)).
Examination of the individual sections which extend from
the abyssal plain up onto the continental rise reveals that
while there is a general tendency toward lower values of
silica inshore, the strength of the gradient and the extreme
values vary considerably (Figures l2a-e). The figures may be
divided into two categories. The first are those sections
which show a distinct gap between the WBUC and the remainder
of the NADW (HUDSON, KN 48). The second are those which show
a continuous band of observations but are limited to a range
of values within the extremes of HUDSON and KN 48 (AII 100,
CH 20, TRIDENT). These types of distributions are grouped
geographically, the two branched distributions being to the
east (east of 65°W) and the more uniform distributions being

to the west.

4.2.1 Polynomial fits to the potential temperature

silica relationship

To quantify the differences between these distribu-
tions, polynomial fits to the data were made. It was found
that little was gained for fits of higher than fourth order.
The fits were obtained with a least square polynomial regres-
sion program for the Hewlett-Packard 9830 calculator. The
fits and residuals are presented in Figures 13-17. Root mean

square deviations for each of the fits were also computed
\
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(Table 2). It should be noted that the r.m.s. deviations are
lower to the west than to the east, the plots of the residuals
show that for CH 20, AII 100, and TRIDENT, the residuals are
evenly distributed between *20 with an increase of the scatter
toward lower potential temperatures. For both KN 48 and
HUDSON, we find that the residuals are evenly distributed
above 6 = 3.0°C but break into two bfanches for 6 < 3.0°C.

The low residuals can readily be identified in the WBUC water

which forms the low silica branch of the 6 - SiO, plots. To

2
illustrate the effects of the WBUC on the fits, the inshore
stations were removed (containing the WBUC observations) from
the KN 48 and HUDSON sections and re-computed the fits
(Figures 18, 19). The r.m.s. deviations are now 1.10 for
HUDSON and 1.01 for KN 48. The plots of the residuals now
show a more uniform distribution than did the fits including
the WBUC. The curves fitted to the KN 48 (65°W) and HUDSON

' (50°W) sections with the WBUC removed are nearly identical
(Figure 20). To the west of 65°W, the three fits produce
similar curves. Above 20°C those for TRIDENT and AII 100 are
nearly identical and CHAIN 20 shows a deviation from the
other two between 2.5° and 4°C (Figure 21). In Figure 21 a
2 standard deviation envelope has been included to show that
the discrepancies are not statistically significant even from
2.5 C » 4°C.

To demonstrate that the WBUC has an effect on the distri-

bution of silica west of 65°C the fits for AII 100, CH 20,
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Table II.
Cruise Location Standgrd Deviation
(ugar/1)
HUDSON 50°wW 2.72
KNORR 48 65°W 1.46
CHAIN 20 Woods Hole-Bermuda 1.41
ATLANTISII 100} 70°W 1.10
TRIDENT Cape Hatteras 1.21
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and TRIDENT were plotted along with HUDSON and KN 48 (With WBUC
removed) (Figure 22). The 20 envelope is from KN 48. It can
be shown that for 2.00 < 6 < 2.40°C there is a significant dif-
ference between the AII, CH 20, TRIDENT curves and the HUDSON
and KN 48, indicating that the water of the WBUC has a signifi-
cant effect west of 65°W.

It should be emphasized that the data being compared were
collected over a span of several years. The three sections
which show the effect of the WBUC west of 65°W were occupied inl
1961, 1971, and 1978 (CH 20, TRIDENT and AII 100, respectively).

- The consistency of the data suggests that the conditions were
not anomalous at the time of the observations.

For comparison, the 6 ~ 8102 plots for the sections dis-
cussed above are presented again with the KN 48 (without WBUC)
curve and 20 envelope (Figures 23a-h).

Thus it has been shown while there are dramatic changes
in the 6 - SiO2 distribution from the tail of the Grand Banks
of Newfoundland to Cape Hatteras, one can demonstrate that the
low silica signal of the WBUC can be traced throughout the

region.

V. The Distribution of DIssolved Silica on Surface of

Constant Potential Temperature

In the previous section, the plots of silica versus po-
tential temperature demonstrated the existence of geographic
variations in the silica distribution of the deep western

North Atlantic Ocean. In particular, it was found that near
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the tail of the Grand Banks of Newfoundland and along the
continental rise as far west as 65°W, the North Atlantic deep
water consisted of two distinct water masses, easily disting-
uished by their silica content. Further west, the water masses
could not be so easily separated on the 6—Si02 plots, how-
ever, it was shown that the low silica water did have a sig-
nificant effect on G—Sio2 relationship as far west as Cape
Hatteras.

To illustrate further the geographic variability of the
silica distribution, four potential temperature* surfaces
were chosen upon which to prepare contour maps of the silica
distribution (Figures 24-27).

The data base used in preparing these maps is presented
in Table I.

For potential temperatures less than 1.9°C one cannot
trace water continuously throughout the North Atlantic Ocean.
Figures 8a,b (Worthington and Wright (1970)).

Between 1.8°C and 1.9°C the bottom waters from northern

and southern origin come in direct contact.

*Due to the tight 6~S relationship in the deep western
North Atlantic Ocean for 6§ < 3,0°C (Wright and Worth-
ington (1970); Worthington and Metcalf (1961)) poten-
tial temperature surfaces nearly coincide with potential

density surfaces.
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5.1 The 1.9° potential temperature surface

The distributions of dissolved silica on the 1.9°C sur-
face (Figure 24) shows the general southward increase insilica
noted by Metcalf (1969) on the 2.0°C surface (see Figure 1).

Along the mid-Atlantic Ridge, a tongue of high silica
water is found to extend northward. This is AABW and was
identified by Metcalf (1969) using the same IGY sections.

In the vicinity of the tail of the Grand Banks of New-
foundland, there is a sharp silica gradient, with the lowest
values inshore, following the bottom topography. One should
note that this sharp gradient cannot be traced westward around
the tail of the Grand Banks. The lowest contours (<22.5 uga/L)
are only resolved by a few observations and our interpretation
of this as a continuous feature may not be justified. Since
none of the very low silica water penetrates around the tail of
the Grand Banks, it is not associated with the WBUC, but rather
with the Denmark Straits overflow water that is usually observed
to be confined to the Labrador Basin (Figure 2, Wright and
Worthington (1970); Worthington (1976)). Away from the contin-
ental rise the silica values are uniformly high (>35 ug A/%) and
join with the plume of AABW extending north. It should be
noted that 1.9°C is the potential temperature at which the
e—sio2 and 8-S (Wright and Worthington (1970)) plots show the
joining of the DSOW and AABW (Figure 5).

West of 50°W, the silica distribution takes on a differ-

ent character. There is a decrease in the silica values as



25

one approaches the continental rise but the sharp gradient of
the DSOW is not present. After passing around the tail of the
Grand Banks, the 30 and 32.5 pg A/% contours diverge leaving a
large area with little change in the silica concentration.
This is the location of the deep anti-cyclonic gyre proposed
by Worthington (1976).

It should also be noted that the 30 pg A/% contour
follows the topography of the continental rise until it dis-
appears west of 70°W. It is commonly observed that the lowest
silica contours will follow the topography until they end by
running into the coast indicating some mixing process

(Figures 24-27).
5.2 The 2.2°C potential temperature surface

On the 2.2°C potential temperature surface (Figure 25)
the general north-south gradient is again present with a zonal
gradient with the higher values of silica being found along
the mid-Atlantic Ridge. There is a sharp gradient near the
tail of the Grand Banks with the lowest value nearest the
continental rise. This gradient may be traced along the
continental rise and westward around the tail of the Grand
Banks.

In contrast to the 1.9°C surface, the sharp gradient
along the continental rise may be traced further west to
65°W. As it was previously defined, this is the WBUC trans-
porting water southward from the deep Labrador Sea (Grant

(1970)) .
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West of 65°W the gradient weakens. The 20 ug A/% con-
tour runs into the coast and the 22.5 and 25 pg A/% contours
diverge. Similar to the 1.9°C surface, the silica contours
on the 2.2°C surface, away from the continental rise, near
the Grand Banks diverge as one proceeds westward. Here the
25 and 27.5 ug A/% contours diverge. The waters above the
abyssal plain are characterized by a nearly uniform distribu-

tion of silica.
5.3 The 2.4°C potential temperature surface

The 2.4°C potential temperature surface, Figure 26, is
similar to the 2.2°C surface. We see once again the northwest-
southeast gradient with the highest values of silica found
along the mid-Atlantic Ridge and the lowest along the continen-
tal rise.

One can trace a sharp silica gradient from the tail of
the Grand Banks westward to 65°W where the 20 and 22.5 ug A/%
contours then diverge in a similar fashion to the 22.5 and
25 ug A/% contours on the 2.2°C surface. Also similar to the
2.2°C surface, the 22.5 and 25 ug A/% are close together near
the tail of the Grand Banks but diverge when traced westward
beyond 50°W. Thus it is found that the waters above the
abyssal plain nearly uniform in silica.

The inshore gradient on the 2.4°C surface is not as sharp
as that seen on the 2.2°C surface. As shown on the 6-~SiO2
plots (Figure 23a for example) the spread between the WBUC

water and the remainder of the NADW increases with decreasing

potential temperature.
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5.4 The 3,0°C potential temperature surface

The 3.0° potential temperature surface (Figure 27)
shows a departure from the contribution on the previous sur-
faces. There is the expected southward increase in silica
but at this potential temperature, there is open communica-
tion across the mid-Atlantic Ridge. The data indicate a
sharp gradient near 32°N with abrupt changes above the mid-
Atlantic RIdge. These features are not well resolved and
shall only be pointed out here without further comment.

Near the tail of the Grand Banks, and along the contin-
ental rise, the sharp gradients seen on the previous surfaces
are no longer present. The distribution is nearly uniform
throughout the entire region north of 35°N from the Grand
Banks to Cape Hatteras. This was shown also in the 6—8102
plots (see Figure 5) by the narrowing of the B—Sio2 scatter

for 6 > 3.0°C.

VI. Discussion

6.1 The 0-Si0, relationship

2
In the preceding sections a silica minimum (on surfaces

of constant potential temperature) was found along the con-

tinental rise. This feature has been associated with the

WBUC (Richardson (1977); Clark, Hill, Reiniger, and Warren

(1978)). It has been demonstrated that the low silica

water can be traced from the tail of the Grand Banks of New-

foundland to Cape Hatteras. However, it was also fqpnd
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that the 6-5102 characteristics of the WBUC do not remain un-
changed throughout the region of study. There is a marked

change in the 0-Si0, relationship to the west of 65°W. The

2
data suggest that a narrow band of low silica water comes around
the tail of the Grand Banks and extends to 65°W along the con-
tinental rise. Further west, the silica minimum is less pro-
nounced. The two branches of the e-SiO2 plot seen at 50°W
are no longer distinguishable at 70°W where a more diffuse
silica pattern exists. At 50°W the low silica branch was
8-10 yg A/% lower in silica (for 6 = 2°-2.2°C) than the high
silica branch. When compared to the high silica branch at
the KN 48 (65°W) station (or equivalently the high silica
branch of the HUDSON section, see Figure 22), the TRIDENT,
AII 100, and CH 20 sections all show a 2-4 ug A/% silica
deficit in the same potential temperature range.

The process(es) responsible for the alteration of the

§-5i0., relationship west of 65°W is not a simple one to iden-

2
tify. The distribution of dissolved silica has been described,
but it has not been related to the flow field. It has been .
suggested that since the low silica water undoubtedly
originated in the northern regions, its presence in a narrow

band along the continental rise implies the existence of a

WBUC.
6.2 Geostrophic transport measurements

Several observers have made hydrographic sections and

computed the geostrophic transport of the WBUC. Richardson
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(1977) compared the results and Table III is reproduced from

his work. A wide range of values is found. How much of the
variability represents changes in the mass flux of the WBUC
and how much is due to the choice of stations or the method
used to establish the absolute velocities is not known.
Richardson (1977) has described the methods used in each com-
putation and suggested possible error sources. All of the
data listed in Table III came from sections to the west of
65°W.

There are few available calculations of the transport to
the east. Clarke, Hill, Reiniger, and Warren (1978) found
no evidence for the WBUC at 50°W but they suggested that this
was due to unrealistic reference velocities used. The current
meters used to adjust the geostrophic velocities were probably
outside the WBUC (see further discussion below).

Worthington (1970), in his model of the circulation of
the North Atlantic Ocean, allows only 6 X 106m3/s to flow in
the WBUC, although he suggests that the flow may be unsteady.

Although Worthington's 6 x 10+6m3/s is smaller than most
of the observations to the west of 65°W, it is not felt that
any of the measurements are precise enough to be compared.
Collectively, these data do suggest that the WBUC is present
from the Grand Banks to Cape Hatteras. It cannot, from the
available data, be determined if any changes in the transport

are occurring to accompany the changes in the G—Sio2

relationship.
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Table III.

(taken from Richardson (1977))

Volume transport estimates of the Western Boundary Undercurrent.
The value in parenthesis is the r.m.s. deviation of the innividual

transports about the mean.

Measdred by

Transport Latitude Date
(106m3/sec)
Swallow & Worthington(1961) 7 33 Mar 1957
Volkmann (1962) 50 38 Jul 1959
17 38 Jul 1960
Barrett (1965) 4 35 Oct 1962
12 35 Oct 1962
Worthington & Kawai (1972) 2 35 Nov 1966
Richardson & Knauss (1971) 12 35 Jul 1967
Amos,Gordon & Schneider (1971) 22, 31 May 1268
Average 16 (14)
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6.3 Moored current meter observations

There have been several current meters moored in the
WBUC. Along 70°W steady westward flow was observed for
eight months on the upper continental rise (bottom depth
<4000) (Luyten (1977)). Off Cape Hatteras, records less than
one month long show flow to the southwest directly beneath
the Gulf Stream (Richardson (1977)). Recent data from the
Blake-Bahama Outer Ridge indicate the presence of a strong
westward flow (Rhines, personal communication). To the east,
at 50°W, a two-month record just to the south of the tail of
the Grand Banks shows a predominently westward flow. 1In gen-
eral, however, the current meter data along 50°W and along
another line to the north of the Grand Banks running southeast,
show little evidence of the WBUC. Clarke, Hill, Reiniger,
and Warren (1978) remarked that "...our velocity vectors do
not show a definite westward flow along the continental slope
in conformity with the unequivocal evidence in the deep silica
field for the western boundary undercurrent." They suggested
that the disparity between the current meter and hydrographic data
was due to a difference in the time scale to which the two
types of data respond. While this may in fact be true, an
alternative explanation is offered. 1In this case, it appears
that the current meters were placed outside the WBUC. Some
idea of the location of the WBUC may be gained from the deep
silica data (Figure 28). The 2.0°C potential isotherm has
been added to and one can identify the WBUC where the silica

contours sharply turn downward and cross the isotherm. Note
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also the slope of the 2.0°C isotherm indicating the presence of
deep shear. Along the section running southeast (Figure 29)
none of the instruments were in the low silica water. Along
50°W (Figure 28) one instrument is located clearly within the
low silica water. The record from this instrument shows a
predominantly westward flow for two months (Figure 30). Thus
we feel that the disparity between the current meter and hydro-
graphic data is due to the location of the instruments outside
the WBUC.

Fortunately, it is along 50°W that the silica data pro-
vides the clearcut evidence for the WBUC. Along 70°W and
near Cape Hatteras, the silica data alone suggests only that
the WBUC has had some influence but the current meter data and
the geostrophic transport calculations offer evidence that the
undercurrent is present. It is from this observation that one
may anticipate that the change in the silica distribution is
not due to a fundamental change in the character of the flow,
but rather is caused by some external effect which results in

an exchange of water between the WBUC and the central basin.
6.4 Enhanced mixing west of 65°W

The current meter data may be used to offer a suggestion
as to the nature of the process which provokes this exchange
of water particles. Current meter measurements along both
70°W and 55°W indicate that the flow over the abyssal plain is
characterized by energetic eddy activity (Schmitz (1976) (1978);

Luyten (1976)). The effect of these eddies can be seen in the
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silica distribution by the nearly uniform silica level over
the abyssal plain (Figure 24).

When the WBUC rounds the tail of the Grand Banks, it fol-
lows the topography westward and effectively skirts around the
deep eddy field. After passing through the New England sea-
mount chain (near 65°W) the topography steers the WBUC south-
ward and forces it to flow directly under the Gulf Stream and
presumably into more vigorous contact with the deep eddy field.
Thus the topography steers the flow into a region of enhanced
mixing which exchanges the low silica water along isopycnal
surfaces with the surrounding North Atlantic deep water, thus
eroding the silica signal and providing the smoother distribu-

tion observed.

VIiI. Summary

The distribution of dissolved silica in the deep western
North Atlantic Ocean has been presented. It has been found
that the dissolved silica content can be used, in conjunction
with potential temperature, to identify water masses.

For potential temperatures less than 1.9°C the dissolved
silica potential temperature relationship is similar to the
salinity potential temperature relationship. Both show two
distinct branches which identify the Denmark Straits overflow
and the Antarctic bottom water.

In the North Atlantic deep water, where the 6-S relation-

ship forms a tight correlation, the 6-8102 relationship shows

\
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a wide range of values. It has been éhown that a silica mini-
mum, on surfaces of constant potential temperature, can be
traced along the continental rise from the tail of the Grand
Banks of Newfoundland to Cape Hatteras.

The low silica water has been termed the Western Boundary
Undercurrent (for historical reasons), which has been inter-
preted as the mechanism by which water is transported from the
Norwegian and Labrador Seas toward the equator.

Given this observed silica distribution, one is left with
a difficult task of interpretation. The WBUC is the most
prominent feature in the distribution yet little is known about
the structure of the flow. What roles do advection and diffu-
sion play in determining the observed silica distribution?

It has been hypothesized that a region of enhanced mixing is
present west of 65°W. It has been suggested that this enhanced
mixing is due to the presence of the deep eddy field observed

with moored current meters.

Appendix I. Rejected Data

The data collected on KNORR 12 has been rejected because
of anomalous 6-5 and B-Si02 characteristics. This was unfortu-
nate since the stations were located in the region between 55°W
and 65°W where there is no other data (Figure 31).

The 8-S relationship from KN 12 shows a consistent bias
toward lower salinities when compared to neighboring sections

(Figure 32). The 6-Si0O., relationship shows a consistent bias

2

toward higher silica values (Figure 33).
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It may be argued that the low salinity and high silica
values imply an intrusion of water from the south. However,
since these anomalous conditions were observed in the data

from only a single cruise, it is felt that they should be

suspect.
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DISSOLVED SILICA

Fig. 13a. Fourth order polynomial fit to
data from HUDSON (50°W).
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Fig. 13b. Normalize& reéiduals to.the fourth
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DISSOLVED SILICA

Fig. l4a. Fourth order polynomial fit to
the data from XNORR 48.°
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STRANDRRD | ZED RES IDURLS

.04
Fig. 14b. Normalized residuals to the fourth
order polynaomial fit from KNORR 48.
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DISSOLVED SiLicA (ugA/i)

Fig. 15a. Fourth orxrder polynomial fit to
the data from CHAIN 20.
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POTENTIAL TEMPERATURE (ugA/l) .
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Y%.84 Fig. 15b. Normalized residuals to the fourth
-+ order polynomial fit from CHAIN 20.
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DISSOLVED SILICA

-

Fig. l6a. Fourth order polynomial £it to
the data from ATLANTIS II 100.
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q.al Fig. 16b. Normalized residuals to the fourth
order polynomial fit from ATLANTIS II 100.
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DISSOLVED SILICA

+

Fig. 17a. Fourth order polynomial fit to
the data from TRIDENT.
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Fig. 17b., Normalized resicduals to the fourth
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order polynomial fit from TRIDENT.
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DISSOLVED SILICA (ugA/l)

Fig. 18a. Fourth order polynomial fit to

the data from HUDSON (50°W) with the WBUC
observations removed. (see text)
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ITSTARANDARD | ZED RES IDUALS
Y4.84 Fig. 18b. -Norx.nalized residuals to the fourth
order polynomial fit from HUDSON (50°W) with
the WBUC observations removed.
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DISSOLVED SILICA (ugA/l)

Fig. 19a. Fourth order polynomial fit to
the data from KNORR 48 with the WBUC
observations removed. (see text)
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T STANDRRD | ZED RES I DURLS

4.8l + Fig., 19b. Normalized residuals to the fourth
order polynomial fit from KNORR 48 with the
WBUC observations removed.
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DISSOLVED SILICA (ugA/I)

40

Fig. 20. Fourth order polynomial fits to
the data from HUDSON (50°W) and KNORR 48
with the WBUC observations removed. Two
standard deviation envelopes have been
included.
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DISSOLVED SILICA (ugA/l)

40

Fig. 21. Fourth order polynomial fits to
the data from CHAIN 20, ATLANTIS II 100,
and TRIDENT. The two standard deviation
envelope for CHAIN 20 is included.
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DISSOLVED SILICA (ugA/l)

Fig. 22. Fourth oxder polynomial fits from
.TRIDENT, CHAIN 20 and ATLANTIS II 100
compared with those from HUDSON (50°W) and
KNORR 48 with the WBUC observations removed.
The two standard deviation envelope from
KNORR 48 is shown.
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