
ON THE PROPAGATION OF FREE TOPOGRAPHIC ROSSBY

WAVES NEAR CONTINENTAL MARGINS

by

HSIEN WANG OU

B.S., National Tsing Hua University in Taiwan (1971)

M.S., Florida State University (1975)

SUBMITTED IN PARTIAL FULFILLMENT OF THE

REQUIREMENTS FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

and the

WOODS HOLE OCEANOGRAPHIC INSTITUTION

April, 1979

Signature of Author
Joint Program in Oceanography, Ma sachusetts Institute of
Technology - Woods Hole Oceanog phic Institution, and
Department of Earth and Planet y Sciences, and Department
of Meteorology, Massachusetts Institute of Technology,
April, 1979.

Certified by.
Thesis Supervisor

Acccepted by
Chairman, jlo$ nt Oceanograph Committee in Earth Sciences,
Massachuse s Institute of Technology - Woods Hole
Oceanographic Institution.

MASSA

tIE RIES
UIBRARIES



ON THE PROPAGATION OF FREE TOPOGRAPHIW ROSSPY WAVEr
NEAR CONTINENTAL MARGINS

by

Hsien Wang Ou

Submitted to the Massachusetts Institute of Technology
Woods Hole Oceanographic Institution

Joint Program in Oceanography on April )0, 1074,
in partial fulfillment of the requirements for

the degree of Doctor of Philosophy

ABSTRACT

Observational work by Thompson (1977) and others has demon-
strated that free topographic Rossby waves propaqate northward
up the continental rise south of New England. To study the
dynamical implications of these waves as they approach the
shelf, Beardsley, Vermersch, and Brown conducted an experiment
in 1976 (called NESS76) in which some moored instruments were
strategically placed across the New England continental margin
to measure current, temperature, and bottom pressure for about
six months.

An analytical model has been constructed to study the pro-
pagation of free topographic Rossby waves in an infinite weeqe
filled with a uniformly stratified fluid. The problem is found
after some coordinate transformations to be identical to the
corresponding surface gravity wave problem in a homogeneous
fluid, but with the roles of the surface and bottom boundaries
interchanged. Analytical solutions are thus available for both
progressive and trapped waves, forming continuous and discrete
spectra in the frequency space. The separation occurs at a
nondimensional frequency d= S, defined as (N/f) tangY*, where
N and f are the Brunt-Vaisfl' and inertial frecruencies, and
tane* is the bottom slope. Since an infinite wedge has no
intrinsic length scales, the only relevant nondimensional
parameters are the frequency d and the Burger number S. T hus,
stratification and bottom slope play the same dynamical role,
and the analysis is greatly simplified. Asymptotic solutions
for the progressive waves have been obtained for both the far
field and small S which enable us to examine the parameter
dependence of some ,of the basic wave properties in the far
field, and the spatial evolution of the wave amplitude and
phase as they approach the apex when S is small. The general
solution is then presented and discussed in some detail. The
eigenfrequencies of the trapped modes decrease when S decreases
and reduce to the short wave limit of Reid's (1q58) second
class, barotropic edge waves when S approaches zero. The modal
structure broadens as S increases to some critical value above
which no such coastally-trapped modes exist.



To simulate more closely the dynamical processes occurring
near the continental margin, a numerical model incorporating a
more realistic topography than an infinite wedge has been con-
structed. With stratification imposing an additional harrier,
the model suggests that the maximum energy flux transmission
coefficient obtained in Kroll and Niiler's barotropic model
(1976) is likely an upper bound. Also in the presence of the
finite slope changes, the baroclinic fringe waves generated
near the slope-rise junction may form an amphidromic point at
some mid-depth and locally reverse the'direction of the phase
propagation above it. These baroclinic fringe waves also cause
an offshore heat flux over the continental rise which, combined
with the onshore heat flux generated over the slope region in a
frictionless model, induces, across the transect, a mean flow
pattern of two counter-rotating gyres with downwelling occurr-
ing near the slope-rise junction. Bottom friction always gene-
rates an offshore heat flux and therefore modifies this mean
flow pattern over the slope region. The induced longshore mean
flow is approximately geostrophically balanced and generallv
points to the left facing the shoreline, but its direction can
be reversed where the baroclinic fringe waves dominate. The
mean thermal wind relation implies a generally denser slope
water than that farther offshore.

Some of the model predictions are compared with the data
taken from NESS76. The comparisons are generally consistent,
suggesting that topographic Rossby wave dynamics may play an
important role for the low frequency motions near continental
margins.

Thesis Supervisor: Robert C. Beardsley

Title: Associate Scientist
Woods Hole Oceanographic Institution
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1. Introduction

There have been considerable efforts (e.g., Thompson, 1.071;

Rhines, 1971; Thompson and Luyten, 1976) looking for clues of

bottom intensified topographic Rossby waves since they are

first proposed in theory by Rhines (1970). Recently, after an

extensive analysis of the data obtained near site D (3001fl'N,

70 0W), Thompson (1977) concluded that there is strong evi-

dence that the low frequency motions below the thermocline over

the continental rise north of the Gulf Stream are dominate' by

linear topographic Rossby wave dynamics. Furthermore, the

observed offshore phase propagation is consistent with the

assumption that these waves are generated offshore ane raeiate

their energy shoreward onto the coast. Questions naturally

arise: What's the behavior of these waves as they approach the

coast, especially over the rapid transition region between the

continental rise and the slope? Would they be able to pene-

trate through the topographic barriers and contribute signifi-

cantly to the motions on the shelf? To answer the first ques-

tion, Suarez (1971) studied the effect of small. slope changes

on the impinging Rossby waves. He found that in a stratified

ocean, baroclinic fringe waves are excited near the slope dis-

continuity and impose an additional barrier to the transmission

of the waves. The slope discontinuity, in his own words,

"therefore acts like an elastic membrane yielding under the

influence of the impinging Rossby waves but springing back with



little energy lost". To answer the second question, Kroll and

Niiler (1976) constructed an analytical model which considers

the propagation of topographic Rossby waves in a barotropic

ocean of exponentially varying bottoms. With reasonable fric-

tion included, they concluded that these waves are likely to be

completely decayed when the bottom depth is less than 25 m. As

the slope change is not small near continental margins and the

ocean is not homogeneous, a numerical model incorporat 4nq both

effects has been constructed here to give a more complete pic-

ture about the dynamical processes occurring near continental

margins.

To help understand the numerical results, an analytica'

model is first presented in Chapter 2, which considers the pro-

pagation of topographic Rossby waves in a wedge filled with a

uniformly stratified fluid. This is, in some sense, a qerera-

lization of Rhines' (1970) solution of a bottom-trapped edce

wave in an infinitely deep ocean of finite bottom slope, and

his solution of a quasi-geostrophic wave in a finite depth

ocean but with an infinitesimal bottom slope. The problem is

found after some coordinate transformations to be identical to

the corresponding surface gravity wave problem in a homogeneous

fluid, but with the roles of the surface and bottom boundaries

interchanged. Analytical solutions by Peters (1052) and Trsell

(1952) are therefore applicable to our problem for the progres-

sive and trapped waves, forming respectively continuous and

discrete spectra in frequency space. The separation occurs at



a nondimensional frequency d'= S, defined as (N/f) tanef*,

where N and f are the Brunt-Vaisala and inertial frequencies

and tan9* is the bottom slope. The wave frequency has been

nondimensionalized by f. Asymptotic solutions for the progres-

sive waves are first obtained for both the far field and small

S which enable us to examine the parameter dependence of some

of the basic wave properties in the far field and the spatial

evolution of the wave amplitude and phase as these waves

approach the apex when S is small. The general solutions for

the progressive and the trapped waves are then presented and

discussed in some detail. This is followed by a summary of the

major results of the analytical model.

In Chapter 3, a numerical model incorporating a more

realistic topography and the frictional effect is constructed

to simulate more closely the dynamical processes occurrina near

continental margins. To simplify the interpretations of the

results and for easier comparison with other existina models,

the stratification is assumed uniform and the topography is

assumed to be comprised of three sections of exponentially

varying bottom, corresponding robghly to the continental rise,

slope, and shelf. These restrictions can be easilv relaxed in

the model. The model is similar to that of Wang (1075, 1076),

except radiation conditions are imposed at both the inshore and

offshore boundaries of the transect and an Ekman suction velo-

city is included in the bottom boundary condition to simulate

the effect of friction. With incoming waves specified at some
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offshore location on the continental rise, we can then study

the evolution of these waves as they approach the coast. We

will present the inviscid solution for a typical oceanic case

and discuss its properties in some detail. Most of the results

can be interpreted by the analytical solution in a wedge, but

the replacement of the apex by a finite shelf and the rapid

slope change across the slope-rise junction introduce some

additional features that modify the wave properties considera-

bly. Some simple results assuming quasi-geostrophy are derived

to help explain these new features. A brief discussion on the

parameter dependence of the solution as well as the frictional

effect on these waves is then presented. The chapter concludes

with a summary of the major predictions of the model.

In Chapter 4, some of the model predictions are compared

with the observations taken from an experiment conducted by

Beardsley, Vermersch, and Brown in 1976, called NESS7A, in

which some moored instruments were strategically placed across

the New England continental margin to measure current, tempera-

ture, and bottom pressure for about six months. Detailed

analysis of the data will be presented elsewhere (Reardslev,

Ou, and Brown, in preparation) and only some relevant observa-

tions will be shown here to compare with the model. B-ased on

this comparison, the validity of the model and its further

applications are discussed briefly at the end of the chapter.
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2. Analytical Model of Free Topographic Rossby Waves in a

Wedge

2.1 The Formulation of the Model

Let's consider free topographic Rossby waves in a wedce

filled with a uniformly stratified fluid, as shown in Fig.

2.1. The linearized equations for an inviscid, hyerostatic ane

Boussinesque fluid are given by,

ut - fv = - p

vt + fu = - p

0 = - p z ~97

u + v + w 0,
x y z

ft - w = 0,

where all the notations have their conventional meanings.

Boundary conditions for the rigid surface and impenetrable

bottom are

w = 0 at z = 0,

and ('.?)

w = -v tan * at z = -y tan6*-

Nondimsionalized by the following scalings,

(x,y,z)---L(x,y,z tanO*),

(u,vrw) --- V(urvrw tang*),

t-+f t,

p - (fVL) p,

where V is the velocity scale and L can be any length scale,

the governing equations become



*R7
z

xI /

z'

Figure 2.1. The wedge in the dimensional, nondimensionalized
and the transformed space.
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ut x

vt + u = -y

0 = - P ~('

u + v + w = 0,

ft - S2  = 0,

with the boundary conditions

w = 0 at z = 0,

and

w = -v at z = -y,

where S m (N/f) tane* is the Burger number. Notice that the

bottom slope tan&'* has been scaled to unity, ane its macni-

tude incorporated with the stratification into a single parame-

ter S.

Solutions of the form

p ~ p(y,z)ei(kx-dt)

exist provided p satisfies the reduced equation

p - k 2p + - = 0, (2.7)

with the boundary conditions

p z = 0 at z = 0,

p yS + -p) at z = -y.

Since an infinite wedge has no intrinsic lenoth scales, the

only relevant parameters are the nondimensional wave fre-

quency d and the Burger number S. Hence, stratification ane

bottom slope play the same dynamical role and the analvsis is

greatly simplified.
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By mapping this wedge of unit slope into a wedae of slope

tan A) through the transformations (Fig. 2.1)

y = (y - z tan0), ( 1

z'= - l (y + z),

where

k' = '/ sine), u'.11i

and

tan U)

the equations (2.7) through (2.q) can be further reduced to,

p , , + pz'z, - k,2p = 0, 0o.111

p = 0 at z' = - y' tana), /2.1A1

pz= p at z' = O,

where the subscript n represents the normal derivative. These

equations are identical in form to the equations satisfied by

the velocity potential of an inviscid, irrotational surface

gravity wave in a homogeneous fluid (e.g., Stoker, 195'), with

the roles of the surface and bottom boundaries interchanced.

The solutions by Peters (1952) and Ursell (1952) for the pro-

gressive and trapped waves are therefore applicahle.

In Fig. 2.1, the x', y', and z'-axis are drawn for the case

k/k' >- 0. The case k/k' < 0 is excluded for the bottom-trapped

waves since it is clear from (2.15) that z' must be negative in

the wedge for these waves. Since k/k' > 0 implies a positive

6'/k, these waves have their wave crests propagating to the

left facing the apex.
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Since in the far field, the solution is approximately qiven

by

p ="(y')ez'

where r satisfies

p , + (1 - k,2 )p 0,

these waves can propagate in y' only when

k Iaai 1,
which can be shown, from (2.11) and (2.12), to be equivalent to

Since the buoyancy force is the only restoring mechanism 4n the

far field, this is similar to the short wave cut-off frequency

Rhines (1970) found for the bottom-trapped edge waves in an

infinitely deep ocean. This cut-off frequency divides the

(S, d) space into two regions (Fig. 2.2); one region in which

waves are progressive in y' and the frequency takes on conti-

nuous values, and the other region in which waves are trapped

in y' and the frequency is allowed to have only discrete

values. Solutions for both regions will be presented but with

more emphasis on the progressive waves as they can propaaate

into the shallower water from the deep ocean and hence are more

pertinent to our study of the dynamical coupling of the motions

across continental margins.



d

1
2n+1

.2 .4 .6 .8 1.0 1.2 1.4
Figure 2.2. Separation of (S,0') space into the regions of continuous and discrete spectrum by the

short wave cut-off. Analytical solution has been evaluated for the cases shown by the
solid dots and the eigenfrequencies of the first four trapped modes are shown by the
solid curves.
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2.2 Continuous Spectrum

The problem of progressive surface gravity waves impinginq

on a uniformly sloping beach at an arbitrary incidence angle

has been solved by Peters (1952). Since we have shown that his

problen is mathematically identical to the problem we are con-

sidering here, his solutions are directly applicable. The two

independent standing wave solutions (corresponding to s = 1 and

2 in the following expressions) are given by some contour inte-

grations on the complex y -plane,

!C 44 f 0p _IV

where

fAL

is defined in the sector -'/2 - 2a < argk g<'7/2 + 74) where

it is analytic,

- 4 (2. 10)

and r, r 2  - .+ are the contours shown in Fig. ?.1.

Since Peters has shown that these two solutions are sinu-

soidal in y' and /2 radians out of phase with each other far

away from the apex, they can be combined, with appropriate time

and amplitude factors, to yield progressive waves in the far



- Plane

Figure 2.3. The contours of integration for the analytical solution of progressive waves.
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field. At the apex,, 1  remains regular but Z 2 becomes

logarithmically singular. The physical basis for this logari-

thmic singularity has been discussed briefly by Stoker (1457).

Basically, if no reflection occurs at the apex, all the incom-

ing energy has to be absorbed there, producing a singular

point. This is also where linear wave dynamics breaks down..

If, however, total reflection is assumed, then 1 would fbe

the solution for motions that are well-behaved at the apex. Tn

a realistic application, the incoming waves are of course

neither totally absorbed nor totally reflected at the apex,

both solutions might be required for a complete description.

There will be more discussion on this pertaining to the parti-

cular problem we are considering in the next chapter. Here, we

shall only present the propagating wave solution since the

behavior of the standing waves away from the apex can be fairly

easily inferred from it, and also the phase properties can be

more easily visualized.

To help understand the full solution (2.17), we will pre-

sent next the asymptotic solutions for both the far field And

the small S.
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2.2.1 Asymptotic Solution in the Far Field

In the far field, where the wave amplitude is necgliqihle

near the upper surface, the approximate solution of ('7.1'

through (2.15) is given by,

p =e z'+i 1-k, 2 (2.10)

Transforming back to the (y,z) coordinates according to (9.10),

w e g e t k7 . 71)
p =e am eOl!

This is a bottom-intensified wave that has amplitude contours

parallel with the sloping bottom (i.e., y + z = constant). The

phase lines are tilted from the vertical axis and have a slope

= 1/tan 2 R

the arctangent of which is plotted in Fig. 2.4. Tn the dimen-

sional space, this slope is given by

'= tan0*
o7.?'

Therefore, the phase lines are more verticaJ for smaller, N

ortg*. To get a rough idea of the magnitude of this slope in a

typical oceanic case, let's assume that N = 10 sec

f = 10~4 sec 1, and e f, then f* = 10- 2/tan *. When

the bottom slope varies from about 10 ' on the continental

rise to about 5 x 10-2 on the continental slope, the tilting

of the phase lines for short waves then varies from about 5 0

from the vertical over the rise to about 110 from the hori-

zontal plane over the slope.
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Figure 2.4. Contours of the arctangent of the nondimensionalized phase line slope in the far field.
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A crude measure of the intensity of the bottom trappinq can

be given by the "penetration depth", defined as

which in the far field leads to,

(from (2.?)

14 (from (91.21))

- dr (from (24.11) and (?.I?))

where

is some dimensionless quantity that is plotted in Fiq. 1.5.

With fixed bottom slope and longshore wavelength, the motions

are generally more bottom trapped for smaller d or larcer S.

This is because both lowering d and increasing S tend to

increase the amplitude of the density fluctuations for a given

onshore velocity or pressure amplitude along the bottom which,

through the hydrostatic balance, implies a stronger bottom

trapping.

Since in the far field, the frequency can only depend on

the direction of the wave number vector but not the maqnitude

of it, the group velocity must be perpendicular to the phase



d

1.0 - --

.8 D

.6

.4 ... .75

.2 
1 .5

.23 .25

.2 .4 .6 .8 1.0 1.2 1.4

Figure 2.5. Contours of some nondimensionalized "penetration depth" in the far field.
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velocity. Given the fact that these waves can only propacate

to the left facing the apex as was shown earlier, the wave

crests associated with the incident waves must propagate

offshore.

Let <f be the projection on the horizontal plane, of the

angle the wave number vectorr makes with the shoreline (Fic.

2.6), then the dispersion relation can be easily derived from

(2.21),
AC 4 i42

which is plotted in Fig. 2.7.

It is seen that the wave number vectors are more parallel

to the isobaths for larger & or smaller S. This is expected,

since the fluid particles traverse the isobaths at a more

normal angle for these waves, they are hence subiected to a

greater restoring force for a given S, and fluctuate more

rapidly; or equivalently, with frequency fixed, S has to he

smaller for these fluid particles to be subjected to the same

restoring force.

Some of the properties of the current ellipse will be

derived next where all the superscripts " ' " refer to varia-

bles in the transformed coordinate system. Since w' vanishes

at z' = 0, and the solution is exponentially decaying in -z',

w' vanishes everywhere in the far field so that for a propaqat-

ing wave with a wave number vector k',
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Figure 2.6. Figure showing the definition of # and 0.
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by mass conservation. Therefore, the particle motion is recti-

linear and normal to the wave number vector. For incoming

waves which must have wave number vector pointing into the

first quadrant, the particle motion then lies in the second and

fourth quadrant as shown in Fig. 2.6. This implies a negative

Reynolds stress (i.e., u'v'< 0) or an onshore flux of westwar'

(+x) momentum.

The following results can also be derived,4I. am W) (from (2.10) or Fig. ?.1)

(from (2.77) and (2.701)

(from (2.11) and (1.1211

where

(Q= sin (6'/S) (2.?0')

gives the orientation of the particle motion in the horizontal

plane measured clockwise from the positive x-axis, as shown in

Fig. 2.6. The functional relations between bv/Ijul,W , and
6/S are plotted in Fig. 2.8. Again, the fluid motion is more

perpendicular to the isobaths as the frequency approaches the

short wave cut-off. The value of d'/S, above which the motion

is more normal than tangential to the isobaths is given by

sin1/4, or 0.71.

Since w and v are 1800 out of phase along the bottom,

they remain so everywhere in the far field because they are

both exponentially decaying away from the bottom. Given the
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fact that w is always in quadrature withP, the cross-wedqe

density flux '!Ejvanishes in the far field.

In Appendix C, assuming a small linear friction in the

interior region, we have derived expressions for the mean flow

induced by these waves. It is found that to a first approxima-

tion the mean flow can be calculated as if these waves were

inviscid. Since the mean cross-wedge flow is found to follow

the contours of the density flux v (see (C.51 in Appendix r1,

they must also vanish in the far field. The longshore mean

flow is found to be given by (see (C.6) ,in Appendix C),

U= $ (u. v + Tiuw + k-~)
y

Since the incoming waves have their phase propagating outw'ard

and downward, all the three terms on the right hand side of

this equation are positive and hente a positive lonashore mean

flow *uis induced. By plugging the solution (2.21) into this

equation, we derive that

.24d- i C6'/A)
which is plotted in Fig. 2.9. Notice that for a given S;6 1,

and with 1u6, and k fixed, rf approaches infinity when the fre-

quency approaches zero or the short wave cut-off.
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Figure 2.9. Contours of some nondimensionalized longshore mean flow at the bottom in the far field.
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2.2.2 Asymptotic Solution for Small S

Using the saddle point method, Friedrichs (1Q44' obtained a

very accurate asymptotic representation for the solution of a

surface gravity wave impinging on a gently sloping beach at

normal incidence. By a straightforward extension of h4s

method, a similar expression can be obtained for our solution

(2.17) when S approaches zero for an arbitrary incidence

angle. Readers are referred to Appendix B for the derivation

of the following results.

Let'RA and RA denote the ratio of the cross-wedge wave-

length and pressure amplitude to their asymptotic values in the

far field. It is shown in Appendix B that

RAa

A -

where r1 , r2 are given by (2.19),

A = 1 + r 1r2  2
B = 1 - r 1r2  2

and 3 is related to the spatial coordinate y' by the equation

Sy'N vq) y'

c i(?.34 

since /}-S in this asymptotic limit.
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We plot in Fig. 2.10 and Fig. 2.11 the contours of constant

RA and RA as a function of k' and 6 ={Jk'y'. For this asymp-

totic case we are considering, k'dv'/S, and -v(Sk)y is the

distance from the apex multiplied by some constant factor.

Figure 2.10 shows that the cross-wedge wavelength decreases

as the wave approaches the apex. This refraction phenomenon is

due primarily to the increased effect of vortex stretching as

the water depth decreases. Since the lower frequency waves

have their amplitude more confined to the bottom, thev don't

feel as much the presence of the upper surface until relatively

closer to the apex.

As a consistency check for the dispersion relation, let's

observe that in the far field (Sy' >7 1), (2.14) implies

that l' 1/r . From (B.17) in Appendix ', the cross-wedge

wavenumber 1' is

l' = B / A 7.5

which agrees with the solution (2.20). Therefore, the disper-

sion relation in the far field agrees with (2.26), which in the

limit S < 1, simplifies to

= an = cos~ ). (2.37

This is the same result Rhines (1970) obtained for the short

wavelength quasi-geostrophic motions over a gentiv sloping

bottom. This agreement is expected since the short wavelength

assumption applies in the far field and the quasi-geostrophic
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assumption holds better when the bottom slope is small.

In the near field, where the motion becomes more harotro-

pic, we expect the local dispersion rel-ation to be given by

that of the familiar barotropic topographic waves. This is

indeed the case, as will be shown next. In the near field

where Sy'<"c 1, (2.34) implies that,

Sy' 2 9:9 1, (2.1

which implies from (2.35) that

l' ^-1 /A . (2. 1Q)

These two relations ((2.38) and (2.39)) can be combined to give

Sy'/v 1 / 1,2,

or, since y'v (k / k') y, l'v(k' / k) 1 from (2.10),

Sk''% k / (1 2y)

or, since k's'v d/ S from (2.11) and (2.12),

eeo k / (127).

Therefore, in the dimensional units,

P -t

This is the dispersion relation for the barotropic topographic

Rossby waves when 1 yy k, which holds in the near field. The

refraction phenomenon follows clearly from (2.40), which, in

addition, shows that lv sh-1/2 in the near field, i.e., the

wavelength decreases as a square root of the local depth.

The most striking feature in Fig. 2.11 is the presence of

an amplitude minimum shown by the thick broken lines. This is
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also commonly noticed in the theory of surface gravity waves.

The following illustration is an attempt to help understand

this result.

Consider the w field propagating toward the apex from infi-

nity. As it begins to encounter the upper surface, the wave

field must be modified in order to satisfy the boundary condi-

tion that w vanishes there. To a first approximation, this

modified wave field can be regarded in its initial stage as a

superposition of the original wave and its image wave that is

symmetrical across the y-axis but with a C radians phase

difference, as shown in Fig. 2.12, where the phase lines are

represented by the thin broken lines in the y-z plane, and the

amplitude is plotted along the x-axis with thick solid and bro-

ken lines representing the primary and image waves respective-

ly. For a small slope, the phase lines are approximateiv per-

pendicular to the surface, and conceivably, the wave field of

the image wave along the line CD has the same sign as that

along the line AB (i.e., AC is shorter than a quarter of a

wavelength), this image wave would therefore tend to decrease

the amplitude at the point D. Bear in mind that this is only

the initial effect as the wave first encounters the surface,

and the boundary condition along the bottom is still approxi-

mately satisfied. As we move closer to the apex, the addition

of a single image wave of course is not enough to satisfy all

the boundary conditions, and the above argument breaks down.



Y

Figure 2.12. The w field of the primary wave and its image wave. The phase lines -are shown by the
thin broken lines on the y-z plane, and the amplitude is plotted along the x-axis
with thick solid and broken lines.representing the primary and image waves respect-
ively. A and E are half wavelength apart.
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Eventually, the wave amplitude has to increase and become sin-

gular at the apex. From this presence of image waves, we can

also infer that, at the initial stage, the phase lines are

tilted toward the vertical axis near the surface. This surface

effect on the pressure field is expected to be smaller, since

p N/ ow.dz.(constant) which involves an integration over a

region that is dominated by the primary wave. This fact has an

important bearing on the direction of the heat flux as we shall

see in the next section. Also, because of the same reason we

gave earlier pertaining to Fig. 2.10, the amplitude minimum is

expected to be less pronounced and occurs closer to the apex

for the lower frequecy waves. The singular behavior begins to

emerge no more than &[0.1 from the apex, which corresponds to

a dimensional distance y* no more than 0.1 / (kS).
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2.2.3 The General Solution

The solution (2.17) can be simplified considerably when the

transformed slope angle u) equals TC/2n where n is an integer.
Readers are referred to Appendix A for this reduction of the

solution which simplifies the numerical evaluation. Calcula-

tions have been done for cases shown as solid dots in Pig.

2.2. The wave properties predicted in Section 2.2.1 for the

far field check very well with these calculations. Further-

more, the general behavior predicted in Section 2.2.2 for the

asymptotic case of small S also applies even when S equals

0.57. The qualitative behavior of these waves are therefore

fairly predictable over the whole range S-4O0(1) and it is

sufficient to present only the solution for the case n = ' and

k'= .3 with k set to 21C, or equivalently S = .57 and d' = .15.

The pressure field is plotted in Fig. 2.11a, where the

solid and broken lines represent the amplitude and phase con-

tours respectively. The amplitude has been normalized to unity

in the far field along the bottom. A similar normalization

procedure will be used for the calculations of the velocities,

kinetic energy, and the longshore mean flow. In the far field,

consistent with the asymptotic solutions, these waves are

bottom intensified, with amplitude contours parallel to the

bottom, and phase lines tilted from the vertical axis by an

angle predictable from Fig. 2.4. The rigid surface requires

that both amplitude and phase contours intersect the surface at
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Figure 2.13a. Analytical solutions of the pressure field for the case n =3 and k' = .3 (or
equivalently S = .57 and a = .15) , with k set to 27r. Amplitude has been normalized
to 1 at the bottom in the far field.
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Figure 2.13b. Same as Fig. 2.13a, but for the longshore velocity u.
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Figure 2 .13c. Same as Fig. 2.13a, but for the offshore velocity v. The normalization factor is

.27 if jul = 1 at the bottom in the far field.
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Figure 2.13d. Same as Fig. 2.13c, but for the vertical velocity w. The normalization factor is .27.
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Figure 2 .13e. Same as Fig. 2.13c, but for the horizontal kinetic energy. The normalization
factor is .54.
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Same as Fig. 2.13a, but for the ellipse eccentricity and no normalization is needed.Figure 2.13f.
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Figure 2.13g. Same as Fig. 2.13f, but for the ellipse orientation which is measured counterclock-
wise from the positive x-axis.
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Figure 2.13h. Same as Fig. 2.13a, but for the Reynolds stress uv, and the magnitude has been
normalized so that lul = 1 at the bottom in the far field.
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Figure 2.13i. Same as Fig. 2.13h, but for the offshore density flux vp. Arrows indicate the

direction of the mean flow.
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is 22.50.



0.2
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- V - 3 vw.

y z



51.

right angles. This leads to the more barotropic appearance of

the wave amplitude and the more vertical phase lines as the

apex is approached. The refraction phenomenon is clearly shown

by the shortening of the spacings between phase lines. Along

the bottom, the amplitude first encounters a minimum before it

becomes singular near the apex. This minimum has a value of

.91 and occurs at y't'.075, which agrees almost exactly with

the values one obtains from Fig. 2.11. In fact, the agreement

also holds for the other cases and hence the general behavior

predicted for small S also holds for S^'0(1).

The velocities, kinetic energy, and some other wave proper-

ties are plotted in Figs. 2.13b-g.. Some simple derivations

assuming quasi-geostrophy can help explain the qualitative

behavior of these fields. Let

p ^./ pi eily,

then apart from some real and positive constant, quasi-geostro-

phy implies

v -V ip rv jpj- ei(ly+/2)

u 0 -p lpi+1 2 1PI 2 ei(ly+tan-1 ) (2.47

As the apex is approached, Jv1 therefore varies very much like

Jpl while Jul increases more rapidly due to the combined effect

of bottom intensification and refraction. Julmin is dis-

placed offshore from 1pimin and the major axis of the current

ellipse aligns more closely with the shoreline as the apex is
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approached. Since -7r/2 < tan -q( < 0, u leads v by less

than 1800, which upsets the rectilinear motions in the far

field and induces a counterclockwise polarization to the

current ellipse. As the kinetic energy is quadratic in veloci-

ty, its minimum is more pronounced and occurs somewhere

between lulmin and H min Also, as mentioned in the last

section, the phase lines of w indeed are generally more verti-

cal than that of the other variables.

The Reynolds stress uv and the offshore density flux 7 are

plotted in Fig. 2.13h and 2.1.3i, in which Jul has been set to

unity in the far field along the bottom. The Reynolds stress

1i7 is always negative, and increases in magnitude toward the

apex even though the current ellipse becomes less rectilinear

and more parallel with the shoreline. The vertically integra-

ted 1iv however has to remain constant in an inviscid model,

otherwise it would accelerate indefinitely a longshore mean

flow.

The imposed kinematic boundary conditions require that

vanishes along the boundaries and in the far field. In the

interior region, is seen to be positive. This can be ex-

plained by the following derivations. Assume that apart from

some real and positive constant,

iewv

then, we see from Fig. 2.16b and 2.16c that the phase angle
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wv satisfies the condition

in the interior region and therefore

= - sin((w).(some real and positive constant) (7.441
WV

must be positive.

Since from (C.5) of Appendix C, the cross-wedge mean flow

follows the4 contours, it is plotted in this same figure with

its direction indicated by the arrows. Physically, the

horizontal divergence (convergence) of the heat flux on the

offshore (onshore) side of its maximum induces a mean sinkinq

(rising) motion in the equilibrium state, which forms, through

the mass conservation, the clockwise gyre observed. The core

of the cell is located approximately above ivimin which is

slightly displaced offshore from Iplmin'
The longshore mean flow 'can be calculated from (r.F) of

Appendix C, and is plotted in Fig. 2.13j. Consistent with the

prediction made for the far field, it is always positive and

bottom intensified. Since the divergence of the Reynolds stress

= - -

y z
is small compared to T, as shown in Fig. 2.13k, Eis approxima-

tely geostrophically balanced (see (C.7) in Appendix C). Given

that Euz<O, the mean thermal wind relation implies a denser

water near the apex.
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2.3 Discrete Spectrum

Stokes (1846) has obtained an edge wave solution for sur-

face gravity waves trapped near the apex of a wedqe, and Ursell

(1952) has shown that the Stokes' solution is only the funda-

mental mode (n = 0) of a discrete spectrum of possible edge

wave modes. With minor modification of Urselil's solution, the

solution for the nth mode in our problem is given by

where

A = (-1)m
mn

and k' and a0 satisfy the conditions

and

thThe first condition gives the eigenfrequency of the n mode,

n ,
the first four of which are plotted against S in Fiq. %9. The

second condition is required by the assumption that the solu-

tion is coastally trapped and gives the critical value of 40

below which the nth mode is allowed. In the limit as S

approaches zero, C) is small, and

rt+ , l
which is the short wave limit of Reid's (q958) second class,
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barotropic, trapped waves in a wedge. Since a free surface is

allowed in his model, the agreement with our rigid surface

model is expected only for short waves where the surface stret-

ching effect is negligible. The increase of the eigenfrequen-

cies with stratification agrees with the intuition that the

stratification imposes an additional restoring force.

The solution (2.45) becomes in the (y,z) space

p =e A+ 4 e Cf~~'v*~w y 19 l

where

A =2Amn Amn-

The general modal structure of this solution will be discussed

next.

Since the consecutive higher terms in the summation decay

more slowly in y, they dominate the solution as we move off-

shore. And since they alternate in sign, the nodes are intro-

duced, the number of which equals the mode number n. The modal

structure also becomes more bottom trapped offshore because of

the increasing depth and the stronger bottom trapping of the

higher terms.

The u and v velocities can be derived from (2.51),

VEk~~ VSM2 U. 51)

where

AM= A . (srM 74)
mn n

and

A A. NEWWOmn mn - * (r2. 55
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Since All < Ar < A , the nodes of u occur farther off-
mn mn mn

shore, while those of v occur closer inshore, than the corres-

ponding ones of p. The first node of v occurs right at the

apex due to the impenetrable boundary. As an example, p, u,

and v are plotted in Fig. 2.14a-c for n = 1 and a = 0.5 sde (or

S = 0.249), where p and u have been normalized to unity at the

apex for the pressure and velocity plots respectively. They

confirm the above analysis.

To study the dependence of these modal structures on a) , we

plot in Fig. 2.15, all the Amn values for the mode n = 2.

As 60or equivalently S increases, we see that all the A mn's

decrease in magnitude. Since the y-decay rate is also reduced,

we infer that the modal structure broadens in y with nodes he-

ing pushed offshore. This is clearly shown in Fig. ?.IF where

the nodal positions are plotted. This effect would be the

strongest for u which also becomes less depth dependent than

the other variables. In the limit &0-+c, p and v are no

longer coastally trapped, and the second node of u is pushee to

infinity since A 2-3-0. These trapped solutions look similar22

to some of the patterns shown by Wang (1976) since they repre-

sent a special case of Wang's numerical solutions.
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Figure 2.14a. Pressure fields of the first coastally-trapped mode with w = 0.5 W (or S = .249).
The amplitude has been normalized to 1 at the apex.
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Figure 2.14c. Same as Fig. 2.14a, but for the offshore velocity v and the amplitude has been
normalized so that u = 1 at the apex.
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2.4 Summary

We have presented in this chapter an analytical model of

topographic Rossby waves propagating in an infinite weege

filled with a uniformly stratified fluid. The problem is found

after some coordinate transformations to be identical to the

corresponding surface gravity wave problem in a homogeneous

fluid, but with the roles of the surface and bottom boundaries

interchanged. Analytical solutions are thus available for both

progressive and trapped waves, forming continuous and discrete

spectra in frequency space. The separation occurs at a nondi-

mensional frequency 6'= S, defined as (N/f) tan6 *, where N and

f are the Brunt-Vaisala and inertial frequencies and tan 6* is

the bottom slope. Since an infinite wedge has no intrinsic

length scales, the only relevant nondimensional parameters are

the frequency d! and the Burger number S. Therefore, stratifi-

cation and bottom slope play the same dynamical role and the

analysis is greatly simplified.

Asymptotic solutions of progressive waves have been obtain-

ed for both the far field and the small S, which enable us to

examine the parameter dependence of some of the basic wave pro-

perties in the far field and the evolution of the wave ampli-

tude and phase as they approach the apex when S is small. In

the far field, these topographic Rossby waves are bottom trapp-

ed with amplitude contours parallel with the bottom and phase

lines tilted from the vertical by an angle that increases for
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larger S andd'. The bottom trapping is stronger for larqer S

or smaller 6. Since the frequgncy depends only on the direc-

tion of the wave number vector, the group velocity is perpend
4 -

cular to the phase velocity. For waves generated from some

offshore source, the wave crests then propagate offshore. The

angle between the wave crests and the coast is smaller for

smaller S and largerd. The particle motion is rectilinear and

straddles the shoreline with the wave number vector. The var-

ticle motion becomes more perpendicular to the isobaths when

the frequency increases and is more normal than tangential to

the isobaths when 6;P,.71 S. The heat flux as well as the

cross-wedge mean flow vanishes in the far field. The induced

longshore mean flow is approximately geostrophic and points to

the left facing the apex. The greatest contribution to it

comes from these waves with frequencies that are either very

low or near S. The asymptotic solution for small S shows that

the waves are refracted as they approach the apex, the cross-

wedge wavelength decreasing as a square root of the local depth

near the apex. The wave amplitude undergoes a minimum before

it becomes logarithmically singular near the apex. Since the

lower frequency waves are more isolated from the surface, the

above phenomena are less pronounced until relatively closer to

the apex.

The general solution for finite S is presented for the case

S = .5 and W= .15. The location of the amplitude minimum and
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its magnitude agree almost exactly with the predictions of the

asymptotic case S-4< 1. Therefore the general behavior of the

solution is fairly predictable over the whole ranqe Sae0(1,

and it is sufficient to discuss only the solution of this

single case. It is seen that, as these waves approach the

apex, the amplitudes of the horizontal velocities and the pres-

sure become more barotropic and the phase lines become more

vertical. The amplitude of the longshore velocity increases

more rapidly than the onshore velocity and the current ellipse

develops a counterclockwise polarization with its major axis

aligned more closely with the isobaths. The Reynolds stress uv

increases in magnitude and an onshore heat flux is generated in

the interior. A mean clockwise gyre is induced across the

transect and a bottom-intensified, geostrophical1v balanced

longshore mean flow is induced which points in the +x direction.

The eigenfrequencies of the discrete modes decrease with

decreasing S and reduce to the short wave limit of Reid's

second class, barotropic edge waves when S approaches zero.

The basic modal structure broadens as S increases to some cri-

tical value where it ceases to be coastally trapped. No

coastally-trapped modes exist at frequencies above this criti-

cal limit.
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3. A Numerical Model of Free Topographic Rossby Waves Near

Continental Margins

3.1 The Model

A wedge extending to infinity in the offshore direction is,

of course, an over-simplified geometry to mode] the continental

margin. The numerical model presented here enables us to in-

corporate a more realistic topography which has rapid slope

changes, especially over the slope-rise and shelf-slope iunc-

tions. To simplify the interpretations and for easier compari-

sons with other existing models, the stratification is assumed

uniform and the- topography shown in Fig. 1.1 is assumed to be

comprised of three sections of exponentially varying bottom,

corresponding roughly to the continental rise, slope and

shelf. These restrictions can be easily relaxed in the model.

A new coordinate system is used in this chapter with the x and

y-axis pointing in the opposite directions from that used pre-

viously.

The equations we are solving are similar to (2.7) .

except all the "tang*" in the scaling rule (?.3) are replaced

by H/L, and the boundary condition (2.9) is applied at the

variable bottom z = -h(y). The model is similar to that of

Wang (1975,1976) which maps the domain of the variable bottom

into a rectangle and then solves the transformed equations in a

finite-differenced form. Readers are referred to Wang (1475)

for the details of the model. The difference of our- mode lies
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Figure 3.1. The geometry considered in the numerical model.
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in the boundary conditions applied at the bottom and horizontal

boundaries.

The bottom boundary conditioh we used is,

w - (-hi). v +kE1(vx - u ) at z = - h(y), (3.1)

where an Ekman suction velocity has been introduced to simulate

the effect of friction. This is a simplification of Pedlosky's

(1974) formula when bottom slope is small. In terms of p,

(3.1) becomes

or'" a)' at z = - Y).
At the horizontal boundaries, we decompose the motions into

Rhines' (1970) quasi-geostrophic modes in the followinq way,

6eeDfe4.).4': i, at v =0

and

p= //fE reewy% at y = 3, (3.)

where N is the number of grid points in the vertical., which is

also the number of modes we can resolve. Ig, Rgf, Tg are the

incident, reflected, and transmitted wave amplitudes of the n-4

mode, and 1, m, 1 , mg can be either real or imaqinary, and

are determined by external parameters and local bottom slope

through Rhines' solutions. In the model, IT are specified, and

Rg and Tg are unknowns. From this assumed form of solution at

the boundaries, we can further impose the boundary conditions

that

p at y = 0, (3.d)
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and

p y GCO) 71 e, at y =~

to counter-balance the additional degrees of freedom introducee

by the unknowns Rg and Tg. By defining I, R, and ' as column

vectors composed of elements of I,(, Rif and Tr, the above boun-

dary conditions can be written in a matrix form, and can he fit

into the general numerical scheme in a straiqhtforward way.

With incoming waves specified at some offshore location on

the continental rise, we can then study the evolution of the

wave fields as they approach the coast.
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3.2 The Numerical Solution

For a given topography, the independent nondimensional

parameters are frequencyd', longshore wavenumber k, Buraer

number S, defined here as NH/fL, and the Ekman layer depth

E1/2 . As a practical approach, we will first present the

inviscid solution for what we think Is a typical oceanic case.

The solution will be discussed at some length to provide some

insight into the underlying processes. This will then be

followed by some discussion of parameter dependence and fric-

tional effect.
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3.2.1 An Example

For a typical oceanic case, let's choose the values of the

dimensionless parameters (6', k, S, E1/2  . , 1.,

0.). With H = 2.7 km, L = 45 km, and f = .94 x 0 4 sec 1 ,

they correspond to the following dimensional values:

wave period e*%/ 7.74 days,

longshore wavelengthe' 353.25 km,

Brunt-Vaisala period /w/ 1.13 hrs,

2 -1.
kinematic viscosity t'v 0. cm sec .

The nondimensionalized depth h(y) on the continental rise,

-.203y -2.325(v-1)
slope, and shelf are given by e , h(1) e ,

and h(2) e 2 0 3 ( 2 ) respectively.

The pressure field for this case is shown in Fig. 1.2a,

where the solid and dashed lines represent the contours of

constant amplitude and phase respectively. The amplitude of

the incoming wave has been set equal to I at the bottom at

y = 0. This normalization procedure is also used for the

velocity plots shown later. The reflection coefficients for

this particular example are R = .72, R2 = .08, R3 = .01

and are negligible for higher modes. This reflection gives a

standing mode appearance to the wave field over the continental

rise and slope which shows up in the undulation of the ampli-

tude contours and the accompanying rapid phase change across

the nodes. It is worthwhile to point out that a combination of
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Figure 3.2a. Inviscid solution of ressure field p for the case (akS) (.l,.81). Amplitude
of the incoming wave nas been normalized to 1 at the bottom at y = 0.
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3.2a, but for the longshore velocity u.Figure 3.2b. Same as Fig.
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Figure 3.2c. Same as Fig. 3.2a, but for the onshore velocity v. The normalization factor is
.56 if jul = 1 at the bottom at y = 0 for the incoming wave.
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Figure 3.2d. Same as Fig. 3.2c, but for the vertical velocity w. The normalization factor is .11.
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Figure 3.2e. Same as Fig. 3.2c, but for the horizontal kinetic energy. The normalization factor
is .65.
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Figure 3.2f. Same as Fig. 3.2c, but for the Reynolds stress uv. The normalization factor is .27.
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Figure 3.2g. Same as Fig. 3.2a, but for the ellipse orientation and no normalization has been

done. The ellipse orientation is measured counterclockwise from the positive x-axis.
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Figure 3.2h. Same as Fig. 3.2a, but for the onshore density flux Fand the magnitude has been
normalized so that Jul = 1 at the bottom at y = Q for the incoming wave.
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Figure 3.2i. Same as Fig. 3.2c, but for the longshore mean flow U. The normalization factor is 5.L
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the tilting of the phase lines and the presence of the standina

mode can cause an apparent surface trapping of the wave amoli-

tude. Away from the slope-rise junction, the basic hori7ontal

and vertical scales as well as their spatial evolution can he

understood from the earlier analysis of the solution in a

wedge. For example, as the wave propagates into the slope

region where the bottom slope is greater, the bottom trapping

is intensified, accompanied by the reduced horizontal scales.

As it approaches the shelf break, where the effect of the riqid

surface dominates, the motion becomes more barotropic and the

phase lines become more vertical.. As the wave enters the shelf

region, the wavelength increases again and the motion is vir-

tually uniform throughout the water column. There are, how-

ever, some new features associated with this numerical solu-

tion.' First of all, we notice that the standing mode component

of the pressure field has an anti-node located at the shelf

break. This is a trivial result caused by the assumption that

the waves are allowed to propagate freely through the inshore

boundary at y = 3. The justification for this assumption l4es

partly on the vanishing depth at the coast which serves as an

efficient energy sink by either refracting the ray paths

(Smith, 1971; Rhines, 1971) or increasing the frictional damp-

ing there. The existence of an anti-node in the pressure field

at the shelf break also implies a sharp drop in the kinetic

energy level across the shelf break as will be seen later.
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Another striking feature in Fig. 3.2a is the formation of an

amphidromic point over the slope-rise junction, Indicating that

some locally trapped baroclinic motions are generated there.

Suarez (1971) has discussed the excitation of these baro-

clinic modes over a small slope discontinuity. He shows that

these "fringe" modes are necessary to match the bottom-intensi-

fied waves across the slope discontinuity. Since his analysis

is valid only when the bottom slope is small and hence the

solution is separable in the horizontal and vertical direc-

tions, we will use it to study the effect of baroclinic fringe

modes on the phase propagation of the bottom-intensified waves

over the continental rise. Let's assume that over the conti-

nental rise the bottom slope is small and the solution can be

approximated by a superposition of an incoming bottom-intensi-

fied wave and a first baroclinic mode that decays away from the

slope-rise junction,

p ^v I e- i cosh(mz) + C e Cos('7(Z) .

where the origin of y has been moved to the slope-rise junction

for convenience- 1, m, l' are postive quantities, and I is

assumed real and positive without loss of generality. To match

the bottom-intensified component of p across the slope-rise

junction, C must be real and negative. The phase of p is given

by

X 4<crr% I
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which, in the absence of the baroclinic mode, is simply a

linear function of y, shown by the straight line in Fig. '..

But with C<. 0, it's deflected from the straight line in oppo-

site directions depending on whether we are above or below the

mid-depth. This apparent upward propagation will rotate the

phase lines counterclockwise, pivot them against the mid-depth

point. The effect may be negligible near the bottom where the

bottom-intensified mode is dominant. While the numerical solu-

tions are more complicated, there is some indication in Fig.

3.2a that this basic effect is operating.

The velocity fields are plotted in Fig. I.?b-d. It is seen

that v and a are very similar to that of p while the con-

tours of Jul are shifted a quarter of a wavelength from that

of Ip1 , and hence has a node at the shelf break, as is expected

for quasi-geostrophic motions. There are, however, some modi-

fications caused by various factors, the detailed analvsis of

which are both difficult and of no practical importance as

these patterns depend very much on the external parameters.

Instead, we will try to deduce next some more general results

that might be useful for data interpretation.

First, we notice that Jul is generally much larger than fv

over the slope, consistent with the analytical solution in a

wedge. And since the kinetic energy is dominated by the long-

shore velocity, the kinetic energy contours shown in Fiq. 1.?e

mimic the lul contours. Therefore the kinetic enerqy level is
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Figure 3.3. The effect of the first baroclinic mode on the phase propagation of the pressure
field over the continental rise.
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much higher over the slope region and drop rapidly across the

shelf break.

Similar expressions as (3.7) can be derived for the veloci-

ties by assuming quasi-geostrophy. It is trivial to show from

these expressions that the phase lines of u and w are tilted in

opposite directions from that of p and v. This is clearly

shown in Fig. 3.2a-d.

The Reynolds stress 1i7 is plotted in Fig. 1.2f, where Jul

has been set equal to one at the bottom at y = 0. The basic

structure is similar to that of a wave in a wedge shown in Fiq.

2.13e, except in the region near the slope-rise junction where

the baroclinic fringe waves become important. As these waves

tilt the phase lines of u and v in opposite directions, the

magnitude of the Reynolds stress is reduced, and in the extreme

case when the amphidromic point is formed in p, it changes sign

altogether above the amphidromic point. The orientation of the

major axis of the current ellipse (measured counterclockwise

from the positive x-axis) is plotted in Fig. 1.29, indicatina

that the ellipse orientation shifts from the II-IV guadrant

into the I-III quadrant above the amphidromic point, consistent

with the Reynolds stress distribution.

Density flux fis plotted in Fig. 3.2h with the same nor-

malization factor as that for TE7. Again, over the slope re-

gion, it agrees with that of a wave in a wedge shown in Fig.

2.13i, but on the continental rise, it is of a different sign.
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From our discussion earlier, we see that over the continental

rise the baroclinic fringe waves tend to shift the phase lines

of v toward the coast above some mid-depth point, while that of

w in the opposite direction. This implies that the phase

difference between w.and v or the w in equation (2.41) lies

in the fitst two quadrants. Therefore, is negative from

(2.44) and the heat flux is offshore. This is unlike over the

continental slope, where the effect of the rigid surface dom4 -

nates and 0wy lies in the third quadrant.wv

Since the cross-shelf mean flow follows the heat flux con-

tours as discussed earlier, it is plotted in this same figure

with its direction indicated by the arrows. Therefore, the

mean cross-shelf circulation is comprised of two counter-rotat-

ing gyres with a more concentrated downwelling occuring near

the slope-rise junction and a more diffused upwelling occuring

on both sides of it.

The longshore mean flow IT is plotted in Fig. 1.21 which has

been normalized to unity for the Incoming wave along the bottom

at y = 0. Again, it agrees with that of a wave in a wedge

shown in Fig. 2.13j except the direction reverses locally above

the amphidromic point. This can be explained by the domination

of baroclinic fringe waves there. If we neglect the second-

term on the right in equation (C.6) near surface, then in the

present coordinate system,
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For quasi-geost ophic motions,

v -v ikp,

(3.8) then becomes

u (p - k p).p. (o~0

Since the baroclinic modes are exponentially decaying in y with

an e-folding length shorter than k , u can be positive when

these modes dominate.



87.

3.2.2 Parameter Dependence

The horizontal and vertical scales of the motion depend of

course very much on the external parameters, which in turn

affect the intensity of the baroclinic fringe waves generated

and/or the magnitude of the reflection coefficient. The effect

of changing parameters on the scales of the motion can be qua-

litatively inferred from the solution of the bottom-intensified

quasi-geostrophic waves over a small slope (e.g., Suarez, 1071)

p-ocosh(m'z) e-i (kx+ly+'t)

where

m' = T k'2 + 1,2

with

(k', ') = S(k,1), r1

and the frequency scaled by the short wave cut-off frequency

fS.(bottom slope) is given by,

We plot in Fig. 3.4 (Suarez, 1971), the contours of constantl'

(solid lines) and m' (dashed lines), as a function of the

scaled wave numbers k' and 1'. These dispersion curves have

been discussed in some detail by Suarez. For our purpose, we

only want to mention that, given 6, k and S as independent ex-

ternal parameters, the vertical and cross-shelf scales are de-

termined through the values of m' and l' which can be predicted

from the figure. For example, the motions with larger ds'or
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Figure 3.4. Contours of the scaled a' (solid lines) and m' (dashed lines), as a function of the
scaled wave numbers k' and 1', for the bottom-intensified, quasi-geotrophic waves.
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smaller k and S generally have larger vertical and cross-shelf

scales, and vice versa. Apart from the complications which

arise in our model, this qualitative behavior generally still

holds. There are, however, some additional features associateP

with this change of scales. Rhines (1969) has discussed the

analog of Ramsauer effect in his study of the reflection of

barotropic, topographic Rossby waves from a sloping step, which

states, in essence, that if an integral number of half-wave-

length can be fit into the slope region, then it poses no obs-

tacle to the transmission of these waves, despite the rapid

change of the medium. This effect is well displayed in Fiq. 1

of Kroll and Niiler (1976), where the energy flux transmission

coefficcient has peaks for certain values of k when the above

condition is satisfied. In Fig. 3.5, the stratified version of

this figure is plotted for d'= .1 where the open and solid cir-

cles represent the numerical, calculations for S = .1 and 1.,

respectively, and the lines joining them are just freehand.

Besides changing the location of the peaks which can be roughlv

estimated from Fig. 3.4, the increased stratification also re-

duces the height of the peak for the shorter waves. This is

because the increased vertical mis-match for the shorter waves

of the bottom-intensified mode across the slope-rise junction

excites more vigorous baroclinic fringe waves and reduces the

transmission coefficient (Suarez, 1971). The maximum energy
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flux transmission coefficient obtained by Kroll and Niiler in

their barotropic model is therefore an upper bound, and can be

significantly reduced for short waves. The varied strength of

the baroclinic fringe waves would certainly affect some of the

wave properties discussed earlier. The effect is straiqht-

forwrd and need not be discussed here.
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3.2.3 Frictional Effect

Friction, of course, dissipates the waves, and reduces the

wave amplitude from that of the inviscid case. But since at a

given point, the amplitude of the reflected waves has suffered

more from this dissipation because of the additional distance

they have traveled, the propagating component actually increas-

es relative to the standing component. This would increase the

magnitude of the heat and momentum flux, at least near the

source region until eventually the overall dissipative effects

overtake some distance farther up the slope. We vlotin Fiq.

3.6a-c, the pressure field p, the Reynolds stress UV and the

onshore density flux Y when Id (kinematic viscositv coeffi-

2 -1
cient in the bottom Ekman layer) equals 22 cm sec . Com-

paring with the inviscid solutions shown in Fig. '.?a, f, and

h, the greater propagating component in the pressure field and

the accompanied greater values of uv, offshore are evi-

dent. It is also seen that the friction induces a positive

density flux along the bottom. This can be explained by the

following derivation. Since we only need to know the relative

phase between the various variables to determine the sian of

their correlations, the symbol "^./" used below implies that

"the phases on the two sides of this symbol are approximately

equal".
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Figure 3.6a. Same as Fig. 3.2a, but with v (kinematic viscosity coefficient) set to 22 cuf/sec.
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Figure 3.6b. Same as Fig. 3.2f, but with v set to 22 cm sec.
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Now that,

v- u , p-
x y Pyy

pv - zz

-p

2
k p

(from (2.71)

(assumina that the bottom-

intensified mode dominates near the bottom)

- iv, (assuming quasi-geostr

(3.1) implies

w (- -v,

where# is some real and positive constant. Hence, 8 of

(2.43) lies in the third or fourth quadrant and ,0 from

(2.44).

ophv)
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3.3 Summary

Although still much simplified, this numerical model re-

tains the essential elements of stratification and finite slope

changes. Apart from the excitation of baroclinic fringe waves

near the slope-rise junction and the modification caused hy

friction, many of the results can be explained by the analyti-

cal theory of a wave in a wedge. This is especially true over

.the slope region, where the modification caused by these baro-

clinic fringe waves is minimal, because of their more locally

confined influence and their dominance by the much more vigo-

rous bottom-intensified waves. Without undue repetition, rea-

ders are referred to the last section of Chapter 2 for a proper

summary of the wave properties over the slope region in a fric-

tionless model.

The replacement of the apex of a wedge by a finite shelf

where the waves are allowed to propagate freely through,

introduces at the shelf break a node in the tongshore velocity

field which accounts for the rapid drop of kinetic energy

across the shelf break. The baroclinic fringe waves excited

near the slope-rise junction in the presence of finite slope

change can form an amphidromic point at some mid-depth and re-

verse the direction of phase propagation above it.

On the continental rise, the baroclinic fringe waves shift

the phase lines of u and w in opposite direction from that of p

and v, pulling the latter toward the coast above some mid-depth
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point where their effect is the most pronounced. This qene-

rates an offshore heat flux over the continental rise and re-

verses the cross-shelf mean flow predicted in an infinite

wedge. The longshore mean flow generally points to the left

facing the shoreline, but its direction can be reversed where

the baroclinic fringe waves dominate.

Changing the values of the external parameters would of

course change the horizontal and vertical scales of the motion

which in turn change the intensity of the baroclinic frinqe

waves generated and/or the reflection coefficients. The exci-

tation of the baroclinic fringe waves generally reduces the

transmission coefficient, especially for shorter waves, and

hence the maximum energy transmission coefficient obtained in

Kroll and Niiler's barotropic model is likely an upper bound.

Friction, besides its overall dissipative effect, can increase

the magnitude of the Reynolds stress 'u 7 and cross-shelf heat

flux near the source region by reducing the amplitude of the

reflected waves. Friction also generates an offshore heat flux

near the bottom and hence modifies somewhat the cross-shelf

mean flow pattern in an inviscid model.
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4. Application of the Model

Observational work by Thompson (1977) and others has de-

monstrated that over the continental rise south of New England

the low frequency motions below the thermocline can be descrih-

ed by linear topographic Rossby wave dynamics. Furthermore,

the observed phase propagation is consistent with the assump-

tion that these waves are generated offshore and radiate their

energy shoreward onto the coast. To study the dynamical impli-

cations of these waves as they approach the shelf, Beardsley,

Vermersch and Brown Ionducted an experiment in 1976 (called

NESS76) to obtain long-term, simultaneous measurements of

current, temperature, and bottom pressure across the New Eng-

land continental margin. The setup of the moored instruments

is shown in Fig. 4.1, which', according to their locations, will

henceforth be referred to as shelf (NE2,2W), slope (NF',3W1 and

rise (NE4,5) stations, separated by the 200 and 2000 m iso-

baths. Except for the- loss of the moorings at NE3B and 3E, the

loss of the rotor at 32 shortly after deployment, and a rotor

fouling at NE21 and 22 that cut short the data, the data last

about six months. The detailed analysis of the data will be

presented elsewhere (Beardsley, Ou, and Brown, In preparation',

and only some relevant observations will be discussed here to

check their consistency with the model predictions.

Since the detailed spatial distribution of many of the wave
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properties predicted by the model depend on the longshore wave

number, our inability to isolate the motions of different long-

shore scales and the sparse spatial coverage across the tran-

sect seriously limit our ability for a more detailed compari-

son. Hence, only the two major predictions that are the least

scale-dependent will be compared here with the data.
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4.1 Comparison with Observations

The kinetic energy and temperature spectra are shown in

Fig. 4.2 for all the available data. In the energy spectrum,

the energy levels for the three stations have been displaced

one decade apart, and the light shading with a "-?" slope for

periods shorter than 14 days is plotted to assist visual compa-

risons. As are typical of all oceanic observations, the spec-

trum is generally red for sub-inertial motions. The smaller

spectrum slope as we move toward shallower depths is presumably

caused by the increasing wind effect which tends to fill in the

energy at the intermediate range. The break of the slope at

about 14 days for the instruments 42 and 51, which also shows

up clearly in the temperature spectrum, is consistent with

Thompson's observations near Site D, and has been attributed to

the short wave cut-off which is of the order of 27t/(10 days)

over this region. Also notice that over some frequency band

for both the slope and rise stations, motions are bottom inten-

sified. This is a definite signature of topographic Rossbv

waves which in the presence of stratification tend to concen-

trate their energy near the bottom. The more serious contami-

nation by the surface-intensified motions on both sides of this

frequency band certainly limits the application of the model

there. Also, because the motions on the continental shelf are

predominantly wind-driven, we will only discuss the observa-

tions on the continental slope and rise.
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Figure 4.2. Kinetic energy and temperature spectra of NESS76.
In the kinetic energy spectrum, the energy level
for the shelf, slope, and rise stations have been
displaced one decade apart, and the light shading
with a "-2" slope for periods shorter than 14 days
is to assist visual comparisons.
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One of the major predictions of the model is the formation

of the vertical amphidromic point near the slope-rise iunction

for short waves. This amphidromic point will locally reverse

the direction of phase propagation above it and hence chane

the sign of the Reynolds stress 15 and the siqn of the ellipse

orientation from the local isobaths. The spatial distribution

of the ellipse orientation for a numerical run using the same

nondimensional parameters as that used previously, but with a

topography simulating that across the experimental site is

shown in Fig. 4.3. The different sign of ellipse orientation

above the amphidromic point is clearly shown. For a period of

10 days, this amphidromic point is formed when longshore wave-

length is shorter than about 300 km, and this critical wave-

length increases approximately linearly with the frequency.

Since the motion is comprised of all different longshore

scales, we then expect a low stability of the ellipse orienta-

tion at 41. The model also predicts that the ellipse axis will

be more closely aligned with the local isobaths over the slope

region. This is because increased vortex stretching tends to

reduce the cross-shelf scales and hence leads to a creater

longshore flow relative to the onshore flow.

The observed ellipse orientations are plotted in Fig.

4.4a-b as a function of frequency (the radius) where the x-axis

is parallel with the estimated local isobaths and y-axis points

onshore. Data points averaged over F frequency bands are indi-
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Same as Fig. 4.4a, but for the data at NE41, 42, and 51.Figure 4.4b.
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cated by the plain symbols while those averaged over 19 fre-

quency bands are indicated by an additional "*". The shaded

areas centered at the "*" represent the band-width and the es-

timated 95% confidence limit of these data points. The shaded

area is not drawn if it encompasses the whole circular band.

As is expected from the above discussions, the data points at

41 behave very differently from that of the other instruments.

Not only do most of the data points at 41 lie in the first qua-

drant instead of the fourth, but also the stability of the

ellipse orientation is so low that no directionality can be

inferred with statistical confidence. With this exception of

41, all the other data points averaged over 36 frequency hands

lie in the fourth quadrant, consistent with the prediction of

an offshore phase propagation for these incoming waves. The

ellipse orientation at 51 deviates the most from the local iso-

baths and that at 3W1 the least, with 31 and 4? somewhere in

between, again consistent with the model predictions shown in

Fig. 4.3. Thompson and Luyten (1975) found that near site D,

the ellipse orientation deviates more from the local isobaths

toward higher frequencies which they attributed to a sinql.e

propagating topographic Rossby wave. There is some indication

of a similar trend here for 42 and 51, although without statis-

tical confidence, it is by no means conclusive. Incidentally,

it is interesting to notice that the data points of A2 averaged

over 6 frequency bands mimic almost exactly those of 51 between
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periods of 3 to 10 days with a 15 to 20 degrees rotation toward

the local isobaths. Whether this is of any statistical signi-

ficance is not clear.

Another major prediction of the model concerns the phase

lag 6 of temperature T relative to the onshore velocity v

which determines the direction of the heat flux generated by

these waves. Our earlier discussions show that the quadrant in

which 6 T lies depends on the relative importance of several

competing mechanisms. For example,.in an inviscid model, 0'TV
lies in the fourth quadrant over the slope region because of

the effect of the rigid surface and the presence of the finite

bottom slope, but over the continental rise, it lies in the

third quadrant because the effect of the baroclinic fringe

waves dominates. Near the slope-rise junction and above the

mid-depth, it varies greatly between short and long waves, and

the coherence between T and v is expected to be low. In a vis-

cous model where an Ekman friction layer is present at the

bottom, 0 Tv lies in the third quadrant within the dominant

influence of this friction. If none of the above effects is

important, Tv is approximately -90 , and the heat flux is

negligible. The 0TV of the same numerical run as that of

Fig. 4.3 is plotted in Fig. 4.5. From this figure, we make the

following predictions.

1) At 51, 0Tv is approximately -900 with probably a

slight veering into the third quadrant due to the influence of
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Figure 4.5. Same as Fig. 4.3 but for the phase lag 8T of temperature T relative to the
onshore flow V.
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both the baroclinic fringe waves and the bottom friction.

2) At 42, W TV lies in the third quadrant because of the

effect of the baroclinic fringe waves.

3) At 41, e'TV can vary greatly between short and long

waves, and the coherence between T and v is expected to be low.

4) at 3W1, &Tv lies either in the third or fourth gua-

drant depending on whether it is dominated by the influence

from the bottom friction or the rigid surface. The coherence

between T and v is again expected to be low.

5) At 31, eTv mostly lies in the fourth quadrant due to

the dominant influence from the rigid surface.

The observed OTv is plotted in Fig. 4.6a-b in a similar

fashion as in Fig. 4.4. As is expected, the coherence between

T and v is low at 3W1 and 41, and no preferred quadrant in

which OTv lies can be inferred with statistical confidence.

Incidentally, the OTv at these two instruments agree with the

values shown in Fig. 4.5. At 31 and 42, the coherence between

T and v is higher, and tTv lies in the quadrant predicted by

the model. At 5l the comparison, however, is less satisfac-

tory. Since the heat flux at 51 is very small because of the

weak temperature signal there, it is more subject to contamina-

tion by the other motions which might cause this discrepancy.

The stream function of the cross-shelf mean flow for the

same numerical run is plotted in Fig. 4.7. Since the normali-

zation factor is 1 if Jul = 1 at the bottom at y = 0 for the
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incoming wave, in the dimensional unit,

(v* 3*)#~ cr, IP- .:V
-w

where o is the Rossby number, and V is the longshore velocity

scale. For motions of a period between I and 10 dayt, the

velocity fluctuation is typically of the order 1 cm/sec at 51.
-4 -1

With L = 45 km, f = .94 x 10 sec , C is then approxi-

mately 2.4 x 10- , and hence

-3

6V-~2.4 x 10- cm/sec.

From the figure, (v,'5)E0(10), therefore,

v* 6 2 4x 10- cm/sec,

vi*-< 1.4 x 10 cm/sec (with H = 2.7 km),

which are too small to be significant.

The longshore mean flow is plotted in Fig. 4.A. Since the

normalization factor is 33 if Jul= 1 at the bottom at y = 0 for

the incoming wave, in the dimensional unit,

i*jju 6V-(33)

r. (0.08 ") cm/sec.

The maximum value of t is about 10 from the figure, hence T*

has a maximum of about .8 cm/sec and is located near the shelf

break. Since this magnitude is comparable to the fluctuation

velocities, our theory breaks down.

The observed mean flow is shown by the arrows in Fig. 4.O,

where the rectangles centered at the end of the arrows indicate

the estimated 95% confidence limit. Dashed arrows are for
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deeper instruments. Although the westward mean flow observed

at NE4 and NE5 is consistent with the model predictions, the

magnitude of this mean flow is by no means smaller than the low

frequency fluctuations which have magnitudes of a few cm/sec at

most, hence it cannot be explained by the theory presented here.
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4.2 Discussion

Despite the simplification of the model, the two maior pre-

dictions that are the least scale-dependent compare reasonably

well with the observations of NESS76. These comparisons can be

made more conclusive if we have data near the bottom over the

slope region that shows an offshore heat flux. The prediction

of the formation of an amphidromic point near slope-rise Junc-

tion for short waves can also be tested more critically if we

have several instruments located at 41 but are displaced alonq-

shore. Since the model predicts that the bottom trapping is

intensified at lower frequencies, the amphidromic point can

therefore be formed even for longer waves. By filtering out

consecutively longer waves at lower frequency bands we can pro-

bably test this prediction.

From the comparisons made so far, it is suggestive that

Thompson's conclusion about the dominance of linear topographic

Rossby wave dynamics over the continental rise also holds over

the continental slope for motions of the period between I and

10 days. The application of the model to the lower frequency

bands is limited by the increased importance of baroclinic

eddies which also become increasingly nonlinear. Toward the

higher frequency bands, the contamination by the surface inten-

sified motions can no loger be neglected. The uniqueness of

our explanations of some observed features can be better estab-

lished only after we have also examined these other motions.
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Although the numerical solutions have been presented only

for the case of a uniformly stratified ocean, this is not a

limitation of the model. The effect of a slightly varied stra-

tification in the vertical direction is not expected to change

the qualitative results reported here and hence is not pursued

in any length. Since at the present stage, a more detailed

comparison with the model is mostly prevented from our inabili-

ty to isolate the motions of different longshore scales, a more

complicated model which takes into account the presence of mean

flow, the shelf-slope front, etc., might be difficult to verify.

It is, of course, a different story in the laboratory where

the longshore wavelength can be given by the wave maker, and

the model predictions can be tested much more critically for

its consistencies. In particular, the mean flow predicted by

the theory assuming a weak interaction can also be tested.

This is, however, a long-term project and should be left for

the future.
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APPENDIX A

REDUCTION OF THE ANALYTICAL SOLUTION

The analytical solution (2.17) can be simplified when a=

'M/2n where n is an integer, as is derived in the following.

Peters (1952) has shown that with h(,) defined by

h () = fpg'' (A.1

where g(yr) is given by (2.18), then I(y) in h(g),satisfies

Now, let ( =7'/2n, (A.2) becomes

integration by parts)

(u .v/r)

(residue theorem) (A.)

where

Since

f.f -~/ AV7
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(A.3) then implies

orTA
or

fA.r,)

or A7

(A. A)

where

Substituting (A.6) into (2.17), we finally obtain,

the evaluation of which can be considerably simp3if4eed because

of the presence of simple poles of the integrand. Employinq

residue theorem, can be further reduced to a summation of

its residues while 52 still involves the contour integration

which can be numerically integrated.
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APPENDIX B

ASYMPTOTIC SOLUTION FOR SMALL S IN A WEDGE

As the derivation below follows very closely that of

Friedrichs' (1952), we will only write down some key results

and the corresponding equation number in the Friedrichs' paper

(preceded by a capital F).

Let's define,

pmpB. ),(F. i)

where all the notations have been defined in (?.iQ) and Appen-

dix A, thenA,%2 of (A.7) are simply given by,

(B.?i, (F.A'

In the limit, n.-*.,, (B.1) becomes,

where

'420

The saddle point is given by,



126.

I
WI,- #: '(q, r)+

or by setting

(J.F (F.4 F)

whe re

A +==+-vr,

0= 1?2i
The solution (B.3) can then be approximated

<n.,7)

by,

(B. 0), (F. 5?)

where

(A)V -j) pk (r). -4, (B.1V)0I , (F. 40)

<6!) - &arnt~ t 1z99r;7&~L .4
SiI
- -
2/

In the far field, where [y' 97 1,

r) x C f.) -'t

(B.9) becomes

) / a *( K
(B. 12), (F. F')

(B.5),(F.441

40 ( tj7v/4

+
(R.13I), (F. 4PI

-t' r4)I,

0-+G te ~- I-Kf (Z r),
rC ATPwww

# I(q, 1%)Ip
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where

C -'t+

~~+ ~1i

Accordingly, (B.2) implies,

The two solutions are sinusoidal and differ

We define

in phase by Q00 .

the "local" cross-wedge wavelength

then the local cross-wedge wave number is given bv

de -=Zr/A'
(B. 17)

The "local" amplitude can also be derived

c3V~
From (B.14), we can then derive

A/ A]1'V
21=110 4

6~

that

(B0J)

7 i

- 19 '%Z P

(14. 14 (P. O;q

(71. 18) r (P. I " I I

9AMM:
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APPENDIX C

A THEORY OF MEAN FLOW GENERATION

Let the x, y and z-axis be oriented as in Fig. 2.1, andq

assume that all the nondimensional variables can be expaned in

terms of the small Rossby number . as,

+~ V £9+~ etc.,

where p is the variable associated with the primary waves andy"pT

is the secondary mean field induced by these waves. With a

similar scaling as that of (2.3), the non-dimensionalize6

governing equations for the O(1) fields are given by

ut - v = - Ou,

Vt + u = p - O(V,

t y
0 = - pz ~'z

ft - S2w = 0,

ux + vy + w = 0,

and for the O(S) fields, given by

yz

0 = - -p", c.?ic- s2 p ; -49v

-v +vw = 0,y z

where a linear friction law with a small dimensionless friction

coefficient of has been assumed. The introduction of some form

of a friction is essential to the study of the mean flow in the

equilibrium state (Ou and Bennett, 1979). The linear friction
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law is chosen here for simplicity.

Since the mean flow is non-divergent in the y-z plane, a

stream function can be defined,

As w and are in qua~rature from (C.1), the mean heat balance

reduces to

which combined with (C.3), implies that

That is, required by the assumed heat balance and incompressi-

bility, the mean flow in the y-z plane follows the contours of

the constant heat flux. A similar result for a more qeneral

case has been derived by McIntyre (1977).

Assuming a solution of the form,

p ,e i(kx-.t)

for the primary waves, we can derive that

= -'v - Pw(from (C.))y z

(from (C.) and (C. )

- Uv - 9T7 w (from (C.1))y z~u-i

= " z( - igu)-w (from (C.1))
Y z

(from energy equation

derived from (r.1 i

(from (C.ifl

(from (C.1))

I
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or

U +

For smallot, to a first order approximation, the right hand

side of (C.6) can be calculated as if the waves are inviscid,

and hence't does not depend onoe.

An equation similar to the thermal wind relation can be

easily derived,

where

F - - N,
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APPENDIX Q

THE NUMERICAL MODEL

The numerical model is similar to that of Wang (1975), and

the readers are referred to Wang for some of the details

The nondimensionalized governing equation in our coordinate

system is given by,

where

and the bo ndary conditions at the surface and the bottom are

and

As in Wang, we first map the domain of the variable 'bottom into

one of a rectangle through the following transformation

(y , Z) -* (y, (y, z) Z) (D. 41

where

then f spans the rahge between 0 and 1.

Let this rectangle be approximated by M x N uniformly

spaced grid points, and i, j be the indeces of these grid

points along the y and a axis, respectively. The finite

differenced appoximation of the transformed equations (D.1)

through (D.3) can be written in a matrix form as
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where, according to the convention adopted from here on, all

the bold letters represent matrices and the letters with an

arrow on the top represent column vectors. In the above

expression, ' is a column vector composed of values of N' with

j varies from 1 to N+ ], and the expressions for Ag, (

can be trivially derived. The image points at i=N+l are

included for a easier implementation of the bottom boundary

condition.

At the horizontal boundaries, the radiation conditions

(3.2) through (3.5) can be written in a matrix form as

where
..--40T

1=.m. Ea.... zgA oJ -rT

Substituting (D.7) into (D.6), we obtain expressions at the end

points as

where R and T now replace Pj, and as the unknowns. An

extended version of Gaussian elimination (Lindzen and Kuo,

1969) can be used to solve (D.6) and (D.9), and P., PM can be

retrieved later from (D.7).
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