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ABSTRACT

A simple two-dimensional mechanistic model of the atmospheric cir-
culation is presented. It is intended to provide insight into the rela-
tive importance of many of the physical processes affecting the equilibrium
climate in middle latitudes. For this purpose, we develop equations for
the mean temperature and the mean horizontal and vertical temperature gra-
dients in the troposphere. We assume the horizontal flux of latent and
sensible heat is carried entirely by the large-scale baroclinic eddies, and
ignore the mean meridional circulation and oceanic transports. Vertical
fluxes are present, due to both the large-scale eddies and small-scale con-
vective motions. The small-scale transport is coupled to the large-scale
dynamics through the surface wind speed variance used in evaluating the
latent and sensible heat fluxes of the surface energy balance. We suggest
a simple parameterization for this surface wind speed that is in good agree-
ment with seasonal data, and is self-consistent with Stone's (1972a) para-
meterization of the sensible heat fluxes by baroclinic eddies.

The tropospheric radiative effects of water vapor, carbon dioxide,
ozone and clouds are treated in some detail. Cloud amounts are fixed at
climatological values, and several different cloud-height feedbacks are
studied. We also develop a method for calculating the tropopause height
from the vertical structure of the atmosphere, based on the assumption of
radiative equilibrium in the lower stratosphere. Reasonable values for
the mean tropopause height and its latitudinal variations are obtained.
This interaction between vertical structure and tropospheric depth may be
important in some climate sensitivity calculations, particularly those
involving ozone changes.

Calculations are made first with a simplified version of the full
model. The simplified version uses a grey radiation model, with all the
vertical dynamical flux carried by the baroclinic eddies. This model
differs from Stone's (1972a) primarily because of the addition of large-
scale latent heat fluxes. We find the lapse rate is still unstable to,



moist convective motions. The.=32i*+ion of a latent heat flux reduces the
pole to equator temperature gradient over the case with sensible heat
alone. At the same time, the vertical stability is reduced further due to
the relatively smaller effect of latent heating on the large-scale vertical
fluxes.

In verification tests of the full model, we find reasonable simula-
tion of the mid-latitude tropospheric structure. In spite of uncertainties
in the vertical dynamical flux parameterization, the lapse rate response
is consistent with the dry model experiments of Held (1978b) and the mid-
to high-latitude results of the GFDL GCM of Wetherald and Manabe (1575).
Moreover, our model shows the same high sensitivity in the hydrologic
cycle found by Wetherald and Manabe (1975). These results give us some
confidence in the predictions of our highly parameterized model, which con-
tains more physics than most simple climate models, and has a more realis-
tic cloud parameterization than some GCM's.

The full model is applied to a number of standard climate calcula-
tions. It is less sensitive to external parameter changes than models
with fixed cloud temperature, due to the cloud-height feedback that we
use. Our findings for the surface temperature changes due to variations
in solar insolation and carbon dioxide amount are consistent with other
results, given the slightly different parameterizations in our model. For
a 50% reduction in ozone concentration, we predict a surface temperature
response that is in the opposite direction to that found by previous one-
dimensional radiative-convective equilibrium models. Direct comparison
is difficult since our model does not parameterize the radiative effects
as realistically, and we incorporate more physics than the 1-D models
in the determination of the vertical structure.

Thesis Supervisor: Peter H. Stone
Title: Professor of Meteorology
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Chapter 1l: Modeling Philosophy and Observational Supgort

1.1 Introduction

In recent years there has been a growing interest in the problem
of climate change. Many modeling approaches have been used, but we
may follow Schneider and Dickinson (1974) in identifying two
basic types: ‘mechanistic' and 'simulation' models. The latter
type, whose primary objective is to simulate observed phenomena,
has reached the peak of complexity in the three-dimensional global
general circulation models., They include so many interacting
physical processes that it is usually very difficult to determine
the relative importance of each particular mechanism. The large
amount of analysis and computer time that is required to understand
the results limits the number of simple experimen£s (varying internal
parameters and boundary conditions) that can be made.

On the other hand, mechanistic models select a limited number
of physical processes for study, thus allowing an easier under-
standing of the causes of observed changes and the relative contribution
from different terms, It is such a mechanistic model that we
propose here,

Our approach is also a useful intermediate step between the simple
highly-parameterized models (such as those of Sellers, 1969 and North,
1975) and the complicated GCM's. In the simple models, one usually
finds a large number of empirically determined parameters which are

assumed to remain constant in a climate change. This is a very strong
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restriction to apply to the highly non-linear equations that
describe the earth-atmosphere system. By limiting the number of
processes we consider, we can treat them in a more realistic
manner, In particular, in our model the dynamical fluxes and
the radiative effects of clouds are treated more carefully, and
the possibility of a lapse rate feedback is included. On the other
hand, the model is solely a mid-latitude one., The diagram below
(with a few examples given) illustrates the position of our
model in a hierarchy based on the number of spatial dimensions

included explicitly.

0 - dimensional + Schneider & Mass (1975)
Sellers (1969)
1 - dimensional - North (1975)
Manabe & Wetherald (1967)
Present model
2 - dimensional T Sellers (1976)
Saltzman & Vernekar (1971)
3 - dimensional T G.C.M.'s (eg Wetherald & Manabe, 1975)

Zero-dimensional models average over the whole globe (vertically

and horizontally), while 1-D models may concentrate on either the
horizontal (e.g. Sellers, 1969) or vertical (Manabe & Wetherald, 1967)
dimension. Similarly, two-dimensional models may consider the x-y
plane (Sellers, 1976) or the y-z plane (Saltzman & Vernekar, 1971).
In this latter model, the vertical variations of the

variables are approximated analytically, and the
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equilibrium, zonally-averaged equation solved explicitly for the
latitude dependence (although the radiation fields are specified and
there is additional parameterization of the eddy fluxes). 1In our
model, we prescribe the mathematical form of many of the fields in
both the horizontal and vertical. Radiation is then calculated
explicitly.

In the remainder of this chapter, we list the specific
processes included or neglected in this model, and present observa-
tional evidence to support the use of mean temperature gradients in
the troposphere. In Chapter 2, the basic model equations are
derived. Assuming the net radiative heating can be approximated
by a Newtonian cooling law, leads to the grey radiation model of
Chapter 3. Realistic parameterizations of long and short wave
radiative heating are presented in Chapter 4, where we show how they
can be used to determine a tropopause height. This chapter also
introduces our parameterization of small-scale moist convection,
and shows how the effects of the lower boundary are coupled to the
atmosphere equations. Chapter 5 deals with the additional radiative
effects of clouds. In Chapter 6, we put all the parameterizations
together, and carry out a number of experiments with the full model,
where both internal and external parameter variations are considered.

Results and conclusions are summarized in Chapter 7.
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1.2 Outline of the dynamical model

The main objective of this study is to examine some of the proéesses
affecting the zonal annual mean temperature structure of the atmosphere
in middle latitudes. We are particularly interested in the meridional
temperature gradient and the static stability (or alternatively, the
lapse rate) that result when many of the important heat-transporting
mechanisms are allowed for. We assume that the fluxes of sensible heat,
latent heat and potential energy by the large-scale eddy motions are in
balance with the radiative fluxes and the heat fluxes due to small-scale
moist convection. Oceanic circulations are ignored so the underlying
ocean, which feeds sensible heat and water vapor to the cumulus convection,
is more appropriately called a 'swamp'. The meridional heat transport
by the large-scale mean motions is also neglected. This latter assumption
is a reasonable first approximation in mid-latitudes as we see from
Figures l.la,b taken from the 5-year data tabulation of Oort and
Rasmusson (1971), [hereafter abbreviated as O&R]. (Note that Fig. 1l.1b
has its ordinate stretched vertically by a factor of 2 over Fig. l.la).
The model has no explicit formulation of atmospheric dynamics.
Instead, we use the zonally averaged thermodynamic equation to solve
for the mean temperature structure together with other relevant
parameters., We will take as our basic set of variables the hemispheric

mean temperature <T>, the mean meridional temperature gradient

1 . .
A (=<<;- %% >, where r is the radius of the earth), the static stability
36

B (<<3; > ) with a corresponding tropospheric lapse rate B, and the
ground temperature Tq, tropopause temperature Ty, tropopause height H

and surface relative humidity hz. Our method of solution is outlined
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below. (Note thiat the equations in this section are intended only for

orientation and aro not necessarily in the final form used in the model.)
We have sevon variables and so would like seven equations or

conditions to be natisfied. A simplified form of the steady state

zonally averaged thermodynamic equation can be written

) gt L brpary 3 Y L —— Po < Qrad
—— v'o! 4+ gt —_— 1g¢ —-—w'g') = (1.1)
Y ( cp vig') + o= (w'8' + T q') (p ) b cp

where cp V'G',I‘v'q', Cp w'8', L w'q' are the fluxes of sensible and
latent heat by thu baroclinic eddies and Qrad = - %;'fj(z) is the
heat” ..g by radiation, '?;(z) is the total radiative flux (short-wave and
long-wave). Instecad of solving (l1.1) for the temperature at many grid
points as we would in a numerical model, we apply three operators that
define the mean structure., If <( )> represents integration over a
hemisphere, then applying <( )> ,<-%; ( )> and-<%;-( )> to equation
(1.1) allows us to obtain coupled non-linear equations for <T> , A and

B. Three additional constraints are readily found.

i) Radiative equilibrium at the tropopause:

= Fw

=0 (1.2)
z=H
ii) Idealized vertical structure relating Tyr TOs B:

where Tg is the uurface air temperature at a given latitude
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iii) Sea surface flux balance:

1

S=R+ Qp~ Hy ~ Hg = H (1.4)

where S is storage, R the solar radiation term, Qp the flux divergence
due to oceanic motions (which we neglect), Hp the long-wave cooling and
Hg, Hj, the sensible and latent heat fluxes. There is a conduction term
also when ice is present. The final constraint we require is essentially
one on the relative humidity. We could readily formulate a water vapor
equation but this involves knowledge of cloud formation and precipitation
which is beyond the scope of this work. We avoid these problems by
taking the surface relative humidity as constant. This idea wa. suggested
by Manabe & Wetherald (1967) as being more realistic than specifying the
absolute humidity. The first model justification for fixing relative
humidity in climate studies can be found in Sarachik (1978). He varied
the solar flux reaching the surface by 20% to simulate a climate change.
The absolute humidity varies by a factor of 2, while the relative
humidity changes are only about 10%. For observational support, we

turn to Figure 1.2 from Telegadas & London (1954) which shows the

lower troposphere relative humidity for winter and summer. We see there
is remarkably little variation with season or latitude. (The sub-
stantial height variation is suitably parameterized in the model -

see Section 4.2.1). To be consistent with a constant relative humidity
we fix the cloud amounts at climatologically observed values.

‘Smagorinsky (1960) analysed a considerable volume of synoptic data and
found that relative humidity was indeed a very good predictor of cloud

amount.
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KM SUMMER

Figure 1.2: Latitude-height fields of relative humidity in the

lower troposphere for summer and winter.
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Another condition commonly applied in climate models is one of

global radiation balance.
fFE)+dy =7/ Q (1 - aly)) dy (1.5)°

where F(x)+4 is the net outgoing long-wave flux, Q(y) the incident solar
radiation and a(y) the planetary albedo. This relation is not needed
since our equation for <T> effectively says the same thing. Averaging
(1.1) implies a net energy balance within the troposphere (rather than
the entire atmosphere as claimed by (l.5)). Dynamical exchange of
enerqgv between the troposphere and stratosphere is negligible, and is
ignored in our model. (See Section 6.1 for a discussion). Radiative
processes are, of course, important in the stratosphere. In particular,
ozone absorption determines how much solar radiation reaches the
troposphere. The stratospheric modification of the radiation field is
calculated assuming an isothermal layer above the tropopause. This is

sufficiently accurate for evaluating tropospheric heating rates since

such heating is sensitive to nearby temperatures and much less sensitive
to temperature fields for away. However, the heating rates in the
stratosphere, and in particular the thermal flux, will be in error.

For this reason, the radiation balance at the top of the atmosphere

as expressed by (1.5).will not be satisfied exactly.
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1.3 Stone's Model

An essential part of this thesis is to allow for an interactive
lapse rate unlike many previous studies where a constant value
(usually 6.5 °K/km) was assumed. This problem is considered by Stone
(1972a, 1972b) who derives approximate analytical expressions for the
sensible heat fluxes due to baroclinically unstable motions. The basic
equations Stone uses are those of Eady's (1949) model which assumes a

Boussinesq, adiabatic, inviscid hydrostatic fluid on an f-plane.

dgu , v , Iw _
x "oy Tz 0

du_ gy -1 22

dt Pp 9X

_g.:_=_fu_%_5 g_s | (1.6)
%§-= apo9g 6

2 _

where o is the thermal expansion coefficient, 6 the potential tempera-
ture and P the hydrodynamic pressure, (i.e. the deviation from the
pressure of a mean state with consfant potential temperature). The
other symbols have their usual meaning. Stone linearizes these equations
about a basic state to obtain an equation for the perturbation vertical
w'. This is simplified using the 'long wave' approximation and solved

for a domain with rigid upper and lower boundaries. Thus, expressions

for the correlationsv'6' and w'6' can be derived. The amplitude, which
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is undetermined by linearized stability theory, is found by assuming
that the exponential growth of the unstable perturbations is eventually
limited by non-linear effects at the same amplitude as the mean flow.
This closure assumption is consistent with the finite-amplitude
calculations of Pedlosky (1970), who found that an inviscid flow on

an f-plane equilibrates when the perturbation meridional velocity is

of the same order as the total shear of the zonal flow (for meridional
and zonal wave numbers of the disturbance approximately equal). The

fluxes that Stone derives (his equations 2.22 and 2.23 in the 1972a

!

paper) are
2 JITRL
gy — o S_.f.{.s_ _1_“11_1 - L
v'o 0.86 o> B Ri L (1 L) (1.7)
— B
W'o' =+ 0,36 f He2 ———==—= 2z' (1 - z") (1.8)
S Ri/1+Ri

The y dependence in (1.7) has been added a posteriori to simulate the
observed meridional variation. There is no latitude dependence in the
correlation derived from (l1.6) because of the neglect of horizontal
shear in the basic zonal flow and the f-plane assumption. Equatiqn
(1.7) shows the meridional flux vanishes at equator and pole and peaks
at y =<% (or 45°) which fits the observations (e.g. see Stephenson
(1977) or O&R) reasonably well although the observed peak flux is dis-
placed slightly poleward from 45°, Moura & Stone (1976) explain this
displacement by introducing global geometry and allowing the Coriolis
parameter f to vary with latitude.

Other variables introduced by (1.7) and (1.8) are the Richardson

£2<1> B . . e s
—r in our terminology) H, which is identified
g A H S

number Ri (=
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<T>
with the scale height of a Boussinesq atmosphere (Hg = 532— ) and z'

the non-dimensional vertical coordinate (0 £ z' < 1). We will make
use of Stone's model to parameterize the eddy fluxes in a more realistic
troposphere where there is convergence of the meridians at the pole and
the tropopause height varies with latitude. It is worth emphasizing
at this point that the Coriolis parameter is kept constant in Stone's
treatment, and this absence of the 'B effect' is the main potential
limitation in this approach. (e.g. Held, 19783).

We will now examine the problem of parameterizing the latent heat

fluxes,

l.4 Leovy's parameterization of the latent heat fluxes

Sensible heat transport by the large~scale eddies has been
investigated extensively in recent years, but there has been little

work on a useful parameterization of the latent heat flux. Since we

already have relations for v'8' and w'6' from Stone's model, it would

be extremely convenient to be able to express the latent heat transports,

v'q' and w'q', in terms of these sensible heat transports. Such a
procedure is possible and was suggested by Leovy (1973) in his calcula-
tions of water vapor exchange on Mars. The method is based on the
assumption that in the atmosphere the perturbations in relative humidity
are much smaller than the temperature perturbations (which, of course,
is consistent with constant relative humidity). This assumption is
rather dubious for Mars and would seem to be much more appropriate for

Earth conditions.
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If e is the water vapor pressure and p the total atmospheric

pressure, then the specific humidity q (g water/g air) is defined by

- —£e =R ' ;
q= =(-e)e ' where € Ry 0.62197, the ratio of the gas constants

of dry air and water vapor. Since e<<p,

€e
E - -9
Q%3 (1.9)

and for our purposes it is unnecessary to distinguish between
specific humidity and mixing ratio., For a saturated atmosphere,
q = dg (p,T) and the variation of saturation vapor pressure is given

by the Clausius-Clapeyron equation

de es ILns
i
553 Ei";z - (1.10)

L, is the latent heat of vaporization which we assume to be independent
of temperature so %% = 5419 °K. Separating the teﬁperature and specific

humidity into a time-longitude mean and its deviation, we have

T=T+ T
g=9+q
=gqg (T +T")
&3 v 999 '3 Baq T
=qgg (T) + T > (T)+—2—,—- ﬁf(T) T;}‘S' (T) + oee
so v'q'=v‘T'%c*{%(—) évT'z——-ﬁ-(T)nL-g LIE —5%53(1')+...

(1.11)

The derivatives of gg can be found from (1.9) and (1.10) so we can
‘calculate the magnitude of successive terms in this series (1.11). If
we estimate the eddy correlations from Stone's model, then the odd

correlations such as v'T'2 vanish for averages over a wavelength so the
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second term of (l.11l) does not contribute; furthermore,
83qs (-'I—')
v'p'd 3 T
X —
VITI ags (T)
3T

]

ratio of 3rd term: 1lst term

Z x
6

I
o=

x -Zi T'2 x 0.00377 for T = 273 K
= 0.047 for T' = 10°C (See Appendix Al)

Since neglecting the higher order terms of (1.11l) causes an error

of only 5%, we can write

vigr = v 38 (@) = vieT 4ds (D) (1.12)

and similarly for the vertical flux ;TET. The last equality in (1.12)
is appropriate for a Boussinesqg gas and implies that the potential
energy transport by eddies is very small. The circglation statistics
of O&R indicate that the sensible heat flux is indeed more than an order
of magnitude greater than the potential energy flux.

A further assumption made in practice is that the correlation
between temperature and specific humidity is still valid when the

relative humidity h = g—-2=2— is not exactly unity. That is, for

s 9s
the relative humidity sufficiently close to 1, we can simply multiply
the series (1.11) by h. We have examined the applicability of Leovy's
parameterization using the data in Tables C7 and C9 in Oort and
Rasmusson for northward eddy transport of sensible heat and specific
humidity. The result is shown in Figures l.3a and 1.3b for the months

of January and July respectively. These figures compare the actual

observed latent heat transport v'q' with that predicted by (1J42) for h=1.
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Figure 1.3a: Northward eddy transport of latent heat ("ACTUAL') for January compared to the
transport calculated from the sensible heat flux using Leovy's method ('LEOVY'). -
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On the whole, the agreement of the two curves is quite encouraging. As
we might have expected, the parameterization is very poor at latitudes
equatorward of about 25°. At these latitudes the eddy sensible heat flux
is small and frequently of opposite sign to the latent heat flux, a state
that can never be reflected in (1.12). For motions characteristic of

the tropics, the higher order correlations of (1.1l) may not be
negligible, although relative humidity variations are probably the

major source of error. We note that the northward sensible heat
transport changes sign near the latitude of the descending branch of

the Hadley cell. Since the Hadley cell is considerably stronger than
baroclinic eddy motions at low latitudes, fluctuations of the Hadley

cell over periods of a month will contribute significantly to the eddy

—
flux calculated by Oort & Rasmusson. Figure 1.2 clearly shows the region

of maximum subsidence corresponds closely to a minimum in the relative
humidity field.,
The latent heat transport is now directly related to the sensible

heat transport and this allows us to include condensation in the heating

equation in a very simple manner.

de d
PCpor = Qrad - PLv gp (1.13)

Note that a decrease in specific humidity, i.e. condensation, leads to
an increase in temperature. Averaging (1.13) over time and iongitude
and considering just the eddy transports, we have:

3 5T Ly 335 (M, , 2 Gvgv Ly 2395 (T)y; _ Qrad
ay (vi6' (1 + c, oT o+ '} [w'8* (1 + Cp oT ) P Cp
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where rectilinear coordinates are again used for convenience. This
corresponds to equation (l.1l) except for the pressure factor (%?)K which
has been omitted from this simple discussion. 1In practice, it is also
necessary to add a term Qconv representing small-scale convective

heating.

1.5 Observed temperature structure

We are now almost ready to derive the actual equations used in the
model. However, before we do this, it will be instructive to summarize
the observed features of the mean temperature structure that are relevant
to our study. In particular, how realistic is it to expand the surface
temperature Ty in the two lowest even Legendre polynomials Py, P, and
to represent the horizontal and vertical gradients by constant mean

values (A and B)?

1.5.1 Surface Temperature

Let Tp(¢) be the observed surface temperature. Consider two

different estimates T, and Ty of Tj.

Ty = ¢y + C2 sin2¢

Ty, = cg + c2 sinZ¢ + cy sin't¢

There relations are equivalent to expanding the temperature in the even
Legendre polynomials Pg, Py and Py, Pp, P, respectively. The moments of
the temperature distribution then serve to determine the coefficients

cor Cor €y in a least squares sense.
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m0=é'1y2 Tg(¢) cos¢ d¢ = co+%c2+%c|+
my, = 61;/2 TO(¢) sin2¢ cos ¢ d¢ = -311 Co + %- co + %— cy (1.14)
my = 6wﬁ To(9) sin“¢ cos ¢ d¢ = %-co + %-cz + %—Cq

~

For the T, case, c; = 0 and we use only the first two equations of
(1.14). We will take the two sets of data shown in Table 1.1;

the average surface temperature from Sellers (1965) and the 1000 mb
temperature from Oort & Rasmusson (1971) (where Ty (85) is linearly
extrapolated from Ty (65), Tg (75)). Tre integrals of (1.14) are

evaluated using a 9-point quadrature.

0 1280
8l fgg + 81 fgg + 51 f75 + 81 fgg ] (1.15)
(This expression gives, for example ./"‘V2 cos¢ d¢ -1 = 7.1 x 10~/
0
and 6“’2 cos3¢ dp - %— = - 9.87 x 10~5)

Table 1.1 also shows the resulting least-square coefficients and the
deviations between the estimated and observed temperatures. The
deviations are in general too small for convenient graphical represent-—

~

ation. It is interesting to note that although T, temperatures are
somewhat better than 62 throughout the range, it is only in very high‘
latitudes that a really significant improvement occurs. Furthermore,
due to increased oscillation in the higher order approximation the
estimated mean meridional gradient 30 is actually worse for the ;q case

(for both data sets), although of course the equator-to-pole temperature

difference is closer to the observed value. This surface gradient is
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calculated for the data as

AO=2“—L£% _8_8%0(4)) cos¢ d¢
=5z L~ 00 + /M 10(6) sing al

where TO(O) is linearly extrapolated from 5°, 15°, and for I=100 the

units of Ay are °C/(100 km). For the least-square fit,
s _m 1 4
Bo =7 ezt gey

In our model the vertically inte grated meridional gradient A is an
important parameter. Thus, the only real advantage of adding the extra
Legendre polynomial P, is to improve the curvature of the temperature
field near the pole. Since the area involved is small, we will assume
the lower order approximation %2 =cqg + C2 sin2¢ to be sufficiently
‘accurate. This reduces the complexity of the problem by having fewer
unknowns. The worst temperature errors will occur poleward of the ice-

line anyway, so the ice-albedo feedback is not affected (at least for

the present and colder climates).
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H

Least-squares fit to observed surface temperature (see text for

discussion),

a) Sellers (1965) mean surface temperature., (°C)
Iatitude 5¢ 15° 25° 35° 45° 55° 65° 75° 85°
To 25.5 25.1 20.4 14.0 7.5 0.5 -7.2 -15.9 -23.6
(T2-Tqg) 1.57 -0.55 -0.59 -0.57 =-1.33 =-1.59 -0.27 3.69 8.87
(Ty~Tg) 0.19 -=-1.12 0.03 0.96 0.29 ~0.91 -1.26 0.96 5.04
Data To Ty
Meridional gradient A, -0.4441 -0.4446 -0.4341
Least-squares coefficients: €0 €2 Ch
Ty 27.396 -42,452 -
Ty 25.904 -27.528 -17.412
b) Oort & Rasmusson (1971) 1000 mb surface temperature.
Latitude 5¢ 15° 25° 35¢° 45° 55° 65° 75° 85°
To 26.4 25.6  22.3 l6.6 8.8 2.9 =~=4.2 -11.9 (-19.6)
(T»~Tp) 1.67 0.1 -1.04 -1.34 -0.35 -1.27 =0.17 3.08 8.41
(Ty=To) 0.23 =0.49 -0.39 0.28 1.35 =~0.56 -=1.20 0.22 4.39
I Data l T, I Ty
Meridional gradient Ag I -0.4172 I -0.4175 | -0.4066
‘Least-squares coefficients: co co - cy
T2 28,382 -39.872 -
T, 26.813 -24.179 ~-18.309
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1.5.2 Vertical temperature gradient

We use the temperature and geopotential height data tabulated by
Oort & Rasmusson at the standard pressure levels 1000, 950, 900, 850,

700, 500, 400, 300, 200 and 100 mb to calculate a mean lapse rate

3T
:}-4

for winter, summer and annual average cases at 45° latitude. (See page 41).

(- ) and static stability ( %g ).. Lapse rates are shown in Table 1.2
The feature that immediately stands out in this table is the
distinct change between gradients below 700 mb and those above. (The
particular value of 700 mb may be s6mewhat arbitrary due to O&R's choice
of pressure levels). Above 700 mb the observed temperature gradient
( %g ) is close to the commonly quoted -6.5 °K/km and fairly constant
with height up to the tropopause. In the lower troposphere the gradients
are significantly more stable than those above, and also show a larger
geasonal variation. The annual mean temperature profile is also shown
graphically in Figure 1.4.

Thus, an excellent estimate of the mass-weighted vertical gradient

in the troposphere can be found by

9T . 1 AT AT
5z - 7 B 3z | 1000700 * 4 32 700-300 ’ (1.16)

Such gradients for temperature T and potential temperature 9 are
presented in Table 1.3. The upper limit for the averages is chosen to
be 300 mb to avoid complications with the tropopause. Including the
next higher pressure level,200 mb,will give a misleading result for the

tropospheric lapse rate poleward of about 30°,
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Figure 1.4: Mean annual temperature profile at 45°N.

[Taken from Oort & Rasmusson, 1971. Tables A4, AS5].



Hable 1.3: Mass-weighted vertical temperature gradients 1000-300 mb

(°K/km)
3T
&) Lapse rate; 0z Latitude
30° 45° 60°
Ann 5.79 5.69 5.31
Win 5.87 5.57 4.75
Spr 5.86 5.80 5.28
Sum 5.61 5.62 5.76
Fall 5.85 5.77 5.44
28
b) static stability: 3z Latit e
30° 45° 60°
Ann 4,52 4,61 5.05
Win 4.47 - 4,77 5.71
Spr 4.42 4,49 5.11
Sum 4,73 4.67 4,53
Fall 4.46 4,55 4,94

"here are several observations we should make on Table 1.3;

i) Mean lapse rate: The atmospheric lapse rate averaged from ground
to tropopause is considerably more stable than 6.5 °K/km at all
latitudes. A value of 5.7 would seem more appropriate for middle
latitudes. Although (1.16) may appear a fairly crude estimate, a
ftore careful calculation in the next section (See Section 1l.5.3. where
the tropopause p osition is determined) shows excellent agreement.

i) Mean stability : If B = z and 8 = - %E , these gradients are

commonly assumed to be related by the expression

36
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B=T-8 (1.17)

for a Boussinesq atmosphere, where T = 5%-= 9.8 °K/km is the dry

adiabatic lapse rate, Table 1.3 shows (1.17) would considerably
underestimate the stability B, (due to neglect of the pressure factor

( %9)8. A convenient, but more exact,relation between B and B will

be derived in a 1 q ter section (See Section 2.2.1).

iii) Variation with latitude and season: The seasonal variation at
middle and low latitudes is surprisingly small. At 30°N the atmosphere
is most stable in summer. Presumably, this is analogous (but on a

much larger space and time scale) to the well-known observation chat
the tropical atmosphere is more stable on days of pronounced convection.
By the time we reach 60°N, however, there is considerable change in the
gradients throughout the year, with winter being the most stable season.

Hence, the variation of %g- with latitude shows an annual cycle. For

a given season, stability increases poleward except in the summer where
this trend is reversed (at least in the range of latitudes we have

considered).

l1.5.3. Meridional temperature gradient, %%

Since we wish to average %8 over the depth of the “roposphere, we

will begin by determining an approximate value for the tropopause height.

We use Tables A4, A5 and F7 (for E, Z and 5} from O&R. In evaluating the

vertical gradient (See Section 1.5.2.), we calculated %g-between each set
of pressure levels: 1000-900, 900-700, 700-500, 500-400, 400-300,
300-200, 200-100, 100-50 mb. The layer in which the tropopause occurs

can be i-dentified by the sudden increase in stability, although there
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are a few uncertain cases (low latitudes in summer) where it is
necessary to apply the operational definition of the tropopause as

the height where - %E-decreases to 2 °K/km or less. A first estimate

H* of the tropopause height is then found by extrapolating the stabilities

from adjacent layers as indicated below.

20
oz upper layer
Ve
s
”~
Ve
/,,/
H* f/ transition layer
/
/
/
R /
38
2z

lower layer

For example, at 45° in annual mean we have

layer 500-400 400-300 300-200 200-100 100-50

%Z 3.34 4.14 8.81 16.67 2i.42

The tropopause lies in the 300-200 mb layer and we calculate

H* = 10.84 km. Table 1.4 shows the heights obtained by this method.
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Table 1.4: Estimated tropopause heights (km)

H* H
Season Latitude 30° 40° 45° 50° 60° 45°
Annual 14.93 11.12 10.84 10.49 9.92 10.78
Winter 14.73 10.49 10.30 10.02 9.65 10.21
Spring 13.48 10.96 10.64 10.26 9.68 10.35
Summex 15.26 11.79 11.42 11.06 10.44 11.55
Fall 15.09 11.29 11.01 10.63 9.95 10.94

The last column of Table 1.4 gives a refined estimate of H at 45°, such
that %g» - = 0, (the horizontal differencing being from 40-50°). It is

well-known that the horizontal temperature gradient changes sign in the
lower stratosphere and we have used this fact to help pin-point H. Of
course, operational definitions of tropopause height do not use this
criterion, but we are working with heavily averaged data. Hyg is within

the error of the previous H*,:.
z
—_—

» where )

Qi
X&)

We can now recalculate the vertical average
indicates a mass-weighted average from z=0 to z=Hy 5 using the 45°
pressure-height distribution. These values, shown in Table 1.5, agree
closely with the cruder averages of Table 1.3. The stability is again
lowest in Spring, although the seasonal changes are small at this
latitude. Thus, the vertical gradients are not highly sensitive to
th= averaging method, provided we stay below the tropopause. For
example, at 45°N the mean annual tropospheric lapse rate was found
fo be 5.74 °K/km. If we average from 1000 to 200 mb instead (the

calculated tropopause pressure being 235.6 mb) we obtain a mean
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lapse rate of 5.43 °K/km. !

Table 1.5: Vertically averaged static stability and lapse rate at 45°N

—z —z
26 _ ot

Season oz 9z (°K/km)

Annual 4,59 5.74

Winter 4.75 5.61

Spring 4,48 5.83

Summer 4.70 5.70

Fall 4.51 5.82

The error would be still greater in winter or in higher latitudes where
the tropopause is lower.

On the other hand, the horizontal gradients are more dependent on

an accurate estimate of H, because %g is changing rapidly near the

tropopause. (See Figure 1.5). We can now proceed to find the
meridional temperature gradients averaged over the depth of the

troposphere. O&R tabulate potential temperature at standard pressure

. )
levels., Since we want to evaluate 33 at constant z rather than

%g at constant p we interpolaterg for a range of heights assuming E)

varies linearly with z within each pressure layer. Table 1.6 shows the

meridional gradients we obtain, where the horizontal differencing is

taken from 30 to 60° to smooth the fields. %%- can be averaged
vertically from ground to tropopause (Hyg), mass-weighting with the

45° pressure profile, resulting in the mean seasonal gradients of

Table 1.7.



AT

Table 1.2: Lapse rate at 45°, = Az (°K/km)
f
1000-900 950-900 900-850 850~700 j 700-500 500-400 400-300 300-200
L
|
Ann. 4,00 4,26 4,28 4,82 I 6.06 7.11 6.76 3.91
Win. 5.00 4,36 4,17 4,36 | 6.11 7.06 6.33 2.55
Sum, 2,54 3.07 3.97 5.19 [ 6,03 7.02 7.09 5.17
|

Table 1.6: Meridional gradient %3 at 45°N in °K/100 km (using 30-60° differencing)
Height (km)

Season 0.5 1.0 1.5 3.0 5.5 7.0 9.0 Hyg
Annual -.573 -.549 -.545 -.539 -.549 -.558 -.482 -.127
Winter -.730 -.669 -.626 -.601 -.630 -.595 -.487 -.279
Spring -.589 -.570 -.580 -.576 -.569 -.560 -.430 -.116
Summer ~.372 -.374 -.394 -.408 -.410 -.458 -.466 +.030
Fall -,605 -.584 -.575 -.568 -.586 -.602 -.522 ~.098

™
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Table 1.7: Tropospherically averaged meridional gradient %% at 45°
30-60° avg. (°K/100 km)
Annual -0.522
Winter -0,607
Spring -0.542
Summer -0.386
Fall -0.552

Hys in Table 1.6 is the tropopause height at 45° latitude. It is

defined in such a way that the gradients in the final column of Table 1.6
would be zero for 40-50° differencing. The non-zero values we actually
obtain are due to smoothing over a larger latitude range.

The annual, winter and summer profiles of %g- are graphed in
Figure 1.5. The lines become dashed above the tropopause. It is clear
that the assumption of constant meridional gradient is a reasonable
approximation throughout most of the troposphere. In our model we
actually assume %% is invariant with height, but this differs from
38 by at most a few percent. (See Section 2.2.2.). The gradients are

3y
largest in winter and smallest in summer, as we expect, until we approach
close to the stratosphere. An apparent reversal then occurs due to
seasonal variation in H.

Finally, we will calculate typical values for the xichardson

number, an important variable in Stone's theory. The Richardson number

is defined by

g2 28
Ri = 9z (1.18)
39,2
o (57

where a= é:is a thermal expansion coefficient. We take the mean
T
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mass-weighted averages of E} g%- and %g at 45°, When the Coriolis

t

parameter £ is evaluated at 45° also,

o8
)

N

Ri = 0.01081 T

38,2
(ay)

Table 1.8 shows the vertically averaged mean temperature and the

resulting Richardson numbers.

Table 1.8: Richardson number and vertically averaged temperature at 45°.

T}qsf (°K) Ri
Annual 259.1 47.2
Winter 252,7 35.2
Spring 257.7 42.6
Summer 266.0 90.6
Fall 260.3 41.7

The large Richardson number in summer' is due to the much smaller

meridional temperature gradient for that season.
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Chapter 2: Dynamical Model

2,1 Derivation of basic equations

We begin with the atmospheric temperature equation in its most general

.

form;
36 1 5 3 iy
L8 L L _9 ey 9 rorpiy S T x
5t + Toosd 3¢ [ v'8' cos ¢ 1 + PP [w'e'] P (2.1)

[ Qrad + Qconv + Qru
QCP pCp pCp

1

where (T ) indicates an average over longitude and the only approxi-
mation so far is in neglecting the transport by the mean motions.
Equation (2.1) is averaged zonally and written in spherical coordinates
so we can calculate the effect on the heat transports of convergence of
the meridians. If L is the equator to pole distance (107 m), then the
radius of the earth r = %% . At this stage in the dérivation we will

combine the net radiative heating Qradq and small-scale convective heating

Qconv into a single term, H.

- (Po ¢ [ Zxag . Sconv 2
HCorz) = (SR)F [ Srady Sconv (2.2)

The large-scale latent heating from condensation, Qry, may be written

as in (1.13).

Qy _ . Ly dg

pCp CP dt
e Iy 3, 1 3 —— D T
Cp [ ot * r cos ¢ 3¢ (viq' cos ¢) + 9z wiq' ] (2.3)
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where the mean transport is again neglected. Considering just the
steady state equation and combining (2.1) and (2.3) through Leovy's
parameterization (See Section 1.4) we arrive at
— 3 = .
1 9 [v'e’ (1 + L (¢,2))cos ¢1 + 32 [w'o?® (l + L (¢,z))] = H($,z)
r cos ¢ 3¢
(2.4)

We consider only the steady-state solution since to evaluate the time-

dependent part (29-+ (EIBK Ey-égd requires explicit calculation of
ot P Cp ot

component terms in a continuity equation for water substance. The
parameterization of precipitation is beyond the intended scope of the
mod_s. (In the present case, precipitation can be obtained as a residual).
Actually, since the 'turnover time' for water vapor in the atmosphere is
only about 2 days, the %%:term is not important in seasonal calculations.
A much more serious difficulty in a time-~dependent model would be

determining the cross-equatorial transports.

The Leovy term ¢ (¢,z) accounts for the eddy latent heat flux.

_ p Iy 3as
L($s2) e (2.5)

where h is the relative humidity and the other variables are defined

as in Section 1.4. (Strictly, of course, there should be a (%?QK factor
included from (2.1) which cannot be taken inside the ¢ and z derivatives
in the flux divergence. This unduly complicates equation (2.4).

Since ¥(¢,z) decreases rapidly away from the ground and Leovy's
parameterization is only approximate anyway, we will neglect this factor
here.) The relative humidity is assumed to vary linearly with pressure

in the vertical (See Section 4.2.1 for further discussion) so h = hg g%,
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where all zero subscripts indicate an atmospheric variable evaluated at
z = 0. The Clausius-Clapeyron equation (1.10) can be integrated under

the assumption that %! is independent of temperature. Thus
v

L(,2) = hg Iv2 p ?_-"%
T

Sl 1
€ €3 hy va e T T2
-2
cp Ry Pg T
1 1
2 - (= - —

where the constants have the following values:

surface pressure pg = 1013 mb
triple point water vapor pressure €3 = 6.1123 mb
triple point temperature T3 = 273.16 K
e = 0.62197
a==L - 5419k
Ry
Ly2 _ 1.348 x 107 Kk

The eddy flux correlations v'6' and w'8' are essentially those
given by (1.7), (1.8) and derived by Stone (1972a). Th simple Eady
model on which these equations are based assumed a flat rigid 1id and
neglected horizontal shear of the zonal flow and the B effect., The
;esulting correlations are therefore independent of latitude, and this
is unrealistic., Thus Stone included an ad hoc latitude dependence

6 %-(1 - %) in V"U7. We will use a similar expression in terms of ¢.
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v'o?! = 3V sin ¢ cos ¢ A(¢,2)
z 2 (2.7)
w'oe! = 3 W sin cos ¢ —— (1 -
¢ cos ¢ migy T EGY
where V and W are amplitudes independent of latitude and height.
2 .
- - g_Hﬁ_ V14R1
v 0.144 F<T> A B ~
(2.8)
‘W =  0.360 £ Hg2 ——
Riv1+Ri
A <1 _g% > and B = < _3_9_ , are the meridional and vertical potential
temperature gradients averaged hemispherically.
T, H($)
Hemispheric average <( )> = = fo J(') ( ) dz cos ¢ d ¢ (2.9)
_ W
where H = {} H($) cos ¢ d¢ is the mean tropopause height. The
Richardson number Ri is taken to be
. £2<7> B
Ri = g v (2.10)
and the atmospheric scale height
Hy = 3—%”—’- (2.11)

There are several points in equations (2.7) that need further discussion;
i) Both horizontal and vertical fluxes contain the primary latitude
dependence 3 sin¢ cos ¢ (The '3' is simply a normalizing factor). 1In a
recent paper, Stone (1978) proved that the total flux will vary in this
way provided that each hemisphere is in equilibrium separately and the
latitudinal variation of all relevant fields can be described by just the

first two even terms of an orthogonal expansion. (ie. the structure of the
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atmosphere-ocean system is dominated by the planetary scale). Then
the total flux is constrained to peak near 35° latitude, or the flux per
unit area (represented in 2.7) to peak near 45°, We include the same

L .
dependence in the vertical flux so the ratio ZTHT is almost independent
v .

of latitude. This ratio is intimately related to the slope of the
potential temperature isotherms according to baroclinic stability theory.
ii) There are now two distinct vertical scales in the problem, the scale
height Hg and the tropopause height H(¢). The tropopause is an important
feature of the real atmosphere and we calculate H(¢) emplicitly in our
model. It is then necessary to rescale Stone's non-dimensional z' as
Z/H(¢). In the original paper (Stone, 1972b), the vertical variable z
was scaled by an unspecified parameter H. In subsequent calculations
Stone (1972a, 1973) identified this scale with the scale height which

we have denoted by Hg. This is still the correct quantity to use in the
mean amplitudes (2.8) to obtain the total mass-weigﬂted transport
appropriate to the atmosphere. 1In appendix A2 we show that the results
of Stone's (1973) paper are altered only minimally by using H(¢) in the
z-dependent part of (2.7), provided that all parameters with an implied
vertical integration ( <I‘z-<%g£¢> etc ) are averaged over this same
height,

iii) shape factor A(¢,z): In Stone's model the horizc ital heat
transport cp v'6' has no vertical structure. However, it can be shown

both physically and mathematically that the introduction of a variable

tropopause height H(¢) makes it necessary to modify the fluxes v'6' or

w"'0' in some way. The use of a shape factor A defined so that A = 0 at

z = H(¢) proves to be a convenient solution to this problem.
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The divergence theorem below is a well-known result in vector

analysis (see for example Hildebrand p. 290).

frfveydtr = ff Y+ pdo (2.12)
R

This theorem is a consequence of conservation of mass, and states
that the divergence of a vector field v integrated over a volume R is
zero f there is no net outflow across the boundaries & of that region.
The result is applicable to our equation (2.4). We want to approximate
in a consistent way that the baroclinic eddies are contained entirely
within the troposphere. From (2.7) we see there is no eddy flus across
equator or pole or through the lower surface (assumed flat). However,
unless A modifies the vertical profile of 3737, there will be a hori-
zontal flux of energy through the sloping tropopause and this is
physically undesirable.

We can arrive at a similar conclusion mathematically. Apply the
hemispheric averaging operator < > to the left hand side of (2.4).

Making use of (2.7) we find

L

_ S T
<LHS (2.4)> = 5 é [ ) [ v'6' (1+]) cos ¢ 1 dz} d¢

v H(¢)
0

The double integral can be simplified by a useful formula (2.13) from
differential calculus. (See Hildebrand p. 360).

B(x) B

d =7 3£ B _ aa
E’?z{(x) E£(x,t) dt = I = dt + £(x,B) g £(x,8) & (2.13)

thus,
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L7 H(4)

- L 2 TTeT - [vo" di
<ams 2.4 = = { 55 4 V78" (1+f) cos $dz - [v'8 (1+x)]lH 35 § 49
) S N .
= = {lcos¢ f v'0' (1+L)dz] - S [v'6' (1+0)]1]| — d¢ }
rH 0 0 0 H as )
(2.14

The first term of (2.14) vanishes identically at equator and pole but

. . . —_— dH
the second term will remain unless either v'6' = 0 at z = H’or — = 0.

d¢

The particular form of A is somewhat arbitrary of course, but we

will be guided by observations.

Define
Ks r 0 2 X £ Xx
Aix) = (2.15)
e~ Ax | A
K (—'_T_-—?-),X £x<1
s M x _ o A *
where x = Hf;) is a non-dimensional vertical coordinate. This expression

‘introduces three constants Kg, A and X4, two of which must be determined
from a fit to data while the third is found from the normalization
condition,

Kg [(1+Ax*)e_xx* - (1+A)e-xl

A (e-xx* - e_x)

1
J;) A(x) dx = =1 (2.16)

We use eddy flux data from Oort & Rasmusson. The northward entropy
transport is observed to have considerable vertical structure, the
most noticable feature being a general decrease with altitude. Stone's
model predicts a constant amplitude. One of the reasons for this
discrepancy is the neglect of the variation of Coriolis parameter with
latitude. Inclusion of the B8 effect produces a v'8' profile that

decreases smoothly with height (Green, 1970). The latitude of the peak
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flux is also shifted poleward slightly (Moura & Stone, 1976) but we
will neglect this effect here. The shape factor given by (2.15) has
the desired exponential decrease with height, reaching zero at the
tropopause x = 1.

In Figure 2.1 the observed entropy flux at mid-latitudes is shown
as a function of z (solid curve). (v'8' is averaged over 40-50° for a
slightly smoother profile). The variable actually presented is
%%%%-;TET. Green (1970) argues that one can ignore the effect of the
variation of density with height (as in Eady's model) provided we
consider p v'e' say (rather than v'8' ) when making a comparison with
observation. The dimensionless scale x is calculated using the 45°
tropopause height from Section 1.5.3. of H = 10.78 km. A(x) is plotted
on the same figure (dashed curve), scaled to give an equal area. The
rectangle, also of equal area, is the constant amplitude Eady result.
The constants appearing in (2.15) were chosen to give a reasonable
fit to the observed profile, and at the same time match A(%) with

observation. We use

b\

f

2050 ’ Xx = 0.20

resulting in K 2.11, A = o.82
s 3

Substituting the constant values

g = 9.81 m s~2
£ =1.03 x 10" s—1 (at 45° latitude)
g/R = 34.18 °K/km

equations (2.8) and (2.10) can now be written
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T | i ;
z 4150 |*
16} ) -
(km)
Observed
12}
H . 41.00
\
\
\
\
\
8l
40.50
al A (x) scaled
3
i
|
|
0 . l 0.00 —
(o] 4 8 12 __/3_(2_2 v'g'
°C m/s Plo)

e
Figure 2.1: Profile of annual northward entropy flux ————g:g; v'e

at 45°N (solid curve); scaled shape factor A(x) (dashed curve),

and constant amplitude Eady result (solid rectangle).
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V = - 0.1174 <T> A B '%l- m °K s-1
W= 3.174 x 10~5 <152 —2 | og -1 (2.17)
RivVI+Ri
B
Ri = .01081 <1> =

A

where A is in units of °K/100 km and B in °K/km.

2.2 Temperature Field

A simple yet adequate representation of the surface temperature is
given by the two lowest even Legendre polynomials (See Section 1.5.1.).
For the vertical structure we assume a constant lapse rate B . However,
unlike many simple models, the value of this lapse rate is not specified

a priori but is calculated internally, Thus,
T($,2) = cq + cp sin?¢ - Bz (2.18)

The coefficients cg, ¢y and lapse rate B can be expressed in terms of

the mean parameters of the model; <T> , A and B

C 3 “/2 BE 1 "/ﬁ
<T>=co+—2-[=f Hsinzd:cosfpdq;]-—[:-f H2 cos $d¢ ]
3 H 0 2 H2 0
LZ]
e LT _ Tcy 3 2
B T3 "3 1@ fo H sln ¢ cos®¢ d¢ ] (2.19)
T R
B =<5 =1 /5 2 0(4,2) dz coséas
H o0 o

where now L = 100 (in units of 100 km), The three square-bracketed

expressions in (2.19) are written so that they are unity for constant H.
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In the complete model, the tropopause height is determined from a
radiative equilibrium condition (Eg, 1l.2) and H(¢) depends on the
surface temperature Tg(¢), lapse rate and ozone structure. Since the
surface temperature has the most significant effect (See Section 4.3.1.)
we will evaluate the bracketed integrals assuming H has the same latitude
dependence as Tg (although in a later example, Section 3.1, we assume

an even simpler form).

H($) = bg + b, sin?g (2.20)

In the full model the coefficients bg, b, are found by fitting (2.20)
to values of H determined by radiative equilibium calculations at two
latitudes. In the simple grey model of Chapter 3 we just specify the

latitude distribution of H. If we now define

3 ¥ 2
nl = = fo H 51n¢ cos ¢ d¢
H
3w
ny, = -ﬁ ‘6 H Sln2¢ cos ¢ d¢ (2021)
1w
n3 = §2 JE) H2 cos ¢ d¢

then for H(¢) expressed as in equation (2.20),

_ 1 by
n1-1+15E
4 by
ny, = l+45ﬁ
2
ny = 1+—‘3-(§E_2)
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where K

W2

H =jb H cos¢ d¢

bo + 3 by (2.22)

The Legendre coefficient b, is negative, and typically Eﬁz ~ - 0.4
We can also calculate the pressure field. Rewriting the temperature

from (2.18) as T(z) = Tg - Bz we can integrate the hydrostatic

op _~Pg

relation 3z = ~-pg = T to obtain
T Y
p = po (7)) (2.23)
0 To

where y = -ﬁ% . Then, the potential temperature is

6= (2 = IOy (2.24)

P T

R 2 . s
where Kk = o T T We are now in a position to comment on the

P .

gradients of T and 6.

2.2.1. Relation between lapse rate and static stability

In our model we predict a value for the stability B (<-g-:—> ) and

from this must determine the appropriate lapse rate B8 ( — -g—z— )e To a

first approximation (assumed by Stone, 1973), B and B are related by
B I' - B (2.25)

where ' = f— = 9,8 °K/km is the dry adiabatic lapse rate. Thus, for
P
example, B = 6.5 °K/km implies B = 3.3 °K/km. However, this Boussinesq

‘relation is not accurate enough for our purposes. Referring to Table 1.3

we see the mean annual 45° lapse rate of 5.7 °K/km corresponds to the

local stability %—:— of 4,6 °K/km not 4.1 °K/km as the simple formula



57

above would indicate. Therefore, let us apply the model definition of

B (2.19) and substitute for the potential temperature 6 from (2.24).

r

iz (o), 1@

%) To(¢) cos¢ [(1 To (¢)) - 1] d¢ (2.26)

:z:lll—-

This expression for B is the exact one in terms of our model but is
now too complicated. It is too awkward and time consuming to invert the
above integral at each iteration in order to find B. We will seek a

simpler relation,

Define X = %;-, which is independent of ¢. (The overbar (-_3
0
implies integration over latitude as in 2.22). Then
T
1 (1- 9 % (- 9 _
B== {(1- 8X) fy To cos¢ (lte) d¢ - Tl
H .
x - Tordh
where e(¢) = B 0¥ is small.
. (1 - BX)

Consider a numerical example: 8 6.5 . °K/km
H 15-6 sinZ¢  km

Tg = 300-51 sin?¢ °K

We find H = 13.0, Tg = 283.0, X = 0.046 and e(¢) has extrema of -0.038
T

at the equator and +0.091 at the pole., Approximating (1 +e#]'- Eo =

1+ (1~ %)e , the integration is trivial. The further simplification
?Tos) = 0 occurs because of the definition of X and g, so that

r
% (-0t 8 -1 (2.27)

w
o

Since X is itself small, we make a further expansion of (2.27).

B= (T~ s){1+%rx [1+—(r+s)x+—-(r+e)(r+zs) X2 +....1}
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The zeroth order approximation (neglecting terms of O(X) and higher)

is just the familiar expression (2.25). We will use an approximation
that is better than second order in that it evaluates the 0(x2) term

exactly and approximates the higher ones.

2 rx

B2 (I-g) {1+ } (2.28)

1 - %(r+s)x

This form has the advantage that B can readily be found by solving a

quadratic.

=2 1r.12 - Jiiexdr- Lpy2-2 -B) +1Tx (&
s-‘x{[1+;u2r 5B)] jﬁ+x%r =B)] 3xtu*m+3rx%r+m]}
(2.29)

As a numerical check, we use the example given above. The exact

integral (2.26) results in

B = 4,307 °K/km.
Compare this with B = 4,295 from (2.27)
and B = 4.290 from (2.28)

Our final representation (2.28) is considerably more accurate than

the crude estimate of B = 3.3 from (2.25).

aT 30
2.2.2. Horizontal temperature gradients 39¢ and 3%
In (2.19) we assumed A =-<%- %%:>, but this gradient should really

be defined in terms of the potential temperature 6.

1 w2 H($) 536
= e— — A
A T jb jb oY) (¢,2" dz cos¢ d¢ (2.30)
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From (2.24),

Ky-1 Ky
20 3 Ty To
—— = e— K - -1 2.31
50 30 x [ y(T) _(Ky )(T) 1 ( )
T
and %% = %EQ = 2 cp sin¢ cos¢ , independent of z.

The term in (2.31) in square brackets is very nearly unity. For

example, if B = 6.5, Tp = 283 and H = 13

22 1.0 at z =0
9% _ ) =1
3T { 0.989 at z 2H
3¢ 0.939 at z =H

. . 1 30_ .
Thus, the mean potential temperaturc gradient (<:;- —-> ) will be only

3¢
3T .
3$> . (See appendix A3 for a more complete

evaluation of 2.30). This difference has negligible effect on our

2-3% smaller than <%

model results,

2.3 Hemispheric Forcing Functions

We wish to solve the thermodynamic equation (2.4) for the
temperature structure. In the moie common numerical approach, a
mathematical grid would be set up and the diabatic heating H (¢,z)
evaluated at each grid point (¢, zj). Equation (274) could then be
solved iteratively for the temperature at each (d5+ zj) provided the
boundary conditions and appropriate constitutive relations were known.
In particular, the eddy flux correlations v'6' and w'6' would need to
be provided and their calculation would involve the complete equations

of motion. In the present work we adopt a considerably simpler approach.
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The eddy fluxes are parameterized in terms of three variables<T>, A
and B that describe the mean temperature field. These same three
variables specify the temperature T(¢,z) at any point in the troposphere‘
if suitable approximations for the latitude and height variation are
made. The form we choose for T(¢,z) is (2.18). The observational

data to justify such a structure was presented in Section 1.5. The
coefficients cgy, cp are related to the solution variables by (2.19)

which we can now write in a more condensed form as

<T> = cO+—l3—czn2-%B§n3
} (2.32)
A =IT-_C_2£L
3L

where n;, n,, n3 are defined in (2.21) and.the relation between B8 and
B is given by (2.28).

Thus, in our case the thermodynamic equation need only be solved at
three 'points' instead of at a large number of grid points. Of course,
it is more fitting to apply different averaging operators to (2.4) than
to evaluate it at three arbitrary points. The choice of averaging
operators is suggested by the nature of the variables we are calculating
(See Section 2.3.1. - 2.3.3.). The advantage of this analytical
approach is that it is conceptually simpler and the mechanisms affecting
the mean gradients more understandable. At the same time there is a

corresponding sacrifice of structural detail.

2.3.1. <«T) Equation

The operator we use in this case is just the hemispheric average

(2.9). In Section 2.1 it was shown that the left hand side of (2.4)



61

averages to zero if we confine the baroclinic eddy fluxes to the

troposphere., Therefore, the <T > equation is
0 = <H(¢$,z)> (2.33)

In general we calculate H from (2.2), but in this section we will find
it instructive to consider also the special case where ¥ is given by

a Newtonian cooling law, i.e.,

H(p,z) = ZLT'—T (2.34)

This expression states that the radiative heating is proportional to
the deviation of temperature T(¢,z) from the radiative equilibrium
temperature Ty (¢,z). Spiegel (1957) originally developed the same
linearized formula for studying deviations from a steady state. T is
.the radiative relaxation time constant for the system. It is assumed
to be a simple constant, dependent on the scale of the disturbance but
independent of position. In Chapter 3 we discuss in more detail some
of the problems involved in this formulation (2.34). Substituting

(2.34) into (2.33),
<T> = <T.> (2.35)

or, the mean temperature is just equal to the mean radiative equilibrium

temperature,

2,3.2. B Eggation

We average (2.4) separately over the upper and lower halves of the

troposphere and subtract to obtain a forcing function for the mean
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vertical gradient. We find:

2 "2 H
Upper integral = = [ [ (L.H.S. 2.4) dz cos¢$ d¢
H O H
/2
2 M H 1 3 — H
== == (v'e' (1 a o' (1 a
ﬁf {4!/2 r 39 (v (1+X) cos¢) dz + [w ( +2)]H/zcos¢} o
_ 2 V2 1 d H — dH 1 . ——+
"ﬁfo{?ﬂf% v'o' (1+8) cos¢d¢-—a-$;[v6 (1+%) cosd)][H
+ %Q%-ll; [v'e' (1+%) cosél lﬂ/z- %W ‘sin¢ cos?¢ (1+X(¢'%))} d¢

again making use of the differential calculus formula (2.13). Of the
four terms in the above expression, the first and second vanish when the

boundary conditions on v'6' are applied. Thus

Upper integral =

T2 R L)
1 dE o H -3 ; 2 H
rﬁfo a5 v'e lH/2 (l+I(¢,2)) cos¢ d¢ p— .6 sin¢ cos<¢ (l+&(¢,2)) d¢
, W B
The lower integral, 5 j(') fO (L.H.S. 2.4) dz cos¢ d¢, is found to be the

same as the upper integral but with reversed sign, (as is also obivous

from 2.33). Thus, we may write the B equation as

3 ™ 2V dH H H . 2 (2.36)
- = /0 [W'T'd? A($r3)] (1+X(¢,-2—)) sin¢ cos2¢ d¢ =
s W2 H Hy
-ﬁ_ fo [ JI'_YZ'Hdz - fo Hdz 1 cos¢ d¢

An interpretation for this averaging operator is clearer if we substitute

the linearized heating law (2.34) into the right hand side of (2.36).
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2 "2 H ;}5
R.H.S. (2.36) = ;ﬁ 6 [ fqé (Ty = T) dz - A (Ty = T) dz ] cos¢ d¢
1 o2 % H 2 1 —
=._-r-{§jb (JiyZTrdz -/ Ty dz) cos¢d¢+-2—BHn3} ‘
=51 (-8 | (2.37)
4 "2 H Hf
where By = ;1;_'}__1— !6 (j['_y2 T, dz - 6 Ty dz) cos¢ d¢

is defined as the radiative equilibrium lapse rate. We can think of
the deviation of the lapse rate from its radiative equilibrium value as
being controlled by the stabilizing effect of the dynamic fluxes, which
of course are themselves responsive to the temperature gradients. The
assumption of a constant lapse rate B makes our dynamical model
analogous to two-layer model,where temperatures specified at two points
‘in the vertical’only allow a mean gradient to be resolved. It is
therefore appropriate to determine a vertical forcing as the difference
of the upper and lower integrals as we have done, rather than using
<§% (2.4)> say. This alternative average would only produce the same

result for a linear function.

2.3.3. A Equation

This time we average the thermodynamic equation separately for
high and low latitudes, and difference them with a 'suitable weighting"
a . After a little manipulation we have the A equation.

v H(¢)
S (1+a) [sing cos?¢ A Mo, z) (1+%¢(¢,2))dz] | =

¢=¢q
¢q H T H
a fo fo'ﬂdz cos¢ d¢ - f [ ¥4z cos¢ d¢
¢g ©

(2.38)
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For convenience in evaluating the integrals of (2.38) we select

do= -:;-“ Presumably many choices for o are possible since we apply the
same operator to both sides of equation (2.4). We will allow equal
weighting by mass for the high and low latitude parts. Mathematically,

this requires the following condition on a :

¥, H9) % H¢)
qu% 1dzcos¢d¢-f%1(') 1dz cosp d¢ =0
or,
o = H -1 (2.39)

W,
fo H(¢) cos¢d do

For a constant tropopause height, o = 2 - 1. 1If Spiegel's formula is
used for the heating, then this choice of o makes the right hand side
of (2.38) proportional to the deviation of A from a radiative
equilibrium 'pseudo-gradient' A,'. We show this in the following

section where a particularly simple form of H(¢) is assumed.
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Chapter 3: Model Results with Grey Radiative Heating

3.1 Simplified Equations

In this chapter we solve the system of equations (2.33), (2.36),
and (2.38) with the heating 74(¢, z) of the simple Newtonian form (2.34).‘
This ;J should not be thought of as approximating the observed long wave
heating which we know is everywhere negative (and therefore cannot satisfy
2.33). One of the assumptions involved in deriving (2.34) is that the
deviation from radiative equilibrium (Tr - T) is small. In practice, the
difference may be as large as 20%, the deviation reaching a maximum at the
ground and at the tropopause. The advantage of our analytical approach is
that various physical or geometrical effects can be added one at a time,
and the results studied unambiguously. For the purpose of examining how
the addition of a latent heat flux changes the temperature gradients, for
example, a Newtonian heating law is quite adequate. if the absolute values
are still not realistic; a more exact form for the heating will be neces-
sary (Chapter 4). This will not invalidate the comparative results of this
section.

The radiative equilibrihm temperature Tr is calculated from grey
radiation theory. Since sensible tropopause height variations are not pro~
duced by this method (see Section 3.3.5), we will simply prescribe H(¢).

We can then simulate a realistic tropospheric geometry by allowing H($) to
decrease at high latitudes. We will find that this effect is at least as
important as the convergence of the meridians (i.e. spherical geometry).
As long as we are specifying H anyway, we might as well choose a form that

offers maximum simplification of the equations. Thus,
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H($) = H [1 - o(p+1- %)1 (3.1)

dH - . . . . .
so tha a$-= - OH is independent of latitude, and the integral in equation

(2.36) can be evaluated more readily. O is the constant fractional slope
of the tropopause, and has a value of approximately 0.4 for the earth. The
temperature structure T($, z) is still given by (2.18) and (2.32), where

the weighting factors ., nz, n3 can now be expressed solely in terms of G.

™ 5
nl = l+0'('§'-3)
. 1 ,
n, = 1 - 30 (3.2)
ny, = 1+ 02(m-3)

3.1.1 Choice for weighting factor O

As indicated in Section 2.3.3, the right hand side of equation (2. 38)
can be made proportional to the deviation of the meridional temperature
gradient A from an approximate radiative equilibrium gradient Ar'. Concen-

trating on just that part involving T on the RHS of equation (2.38),

{} ={o f¢“fH Tdz cos ¢ dp - fﬂ/z IH T dz cos ¢ dd,}
0 o ¢y O
$a .2 1 2
= f [(CO4-C2 sin“¢)H - ) BH®] cos ¢ d¢
0
- fﬂ/z[(Co+C2 sin?¢)H - —;— BH?] cos ¢ d¢
¢u )
Substituting H($) = H_- S¢ where S = oH,

o]

- =H LU
\ H = H(Q) = H[L + 0(5-1)]
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Loy 2 ind - 1]
{1} (COHO -3 BHO ) [(1-!-0(.) sin d)a 1:[

.. ™
(CO - BHO)S [(l-!-d) d)a sin ¢a + cos (ba) - (-2- + a):l

+ -i- c,f, [(1+oc) sin®¢, - 1]
- %CZS I:(1+0L) (3 ¢a singtba + sinz(ba cos ¢a + 2 cos ¢a)
-(%n +2m]
- lgsz [(1+a) (0 2sin¢ + 2¢ cos ¢ - 2 sin ¢ )-("—Z' —2):[
2 a a o a a 4

(3.3)

The weighting factor o is chosen so that regions poleward and equatorward
of the dividing latitude ¢0t have equal masses. This éliminates several
large terms (involving c0 and the mean part of %— BHZ) from (3.3). Expres-

sing this condition on & mathematically, we have
. . ™ .
+0 - - - —_— -
HO! (1+¢) sin ¢a I Sl (1+a) (¢u sin ¢oc + cos ¢ ) (2+a)| 0

or, expanding H_ and putting o = —;—- '

0]

sin ¢0, - 0[(cba - %+ 1) sin ¢a + cos ¢a - ] = T'JI:E (3.4)

After considerable algebra, we simplify the remaining terms in (3.3).

= lecF 1 op2
{} = 3 C,H £, - 5 BH 9
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where

£ = (1+) sin3¢a -1

™ .3 1 .2 2 - -1
- 0(1—!&)[(4)(1 3 + 1) sin <ba+ 3 sin Cba cos ¢a+ 3 cos ¢a ]Z[ 3 oo

9% = " [(1-&(1) sin(ba- l]

+ oz(lw)E@a-—g—n)z -2} sing_+ 2(¢a—%+1)cos ¢y + 1] + (m-3) o2

(3.5)
Forthecaseqb:-g-,a: 1{5 -1
¢ 1+o(z—2+/5)
1 )
fc—"'z"*'gl}—(/f—l)(lm):{
- -8y 4 g2 TR
%—(L_5)+0Emm2)+V§Hﬁ ﬁﬂﬂ

When 0 = 0, £ =—£

- and gcJ = 0, so that { } above is directly propor-

tional to the meridional gradient A. A different choice for the weight
would give a more complicated expression involving the other mean parameters

<T> and B as well. Equations (2.33), (2.36), and (2.38) now can be writ-

ten as
\
0 = (<T.> - <T>)
T
_ e - b}
--.]-}[W+2-Y—H0A ]L - Hn3 {B Brl - (3.6)
H r 5 z 2 -t

LHf, (A,' - A)
‘"nl T /
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H

where Ali = A(¢, '2-) = 0.82,
w T/
A' = _nl {l:af IHT dz cosd)d(b-—fn/zfﬂ'r dz cos(i)dq)]
r IHf, o o T Th o T
+ BR? g} S (3.7

For a flat-topped troposphere (0 = 0), Ar' = Ar, the radiative equilibrium
meridional gradient. For 0 # O, Ar' is modified by the Iy factor. The

integrated Leovy factors (Ly' Lz) are given by

Lz = 3 fﬂ/z{l +I(¢, -g-)] sin ¢ cos?¢ d¢
(o]
/2 .
= 1+3f Z (¢, g—)sind)cosqu d¢
0
and
H($ )
! o
L, = 6. £ A(¢a,‘z)(l +)‘l(¢a, z)) dz
! z
=1 +{ Aoy, %) L9y, %) dx; %= HG0)
Ty ea/TaKs /Ty ma/Ty e-)\x* " -a/T,
= 1 + 0.6780 h0 __agﬁ—_— e - e - Y Y aPH e
e x*—e ()\+-T——2—)

*

(3.38)
(See Appendix A4)

= . o
where To, H, and T, = T0 - BHx* are all evaluated at latitude <ba = n
(x, = 0.20, Ks = 2.11, X = 2.50). These integrated Leovy‘ factors are de-

fined in such a way that when latent heat fluxes are emitted, Ly =L =1.
z
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When latent heat transport is included in the model, one should be careful
not to interpret Ly' Lz as the ratio of latent to sensible heat.
We will also modify the right hand side of the B equation in (3.6),

replacing (B—Br) by (Br‘—B) where

1 -
Br' = I'-B + 3£§££—§L— . after (2.28).
o 1-3X(T+B)

Once the radiative terms <Tr> ’ Ar', and Br' are defined in terms of <T>,

A, and B, the system of equations (3.6) is complete.

3.2 Grey radiative equilibrium state

The radiative equilibrium temperature Tr(¢, z) is calculated from
the grey radiation approximation (e.g. see Goody, 1964).

e

T ((b) 3 L
Tr(¢, z) = 2% [} + E-Tw(¢, z) ; z>0 (3.9)

where Tw is the optical depth of the absorbing gas (in our case, water
vapor) . Te(¢) is the 'effective temperature' defined by the incoming solar

radiation Q(¢) and planetary albedo a ().
- Q) _ Y
T_(4) [ o (1-a)) (3.10)

O = Boltzmann constant = 8.13 x 10-11 cal cm-2 mirl-1 K—4 (not to be con-

fused with the tropopause slope). Table 3.1 shows values of the effective
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temperature determined from equation (3.10). The mean annual radiation Q

is calculated for a solar constant of 2 cal cm-2 min (see Section 4.1) .
and the albedo O is estimated from Figure 1 in Vonder Haar and Suomi (1971).

.

Averaging over latitude, 6'= 0.5 and O = 0.30.

Table 3.1: Effective Temperature Te (K)

latitude ¢ 0(9), cal cm-2 min 1 o (9) Te (), K
5 0.61670 0.24 275.55
15 0.59814 0.245 273.00
25 0.56262 0.265 267.06
35 0.51148 0.30 257.61
45 0.44687 0.345 244 .95
55 0.37206 0.385 230.33
65 : 0.29318 0.415 214.31
75 0.22993 0.455 198.14
85 0.19777 ) 0.50 186.75
]

Rather than simply specifying the absorber path length Tw' as is commonly
done in radiative equilibrium calculations (e.g. Manabe and M&ller, 1961),
we allow an extra degree of freedom by having Tw depend on the internally

computed temperatures, i.e. we fix the relative humidity rather than the

absolute humidity.

.-}

T,0,2) = k0£ o, (2) dz (3.11)

where ko is the grey absorption coefficient (in cm2 g-l) and g 1is the
w

water vapor density
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where e, is the partial pressure of the water vapor (defined in terms of
the saturation vapor pressure using the Clausius-Clapeyron relation) and
the other variables are defined in Sections 1.4 and 2.1. Note that Ty is
determined from the actual temperature field rather than the radiative

equilibrium temperature field. Thus,

a/T3 g
k h -a/T
1,4, 2 = 00°° [ Be /T azt 4 1 (9, W)
R
P0 w 2
. k r . . .
with Tw(¢, H) = 0 HpH representing the stratospheric optical depth
g

(assuming constant temperature T = TH and constant water vapor mixing ratio
rH). To evaluate the tropospheric integral, we substitute for pressure p

from (2.23) and change variables

= 2. = - Bz!
S T where T T0 Bz
(3.12)
X he €5 e2/T3 LY fa/TH .S
T (b, 2) = (=) ds + T (¢, H)
w RWB T0 3 SY+l w

T(z)

We meet almost the same integral in Section 4.2.1, when computing the
reduced water vapor path length. Since the path length must be calculated
many times in the radiative routines, we need an extremely efficient pro-
cedure for evaluating this integral. A highly accurate analytical method

was found and is outlined in Appendix A5. We shall simply state the result

here.



knah Y+1 *a[l-i-l G "
T (¢, z) % 0.02444 ——%3% [ET—] e (T T3 ——ﬁ—;——ﬁ«» T (¢, )  (3.13)
v 0 (1+3)
1
)Y 251
where T (¢, H) = 3.8753 k.h_ |—| e H 3
w 00 T0 .
) e
and UIn = (Y+1) ==, HM+l) = 2(y+2) —
G G
1 1
d G G G ar 11 functions of D = a-l;- 1
s R 1 L [TH T(z)]
Gl = 1 - e‘-D
6, = 1- e P (14D)
- _ D 1 2
G3 = 1 e (1+1?+2D )

Table 3.2 shows sample calculations for the surface optical depth Tw(¢, 0)

for several combinations of B and H with the surface relative humidity hO
0.77. Surface temperatures were taken from Sellers (1965), and are the
same as those values used in Table 1.1. We see that Tw(¢, 0) = TO varies
with latitude by more than an order of magnitude. However, for a hemi-

spheric mean surface optical depth of 4, recommended by Goody (Chapter 8),

we want kO = 2 cm2 g- . We will adopt this value in subsequent calculations.
Defining a function

@) o= [P+ 1 ax (3.14)
4 o 2 w'! °

z s
where x = §T$T » the radiative terms of system (3.6) are calculated self-
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Table 3.2: w(¢, 0)/ko for ho 0.77

74

B=6.5 K/km | B = 6.0 B =6.5
¢ T0(¢), K H=12.0km | H=12.0 H = 14.0
5 298.7 3.5475 3.7766 3.5477
15 298.3 3.4587 3.6821 3.4589
25 293.6 2.5548 2.7202 2.5551
35 287.2 1.6649 1.7732 1.6652
45 280.7 1.0568 1.1259 1.0570
55 273.7 0.6326 0.6741 0.6327
65 266.0 0.3488 0.3719 | 0.3488
75 257.3 0.1707 0.1820 0.1707
85 249.6 0.0870 0.0928 0.0870
hemispheric average 2.0561 2.1893 2.0563

cons’ .ently from the temperature structure we are solving for.

1
A cf) T_($) H($) F () cos ¢ d¢

r
8 T IWZ ¢) H($) ¢
= = T _(9) H( 2 F - F d
r 2% n, 52 o o (#) ) { %( ) l(¢)) cos ¢ d¢b
v - ﬂnl 1 T/u .
T me, 1% [ﬂé T_(9) H(§) F () cos ¢ df
Ty

2 )
- [ T $) HG) F @) cos ¢ d¢] + ;snzgo}

‘ﬂ'/l_'

= (3.15)




3.3 Results

3.3.1 Method of Solution
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We have to solve the system of equations (3.6) together with the

constitutive equations for the Richardson number (Equation 2.10) and the

radiative terms 