ANALYSIS OF LINEAR NETWORKS

by

JACOB SHEKEL

Ingenieur (E.E.)
Technion - Israel Institute of Technology
Haifa, Israel (1951)

SUBMITTED IN FARTIAL FULFILLMENT OF THE
REQUIREMENTS FCR THE DEGREE OF
DOCTOR OF SCIENCE

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY
February, 1957

Signature of Author _ _ _ _ _ _ _ - —
Department of Electrical Engineering, Janvary 7, 1957
- -7
Certified by_ __ _ _ _ _ R S
v, 7 Thesls Supervisor
A P
Accepted by _ _ _ _ _ _ A o o o  — — — ———

b‘
<

Chairmen, Dew;rtma 1 Gomrltte;/on Graduate Students

»f” o
V / "f Tga, m%ﬂb

/.
o A4l 18
e N P,

e
\w‘ .-a‘



ANALYSIS OF LINEAR NETWORKS D

by
JACOB SHEKEL

Submitted to the Department of Electrical Engineering on
January 7, 1957, in partial fulfillment of the requirements
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ABSTRACT

A method of analysing linear networks 1s developed, that
is applicable to networks whose elements may have any number
of terminals. Each multi-terminal element 1s handled as a
complete entity, without having to represent it as an equivalent
network of branches. The theory 1s based on an unconventional
treatment of voltage, which seems to be suitable for the general
case, in that voltages are handled without having to specify
the terminal to which they are referred. A considerable part
of the analysis can proceed without defining the voltage reference.
The point in the analysis where reference has to be specified
is studled, and what the required reference conditlons are, and
as a result it appears that the conventional method of fixing
one terminal for voltage and current references 1s just one
very special case out of a multitude of possibilities.

- In the course of the analysls, admittance and imrpedance
emerge as two concepts which are not exactly equivalent or
dual to each other. It is shown that the admittance-impedance
duality 1is a characteristic of 2-terminal and 3-terminal elements
only, and breaks down in the general case. Admittance 1s a two-
indexed mesgnitude, referring to 2 terminals, whereas impedance
1s four-indexed, referring to 2 terminal-pairs. The analysis of
a given network can proceed on an admittance basis without a
specifled voltage reference, but imredance can be defined only
after reference conditions have béen imposed, and it depends on
the reference conditions.

The theory presented iu thls thesis 1s built up to the point
where, given the characteristics of the multiterminal elements
composing a network, the network eaguations can be set up and then
solved to glve any required network characteristic.

Thesis Supervisor: Zrnst A. Guillemin
Professor of Electrical Engineering
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Chapter I
INTRODUCTION

In a Round Table Discussion that was conducted at the
1955 Symposium on Modern Network Theory, the following
conclusions have been reached:?®

"... A number of important, basic problems still confront

-the network theorist... In summary, the basic problems

are assoclated with removal of one or more of the
restrictions impllied in the string of adjectives usually
associated with networks: Linear, lumped, finite, passive,
bilateral”.

This Theslis outlines an analysis of linear, lumped, finite
networks. However, instead of removing the restrictions of
"passive, bilateral"” from the exlsting theory, the analysils
is carried out in a way that avoids these restrictions in the
first place. The reasons for this approach, as well as a short
outline of the theory, are the subjects treated in this Introduction.

1.1 LIFPFB Networks

Before embarking on the subject of the Thesls, let us
briefly review some of the fundamental points of the regular
. LLFPB network analysis, with speclal emphasis on those points
that will be elaborated in the Thesis.

In analysis of networks, two types of problems are of
interest. One is mostly topological, concerning the ways in
which network elements are interconnected to form a network,
and how the properties of the network can be deduced fronr the
properties of the separate elements and the method of inter-
connection. The second type of problem is analytical (in the
mathematical sense of Analysis), and includes all problems
having to do with time and freguency domain, transform techniques,
s-plane techniques and alllied subjects. In this Thesis we shall
be concerned with the first type of problems only - the
topological relations.

1 Proceedings of the Symposium on Modern Network Synthesis,
Polytechnic Institute of Brooklyn, April 13-15, 1955.(p.527)
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In LLFPB networks, the basic network element-is a branch -
an element with two accessible terminals. The branch may be a
passive R, L or C, or a source (and in PB networks, a source
ls always a constant source, a voltage or current constraint)
but any element has two terminals only. There are always two
tacit assumptions about this type of element:

1. The current entering one terminal is always equal to
the current leaving the other terminal; or, the total
current into the branch is always zero.

2. Only the voltage between the branch terminals is
related to the current, not the potential of each
terminal by itself.

When branches are interconnected to formr a network, the
method of interconnection 1s represented by a topological
graph. Two constraints on the voltages and currents, known
as Kirchhoff's Laws, appear as a result of the interconnection:

l. The sum of all currents into a2 node is zero.

2. The sum of voltage drops around a loob ils zero.

All the methods of analysing networks - by node pairs, node

to datum, loop or mesh analysis - are based on these two pairs
of postulates. It follows from the usual analysis that networks
composed of such branches are bilateral, and we use this term
ag a synonym for "obey the reciprocity relations". Conversely,
any network that is bilateral can be regarded as a collection
of interconnected branches.

1.2 Removing the "PB" Restrictions

The fact that an element is active or passive does not
appear in the topologlcal aspects of the network. Analytically,
certain functlons describe passive elements, while active
elements impose fewer restrictions on the functions. As far
as tepology 1s concerned, an active element may be just another
type of branch, say, a negative R, but it is still a2 two-
terrinal element, with all that 1s implied by this fact.

Removing the B restrictlon is quite a different matter,
and has some basic topclogical implications. Let us first note



that the term "bilateral" applies to networks, but has no
meaning 1f applied to a single two-terminal element. To define
reciprocity, two pairs of terminals are needed, at which a
source and a meter can be connected and then interchanged.

The minimum number of terminals necessary for this operation
is three. We are then faced with the following dilemma:

(a) Networks composed of branches are bilateral.

(b) Some multi-terminal devices (for example, a triode)

are not bilateral, and nelther are networks that
incorporate such devices.

The accepted method of solving this dilemma is by
postulating a new type of "branch", a controlled source. This
1s a branch whose voltage depends on the current through some
other branch, or whose current depends on the voltage drop
across some other branch. This allows us to regard a non-
bilateral element or network as a collection of branches, some
of which are of this new type, so that we can still apply the
methods of analysis by nodes, meshes, loops etc.

Unfortunately, it so happens that the non-bilateral devices
like vacuum-tubes or transistors are also active elements, so
that inclusion of a source in the equivalent circult is quite
"natural”. In the usual representation of a triode by the
plate impedance (positive real) and a controlled source, one can
point at the source and say, "Of course this represents an
active element, and here is the source of power gain". But in
the last few years, circuit elements that are passive and
non-bllateral have been postulated and constructed, like the
gyrator or circulator. If such an element were represented by
controlled sources, the representation would be quite misleading,
for these "sources" are no sources of power at all.

1.3 A Different Approach to LIF Networks

It seems that the only justification of representing non-
bilateral elements by controlled spurces is that this method
enables us to fit them into the framework of graphs. Evidently,
1f graphs were the only possible tovological representation
for LLF networks, we have no choice but to follow this rethod.




However, a somewhat closer scrutiny of the dilemma presented
on the prevlious page will reveal that there is no dilemma

there at all. The two statements do not contradict each other,
for there 1s nothing to force us to include multi-terminal
elements in the framework of branch networks - provided we

have a theory for analysing networks with general multiterminal
elements.

Such a theory 1s presented in this Thesis. The basic
network elements can have any number of terminals, a two-
terminal branch being Jjust a special case. Networks composed
of two-terminal branches only are shown to be bilateral, and
bilateral networks can be represented as a collection of two-
terminal branches. An element wlth more than two terminals
1s treated as a whole, without trying to split it up into
branches that will fit in a graph. Thus - no dilemma.

The "minor" concession of allowing multi-terminal network
elements calls for a reformulation of the whole basis of the
methods of network analusis. First, new voltage and current
postulates have to be declded upon for the single multiterminal
element. Then, postulates analoguous to Kirchhoff's Laws have
to be formulated for the interconnection of network elements
in a network.

The second set of postulates (interconnection) is necessary
when we realize that networks are no longer representable by
graphs. We still have the concept of a node, where terminals
are connected together, but no longer are there meshes or loops.
In a multi-terminal element there 1s no unique way to weave a
loop from one terminal to another through the element. At
least one of Kirchhoff's laws, the one dealing with voltage
drops, has to be replaced by a different formulation.

The fact that "loops" are inapplicable to general networks
ls only one example of the complete breakdown of topological
network duality, at least that type of duality that is
usually emphasized in branch networks, This loss is not as
terrible as may appear at first glance. The duality 1s at most
only nearly perfect in planar branch networks (if mutual



inductances are ignored), and gets very restricted even in
general branch networks. It is then not too surprising that
1t completely disappears in general networks that contain
mlti-terminal elements. As the theory unfolds, we shall find
that mesh and loop methods yield their place to node methods;
elements are still connected in parallel, but there is no
series connection; admittance aprears as a concept more basic
than impedance.

On the opposite vage of the ledger, we shall discover
through the more general approach some network properties
that could not have been obtained by simple extension of
branch-network theory. Some of these properties, dealing with
methods of fixing a reference or datum for voltaces, yield
novel results even when applied to pure branch networks.

In short, where the regular rethods work by induction,
"generalizing" from branch networks to more general networks,
our approach will be one of deduction: A general theory 1is
developed, and the properties of branch networks are deduced
as a srecial case. Only thus can we be assured that the
properties of general networks can be explored in their
broadest aspects, and not as a mere generalization of only
those properties that are found in branch networks.

1.4 Scope of the Theory

The networks and elements treated in this Thesis are
linear, lumped and finite. They are also assured to be time-

invariant.
An additlonal restriction is that the linear relations

between voltage and current are homogenous, which means that

he conditlon of all voltages being zero and all currents being
zero simultaneously 1ls compatible with the relations. This
excludes sources, which are voltage and current constraints,

80 that the sources feeding and exciting a network are regarded
as belng external to the network proper. (The other type of
source - the "controlled source" - will not appear in the

theory.)



The concept of voltage as used in this Thesis has a
meaning somewhat different from its conventional one. The
term "voltage" 1s generally used as a synonym for "voltage
drop" along a branch, or the "potential difference'. between
two terminals. In this Thesis, "voltage" is somewhat analogous
to "potential", being ascribed to a single terminal or node,
without specifying the reference terminal, and is therefore
defined only within an additive constant. This type of voltage
first appears as a convenient concept when multi-terminal
elements are considered, but its importance is much more
profound. We come to realize that networks can be analyzed
without specifying the voltage reference node up to a cértain
stage of the analysls, and at that point there are many
different ways to specify this reference; and this in turn
leads up to sore of the most important results of the Thesis.

Our main concern in the Theslis is with the torological
and algebraic aspects of the network. Element adrittances
and impedances are assured to be real numbers, voltasges and
currents assumed to be real constants or real functions of
time. Most of the results, however, are directly apnlicable
without any change to complex admittences and impedances,
but no formal proofs will be given for that. So, strictly
speaking, the theory is developed for linear resistive networks,
or to small-signal linesr aprroxirations to non-linear network
elerents. It was felt that inclusion of analytical function
theory conslderations would have, by its sheer weight,
obscured the topological and alzebraic relations that we wish
to emphasize.

1.5 OQutline of the Thesis

The second chapter treats the rmulti-terminal network
element and its representation. It treats the basic postulates
on voltage and current, and the admittance representation of
a network element. A geometrical interpretation of the various
results 1s given in the form of relations in vector spaces,
to explain the implications of the special treatment of voltage.



Thls model of vector spaces is used as a ratheratical model
gulding the development of the whole theory, but no formal
rathematical relations concernins the abstract model will be
glven. A detailed description of those abstract relations that
forr the basis for the engineering interpretations will be
found in the Appendix. |

The next chapter treats the problem of interconnecting
the network elements to form a network. Here the postulates
analogous to Kirchhoff's laws are formulated. The inverse
problem, of representing a network by breaking it up into
elerents, is also treated - but obviously these elements are
not necessarily two-terminal branches only. The reciprocity
concept 1s discussed in this context.

Chapters II and III will have treated the admittance
representation only; chapter IV comes to explain what additional
assumptions have to be made before any talk about impedances
becomes meaningful. It will appear that certain "reference"
conditions have to be applled to the voltages and to the
currents, but thet the voltaze and current references may be
cuite different from each other, and can be of a much more
general form than is used in the currently accepted methods.

The latter point is elaborated in chapter V, which treats
in detall a specilal cese of reference assiznments. In the
rajority of network problems, the sirple assignrent of a single
node as a voltage reference will do, but the solution may be
simplified if a different node 1s selected for current reference.
This lezds to the concert of a "four-indexed" impedance, of
the form qu’rs . It appears that an impedance has to be
referred to two pairs of terminals, whereas an adrmittance is
reaningful when referred to two terminals only. Using this
type of impedance, a method is shown of solving two-terminal-
palir network problems as the ratio of two determinants only,
even 1f the two terminal-pairs have no comron ground terminal.

In a certain sense, the character of chapter V is different
fror. that of the rest of the Thesis. This chapter discusses
a speclal czse of the zeneral theory treated in the other



chapters, but it was felt that the practical implications that
follow merit this more detailed treatment of this special case.

Chapter VI presents some conclusions of a general nature
that may be drawn from the Thesls, mostly on the subject of
duality in network theory.

Throughout the Thesls, free use is made of matrix algebra,
which 1s a natural medium for the treatment of multi-terminal
network elements. All the symbols and matrix notations are
defined on their first appearance, and in addition a list of
symbols, notations and conventions is surmarised in an
Appendix for easy reference.

A conscious effort was made to keep the presentation in
a language which is more Engineering than Mathematics. Some of
the purely formal arguments, which had to be included for the
sake of completeness, are therefore not given in the text,
but are also relegated to the Appendix.



Chapter Il
THE NETWORK ELEMENT

Consider any electrical network and the elements of which
it 1s composed. Let us regard as elements those basic building
blocks whose properties are known to the designing Engineer,
out of catalogs, handbooks, or previous experience; those
blocks that the Engineer puts together in various ways to achieve
the desired end result. Let us regard as elements those units
that the Technician draws out of stock and solders, screws,
crimps or otherwise interconnects to form the network.

The various elements may be very different in size and
aprearance. They may be molded, boxed, canned or enclosed by
glass bulbs. But there is always one thing that all the elements
must have, if the network 1s of the lumped type: each element
has certain well-defined points at which it is connected to
other elements. These may be in the form of soldering lugs,
pigtail wires, binding posts or base pins - but in general we
refer to these points as the terminals of the element.

In passing let us note that the term "lumped" as used
above covers more than is usually accepted in network theory.
Since we do not go into analytical details, we do not associate
"lumped" with rational functions. A section of uniform transmission
line would here be considered as a "lumped" elerent, if the
only connections to the rest of the network, and to loads
and sources, occur only at a set of discrete terminals.

This leads to the general representation of a lumped
network element: it is a "box" (or any closed figure), with
some terminals attached to it. Any contact between the elerent
and the world outside it can only be made at these terminals.
The element behaviour will be defined and enalyzed by the
terminal properties only, without violating the privacy of
the closed box.

2.1 Current

Fig. 1 shows an example of a 5-terminal element. Assume
this element to be part of a network in a certain state of
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Flg. 1
Network Element

excltation. There will be currents flowing through the terminals,
and let 11, 12,‘... 15 be the currents into the 1l-st, 2-nd, ...

5-th terminal. The column matrix
[~ -

5
represents the current into the network element.
Since the components of 1 1include the currents into

all the terminals, they are not independent, because their
sum 1s zero. Let us assume, in order to make this example
more general, that the components of 1 are even further
restricted, Let the set of terminals be partitioned into subsets,
as 1ndicated in Fig. 1, such that

il + 12 + 13 =0 (2.1)

i4+15=0

The cause for this additional restrictlon lmposed by partitioning
need not concern us. It may be that the internal structure of
the element 1s composed of several physically disjoint parts,
coupled by mutual magnetic coupling, or even - in the degenerate
case - totally uncoupled. Or it may well be that the partitioning
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ls imposed by extermal connectlions, as when a 4-terminal
element is used as a 2-terminal-pair element in constructing
a transmission line. In any case, since we do not probe into
the element, but content ourselves with terminal information
only, we accept thils partitioning as an attribute of the
element.

The partitioning of the set of terminals into subsets
can be formalized by defining a partition matrix P , whose
rows correspond to terminals and colums to terminal subsets.,
The entries of this matrix are:

P k:1 if terminal J 1is a member of subset k

J
ij=o if terminal J 1s not a member of subset k ,

so that each row of P has one "1" entry and all others are "O".
The element of Fig. 1 has a partition matrix T

4

1l
OOHHH
HHOOO

Let At denote the transpose of the matrix A ; then the
restriction on the terminal currents has the general form

In the slmple case where all the terminals belong to one subset
only, the partition matrix is a single colum of "1l's. A two-
terminal branch has a 2x1 partition matrix, and the relation
(2.2) then appears as 1is=-11 . Equation (2.2) is then the
generalization of the first of the branch postulates mentioned
in the Introduction.

We can now formulate the first postulate on general
network elements:

A network element 1s characterized by the number of its
terminals, and by the partitioning of the set of terminals
into subsets, as indlcated by the partition matrix P
associated with the element. Any current into the element
is constrained by (2.2).
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2.2 Power and Voltage

The flow of current into the element 1s associated with
an energy transfer, or, in the usual parlance of the Electrical
Engineer, power flow. Now, current 1 belng a vector quantity,
and power W a scalar, the correspondence between 1 and W
can be made by means of a second vector, which we shall denote
by v , so that

W=v, 1=1,7v (2.3)

(A more rigorous argument for this relation will be found in
Appendix B). Given i1 and W , it is not claimed that v is
unliquely determined, and in fact i1t will shortly be demonstrated
that v 1s not unique. So far, we only wish to formulate the
second postulate on general network elements:

The power flow into a network element 1s obtained from

the current matrix 1 by inner multiplication with

another colurm matrix v , (which will be called the

voltage of the element), as shown in (2.3).

Let us now explore some of the properties of the voltage
matrix v , and see where 1t corresponds to the usual notion
of voltage (thus justifying the use of the term), and where
it departs from 1t.

First, the restriction (2.2) on the currents leads to the
conclusion that if the voltage is of the form

v=~F Yo

where Vs is a column with the suitable number of rows, one row
per terminal subset, then

W=vw i:(P‘Vo)ti:V P, 1 =0 .

t ot °t
But the form =on means that all the terminals of a subset
have the same voltage, with no voltase differences within a
subset, and under this condition no power can flow into
the element.

Second, suppose 1 and W are given, and a certain v
satisfying (2.3) has been found. Now add on to the original
v , then
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W= (v + on)t i

= vy 1 + Vot Pt i

=vy 1 + 0

= Vi i
so that ralsing the voltage of all the terminals of a subset
by the same amount does not alter the power flow into the
element. Power flow 1is determined only by voltage differences
within a subset.

In conclusion, the voltage as defined by (2.3) and in
the second element postulate is defined only within an additive
term of the form on s, where P 1s the partition matrix of
the element, and v, i1s an arbitrary colum matrix with one
row per subset. This ls the same thing as ascribing a voltage
to each terminal without spvecifying the point to which this
voltage 1s referred, with the understanding that only voltage
dlfferences within a terminal subset are significant in
computations.

2.3 Admittance

So far the network element has been assumed lumped and
finite - for only under these assumptions could voltage and
current be represented as discrete and finite sets, written as
colum matrices. We now introduce the assumption of the element
beling linear, to complete the set of restrictions (L.L.F.)
imposed on the networks treated in this Thesis.

In an n-terminal element, there are n currents and n
voltages, one each per terminal. The n currents are restricted
by (2.2) so they represent less than n independent variables;
on the other hand, there is no similar restriction on the
voltages. Therefore, it is possible to have a relation giving
the currents in terms of voltages, but not the other way round.
In a linear element, the reletion is of the form

i1 = Yvw (204)
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where Y 1s an nxn admittance matrix. Note that (2.4) is
a linear homogenous relation, l1.e. v=0 together with 1i-=0
satisfy it. The networks and network elements are assumed
exclusive of independent sources, as was explained in the
Introduction.
The Y nmatrix is necessarily singular, since the relétion
inverse to (2.4) cannot exist. Let us further investigate
the structure of the Y matrix that leads to 1ts singularity.
Fror the postulate on currents,

PtYVthi =0 ,

and thlis is a restriction on the currents, independent on
the voltages. This can hold only if

PBY = 0 . (2.5)

The second restriction follows from voltage and power relations.
Assume that a voltage of the form on 1s added to the element
voltage - this should leave the power invariant. We cannot
yet assume whether the current varies or not when this voltage
1s added, so let the new current be denoted by

i'"=Y(va+?P v, )

:1+YPVO

vy i
(v + P v )t (1 +YP v, )

= vti + thon + votPti + votPtYon
The third and fourth terms are zero, due to (2.2) and (2.5),
therefore
A YP v, = ¢} ,
but this relation 1s to be true for any v and v (the latter
is arbitrary anyway), so that

Y P pod 0 . (206)
Going back to the form of 1i' above, it now aprears that
i'=1 . The current into the network element, as well as the
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power, does not change when a voltage of the form on is
added to the element voltages. Moreover, if

v =
P v,

is the only voltage at the element terminals, 1=0 as well as
the powver. All this, of course, 1s to be expected, since such
a voltage means that there are no voltage differences within
a subset of terminals,

Relations (2.5) and (2.6) show the structure of the Y
matrix of any linear n-terminal element. Let the rows and columns
of Y be partitioned in the same way that the set of terminals
is partitioned into s subsets. This partitioning breaks Y
up into s®  submatrices. The two relations indicate that the
sum of each row and each colum in each of these submatrices
is zero. (We shall have many occasions to refer to this type
of matrix. Let us then, for short, use the term zero-sum matrix
to denote a matrix in which the sum of the entries in each

complete row and in each complete column is zero.)

As an example, the element shown in Fig. 1 has an admittance
matrix partitioned as in Fig. 2, and each of the four resulting
submatrices 1s a zero-sum matrix.

Fig. 2
Structure of the Y Matrix for
the Element Shown in Fig. 1.

This 1s a somewhat unconventional way to represent a network
element. A simple example to illustrate the meaning of this type
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of matrix 1s to compare 1t to the usual representation of a
branch. A branch is a two-terminal element with no further
terminel partitioning, and has a partition matrix

S

The only possible form that a 2x2 matrix can have to comply
with (2.5) and (2.6), that i1s, to be a zero-sum matrix, is

Y = Y - .

=y y

Although Y has four entries, there is only one independent
admittance value y . Writing out the current-voltage relations
(244) in full,

1) = yvy - ¥V, = ¥(vy-vy)

12':-yv1 + vV, = -il
It is evident that the usual assumptlions about a branch - same
current in and out, and depending on the voltage difference
only - are embodied in the form of the admittance matrlix. The
independent entry y 1s Just what is usually called the
admittance of the branch. The basic difference lles in the
fact that although the simple y has an inverse, so that a
branch has an impedance as well as an admittance, in our type
of representation the inverse of Y cannot yet be defined.
We shall later find ways of iInverting the admittance relation,
after sore more assumptions will have been made about the element
and the whole network of which the element 1s a part. But for
the tirme being, let us follow the admittance concept as far
as possible without making any further arbitrary assumptions.

2.4 Auvgmentation

The simplest network element seems to be a 2-terminal
element (a2 branch). A one-terminal element would not make much
sense., Its Y 1s just the scalar O, which means: no current can
flow into it, no effect does its voltage have on anything.
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Although a one-terminal element is trivial, it will
sometimes be convenlent to augment a network element by adding
to it a few isolated terminals, like in Fig. 3. An isolated
terminal has the same provperties that distingulsh a one-terminal
element: zero current and ingconsequential voltage. From a
partitioning standpoint, an isolated terminal forms a one-
terminal subset. It then follows from (2.5) and (2.6) that an
i1solated terminal leads to a complete row and a complete
columm of zeroes 1in the admittance matrix. For example, 1f the

hO
;/5
2

3 9

Fig. 3

An Augrented Networlk Element

branch shown between nodes 2 and 5 in Fig. 3 has an admittance
¥y , the complete augmented elerent shown has a 5x5 admittance

matrlix
[0 0 0 0 07
0O y 0 O -y
Y = 0O 0 0 0 © .
0O 0 0 0 O°
0 -y 0 0 ¥y

This is the regular 2x2 matrix of a branch, with rows and
columms of zeroes added corresponding to the isolated nodes.

2.5 Geometrical Interpretation

The relations between current, voltage, admittance and

power, as developed in this chapter, can be interpreted
geometrically as relations between points in Euclidlan space.
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This will now be 1llustrated by a specific example of a 3~-terminal
element, with a2 partition matrix

vy
1
HoH M

8o that all the relations can be shown as projections of
3-dimensional space. The results, however, will be valid for

any partition matrix P.
A current column matrix 1 can be represented by a point

In 3-dimensional space Xq X5 x3 whose coordlnates are
XJ = 1J (3=1,2,3) .

Not every point in the space can represent a current, but only
those points whose coordinates satisfy

Xy + Xy + x3 =0

or, in general,

Ptx:o .

These points are on a plane passing through the origin, which
we shall call the partition plane (because of its association
with the partition matrix P ).

Voltage
Null
Line
7
-
Origin®& _

Partition Plane P x= O
t

Fig. &
The Current Point and Voltage Line
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The étraight line given by the equations

XI:X2=X3
passes through the origin and is perpendicular to the partition
plane. If a voltage colum matrix is represented by a point
on this line,

V1=V2:V3
all the terminals are at the same voltage, and there is no
current flowing into the network element. This line will therefore
be called the null line.

A point representing voltage may be anywhere in the space,
since there 1s no restricting relation between the voltages,
However, given any voltage point, a line can be drawn through
it parallel to the null line (perpendicular to the partition
plane), and then all the voltages on this line are equivalent
as far as current and power are concerned. Current is thus
represented as a polnt on the partition plane, whereas voltage
1s represented as a line perpendicular to that plane., These
relations are shown in Fig. 4, where the coordinate axes have
been omitted for clarity of the drawing.

If vectors are drawn from the origin to the current point
and to any point on the voltage line, the power is given by the
inner product of the two vectors, i.v . Vectors to any two points
of the voltage line, v and v' , differ by a component
perpendicular to 1 , therefore

l1ev = 1ov'

which shows the independence of power on the point chosen
for voltage representation.

The admittance of a network element is a transformation
that maps a voltage line into a current point, so it is a
singular transformation, If we wish to map a current point
back into the same voltage point we started from, we can
only be sure that we shall end up in a point on the same line,
but can never tell whether or not this is the exact starting
point. Mapping voltage into curpgnt and back into voltage
never assures a return to the starting point; the sequence
of the two mappings is not equivaizgf to an ildentity mapping,
and the two mappings are therefore not mutually inverse.
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Now generalize these geometric properties to the general
element, with n terminals partitioned into s subsets, with
a P matrlx of order nxs. Current and voltage will now be
represented by points in n-dimensional space. Current is
represented by a point restricted to the (n-s)-dimensional
subspace Ptx:o , the partition subspace. Voltage will be
represented by an s-dimensional subspace orthogonal to the
partition subspace. The admittance that maos an s-dimensional
subspace of voltage into a current point is a singular
transformation. The rank of the Y matrix representing this
transformation can at most be s . Note that (2.5) and (2.6)
restrict the rank of Y Just by this amount, for at least
8 rows and s columns (one each per subset) have to be
omitted from Y in order to leave a matrix with a non-zero
determinant.,
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Chapter III
THE NETWORK

Our technician, whom we have met at the beginning of the
previous chapter, now has a collection of network elements,
and his next job is to assemble them into the required network.
How would he go about this?

Usually, he would get a chassis with some prepared
connection points: Tags, lugs, screws etc. Then the various
terminals of the network elements will be connected to these
points as per instructions or wiring diagrams. The egsence
of the wiring diagrar is a schedule showing which terminal of
vhat elerent is tied to which node of the network.

In thls chapter we shall develop the mathematical analog
of this procedure. We already have a set of admittance ratrices
that represent the various elements going into the network.
Now we need a connection matrix, to show how the elements are
connected to form the network.

%.1l The Connection Matrix

The network shown 1n Filg. 5 1s composed of three elements
connected at four network nodes. 1If, for the time being, the

Fig. 5
A Network

interconnection of the elements is disresarded, we have 8
terminals to consider, leading to 8-rowed columm metrices
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1 and v . These columms are related via an 8x8 admittance
matrix Y , whose structure is shown in Fig. 6. The admittance
matrix of each element (which is a2 zero-sum matrix) appears as
one of the submatrices on the dlagonal. All the other sub-
matrices are zero, since there is no interaction between the
elements except through the terminals.,

Fig. 6
Y Matrix of the Elements that
Go into the Network Shown in Fig. 5

In reality, because of the Interconnection of the elements,
there are only four distinet nodes, and only four voltages
and currents to be concerned with. Let I and ¥ denote the
4-rowed colums pertaining to the nodes, and ¥ the 4x4
admittance matrix relating them. We now have to find the relation
between the barred network matrices and the unbarred element
matrices.

The interconnectlion of the elements can be expressed by
a connection matrix C , which has rows corresponding to the
element terminals and colums corresponding to network nodes.
(In our example, € 1is an 8x4 matrix). The entries of C are

C 1l if terminal J 1is connected to node k ,

J& T

C 0 if terminal J 1is not connected to node k .

Jk
Each row of C therefore has one and only one "1" entry, and
the rest are "0",

The network of Fig. 5 has a connection matrix
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1 0 0 0]
0 1 0 0
0 0 0 1
¢ - 1 0 0 O ]
0 0 1 0
0 0 1 0
0 0 0 1
0 1 0 0]

The network is thus defined by two matrices:

Y - the admittance matrix of its separate elements (grouped,
for convenlence, into a single diagonal partitioned
matrix).

C - the connection matrix, showing how the separate
elements are connected. This matrix has the same role
that a network graph has for pure branch networks.

3.2 Network Postulatesg

The two postulates about the relstions between element
1 v and network I ¥ will now be formulated. They have
the form of conservation postulates for current and power, and
so reflect the conservation laws of charge and energy, the
former being the time derivatives of the latter.

l. The current into any network node is equal to the sum
of the currents into the element terminals connected

to thls node.
2. The power into the network 1s the sum of the powers
into the network elements.
From the definition of the connection matrix, it follows
that the node currents I are given in terms of the terminal
currents 1 by

I=0,1 (3.1)

The second postulate 1s expressed by writing out the exXpression
for power

I
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Substituting from (3.1)
It =
it Cv = it v

1t‘G

and since this relation 1s independent of 1 ,

CVv = v . (3¢2)
This result 1s a corollary of the second postulate:
The voltage of all the terminals connected to a node
1s equal to the node voltage.
Now we are ready to compute the network admittance ¥
in the relation

i - ig ‘.
Starting from the element relation
i1 = Yvw
we get, using (3.1) and (3.2)
1 = Ct i
= ct,Y v
= Ct YCvw
Y = ¢ Yo . (3.3)

Given the admittance of the network element and their inter-
connections, this i1s how the admittance matrix of the network
is computed.

2.3 Digression on the Nature of the Connection Matrix

The formula glven above for the entries cjk of the
connection matrix can be stated in a somewhat more general
form:

Cjk 1s the truth value of the statement "terminal

is connected to node xk ",

With the regular conventions for truth values, "1" for a
true statement and "O" for a false statement, this definition
i1s identical with that given in the previous section. But when
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the definition 1s put in this way, the question whether the
statement is true may have not only a "yes" or "no" answer,
but also "maybe, it depends". o '

One interpretation of the uncertainty answer could be
the presence of switches in the network. The connection of an
element terminal to a glven network node then depends on the
switch position, and the entry in the C matrix would be
neither "1" nor "O", but a Boolean variable representing the
switch. The "1" and "O" entrles can be regarded as special
cases, when the Boolean variable is given one of its two
possible values, with no uncertainty involved.

The Y of a network is then made up of admittances Y
and Boolean elements C . The entire theory that follows in
this Thesls could thus easlly be extended to apply to switch-
able networks. This, however, will not be done in the Thesis,
® outlining
the operatlions with numbers that are gqualified by Boolean

and the interested reader 1s referred to a paper

elements.

We now return to the switchless network, where the Boolean
character of C need not concern us, and its "1" entries can
be regarded as simple scalar numbers, i

3.4 Networks as Paralleled Elements

A simple interpretation of (3.3) is possible, if all the
elements are first augmented, to give each element a terminal
for each node of the network. Flg. 7 shows the three augmented
elements that make up the network of Fig. 5. (The nurbers at
the terminals refer to the network nodes). Each element now
has a 4x4 admittance matrix, with some rows and columns of
zeroes only, and the complete Y matrix is of order 12x12.

® J. Shekel, "Sketch for an Algebra of Switchable Networks",
- Proceedings-of the Institute of Radio Engineers, vol. 41.
Pp- 913“921’ JU:L.Y, 19530
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o3

e?2

ol
Fig. 7

Augmented Elements

Let the element terminals be re-numbered as in the following
scheme:

node no. 1 2 3 4
Terminals of first element 1 2 3 4
Terminals of second element 5 6 7 8
Terminals of third element 9 10 11 12

This numbering will lead to a very simple C matrix. If I
denotes a unit matrix of order 4x4,

1
c = I .
I

Y will be a 12x12 matrix, partitioned into nine 4x4 matrices

P

Yl o 0
¥ = (0 Y, O

.O 0 YB_

Yl Y2 Y3 being the matrices of the augmented elements. When

the multiplication indicated in (3.3) is carried out,

Y = Ct YC
= Yl + Y2 + Y3
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The admittance matrix of a network is equal to the sum
of the admlttance rotrices of the network elements
(suitably augmented).

This interpretation looks like a generalization of the
parallel connection of two-terminal branches. The network can
be built by piling up elements in parallel - i.e., connecting
together the corresponding terminals of all the elements.

3.5 Note on Reciprocity

The 2x2 admittance matrix representing a branch 1ls always
a symmetrical matrix, for only this way can it be a zero-sum
matrix:
First row, Y11 + V12 = 0
First colum, Y11 + ¥po1 = 0
hence Yo1 = V12 -

The matrix will remaln symmetrical when the element 1s augmented
by attaching any number of isolated nodes. In the process of
augmentation rows and colums of zeroes are added, but the
only two non-zero off-diagonal entries remain in symmetrical
positions.

If a network 1s composed of two-terminel branches only,
its ¥ metrix is the sur of augmented branch }atrices which
are all symmetrical, so the total Y matrix ls symmetrical
too. Symmetry of the admittance metrix is a necessary and
sufficlent condition for the network to be bilateral ( that
is, to obey the reciprocity relations), we conclude that:

Any network composed of two-terminzl network elements
(branches) only obeys the reciprocity relations.

Nothing definite can be sald in general about networks that
contain zeneral multi-terminal elements. If each of the elements
1s bllateral, so will be the network; but nothing can be said

a priorl about the elements and the network, as we could say
about branches and branch networks,

3.6 Network Transformations

Suppose a network 1s given, with its assoclated 1 and
v colum matrices, and the network Y matrix relating them:

f
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1 = Yv .

It 1s possible that the 1 and v are subject to further
constraints that had not been taken into account when the Y
matrix was constructed. For example, the network may contain
sore transformers (assumed ideal), and an ideal transformer
does not have a Y matrix.

To present the discussion in its most general form, assume
that the actual currents of the network are 1', which are
related to the 1 above by the linear transformation

i' = T4 . (3.5)

Some examples of the T matrix will be given later. All we
assume now 1s that the component of the network causing the
constraint is lossless - like a short circult or an ideal
transforrer. The new 1' +then has a new v' associated with
it, such that

V% 5 Vt i

Substituting from (3.5)

viT1 = v, 1
v£ T = v,
v.= T,V . (3.6)
The new 1i' and v' will be relzted by 2 new Y' mtrix
1" = X' v
which can be found from the old relation
1 = ¥v
it = T 1
= TYv
= TYT, v'
YW = TYT, . (3.7)

One exanple of this transforrmation is the augmentation
of an element as treated in the previous chapter. We have the
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original set 1 , where each entry i1s the current into a
terminal; this set i1s augmented to form a largzer set 1',
but all the entries added to. 1 to form 1' are zero (no
current into the isolated nodes). The transformation ratrix,

- |3

where I and O are unit and zero matrices, respectively, of
aprropriate order. The augmented Y' 1s obtained, in partitioned

form, following (3.7)
[Y 0
Yt = .
0 0

As a second example, assure a 4-node network, with a 4x4
Y rmatrix, modified by short-circuiting nodes 3 and 4, thus
forming a 3-node network. The appropriate transformation matrix
wlll show that any current into the new 3rd node is equal to
the sum of the currents into the old 3rd and 4th nodes,

in partitioned form, 1s

1 0 0 O
1t = 0 1 0 0] 1
¢ 0 1 1

Another example 1s presented by the process of "node
splitting® i1llustrated by the following example: Suppose a
three-terminal network (or network element) is given, with
its 3x3 adnlittance ratrix Y . Such an element can be used,
and frequently 1s used, as a two-terminal-palr elerent (with
a cornon "ground" at input and output). In our mode of element
rerresentation, a two-terminsal-pair element i1s represented by
a 4x4 admittance meatrix, wilth en assoclated partitioning

1 ©

1 O
0o 1 *
0 1
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The process of obtaining the 4x4 Y' from the 3x3 Y 4is again
a transformation of the same type, for the four new currents
1' can be given in terms of the old three currents 1 by

(1 0 o
10 0
i':ooli ,
0 0 -1

if it is assumed that node 2 was "split" to act as common
ground to input and output.

An ldeal transformer in the network will lead by definition
to & set of relations of the form (3.5) and (3.6).

3.7 How to Write the Y Matrix of a Given Network

In the preeeding sections of this chapter, some formal
procedures were worked out for arriving at the admittance
matrix of a glven network. The actual procedure will now be
illustrated by a specific example. Prior to any network
calculations, we need to know the representation of the
building blocks that will go into the network. These can be
of one of the two general types:
1. A network element that can be represented by an
admlttance mtrix of the type discussed in chapter II.

2. An element that imposes some relations among the currents
into the nodes to which it is connected, and some
relations among the voltages of these nodes, but no
admittance-~type relations between currents and voltages.
This type was treated in section 3.6 of this chapter.

These two types of elements are sufficlent to represent

any lumped, linear, finite and sourceless network ( the last

adJective meaning the lack of independent sources, so that
the linear equaticns are homogenous). A& proof of this
stztement 1s given in Appendix C.

The network in the following example will be composed
of resistors and triodes, both belonging to type 1 above, and
a voltage divider (ideal), which belongs to type 2.
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A resistor is a two-terminal element, which we shall define
by its conductance g , incorporated in the 2x2 zero-sum matrix

& -8
) g
For the admittance representation of a triode, let the

terminals be numbered as in Fig. 8. The representation
applies to linear small-signal approximation , and it is

63

Fig. 8
Triode

further assumed that there 1s no grid current,

To simplify notation, let m be the mutual grid-to-plate
transconductance, and p the internal plate conductance. The
small-signal pléte current (into terminal 2) is then

1, = m(vl-v3) + p(vg-—v3
and the current into the cathode 1s

13 - "12 .
From these three equations the admittance matrix of a triode
1s constructed as

0 0 o]
Y = m P -I-p
-m -p m+p

The network we plan to analyze is that of a voltage regulator
frequently used in high-voltage supplies, and is shown in
essentlials in Fig. 9. That Figure shows only those elements
that are important for small-signal operation. The tubes are
represented as triodes, and all other grids whose voltages

are fixed are omitted. The cathode of the lower tube 1s usually
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Fig. 9
Network To Be Analyzed

held at a fixed voltage above ground by means of a gas-discharge
diode, but this effect 1s represented as a short-circuit for
small-signal operation. This form of stripped down circult 1s
nevertheless quite sufficient to analyze the operation of the
voltage stabilizer as far as finding the effects of input
ripple and output current on the output voltage.

The admittance mtrix of the network will be obtained
as the sum of the admittances of 3 augmented elements. First,
the resistor of conductance g appears between nodes 1 and
2 (with three extra rows and columms of zeroes)

i g -8 0 0 0]

-g g 0 o 0
¢ 0o 0 o0 ©
o 0 o0 o0 ©

. o o0 o0 o Od

Then, the upper triode, whose terminals are numbered Jjust like
in Fig. 8, so it has the same matrix of the triode shown
above, augmented by a 4th and 5th row and column of zeroes

0 o 0 o 0]
m Py -my-py O O
=m; =Py Dy+Pq 0 o)
0 0 0 o 0
0 o 0 )
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Finally, the lower triode, which has essentlally the same

matrix, only with rows and columms permuted to conform with

the different numbering of terminals

0 ©
¢ o0
c ©
o 0
6 ©

~E>=Pp
0
0

m2+p2

C

-

o,
0
o

—m2

0

-

Adding all three matrices, we obtain the admittance matrix

Po
0
0
—p2
o]
of the network:
S+P2 -g
“S+m1 8+P1
R
_p2 0
. © : o]

0
~4-Pq
ml+p1

0

0

=05=Pp
0
)
Io+Po
0

)
0
0

_m2
0

-l

Obviously, when writing down the matrix, there is no need

to write each component metrix separately, as was done here

for 1llustrative purposes. The procedure would rather be

like this:

l. Assign numbers 1,2,...,n to the network nodes.

2. Draw a nxn sqgare table as a framework for the Y matrix.
3. Enter the various network elements into the table.

Each element will have entries only in positions

where both row and columm number correspond to nodes

to which the element is connected.

We now have the admittance ratrix of = network composed
of two triodes and a resistor. This 1s not yet the complete
voltage stabllizer, for the all-important feedback link is
missing. This feedback is furnished by the voltage divider
shown dotted in Fig. 9. These two extra resistors could have
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been included in the matrix the same way as the first resistor,
but we shall do it differently in order to provide an illustration
for another point.

The grid of the lower triode draws no current,; assume also
that the total resistance of the voltage divider 1s large
enough so that the current drawn by it can be neglected. The
only effect this voltage divider has 1s to introduce a constraint

Vg =V, = k (v2 - v4) (k<1)
Vg = kv, + (1-x) v,

This can be put in a form similar to (3.6) by defining four
v' voltages (eliminating v5 from the computations)

Pvl 1 o0 o ol - -

v

v, o 1 0 o 3}

v

v 0o 0 1 0 2

3 !

v o 0o o0 1 3

4 v!

v 0 k¥ o0 1-k| U™
L 5] - J

and the 5x4 matrix 1s identified with Tt in (3.6). Operating
with this T as indicated in (3.7), the final Y' matrix for
the voltaze rezulator network i1s obtained as

- T
8+P, -g+km2 o -kmg-p2
-8+ 8+Py —ml-Pl 0
¥o= -my -Py mq+Dq o}
-Ps --km2 0 km2+p2

This is the admittance matrix relating currents into nodes

1 to 4 of the network with voltages at these nodes. This is
only the first step 1n analyzing the network, and amounts to
setting up the network equations. Solving these equations to
get any answers about the operztion of the network is the
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second step, which we shall not be ready to take until we
discuss some problems treated in the next chapter. But, before
turning to these problems, let us pursue the admittance
representation a little further, before imposing any additional
conditions on the network.

3.8 Partition Groups

Our analysis has started from the single network element,
with an assoclated partition matrix P showing its zeneral
type, and a Y matrix to give the element some individuality
within the general type. Then, a collection of such elements,
together with a connection matrix C , defined a network,
and a Y matrix for the complete network was derived.

Imagine now the network enclosed in a "black box", with
each node connected to a terrminal protruding from the box.

In principle, there would be nothing to distinguish the network
from a network element of the type treated in chapter 1I. It
seens that the distinction between a network element and a
composite network 1s one of convenience or usage rather than
one of principle.(Our hypothetical Technician could find in

the stockroom bins a flat molded "element" with 5 pigtails,
which is a complete RC amplifier interstage, and he would

treat 1t no different from a simple molded capacitor).

In principle, then, we can treat "network" and '"network
element" as equivalent terms. When elements are interconnected,
the result is called a network, but 1t can then be treated as
an element by itself or to construct more conrrlicated networks.
On the other hand, an element can be regarded as & network
corposed of simpler elements. There is only one additional
point to be clarified in this equivalence, nanmely: what
partition matrix is associated with the network when it 1is
treated as a network element (since, by definition, an element
is always associated with & P matrix).

As a starting point, we note that all the elements that
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have the same P matrix form a group under the operation of
parallel connection (addition of their Y matrices). This
statement means that if Yl and Y2 are admittances of elements
assoclated with a certain partition matrix P , so is the
element obtained by connecting the two elements in parallel.

PtYl:O and PtYE:O imply Pt(Yl+Y2)=O

Y1P=O and Y,P=0  imply (Y1+Y2)P:O

We can thus speak of all the elerents associated with a given
partition matrix P as belonging to a partition sroup. The
partition defining this group is shown by the P rwatrix, but
for some purposes it can be indicated symbolically in a simpler
notatlon, by grouping together integers that represent the
terrinals. For example, the elerent in Fig. 1 has the partition
(1,2,3)(4,5). Some further examrles for partition group symbols
are given in the following table:

Element type Partition

Branch (1,2)
General 3-terminal element (1,2,3)
General 4-terminal element (1,2,3,4)
Two-terminel-pair element (1,2)(3,4)
Three-terminal-pair element (1,2)(3,4)(5,6)
Section of 3-wire line (1,2,3)(4,5,6)
3-terminal elerment augmented

by 3 isolated nodes (1,2,3)(4)(5)(6)

One partition group may include another one. The group of
4-terminal elements includes all 2-terrinal-pair elements. In
general, F' includes P" if P" introduces further partitioning
within the subsets formed by the P' partitioning, as the
following examples show:

P' = (1,2,3,4) P'" = (1,2)(3,4)
P' = (1,2,3,4) P' = (1)(2,3)(4)
P' = (1,2)(3,4) P" = (1)(2)(3,4)
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Glven two partitions of the same number of terminals, one does
not necessarily include the other, for example

P' = (1,2,3)(4,5) P" = (1,2)(3,4,5)
where neither partitioning includes the other. However, given
any two partitions of the same number of terminals, there 1s
always a partitioning that includes both, For the P' and P"
given above, this would be

P = (1,2,3,4,5)

It 1s customary to refer to this including partitioning as
the unlon of the two given partitions, symbolically

P = P'U P
The partition groups thus form a partially ordered set
in which every two members have a union within the set. (If
P' includes P", then P' U P" = P' ). Some further examples
of union are given below. ’

(1,2)(3,4)(5) U (1,2)(3)(4,5) = (1,2)(3,4,5)
(1)(2)(3) v (1,2)(3) = (1,2)(3)
(1,3,4,6)(2,5)(7) U (1,3)(4,6)(2,5,7) = (1,3,4,6)(2,5,7)

When two Y matrices belonging to the same partition group

are added, the sum belongs to the same group. When the two Y

matrices seem to belong to different partition group, they also

belong to the union of the two groups, and their sum will then

belong to that group which is the union. In general:
A network (when regarded as an element) belongs to a
partition group which 1s the union of all the partition
groups to which the network elements belong. In defining
the partition groups of the elements composing the network,
each element should be presented in the augmented form
that gives 1t as many terminals as the network has nodes.

3.9 Breaking Up a Network Into Elements

We started this chapter with a set of elements, which was
then interconnected to form a network; towards the end of the

chapter it appears that the composite network can agaln be
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treated as an element. Before concluding this chapter the
opposite problem will be tackled: Given a network (or a network
element) in its totality, as a comrlete Y matrix, can it

be decomposed into simpler network elements? This is the
familiar problem of finding an "equivalent network" for a
gliven element. The decomposition‘is usually not unique, and
the decision about which equivalent network to use out of the
multitude of possibilities is often made subjJect to other
consliderations: ease in application, structure hinting at the
"physical" principle of operation, structure aprealing to the
user because of the "insight" it provides to the operation,
or similar reasons. All these considerations do not concern
us here. After all, an element is regarded as a "black box",
and for our purposes, any equivalent network that looks
identical as far as terminal operation is concerned will be
acceptable, We shall only point out the method by which the
network can be broken up.

A network Y 1is obtained by adding the Y's of augmented
elerents. The decomposition will therefore be made by finding
the set of Y¥'s whose sum 1s the given network Y . The
only condition restricting the decomposition is that each
of the component Y's be a zero-sum matrix. And that is really
all there is to 1it.

The decomposition will be useful if the component parts
are the simplest pogsible, and we shall now find how many
different simple elements are necessary to represent any glven
element or network. A point to bear in mind is that in this
Thesis with algebraic and topological aspects only. The elements
describved as R, C or L are, for our purposes, all the same
type of elenent: a two-terminal branch.

Starting from the simplest case, a two-terminal element
cannot be further simplified, except in thetrivial way of
representing it as a few branches in parallel.

Next, consider a multi-terminal element with a symmetrical
Y matrix.(4 bilateral element). It can be decorposed until
each component Y has four non-zero elerxents only, that
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represent a branch (augmented). The decomposition is straight-
forward: each entry of Y above the principal dilagonal will
contribute a branch. Suppose ijza in the complete matrix,
then the corresponding component Y will hxe entries

-YJJ = _Ykk = ij = ij = a
and zeroes elsewhere. This represents a branch of admittance
-a connected between terminals J and k . From this and
former considerations we conclude that
Any network composed of branches only is bilateral.
Conversely, any bilateral network can be represented
as a network of branches.

Flnally, assumre the general case, where the network Y
ls not a symmetrical matrix. Branch matrices, which are
symmetrlcal, are therefore not sufficient to form the complete
Y . Some new basic element has to be defined, and it has to
have at least three terminals. Since we look for the simplest
possible elements, we shall try to use elements with no more
than three terminals.,

The element Y has to be a zero-sum matrix, so the
simplest matrix would have four non-zero entries:

0 0 0
n -m 0
-m m 0

This 1s similar to a branch matrix, but the four non-zero
entries are pushed into a corner, making the matrix non-
symmetrical. This matrix and its augrentations can be used to
form non-symretrical Y matrices, either by themselves or
with the addition of branch matrices. The mtrix describes
an element with the properties

il =0
i, = m(vl-vg)
i3 = -12

The current entering in terminal 2 and leaving at 3 is
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vroportional to the voltage difference between terminals 1
and 2, The m 1s then a transconductance, the element being
an idealized triode with infinite plate resistance.

Another type of baslic element can be derived if, in
decomposing the network, the procedure of removing branches
is followed as far as possible. This will finally leave a Y
matrix which is purely antl-syrretrical, and no more branches
can be removed because 8ll the entries on the principal
diagonal are zero. We now define an element that has the
simplest posgsible antl-symmetrical zero-sum natrix:

0O & -g
- 0 g
g - O

This matrix has six non-zero entries, but still only one

independent parameter, denoted here by g . This element

has the properties which are usually assoclated with a gyrator.
When a network ls decomposed in this manner, the Y matrix

is first split into its syrmetrical and anti-symmetrical

components
Ys = (Y+Yt)/2
Ya = (Y-Yt)/2

YS 1s decomposed into a sum of augmented branch matrices, Ya
into a sum of augrented gyrator metrices. The set of branches
is essentially unique (except for trivial variations of
representing one branch as several branches in parallel);
the set of gyrators is definitely not unique, as can be
seen in the following example.

Assurme that a general 4-terminal element 1s to be described
by branches and gyrators. The symmetrical component YS is a
4x4 matrix with 6 independent entries. (It is a zero-sum matrix,
which reduces the usual nunber of 4!=24 independent entries
by a factor of 4). This can be uniquely represented by 6
branches, which are Jjust the number that can be strung between
4 nodes. On the other hand, the anti-syrmetrical component
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has only 3 independent entries, but there are 4 different
three-terminal elements that can be hung from four nodes.
Thus, only 3 out of the 4 possible gyrators are necessary
to make up Yé » and their values depend on which 3 out of
the 4 are selected. A

To summerize the general case: Any network or network
element can be represented as an equivalent network composed
of:

1l. Branches and transconductances.

2. Branches and gyrators.

In method 1, the decomposition is not unique. Even without
the trivial variations of paralleling branches, the number of
branches and transconductances 1s not unique, and sometimes
one type of element can partially replace the other (in other
words, the baslc elements are not linearly independent).

In method 2, there is linear independence of the basic
elements. Consequently, the number of branches and of gyrators
recessary to represent the network is fixed., The branches are
also uniquely determined in position and value, whereas the
gyrators are determined in number only, but not in position
or value.

Of course, many other methods of decomposition are
possible, using all three of the above mentioned elements,
or some other types of possible basic elements. The two
rethods described here have the merits of using the minimum
number of simplest basic elements - simple, that is, in the
topolozical and algebralc sense as used in this Thesis.
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Chapter IV
INVERTING THE ADMITTANCE MATRIX

In the two previous chapters, networks were treated
from the point of view of one who bullds them up from their
elements. Now we turn to the user of the network - and to be
of any use, a network has to be excited by some source, and
feed a response into loads or meters. Usually, not all the
nodes of the network will be used for comnection to sources
and loads, and the question arises now as to what will happen
at the nodes that are not used.

The process of constructing the network led us naturally
to an admittance representation of the form

1 = Y v .

This matrix equation shows explicitly how each current depends
on the voltages of the varlous network nodes. The entries of
Y show the 1 due to one voltage with all other voltages
being zero - that is, the "short-circuit" input and transfer
admittances. To put any of these in evidence, some of the
network nodes have to be shorted together. But, according

to our approach, this makes a different network, because it
has not only the elements of the original network, but some
additional constraints represented by the short-circuits.

We would like to have a representation whereby any node
not attached to a source, load or meter is Jjust left by itself,
that is, open circuited, with no current flowing into it or
out of it. The required parameters would be impedances, leading
to a relation of the form

v = Z 1

Unfortunately, the Y matrix is singular, so the 2
cannot be obtained zs an inverse in the regular way. What has
to be done to obtain a Z matrix, and how to do it, is the
subject of this chapter.
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4,1 The Singularity of ¥

Let us turn back to Fig. 4 (page 18) that shows v and 1
of a 3-terminal element: 1 as a point on the partition plane,
v as a line perpendicular to the partition plane.

The Y matrix represents a transformetion that maps a
voltage line into a current point; starting from any point
on the voltage line, we end up in the same current point.

Of course, we can start from the current point and go back

to the voltage line - but we have no guarantee of ending up

at any particular point of the voltage line. As far as current
is concerned, all the points on the voltage line are equivalent.

Suppose we start from any given v point, and go via Y
to the 1 point; going back we can land in v' as well as in
the original v . The singularity of Y does not mean that
the inverse operation can not be performed; it only means
that the result of the inverse operation is not unique.
Transforming by Y and then by its "inverse" are not equivglent
to an ldentity operation. ’

We can make this oreration unique if we agree to choose
one point on the voltaze line as representing this line, and
formulate the inverse operation so that it always ends up in
that point of representation. The method of selecting this
point can be completely arbitrary. A computationally convenient
method 1s to define a surface in the space such that each
voltage line pierces it once and only once; and for real ease
of computation, let this surface be a plane. One vossibility
is to use the partition plane for this purpose, but there is
actually an infinity of possibilities. It could be any plane
which is not parallel to the null-line (because all the voltage
lines are parellel to the null-line). For further convenience
in computations, let this plene pess throuzh the origin,
hence be of the form

Q x = O (4.1)

with Q@ a ratrix of the same order as the pertition matrix P.
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This arbitrary chice of Q means that we agree to use only
these voltage representations that satisfy a certain arbitrary
homogenous linear equation (or set of equations).

This matrix Q will be referred to as the voltage reference

matrix. Setting one node voltage equal to zero is clearly

a special case of (4.1) above, therefore this term of voltage
reference was chosen for the more general relation. It should
again be emphasized that the voltage reference relstion is a
linear homogenous relation only because it leads to easier
computations, and this fact has nothing to do with the linearity
of the network. It is concelvable that in some special cases

an even more general type of reference relation is suitable -

a2 non-homogenous or non-linear relation - but such cases will
not be treated here.

4.2 Projection Operators

As a prelimlnary to the general problem, let us first
discuss the voltage reference problem for a 3-terminzl element,
so thet 3-dimensional pictures can be drawn to illustrate some
details of the process (Fig. 10). The partition metrix P is
the same as in the example in section 2.5, and the partition
plane is shown in dotted lines. Voltage is represented by a
line perpendicular to this plane, or parallel to the null-line P.

Fig. 10
Frojection Operators
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A second plane, th:o , 1s shown in the Figure. This
plane passes through the origin, and the line P 1s assumed
not to lie in thils plane, hence any lone parallel to P pierces
this plane 1n one point and only in that one point. Any voltage
on this line, say point v , is to be represented by the point
v' on the same line that is on the reference plane. Given any

point like v , we would like to find the projection operator

that projects v onto the plane QtX:O in a direction
parallel to P .

The same relations wlll now be expressed in general
n-dimensional form, so that the general projection operator
can be found. We have a nxs partition matrix P ( s 1s the
nurber of terminal subsets), thus defining a (n-s)-dimensional
partition subspace Ptx=0. The null-line now becomes a comp-
lerentary s-dimensional subspace, whose points are all those
having coordinates of the form ‘

x:Py

(y is an arbitrary s-rowed column matrix).

For voltage reference, another nxs matrix Q has to be
defined, and then any voltage will be represented by a point
for which

th = 0 .

Suppecse now that any voltage point v 1s picked as the voltage
of a network; it 1s equivalent to all other voltages of the
form v+Py , and out of all these eculvaelent points the one
point satisfying (4.1) is selected for representing v . Call
this point v' , as in Fig. 10, then

v' = v o+ Py
and Qt v = Qt v o+ Qt Py=0.
In partitioned matrix form,
v' I P ||v

il

0 Qt QtP vy
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Elimineting y ,
' "1
vz {1-PpTe) v
We therefore define the operator
~ -1
Q= I - P(QP)7Q (4.2)

as the projection operator projecting a point onto the th=0
subspace in a direction parallel to P ,

v' = 6% v . (4.3)

Note that thls operation is possible if QtP is a non-singular
matrix, that is, has a non-zero determinant
det(QtP) £0

but this is equivalent to the statement that all the points
of coordinates x=Py (except the origin, where x=y=0), do
not lie in the reference subspace.

(Note on notation: the projection operator is denoted by
a transposed matrix to indicate the fact that Qt aprears in
1ts derivation. A similar operator, in whose derivation the
untransposed matrix appears, will be denoted by an untransposed
symbol - see the overator R in section 4.4 below.)

Before proceeding to apply the projection overator to
network problems, some of its properties will be listed.
(Detailed proofs will be found in Appendix D.)

1. at ls a singular metrix. There is really no need
to check this formally, for it follows directly fror the
definition. Any given v 1leads to a unique v', but many
other v points may lead to the same v', so that no unique
inverse operation 1s possible

2. a; i1s an idempotent operator

~ 2
This 1¢ a property of any oneration classified as a "projection".
It means that once a vpoint has been projected onto the

reference subspace, repeating the projection operation any
number of times will leave the point undisturbed.
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o~

This reiterates the fact that any point after projection comes
to rest in the reference subspace; for, projecting the voint x,

Qt (a.tx) =0 .
4. QP = 0 (4.6)

All the voltages corresponding to the no-current no-power
condition are reprresented by the zero point. Any of these
null voltages 1s of the form x=PFy , so that after projection

4,3 Voltaze Reference

Returning now to the network problem, we are in the
following situetion: Given a network admittance Y and a
certaln voltage v , it iec possible to find the current 1 .
Glven the 1 , however, we still do not know how to return
to that v we started from, although that v is known to us.
Suppose that somehow we manage to put together a Z maitrix
for this special case - from a definite 1 to a definite v ,
not the general Z of the network. Sterting with these
1 and v , we write

v = Z 1 (4.7)

without claiming that this Z 1is good for any other 1, or
that the form of the Z matrix is unique even for that
particular 1 .

In fact, the way the problem has been defined, we do not
want to return to the same v we started from, but to the
equivalent v' that satisfies the voltage reference condition.
This can now be done by premultiplying (4.7) by the projection
operator Qt ,

v = ‘a v = E%’Z i
t

V' = Z' j. . (408)
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From the way the projection operator was defined, it follows
that the new impedance matrix Z' will bring us from the
definite 1 to the v' voltage, no matter which equivalent
point v was used as a starting point. The result of the
operation in (4.8) is therefore a unique value of v' . But,
is the matrix Z' unique, or would other matrices miltiplying
1 result in the same v' ¢

The answer 1s that Z' 1s definitely not unique. In fact,
- glven any Z' , any other matrix

no_ 1
" = Z2' 4 APt

(wvhere P 1s the partition matrix of the network, and A
an arbltrary matrix of order nxs) would serve as well, for

"L = Z2'1 + APti

=Z'1+0
:Z'i .

The situation 1s similar to what we had with voltages, where
adding a term Py resulted in an equivalent voltage, and some
arbitrary choice had to be made among all the equivalent
voltages. Let us follow the same procedure here. Among all

the egquivalent 2" ,

" = Z' 4+ APt (4.9)
select as representative the one that satisfies

Z" R = 0 (4010)

and R 1s an arbitrary matrix of order nxs (same order

as P and Q ). The requirement is given here as a purely

formal relation, but 1t will be interpreted in the next section.
Equations (4.9) and (4.10) can be rewritten in partitioned

metrix form
I R
[z 4]
P P.R

[Z? 0] t t

and, eliminating the arbitrary A from the equations,
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2" = 2' {I - R(PtR)"lPt} (4.11)
or, z" = 2' R (4.12)
where R = I- R(PtR)"lPt (4.13)

and all this is possible, of course, only if
det(PtR) $ 0.

As a result, if 2' 4is to be modified so:that it will
satisfy (4.10), the final resulting impedance matrix is

~ "~
" = Qt Z R (4.14)
and the current-voltage relation
vl = Z" 4 (4.15)

not only results in a unique answer v' , but also has a
unique form 2"

4,4 Current Reference

For an iInterpretation of the R and associated matrices,
we retuen to the 3-dimensional space of Figs. 4 and 10. In
Fig. 4 we had currents as points constrained to a plane,
voltage as lines perpendicular to that plane, and Y as
operators transforming voltage lines into current points. In
the inverse problem, the first step was to represent each
voltage line by a point constrained to the plane th=0. A line
of arguments similar to that developed in chapter II leads to
the result that if any Z operator transforms one current
roint into a voltage point, this operator will do this not
only for this one current point, but for all the points of
a line pessing through that current point; and all the points
on that line will be transformed into the same voltage point.
The roles of v and i1 are now interchanged (Fig. 11). The
direction of the current line is defined by a matrix R , in
the same way that the voltage lines have been defined by the

partition matrix P .
Of course, of all the points of the line representing
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Current Reference

current, only one line is a representation of a real physical
current situation, and that is the original point 1 on the
partition plane. All the other points of the line are just a
mathematical fiction, so arranged that the equations have

the right number of independent variables. It i1s now obvious
that the direction R 1is arbitrary, as long as it adds only
flctional current points, and the only real current will be
the same 1 . However, thils argument breaks down if R 1lies
in the partition plane Ptx=0 , Wnere all the points are
possible real current points; this will lead to false answers,
so this situation is prohibited. This restriction appears as
the relation

det (P,R) # O (4.16)

necessary for the realization of (4,13) above.

Take now any point 1' on the "current line", and regard
1 as its representative point. To find 1 , the point 1'
has to be projected in the direction R onto the plane PtX=0.
This opreration is the same as the voltage projection, but the
roles of P and Q are now played by R and P , respectively.
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The projection operator is then

= -1
R = I - R(PtR) Pt
~
i = R ., (4.17)
The projrction operator ‘ﬁ hasg properties similar to those

of '@t (proofs are given in Appendix D).

1. R 1s singular.
~
2. R 1s an idempotent operator

®°2-F% . (4.18)

1l and 2 define R ag a projectlion operator: Once a point
1s projected, there is no return to the original point; and
further projections will not change the results of the first

projection.
3. PR = 0 (4.19)

which shows that any point projected by R comes to rest in

the Ptx:O plane. -
4. RR = O (4.20)

so that any point on the line x=Ry (y arbitrary) is projécted
onto the origin.

The projection operator R &g defined in (4.13) applies
to any n-dimensional problem, not only to the 3-dimensional
one used for illustration.

The impedance computation can now be summerized in the
following steps:

Gilven a network Y and voltage v , the current 1s

computed as
i = Yvw

For this definlte voltage and current, construct an lmpedance
Z (say, by trial and error methods)

V - z i .

But, ,we do not have to get back to the sawme v , for we have
decided to represent that voltage by the equivalent v' , so
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v _ B _
v = Qtv = ﬁtz i .
Finally, i 1is a representative of all the points i' on
the current line, so that

i = i'

v' = QtZ .

t I} 3

The resulting impedance

2" = § ZR
has a unique form and leads to a unique result. To achleve
this, two arbitrary conditions had to be imposed, one
assoclated with voltage (the @ matrix), the other with
current (the R matrix). In reality, the impedance matrix
will never be constructed in this way (the first step already
seems to involve some objectionable guesswork). This hypothetical
process, however, served to indicate the conditions that have
to be imposed before a meaningful ilmpedance matrix can be
discussed - let alone computed.

4.5 Summary of the Reference Problem

Right from the beginning of this Thesls, current and
voltage were treated iIn a somewhat unconventional manner.
When writing the current column matrix, all the terminal
currents were included, although they are not all independent,
and some might have been omitted without causing any ambiguity.
Voltages were defined without specifying the reference terminal
in each subset, so that the subset potentials could all be
moved up or down without changing the results. Nevertheless,
this way of defining currents and voltages caused no trouble
when discussing power and admittance. But now when impedances
are concerned, things have to be nalled down more definitely:
the voltage reference has to be decided upon, fixing those
floating potentials, and the redundant currents have to be
discarded,

Where voltage is concerned, the @ matrix does the



53

necessary pinning down. & certain linear combination of voltages
is decided to be zero

Qt'V':O

and this matrix equation contains s 1linear combinations
of voltages, one for each terminal subset. Once the Q matrix
1s given, the potentials can no longer be arbitrarily changed.
There 1s only one definite arrangement of potentials that will
cause the vanishing of the given linear corbinations. The
voltage reference condition has thus a simple interpretation;
what about the current reference?

Returning for a moment to Fig. 11 (page 50), point 1'
is on the R-line that passes through the current point 1 , and
for impedance computations 1' 1is regarded as equivalent to
1 . Originally, of course, there is some distinction between
i' and 1 (that is, a geometrical distinction, apart from
the fact that only i represents o real current), but this
distinction 1s neglected when the equivalence 1s assumed. Fig. 12
shows a way to define thls distinction. To simplify the drawing,
the Pt and Qt planes of Fig. 11 were not included in Fig. 12.
The Figure shows the line R through the origin (all points
with coordinstes x=Ry), and a few planes perpendicular to R .
The planes are distinguished from each other by the value of
the product Rt
The plane that passes turough the origin has Rtx=0 ; other

X - thls product being an s-rowed column ratrix.

planes parallel to it have non-zero products. In particuler,
R

|
Rx=Db / ) 1 it /
Ryx =a /// b 9 i j//
Rgx =0 / $ Origin ! /

£

Fig. 12
Interpretation of Current Reference
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Ryx=a for the 1 point, and R,x=b for the 1' point, All
the points on a line parallel to R are indistinguishable
when projected onto any one of these planes. The only
characteristic to distingulsh between these points is the
value of Rtx for the plane where the point was before the
projection. It is then this distinction, the value of the
product Rtx , which is belng neglected vhen the current
reference conditions are imposed.

The reference requirements can now be summarized:

1. Voltage and current reference conditions are reguired
for the 1lnversion of the Y matrix. Voltage reference
leads to an inverse Z whose meaning is unique, and
current reference establishes the uniqueness of the
form of Z .

2. Given the partition matrix P of the network, the
voltage and current references are established by

defining two arbitrary matrices, Q and R , of the
same order as P , with the only restrictions

det(QtP) $+ 0
det(P,R) 0 .

3. Voltage reference is established by letting
Qtv_—_O
and current reference by neglecting the value of

Rt 1 .

4.6 Imposing Reference Conditions on the ¥ Matrix

The way this chapter started off, a guess had to be made
at Z =and then all kinds of corrections had to be applied in
order to put some sense into this 2Z , Still, thls method
indicated what further assumptions had to be made in order
to have a meaningful impedance concept. Now, hovever, we are
in the position where the required reference conditions can
be lmposed on the Y matrix, leading to an admittance matrix
that is no longer singular, and then invert it without guesswork.
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The essence of the reference conditions is that some
linear combinations of voltages are assumed zero, and some
linear corbinations of currents are just not pald any attention
to. These conditions are really much easier to apply to the
Y matrix than to the imrpedance - and no projection operators
are involved here.

A slimple example of reference will be considered first.

A single voltage is a special case of a linear combination of
voltages, and the same is true for currents., Assume then that
the reference conditions are:

VJ =0 , ik neglected.

Wrilting out the admittance ratrix,

3 i
1, BRI TIPS A vy
k - Ykl e o o ij e e o Ykn VJ

i 1nJ -Ynl . . . Ynj . . . Ynn J -an

vJ i1s the factor that multiplies the jJ-th column of Y , and
ir vjzo » that column may well be omitted. Similarly, since
ik 1s glven by the entries in the k-th row of Y , and we
are not interested in ik » that row may be omitted. The
reference conditions thus imposed mean crossing out the k-th
row and J-th column of the Y matrix.

The original Y matrix was singular, because it was a
zero-sum matrix. It is now evidert that crossing out one row
and one column out of each subset will destroy this feature
of zero-sumring rows and colums. This by itself is not a
sufficient proof that the resulting matrix i1s non-singular, but
the arguments on the uniqueness of the Z retrix indicate that
the Y wilth reference conditions imposed has a unique inverse.
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The general type of reference requires some preliminary
rearrangement of the Y matrix, because the required linear
combinations are not in evidence like the single voltages and
currents. If the current and voltage colurn matrices are
regarded as vectors, the vector components have now to be
expressed on a new basls, so that the required linear combinatlions
appear as some of the components.

Let x be a vector in n-dimensional space, repregented
by a nxl matrix. Assume a set of basls vectors spanning this
space, bl y b2 s vecy bn , 2ll represented by columm matrices,
so that any vector can be expressed as a linear combination

X = albl + 85D, + eee 4 anbn (a1 scalars) .

All the bi colums can be collected in a square matrix B ,
and the set of ay into a n-rowed columm matrix a , then

X - B 8 .

The entries of a are the components of x to the basis B .
The b1
singular. If a vector x and the basls B are given, the

are linearly independent, therefore B 1s non-

components can then be computed by
a = B lx .

Suppose that a subspace th=o is given in the n-dimensional
space, with @ an nxs matrix. This subspace is (n-s)-dimensional,
and requires (n-s) basis vectors to span it. The set of basls
vectors 1s not unique; let one such set be selected, and its
vectors written as columns of a nx(n-s) matrix which shall
be denoted by ﬁ .

Any columm of a is a vector in the subspace th:o y SO
~

Qt Q = © . (4.21)

A »
Q 1s an orthogonal complement of Q : the columns of Q are

orthogonal to those of @ , and both matrices together span
the whole space. The nxn matrix

B = [ q]
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could then be used as a basls for representing the viltage
points.

Let e denote the components of v to this basis ; and
let the e column be partitioned into ey and e having
n-s and 8 rows respectively,

A e
v - 4 Q][ 1
2
Tmposing the voltage reference condition,
~
Qv Q; (Qe; + Qe,)
A
= Q.deq + Qi Qe,
= Q’thE

)
the first term being zero because of (4.21). Having expressed

v in thls form, it is obvious that putting 92=O satlisfles
the voltage reference condition.
The currents can simllarly be represented, if the orthogonal
complement ﬁ of R 1s constructed, and the components to
the new basls denoted by J , similarly partitioned,

A 31
1 = [R R]
J2
Rti = RtRj2
and ignoring 32 is equivalent to the current reference

condition of ignoring the combination Rti .

The 1 and v , expressed in the new bases, still have
to satisfy the admittance relation

[R =r]j ; v [ <]e
3 =[R r]'[3 Q] e - R

This expression can be simplified if the columms of R are
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made orthogonal not only to the columms of R , but also among
themselves. Then replace the matrix R Dby s other colums
which are linearly independent and orthogonal and span the same
subspace as R does ; call this matrix R' . (There are detalled
formal methods to work out this R' matrix, but we shall not

go into that, since R' will actually not be used in the
computations. It suffices to know that it is possible to
construct it). The basis matrix for currents will then be

”»
(R =]

an orthogonal matrix, and its inverse 1is easy to figure out,
being equal to 1ts transpose:

~ A ﬁt
[r r]t = [r = o= |,
t

J1 ﬁt °1
- Y[a Q,]

J2 R, °2

A A
3y = R ¥Qe (4.22)

since e,=0 , and J, 1s not to be computed. Equation (4.22)
thus defines a new admittance matrix

thaet has the reference conditions already lmposed. It relates
the non-zero voltage components to the not-neglected current
components. It is the matrix that can be inverted in the regular
way to yleld the required impedance matrix:

z ={f, ¥Q} T . (4.24)

4,7 Example of General Reference

To 1illustrate the various matrix operations described in
this chapter, consider the following example:
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Given a 3-terminel network, with all the terminals
belonging to a single subset (n=3, s=l1). The partition matrix is

dAssume the following reference matrices

2 0
Q = 0 R = 11
-1 1

which mean: set the voltages so that

2v 0

and when computing currents, neglect the corbination
il + 13 .
First, check whether the reference conditions are valid:

Q‘tP:l ’ PtR:2

so the two products are not singular, and the references are
compatible with the given partition matrix.

The voltage projection operator will now be computed
(for illustrative purposes only, but it is not needed in
actual network analysis).

~ -1
Q = I-P(QP)Tq
(1 0 01 [
=10 1 ol - 1] 1 [2 0 -1]
o o 1] |1
[ T 0
10 0 2 0 -1
=lo 1 ol-|2 o0-1
00 1] |2 01
-1 0 1]
%W =l-2 1 1
Qt =
-2 0 2




Suprose the terminal voltages are given as

3
v =|-1
1

Applying the voltage projection operator

-1 0 1] 13 -2

v' = Q =l-2 1 1| |-1| =[-6
= Qt v == - =

-2 0 2|11 ”

The new representation v' is the same as v , only all
voltages are reduced by 5. The voltage differences between
terminals rexain the same, but the new reprcsentation now
satisfies the reference condition

2V1 - 'V’3 = =4 - (-4) =0 .

The projection operator for currents is

~ -1
R = I-R(RR)IR

(1 0 of 1

=lo 1 of-22|1|[2 1 1]
0 0 1 1
1 0 0

~
R = [-1/2 1/2 -1/2

-1/2 -1/2  1/2

Consider the non-physical "current" point

i!

]
= o o

(It is non-physical since all currents do not sum to zero).

60

As far as impedance computations are concerned, this point is
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equivalent to the physical current point

1 0 o | |6 6
1 = |-1/2 1/2 -1/2| (2| =|-4
-1/2 -1/2  1/2| (4 -2

This 1 point is a real current point, for all three currents
sum to zero. Comparing it to 1' , we observe that i, and
12-13 are the same for both points, the only difference
being in i2+i3 ; but this 1s exactly the combination we
agreed to disregard.

For the actual impedance computations, the orthogonal
complements of Q@ and R are needed. In this simple example
they can be found by inspection. (A formal method to construct
the orthogonal complement is outlined in Appendix E.)

For 6 , find two columns that are orthogonal to & , and
linearly independent of each other. One possible corblinetion 1s

q =

n O
o+ O

The same can be done to find ﬁ , only here there is the
additional condition for the complete orthogonality of the
basis matrix, so that each column vector should have unity
magnitude,

1 o
A
R = 0 /172 )
0 -/1/2
Given the 3x3 admittance matrix as derived in chapter III,
the reference conditions can now e imposed to give

1 ©
: ~ ~ 1 0 0
Y' =R, YQ =

Y
t o J/i/2 -/i/Z
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This results in a 2x2 matrix Y' that 1s no longer singular,
and can be inverted to produce the impedance matrlix assoclated

with these references.

4,8 Sinzle Terminal References

In the vast majority of network problems, the simplest
possible linear combinations may be selected for reference -
these simple combinations being Just the voltage or the current
of a single terminal. If some more general reference arrangement
does not appear necessary - as it maey appear under certain
symmetry condlitions or in network mode analysis - these simple
references supply enouzgh variety to serve for all possible
network problems. '

In selecting Q and R matrices, they will be matrices
that have one columm for each subset of terminals, and only
one "1" entry in each column. The conditlons on QtP and PtR
dictaté that one and only one terminal in each subset will be
represented in the Q and the R matrices. However, there
is nothing to indicate that the same terminal should be
selected for both voltage and current references. (The usually
accepted method of selecting a "datum" or "ground" node does
impose this condition, for the voltage of the datur node is
taken as zero, and the current into the same datumw node 1s
neglected in the computations.)

Going through the formal steps developed in this chapter,
we Tind that both a and ﬁ. contain some of the colurns of
a unit matrlx, and the baslis matrices are Just unit matrices
(with a possible reshuffling of the colums). Equation (4.28)
then leads Just to crossing out several rows and columms of
the original Y matrix. (This is the same conclusion we
arrived at earlier, on p. 55, by less formel arzuments).

This is then the procedure to be followed vhen using
this type of single terminal references: In each subset of
terninzls, select one terrminal for voltage reference, and one
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terminal for current reference. (The two terminals selected
in each subset may be different terninals or the same terminal).
In the original singular Y matrix, cross out the columms
corresponding to the voltage reference terminals, and the
rows corresponding to the current reference terminals. The
resulting matrix is of order (n-s)x(n-s), and is ready for
inversion.

The cholce of reference terminals depends on the type
of problem that 1s to be solved. The considerations leading
to the cholce of reference terminals are of sufficient practical
interest to warrant treatment in a separate chapter.
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Chapter V
IMPEDANCE

In the second chapter, the fact was established that a
definition of admittence is unique and meaningful even though
veltages and currents be treated without specific reference
conditions. The entrles of the Y mtrix can have the

following interpretation: Suprose v 1s the only non-zero

k
voltage, then the current into the jJ-th terminal is

Although Vi does not have a unique value, because of the
arbiltrary reference potential, stlll the strusture of the Y
matrix is such that, when all v's are taken into account, the
1 always comes out the same. ij can thus be regarded as
the mutual adrittance, or trans-admittance, between two
terminals (or self-admittance, if j=k).

Chapter IV presented a different situation regarding
impedance. An eguation similar to (5.1), with 1 and v
Interchanged, is impossible. Trying to repeat the argumrent
that led to (5.1), one may say: Suppose 1J is the only non-zero
current... - but this is impossible. What may be assumed is:
Of course, ij can not be the only non-zero current, for there
mist be at least one other node leading that current out.

Let then this other node be used as reference for current, so
that its own current need not be wentioned, and then we are
left with one non-zero current. Thus the current reference
has been fixed, and the current to be used in the computstion
now appears as a two-indexed entity

irt

this symbol meaning that terminal t 1is the current reference,
and the only non-zero current is going into r (and coming
out of t , but this latter fact can be ignored now).

Similerly, the reference conditions force us, when impedance
is discussed, to regard voltage as a two-indexed symbol
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Vg

meaning, the voltage of termlnal p when terminal g 1is
regarded as the voltaze reference terminal.

As a result, impedance 1s an entity that requires four
indices for complete specification:

= Z . .
Vpq pq,rt 1rt (5.2)

Inpedances thus appear to correlate pairs of terminals,
so there is an essential difference between the admittance
and impedance concepts. An impedance is a transfer lmpedance
or mutual inpedance of two palrs of terminals (or a self-
impedance of a terminal pair if p=r and qg=t). In some special
cases this distinction seerms to disappear, and these cases will
be mentioned and explained in the next chapter. The general
case of the four-indexed impedance is the subject of the
current chapter.

5.1 The Four-Indexed Impedance

In a general n-terminal network, there are n* possible
permutations of 4 indices. Not 21l of these permutations
specify an impedance, and of all prmissible perrmutations, not
all different permutations lead to different impedances. The
total nunber of impedance coefficients associated with the
network will be less than n* .

The voltage qu is meaningful only if p and q Dbelong
to the same subset of terminals, for only voltage differences
within a subset are meaningful. Similarly, irt is defined
only if r and t are in the same subset, because currents
sur to zero within each subset. However, pg and 1rt may
belong to different subsets.

ZpO rt is defined only for those index corbinations
R}

where p 1s in the same subset as g , and r in
the same subset as t .

The definitions of vpO and irt show that each will

change sign if the two indices are interchanged. Therefore,

S
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z = =Z (5.3)

= -Z =2
pa,rt ap,rt pq,tr qp,tr

Z is skew-gsymmetrical in each pelr of indices.

pg,rt
All the possible arrangements of 4 indices can thus be
grouped in sets of four, all the permutations in a set leading
to the same impedance (except for sign). One of each set will
be called the gtandard arrangement, and we select (because of
convenience in further computations) the impedance where

Zpo,rt P<q r<t (5.4)

as the standard impedance to represent itself and the 3 other
irpedances associated with it via (5.3).
A corollary of (5.3) is that
Zoo,pt =0 1F (p=a) or (r=t) . (5.5)
The reciprocity relation (in networks that obey it, that
is, in branch networks) appears in this notation as

= Z (5.6)

z rt,pq

pa,rt

5.2 Computing the Impedance

All the impedance coefficients appear as entries of an
inverted Y metrix, after the recuired reference conditions
have been applied. To simplify the relatlons that follow, the
Tollowing specizal notatlons are introduced:

Given a Y matrix, the noctation

Dabc...,pqr...

denotes the value of the determinont of the matrix
obtained when rows a,b,c,... and colums p,q,r, ...
are omitted from Y .

First, note that because of the singularity of Y , the

determinant that includes 21l the rows and columns is

D = 0
Furthermore, unless at least one row and one columm out of
each subset have been omitted, the deterrinsant is still zero.
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A general procedure will now be developed to compute
an impedance with its indices in the standard order. (An
impedance with the indices in any other order will have the
same value, except for a possible change of sign, according
to (5.3) ).

Agsume first that all the network terminals belong to
one subset. When computing

yA
pa,rt
terminals q and t have already been selected for voltage

and current reference, respectively, so the first operation
consists of applylng the reference conditions to Y :

Cross out column ¢ and row t of the Y matrix.

Since there 1s only one subset of termlnals, this 1s all the
reference needed, and Y can now be inverted. According

to the regular procedure of matrlix inversion, the Z entries
are the ratlos of a subdetermlnant of this reduced matrix

to the determinant of the same matrix.

D
—_ - P -aLE‘E‘&Eg— .
Zog,rt = (1) D, . (5.7)

(Because of the standard ordering of the indices, p and r
retain their numbering value after t and g have been omitted,
and the sign 1s thus easily fixed.)

In a general network there may be more than one terminal
subset, and some further reference conditions, other than
those shown by the 2Z 1indices, have to be ilmposed. To show
the procedure on a specific case, let the network have 3
terminal subsets, so that two more rows and columms have to
be omitted before Inversion 1s possible. Their chice 1s quite
arbitrary, so let these be rows a and b, colums ¢ and
d , appropriately distributed ( with t and q) among the
3 gsubsets,.The lmpedance is now computed as
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D
k _“rtab,pged n
VA - =1)% .22l 28422 .
pq, Tt (-1) D (5.8)
tab,qcd

and the k 1s a number that depends on the row and colurn
counts, whose determination will be postponed until later.
Anyway, 1t seems that Z 1s not uniquely determined, because
of the arbltrary references. That it is not so, and even more -
that the general Z expression can be made even simpler than
(5.7), will now be shown.

The Y matrix has a peculiar structure, beilng corposed
of zero-sum submatrices, and it 1s not surprising that some
peculiarity would be reflected in its subdeterminents. The
zeneral property of the subdeterminants of the Y matrix is:

Given any subdeterminant obtained from Y by crossing
out row (or colum) J and other rows and columns

such that J 1is the only row (or column) crossed out
in its subset - then row (column) J can be replaced
and another row (columm) k in the same subset crossed
out, resulting in a determinant having the original

value multiplied by

The long statement above (whose proof is found in Appendix F)
means that all the determinants of the form aprearing in the
denorinator of (5.8) have the sare value, excert for a possible
change of sign. Also in the numerator, the arbitrariness of
a, b, c and 4 will lead at rost to a change of sign.

To standardize the form of the impedance notation, let
the determinant notation be modified as follows,

1
Dabc...,pqr...

(with a primed D) is the value of the subdeterminant obtained
from Y by crossing out rews a,b,c,... and colums D,q,r,...
and additlonal rows and columms as necessary to make the
determinant non-zero. This is intended to 1mply that if after
crossing out the rows and columms indicated by the indices, some
subsets still have all their rows and columns, a row or a columm
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or both (as necessary) will be crossed out of each subset until
sufficient reference conditions have been established. And an
additional condition is imposed on the definition of D', in
order to fix its sign: all the artitrary references are to
involve the row and column similarly numbered within each

subset
In the example of the 3-subset network of equation (5.8),

v
Dt = Dtab,tab

and this is one among other equivalent possibilities. From the
theorem proven in Appendix F,

_ t+a+b+g+c+d
tab,qed = Dtab,tab X(-1)

D.X(_l)t+a+b+q+c+d

D

In the numerator of (5.8), a, b, ¢ and d are the arbitrary
indices, and by the definition of D' ,

' —
Drt,pq - Drtab,pqab

_nt a+b+c+d
Drtab,pch = Drt,pq X(_l)

Substituting into (5.8),

D'
- (- r+q+r+t __g§ _
Zogrt = (-1) DfPﬂ (5.9)

This 1s the final form for computing imrpedance coefficients,
and it includes (5.7) as a special case.

5.3 Solution of Network Problems

e are at last ready to attack the netvork problems, which
is the real purpose of any analysis method. Given 2 network,
ites admittance matrix 1s first constructed as shown in chapter
III. Only then are reference conditions imposed to fit the
problem to be solved, and the appropriate impedance coefficients
are computed.
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As a first example, the input lmpedance at a terminal

palr pgq 1s defined as

-z
Voq pe,py Tpg

which shows directly the 2 coefficient that has to be
computed. The input admittance at the same terminal pair is,
of course, '

qu,Pq
and in general, no matter whether the problem is worded in
impedance or admittance terms, the solution wlll always involve
Z coefficients, as explained in the preamble to chapter IV,
Passing now to two-terminal-pair problems (with or
without a terminal common to both pairs), the problem may be
to find a transfer impedance or iransfer admittance, and these

will again be Z's or their inverse,

Let a current 1, (that is, into terrinal r and out
of terminal t ), be injected into the nctwork, what voltage
develops across pa? The answer to this problem is given by
the definition of 2 in (5.2),

Vpa = Zpg,rt irt

To compute a voltage transfer ratio, let qu be the

input voltage, and Vot the output voltage (an open-circuit
voltage, since any terminations at the output terminals could
be incorporated in the original Y matrix of the network).
There 1s only one current flowing through the network terminals,

namely ipq , therefore
= Z
Vpq pe,Dq Tpg
Vrt = Zrg,pe Ypg
. ,
_rt_ _ _Trt,pe_
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For a current iransfer ratio, inject a current ipo and
compute the short-circuilt current irt' The equation for the
voltage at the short-circuited output terminals is

"V = 0 = zrt,pq 1pq + Zrt,rt 1t
_EEE_ - - _%EEzEQ_
ipq Zrt,rt

In all these computations, whenever a ratio of two Z's
appears, 1t 1s Just a ratio of two subdeterminants of Y ,
since all Z's have the same denominator. All the problems

showvn above are therefore solved as a ratio of two determinants.

The above problems are intended to serve as examples
only, and to show how a more general type of reference 1s
quite naturally called for even in some of the simplest network
problems. And this 1s Just the first step in generalizing

the reference conditions - still using single terminal reference

conditions, but without the conventional restriction of using
the same terminal for both voltage and current reference.
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Chapter VI
CONCLUDING RENMARKS

6.1 Duality

Duality is a quite powerful concert in Network Theory.

The duelity of voltage and current, L and C , R and G ,
coupled with the topological duality found in graphs, form a
combination that plays quite a prominent role in the theory,
and sometimes reduces by half the labor involved in solving

a problem. From the outset of thls Thesis, 1t seemed thet

the duality we were used to would not hold in this theory.
Current and voltage have different properties; admittance and
impedance have some essentlal differences, as wes brought out
in the last chapter. Graphs are not applicable to the type of
elements we used, and that knocks out the final support on
which the duality mlght be based. At first glance 1t seems
too high a price to pay.

But is the situation really that bad? A 1little reflection
will show that duality is not as complete as may have seemed,
even in branch networks and using conventional network znalysis,
by graphs. The duality concept, though quite powerful, 1s not
all-encompassing even in that type of network. In network
elements, there 1s the mutual inductance that has no dual.
Topologically, only networks whose graphs are mappable on a
sphere have dual graphs. So, it is not too surprisinz that
allowing more general elements in addition to branches will
lead to a total collapse of this type of duality.

And, there 1g a type of duality in the theory as presented
in this Thesis, althouch it is a different type of duality,
algebraic rather than topological. Mathematically, 1t can be
expressed in the fact that voltage and current are elements of
two dual vector spaces (see Appendix B). Thigs duality can be
1llustrated by the followins considerations.

As treated in chapters II and III, currents had a constraint
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imposed upon them, and voltages were "floating",
Pti = 0
on can be freely added to v ,

and the relation between them was given by a matrix Y that
had the properties

Pt Y = YP=0 .

In chapter IV we saw how to impose reference condltlons once
the Q and R matrices have been chosen. This results in
constrained voltages and "floating" currents,

Qtv = 0
Rio can be freely added to 1 .
The resulting irpedance matrix, call it Z , is of the form
~ ~
Z = Qt Z' R
and from the properties of the projectlon operators,
Qt Z = ZR = 0 .,

Mathematically, this is a basls for a complete duality. From a
practical standpoint, it is not so good. The P matrix is
imposed by the element type, but Q and R are arbitrary.

The floating voltages can be interpreted as changes in the
voltage reference terminal, or changes of potential (that
preserve potential differences). The floating currents are

not currents in a physical sense, as was explained in chapter IV,

6.2 Different Types of Basic Elements

There is another way of regaining duality - if indeed it
has to be regained, which is doubtful. Admittedly, $he theory
in this Thesis as it stands has no duallity structure, but
could it not be complemented by a complete dual theory? °

8 In fact, such a dual theory has been suggested by Frof. D. 4.
Huffman in a seminar meeting at M.I.T.
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The basic network elements would be black boxes with loops
sticking out instead of terminals, and elements would be
Interconnected by breaking open some loops and connecting

them in series. There are two objections to this type of
element and the theory that can be built on 1it. First, the
elerent with terminals seems to be a more realistic represent-
ation of actual network elements than the looped elerment can
be. (The latter may make sore sense in macnetic circuits, but
not in the general type of network). The second objection is
that, even 1f we agree to use this type of element, it is really
no more than a speclal type of terminaled element we have been
using all along: Jjust cut each loop open and equip 1t with two
terminals - and this has to be done anyway before such an
element can be included in a network. The looped elerent is
then a very speclal case because it has a very restrictive
terminal partitioning scheme, each subset containing only the
two terminals of one broken loop.

6.3 On the Dangers of Generalizations

Now that a theory has been developed for general networks
with gecneral n-terminal elements, let us look closer at some
of the speciul cases, for small velues of n , and see what
special prorerties are true for them that would not be true
for a general n . Since most practical network elements have
only a few terminals, we should always beware of regarding
these speclal properties - which appear in the majority of
rractical networks - as general properties of any network.

The cases of n =1, 2 and 3 will now be considered in detail.

n=1.4 single-terminal element is really trivial. Its
admittance, that has to be a zero-sum 1x1 matrix, can only
be zero. The irpedance cannot be defined, for 1t needs poirs
of termlnals, and there just are not enouch terrinals to form
even a single pailr.

n=2 . This refers to a branch, and the only possible 2x2

zero-sum admittance metrix has the form
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N
=y y

and this at once ties branch networks with the reciprocity
relations. Impedance can be defined, for there 1ls a palr of
terminals available. The only non-zero impedance coefficlent
(in standard index order) 1is

215,12 = 1/y
In total, there are four non-zero impedances obtalned by

permuting the indices, and if we put 1/y=z , the four
impedances can be grouped as a zero-sum matrlx

z -7
-Z Z
n = . The 3x3 Y matrix has 9 entries, but only 4 are

independent, because of the zero-sum conditlons. For the
impedance representation, there are 3 possible terminal
pairs (in standard index order), namely 12, 13, 23, so that
there are nine impedance coefficients. To compute any one of
these, use eguation (5.9)

D'
z = (-1)Prasr+t rt,pg

pa,rt D!

Each numerator 1s obtained from Y by deleting two rows and
two columms of the Y matrix, leaving a single entry of Y ,
so the Z's are proportional to the Y entries, and will
have similar properties, like zero-summing. (The possible
minus signs can be adjustéd by using one lmpedance wilth 1ts
indices not in the standard order).

The two special cases, n=2 and n=3, lead to impedances
that, when arranged in a certain order, look like the Y
matrix. To bring thils about, some points had to be stretched,
like using all the non-zero impedances in n=2, and only the
representative impedances in n=3. Going to n=4 and above,
there will be too many Z's to be squeezed into any pattern
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resembling that of the corresponding Y matrix.

These remarks would seem to be superfluous, were it not
for the fact that now and again generalizations like that pop
up in the literature. It 1s now well accepted that n=2 has
some speclal propertlies that are not expected to remain for
higher n values (reciprocity); but the peculiarities of n=3
stlll seem to be regarded as having general applicability. As
shovn above, 3-terminal elements still allow an impedance
treatment simllar to the admittance treatment, but this
should not be taken to indicate possible extension to n larger
than 3. A simple numerical check can demonstrate this point:

In an n-terminal element, there are n® admittance entries
in the Y matrix. For impedances, n(n-1)/2 terminal pairs
cen be formed (using standard index order only), so there
are n%(n-1)®/4 impedance coefficients. The ecuation

) ) n® = n®(n-1)%/4

which is necessary for a one-to-one correspondence between
Impedance and admittance entries, has the three solutions

n1=0 ,n2=-1,n3:3 .

The first solution refers to a trivial case, the second is
meaningless, and the third is the only special case where this
slmilarity between Y and Z exists.

In conclusion, it seems that "One, twé, three, ... infinity"
may be a nice and catchy title for a book on popularized
methematlics, but it is a very dangerous way to generalize
network theory. The right method is to treat the general case
In its most general aspects, and from that to infer the
properties of simpler special cases. Unless this is done,
one can never be sure whether the so-called "general case"
of the resulting theory is not tsinted with characteristics
that do not apply to it at all, but are just carried over from
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the special cases. 4s an example of this attitude, we regard
the insistence on using graphs for networks with multi-terminal
elements as a carry-over from the theory of two-terminal
elements (where they are quite useful indeed), and the efforts
to keep impedance and adrittance on egqual footing as an
improper extension of properties of two-termincl =nd three-
terminal network elements. If some of the approaches in this
Thesls seem unfamiliar, unconventional, or too complicated
and generalized, 1t is precisely because of our trying to
avold pitfalls like the ones above, and trying to present the
case In 1ts generality; and it ies our firmest belief that this
is the right way to develop the theory of seneral linear
networks.
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APPENDIX
A. MATRIX NOTATION

Matrices are denoted in this Thesis by regular capitals.
and lower case letters. (Whenever letter symbols denote
scalars, thls is evident from the context). The notation
convention is that lower case letters stand for colum matrices,
and capitals for sguare or rectangular matrices. A matrix that
in the general case will be rectangular, but in some special
cases may reduce to a single colummn, is alsc denoted by a
cepital (e.g., the partition metrix P ).

When discussing an element with n  terminals, or a network
with n nodes, the columm matrices have n rows, unless
otherwlse gpecified. Rectangular metrices are cssumed to have
n rows, and thelr transposes have n columms. Thue, products
of the form

AtX AtB

always can be carried out.
Votation of matrix operations:
At is the transpose of A .

A"l 55 the inverse of A (if A 4is non-singular).

I is the unit metrix of the order reguired by the
expressions in which it apnears.

Two speclal notutions are used for special purposes required
in this Thesis:

~
R 1s a square nxn matrix, formed from R and the

partition matrix P , and is used as a projection
operator (see Appendix D).

O

is a ratrix whose columms are orthogonal to the columms
of a given @ . If Q 1is of order nxs , @ 1is of
order nx(n-s). (See Appendix E).
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B. MATHEMATICAL MODEL

The relations among voltage, current, power, admittance
and irpedance, as presented in this Thesis, are bosed on the
properties of vector spaces over the field of real nunbers R .

Current (the 1 colum) is a vector whose components
are real numbers. Its n components place it in n-dimensional
vector space S . All current vectors forr a subspace P ,
which is an (n-s)-dimensional subspace of S . Symbolically,

i1e¢e Pc s
Voltage is a linear operator on 1 into the field of real
nunbers - that is, it operates on a current vector to glve
pover.
v : 1-—R
Consequently, a1l v form a vector space dual to P, call it P,
v € P!
Admittance is a linear mapping on v into a current vector

Y: v-—d»?P

This mepping is a homomorphism, in that each v ylelds an 1 ,
but different v's may lead to the same 1 . In particular,
the kernel Vo of this mapping 1s the set of all v that are
napred into zero

Y(v) = 0 <=bvevoc_r«'

This homomorphism does not have an inverse as it stands.
However, if P' 1is reduced modulo V0 , thus grouping the v's

into cosets, the inverse operation is possible, and it is an
isomorphism, a one-to-one transformation

Z : 1 ——9»P'/Vo

The reference conditions and nrojection operators represent
the reduction modulo VO , thus enabling the inverse trans-

formation, impedance.
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C. SUFFICIENT SET OF NETWORK ELEMENTS

A lumped, finite network can have its v and 1 represented

by column matrices of order n . The most zeneral linear (and
homogenous) relation between the v and 1 colums is

Al +# Bv = 0 (4.1)

with A and B square nxn matrices. Four cases can be
distinguished in this relation, according to the singularity
of A and/or B , these cases beinz mutually exclusive and
exhaustive of all possibilities.

Case 1. A and B Dboth non-singular:

-1

1 = -A"TBy = Yv Y - -a~1s (4.2)
v = -B~la1 = 21 7z = -B~1a (4.3)

Juch a network, or a network elewent, can have both a Y and
a Z mwatrlix, mutually inverse.
Case 2. A singulor, B non-singular:

-1

v = -B YAl = 21 z = -1

A

There is no Y matrix as in case 1, because A’l does not
exist. But this same singularity that prevents defining a Y
netrix leads to another relation; since A 1is singular, the
ecuation

A’sz 0
hes non-zero solutions for x . If the rank of A 1is n-s,
there are g linearly independent solutions XqyeeesXg o
Let all these columns be zrouped in a matrix C , then

AtC:O .
Prerultiply (4.1) by C,

CtAi + C,Br =0 = 0 + Gth

t

Gv = O G = C,B (A.4)

An element corresponding to Case 2 thus has an impedance matrix
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and a constraint (A.4) on the voltages.

Case 3. A non-singular, B singular:

Following the same arguments as in Case 2, we arrive at
an admittance matrix as in (A.2), and a constraint on currents.
Since B 1s singular, a matrix D can be found such that

B,D = 0
D;AL + D,Bv = O = D.AL + O
Hi = 0 H = DA (A.5)

Case 4, A and B singular.
No Y or Z matrix can be defined, but as in cases 2
and 3, two constraints can be defined, on voltage and on
current, respectively.
To summarize, all possible lumped, finite, linear network
elements have to belong to one of these four types:
l. ¥ and Z matrix possible. .
2. Z matrix possible, and voltage constraint Gv = O.
3. Y nmatrix possible, and current constraint Hi = 0.
4. Voltage constraint Gv = 0 and current constraint Hi = O.

Right at the start of this Thesls, a constraint on current
(Pti:O) was lmposed on all network elements. This excludes
types 1 and 2 from the theory, leaving only two possible types
of elements, namely 3 and 4. Type 3 is the element represented
by a singular Y matrix, as analyzed in chapter II. Type 4
i1s the element represented by two sets of relations: one
between currents only, the other between voltages only. This
includes elements like short-circuits and ideal transformers,
and was discussed in chapter III. These two types of element
thus exhaust all the possible elements that fit in the theory.



D. PROJECTION OFPERATORS

Given the partition matrix P (of order nxs), and a

reference matrix R of the same order, and

det(PtR) 30

define
~ -1
R = I-R(RR)TR,
~S
Froperties of R :
~2 -1 { -1
(R)® = {z - R(B,R) Pt} I - R(E,R) Pt\
- I - 2R(P,R)"1P, + R(P,R)"IP,R(F,R)”'P
= % % t tRUER) TE,
-1 -1
= I- R(EBR) R + R(PtR)' P,
-1
= I- R(PtR)’ P,
- R
~ -1
PR = B {1: - R(P,R) Pt}
-1
= P, - B,R(P,R)'P,
= Pt bl Pt = o .

RR = {I - R(PtR)'"lPt\ R

-1
R - R(PtR) PtR
:R—R:O O

The other projection operator ( Q, in the text) is

~ _1 ~
Rt = I - P(Rth Rt = (R)t

and its properties are obtained by transposltion of the above

-~

relations found for R :

~ 2 ~ ~ o~
(Rt) = Rt RtP =0 Rth =0 .
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E. ORTHOGONAL COMPLEMENT

Given a rectangular matrix of order nxs, the equation

th =0

has non-zero solutions for x . Following the regular method
of solving simultaneous equatlons ( s eocuations in n un-
knowns), x can be expressed in the form of a linear combination
of n-s columms, with n-s arbitrary parameters as the
coefficients of the linear combination. The n-s Dbasis columns
are not unique, for linear combinations of these columns may in
turn be used as another basis. In any case, select one set of
linearly independent colums as a basis for x , and let these
colums form the matrix a .

This procedure gives one form out of the many possible
forms for the crthogonal complement of Q ,

~

QtQ: 0 .
Every colum of a is orthogonal to every column of Q . If,
in addition to that, the columms of a itself are recuired
to be orthogonal to each other, the followlng procedure may
be followed.

Given Xy s Xp g eee s Xy k linearly independent columms,
form the following linear combinations:

¥ = 231%1

Yo = 2p1%p + 8p%p

Y5 = 8z1%p + 85Xy 4+ 853%3

yk = alel + ak2x2 + ak3x3 4+ aoe + akkxk

The coefficients
relations:

2y 4 can be determined from the orthogonality

(y1)4¥7 = 1 1s an equation for a,,
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(yz)ty2 =1 and (yl)‘ty2 = 0 are two equations for a5y 8oo

(y3)475
equations for a31 ’ a32 , a33, and so on. Each additional
row ylelds the required number of equations to solve for the
coefficients in that row, in terms of the known x's and the
previously solved coefficients of the previous rows.

1, (y2)ty3 = 0 and (yl)ty3 = 0 are three

The matrix formed from the y columns is a basis for the
same space (or subspace) spanned by the x colums, but it
1s an orthogonal basis. '

F. SUBDETERMINANTS OF THE Y MATRIX

The Y matrlx of a network or an element is composed of
submatrices whose rows and columns all sum to zero. To obtain
a non-zero subdeterminant, at least one row and one column out
of each subset has to be crossed out.

Consider now such a. subdeterminant, and let Y¥' Ybe the
ratrix leading to it. That is, Y' is the Y matrix with some
of 1ts rows and colums omitted. Assume now thet one subset
has had only one row and one column removed, while the other
subsets may have had more than one row and column removed.

In the particular subset where only one row and columm are
mlssing, suppose the mlssing row has been numbered j in
the original matrix Y .

Let Y" be a matrix Just like Y', with the only difference
that row k" has been removed instead of row J , k and
being in the same subset of nodes. Given Y' , it is easy to
construct Y", for all that is to be done is to omit row k
and substitute for it a row which would have made all the
original columms of Y! sum to zero.

In order to effect such a transforration on a matrix, it
i1s sufficient to apply the same transformtion to a unit matrix,
which will result in a matrix T , say, and then premltiply
Y' by T . (For the same operation on colums, form Tt by
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colurm operations on the unit matrix, and postrultiply Y' ).
For row operations,

" = TY

det ¥" = (det T)x(det Y')

Ag an example of thils operation on the rows of a unit matrix,

(1 0/0 0 0 0{0 0 ©
o 1'0 0 0 0lo o o
0 0,10 0 010 0 0
0 0t0o 1 0 0!0 0 0
T = |0 0,-1-1-1-1J0 0 0
0010 0.0 1j0 0 0
0 0,0 0 0 041 0 O
o 0,b0 c 0 olo 10
0 00 0 00 l0 0 1 4

The metrix is written here in a partitioned form, and shows

an example of this operation performed in the second of three
subsets., The matrix T' is not yet the recquired matrix T ,
because the J-th row has been inserted in the position
vaczted by the k-th row, and still has to be moved to its
original position to form T . The transformetion from T'

to T involves moving this row j-k-l places; each move

to an adjacent position changes the sign of the determinaont, so

det T = (-1)3751 get 7

The determinant of T' is easy to compute, if developed in
terms of co-factors of the row containing the (-1)'s. Each
cofector will have a row of zeroes, except the ccfactor of the
term on the principsl diagonel. The latter cofactor is 1 , and

det T' = -1
det T = (-1) x (-1)9-k-1

= (-1 = (I



det Y" = (-1)3*E get ¥

86

If Y" 4is obtained from Y' by changing the omitted column,

the relations will be

no_ '
Y" = Y Tt

but, since

det T = det T

t
there will be no change in the final result

det Y' = (=1)9*K get ¥

This proves the theorem used on page 68.
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