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ABSTRACT

A method of analysing linear networks is developed, that
is applicable to networks whose elements may have any number
of terminals. Each multi-terminal element is handled as a
complete entity, without having to represent it as an equivalent
network of branches. The theory is based on an unconventional
treatment of voltage, which seems to be suitable for the general
case, in that voltages are handled without having to specify
the terminal to which they are referred. A considerable part
of the analysis can proceed without defining the voltage reference.
The point in the analysis where reference has to be specified
is studied, and what the required reference conditions are, and
as a result it appears that the conventional method of fixing
one terminal for voltage and current references is just one
very special case out of a multitude of possibilities.

N In the course of the analysis, admittance and impedance
emerge as two concepts which are not exactly equivalent or
dual to each other. It is shown that the admittance-impedance
duality is a characteristic of 2-terminal and 3-terminal elements
only, and breaks down in the general case. Admittance is a two-
indexed magnitude, referring to 2 terminals, whereas impedance
is four-indexed, referring to 2 terminal-pairs. The analysis of
a given network can proceed on an admittance basis without a
specified voltage reference, but impedance can be defined only
after reference conditions have been imposed, and it depends on
the reference conditions.

The theory presented in this thesis is built up to the point
where, given the characteristics of the nultiterminal elements
composing a network, the network equations can be set up and then
solved to give any required network characteristic.

Thesis Supervisor: Ernst A. Guillemin

Professor of Electrical Engineering
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Chapter I

INTRODUCTION

In a Round Table Discussion that was conducted at the

1955 Symposium on Modern Network Theory, the following
conclusions have been reached:1

"... A number of important, basic problems still confront
--the network theorist... In summary, the basic problems
are associated with removal of one or more of the
restrictions implied in the string of adjectives usually
associated with networks: Linear, lumped, finite, passive,
bilateral".

This Thesis outlines an analysis of linear, lumped, finite

networks. However, instead of removing the restrictions of

"passive, bilateral" from the existing theory, the analysis

is carried out in a way that avoids these restrictions in the

first place. The reasons for this approach, as well as a short

outline of the theory, are the subjects treated in this Introduction.

1.1 LIFPB Networks

Before embarking on the subject of the Thesis, let us

briefly review some of the fundamental points of the regular

LLFPB network analysis, with special emphasis on those points

that will be elaborated in the Thesis.

In analysis of networks, two types of problems are of

interest. One is mostly topological, concerning the ways in

which network elements are interconnected to form a network,

and how the properties of the network can be deduced from the

properties of the separate elements and the method of inter-

connection. The second type of problem is analytical (in the

mathematical sense of Analysis), and includes all problems

having to do with time and frequency domain, transform techniques,
s-plane techniques and allied subjects. In this Thesis we shall

be concerned with the first type of problems only - the

topological relations.

Proceedings of the Symposium on Modern Network Synthesis,
Polytechnic Institute of Brooklyn, April 13-15, 1955.(p.527)



In LLFPB networks, the basic network element-is a branch -

an element with two accessible terminals. The branch may be a
passive R, L or C, or a source (and in PB networks, a source
is always a constant source, a voltage or current constraint)
but any element has two terminals only. There are always two
tacit assumptions about this type of element:

1. The current entering one terminal is always equal to
the current leaving the other terminal; or, the total
current into the branch is always zero.

2. Only the voltage between the branch terminals is
related to the current, not the potential of each
terminal by itself.

When branches are interconnected to form a network, the
method of interconnection is represented by a topological
graph. Two constraints on the voltages and currents, known
as Kirchhoff's Laws, appear as a result of the interconnection:

1. The sum of all currents into a node is zero.
2. The sum of voltage drops around a loop is zero.

All the methods of analysing networks - by node pairs, node
to datum, loop or mesh analysis - are based on these two pairs
of postulates. It follows from the usual analysis that networks
composed of such branches are bilateral, and we use this term
as a synonym for "obey the reciprocity relations". Conversely,
any network that is bilateral can be regarded as a collection
of interconnected branches.

1.2 Removing the "PB" Restrictions

The fact that an element is active or passive does not
appear in the topological aspects of the network. Analytically,
certain functions describe passive elements, while active
elements impose fewer restrictions on the functions. As far
as topology is concerned, an active element nay be just another
type of branch, say, a negative R, but it is still a two-
terminal element, with all that is implied by this fact.

Removing the B restriction is quite a different matter,
and has some basic topological implications. Let us first note



that the term "bilateral" applies to networks, but has no
meaning if applied to a single two-terminal element. To define
reciprocity, two pairs of terminals are needed, at which a
source and a meter can be connected and then interchanged.
The minimum number of terminals necessary for this operation
is three. We are then faced with the following dilemma:

(a) Networks composed of branches are bilateral.
(b) Some multi-terminal devices (for example, a triode)

are not bilateral, and neither are networks that
incorporate such devices.

The accepted method of solving this dilemma is by
postulating a new type of "branch", a controlled source. This
is a branch whose voltage depends on the current through some
other branch, or whose current depends on the voltage drop
across some other branch. This allows us to regard a non-
bilateral element or network as a collection of branches, some
of which are of this new type, so that we can still apply the
methods of analysis by nodes, meshes, loops etc.

Unfortunately, it so happens that the non-bilateral devices
like vacuum-tubes or transistors are also active elements, so
that inclusion of a source in the equivalent circuit is quite
"natural". In the usual representation of a triode by the
plate impedance (positive real) and a controlled source, one can
point at the source and say, "Of course this represents an
active element, and here is the source of power gain". But in
the last few years, circuit elements that are passive and
non-bilateral have been postulated and constructed, like the
gyrator or circulator. If such an element were represented by
controlled sources, the representation would be quite misleading,
for these "sources" are no sources of power at all.

1.3 A Different Approach to LLF Networks

It seems that the only justification of representing non-
bilateral elements by controlled sources is that this method
enables us to fit them into the framework of graphs. Evidently,
if graphs were the only possible topological representation
for LLF networks, we have no choice but to follow this method.



However, a somewhat closer scrutiny of the dilemma presented

on the previous page will reveal that there is no dilemma

there at all. The two statements do not contradict each other,

for there is nothing to force us to include multi-terminal
elements in the framework of branch networks - provided we

have a theory for analysing networks with general multiterminal

elements.

Such a theory is presented in this Thesis. The basic
network elements can have any number of terminals, a two-

terminal branch being just a special case. Networks composed

of two-terminal branches only are shown to be bilateral, and
bilateral networks can be represented as a collection of two-
terminal branches. An element with more than two terminals

is treated as a whole, without trying to split it up into
branches that will fit in a graph. Thus - no dilemma.

The "minor" concession of allowing multi-terminal network
elements calls for a reformulation of the whole basis of the

methods of network analusis. First, new voltage and current

postulates have to be decided upon for the single multiterminal
element. Then, postulates analoguous to Kirchhoff's Laws have
to be formulated for the interconnection of network elements
in a network.

The second set of postulates (interconnection) is necessary
when we realize that networks are no longer representable by
graphs. We still have the concept of a node, where terminals
are connected together, but no longer are there meshes or loops.
In a multi-terminal element there is no unique way to weave a
loop from one terminal to another through the element. At
least one of Kirchhoff's Laws, the one dealing with voltage
drops, has to be replaced by a different formulation.

The fact that "loops" are inapplicable to general networks

is only one example of the complete breakdown of topological

network duality, at least that type of duality that is
usually emphasized in branch networks. This loss is not as

terrible as may ap-ear at first glance. The duality is at most

only nearly perfect in planar branch networks (if mutual



inductances are ignored), and gets very restricted even in
general branch networks. It is then not too surprising that
it completely disappears in general networks that contain
multi-terminal elements. As the theory unfolds, we shall find
that mesh and loop methods yield their place to node methods;
elements are still connected in parallel, but there is no
series connection; admittance appears as a concept more basic
than impedance.

On the opposite page of the ledger, we shall discover
thiough the more general approach some network properties
that could not have been obtained by simple extension of
branch-network theory. Some of these properties, dealing with
methods of fixing a reference or datum for voltages, yield
novel results even when applied to pure branch networks.

In short, where the regular methods work by induction,
"generalizing" from branch networks to more general networks,
our approach will be one of deduction: A general theory is

developed, and the properties of branch networks are deduced
as a special case. Only thus can we be assured that the
properties of general networks can be explored in their
broadest aspects, and not as a mere generalization of only
those properties that are found in branch networks.

1.4 Scope of the Theory

The networks and elements treated in this Thesis are
linear, lumped and finite. They are also assur.ed to be time-
invariant.

An additional restriction is that the linear relations
between voltage and current are homogenous, which means that
the condition of all voltages being zero and all currents being
zero simultaneously is compatible with the relations. This
excludes sources, which are voltage and current constraints,
so that the sources feeding and exciting a network are regarded
as being external to the network proper. (The other type of
source - the "controlled source" - will not appear in the

theory.)

S- d
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The concept of voltage as used in this Thesis has a
meaning somewhat different from its conventional one. The

term "voltage" is generally used as a synonym for "voltage

drop" along a branch, or the "potential difference'" between

two terminals. In this Thesis, "voltage" is somewhat analogous

to "potential", being ascribed to a single terminal or node,
without specifying the reference terminal, and is therefore

defined only within an add'itive constant. This type of voltage
first appears as a convenient concept when multi-terminal

elements are considered, but its importance is much more

profound. We come to realize that networks can be analyzed
without specifying the voltage reference node up to a certain

stage of the analysis, and at that point there are many

different ways to specify this reference; and this in turn

leads up to some of the most important results of the Thesis.

Our main concern in the Thesis is wit4 the topological

and algebraic aspects of the network. Element adrittances

and impedances are assured to be real numbers, voltages and

currents assumed to be real constants or real functions of

time. Most of the results, however, are directly aprlicable

without any change to complex admittances and impedances,

but no formal proofs will be given for that. So, strictly

speaking, the theory is developed for linear resistive networks,
or to small-signal linear approxirrations to non-linear network

elements. It was felt that inclusion of analytical function

theory considerations would have, by its sheer weight,

obscured the topological and algebraic relations that we wish

to emphasize.

1.5 Outline of the Thesis

The second chapter treats the rulti-terminal network

element and its representation. It treats the basic postulates

on voltage and current, and the admittance representation of

a network element. A geometrical interpretation of the various

results is given in the form of relations in vector spaces,
to explain the implications of the special treatment of voltage.

Imp -ROWWWRIPT, Pw_ I



This model of vector spaces is used as a matheratical model

guiding the development of the whole theory, but no formal

mathematical relations concerning the abstract model will be
given. A detailed description of those abstract relations that
form the basis for the engineering interpretations will be

found in the Appendix.

The next chapter treats the problem of interconnecting

the network elements to form a network. Here the postulates

analogous to Kirchhoff's Laws are formulated. The inverse
problem, of representing a network by breaking it up into

elements, is also treated - but obviously these elements are
not necessarily two-terminal branches only. The reciprocity

concept is discussed in this context.

Chapters II and III will have treated the admittance

representation only; chapter IV comes to explain what additional

assumptions have to be made before any talk about impedances

becomes meaningful. It will appear that certain "reference"

conditions have to be applied to the voltages and to the
currents, but that the voltage and current references may be
quite different from each other, and can be of a much more
general form than is used in the currently accepted methods.

The latter point is elaborated in chapter V, which treats

in detail a special case of reference assignments. In the
majority of network problems, the simple assignment of a single
node as a voltage reference will do, but the solution may be
simplified if a different node is selected for current reference.

This leads to the conceot of a "four-indexed" impedance, of
the form Z It appears that an impedance has to bepq,rs aperthtaimeachatob
referred to two pairs of terminals, whereas an admittance is

meaningful when referred to two terminals only. Using this

type of impedance, a method is shown of solving two-terminal-

pair network problems as the ratio of two determinants only,

even if the two terminal-pairs have no common ground terminal.

In a certain sense, the character of chapter V is different

from that of the rest of the Thesis. This chcalpter discusses

a special case of the general theory treated in the other
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chapters, but it was felt that the practical implications that
follow merit this more detailed treatment of this special case.

Chapter VI presents some conclusions of a general nature

that may be drawn from the Thesis, mostly on the subject of

duality in network theory.

Throughout the Thesis, free use is made of matrix algebra,

which is a natural medium for the treatment of multi-terminal

network elements. All the symbols and matrix notations are

defined on their first appearance, and in addition a list of

symbols, notations and conventions is summarised in an

Appendix for easy reference.

A conscious effort was made to keep the presentation in

a language which is more Engineering than Mathematics. Some of

the purely formal arguments, which had to be included for the

sake of completeness, are therefore not given in the text,
but are also relegated to the Appendix.
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Chapter II

THE NETWORK ELEMIT

Consider any electrical network and the elements of which

it is composed. Let us regard as elements those basic building

blocks whose properties are known to the designing Engineer,
out of catalogs, handbooks, or previous experience; those

blocks that the Engineer puts together in various ways to achieve
the desired end result. Let us regard as elements those units
that the Technician draws out of stock and solders, screws,
crimps or otherwise interconnects to form the network.

The various elements may be very different in size and

appearance. They may be molded, boxed, canned or enclosed by

glass bulbs. But there is always one thing that all the elements

must have, if the network is of the lumped type: each element

has certain well-defined points at which it is connected to

other elements. These may be in the form of soldering lugs,

pigtail wires, binding posts or base pins - but in general we
refer to these points as the terminals of the element.

In passing let us note that the term "lumped" as used
above covers more than is usually accepted in network theory.

Since we do not go into analytical details, we do not associate

"lumped" with rational functions. A section of uniform transmission

line would here be considered as a "lumped" element, if the

only connections to the rest of the network, and to loads

and sources, occur only at a set of discrete terminals.

This leads to the general representation of a lumped
network element: it is a "box" (or any closed figure), with

some terminals attached to it. Any contact between the element

and the world outside it can only be made at these terminals.

The element behaviour will be defined and analyzed by the

terminal properties only, without violating the privacy of

the closed box.

2.1 Current

Fig. 1 shows an example of a 5-terminal element. Assume

this element to be part of a network in a certain state of
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Fig. 1

Network Element

excitation. There will be currents flowing through the terminals,
and let i1 , i2 '" '' 5 be the currents into the 1-st, 2-nd, ...

5-th terminal. The column matrix

11
12

i = 1

14
Li 55

represents the current into the network element.
Since the components of i include the currents into

all the terminals, they are not independent, because their
sum is zero. Let us assume, in order to make this example
more general, that the components of i are even further
restricted, Let the set of terminals be partitioned into subsets,
as indicated in Fig. 1, such that

1l + 12 + 3 =0 (2.1)

14 + i5  0

The cause for this additional restriction imposed by partitioning
need not concern us. It may be that the internal structure of
the element is composed of several physically disjoint parts,
coupled by mutual magnetic coupling, or even - in the deSenerate
case - totally uncoupled. Or it my well be that the partitioning
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is imposed by external connections, as when a 4-terminal

element is used as a 2-terminal-pair element in constructing
a- transmission line. In any case, since we do not probe into

the element, but content ourselves with terminal information

only, we accept this partitioning as an attribute of the

element.

The partitioning of the set of terminals into subsets
can be formalized by defining a partition matrix P , whose

rows correspond to terminals and columns to terminal subsets.

The entries of this matrix are:

Pk =1 if terminal j is a member of subset k

P =0 if terminal j is not a member of subset k ,

so that each row of P has one "1" entry and all others are "O,,

The element of Fig. 1 has a'pdrtition matrix

1 0
1 0P =[1 0
0 1

L0 1J

Let At denote the transpose of the matrix A ; then the

restric-tion on the terminal currents has the general form

P i = 0. (2.2)

In the simple case where all the terminals belong to one subset

only, the partition matrix is a single column of Ili's. A two-
terminal branch has a 2xl partition matrix, and the "relation

(2.2) then appears as is=-i1 . Equation (2.2) is then the

generalization of the first of the branch postulates mentioned

in the Introduction.

We can now formulate the first postulate on general
network elements:

A network element is characterized by the number of its
terminals, and by the partitioning of the set of terminals
into subsets, as indicated by the partition matrix P
associated with the element. Any current into the element
is constrained by (2.2).
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2.2 Power and Voltage

The flow of current into the element is associated with

an energy transfer, or, in the usual parlance of the Electrical

Engineer, power flow. Now, current i being a vector quantity,
and power W a scalar, the correspondence between i and W

can be made by means of a second vector, which we shall denote

by v, so that

W = v i i v (2.3)

(A more rigorous argument for this relation will be found in

Appendix B). Given i and W , it is not claimed that v is

uniquely determined, and in fact it will shortly be demonstrated

that v is not unique. So far, we only wish to formulate the

second postulate on general network elements:

The power flow into a network element is obtained from
the current matrix i by inner multiplication with
another column matrix v , (which will be called the
voltage of the element), as shown in (2.3).

Let us now explore some of the properties of the voltage

matrix v , and see where it corresponds to the usual notion

of voltage (thus justifying the use of the term), and where

it departs from it.

First, the restriction (2.2) on the currents leads to the

conclusion that if the voltage is of the form

v = P V0

where v0  is a column with the suitable number of rows, one row

per terminal subset, then

W = vt i = (PvO)t i = vot P t i = 0

But the form v=Pv means that all the terminals of a subset

have the same voltage, with no voltas;e differences within a

subset, and under this condition no power can flow into

the element.
Second, suppose i and W are given, and a certain v

satisfying (2.3) has been found. Now add Py0 to the original

v , then
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W (v + Pvo) i

t i ot t
v i + 0

~v i

so that raising the voltage of all the terminals of a subset
by the same amount does not alter the power flow into the
element. Power flow is determined only by voltage differences

within a subset.

In conclusion, the voltage as defined by (2.3) and in
the second element postulate is defined only within an additive
term of the form Pvo , where P is the partition matrix of
the element, and v0  is an arbitrary column matrix with one
row per subset. This is the same thing as ascribing a voltage
to each terminal without specifying the point to which this

voltage is referred, with the understanding that only voltage
differences within a terminal subset are significant in
computations.

2.3 Admittance

So far the network element has been assumed lumped and
finite - for only under these assumptions could voltage and
current be represented as discrete and finite sets, written as
column matrices. We now introduce the assumption of the element
being linear, to complete the set of restrictions (L.L.F.)
imposed on the networks treated in this Thesis.

In an n-terminal element, there are n currents and n
voltages, one each per terminal. The n currents are restricted
by (2.2) so they represent less than n independent variables;
on the other hand, there is no similar restriction on the
voltages. Therefore, it is possible to have a relation giving
the currents in terms of voltages, but not the other way round.
In a linear element, the relation is of the form

i = Y v (2.4)
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where Y is an nxn admittance matrix. Note that (2.4) is

a linear homogenous relation, i.e. v=O together with i=0

satisfy it. The networks and network elements are assumed

exclusive of independent sources, as was explained in the

Introduction.

The Y matrix is necessarily singular, since the relation
inverse to (2.4) cannot exist. Let us further investigate

the structure of the Y matrix that leads to its singularity.

From the postulate on currents,

P Y v = = 0

and this is a restriction on the currents, independent on

the voltages. This can hold only if

P Y= 0 . (2.5)

The second restriction follows from voltage and power relations.

Assume that a voltage of the form Pv is added to the element

voltage - this should leave the power invariant. We cannot

yet assume whether the current varies or not when this voltage

is added, so let the new current be denoted by

i'=Y ( v + P v
i + Y P v0

W v i

(v + P V0 )( i + Y P v )
v i + v tt + v P i + Vo P vo

The third and fourth terms are zero, due to (2.2) and (2.5),
therefore

vt Y P v = 0

but this relation is to be true for any v and v0 (the latter

is arbitrary anyway), so that

Y = . (2.6)

Going back to the form of i' above, it now appears that

i'=i . The current into the network element, as well as the
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power, does not change when a voltage of the form Pv0  is
added to the element voltages. Moreover, if

v = P v0

is the only voltage at the element terminals, i=O as well as

the power. All this, of course, is to be expected, since such

a voltage means that there are no voltage differences within

a subset of terminals.

Relations (2.5) and (2.6) show the structure of the Y

matrix of any linear n-terminal element. Let the rows and columns

of Y be partitioned in the same way that the set of terminals

is partitioned into s subsets. This partitioning breaks Y

up into s"' submatrices. The two relations indicate that the

sum of each row and each column in each of these submatrices

is zero. (We shall have many occasions to refer to this type

of matrix. Let us then, for short, use the term zero-sum matrix

to denote a matrix in which the sum of the entries in each

complete row and in each complete column is zero.)

As an example, the element shown in Fig. 1 has an admittance

matrix partitioned as in Fig. 2, and each of the four resulting

submatrices is a zero-sum mtrix.

Fig. 2

Structure of the Y Matrix for

the Element Shown in Fig. 1.

This is a somewhat unconventional way to represent a network

element. A simple example to illustrate the meaning of this type
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of matrix is to compare it to the usual representation of a

branch. A branch is a two-terminal element with no further

terminal partitioning, and has a partition matrix

The only possible form that a 2x2 matrix can have to comply

with (2.5) and (2.6), that is, to be a zero-sum matrix, is

y -y
Y

g-y y

Although Y has four entries, there is only one independent

admittance value y . Writing out the current-voltage relations

(2.4) in full,

1= yl - Y2 = y(v1 -v2)
12 -Yv1 + Y2 = 1

It is evident that the usual assumptions about a branch - same

current in and out, and depending on the voltage difference

only - are embodied in the form of the admittance matrix. The

independent entry y is just what is usually called the

admittance of the branch. The basic difference lies in the
fact that although the simple y has an inverse, so that a

branch has an impedance as well as an admittance, in our type

of representation the inverse of Y cannot yet be defined.

We shall later find ways of inverting the admittance relation,

after some more assumptions will have been made about the element

and the whole network of which the element is a part. But for

the time being, let us follow the admittance concept as far

as possible without making any further arbitrary assumptions.

2.4 Augmentation

The simplest network element seems to be a 2-terminal

element (a branch). A one-terminal element would not make much

sense. Its Y is just the scalar 0, which means: no current can

flow into it, no effect does its voltage have on anything.
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Although a one-terminal element is trivial, it will

sometimes be convenient to augment a network element by adding

to it a few isolated terminals, like in Fig. 3. An isolated

terminal has the same properties that distinguish a one-terminal

element: zero current and inconsequential voltage. From a

partitioning standpoint, an isolated terminal forms a one-

terminal subset. It then follows from (2.5) and (2.6) that an

isolated terminal leads to a complete row and a complete

column of zeroes in the admittance matrix. For example, if the

h0
1*0

2

3

Fig. 3
An Augmented Network Element

branch shown between nodes 2 and 5 in Fig. 3 has an admittance

y , the complete augmented element shown has a 5x5 admittance

matrix

0 0 0 0 0
0 y 0 0 -y

Y 0 0 0 0 0

0 0 0 0 0
0 -y 0 0 y

This is the regular 2x2 matrix of a branch, with rows and

columns of zeroes added corresponding to the isolated nodes.

2.5 Geometrical Interpretation

The relations between current, voltage, admittance and

power, as developed in this chapter, can be interpreted

geometrically as relations between points in Euclidian space.
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This will now be illustrated by a specific example of a 3-terminal

element, with a partition matrix

P =1

so that all the relations can be shown as projections of

3-dimensional space. The results, however, will be valid for

any partition matrix P.

A current column matrix i can be represented by a point

in 3-dimensional space x1 x2 x3 whose coordinates are

x i (j=1,2,3)

Not every point in the space can represent a current, but only

those points whose coordinates satisfy

x1 + x 2 + x 3  0

or, in general,

P tx =0

These points are on a plane passing through the origin, which

we shall call the partition plane (because of its association

with the partition matrix P ).
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The straight line given by the equations

Xi = x2 = 3
passes through the origin and is perpendicular to the partition
plane. If a voltage column matrix is represented by a point
on this line,

Vi = V2 = 3
all the terminals are at the same voltage, and there is no
current flowing into the network element. This line will therefore
be called the null line.

A point representing voltage may be anywhere in the space,
since there is no restricting relation between the voltages,
However, given any voltage point, a line can be drawn through
it parallel to the null line (perpendicular to the partition
plane), and then all the voltages on this line are equivalent
as far as current and power are concerned. Current is thus
represented as a point on the partition plane, whereas voltage
is represented as a line perpendicular to that plane. These
relations are shown in Fig. 4, where the coordinate axes have
been omitted for clarity of the drawing.

If vectors are drawn from the origin to the current point
and to any point on the voltage line, the power is given by the
inner product of the two vectors, i.v . Vectors to any two points
of the voltage line, v and v' , differ by a component
perpendicular to i , therefore

i'v = ivt
which shows the independence of power on the point chosen
for voltage representation.

The admittance of a network element is a transformation
that maps a voltage line into a current point, so it is a
singular transformation, If we wish to map a current point
back into the same voltage point we started from, we can
only be sure that we shall end up in a point on the same line,
but can never tell whether or not this is the exact starting
point. Mapping voltage into current and back into voltage
never assures a return to the starting point; the sequence
of the two mappings is not equivalent to an identity mapping,
and the two mappings are therefore not mutually inverse.

9
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Now generalize these geometric properties to the general
element, with n terminals partitioned into s subsets, with
a P matrix of order nxs. Current and voltage will now be
represented by points in n-dimensional space. Current is
represented by a point restricted to the (n-s)-dimensional
subspace P x=0 , the partition subspace. Voltage will be
represented by an s-dimensional subspace orthogonal to the
partition subspace. The admittance that maos an s-dimensional
subspace of voltage into a current point is a singular
transformation. The rank of the Y matrix representing this
transformation can at most be s . Note that (2.5) and (2.6)
restrict the rank of Y just by this amount, for at least
s rows and s columns (one each per subset) have to be
omitted from Y in order to leave a matrix with a non-zero
determinant.



Chapter III

THE NETWORK

Our technician, whom we have met at the beginning of the

previous chapter, now has a collection of network elements,
and his next job is to assemble them into the required network.

How would he go about this?

Usually, he would get a chassis with some prepared

connection points: Tags, lugs, screws etc. Then the various

terminals of the network elements will be connected to these

points as per instructions or wiring diagrams. The essence

of the wiring diagram is a schedule showing which terminal of

what element is tied to which node of the network.

In this chapter we shall develop the mathematical analog

of this procedure. We already have a set of admittance ratrices

that represent the various elements going into the network.

Now we need a connection matrix, to show how the elements are

connected to form the network.

3.1 The Connection Matrix

The network shown in Fis. 5 is composed of three elements

connected at four network nodes. If, for the time being, the

3

6
2 8

1 1 3

Fig. 5
A Network

interconnection of the elements is disregarded, we have 8

terminals to consider, leading to 8-rowed column matrices
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i and v . These columns are related via an 8x8 admittance

matrix Y , whose structure is shown in Fig. 6. The admittance

matrix of each element (which is a zero-sum matrix) appears as

one of the submatrices on the diagonal. All the other sub-

matrices are zero, since there is no interaction between the

elements except through the terminals.

Fig. 6

Y Matrix of the Elements that

Go into the Network Shown in Fig. 5

In reality, because of the interconnection of the elements,
there are only four distinct nodes, and only four voltages

and currents to be concerned with. Let I and v denote the

4-rowed columns pertaining to the nodes, and I the 4x4

admittance matrix relating them. We now have to find the relation

between the barred network matrices and the unbarred element

matrices.

The interconnection of the elements can be expressed by

a connection matrix C , which has rows corresponding to the
element terminals and columns corresponding to network nodes.

(In our example, C is an 8x4 matrix). The entries of C are

C = 1 if terminal j is connected to node k ,

C = 0 if terminal j is not connected to node k

Each row of C therefore has one and only one "l" entry, and

the rest are "O".

The netw6rk of Fig. 5 has a connection matrix

F-I
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l0 0 0

0 1 0 01
0 0 0 1

0= 1 0 0 0
0 0 1 0

0 0 1 0

0 0 0 1

0 1 0 01

The network is thus defined by two matrices:

Y - the admittance matrix of its separate elements (grouped,
for convenience, into a single diagonal partitioned

matrix).

C - the connection matrix, showing how the separate

elements are connected. This matrix has the same role

that a network graph has for pure branch networks.

3.2 Network Postulates

The two postulates about the relations between element

i v and network I i will now be formulated. They have

the form of conservation postulates for current and power, and

so reflect the conservation laws of charge and energy, the

former being the time derivatives of the latter,

1. The current into any network node is equal to the sum
of the currents into the element terminals connected
to this node.

2. The power into the network is the sum of the powers
into the network elements.

From the definition of the connection matrix, it follows

that the node currents I are given in terms of the terminal

currents i by

C 1 (3.1)

The second postulate is expressed by writing out the expression

for power

I itv



Substituting from (3.1)

I =-it -itC

it C i = i v

and since this relation is independent of i ,

C i=v . (3.2)

This result is a corollary of the second postulate:
The voltage of all the terminals connected to a node
is equal to the node voltage.

Now we are ready to compute the network admittance !
in the relation

Starting from the element relation

i = Y v
we get, using (3.1) and (3.2)

i =C ti

= C Y v

C tY C V

Y = C YC . (3.3)

Given the admittance of the network element and their inter-
connections, this is how the admittance matrix of the network
is computed.

3.3 Digression on the Nature of the Connection Mlatrix

The formula given above for the entries Cjk of the
connection matrix can be stated in a somewhat more general
form:

0 jk is the truth value of the statement "terminal j
is connected to node k " .

With the regular conventions for truth values, "1" for a
true statement and "0" for a false statement, tnis definition
is identical with that given in the previous section. But when

24
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the definition is put in this way, the question whether the

statement is true may have not only a "yes" or "no" answer,
but also "maybe, it depends".

One interpretation of the uncertainty answer could be

the presence of switches in the network. The connection of an

element terminal to a given network node then depends on the

switch position, and the entry in the C matrix would be

neither "1" nor "0", but a Boolean variable representing the

switch. The "1" and "0" entries can be regarded as special
cases, when the Boolean variable is given one of its two

possible values, with no uncertainty involved.

The Y of a network is then made up of admittances Y
and Boolean elements C . The entire theory that follows in

this Thesis could thus easily be extended to apply to switch-

able networks. This, however, will not be done in the Thesis,
and the interested reader is referred to a paper a outlining
the operations with numbers that are qualified by'Boolean

elements.

We now return to the switchless network, where the Boolean

character of C need not concern us, and its "l" entries can

be regarded as simple scalar numbers.

3.4 Networks as Paralleled Elements

A simple interpretation of (3.3) is possible, if all the
elements are first augmented, to give each element a terminal

for each node of the network. Fig. 7 shows the three augmented

elements that make up the network of Fig. 5. (The numbers at

the terminals refer to the network nodes). Each element now

has a 4x4 admittance matrix, with some rows and columns of

zeroes only, and the complete Y matrix is of order 12x12.

a J. Shekel, "Sketch for an Algebra of Switchable Networks",
Proceedings.of the Institute of Radio Engineers, vol. 41.
pp. 913-921, July, 1953.
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Fig. 7

Augmented Elemnts

Let the element terminals be re-numbered as in the following

scheme:

node no. 1 2 3 4
Terminals of first element 1 2 3 4
Terminals of second element 5 6 7 8

Terminals of third element 9 10 11 12

This numbering will lead to a very simple C matrix. If I

denotes a unit matrix of order 4x4,

C = I

Y will be a 12x12 matrix, partitioned into nine 4x4 matrices

rY 0 0

Y = 0 Y2 0
0O 0 Y 3

Yk Y2 Y3  being the matrices of the augmented elements. WThen
the multiplication indicated in (3.3) is carried out,

Y =Ct Y C

Y + Y 2 + Y3

Y= 2 (3.4)
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The admittance matrix of a network is equal to the sum
of the admittance matrices of the network elements
(suitably augmented).

This interpretation looks like a generalization of the

parallel connection of two-terminal branches. The network can

be built by piling up elements in parallel - i.e., connecting

together the corresponding terminals of all the elements.

3.5 Note on Reciprocity

The 2x2 admittance matrix representing a branch is always

a symmetrical matrix, for only this way can it be a zero-sum

matrix:

First row, y11 + y12= 0

First column,, yll + y21 = 0

hence y21 =12

The matrix will remain symmetrical when the element is augmented

by attaching any number of isolated nodes. In the process of

augmentation rows and columns of zeroes are added, but the

only two non-zero off-diagonal entries remain in symmetrical

positions.

If a network is composed of two-terminal branches only,

its Y matrix is the sum of augmented branch matrices which

are all symmetrical, so the total Y matrix is symmetrical

too. Symmetry of the admittance matrix is a necessary and

sufficient condition for the network to be bilateral ( that
is, to obey the reciprocity relations), we conclude that:

Any network composed of two-terminal network elements
(branches) only obeys the reciprocity relations.

Nothing definite can be said in general about networks that

contain general multi-terminal elements. If each of the elements

is bilateral, so will be the network; but nothing can be said

a priori about the elements and the network, as we could say

about branches and branch networks,

3.6 Network Transformations

Suppose a network is given, with its associated i and

v column matrices, and the network Y matrix relating them:
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i = YV

It is possible that the i and v are subject to further

constraints that had not been taken into account when the Y

imatrix was constructed. For example, the network may contain

some transformers (assumed ideal), and an ideal transformer

does not have a Y matrix.

To present the discussion in its most general form, assume

that the actual currents of the network are i', which are

related to the i above by the linear transformation

i = T 1 . (3.5)

Some examples of the T matrix will be given later. All we

assume now is that the component of the network causing the

constraint is lossless - like a short circuit or an ideal

transformer. The new it then has a new v' associated with

it, such that

v it  = v i

Substituting from (3.5)

v' T i = v it

v' T = v

v = Ttv' . (3.6)

The new i' and v' will be related by a new Y' matrix

it = Y' V'

which can be found from the old relation

i = Yv

= T i

T Y v

STY T vt

Y'= T Y Tt *(3'

One example of this transformation is the augmentation

of an element as treated in the previous chapter. We have the
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original set i , where each entry is the current into a
terminal; this set is augmented to form a larger set i',

but all the entries added to- i to form i' are zero (no

current into the isolated nodes). The transformation ratrix,
in partitioned form, is

T 4)
where I and 0 are unit and zero matrices, respectively, of

appropriate order. The augmented Y' is obtained, in partitioned

form, following (3.7)

0 0

As a second example, assume a 4-node network, with a 4x4

Y matrix, modified by short-circuiting nodes 3 and 4, thus

forming a 3-node network. The appropriate transformation matrix

will show that any current into the new 3rd node is equal to

the sun of the currents into the old 3rd and 4th nodes,

1 0 0 01

= 0 1 0 0 1
0 0 1 1

Another example is presented by the process of "node

silitting;" illustrated by the following example: Suppose a

three-terminal net work (or ne twork element) is given, with

its 3x3 admittance matrix Y . Such an element can be used,

and frequently is used, as a two-terminal-pair element (with

a comnion "ground" at input and output). In our mode of element

representation, a two-terminal-pair element is represented by

a 4x4 admittance matrix, with an associated partitioning

1 0
0 1*

LO 1J
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The process of obtaining the 4x4 Y' from the 3x3 Y is again
a transformation of the same type, for the four new currents

can be given in terms of the old three currents i by

1 0 0

i' = 0 0 1*

0 0 -1

if it is assumed that node 2 was "split" to act as common

ground to input and output.

An ideal transformer in the network will lead by definition

to a set of relations of the form (3.5) and (3.6).

3.7 How to Write the Y Matrix of a Given Network

In the preeeding sections of this chapter, some formal

procedures were worked out for arriving at the admittance

matrix of a given network. The actual procedure will now be

illustrated by a specific example. Prior to any network

calculations, we need to know the representation of the

building blocks that will go into the network. These can be

of one of the two general types:

1. A network element that can be represented by an

admittance matrix of the type discussed in chapter II.

2. An element that imposes some relations among the currents

into the nodes to which it is connected, and some

relations among the voltages of these nodes, but no

admittance-type relations between currents and voltages.

This type was treated in section 3.6 of this chapter.

These two types of elements are sufficient to represent

any lumped, linear, finite and sourceless network ( the last
adjective meaning the lack of independent sources, so that

the linear equations are homogenous). A proof of this

statement is given in Appendix C.
The network in the following example will be composed

of resistors and triodes, both belonging to type 1 above, and

a voltage divider (ideal), which belongs to type 2.



A resistor is a two-terminal element, which we shall define

by its conductance g , incorporated in the 2x2 zero-sum matrix

[- -9]
For the admittance representation of a triode, let the

terminals be numbered as in Fig. 8. The representation

applies to linear small-signal approximation , and it is

2

1-

3

Fig. 8

Triode

further assumed that there is no grid current,

i1 = 0 .

To simplify notation, let m be the mutual grid-to-plate

transconductance, and p the internal plate conductance. The

small-signal plate current (into terminal 2) is then

12 = m( 1 -v 3 ) + p(V2-V 3
and the current into the cathode is

i3 = -i2 *
From these three eauations the admittance matrix of a triode

is constructed as

r0 0 0

Y = m p -m-p

yM -p m+p
The network we plan to analyze is that of a voltage regulator

frequently used in high-voltage supplies, and is shown in

essentials in Fig. 9. That Figure shows only those elements

that are important for small-signal operation. The tubes are

represented as triodes, and all other grids whose voltages

are fixed are omitted. The cathode of the lower tube is usually
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Fig. 9
Network To Be Analyzed

held at a fixed voltage above ground by means of a gas-discharge
diode, but this effect is represented as a short-circuit for

small-signal operation. This form of stripped down circuit is

nevertheless quite sufficient to analyze the operation of the

voltage stabilizer as far as finding the effects of input

ripple and output current on the output voltage.

The admittance tratrix of the network will be obtained

as the sum of the admittances of 3 augmented elements. First,

the resistor of conductance g appears between nodes 1 and

2 (with three extra rows and columns of zeroes)

g -g 0 0 0

-g s 0 0 0

0 0 0 0 0
0 0 0 0 0

0 0 0 0 0

Then, the upper triode, whose terminals are numbered just like

in Fig. 8, so it has the same matrix of the triode shown

above, augmented by a 4th and 5th row and column of zeroes

0 0 0 0 0
mi Pl -mi-pi 0 0

-M1 -p1 m1 +p1  0 0

0 0 0 0 0
0 0 0 0 0
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Finally, the lower triode, which has essentially the same

matrix, only with rows and columns permuted to conform with

the different numbering of terminals

p 2 0 0 -m2 -P 2  m2

0 0 0 0 0

0 0 0 0 0

-P2 0 0 M 2+P2 -m2

0 0 0 0 0

Adding all three matrices, we obtain the admittance matrix

of the network:

g+P2 -9 0 -M2~P2 m2

-s+ml 9+p1  -m1-pl 0 0

-m -p1  m 1 +p1  0 0

-p2  0 0 m 2+p2  - 2

0 - 0 0 0 0

Obviously, when writing down the matrix, there is no need

to write each component mtrix separately, as was done here

for illustrative purposes. The procedure would rather be

like this:

1. Assign numbers 1,2,...,n to the network nodes.

2. Draw a nxn sqare table as a framework for the Y matrix.

3. Enter the various network elements into the table.

Each element will have entries only in positions

where both row and colunn number correspond to nodes

to which the element is connected.

We now have the admittance matrix of a network composed

of two triodes and a resistor. This is not yet the complete

voltage stabilizer, for the all-important feedback link is

missing. This feedback is furnished by the voltage divider

shown dotted in Fig. 9. These two extra resistors could have
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been included in the matrix the same way as the first resistor,
but we shall do it differently in order to provide an illustration

for another point.

The grid of the lower triode draws no current; assume also

that the total resistance of the voltage divider is large

enough so that the current drawn by it can be neglected. The

only effect this voltage divider has is to introduce a constraint

v 5 -V 4 = k (v2 -v 4 ) (k<l)

v5 = k v2 + (1-k) v4

This can be put in a form similar to (3.6) by defining four

v' voltages (eliminating v5 from the computations)

1  1 0 0 0

v 2  0 1 0 0 1

v 0 0 1 0 2
3 VI

0 0 0 1
V4 v4

V5  0 k 0 1-k L

and the 5x4 matrix is identified with Tt in (3.6). Operating

with this T as indicated in (3.7), the final Y' matrix for

the voltage regulator network is obtained as

g+p 2  -g+km2  0 -km2-P 2

-g+Mn1  g+p1  -m 1 -P1  0

-P2 km 2  0 km2+p2

This is the admittance matrix relating currents into nodes

1 to 4 of the network with voltages at these nodes. This is
only the first step in analyzing the network, and amounts to

setting up the network equations. Solving these equations to

get any answers about the operation of the network is the
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second step, which we shall not be ready to take until we

discuss some problems treated in the next chapter. But, before

turning to these problems, let us pursue the admittance

representation a little further, before imposing any additional

conditions on the network.

3.8 Partition Groups

Our analysis has started from the single network element,
with an associated partition matrix P showing its general

type, and a Y matrix to give the element some individuality

within the general type. Then, a collection of such elements,

together with a connection matrix C , defined a network,

and a Y matrix for the complete network was derived.

Imagine now the network enclosed in a "black box", with

each node connected to a terminal protruding from the box.

In principle, there would be nothing to distinguish the network

from a network element of the type treated in chapter II. It

seens that the distinction between a network element and a

composite network is one of convenience or usage rather than

one of principle.(Our hypothetical Technician could find in

the stockroom bins a flat molded "element" with 5 pigtails,

which is a complete RC amplifier interstage, and he would

treat it no different from a simple molded capacitor).

In principle, then, we can treat "network" and "network

element" as equivalent terms. When elements are interconnected,
the result is called a network, but it can then be treated as

an element by itself or to construct more comrlicated networks.

On the other hand, an element can be regarded as a network

composed of simpler elements. There is only one additional

point to be clarified in this equivalence, namely: what

partition matrix is associated with the network when it is

treated as a network element (since, by definition, an element

is always associated with a P matrix).

As a starting point, we note that all the elements that



36

have the same P matrix form a group under the operation of
parallel connection (addition of their Y matrices). This

statement means that if Y1 and Y2 are admittances of elements

associated with a certain partition matrix P , so is the

element obtained by connecting the two elements in parallel.

PtYl=O

Y1P=O

and Pt 2= imply Pt(Y 1+Y2)=O

impl (+Y2and

We can thus speak of all the elerents associated with a given
partition matrix P as belonging to a partition group. The

partition defining this group is shown by the P matrix, but

for some purposes it can be indicated symbolically in a simpler
notation, by grouping together integers that represent the

terminals. For example, the element in Fig. 1 has the partition
(1,2,3)(4,5). Some further examples for partition group symbols

are given in the following table:

Element type

Branch

General 3-terminal element

General 4-terminal element

Two-terminal-pair element

Three-terminal-pair element

Section of 3-wire line

3-terminal element augmented
by 3 isolated nodes

Partition

(1,2)

(1,2,3)

(1,2,3,4)

(1,2)(3,4)

(1,2) (3,4) (5,6)
(1,2,3) (4,5,6)

(1,2,3)(4)(5)(6)

One partition group nay include another one. The group of

4-terminal elements includes all 2-terminal-pair elements. In

general, P' includes P" if P" introduces further partitioning

within the subsets formed by the P' partitioning, as the

following examples show:

Pt = (1,2,3,4)

P' = (1,2,3,4)

' = (1,2)(3,4)

P" = (1,2)(3,4)

P"t = (1)(2,3)(4)

P" = (1)(2)(3,4)

Y 2 P=
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Given two partitions of the same number of terminals, one does

not necessarily include the other, for example

P' = (1,2,3)(4,5) P" = (l,2)(3,4,5)

where neither partitioning includes the other. However, given

any two partitions of the same number of terminals, there is

always a partitioning that includes both. For the P' and P"

given above, this would be

P = (1,2,3,4,5)

It is customary to refer to this including partitioning as

the union of the two given partitions, symbolically

P = P' U P"

The partition groups thus form a partially ordered set

in which every two members have a union within the set. (If

P' includes P", then P' U P" = P' ). Some further examples

of union are given below.

(1,2)(3,4)(5) U (1,2)(3)(4,5) = (1,2)(3,4,5)

(1)(2)(3) U (1,2)(3) = (1,2)(3)

(1,3,4,6)(2,5)(7) U (1,3)(4,6)(2,5,7) = (1,3,4,6)(2,5,7)

When two Y matrices belonging to the same partition group

are added, the sum belongs to the same group. When the two Y

matrices seem to belong to different partition group, they also

belong to the union of the two groups, and their sum will then

belong to that group which is the union. In general:

A network (when regarded as an element) belongs to a
partition group which is the union of all the partition
groups to which the network elements belong. In defining
the partition groups of the elements composing the network,
each element should be presented in the augmented form
that gives it as many terminals as the network has nodes.

3.9 Breaking Up a Network Into Elements

We started this chapter with a set of elements, which was
then interconnected to form a network; towards the end of the
chapter it appears that the composite network can again be
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treated as an element. Before concluding this chapter the

opposite problem will be tackled: Given a network (or a network

element) in its totality, as a complete Y matrix, can it

be decomposed into simpler network elements? This is the

familiar problem of finding an "equivalent network" for a

given element. The decomposition is usually not unique, and

the decision about which equivalent network to use out of the

multitude of possibilities is often made subject to other

considerations: ease in application, structure hinting at the

"physical" principle of operation, structure appealing to the

user because of the "insight" it provides to the operation,
or similar reasons. All these considerations do not concern

us here. After all, an element is regarded as a "black box",

and for our purposes, any equivalent network that looks

identical as far as terminal operation is concerned will be

acceptable. We shall only point out the method by which the

network can be broken up.

A network Y is obtained by adding the Y's of augmented

elements. The decomposition will therefore be made by finding

the set of Y's whose sum is the given network Y . The

only condition restricting the decomposition is that each

of the component Y's be a zero-sum matrix. And that is really

all there is to it.

The decomposition will be useful if the component parts

are the simplest possible, and we shall now find how many

different simple elements are necessary to represent any given

element or network. A point to bear in mind is that in this

Thesis with algebraic and topological aspects only. The elements

described as R, C or L are, for our purposes, all the same

type of element: a two-terminal branch.

Starting from the simplest case, a two-terminal element

cannot be further simplified, except in thetrivial way of

representing it as a few branches in parallel.

Next, consider a multi-terminal element with a symmetrical

Y matrix.(A bilateral element). It can be decomposed until

each component Y has four non-zero elements only, that
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represent a branch (augmented). The decomposition is straight-

forward: each entry of Y above the principal diagonal will
contribute a branch. Suppose Yjka in the complete matrix,
then the corresponding component Y will hwe entries

-Y =-Ykk YjkYkj a

and zeroes elsewhere. This represents a branch of admittance
-a connected between terminals j and k . From this and
former considerations we conclude that

Any network composed of branches only is bilateral.
Conversely, any bilateral network can be represented
as a network of branches.

Finally, assume the general case, where the network Y
is not a symmetrical matrix. Branch matrices, which are
symmetrical, are therefore not sufficient to form the complete
Y . Some new basic element has to be defined, and it has to
have at least three terminals. Since we look for the simplest
possible elements, we shall try to use elements with no more
than three terminals.

The element Y has to be a zero-sum matrix, so the
simplest matrix would have four non-zero entries:

0 0 0
m -m 0

-7M m 0

This is similar to a branch matrix, but the four non-zero
entries are pushed into a corner, making the matrix non-
symmetrical. This matrix and its augmentations can be used to
form non-symmetrical Y matrices, either by themselves or
with the addition of branch matrices. The matrix describes

an element with the properties

i = 0

12 M(v1-V 2)

The current entering in terminal 2 and leaving at 3 is
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proportional to the voltage difference between terminals 1

and 2. The m is then a transconductance, the element being

an idealized triode with infinite plate resistance.

Another type of basic element can be derived if, in

decomposing the network, the procedure of removing branches

is followed as far as possible. This will finally leave a Y

matrix which is purely anti-syretrical, and no more branches

can be removed because all the entries on the principal

diagonal are zero. We now define an element that has the

simplest possible anti-symmetrical zero-sum matrix:

F0 g -s-[i -g ii
This matrix has six non-zero entries, but still only one

independent parameter, denoted here by S . This element

has the properties which are usually associated with a gyrator.

When a network is decomposed in this manner, the Y matrix

is first split into its syxiretrical and anti-symmetrical

components

Y =(Y+Y )/2

Ya t)/2

Y is decomposed into a sum of augmented branch matrices, Ya
into a sum of augmented gyrator matrices. The set of branches

is essentially unique (except for trivial variations of

representing one branch as several branches in parallel);

the set of gyrators is definitely not unique, as can be

seen in the following example.

Assume that a general 4-terminal element is to be described

by branches and gyrators. The symmetrical component Y is a

4x4 matrix with 6 independent entries.(It is a zero-sum matrix,
which reduces the usual number of 4.=24 independent entries

by a factor of 4). This can be uniquely represented by 6

branches, which are just the number that can be strung between

4 nodes. On the other hand, the anti-symmetrical component
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has only 3 independent entries, but there are 4 different
three-terminal elements that can be hung from four nodes.
Thus, only 3 out of the 4 possible gyrators are necessary
to make up Ya , and their values depend on which 3 out of
the 4 are selected.

To summarize the general case: Any network or network
element can be represented as an equivalent network composed
of:

1. Branches and transconductances.

2. Branches and gyrators.

In method 1, the decomposition is not unique. Even without
the trivial variations of paralleling branches, the number of
branches and transconductances is not unique, and sometimes
one type of element can partially replace the other (in other
words, the basic elements are not linearly independent).

In method 2, there is linear independence of the basic
elements. Consequently, the number of branches and of gyrators
necessary to represent the network is fixed. The branches are
also uniquely determined in position and value, whereas the
gyrators are determined in number only, but not in position
or value.

Of course, many other methods of decomposition are
possible, using all three of the above mentioned elements,
or some other types of possible basic elements. The two
methods described here have the merits of using the minimum
number of simplest basic elements - simple, that is, in the
topological and algebraic sense as used in this Thesis.
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Chapter IV

INVERTING THE ADMITTANCE MTRIX

In the two previous chapters, networks were treated

from the point of view of one who builds them up from their

elements. Now we turn to the user of the network - and to be

of any use, a network has to be excited by some source, and

feed a response into loads or meters. Usually, not all the

nodes of the network will be used for connection to sources

and loads, and the question arises now as to what will happen

at the nodes that are not used.

The process of constructing the network led us naturally

to an admittance representation of the form

i = Y v .

This matrix equation shows explicitly how each current depends

on the voltages of the various network nodes. The entries of

Y show the i due to one voltage with all other voltages

being zero - that is, the "short-circuit" input and transfer

admittances. To put any of these in evidence, some of the

network nodes have to be shorted together. But, according

to our approach, this makes a different network, because it

has not only the elements of the original network, but some

aLditional constraints represented by the short-circuits.

We would like to have a representation whereby any node

not attached to a source, load or meter is just left by itself,

that is, open circuited, with no current flowing into it or

out of it. The required parameters would be impedances, leading

to a relation of the form

v Z i

Unfortunately, the Y matrix is singular, so the Z

cannot be obtained as an inverse in the regular way. What has

to be done to obtain a Z matrix, and how to do it, is the

subject of this chapter.
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4.1 The Singularity of Y

Let us turn back to Fig. 4 (page 18) that shows v and i
of a 3-terminal element: i as a point on the partition plane,
v as a line perpendicular to the partition plane.

The Y matrix represents a transformation that maps a
voltage line into a current point; starting from any point

on the voltage line, we end up in the same current point.
Of course, we can start from the current point and go back
to the voltage line - but we have no guarantee of ending up

at any particular point of the voltage line. As far as current
is concerned, all the points on the voltage line are equivalent.

Suppose we start from any given v point, and go via Y
to the i point; going back we can land in v' as well as in
the original v . The singularity of Y does not mean that

the inverse operation can not be performed; it only means

that the result of the inverse operation is not unique.

Transforming by Y and then by its "inverse" are not equivqlent

to an identity operation.
We can make this operation unique if we agree to choose

one point on the voltage line as representing this line, and

formulate the inverse operation so that it always ends up in
that point of representation. The method of selecting this

point can be completely arbitrary. A computationally convenient
method is to define a surface in the space such that each

voltage line pierces it once and only once; and for real ease

of computation, let this surface be a plane. One possibility
is to use the partition plane for this purpose, but there is

actually an infinity of possibilities. It could be any plane

which is not parallel to the null-line (because all the voltage

lines are parellel to the null-line). For further convenience

in computations, let this plane pass through the origin,

hence be of the form

wt x 0 (4.1)
with a matrix of the same order as the partition matrix P.
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This arbitrary chice of Q means that we agree to use only

these voltage representations that satisfy a certain arbitrary

homogenous linear equation (or set of equations).

This matrix Q will be referred to as the voltage reference
matrix. Setting one node voltage equal to zero is clearly
a special case of (4.1) above, therefore this term of voltage
reference was chosen for the more general relation. It should
again be emphasized that the voltage reference relation is a
linear homogenous relation only because it leads to easier
computations, and this fact has nothing to do with the linearity
of the network. It is conceivable that in some special cases
an even more general type of reference- relation is suitable -
a non-homogenous or non-linear relation - but such cases will
not be treated here.

4.2 Projection Operators

As a preliminary to the general problem, let us first
discuss the voltage reference problem for a 3-terminal element,
so tha-t 3-dimensional pictures can be drawn to illustrate some

details of the process (Fig. 10). The partition matrix P is
the same as in the example in section 2.5, and the partition
plane is shown in dotted lines. Voltage is represented by a
line perpendicular to this plane, or parallel to the null-line P.

_ gin P VZ

iv

Fig. 10

Projection Operators



A second plane, Qx=0 , is shown in the Figure. This

plane passes through the origin, and the line P is assumed

not to lie in this plane, hence any lone parallel to P pierces

this plane in one point and only in that one point. Any voltage

on this line, say point v , is to be represented by the point

v t on the same line that is on the reference plane. Given any

point like v , we would like to find the projection operator

that projects v onto the plane Qtx=O in a direction

parallel to P .
The same relations will now be expressed in general

n-dimensional form, so that the general projection operator

can be found. We have a nxs partition matrix P ( s is the

number of terminal subsets), thus defining a (n-s)-dimensional

partition subspace P tx=O. The null-line now becomes a comp-

lementary s-dimensional subspace, whose points are all those

having coordinates of the form

x = P y

(y is an arbitrary s-rowed column matrix).

For voltage reference, another nxs matrix Q, has to be
defined, and then any voltage will be represented by a point

for which

Qtx = 0

Suppose now that any voltage point v is picked as the voltage

of a network; it is equivalent to all other voltages of the

form v+Py , and out of all these equivalent points the one
point satisfying (4.1) is selected for representing v . Call

this point v' , as in Fig. 10, then

vt = v + P y

and q v = v + QP y = 0

In partitioned matrix form,

0 Qt Q PJ yA
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Eliminating y ,

v' = I - v

We therefore define the operator

Q = I- P(QtP)~ (4.2)

as the projection operator projecting a point onto the Q x=0

subspace in a direction parallel to P ,

v' Qt v .(4.-3)

Note that this operation is possible if q P is a non-singular
matrix, that is, has a non-zero determinant

det(Q P) 0 0

but this is equivalent to the statement that all the points
of coordinates x=Py (except the origin, where x=y=0), do
not lie in the reference subspace.

(Note on notation: the projection operator is denoted by
a transposed matrix to indicate the fact that Q appears in
its derivation. A similar operator, in whose derivation the

untransposed matrix appears, will be denoted by an untransposed

symbol - see the operator R in section 4.4 below.)

Before proceeding to apply the projection operator to
network problems, some of its properties will be listed.

(Detailed proofs will be found in Appendix D.)

1. Q is a singular matrix. There is really no need
to check this formally, for it follows directly from the

definition. Any given v leads to a unique v', but many

other v points may lead to the same v', so that no unique

inverse operation is possible

2. q is an idempotent operator

( = Q . (4.4)
ii I

This is a property of any operation classified as a "projection"

It means that once a point has been projected onto the

reference subspace, repeating the projection operation any

number of times will leave the point undisturbed.
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3. Qt ,= 0 (4.5)

This reiterates the fact that any point after projection comes

to rest in the reference subspace; for, projecting the point x,

Qt ((;tx) = 0.

4. it = 0 (4.6)

All the voltages corresponding to the no-current no-power

condition are represented by the zero point. Any of these

null voltages is of the form x=Py , so that after projection

Q (Py) = 0

4.3 Voltape Reference

Returning now to the network problem, we are in the

following situation: Given a network admittance Y and a

certain voltage v , it is possible to find the current i

Given the i , however, we still do not know how to return

to that v we started from, although that v is known to us.

Suppose that somehow we manage to put together a Z matrix

for this special case - from a definite i to a definite v

not the general Z of the network. Starting with these

i and v , we write

v = Z 1 (4.7)

without claiming that this Z is good for any other i, or
that the form of the Z matrix is unique even for that

particular i .

In fact, the way the problem has been defined, we do not

want to return to the same v we started from, but to the

equivalent v' that satisfies the voltage reference condition.

This can now be done by premultiplying (4.7) by th e projection
operator Q,

v = Q v Qt Z i

v = Z'i . (4.8)
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From the way the projection operator was defined, it follows
that the new impedance matrix Z' will bring us from the
definite. i to the v' voltage, no matter which equivalent
point v was used as a starting point. The result of the
operation in (4.8) is therefore a unique value of v' . But,
is the matrix Z' unique, or would other matrices multiplying
i result in the same v' ?

The answer is that Z' is definitely not unique. In fact,
given any Z' , any other matrix

Z" = Z' + AP

(where P is the partition matrix of the network, and A
an arbitrary matrix of order nxs) would serve as well, for

Zt'i = Z'i + AP i

= Z'i + 0

= Zi .

The situation is similar to what we had with voltages, where
adding a term Py resulted in an equivalent voltage, and some
arbitrary choice had to be made among all the equivalent
voltages. Let us follow the same procedure here. Among all
the equivalent Z"

Z" = Z' + AP (4.9)

select as representative the one that satisfies

Z" R = 0 (4.10)

and R is an arbitrary matrix of order nxs (same order
as P and Q ). The requirement is given here as a purely
formal relation, but it will be interpreted in the next section.

Equations (4.9) and (4.10) can be rewritten in partitioned
matrix form

LZ" OJ = Z' A~ ~ PR
d Iti the abtAP P R

and, eliminating the arbitrary A from the equations,
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Z" = Z' tI - R(P R)~1P i (4.11)

or, Z" = Z' R (4.12)

where R = I - R(PtR) Pt (4.13)

and all this is possible, of course, only if

det(P tR) } O .

As a result, if Z' is to be modified so:that it will

satisfy (4.10), the final resulting impedance matrix is

Z"= Q Z R (4.14)

and the current-voltage relation

vt = Z" i (4.15)

not only results in a unique answer v' , but also has a

unique form Z" .

4.4 Current Reference

For an interpretation of the R and associated matrices,

we retuen to the 3-dimensional space of Figs. 4 and 10. In

Fig. 4 we had currents as points constrained to a plane,
voltage as lines perpendicular to that plane, and Y as

operators transforming voltage lines into current points. In

the inverse problem, the first step was to represent each

voltage line by a point constrained to the plane Q tx=0. A line

of arguments similar to that developed in chapter II leads to

the result that if any Z operator transforms one current

point into a voltage point, this operator will do this not

only for this one current point, but for all the points of

a line passing through that current point; and all the points

on that line will be transformed into the same voltage point.

The roles of v and i are now interchanged (Fig. 11). The

direction of the current line is defined by a matrix R , in

the same way that the voltage lines have been defined by the

partition matrix P .
Of course, of all the points of the line representing
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/\

Representative Current point
voltage point (hi

Current line
in di etion R

pt i0

Voltage line-2;r \

Fig. 11

Current Reference

current, only one line is a representation of a real physical

current situation, and that is the original point i on the
partition plane. All the other points of the line are just a
mathematical fiction, so arranged that the equations have
the right number of independent variables. It is now obvious
that the direction R is arbitrary, as long as it adds only
fictional current points, and the only real current will be
the same i . However, this argument breaks down if R lies
in the partition plane P x=0 , where all the points are
possible real current points; this will lead to false answers,
so this situation is prohibited. This restriction appears as
the relation

d'et (P tR) { 0 (4.16)

necessary for the realization of (4,13) above.
Take now any point il on the "current line", and regard

i as its representative point. To find i , the point i'
has to be projected in the direction R onto the plane P x=O.
This operation is the same as the voltage projection, but the
roles of P and Q are now played by R and P , respectively.
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The projection operator is then

R = I - R(Pt R) Pt

i = Ri'' . (4.17)

The projrction operator R has properties similar to those

of Q~ (proofs are given in Appendix D).

1. R is singular.

2. R is an idempotent operator

R R (4.18)

1 and 2 define R as a projection operator: Once a point

is projected, there is no return to the original point; and

further projections will not change the results of the first

projection.

3. P tR = 0 (4.19)

which shows that any point projected by R comes to rest in

the P x=O plane.

4. R R = 0 (4.20)

so that any point on the line x=Ry (y arbitrary) is projected

onto the origin.

The projection operator R as defined in (4.13) applies

to any n-dimensional problem, not only to the 3-dimensional

one used for illustration.

The impedance computation can now be summarized in the

following steps:

Given a network Y and voltage v , the current is
computed as

i = Y v

For this definite voltage and current, construct an impedance

Z (say, by trial and error methods)

v = Z i

But,,we do not have to get back to the same v , for we have

decided to represent that voltage by the equivalent v' , so
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v' = ~ v = ( Z1

Finally, i is a representative of all the points i' on

the current line, so that

i = R i'

v' = Q Z R i'

The resulting impedance

Z" = Q Z R

has a unique form and leads to a unique result. To achieve

this, two arbitrary conditions had to be imposed, one

associated with voltage (the Q matrix), the other with

current (the R matrix). In reality, the impedance matrix

will never be constructed in this way (the first step already

seems to involve some objectionable guesswork). This hypothetical

process, however, served to indicate the conditions that have

to be imposed before a meaningful impedance matrix can be

discussed - let alone computed.

4.5 Summary of the Reference Problem

Right from the beginning of this Thesis, current and

voltage were treated in a somewhat unconventional manner.

When writing the current colun matrix, all the terminal

currents were included, although they are not all independent,
and some might have been omitted without causing any ambiguity.

Voltages were defined without specifying the reference terminal

in each subset, so that the subset potentials could all be

moved up or down without changing the results. Nevertheless,

this way of defining currents and voltages caused no trouble

when discussing power and admittance. But now when impedances

are concerned, things have to be nailed down more definitely:

the voltage reference has to be decided upon, fixing those

floating potentials, and the redundant currents have to be

discarded,

Where voltage is concerned, the Q matrix does the
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necessary pinning down. A certain linear combination of voltages

is decided to be zero

Qtv = 0

and this matrix equation contains s linear combinations

of voltages, one for each terminal subset. Once the Q matrix

is given, the potentials can no longer be arbitrarily changed.

There is only one definite arrangement of potentials that will

cause the vanishing of the given linear combinations. The

voltage reference condition has thus a simple interpretation;

what about the current reference?

Returning for a moment to Fig. 11 (page 50), point i'

is on the R-line that passes through the current point i , and

for impedance computations i' is regarded as equivalent to

i . Originally, of course, there is some distinction between

i' and i (that is, a geometrical distinction, apart from

the fact that only i represents D real current), but this

distinction is neglected when the equivalence is assumed. Fig. 12

shows a way to define this distinction. To simplify the drawing,

the P and Q planes of Fig. 11 were not included in Fig. 12.

The Figure shows the line R through the origin (all points

with coordinates x=Ry), and a few planes perpendicular to R

The planes are distinguished from each other by the value of

the product R tx - this product being an s-rowed column 1:atrix.

The plane that passes through the origin has R x=O ; other

planes parallel to it have non-zero products. In particular,

Rtx b

Rtx a

Rtx =0 Origin

Fig. 12
Interpretation of Current Reference
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R tx=a for the i point, and R x-b for the i' point. All

the points on a line parallel to R are indistinguishable

when projected onto any one of these planes. The only

chacracteristic to distinguish between these points is the

value of R tx for the plane where the point was before the

projection. It is then this distinction, the value of the

product R x , which is being neglected when the current

reference conditions are imposed.

The reference requirements can now be summarized:

1. Voltage and current reference conditions are required
for the inversion of the Y matrix. Voltage reference
leads to an inverse Z whose meaning is unique, and
current reference establishes the uniqueness of the
form of Z .

2. Given the partition matrix P of the network, the
voltage and current references are established by
defining two arbitrary matrices, Q and R , of the
same order as P , with the only restrictions

det(Q tP) 4 0

det(P tR) 4 0

3. Voltage reference is established by letting

Qt v = 0

and current reference by neglecting the value of

R i .

4.6 Imposing Reference Conditions on the Y Matrix

The way this chapter started off, a guess had to be made

at Z and then all kinds of corrections had to be applied in

order to put some sense into this Z . Still, this method

indicated what further assumptions had to be made in order

to have a meaningful impedance concept. Now, however, we are

in the position where the required reference conditions can

be imposed on the Y matrix, leading to an admittance matrix

that is no longer singular, and then invert it without guesswork.
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The essence of the reference conditions is that some
linear combinations of voltages are assumed zero, and some
linear combinations of currents are just not paid any attention
to. These conditions are really much easier to apply to the
Y matrix than to the impedance - and no projection operators
are involved here.

A simple example of reference will be considered first.
A single voltage is a special case of a linear combination of
voltages, and the same is true for currents. Assume then that
the reference conditions are:

v = 0 , ik neglected.

Writing out the admittance matrix,

11 Y .. Y ... Yln 1

i Ykl kj kn j

Y_ Y ... Y
in nl* nj 'nn n

v is the factor that multiplies the j-th column of Y , and
if v =0 , that column may well be omitted. Similarly, since

ik is given by the entries in the k-th row of Y , and we
are not interested in ik , that row may be omitted. The
reference conditions thus imposed mean crossing out the h-th
row and j-th column of the Y matrix.

The original Y matrix was singular, because it was a
zero-sum matrix. It is now evidelt that crossing out one row
and one column out of each subset will destroy this feature

of zero-sumrring rows and columns. This by itself is not a

sufficient proof that the resulting matrix is non-singular, but
the arcuments on the uniqueness of the Z ratrix indicate that
the Y with reference conditions imposed has a unique inverse.
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The general type of reference requires some preliminary

rearrangement of the Y matrix, because the required linear

combinations are not in evidence like the single voltages and

currents. If the current and voltage column matrices are

regarded as vectors, the vector components have now to be

expressed on a new basis, so that the required linear combinations

appear as some of the components.

Let x be a vector in n-dimensional space, represented

by a nxl matrix. Assume a set of basis vectors spanning this

space, b1 , b2 ,..., bn , all represented by column matrices,

so that any vector can be expressed as a linear combination

x = a1b 1 + a2b2 + ..* + anbn (ai scalars)

All the bi columns can be collected in a square matrix B

and the set of a into a n-rowed column matrix a , then

x = B a .

The entries of a are the components of x to the basis B

The b are linearly independent, therefore B is non-

singular. If a vector x and the basis B are given, the

components can then be computed by

a = B~1 x

Suppose that a subspace Q. x=O is given in the n-dimensional

space, with q an nxs matrix. This subspace is (n-s)-dimensional,
and requires (n-s) basis vectors to span it. The set of basis
vectors is not unique; let one such set be selected, and its
vectors written as columns of a nx(n-s) matrix which shall
be denoted by Q

Any column of Q is a vector in the subspace Qx , so

Q Q= 0 (4.21)

Q is an orthogonal complement of Q the columns of Q are

orthogonal to those of Q , and both matrices together span
the whole space. The nxn matrix

B = Q Q
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could then be used as a basis for representing the viltage

points.

Let e denote the components of v to this basis ; and

let the e colurmn be partitioned into e1 and e2 , having
n-s and s rows respectively,

V = R .e 2

Imposing the voltage reference condition,

= qt(^e 1 + QQe2)

= ~Qe 1 + Q~

= Qte 2

the first term being zero because of (4.21). Having expressed
v in this form, it is obvious that putting e2=0 satisfies

the voltage reference condition.

The currents can similarly be represented, if the orthogonal
complement R of R is constructed, and the components to
the new basis denoted by j , similarly partitioned,

J1
i = R R

U2j

R ti = RtRj2
and ignoring j2 is equivalent to the current reference

condition of ignoring the combination R t i

The i and v , expressed in the new bases, still have
to satisfy the admittance relation

i = Y v

R R j = Y Q e

j = s R R ifY h Q e .

This expression can be simpli-fied if the colums of R are
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made orthogonal not only to the columns of R , but alsb among

themselves. Then replace the matrix R by a other columns

which are linearly independent and orthogonal and span the same

subspace as R does ; call this matrix R' . (There are detailed

formal methods to work out this R' matrix, but we shall not

go into that, since R' will actually not be used in the

computations. It suffices to know that it is possible to

construct it). The basis matrix for currents will then be

LR R'
an orthogonal matrix, and its inverse is easy to figure out,
being equal to its transpose:

[R]' [ R' =
[R 1 R eI t

j2 R e2A fR'] I Y IQ 4e 2J

= Rt Y e1  (4.22)

since e2=0 , and J2 is not to be computed. Equation (4.22)

thus defines a new admittance matrix

Y = Rt YQ (4.23)

that has the reference conditions already imposed. It relates

the non-zero voltage components to the not-neglected current

components. It is the matrix that can be inverted in the regular

way to yield the required impedance matrix:

Z =R tY Q . (4.24)

4.7 Example of General Reference

To illustrate the various matrix operations described in

this chapter, consider the following example:
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Given a 3-terminal network, with all the terminals
belonging to a single subset (n=3, s=l). The partition matrix is

P =1

Assume the following reference matrices

2 0
0 R = [ l

which mean: set the voltages so that

2v2 - v 3 = 0

and when computing currents, neglect the combination

il + i 3

First, check whether the reference conditions are valid:

QP = 1 , P R = 2

so the two products are not singular, and the references are
compatible with the given partition matrix.

The voltage projection operator will now be computed
(for illustrative purposes only, but it is not needed in
actual network analysis).

Qt= I - P(Q P) Q

1 0 0 1

=0 1 0 -1 1 [2 0 -1]
L0 0 lj l

1 0 00 2 0 -17
0 1 0 - 1
t 0 1 2 0 -1
-l 0 1

Q =-2 1 1

L-2 0 2
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Suppose the terminal voltages are given as

v 42J
Applying the voltage projection operator

-1 0 1 3 -2 .V' = =-2 1 I 1 =-6
.- 2 0 2 1 -41

The new representation v' is the same as v , only all

voltages are reduced by 5. The voltage differences between

terminals remain the same, but the new representation now

satisfies the reference condition

2v - v3 = -4 - (-4)= 0

The projection operator for currents is

R* 1R = I - R(P tR) P

1 0 0 1
0 1 0 -1/2 1 1 1

&.0 0 1.0 1i

1 0 0

R -1/2 1/2 -1/2

L-1/2 -1/2 1/2_

Consider the non-physical "current" point

6

L4

(It is non-physical since all currents do not sum to zero).

As far as impedance computations are concerned, this point is
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equivalent to the physical current point

1 0 0 6 6
i = -1/2 1/2 -1/2 2  = -4

-1/2 -1/2 1/2 J 4 j -2j

This i point is a real current point, for all three currents

sum to zero. Comparing it to l' , we observe that 11 and

12~1 3 are the same for both points, the only difference

being in 12+1 ; but this is exactly the combination we

agreed to disregard.

For the actual impedance computations, the orthogonal

complements of Q and R are needed. In this simple example

they can be found by inspection. (A formal method to construct

the orthogonal complement is outlined in Appendix E.)

For Q , find two columns that are orthogonal to Q , and

linearly independent of each other. One possible combination is

1 0

Q= 0 1.

2 0J

The same can be done to find R , only here there is the

additional condition for the complete orthogonality of the

basis matrix, so that each column vector should have unity

magnitude,

1 01
R = 0 /li~T2

L0 -/lTfZ
Given the 3x3 admittance matrilx as derived in chapter III,

the reference conditions can now be imposed to give

1 0
A0 0Y' = R Y Q __ Y 0 1

L2 0

NWR-- --
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This results in a 2x2 matrix Y' that is no longer singular,

and can be inverted to produce the impedance matrix associated

with these references.

4.8 Single Terminal References

In the vast majority of network problems, the simplest

possible linear combinations may be selected for reference -

these simple combinations being just the voltage or the current

of a single terminal. If some more general reference arrangement

does not appear necessary - as it may appear under certain

symmetry conditions or in network mode analysis - these simple

references supply enough variety to serve for all possible

network problems.

In selecting Q and R matrices, they will be matrices

that have one column for each subset of terminals, and only

one "1" entry in each column. The conditions on Q P and Pt R

dictat6 that one and only one terminal in each subset will be

represented in the Q and the R matrices. However, there

is nothing to indicate that the same terminal should be

selected for both voltae and current references. (The usually

accepted method of selecting a "datum" or "ground" node does

impose this condition, for the voltage of the datum node is

taken as zero, and the current into the same datum node is

neglected in the computations.)

Going through the formal steps developed in this chapter,

we find that both Q and R contain some of the columns of

a unit matrix, and the basis matrices are just unit matrices

(with a possible reshuffling of the coluns). Equation (4.28)

then leads just to crossing out several rows and columns of

the original Y matrix. (This is the same conclusion we

arrived at earlier, on p. 55, by less formal arguments).

This is then the procedure to be followed when using

this type of single terminal references: In each subset of

terminals, select one terminal for voltage reference, and one
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terminal for current reference. (The two terminals selected

in each subset may be different terminals or the same terminal).

In the original singular Y matrix, cross out the columns

corresponding to the voltage reference terminals, and the

rows corresponding to the current reference terminals. The

resulting matrix is of order (n-s)x(n-s), and is ready for

inversion.

The choice of reference terminals depends on the type

of problem that is to be solved. The considerations leading

to the choice of reference terminals are of sufficient practical

interest to warrant treatment in a separate chapter.
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Chapter V

IMPEDANCE

In the second chapter, the fact was established that a
definition of admittance is unique and meaningful even though
voltages and currents be treated without specific reference
conditions. The entries of the Y matrix can have the
following interpretation: Suppose vk is the only non-zero
voltage, then the current into the j-th terminal is

ij = Yjk k (5.1)

Although vk does not have a unique value, because of the
arbitrary reference potential, still the strusture of the Y
matrix is such that, when all v's are taken into account, the
i always comes out the same. Yjk can thus be regarded as
the mutual admittance, or trans-admittance, between two
terminals (or self-admittance, if j=k).

Chapter IV presented a different situation regarding
impedance. An equation similar to (5.1), with i and v
interchanged, is impossible. Trying to repeat the argument

that led to (5.1), one, may say: Suppose i is the only non-zero
current... - but this is impossible. What may be assumed is:
Of course, i can not be the only non-zero current, for there
must be at least one other node leading that current out.
Let then this other node be used as reference for current, so
that its own current need not be mentioned, and then we are
left with one non-zero current. Thus the current reference

has been fixed, and the current to be used in the computation
now appears as a two-indexed entity

irt

this symbol meaning that terminal t is the current reference,
and the only non-zero current is going into r (and coming
out of t , but this latter fact can be ignored now).

Simila-rly, the reference conditions force us, when impedance
is discussed, to regard voltage as a two-indexed symbol
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Vpq

meaning, the voltage of terminal p when terminal q is

regarded as the volta~e reference terminal.

As a result, impedance is an entity that requires four

indices for complete specification:

Vpq = Zpqrt rt (5.2)

Impedances thus appear to correlate pairs of terminals,

so there is an essential difference between the admittance

and impedance concepts. An impedance is a transfer impedance

or mutual irpedance of two pairs of terminals (or a self-

impedance of a terminal pair if p=r and q=t). In some special

cases this distinction seers to disappear, and these cases will

be mentioned and explained in the next chapter. The general

case of the four-indexed impedance is the subject of the

current chapter.

5.1 The Four-Indexed Impedance

In a general n-terminal network, there are nk possible

permutations of 4 indices. Not all of these permutitions

specify an impedance, and of all prmissible permutations, not

all different permutations lead to different impedances. The

total number of impedance coefficients associated with the

network will be less than n4 .

The voltage vp is meaningful only if p and q belong

to the same subset of terminals, for only voltage differences

within a subset are meaningful. Similarly, irt is defined

only if r and t are in the same subset, because currents

sun. to zero within each subset. However, pq and rt may

belong to different subsets.

Z qrt is defined only for those index combinations

where p is in the same subset as q , and r in

the same subset as t .

The definitions of vp and irt show that each will

change sign if the two indices are interchanged. Therefore,
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pq,rt Zqp,rt Zpq,tr =Zqp,tr (53)

Z is skew-symmetrical in each pair of indices.pg,rt

All the possible arrangrements of 4 indices can thus be

grouped in sets of four, all the permutations in a set leading

to the same impedance (except for sign). One of each set will

be called the standard arrangement, and we select (because of

convenience in further computations) the impedance where

Z pcq r<t (5.4)
pg,rt

as the standard impedance to represent itself and the 3 other

impedances associated with it via (5.3).

A corollary of (5.3) is that

Z = .0 if (p-q) or (r=t) - (55)

The reciprocity relation (in networks that obey it, that

is, in branch networks) appears in this notation as

Zpart= z (5.6)
pg,rt Zrt,pq

5.2 Computing the Impedance

All the impedance coefficients appear as entries of an

inverted Y matrix, after the required reference conditions

have been applied. To simplify the relations that follow, the

following special notations are introduced:

Given a Y matrix, the notation

Dabc... ,pqr...

denotes the value of the determinant of the matrix
obtained when rows a,b, c,... and columns p,q,r,...
are omitted from Y

First, note that because of the singularity of Y , the

determinant that includes all the rows and colunns is

D 0

Furthermore, unless at least one row and one column out of

each subset have been omitted, the deterrinant is still zero.
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A general procedure will now be developed to compute

an impedance with its indices in the standard order. (An

impedance with the indices in any other order will have the

same value, except for a possible change of sign, according

to (5.3) ).
Assume first that all the network terminals belong to

one subset. When computing

Zpq,rt

terminals q and t have already been selected for voltage

and current reference, respectively, so the first operation

consists of applying the reference conditions to Y :

Cross out column q and row t of the Y matrix.

Since there is only one subset of terminals, this is all the

reference needed, and Y can now be inverted. According

to the regular procedure of matrix inversion, the Z entries

are the ra;tios of a subdeterminant of this reduced matrix

to the determinant of the same matrix.

D
pqrt - D_

Zpq,rt = ( 1)r .rtA~ (5.7)

(Because of the standard ordering of the indices, p and r

retain their numbering value after t and q have been omitted,
and the sign is thus easily fixed.)

In a general network there may be more than one terminal

subset, and some further reference conditions, other than

those shown by the Z indices, have to be imposed. To show

the procedure on a specific case, let the network have 3
terminal subsets, so that two more rows and coluns have to

be omitted before inversion is possible. Their chice is quite

arbitrary, so let these be rows a and b , columns c and

d , appropriately distributed ( with t and q) among the

3 subsets..The impedance is now computed as
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Z pq,rt~ik_ gpg-(5)

D tabqcd

and the k is a number that depends on the row and column

counts, whose determination will be postponed until later.

Anyway, it seems that Z is not uniquely determined, because

of the arbitrary references. That it is not so, and even more -

that the general Z expression can be made even simpler than

(5.7), will now be shown.

The Y matrix has a peculiar structure, being cor'posed

of zero-sum submatrices, and it is not surprising. that some

peculiarity would be reflected in its subdeterminants. The

general property of the subdeterminants of the Y matrix is:

Given any subdeterminant obtained from Y by crossing
out row (or column) j and other rows and columns
such that j is the only row (or column) crossed out
In its subset - then row (column) j can be replaced
and another row (column) k in the same subset crossed
out, resulting in a determinant having the original
value multiplied by

(-1j +k

The long statement above (whose proof is found in Appendix F)

means that all the determinants of the form appearing in the

denominator of (5.8) have the same value, except for a possible

change of sign. Also in the numerator, the arbitrariness of

a , b , c and d will lead at most to a change of sign.

To standardize the form of the impedance notation, let
the determinant notation be modified as follows,

D'
abc..., pqr...

(with a primed D) is the value of the subdeterminant obtained

from Y by crossing out rows ab,c,... and columns p,q,r,...

and additional rows and colurns as necessary to make the
determinant non-zero. This is intended to imply that if after

crossing out the rows and columns indicated by the indices, some

subsets still have all their rows and columns, a row or a column

- P==- I
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or both (as necessary) will be crossed out of each subset until

sufficient reference conditions have been established. And an

additional condition is imposed on the definition of D', in

order to fix its sign: all the arbitrary references are to

involve the row and column similarly numbered within each

subset

In the example of the 3-subset network of equation (5.8),

Dtab,tab

and this is one among other equivalent possibilities. From the

theorem proven in Appendix F,

t+a+b+q+c+d
tab,qcd tab, tab

D'x-1t+a+b+q+c+d

In the numerator of (5.8), a, b, c and d are the arbitrary

indices, and by the definition of D' ,

rt,pq rtab,pqab

D = D x(-1)a+b+c+d
rtab,pqcd rt,pq

Substituting into (5.8),
D'

Zp = (-1 )p+q+r+t D3  - (5.)
pg,rt D

This is the final form for computing impedance coefficients,

and it includes (5.7) as a special case.

5.3 Solution of Network Problems

We are at last ready to attack the networl problems, which

is the real purpose of any analysis method. Given a network,

its admittance matrix is first constructed as shown in chapter

III. Only then are reference conditions imposed to fit the

problem to be solved, and the appropriate impedance coefficients

are comuted.
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As a first example, the in-put impedance at a terminal
pair pq is defined as

V =Zi
pq pq,pq pq

which shows directly the Z coefficient that has to be

computed. The input admittance at the same terminal pair is,
of course,

1
pq,pq

and in general, no matter whether the problem is worded in

impedance or admittance terms, the solution will always involve

Z coefficients, as explained in the preamble to chapter IV.

Passing now to two-terminal-pair problems (with or

without a terminal common to both pairs), the problem may be

to find a transfer impedance or transfer admittance, and these

will again be Z's or their inverse.

Let a current Irt (that is, into terminal r and out

of terminal t ), be injected into the network, what voltage

develops across pq? The answer to this problem is given by

the definition of Z in (5.2),

Vpq pq,rt irt

To compute a voltage transfer ratio, let v pq be the

input voltage, and vrt the output voltage (an open-circuit

voltage, since any terminations at the output terminals could

be incorporated in the original Y matrix of the network).

There is only one current flowing through the network terminals,

namely i , therefore

V = Z i
pq pgpq pq

V rt Z rtpc i pq

v Z
pq pg,pq
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For a current transfer ratio, inject a current iP and

compute the short-circuit current irt* The equation for the

voltage at the short-circuited output terminals is

vrt 0 = rt,pq ipq + Zrt,rt irt

i Zirt _ rt.LPq.

i pZrtrt

In all these computations, whenever a ratio of two Z's
appears, it is just a ratio of two subdeterminants of Y ,
since all Z's have the same denominator. All the problems
shown above are therefore solved as a ratio of two determinants.

The above problems are intended to serve as examples
only, and to show how a more general type of reference is
quite naturally called for even in some of the simplest network
problems. And this is just the first step in generalizing
the reference conditions - still using single terminal reference

conditions, but without the conventional restriction of using
the same terminal for both voltage and current reference.
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Chapter VI

CONCLUDING REMARKS

6.1 Duality

Duality is a quite powerful concept in Network Theory.

The duality of voltage and current, L and C , R and G

coupled with the topological duality found in graphs, form a

combination that plays quite a prominent role in the theory,

and sometimes reduces by half the labor involved in solving

a problem. From the outset of this Thesis, it seemed that

the duality we were used to would not hold in this theory.

Current and voltage have different properties; admittance and

impedance have some essential differences, as was brought out

in the last chapter. Graphs are not applicable to the type of

elements we used, and that knocks out the final support on

which the duality might be based. At first glance it seems

too high a price to pay.

But is the situation really that bad? A little reflection

will show that duality is not as complete as may have seemed,

even in branch networks and using conventional network analysis,

by graphs. The duality concept, though quite powerful, is not

all-encompassing even in that type of network. In network

elements, there is the mutual inductance that has no dual.

Topologically, only networks whose graphs are mappable on a

sphere have dual graphs. So, it is not too surprising that

allowing more general elements in addition to branches will

lead to a total collapse of this type of duality.

And, there is a type of duality in the theory as presented

in this Thesis, although it is a different type of duality,

algebraic rather than topological. Mathematically, it can be

expressed in the fact that voltage and current are elements of

two dual vector spaces (see Appendix B). This duality can be

illustrated by the following considerations.

As treated in chapters II and III, currents had a constraint
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imposed upon them, and voltages were "floating",

Pti = 0

Pv0 can be freely added to v ,

and the relation between them was given by a matrix Y that

had the properties

F Y= YP = 0

In chapter IV we saw how to impose reference conditions once

the Q and R matrices have been chosen. This results in

constrained voltages and "floating" currents,

Qt v = 0

Ri can be freely added to i

The resulting impedance matrix, call it Z , is of the form

Z Q Z' R

and from the properties of the projection operators,

Qt z = Z R = 0 .

Mathematically, this is a basis for a complete duality. From a

practical standpoint, it is not so good. The P matrix is

imposed by the element type, but Q and R are arbitrary.

The floating voltaSes can be interpreted as changes in the

voltage reference terminal, or changes of potential (that

preserve potential differences). The floating currents are

not currents in a physical sense, as was explained in chapter IV.

6.2 Different Types of Basic Elements

There is another way of regaining duality - if indeed it

has to be regained, which is doubtful. Admittedly, he theory

in this Thesis as it stands has no duality structure, but

could it not be complemented by a complete dual theory? 3

3 In fact, such a dual theory has been sugSested by Prof. D. A.
Huffman in a seminar meeting at M.I.T.



74

The basic network elements would be black boxes with loops

sticking out instead of terminals, and elements would be

interconnected by breaking open some loops and connecting

them in series. There are two objections to this type of

element and the theory that can be built on it. First, the

element with terminals seems to be a more realistic represent-

ation of actual network elements than the looped element can

be. (The latter may make some sense in magnetic circuits, but

not in the general type of network). The second objection is

that, even if we agree to use this type of element, it is really

no more than a special type of terrinaled element we have been

using all along: just cut each loop open and equip it with two

terminals - and this has to be done anyway before such an

element can be included in a network. The looped element is

then a very special case because it has a very restrictive

terminal partitioning scheme, each subset containing only the

two terminals of one broken loop.

6.3 On the Dangers of Generalizations

Now that a theory has been developed for general networks

with general n-terminal elements, let us look closer at some

of the special cases, for small values of n , and see what
special properties are true for them that would not be true

for a general n . Since most practical network elements have

only a few terminals, we should always beware of regarding

these special properties - which appear in the majority of

practical networks - as general properties of any network.

The cases of n = 1, 2 and 3 will now be considered in detail.

n = 1 . A single-terminal element is really trivial. Its

admittance, that has to be a zero-sum lxl matrix, can only

be zero. The impedance cannot be defined, for it needs pairs

of terminals, and there just are not enough termrinals to for:

even a single pair.

n = 2 . This refers to a branch, and the only possible 2x2

zero-sum admittance matrix has the form
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y -y-y y
and this at once ties branch networks with the reciprocity

relations. Impedance can be defined, for there is a pair of

terminals available. The only non-zero impedance coefficient

(in standard index.order) is

S12,12 /y

In total, there are four non-zero impedances obtained by

permuting the indices, and if we put 1/y=z , the four

impedances can be grouped as a zero-sum matrixZ -Z
n = 3 .The 3x3 Y matrix has 9 entries, but only 4 are

independent, because of the zero-sum conditions. For the

impedance representation, there are 3 possible terminal

pairs (in standard index order), namely 12, 13, 23, so that

there are nine impedance coefficients. To compute any one of

these, use equation (5.9)
D'

Z pqrt= ( 1 )p+q+r+t _rtP 1g.
pq~rtD'

Each numerator is obtained from Y by deleting two rows and

two columns of the Y matrix, leaving a single entry of Y ,

so the Z's are proportional to the Y entries, and will

have similar properties, like zero-summing. (The possible

minus signs can be adjusted by using one impedance with its

indices not in the standard order).

The two special cases, n=2 and n=3, lead to impedances

that, when arranged in a certain order, look like the Y

matrix. To bring this about, some points had to be stretched,

like using all the non-zero impedances in n=2, and only the

representative impedances in n=3. Going to n=4 and above,

there will be too many Z's to be squeezed into any pattern
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resembling that of the corresponding Y matrix.

These remarks would seem to be superfluous, were it not
for the fact that now and again generalizations like that pop
up in the literature. It is now well accepted that n=2 has
some special properties that are not expected to remain for
higher n values (reciprocity); but the peculiarities of n=3
still seem to be regarded as having general applicability. As
shown above, 3-terminal elements still allow an impedance
treatment similar to the admittance treatment, but this
should not be taken to indicate possible extension to n larger
than 3. A simple numerical check can demonstrate this point:

In an n-terminal element, there are no admittance entries
in the Y matrix. For impedances, n(n-l)/2 terminal pairs
can be formed (using standard index order only), so'there
are na(n-l)*/4 impedance coefficients. The ecuation

n= n(n-1)9/4

which is necessary for a one-to-one correspondence between
impedance and admittance entries, has the three solutions

ni = 0 , n2 = -I , n3 = 3

The first solution refers to a trivial case, the second is
meaningless, and the third is the only special case where this
similarity between Y and Z exists.

In conclusion, it seems that "One, two, three,... infinity"

may be a nice and catchy title for a book on popularized
mathematics, but it is a very dangerous way to generalize
network theory. The right method is to treat the general case
in its most general aspects, and from that to infer the
properties of simpler special cases. Unless this is done,
one can never be sure whether the so-called "general case"
of the resulting theory is not tainted with characteristi6s
that do not apply to it at all, but are just carried over from
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the special cases. As an example of this attitude, we re>ard
the insistence on usin- graphs for networks with rmulti-terminal
elements as a carry-over from the theory of two-terminal

elements (where they are quite useful indeed), and the efforts

to keep impedance and adrittance on equal footinT as an

improper extension of properties of two-terminal and three-

terminal network elements. If some of the approaches in this

Thesis seem unfamiliar, unconventional, or too complicated

and generalized, it is precisely because of our trying to
avoid pitfalls lik:e the ones above, and trying to present the

case in its generality; and it is our firmest belief that this
is the right way to develop the theory of -eneral linear

networks.
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A P P E N D I X

A. MATRIX NOTATION

Matrices are denoted in this Thesis by regular capitals.

and lower case letters. (Whenever letter symbols denote

scalars, this is evident from the context). The notation

convention is that lower case letters stand for colurmn matrices,
and capitals for square or rectangular matrices. A matrix that

in the general case will be rectangular, but in some special

cases may reduce to a single column, is also denoted by a

capital (e.g., the partition matrix P ).

When discussing an element with n' terminals, or a network

with n nodes, the colurmn matrices have n rows, unless

otherwise specified. Rectangular metrices are assuned to have

n rows, and their transposes have n colurns. Thus, products

of the form

A x A B

always can be carried out.

Notation of iatrix operations:

A is the transpose of A .

A~1 is the inverse of A (if A is non-singular).

I is the unit matrix of the order required by the

expressions in which it appears.

Two special notations are used for special purposes required

in this Thesis:

R is a square nxn matrix, formed from R and the

partition matrix P , and is used as a projection

operator (see Appendix D).

Q is a matrix whose columns are orthogonal to the columns

of a given Q . If Q is of order nxs , Q is of

order nx(n-s). (See Appendix E).
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B. MATHEMATICAL OfDEL

The relations among voltage, current, power, admittance

and impedance, as presented in this Thesis, are based on the

properties of vector spaces over the field of real numbers R

Current (the i colum) is a vector whose components

are real numbers. Its n components place it in n-dimensional

vector space S . All current vectors forr a subspace P ,

which is an (n-s)-dimensional subspace of S . Syrbolically,

iF PC S

Voltage is a linear operator on i into the field of real

numbers - that is, it operates on a current vector to give

porer.

v : 1i-yR

Consequently, all v form a vector space dual to P, call it P',

v G P'

Admittance is a linear rapping on v into a current vector

Y : v--+P

This mapping is a homomorphism, in that each v yields an i

but different v's may lead to the same i . In particular,

the kernel V of this mapping is the set of all v that are

mapped into zero

Y(v) = 0 v . V0 C ,

This homonorphism does not have an inverse as it stands.

However, if P' is reduced modulo V9 , thus grouping the v's

into cosets, the inverse operation is possible, and it is an

isomorphism, a one-to-one transformation

Z : i -P'/Vo

The reference conditions and projection operators represent

the reduction modulo Vo , thus enabling the inverse trans-f o e

formation, impredance.
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C. SUFFICIENT SET OF NETWORK ELEMENTS

A lumped, finite network can have its v and i represented

by column matrices of order n . The most general linear (and

homogenous) relation between the v and i columns is

A i + B v = 0 (A.1)

with A and B square nxn matrices. Four cases can be

distinguished in this relation, according to the singularity

of A and/or B , these cases being mutually exclusive and

exhaustive of all possibilities.

Case 1. A and B both non-singular:

i = -AI 1 BV = Yv Y = -A-1B (A.2)

V = -B~1 Ai = Zi Z = -B~1 A (A.3)

Such a network, or a network element, can have both a Y and

a Z matrix, mutually inverse.

Case 2. A singular, B non-singular:

v = -B~ Ai = Zi Z = -B~ A

There is no Y matrix as in case 1, because A~ does not

exist. But this same singularity that prevents defining a Y

matrix leads to another relation; since A is singular, the

equation
A x = 0

has non-zero solutions for x . If the rank of A is n-s,

there are s linearly independent solutions x1 ,...,x.
Let all these columns be grouped in a matrix C , then

At C=0

Premultiply (A.1) by C t

C Ai + Ct BV = 0= 0 + C tBv

Gv = 0 G = C B (A.4)

An element corresponding to Case 2 thus has an impedance matrix



and a constraint (A.4) on the voltages.

Case 3. A non-singular, B singular:

Following the same arguments as in Case 2, we arrive at
an admittance matrix as in (A.2), and a constraint on currents.
Since B is singular, a matrix' D can be found such that

B tD = 0

DtAi + Dt BV = 0 = D tAi + 0

Hi = 0 H = D tA (A.5)

Case 4. A and B singular.
No Y or Z matrix can be defined, but as in cases 2

and 3, two constraints can be defined, on voltage and on
current, respectively.

To summarize, all possible lumped, finite, linear network
elements have to belong to one of these four types:

1. Y and Z matrix possible.
2. Z matrix possible, and voltage constraint Gv = 0.
3. Y matrix possible, and current constraint Hi = 0.
4. Voltage constraint Gv = 0 and current constraint Hi = 0.

Right at the start of this Thesis, a constraint on current
(Pti=0) was imposed on all network elements. This excludes
types 1 and 2 from the theory, leaving only two possible types
of elements, namely 3 and 4. Type 3 is the element represented
by a sing~ular Y matrix, as analyzed in chapter II. Type 4
is the element represented by two sets of relations: one
between currents only, the other between voltages only. This
includes elements like short-circuits and ideal transformers,
and was discussed in chapter III. These two types of element
thus exhaust all the possible elements that fit in the theory.



82

D. PROJECTION OPERATORS

Given the partition matrix

reference matrix

P (of order nxs),

R of the same order, and

det(P tR) $ 0

define

RE I - R(P R) 1 P

Properties of R

(R)2 I

P R

- R(PtR)~ Pt I - R(PtR)~ Pt

I - 2R(Pt R) Pt + R(PtR)~'PtR(PtR) Pt

I- 2R(Pt R) P + R(Pt R) Pt

I - R(P R)~1 P

R

Pt {I - R(PtR)F'Pt

Pt - P tR(Pt R)Pt

= P -P

RR

= 0

(I - R(PtR)~'Pt

R - R(PtR) P tR

=R - R = 0

The other projection operator

R t = I - P(Rt P) R t

Q in

(R)t

the text)

and its properties are obtained by transposition of the above

relations found for R

(R t) = R =RtP = 0 R tRt

and a

is

= 0
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E* ORTHOGONAL COMPLEMT

Given a rectangular matrix of order nxs, the equation

q x = 0

has non-zero solutions for x . Following the regular method

of solving simultaneous equations ( s equations in n un-

knowns), x can be expressed in the form of a linear combination

of n-s columns, with n-s arbitrary parameters as the

coefficients of the linear combination. The n-s basis columns

are not unique, for linear combinations of these columns rnay in

turn be used as another basis. In any case, select one set of

linearly independent columns as a basis for x , and let these

columns form the matrix Q.
This procedure gives one form out of the many possible

forms for the orthogonal complement of Q

Every column of Q, is orthogonal to every column of Q . If,

in addition to that, the columns of Q, itself are required

to be orthogonal to each other, the following procedure may

be followed.

Given x1 , x 2 * 'k k linearly independent columns,

form the following linear combinations:

y1 = a X

y2 = ax211 + a22 2

y a 1x 1 + a3 2X 2 + a x3

y akll + ak2'2 + ak3x3 + .. +akkk

The coefficients aij can be determined from the orthogonality

relations:

(y ) y = 1 is an equation for al 1



(72,t2= 1 and (yl) y2 = 0 are two equations for a2 1, a22

3 t 3 1 Y2) tY3 = 0 and (yl)ty = 0 are three

equations for a3 1 , a 3 2 , a 33 , and so on. Each additional
row yields the required number of equations to solve for the
coefficients in that row, in terms of the known x's and the
previously solved coefficients of the previous rows.

The matrix formed from the y columns is a basis for the
same space (or subspace) spanned by the x columns, but it
is an orthogonal basis.

F. SUBDETERMINANTS OF THE Y MATRIX

The Y matrix of a network or an element is composed of
submatrices whose rows and columns all sum to zero. To obtain
a non-zero subdeterminant, at least one row and one column out
of each subset has to be crossed out.

Consider now such a subdeterminant, and let Y' be the
matrix leading to it. That is, Y' is the Y matrix with some
of its rows and columns omitted. Assume now that one subset
has had only one row and one column removed, while the other
subsets may have had more than one row and column removed.
In the particular subset where only one row and column are
missing, suppose the missing row has been numbered j in
the original matrix Y .

Let Y" be a matrix just like Y', with the only difference
that row k" has been removed instead of row j , k and j
being in the same subset of nodes. Given Y' , it is easy to
construct Y", for all that is to-be done is to omit row k
and substitute for it a row which would have made all the
original columns of Yt sum to zero.

In order to effect such a transformation on a matrix, it
is sufficient to apply the same transformation to a unit matrix,
which will result in a matrix T , say, and then premultiply
Y' by T . (For the same operation on columns, form Tt by
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column operations on the unit matrix, and postmultiply Y' ).

For row operations,

Y"= T Y'

det Y" = (det T)x(det Y')

As an example of this operation on the rows of a unit matrix,

1 o' 0 0 0 0 to 0 0

o i 0 0 0 0 0 0 0

ob0 0 o0 F6 00-
0 0 0 1 0 0 0 0 0

T' = 0 01-1 -1 -- 1 0 0 0

0 O'O 0O 10 0 0
0 01 0 0 0 0 11 0 0
0 0 0 0 0 o0O 1 0
0 0 0 0 0 0 10 0 1

The matrix is written here in a partitioned form, and shows

an example of this operation performed in the second of three

subsets. The matrix T' is not yet the required matrix T

because the j-th row has been inserted in the position

vacated by the k-th row, and still has to be moved to its

original position to form T . The transformation from T'

to T involves moving this row j-k-i places; each move

to an adjacent position changes the sign of the determinant, so

det T = (-1)~k ~ det T'

The determinant of T' is easy to compute, if developed in

terms of co-factors of the row containing the (-l)'s. Each

cofactor:Mill have a row of zeroes, except the cofactor of the

term on the principal d.iagonal. The latter cofactor is 1 , and

det T' = -1

det T = (- 1) x (-1)j-k-1

=(-1) j-k =(_l) J%
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det Y" = (-.1)j+k det Y

If Y" is obtained from Y' by changing the omitted column,
the relations will be

Y" = Y' Tt

but, since
det Tt = det T

there will be no change in the final result

det Y" = (-1 )j+k det Y'

This proves the theorem used on page 68.
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