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ABSTRACT

The main topic is the finite amplitude evolution of weakly

unstable, linear eigenmodes in a meridionally varying version of

Phillips’ two-layer model. Interactions between neutral modes and the

unstable mode strongly influence the evolution of the latter and are

capable of stabilising it before significant changes occur in the zonally

averaged flow. In the absence of resonant triad effects, the combined

influence of changes to the mean flow and higher harmonics of the

unstable wave is sufficient to equilibrate the unstable wave. The

enhanced importance of neutral sidebands and the details of the evolution

are interpreted as being consequences of the structure of the eigenmodes

of the linear problem which is strongly affected by the meridional

variation of the potential vorticity gradient of the basic flow.

Some aspects of resonant triad dynamics in a meridionally uniform,

vertically sheared, two-layer model are also considered. Non-linear

interactions between a resonant triplet of neutral waves can lead to

baroclinic instability. Resonant interactions between a slightly

supercritical unstable linear mode and two neutral waves can destabilise

the weakly finite amplitude equilibration of the unstable mode that would

occur in the absence of the sidebands, when the basic state is not close

to minimum critical shear.
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ABSTRA™™

Several problems are addressed herein, They are loosely connected

by the theme of resonant triad interactions. The main topic is the

finite amplitude evolution of weakly unstable, linear eigenmodes in a

meridionally varying version of Phillips' two-layer model. It is shown

in chapter four that interactions between neutral modes and the unstable

mode strongly influence the evolution of the latter and are capable of

stabilising it before significant changes occur in the zonally averaged

flow. The evolution of the unstable wave in the absence of such resonant

triad effects is also considered and it is shown by example that the

combined influence of changes to the mean flow and higher harmonics of

the unstable wave is sufficient to equilibrate the unstable wave, (The

higher harmonics are unimportant in the meridionally uniform version of

this model). The enhanced importance of neutral sidebands and the

details of the evolution are interpreted as being consequences of the
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structure of the eigenmodes of the linear problem. It is shown in

chapter three that, near minimum critical shear, meridional variation of

the potential vorticity gradient of the basic flow can introduce dramatic

changes in the structure of the normal modes.

Some aspects of resonant triad dynamics in a meridionally uniform,

vertically sheared, two-layer model are considered in chapter two. It is

shown that non-linear interactions between a resonant triplet of neutral

waves can lead to baroclinic instability. It is also demonstrated that

resonant interactions between a slightly supercritical unstable linear

mode and two neutral waves can destabilise the weakly finite amplitude

equilibration of the unstable mode that would occur in the absence of the

sidebands. This demonstration is limited to the case in which the basic

state is not close to minimum critical shear, Finally, the work of

Loesch (1974), who examined the evolution of a weakly unstable mode and a

pair of neutral waves in a basic flow that is close to minimum critical

shear, is repeated with the difference that critical layer effects are

included.

Thesis Supervisor: Joseph Pedlosky, Senior Scientist

Department of Physical Oceanography

Woods Hole Oceanographic Institution
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2.1

2.2

2 3

(After Phillips, 1954, fig. 1) Contours of growth rate as a

function of zonal wavelength L and vertical shear dU/dz ,

where L = 2n/kg and du/dz = U,/H. The numbers on the

contours indicate the doubling time (in days) of the gravest

unstable mode in Phillips' two-layer model. The parameters

of the model were chosen so that:

H=8.08kn , Lo=930kn , 8=1.6Xx10" mst

Possible forms of F(x) in the region to the right of the

largest positive root, Xp. In (a) and (b), F(x) intersects

the x-axis at a finite angle. In (c) and (d), x; is a

double or triple root.

The evolution of the total perturbation energy of an unstable

neutral wave triad over the interval 0 &lt; T &lt; 950. The triad

is the one discussed in the text and the figure shows the

results of a numerical integration of the potential vorticity

aquations.

A map of the areas in the (8 , a’) plane in which may be

found neutral Rossby waves that are elements of an unstable

triad in which the waves have meridional structures given by

n = (1,1,-2). The vertical structures of the three waves are

assumed to be given by m = (-1,-1,1). Three regions are

shown shaded, two of which overlap. Region Dy corresponds
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to possible values of al. Given a particular value of

8, for each choice of 2 in Dj one can find a pair of

values (a , al) lying in DX D ([i,k,1] = a

cyclic permutation of [1,2,3]) which complete an unstable

resonant triad. Note, for 8 &lt; 12.95, there are no unstable

triads with this meridional and vertical structure,

? 4

2.5

2.6

? 7

A similar map to that in fig. 2.3, but with n = (1,2,3) and m

= (-1.-1,1).

a) Plots of M;s M, and Ng as functions of 8 for a

resonant triad consisting of two neutral modes and a marginal

mode. The marginal mode corresponds to the left (long-wave)

branch of the marginal curve, The meridional and vertical

structures of the triad are n = ( 1,-3,2) , m = -1 m,

= 1 (case A in the text). b) K, as a function of 8 for

the same triad as in fig. 2.5a.

a) As in fig. 2.5a but with neutral modes of different

vertical structures ( m= 1, my, = -1 : case B in the

text). b) Kg as a function of 8 for the same triad as in

fig. 2.6a.

An example of the evolution of an unstable triad (case A, 8 =

13.0). The amplitudes of each of the three waves is shown.

During the early part of the run (up to about T = 16), the

scale at the left applies. After about T = 16, the three

curves are rescaled to accomodate their rapid growth and one

should refer to the right-hand scale.
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2.8

2.9

2.10r

1+

roa. i

" 12

3 1

3.7

Similar to fig. 2.7 but for case B at 8 = 11.0 .

The evolution of a resonant triad near minimum critical

shear, The triad consists of the marginal mode and two

neutral waves. (a) - (d) show the evolution when the

critical layer effect is excluded, (e) - (h) include this

effect.

(a) and (e) : Ag

{b) and (f) : Ay

(c) and (g) : A,

(d) and (h) : Py

(F = 8, Ay(0) = .0707, A,(0) = 0177, A,(0) = 0.0;

case 1)

Similar to fig. 2.9 but for F = 8, Ay(0) = 0.0354,

A, (0) = 0.0354, A, (0) = 0.0354 (case 2).

Similar to fig. 2.9 but for F = 8, A4(0) = 0.0534,

A,(0) = 0.0707, A,(0) = 0.0707 (case 4%,

Similar to fig. 2.9 but for F = 12, Ag(0) = 0.582,

A, (0) = 0.0146, A,(0) = 0.0291 (case 9).

The tip of the numerically determined marginal curve plotted

in the (k2, g) plane. Case 1: F =10.0, U = 1.0, hy =

5.0 (8, = 15.0).

The full marginal curve for the gravest unstable mode of

Case 1.
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3.3

1.4

3.5

3.6

1

3 8

The real and imaginary parts of the phase speed, Cy and

c;» plotted against the square of the wavenumber. 8 =

14.96, a = 0.04 (F = 10.0, U = 1.0, h, = 5.0).

The phase speed along the right-hand branch of the marginal

curve, c,(8), plotted against the supercriticality a.

(F = 10.0, U = 1.0, h, = 5.0).

a) The magnitude of the lower layer streamfunction for the

unstable mode at 8 = 14.96, k = 2.261 (F = 10.0, U = 1.0,

ny = 5.0).

b) The magnitude of the upper layer streamfunction.

c) Zonally averaged heat flux (multiplied by F) as a function

of v.

The marginal curve for the gravest unstable mode when F =

6.6164, U = 1.0, h, = 9.8836 (Case 2).

a) The magnitude of the lower layer streamfunction for the

unstable mode at 8 = 16.3, k = 2.544 (F = 6.6164, U = 1.0,

hy = 9.8836).

b) The magnitude of the upper layer streamfunction.

c) Zonally averaged heat flux (multiplied by F) as a function

of v.

Quantities associated With the unstable eigenmode of fig.

3.7: a) heat flux, b) temperature tendency, cc) upper layer

momentum flux, d) lower ow momentum flux, e) upper layer
Reynolds' stress divergence f) lower layer Reynolds' stress
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divergence g) secondary circulation: upper layer meridional

velocity h) secondary circulation: vertical velocity i) up-

per mean zonal acceleration Jj) lower mean zonal acceleration,

3.9

A]

1.2

1.3

} ff

15

"A

Dispersion curves for the first three slow,

solutions of (3.26).

neutral mode

Kinetic energy of the (0) Fourier component (wave 0) of

the upper layer perturbation during run Al,

As fig. 4.1 but showing all three

components (waves 0-2).

principal Fourier

As { ig 4.1 but durina run Bl.

As fig. 4.2 but during run Bl.

= wave 0, -——— wave 1. A wav. 2.

Rates of baroclinic conversion of energy between an indivi-

dual wave and the mean flow during Bl.

» wave0|,-—-- wave 1. = —==Wava 2.

Meridional profiles of the heat flux associated with the

unstable wave, wave 0, at several times during run Bl.

Profiles are plotted only for 0&lt;y&lt; 0.5 , they are

symmetric about y = 0.5 .

a) t =0.0,b)t=4000.0 . ¢c) t = 5500.0,d)t-
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e) t = 12500.0, f) t = 14500.0, g) t = 16500.0

4.7

4.8

AQ

1.10

1.1”bs

The kinetic energy of the upper layer perturbation associated

with wave 0 during several different runs. The initial

amplitude of wave 0 was the same for each run. The values of

F, U, 8 and h, are the same as those used in run Al, The

wavenumbers and/or the initial sideband amplitudes differ

between runs.

R22/24 is the first part of run Bl.

R26: As R22/24 but with initial sideband amplitudes increased

by a factor of 2.

R27: As R22/24 but with initial sideband amplitudes decreased

by a factor of 2.

R31: Similar initial amplitudes as R22/24 but with (0) =

2.253, (Uy . _1.2044, (2) _ _0.95858. This corresponds

to a triad in which wave 0 has a smaller value of 5

than in R22/24.

R32: Similar initial amplitudes as R22/24 but with (0)y =

2.267, (Mk = 1.3008, Pk = _0.96622. Here k5 is

larger than in R22/24.

As fig. 4.2 but during run A2.

As ig. 4.2 but during run B2.

As £93. 4.1 but during run A3.

As fig. 4.1 but during run B3.
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4.12 As fig. 4.1 but during B4.
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CHAPTER O

0. Introduction

The work in this thesis addresses some problems in the general area

known as the theory of baroclinic instability. The purpose of this intro-

ductory chapter is two-fold, to give a succinct statement of the problems

dealt with in the remainder of the thesis and to provide a setting and

motivation for those problems by briefly describing the phenomenon of

baroclinic instability and some of the the techniques used to analyze it.

We will tackle the second objective first.

The main driving force behind the recognition and subsequent explora-

tion of baroclinic instability has been the study of meteorology. It was

recognized that, for a model Earth consisting of a rotating, spherical

planet surrounded by a vertically, but stably, stratified atmosphere, a

possible equilibrium response to the meridionally asymmetric net input of

solar radiation was a steady, axisymmetric, convective circulation. To

some extent this resembles the average properties of the tropospheric

circulation. The mean winds are predominantly zonal and there is usually

a large-scale meridional circulation in lower latitudes, the Hadley cell.

However, there are many points of difference between the theoretical equi-

librium circulation and the terrestrial troposphere. The real atmosphere

is unsteady. Large, planetary scale waves may be seen standing or slowly

propagating zonally in the height fields of the upper air pressure sur-

faces. The equator-pole temperature difference on the Earth is substan-

tially less than that predicted by the equilibrium model, suggesting a
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meridional heat transport that is stronger than that associated with the

meridional circulation of the equilibrium model.

It was shown by Charney (1947) that steady equilibrium flows like that

of the model above tend to be unstable, Such a state contains a larger

amount of potential energy than would a resting atmosphere in which the

isopycnals lay parallel to the geopotential surfaces. The excess poten-

tial energy is often referred to as available potential energy (Lorenz,

1967). Charney showed that there is a class of wave-like perturbations

to such an equilibrium which can convert the potential energy of the equi-

librium state to kinetic and potential energy of the wave. These waves

can then grow at the expense of the equilibrium flow and are therefore

known as baroclinically unstable perturbations. As the potential energy

of the equilibrium flow is depleted, the isopycnal surfaces must become

more nearly parallel to the geopotentials, i.e., the meridional tempera-

ture gradient is reduced by the growing perturbations. As it grows, the

unstable perturbation produces a meridional flux of density down the

horizontal density gradient, or equivalently, a meridional heat flux.

Such an instability mechanism can go a considerable way toward

explaining the existence of unsteady wave-like motions superposed on the

general zonal circulation, the reduced equator-pole temperature differ-

ence, and the reduced zonal velocities of the general circulation, Suf-

ficient evidence seems to have been accumulated for it to be undeniable

that the mechanism of baroclinic instability plays an important role in

maintaining the average circulation of the Earth's troposphere. A descrip-

tion of such a role in the context of a general circulation theory can
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be found in the discussion by Charney (1959) of an idealized model

atmo sphere,

By dynamical analogy, there are some environments in the ocean which

may support baroclinic instability by virtue of the available potential

energy of the flow. These include vertically sheared boundary currents

such as the Gulf Stream, open ocean currents such as the North Equatorial

Current and the Antarctic Circumpolar Current, and broader areas of ver-

tically sheared flow such as the recirculation regions adjoining the Gulf

Stream and the Kuroshio. Direct evidence for the existence of baroclinic

instability in the ocean is scantier than in the atmosphere and the role

that baroclinic instability might play in the circulation of the ocean is

less clear-cut. Since a down-gradient eddy heat flux is a symptom of a

naroclinic conversion mechanism in the act of depleting the available

potential energy of a larger scale flow, some investigators, notably Bry-

den (1979 and 1982) have looked for such fluxes as evidence of baroclinic

instability. Bryden seems to have found such energy converting fluxes in

the Antarctic Circumpolar Current in the neighborhood of Drake Passage

and in the Gulf Stream recirculation area.

The general circulation of the ocean is neither as well observed nor

as well understood as that of the atmosphere, and one cannot say with

certainty whether baroclinically active eddies are responsible for sig-

nificant meridional transports of heat across the main ocean basins. It

is. however, known that the main ocean basins contain a substantial amount

of energy at scales of the order of the internal deformation radius (e.qg.,

Dantzler, 1977). In the interior of the subtropical gyres, this eddy
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energy dominates the kinetic and available potential energy of the larger

scale, slow, mean circulation, The question of what are the sources of

this eddy activity is an intriguing one. One candidate for supplying

part of this may be baroclinic instability of the stronger current and

recirculation regions.

In recent years a considerable effort has been made to construct

numerical models of the wind-driven circulation in idealized ocean

basins, that are capable of resolving eddies on the 100 km scale (e.g.,

Holland, 1978). These models, which have had some success in reproducing

features such as western boundary currents that subsequently separate and

the strong recirculation regions associated with them, also show the pro-

duction of an active eddy field, some of which is converting available

potential energy of the larger scale flow into eddy energy.

One last possible area in which baroclinic instability may be a fea-

ture is in the dynamics of the large rotating dust clouds that are pre-

cursors of galaxies and galactic clusters.

Theoretical studies of baroclinic instability have had several goals:

to elucidate the physical mechanism responsible for the instability, to

discover which types of equilibrium state are unstable, to determine the

distribution of the heat flux associated with the wave and to be able to

describe how an initially small, unstable disturbance may evolve. Given

the rather turbulent nature of the atmosphere and ocean, it is of inter-

est to discover which horizontal scales are preferred by growing disturb-

ances and how this energy is transferred to other scales to set up the

observed energy spectra.



20

The usual starting point for theoretical investigations has been to

take an equilibrium flow of simple form, which satisfies the equation of

motion; for example, a steady, uni-directional, non-divergent flow, and

to study the evolution of small disturbances to this state by linearizing

the equations of motion about this equilibrium solution. The linear prob-

lem can then be treated either as an initial value problem (Farrell, 1984;

Pedlosky, 1964) or as a normal mode problem. Solutions in which the en-

ergy of the perturbation increases with time are then classed as unstable.

The philosophy behind such an approach is that if one starts with a very

small perturbation to the equilibrium state, then the effects of the omit-

ted non-linear terms will, at first, be small. The time scale for changes

produced by the action of the non-linear terms will therefore be long.

If the intrinsic properties of the linear solution are such that the en-

ergy of that solution can increase on a finite time scale, then one can

claim that the linear dynamics will give a good approximation to the evo-

lution of the unstable perturbation for as long as its energy is suffi-

ciently small that the time scale of non-linear effects remains larger

than the linear growth time scale. One expects that if the growth is

sustained, then, after some initial period, the linear dynamics will

become invalid and any consistent description of the subsequent evolution

must also include non-linear effects. Several investigators have develop-

ad techniques to follow the solution beyond the linear first phase.

Although the linear theory cannot tell us about the stability of an

aquilibrium flow to arbitrary disturbances of finite amplitude it appar-

ently provides us with very useful information. It tells us something
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about which flows will be stable to a class (but not all) of small per-

turbations (more precisely, it tells us about the ability of flows to

support instabilities which have a finite value for the initial growth

rate in the 1imit that the initial amplitude of the perturbation tends to

zero). It describes what spatial structures disturbances which belong to

this class adopt. In some cases it tells us that a particular horizontal

scale will grow more rapidly than others. It can even provide some idea

of how a growing disturbance in this class will try to modify the equi-

librium flow, if we calculate the quadratic fluxes of momentum and dens-

ity that are associated with the growing disturbance by using the linear

structure of that disturbance.

What linear theory fails to tell us about disturbances of weak initial

amplitudes is whether there are types of small amplitude disturbance that

do not possess any "linear" means of extracting energy from the equilib-

rium state (in the sense that they do not contain an unstable normal mode

of the linear system), yet nevertheless, by virtue of the non-linear terms

in the equation of motion, can extract energy from that state. One would

expect that any such disturbances would exhibit initial growth rates that

are slower and slower as we make the initial amplitudes smaller and smal-

Ter (the linear 1imit). Yet is seems that from a physical point of view,

such disturbances might be important since in studying the stability of

physical equilibria, one is concerned with stability to physical pertur-

bations which will have a finite amplitude, even if this is small. A

second property that one might speculate upon for instabilities in which

the energy extraction process depends on the non-linear rather than the
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linear terms in the perturbation equations of motion, is whether the

growth rate will not increase as the disturbance grows since the relative

size of the non-linear terms, and hence the extraction rate, will increase

as the square of the disturbance amplitude. Such an effect might make

the instability of one of these weak, non-linear instabilities, whose

development would be initially rather slow, ultimately rather powerful.

For the normal mode instabilities of linear theory, we have the

unphysical result that the growing wave increases its amplitude at the

same exponential rate forever and that no mechanism for diminishing the

lack of stability of the underlying basic state is included. From the

point of view of circulation modelling, one would Tike to know what

changes the growing wave induces in the mean flow that is supporting the

instability. One can obtain some insight into this by adopting a quasi-

linear approach (Phillips, 1956; Charney, 1959). In this, the structure

of the unstable wave is taken from linear theory, an amplitude for this

wave is assigned or determined, the quadratic eddy fluxes are calculated

and the resulting changes in the mean circulation are computed. Omitted

in Phillips’ theory is the feedback mechanism associated with the fact

that, as the growing eddy field modifies the mean flow, so the insta-

bility properties of the mean flow change and the growth characteristics

of the eddy field are altered. If the modifications to the mean flow are

such as to reduce its degree of instability, then the feedback loop is

negative and one has a way of restraining the growth of the eddy field.

The fully non-linear problem which one would have to solve in order

to follow the evolution of an unstable disturbance whose growth time

scale according to linear theory was of the same order as the time scale
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for the advection of the disturbance by the mean flow, would be extremely

complicated. Charney (1959) simplified the problem by making the ad hoc

assumption that the shape of the unstable Fourier component is unchanged

by the non-linear interaction process. However, studies by Pedlosky

(1970), Drazin (1970) and Pedlosky (1979) have shown that there is a class

of non-linear evolution problems which are tractable. The technique that

they exploit is to examine the evolution of a normal mode whose linear

growth rates are slow in comparison to the advective time scale. Over much

longer time scales, relatively weak non-linear interactions can compete

with the linear instability. Non-linearity therefore becomes significant

when the unstable wave is still small and one can develop a theory utiliz-

ing perturbation methods, centered around the linear solution, in which

the problem has two intrinsic time scales, the time scale of advection by

the mean flow and the longer evolutionary time scale over which the

disturbance amplitude changes. It is in this small amplitude limit that

Charney's shape assumption becomes justified.

By using such a "weakly finite amplitude" theory, one can explore the

mechanisms by which non-linear effects curb the growth of an unstable

disturbance once it reaches some sort of equilibrium amplitude (here and

subsequently, the idea of an equilibrated amplitude will include the case

of a state in which the disturbance amplitude fluctuates yet remains at a

constant order of magnitude). This is not equivalent to a fully finite

amplitude problem. If the tendency of a growing instability to push the

mean flow towards stability persists into more strongly non-linear re-

gimes, then one might expect a natural tendency for an unstable flow to

linger close to a stable state, i.e., be only moderately supercritical.
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In such a situation, the degree of supercriticality would depend upon the

forcing for the basic state and the dissipative mechanisms operating.

This preference for a small degree of supercriticality would depend cruc-

ially on the power of the wave-mean flow interaction mechanism. Stone

(1978) has pointed to observations which suggested that the mean state of

the troposphere is not too far removed from neutral, suggesting that

weakly finite amplitude theories may be more relevant than just giving a

mechanistic insight into the operation of non-linear processes.

Spectral transfers of energy must also be taken into account when

deciding how a growing disturbance equilibrates. If the disturbance

reaches an amplitude at which interactions between the unstable wave and

neutral waves transport energy away from the unstable wavenumber at a

rate comparable with that of the extraction of energy by the unstable

wave, then the wave must eventually stop growing. For a statistically

steady state to develop by such a means, one again requires either dissi-

pation at some range of space scales, for example, small scales, to mop

up the cascade of energy ultimately released by the agency of baroclinic

instability, or the modification of either the mean flow or the structure

of the unstable and neutral wave modes in such a way that baroclinic en-

ergy conversion is inhibited. An adequate model of the continuous spec-

trum of waves that results from wave-wave interaction processes as a

result of the baroclinic instability of a range of wavenumbers does not

seem to have been developed. Instead, mechanistic models of how baro-

clinic instability can couple to wave-wave interaction processes have

been constructed, e.g., Loesch (1974).
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The problem that 1 have attempted to address in this thesis is that

of the non-linear evolution of a weakly, baroclinically unstable wave when

the unstable equilibrium flow has a special type of meridional structure

that makes the meridional potential vorticity gradient of the basic state

exhibit a minimum within the channel. This sort of basic state has some

of the features that a jet flow in a geophysical situation might exhibit

and as such seems a worthwhile departure from the rather artificial merid-

jionally uniform states studied by Phillips, Charney and Eady. A study of

the linear problem, Chapter 3, shows that the presence of a potential

vorticity gradient, of the form described above, imparts some distinctive

features to the weakly unstable normal modes of the basic flow that are

not observed in the meridionally uniform counterpart of this model. When

one attempts to formulate the finite amplitude evolution of these weakly

growing modes (Chapter 4), one discovers that the peculiar nature of the

linear modes affects the way in which the finite amplitude evolution pro-

ceeds. In particular, the effects of wave-wave interactions between the

unstable wave and neutral eigenmodes of the linear problem can exert a

more powerful restraint on the growth of the unstable wave than the alter-

ation to the mean flow that the growing wave produces. Because of the

prominent role played by wave-wave interactions in this non-linear model,

some aspects of the interplay between wave-wave interactions and baro-

clinic instability are explored in Chapter 2. In particular, we note

there that disturbances consisting of non-linearly interacting triads of

neutral modes of the linear problem, with small amplitudes, can release

potential energy from the equilibrium flow. These furnish an example of
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a non-modal form of baroclinic instability. In Chapter 1, we present a

synopsis of some works whose content will be relevant to the research

subsequently discussed.
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CHAPTER 1

1. Background Theory

In this chapter we will review some of the theoretical results pre-

sented in four papers which deal with material germane to the work of

Chapters 2, 3 and 4. These papers both serve as introductions to the

ideas exploited in the later chapters and furnish results with which the

material of this thesis can be compared. The aim is not to present a

comprehensive summary but to select some of the most pertinent details.

At the same time we will introduce some of the notation that will be used

later, The four papers in question are those of Phillips (1954), which

looks at the linear theory of baroclinic instability in a meridionally

uniform two-layer model; Pedlosky (1970), which looks at the finite amp-

litude development of the slowly growing modes of Phillips' model;

Longuet-Higgins and Gill (1967), which discusses resonantly interacting

triads of neutral waves in a barotropic model and of Loesch (1974) who

examines the interaction of a growing baroclinic instability in Phillips’

model with two neutral Rossby waves,

Phillips (1954) presents, as part of a theoretical study of the gen-

eral circulation of the atmosphere, the properties of linearized pertur-

bations to a quasigeostrophic model of a zonal baroclinic jet. This

idealized model allows only two degrees of freedom in the vertical by

adopting a very coarse, finite-difference representation of the vertical

structure. Such a model can be re-interpreted in terms of a system

comprising two homogeneous layers of fluid, the second slightly more



28

dense than the first and lying beneath it. The two-layer and two-level

models can be shown to be equivalent (Flierl, 1978), and in an earlier

work Phillips (1951) chose a two-layer approach. Since the layer model

can be realized physically and since the investigations of Pedlosky (1970)

and Loesch (1974) were couched in terms of the two-layer model, we will

adopted the layer formalism. Before continuing with Phillips’ paper, we

will pause to describe the model in the notation that will be used

subsequently in this thesis.

The two layers of fluid are confined in a channel between rigid boun-

daries at latitude circles y = 0 and y = L, and heights z = 0 and z = 2H.

This channel is assumed to be of infinite zonal extent and to be in a

frame of reference which rotates with an angular velocity 1/2 f about a

vertical axis. We desire to model geophysical flows whose width L is of

the order of, but smaller than, the radius of the Earth. Following Rossby

11939), we choose to include the dynamical influence of the Earth's spher-

jcity by using the g-plane approximation with f = fy + gy. We are

therefore constrained to working in mid-latitudes, where fa is signifi-

cantly non-zero, and in a channel of limited meridional extent, such that

Ls/fy &lt;&lt; 1.

We consider motions which have intrinsic and advective time scales

that are long in comparison to the inertial period. Such motions include

the traveling cyclone disturbances observed in the atmosphere and the

synoptic scale eddying motions of the ocean. We adopt, as a filtering

approximation, the quasigeostrophic approximation of Charney (1948). A

detailed discussion of this and of the ancillary approximations that are

used is given in Pedlosky (197%).
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The quasigeostrophic potential vorticity equations for the two-layer

model of Phillips are

3.0" g. + (-1)3 22 (4. 4) RY + J (4. .¥° g. + (-1)7 \ (41" 8,) + gyl = 0

j = 1 »

(1.1)

where our notation is closer to that of Loesch and Pedlosky than Phillips.

3 fa g is the pressure in the jt layer, where 1 is assumed to refer to

the upper layer, hence 9; is a streamfunction for the geostrophic flow in

layer j. J is a Jacobian operator J(a,b) = a, b, - a, b,. \2 is given by

7 2 Ap.
- fa / (gH a)

(1 .2)

where Ap is the density difference between the two layers. We have used

the Boussinesq approximation. In accordance with Phillips treatment, no

bottom relief has been included and the interface between the two layers

has been taken to lie at z = H when the fluid is quiescent, i.e., the lay-

ers are of equal nominal depth, H. Ly = 2-1 is a dynamical length scale

inherent to the system, often known as the internal deformation radius.

Following the several treatments of Pedlosky and others, we shall

non-dimensionalize (1.1) at the outset. We do this by scaling: x and y

with Las z with 2H, t with A and ¢ with Uglrs where Lg and Up are

characteristic length and velocity scales of the motions of interest.

fquation (1.1) then becomes

3  dL + J (d. q.) = 0

= d+ (IF (6) - 8) +8

i

 mo 3)

(1.2 )
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In (1.3) and (1.4) 4; are scaled and dimensionless. g; is the potential

vorticity of fluid columns in the jn layer after the large but constant

term fy La/Ug has been subtracted. F and 8 are two dimensionless cons-

tants, The first is an internal Froude number and pl/2 is the ratio of

the intrinsic scale of the motions Las to the dynamical scale ZL. Bis

given by 8 L2/U and is a ratio of the planetary vorticity gradient to

the relative vorticity gradient of the fluid motions. We will make the

assumption that, relative to the Rossby number, R = Un/ (Lg fa)» both F and

3 are 0(1). We will also drop the caret from 8. It is convenient to use

a channel whose width is comparable to the horizontal scale of the motions

of interest so we will set Lp = L. The horizontal boundaries are there-

fore located at y = 0 and y = 1 in this non-dimensional system. The phys-

ical condition applied at the lateral boundaries is one of no normal flow

which can be shown (Phillips, 1954) to imply that

B ] at Y = 0. 1 (1.5a)
+ B

and

20, | dx 8; = 0 at y = 0, 1 (1.5b)

where [ax is to be interpreted as Lim (1/2L) | : dx and we have assumed
L—&gt; co -

that 9 is uniformly bounded. Boundary conditions at z = 0 and z =1 are

not explicitly required, but they are implicit in the derivation of (1.1).

We have used the condition of no normal flow through the horizontal boun-

daries. Dissipative and direct forcing mechanisms have been excluded.

In particular, no Ekman layers have been included at the horizontal

boundaries.
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Phillips (1954, Section 5) has described the properties of linear

disturbances to a basic flow which consists of a uniform zonal velocity

Uj in each layer. In our notation, the linearized vorticity equations

for the perturbation are

(3+U, 3,) a.
+ (8 = (-1)7 F (u)-U,)] 4, J ( 1 a 8)

Here the total streamfunction for each rayer is decomposed into a basic

flow plus a perturbation

B-

and qj: is the potential vorticity of the perturbation. Phillips looks

for normal mode solutions of the form

(gy d,') = (1, v5) sin n ay exp [ik(x-ct)]

and finds that the ohase spbeed, c, of these modes is given by

~~

|O'S Js 1 [- 2 2 2 .,2 .4Tag seat? la (ar?-ah1V2|)(1

In this expression, a’ = Kk? + n? e is the total wavenumber of the the

perturbation, U = 1/2 (Uy + Us) is the mean velocity of the basic state

and U, = (Uy &gt; Uy) is the vertical shear of the basic state in terms of

the Timited vertical resolution of the two-layer model. In general, there

are two values of c¢ for each wavenumber, a, corresponding to the two ver-

tical modes possible in this system. The vertical structure of these

modes is represented by the coefficient vy. which is given by
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Yj
Ca? +p BFF

= TT TTUIC
(1.&amp;°

The system is insensitive to a uniform zonal translation of the reference

frame so we may choose Up = 0, Uy = U without any loss of generality,

whence U = 1/2 U and U_ = U.

The disturbance mode grows exponentially in time when c¢ is complex

wi th c; = I (c) positive [for the conventional choice of positive Kk.

Note that only k2 occurs in (1.7) and (1.8)]. These unstable modes

will have a complex Ys and it can be shown that for each unstable mode

) arg (vs) 2 x/2

This phase 1ag between the upper and lower layer means that the heat flux

associated with the perturbation, when averaged over a wavelength and

integrated across the channel, i.e.

1 2n/K

[ dy - [ dx LF U (vy + Vy) (d,- 4,)
0 0

is positive. It is this meridional transport of heat that is the mech-

anism by which potential energy is released from the mean flow and con-

verted into energy of the perturbation,

Phillips found that the contours of constant growth rate for the dis-

turbance take the form shown in Figure 1.1. In Figure 1.1, the contours

of constant growth rate are mapped on a plane with axes corresponding to

the basic shear and the disturbance wavelength. There are several fea-
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Figure 1.1: (After Phillips, 1954, Fig. 1) Contours of growth rate as
a Function of zonal wavelength L and vertical shear dU/dz , where L =

2n/kg and dU/dz = Ux/H. The numbers on the contours indicate the
doubling time (in days) of the gravest unstable mode in Phillips’

two-layer model. The parameters of the model were chosen so that:

H=4.08km , Lp=2930km , 8 =1.6X% 10-11 py s-1
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tures of this graph which we wish to note for future reference. There is

a minimum critical shear below which baroclinic instability is not possi-

ble. This is also the value of the shear parameter above which the two-

layer model version of the sufficient criterion for stability derived by

Charney and Stern (1962) is no longer satisfied. If one rearranges the

dispersion relation, one can show that the boundary between neutral and

unstable perturbations is determined by only two parameters g/FU and

al JF. Thus for fixed F, increasing U is equivalent, as far as stabil-

ity properties are concerned, to decreasing 8. Thus, if we view F and U

as fixed, the stability threshold noted above corresponds to a minimum

critical 8 above which instability is not possible. In subsequent chap-

ters, this is the view which we will adopt. This should not be allowed

to obscure the fact that what we are really doing is varying the dynam-

ically significant parameter 8/FU which, in the dimensional variables, is

r= Lqx D

The asterisks are to denote true dimensional quantities and Lp is the

internal deformation radius defined earlier. The stability threshold

amounts to requiring that the vertical shear U., exceed a value deter-

mined by the strength of the restoring force for vorticity oscillations,

represented by 8, and the inertia of the system to internal oscillations

represented by 2.

For values of the shear above the critical threshold only a limited

range of wavenumbers is unstable; both a long and a short wave cutoff are
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present. Near the critical value of U, the marginal curve (i.e., the

stability boundary in Figure 1.1) is parabolic. The growth rate tends to

zero as one approaches the stability boundary, i.e., the modes close to

the marginal curve grow only slowly with time.

Using the analytically determined forms of the linear eigenmodes,

Phillips went on to compute the eddy heat flux associated with the

unstable mode and thence the secondary meridional circulation and the

changes to the mean zonal flow that these fluxes would have produced

after a certain time had elapsed. Phillips' aim in using this quasilinear

theory was to estimate the redistribution of heat and momentum that the

baroclinic eddies might produce when they had grown to amplitudes that

might be typical of the Earth's atmosphere. Because such a theory does

not include any feedback between the changes induced in the mean flow by

the growing waves and the instability properties of the waves, the choice

of wave amplitude used in such a calculation is, in a sense, arbitrary.

Phillips chose the wave amplitude by requiring that the rate at which the

heat transported by the eddies warmed the northern half of the "northern

hemi sphere", that his model represented, match the estimated diabatic

cooling rate for the same region. Phillips provided a rather successful

theoretical model of some of the qualitative effects of eddies on the

mean circulation that had been postulated by Jeffreys (1926, 1933). But

this model still leaves unclear the answer to the question of how the

growth of the unstable eddies is curtailed. However, the seeds of a pos-

sible mechanism are contained within this model. The alteration to the

mean flow calculated by Phillips as a consequence of the growing waves
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was such as to reduce the average vertical shear of the mean flow. The

linear results indicated that the mean flow was less unstable (the growth

rates at a given wavenumber were less) at smaller shears, so that this

second order effect should be stabilizing. The non-linear analysis

required to incorporate this feedback mechanism in the general case of

initial parameters that corresponded to an unstable wave whose growth

rate was 0(1) seems rather intractable. Charney later refined Phillips’

model (Charney, 1959) and included this stabilizing mechanism in a heur-

istic way by balancing the rate at which energy was released from the

modified mean flow against the rate at which perturbation energy is dis-

sipated. Pedlosky (1970) recognized that under some circumstances, the

non-linear analysis could be simplified and this feedback mechanism

successfully included in a more rigorous fashion.

The essence of Pedlosky's method is to look at a single unstable wave

whose growth rate is small because one has chosen values of 8/FU and

al JF that lie close to the position of the marginal curve. We shall

describe the case for which 8/FU does not correspond to the position of

minimum critical shear but rather a /F and g8/FU are such that the point

they define on a stability diagram such as Figure 1.1 lies near to one

side of the marginal curve, The original basic flow is then only slightly

unstable for a disturbance at the wavenumber described. As the initially

linear unstable eigenmode grows, it produces a correction to the mean flow

that is proportional to the square of the eigenmode amplitude. This re-

duces the mean vertical shear. However, since the original mean flow was

only slightly unstable, only a relatively small modification is required
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to stabilize the mean flow. Thus while the unstable wave is still fairly

weak, it has succeeded in choking the mechanism that was allowing it to

grow. The fact that throughout this process the unstable wave has never

reached a large amplitude enables one to develop the non-linear solution

as a perturbation series in the amplitude of the unstable wave or, more

conveniently, in the distance below the marginal curve that the initial

value of 8/FU lies, since it is this that controls the amplitude that the

unstable wave can reach.

The above is a rather sketchy summary of the basic mechanism operat-

ing in the non-linear model considered by Pedlosky. The detailed picture

is somewhat more involved and one should refer to the paper in question

for the precise nature of the evolution. Pedlosky's analysis shows that

the growth of the unstable wave is halted by the mean flow modifications

and that, in the absence of friction, the amplitude of the unstable wave

vacillates in a regular, periodic way. Because the parameters are such

that the unstable wave lies close to the marginal wave, the e-folding

time scale of the linear unstable eigenmode is long in comparison to the

periods of most of the neutral waves. This fact is used in the method of

analysis, which considers separating the dynamics that occur on the two

time scales. The amplitude vacillations of the unstable wave are charac-

terized by the longer, e-folding time scale.

In choosing to site this weakly finite amplitude analysis close to

the side of the marginal curve rather than in the vicinity of minimum

critical shear, one is including an element of inconsistency in that, for

the same value of g/FU, there are wavenumbers further into the interior

of the unstable region which have larger, 0(1), growth rates that would



38

overpower the unstable wave on which the analysis has been concentrated,

and to which the weakly finite amplitude analysis would be inapplicable.

One situation in which this might be avoided would the case of a periodic

zonal domain such as an annular channel in which the quantization was

such that the only unstable wave which fit the domain was one close to

the marginal curve.

One would prefer to look at an unstable mode in the vicinity of mini-

mum critical shear. For the meridionally uniform model, the finite amp-

1itude problem in the neighborhood of minimum critical shear is a little

degenerate and one finds a critical layer effect which alters the behav-

ior of the problem (Pedlosky, 1982). Alterations to the mean flow can

cause the unstable wave to equilibrate but the finite amplitude evolution

is more complicated than a periodic amplitude vacillation and many zonal

scales are stimulated (Pedlosky, 1982; Boville, 1981). The inclusion of

meridional variation in the potential vorticity gradient or velocity

field of the lower layer should remove this effect.

It may at first seem something of a limitation to confine attention

only to the weakly growing waves near the marginal curve, however, this

is not so strong a constraint as it might appear. The weakly supercriti-

cal waves are those which one first encounters as one gradually increases

the mean shear to pass from the stable regime to the unstable regime. If

the tendency of a growing baroclinic disturbance to stabilize the verti-

cal shear is robust, as the work of Phillips would suggest, then one has

a dynamical reason for the mean flow to lie not too far from critically

stable conditions.
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Pedlosky's model of non-linear equilibration has demonstrated a mech-

anism for curbing the growth of a baroclinic instability that linear

theory alone would not have predicted and shown how this pivots on the

way in which the growing wave modifies the mean flow. One of the reasons

for being interested in the dynamics of finite amplitude eddies was their

ability to transport heat. In the equilibrated inviscid model of Ped-

losky (1970), the mean meridional addy heat flux, when averaged over a

vacillation period, is zero! However, the introduction of dissipation

(e.g., Pedlosky, 1971) enables one to recover a non-zero average heat

flux in a model which retains the wave-mean flow interaction process as a

method of containing the growth of an unstable perturbation,

The model described above does not include any interaction between

the unstable wave and neutral waves of the system. The inclusion of non-

linear processes allows the possibility of such interactions. Pedlosky's

model is consistent in that, given initial conditions in which neutral

Rossby waves are absent, they will not, in general, be forced by the

dynamics of the unstable wave at amplitudes that would be significant.

However, if such waves are included in the initial conditions, alongside

the unstable wave, it is possible under some circumstances that they will

interact with the unstable wave on the time scale of the weakly finite

amplitude evolution theory,

Such wave-wave interactions (as distinct from the wave-mean flow

interactions present in Pedlosky's model) may be of interest for several

reasons, They may, for example, allow the energy extracted from the mean

flow by the primary baroclinic instability to be transported to other
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length scales that are not directly unstable. There may be significant

transport of energy to shorter, more dissipative length scales. Such an

effect might alter the size of the heat flux associated with the unstable

wave in an "equilibrated" state. The forcing of neutral waves having

amplitudes comparable to the unstable wave and fluctuating on the same

timescale as the unstable wave would produce additional modifications to

the mean flow of similar size to that produced by the unstable wave and

so modify the equilibration process described by Pedlosky (1970).

A general attempt to model interactions between a range of unstable

waves and a spectrum of neutral waves would be extremely complicated.

However, models which included only one unstable zonal Fourier component

and a small number of neutral Rossby modes would be more manageable and

should give some insight into the interplay between wave-wave and wave-

mean flow interactions. An attempt to construct such a model has been

made by Loesch (1974). Amongst waves of weak amplitude it can be shown

that the strongest wave-wave interactions occur between waves which form

certain resonant multiplets. For the particular dispersive properties

of the eigenmodes of the two-layer model, the appropriate multiplets are

triplets. Before discussing Loesch's paper, it will be useful to briefly

consider the dynamics of resonant triads. These are discussed, albeit

for a different physical system, by Longuet-Higgins and Gill (1967).

Lonquet-Higgins and Gill considered interactions between Rossby waves

in an equivalent barotropic model on an infinite g-plane in which there

was no mean flow. Such waves interact most readily when three of the

waves satisfy resonance conditions similar to
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3

where LY are the horizontal wavenumbers of the three waves and os (5) are

the frequencies. In the above paper, equations governing the slow evolu-

tion of the amplitudes of three waves, satisfying these resonance condi-

tions, are obtained for the case in which each of the waves is of small

amplitude. If e, &lt;&lt; 1, is a small number characterizing the amplitudes of

the three waves, then the non-linear interactions between the elements of

the resonant triad modify the amplitudes on a time scale, e~L. The

evolution, in general, takes the form of a phase locked vacillation in

the amplitudes of the three waves, where the relative phases are such

that the energy of the triad as a whole remains constant. When the three

waves satisfy a further constraint on their relative phases, Longuet-

Higgins and Gill show that the amplitudes of the three waves may be

described by Jacobian elliptic functions. It can be shown that this is

also true for general relative phases of the waves, The authors also

showed that in the case of the single layer model without any mean flow,

the triad must conserve its total wave energy. They also calculated the

amplitude of one of the waves non-resonantly forced by the non-linear

interaction and showed that the small amplitude dynamics are consistent

when the ratio of particle velocity to phase speed is small for each of

the three principal waves.

The importance of this triad interaction phenomenon is that it indi-

cates a preferred mechanism for the transfer of energy between wavenum-

bers in a weak wave-field. Each element of the triad would, in a more
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realistic system, be involved simultaneously in triad interaction with

other neutral modes. In a situation in which energy is being injected

slowly and over a limited range of wavenumbers, one might expect that

resonant triad interactions, at least initially, will be important in

redistributing this energy over the wavenumber spectrum. If there is

sufficient dissipation to allow an equilibrium spectrum of weak energy to

be established, then triad interaction will continue to be important.

Such a slow injection of energy at a narrow band of spatial scales could

be the result of baroclinic instability under weakly supercritical

conditions.

Loesch (1974) considered a model in which a single baroclinically

unstable wave, in a flow similar to that considered by Phillips (1954),

was allowed to interact resonantly with a pair of neutral Rossby waves.

The unstable wave was presumed to lie a small distance a below the mar-

ginal curve so that in the absence of the neutral waves it would evolve

according to the weakly finite amplitude theory of Pedlosky (1970, 1982).

The two neutral waves were chosen to form a resonant triad with the mar-

ginal wave adjacent to the unstable wave. Loesch showed that when the

unstable wave was near one of the sides of the marginal curve, i.e., away

from minimum critical shear, the dynamics of both the wave-mean flow

interaction process and the resonant triad interaction would be signifi-

cant (i.e., the time scales of changes in the amplitude of the unstable

save to wave-mean flow interaction and in the amplitudes of all three

waves due to wave-wave interactions between the triad elements, are simi-

lar and are comparable to the e-folding time scale of the linear instabil-
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ity) when the amplitude of the unstable wave is ofa]? where A is

the supercriticality, and the amplitudes of the sidebands are o(]a13/4y.

Loesch did not consider this case any further and moved on to the case in

which the slightly supercritical mode lies just below minimum critical

shear, showing that again the processes of wave-mean flow interaction and

triad interaction could be equally significant. In this instance, the

natural scales for the wave amplitudes are each o(1a 11%).

The two features of such a system are firstly that the energy of the

"unstable" mode is shared with waves whose length scales are stable

according to linear theory and secondly that the finite amplitude evolu-

tion of the unstable wave is modified by the presence of the sidebands.

However, we emphasize that the wave-mean flow interaction mechanism nev-

ertheless remains an integral part of this evolution. This should be

contrasted with the results that will be presented in Chapter 4. The

numerical computations of Loesch did not allow for the critical layer

effect noted by Pedlosky (1982) so we will not discuss their results

here, but the discussion of amplitude scaling and hence the relative

importance of the two non-linear interaction mechanisms remains valid.
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CHAPTER 2

2. Triad Interactions in Vertical Shear Flows

Abstract

Three related problems concerning the evolution of disturbances in

Phillips' model are considered. Firstly, it is shown that non-linear

interactions between a resonant triplet of neutral waves in a vertically

sheared flow can lead to baroclinic instability. Secondly, we

demonstrate that resonant interactions between a slightly supercritical

unstable linear mode and two neutral waves can destabilize the weakly

finite amplitude equilibration of the unstable mode that would occur in

the absence of the sidebands. This demonstration is limited to the case

in which the basic state is not close to minimum critical shear.

Thirdly, we repeat the work of Loesch (1974) in examining the evolution

of a weakly unstable mode and a pair of neutral waves in a basic flow

that is close to minimum critical shear with the difference that critical

layer effects are included.

A feature of the finite amplitude analysis to be presented in Chap-

ter 4 will be the inclusion of wave-wave interactions between members of

a resonant triad. It became clear while studying this material that

there were some interesting differences between resonant triad interac-

tions in a shear flow and their counterparts in a fluid at rest. For

that reason, we have included the brief studies that make up this chapter.
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A simple environment in which to observe the dynamics of resonant

triads, when embedded in a vertically sheared flow, is the meridionally

uniform, two-layer model of Phillips (1954). Loesch's study of 1974 con-

siders triad interactions in such a model in the case that one of the

triad members is a slowly growing wave near minimum critical shear. In

this chapter we shall consider this case further and also look at triads

composed entirely of neutral linear modes. There will thus be three sec-

tions. In the first we consider the dynamics of three neutral Rossby wave

modes of Phillips' model, each of small amplitude, when they form a reso-

nant triad. It will be shown that such a triad can exhibit a non-modal

form of baroclinic instability, a finite amplitude instability that de-

pends crucially on the weak non-linear interactions between the three

waves. In the second section, we consider a resonant triad composed of

two neutral Rossby waves and a weakly growing, baroclinically unstable

mode which lies close to the marginal curve of Phillips’ probl em, but away

from minimum critical shear. This was a problem mentioned by Loesch, but

not considered by him in detail. We shall see that under some circum-

stances, the presence of the two neutral sidebands can lead to a finite

amplitude instability that the wave-mean flow interaction, which is also

included in the model, is powerless to overcome. At first sight, this

seems significant in that it had been generally thought that the single

wave dynamics of Pedlosky (1970), in which a weakly growing mode was

aquilibrated by wave-mean flow interaction, would be fairly robust, in

the sense that allowing parallel triad interactions would not remove this

equilibration process. However, we are still in the unsatisfactory posi-
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tion of developing our analysis around a point on the marginal curve that

is well away from minimum critical shear. In such a case there is, in

addition to the weakly growing unstable modes, a range of wavenumbers at

which there exist unstable modes with 0(1) growth rates. The evolution

of these latter modes would overshadow our weakly finite amplitude prob-

lem. For this reason we would like to consider the case of a triad con-

taining two neutral waves and a slightly unstable mode that lies close to

minimum critical shear. With the restriction that the neutral waves be

dispersive modes, this is the situation that Loesch examined. Although

Loesch did not include the complicated disturbance forced by critical

layer effects, his model equations contained the direct interactions

between unstable wave and the neutral sidebands which we would expect to

be the cause of any finite amplitude instability, should one exist. Since

Loesch did not find any finite amplitude instability, it seems unlikely

that one would occur in a more complete model that included critical layer

effects. In the third section of this chapter, we present the equations

governing such a triad interaction near minimum critical shear, when crit-

ical layer effects have been included. It is not possible to confirm that

all solution trajectories of which these equations admit are bounded, but,

in view of the sign restrictions placed on some of the more important

coefficients in these equations, we conjecture that this is likely. To

buttress this conjecture, we show examples of numerical integrations of

this system for parameter values similar to those used by Loesch,
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2.1: Non-Modal Baroclinic Instability

In this section a class of non-linear instabilities of a vertically

sheared zonal flow is discussed. This is a type of baroclinic instabil-

ity that lies outside the purview of a linear eigenmode analysis of baro-

clinic instability problems. The form taken by the instability is that

of an ensemble of three neutral Rossby waves whose amplitudes are slowly

modified by their mutual non-linear interactions. For a triad of small

amplitude, these interactions introduce a weak, vertical variation of

phase to the structure of the individual waves. This allows the generation

of rectified heat fluxes and an exchange of energy with the mean flow.

This instability exhibits explosive growth and spans a range of hori-

zontal wavenumbers that exceeds the range that is unstable in the corre-

sponding linear model. It is shown that the type of instability discus-

sed can only occur when the model used is linearly unstable.

The mechanism for the non-linear instability here discussed is

believed to be fairly general and should exist also in the context of a

horizontally sheared flow where it would take the form of a barotropic

instability.

Since the discussion that follows is fairly detailed, we will break

it up into numbered subsections. Equations in this part of the thesis

will only be numbered (n.m), where n is the subsection and m is the

position of the equation within that subsection.

2.1.1: Introduction

Investigations of baroclinic instability generally fall into one of

two classes. The first comprises linear models of baroclinic instability.
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The majority of these, e.g., the studies of Charney (1947), Eady (1969)

and Phillips (1954), take advantage of the linearity of the problem and

the stationarity of the basic state being examined to pose the question

of stability in terms of the time dependence of the normal modes of the

stability problem. In such a case, instability is manifested as a normal

mode which exhibits a vertical phase shift and hence intrinsically pos-

sesses a mechanism for extracting potential energy from the mean flow,

namely its ability to produce a non-zero, zonally averaged, meridional

heat flux.

A second type of investigation of baroclinic instability consists of

studies of the weakly finite amplitude evolution of slowly growing modes,

e.g., Pedlosky (1979a), Drazin (1970) and Pedlosky (1970). These are non-

linear but concentrate on the evolution of a particular unstable linear

eigenmode as it is circumscribed by weak non-linear effects.

Here, we wish to demonstrate another type of weakly non-linear model

in which there appears a different version of the baroclinic instability

mechanism. The model examines the evolution of a resonant triad of neu-

tral Rossby waves, i.e., neutral eigenmodes of the appropriate linearized

model, of weak amplitude, in a vertically sheared flow. Although each

wave is neutral in the linear sense, and hence, as a linear mode, contains

no vertical phase shift, we will discover that non-linear interactions

between the waves will produce slight phase shifts that enable the modi-

fied waves to generate non-zero heat fluxes, and so exchange energy with

the mean flow. Note that a prerequisite for energy exchange between the

waves and the mean flow is the presence of vertical shear in the mean
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Flow. We will show further that there exist some triads for which the

net effect of the heat fluxes is an extraction of energy from the mean

flow by the triad. As a consequence, the triad grows. In general, this

growth is faster than exponential.

This phenomenon seems significant for two reasons. On the one hand

there is the fact that, while the underlying mechanism for the instability

is precisely that of linear baroclinic instability, namely, the extraction

of available potential energy from the mean flow by the production of a

down-gradient transport of heat; the way in which this heat transport is

brought about is inherently different. The instability is non-modal rather

than modal, relying as it does on the non-linear interactions between 1in-

early neutral modes to generate the necessary phase shifts. The second

reason for interest derives from the fact that, for the type of model

that we will consider, the range of wavenumbers that are directly

unstable in the linear, modal problem is finite. Non-modal instability

will be shown to extend the range of wavenumbers that may increase in

energy as a direct result of baroclinic instability. (The implied con-

trast here is to wavenumbers that increase in energy because that energy

is transferred to them from wavenumbers at which active baroclinic con-

version is proceeding.)

It may be shown that for this particular type of non-linear baroclinic

instability, the appropriate version of the Charney-Stern criterion ap-

plies. Thus the type of instability to be described here can occur only

when the linear problem is unstable. This, in itself, is of some inter-

est since the theorem deduced by Charney and Stern was originally a lin-

ear result. In part, the evidence for the applicability of the aforemen-



50

tioned stability condition relies on the fact that the instability does

not require that the initial amplitudes of the three neutral waves exceed

any finite threshold. There may still be other types of non-linear insta-

bility which do involve such thresholds that can exist when the

Charney-Stern condition would predict stability.

We will begin by considering, in Section 2.1.2, the evolution of three

weak neutral waves governed by amplitude equations that are common to sev-

eral wave problems. We establish a general property of the triads which

determines whether or not they are unstable. We also indicate the general

solution of the amplitude equations. In Section 2.1.3, we show that the

charney-Stern theorem can be applied to such disturbances to yield sta-

bility criteria for the basic state being considered. Here and in the

remainder of the chapter we specialize to a two-layer model of baroclinic

instability. Section 2.1.4 discusses the energy transformations involved

in a growing triad instability. In Section 2.1.5, we show that thera do

indeed exist some triads which, according to the asymptotic theory of

Section 2.1.2, will be unstable. Using the results of Section 2.1.2, we

predict the evolution of this triad and then compare this to some non-

asymptotic results obtained by integrating the full potential vorticity

equations, after restricting the zonal spectrum to the three resonant

neutral waves. Lastly, Section 2.2.6 illustrates the range of wavenum-

bers that can be unstable to this mechanism.

2.1.2: The Evolution of a Triad of Neutral Waves

We first of all note that much of this section is taken from the

existng theory of resonant triads which may be seen, for example, in the
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work of McGoldrick (1965). Very little background material will be

included nere so that any reader unfamiliar with the idea of resonant

triads is referred to McGoldrick's paper.

There are a number of quadratically non-linear dynamical systems,

whose linearized versions support wave modes, that permit certain groups

of the linear waves to interact in a way that can be simply described by

the equations to be presented below. An example of such a system will be

given in Section 2.1.4. The linear modes of a stationary, three-dimen-

sional system will generally take the form

3
To, t

Vv (x) e * c.C

where ¢ is the disturbance quantity, ¥, (x) the spatial structure of the

eigenmode in question, and wy its frequency. c.c. denotes the complex

conjugate of the preceding term while A» is an index denoting the particu-

lar mode chosen. For several systems of interest, a small amplitude dis-

turbance consisting of a superposition of linear modes will behave almost

as if these linear modes were interacting non-linearly in trios. This par-

ticular form of non-linear interaction, which affords a way of transport-

ing energy from one scale of motion to another, can be studied in detail

be restricting the initial conditions so that only three of the linear

nodes were present. Subsequently, the disturbance field ¢ is composed

predominantly of these three waves plus some small corrections, i.e..

wr

—

2 Tu, T
&gt; A; Y, (x) e *j
i=0 i =

+
C.C. 0(e™)



52

where ¢ is some small number characteristic of the smallness of the ampli-

tude of the disturbance field and cA; is the amplitude of the jth

wave. Because of the weakness of the disturbance field, the non-linear

interactions between the three waves are very weak and only significantly

affect the amplitudes of the waves on some long time scale, of o(u~1)

say, where yu &lt;&lt; 1. If the frequencies and spatial structures of the three

waves satisfy certain conditions, which amount to requiring that the non-

linear interaction between each pair of waves produces a resultant which

contains a component that resonantly forces the third wave, then yu can be

taken to be ¢. Such a wave triad is usually referred to as being resonant.

If these conditions are not satisfied, then the interaction time scale is

longer. In a general weak wave field, these resonance conditions act to

select triads of waves which can readily communicate their energy. It is

possible for a system to be such that the linear dispersion relations do

not permit any triad to satisfy the resonance conditions, e.g., Phillips

(1960), in which cases higher order interactions become important.

Defining a slow time variable by T = et one can show that, to a good

approximation, the amplitudes of the three waves of a resonant triad can

be treated as functions only of T and evolve according to equations of

the form

] x

AT = 1 My A A,

. * R

Art = i My A, Ay

)

(2.1)

, ] x

 or = 1 MyAyAy
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The superscripted asterisks denote complex conjugation, The quantities

M; are constants which depend on the parameters of the system support-

ing the waves and on the particular waves chosen, We confine our atten-

tion to systems for which the M, are real. The physical example in

Section 2.1.4 is such a system. We will note the solution of (2.1) for

general initial conditions and then consider some properties of the

solution.

From (2.1) one can deduce that

and

‘nere

|; (MZ = [a0] + mim Tlay (M]2- |4,00)| 21

hiak7

frp = 00 Ag - NA (Ag)? = [ag@]D) = 0

 = MM, [A (0)]% + Mn. [a (0)]2

N = 2 I M,

j=1,2

{:
'

. - 2)

\
/ 3)

We note that if My» My and M, have the same signs, then ol and N are

both positive for all initial conditions other than A,(0) =0 = A, (0).

Equation (2.2) is similar to that governing the weakly finite ampli-

tude evolution of a slowly growing, baroclinically unstable mode found in

the study by Pedlosky (1970). It may be solved by setting

Aq 94 (T) 2
(TT)

where R and ¢ are real. From (2.1),
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2 2 2 2
Ry - 07 R - © R - NR [R° -R°(0)] = O

and.
3, rps o~) = 0

whens» R2o. = h

.| constant determined by the initial conditions, and

—»
—_

2

 (hn + [2 - NRE] RE LR 0)1/2
= R

C is another constant determined by the initial conditions. Initially,

the leading sign should be chosen to correspond to the initial sense of

Ry + Thereafter, the sign should be reversed whenever the argument of

the radical becomes zero. Ry is always real. We will suppress this

sign hereafter.

Setting x = RZ. we find

L

)
A im

1/2
(&gt;-N x3 + [a - Nx(0)] x2 +Cx - h?) (2.4)

“hus

A -1/2

r- | a | &amp; N x3 + [o® - Nx(0)] NL Cx nll
x{ 0)

(2 5)

(2.5) is an implicit statement of the fact that x(T) is a Jacobian ellip-

tic function (Jeffries and Jeffries, 1956, Ch. 25). Such functions are

tabulated. To complete the solution, it is only necessary to determine
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the (constant) parameters of the elliptic function. These depend on C,

he, ol and N, and hence on the initial conditions, and require the

solution of a cubic polynomial which is tedious but straightforward to

obtain, should one need to use the explicit solution. Here we will be

content with (2.5).

The amplitude equations (2.1) can be reduced to one of two canonical

forms. The first of these can be obtained when My» My» and M, each

have the same sign. Applying the transformation

A sgn

1/2

[4] 3
"s (MMM, ] RL

reduces (2.1) to the form

Lok k

Bot = 184 B,

3 i BB.
1T = Pp Bg

 I

The second canonical form may be obtained when one of My» M, and M,,

has a sign different to the other two. Without loss of generality, we

assume that M, and M, have the same sign while that of Mo opposes this.

Then the same transformation yields

, : 3*
‘r= 1B, By

Lxk
37 = - 1B, By

. J
7 = = 1B4 By
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Within each system the variety of trajectories possible for the solution

vector (Bg By» By) can be seen to be a consequence only of the variety of

possible initial conditions.

It is possible to obtain some general information about the solutions

without having recourse to an explicit solution. In particular, we have

the following results:

(A) If My» My and M, are not all of the same sign then the solution

always remains bounded.

(B) If My&gt; My and M, all have the same sign (positive or negative),

then most initial conditions will lead to solutions which become infinite

in a finite time.

and

14 apg

Thus

and

Statement (A) is simple to prove. Suppose M_ is of opposite sign to M,

M,. From (2.1)

2 2

[A] 1A 0
IW, CT WT

for j =1 and 2

| Aol? (A) ] |ag10)|2 . [40]?
Mol WT 7 Yl M51

(0)] 2 pol

ole bg | Lol lol”

[|[aM]2&lt; |Ag(0)|2 + min 3 A, (0)] 2, Lol [rpc]?
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To prove (B) we use a geometrical argument which we give here. The

end of this is denoted by a block, thus ® . Equation (2.4) is equiva-

lent to

1
7 X7 = 3 roo

1/2

2

F(x) alfa) Era yan? NN

(2.6 )

f ~~

[—, 1)

We except as a special case initial conditions in which only one wave amp-

litude is initially non-zero. Equation (2.1) shows that this situation

is invariant, albeit unstable, a result which we might expect in the case

of Rossby wave propagation on a g-plane since a single linear Rossby wave

is a solution of the fully non-linear potential vorticity equation. Thus

we assume that at least two of the wave amplitudes were initially non-zero

and that Ag is one of them. Then, when My» Ms and M, all have the same

sign, o® and N are positive. Thus F(0) = _2h2/N &lt;0and F --&gt; +%3as x --&gt;

+o, This means that either one or three roots of F(x) = 0 must be greater

than or equal to zero and that for all x greater than the most positive

real root, F(x) is positive, Let us label the three roots of F(x) = 0 as

X41 (,. Xo. If all of these are real, then let us order them so that

X. 7 Xo &gt; Xx,

If there is only one real root, let this be X1

We seek to prove first that the initial condition, xq = x(0), must

E

atisfy
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Xs 1
7 (2-8)

We know that x, must be such that Fxg) &gt; 0. We also know that x &gt; 0. When

xp and xy are complex, F(x) &gt; 0 for all x &gt; x and F(x) &lt;0 for all

X &lt; Xp. Thus xg &gt; Xq.

When x, and x5 are real

F(x) &lt;0

F(x) &gt; 0

F(x) &lt;0

Fix) Xr 0

op1t

far

[ x

fr

X
— i]

Xa a &lt; Xo

Xo &amp; X &amp; Xy

Xa x

Since F(0) &lt; 0 , we must have either

(a) x3 &lt; Xx, &lt;0 &lt;x

9) 0 &lt; Xq &lt; X5 &lt; Xq

In case (a) F(xg) &gt;0 and x45 &gt; 0 implies that x; &gt;xy. In case

(b) we must be a little more subtle. We note from the form of F(x) that

( * + (Xq2Xq = o /N)

But 2 /N &gt; 0, hence

2 Xp &gt; Xa * Xo * Xq &gt; 2X,

Thus xy &gt; X,. But F(x) &lt; 0 when x, &lt; x &lt; x; and the inequality is strict,

X, # X. and Xx, &lt; X &lt; Xq. Hence x5 &gt; Xq.
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What we have shown in proving (2.8) is that the initial conditions,

Xs 1ie on a portion of F(x) that intersects the axis, F(x) = 0, at a

point x; &gt; 0 to the left of Xq and tends to infinity to the right of X0

without recrossing the F(x) = 0 axis. Figure 2.1 shows possible forms

that the curve F(x) may take to the left of Xq

Consider now what happens as the solution evolves from the initial

conditions. For all of the cases in Figure 2.1, if x(0) &gt; 0, then x

will march rightward along the curve F(x). After some finite distances

along the x axis, F(x) increases monotonically with x and is

asymptotically proportional to x3, If we integrate (2.6), we find that

the solution is given implicitly by

I IN

x

YT Ty) | [F(x)1°1/2 dx
ll

where To is the initial time. Since F(x) ~ x3 as x --&gt;00, We know that
oo

J. [F(x)1-1/2 dx is finite, equal tod, say. This means that x --&gt; ce as
0

T--&gt;Ty* Tene,

The other possibility is that x1(0) &lt; 0. Then we must discriminate

between Figure 2.1 (a) and (b), on the one hand, and Figure 2.1 (c) and

{d) on the other. In the case of (a) and (b), the solution commences to

march leftward from Xo until it reaches Xq « Since F(x) crosses the

x-axis at a finite angle at x = Xq » the solution will reach Xq in a finite

time, Tyo say. At x = Xp» Xp = 0, but X11 &gt; 0 and so the solution turns

around to proceed rightward in the direction from which it has come. It

now behaves in the same fashion as the solution when x+(0) &gt; 0 and
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-

Fo

t

J (a)
=

BA } (b)

/

F(x} ")A

I. F(x ]

~~
AG

(d)

4

Figure 2.1: Possible forms of F(x) in the region to the right of the

largest positive root, x3. In (a) and (b), F(x) intersects the
x-axis at a finite angle. In (c) and (d), x; is a double or triple

root.
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becomes infinite at some finite T = Tg. The solution is given implicitly

 \

X
)

 2 (rT = | F012 ax, fF TT &lt; Ty

202 (7 T)) = ( [F(x)11/2 ax , Ts
P4 TT ~ 7,

-1/2
I, = Tg * (2N)

Xn

| rr? a

od

T= Tp + (72 ( [F(x dx

The instance of a curve shaped like Figure 2.1 (c) or (d), in which

Xy is a double or triple root of F(x) = 0, and an initial condition,

X;(0) &lt;0, is a little different. The solution starts to move leftward

approaching Xqs but because of the multiple root at Xqs [,OF (x12 dx

==&gt; 8as X ==&gt; Xy +, taking infinitely long to actually reach Xy. The

solution in this case 13

22 (11)

x
]

F012 dx, T,¢T coo
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Starting with an initial condition X;(0) = 0 corresponds to a case

in which x5 coincides with x;. When F(x) has a shape as in 2.1 (a)

or 2.1 (b), the solution leaves Xq and proceeds to infinity. If F(x)

has the shape 2.1 (c) or 2.1 (d), the solution will sit at Xq forever,

However, this latter case corresponds only to the initial conditions

A (0) = 0 = A,(0) which we have excluded.

The shape of F(x) is determined by the full set of initial conditions

for the three waves, i.e., the complex initial values of Ags A and A»

which determines ol, h, R(0) and R+(0). It is only for a rather special

subset of the initial conditions that the positive most root of F(x) = 0

will correspond to a double or triple root. We, therefore, conclude that,

for most initial conditions, the solution will become singular in a finite

time. IB

A particular example of a class of solutions which will be useful

later. is the one in which the initial conditions are such that

3.()) ph ~ (0) + 0~(0) = (2n qc il 2

where 0.(0) is the initial phase of As. Then p&gt; © and 9,

remain constant and the amplitude equations reduce to the simpler form

n

ar = (=1)7 Mg Ry Ry

n

n

Ror = (-1) M, Rg Ry

Equation (2.4) simplifies to



63

Ror = (5 N Ro + [of - NX(0) J Ro’ +2)? (2.6

Choosing n so that (-1)" My is positive, we can integrate (2.9) to obtain

and

-T, = (M.M.
LJ?

"2

}
M M -1/2

2 2 0 .2 2 2 0 .2

J
R40)

the solution becomes singular at T = T. where

T  = (MM,)1/2

10)

(2.11)

M M 1/2

| I .(Ro .fo (0) 1062 i(ro) - 2 0)1]
(0)

if we restrict our initial conditions further, to the case where

2 2

fo Ro)
M, M,

then we can evaluate the integral in (2.11) to obtain

1 2 My 2, 1-1/2
Ty = ZiT 12 (0) - i, aul

/
M 1/2

Ry (0) + R20) + mr 20)
: M 1/2

Ro(0) in (0) |
A!

Rol0) -

(2.12)
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1€

M
2 0,2

(0) &gt; M R,(0), or

i 1 Mo 2 2, ]-1/2

so = TigwT 12 | i Ri(0) = Rg(0)

T -1!

6 - tan *!
Ry(0)

am wo]

me R30) 200)

(2.13)

M
o 2 0 2

2.1.3: A Global Stability Constraint

We can make an extremely plausible argument that a result derived by

Charney and Stern (1962) for linear stability problems should extend to

this particular non-linear problem of an unstable resonant triad, also.

We will demonstrate this here in the particular context of a two-layer

model although a more general result can readily be obtained. The theo-

rem of Charney and Stern is really a constraint that the conservation of

potential vorticity places on the possible classes of quasi-geostrophic

disturbances to a quasi-geostrophic flow. It should be borne in mind

that it does not explicitly consider the energy balance of the system as

some other stability constraints do.

We wish to consider the fate of perturbations to an equilibrium state

in which the upper and lower layers move with zonal velocities U, (y)
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and Us (y) when the depth is assumed to be independent of x. Decomposing

the flow into a basic part plus a disturbance

y

&gt; | dy Us(y) +g.

the vorticity equations become, after dropping primes,

2, + Uy a) ap * my 4,7 0 (8,9) = 0

(3. + U, 3) 9 + T2y Bo, J (45, q,) = 0 |
3... N

Now a3 is the potential vorticity associated with the perturbation and

Tsy? the meridional gradient of potential vorticity associated with the

equilibrium flow:

Tay,

Ts.

.8+FU.-ivy

8 - FU, -Uy, * h

where Ug = Us - Us. The potential vorticity of the equilibrium flow is

just m5 (y) in layer j.

Provided that our initial perturbation is made in a way consistent

with the conservation of potential vorticity, this conservation law

implies that, for the subsequent motion

a; = Ts (y - ny) - ms (y)

We will consider only disturbances whose streamfunctions and their first

two derivatives are uniformly bounded on the interval -oe¢ x &lt;co, Defin-

ing a zonal averaging operation ( ) hv
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L 1 [Lim IN dx z
L ==&gt; 00 “J

this latter assumption guarantees that

3, (any term involving multiples of n, op, u, Vor q) =0

1 Lo. —— 1
— J

] dy V39j = | dy at "i (y-n;) - | dy Bix ms (y)

Jub my

Similarly

Jeance

\ &amp; CIP
dy TE" (y-ny

dy
d -

atc Cn; Ts (y-n;)]

| dy ny my V-ng) 3~)

1 1 1

dy Vv.,q, = | dy | + 2 = | dy @,_ F¢
J 111 : 6, L "4d +F (4) - 4,)] \ 1x 72

L 1

| dy Vad, = [ dy Fax F41
3 nN

1

| dy (via + V,a5) = 0 ‘3:y)
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which means that

1

it
[ny my (Y=my) * 1 { ) J

J, 1 Tp Wem)Fonmyly-mp)l= 0
‘3.4 J

rt 2

le. | dy &gt; nj; (y=n;) is conserved by non-linear, quasi-geostrophic
0 I=

motions. This result seems rather elegant, although it is not clear whe-

ther any very general global stability criterion may be deduced from it.

However, for the particular triad instability with which we are

concerned, we can make an educated guess at a global stability criteri-

on. In doing so we need to make use of a peculiar feature of the triad

instability namely, that given an unstable set of initial conditions, the

same initial conditions reduced by any factor A» lead to a similar, though

slower, instability. To see this we note that (2.1) is invariant under

the transformation

Ass As Apu TY omoo&gt; (AA, AA, AA, ATH T!

Such a transformation, since it affects each wave amplitude in the same

way, leaves the spatial structure of the leading order part of the dis-

turbance field unchanged. We can find perturbations that are as small as

we please and yet vary smoothly in y, which are unstable and will grow.

J v

I+.
y-

2.

a

i 1 1

| dy nym ly-ny7 = | dy ny 7; (y) | nw ry) Fe
! 0 3

and
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- 17 = Zz

"75 = = oy (Vins) = = oy Loy 7 Nj * dy (vin)

1 7 es =

(erm toy egy © dy (yr)

we have that

1 1 -

iT

dy ngrgT¥-ng) = 3¢[- 2). ny") | "il3,|
3

od

4 3

| Vin TiyyylY)

L202 2 3

2 73 |ds 2, (2 sup [ns | v sup|v;[)(sup|ns]) sup( [5 oy (M1)

If it could be proven that the perturbation solution that we have

developed is a truly asymptotic solution with the amplitude as a small

parameter, ¢, say, then we could argue as follows. From the

transformation noted above, for a particular choice of spatial structure

for the leading part of the perturbation (i.e., a particular cnoice of

wavenumbers and initial amplitude ratios, A;/Aj and A,/Ag) the

right-hand side of the above inequality can be put in the form

a
¥

where R is a finite positive constant independent of the amplitude e.

The left-hand side may be written
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2 i
J 1 2 4

2 dr 2 ng; TMs +e Q
&lt; =) J JY

Sk.jere

1 »
J T,€t =2yO(e+

= ns

and

|Q |&lt; a finite positive constant S, independent of «¢

Note that it is the assumed asymptotic property of the pertrubation

solution that allows us to assert that S and R are independent of ¢.

We see at once that under such circumstances that the equilibrium

flow cannot be unstable to small finite amplitude triads of the sort

discussed above if iy does not change sign within layer j and both

My and Toy have the same sign.

Unfortunately, I am unable to prove that the perturbation solution is

also an asymptotic solution so that the applicability of the Charney-Stern

result to this form of instability must remain a conjecture only. In more

heuristic terms, we have said that, in view of the ability of the insta-

bility to persist for arbitrarily small initial conditions, we expect the

stability theorems of linear theory to extend also to this class of dis-

turbances. Consequently, we can only expect to find unstable resonant

triads of neutral waves in a case where the basic state also exhibits

linear normal mode instabilities. Note that we have not established a

stability criterion for any types of finite amplitude instability which

involve exceeding an amplitude threshold as a necessary condition for

their growth.
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2.1.4: Dynamics of a Resonant Triad in a Two-Layer Model

In this section, we will first of all demonstrate that the amplitudes

of a resonant triad of weak Rossby waves in a vertically-sheared, two-

layer model do evolve according to equations of the form (2.1) and derive

expressions for the interaction coefficients M; which are given as (4.12)

below. Since the principles involved are by now well established (see,

for example, Longuet-Higgins and Gill, 1967) the presentation will be

brief. After this, the discussion will turn to the energy balance in the

two-layer system.

We will consider a two-layer model similar to that discussed in Sec-

tion 3 but without any meridional variation. Thus we will take hy = 0

and look at the stability of an equilibrium flow in which the zonal veloc-

ity is uniform in each layer. For convenience we take,

ny -0 , U. les

Hae i

rhe perturbation potential vorticity equations become (c.f., Chapter 1)

[3 17 “Io +F (8, -d)1+ (8 +FU) 4, +I (4 ap)=0

(4.1)

A (724, + F (4, - 8,01 + (8 + FU) gd, + J (dy, ay) =O

with q; being the perturbation potential vorticity, as before. The

eigenmodes of the linear problem are just (Phillips, 1954)

(91s é,) = (1, Y) sin nry 2
K{x-ct)

&gt; CAs=mLoa

Cd
Wo 2)

Jhere



 mM

~

oY

Ly ra20a200001-1 2 LJ /2
FU = [a%(a®+2F)] (+ (a+F) + mls2 Lufa® (ar2a™)] ) (4.3)

3
J - Ke + nt 2

my =
3

(= (a + F)/F - (8 + FU/(U = ¢) (4. 1

When 8 &lt; FU, the potential vorticity gradient of the lower layer be-

comes negative, the conditions of the Charney-Stern criterion no longer

hold and the flow need not be stable. The dispersion relation (4.3) shows

that unstable modes do exist when B &lt; FU provided that F &gt; 272l/2

i.e., provided the channel is not too narrow.

We wish to follow the evolution of a triad of neutral waves of small

amplitude ¢ and we expect the amplitudes of these waves to vary on a time-

scale el, Accordingly, we shall look at a disturbance of the form

-

_ 4 Cd) =e (20 410) 2 gf) gi)3 (4 5)

(0) 40) yo)
2 ik. (x-c.t)

&gt; AAT) (1, v;)e J sin n.ty + c.c.
j=0 J J

(4.6)

ik, (x-c5t)
where each of the three waves (1, 74) e sin nsmy is a neutral

mode of the linear problem. We have introduced a slow time variable T =

et and assumed that the amplitudes of the waves A; (T) vary on the e

time scale. If we insert (4.5) into the non-linear equations (4.1), we
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obtain, since 4(0) is just a superposition of linear solutions,

(3,400 19% 1) oF [gal + (5 + Fu) fl)
o

sa al0) _ [{0), (01 | + 0(?)

&gt; la, (21) (1)_g(1), ED «6+ Fu wl
L

4, 7)

 a (0) |

=| - 0p 0, - J 16.2), a}? | + 0(?)

where ai?) =? 80) + F (-1)9 [g{0)_g{0)7,
The linear operator on the left of (4.7) is singular, since we know

it possesses non-trivial eigenmodes. In order that (4.7) be well-posed,

the terms in O(c) on the right-hand side must be orthogonal to the adjoint

solutions of the linear problem. This amounts to a secularity condition

ah
ik _(x-c_t)

dy [ ax fat e P P sin n, wy 1 (0) (0) ,(0)
Vr [or ap” +d (4:77. q )]
{

(4.8)

p (0) (0) (0)
Sn [as Ar + J (4, s 9 )]

“

| = 0

ik _(x-c)
for each normal mode e P Psinn wy (l,v.) of the linear system.

p L Pp a
* ® * 1 * 1 a 2

Here [dx is to be interpreted as Lim 5—] dx and [dt as Lim ze dt
2L 2

for some a. 0 &lt;a &lt;1.

The x and t dependence of the Jacobian terms will be carried by terms

proportional to expl# i (kx-wt)]. Where the advection of one wave's
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potential vorticity by the velocity field of a second wave, produces a

component whose total horizontal wavenumber and frequency match that of

the third wave, that component will be resonant with the third wave and

will be able to interact with it relatively strongly. It is this sort of

dynamics that we wish to describe so we will assume that the three waves

satisfy a trio of relations of the form

Kot Ky Kk, = 0

i
n. = Nn, = 0 (4.¢i)

Kao * K1Cq * Kop = 0

For simplicity, we assume that the trio satisfied correspond to the choice

of positive signs everywhere

2

5 k.=0
j=0 J

2

S nn. =0
iz0 9

2

z kK; Cy =
0

(¢.1.0)

In general, not more than one of the possible trios of relations (4.9)

will be satisfied and we will assume that the particular wave triad that

we examine conforms to this generality. For a fuller description of the

nature of resonant interactions between waves in quadratic systems, the

reader is referred to McGoldrick (1965).
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For a triad satisfying (4.10) there are only three non-trivial, inde-

pendent conditions of the form (4.8) which are obtained when Kp = Ky

etc., j = 0, 1 and 2. If we substitute for q{0) as?), ¢{0) and 60),

in (4.8) and perform the integration with respect to t, these conditions

may be written

» L

 o-iksx ik,x
I7 os 1 B+FU _. J

] dy Jor sin nj Ty ] rh | Ayr BELsin nj Ty e

-iky Xx -ik x
“f 1 . B+FU m_.

A, (J (e sin ny wy, Uc. e sin nny )

bb

1,

4

-ik_x
r m .

oP sin Ne TY »

g+Fy KX
J-c, e sin ey)9,

fa ik .x
J B-FU 4 J
, [ AsT %) sin n Ty e

k x ty 1 Rx
AL Ym (8-FU) (5 (e sin n, ny, = e sin n_ ny)

KX -ik x

m sin nay, —e 1 sin ny MN)J
Mp

for each j = 0, 1,2, with 1 and m defined such that (j, 1, m) is a cyclic

permutation of (0, 1,2). From this it is apparent that the secularity

~onditions will reduce to a form
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A... = i j
iT M, AFA &gt; J = 0, 1, 2 ( r) 11)

The M's are real constants which can be calculated and take the form

vi.
r

|
| + FU 8 - FU

LAT ) |TreeTT - te, Yonm1 1m -Cy -Cy -C, €4¢1S2 0'1'2

(4.12)

4

2

sem,
2 2

(8 - Fu)

-]

(ec, - cy)

Note that (k,n, - kyny) = (kqn, - Kong) = (kqng - kgny). Thus M; may be

~ritten

-1

- nA)where Q = &gt; (kgny - Ky 0

independent of j, whi le

8 + FU 8 - FU 3
Cig d is— — - YaY1Yo | ANkt IL c,1T0 c,) Co€1C) 0'1'2

2

B+FU , Yj
Ry = (8 - FU)

In this case we can verify the application of our stability criterion

directly. Recall that the results of Section 3 showed that the resonant

triad instability, corresponding to a triad with Mys Mss M, all of the

same sign, could not occur when the potential vorticity gradient was

everywhere of the same sign, i.e., when (8 + FU) and (8 - FU) have the

same sign. Under these circumstances, Rj may take only one sign, irre-

spective of which wave i is chosen. Since



76

(c, - cq) + (cq - c,) + (cq - Cp) = 0,

it immediately follows that the M's cannot all have the same sign.

Energy Balance

We can obtain an energy equation for the perturbation field by multi-

plying the potential vorticity equation for the jth layer by hss sum-

ming the two, zonally averaging, and then integrating between y = 0 and

y = 1. The result is,

{ oo B 1

" 9

dr 5

The term on the right represents the exchange of energy between the per-

turbation flow and the mean flow via the baroclinic conversion of energy

due to heat fluxes associated with the perturbation. To leading order,

the perturbation energy is just the sum of the energies of the three neu-

tral waves. Note that the net non-linear exchange of energy between these

waves is zero, i.e., direct wave-wave interactions conserve the sum of

the energies of the three waves. However, each wave in the triad can

axchange energy with the mean flow through the baroclinic conversion

mechanism. At first sight, this seems odd since each of the waves is a

neutral solution of the linear problem, to leading order in e. A heur-

istic explanation of what is happening goes something as follows. If we

calculate gl), the solution of (4.7), we find that the non-linear

interaction between each pair of waves forces a small correction, gl),

to the Fourier component of the streamfunction with the wavenumber of the
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third wave. This correction has neither the same phase nor the same ver-

tical structure as the neutral mode of that wavenumber so that the sum of

the neutral wave plus the correction term exhibits a small, O(c), phase

shift between the upper and lower layer streamfunctions. This is pre-

cisely the condition that the wave must satisfy if it is to have a non-

zero heat flux associated with it, the latter being proportional to 8,85,

In the absence of any meridional temperature gradient (or equivalently,

vertical shear) in the basic state, this heat flux does no work and so

the triad as a whole neither gains nor loses energy. However, when we

nave a meridional temperature gradient, the triad members can exchange

energy with the mean state. Such exchanges can be either oscillatory, as

when Mg» My and M, have differing signs, or can lead to a net extraction

of energy from the mean state, when Mg» UF and Mo have the same sign.

By projecting the potential vorticity equations onto the three wave-

numbers of the triad elements and then multiplying by that Fourier com-

ponent of the streamfunction, we can obtain equations for the energy

balance of each Fourier component of the form

. = V. + 7.
3 E; vy (4.13)

1

(37 4 12 (3) 4 [2 (3) 7)Here (4 | dy |" | Hg g,| + F (Vd, - Ig)? is the
1

aneraq. of the Fourier component

i

= FU | dy (3g Gg/

J

(3)

is the rate at which the jth component

axchanges energy with the mean flow and
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[av Wg, 35, 8 gp)
A

is the rate at which the jth Fourier component exchange energy directly

with the other wave components. (3) (a,b) is the projection of J(a,b)

onto el Kix.

£5 is of 0(e?) while Vs and T; are of 0(cd). E; is changing on the

long time scale o(ey. If we rescale, Ess vy and Ty to be 0(1) (4.13)

becume =

3 Fs = V.

To leading order the scaled Es =1/2 [nf nl + KZ + F(1-v;)21] 71° and its

rate of change may be calculated explicitly, using the amplitude equa-

tions, to be

3  = M. [rl Zeke F (ev) 1 (AAA) (2 14)

Jne can also calculate v. and T. to leading order. These are

[
j -

n

1 1 1 1
(8-FU) (&amp;— - Ym - (B+FU) (ey - to] (4.15)

2

(8=-F°U™) B + FU J
 = ET (AAA) (Kk ng-ken) yu + (2-70)

‘5 = 7 In AghAy nh ZC We? 2

A

| C3 C3 U-c; U-c; ]

1m &amp;- 5) - Yj oe -0, (= T « 2)
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One can verify directly that T5*Yy = dr Ese Note that although Im (Agh1As)

occurs as a common factor, a three-wave state in which the sum of the

phases of Ag» As and A, is an integer multiple of = cannot be a steady

amplitude solution when Mg» Ms» and M, are all of the same sign. (When

Mo» My; 5 and M, have differing signs, one can find such constant amplitude

solutions in which the phases of Ags Ais and As are steadily rotating.)

Thus far we have noted a possible mechanism for triad growth and ex-

plained that this cannot occur unless the triad is such that Mos My

and M, each have the same sign. We have not yet shown that it is pos-

sible to find triads which satisfy this condition.

2.1.5: An Example of an Unstable Triad

To establish the existence of an unstable resonant triad, we must

first locate a resonant triad using the dispersion relation of the linear

problem in conjunction with the resonance conditions (4.10), and then cal-

culate the values of My using the formula (4.12). This is a little tedi-

ous, but if we do so, we can readily find examples of unstable triads.

Ne will give one example here.

For the choice F = 20.0, U = 1.0, 8 = 14.14, one can verify, from the

dispersion relations that the following wavenumbers correspond to a

resonant triad:

Wave 0:

Wave 1:

dave 2:

k = -1.900624, n=1, m= -1

K N 27 n=1, m= -1

k = -3.36376, n = 2. m= +1
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To distinguish between the two possible vertical modes corresponding to

the choice of sign for the root in the dispersion relation (4.3), we have

specified a "vertical wavenumber", m, equal to # 1 where the sign matches

that chosen in the dispersion relation. Using (4.2) one can calculate

the interaction coefficients, these take the values.

0 = 10.381, M, = 4.740, M, = 1.745

Each of these is positive, so this triad is an unstable triad.

In view of the algebra involved it would be reassuring to have an in-

dependent test of the results. Such a check was made as follows. Using

a simple spectral scheme, the non-linear, quasigeostrophic potential vor-

ticity equations were integrated directly after limiting the zonal Fourier

spectrum to just three wavenumbers, the three listed above. The initial

conditions used specified amplitudes for the three waves of the form

Aq = p1/2 N eim/2

1/2
A, = (M, /M,) N

-
] 1)

A, = (MLZ

where N was chosen to o--

N= On (212 + 170mm) 1/2] x 1073 (5.2)

The small amplitude theory of Section 2.1.2 predicts that, for initial

amplitudes of the form (5.1), the trajectories controlled by (2.1) will

become singular at a time T. given by (2.12). Substituting (5.1) in
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(2.12) and setting the initial time equal to zero, yields

r= gm) HZ yh qn (22 eg)

In view of (5.2) this means that Tg =1000. Since T. is significantly

larger than the periods of the neutral waves, which for the chosen triad

are Ts = 10.073, Ty = 6.660 and Ty = 4.009 we can expect that the numeri-

cal results will start by following the asymptotic theory. Differences

between the full integration and the small amplitude theory should only

become apparent when the wave amplitudes, which are initially 0(1073),

become 0(1).

Figure 2.2 shows the results of the numerical integration over the

interval 0 &lt; T &lt; 950. The quantity plotted is the total energy of the

perturbation, The results seem to bear out the prediction of the small

amplitude theory rather well, the difference between the numerical and

the asymptotic results being less than one percent at T = 950.

An interesting feature of this triad is that the total square wave-

aumber of wave 2, namely (3.36376)% + 442 = 50.793 is larger than 2F (2F =

40) and so this wave lies outside the range of waves that are unstable

according to linear theory, even when 8 = 0. The triad instability allows

not only stronger growth than the linear theory but also a larger range

of wavenumbers that can extract energy directly from the mean flow.

2.1.6: The Range of Unstable Wavenumbers

Because of the algebraic complexity, both of the resonance conditions

and of the formulae for the interaction coefficients, it is difficult to
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Figure 2.2: The evolution of the total perturbation energy of an
unstable neutral wave triad over the interval 0 &lt; T &lt; 950. The triad

is the one discussed in the text and the figure shows the results of a

numerical integration of the potential vorticity equations.
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calculate the extent of the range of wavenumbers that can be involved in

unstable triads. Instead, we have chosen to map the extent of the unsta-

ble domain in the case of two particular triads as an example of what one

might expect. This was done by fixing F = 20.0 and U = 1.0, choosing a

value of 8 between zero and the maximum value at which the triad insta-

bility can occur, By = FU = 20, choosing a particular trio of merid-

ional wavenumbers and vertical structures, and then computing the locus

of resonant triads formed by these waves as one varies the zonal wavenum-

bers. At the same time, the interaction coefficients were also calcula-

ted. The regions in which one can find unstable resonant triads of lin-

early neutral modes were then mapped on a plane whose coordinate axes

correspond to total, squared, horizontal wavenumber, and 8. These maps

are shown in Figures 2.3 and 2.4. The marginal curve of linear theory is

also shown.

In Figure 2.3, the waves making up the triad have the following vert-

ical and meridional structures:

Wa&gt;

Wave 1

Wave 2

n 1

n 1

n = -2

m = -=1

m =  |

m = +1

In Figure 2.4, the vertical and meridional structures used were

Wave 0

Wave 1

Wave 2

n

n

n

1

2

3

m =

m =

m »
=

LY

- 1
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Figure 2.3: A map of the areas in the (sg , a?) plane in which may

be found neutral Rossby waves that are elements of an unstable triad

in which the waves have meridional structures given by n = (1,1,-2).

The vertical structures of the three waves are assumed to be given by

m= (-1,-1,1). Three regions are shown shaded, two of which overlap.

Region D, corresponds to possible values of al. Given a
particular value of 8, for each choice of ay in D; one can find

a pair of values (a2 , al) lying in DX D, ([i,k,1] = a

cyclic permutation of [o.1,2]) which complete an unstable resonant

triad. Note, for 8 &lt; 12.95, there are no unstable triads with this

meridional and vertical structure.
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For each wave, a range of total wavenumbers that can be involved in an

unstable triad is marked on the appropriate figure. For each choice of

wavenumber in the unstable domain marked for a particular wave, one can

find an unstable triad for which the horizontal wavenumber of that wave

has the value chosen. The horizontal wavenumbers of the remaining waves

will then lie somewhere within the unstable domains marked for those waves.

The distinctive feature of these plots is that the range of unstable

wavenumbers for the triad instability extends beyond the short wave cutoff

of the linear f-plane theory. Since the cases considered are merely arbi-

trarily chosen examples, it is likely that there are unstable triads, with

different vertical and meridional structures, for which the range of un-

stable wavenumbers extends even further into the short wave region.

2.1.7: Concluding Remarks

Linear theories of baroclinic instability overlook a class of nonmodal

instabilities which depend on weak non-linear interactions between "neu-

tral modes" of the linear theory for their ability to extract potential

energy from the basic flows. These take the form of a growing triad of

waves whose rate of increase is "faster than exponential", until the triad

amplitudes reach 0(1) levels at which the small amplitude theory becomes

invalid. These instabilities can be triggered by initial conditions of

arbitrarily small amplitude although, unlike linear instabilities, the

jrowth rates are proportional to the disturbance amplitudes and so are at

First very small, if the initial conditions are weak.

Although they are non-linear in nature, it seems likely that this

class of instability is obedient to the Charney-Stern criterion for
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stability. Thus, for the two-layer model considered, the triad instabil-

ity can only exist when linear instability also exists. It remains an

open question whether there exist other forms of non-linear instability

which are not constrained by the Charney-Stern result. For any such

instabilities, there will probably be an amplitude threshold that must be

exceeded before growth can occur.

Of the two types of instability, the growth of linearly unstable modes

with 0(1) e-folding time scales can be expected to overshadow the triad

form of instability. Crudely speaking, if one starts with initial ampli-

tudes of 0(e), then the Tinear mode will reach an 0(1) amplitude in a time

of 0[In(1/¢)], while the non-linear instability will take a time of (1)

to achieve the same result. Triad instability, at least in the particular

model discussed here, is of only secondary physical importance. However,

it remains an interesting phenomenon by virtue of the novel mechanism

responsible for the instability and of the more extensive range of wave-

numbers that may be excited.

Because of the quantization of zonal wavenumbers present in annular

models of baroclinic instability, it is only in very special cases that

one would expect to see such triad instabilities. However, for a basic

flow in which the zonal scale is much larger than the internal deforma-

tion radius, one might expect such instabilities to occur. This has some

consequences for attempts to numerically follow the finite amplitude evo-

lution of an initial disturbance to such a flow when the flow is only

weakly supercritical. In a spectral model of such evolution, the prac-

tical requirement that one truncate the zonal wavenumber spectrum effec-
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tively imposes an artificial quantization condition which may go some way

towards suppressing such instabilities.

Although non-modal instability has been discussed here in the context

of a baroclinic model, there seems to be no reason why growing triads can-

not occur in cases of barotropic shear flow.

For a particular triad, the domain of instability is bounded. In ef-

fect, there is a boundary analogous to the marginal curve of the linear

instability problem. For triads only slightly inside this boundary, the

flow is, in a sense, only slightly supercritical and the growth of the

triad should be less intense. We may, therefore, be able to construct a

finite amplitude theory of weakly growing triads, analogous to theories

describing the weakly finite amplitude evolution of linear instabilities,

such as that of Pedlosky (1970). It will be interesting to discover whe-

ther alterations to the mean flow become significant for slightly super-

critical triads and whether it is possible to find equilibrated solutions.

For triads that are a 0(1) distance from a stability boundary, the correc-

tions to the mean flow that are induced by the growing waves are unimpor-

tant until the triad amplitudes become of 0(1).

2.2: Interactions Between Two Neutral Modes and a Weakly Unstable

ModeAwayFromMinimumCritical Shear

Loesch (1974) demonstrated that a slowly growing unstable mode that

lay close to the marginal curve but at a point some distance from minimum

critical shear, could interact with a pair of neutral waves, via a reso-

nant triad interaction, on the same time scale as that of the former's

interaction with the mean flow. This situation was not, however, consid-
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ered in detail. We take up this topic again here because we are curious

about the "stability" of the equilibration mechanism studied by Pedlosky

11970). As we noted in Chapter 1, in that work Pedlosky demonstrated

that a slowly growing mode could be equilibrated as a result of the

changes in the mean flow wrought by the evolution of the unstable wave.

This is a rather important demonstration: The question we wish to pose

here is, how this equilibration is affected by the presence of neutral

Rossby waves. We will show in this section that, away from minimum crit-

ical shear, the presence of Rossby waves can destabilize this equilibra-

tion process. However, in the more physical case in which the unstable

wave lies close to minimum critical shear, which we shall consider in

Section 2.3, we shall see that this sort of destabilization seems

unlikely.

2.2.1: Evolution Equations

The two-layer model we will use is exactly the same version of Phil-

lips' model as that used in Section 2.1, the potential vorticity equations

for which were given by (4.1) in Section 2.1.4. We will consider a dis-

turbance dominated by three zonal Fourier components. The leading order

part of each of these will correspond to a normal mode of the linear sys-

tem and the amplitudes will be taken to be small so that non-linear inter-

actions between the components are weak (although non-negligible). We

choose a value of g that is less than the maximum critical 8 (8 say)

for instability, and decompose this as

' (1.1
+

1
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Here Be is 0(1), 0 &lt;A &lt;&lt;¢&lt;1l and Be &lt; Be We take one of “the prin-

cipal zonal wavenumbers, Kgs to correspond to a mode which is mar-

ginal when 8 = 8, so that for the value of 8 given in (1.1) this mode

is slightly supercritical with a growth rate of 0(al/2y, The remaining

two principal zonal wavenumbers, Ky and Ko» we take to correspond to

neutral waves lying a 0(1) distance from the marginal curve.

The evolution time scale of the slowly growing wave is o(a~1/2 SO

we define a slow time variable, T = 21/2 and treat the perturbation

quantities as functions of both t and T. We therefore replace 3g by

By ¥ 21/2 3. Loesch showed that the natural scales for the three

waves were as follows: the amplitude of the unstable wave should scale as

212, while the amplitudes of the sidebands scale as 2374,

With our definitions of 8 and the time variables, the potential

jorticity equations become

"3 ua} a + (gr ¢
1/2

cy) d,, = -b 3- a -J (8, a) +28,

(1.2)

3. 1 (B. = =U) ¢
1/2

pe B= =A d~ Q, J (4. a.,
h

AB,

We expand the streamfunctions in the forms

A A
1  2 (0), , 3+ 23/8 = jA (

i-1 WANES
(1.3)

Wg [am tin, Bly, + a2 (Wyn, gh) 1]
l

A -C

. 2
it + % forj=0,1 ao
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In what follows, we obtain equations for the evolution of the A's. These

may be found as Equations (1.15) below. We assume that the three princi-

pal waves are resonant and that their wavenumbers and phase speeds satisfy

the following relations

2

{(C }) (1.4 ]

A third constraint, which deals with the meridional structures of the

waves, must also be satisfied for the resonance to occur. This will be

discussed later. We make the assumption that combinations of the wave-

numbers and frequencies other than those appearing on the left side of

(1.4) do not simultaneously sum to zero and satisfy the meridional con-

straint, an assumption that will generally be true. The non-linear terms

in the vorticity equations will give rise to both resonant and non-

resonant forcing. We have neglected the non-resonantly forced components

in writing the streamfunction expansions (1.3) as these do not affect the

evolution of the Aj's on the 0(a~172) time scale.

We substitute (1.3) into the vorticity equations (1.2) and obtain a

series of differential problems at different orders in a. At 0(al/2)

we have a linear problem for the meridional structure of the unstable wave

 =e) C2 - kd or) Oly ee Ogg

C1 [(22 - K - F) (0), + F (0); + (8. -

Fu)

FU)

(Oly _ gq

(0)w = 0

A
- f )

whose solution is

0) = (1, A sin ng my
-—b
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co 1 8 lag /Fr 1)
= 7-0 ToToo

TZ F0 ZF (al/F + 2)

o

1+

aitBe -%

where aj = ke + ns 2. We will restrict our attention to the case where

the marginal mode has the gravest possible meridional structure, nj, = 1.

At this order, the perturbation potential vorticity associated with

‘his Fourier component is given by

(0) (0) 8c *FU (0), Bc - FU (q)

q,) = - U-¢; Bis ~~ Bo

[Bc + FU 8, -FU iKg(x-cqot)
ANETTA Ag sin ng wy 2 + x

At o(a3/% we find a linear problem for the meridional structure of

the two neutral waves. Their modal structure is given by

3)... (1, + 3 311 r

Sv 1
J "2° 2 (a5/F + 2)

(a. a2 32 at at 11/2
Cody em ae. 1-2

FU 'F ZZ °F FF
ad

JF +1 -

1+FU
8./ _a.
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Note that ms is a quantity analogous to a vertical wavenumber in this

low vertical resolution system. It may take either of the values * 1 and

one is free to choose which, Having arranged the zonal wavenumbers so

that the resonance conditions are satisfied for a particular choice mss

one will not in general be able to satisfy the resonance conditions with

the alternative mse.

The meridional structures of the principal waves are trigonometric, a

consequence of the meridional uniformity of the basic state. In order

that the non-linear interaction product of two waves should have a

non-zero projection onto the third wave, an additional resonance

condition must be satisfied. There are several equivalent forms for

this. We will take it to be

2

2 Nn. =
j=0 J

0

We will jump ahead of ourselves a little and consider the vorticity

equations at 0(a2/%y. After projecting onto the Fourier component

21k x (j = 1,2) we obtain

Jy 1
~ Ky

1 (3), (0) (0),(0) (3') (0) (3*).(0) (0) (0).
re |- ar 9 - 35) 8." ", J 4 ) = 350 Bq ’ U4

L[- op Wa (0) Lg, (00) (510000) yg (1311400) (0g, (0),
J

1

‘here i 3 - i,
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ik.x

J(5)(asb) is the projection of J(a,b) onto e J

1 nd

FY, - C. 13, J

L; ¥, ¥,)=
v

[a
~

\

- k

8

jo FY, + FY, - oF “=,

1

After evaluating the Jacobians, the equation for (3)4(1) becomes

N 1ere

(3)q

3)

= x \
(1 5)

/ 8 +FU 8 + FU
Cc A. + Cc in A AT (k 1 1

we? MTT TIE 5 tkong- Kyo lye - ome

B - FU 8 - FU °
C C in 4® a™Ann + —m— A~ A., 2) - 5 !

“Art Ter ho Ay vary tay Myler
\ J ] ® |

Since Ly is a singular operator (1.8) is soluble only if the forcing

satisfies the secularity condition

|
]

from which we obtain an equation governing the evolution of Ass viz.

\
J

J 1

- iM

~~ 0
Ny

1./)
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w'i1ere

(a. FU 8. -FU ,]-1
c + c 2 m .

(vc, 2 2 7 (egy egy: = Kyug)x
29 j

Ms =

|
Be + FU yo Bo - FU

~ ~ ~ - meeps

aU cy (U ¢, JU c,) 0'1'2 1° |
X

(¥ 3)4

The potential vorticity equations at 0(a), when projected onto o1KoX

give an equation similar to (1.7) for (0)41) namely

_—

10) (1) 1 -1 (0). (0) 1
¢ = ky (Fe Ir 9, ’ Sy ar (01,40) (1. 3)

The secularity condition for this is empty, since Co corresponds to a

narginal wave, and we can proceed to solve for (0)4(1) We normalize

this solution by choosing (0)4(1) = 0. Then

- FU

0),(1) _ 1 °c” = gpe—— ——n A sin nn
IX 2 Yo "oT 0

0 F Ch

TY

The linear operator in the full potential vorticity equations involves x

and t derivatives at each term and so admits of a homogeneous solution

A + lv  ny

for a ¢ of arbitrary dependence on y and T. We must include an homogene-

ous solution of this form at 0(a) even though there is no direct forcing

for it. We will see that it is indirectly forced by the secularity con-

ditions of the 0(a3/2) problem.



96

It is at 0(4372) that the evolution of Ag is determined. If we

consider the 0(a3/2) part of the potential vorticity equations, we find

that the non-linear terms and the slow time derivatives contribute two

types of forcing that are resonant to the linear operator. The first of

these consists of terms that are independent of x and t while the second

type is composed of terms that are proportional to elKoX,

Collecting together the terms in the 0(x3/2) part of the potential

jorticity equation that are independent of x we find that

)

Bc = FU» 2,

) = - 3 Q, - Nm Zz 10 (|a,| )1 sin 2 i) TY

|

where Qj = 5 ¢, + (-1)9 F (€, -%,), is the potential vorticity asso-

ciated with the correction to the mean flow. If we use initial conditions

that consist only of the basic state and the three principal waves, then

Qq
Bo * FU 2 2

= = Nm — [[Ay(T) | - [A(0)] ] sin 2

(U-cq)
1, Mn TY

Tre

. (¢. + 4) - 0

We have initial conditions ¢, = 0 at T = 0 and boundary conditions

ar $4 = 0aty =0 and 1. hence
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b ._¢&amp;.

Nam 8 + FU
 0 c 2

2F + n2.2 (U 2 [Ay]? = | Ag(0)]41 Et 2nymy - “Mo” sh v2F (y-1/2)
om (U - cq) VE OZ

We now go to that part of the 0(a3/2) potential vorticity equation

that is proportional to eTkoX, This forms a forced linear problem

for the 0(a3/2) correction to (0)g which, abstractly, is

 he »Jk
'2) _

\"9

, S—

1 (0) (1) [8c * FY (1), (2) B. * FU (2), (1),

Ic, E 4 ore5lo eh) er do 4)

) (0) (0) (0) (1) (0) (1) (0) (0) .. (0),(0)

0) CHa) dg) C707 ay | ko

\

4
“Ch

(0) (1) [8c = FY (1), (2) 8c = FU (2), (1)

Bi a, {Eat 6,23, + “(0 ,, g,)

; (0),(0) (0).(1) (0),{1) (0).(0) (0),(0)
Joy U9 670) dg) C1870 a, | Pike Ty

\_ J

Ari ting this as
I) d2) 1

= Ky,
R (1 i

- a J)

and evaluating the several forcing terms we find that

(82 - F2u%)y. 8. + FU

Y= re|- = (- BE iu Agrr Sin ngmy * ikgAg sin gry
“0 0 F Cs (U-cq) (U-c,)
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ar . Cy - Cs x *

 (8g + FU) {kqny = koh) qgoenyu=e,y Mhe S10 Mon

Be + FU 3
Kg (ay +Toc, y) Ag sin Ngmy

LB
1 p Bc - FU

= = - Sr Yo ArT sin nomy + kg Yolo sin ngmy

7 “21 Fs

: 8 - FU

| Cc .

ma

Unlike the 0(a) problem, the secularity condition for (1.10) yields a non-

trivial relation and provides us with an equation governing the evolution

of Ans namely

*AQAYe

Arr = Ko c2 Ag = KoA = Nog (JAZ = [Ag(0)]%)

Rr . (U-c4)° E (a2 + F) vg
Cy “UC |B. FFU 0c, "Fg,

—

~

\o2

(1.11)

(1.12)
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m
[s..- FU 8. *+ FU "
— YaY1Y) - TT - -

So61% 0'1Y2 ~ TU cyI(U c,J(U c,) |
|

2

1U-¢o) 1, (a®+F) Yo
8. + FU u-c F Co

__—

(7.°3):

Ny = kn of 1 _v__
0-270 0 F +2 ngr 8. + al

X

(1.14)

(22.5) (Franke) » (2F2-ah) 2x"fF anh (F/2)1/2
2 (a®-F) (F+2nZx~) + (2F°-a (1 )

0” 142 n2rt /F (F/2)172
XK

mm

Equations (1.7) and (1.11) form a closed set and determine the evolu-

tion of Ans Ais and A,. For ease of reference, we collect them here.

Arr = Ko ©5 Ag - Kg Athy = Ng Ag ([Ag]2 = [A()]2)

. * kx

(1.15)

] *  k

Aor = 1 MoAq Ay

In the latter two equations of this set we recognize relations that

are typical of the usual form of triad interactions between neutral waves.

The first equation is similar to the equation governing the amplitude of a

weakly growing wave in the single-wave theory, modified only by the inclu-

sion of a forcing term arising from the non-linear interaction between the

. x kx 2 2 .

two sidebands, - Ko AL A,. The constants Ng and Kg cy are independent of

the choice of sidebands. They are the same constants that occur in the
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evolution equation of single-wave theory for a slowly growing mode at

wavenumber Kg

2.2.2: Asymptotically Unstable Trajectories

From the single-wave theory of Pedlosky (1970), we know that the term

-NGA, (1 Ag) 2 [Ag(0)}2) in (1.15a) represents the stabilizing effect of

the alteration to the mean flow produced by the growth of the unstable

wave. In the single wave theory, this effect is sufficient to ensure that

Ay remains bounded and causes A, to vacillate in a regular, periodic

fashion. One might wonder whether the inclusion of the interaction with

the sidebands, i.e., Kg A Ay» can destabilize this equilibration pro-

cess and lead to an unbounded increase of Aq (within the current order-

ing scheme). We will show that for this system, such a finite amplitude

instability is indeed possible.

Although the system of equations (1.15) looks fairly simple it is dif-

ficult to obtain a general analytical solution. What we shall do in this

section is show that there are solution trajectories which approach

infinity and find the large-amplitude asymptotic form of these. In Sec-

tion 2.2.3, we shall give an example of a numerical integration of (1.15)

Which exhibits a finite-amplitude instability and tends asymptotically to

such a trajectory. This establishes that the unstable trajectories have

some non-zero domain of attraction and hence represent a non-trivial

finite amplitude instability.

We will look for trajectories along which Ags Aq and A, approach in-

Finity as T approaches some finite value Tg from below. We further assume
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that, asymptotically, the Ay's behave like inverse algebraic powers of

(Ty-T). For simplicity, we will suppress unnecessary constants and

minus signs by shifting the temporal origin to Ty and reversing the

sense of time. Under this transformation we seek instability as T --&gt; O

from above. The backwards equations are

A 2 pL KAASort=9Ag- KAA = Ng (1Ag]2 = |Ag(0)]2)

PM x x

Air =~ 1 MAA,

(2 0)
\ . * *

a1 == 1 MAGA

2 2 2
where o = Kg Cy.

By inspection, the leading order form of unstable trajectories

[ --&gt; 0+ will be given by

Q.
 JU

Aq

a

A,~

~

~

3/2 + ie,

3/2 + ie,

(2 )

where as a1, ap are complex constants and 9s 91 and 6, are

real constants. Substitution of (2.2) into (2.1) will provide us with

details of the a and 9; appropriate to such trajectories and will

furnish constraints which the constant coefficients in (2.1) must sat-

isfy, if unstable trajectories of this type are to be possible. These

constraints may be found as inequalities (2.21) and (2.22) below.
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Putting (2.2) into (2.1) and retaining only the higher order terms

yi ¢

An

1ds

(1-104) {2-10.)

Y
&lt;4

AA

ta

+ ia,

14
= = Kn ay a-

1i 9 9) 2 .

- Ng age)

H/2vie, * % _-5/2-i(ej*e,)
= - iM, ®n An

5 /2*ia,
= - iM, a

a Gn

-5/2-i(04%0,)
1

-3+i0,

“ence

0
» Qe. + 3, = 0

is,

and setting aj = re 9 , S=-+s.
. \ 4 QR. we have

1 y

r.r \

Co 12 -iS 2

2-104) + Ko oo e + No A
=0

+ ig.) = M, “02 -i(S + 4/2)

{ - +40.)=M,T0"1  -i(S+7/2)
2 2 Vv, e

(923)

Cot)
i

"

r /
a.

-

3)

2 ey
i. 3)

From (2.5) and (2.6) we have that 0 = 9, and we see that one of the

restrictions on coefficients is that My and M, must have the same

sign. Define sign variables Vg and v. by

Ko = vo I %o]

My = vy |My|
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and set rely = (-3/2 + i9,), then (2.5) and (2.6) become
1

w'aagJC

ely

wh yo r | ols ~1{$+v.e/2)
- 1 Tr -

a
=-J(S+ 2?

ty _ I" | ro’ . i(S Vir/ )

 2 r,

«J w/2 = 2 nu

2 2

apdIL
2 LA o

(2.2)

|
"ot

i ey 3)

 © Te

+ TsMy=

-

v)

Returning to (2.4), it follows that

v. 1~
-iS

—= eweKo6 ey =
+

ry)+ Noy

and hence

i 2

Teif = (2 PY No ) : 2 IM] |X | -i(Stx/2+vr/2)9 mis) 6 fog = rf —S—e o"

Mw
1

rt4

9 + v. oI
07

= 2 n't

2 _F[
SE LYS

(2.10)

(2.11)

“rom (2.7) and (2.10) we see that
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fF =v ~~ +x (vy = Vg) 7+ 210" a (7 *2)nl

whether Ko has the same sign as, or

(2.12) is of the form

*he opposite sign to that of M,

mx

for some integer m and hence

*an f — —

[=

CG. (2.13)

Using the definitions of f and vy, (2.13) affords us an equation determin-

ing @,, namely

N N
0. 2 0 9

(8 - ) 0, = 2 +

MW 71 mo, 2
’{ 14)

We have already noted that a necessary requirement for a solution of this

form is that My M, &gt; 0. Equation (2.14) furnishes a second restriction,

hp+

Mo
MM,

¢ 8 (7 5)CLo-

Provided that this holds, we obtain

- + (2 + Yo om / 6 Yo |
MM, MW,

(2.16)

This determines Fand [0 and so by using (2.11), (2.8) and (2.9) we find

‘inat

(2a) (s ] a)"

n
£- a 17)
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1/2 NA \-1 N N. \1/4

20 0 ( 0 2) ¢ 0 )o 2 o(_20 g. 0 2+ 0 3) (g__0 (2.18)

1 (75 kT) ( oo) | MM, 4 MM, ]

M\1/2 1/2 N. \-1 N N. \|1/4

fo 4 ee 20 ) (s- 5) 3 9) (s - 2)27\M) 1 My 11%] MM, MM, 7 MM

(2.19)

The three phases © 91 and ©, are given by (2.16) and 9, = 045 04 = -20,.

The phases Sq» S71 and s, are not uniquely determined by this asymptotic

analysis, however, their sum must satisfy

2 1 29 3

2 5j = tn yp - Wy
+ NT { ~

]
PY|0)

We have found that trajectories approaching infinity after a finite

time can exist when the constants in (2.1) satisfy

Wi, MM. 0 (2.21)

and

N
8 0

- &lt; gw &lt;8
9 1"'2 \ L,

-~

22)

This suggests that the system (2.1) may exhibit a non-linear instability.

To confirm this, we must first of all verify that there exist triads which

yield values of Nos M, and M, that satisfy (2.21) and (2.22). It

will then be necessary to show that the unstable trajectories can attract

a set of solutions generated by some non-trivial set of initial condi-

tions. The first step is simply a question of solving the linear dis-

persion relations to find resonant triads and then computing Nps M,
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and M, from the appropriate algebraic formulae. We will take a numeri-

cal approach to the second step. If we find initial conditions for which

a numerical integration of (2.1), with appropriate values of Ng» M, &gt;

and Ms yields a solution which approaches a trajectory of the sort

discussed above, then we will have established that tne unstable trajec-

tories have a non-trivial attractive domain. These steps are taken in

Section 2.2.3.

It may at first seem odd that the coefficient Ko which, in a sense,

measures the extent to which the non-linear interaction between the two

neutral waves forces the evolution of Ags does not appear explicitly in

the stability conditions (2.21) and (2.22). The term Kg A A, on the

right of Equation (2.l1a) is clearly necessary, if A, is to grow without

bound, rather than follow the equilibration of the single-wave theory.

We note that, were Ko = 0, we could not deduce (2.10). We also observe

that the ratios rg/r; and ry/r, are proportional to [Kole As

we reduce Ko» we reduce the magnitude of Aq relative to Ay and

As in the neighborhood of the singularity. In addition, because we

have used an asymptotic analysis, we have not obtained any expression for

the time at which the singularity occurs for a given set of initial

conditions. It seems likely that this will depend on Kq (as well as

the other constants) and will increase as | Kq | is decreased,

2.2.3: Examples of Triads Exhibiting Non-linear Instability

We will look at two examples of this triad destabilization of the

single wave equilibration process. For ease of reference, we will dis-
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tinguish them as examples A and B. In each case, we will follow the same

procedure. After choosing the meridional and vertical structures of the

two sidebands, we fix 8 at a subcritical value and determine a pair of

zonal wavenumbers for the two neutral modes for which the triad is reso-

nant. We then compute the coefficients 2, Ko» My M,, Ng and check to

see whether (2.21) and (2.22) are satisfied. This was repeated for a num-

ber of different values of 8, retaining the same choice of meridional and

vertical structure for the sidebands. Finally, a particular value of 8,

for which (2.21) and (2.22) were satisfied, was chosen and the amplitude

equations (2.1) were integrated using values of 2, Kos My M, and Ny

appropriate to this 8. The difference between example A and example B

lies in the choices of vertical structure for the sidebands.

The above calculations were performed numerically. In Figures 2.5 and

2.6, we have plotted the values of Kgs Mis Mo, and Ng as 8 is varied, for

the two cases. Figures 2.7 and 2.8 then show the evolution of the wave

amplitudes under the assumptions of weakly non-linear theory for the

particular unstable examples selected.

The meridional and vertical structures for the two cases are:

A:

qe

Wave 0 : Ng =

Wave 1: n, = 3

Wave 2 : n, = 2

Wave 0 : ny = 1

Wave 1 : ny = -3

Wave 2 : n, = ?

my = -1

m, = 1

My = 1

m. - 1
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Figure 2.5: a) Plots of Mj, Mo and No as functions of g for a
resonant triad consisting of two neutral modes and a marginal mode.

The marginal mode corresponds to the left (Tong-wave) branch of the
marginal curve. The meridional and vertical structures of the triad

are n = (1,-3,2) , mm =-1 , mp =1 (case A in the text).

b) Kg as a function of 8 for the same triad as in Fig.
2.5a.
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Figure 2.6: a) As in Fig. 2.5a but with neutral modes of different
vertical structures ( mp =1,m=-1: caseB in the text).

b) Ko as a function of g for the same triad as in Fig.
2 6a.
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In each case the marginal mode was chosen to lie on the left side of the

marginal curve. Given the particular choice of meridional structure this

is a necessity, since for this particular triad only wave 0 has an unsta-

ble domain that is contiguous to the marginal curve and then only to the

left branch of that curve (refer to Figure 2.4). To examine the case in

which the marginal mode lies on the right side of the marginal curve, one

would have to consider another triad. Figure 2.5 shows how the interac-

tion coefficients vary with g for example A. M; and M, have the same

sign over the entire range plotted, but Ng/MM, is less than 8 only

for values of 8 less than a threshold value, By» of about 15.9. Fig-

ure 2.6 is a similar plot for example B.

In example A, when 8 = 13.0, the interaction

q = AQ 4506

coefricients are:

M, = -8.193586 x 1072

M, = -13.91703

wh ile

Ny = 5.719176

2 9 146278 x 10-2

Using these values, the amplitude equations (2.1), derived with weakly

non-linear theory. were integrated numerically. The initial conditions

vere taken to be
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Ay(0) = 1 x 1072

A(0) = 1 x 10-2

A,(0) = 1 x 1072

A.
J! (0) = 0 Ay(0)

Ti. H)

The subsequent evolution is shown in Figure 2.7. The solution approaches

a singularity after about T = 17.49. The behavior of the solution near

this trajectory is similar to that predicted for the asymptotic trajec-

tories of Section 2.2.2. If we set Tq = 17.2, Ty = 17.3, and define

Rs = A. (To) /A; (Ty) , then we find that

2 1.54291

Ry = 1.91666

Ry 1.91668

Ry /Q
3/2

!
= 1.00008

2. R372 _ 1.00009

These latter two ratios are close to unity. For the asymptotic trajec-

tories of 2.2.2 we expect these ratios to approach one as the singularity

is approached.

Figure 2.8 represents the evolution of a similar triad corresponding

to Case B. We chose 8 = 11.0, for which
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Figure 2.7: An example of the evolution of an unstable triad (case A,
8 = 13.0). The amplitudes of each of the three waves is shown. Dur-

ing the early part of the run (up to about T = 16), the scale at the

left applies. After about T = 16, the three curves are rescaled to

accomodate their rapid growth and one should refer to the right-hand
scale.
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Kg = -8.917685

My = -0.4922978

M, = -1.472019

Ng = 1.786117

2
7 4 0630695 Xx 10-2

The initial conditions used were again those in (3.1). The non-linear

growth of all three waves is again apparent.

We have found that the single wave equilibration of a slightly

supercritical unstable mode, located well away from minimum critical

shear in parameter space, that is produced by the distortion of the mean

flow, can be unstable to a multi-wave interaction involving an additional

pair of neutral waves. We have also observed that this growth can be

rather powerful in that it can force the amplitudes of the three waves

involved to become O0(1) within the 0(a~1/2) time scale. At such a

stage the weakly finite amplitude analysis becomes invalid.

In view of these results, it would be interesting to discover whether

the equilibration process suggested for weakly supercritical instabilities

hear minimum critical shear, is also unstable. We turn to this question

in Section 2.3 below.

2.3 Three-Wave Interactions Near Minimum Critical Shear

We have seen that the equilibration of a weakly growing unstable wave

as described by single-wave theory may be unstable to interactions with
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sidebands when the basic state does not lie close to minimum critical

shear. In addition to weakly growing instabilities, a strongly super-

critical flow possesses unstable modes with 0(l) growth rates which,

unless absent for such reasons as zonal quantization conditions, will

tend to dominate the evolution of the flow. A more significant question

is whether interactions between a slowly growing mode and neutral waves

can produce a non-linear instability that surpasses the ability of the

wave-mean flow interaction mechanism to contain it, when the basic flow

is only slightly supercritical. For such a flow, all of the unstable

modes are weakly growing.

While it is the discovery of the non-linear instability of Section

2.2 which suggests looking at the interaction between a slowly growing

wave and a pair of neutral waves in a slightly supercritical flow, we

already know that the dynamics of this three-wave problem must differ

somewhat from that of the one in Section 2.2. As Loesch (1976) pointed

out, the appropriate scaling for the amplitudes of dispersive sidebands

in a three-wave interaction near minimum critical shear are 0(al’?)

rather than 0( a 3/4, This is in part due to the critical layer ef-

fect that is manifest at minimum critical shear, Instead of producing a

secular forcing term at 0(a), the interaction between the two sidebands

produces a variable , 0(al/2) phase shift between the upper and lower

layer streamfunction of the zonal Fourier component with the wavenumber

of the unstable wave. This augments the phase shift due to the slow rate

of change of the potential vorticity of the leading order part of this

Fourier component.
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The problem described above is just the one attempted by Loesch

(1974), although in our development of it we will endeavor to include the

critical layer dynamics described by Pedlosky (1982). Although Loesch

omits these, the amplitude equations that he obtains form the core of the

extended set of amplitude equations that govern the full system. In view

of the consistently stable solutions found by Loesch, one might suspect

that the extended system will also be stable.

Amplitude Equations

Je will work with the same two-layer model used in earlier sections.

Je will take the basic flow to be only slightly supercritical and set

4 ‘U-Aa=8B. (2.3.1)

For such a choice of 8, only a small, 0(al/?y, range of wavenumbers is

unstable. We will assume F &lt; 2 J34% so that only the gravest merid-

ional mode is unstable, then the unstable range of zonal wavenumbers is

centered on Kp where

Z

$n = J2F (2.3.2)

Jur aim is to follow the evolution of a trio of waves, each of small amp-

litude, as they slowly interact. One of these waves will be the slightly

unstable mode at k = Kos with a meridional wavenumber Ng = 1. The remain-

ing pair of waves will be neutral Rossby waves whose wavenumbers are such

that the triad as a whole is resonant in the sense of Section 2.2. We

noted earlier the amplitudes for which the wave-wave interactions, the
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wave-mean flow interaction associated with the unstable wave and the

growth due to linear instability, all develop on the same time scale.

Accordingly expand the streamfunction for the system in the form

W172 400), 11)
2 @ A &amp;

(2.3.3)

2. 2 . . ik, (x-c.t)

(0) &gt; 31400) = am [0 Bre 303
J= ~ J=

(3) ik.(x-c.t)
where ‘J Y, (¥) e J J are the three linear modes which form our main

triad. As before, we expect the amplitudes to vary on a slow time scale,

0(a~1/2) and have set T = 21/2, As in 2.2, the meridional modal

structure is trigonometric with

Jy) = (1,15) sin nay

The conditions that the triad be resonant are then

2

&amp; (ky KiCys ns) % (0. 0. J) (2.3.4)

As is the case at other values of 8, there are generally two distinct

vertical modes at wavenumbers other than that of the marginal mode. How-

ever, at minimum critical shear, one of these modes exhibits a peculiar

feature, namely a loss of any dispersive characteristics. At minimum

critical shear the dispersion relation may be written
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2 2 4 4

uo= [Esa Jt (Epon gen]«

ae

(2.3.5)

where the choice of sign corresponds to the choice of vertical mode.

choosing the negative sign yields c¢ = 0, whatever the value of the hori-

zontal wavenumber a, i.e., a non-dispersive mode. The marginal wave also

has this phase speed. This phase speed is the same as the flow speed in

the lower layer, which in this treatment has been taken to be zero. Thus,

the non-linear interaction between any pair of non-dispersive Rossby waves

will produce a resultant that is resonant with a third non-dispersive

Rossby wave. For the present, we shall follow Loesch and consider only

sidebands that are dispersive neutral modes, i.e., we will take the posi-

tive sign in (2.3.5). Loesch shows that when 22 &lt; F&lt; 42/2 there

is just one such pair of dispersive modes that satisfy the resonance

conditions.

Having chosen the triad we can substitute the expansion of the stream-

functions into the potential vorticity equations and use a perturbation

technique to determine the evolution of the amplitudes of the three main

saves. Since the analysis is really just a superposition of that of

Loesch (1974) and that of Pedlosky (1982), we will not present it here.

We shall just provide the evolution equations that result.

One effect of the non-linear interaction between the marginal wave

and each sideband is to produce a forcing term resonant with the other

sideband. Much as before, this gives rise to an amplitude equation of

the form
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. * _k

Ast = 1M; Aq Aji

for each sideband where j' = 3-j.

The non-linear interaction of the two sidebands produces a non-reso-

nant forcing of the same wavenumber and frequency as the marginal wave.

This, together with the slow rate of change of the potential vorticity of

the marginal wave in the upper layer, produces an 0(al/2) phase shift

between the upper and lower streamfunctions of the Fourier component hav-

ing the marginal wavenumber. This is an extension of the phase shift

observed in linear theory. This phase shift appears as an 0(a) correc-

tion to the streamfunctions of the marginal wave. Three other correc-

tions to the streamfunction field as a whole are generated at 0(a). The

first is the familiar zonally independent correction to the mean flow.

Unlike the case considered in Section 2.2, this correction is forced by

both the weak phase shift associated with the near-marginal wave and the

phase shifts associated with the sidebands as a result of their slow

changes in amplitude. The difference between the current problem and

that of Section 2.2 is that now the sidebands are 0(a1/?) so that the

heat fluxes associated with the sidebands are of the same order as those

associated with the slightly unstable wave.

The second correction consists of a collection of non-resonantly

forced Rossby waves generated by the non-linear interactions between the

three principal waves. Although these are not free modes of the system,

their own interaction with the principal waves can produces weak 0(a3/2)

forcing that is resonant. Part of the latter is a component that is
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independent of x and t. It is at the 0(a3/2) level that the structure

of the mean flow correction is determined. This component of the forcing

contributes to the structure of the mean flow correction, However, forc-

ing of this type only occurs in the potential vorticity equation for the

upper layer. The potential vorticity in the lower layer associated with

the mean flow correction is independent of the type of forcing discussed

here. In so far as determining the evolution of the amplitudes of the

three main waves is concerned, we need not explicitly calculate this sec-

ond type of 0(a) correction to the streamfunction fields.

The third correction arises as part of the critical layer dynamics

discussed by Pedlosky (1982). At minimum critical shear, any disturb-

ances that propagates with a phase speed equal to the flow speed of the

lower layer will be a homogeneous solution of the linear part of the

potential vorticity equation for the lower layer, regardless of its hori-

zontal or vertical structure. Since the flow speed of the lower layer is

zero in this instance, such disturbances are those with no dependence on

the fast time variable t. The linear part of the upper layer potential

vorticity equation provides a constraint on the vertical structure of

these perturbations. Thus we have that any disturbance of the form

‘hare

¥ [X. (x,y,T) ’ Xo(X,y,T)]
 LB

X, = - (9 + F)X;

(2.3.6)

(2.3.7)

will be a solution of the linear part of the potential vorticity equa-

rions. This is a class of solution that does not exist when the basic
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flow does not correspond to minimum critical shear. In the current prob-

lem, it represents another set of linear solutions which can be resonantly

forced by the non-linear terms. Forcing of this type does indeed occur

at 0(43/2), being produced by the interaction between the mean flow

correction and the unstable wave. To maintain a non-secular solution, we

must include a correction of the form given in (2.3.6) and (2.3.7). The

slow rate of change of the potential vorticity associated with this cor-

rection then balances the forcing at 0(a3/2y, We have not specified the

norizontal structure of Xq and Xs. The interaction between the unstable

wave and the mean flow correction, mentioned above will directly force

components of X proportional to e Hox . However, the resultant of non-

linear interaction between these Fourier components of strength 0(a) and

the unstable wave includes terms of 0(3/2) proportional to oot, Since

these have no fast time dependence, this forcing is resonant and its

effect is to generate additional Fourier components as part of Xq and

Xo. We are forced to include an infinite set of Fourier components,

poth in x and in y, in the structure of X.

In the preceding few paragraphs, we have given a heuristic account of

the structure of the term g(l) in (2.3.3) that a more complete analysis

would reveal. This may be summarized as

8) (0, 6th) + lH), iby wx, xp) + (8), 6)

Nii gE

$51) &lt; a [A + iT (k C CcPp i oT A Nn, - Kan.) 2° "1 * * ik0 (U=c.)(U-c.T i x172 21 -C, =C; AA, ] sin 7y e 0 + x
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represents a phase shift in the Fourier component with the same horizontal

structure as the marginal wave.

3(1) contains the non-resonantly forced Rossby waves, X = [Xp (%,y,T),

Xo (X,¥,T)] is the correction arising from the critical layer effect. We

Fourier expand X so that

!
l

oO

2
m=1

n=1

mk jx
e sin nuy in A(T) +

and Xo is given by (2.3.7). We will adopt the normalization condition

that {; ; = O.

§ = gly,T) is the correction to the mean flow. We will not determine

3 fully. Instead, we will define

2 j ;

0; = (05 -F1Gy +F(-1)) (&amp; -£)  §- L.2

as the potential vorticity of the mean flow correction,

required in determining the evolution of A,. We will expand

ly
=
=

oD

2. P,(T) sin 2
n-=1

ry

Only Q, is

Before continuing we note that the lower layer potential vorticity due

to X is given by

L |
vt F) x = 5

n=1

mn=1

mk AX

e 0 sin ny [(nk2 + n? 2)? + FF nt *



125

To simplify subsequent equations it is convenient to define

22 22 2
Bn = L(mkg + ne") + 2F 1% 0h

Because of certain symmetries in the system, it will further simplify

matters if we define

“mn = Bom-1, on. and Diy, = Bom, 2n

Note that half of the possible By nS are not included in these defini-

tions; those of the form Bom, on-1 and Bom-1, on* It turns out that

these are not forced by the dynamics and so need not be included provided

that they do not form part of the initial conditions. (Note that this is

similar to the idea used in the development of the single-wave theory of

the finite amplitude evolution to discard the neutral modes. One could,

if one wished, examine the stability of the evolution to be described

below to disturbances with Bom, on-1 and Bom-1, on non-zero.)

The 0(a3/2) terms in the perturbation expansion of the potential

vorticity equations pose a forced linear problem for 0(a3/2) modi fica-

tions to the streamfunction field. The linear operator is singular and

the secularity conditions for this problem furnish evolution equations

for Ags ¢ and X. These, together with the equations already derived

for AT and Aor form the closed system given below.

\ A OU IALZ fm [a2 + 02k Sp
OTT="0‘Yo2'™ 01 179 a SL | (2.3.8a)

M
J NT *d = - -

r= Har Uagl® - 2 Ia I?) -2i0 age, A cl) (2.3.80)
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- * j

010pn = 210] Ag{nP -(n-1) Pno1d + AglnDy ,_p-(n-1) oy | n&gt;2 (2.3.8¢c)

-
»

[

. * * * *

210n0(AGC) n~AgCy on) = (Agr,ne1-RoC1 net] M22 (2.3.8d)

, x *

1Cm.n = 2900 (n+m-1) (AD 1 1*APp1,n) - (n-m) (AD AP 1 n-1))

m g]  | (2.3.8e)

. * x

3D .n = 2iDL(n+m) (AgCraq 0 *AoCm,net) - (n-m) (AgCreq +1 Rom nA

By definition,

m&gt;1 1b

) -

] * *

* *

a, = My Aghy

Don = %m0=Con=Cno=C1.1=0

(2.3.8f)

(2.3.89)

(2.3.8h)

The constants appearing in the above equations are as follows:

Z

Ky 1/2F - ’

”

/U ND
) ‘a

(2.3.9)

. 2 % - Cn

M. = 7 (U-cy) (kyny-kong) -Cq U-c, U-c,

where (j,1,m) is a cyclic permutation of (0,1,2). Because we are working

at minimum critical shear
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KS = ZF - and vo = 2H% - 1

when the gravest unstable mode is chosen.

For comparison, a set of equations equivalent to those integrated by

Loesch may be obtained by formally setting D equal to zero. For the

moment, let us do this. Assuming that Can =0 = Din. = P, initially, the

amplitude equations reduce to

AgTT =

-

Ag (Ht, + Sw 00) [a [2 + INE ATE:
FR) A oy Rel” - HT[Ag]

(2.3.10)

2 M

 + ZH (ay (0)]? -in [30%] Ay

. x _*

\iT = iM, Aq A,

. * x

(2.3.11)

(2.3.12)

The constants a and H are both positive. One can see from the formula

for M. [Equation (2.3.9)] that My, M; and M, cannot all have the same sign.

If My and M, nave opposing signs, then it follows from (2.3.11) and

(2.3.12) that |A;| and |A,| are bounded. In (2.3.10), the effect of

the term in Ag Agl? is stabilizing because of its negative coefficient. If

[A] were to grow, the Agl Aq |? term in (2.3.10) must eventually overshadow

the remaining terms on the right-hand side of (2.3.10) and we would not
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therefore expect to see any unbounded growth of Age If My and M, have

the same sign, then MoM » MoMy and Mo/M must all be negative and so

(2.3.10) will have the form

AoTT = “Rg (M In, * Ap | A, * xg |Agl%) + a3 Ag

where all of the A's are positive constants. Any growth of [A or | A,

is going to inhibit the growth of Ag Furthermore, the “Ag Ag | A] term

alone will be sufficient to prevent Aq growing without bound,

The above discussion makes plausible the conjecture that | Ag will be

bounded whenever Mg» My and M, do not all possess the same sign. Con-

versely, it is easy to see that lag! ™ and [A] can grow without bound

for some initial conditions when Mg» My and M, all have the same sign.

Since we know that Mg» My and M, have differing signs, we would not expect

any finite amplitude instability to occur. Loesch's numerical integrations

of (2.3.10)-(2.3.12) bear this out. It remains for us to see whether, when

the critical layer dynamics are restored by taking a non-zero value of D,

the system remains bounded.

Numerical Solutions

We have attempted to answer the question of the finite amplitude sta-

»ility of the system (2.3.8) by numerically integrating these equations

for two values of F and a variety of initial conditions. None of these

integrations exhibited any unbounded growth in energy of the three main

waves. While this does not guarantee the absence of any instability, it

strongly suggests that the evolution of the triad is stable.
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For F in the range of yy &lt; F&lt; 247°, only one meridional mode can

be unstable near minimum critical shear, namely, ng = 1. The work of

Loesch (1974) has shown that for such values of F, there is only one pair

of neutral waves capable of forming a resonant triad with the unstable

wave, The meridional structures of these waves are given by ny, = -2,

ny = l. Loesch showed numerically that for F &lt; 10.5, My &lt; 0 while

for F &gt; 10.5, My &gt; 0. The coefficients My and M, are negative and

positive respectively for all values of F. The remaining coefficients in

(2.3.8) are all positive. There is, therefore, a structural change in

the system (2.3.8) as F passes through the value 10.5. (One consequence

of this can be readily predicted. When F is less than 10.5, a solution

that starts with most of the initial energy in wave (0) and only small

amplitudes for both sidebands will continue to have only small sideband

energies. When F &gt; 10.5, we would expect that a solution starting with

very weak sidebands would exhibit growth of the sideband energies.)

Our numerical analysis follows Loesch (1974). We choose two values

of F. One, 8, less than 10.5, the other, 12, greater than this threshold.

Fixing F fixes the zonal and meridional wavenumbers of the one possible

resonant triad. For F = 8, the zonal wavenumbers are

(Kgs Kew Ko) = (1.2017, 2.6821, -3.8838)

xhile for F = 12, these become

Kons Kis Kp) = (2.6648, -0.7999, -1.8648)

At a fixed F, the only freedom in generating solutions is the choice of

initial conditions. Loesch, after making a number of numerical integra-
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tions of (2.3.10)-(2.3.12) for different initial conditions, discovered

that the solutions could be distinguished as being one of nine distinct

types, four occurring for F = 8 and five occurring for F = 12. In the

work already cited, Loesch exhibits a solution of each type and specifies

the initial conditions necessary to generate each of these.

Using Loesch's values of F and U, we have integrated the fuller sys-

tem (2.3.8) for some of the same sets of initial conditions as those used

by Loesch and compared these with Loesch's solutions. These will be dis-

played below. In our integrations, the infinite set of equations (2.3.8)

Was truncated at either n=m=8 or n=m = 16 as appropriate. Loesch

refers to his canonical solutions as cases 1-9 of which cases 1-4 are for

F = 8 and the remainder, for Ff = 12. The initial phases of Ags Ay and A,

are chosen so that ph(A,) + ph(A,) + ph(A,) = 1/2, under which condition

the three separate phases remain constant throughout the integration. We

list the initial moduli of Ags Ais and A, below for the four cases that we

will consider, together with the size of the truncation. The subsequent

Figures show how the moduli evolve with time. It is necessary to specify

an initial value for Agte In each case we use

ul

tL

0) = a A. Ly J ]

where o is the linear growth rate of the unstable mode.

Ma
. 8 %d

¢0

3
ny

 i

|Ag(0)] [A (0) |A,(0)] Truncation

.0707 .0177 0.0
103535 103535 103535
.03535 0707 0707
"0577 ‘0144 ..0289
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Figures 2.9 - 2.12 show the results of our integrations. In each

case the evolution of |Ay|, |A/| and |A,| are shown for both the

system with critical layer effects excluded (the left side of the figure)

and the full version of (2.3.8). The results on the left side of the

figures are thus equivalent to those of Loesch although the graphical

format is different. A perusal of the figures reveals that the proper

inclusion of the harmonics associated with the critical layer effect does

not produce any recognizable tendency towards non-linear instability.

The solutions remain bounded and are not terribly different from the solu-

tions of Loescn. Those solutions of Loesch which contain relatively fre-

quent zero crossings of | Ag| (e.g., Case 4) are hardly affected by the

inclusion of higher harmonics. Those solutions with longer intervals

between zero crossings are more noticeably affected.

There is scope for a larger survey of the solutions of (2.3.8), but,

in view of the form of (2.3.8), and the already noted fact that Ms

M, and M, cannot all take the same sign, it seems unlikely that

unstable trajectories exist.
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Figure 2.9: The evolution of a resonant triad near minimum critical
shear, e triad consists of the marginal mode and two neutral waves.

(a) - (d) show the evolution when the critical layer effect is
axcluded, (e) - (h) include this effect.

(a) and (e) : Ag
(b) and (f) : A

{c) and (gq) :
(d) and (h) :

( + = 8, Ag(0) = .0707,
i

«1(0) = .0177, A2(0) = 0.0; case 1)
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CHAPTER 3

3. Baroclinic Instability in a Meridionally Varying, Two-Layer Model:

[near Theory

We begin here the main investigation of this thesis, an examination

of the nature of baroclinic instability in a system in which, to the fun-

damental property permitting baroclinic instability, namely, a reserve of

available potential energy, we have added a single complicating feature,

the presence of meridional variation in the potential vorticity gradient

of the equilibrium flow, Some reasons for wishing to do so will be given

momentarily. Let us note here that this study will concentrate on the

properties of slowly growing unstable modes and on the evolution of such

modes. The presentation will be divided into two parts. The first will

comprise this chapter and will look at a linearized model of instability.

Chapter 4 will then deal with the subsequent evolution of weakly growing

modes once they enter the finite amplitude domain.

This chapter is composed as follows. An introductory section is fol-

lowed first by a short formal description of the theoretical model under

consideration and then a presentation of the behavior of the eigenvalues

as determined by a numerical model. Next we discuss the spatial struc-

ture of the unstable eigenfunction and its attendant eddy fluxes as they

are revealed by the numerical study. A critical layer effect near the

center of the channel is noted. In particular, 4, is confined to a

narrow region about the center of the channel. It is shown that the

eigenfunction structure may be related to the horizontal structure of the

basic potential vorticity gradient of the lower layer. An analytical
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model, asymptotic in the supercriticality, is developed for the case in

which the basic state is close to minimum critical shear. Some compari-

son is made between the analytical and the numerical results. In a con-

sideration of the energy balance for an unstable mode, some properties of

the heat flux are emphasized, notably its confinement to the middle of

the channel and the occurrence of both northward and southward fluxes

within this region which almost cancel. Finally, we draw attention to a

class of slow neutral modes and point out their relevance to a weakly

non-linear theory for the slightly supercritical model.

The most frequently cited linear models of baroclinic instability,

Eady (1969), Charney (1947) and Phillips (1954), examine situations in

which the mechanism of baroclinic instability is isolated in a fairly

pure form. The basic flows possess only vertical shear and have merid-

ional temperature gradients that are independent of y. In each example,

the potential vorticity gradients of the basic flow are functions only of

the vertical coordinate. The normal modes supported by each of these

models can be obtained analytically. Thus one can determine the growth

rates and eigenfunction structure of those modes that are unstable and

find the boundaries between stable and unstable domains in the parameter

space of the model (typical parameters being the Froude number, the

vertical shear, the relative importance of 8, etc.).

In a geophysical system such as the atmosphere or ocean, we are often

interested in the stability properties of relatively long, sustained, jet-

like flows. Rather than being a flow that is uniform in the cross-stream

direction, these geophysical jets vary significantly across their path,
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from an interior maximum to a small velocity at the edges of the jet.

The interior of the jet may include more than one maximum as is perhaps

the case at times in the Gulf Stream. Typically one is interested in the

stability of a feature that is both confined in the cross-stream direction

and varying in that direction. A channel model will simulate the confine-

nent of the feature of interest -- probably too well, since by preventing

radiation perpendicular to the jet, rigid channel walls probably enhance

the instability of a jet. However, confinement alone is not sufficient

to reproduce a dynamically significant feature of a free jet, namely, the

cross-stream variation of the cross-stream gradient of potential vorticity

that will typically be present. Since the work already carried out on

the nature of baroclinic instability, e.g., Charney and Stern (1962), has

demonstrated the importance of the potential vorticity gradient of the

equilibrium state to the dynamics of unstable perturbations to that

state, it seems worthwhile to study the effects of including a more

realistic, varying gradient.

A second consequence of the cross-flow variations that will generally

be present in baroclinic instability problems taken from the physical

world, is that the cross-stream structure of the linear wave modes sup-

ported by the equilibrium flow will not be trigonometric. This has

important consequences for the non-linear interactions between these

modes. The dynamical equations are quadratically non-linear. If we

Fourier decompose a disturbance into linear eigenmodes, then the evolu-

tion of these modes is coupled through the non-linear terms. In general,

one can think of the modes as interacting in threesomes; see, for exam-
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ple, Pedlosky (1979b, Section 3.26). In the case of a flow whose linear

perturbation problem is separable in its spatial dependence, in order that

three waves interact significantly, the product of the non-linear interac-

tion between two of the waves must have a non-zero projection onto both

the temporal and the three-dimensional spatial structure of the third wave

(this interpretation of wave interactions is really appropriate only for

a weak perturbation field). In particular, the cross-stream structure of

the interaction product must not be orthogonal to the cross-stream struc-

ture of the third wave. When a flow is such that the cross-stream struc-

tures of the linear eigenmodes are trigonometric, the quadratic interac-

tion between two modes will give rise to a product that is orthogonal to

all but two of the possible cross-stream eigenstructures. For example,

if wave Wy has a streamfunction proportional to sin ngxy and wave Wo,

a streamfunction proportional to sin mry, an interaction like Wy X 3 Wo

will produce terms proportional to sin (nim) ny only. If the eigenmodes

do not have trigonometric cross-stream dependence, then it will usually

be the case that the cross-flow structure of an interaction product will

be non-orthogonal to all or a large set of the possible modal cross-flow

structures. In the non-trigonometric case many more interacting triads

will be possible (e.g., Domaracki and Loesch, 1977).

Thirdly, the meridional variations of the basic state will promote

the influence of harmonics of the unstable wave. In Phillips' meridion-

ally uniform model, the self-interaction of the slowly changing unstable

wave generates a correction to the mean flow but not a second or higher

zonal harmonic of that wave at any significant amplitude. This is a con-
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sequence of the very simple meridional structure of that model. In gen-

eral, the introduction of a meridionally varying basic state will lead to

the generation of higher zonal harmonics of the unstable wave in addition

to the mean flow correction. When, in the latter part of Chapter Four,

we examine the evolution of a weakly unstable wave against a meridionally

varying background in the absence of triad interactions, we will find that

these higher harmonics are as significant as the mean flow correction in

their effect on the amplitude of the fundamental wave. It is not clear

in advance, whether the effects of higher harmonics will be stabilizing

or destabilizing.

In the non-linear dynamics that is to follow in Chapter 4, we wish to

axamine not only the interaction of an unstable wave with the mean flow,

but also its interaction with other linear eigenmodes. The enhanced var-

jety of inter-modal energy exchanges that is made possible by the inclu-

sion of meridional variation will be a factor in this, In the model that

we intend to study, the streamwise direction will be the zonal direction

and the cross-stream direction, the meridional direction. Although the

description above suggested meridional shear of the zonal velocity field

as a source of cross-stream variation it is both algebraically simpler

and computationally simpler to introduce meridional variation via the bot-

tom boundary condition, as a meridionally varying topographic slope. As

well as reflecting a genuine physical source of meridional variation, this

produces effects dynamically equivalent to those features of interest that

were indicated above, namely the introduction of meridional variation into

the potential vorticity gradient and non-trigonometric meridional depen-

dence in the linear eigenfunctions.
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A few more general remarks are appropriate here. Usually problems

which, while retaining the vertical variation of the potential vorticity

gradient necessary to support baroclinic instability, also include merid-

ional variations of that gradient, are difficult to solve analytically.

They involve partial differential equations with coefficients that vary

in y and z. Several investigators have examined the linear stability

properties of such flows and have usually used numerical techniques (e.q.,

Pedlosky, 1964; Simmons, 1974; Brown, 1969). They have usually looked at

such problems from a rather global point of view and have not explored in

detail the nature of the slowly growing unstable modes lying close to the

stability boundary. The main objective of the next chapter is to look at

the finite amplitude evolution of weakly baroclinically unstable modes of

one such flow when the flow is close to critical. As a prerequisite for

this, we need to have a fairly detailed understanding of the linear prob-

lem in a part of parameter space that corresponds to slowly growing un-

stable modes. In what follows, we will present a numerical survey of one

such region and then, by taking advantage of the fact that we are inter-

ested in only a small region of parameter space, develop an analytic

description of the properties of the unstable modes in that reqion.

Model Description

We wish to examine a model that (a) has a vertical structure that is

as simple as possible yet capable of supporting baroclinic instability

and (b) contains meridional variations of the meridional gradient of

potential vorticity yet cannot support barotropic instability. Conse-
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quently, we choose to use a two-layer model confined to a zonal channel

(c.f. the two-level model of Phillips, 1954). The basic flow consists of

a zonal velocity U in the upper layer and a resting lower layer. U is

independent of y (the meridional direction) thus the model contains vert-

jcal shear but not horizontal shear. The height of the lower boundary is

allowed to vary meridionally so that the topographic slope is a function

of y, hy). The contribution of the topographic g-effect introduces

meridional variation into the basic potential vorticity gradient of the

lower layer, IG,

Making the usual quasigeostrophic scaling assumptions (Pedlosky,

1979b), the linear problem can be described in the following, non-dimen-

sional form:

Ua, +2,) [(v% =F) g. +F g,] + (8+ FU) gp, =0

3, 9% -F) do + Fd1+ [8 -FU+h,(y)]d,, =0

5 &lt;
Ih, 1)

‘3.
\ Z)

The layer depths have been taken to be the same, 8 and U are positive and

the channel walls lie at y=0 and y=1. Subscript 1 identifies the upper

layer. We will take h, to have the form:

Det ine
way Cw

I] pry Os 2ny be|
3

J ‘3 3)

My = 8 + FU, the potential vorticity gradient in the upper layer.

I, =8 - FU + h, (y), the potential vorticity gradient in the lower layer.
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my is uniform and positive. ys which contains contributions from the

planetary vorticity gradient, the equilibrium slope of the interface, and

the topographic slope, has a minimum Tyymin =8 - FU - h,, on the center

line of the channel. Define 8 = FU + hy. When s &gt; 8, Thy is positive

throughout the lower layer. The Charney-Stern (1962) sufficient condition

for stability is satisfied; the flow must be stable. When g «&lt; Bons Thy be-

comes negative near the middle of the channel. It may now be possible

for unstable modes to exist. When sg = B, - 4 where A is small and

positive, Toy takes the form shown in the accompanying sketch.

{
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Before discussing the numerical results we note, for reasons that will

become apparent later, the existence of a neutral mode that is completely

trapped to the upper layer. The system possesses normal modes of the form

p = Lg, (y), 8,(y)] exp [ik (x - ct)] (3.4)

A particular eigensolution is the one:

0) dg. = sin my d, 9 {3."5)

which occurs at a wavenumber k given by

GC (B/U - +2)
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Provided only that 8 &gt; 2U, this mode exists for both 8 « Bn and 8 &gt; Bm

and is distinguished by the fact that it is stationary in a frame moving

with the velocity of the lower layer (which, in this exposition, has been

chosen to be zero).

Numerical Results

After substituting the normal mode form (3.4) for ¢, the differential

aquations (3.1) and (3.2) can be transformed to normal form Dy writing

them in terms of

fe =

By representing br and dc by a spectral expansion in sines and truncating,

the differential problem may be expressed approximately as a matrix

eigenvalue problem. The latter may be solved numerically using standard

routines.

The search procedure adopted was to fix F = 10.0, U = 1.0, hy, = 5.0

and then to vary g and KZ. The results will be represented in a two-

dimensional parameter domain with axes corresponding to 8 and «2, For

the parameters chosen, 8 = 156.0. Since 8 &gt; 8, corresponds to a

stable flow, we concentrate on 8 &lt; 15.0. Numerically, we find that 8 =

Bm is indeed a stability threshold. Given our predilection for weakly

growing instabilities, our attention will focus on the region close to

this threshold.

Our first result is that, for values of 8 close to but less than Bos

only values of a in the vicinity of K&amp; = 5.13 are unstable, The domain

of instability is shown in Figure 3.1 and Figure 3.2. The unstable domain
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Figure 3.1: The tip of the numerically determined marginal curve
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(Bp = 15.0).
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exhibits a cusp, the tip being located at 8 = By = 15.0, k2 = % = 5.13.

The two branches of the marginal curve that leave this point have some

distinctive characteristics. The left-hand branch corresponds to the

curve k2 = (8/U - 1°). In the vicinity of the tip, the right-hand branch

is fitted well by the curve

(8/U - 2) + const x (B - B.) 3/2

Near the cusp tip the range of unstable wavenumbers is of 0(a3/2) in width

where, A = By = 8» the distance below the tip. This interval lies to the

left of the critical wavenumber KE. Thus for a range of wavenumbers

(approximately 2.2633 &lt; k &lt; 2.265), if one were to fix k at a value in

this interval and increase g from zero, one would observe first instabil-

ity, then an interval of stability followed by an interval of instability,

and finally stability for all 8 &gt; (x2 + 2)U.

For a fixed value of a &gt; 0, moving k across the interval of unstable

wavenumbers, we find that there are a pair of modes whose phase speeds ¢

are complex conjugates. Considering the variation inc = Ch. * Cy for the

unstable mode, the numerical results suggest that, as k --&gt; ky(8), the

left-hand branch of the marginal curve, ¢ --&gt; 0, while as k --&gt; ko(8),

the right-hand branch, ¢; --&gt; 0, c,. --&gt; constant, cols), (see Fig-

ure 3.3). As aA is increased, Cols) increases in proportion to 22

(see Figure 3.4). The maximum value of c; attained in going between

ky and k, seems commensurate with cq(8).



150

7

0)
|

QQ
~ 1.6

or

 J)

D3

J

5030

1

5106

n

) —
~

2

{,
-

\

~122

"

£3

?
QS

32 ™~

Se

. A

D)

~

S

J)

P

Figure 3.3: The real and imaginary parts of the phase speed, c, and
cj, plotted against the square of the wavenumber. B = 14.96,

A =0.08 (F=10.0,U-= 1.0, hy = 5.0).



151

4

0)

Q
~~.

&gt; 16

~~

Q
 SD

2

abi

gu

Lg

aspom

SUPERCRITICAL ITY (A)

008

Figure 3.4: The phase speed along the right-hand branch of the

marginal curve, c4(8), plotted against the supercriticality a.
(F = 10.0. U = 1.0, h» = 5.0).



152

Eigenfunction Structure

The structures of eigenfunctions near the cusp point are typified by

the example shown in Figures 3.5, which corresponds to 8 = 14,96, Kk =

2.261. The upper layer streamfunction differs little from the shape of

sin wy. The lower layer streamfunction is much weaker than that in the

upper layer and is concentrated in a thin region about the mid-line of

the channel. As one increases a while keeping k near the center of the

unstable interval, the lower layer streamfunction increases in amplitude

(relative to the upper layer), the width of the central region broadens

and the difference in amplitude between the central zone and the region

outside this becomes less marked. at the same time the shape of the

upper layer streamfunction departs more from that of sin =y.

At a fixed value of a, as k is moved closer toward the left-hand

branch of the marginal curve, the lower layer streamfunction becomes

steadily weaker.

Numerical results were also obtained for different settings of the

'fixed' parameters, F, U, and hy. These results were qualitatively

similar to those already discussed. For comparison, Figures 3.6 to 3.7

illustrate some aspects of the case F = 6.6164, U = 1.0, h, = 9.8836,

for which 8 = 16.5. Here h, /FU is larger than the previous example

and the relative meridional variation of Toy is correspondingly larger.

As a result, the cusp of the marginal curve is more pronounced in Figure

3.6 than in 3.2. The internal layer structure peculiar to the slowly

growing normal modes can be seen at larger absolute values of the super-

criticality parameter a; for example, the structures of the streamfunc-
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tions of the unstable normal mode at 8 = 16.3 (a = 0.2) and k = 2.544,

which are shown in Figure 3.7, exhibit the same characteristic features

as those in Figure 3.5. The larger extent of the weakly supercritical

regime is also reflected in the values of the phase speed ¢ which are

smaller at a given small value of a for the current choice of F, U and

hy than for the earlier set of parameter values at the same A.

For this second choice of parameters we have also calculated several

diagnostic fields associated with the unstable linear mode. These are

shown in Fiqure 3.8 and include:

hea. TUX Xx

upper layer momentum flux

lower layer momentum f1ux

upper layer Reynolds stress divergence

lower layer Reynolds stress divergence

upper mean meridional velocity

mean vertical veloc AY

upper mean zonal momentum tendency

lower mean zonal momentum tendency

mean temperature tendency

FJ

ii

UsVsy

-3, (ugvy)

-3y (uyv,)
od
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"

u.
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Tot

a,

The overbar denotes a zonal mean.
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For reference, the zero-crossings of the basic potential vorticity

gradient in the lower layer, Toys which is parabolic in the

neighborhood of y = 1/2, occur at y = 0.47 and y = 0.53.

First, we note that the quadratic fluxes of temperature and momentum

induce a three-cell meridional circulation in the sense sketched below.

0)
Y

The central cell, which is thermally indirect, is stronger and wider than

the two outer, direct cells. Note that in the sketch, the meridional

extent of the cells has been exaggerated. The central cell is located

within the "inner region" defined by the peak of the lower layer stream

function, Note that W does not quite return to zero at y = 0.5 in 3.8(h).

This is a result of error accumulated during an application of Simpson's

rule in the algorithm which computes V.

The meridional eddy heat flux is concentrated in the middle of the

channel in a strong poleward peak but there is a significant negative lobe

near y = 0.42. The heat flux will be discussed in more detail later. The

meridional eddy fluxes of zonal momentum are antisymmetric about y = 1/2

for this symmetric normal mode. Both show positive peaks within the inner

region although the sharper peak is seen in the lower layer
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The tendencies are related to the eddy fluxes and the mean meridional

circulation by

y i= Vy - 3, (u,vq)

CY (Uys)

) LW-a,(Vo)9, = - 4

and Vv, = ~v;. In 3.8(e) and 3.8(f), we see that the divergence of the

Reynold's stress in each layer exhibits a sharp positive central peak and

a smaller negative lobe just outside this. The divergence is stronger in

the lower layer than in the upper. The senses of the divergences at the

center of the channel are such as to accelerate the zonal flow in each

layer. However, the Coriolis force on the mean meridional flow in the

upper layer is negative at the center of the channel, decelerating the

mean flow. In the upper layer, the magnitudes of the effects of the mean

circulation and the eddy fluxes are similar so that they cancel. As a

result, the mean zonal flow tendency in the upper layer is nearly zero at

the center of the channel, although it is weakly positive equatorward and

poleward of this. Near the channel center, in the lower layer, the accel-

erating effects of the mean meridional circulation and the eddy momentum

convergence are in the same sense, although that of the momentum converg-

ance is the stronger. The lower zonal flow is accel erated near the chan-

nel center.
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Equatorward of about y = 0.47, the lower layer zonal flow is deceler-

ated. This deceleration zone still lies within the "inner region" of the

problem. South of y = 0.39, the momentum tendency of layer two is very

small. The upper layer flow is decelerated south of about y = 0.45 and

the deceleration band extends into the outer region. The magnitude of

the upper zonal flow tendency is always much smaller [by a factor of

0(100)] than the similar lower layer quantity.

The acceleration of the mean vertical shear is dominated by Uy, © The

shear is reduced near the center of the channel from about y = 0.47 to

y = 0.53 and increased in the regions 0.39 &lt;y &lt; 0.47 and 0.53 &lt;y &lt; 0.61.

Recall that the mean potential vorticity gradient in the lower layer is

Tov ry

where we have decomposed the mean zonal velocity in the upper layer into

its basic state value U and a modification uy. Fory = 1/2 + n, n &lt;&lt; 1,

this is approximately

? -A*th,?2 u,) - unT i,

If we consider the [3 and u, that would be generated by the eddy fluxes

and meridional circulation based on the linear modal structure. then

roughly speaking

A co| Fy | ec] ny, |

Thie
[~

CL

- = A+ ha 2.4 2
Yovy
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In the region where iE &lt; s/2xthy; i.e., where, for the basic state alone,

Toy &lt; 0; Upyy is negative. Outside this region, in the domain ~ 0.6 &gt;

1/2 + n&gt;" 0.53, Uy, is positive.  Schematically, the effect of the

corrections is both to reduce the degree of supercriticality in the

central region and to flatten Toys broadening the scale of the inner

region in which Toy is small.

In the non-linear discussion we shall refer to both of the choices of

parameter settings that have been mentioned. For ease of reference, we

shall label the values as follows:

Case 1. F = 10.0, U=1.0, h, = 5.0 (8 = 15.0)

Case 2. F = 6.6164 U=1.0, h, = 9.8836 (8, = 16.5)

Heuristic Explanation of the Meridional Structure of é,

There are some striking features in the numerical results. Firstly,

as the maximum critical value of 8 is approached, the phase speed of the

unstable mode tends to zero. Secondly, in the same limit, the lower

streamfunction of the unstable eigenfunction becomes increasingly concen-

trated near the center of the channel. Outside this region, 8, --&gt; 0

as A --&gt; 0. The neighborhood of the center of the channel is distinguished

by the fact that Toy is approximately zero there. Elsewhere Toy is

0(1). We can explain the qualitative structure of 5 as follows.

One can obtain a qualitative feeling for why the lower layer stream-

Function is concentrated near the center of the channel by considering

the potential vorticity dynamics of the lower layer. The potential vor-

ticity balance in the lower layer is given by
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c [3,2 - k2 = F) Bp + F dl + my dy=0

We have seen that 4, is small so that, as far as an order of magnitude

argument is concerned, we have that

 ”~
Sa ‘a

Toy 99
 nd

(In the outer region, 3 4, &lt;&lt; 85 and the suggested balance is not only

correct in terms of magnitude but is also a good approximation. In the

inner region, 3 4, ~ dq so that the above balance, in general, yields

the correct size for é, but is no longer a good approximation. Note that

the omitted term a’ %, prevents 3s from becoming singular at the two

points in the inner region at which Toy = 0 as the above balance alone

would suggest.)

We can estimate the size of gy using

5

cF é, / To, (¥)

In the outer region =, is 0(1) so that

53 J (cFgd."

but in an inner region of width 0(al/?) about the channel center, Toy is

small, 0(a), so that there

3, ~0 (a7! c Fg)

i.e., larger by a factor amt, If we normalize 4; to be 0(1) and use the

fact that c is 0(a2), then we can see that g, will be 022), in the outer

region and O(a) in the inner region.
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In Phillips' model, Toy is independent of y. As a --&gt; 0, Tay is then

of 0(a) over the entire channel while c ~ 0(al’?y. There is therefore no

mechanism similar to that above to force ¢, to be small over some part of

the channel.

Analytical Model

Noting the relations between k, c and a suggested by the numerical

results, one can construct an approximate solution to the equations (3.1)

and (3.2) that is asymptotically valid as a --&gt; 0. This is not a com-

plete solution in this neighborhood, being restricted to those modes for

which ¢ --&gt; 0 as A --&gt; 0.

Rewriting (3.1) and (3.2) in terms of normal modes yields

-

 yy

U-c) [GP -F) 8, +Fd]+(8+FU)g,=nd

2 J ~F)d, +F 4, ] +h, (1+ cos 2ny) d, = 8 &amp;

rr

wv

7 5g

 J 1)

]

i 4

% 3)

We restrict attention to the case 4 nl &gt; 8/U &gt; ry The numerical

results suggest that the left-hand branch of the marginal curve is the

1ocus of the stationary neutral modes noted earlier, namely

J

C a/U &lt;%= (8/0 - 12) = AU

de 100k at wavenumbers close to this curve and set

a
” a KZ + 23/2 ke where K&amp; = 8/U - 2, 2 1/0

lo

expand C = A" Cc *
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We divide the y-interval into inner and outer regions, the inner corre-

sponding to

1/2 and define7 | ~ 0(a"'7),y-7 (1/2 n=1Y

The numerical results show that the unstable mode is symmetric about y =

1/2 so we will restrict our attention to symmetric solutions. We expand

the streamfunctions:

Inner:
2) 2 ahg. (0), api) a 1n (1/8)Y! + A (3)

rs  &amp;

 4 ™)

3, = a1) +

ont cr: g. =b(0) 23/2912) + 1293) ro...

3, = AL of (1) + * ® 0

{3. 0)

In the inner expansion of 8s we have included a term of 0[a2 In (1/a)].

When we examine the potential vorticity balance in the inner region, we

will find no direct forcing for this term. However, when we attempt to

match the inner solution to the outer solution, we will discover that the

term in question is necessary to allow the two solutions to join smoothly.

Note that V{2)_ will be a homogeneous solution of the relevant inner

problem.

The potential vorticity equations become

Juier: (2% + 2%) gy = Fg, + 83/28 6, - a? (cP)(a+FU) 4; +...

1 (1 + cos 2my) d, = lc F 3  3 1 )
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. 2 2 2

(nner: 3 gy =- Am dg - 8 F dy +

(+ + [1/c, . (M/cy) 21) g, =- oF dq Foe, Ma 21h,

(3.12)

Boundary conditions are 94 =0 = 85 at y = 1.

From the outer problem we discover that

= 3)
sin TY

a!

2. (k2/27) (y-1) cos my
i

J (3)

Fi = 5 | Ao: - | (y-1) cos ny

A) |

pn (1 - sin’ ry)
|47 Ny

sin ny

(1) cq F sin ny

Ys = Noy [I+ cos 2xny)

4.13)

(3.14)

1 5)

() 16)

[In the inner region.

)) = 1. A: (1) = =- Ls WZ, +(2) = A (3.17)

and

V 3) 1 F | ~~
4

i 18)

where A and r(3) are constants.
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wit) is determined by

2 1M 2) (L_ _¢he

Rescaling
Ne

J
-.
—

Mm 1/4 :
S

this becomes
2 1 1.2 1 c1|1/2

frobh | + eA)

ere
}

&gt;)

1 1/2 1

= | fc ,M - 7

cxcept where v = 0, 2, 4,  53 + &amp; this has a formal solution

ye 2 n.
1/2 1

i] n=0Hr | 2

which, when v £ 1, 3. .... may be re-expressed as

1) “1 Yo ! ? 1

Ys; = Fah] = B o | D, (&lt;3) + D_ (-1) [ 0, 3]

(2.19)

(°a

a |“0)

(3.21)

(3.18) may be rewritten

3) 1 2 ¥

Hemet 7 () [of ap Yt qn «RPL G22)
0 n

afr
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As [ --&gt; eo vn ~ a CE 2 + L..

cAL/2 co ac 1/2 (3) :
Vv (3) . 3 abr (oh) EE Yi (5) Find +R + oT)

0

The asymptotic

 § rhen

form of the inner solution in the upper tayer as 1 --&gt;00

aq, L22,21 4¥y 4, (1-4 Fan * a 5p nt) + 2% In (1/2) A

(2 1 z3)

2

2] - iE ff a3 wi ye gE my1

For the outer solution, as n  -— J

¥, out (1-2
2 21 4 4 c,F° 2

n + A mT n ) - —p— A in (1/4)

4a"h.

i

\

|4 4)

] 1 23) 3 + crf” In{ + oF Tn 7 +
Tr 2\ 24%h, 24%,

9

A

?

ud

Matching the terms proportional to 22 Y yields a dispersion relation

ob

C ue |
4. or 7) , dvb AR

‘2 9) 5)
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By using an integral transform solution of (3.19), valid for -1 &lt; v &lt; 0,

integrating to find the integral on the right-hand side of (3.25) and then

extending the result tov el, v #0, 2, ..., by analytic continuation,

one finds that

2 2 [ ¢1\3/4
5 =F (W) Ce-n/TG-9 3. 6)

The dispersion relation gives Cy as an implicit function of KS for

general, real 2. It becomes invalid in the 1imit ks --&gt; oo since then

v --&gt; 2n, where n =0, 1, ..., the operator on the left-hand side of

equation (3.19) becomes singular and the forcing on the right-hand side

does not satisfy the necessary secularity condition. Equation (3.26) is

invalid also when 5 &lt; 0(al/?) on all branches for which cq -/-&gt; 0 as KS

--&gt; 0 because higher order terms, neglected here, become significant.

However, Equation (3.26) remains valid as 5 --&gt; 0 on those branches

for which Cy --&gt; 0 at the same time. These latter happen to be the

branches that correspond to the growing and decaying modes. In both

regions of invalidity, the expansion procedure can be reordered to obtain

the correct extension of the dispersion relation to these regions.

While it is difficult to plot the two complex branches of Equation

(3.26) in order to compare them with the numerical work, we can reproduce

some of the features of the numerical results. Regarding k2 as a

function of c,, we find that

kp - 2 2

fe, 0 when ¢, =c, = 0.0255 and Ks = Ks (cy) = 4.39
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In the neighborhood of this

J. uy Thu
-

4

(A

-

—

} ., AE]

C2. le lay? 2
2 "7-9 TT

C4 Cq

dk 2 2

irs CEL)© Cq

1 1/2

Thus, provided that drat fz, £0, Ke = KS should correspond to a bi-

furcation from a pair of neutral modes to an unstable and a stable mode.

Thus S = 0 is a candidate for the position of the right-hand branch of

the marginal curve. Looking at the numerical results in the neighborhood

of the cusp tip we can estimate that branch as

K

~n -

 +a /U =k a3? where KS - 4.34
d

Similarly, we may find numerically that the phase speed of the marginal

modes on the right-hand branch of the marginal curve is given by

r~
re

r~
z

A where Cc Y. S7.38
»

The numerical and theoretical values for KZ and c, are in close agreement.

Energy Balance

From the theoretical results, we know that in the outer region
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1 = sin ny + 0(a3/2)

25
i F sin ny

AG h, (T+cos2ny)

while in the inner region

#1 =1+ 0(a)

: 1/2

9, = » 2e() f (T5v)

where f(¥) is a function satisfying La, + (v+1/2 - 1/43%)] f = - J7/2.

For the unstable mode, the argument of c; is generally 0(1) and ¢ (0,

r/2). The phase shift between the upper and lower layer streamfunctions

is 0(1) over both the outer and most of the inner region,

The energy equation for the unstable mode may be put in the

1

For dy Im [dy(y) d,(y)]
0

p

form

where E is the sum of the kinetic and potential energies of the two layers

averaged over a zonal wavelength and integrated over the channel width.

Energy is released by the baroclinic conversion mechanism as the pertur-

bation generates a net rectified heat flux down the meridional temperature

gradient of the basic state.

We can decompose the source term into contributions from the inner and

outer regions and indicate the scale of the various terms in the energy

equation
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K * K *= = UF Im (4, &amp;,) + x UF | Im (¢d, d,)
z J 1 "2 Z outer 1 "2

(a2)  o(1) o(al/2s

!
0(1) 0(a) Lo 0(1) 0(22)

phase shift
0{1)

phase shift
0(1)

We see that, locally, the heat flux in the inner region is relatively

strong, O(a). The width of the inner region is 0(al/2) but most of the

heat flux cancels when integrated across the inner region so that the net

energy release in the inner region is 0(a%). The energy released in

the outer region has a similar order of magnitude,0(a%), thus both the

inner and outer regions are important in the release of available poten-

tial energy to the perturbation.

Figure 3.5(c) shows the heat flux, multiplied by F, as a function of

y, that is associated with the unstable mode whose streamfunctions were

plotted in Figures 3.5(a) and (b). Figure 3.7(c) shows F times the heat

flux for the unstable mode of Figures 3.7(a) and (b). In each case, one

notes that next to the central positive maximum there lies a negative

minimum of the heat flux. These two extrema, which are both associated

with the inner region, largely cancel when the heat flux is integrated

across the channel.

In addition to the heat fluxes, there are weak, divergent, horizontal

Reynolds stresses associated with the unstable mode. In the upper layer,

these exist in both the inner and outer regions and are 0(2%). In the

lower layer, the horizontal Reynolds stress is 0(2%) in the inner region



173

but 0(a%) in the outer [see Figure 3.8(b) and (c)]. Because of the ab-

sence of horizontal shear, there is no net barotropic energy conversion

associated with these divergent stresses, Had the meridional variation

been furnished by horizontal shear of the basic velocity field rather

than topography, in such a way as to produce similar potential vorticity

gradients one would expect to see some barotropic energy exchange with

the mean flow occurring alongside the baroclinic conversion. This might

either augment or reduce the growth rate of the baroclinic instability

depending on the sign of the barotropic exchange. However, provided that

the shear is such that the general properties of the potential vorticity

gradients are unchanged and the minimum upper layer velocity remains posS-

tive, the essential properties of this baroclinic mode of instability

should remain unchanged.

Neutral Modes

So far attention has been focussed on the unstable mode of the system.

The neutral modes, however, also have some interesting aspects. When KZ

is in the neighborhood of ké, one can divide the neutral modes into two

distinct classes. The first class will consist of modes with ¢ = 0(1)

and streamfunctions that are 0(1) in both layers. They will not possess

any internal layer structure and formally they will form an infinite set

with progressively shorter meridional scales. These are simply analogues

of the ¢ = (l,y) sin n ry exp(ikx) normal modes of Phillips' model and

will not be considered further.

The second class is an infinite set of neutral modes, all having phase

speeds of 0(2%), an upper layer streamfunction of 0(1), an internal layer
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near the mid-l1ine of the channel, and a lower layer streamfunction that

is weak, The dispersion relations, for KZ near 3, are given by Equation

(3.26) and are simply those branches of cy (k5) that do not correspond to

the stable/unstable mode pair discussed above. These branches are shown

in Figure 3.9. These modes are nearly stationary (more generally, they

propagate at velocities close to the speed of the lower layer). Thinking

back to the analytical study, we see that for these modes the zonal struc-

ture and fast time dependence (0 = 0 in this case) are determined together

in the leading order problem but that the meridional structure problem is

degenerate, only the meridional structure of the leading order part of the

upper layer streamfunction (i.e., sin ny) is determined at this order. The

full meridional structure, in particular the internal layer structure of

each mode, is not determined until higher order. The neutral modes each

have a different internal layer structure which depends on the c, appro-

priate to that mode, i.e., on the slow time scale behavior of the mode.

The existence of this infinite set of neutral modes each having a

period comparable to the e-folding time of the unstable mode and differ-
/

ing in their internal layer structures, has a significance for any weakly

finite amplitude study. Heuristically, any non-linear interaction that

produces a resultant that is "resonant" with the unstable wave will also

be "resonant" with these neutral modes. The technical consequence of this

is that the determination of .the internal layer structure of the finite

amplitude solution is coupled to the determination of the slow time scale

behavior. This is to be contrasted with the weakly finite amplitude solu-

tion for Phillips' model (away from minimum critical shear) where the
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Figure 3.9: Dispersion curves for the first three slow, neutral mode
solutions of (3.26).
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determination of the spatial structure and the slow evolution are

separated.

Concluding Remarks

The results of this chapter have revealed that the introduction of

meridional variation into Phillips' model alters the structure of the

slowly growing normal modes of the linear problem in a rather novel way.

We see a “critical layer" phenomenon in which the lower layer streamfunc-

tion is concentrated in a narrow meridional strip in the region in which

the potential vorticity gradient of the basic state, in that layer, is

small. A similar development is not seen in the meridionally uniform

Phillips model because, when the equilibrium flow is slightly supercriti-

cal, the region of small lower layer potential vorticity gradient is not

localized meridionally. We have observed both a lengthening of the growth

rate time scale for the slightly supercritical modes and a tendency for

them to move with phase speeds that are almost the same as the velocity

of the lower 1ayer.

Although the differences between the meridionally varying model and

the uniform model become less pronounced as one moves away from the near-

critical region of parameter space, the fact that the slightly unstable

nodes form the cornerstone of the weakly finite amplitude theory lends

significance to the differences between the two linear models. In addi-

tion, the appearance of a set of neutral modes having similar zonal struc-

ture and fast time dependence as the unstable mode can be expected to

influence the finite amplitude dynamics.



177

In view of the small meridional scale and the reversal of sign of the

heat flux associated with a slowly growing mode, a fairly closely spaced

set of point measurements of the heat flux associated with any experimen-

tal or geophysical realization of such a mode, would be required before

the flux could be adequately resolved.

We note the curious feature that, while in this model the presence of

topographic relief has a profound effect on the near-critical modes, both

the mean flow and the disturbance velocities are weak in the lower layer.

One might not, at first, anticipate the role played by topography in the

behavior of such modes.
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CHAPTER 4

4. Baroclinic instability in a meridionally varying two-layer model:

Neakly non-linear theory.

In this chapter we will describe some of the weakly finite amplitude

behavior of slowly growing unstable modes in the meridionally varying

two-layer model. The results of this should be compared with those of

the weakly finite amplitude theory for a meridionally uniform model (Ped-

losky, 1970). It will become apparent that there is a considerable dif-

ference in the behavior of the two models. This is due to the differences

in the structure of the normal mode solution of the two-linear models.

We will not be able to present a complete solution of the weakly

finite amplitude problem. Instead, we shall develop a set of amplitude

aquations that govern the evolution of a slightly supercritical unstable

mode in the period immediately following the linear phase of its growth.

We shall include interactions between the unstable wave and some of the

neutral Rossby waves supported by the system. However, only two neutral

Naves will be considered and these will be assumed to form a resonant

triad with the unstable wave. Here we are selecting only one of the many

resonant triads involving the unstable wave that actually exist. In this

way, we discover something of the role which wave-wave interaction may

play in the evolution of the unstable wave, yet retain some degree of

tractability in the problem. In the ‘real’, physical problem one would

have to include all such triads. Instead of solving this complete prob-

lem in a consistent way, we are choosing to study a method.
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One of the things to come out of the derivation of the amplitude

equations will be the result that the contribution to the evolution of

the unstable wave that is made by wave/mean flow interaction will be

smaller than the terms that arise as a result of interaction with the

neutral waves. This is a surprising result. It means that, in the asymp-

totic limit of small supercriticality, the effects of modification to the

mean flow induced by the unstable wave, can be neglected in at least the

early stages of the non-linear evolution. In the corresponding theory

for the meridionally uniform model, this wave/mean flow interaction was

responsible for the vacillation cycle into which the unstable wave was

ensnared. If we are forced to neglect that mechanism here, we are left

with the question of whether the interaction between the unstable wave

and neutral waves can halt the growth of the unstable wave that is being

driven by the baroclinic instability mechanism. In fact, we must also

pose the question of whether the amplitudes of the sidebands can grow

from the very small levels that one might associate with noise-like ini-

tial conditions, to levels at which the sidebands can begin to affect the

evolution of the unstable wave. In order to do this the sidebands have

to be able to extract energy from the unstable wave while it in turn is

growing as a result of baroclinic instability. The mechanism of this

will be discussed in more detail later.

At the amplitude scales appropriate to a resonant triad interaction

on the 0(a~2) time scale, the harmonics of the three principle waves,

including those of the slow, unstable wave, are not important in the

determination of the evolution. Provided that the triad mechanism equil-

ibrates the unstable wave, the effects of higher harmonics and of the mean
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Flow correction will be limited to time scales that are longer than

0(a-2). 1f resonant triad interactions are inhibited, say by a quan-

tization of the zonal wavenumbers permitted in the system, then the

linear instability mechanism will cause the unstable wave to grow beyond

the amplitude level at which triad dynamics would have been important

[this level will turn out to De 0(a2)1. As the unstable wave grows,

the mean flow correction and higher harmonics that accompany it will

become larger until they reach an amplitude that enables tnem to affect

the evolution of the unstable wave on the linear growth time scale,

0(a-2). At this stage, non-linearity has become non-trivial and there

arises the possibility of equilibration of the unstable wave by the

action of the mean flow and the higher harmonics. It may be shown that

the amplitude of the unstable wave at this point is 0(s3/?), The

triad interaction, when present, is a more powerful non-linear mechanism

than the wave-mean flow/higher harmonics interaction, in the sense that

the former can affect tne evolution of the unstable wave on the linear

growth time scale at a smaller unstable wave amplitude than can the

latter process. We will consider the 'single-wave' problem in which the

triad mechanism is excluded, in the latter part of this chapter.

The amplitude equations that we derive for the triad problem are too

difficult for us to solve analytically. To answer the two rhetorical

questions raised earlier, we turn to numerical simulations of this weakly

finite amplitude problem. Some of these are discussed below. They illu-

strate the fact that some triads exist which do restrain the unstable mode

at an amplitude level at which the wave/mean flow interaction can be con-

sistently neglected on the evolution time scale. It may be the case that



181

the effects of wave/mean flow interaction, though small, are important on

a longer time scale.

The remainder of this chapter is arranged in the following way. The

section immediately below derives the equations that govern the amplitudes

of the unstable wave and the sidebands in the limit of small supercriti-

cality. The first part of this - the material up to Equation (4.1) -

explains the choice of temporal and spatial scales, the appropriate amp-

litude scales for the three waves and the way in which the streamfunction

is broken up. The notation used in the rest of the chapter is introduced

here, The analysis between Equations (4.1) and (4.26) is the routine

application of perturbation methods to obtain the amplitude equations.

Some comments on the inner layer structure of the lower layer streamfunc-

tion, an important feature of the solution, are made between Equations

(4.24) and (4.25). Equation (4.27) summarizes the amplitude equations

for the triad interaction which are the main objective of this section,

while (4.28) offers an alternative form. The latter part of this section

provides a heuristic demonstration that the changes to tne mean flow are

too small to affect the evolution described by (4.27) on the 0(a?)

time scale.

The next section, beginning a little above equation (4.31), discusses

the formal energy balance for the three wave system. This is followed by

an account of some numerical simulations of the evolution of the unstable

wave and its sidebands. After this, we turn to the question of the single

wave evolution of the unstable mode. A brief prefatory section is suc-

ceeded by a section summarizing the derivation of the amplitude equations



182

for the single wave problem [(4.62), (4.53), (4.54) and (4.,55)]. A more

detailed account of this derivation is contained in Appendix B. Some

aspects of the mean flow corrections and of the higher zonal harmonics

are pointed out in a section entitled "Features of the Asymptotic Solu-

tion." Finally, the single-wave problem is modelled numerically. Two

types of simulation were performed. The first, which is of the full

single-wave problem, is related in the section "Numerical Simulations"

while the second type, from which the higher harmonics were excluded in

an attempt to discover the effects of wave-mean flow interaction alone,

is considered in the last section of the chapter.

Asymptotic Evolution Equations

For a weakly supercritical flow with 8 = By ~ A» 0 &lt; Al, the

linear problem suggests that the time scale for the evolution of an un-

stable mode should be 0(a2). We therefore introduce a slow time scale

 BS
3 3 A A

The quasigeostropnic potential vorticity equations become

'

Ua ) [(v2-F) 6. + Fd,1 + (8 +FU) 6. + J(d,, (V2-F) 6. + F4,)

NE A 01 =Fé.F) d+(V2-‘ar L
f 4. 2)

LL - F) darFE1 + (5 = FU 0) + 3(6,, (9° = F) §,4F,)
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t
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ra [(v2 - F) d,+Fd, ] = 0
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The y-domain is divided into two regions, an inner region of width

0(al/?) about the center line of the channel and the outer region made

up of the remainder. We will use y as the meridional variable in the

outer region but resort to the scaled coordinate, n = 2-1/2 (y - 1/2)

in the inner region.

We wish to consider a streamfunction dominated by three distinct zonal

wavenumbers and we will develop the solution as an asymptotic series in a.

To keep track of wavenumbers, layers and positions in asymptotic series

requires some cumbersome notation which will be explained here.

¢ will be used to denote a streamfunction when considered as a func-

tion of x, y and t. It may also be used to refer to the y-dependent part

of a separated modal component of a streamfunction, e.g

3

3 =

Xo Vv. t)

A(T) a (y) ol K(x-ct)

The particular usage should be apparent from the context.

¢ will carry up to three affixes in the following positions (1)4(3),

Here 1 is an index denoting a particular zonal wavenumber, either 0,

1 or )

j is an index denoting a position in an asymptotic expansion series.

K 1s a suffix denoting the layer, either 1 or 2.
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The abbreviation g denotes (84, 8s). E.g.,

To ik (x-c.t)

5 (mg, mg, Ln
n=n, ’

nly, _ (n)4{0) e172 (m1) (n) 02) de
» &amp; 1

The notation (glad y) will be used for the y-structure of (yl), It

will not be necessary to include higher harmonics of the three waves nor

corrections to the mean flow as these only become relevant at higher

orders in a than those to which we need extend our calculations. After

the amplitude equations have been obtained, we will indicate the sizes of

the mean flow corrections,

In the present problem, zonal wavenumbers are really parameters spec-

ified in advance, however, it is convenient to make this specification in

the form of a truncated expansion in a, thus

$02, 2 Ly 4 32 2,2 (32

Recalling that the natural long time scale for the problem is 0(a"2), we

write the phase speeds of the linear modes found at the above wavenumbers

as expansions up to 0(a3/2y; (3) = We + 2c, + 23/2 We, Time-

scales up to and including 0(a-3/2) will be regarded as fast time scales.

We require that the three principal waves satisfy the usual conditions for

resonant triads on these fast time scales. These conditions are that the

sums of the frequencies and wavenumbers vanish to 0(a3/2y, If we assume
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that (0) is the wavenumber of the weakly unstable wave while (1) and

(2) correspond to the neutral waves, the resonance conditions become

(0) (n, (2) i} 0 ] rd ]

I We 4 2)

dy (1), % 2), 2), _ 7 (Me TL + (2)e (22/2) _ 0

Wy We, v2 (2) L(g (12/0 2) (22,2) yg

An additional notational device that will sometimes be used but often

omitted, is the employment of the suffixes 'out' and 'in' to denote the

outer and inner regions of the y-domain.

We re-define the streamfunctions to take into account the natural

ampl itude scales of the waves. With an obvious abuse of notation.

(1), (2)PIL ((1)4

oO) 2 (0g,

0) 7/2 (0)
4, out = 8 8, out

(0)g J A3 (0), in

Henceforth we will work with the scaled streamfunctions on the right-hand

side of these expressions, unless otherwise indicated.
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In comparison to the triad interaction problems considered by Loesch

1974), the amplitude scales for the sidebands are unusual. In this prob-

lem, the sideband amplitudes are larger than that of the unstable wave.

They are also larger than one would expect from a consideration of more

traditional triad interaction problems. In a straightforward resonant

triad interaction, the amplitudes of waves interacting on a NG time-

scale would ordinarily be 0(a%).

The streamfunctions will be expanded

3), (jh 10) + A (3),(1) + RI (3),(2) + Ki (3),(3) wa j = 1,2

0) (0g (0) (0) (1), 3/2 (0) (2), 2 (00g (3)

(00 (0g (04, (00g (1) 2 9p k (0), (2) , ,2(00, (3) ,

Oy (Og (1), Lz 0g @)

0), (0) (1)

Because of symmetry considerations we need only solve the problem in

1/2 &lt;y &lt;1. The '+' suffix is used in two of the terms in the expansion

of (0g, out to make this explicit since the functional form of these

two terms is different in the two halves of the channel.

Some further pieces of nomenclature are: the use of (5) (A,B) to

denote the projection of the Jacobian of A and B onto the 3 (th) Fourier
«LJ

component. e! kx. the use of j' in some equations to denote the second
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neutral wave when j denotes the first; and the use of q to symbolize the

perturbation potential vorticity associated with dg.

Substituting the neutral streamfunctions into the quasigeostrophic

potential vorticity equations yields the following equations for the

Fourier components corresponding to the neutral waves:

Jo ey Bg 4 We [2 [2 py Ug 4g lily;

3/2 It We) G2 hg + We 12 LINE gy Wy op gy

3

A | (y (3) (3)2 (3), , (3) (3),2 (Jr, _ _1 _ q)
( Co) ky Cy “ky Uy ToT? %

1 (0), (3") (3), (0)

Th, Poe a) Ie a1] (4 1)

Ney 162 - WG mg, + ¢@g 14 (5 — rus) Gg,

A

-

(1+ Weg 2) Wg, + We 12 02 py Wy, vp Wg

2 [ (Dg D2 Wy, + We, (2 2 py Wg, + Dg 1]

Ls (3),2 (3g, « B) (3).2 lg, } Tre _

L (j') (0)
j La

-

4.)

Here 8. = FU - h, (1/2), as in Chapter 3, so that 8 = Bn = A.
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We use the expansions of the streamfunctions and collect all the terms

of similar order to produce a sequence of problems for the successive

terms in the expansions. At leading order,

[3
(3),2 (3),(0) (5).00) . Bm * FU (5) (0)

kg - F) aT + FG tI dg =0
(4 2a)

of 2 py 00: 40) sp go fn 0© |  Ty glo)
- 5 = 0 (4.2b)

This pair of ODEs with y-dependent coefficients is an eigenvalue problem

for the leading order part of the phase speed of the sideband, We.

[ts solutions can be readily determined numerically. Solving (4.2) yields

the dispersion relations for the side bands

De, 2 We (Wy

and the leading order meridional structure of the streamfunctions. There

is, of course, an infinite set of possible meridional modes. We suppose

that we have selected a particular meridional mode for each sideband.

This fixes Ge, and the functions By (y), Gly, (y), in the leading

srder streamfunctions which we write

(i)
1

a"

(Jy (y) , :

0 am at 19k (x- ct)
J (By(y)

The next two orders 0(a) and 0(a3/2) serve only to determine the

corrections to the phase speeds and meridional structures due to the
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differences at 0(a) and 0(a3/2) between the true wavenumber (3) and

the leading order term 3). At 0(a), the problem we obtain is

 Lb |

[ie [eo (22. 9%E.F) +1. (u- 13) ) BZ (glo) He, (33450) |

- dL Ge, FO) 4 [le(2NZpy+ (1 + (0) (9)i2)300)00)
J

(4.3)

where Ls is the matrix differential operator on the left-hand side of 4.2.

Since Ls is a self-adjoint singular operator, the forcing in (4.3)

must satisfy a secularity condition,

Y - 0J)d (r.h.s
®

This yields an auxiliary dispersion relation

We. . We (2)

With this value of Ue, (4.3) can now be solved for the meridional

structure of (3)g(1), Because of the singular nature of Ls this

will take the form

(ell) _ (GIL), (3)4(0)

HE (3)u(1) = (0, (Flgll)y where (hp(1) can be determined from the
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upper layer equation in (4.3), and an arbitrary multiple of ,t0) can be

added to the solution. We will choose the constant a; so that

q. 3), (3),09) J

a8.

 qa [ay B30) Wyo Jay (9)4(0) (31,00)

The problem at 0(a3/2) is dealt with in a similar fashion,

The first significant higher order problem occurs at 0(a%) where,

ie 3)

1 [Li Wo 1g (31400) (0) (0)
STOTT CE

= 0 0 0

1 (0),(0) (i) (0) j j jJ J ° °

aT (3) ( By . a") + (le. (2 + (u-e,) Why (334,10)

De (p22 py vo Ble) 101) 4 (gp (gf)

1 Lo (0)|_ 1g (31,00) (0) (0)
TWCTE Te TE TE) 2 + %

 (Wg 802 LW) (02) glo) [W) (32 LA2 fy

 (ae Wg [hy Gg) LB) gi] (4.8),
v4
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The secularity condition for this differential problem yields an equation

for the evolution of the amplitude A; on the slow time scale. This

equation has the form

x

~ = 10. A. * i M. .

Ast 10, A; 1M Aq A; J = LZ (4. }

M; and 9; are real constants whose form is rather complicated. They

involve integrals of the functions ly(0)y) and p00) (y) amongst other

terms and their evaluation requires a full solution of (4.2) and 4.3).

Some values for M; pertaining to particular choices of triad will be

noted later; these were obtained by solving (4.2) and (4.3) numeri-

cally, computing the necessary integrals and evaluating the expression

for M,. The formulae for °; and M are listed in Appendix A. Ag) is the

amplitude of the dominant part of the upper layer streamfunction associ-

ated with the unstable wavenumber and, like Aq and As varies on the

long time scale.

As in the case of a resonant triad of neutral waves, M; describes

the extent of the non-linear interaction between wave (j) and its part-

ners. A non-zero ©; can be interpreted in terms of the dispersion rela-

tion for the linear problem, w = w(k). We have chosen a wavenumber of

2 2 3/2 ,2 2 ,2,1/2 y
the form (kg - aKy + A Ko + A k3) . In calculating Cys Cp and Cos

we have been calculating successive terms in a Taylor series expansion for

the phase speed of the true linear mode

z ([KE-ak® + 23/2 K
z
:

3/2
3 9) + Acq (kqskq) +A Cy (kgsKq Ko) toe.

+ A

2

! 1)

~.
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In our specification of the wave-like part of the (3g, that is,

o1(3)k(x-(Jlet) we specified a frequency uw = (3), (3) in which we trunca-

ted our expansion of the phase speed at 0(a3/2y, If the 0(a2) term in

the expansion of the true linear phase speed is zero, then our specified

frequency uw, when expanded as a Taylor series, will match the Taylor expan-

sion of the true linear frequency for a mode with wavenumber (k&amp; - aké +

43/2 k5 + a2 51/2 up.to and including terms of 0(a%). In general, how-

ever, our truncated expansion for the phase speed will not be correct to

0(a%) so that our specified frequency uw will differ from the linear

eigenfrequency uw by an amount of 0(a%), 220 say. It is this differ-

ence in frequency, since it corresponds to a difference in behavior on

the long evolutionary time scale that occurs as 0; in the evolution

equation (4.5).

We now address the question of the evolution of the unstable wave.

As in the case of the neutral sidebands, we project the vorticity equa-

tions onto the Fourier component corresponding to the unstable wavenumber.

However, in the linear problem (Chapter 3) we saw that the structure of

the unstable wave exhibited two meridional scales, and it is again neces-

sary for us to split the y-domain into an inner region of width 0(al/2)

about the center of the channel and an outer region comprising the remain-

der of the channel. In the inner region the meridional variable n will

be used. The equations governing (0) are then, in the outer region,

8

(22-2 Og, - p(k 002)(0,372[(0)2(0)irdo(aap)
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: (2), (1) 2[ (0), .(0),2 (0), .8*FU . (0), |
- TU (0)! By W)] +A - 8s + K3 84 TU a1 4 |

(0), , 1 (1), (2) (2), (1)
5 - FU +h) (0 + | 0 (Wg), Play) + a) (12g,, Hay)

my

2

2 =o (0)g, = 0
m

a. )

in the inner region

b) (0),a2 F2 (0)- An2 (0)

2.2 Na ne (0g, - (0g, + or 22 (0), + To (0), (n)
m m

+

-1/2

BL 300) M8. ay) ’ 3008, Vay) = 0
m

{« /)

We have used the symbol KS in place of (0)2 to emphasize that the lead-

ing order term in the expression for the wavenumber of the unstable wave,

is just the wavenumber of the marginal wave at maximum critical 8. i.e.,

0),2 _ 2 _
Kq = ko = B/\

4 ~

Ld1 5)

The leading order problem for the upper layer streamfunction is then just

&amp; A +2)
r

0)
0

v 4 ¢
+

7]

10) 0 aty = 0and1



194

Thus 40) 2 Ag(T) sin wy
1

lp ea
-

J)

At O(a):

 02 + 2) g1) (bo (02) lO) (L002) sin oy

(4.11)

4 . 1) =0 at y -

zit 0

The solubility condition for (4.11) is that

Nn) &gt;
/

1/U

This can be interpreted as a requirement that, to 0(a), the wavenumber of

the unstable wave must coincide with that of the marginal mode on the

left-hand branch of the marginal curve at the true value of 8, 8 = 8, - A.

It will turn out that the two wavenumbers mentioned can differ only at a

still higher order, 0(a3/?y, The import of this restriction on the 0(a)

approximation to the unstable wavenumber is that the finite amplitude

analysis is more directly an expansion about the marginal mode at 8 =

3, - A rather than the marginal mode at Be We choose to normalize

the solution such that

31) = 0 (4..2)

The next problem to consider in the upper layer analysis is that at

04372), but we will postpone this until after we have examined the

lower layer vorticity equation. From (4.6) we have that at leading order
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(5, - Fun) oi1) fi L(g (V0), Df +3) (240), (10)

Replacing the expression enclosed in prackets on the right with b) 0 1,y),
we find that

Ia
4

} 1 ps0) (T,y)
© Tk, By, -FUR

(41 1)

while solving the 0(al’?) problem yields

7) F (0)
- ik 9 @. / (8 - FU+h (4.14)

We can now return to the upper layer where the 0(a3/2) terms in

(4.6) imply

"a\ 24 2) (0) (2) _ (03,2 (0)(0)
(4.25)

i Woy (Hg, (0) (20g{0)y wg (20400) (1)[00)g _¢ (0)4(12
m

Ne will again compress the formalism by defining

Mtg) =a, (D610), 200), 3g (lO) (10),

Substitution for (0)4(0) and (0) 41) in (4.15)
J yields

2 2 2Bo ky sn rig Oy
TK. ’ TK T=FUPh,T (4.16)

At y =1 we have the boundary condition 6.2) =0. As y --&gt; 1/2, we
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must match this outer solution to a solution in the inner region near

y = 1/2. This matching will be discussed later.

A particular solution of (4.16) is

(232)
(0),2 .
=A, (y-1) cos my + =cos my I. * =sin ay I (4.17)

JF ere

L TTT +7 p(0) yF pi (1.y") - 1 mY Py (T,y| o| Bm ~ Uh, sin ny’

( .

! ' F (0) ' 1 4

dy PI (T,y") - (0) | os y) | (6 - FUR.) "2 KTP (Toy) T

As y approaches 1/2 from above,

totic form of 42) is

"dyVY=1/2
&gt;

0 + the asymp-

, +

2
K

[1+ (- Ay - Kg Ap Ay) n+ 0 (a7) {/
|

FI 3)

iaere¥

1

F 1 1 (1), (1),.(0) (2).(0) (2), (1),(0) (2),(0)
Ko = =o AN IE ("kg Yay = Kg Yay Tp)

W 0 9-1/2

Bpt FU 1 1

0 0

1

dy (Dy (1p{0) (2140) (2) (1140) (230)
1/7

AA 1: )
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Continuing to the 0(a%) problem for the upper layer we find from (4.6)

otsat

(5+ 2) 4(3)\9,, ™) 8.3 = - F 3,
0)3 + FU 4!2), (0),2 {0) + 312 a7 9

m

Jpon substitution for gy?) and 60) this becomes

7

fa * x2) g(3) = sin ny
i

on2 (arr, Fe A
— * TE FUT3°0 ik 1k,(8 ny oT

(4.20)

The side conditions on 63) are similar to those on 612), A particu-

lar solution of (4.20) in 1/2 &lt;y &lt;1 is

(3)
i (y-1) cos ny

-1

|

02, ("FY F2 ), |
3" ik 0 Ty hy oT|

(4.21)
&lt;

= Ror
~ = sin ay [In (Jcos ny|)]
21k PRE

We have now developed the outer problem for the unstable wavenumber as

far as will be required in the derivation of the amplitude equations.

Next we must resolve the spatial structure of the unstable wave in the

inner region near y = 1/2.

In the inner region, the equations (4.7) apply which may be rewritten as

3 “Py == aw" A A *

(4.22)

-1/2
2 2 1 2 F A 1 1/2

2 7 hyn 8, - 8, + ix- 9rd, 8, + i.or a n) * TK P, (T, 2 tA n) = 0
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We quickly realize that

(0)
5,7 = Ag

and

(1) 1 22
ty =-77TN Ag J

(2 23)

Py (T, 1/2 + 21/2 = 0(a) so that gi!) is determined by

Ve 3 /
1 - Fa.z h 22-1) ds xHoek (242 hy f

0)
= -F Agt (4.24)

This latter equation appeared in the linear problem. There the time

dependence was simply exponential for a particular normal mode and so we

could solve for git). Here the time dependence is more general and

we cannot explicitly solve (4.24). Instead we will merely denote the

formal solution that is bounded as [n] --&gt;ee by 31) (ns, T). Note

that as n --&gt; ©

i

ta

od.

Do. Pho a

2k h,

and

n

| dn’ gil) (n') ~
3

[ (1 Flor 1dn ¢ + x

oh " 12k +2 h, n
#3

A significant feature of (4.24) is that it couples the spatial struc-

ture of the lower layer streamfunction in the inner layer to the evolu-

tion of the amplitude of the unstable wave. Recall that (0)gf1) is the

leading order contribution to the lower layer streamfunction of the
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unstable wavenumber, Thus, notwithstanding the fact that the lower layer

streamfunction is weak when compared to that of the upper layer, the

finite amplitude system possesses the feature that part of the leading

order spatial structure of the unstable wave evolves on the non-linear

interaction time scale. This should be contrasted to the case of the

meridionally uniform two-layer model in which the leading order structure

of the unstable wave does not vary during the evolution cycle. In that

problem, temporal variations in structure are relegated to the higher

order correction to the streamfunction that is responsible for the exist-

ence of a weak phase shift between the two streamfunctions, and hence for

the ability of the unstable wave to exchange energy with the mean flow

via the heat flux associated with the wave.

One can heuristically account for the structural variations of the

streamfunction in several ways . On the one hand, if we exploit the

notion of the finite amplitude disturbance as being built up from a lead-

ing order term, that has the structure of an adjacent marginal mode, and

higher order corrections associated with finite amplitude effects and with

the fact that we are located a small distance away from the marginal curve

in parameter space, then we discover that the meridionally varying and

uniform cases are not very dissimilar. In each, the temporal variation

of spatial structure is associated with the corrections to the marginal

mode. The distinction is that the marginal mode in the meridionally vary-

ing model does not possess a non-zero lower layer streamfunction so that

in the lower layer the "correction" term is the leading order contribution

to the structure of the finite amplitude wave.
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On the other hand, there is still a profound distinction between the

two cases and this is tied to the existence of the slow neutral modes

noted in the linear problem (Chapter 3). There we saw that at a slightly

supercritical wavenumber (0) at which we found a slowly growing un-

stable mode, we also found an infinite set of neutral modes which shared

with the unstable mode a lack of any dependence on the fast, 0(1), time-

scale. Instead, their frequencies were of 0(2%). Like the unstable

wave, these neutral modes had an upper layer streamfunction that

resembled sinry and a weak lower layer streamfunction, concentrated near

the center of the channel. Roughly speaking, the way in which the two

sidebands affect the evolution of the unstable wave is by producing,

through the advection of one by the other, an interaction resultant that

contains a component with the same zonal dependence, of Okx as the un-

stable wave, and the same absence of fast time scale variation. This com-

ponent is therefore resonant with the unstable wave and forces a modi fi-

cation to the amplitude of the unstable wave on the longer evolutionary

time scale. Because the slow neutral modes have the same dependence on

the zonal coordinate and the short time scale as the unstable mode, they,

too, are forced resonantly by the product of the interaction between the

sidebands. In general the meridional structure of the interaction product

will have a projection on all of the slow neutral modes since the merid-

ional structures of the eigenfunctions are non-trigonometric. In general

then, the component of the finite amplitude disturbance with the wave-

number (0) will be a mixture of the unstable wave and the slow neutral

modes in the sense of a generalized Fourier sum. The Fourier coefficients
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depend on the slow time variable but this dependence is different for each

mode. Consequently the mix of modes that make up this sum changes in time

which is equivalent to an evolution in the spatial structure of the com-

ponent with wavenumber (0),

Before completing the derivation of the amplitude equations, we must

solve the 0(42) inner region problem for the upper layer. From (4.22)

this 15

3
-

-~ 7 3) _ L240$1) _ fF gil (4 25)-

Part of the forcing for 63) is proportional to the function gM (1,n)

described above so that the spatial structure of 83) will also evolve

in time. The solution of (4.25) is

n'

$3) Loa at, - | dn’ | dn" 51) (T, a") + constant
0 0

As n --&gt; co this has the asymptotic form

54 3.1.0 nt Ag - nF
 RB

(1) F2 Agr
| dn 85 (T, n) w In nt R

A i2k_ «2 h,

where R is an unknown constant.

We have omitted to solve for 0)gl2) | the term which occur-

red at 0[a2 Tn (1/a)] in the expansion of (0g, in There is no

direct forcing for this term in (4.22) so that it must satisfy.

?

y=
 mn

2) = 0
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and hence be a constant, Q. This term is indirectly forced by the

condition that the inner and outer solutions match smoothly.

To complete the solution, we must match the inner solution to the

outer. To the orders considered, the lower layer matching yields no

significant new information. Informally, in the upper layer, expanding

the outer solution in the limit n --&gt; 0 and the inner solution in the

limit n --&gt; co yields asymptotic expressions

2
: F™ A

0g, out Ag (1-1/2 a x 2 t Ir alte % Lae) (a2 Tn 1/4) ——7—
ikon

m 2

?,

( 2 LL oT- —— Ay - Kg Aq 5 ) n- ——a—1In n + const.
21k 4 h,

Og = Ay (1-1/2 ~
2,

r

ir 244

sp Amon
vy + (3% Tn 1/8) OQ

)
© F2A

fonf|dngd)o — tn nvr
i +h, ]

A
+

a ds

Matching terms proportional to n at 0(a2) yields the crucial relation

(0)
Ks

2
x * © (0),(1)

hy + Kg Ap Rp =F [dn i—A
(4,25)

This, together with the differential equation for (00461) , (4.24), and

the two equations for the amplitudes of the sidebands, (4.5), form a

closed set describing the slow, 0(ad), time scale evolution of the three
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zonal Fourier components consisting of the unstable wave and two neutral

Rossby waves. For convenience, these evolution equations are collected

together here, after dropping some of the affixes to d,, as (4.27).

A.+
L

+d Ax Ar0. A, TMA) A

’ ° * *

(¢ +7)' &amp;

0),2 w
2 *x * 1

Ag * KgMAy = F | dn 4
0

J - 3
2 (1) , 2 2 (1)
_ 8, tak (27 hyn -1) 8, = - F Ag

The constants 0, and e, are significant only to the extent that

together they reflect the amount by which the three component waves

depart from perfect resonance. To make this explicit, we can transform

. -1 8,
9 i 1. 4

-i0,T
~ 0 .

Ag = e Ay 9

3, - e

an1
-

1

using og = - (04 + a5). Whence (4.27) becomes
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~ . LL AkAKk

Air = 1 MAgh,

~ . A kak

(1
ad

lek 8)

O02 ho ap

—r2h + kph =F [dn dgt) (nT)
 Nn

. 2” . 2 2 A . ~

(3. + ioy) 2] 4, + ik (2x hyn -1) 4, = -F (3; + eg) Aq

[t remains for us to verify the initial assertion that the changes

made in the mean flow, as a result of the heat fluxes associated with the

three evolving waves, have a negligible effect on the evolution process

on the 0(a~%) time scale. A change to the mean flow should be insig-

nificant, if the perturbation to the meridional potential vorticity grad-

ient of the mean flow due to that change is smaller than 0(a). Referring

to the complete perturbation form of the potential vorticity equations,

(4.0), we can see that the changes in the mean flow are generated by the

advection of the potential vorticity associated with each of the three

main waves by the velocity field associated with that wave, and that the

mean field correction (% associated with wave (3g satisfies

3 } -2 (3) (3)
.= = A Jim) ( J 8. qq)

i= 0. ve 2 (- . 9)

Dye = 02a, (Wg, Bg)
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Here (3), is the potential vorticity associated with the mean flow cor-

rection (Gg, (3)q is the potential vorticity of wave j and J (my (A,B)

denotes the x-independent part of J(A,B), A mean flow correction is a

higher order effect if

[3 »

J A

In (4.29) we have reverted to the absolute scaling of dimensionless vari-

ables. Thus (0)4(0) is 0(s?), etc. From this point, we will again use the

relative scaling, described in this chapter, for the wave variables and

try to determine the scales of the mean flow corrections.

We begin with the effects of the sidebands in the outer region. When

j=1 or 2, the first non-zero contribution to the Jacobians of (4.29)

come from the interactions between (34(0) and (3)4(3) [and

$403) win gl] tus

\
J) 7/2 T :T = = A J (3) (0) (j .

Sm C77 Ded) +g, (Wgl3) ()g(0))

Hence (3), and a, in the outer region, are each of 0(a’/2) and are

therefore negligible.

The sideband waves also develop some inner structure as a result of

the non-linear interaction. While this is too weak to affect the ampli-

tude evolution, it should be considered when calculating the mean flow

correction in the inner region. Because of the symmetry properties of

the sidebands, the magnitudes of the inner structure that they develop

will differ. Let us use j to refer to the anti-symmetric sideband and j'
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to refer to the symmetric one. In the inner region, there will be a cor-

rection to the lower layer streamfunction of the anti-symmetric sideband

that is of o(al?/%y, The perturbation to the lower layer potential

vorticity that results from this, (31450) say, Will be o(al37%)

and its meridional structure is given by

i3)
(3), *

(c) 0 (3"),(0) (0),(1) ,*

CET, te MA an Ay
9 70

( 1
..

-
»

1 8%J)

The corresponding correction to the lower layer streamfunction of the sym-

metric sideband will be 0(al9/4% while the associated perturbation to

 |

the lower layer potential vorticity, (3 )g{0) will be 0(al®/%)

and given by

 3 )_ 1 a2)
?

A; *
J (3),(0) (0)4(1) (3), _(0) (1)* (0), (0) *

TTI0 Voy (172) In T0850 KG 8 hn Ko” kg F Ag)

Jhen these are substituted into the equations for the mean potential vor-

ticity we find that the anti-symmetric mode gives

y_

| (3) ,

Daye 832 rp 01/2)8WO12) 1, [gga WO |

while the symmetric mode gives
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5

(3),
gy. 3 0 (j),(0) (j'), (0)

Ty) = = AT 2 a. Yay (1/2) Yr (1/2)

(0),
(0), (1) 0 (0).,(1)

‘m Ajilon 9 in - Wh, 9 ) 1]

In both cases the correction to Ty is 0(s3) while the change in Toy

is 0(23/2y, Although larger than that produced in the outer region,

the changes in the potential vorticity gradient of the mean flow that are

produced by the sidebands are still too small to affect the triad

dynamics.

Now we must calculate the size of the potential vorticity gradient

correction produced by the heat flux of the unstable wave. As in the

case of the sidebands, the largest change in the potential vorticity

gradient of the mean flow is produced in the inner region, although in

both regions, the changes produced in the velocity of the mean flow are

similar, 0(a’/2), In the inner region, the self-advection of vorticity

in both the upper and the lower layer is 0(a2/2) so that, as a result

0) O(a
’

Thus, (0), ~ 0(s°/2) while 0, ~ 0(2%), in this inner region. Again,

the change in the mean flow potential vorticity gradient is too small to

affect the analysis leading to (4.27).
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Although these small changes in the mean flow need not be considered

in our calculation of the amplitude equations, they play an important role

in the energy balance of the entire system. As the total energy of the

three waves fluctuates, energy is being transferred between the waves and

the mean flow so that the total energy of the system (waves + mean flow)

remains constant. This exchange is effected by the heat fluxes associated

with the three waves, and the small perturbations to the mean flow that

they produce account for energy lost or gained by the mean flow.

Energy Balance for the Finite Amplitude System

Each wave contributes an 0(a’/2) change in the velocity and temper-

ature fields of the mean flow over most of the width of the channel which

lead to o(a’/?) changes in the energy of the mean flow. To produce

such changes, each wave must give rise to a heat flux which, when inte-

grated across the channel, has a net magnitude of 0(all/?y, We can

axamine these energy exchanges between the waves and the mean flow by

studying the energy equation for the disturbance field.

If we multiply the potential vorticity equations by the sum of the

three principal Fourier modes of the streamfunctions

Z (3)= go k (x-8)et)
4

zonally average the resulting equations and then integrate them across the

channel we obtain an energy equation for the three principal wavenumbers

of the disturbance field. If we take out the leading order scales of each
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of the three waves, i.e., make the transformations

i (2h) _ ,7/% (My (2)g,

0), 2 (0)
¢

0) L200) (0) 3 (0)

then this energy equation takes the form

“nt p112 Ey) a
Fe

2 SU

r

We fay 1 (Mg. MWgly + fay 1 (Pg, Pg
_]

=

(4.351)

Fl (0), | dy I ((0) (0)
{ outer " L 2

i

&gt; is the energy associated with the jth wave

[an 1 (107, 100%)
inner

£, - fof og | + [79s + F (Wg, a? )

The terms on the right-hand side of (4.31) are the baroclinic conversion

rates associated with the three waves. Since the phase differences

between Wg, and (3g, are 0(a%) when j = 1 or 2 but 0(1) when j = 0, all

of the heat flux terms are of potentially similar magnitude. The con-
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tribution from wave 0, the wave with the unstable wavenumber, has been

split into a contribution from the inner region and a second contribution

from the outer region. For convenience we will label the conversion terms

50 that

(E+ Ey + aY2E0) 2 Mpa @g oc Oy 0 (Oy

Using the results of the asymptotic expansion analysis, one can obtain

expressions for the leading order parts of the baroclinic conversion

rates. These are

1

5) By + FU Ms (3) 0) 12

ho Ug In (Ah) X|ST dy (“ho
= 0 = 0 0

’
1 1 (0) (3)y(0) (3")(0) _.

(5- bm) [Jor UH HE wi
= 0

3p [UO M0) co J j=1, 2

(4..2)“&amp;

In (4.32) we have reverted to the convention that j' = 3 -

oy, =

FU I (AgArAr) J dy sinmy
0

f

Ln + md)2) (1) (1)y(2)(2),(0)So Co hy Wy! Bi
© T8_-FO0F*HR,

m 4

(4,33)

1 - 1 (1). (10) (2)y(0) (2), (1),00) (2),(0)

(i= ANE-)f ko Hh - Kg Ny 1
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All of the three waves contribute conversion rates that are of

0(all/2y, Compare this to the rates that would be expected from linear

theory for waves of the same amplitude. Wavenumbers 1 and 2 correspond to

neutral modes in the linear theory and so have no associated heat fluxes

or baroclinic conversion rates. Wavenumber 0 is linearly unstable but

the energy conversion rate associated with a wave of amplitude 0(2)

would be 0(s12/2 i.e., a factor 21/2 smaller than the expected conversion

rate in the finite amplitude problem. For all three waves the rate of

exchange of energy with the mean flow is increased beyond the linear

rates. This increase is brought about by the vertical phase shifts pro-

duced in each Fourier component as a result of the forcing each wave mode

receives from the interaction between the remaining pair of waves. Because

it is the non-linear interaction between the waves that is responsible for

the necessary heat fluxes, each of the conversion rates is proportional

to the triple product Agh1As- It is perhaps a little surprising that the

conversion rate associated with the unstable mode should share this

dependence. As we saw earlier, the conversion rate associated with the

changes in structure of the unstable wave forced by nonlinear interaction

dominates the conversion rate that the linear structure of the unstable

wave would produce. In this respect, the three wave system here is

pernaps more reminiscent of the triad composed of three neutral Rossby

waves discussed in Chapter 2 rather than the triad consisting of two

neutral waves and a weakly unstable wave in a meridionally uniform

two-layer flow that is discussed later in the same chapter.
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The way in which the energy conversion rate of the unstable wave is

enhanced is perhaps worthy of comment. In the outer region, the interac-

tion between the two neutral waves forces a correction of 0(s’/2) to

the lower layer streamfunction; this is much larger than the 0a)

streamfunction that the linearized dynamics would dictate. In general,

the phase of this correction differs by an 0(1) amount from the phase of

the upper layer streamfunction and so the net heat flux produced can

reach 0(all/2y, In the inner region, the non-linear interaction between

the neutral waves forces a correction to the lower layer streamfunction

that is of the same order as the streamfunction dictated by linear theory.

However, the correction differs in shape from the latter. The linear,

inner region, lower layer streamfunction has a rather special shape which

means that the 0(a10/2) heat flux in the inner region nearly cancels,

when integrated across the 0(al/2) width of this inner region, to leave

only an 0(at2/2) residual. In general, the part of (0g, in forced

by the interaction between the sidebands does not have a similar property.

The local heat flux associated with this correction terms is also 0(a10/2)

but this does not cancel out when integrated across the inner region so

that the integrated heat flux is 0(all/2y, In short, the changes in

shape of the inner region (0), caused by non-linear effects, pro-

duce changes of shape in the inner heat flux, unbalancing the delicate

cancellation process present in the linear problem.

The presence of heat fluxes that are stronger than those required in

the linear theory of an unstable wave is necessary because the energy of

the triad is dominated by the energy in the sidebands. The energy fluc-
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tuations associated with the vacillation of the sideband amplitudes are

larger than those associated with the changes in energy of the unstable

wave that occur on the long, e-folding time scale. They require the

enhanced energy exchanges noted above to support them.

In this section, we have noted that the baroclinic conversion rates

associated with the "neutral" waves have, at least formally, a similar

magnitude to that of the unstable wave. It will be observed in the numer-

ical results below that, in the instances examined, the largest of the

anergy fluxes is associated with the unstable wave.

Numerical Results

The amplitude equations, (4.27), that govern the evolution of the

finite amplitude system in the asymptotic limit a --&gt; 0, appear difficult

to solve in any closed form. To learn something of the behavior of the

solutions, we turn to a numerical study of the finite amplitude system.

In view of the many degrees of freedom of (4.27), the detailed behavior

of the solutions may be quite complicated. We do not expect to be able

to explore much of this detail numerically. Rather, what we seek from

the numerical results are answers to the two fairly basic questions out-

lined in the introductory part of this chapter. The first question asks

whether the initial growth of the unstable wave, due to the linear insta-

bility mechanism, will trigger the growth of the neutral sidebands of any

of the possible resonant triads. Such an effect is necessary if initially

small perturbations at the sideband levels are to be able to reach ampli-

tudes at which their interaction can affect the growing unstable mode.
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The second question seeks to discover whether any triads exist for which

the non-linear interactions between the triad elements suffice to curb

the growth of the unstable wave and hold its amplitude at an 0(a%)

level at which the theory behind (4.27) remains valid. A secondary pur-

pose of the numerical simulation is to give some sort of general idea of

the form that the three wave evolution might take.

The numerical model used integrates the perturbation potential vor-

ticity equations for a two-layer model in an infinitely long, zonal

channel on a s-plane. The perturbation is restricted to contain only

three zonal Fourier components. These correspond to the three waves of a

resonant triad. The basic state corresponds to the one assumed thus far,

namely, an upper layer velocity of U and a topographic gradient at the

lower boundary proportional to cos 2 ny. The model includes non-linear

interactions between the three zonal spectral components but alterations

to the mean flow are neglected, so that the zonally independent flow is

always just that of the basic equilibrium state. Similarly, harmonics of

the three zonal wavenumbers are not included. These features are in

keeping with our theoretical results that indicate that alterations to

the mean flow have a negligible effect on the triad evolution when one is

in the weakly supercritical regime. What the model is intended to show

is what the three-wave evolution might look like in the true asymptotic

limit when wave-mean flow interaction is negligible. For practical rea-

sons (computing time required), we will look at cases in which the super-

criticality is small but not really in the truly asymptotic regime. TO

isolate the three-wave dynamics, we are filtering out the wave-mean flow

interaction by neglecting it entirely.
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Some of the relevant technical details of the model are as follows.

The main algorithm uses a spectral implementation of the two-layer,

potential vorticity equations. The zonal spectral basis is a set of com-

plex exponentials, oe! Only three wavenumbers and the corresponding

conjugate exponentials are included in the basis. The meridional spec-

tral basis consists of sine functions, sin n ry. Because of the merid-

ional symmetry of the problem, the meridional structure associated with a

particular zonal Fourier component will be either odd or even and so the

number of sine functions required can be halved. The meridional trunca-

tion used was varied. For most of the results presented here the trun-

cation is at either sin 38xy/sin 39qy or sin 58xy/sin 59qxy for the odd/

even modes. The non-linear interaction terms were calculated using a

combination of pseudo-spectral and direct evaluation techniques. Each

zonal component of each variable involved in a non-linear product was

transformed into the physical y-domain, while retaining a purely spectral

representation of the zonal dependence. The interaction terms were com-

puted using these half-transformed variables and the results were then

transformed back into the full spectral domain. An alias-free technique

was used for this step. A fourth-order temporal integration scheme was

used to preserve the phases of the individual Fourier components accu-

rately over periods of time equal to many sideband periods. The code was

executed on a CRAY-1A processor.

Several tests of the model were made. These included reproducing some

of the vacillations of a neutral Rossby wave triad of small amplitude in

a meridionally uniform version of the model and reproducing some of the

results of the linear theory for the meridionally varying conditions.
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There are really four time scales of interest in the model runs. The

shortest is that of the time step used. The second is that of the period

of the neutral waves that the model system can support. These span a

certain range, but the period of the two sideband waves involved in the

main resonant triad interaction is fairly typical. The third scale is

the e-folding period of the unstable wave according to linear theory,

while the fourth is the length of the model run. We are interested in

the weakly supercritical regime in which there is a large separation

between the two dynamical time scales, the neutral wave periods and the

e-folding period. In order to approach the asymptotic theory as closely

as possible, we would like to make this separation as large as possible.

Since the ratios of the longer to the shorter period scales as 0(a~%),

even a fairly large ratio amounts to only a moderately small value of a.

For the results to be presented this ratio will be of 0(100). The asymp-

totic theory suggests that the slow e-folding time will be the natural

time scale for the variations in amplitude of the three waves in our

triad. For this reason we would like the total length of our modelling

runs to be several times longer than the e-folding scale, Tae We have

used runs of 0(10 T,). As a result of the relations between the latter

three time scales, the modelling runs represent integration over 0(103)

Rossby wave periods. Because we want to model weak non-linear interac-

tions between the three components of the triad, we must represent the

phases of the three waves rather accurately over the entire length of the

run, tolerating only errors that are a small fraction of 2r. The param-

ster that determines the accuracy of our time integration scheme is the
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ratio of the individual time step to the Rossby wave period scale. To

achieve the necessary accuracy we have used a fourth order time scheme

and a rather short time step, 0(102 X Rossby wave period). The number

of time steps in a full run is therefore of 0(10°).

Four numerical runs will be discussed below. These will be labelled

Al, Bl, A2, and B2. Two sets of model parameters (8, F, U) and wavenum-

bers will be used; Al and A2 will correspond to one set, while Bl and B2

will refer to runs made with the second set. The difference between Al

and A2 will be in the initial conditions used. The same will be true of

Bl and B2. Al and Bl will correspond to comparatively strong initial amp-

litudes. In these the three waves show significant non-linear interaction

from the beginning of the run. They serve to demonstrate that there exist

triads that lead to containment of the growth of the unstable wave. A2

and B2 will begin with very weak wave amplitudes and verify that for these

triads the growth of the unstable wave, caused by the linear instability

mechanism, is sufficient to trigger the growth of the sidebands.

The sets of parameters used are as follows:

A»

]

E -—

BR

Kn

r

B

i -

N=

10.0, u= 1.0, h, - 50 (8 =
m

15.0)

14 92. A =
-

.

2 261, k., = -1.29806251, Ko = -0.96293749

3
~ oa

YI 34376, U fom 1 0 h, = J 3335624 (8, = 16.5)

Lt 2 A

2.544, Ky = -1,46881526, Ky= -1.07518474
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The values of F, U and h, in (A) correspond to those of Case 1 in the

linear study of Chapter 3. Those in (B) match the values used in Case 2

of the linear study. The topography is relatively stronger in Case B, sO

that the slow growth rates and peaked és structure characteristic of

the weakly supercritical regime can be found at slightly larger values of

A in this case than for the values of F, U and h, used in (A).

The time scales of the linear modes associated with the wavenumbers

listed above are as follows:

A: The unstable wave ( (0) has an e-folding time, Tas of 4889.44. The

sidebands (Mg and (2)y) have periods, Tp, of 9.74.

B: The unstable wave has an e-folding time of 1619.38. The sidebands

have periods of length 8.25.

In both A and B the separation of time scales is quite marked: To/

Tp is 0(500) for A and 0(200) for B. The spatial structure of the

unstable wave that is given by linear theory is shown in Figure 3.5 for

Case A and Figure 3.7 for Case B. In both 3.5(a) and 3.7(a), the sharp

central peak of the lower layer streamfunction is well defined.

In order to find the amplitudes at which the interaction between the

unstable wave and the two neutral waves is sufficiently strong as to be

comparable with the tendency of the unstable wave to grow as a result of

the linear instability mechanism, some preliminary runs were made with

different initial conditions. The first set of initial conditions used

were very weak so that the waves were effectively independent linear

modes. The intensity of the initial conditions was repeatedly increased

until significant non-linear interaction was observed. Once this
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"threshold" had been found, a longer run was made using this latter set

of initial conditions. It is this run that we will identify as run Al

for Case A. A similar run using the parameters of Case B will be identi-

fied as Bl. Because we are beginning with non-linear initial conditions,

the interaction between the two sidebands generates some of the higher

meridional modes associated with wavenumber (0) These are not close

to marginal and have both the smoother structures and shorter time scales

of neutral Rossby waves. Their presence will be observed later as a hign

frequency noise in some of the heat fluxes. Because the amplitude of

these "ringing" modes is small and their period much shorter than the

avolutionary time scale, their averaged effects are negligible.

Figure 4.1 shows the evolution of the kinetic energy of the upper

layer streamfunction for the unstable wave during run Al. This is the

larger part of the total energy associated with the unstable wave and is

proportional to | Agl2. If the unstable wave was behaving according

to linear theory, the energy would increase by a factor of e in a time of

roughly 2450, and hence by a factor of about 7.5 x 10° over the length

of the run, Figure 4.1 clearly demonstrates that the interaction of the

unstable wave with this particular pair of sidebands is sufficient to curb

the growth that the linear instability mechanism alone would produce. The

behavior of the energy is rather irregular which seems consistent with

the large number of degrees of freedom that we know the asymptotic system

(Equation 4.27) to possess. There seems to be no reason to think that

the period of small energy near the end of the run is anything other than

temporary. The time scale of the major fluctuations in amplitude remains
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of 0(T,). (That it should initially be so is really a consequence of

the way we selected the initial conditions.)

Figure 4,2 shows the evolution of the upper layer kinetic energies of

all three waves, Since, at leading order, the spatial structures of the

sidebands do not change during the evolution, the upper layer kinetic

energies of the sidebands are proportional to Ay 12 and | A, 1%.

We see that the energies of the sidebands are larger than that of the

unstable wave as the asymptotic theory suggested. The sideband energies

fluctuate on the same time scale as the energy of the unstable wave: the

tendency is for the sideband energies to vary in anti-phase with the

energy of the unstable wave. The energy of the triad as a whole varies

by amounts comparable with the energies of the sidebands. This variation

is achieved by exchanges of energy between the three waves and the mean

flow. Since the fluctuations in total triad energy are larger than the

energy associated with the unstable wave, the rate of exchange of energy

between the triad and the mean flow exceeds that which would be observed

between a mean flow and an unstable wave of similar amplitude to that of

the unstable wave here, but which was evolving (growing) as linear theory

alone would dictate. We have already seen, in our theoretical discussion

of the energy balance of tne triad, how non-linear effects can both

increase the rate at which the unstable wave exchanges energy with the

mean flow and modify the structure of the neutral waves sufficiently that

they, too, can exchange energy with the mean flow at similar rates. How-

aver, computations of the heat flux from the numerical results indicate

that the energy exchange associated with the unstable wave is the largest
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contribution to the energy fluctuations of the triad. This will be taken

up more below.

Figure 4.3 is similar to Figure 4.1 but shows the results of run Bl.

The curve plotted is again the kinetic energy of the upper layer stream-

function of the unstable wave. Again we see that the non-linear interac-

tions between the unstable wave and the sidebands curtail the growth of

the unstable wave. For this run, linear theory would give an e-folding

period for the energy of about 810. Over the length of time shown in

Figure 4.3, this would imply an increase by a factor of about 2.5 x 1043,

Again, the behavior of the energy is that of an irregular vacillation on

a time scale comparable to the linear e-folding period of the amplitude

of the unstable wave.

Figure 4.4 presents the evolution of the upper layer kinetic energies

of all three waves for Bl. Again, on average, the energies of the side-

pands are larger than those of the unstable wave, but the difference is

not as pronounced as that in Al,

The rates of baroclinic conversion of energy between each wave and

the mean flow for run Bl are shown in Figure 4.5. The strongest is that

associated with the unstable wave. This indicates the following picture

of energy balances within the system. The largest fluctuations in energy

are associated with the sideband energies. These dominate the fluctuation

in the combined energies of the three waves. These fluctuations are bal-

anced by transfers of energy between the triad and the mean flow. The

major part of these transfers occurs between the unstable wave and the

mean flow and takes place at a rate more rapid than the rate associated
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with the linear instability of the unstable wave. This is achieved by

modifying the shape of the heat flux associated with the unstable wave

{see below). At the same time that energy is being shifted between the

unstable wave and the mean flow, wave-wave interactions are transferring

energy between the unstable wave and the sidebands at a similar rate.

The result of this is that the energy of the unstable wave changes only

by amounts that are comparable with the relatively small energy of that

wave while the main effect of the triad/mean flow energy exchanges is

passed on to the sidebands.

We noted that the energies of the side bands were generally decreasing

while that of the unstable wave increases and vice versa. Because most

of the triad/mean flow energy exchange occurs through the action of the

heat flux associated with the unstable wave, this means that usually the

sense of this heat flux opposes the rate of increase of the energy of the

unstable wave. When the energy of the unstable wave is decreasing, it is

often extracting energy from the mean flow.

The larger magnitude of the integrated heat flux associated with the

unstable wave, in comparison to the integrated heat flux of a growing

wave governed by linear theory, is brought about by changes in shape of

the heat flux. In the linear case, Figures 3.10 and 3.11, the zonally

averaged heat flux was concentrated near the center of the channel and

exhibited both positive and negative lobes which almost cancel each other

when the meridional integral is computed. Figure 4.6 shows the meridional

profile of the zonally averaged heat flux at various times during the

non-linear run, Bl, One can see that there are no longer nearly equal
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Figure 4.6: Meridional profiles of the heat flux associated with the
Unstable wave, wave 0, at several times during run Bl. Profiles are

plotted only for 0 &lt;y &lt; 0.5, they are symmetric about y = 0.5 .

a) t = 0.0, b) t = 4000.0, c) t = 5500.0, d) t = 11500.0,

a) t = 12500.0, f) t = 14500.0, g) t = 16500.0
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areas of positive and negative heat transport. The changes in shape of

(0)gi1) that were produced by the action of the non-linear

interaction of the two sidebands have altered the shape of the heat flux

and destroyed this balance. In doing so they permit the unstable wave to

exchange more energy with the mean flow than was previously possible.

So far, we have only looked at one set of initial conditions for each

of two different sets of model parameters. To demonstrate that there is

a certain degree of robustness to the ability of a triad to —— the

exponential growth of an unstable wave, we include Figure 4,7 which shows

the evolution of the upper kinetic energy of the unstable wave for sev-

eral runs made with the parameters similar to those used in Run Al. The

values of F, 8, U and hy remain as they were in Al. Two of the runs

shown in Figure 4.7 use the same three waves as Al but feature different

initial conditions. For one, the amplitudes of the sidebands were twica

as large as in Al while for the other, the initial sideband amplitudes

were twice as small as in Al. Also included are two runs made using sim-

ilar initial amplitudes to Al but in which the wavenumbers of the triads

have been changed slightly. In particular, this alters (0)2,

In the runs shown in Figure 4.7, the important property, that the

growth of the unstable wave is curtailed by the wave-wave interactions

remains, The time scale of the evolution continues to be of 0(Ty),

With the timescale of the higher energy run (the run with larger initial

amplitudes for the sidebands) being slightly shorter than that of Al.

The amplitude of the "equilibrated" unstable wave is of a similar mag-

nitude for the experiments of Figure 4.7 and for Al, although tnose of

Figure 4.7 are a little larger than that of Al.
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amplitude of wave 0 was the same for each run. The values of F, U, 8

and hp are the same as those used in run Al. The wavenumbers and/or

the initial sideband amplitudes differ between runs.

R22/24 is the first part of run Bl.

R26 As R22/24 but with initial sideband amplitudes increased by
a factor of 2.

R27 As R22/24 but with initial sideband amplitudes decreased by
a factor of 2.

R31 Similar jp tia amplitudes as R22/24 but with (0)k = 2.253,
(1g = -1.2944, 2) = -0.95858. This corresponds to a triad in

which wave 0 has a smaller value of k% than in R22/24,

R32 Similar injyial amplitudes as R22/24 but with (0) - 2.267,
(x = -1.3008, (2Jk = -0.96622. Here k% is larger than in

R22/24.
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Experiments Al and Bl have shown that it is possible to find a triad

which will prevent the continued growth of a weakly unstable wave that

linear theory would call for. We have therefore answered one of the

questions we posed at the outset of the numerical investigation. Note

that not all possible triads involving the unstable wave possess this

property. There are other choices of sideband pairs which allow the

unstable wave to grow more or less unchecked.

We now turn to the second question; if we start with very weak (quasi-

linear) initial conditions, will the at first exponential growth of the

unstable wave be accompanied by the growth of the sidebands to such a

level that they become strong enough to curb the growth of the unstable

wave To show that, in the instances of the parameter values used in

Cases A and B, the answer to this is yes, we conducted experiments A2 and

B2. These differ from Al and Bl only in that the initial conditions are

very much weaker. The initial upper layer kinetic energies for A2 were

Wave ¢: 4.3147 x 10°11

Wave 1: 6.4132 x 10°10

Wave 2: 1.2841 x 10-10

while those for B2 were

Wave g: 8.1708 x 10712

Wave 1: 8.3272 x 10°11

dave 2: 2.2055 x 10-1

The subsequent evolution of these energies is shown in Figures 4.8 (A2)

and 4.9 (B2). In each case, much the same thing happens. At first the
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unstable wave grows exponentially with the linear growth rate, while the

amplitudes of the sidebands remain constant. Eventually the amplitude of

the unstable wave reaches the level at which the asymptotic theory is ap-

plicable. At this level the time scale of changes in the sideband ampli-

tudes, that are forced by interactions between the unstable wave and the

sidebands becomes comparable to the growth rate of the unstable wave. In

other words, the unstable wave has reached a level at which its upper

layer streamfunction is 0(a%) so that resonant interactions between the

unstable wave and the much weaker sidebands forces changes in the ampli-

tudes of the sidebands on a time scale of 0(a2). The equations govern-

ing the evolution of the sideband amplitudes are the first two equations

in (4.28). Because the coefficients My and M, in these equations have the

same sign (for A2, My = 4.074, M, = 1.852 while for B2, M; = 4.915, M, =

1.725) the "large amplitude" unstable wave is unstable to the two side-

bands and these grow on the 0(a~%) time scale. This process is analo-

gous to the instability of a Rossby wave discussed by Gill (1974) in the

weak interaction limit.

As long as the sidebands are sufficiently weak that their influence

on the unstable wave can be neglected, tne amplitude of the unstable wave

nas the form

a a2

pl

The first two equations of (4.28) become

A.ip = iM . +e Op aol ’
“l

(3, i) = (1, 2) or (2, 1)

From these
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AAT} « 1 M, \1/2 ,

A(T) {ato | + efln/2-arglag)] 1% 0) ex 2 0i &gt; p Linm1/2 ol oom

Mm, \1/2 . o a 1 iln/2-arg(a,)] 2%, 1) 1/2 1%] oT

while A(T) is given by a similar expression. For most initial condi-

tions, the coefficients of exp [(M,i)1/2 (lagl/o) 097] will be

non-zero. The sideband amplitudes will therefore grow very rapidly, like

an exponential of an exponential. This analysis becomes invalid once the

amplitude of the sidebands approaches o(a’/%) because they then begin

to affect the evolution of the unstable wave whose amplitude ceases to be

given by Ay = a, eo, However, we see two things here. First, in

the presence of an unstable wave whose growth is being fed by linear

instability, the sidebands will also begin to grow whenever the triad

chosen is such that the product of the two interactions coefficients My

and M, is positive. Second, this growth is faster than exponential so

that the sidebands can catch up to the unstable wave.

Figures 4.8 and 4.9 show the growth of the sidebands once the ampli-

tude of the unstable wave becomes sufficiently large, 0(a2), that the

growth of the sidebands occurs on the same time scale as that of the expo-

nential growth of the unstable wave. The energy of the sidebands in-

creases beyond that of the unstable wave since it is not until the side-

band amplitudes reach o(a?/%y that they strongly influence the unstable

wave. The presence of the strong sidebands then inhibits the further

growth of the unstable wave and the evolution progresses in a similar way

to those of Aq and By.
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In growing from very weak initial conditions, the average energies of

sach wave, once the triad has settled down into an "equilibrated" regime,

are several times larger than the average energies in runs Al and Bl

where we started with initial conditions close to the threshold at which

an "equilibrated" state is possible. As a consequence of the higher en-

ergies, the time scales of the energy fluctuations are a little shorter,

being of 0(2000) in run A2.

Runs A2 and B2 demonstrate that there are indeed triads which, start-

ing from very weak initial conditions, nevertheless result in a bounded

anergy state in which the growth of the unstable wave has been halted

purely by the effects of wave-wave interactions between the elements of

the resonant triad. Our numerical study has shown that the dynamics of

wave-wave interaction, which the earlier theoretical discussion suggested

should become important before wave/mean flow interactions for weakly

supercritical waves and be described by (4.27), is sufficient to produce

a bounded energy state for some choices of triad. It was remarked ear-

1ier that not all triads will halt the growth of the unstable wave. In

any physical realization of our theoretical model, the unstable wave will

he simultaneously a member of many resonant triads whose other elements

are neutral waves. Some of these triads will be ones which, at least by

themselves, will halt the growth of the unstable wave. We have confined

this study to a case in which only one triad is considered. It is not

clear what will happen when more than one triad is at work, modifying the

evolution of the unstable wave. While it is, in principle, straightfor-

ward to obtain the extension of equations (4.27) to the case in which a
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finite number of triads, each involving the unstable wave and two neutral

waves, are present, a more sophisticated (and slower) numerical model

will be required to follow the evolution of this system.

The Single-Wave Problem for the Meridionally Varying Model

In the 1imit of small supercriticality, the effects of interactions

between the unstable wave and modifications to the mean flow are of sec-

ondary importance when three-wave interactions of the sort discussed above

are occurring. Similarly, interactions between the unstable wave and its

zonal harmonics may be neglected in the three wave problem. Nevertheless,

the single-wave problem, in which the evolution of a slightly supercriti-

cal unstable wave is modified through its interaction with the mean flow

and with higher harmonics of the unstable wave, retains some theoretical

significance. It has practical relevance in instances when a quantization

condition imposed on the zonal wavenumbers does not admit any stabilizing

resonant triads. Such a condition could occur in the case of a spherical

or annular domain, (In practice, such a condition might also fail to

admit wavenumbers corresponding to weak instability at minimum critical

shear). It also has some pedagogic relevance: in regimes in which the

supercriticality is small but not very small, both three-wave and wave-

mean flow interactions can be expected to be present; a rather complicated

situation, yet one that is still short of the fully non-linear case. By

considering the three-wave and single-wave problems in isolation, we

hopefully provide some basis for understanding this coupled regime.

One of the aims of the single-wave theory is to determine whether the

combined effects of wave-mean flow and wave-harmonic interactions can
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equilibrate the slightly supercritical wave at small amplitude. We will

discover later, as a result of some numerical simulations, that the

finite-amplitude processes can indeed equilibrate the weakly unstable

linear mode.

We saw that the amplitude scales used in the three-wave problem were

too small to produce a wave-mean flow or a wave-harmonic interaction that

could affect the amplitude of the unstable wave on the e-folding time-

scale 0(a=%). In the single-wave case, it turns out that we must

rescale the amplitude of the unstable wave to be 0(a3/?) in the upper

layer. Because of this amplitude scale, one of the differences between

the single-wave case and the three-wave theory is that the energy density

of the wave-field, in the "equilibrated state", is larger than was the

case in the three-wave problem; 0(a3) rather than 0a’. A second

feature that we will discover is that the wave-mean flow interaction is

accompanied by the generation of, and the interaction of the unstable

wave with, the zonal harmonics of the unstable wave. This process seems

analogous to the critical layer effect noted by Pedlosky (1982) in the

neridionally uniform two-layer model at minimum critical shear. There

are, however, some differences in the details of the manner in which the

harmonics are created when one compares the two models. In the merid-

ionally uniform situation, if one starts from initial conditions in which

only the unstable linear mode is present, then one finds that the zonal

harmonics are generated indirectly. The self-interaction of the unstable

wave cannot generate a second harmonic, only a correction to the mean

flow. However, the latter has a non-trigonometric structure. The inter-
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action between the unstable mode and the mean flow correction then gener-

ates a series of meridional harmonics of the unstable wave. Lastly, these

meridional harmonics interact with the unstable wave to produce higher

zonal harmonics of the latter. We will see later that the introduction

of meridional variation changes this. Since the eigenfunction structure

of the unstable wave is no longer trigonometric, the self-interaction of

the unstable wave directly generates a second zonal harmonic. The inter-

action between the unstable wave and its second harmonic creates a third

harmonic and so on.

There are also differences in the way in which the harmonics affect

the evolution of the unstable wave. In Phillips' model the sin 3ry merid-

ional harmonic, with the same zonal structure as the fundamental, alters

the mean flow through its interaction with the unstable wave. None of

the higher meridional harmonics of the fundamental directly affect the

mean flow, nor do any of the zonal harmonics. No harmonics appear explic-

itly in the evolution equation for the amplitude of the unstable wave.

Zonal harmonics are important but their influence is due to the changes

they force in the third meridional harmonic at the fundamental zonal

wavenumber, In the amplitude equations that we derive below, it will be

seen that, in the meridionally varying case, the higher zonal harmonics

enter both the equation for the mean flow and that determining the ampli-

tude of the unstable wave.

In Pedlosky's model, the meridional extent of the higher zonal har-

monics involved in the dynamics of the unstable wave, was the entire

channel width, For such a meridionally uniform model, the meridional
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extent of the region of the small lower-layer potential vorticity grad-

ient is also the width of the channel. In our meridionally varying model,

we will find that the higher harmonics are strongest in the inner layer

region about the center of the channel that corresponds to small values

of the potential vorticity gradient of the lower layer.

In what follows, we shall show how the asymptotic governing equations

for the weakly supercritical case may be obtained and indicate the gener-

ation of higher harmonics. Again, these equations are rather complicated.

We include a couple of numerical simulations to show that the unstable

wave is equilibrated. These also show the production of the overtone

spectrum.

Amplitude Equations

Most of the symbols used in this discussion and their definitions

will be similar to those used in the earlier parts of this chapter. We

will discard the leading superfixes used earlier to distinguish between

the three principal waves of the triad problem. As in the three-wave

~ase, we take

and

3 $ A

T mm
-

?
FE

A -,
C #

a 1

le expand the streamfunctions,
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(4.38)

In the above, symbols such as 62) may refer to two distinct func-

tions, one defined in the outer region and one in the inner. For clarity,

we will not bother with additional notation to distinguish these two.

Instead, it should be obvious from the context which function is implied.

Some of the x-dependent terms contain not only a component propor-

tional to eTkX but also higher Fourier components; eINkX n=2, 3,

....Thefullresolution of the form of these harmonics of the primary

wave and of the mean flow perturbation in all of the sub-domains of the

problem is quite a lengthy process. Here we shall sketch the main steps

necessary to determine the evolution of the amplitude of the primary, A.
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These have much in common with the steps used in the three-wave problem.

We will also 1ist, but not derive, some of the terms in the expansion of

the harmonics and the mean flow. A more detailed outline of the solution

is postponed to Appendix B.

We define k by

2 2 2 3/2 2
C= Kp = AKy FA Ky

- Zz
on = 8./U - 7

The inner meridional variable

|1 -1/2 (y - 1/2)

Rescaling the streamfunctions so that their leading terms are 0(1)

and substituting them in the potential vorticity equations, we can obtain

modified potential vorticity equations that show the relative importance

of the several terms in them. In the outer part of the domain, the upper

and lower layer equations become respectively.

 7

, © [J (£., a.) + J (4,, 0.)]

J12 [4g (gy, Fd,) + 9~- [2 -F)&amp;. + £31 - 2" Fé,

4.33)
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(8, - FU + hy) 8, = -F d+ a [8,, - 3%, Fg]

 7D
3by, Fo) + arl(a2 = F)E, + F 1 (4.40)

n2a- (92 =F) dy = 23 [Bye 0p) + 3 (&amp;,, (7% - F) 4,)]

In these equations a is the potential vorticity in the ab layer that is

associated with the x-dependent part of the disturbance field while Q3 is

a similar quantity associated with the x-independent part of the dis-

turbance.

Substituting the @ expansions into these equations and considering

each order in a separately, we obtain a series of differential problems

for the various terms that compose the streamfunction. Taking the upper

layer first:

At Jul) "U

which is satisfied by ¢#

2
- ko) + BJ

!

a) _ a sin

#
0!
 4

O

ofStermrexcept fo*kx |
Ty

(a).

At 0(a) 22 (2)(U(a~ k-) + 8] By = (1 -u k&amp;) 60)

which yields 2 = 1/U as a solvabil

solution so that 41) 0.

ty condition. We normalize the

At 0(a37% 0(s2 - kK) +5 140) = uid gO
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It is at this order that higher harmonics first appear in the outer solu-

tion. They are not directly forced at this order, but we will see later

that they are generated during tne matching process. In general, we will

make the Fourier decomposition:

4m Ss um ginkx *)
n=1 n

“hen

2
-k

3) = — (y-1) cos xy A

and

‘hereWd

Yu 3) = gl3) sin h Ap (y-1)

3

~
A - B./U

( 5.4" )

3(3) is as yet unknown,

Switching now to the lower layer, we find that at 0(1)

nus

'

A BR | R - {0) fPW =-F ¢.9) = - F sin gy

2 m FU hn,

(AL o [KX

+!

+ kx)

{=ot oe
= 2)

“rom here we return to the upper layer where, at 0(22), we find

|
.
- (0)

-F) ¢ rep /U) dg,
—

After making a Fourier decomposition of g\4) this becomes
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8g +FU 2 2

4). | 1 m F geA = iA; | 5 (y-1) cos ny [—5— - ] + ———sin zy 1n (cos yl)

T| 2n cu KM" on42

(28.:3)

4) gl4) sinh x (y-1) ., &gt; 2

By now we have taken the potential vorticity equations in the outer region

to the same order that we did when developing the linear solution. We

have not yet seen any trace of non-linearity. The latter will finally

make itself felt a couple of orders hence, but it does not significantly

affect the evolution of A(T) on the NG time scale. It is the action of

non-linearity in the inner region that is important in determining A(T)

so we will leave the outer problem at this stage.

[nner Region

After scaling 8 in with 23/2 and 8, in with 23/72, the potential vor-

ticity equations in the inner region become

J a3 3, + A(Ua + By) 81x = XK; (4,4 - FU 8) w ad (gy, qq) - 2 914

‘Al 1)
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and

2 2 2 4 4 2
(27 h, n =a gh, wn + ceo) doy * 3g 2 8, - By *F 87

(4.45)

(8,, 3 + 220d Bo * Fd) +2 (33 -F) gor + 20 (dy, 32 45) = 0

In the above equations J (a.b)=ab -ab.

-

2
8. + a (a, - F) 8. + A

and

?
% / A i)3)

We turn first to the upper layer. Referring to the streamfunction

expansions given in (4,37) and (4.38), we see that the first few terms in

3 are just the asymptotic form of A sin ny o1%X + * the leading

part of the outer solution, as y --&gt; 1/2. The 0(1) and 0(a) parts of

(4.44) are automatically satisfied. There is no direct forcing for the

0(a3/2) and 0[a2 In(1/a)] terms in the expansion of 8, ine Rather

these satisfy homogeneous equations,

3}

$4

+ 1d3) _g U ¥2 a dd) = 0

and so are linear in  Nn

33) n y!3) (x,T) n + 13 (x,m)

SH JY noe EY 1)

(4.47)

(4.48)

These functions can contain several zonal harmonics, so we set
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3) _ (3) _inkx
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(4) _ (4) _inkx \
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At 0(a%) U 3
2 (4) (0)
v B14 = - FU Bo

The contribution from the non-linear term being identically zero. As in

the linear problem, g{H) is given in terms of the lower layer streamfunc-

tion dy

84) _ .© q - 3 n' 880) + 6M xm) nr gM) (4.09)
n

After making the decomposition

3(™, im, lm, gM.
n=1

(m) ,(m) (myn) .(m,n)y ink
tz," vy", a, Gy 1 e'™X + x

(4 50)

and noting the symmetry of the problem, this becomes

(4H)
lon’ = - F IS

n
r

A0)
on *

rs
a ,2n)

 Nn

7

1 (4.51)
"

(4)
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In contrast to the upper layer, everything we wish to determine from

the lower layer potential vorticity balance will come out of the leading

order equation. This is

22° h, 2 830) - 630) + ara? 6i0) + F 610) + 3850), 22 (0)
(4.52)

» 1!
(0) ,2 4(0) (0) 2 (0) (0) ,2 4(0) (0)
Vs 3B THF BT) rage ST Hg, a dyn HF 87) = 0

The last term on the left side of (4.63) contains a component which is

x-independent and components that are proportional to the zonal harmonics

of the fundamental wave. We note two consequences of this. The first is

that the mean flow in the lower layer has the same amplitude (in terms of

A) as that Fourier component of 8, which has the wavenumber of the

unstable wave. The structure of this mean flow correction is determined

at the same order as 8,0). The second consequence is that the

leading order x-dependent part of the lower streamfunction, 60)

(x,n,T), is not simply proportional to oe KX, but contains all of the

zonal harmonics o17KX n&gt;l.

To clarify the way in which the zonal harmonics are forced, we will

use the Fourier decomposition of g{0) indicated in (4.50). Substi-

tuting this into (4.52) produces a rather complicated equation. If we

look at the part of this equation that is proportional to eiPkX p = 0.

l. 2. .... taking each op in turn, we obtain

10 KX

210 KX,

3722 00) _ ir (avipry(0)+gioo 2 0 v0" a asa)



250

)!-— "
Jo

a

2, 2. (0) (0) on v(0) +, (0) (0)
2 xhyn” ik YT) + Ye dk YR + FA + ik Yy 2

. (0)

0) pn 880) + dk Fax vy)
Inn n

i ik
we (0) ,(0)* (0)* (0)

Zz Ln) Yoel Yogmn =" Yn Y(n*1)mn

+
(0)* (0) (0) (0)*y _

n nan Y(n+1)n - (n*1) Y(n+1) nn Yn 1=0

(£ 54))
&amp;

2 1pkx » p&gt;2:

2

143

’ ow 2 (0) (0) . (0) , . (0) (0) (0) (0)
ans kp YoU HY pk YO + pk (Y) $y - Youn £20 )

[A
(0)(p-1 - ¥-" m0) ) + ik oe!- n (p-n)nnn r{0y{0) )nn (p-n)n

od

(0) ,(0)* (0) (0)*
2 own) (142) Yom - Y (n+p) nn Yo, )

}

Ay 3)

be

+ nl
0)* (0) (0)* (0)ann (n*p)n ~ Tn A ])- °

In each of the above equations, there is only one T derivative. (4.53)

is an evolution equation for glo, (4.54) is an evolution equation for

r{0) and (4.55) determines the evolution of v{0), p &gt; 2. These equations

are partial differential equations with n -derivatives. They determine
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the meridional structure of 3{0) and i, These meridional structures are

intimately coupled to the evolution of $0) and 78), The evolution of the

mean flow and each harmonic, including the first, cannot be described by

a T-dependent amplitude coefficient multiplying a stationary meridional

structure. Instead, the meridional shape of each harmonic changes with

time as well as its norm. Another feature of (4.53)-(4.55) is that they

are coupled non-linear equations. The development of each v{0) and

g{0) is inextricably linked to all of the others.

We should verify that all of the spectral components are directly

forced. We will consider an initial condition containing only the linear

unstable mode. Thus A and v0) (and v9) are non-zero while

3{0) and vio, p&gt;2 are all initially zero. The av{0)”

ay{0) term in (4.53) will force the mean flow, ¢{0), In

(4.55), let us consider the avi, term. The presence of the

(p-1)N Fourier component will force the next highest component

10), We know that v0) is initially non-zero, hence v{0),

9189, ... Will be successively forced. Moreover, we might expect

that at a time not too far removed from zero, the energy associated with

the pth Fourier component will progressively decrease with increasing p.

Equations (4.53)-(4.55) possess some symmetry properties. As a

result, all odd-numbered harmonics are even functions of n and vice versa.

The central problem at hand is the determination of the evolution of

A(T), at least in principle. We have not yet closed the system. To do

s0, we must 1ink the inner solution to the outer. The necessary step is

the same as the one used to complete the linear solution in Chapter 3.



252

We match #9, jn To $, out to relative order 3 We need only consider the

a 1KX dependent part of 8,. From (4.51), for 6{0) this is

yy:

41
n rn

.. | or] ant 110) (pr, 1) + lS)
0 0

(8 56)

where glhst) is an as yet undetermined function of ..

From (4.53), as n --

Thus 7!No. F
1

N) - iF -2

—— An
27 h,k

oD

[dn (om)
FoiAL

In n +R

27h,
J

(. toa 7)

( vil &gt;)

where R is a free constant.

We will perform the matching somewhat informally by comparing the

asymptotic form of the outer solution in the limit y-1/2 ~ 0(a), A --&gt; 0

with the form of the inner solution in the limit n --&gt;ee. Using (4.35),

14.41) and (4.43), we find that the part of the outer solution that is

proportional to o 1KX is asymptotically

"i

ak h,
\

, Kk iF
A [- +— An* — 5—1n n+ const] +

2k+"h,

»865 (4.59)
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while (4.37), (4.47) and (4.58) imply that the same part of the inner

solution is given by

\
3/2 1 22.1 244 + 3/2 y(3)

81 in TAQ Fan top atrn +L) 1.0

(4.50)

A

 2
FA

in (WnFeZ LaF day o —T tng eR]
; 2% nh,

1
a pr a

Matching these two forms tells us two things, Firstly, it shows that the

term XK; In (1/8) FH) in the expansion of 84 in? which was not

directly forced in the expansion of the vorticity equation, must be

included in order to correctly fit the incoming outer solution. Thus

wo

wit 1) iF2AL
aK h,

fr

71)

The term 3) is not forced by the matching conditions and so is

Zero.

The second and more important matching condition comes from the an

terms in (4.54) and (4.60). It is

5 (0)
ZA = F| dn Y,

9

14.63

The infinite set of equations (4.62), (4.53), (4.54) and (4.55) completely

determine A(T), v{0) (Tyn) and 0) (T,n). Finding their solution will
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enable us to discover how the single-wave model evolves on the a2 time

scale. Unfortunately, obtaining such a solution analytically is very

difficult. We will instead resort to a numerical procedure.

Features of the Asymptotic Solution

If one pursues the asymptotic analysis further, one can obtain details

of the mean flow and harmonics in each of the sub-domains of the problem.

The mean flow correction is most prominent in the inner region of the

lower layer where the associated streamfunction is 0(22/2). The

attendant zonal velocity is 0(a%) while the corresponding alteration in

the mean meridional potential vorticity gradient for layer two is 0(a).

The changes in Toy are therefore of a similar scale to the supercri-

ticality in the inner region, as one might expect. In the inner part of

the upper layer, the changes in the zonally independent streamfunction

and mean velocity are ofa’/2 Tn (1/a)] and 0[a3 Tn (1/a)], respectively.

The alterations to the zonally independent part of the streamfunction

in the outer region are similar in each layer, being of 0(a3). The con-

comitant changes in mean velocity are also of 0(ad). The leading contribu-

tions to the streamfunctions are §3) and gi-1), If we form barotropic

and baroclinic streamfunctions,

FT Lgl) gly gle) 13) gl)

then these take the form

. 2

gf. Laer GEL y+ PAB Ly + pe (M] (aZ- m1?)
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In the inner region, the amplitudes of the zonal harmonics of the

primary wave, in the lower layer, are all similar and match that of the

mean flow correction. The meridional structures and evolutionary behav-

ior of these harmonics are determined by the coupled system formed by

(4.53), (4.54), (4.55) and (4.62). The corrections to 4, , are 0(s%/2)

while those to 81 in are 0(a’/2) for even harmonics and 0(a3) for the odd

harmonics. The leading contributions to the harmonic components in

By sp are

\
1,2

F
[

d-!' dn" y{0)
1 J )

E&gt;
»

(even harmonics)

and

oo

3 F n (0)

A x, tanh | dn Yn
nN

(odd harmonics)

In the lower layer, the zonal velocities associated with the harmon-

ics dominate the meridional velocities. The former are 0(a2) while the
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latter are 0(s2/?y, In the upper layer, the situation is a little dif-

ferent. The zonal velocities are 0(a%) for both even and odd harmonics

while the meridional velocities are 0(ad) for the odd harmonics, but

0(a’/2) for the even harmonics.

Let us move now to the outer domain. Here, too, the amplitudes of

the leading order terms are different for the two sets of harmonics.

This time, however, the second harmonic differs from the remaining even

harmonics. For the odd harmonics, the leading order contributions to the

upper and lower layer streamfunctions are

upp’ *)
3

-A

00
A

F_ sech 5 sinh An y-1)| dn v{0(q)
n

(2 3)

and

2°
 2 x

IE sec’ ry sech sinh (0)

0

(4 A 1)

respectively. Associated perturbation velocities in the upper and lower

layers are also 0(23) and 004%), respectively. For each of the even

harmonics except the second, the largest contributions to the streamfunc-

tions are smaller than those above by a factor 21/2, They are

-l

MO

 [2 *n .

"er cosech 5— sinh A ty-1) | dn | dn’ yo)
0 -

u-1J- ye2) (4.65)

 2 A va to
11/2 iF 2 no. vr (0) i

-A Zhonk S€C ry cosech 7— sinh An (y-1) dn | dn Yor (n) (4.
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and produce upper and lower layer velocity components of 0(a’/2) and

1(a1172y In the second harmonic component, the highest order part of

the upper layer streamfunction is given by (4.65) with n = 2 but that of

the lower layer streamfunction is given by

=

\

 4

5sec 20y tan 3.y (A%)
"nn

&gt;

te( J7)

which is 2-1/2 larger than (4.66).

The difference between the second harmonics and the higher overtones

is a reflection of how non-linear processes are working in this system,

In the outer region, we see the sort of phenomenon we might expect in a

weak amplitude system containing quadratic interactions. With some over-

simplification: a single (zonal) Fourier component e1kX is "forced"

with some small amplitude O0(e) say, e &lt;&lt; 1. In our model o1kx is

"forced" by the linear baroclinic instability mechanism. The meridional

and vertical structure of this mode are determined by the leading order

linear parts of the governing equations. The non-linear interaction of

this mode with itself produces an o12KX component of 0(?) and suc-

cessive quadratic interactions produce the higher harmonics with a hier-

archical sequence of amplitudes; e’ og % Because of the difference

in amplitudes between the upper and lower layer streamfunctions, the form

of the coupling between the upper and lower layer potential vorticity

equations and the nature of the meridional structures of the streamfunc-

tions, the relative strengths of the non-linearly generated harmonics is

a little different for the two streamfunctions.
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The inner region presents a different picture. Although the stream-

function amplitudes are still formally small, we have to take into account

the critical layer effect. The linear balance in the lower layer is anom-

alously small because of the small size of the coefficient that corre-

sponds to the lower potential vorticity gradient of the equilibrium flow.

The non-linear perturbation terms are the same size as this weakened lin-

ear balance. Despite the small streamfunction amplitudes, this is a fully

non-linear sort of dynamics. The absence of any difference in size be-

tween the non-linear and linear terms of the lower layer prevents the

system from being able to rank the harmonics. Instead, all the harmonics

in 4, in have the same amplitude as the fundamental. Their dynamics

are intimately interwoven [see (4.53)-(4.55)]. The presence of 4g, in

the upper layer potential vorticity equation forces the harmonic compon-

ents of ¢,.

As we make the transition from the inner region to the outer region,

Ty becomes 0(1) once more, the linear balance in layer two again be-

comes dominant. However, the harmonics in 84 in are related to the

non-linear forcing (which ultimately resides in the lower layer potential

vorticity equation) not by a simple algebraic relation but as the solu-

tion of a forced, linear differential problem. The harmonics of 4; in

do not decay as one moves to the outer region even though the non-linear

terms do become relatively less important. Harmonics in the outer region

are therefore forced indirectly by the matching condition as a result of

non-linear effects occurring within the inner region, This is the reason

for the integrals of y{0) that appear in (4.63)-(4.66). Direct non-
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linear forcing in the outer region is only strong enough to surpass the

effects of the indirect forcing in the case of the second harmonic in the

lower layer, (4.67).

Numerical Simulations

The analysis above indicates that, once the amplitude of the unstable

wave has grown to 0(a3/2y, non-linear effects modify the hitherto expo-

nential growth of the former. For as long as the unstable wave amplitude

remains at this order, the 0(a=%) time scale behavior of A will be

described by (4.53)-(4.55) and (4.62) which include the effects of inter-

actions with the mean flow perturbation and higher harmonics. Since we

have not solved these equations we do not know whether these interactions

are stabilizing or destabilizing. We have therefore resorted to some

numerical simulations of the single wave problem. While their results do

not eliminate the possibility of there being some parameter choices for

which equilibration does not occur, the cases examined seem to indicate

stabilization.

The numerical model used is a spectral model with aliasing removed.

The equations solved are the non-linear quasigeostrophic potential vor-

ticity equation for the two-layer model that we have been considering

theoretically. Perturbations to the zonally independent flow, generated

oy non-linear effects are included, unlike the three-wave model consid-

ered earlier, The x-dependent parts are spectrally decomposed both

meridionally and zonally as

~y

n=N,m=M (1) (a 2) i

Z (An me An m) o 1MKX sin nqy + *]
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where k is the wavenumber of the fundamental unstable wave. Parameters

such as U, 8, F and h, were chosen so that the equilibrium flow was

only weakly supercritical. The meridional structure of the mean flow

perturbations was also resolved spectrally.

We shall show results obtained for two different set of parameters,

these are the single-wave counterparts of the three-wave runs shown ear-

lier. We will therefore label these numerical experiments A3 and B3.

For AZ

 FE = 10.0, U=1.0, 8 =14.92, h, = 5.0 (a =0.08) k = 2.261

3

The spectral series were truncated zonally at m = 5 and meridionally at

sin 38 ty or sin 39 ny (according as the harmonic is even or odd).

For

F =

2?
22?agt

6.6164, U=1.0, 8 =16.3, h, = 9.8836 (a = 0.2) k = 2.254

The spectral series were truncated zonally at m = 5 and meridionally at

5in 38 xy or sin 39 wy.

In A3, the initial conditions used consisted of setting the meridional

spectrum of the o1XX component equal to that of an unstable linear mode

and choosing an amplitude equal to that used in the three-wave problem,

Al. The initial amplitudes of the remaining zonal harmonics and the mean

flow perturbation were chosen to be zero. The initial conditions for B3

bore a similar relation to Bl.

In both A3 and B3, we start with the weakly unstable linear mode pres-

ant at a small but finite amplitude. During the early stages of the com-
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puter runs the unstable wave should grow through the action of the linear

instability mechanism, while non-linear interactions begin to generate

higher harmonics and perturbations to the mean flow. Eventually the lat-

ter should begin to modify the evolution of the former.

We present, in Figures 4.10 and 4.11, the kinetic energy of the upper

layer flow associated with the fundamental as it evolves during the com-

puter run, for cases A3 and B3, respectively. Both of these show similar

behavior. The unstable wave initially grows at a rate given by the linear

growth rate. This is eventually overpowered by non-linear effects and

the growth of the unstable wave halts. This suggests that the combined

effects of the mean flow corrections and the higher harmonics are indeed

stabilizing.

It would be interesting to follow the evolution numerically for a

longer period of time. This has not been done for two reasons. The first

is that the model requires a substantial amount of computer resources.

The second is more fundamental. We have shown that the dynamics of the

non-linear evolution of the weakly supercritical system rapidly generate

a large number of higher harmonics. Each of these harmonics is suffi-

ciently strong, in the inner region, to affect the evolution of the fund-

amental, in particular, and of the system as a whole. Our numerical model

uses a fairly small zonal truncation limit. This spectral domain starts to

fill fairly rapidly and so before long the finite truncation of the model

begins to influence the evolution of the system. The subsequent develop-

ment of the system should be sensitive to the truncation level used. Con-

tinuing the computational runs further will furnish details not of the
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physical system we wish to model but of a numerical system that departs

more and more from the physical system because of its failure to allow

the appropriate cascade of energy through wavenumber space.

In Table 4.1, we list the energies associated with the various har-

monics at the end of run A3. These show both how, in the inner region of

the lower layer, the harmonics are approaching levels comparable with the

unstable wave and the differences in energies between the even and odd

harmonics. We have listed the formal amplitude scales for the energies

of each zonal mode that the asymptotic theory suggests in Table 4.2. The

patterns of the two tables are similar.
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Table 4.1: Energies of the Fourier Component einkX at the End of A3

—

1

in

3

~

»

2

1.5 x 10-7

1.8 x 10-13

4.1 x 10-14

2.9 x 10-16

2.1 x 10-14

KEL KE2

2.8 x 10-10

1.0 x 10-11

3.4 x 10-11

1.7 x 10-11

3.6 x 10-11

Er

PE.

9.8 x 10-8

6.8 x 10-14

3.6 x 10-13

3.8 x 10-14

4.9 x 10-13

*KEl is the kinetic energy per unit channel length of the sin (nkx)

component of the velocity fluctuations in the upper layer. KE2 is the
similar quantity in the lower layer. KEl, KE2 and PE contain contribu-

tions from both the inner and outer regions of the flow.
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Table 4.2:

Scales for the Energies of Each Fourier Component

Suggested by the Asymptotic Theory

1

3

\L Ll
¥ -

\3

\13/2

\12/2

\13/2

12/2

Xt 2—u

13/2

23/2

23/2

23/2

9/2

ad
&lt;r

L

1

y11/2

y11/2

11/2

AJ

(11/2
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The Single-Wave Problem With the Higher Harmonics Excluded

The single-wave problem here contains the phenomenon of zonal harmonic

production that is characteristic of non-linear critical layers (e.g.,

Pedlosky, 1982). The evolution of the unstable wave is modified by the

influence of both the harmonics and of interactions with the mean flow.

It would be interesting to obtain some feel for the way in which these

two non-linear processes contribute to the evolutionary dynamics. Ana-

lytically, this is rather difficult because of the complexity of the

problem. Numerically, we can very easily remove the higher zonal har-

monics of the fundamental from the computational model and examine how

the unstable wave evolves when it is only influenced by the mean flow.

One should introduce a note of caution at this point. The way in which

higher harmonics influence the fundamental is rather complicated. Inter-

actions between higher harmonics can influence the fundamental directly

by appearing as a forcing term in (4.54) or indirectly by first of all

modifying the mean flow. The dynamics of fundamental /narmonics are thus

rather intricately linked to the fundamental/mean flow interactions. The

modifications to the mean flow that will appear in the proposed numerical

experiment will not bear a direct relation to those in the full experi-

ments A3 and B3.

Figure 4,12 shows the evolution of the upper layer kinetic energy

associated with the fundamental in a numerical run lacking any higher

zonal harmonics but including the mean flow. This run, which we will

label B4, uses the same basic state, unstable wavenumber and initial

conditions as B3, with which it should be compared. We see that the
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maximum energy attained is less in B4 than in B3, the differences in

energy between successive extrema are larger, and the time scale of the

anergy vacillation is longer,

One could claim that the mean flow alone is more effective in coun-

tering the linear instability mechanism than the combined action of the

mean flow and the higher harmonics. However, the difference in peak per-

turbation energy between the two runs B3 and B4 is only about 20 percent.
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CHAPTER 5

5. Concluding Remarks

Examples of turbulent flows are often strongly non-linear, exhibiting

large amplitude eddy motions. However, a small amplitude eddy field may

also exhibit some of the aspects of turbulence, in particular, a broad

content of spatial scales continuously exchanging energy in a temporally

intricate fashion. From considerations similar to those involved in the

aon-interaction theorem of Charney and Drazin (1962), one can see that

weak wave-like disturbances in a smooth background flow may evolve into a

spectrally rich weak wave-field, if there are two or more linear modes

initially present, or if the amplitude of the wave-mode initially present

is time dependent due to external forcing or some intrinsic instability

of the background flow. The time scale for the generation of additional

spatial scales would, in general, vary as the inverse of the amplitude of

the wavefield. The subsequent evolution of this spatially complex field

will occur on a similar time scale, a scale that is longer than the

characteristic time scale of tne wave periods. In possessing this

separation of time scales, a complicated but weak eddy field differs

noticeably from strongly non-linear turbulence.

The weak wave-like disturbances generated by baroclinic instability

in an unstable flow that lies close to minimum critical shear follows

this pattern, at least in the instance of Phillips model in an infinite

zonal channel. We will pause here to consider how the production of a

multi-scale flow occurs. In the case of the meridionally uniform model,

the production of energy at scales other than that which is directly



271

unstable occurs predominantly through resonant interactions between the

unstable wave and neutral waves. Although harmonics of the unstable wave

are generated by the critical layer dynamics, they are weaker in ampli-

tude than the unstable wave [0(a) cf. 0(sl/?)1. The neutral waves that

interact resonantly with the unstable wave have an amplitude similar to

that of the unstable wave. What is more, this amplitude is sufficient

for secondary transfers of energy to occur from the sidebands to other

neutral waves on the same time scale as that of the linear instability.

In general, each of the sidebands in the primary triad involving the

unstable wave will also be an element in other resonant triads composed

of the sideband and an additional pair of neutral waves. Let us call

such a triad a secondary triad and the additional neutral waves, second-

ary neutral waves. Some of the possible secondary triads will satisfy

the configurational condition necessary for the secondary neutral waves

to be able to grow from very small amplitudes to amplitudes comparable to

the sideband. Because the amplitudes of the sidebands are 0(st/?),

energy transfers between a sideband and secondary neutral waves will

occur on a time scale of o(a~1/2y, i.e., the same time scale as that of

the evolution of the primary triad. In a similar fashion the secondary

neutral waves can transfer energy to more neutral waves through more

triad interactions. In this way we see that energy released from the

mean flow at a particular scale by baroclinic instability can be transfer-

red to a broad range of scales producing a spatially complex eddy field.

Loesch (1974) has indicated that there is a threshold value of F below

which this energy cascade is quenched. For F &lt; 242 =, there is only
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one resonant triad possible that includes the unstable wave. For F below

10.5, the unstable wave is not unstable to the sidebands because of the

signs of the interaction coefficients. If we imagine initial conditions

in which wave amplitudes are much less than 0(al/2y, then the growth of

the unstable wave to an 0(al/2) level will not be accompanied by any

growth of the sidebands. An energy cascade [on the o(a-1/2) time scale

cannot begin and the unstable wave (equilibrated by interaction with the

mean flow) dominates the eddy field.

Our work on the meridionally varying problem has demonstrated that

significant energy transfer from the unstable wavelength to other zonal

scales can occur in that too. Again, the generation of harmonics of the

unstable wave is not a major process in the production of energy at other

scales. Instead, it is resonant interaction with neutral waves that is

responsible for transferring energy from the unstable wave. Because,

anlike the meridionally uniform case, the meridional structure of the

linear normal modes were not trigonometric, more than one pair of neutral

waves can form a resonant triad with the unstable wave. The sidebands of

the primary triads will once again be able to take part in the dynamics

of secondary triads.

In the meridionally varying model we expect baroclinic instability to

generate a cascade of energy to other (neutral) length scales. However,

it is not clear how to describe this process. The model discussed in

chapter four was artificially limited to an unstable wave and only two

neutral waves. The predicted amplitudes for the sidebands, o(a*7/%y,

vere larger than that of the unstable wave, 0(a2). This suggests that
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the propensity for energy transfer to other length scales is stronger in

the meridionally varying model. However, a sideband of amplitude

o(a’/% that is taking part in a secondary triad interaction will tend

to experience amplitude fluctuations on an 0(a~7/% time scale, i.e.,

more rapidly than the evolution of the primary triad. It is not clear

how this will affect the evolution of the primary triad nor how to

consistently formulate a description of energy transfers between tne

primary triad and the secondary neutral waves.

If we prevent triad resonance, e.g., by introducing a suitable quan-

tization condition, then as in the meridionally uniform model, we observe

energy generation at other scales in the form of harmonics of the funda-

mental wave. Introducing meridional variation into the problem has not

removed the critical layer effect observed in Phillips' model. It has,

however, changed the latter somewhat. The higher harmonics, instead of

being of uniform magnitude over the width of the channel and within each

layer, are now strongest in the inner region of the lower layer flow,

where their amplitude is similar to that of the unstable wave in that

region. The harmonics are still, however, small compared to the

ampl itude of the unstable wave in the outer part of the upper layer.

One point to be borne in mind is that the linear and non-linear

results indicate that the neighborhood of minimum critical shear in which

one can clearly differentiate between the single-wave and three-wave

mechanisms is rather small. For Equations (4.27) to describe the evolu-

tion of the system requires a very small value of a. For values of a

that are larger but still small, one would expect the evolution of the
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unstable wave to exhibit aspects of both three-wave and single-wave

processes.

Our entire analysis has been inviscid. It is likely that when the

mechanisms that we have discussed are present in a physical system, they

will be modified by the action of dissipation. On the one hand, the

structure of the unstable mode exhibits an interior region of small merid-

ional scale which may be vulnerable to dissipation. However, it should

be noted that the meridional gradient of the background potential vortic-

ity, which is responsible for the presence of the inner layer, does not

itself contain small meridional scales. On the other hand, transfer of

anergy through the wavenumber spectrum that should arise as a result of

the three-wave interaction mechanism will be influenced by the rate at

which energy is dissipated at smaller scales.
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Appendix A

The constants 95 and M; appearing in (4.5) are giving by the following

expressions

In)
: h i),(0),2
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: (j).2 2
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-1

(3), 2 1 Fey tay + ul [targt0) (3)y(1)
a u- Gey u- Wey)?
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APPENDIX B

The following is a summary of the calculations which describe the

weakly finite amplitude evolution of the single-wave; meridionally vary-

ing problem discussed in Chapter 4. The goal of this is to predict the

spatial structure and the evolution of the leading terms in the Fourier

components which correspond to higher zonal harmonics of the unstable

wave. Some of the results of the analysis here were presented in Chap-

ter 4, e.g., the evolution equations (4.62), (4.53), (4.54) and (4.55).

The analysis is presented without comment for the most part. Perturbation

expansion techniques are used to obtain an approximate solution to the

non-linear, quasi-geostrophic potential vorticity equations under the

assumption that the equilibrium state is only weakly unstable and that

the disturbance amplitude is small. The expansion parameter is the super-

criticality a or equivalently the disturbance amplitude and the notation

follows that used in Chapter 4. A multiple (two) time scale technique is

used and the meridional domain is divided into an inner and outer domain

as before. Asymptotic matching is used to link the solutions in these

two domains. We will present this latter part informally, i.e., matching

series that we obtain by allowing the inner variable to tend to infinity

and the outer variable, to zero.

Because of the interlocking nature of the method of solution, the

reader who is intrepid enough to read on should be prepared for a calcu-

lation which weaves backwards and forwards between the inner and outer

regions and the upper and lower layers.

A -

oy B - BR R= FU + nh,
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+ 2 1n (1/8) 16,1) + AD xn, 11 + 82 8 (x0, + BH (1,1

2 10 (1/008 (0,1) + HD (xn, + 820885 (x,n,T) + E17)(0,
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Rescaling the streamfunctions to remove the outer scalings shown above,

the potential vorticity equations become

Exterior Region

UF &lt;4 8) 8, = ag, - 82008, 976) - 0% [ar (v%- F) 8) + FU 4,,]

3 328, a) + aly, 27% gp)

1/2 | 306,, Fa) + 0, [a2 (a2 = E, + Fal/2E0]
4

| - A F Bor
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(8, - FU+h,) dy =-Fd+ald, -d('2,, Fd)

] 9
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3 2
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9
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0. = (2 - Fé, + F 128,
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Inner Region
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2, 2 2, 44 2
(27 hon - Ahm n + ces) Boy + 3d 8, - By + Fé,+

L

J(By. 3° By + FB) + 8 (35 = Flbyr + ad(B,, 2° 4) = G

The wavenumber of the fundamental zonal Fourier component is given by

oC -
+

2 2 3/2 ,2
kK - ak, +t A ks,

c
ko = 8 /U

We proceed by substituting the streamfunction expansions into the poten-

tial vorticity equations and considering the balance of terms at each suc-

cessive order.
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Asymptotic forms. As n -» oo,
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The x - dependent part of the potential vorticity balance yields
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The mean flow component of the above potential vorticity balance is
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hoof nex x1, gl) B14) 4 gg (0), £50)

14!4 (22 2-2 myl0)y | JH), (2% - 2 F180):

a. Lid) + rl a 180) 4 Fg)

Taking the zonally independent component

“14) (0) (0) (6) 2. %m (8) (2)
Pol Fg l= md (870, 80 + (a5 + 08 + FES)

i J oylh 2.20 pak, (4)
1. 4 * Fa 0)

-— 5(4)InnT © ° F
7+ LA

=
¥

oTa

~

 uy
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"1ence

5eZaMMO*ayakeSon ("p00
pi eta ff fon ) ike Sn (ff Yo, vO Low)

pr
-

20) 3 + nA)

Hm) is a free constant.

Ag n --—
-

$4) LF (03, F 2
=n ow rdBL SJAOZ) nnn * oun

where yu is a disposable constant. Thus

(8)  1(2). Fyu(0)3, F
Bip - E37) - gn’ = UA Inn ts M2

LEAL

Ne
. : (4) .

can now substitute for le) - $2) in our expression for Por to obtain

p |
?

4

Yo. —— NE - 1A(0)] 2) nd In n
TN,

F (uy-m2) } an”

b

4 2 3Eh 11F 2 _ AO)“ ) n
Fe ty «ole SHY (AR

To improve our estimate of v{#) as n --&gt; co we use the fact that the

most prominent terms in the potential vorticity balance give

4

202n,n oy (4) } yi4) } oe nts } 2 horti2)e = h,28a0v{0)

A BOY + L220 82) | Lit ty G10
~

— 0
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From this, as n --&gt; oo

2 - MOND) (op =
2 F A( JA)oF nto

Nira J:

2 (2)
17 iF uF FM F
mzrhAL

kh 4h, 2 -

cd 2 2, 1. 1F , 5 F°

z* (JAl® - [A(0)] Wma x

Outer Solution

40)out °. Asin elKX + PN

(2)
By out ° 0

iFA .

30) = —_—T sin my SL
2 k h, cos nv

I

upper, 0(a3/2)

Set

EY

=. 1e

4(P) - &gt; (wip) a1nkx + *\
n-1

A
0

J
2{a% + rl) u(3) = UKZ A si

2 sin ny

a3)
«2

"&gt; (y-1) cos5 \Y- Ty A

Z

An
2 2

= k© n- - 8 /U

&gt;
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2 2, (3)
Ulay - Ag) Wo = 0

3) _ 3{3) sh a, (y-1)

(AC

 vr

so? +a 0) 83) o CFu 29%
(9) 2 (0}

- (¢° -F) d+

2 .

2, (4)_ F* sin ny . 1 2 ,

POINT sgn sr mw
&amp;

A =) iA. sin wy

Vy PmFY - F2 ] + Fosiny In ()coswyl)4) _ in| b= (y-1) cosmy 7 KR os

tyCoady wl J

3) = 3 (4) sh An (y-1)

Lower, 0(a)

] (2) (0 i

8 - FU +n) a2) o gl0) + gl0) Foot)

tf y A a TKX + x) +sin = (i
== dy © 4kh, a

de will determine §)
-1)
 7 later.

0(A
4  2y

2

(-1) .;

Foy sin my A Ske, "

2h, cos? Ty

5 - Furh)883) oo rgl3) _aggl®), Fal®)) La ro?p) 31) + Fg
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(0)1140), F 4{0))

Set
! &gt; ink

5:3) _ &gt; (v3) Jinkx
d= N=

&gt;

2 (0);

1{3) _ -Fks (y-1) iA . Féoy Sin Ty A
fnkf, COS ny 2h, cos? ny

(3) FRx tardy 20 dF SMUD) gg
2 8h,k cosery T %h, cos’ry 2

(3)_ iF SMaly-1) 3)
n Zh,nk cosery nT

'§ &gt;
ol

and from the mean flow component of the potential vorticity balance

 WM
3)TY

7. nii/al]

' F) ¢ -1) Fed) = ptsec’ay tan ny (JAI% - [A(0)]%)/

(0) (0)(8, - FU +h) ald) ou (@) , Fd)

Joper, 0(45/2)

J (9% +g fu) 8,5)" L403)

The inverted commas denote the inclusion of terms like k2 g{n-2) and -k5

30-3) 50 92 4M" for the o1¥X Fourier component.

(32 + 72) wis) -

 o- 0
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We normalize the solution by choosing u®) = 0

A ) u(3) a u(3) - a: 3) sh Ao (y-1) Nn

a(3)
{3) n

 bv F 2x U
(y-1) ch An (y-1) + 3°) sh Ap (y-1)

(a3

J

] 0% + 5/0) 8,08)" 2 gld) Lg (410),v2413)

#3) 92 ¢l0) py gl?) Ja (@3 o{0y yg (el0) of3)

drojecting onto e 1KX yields

(3 A 2y (6) 2 (3) (2) 1 r3(3) (2 2 (3)
“YW ks Wt oFyg - 7 [$y (k= + 2% + F) + Q; "1 A

Nhile g Vv

’
CA

'you(6) 1 (6)
J) WT = WE

”) &gt;

a...

(4)
8) = pi (y-1) ch ag (y-1) + {6 sh x, (y-1)

In pursuit of the mean flow we carry on

 (al 12)

to yet higher orders.

J ov 5 0) 6)" 2 5) Lg al®92alyLg gM),v260)
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 ar (9 oF) a3) Cru ald) Lg (8), lO) Lg (lO), ol4)

LJ $00) fF gl0)y aa? - F)BL3) + FB
“AN

]

The zonally independent part of this yialds

! 33) i’ kK bo 2 A 2
= r sin 21y (JAl - | (0)} )

while the e'** component gives

’

iL

F4) (k2 + 2 + T) + nl
v 4), A

J

and the o 1NkX furnishes the relation

2 2, (7) 1 (5) i222 3 3
af oad)Wswd) ee 2 nf Cy wd)pv(3)

ofa’’2 1n (1/a)]

4) (0 (0) (4)urn ell) sowed)Lu(@1H),ol0)) ug (6l®), G4)

‘.rapa 3
‘a

- (a2 4 fn rel

Lower, 0(a2)

(8. &lt;U +n) did) oF ald) gl2) (gl) |p gl0))
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- Qe [(22 - F) $0) + Feit) - 3; (92 - F) g{0)

Projecting onto gl0-kX o KX and a- KX, n , 2 in turn yields

[4 ) - 0) F ”: Fg + 8

B 2 2 .

14) _-F A rl (y-1) ( mtFU _ F ) + F sinmy In(icosnyl)]

1 ZAK TT-Zw Coswy "2 Kh, 2Kh,yn cosry

F sinrty . dy (-1) sinwy

33 cosbry TZcodby
8kh,~ cos” ny 4h, cos my

F gil) sinry F 1 2 2 sinwy- —=—{ - k - F)( )

My “2 coslay 4k%n,2 Mr cosSny J coSeny

48) dF (4) Sh AnlyeD)
n 2nkh, nT coslny

ola? 1n(1/a)]

(8, - Fu + held) = Lyell), flO) a62- n@{0 + FElH)]

Projecting onto a10.kX gives

3
a (0) (4)

- F1®, + F®&amp;; = 0

3(2272)

2 (5) (5) (3) (0) 5(2) (3) g(-1) (2) £4(0)
2h,cos Ty Roy = -Fd, + + Bs + Fos 5, + Fe. ¢,, - J(4, F8, )

~
a

!

3 22 - FP) + FP 5)4
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Projecting this onto individual zonal components yields

!
re I

2 3 .

1), Fg) _F ’ Bi my, 287 (1Al2 - 1A) 2)
4h, cos” ny cos~ ry

2

,(5) -FKo™  (y-1) i | F_gp(2) siny , F_g(0) sinay
1 8kh, cos3ny Zh, 2y cosery an, 2y cos’ ny

k.2F
2 3-1) (y-1)
rh, =1ly oso ]

A

5), _ F ip(3) (y-1)ch aply-1) . F ;p(5) sh rp(y-1)
? 8h, x, UK 2T cos Tv an 2T 0S ony

2 3 sh a (y-1)
Fon tan“ny .,.2 F n (3)
— =r i(A%)., + — ———— iB
16kh,, cos my T 8h, k cosy oT

(-1
CF $y sh Mly-1) (a

Zh, 2 52Cos ny

y &gt; 4-

k

IY. . 3 2 t 3 5”
Fv 2sin ny (2) F= wk ${-1) an“ my

8h, cos’ ry ¥ 2h, 2Y cos ny

(5) _ ; 503) (y-1)ch Aply-1) , F 4(5) sh Aply-1)

n Ank An Uk “nT coslry 2nhok nT cosy

Akh, 2Uk cos ry nT hy ly cosZay n

Jpper, 0(sh
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2. Bm, "(8)" (6) (5) &lt;2,(0) (0) o24(5)
u(y + T%1x = 2M - J (dq , V dq ) - J(gq ys V 8 )

“3

" tml Ca) rug a@®), ol) gal), ofS)

(2 2 _ gyal) (0) 2,400) 1 = (3) ink 0
(a, - F)g" + Fé, 1+ k “(gy 0 SW, Joinkx , wy _ 2,78} )

The zonally independent part of this yields

3 62 -F EW + FEO] Lo

We previously obtained the result,

i =18(00 £gl4)y 0

jence ®4) 5) ch vaE (y-1) + 4) FO | (8) ph mE (yo1) + (8)

The x-dependent components of the (ah) equation yield:

, Tkx

1a2208)LUE)RAieieHg8)(22preofS]A

,inkx (after intearation)

(4)
B

“17 [a (y-1)2 sh An (y-1) - (y-1)ch An (y-1)1]
A

A
(8)
n

5," 2.2. g a)
n TT .- iB | -1)ch A (y-1)

2x U 2x ,NKU nT y n y
b

|
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irlg (4) sh x (y-1)
iF 8B 2. _1 n

nT 2 _, 2
Zh,nk y n coteny

0(a*1n(1/a))

I&lt;

B i

C08 LC Fuel?) _ al?) o{0) - aie), G3)

n 2 ope! rel)

The x-independent part of this is

With

7

2 -net + red. 0

 1 { 3
v

nel? «rel Lo this implies

®t ol4) ch vZFly-1) + 4) @! 0) «= ch vFLy-1) + 24)

Upper, 0(s%/?)

8 i n

sv2 yg (9) _ 67). 3(8{8),524(0) j 3810, Pgl®)) } 383) A213)

(3792 F18(50s Fusl®)) + {OB(E). G(IB(3)_ 4006) 4(3)g(3)

= i 5 1)

3060) Fl?) PRICRPRIR CEN EEN
- N=

L ’ 23480), 44)

Taking the zonally independent portion of this we find that

&lt;8) rE LBA? - ao]?
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1 Bn” FU 2 F202
X BESTE sin2ny[———-gd + — sin"=ny In (Jcosny|)

kU 2 2Khyr

We now have expressions for the 0(x%) and o(xh corrections to the

mean potential vorticity for both layers. We will invert these to find

the changes to the zonally independent streamfunctions,

From above

(5¢ rN £-
2

-1) Fg) = re sec?ry tanay([Al% - [A(0)[?)

2, 2

(0,2 = F)3{3) + pgl-l) LOTRFL cinaay(1a12 - 1 AG0)2)

In normal form,

3 2 $
2

 mn _ - [tats K2+ Fsin2ny - Es sectry tanmy] Al - 1A(0)]%)

2

(a 2-2F)3!C)- -[3 kZ+ F)sin2ny + sectry taney] (1A1% - [A(0)]%)

Ni E.WEX:

»

Thu

2,12 ; 2

77 x +k Fysineny .y + 5 + my Jy + 2) + crag? [AC0)] 2)

BH
(C)

-—

-~_

i, 1

2022424) (sinzny _ sinh[vZF(y - 2), ] F tansy Sy +
(4:2+2F)0 2" OF cosh vF7Z 2 2
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1 o- YF yJ ST f’ (Lanny y+ h
Th, | 1

a v1 Y (fanny Ly + L 7]
“ mT |

| (1a 2 - [A(0)]?)

Hence

3)_b!
{ 2..2(x2+k2+F) 2 in2 2:2 SINLVZFy - 5
pr [ (442+F) S12ny _ (202+F)(y - Ly cr sim C Fy-31F)2u ZF £77 :. cosh

22

TZ TY eT Ye cD
2

(JAIZ = 1A(0)[2)
r

-

-1)p!

[,=
Y

| (any Cy 4 EEF y

2 . 1
2..2 . 27 sinh[+2F(y - 3)1]

(n=+k™+F) sinty 2 1 2
————— [F == - (2¢"+F)(y - J Fo cmm————
(2+°+ F)4U m 7 V2F cosh vF/?

2 77 PY 1 EY
an.

22 |

 B20 yw Lye cM a2 Lago?)

The next significant parts of the mean flow are governed by

2.73) rly Cok Zia - 1ac0))2)
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1 Bp” FU g2 F2 2
X 3 ltr sin2ny[——— - df —— sinty n(jcosay) |

yt kU 2 2Khym

2 . 3 .

(a,2- FB). F (5); _ af (4sin Ty 2sinmyy (1a)2 _ 1A(0) 2y
AE Ur fe Sve |

-

ya TTI i4 SM L830) 1a(s)_ 51)

2(T)
3, 3 =

[F2, (2sin’ny , Sinmy )
—2'_ 5 3
4h, cos my CoS wy

we obtain

2 [ 1 1 Bn FU F2
ki(Hy-1)cos2ny ta sin2ny) (—— - ho)

kU 2

——— [sinmy cosmy In( cosmy ) + sin‘ry; |
Xho Z coSty |

X (Al - 1A(0) 12)

 -. 3 ;

2(c) nF 2sin®zy , sinwy(35- 2F) =| - (21m )
} b an, cos my cosony

1 -1) cos2qy + i i Fo )
TY 7 Ba we Kkhy

J
ra”

kh_r

n
. 3

sLsinmy cosy In(jcosny]) + Fin

WALZ SA) (2)oF
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A(T) f FP i

b fo pry. .T nt tanmy) + h.o.t.[ (1A1Z - 1A(0)]?)

sc) _ Fe sinmy F

§ {ns (- Ss (Bye 1) tan) + h.o.t.t(IA[% - [A(0)]2)

‘hus

2 .

§(1) - Fo Smy ou (E_ 2)tanay) + not] (IAF - JAD)
2 24h, 2x cosy 2 ’ AO)]

pio) ={- 77 tanny + h.o.t.} (12 - 1A(0)] 2)
nT

We do not intend to calculate any terms of the form a™201n(170)1™,

m &gt; 2, in the innter expansions of 8 and By . However, we will have to

try and obtain some information about the 0(a"21n(1/4)) terms in 4, which

we have not yet dealt with.

Inner, lower, 0[aln(1/a)]

2a fR(8) +a 5 ZR(2) RZ) girl)525100)4g(g{0)52502),

A 3 2002) 4 (p12),24000)4(gO);2p(2))4(lO),202),

-3(R2) Fgl0) + a (p(2) pgl0)) 1r'%),5 30) &lt;

Note that there is no direct forcing term in this equation; the 0(aln 1/4)

part of d, is forced by the matching conditions which join it to the
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outer solution. The zonally uniform part of the above equation is

V3.3

-
i r7)

. n n
dT 1 " (2) 2 (0) 0 2

J J, dn [ dn [J 0) (R 3 4, ) + 31095 ),42 (2)

2) (0 2
+30)(RZ)Fg{ONT+ 12);

AS n --&gt;00, p(2) ~ 32) + const. + h,o.t. where 32) (7) is a disposable

constant. Looking now at the x-dependent part of the potential vorticity

balance gives

2a R12 aa Rwy R2),626000) +g (410),0%R(2)

(0)p(2) (0),(2) 2 .(0),(2), (0) 5(2) 2,(2)z(0)
Fo. R - Foy x P - 3, Pox P. * Pox Bah - 2 Ry %5,

Set

2) 37
 J?

0) _ q

(2) _ S (r(2:1) oINKX | sy
n-1

{2,1 PF (2) 0-2 A
2

I

“Nh.

To calculate the mean part of the ola’ In (1/a)] term in 3, ins We

must look at

Joper, ola? In (1/4)]
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U 22 #8) = - (Y 22 3 8) LO) + THA) - FU R(4)

3410),56)+CO (2. PA Lrg ur pl2) 4p pl2))

1 J ballasted,3MgMLg8)(22 gy 40)

J
 =» 1) 2 2 (0) (4). o(8)

\ (a - 2° =F) ¢}¥'] - FS Grr

Mean component i hi

da ay &gt; F J (gy (819, R(2)) = - ikF (A r{2,1)* - A* R251)

28) _ ir
Le

H

| ar of R(Z1* pet pl2,1)) (8)(gy
0 0

4 1

The next task is to try to match the inner and the outer solutions.

MATCHING

We will first try to match the x-independent parts of the inner and

gsuter solutions

By out °
1 N00 (1) @ + W722) 4 Ban (1) @FF)

3),

3, out _ K $(-1) + A172 n (1/2) @ (0) + \7/2 (0) + AA 1n (1/4) ®@

 |
Fi 1)

h}
3

-
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We will not try to go so far as including the a? Tn (1/a) terms in the

matching process. These terms are omitted henceforth

go = SR TZ an ym) GON TE)

4, in = ,%/23(0) + a3 (1) + 21/2 Tn (1/4) o(2) 4 EE:
(2)

| 2 3

5 out ono [et SRE 0,001 = a" n/n) Tg
oT

3
1 [2 1 F

n nn —
2h.rn

[2 (x2 +K+F) 2 (1+sech E72 3] 2

a (a CHF) (qe 2U2sech 72) yo EF [1- m2 + 3D,2r- + F 2r°h, +0.)

J29001/s 1LelH cosh JF/2 + 24) + 21/2 [4 cosh VF/2 + 4);

12 FD lg
2402"

[=D, =

[ }

i
z,

]

b= a3 NB a2 0 7m) 61)

\

F
72 1 E03 4s (1812 = |M0)[2) a Inn * un
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3

+ const + at Ta — IG - [A(0)] 2)]
247 h,

1 is a free constant and "const" is a determined constant of a complicated

cm

Matching yi al ad-

(3) (3) —
= 0 (and hence §,”; =0)

AT) _
2

F~ F/2
—71 (0. - D)

i
=

74
4 _F

4h,

1 0)
- 0

2

GAI2 &lt;a)|Io (a2ekder)(10 jee ITE) )

2

—[1- 2 +5 (D, + D_)]|
2 v

(s{4) ch +F/2+(4) (Al - 1A(0)]2) = "const", known.

( A4) ch JF77 + (4) = 0

In the lower layer

3 2

by our = (IAI or ran ARE ANS eM + EX72 (5,0)
-
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it

4

3 3

JZ an am) Epa afm
ah, + 2,7

2,,2 3 2

7/2 - 1 KF (42+ Fox? sech AF7Z) + J [1- Tn 2 + 7— (D,* D_)]
(242+F)2U 2w-hy

Ty

T1200 gp mz oe SB T1200 (17m) [= 6%) oh FTE + HA)

2 2
5/2 F 34, 7/2 F Foy -1q]A [- —7 1+ 8" &gt; (2 - ) )

ont" 28hS 20

2 2

gy oo = 2° - Fah am aon?) «rn (A - 1A(0)12)]
27h, 127 "h%

RE | al dn’ [ a [0 gy (51) 028500) + 0, (80), 22 EHD)
y 0 r A

5 11),F4001]

12 30 (1/1) (2) + const 1

KF

i

'n
3

Fo A - [AO)%) 0 Ing +

27 h,

m2)

 PF
| dr i (ay{2)*) Nn ! "

Fal? - a0)

12h.k
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2 7
ZC

Lie dn if (270) A* - *) + ee (1A1Z = (A(0)]2)]
2:2 Kk

3 0 n

2

30) + ool on (IAI - 1A(0)(?)]
Th,

Matching

- |

2 2
F F 2 2 Fok 2 ~(2)

(2 - =5)(IA]° - [A(0)]|F) + ——[A]® Im(M ]
28022 ’ | 42h,

yields:

aA
2

T ® eo
2

Con 2 (Ty FRAFTZ 0 oye oo

IA(0)]“) [c + “Ih, (D, D)] | | Jo

(1) 2 ,(0) 0 2
300) (851), 02 880) + 00) (850), a2 85) +g (BY), F gl

(2)
3

aa? - aon?
1h

1) ch VF727 + ~(4) = a known constant

. 2..2

(2) Cal? 2 aod -aE (x2 + F = 22 sech vF7Z)
(272+F)2U

3 2 £2
yz—l-dn2+ 7 (0D *D 3 -

T Hy

and is real.

&gt; I

Wen 77 + Hl kr Ie a ar (Av xy + pF (IAI (a0) [2]
0 n
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a

2

— KF dn i ar (210 A" 0) + (Jal? - (AO) ]D)]
) ) 21° hak

2

a | oan B50 et Ear? - aon?)
. - 2 h,

» O00

y L)
I

. kx .

We will now match some of the ~ terms. For convenience we expand

J h) x, nm, T) = 5 (EP) 5
n=1 n

nKx pp! bo ©

ypper

By out = 23/2 p sin Ty e1kX 4 3 ¢{3) + a1/2 gt) + a% 6{°)

V2 pq. 2 2, 1 44

br whl

K2 K2
2p 2s ota 202r

J.

2 2 2
7/2 F 7/2 F F

- A In (1/8) ——= + a [—— In n+ ——1n 1]
4kh,m 2kh,m 2kh,m

a
Ra

A i [ K+ n2+F Fy
da "bt Tk °C kh,

8, in

S01. La20% + LoahtaZ oe aT Pn (ayn) £8) W772 208) 4 (8205)
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6 = 22a LaBB Lah cm ay Ef

4
A

Matching

L

cn 2
, ob i F ~

EEI J\

1,2 1 8m 2, (3,1); 2
| [75 A - 5 (g= - kK) Hg In =n elu), ‘| [vn , iio]

a 7.

gives

SC PN

T akh,«2

2 co

Ko [ (0)
Tr A=F Ya as stated earlier

61 Ar gir 0 7

q\
2 1)

= 0

+(1) 1 [ kan lep Fe ] iA
 TL TT kUTCkh,T

Jd 5,1) _ -F ”

[ [ r{1)
Lower layer
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by up = 8772 00) + W022) + 4B G3) 4 IZ 8)

IY is SSSE JOY. 20. i
%2 out ~ ° Pra not pail A(IAIC - 1A(0)]7) + % Al)

oT aT

|

/2
Tn (1/2) Lg AA - IMO) An + 2h, «7 72]

1/2 i, = FAUIALS - an +k + FEAA=AMON frtHrEIZkh, 2h) (2x24F )2U$

3 2
2 2 2 F 2 SF

(FC + 2%) + 1° sech ¥F/2] + Ih, [(D,+D) - 7 In 2] - re)

no F ACIAIZ - 1A(0)12)

tn &amp;

4, ty 372 w(0) | )3 wll) | RL Tn (1/4) r(2,1) + REL v{2)

- iF 3

3/2 -2 FA; 4. FA L 1+ L

Torn ate
ACA] - 1A(0)/%) + hg +

akn oC

A CF RM Zhe e720 (un) [a2 FA
22 ha 2n ha

g(2) + 3

Toh X IA(0)]
2 -

A(IA]
In n) az

- (n~Ac
F-

112 | : 2,
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Using the forms that we have already derived for fll) (2) and

3(2) it may be seen that all of the terms match correctly.

We will now try to match the exp(i2kx) components in the upper layer
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We have not calculated of3), alt) r(2:2) r(3:2) and p(452) so no attempt

will be made to match those terms that include a factor of In(1/A). These

will be omitted hereafter.
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hos) ~ 23/2 v (0), 2211/2) r(2sn) + pT 22) + 2H1n(1/2) r(35n)

ri
1 3/2 In(1/a) 24-0. 9/2

4°

Again, since we have not calculated 033), oft), r(2:n) r(3:0) etc., we

cannot attempt to match those terms which include a factor of “n(l/a).

Once more we shall omit these in what follows.
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The leading order terms at 0(a* and 0(a/2) do indeed match correctly.
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The form that the matching procedure takes in the case of the Fourier

components exp(i2nkx), n &gt; 1, may be inferred from the case n = 1

At this point the asymptotic solution has been developed sufficiently

for the purposes of chapter four.
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