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ABSTRACT

The main topic is the finite amplitude evolution of weakly
unstable, 1linear eigenmodes in a meridionally varying version of
Phillips' two-layer model. Interactions between neutral modes and the
unstable mode strongly influence the evolution of the latter and are
capable of stabilising it before significant changes occur in the zonally
averaged flow. In the absence of resonant triad effects, the combined
influence of changes to the mean flow and higher harmonics of the
unstable wave is sufficient to equilibrate the unstable wave. The
enhanced importance of neutral sidebands and the details of the evolution
are interpreted as being consequences of the structure of the eigenmodes
of the linear problem which is strongly affected by the meridional
variation of the potential vorticity gradient of the basic flow.

Some aspects of resonant triad dynamics in a meridionally uni form,
vertically sheared, two-layer model are also considered. Non-linear
interactions between a resonant triplet of neutral waves can lead to
baroclinic instability. Resonant interactions between a slightly
supercritical unstable linear mode and two neutral waves can destabilise
the weakly finite amplitude equilibration of the unstable mode that would
occur in the absence of the sidebands, when the basic state is not close

to minimum critical shear.
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ABSTRACT

Several problems are addressed herein. They are loosely connected
by the theme of resonant triad interactions. The main topic is the
finite amplitude evolution of weakly unstable, linear eigenmodes in a
meridionally varying version of Phillips' two-layer model. It is shown
in chapter four that interactions between neutral modes and the unstable
mode strongly influence the evolution of the latter and are capable of
stabilising it before significant changes occur in the zonally averaged
flow. The evolution of the unstable wave in the absence of such resonant
triad effects is also considered and it is shown by example that the
combined influence of changes to the mean flow and higher harmonics of
the unstable wave is sufficient to equilibrate the unstable wave, (The
higher harmonics are unimportant in the meridionally uniform version of
this model). The enhanced importance of neutral sidebands and the

details of the evolution are interpreted as being consequences of the



structure of the eigenmodes of the Tlinear problem. It is shown in
chapter three that, near minimum critical shear, meridional variation of
the potential vorticity gradient of the basic flow can introduce dramatic
changes in the structure of the normal modes.

Some aspects of resonant triad dynamics in a meridionally uniform,
vertically sheared, two-layer model are considered in chapter two. It is
shown that non-linear interactions between a resonant triplet of neutral
waves can lead to baroclinic instability. It is also demonstrated that
resonant interactions between a slightly supercritical unstable linear
mode and two neutral waves can destabilise the weakly finite amplitude
equilibration of the unstable mode that would occur in the absence of the
sidebands. This demonstration is limited to the case in which the basic
state is not close to minimum critical shear. Finally, the work of
Loesch (1974), who examined the evolution of a weakly unstable mode and a
pair of neutral waves in a basic flow that is close to minimum critical
shear, is repeated with the difference that critical layer effects are

included.

Thesis Supervisor: Joseph Pedlosky, Senior Scientist
Department of Physical Oceanography

Woods Hole Oceanographic Institution



ACKNOWLEDGEMENTS

1 would 1ike to take this opportunity io express my gratitude to my
advisor, Joseph Pedlosky, who has been a steady and patient source of
advice and encouragement since I first arrived in Woods Hole. I have
benefited greatly from his perceptive criticism and the example of his
intellectual curiosity. The several people who have been associated with
my thesis committee: Glenn Flierl, Peter Rhines, Paola Rizzoli, Mark Cane
and Erik Mollo-Christensen, have also been generous with their time and
advice over the past few years.

My thanks go to Dale Haidvogel and Breck Owens for initiating me in
the mysteries of spectral algorithms and vectorised FORTRAN. Thanks too
to Bill Young, Bill Dewar and Bruce Cornuelle for suggesting the idea of
enrolling in the Joint Program and for making it as much fun as they
promised it would be.

During my time as a graduate student, I have had the good fortune
to be in the company of a very stimulating and diverse group of people,
namely the students and staff at both the Woods Hole Oceanographic
Institution and M.I.T.'s Center for Meteorology and Physical
Oceanography. Their contribution over the past four years to the life
and work of this particular student has been large and I would like to
make some acknowledgement of it here,

Large parts of this thesis could not have been completed without
the aid of computers. The computing staff of I.P.C. in Woods Hole and in

the consulting office at NCAR have been extremely helpful when I have



come to them with my pitiful tales of what the big, bad computer has done
to me now., In particular, Karl Lindstrom, Cathy Sweet and Warren Sass
deserve words of only the highest praise. |

Just as indispensible to the preparation of this thesis has been
the skillful typing of Anne-Marie Michael, who has shown an indefatigable
good humour in the face of far too many equations,

The work in this thesis has been supported by the National Science
Foundation under grant ATM 79-21431. 1In addition, part of the numerical
work was performed on machines 1located at the National Center for
Atmo spheric Research at Boulder, Colorado, NCAR is funded by the

National Science Foundation.



Contents

Abstract
Acknowledgements
Contents
List of figures

0. _ Introduction

I. Background theory

II. Triad interactions in vertical shear flows

Abstract
Preliminary discussion

2.1 Non-modal baroclinic instability

2.1.1 Introduction

2.1.2 The evolution of a triad of neutral waves

2.1.3 A global stability constraint

2.1.4 Dynamics of a resonant triad in a two-
layer model
' Energy balance

2.1.5 An example of an unstable triad

2.1.6 The range of unstable wavenumbers

2.1.7 Concluding remarks

2.2 Interactions between two neutral modes and a

weakly unstable mode away from minimum critical

shear

2.2.1 Evolution equations

16
27

a4
44
47
47
50
54

70
76
79
81
86

88
89



2.2.2 Asymptotically unstable trajectories
2.2.3 Examples of triads exhibiting non-linear
instability

2.3 Three wave interactions near minimum critical

shear

Amplitude equations
Numerical solutions

III. Baroclinic instability in a meridionally varying two-

layer model: Linear theory

Model description

Numerical results

Eigenfunction structure

Heuristic explanation of the meridional structure
of ¢2

Analytical model

Energy balance

Neutral modes

Concluding remarks

IV. Baroclinic instability in a meridionally varying two-

layer model: Weakly non-1inear theory

Asymptotic evolution equations

Energy balance for the finite amplitude system
Numerical results

The single-wave problem for the meridionally

varying model

100

106

116
118
128

138
143
146
152

162
164
170
173
176

178
182
208
213

237



Amplitude equations

Features of the asymptotic solution

Numerical simulations

The single-wave probliem with the higher harmonics
excluded

Y. Concluding remarks

Appendix A
Appendix B

References

240
254
259

267
270
275
276
325



Figure

1,1

2.1

2.2

2.3

List of Figures

(After Phillips, 1954, fig. 1) Contours of growth rate as a
function of zonal wavelength L and vertical shear dU/dz ,
where L = Zn/k0 and du/dz = U,/H. The numbers on the
contours indicate the doubling time (in days) of the gravest
unstable mode in Phillips' two-layer model. The parameters
of the model were chosen so that:

H=4.08kn , Ly=930km , 8 =1.6 X101 ms!

Possible forms of F(x) in the region to the right of the
largest positive root, x;. In (a) and (b), F(x) intersects
the x-axis at a finite angle. 1In (c) and (d), x; is a
double or triple root.

The evolution of the total perturbation energy of an unstable
neutral wave triad over the interval 0 < T < 950. The triad
is the one discussed in the text and the figure shows the
results of a numerical integration of the potential vorticity
equations.

A map of the areas in the (8 , az) plane in which may be
found neutral Rossby waves that are elements of an unstable
triad in which the waves have meridional structures given by
n=(1,1,-2), The vertical structures of the three waves are
assumed to be given by m = (-1,-1,1). Three regions are
shown shaded, two of which overlap. Region Dj corresponds
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to possible values of 25. Given a particular value of

g, for each choice of aj in Dj one can find a pair of
values (a% " a%) lying in D, X D ([i.k,1] = a
cyclic permutation of [1,2,3]) which complete an unstable
resonant triad. Note, for 8 < 12.95, there are no unstable
triads with this meridional and vertical structure.

A similar map to that in fig. 2.3, but with n = (1,2,3) and m
= (-1,-1,1),

a) Plots of Ml’ M2 and N0 as functions of 8 for a
resonant triad consisting of two neutral modes and a marginal
mode. The marginal mode corresponds to the left (long-wave)
branch of the marginal curve. The meridional and vertical
structures of the triad are n = ( 1,-3,2) , m o = -1, m,
= 1 (case A in the text). b) K, as a function of s for
the same triad as in fig. 2.5a.

a) As in fig. 2.5a but with neutral modes of different
vertical structures ( m o= 1, my = -1 : case B in the
text). b) Ko as a function of 8 for the same triad as in
fig. 2.6a.

An example of the evolution of an unstable triad (case A, 8 =
13.0). The amplitudes of each of the three waves is shown,
During the early part of the run (up to about T = 16), the
scale at the left applies. After about T = 16, the three
curves are rescaled to accomodate their rapid growth and one
should refer to the right-hand scale.
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Similar to fig. 2.7 but for case B at 8 = 11.0 .

The evolution of a resonant triad near minimum critical
shear. The triad consists of the marginal mode and two

neutral waves, (a) - (d) show the evolution when the
critical layer effect is excluded, (e) - (h) include this
effect.

(a) and (e) : A
(b) and (f) : A
(c) and (q) : A,
(d) and (h) : Py
(F =8, Ay(0) =.0707, A{(0) = .0177, A,(0) = 0.0;
case 1)

Similar to fig. 2.9 but for F = 8, AO(O) = 0.0354,
Al(O) = 0.0354, AZ(O) = 0.0354 (case 2).

Similar to fig. 2.9 but for F = 8, AO(O) = 0.0354,
Al(O) = 0.0707, AZ(O) = 0.0707 (case 4).

Similar to fig. 2.9 but for F = 12, AO(O) = 0.582,

Al(O) = 0.0146, AZ(O) = 0.0291 (case 9).

The tip of the numerically determined marginal curve plotted
in the (kz, g) plane. Case 1l: F =10.0, U = 1.0, h2 =
5.0 (BI'I'I = 15.0).

The full marginal curve for the gravest unstable mode of
Case 1.
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The real and imaginary parts of the phase speed, 'cr and
Cis plotted against the square of the wavenumber. B8 =
14.96, A =0.04 (F = 10.0, U = 1.0, h2 = 5.0).

The phase speed along the right-hand branch of the marginal
curve, c.(8), plotted against the supercriticality a.
(F = 10.0, U =1.0, h2 = 5.0).

a) The magnitude of the lower Tlayer streamfunction for the
unstable mode at B = 14,96, k = 2.261 (F = 10.0, U = 1.0,
hy = 5.0).

b) The magnitude of the upper layer streamfunction,

c) Zonally averaged heat flux (multiplied by F) as a function
of y.

The marginal curve for the gravest unstable mode when F =
6.6164, U = 1.0, h2 = 9.8836 (Case 2).

a) The magnitude of the lower layer streamfunction for the
unstable mode at 8 = 16.3, k = 2.544 (F = 6.6164, U = 1.0,
h, = 9.8836).
b) The magnitude of the upper layer streamfunction.

c) Zonally averaged heat flux (multiplied by F) as a function
of y.

Quantities associated with the unstable eigenmode of fig.
3.7: a) heat flux, b) temperature tendency, c) upper layer
momentum flux, d) lower layer momentum flux, e) upper layer
Reynolds' stress divergence f) lower layer Reynolds' stress
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divergence g) secondary circulation: upper layer meridional
velocity h) secondary circulation: vertical velocity 1) up-
per mean zonal acceleration j) lower mean zonal acceleration.

Dispersion curves for the first three slow, neutral mode
solutions of (3.26).

Kinetic energy of the (O)k Fourier component (wave 0) of
the upper layer perturbation during run Al.

As fig. 4.1 but showing all three principal Fourier
components (waves 0-2).

As fig. 4.1 but during run Bl.

As fig. 4.2 but during run B1.
wave 1, — - - - wave 2,
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Rates of baroclinic conversion of energy between an indivi-
dual wave and the mean flow during Bl.
wave 1, — —— - wave 2,

see—— Wave 0 4

Meridional profiles of the heat flux associated with the
unstable wave, wave 0, at several times during run Bl,
Profiles are plotted only for 0<y< 0.5 , they are
symmetric about y = 0.5 .

a) t=0.0, b) t =4000.0, c) t =5500.0, d) t = 11500.0,
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e) t = 12500.0, f) t = 14500.0, g) t = 16500.0

The kinetic energy of the upper layer perturbation associated
with wave 0 during several different runs. The initial
ampl itude of wave 0 was the same for each run. The values of
F, U, 8 and h2 are the same as those used in run Al, The
wavenumbers and/or the initial sideband amplitudes differ
between runs.

R22/24 is the first part of run Bl,

R26: As R22/24 but with initial sideband amplitudes increased
by a factor of 2.

R27: As R22/24 but with initial sideband amplitudes decreased
by a factor of 2.

R31: Similar initial amplitudes as R22/24 but with (O)k =
2.253, (U . _1.20a4, (@) . _0.95858. This corresponds
to a triad in which wave 0 has a smaller value of k%
than in R22/24,

R32: Similar initial amplitudes as R22/24 but with (Ok .
2.267, (Mg - _1.3008, @k . -0.96622. Here k2 s

larger than in R22/24. ’
As fig. 4.2 but during run A2,
As fig. 4.2 but during run B2.
As fig. 4.1 but during run A3.

As fig. 4.1 but during run B3,
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CHAPTER 0

0. Introduction

The work in this thesis addresses some problems in the general area
known as the theory of baroclinic instability. The purpose of this intro-
ductory chapter is two-fold, to give a succinct statement of the problems
dealt with in the remainder of the thesis and to provide a setting and
motivation for those problems by briefly describing the phenomenon of
baroclinic instability and some of the the techniques used to analyze it.
We will tackle the second objective first.

The main driving force behind the recognition and subsequent explora-
tion of baroclinic instability has been the study of meteorology. It was
recognized that, for a model Earth consisting of a rotating, spherical
planet surrounded by a vertically, but stably, stratified atmosphere, a
possible equilibrium response to the meridionally asymmetric net input of
solar radiation was a steady, axisymmetric, convective circulation. To
some extent this resembles the average properties of the tropospheric
circulation. The mean winds are predominantly zonal and there is usually
a large-scale meridional circulation in lower latitudes, the Hadley cell.
However, there are many points of difference between the theoretical equi-
librium circulation and the terrestrial troposphere. The real atmosphere
is unsteady. Large, planetary scale waves may be seen standing or slowly
propagating zonally in the height fields of the upper air pressure sur-
faces. The equator-pole temperature difference on the Earth is substan-

tially less than that predicted by the equilibrium model, suggesting a
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meridional heat transport that is stronger than that associated with the
meridional circulation of the equilibrium model.

It was shown by Charney (1947) that steady equilibrium flows 1ike that
of the model above tend to be unstable. Such a state contains a larger
amount of potential energy than would a resting atmosphere in which the
isopycnals lay parallel to the geopotential surfaces. The excess poten-
tial energy is often referred to as available potential energy (Lorenz,
1967). Charney showed that there is a class of wave-like perturbations
to such an equilibrium which can convert the potential energy of the equi-
1ibrium state to kinetic and potential energy of the wave, These waves
can then grow at the expense of the equilibrium flow and are therefore
known as baroclinically unstable perturbations. As the potential energy
of the equilibrium flow is depleted, the isopycnal surfaces must become
more nearly parallel to the geopotentials, i.e., the meridional tempera-
ture gradient is reduced by the growing perturbations, As it grows, the
unstable perturbation produces a meridional flux of density down the
horizontal density gradient, or equivalently, a meridional heat flux.

Such an instability mechanism can go a considerable way toward
explaining the existence of unsteady wave-like motions superposed on the
general zonal circulation, the reduced equator-pole temperature differ-
ence, and the reduced zonal velocities of the general circulation, Suf-
ficient evidence seems to have been accumulated for it to be undeniable
that the mechanism of baroclinic instability plays an important role in
maintaining the average circulation of the Earth's troposphere. A descrip-

tion of such a role in the context of a general circulation theory can
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be found in the discussion by Charney (1959) of an idealized model

atmosphere,

By dynamical analogy, there are some environments in the ocean which
may support baroclinic instability by virtue of the available potential
energy of the flow. These include vertically sheared boundary currents
such as the Gulf Stream, open ocean currents such as the North Equatorial
Current and the Antarctic Circumpolar Current, and broader areas of ver-
tically sheared flow such as the recirculation regions adjoining the Gulf
Stream and the Kuroshio. Direct evidence for the existence of baroclinic
instability in the ocean is scantier than in the atmosphere and the role
that baroclinic instability might play in the circulation of the ocean is
less clear-cut. Since a down-gradient eddy heat flux is a symptom of a
baroclinic conversion mechanism in the act of depleting the available
potential energy of a larger scale flow, some investigators, notably Bry-
den (1979 and 1982) have looked for such fluxes as evidence of baroclinic
instability. Bryden seems to have found such energy converting fluxes in
the Antarctic Circumpolar Current in the neighborhood of Drake Passage
and in the Gulf Stream recirculation area.

The general circulation of the ocean is neither as well observed nor
as well understood as that of the atmosphere, and one cannot say with
certainty whether baroclinically active eddies are responsible for sig-
nificant meridional transports of heat across the main ocean basins. It
is, however, known that the main ocean basins contain a substantial amount
of energy at scales of the order of the internal deformation radius (e.g.,

Dantzler, 1977). 1In the interior of the subtropical gyres, this eddy
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energy dominates the kinetic and available potential energy of the larger
scale, slow, mean circulation. The question of what are the sources of
this eddy activity is an intriguing one. One candidate for supplying
part of this may be baroclinic instability of the stronger current and
recirculation regions.

In recent years a considerable effort has been made to construct
numerical models of the wind-driven circulation in idealized ocean
basins, that are capable of resolving eddies oﬁ the 100 km scale (e.g.,
Holland, 1978). These models, which have had some success in reproducing
features such as western boundary currents that subsequently separate and
the strong recirculation regions associated with them, also show the pro-
duction of an active eddy field, some of which is converting available
potential energy of the larger scale flow into eddy energy.

One last possible area in which baroclinic instability may be a fea-
ture is in the dynamics of the large rotating dust clouds that are pre-
cursors of galaxies and galactic clusters,

Theoretical studies of baroclinic instability have had several goals:
to elucidate the physical mechanism responsible for the instability, to
discover which types of equilibrium state are unstable, to determine the
distribution of the heat flux associated with the wave and to be able to
describe how an initially small, unstable disturbance may evolve. Given
the rather turbulent nature of the atmosphere and ocean, it is of inter-
est to discover which horizontal scales are preferred by growing disturb-
ances and how this energy is transferred to other scales to set up the

observed energy spectra,
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The usual starting point for theoretical investigations has been to
take an equilibrium flow of simple form, which satisfies the equation of
motion; for example, a steady, uni-directional, non-divergent flow, and
to study the evolution of small disturbances to this state by linearizing
the equations of motion about this equilibrium solution. The linear prob-
lem can then be treated either as an initial value problem (Farrell, 1984;
Pedlosky, 1964) or as a normal mode problem. Solutions in which the en-
ergy of the perturbation increases with time are then classed as unstable.
The philosophy behind such an approach is that if one starts with a very
small perturbation to the equilibrium state, then the effects of the omit-
ted non-linear terms will, at first, be small. The time scale for changes
produced by the action of the non-linear terms will therefore be long.
If the intrinsic properties of the linear solution are such that the en-
ergy of that solution can increase on a finite time scale, then one can
claim that the linear dynamics will give a good approximation to the evo-
lution of the unstable perturbation for as long as its energy is suffi-
ciently small that the time scale of non-linear effects remains larger
than the linear growth time scale. One expects that if the growth is
sustained, then, after some initial period, the 1linear dynamics will
become invalid and any consistent description of the subsequent evolution
must also include non-1inear effects. Several investigators have develop-
ed techniques to follow the solution beyond the linear first phase.

Although the linear theory cannot tell us about the stability of an
equilibrium flow to arbitrary disturbances of finite amplitude it appar-

ently provides us with very useful information, It tells us something
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about which flows will be stable to a class (but not all) of small per-
turbations (more precisely, it tells us about the ability of flows to
support instabilities which have a finite value for the initial growth
rate in the Timit that the initial amplitude of the perturbation tends to
zero). It describes what spatial structures disturbances which belong to
this class adopt. In some cases it tells us that a particular horizontal
scale will grow more rapidly than others. It can even provide some idea
of how a growing disturbance in this class will try to modify the equi-
librium flow, if we calculate the quadratic fluxes of momentum and dens-
ity that are associated with the growing disturbance by using the linear
structure of that disturbance.

What 1inear theory fails to tell us about disturbances of weak initial
amplitudes is whether there are types of small amplitude disturbance that
do not possess any "Tinear" means of extracting energy from the equilib-
rium state (in the sense that they do not contain an unstable normal mode
of the linear system), yet nevertheless, by virtue of the non-linear terms
in the equation of motion, can extract energy from that state. One would
expect that any such disturbances would exhibit initial growth rates that
are slower and slower as we make the initial amplitudes smaller and smal-
Ter (the linear 1imit). Yet is seems that from a physical point of view,
such disturbances might be important since in studying the stability of
physical equilibria, one is concerned with stability to physical pertur-
bations which will have a finite amplitude, even if this is small. A
second property that one might speculate upon for instabilities in which

the energy extraction process depends on the non-linear rather than the
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linear terms in the perturbation equations of motion, is whether the
growth rate will not increase as the disturbance grows since the relative
size of the non-linear terms, and hence the extraction rate, will increase
as the square of the disturbance amplitude. Such an effect might make
the instability of one of these weak, non-linear instabilities, whose
development would be initially rather slow, ultimately rather powerful.
For the normal mode instabilities of linear theory, we have the
unphysical result that the growing wave increases its amplitude at the
same exponential rate forever and that no mechanism for diminishing the
lack of stability of the underlying basic state is included. From the
point of view of circulation modelling, one would Tike to know what
changes the growing wave induces in the mean flow that is supporting the
jnstability. One can obtain some insight into this by adopting a quasi-
1inear approach (Phillips, 1956; Charney, 1959). In this, the structure
of the unstable wave is taken from linear theory, an amplitude for this
wave is assigned or determined, the quadratic eddy fluxes are calculated
and the resulting changes in the mean circulation are computed. Omitted
in Phillips' theory is the feedback mechanism associated with the fact
that, as the growing eddy field modifies the mean flow, so the insta-
bility properties of the mean flow change and the growth characteristics
of the eddy field are altered. If the modifications to the mean flow are
such as to reduce its degree of instability, then the feedback loop is
negative and one has a way of restraining the growth of the eddy field.
The fully non-linear problem which one would have to solve in order
to follow the evolution of an unstable disturbance whose growth time

scale according to linear theory was of the same order as the time scale
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for the advection of the disturbance by the mean flow, would be extremely
complicated. Charney (1959) simplified the problem by making the ad hoc
assumption that the shape of the unstable Fourier component is unchanged
by the non-linear interaction process. However, studies by Pedlosky
(1970), Drazin (1970) and Pedlosky (1979) have shown that there is a class
of non-1inear evolution problems which are tractable. The technique that
they exploit is to examine the evolution of a normal mode whose linear
growth rates are slow in comparison to the advective time scale. Over much
lTonger time scales, relatively weak non-linear interactions can compete
with the linear instability. Non-linearity therefore becomes significant
when the unstable wave is still small and one can develop a theory utiliz-
ing perturbation methods, centered around the linear solution, in which
the problem has two intrinsic time scales, the time scale of advection by
the mean flow and the longer evolutionary time scale over which the
disturbance amplitude changes. It is in this small amplitude limit that
Charney's shape assumption becomes justified.

By using such a "weakly finite amplitude" theory, one can explore the
mechanisms by which non-linear effects curb the growth of an unstable
disturbance once it reaches some sort of equilibrium amplitude (here and
subsequently, the idea of an equilibrated amplitude will include the case
of a state in which the disturbance amplitude fluctuates yet remains at a
constant order of magnitude). This 1is not equivalent to a fully finite
amplitude problem. If the tendency of a growing instability to push the
mean flow towards stability persists into more strongly non-linear re-
gimes, then one might expect a natural tendency for an unstable flow to

linger close to a stable state, i.e., be only moderately supercritical.
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In such a situation, the degree of supercriticality would depend upon the
forcing for the basic state and the dissipative mechanisms operating.
This preference for a small degree of supercriticality would depend cruc-
ially on the power of the wave-mean flow interaction mechanism. Stone
(1978) has pointed to observations which suggested that the mean state of
the troposphere is not too far removed from neutral, suggesting that
weakly finite amplitude theories may be more relevant than just giving a
mechanistic insight into the operation of non-linear processes.

Spectral transfers of energy must also be taken into account when
deciding how a growing disturbance equilibrates. If the disturbance
reaches an amplitude at which interactions between the unstable wave and
neutral waves transport energy away from the unstable wavenumber at a
rate comparable with that of the extraction of energy by the unstable
wave, then the wave must eventually stop growing. For a statistically
steady state to develop by such a means, one again requires either dissi-
pation at some range of space scales, for example, small scales, to mop
up the cascade of energy ultimately released by the agency of baroclinic
instability, or the modification of either the mean flow or the structure
of the unstable and neutral wave modes in such a way that baroclinic en-
ergy conversion is inhibited. An adequate model of the continuous spec-
trum of waves that results from wave-wave interaction processes as a
result of the baroclinic instability of a range of wavenumbers does not
seem to have been developed. Instead, mechanistic models of how baro-
clinic instability can couple to wave-wave interaction processes have

been constructed, e.g., Loesch (1974).
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The problem that I have attempted to address in this thesis is that
of the non-linear evolution of a weakly, baroclinically unstable wave when
the unstable equilibrium flow has a special type of meridional structure
that makes the meridional potential vorticity gradient of the basic state
exhibit a minimum within the channel. This sort of basic state has some
of the features that a jet flow in a geophysical situation might exhibit
and as such seems a worthwhile departure from the rather artificial merid-
ionally uniform states studied by Phillips, Charney and Eady. A study of
the linear problem, Chapter 3, shows that the presence of a potential
vorticity gradient, of the form described above, imparts some distinctive
features to the weakly unstable normal modes of the basic flow that are
not observed in the meridionally uniform counterpart of this model. When
one attempts to formulate the finite amplitude evolution of these weakly
growing modes (Chapter 4), one discovers that the peculiar nature of the
linear modes affects the way in which the finite amplitude evolution pro-
ceeds. In particular, the effects of wave-wave interactions between the
unstable wave and neutral eigenmodes of the linear problem can exert a
more powerful restraint on the growth of the unstable wave than the alter-
ation to the mean flow that the growing wave produces. Because of the
prominent role played by wave-wave interactions in this non-linear model,
some aspects of the interplay between wave-wave interactions and baro-
clinic instability are explored in Chapter 2. In particular, we note
there that disturbances consisting of non-linearly interacting triads of
neutral modes of the linear problem, with small amplitudes, can release

potential energy from the equilibrium flow. These furnish an example of
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a non-modal form of baroclinic instability. In Chapter 1, we present a

synopsis of some works whose content will be relevant to the research

subsequently discussed.
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CHAPTER 1

1. Background Theory

In this chapter we will review some of the theoretical results pre-
sented in four papers which deal with material germane to the work of
Chapters 2, 3 and 4. These papers both serve as introductions to the
ideas exploited in the later chapters and furnish results with which the
material of this thesis can be compared. The aim is not to present a
comprehensive summary but to select some of the most pertinent details.
At the same time we will introduce some of the notation that will be used
later. The four papers in question are those of Phillips (1954), which
looks at the linear theory of baroclinic instability in a meridionally
uniform two-layer model; Pedlosky (1970), which looks at the finite amp-
litude development of the slowly growing modes of Phillips' model;
Longuet-Higgins and Gill (1967), which discusses resonantly interacting
triads of neutral waves in a barotropic model and of Loesch (1974) who
examines the interaction of a growing baroclinic instability in Phillips'
model with two neutral Rossby waves,

Phillips (1954) presents, as part of a theoretical study of the gen-
eral circulation of the atmosphere, the properties of linearized pertur-
bations to a quasigeostrophic model of a zonal baroclinic jet. This
idealized model allows only two degrees of freedom in the vertical by
adopting a very coarse, finite-difference representation of the vertical
structure. Such a model can be re-interpreted in terms of a system

comprising two homogeneous layers of fluid, the second slightly more
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dense than the first and 1ying beneath it. The two-layer and two-level
‘models can be shown to be equivalent (Flierl, 1978), and in an earlier
work Phillips (1951) chose a two-layer approach. Since the layer model
can be realized physically and since the investigations of Pedlosky (1970)
and Loesch (1974) were couched in terms of the two-layer model, we will
adopted the layer formalism. Before continuing with Phillips' paper, we
will pause to describe the model in the notation that will be used
subsequently in this thesis,

The two layers of fluid are confined in a channel between rigid boun-
daries at latitude circles y = 0 and y = L, and heights z = 0 and z = 2H.
This channel is assumed to be of infinite zonal extent and to be in a
frame of reference which rotates with an angular velocity 1/2 f about a
vertical axis. We desire to model geophysical flows whose width L is of
the order of, but smaller than, the radius of the Earth. Following Rossby
(1939), we choose to include the dynamical influence of the Earth's spher-
icity by using the g-plane approximation with f = f0 + gy. We are
therefore constrained to working in mid-latitudes, where fo is signifi-
cantly non-zero, and in a channel of limited meridional extent, such that

LB/fO 24 1.

We consider motions which have intrinsic and advective time scales
that are long in comparison to the inertial period. Such motions include
the traveling cyclone disturbances observed in the atmosphere and the
synoptic scale eddying motions of the ocean. We adopt, as a filtering
approximation, the quasigeostrophic approximation of Charney (1948). A
detailed discussion of this and of the ancillary approximations that are

used is given in Pedlosky (197%).
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The quasigeostrophic potential vorticity equations for the two-layer

model of Phillips are

o 18 85 + (103537 (8- 901 + 0 1,7 8+ (1722 (9= 8y) + y] = 0

j =1’ 2 (1.1)

where our notation is closer to that of Loesch and Pedlosky than Phillips.
F f0 dj is the pressure in the jth layer, where 1 is assumed to refer to

the upper layer, hence dj is a streamfunction for the geostrophic flow in

layer j. J is a Jacobian operator J(a,b) = a, by - ay bx. Rz is given by
2 _ g2 Ap
z° = f0 / (gH pl) (1.2)

where aAp is the density difference between the two layers. We have used
the Boussinesq approximation. 1In accordance with Phillips treatment, no
bottom relief has been included and the interface between the two layers

has been taken to lie at z = H when the fluid is quiescent, i.e., the lay-
ers are of equal nominal depth, H. LD = x'l is a dynamical length scale
inherent to the system, often known as the internal deformation radius.
Following the several treatments of Pedlosky and others, we shall
non-dimensionalize (1.1) at the outset. We do this by scaling: x and y
with LR, z with 2H, t with LR/UR and ¢ with URLR, where Lr and Up are
characteristic length and velocity scales of the motions of interest.

Equation (1.1) then becomes

3 95 * J (¢J q) = 0 (1.3)
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In (1.3) and (1.4) #; are scaled and dimensionless. q; is the potential |

J
vorticity of fluid columns in the jth layer after the large but constant

term fO LR/UR has been subtracted. F and 3 are two dimensionless cons-

172 is the ratio of

the intrinsic scale of the motions LR, to the dynamical scale x'l. g is

tants. The first is an internal Froude number and F

given by 8 Lﬁ/UR and is a ratio of the planetary vorticity gradient to

the relative vorticity gradient of the fluid motions. We will make the
éssumption that, relative to the Rossby number, R = Up/(Lp ), both F and

8 are 0(1). We will also drop the caret from 8. It is convenient to use
a channel whose width is comparable to the horizontal scale of the motions
of interest so we will set Lp = L. The horizontal boundaries are there-
fore located at y = 0 and y = 1 in this non-dimensional system, The phys-
ical condition applied at the lateral boundaries is one of no normal flow

which can be shown (Phillips, 1954) to imply that

$5=0 at  y=0,1 (1.5a)

and
ayat] dx g =0 aty=0,1 (1.5b)

where J'dx is to be interpreted as Lim (1/2L) J_t dx and we have assumed
that ¢j is uniformly bounded. Bou;h;;;oconditions at z=0and z =1 are
not explicitly required, but they are implicit in the derivation of 1X1)
We have used the condition of no normal flow through the horizontal boun-
daries. Dissipative and direct forcing mechanisms have been excluded.
In particular, no Ekman layers have been included at the horizontal

boundaries,
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Phillips (1954, Section 5) has described the properties of linear
disturbances to a basic flow which consists of a uniform zonal velocity
U; in each layer. 1In our notation, the linearized vorticity equations

J
for the perturbation are

(3g * U 3,0 ag' + 8- (-1 F (0] 6% =0 (1.6)

Here the total streamfunction for each 1ayef is decomposed into a basic
flow plus a perturbation

¢j= -ij+¢j

and a0 is the potential vorticity of the perturbation. Phillips looks

for normal mode solutions of the form

(¢1‘s ¢2l) = (1s Yj) sinn Ty exp [ik(x—Ct)]
and finds that the phase speed, c, of these modes is given by

1

c=0+ '1?‘1?“"'[' (a +F) g + [4 32 2
2a“(a“+2f)

-2 ot ar? - a“)]l/z] (1.7)

2

In this expression, a” =k 2 2

*+ n- ¢ is the total wavenumber of the the
perturbation, U = 1/2 (U1 + Uz} is the mean velocity of the basic state
and U, = (U; - Uy) is the vertical shear of the basic state in terms of
the limited vertical resolution of the two-layer model. 1In general, there
are two values of ¢ for each wavenumber, a, corresponding to the two ver-
tical modes possible in this system. The vertical structure of these

modes is represented by the coefficient vy, which is given by

J
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B+ F Ug

2
a +F
Yj = F - Ul— c (1-8)

The system is insensitive to a uniform zonal translation of the reference
frame so we may choose U2 =0, U1 = U without any loss of generality,
whence U = 1/2 U and Ug = U.

The disturbance mode grows exponentially in time when ¢ is complex
with c;. =1 (c) positive [for the conventional choice of positive k.
Note that only k% occurs in (1.7) and (1.8)]. These unstable modes

will have a complex Y5 and it can be shown that for each unstable mode

0> arg (Yj) > /2

This phase 1ag between the upper and lower layer means that the heat flux
associated with the perturbation, when averaged over a wavelength and

integrated across the channel, i.e.,

1 2n/K
[ dy %f dx LFU (v + V) (- 8

is positive. It is this meridional transport of heat that is the mech-
anism by which potential energy is released from the mean flow and con-
verted into energy of the perturbation.

Phillips found that the contours of constant growth rate for the dis-
turbance take the form shown in Figure 1.1. In Figure 1.1, the contours
of constant growth rate are mapped on a plane with axes corresponding to

the basic shear and the disturbance wavelength. There are several fea-
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Figure 1.1: (After Phillips, 1954, Fig. 1) Contours of growth rate as

a gunctwn of zonal wavelength L and vertical shear dU/dz , where L =

2v/kg and dU/dz = Ux/H. The numbers on the contours indicate the

doub?ing time (in days) of the gravest unstable mode in Phillips'

two-layer model. The parameters of the model were ihosen so that:
H=4.08km , Lp=2930km , g=1.6X 10-11 p s-1
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tures of this graph which we wish to note for future reference. There is
a minimum critical shear below which baroclinic instability is not possi-
ble. This is also the value of the shear parameter above which the two-
layer model version of the sufficient criterion for stability derived by
Charney and Stern (1962) is no longer satisfied. If one rearranges the
dispersion relation, one can show that the boundary between neutral and
unstable perturbations is determined by only two parameters 8/FU and
ale. Thus for fixed F, increasing U is equivalent, as far as stabil-
ity properties are concerned, to decreasing 8. Thus, if we view F and U
as fixed, the stability threshold noted above corresponds to a minimum
critical 8 above which instability is not possible. In subsequent chap-
ters, this is the view which we will adopt. This should not be allowed
to obscure the fact that what we are really doing is varying the dynam-

ically significant parameter g/FU which, in the dimensional variables, is

Bx 2
Ugx D

The asterisks are to denote true dimensional quantities and L, is the
internal deformation radius defined earlier. The stability threshold
amounts to requiring that the vertical shear U, exceed a value deter-
mined by the strength of the restoring force for vorticity oscillations,

represented by 8, and the inertia of the system to internal oscillations

represented by L%.

For values of the shear above the critical threshold only a limited

range of wavenumbers is unstable; both a long and a short wave cutoff are
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present, Near the critical value of U, the marginal curve (i.e., the
stability boundary in Figure 1.1) is parabolic. The growth rate tends to
zero as one approaches the stability boundary, i.e., the modes close to
the marginal curve grow only slowly with time.

Using the analytically determined forms of the 1linear eigenmodes,
Phillips went on to compute the eddy heat flux associated with the
unstable mode and thence the secondary meridional circulation and the
changes to the mean zonal flow that these fluxes would have produced
after a certain time had elapsed. Phillips' aim in using this quasilinear
theory was to estimate the redistribution of heat and momentum that the
baroclinic eddies might produce when they had grown to amplitudes that
might be typical of the Earth's atmosphere. Because such a theory does
not include any feedback between the changes induced in the mean flow by
the growing waves and the instability properties of the waves, the choice
of wave amplitude used in such a calculation is, in a sense, arbitrary.
Phillips chose the wave amplitude by requiring that the rate at which the
heat transported by the eddies warmed the northern half of the "northern
hemi sphere", that his model represented, match the estimated diabatic
cooling rate for the same region. Phillips provided a rather successful
theoretical model of some of the qualitative effects of eddies on the
mean circulation that had been postulated by Jeffreys (1926, 1933). But
this model still leaves unclear the answer to the question of how the
growth of the unstable eddies is curtailed. However, the seeds of a pos-
sible mechanism are contained within this model. The alteration to the

mean flow calculated by Phillips as a consequence of the growing waves
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was such as to reduce the average vertical shear of the mean flow. The
linear results indicated that the mean flow was less unstable (the growth
rates at a given wavenumber were less) at smaller shears, so that this
second order effect should be stabilizing. The non-linear analysis
required to incorporate this feedback mechanism in the general case of
initial parameters that corresponded to an unstable wave whose growth
“rate was 0(1l) seems rather intractable. Charney later refined Phillips'
model (Charney, 1959) and included this stabilizing mechanism in a heur-
istic way by balancing the rate at which energy was released from the
modified mean flow against the rate at which perturbation energy is dis-
sipated. Pedlosky (1970) recognized that under some circumstances, the
non-linear analysis could be simplified and this feedback mechanism
successfully included in a more rigorous fashion,

The essence of Pedlosky's method is to look at a single unstable wave
whose growth rate is small because one has chosen values of 8/FU and
a2/F that lie close to the position of the marginal curve, We shall
describe the case for which 8/FU does not correspond to the position of
minimum critical shear but rather a2/F and g/FU are such that the point
they define on a stability diagram such as Figure 1.1 lies near to one
side of the marginal curve. The original basic flow is then only slightly
unstable for a disturbance at the wavenumber described. As the initially
linear unstable eigenmode grows, it produces a correction to the mean flow
that is proportional to the square of the eigenmode amplitude. This re-
duces the mean vertical shear, However, since the original mean flow was

only slightly unstable, only a relatively small modification is required
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to stabilize the mean flow. Thus while the unstable wave is still fairly
weak, it has succeeded in choking the mechanism that was allowing it to
grow. The fact that throughout this process the unstable wave has never
reached a large amplitude enables one to develop the non-linear solution
as a perturbation series in the amplitude of the unstable wave or, more
conveniently, in the distance below the marginal curve that the initial
value of 8/FU lies, since it is this that controls the amplitude that the
unstable wave can reach, .

The above is a rather sketchy summary of the basic mechanism operat-
ing in the non-linear model considered by Pedlosky. The detailed picture
is somewhat more involved and one should refer to the paper in question
for the precise nature of the evolution. Pedlosky's analysis shows that
the growth of the unstable wave is halted by the mean flow modifications
and that, in the absence of friction, the amplitude of the unstable wave
vacillates in a regular, periodic way. Because the parameters are such
that the unstable wave lies close to the marginal wave, the e-folding
time scale of the linear unstable eigenmode is long in comparison to the
periods of most of the neutral waves. This fact is used in the method of
analysis, which considers separating the dynamics that occur on the two
time scales. The amplitude vacillations of the unstable wave are charac-
terized by the longer, e-folding time scale.

In choosing to site this weakly finite amplitude analysis close to
the side of the marginal curve rather than in the vicinity of minimum
critical shear, one is including an element of inconsistency in that, for
the same value of g/FU, there are wavenumbers further into the interior

of the unstable region which have larger, 0(1), growth rates that would
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overpower the unstable wave on which the analysis has been concentrated,
and to which the weakly finite amplitude analysis would be inapplicable.
One situation in which this might be avoided would the case of a periodic
zonal domain such as an annular channel in which the quantization was
such that the only unstable wave which fit the domain was one close to
the marginal curve,

One would prefer to look at an unstable mode in the vicinity of mini-
mum critical shear. For the meridionally uniform model, the finite amp-
litude problem in the neighborhood of minimum critical shear is a little
degenerate and one finds a critical layer effect which alters the behav-
jor of the problem (Pedlosky, 1982). Alterations to the mean flow can
cause the unstable wave to equilibrate but the finite amplitude evolution
is more complicated than a periodic amplitude vacillation and many zonal
scales are stimulated (Pedlosky, 1982; Boville, 1981). The inclusion of
meridional variation in the potential vorticity gradient or velocity
field of the lower layer should remove this effect.

It may at first seem something of a lTimitation to confine attention
only to the weakly growing waves near the marginal curve, however, this
is not so strong a constraint as it might appear. The weakly supercriti-
cal waves are those which one first encounters as one gradually increases
the mean shear to pass from the stable regime to the unstable regime. If
the tendency of a growing baroclinic disturbance to stabilize the verti-
cal shear is robust, as the work of Phillips would suggest, then one has
a dynamical reason for the mean flow to lie not too far from critically

stable conditions.
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Pedlosky's model of non-linear equilibration has demonstrated a mech-
anism for curbing the growth of a baroclinic instability that linear
theory alone would not have predicted and shown how this pivots on the
way in which the growing wave modifies the mean flow. One of the reasons
for being interested in the dynamics of finite amplitude eddies was their
ability to transport heat. In the equilibrated inviscid model of Ped-
Tosky (1970), the mean meridional addy heat flux, when averaged over a
vacillation period, is zero. However, the introduction of dissipation
(e.g., Pedlosky, 1971) enables one to recover a non-zero average heat
flux in a model which retains the wave-mean flow interaction process as a
method of containing the growth of an unstable perturbation.

The model described above does not include any interaction between
the unstable wave and neutral waves of the system. The inclusion of non-
linear processes allows the possibility of such interactions., Pedlosky's
model is consistent in that, given initial conditions in which neutral
Rossby waves are absent, they will not, in general, be forced by the
dynamics of the unstable wave at amplitudes that would be significant.
However, if such waves are included in the initial conditions, alongside
the unstable wave, it is possible under some circumstances that they will
interact with the unstable wave on the time scale of the weakly finite
amplitude evolution theory.

Such wave-wave interactions (as distinct from the wave-mean flow
interactions present in Pedlosky's model) may be of interest for several
reasons, They may, for example, allow the energy extracted from the mean

flow by the primary baroclinic instability to be transported to other
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length scales that are not directly unstable. There may be significant
transport of energy to shorter, more dissipative length scales. Such an
effect might alter the size of the heat flux associated with the unstable
wave in an "equilibrated" state. The forcing of neutral waves having
ampl itudes comparable to the unstable wave and fluctuating on the same
timescale as the unstable wave would produce additional modifications to
the mean flow of similar size to that produced by the unstable wave and
so modify the equilibration process described by Pedlosky (1970).

A general attempt to model interactions between a range of unstable
waves and a spectrum of neutral waves would be extremely complicated.
However, models which included only one unstable zonal Fourier component
and a small number of neutral Rossby modes would be more manageable and
should give some insight into the interplay between wave-wave and wave-
mean flow interactions. An attempt to construct such a model has been
made by Loesch (1974). Amongst waves of weak amplitude it can be shown
that the strongest wave-wave interactions occur between waves which form
certain resonant multiplets. For the particular dispersive properties
of the eigenmodes of the two-layer model, the appropriate multiplets are
triplets. Before discussing Loesch's paper, it will be useful to briefly
consider the dynamics of resonant triads. These are discussed, albeit
for a different physical system, by Longuet-Higgins and Gill (1967).

Longuet-Higgins and Gill considered interactions between Rossby waves
in an equivalent barotropic model on an infinite g-plane in which there
was no mean flow. Such waves interact most readily when three of the

waves satisfy resonance conditions similar to
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3
S [k., 0. (k)] = (0, 0)
j=1 -

where Ej are the horizontal wavenumbers of the three waves and o (gj) are
the frequencies. In the above paper, equations governing the slow evolu-
tion of the amplitudes of three waves, satisfying these resonance condi-
tions, are obtained for the case in which each of the waves is of small
amplitude. If ¢, << 1, is a small number characterizing the amplitudes of
the three waves, then the non-linear interactions between the elements of
the resonant triad modify the amplitudes on a time scale, el.  The
evolution, in general, takes the form of a phase locked vacillation in
the amplitudes of the three waves, where the relative phases are such
that the energy of the triad as a whole remains constant. When the three
waves satisfy a further constraint on their relative phases, Longuet-
Higgins and Gill show that the amplitudes of the three waves may be
described by Jacobian elliptic functions. It can be shown that this is
also true for general relative phases of the waves. The authors also
showed that in the case of the single layer model without any mean flow,
the triad must conserve its total wave energy. They also calculated the
amplitude of one of the waves non-resonantly forced by the non-linear
interaction and showed that the small amplitude dynamics are consistent
when the ratio of particle velocity to phase speed is small for each of
the three principal waves,

The importance of this triad interaction phenomenon is that it indi-
cates a preferred mechanism for the transfer of energy between wavenum-

bers in a weak wave-field. Each element of the triad would, in a more
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realistic system, be involved simultaneously in triad interaction wfth
other neutral modes. In a situation in which energy is being injected
slowly and over a limited range of wavenumbers, one might expect that
resonant triad interactions, at least initially, will be important in
redistributing this energy over the wavenumber spectrum. If there is
sufficient dissipation to allow an equilibrium spectrum of weak energy to

be established, then triad interaction will continue to be important.
Such a slow injection of energy at a narrow band of spatial scales could
be the result of baroclinic instability under weakly supercritical
conditions.

Loesch (1974) considered a model in which a single baroclinically
unstable wave, in a flow similar to that considered by Phillips (1954),
was allowed to interact resonantly with a pair of neutral Rossby waves.
The unstable wave was presumed to lie a small distance a below the mar-
ginal curve so that in the absence of the neutral waves it would evolve
according to the weakly finite amplitude theory of Pedlosky (1970, 1982).
The two neutral waves were chosen to form a resonant triad with the mar-
ginal wave adjacent to the unstable wave., Loesch showed that when the
unstable wave was near one of the sides of the marginal curve, i.e., away
from minimum critical shear, the dynamics of both the wave-mean flow
interaction process and the resonant triad interaction would be signifi-
cant (i.e., the time scales of changes in the amplitude of the unstable
wave to wave-mean flow interaction and in the amplitudes of all three
waves due to wave-wave interactions between the triad elements, are simi-

lar and are comparable to the e-folding time scale of the linear instabil-
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ity) when the amplitude of the unstable wave is 0([A]1/2), where A is
the supercriticality, and the amplitudes of the sidebands are 0(]Al3/4).
Loesch did not consider this case any further and moved on to the case in
which the slightly supercritical mode lies just below minimum critical
shear, showing that again the processes of wave-mean flow interaction and
triad interaction could be equally significant. In this instance, the
natural scales for the wave amplitudes are each O{IAII/Z}.

The two features of such a system are firstly that the energy of the
“unstable" mode 1is shared with waves whose length scales are stable
according to linear theory and secondly that the finite amplitude evolu-
tion of the unstable wave is modified by the presence of the sidebands.
However, we emphasize that the wave-mean flow interaction mechanism nev-
ertheless remains an integral part of this evolution. This should be
contrasted with the results that will be presented in Chapter 4. The
numerical computations of Loesch did not allow for the critical layer
effect noted by Pedlosky (1982) so we will not discuss their results
here, but the discussion of amplitude scaling and hence the relative

importance of the two non-linear interaction mechanisms remains valid.
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CHAPTER 2

2. Triad Interactions in Vertical Shear Flows

Abstract

Three related problems concerning the evolution of disturbances 1in
Phillips' model are considered. Firstly, it is shown that non-linear
interactions between a resonant triplet of neutral waves in a vertically
sheared flow can 1lead to baroclinic instability. Secondly, we
demonstrate that resonant interactions between a slightly supercritical
unstable linear mode and two neutral waves can destabilize the weakly
finite amplitude equilibration of the unstable mode that would occur in
the absence of the sidebands. This demonstration is limited to the case
in which the basic state is not close to minimum critical shear.
Thirdly, we repéat the work of Loesch (1974) in examining the evolution
of a weakly unstable mode and a pair of neutral waves in a basic flow
that is close to minimum critical shear with the difference that critical

layer effects are included.

A feature of the finite amplitude analysis to be presented in Chap-
ter 4 will be the inclusion of wave-wave interactions between members of
a resonant triad. It became clear while studying this material that
there were some interesting differences between resonant triad interac-
tions in a shear flow and their counterparts in a fluid at rest. For

that reason, we have included the brief studies that make up this chapter.
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A simple environment in which to observe the dynamics of resonant
triads, when embedded in a vertically sheared flow, is the meridionally
uniform, two-layer model of Phillips (1954). Loesch's study of 1974 con-
siders triad interactions in such a model in the case that one of the
triad members is a slowly growing wave near minimum critical shear. In
this chapter we shall consider this case further and also look at triads
composed entirely of neutral linear modes. There will thus be three sec-
tions. In the first we consider the dynamics of three neutral Rossby wave
modes of Phillips' model, each of small amplitude, when they form a reso-
nant triad. It will be shown that such a triad can exhibit a non-modal
form of baroclinic instability, a finite amplitude instability that de-
pends crucially on the weak non-linear interactions between the three
waves, In the second section, we consider a resonant triad composed of
two neutral Rossby waves and a weakly growing, baroclinically unstable
mode which 1ies close to the marginal curve of Phillips' probiem, but away
from minimum critical shear, This was a problem mentioned by Loesch, but
not considered by him in detail. We shall see that under some circum-
stances, the presence of the two neutral sidebands can lead to a finite
ampl itude instability that the wave-mean flow interaction, which is also
included in the model, is powerless to overcome. At first sight, this
seems significant in that it had been generally thought that the single
wave dynamics of Pedlosky (1970), in which a weakly growing mode was
equilibrated by wave-mean flow interaction, would be fairly robust, in
the sense that allowing parallel triad interactions would not remove this

equilibration process. However, we are still in the unsatisfactory posi-
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tion of developing our analysis around a point on the marginal curve that
is well away from minimum critical shear. In such a case there is, in
addition to the weakly growing unstable modes, a range of wavenumbers at
which there exist unstable modes with 0(1) growth rates. The evolution
of these latter modes would overshadow our weakly finite amplitude prob-
lem. For this reason we would like to consider the case of a triad con-
taining two neutral waves and a slightly unstable mode that lies close to
minimum critical shear. With the restriction that the neutral waves be
dispersive modes, this is the situation that Loesch examined. Although
Loesch did not include the complicated disturbance forced by critical
layer effects, his model equations contained the direct interactions
between unstable wave and the neutral sidebands which we would expect to
be the cause of any finite amplitude instability, should one exist. Since
Loesch did not find any finite amplitude instability, it seems unlikely
that one would occur in a more complete model that included critical layer
effects. In the third section of this chapter, we present the equations
governing such a triad interaction near minimum critical shear, when crit-
ical layer effects have been included. It is not possible to confirm that
all solution trajectories of which these equations admit are bounded, but,
in view of the sign restrictions placed on some of the more important
coefficients in these equations, we conjecture that this is likely. To
buttress this conjecture, we show examples of numerical integrations of

this system for parameter values similar to those used by Loesch.
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2.1: Non-Modal Baroclinic Instability

In this section a class of non-linear instabilities of a vertically
sheared zonal flow is discussed. This is a type of baroclinic instabil-
ity that lies outside the purview of a linear eigenmode analysis of baro-
clinic instability problems. The form taken by the instability is that
of an ensemble of three neutral Rossby waves whose amplitudes are slowly
modified by their mutual non-linear interactions. For a triad of small
amplitude, these interactions introduce a weak, vertical variation of
phase to the structure of the individual waves. This allows the generation
of rectified heat fluxes and an exchange of energy with the mean flow.

This instability exhibits explosive growth and spans a range of hori-
zontal wavenumbers that exceeds the range that is unstable in the corre-
sponding linear model. It is shown that the type of instability discus-
sed can only occur when the model used is linearly unstable.

The mechanism for the non-linear instability here discussed is

believed to be fairly general and should exist also in the context of a

horizontally sheared flow where it would take the form of a barotropic
instability.

Since the discussion that follows is fairly detailed, we will break
it up into numbered subsections., Equations in this part of the thesis
will only be numbered (n.m), where n is the subsection and m is the

position of the equation within that subsection.

2.1.1: Introduction

Investigations of baroclinic instability generally fall into one of

two classes., The first comprises linear models of baroclinic instability.
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The majority of these, e.g., the studies of Charney (1947), Eady (1969)
and Phillips (1954), take advantage of the linearity of the problem and
the stationarity of the basic state being examined to pose the question
of stability in terms of the time dependence of the normal modes of the
stability problem. In such a case, instability is manifested as a normal
mode which exhibits a vertical phase shift and hence intrinsically pos-
sesses a mechanism for extracting potential energy from the mean flow,
namely its ability to produce a non-zero, zonally averaged, meridional
heat flux.

A second type of investigation of baroclinic instability consists of
studies of the weakly finite amplitude evolution of slowly growing modes,
e.qg., Pedlosky (1979a), Drazin (1970) and Pedlosky (1970). These are non-
linear but concentrate on the evolution of a particular unstable linear
eigenmode as it is circumscribed by weak non-linear effects.

Here, we wish to demonstrate another type of weakly non-linear model
in which there appears a different version of the baroclinic instability
mechanism. The model examines the evolution of a resonant triad of neu-
tral Rossby waves, i.e., neutral eigenmodes of the appropriate linearized
model, of weak amplitude, in a vertically sheared flow. Although each
wave is neutral in the linear sense, and hence, as a linear mode, contains
no vertical phase shift, we will discover that non-linear interactions
between the waves will produce slight phase shifts that enable the modi-
fied waves to generate non-zero heat fluxes, and so exchange energy with
the mean flow. Note that a prerequisite for energy exchange between the

waves and the mean flow is the presence of vertical shear in the mean
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flow. We will show further that there exist some triads for which the
net effect of the heat fluxes is an extraction of energy from the mean
flow by the triad. As a consequence, the triad grows. In general, this
growth is faster than exponential.

This phenomenon seems significant for two reasons. On the one hand
there is the fact that, while the underlying mechanism for the instability
is precisely that of linear baroclinic instability, namely, the extraction
of available potential energy from the mean flow by the production of a
down-gradient transport of heat; the way in which this heat transport is
brought about is inherently different. The instability is non-modal rather
than modal, relying as it does on the non-linear interactions between 1in-
early neutral modes to generate the necessary phase shifts. The second
reason for interest derives from the fact that, for the type of model
that we will consider, the range of wavenumbers that are directly
unstable in the 1linear, modal problem is finite. Non-modal instability
will be shown to extend the range of wavenumbers that may increase in
energy as a direct result of baroclinic instability. (The implied con-
trast here is to wavenumbers that increase in energy because that energy
is transferred to them from wavenumbers at which active baroclinic con-
version is proceeding.)

It may be shown that for this particular type of non-linear baroclinic
instability, the appropriate version of the Charney-Stern criterion ap-
plies. Thus the type of instability to be described here can occur only
when the linear problem is unstable. This, in itself, is of some inter-
est since the theorem deduced by Charney and Stern was originally a lin-

ear result, In part, the evidence for the applicability of the aforemen-
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tioned stability condition relies on the fact that the instability does
not require that the initial amplitudes of the three neutral waves exceed
any finite threshold. There may still be other types of non-linear insta-
bility which do involve such thresholds that can exist when the
Charney-Stern condition would predict stability.

We will begin by considering, in Section 2.1.2, the evolution of three
weak neutral waves governed by amplitude equations that are common to sev-
eral wave problems. We establish a general property of the triads which
determines whether or not they are unstable. We also indicate the general
solution of the amplitude equations. In Section 2.1.3, we show that the
Charney-Stern theorem can be applied to such disturbances to yield sta-
bility criteria for the basic state being considered. Here and in the
remainder of the chapter we specialize to a two-layer model of baroclinic
instability. Section 2.1.4 discusses the energy transformations involved
in a growing triad instability. In Section 2.1.5, we show that thera do
indeed exist some triads which, according to the asymptotic theory of
Section 2.1.2, will be unstable. Using the results of Section 2.1.2, we
predict the evolution of this triad and then compare this to some non-
asymptotic results obtained by integrating the full potential vorticity
equations, after restricting the zonal spectrum to the three resonant
neutral waves, Lastly, Section 2.2.6 illustrates the range of wavenum-

bers that can be unstable to this mechanism,

2.1.2: The Evolution of a Triad of Neutral Waves

We first of all note that much of this section is taken from the

existng theory of resonant triads which may be seen, for example, in the
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work of McGoldrick (1965). Very 1little background material will be
included here so that any reader unfamiliar with the idea of resonant
triads is referred to McGoldrick's paper.

There are a number of quadratically non-linear dynamical systems,
whose linearized versions support wave modes, that permit certain groups
of the linear waves to interact in a way that can be simply described by
the equations to be presented below. An example of such a system will be
given in Section 2.1.4. The linear modes of a stationary, three-dimen-
sional system will generally take the form

$ =Y, (x) em’“t ¥ Bk
where ¢ is the disturbance quantity, ‘Px(g) the spatial structure of the

eigenmode in question, and w, its frequency. c.c. denotes the complex

Py
conjugate of the preceding term while » is an index denoting the particu-
lar mode chosen., For several systems of interest, a small amplitude dis-
turbance consisting of a superposition of linear modes will behave almost
as if these linear modes were interacting non-linearly in trios. This par-
ticular form of non-linear interaction, which affords a way of transport-
ing energy from one scale of motion to another, can be studied in detail
be restricting the initial conditions so that only three of the linear
modes were present. Subsequently, the disturbance field ¢ is composed
predominantly of these three waves plus some small corrections, i.e.,

is. £

A

2
g = ¢ | T A'Yx (x)e *j + c.c. + 0(52) s
j=0 Y -

J
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where ¢ is some small number characteristic of the smallness of the ampli-
tude of the disturbance field and eAj is the amplitude of the jth
wave. Because of the weakness of the disturbance field, the non-linear
interactions between the three waves are very weak and only significantly
affect the amplitudes of the waves on some long time scale, of O(u’l)
say, where y << 1. If the frequencies and spatial structures of the three
waves satisfy certain conditions, which amount to requiring that the non-
linear interaction between each pair of waves produces a resultant which
contains a component that resonantly forces the third wave, then u can be
taken to be ¢. Such a wave triad is usually referred to as being resonant.
If these conditions are not satisfied, then the interaction time scale is
longer, In a general weak wave field, these resonance conditions act to
select triads of waves which can readily communicate their energy. It is
possible for a system to be such that the linear dispersion relations do
not permit any triad to satisfy the resonance conditions, e.g., Phillips
(1960), in which cases higher order interactions become important.
Defining a slow time variable by T = ¢t one can show that, to a good

approximation, the amplitudes of the three waves of a resonant triad can

be treated as functions only of T and evolve according to equations of

the form
. * * \
Agp= 1 Bg &y 7y
) x  *
. *  x
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The superscripted asterisks denote complex conjugation, The quantities
Mj are constants which depend on the parameters of the system support-
ing the waves and on the particular waves chosen, We confine our atten-
tion to systems for which the Mj are real. The physical example in
Section 2.1.4 is such a system. We will note the solution of (2.1) for
general initial conditions and then consider some properties of the
solution,

From (2.1) one can deduce that

|8 (]2 = [ag 02+ g tlag (M % - [ag]Z 5 -1
and that
Arr - o Ay - N A (A2 - [ag]B) = o (2.2)
e o = Mty A (0|2 + u, [ay(0)]2 -
N =2 MM,
£ and N are

We note that if MO’ M1 and M2 have the same signs, then ¢
both positive for all initial conditions other than A;(0) = 0 = A,(0).
Equation (2.2) is similar to that governing the weakly finite ampli-

tude evolution of a slowly growing, baroclinically unstable mode found in

the study by Pedlosky (1970). It may be solved by setting

Ay = R (1) eie(T)

where R and o are real. From (2.1),
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2 2 2 2
RTT—OTR"U R*NR{R-R(O)]-‘-O

and, 2
a7 (R eT) = 0

whence RZ °T -

a constant determined by the initial conditions, and
Reo= o+ GGt [e? - B0 R - N
z RZ

C is another constant determined by the initial conditions. Initially,
the leading sign should be chosen to correspond to the initial sense of
Ry. Thereafter, the sign should be reversed whenever the argument of
the radical becomes zero. RT is always real. We will suppress this
sign hereafter.

Setting x = RZ, we find

1/2
%—xT = (%-N x3 * [oz - Nx(0)] x2 +Cx - hz) (2.4)
Thus
" 1 3. .2 2 2)-1/2
2T = j dx [ > Nx°+ [o” - Nx(0)] x +GCx - n ] (2.5)
x(0)

(2.5) is an implicit statement of the fact that x(T) is a Jacobian ellip-
tic function (Jeffries and Jeffries, 1956, Ch. 25). Such functions are

tabulated. To complete the solution, it is only necessary to determine
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the (constant) parameters of the elliptic function. These depend on C,
hz, 02 and N, and hence on the initial conditions, and require the
solution of a cubic polynomial which is tedious but straightforward to
obtain, should one need to use the explicit solution. Here we will be
content with (2.5).

The amplitude equations (2.1) can be reduced to one of two canonical
forms, The first of these can be obtained when MO, Ml’ and MZ each

have the same sign. Applying the transformation

A, = sgn (M) IMjll/z B
J 1fE J
([ Mgy M1
reduces (2.1) to the form
+ *
Bor = 18 B
i B B,
By = ¥ By By
L x _*
Byy = 1By 8

The second canonical form may be obtained when one of MO’ Ml’ and M2
has a sign different to the other two. Without loss of generality, we
assume that M, and M, have the same sign while that of My opposes this.

Then the same transformation yields

Lok %
* *
- *x k
BZT = = 1 BO Bl .
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Within each system the variety of trajectories possible for the solution
vector (BO’ By» 32) can be seen to be a consequence only of the variety of
possible initial conditions.

It is possible to obtain some general information about the solutions
without having recourse to an explicit solution. In particular, we have

the following results:

(A) If MO’ Ml and M2 are not all of the same sign then the solution
always remains bounded.
(B) If My, M, and M, all have the same sign (positive or negative),

then most initial conditions will lead to solutions which become infinite

in a finite time.

Statement (A) is simple to prove. Suppose M, is of opposite sign to M,
and M,. From (2.1)

2 2
A A,
31.[1“91- I'F\%'l_}go’ for j=1and?2

| A2 ) |Ajlz ]AO(O)IZ . |Aj(m[2

nence WG R T T IMg] ]
g Ag(0)] 2 A.(O)Iz
Thus lAj(T)I < INEI [ I T + l%jl

and lAO(T)lz 5_‘A0(0)‘2 + min %;E%-IAI(O)IZ, %:g%-lAz(Ollz
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To prove (B) we use a geometrical argument which we give here. The
end of this is denoted by a block, thus ® . Equation (2.4) is equiva-

lent to
1/2
,i, X = [g F(x)] (2.6)

C o on? (2.7)

L

2
F(x) = x3 +2 ﬁ— - x(0) x2 + 2

" We except as a special case initial conditions in which only one wave amp-
1itude is initially non-zero. Equation (2.1) shows that this situation
is invariant, albeit unstable, a result which we might expect in the case
of Rossby wave propagation on a g-plane since a single linear Rossby wave
is a solution of the fully non-linear potential vorticity equation. Thus
we assume that at least two of the wave amplitudes were initially non-zero
and that Ao is one of them. Then, when MO’ Ml’ and Mz all have the same

sign, o® and N are positive. Thus F(0) = -2h2/N <0and F --> +%as x -->
+ <, This means that either one or three roots of F(x) = 0 must be greater
than or equal to zero and that for all x greater than the most positive
real root, F(x) is positive. Let us label the three roots of F(x) = 0 as

Xps X9s Xg. If all of these are real, then let us order them so that

If there is only one real root, let this be Xy -
We seek to prove first that the initial condition, x0§5>40), must

satisfy



A (2.8)

We know that x, must be such that F(xq) > 0. We also know that x > 0. When
X, and x5 are complex, F(x) > 0 for all x » x; and F(x) <0 for all
X < Xp. Thus x5 > Xq.

When Xo and X3 are real

F(x) <0 for X <& X3
F(x) >0 for X3 <X < Xy
F(x) <0 for Xo < X & X
F(x) >0 for Xy <X

Since F(0) < 0 , we must have either

(@) X3 <% <0<

In case (a) Flxg) >0 and x5 >0 fimplies that x> x). In case

(b) we must be a 1ittle more subtle. We note from the form of F(x) that

A o2 /N)

But cle > 0, hence

2x0>x1+x2+x312x2 .

Thus Xg > Xp- But F(x) < O when Xg & X & X and the inequality is strict,

if xo # x; and x5 < X < Xy, Hence x5 > Xg.
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What we have shown in proving (2.8) is that the initial conditions,
Xgs 1ie on a portion of F(x) that intersects the axis, F(x) = 0, at a
point x; > 0 to the left of Xq and tends to infinity to the right of Xg
without recrossing the F(x) = 0 axis. Figure 2.1 shows possible forms
that the curve F(x) may take to the left of X

Consider now what happens as the solution evolves from the initial
conditions. For all of the cases in Figure 2,1, if xT(O) > 0, then x
will march rightward along the curve F(x). After some finite distances
along the x axis, F(x) increases monotonically with x and is
asymptotically proportional to x3. If we integrate (2.6), we find that
the solution is given implicitly by

X
(202 (1 - 1) - [ (F(x)1"H2 dx

X0

3

where T. 1is the initial time. Since F(x) ~ x” as x -->00, we know that

0
o0
Jx {ZI—‘(x)]"l/2 dx is finite, equal to:7, say. This means that x --> oo as
0
T o> Ty + (22,
The other possibility is that x7(0) < 0. Then we must discriminate
between Figure 2.1 (a) and (b), on the one hand, and Figure 2.1 (c) and
(d) on the other, In the case of (a) and (b), the solution commences to

march leftward from Xg until it reaches Xq - Since F(x) crosses the

x-axis at a finite angle at x = Xy » the solution will reach x, in a finite

time, Tl, say. At x = X1 Xp 0, but XrT > 0 and so the solution turns
around to proceed rightward in the direction from which it has come. It

now behaves in the same fashion as the solution when xT(O) > 0 and
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F(x) (a) F(x) (b)

F(x) (c) F(x) (d)

X y X

Figure 2.1: Possible forms of F(x) in the region to the right of the
Targest positive root, xj3. In (a) and (b), F(x) intersects the
x-axis at a finite angle. In (c) and (d), x; is a double or triple
root.
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becomes infinite at some finite T = To. The solution is given implicitly

by
*0
@2 (1 -1y - S F)172 ax Ty<T<Ty
X
(@2 (1o 1) - jx FO0172 ax LT,
X
1

X
0

T, * (2n)~1/2 j F(x)17Y2 dx
]

-
([}

—
~n
1}

v
T, + (2n)71/2 I F(x)11/2  dx
!

The instance of a curve shaped like Figure 2.1 (c) or (d), in which
Xy is a double or triple root of F(x) = 0, and an initial condition,
XT(O) <0, is a little different. The solution starts tg move leftward
approaching x,, but because of the multiple root at x,, [xo[l’(x)]'u2 dx

--> ®0as X --> Xy ¥, taking infinitely long to actually reach X] - The

solution in this case is

X
0

@211 - J F012 dx, Ty« T <oo,
X
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Starting with an initial condition XT(O) = 0 corresponds to a case
in which x; coincides with x;. When F(x) has a shape as in 2.1 (a)
or 2.1 (b), the solution leaves x; and proceeds to infinity. If F(x)
has the shape 2.1 (c) or 2.1 (d), the solution will sit at x; forever,
However, this latter case corresponds only to the initial conditions
A (0) = 0 = A,(0) which we have excluded.

The shape of F(x) is determined by the full set of initial conditions
for the three waves, i.e., the complex initial values of AO, A1 and Az,
which determines 02, h, R(0) and RT(O). It is only for a rather special
subset of the initial conditions that the positive most root of F(x) = 0
will correspond to a double or triple root. We, therefore, conclude that,
for most initial conditions, the solution will become singular in a finite
time. W

A particular example of a class of solutions which will be useful

later, is the one in which the initial conditions are such that

90(0) + 01(0) + 92(0) = (2n+1)x/2

where oj(O) is the 1initial phase of Aj. Then %g> 9 and 9

remain constant and the amplitude equations reduce to the simpler form

n

RoT = ('1) MO Rl R2
n

RlT = ('1) Ml Rz RO
n

Equation (2.4) simplifies to
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Ror = (3 N Ry* + [o? - NX(0) 1 RZ + )12 (2.9)

Choosing n so that (-1)" M0 is positive, we can integrate (2.9) to obtain

-1/2

(2.10)
R0
M M -1/2
2 2 0 .2 2 2 0 .2
j [ - (G0 - 2 @i - (o -1 o) ]
1 2
Ro(0)
and the solution becomes singular at T = TS where
-1/2
T-Th = (MM,)
s 0 172 (2.11)
°° M M 1/2
2 2 0,2 2 2 0,2 -
j dr [[R - (Ro(o) - M—I-RI(O)>][R - (RO(O) - M—Z-R2(0)>]]
Ry(0)
If we restrict our initial conditions further, to the case where
2 2
Rl(O) _ RZ(O)
M Mo
then we can evaluate the integral in (2.11) to obtain
M -1/2
1 2 0 .2
172 1
(2.12)
M 1/2
Ry(0) + [R%(O) : M% Rf(o)]
In : Mo 5 7172
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M
if 20 > g2r%0), or
Te-T . 1/2[M°R (0) - R (o)] L
sT0 7 M) M1 0 (2.13)
(0)
%-- tan-! "o 1/2

M
2 2

Mo
if R (0) < R (0) i
1

2.1.3: A Global Stability Constraint

We can make an extremely plausible argument that a result derived by
Charney and Stern (1962) for linear stability problems should extend to
this particular non-linear problem of an unstable resonant triad, also.
We will demonstrate this here in the particular context of a two-layer
model although a more general result can readily be obtained. The theo-
rem of Charney and Stern is really a constraint that the conservation of
potential vorticity places on the possible classes of quasi-geostrophic
disturbances to a quasi-geostrophic flow., It should be borne in mind
that it does not explicitly consider the energy balance of the system as
some other stability constraints do.

We wish to consider the fate of perturbations to an equilibrium state

in which the upper and lower layers move with zonal velocities Ul(y)
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and Uz(y) when the depth is assumed to be independent of x. Decomposing

the flow into a basic part plus a disturbance
g [ ay i + g
j = - Y j y j o

the vorticity equations become, after dropping primes,

i
o

(ag *+ Uy 2,) q) *my dy,*J (8, qp) =

(3.1)

|
o

(g * Uy 3,) 0y * myy Byt J {8y, 0y) =

Now a3 is the potential vorticity associated with the perturbation and

T the meridional gradient of potential vorticity associated with the

jy’
equilibrium flow:

un

g + F Us

My - Yiyy

h

- = *
B -F US U2yy y

“Zy =

where Us = Ul - U2' The potential vorticity of the equilibrium flow is
just wj(y) in layer j.

Provided that our initial perturbation is made in a way consistent
with the conservation of potential vorticity, this conservation law

implies that, for the subsequent motion

qj = Trj (y - TIJ) - Wj(_\/, .

We will consider only disturbances whose streamfunctions and their first
two derivatives are uniformly bounded on the interval -oo< X <o, Defin-

ing a zonal averaging operation ( ) by
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L

- ) 1[

Z = Lim dx z ,
L ==>00 I-L

this latter assumption guarantees that

3y (any term involving multiples of n, ¢, u, vorq) =0

1 1 - 1
I dy W= f dy E‘%’j (Y-nj) - J dy aa_x wj(Y)
0 0 0

1 dﬂj
E dy Wﬁj (Y-nj)
0

L]

= S dy g'f' [ﬂj 11"]- ()’-nj)]
0
i
= at I dy nj “.j (y-ﬂj_) (3.2)
1 1 1
X 1 2 1
0 0 0
1 1
Similarly [ dy Voa, = I dy aZx FBl
0 0
1
Hence X dy (vlq1 + "zqz) = 0 , (3.3)

0
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which means that

1
g{' J Lnl Tfl (.Y‘Tll) + le TI'2 (.Y'WZ)J = 0 ’ (3.4)
0
L 2
i.e.,.[ dy >_ "33 ly-nji is conserved by non-linear, quasi-geostrophic
j=1
0 J

motions. This result seems rather elegant, although it is not clear whe-
ther any very general global stability criterion may be deduced from it.
However, for the particular triad instability with which we are
concerned, we can make an educated guess at a global stability criteri-
on, In doing so we need to make use of a peculiar feature of the triad
instability namely, that given an unstable set of initial conditions, the
same initial conditions reduced by any factor A lead to a similar, though
slower, instability. To see this we note that (2.1) is invariant under

the transformation

1

(AD, Al’ AZ’ E jf) — S (AAO, xAl, xAz, AT T) .

Such a transformation, since it affects each wave amplitude in the same
way, leaves the spatial structure of the leading order part of the dis-
turbance field unchanged. We can find perturbations that are as small as

we please and yet vary smoothly in y, which are unstable and will grow.

Since
1 1 1

g dy 7 onT = ¢ — 7

a-f Y nj'“'j Y-l‘lj = a_t- dY HJ- ﬂj(y) - ‘r]j “Jy(y) .
0 0 0

and
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i 177 .
By = - oy (ymg) = -9y Lag g+ 3y (Vynp)]
17 173 3
= - 3y<3t > nJ + By [3t 5 'r|;| + 3y (anJ)])
we have that
1 1 1 T 1
1 T y-nj Iy "y mi
3tj dy gms{y-ng) = o[- ZJ nymiylY) +I “J‘f dy[ dy*[ dy Tiyyy Y
0 0 0y y
1 - 3
F[ovgng Ty ()

2
3
ot sup[ngy| + sup|v;[)(sup|n )7 sup([wy o (]

1f it could be proven that the perturbation solution that we have
developed is a truly asymptotic solution with the amplitude as a small
parameter, ¢, say, then we could argue as follows. From the
transformation noted above, for a particular choice of spatial structure
for the leading part of the perturbation (i.e., a particular choice of
wavenumbers and initial amplitude ratios, A;/A; and AZIAO) the

right-hand side of the above inequality can be put in the form

where R is a finite positive constant independent of the amplitude e.

The left-hand side may be written



Jy

[
il
—

where
nj = Eﬂj + 0(82), t = €T,
and

| @ | < a finite positive constant S, independent of &

Note that it is the assumed asymptotic property of the pertrubation
solution that allows us to assert that S and R are independent of «.

We see at once that under such circumstances that the equilibrium
flow cannot be unstable to small finite amplitude triads of the sort
discussed above if iy does not change sign within layer j and both
My and Ty have the same sign.

Unfortunately, 1 am unable to prove that the perturbation solution is
also an asymptotic solution so that the applicability of the Charney-Stern
result to this form of instability must remain a conjecture only. In more
heuristic terms, we have said that, in view of the ability of the insta-
bility to persist for arbitrarily small initial conditions, we expect the
stability theorems of linear theory to extend also to this class of dis-
turbances. Consequently, we can only expect to find unstable resonant
triads of neutral waves in a case where the basic state also exhibits
Tinear normal mode instabilities. Note that we have not established a
stability criterion for any types of finite amplitude instability which
involve exceeding an amplitude threshold as a necessary condition for

their growth,
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2.1.4: Dynamics of a Resonant Triad in a Two-Layer Model

In this section, we will first of all demonstrate that the amplitudes
of a resonant triad of weak Rossby waves in a vertically-sheared, two-
layer model do evolve according to equations of the form (2.1) and derive
expressions for the interaction coefficients Mj which are given as (4.12)
below. Since the principles involved are by now well established (see,
for example, Longuet-Higgins and Gill, 1967) the presentation will be
brief. After this, the discussion will turn to the energy balance in the
two-layer system.

We will consider a two-layer model similar to that discussed in Sec-
tion 3 but without any meridional variation. Thus we will take hy =0

and 1ook at the stability of an equilibrium flow in which the zonal veloc-

ity is uniform in each layer. For convenience we take,

The perturbation potential vorticity equations become (c.f., Chapter 1)

[l
o

(3 + Ua,) (V%) +F (9, - 601+ (8 + FU) gy, + 3 (8, qp) =
(4.1)

I
o

2, 929, + F (8] - 8,01 + (8 + FU) 4, *+ 3 (4, qp) =

with 9 being the perturbation potential vorticity, as before. The

eigenmodes of the 1inear problem are just (Phillips, 1954)

ik{x-ct)

(4, ¢2) = (1, v) sin nmy e * 50 (4.2)

where
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1/2
g %—U - [a%(a? +2F)]'1(B (a +F) + m [s %2 } I‘U 5" (4F2- )] ) (4.3)

& = %
mJ 1

vy = (% + F)/F - (8 + FU)/(U - c) (4.4)

When 8 < FU, the potential vorticity gradient of the lower layer be-
comes negative, the conditions of the Charney-Stern criterion no longer
hold and the flow need not be stable. The dispersion relation (4.3) shows
that unstable modes do exist when & < FU provided that F > 72/21/2,
i.e., provided the channel is not too narrow.

We wish to follow the evolution of a triad of neutral waves of small
ampl itude ¢ and we expect the amplitudes of these waves to vary on a time-

scale e‘l. Accordingly, we shall look at a disturbance of the form

8= (4, dp) = ¢ (#0), ¢{0)) + 2 (g{1), g1y v . (4.5)
2 ik. (x-c.t)
¢‘°’ 60, 801 - % A (1rde 3 3 sinnay +c.c.
j=o
(4.6)
ikj (x-cjt)

where each of the three waves (1, yj) e sin njny is a neutral

mode of the linear problem. We have introduced a slow time variable T =
et and assumed that the amplitudes of the waves Aj(T) vary on the a'l

time scale. If we insert (4.5) into the non-linear equations (4.1), we
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obtain, since ¢(0) is just a superposition of linear solutions,

‘ [(a +0a ) (92 1) + F Lgf)gfV) + (5 ¢ FU) ¢“’]

- e [ ar a0 - g0, q{‘”]} 0(e?)
(4.7)
[ 21+ F {Dg{DD) ¢ (s + ) ¢‘”]

= ¢ [- e qéO) - o [¢(0), q§0)]] 0(52)

whore q:(i()) =V2 ¢§0} +F (_1).]' [¢{0)_¢£0)]_

The 1inear operator on the left of (4.7) is singular, since we know
it possesses non-trivial eigenmodes. In order that (4.7) be well-posed,
the terms in 0(c) on the right-hand side must be orthogonal to the adjoint

solutions of the linear problem. This amounts to a secularity condition

1
ik_(x-c_t)
I dy l{dx jdt e P P sin n, ,y‘[ﬁ%eg.[aT q{O) . ] (¢(0)’ q{O)}]

(4.8)

2o ql® vy (g0 g o),]:|
By 2

ik_(x-c_)

for each normal mode e P P'sin np Ty (1,Y )} of the 1inear system.

Herej-dx is to be interpreted as Lim f dx and [dt as Lim l—s“ dt
2L 2
L-->c0 e-->0 -
for some a, 0 < a < 1.
The x and t dependence of the Jacobian terms will be carried by terms

proportional to exp[* i (kx-ot)]. Where the advection of one wave's
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potential vorticity by the velocity field of a second wave, produces a
component whose total horizontal wavenumber and frequency match that of
the third wave, that component will be resonant with the third wave and
will be able to interact with it relatively strongly. It is this sort of
dynamics that we wish to describe so we will assume that the three waves

satisfy a trio of relations of the form

A
ko * kl : kz =0

/

For simplicity, we assume that the trio satisfied correspond to the choice

of positive signs everywhere

2

zZ k.=0

j=0 9 )

. )

E n. - 0 (4010)
j=0 Y

2 /

Ezﬁ kj cj w 0

In general, not more than one of the possible trios of relations (4.9)
will be satisfied and we will assume that the particular wave triad that
we examine conforms to this generality. For a fuller description of the
nature of resonant interactions between waves in quadratic systems, the

reader is referred to McGoldrick (1965).
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For a triad satisfying (4.10) there are only three non-trivial, inde-

pendent conditions of the form (4.8) which are obtained when kp = -kj,

etc., j =0, 1 and 2, 1If we substitute for q{O) qéO), ¢£0) and déO),
in (4.8) and perform the integration with respect to t, these conditions

may be written

1
-ik.x ik;x
i 1 g+FU _. J
‘0 dy Idx (e sin l'lj Ty X U'_—C?[Aj-l- U:-‘C—J_-'S'In ﬂj ny €

-1k, x a+FU -1kmx

* * ] . "
A1Am J (e sin n, =y, U-cm e sin n_ny )

+

-ik x -ikqyx
J (e M sin Ny ™Y s 6;%%- e 1 sin nlwyj) ]

4

+

Y jk.x
J g-FU _. J
c—j [Yj AjT —-——cj sin rlj Ty e

-ik_x

+

* *
A.IAm 1% (s-FU) (-J (e sin L. ny)

-ik_x -1k, x
J(e m sinnmwy,%:-i-e 1 sinn1 w))] )

for each j = 0, 1,2, with 1 and m defined such that (j, 1, m) is a cyclic

sin Ny i——e
m

+

permutation of (0, 1,2). From this it is apparent that the secularity

conditions will reduce to a form
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A = iMj AM*A* s J =10,1, 2 (4.11)

v

The Mj's are real constants which can be calculated and take the form

M"—"-“(kn-k )[ B+FU _B-FUYYY
j Z %" T B! | TS TT0-e ITU=C,) CotiC, T0MT2
(4,12)
2
Y5 -1
x B + FUZ + _.%_ (B - FU)] (cm - c.l)

Note that (kzn1 - klnz) = (kon2 - kzno) = (kln0 - konl). Thus Mj may be

written
-1
Mj =0Q Rj (cm-cl)

T g + FU g - FU 8
where Q = (kgny - kyng) [(u-co) WG, ~ Cec, "071*2] and is

independent of j, while

2
Y

Ry = E2FL v J oo
(U-cj) c;

In this case we can verify the application of our stability criterion
directly. Recall that the results of Section 3 showed that the resonant
triad instability, corresponding to a triad with MO’ Ml’ M2 all of the
same sign, could not occur when the potential vorticity gradient was
everywhere of the same sign, i.e., when (8 + FU) and (8 - FU) have the
same sign. Under these circumstances, R; may take only one sign, irre-

J

spective of which wave ; is chosen. Since

J



76

(c2 - cl) + (c0 - cz) + (c1 - co) = 0

.'s cannot all have the same sign.

it immediately follows that the MJ

Energy Balance

We can obtain an energy equation for the perturbation field by multi-
plying the potential vorticity equation for the jth layer by ¢j, sum-
ming the two, zonally averaging, and then integrating between y = 0 and
y = 1. The result is,

1 1

sk | dy Ova |7 +[96,|° + Flg, - 8,)°1 = WF ] Iy 6,%,,
0 0

The term on the right represents the exchange of energy between the per-
turbation flow and the mean flow via the baroclinic conversion of energy
due to heat fluxes associated with the perturbation. To leading order,
the perturbation energy is just the sum of the energies of the three neu-
tral waves. Note that the net non-linear exchange of energy between these
waves is zero, i.e., direct wave-wave interactions conserve the sum of
the energies of the three waves. However, each wave in the triad can
exchange energy with the mean flow through the baroclinic conversion
mechanism. At first sight, this seems odd since each of the waves is a
neutral solution of the linear problem, to leading order in e. A heur-
istic explanation of what is happening goes something as follows. If we
calculate 9(1), the solution of (4.7), we find that the non-linear
interaction between each pair of waves forces a small correction, 2(1)’

to the Fourier component of the streamfunction with the wavenumber of the
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third wave. This correction has neither the same phase nor the same ver-
tical structure as the neutral mode of that wavenumber so that the sum of
the neutral wave plus the correction term exhibits a small, 0(e), phase
shift between the upper and lower layer streamfunctions. This is pre-
cisely the condition that the wave must satisfy if it is to have a non-
zero heat flux associated with it, the latter being proportional to ¢1¢2x'
In the absence of any meridional temperature gradient (or equivalently,
vertical shear) in the basic state, this heat flux does no work and so
the triad as a whole neither gains nor loses energy. However, when we
have a meridional temperature gradient, the triad members can exchange
energy with the mean state. Such exchanges can be either oscillatory, as
when Mo, My and M2 have differing signs, or can lead to a net extraction
of energy from the mean state, when MO’ Ml’ and Mo have the same sign.

By projecting the potential vorticity equations onto the three wave-
numbers of the triad elements and then multiplying by that Fourier com-
ponent of the streamfunction, we can obtain equations for the energy

balance of each Fourier component of the form
E; = v, + T, (4.13)

1
1 T 72 T, 2 T2
Here E; = 7 L dy |9 8% +[g" ) g f ¢ F (Vg - W )2 i the

energy of the Fourier component, (j)¢ .

v. = FU { dy tJj¢1IJj¢2x is the rate at which the jth component

exchanges energy with the mean flow and
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1 1
(J) (J) '
Tj = jo dy ¢1 J(J) (¢1, ql} = jo dy ¢2 J(J) (ﬁz, qZ)

is the rate at which the jth Fourier component exchange energy directly

with the other wave components, J(j) (a,b) is the projection of J(a,b)

onto el Kj*,

Ej is of 0(32) while Vs and Tj are of 0(33). Ej is changing on the
long time scale O(e’l}. If we rescale, Ej, 5 and Ty to be 0(1) (4.13)
becomes

3 Ej = vj + TJ

To leading order the scaled E; = 1/2 [nj2 2+ ke + F(l-v, )21|1n\j|2 and its
rate of change may be calculated explicitly, using the amplitude equa-

tions, to be

£y = My 6 of v K2+ F ()] 1 (AgAAy) (4.14)

aTj

One can also calculate Y and Tj to leading order., These are

mw
Ty = 7 In (AgAjAy) (kgny = Xqng)

1 1 1 1
X [(B-FUNET - c—“-") ‘{j“qu - {(g+FU) (U:-E]-- u‘_c—m)] (4.15)
¥ (87<F ") o+ FU L] -
cj(U-cj) (U-cj) cj

cj cj U--cj U-cj
" [m‘“ ) - o, - U'_CT)} (4.16)
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One can verify directly that Tj+vj = 37 Ej. Note that although Im (AOAlAZ)
occurs as a common factor, a three-wave state in which the sum of the
phases of Ao, As and A, is an integer multiple of = cannot be a steady
amplitude solution when MO, Ml' and Mz are all of the same sign. (When
MO’ Ml’ and M2 have differing signs, one can find such constant amplitude
solutions in which the phases of AO’ Ais and A, are steadily rotating.)
Thus far we have noted a possible mechanism for triad growth and ex-
plained that this cannot occur unless the triad is such that Mg» M
and M, each have the same sign. We have not yet shown that it is pos-

sible to find triads which satisfy this condition.

2.1.5: An Example of an Unstable Triad

To establish the existence of an unstable resonant triad, we must
first locate a resonant triad using the dispersion relation of the linear
problem in conjunction with the resonance conditions (4.10), and then cal-
culate the values of Mj using the formula (4.12). This is a little tedi-
ous, but if we do so, we can readily find examples of unstable triads.
We will give one example here.

For the choice F = 20.0, U = 1.0, 8 = 14,14, one can verify, from the
dispersion relations that the following wavenumbers correspond to a

resonant triad:

Wave 0: k = -1.90624, n=1, m=-1
Wave 1: k = 5.27, n=1, m= -1
Wave 2: k = -3.36376, n=-2, m=+1
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To distinguish between the two possible vertical modes corresponding to
the choice of sign for the root in the dispersion relation (4.3), we have
specified a "vertical wavenumber", m, equal to # 1 where the sign matches
that chosen in the dispersion relation. Using (4.2) one can calculate

the interaction coefficients, these take the values,

My = 10.381, My = 4.740, M, = 1.745

Each of these is positive, so this triad is an unstable triad.

In view of the algebra involved it would be reassuring to have an in-
dependent test of the results. Such a check was made as follows. Using
a simple spectral scheme, the non-linear, quasigeostrophic potential vor-
ticity equations were integrated directly after 1imiting the zonal Fourier
spectrum to just three wavenumbers, the three listed above. The initial

conditions used specified amplitudes for the three waves of the form

Ay = 172 ein/2

1/2
Ay = (MmN (5.1)
A, = (MZIMO)I/Z N

where N was chosen to be

1/2 1/2

N = D 2Y2 + 1)/ t727 x 1073 (5.2)

The small amplitude theory of Section 2.1.2 predicts that, for initial
amplitudes of the form (5.1), the trajectories controlled by (2.1) will

become singular at a time T, given by (2.12). Substituting (5.1) in
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(2.12) and setting the initial time equal to zero, yields
-1/2 -1 1/2
T = (MM,) N In (2475 ¢ 1)

In view of (5.2) this means that T, =1000. Since T, is significantly
larger than the periods of the neutral waves, which for the chosen triad
are T0 = 10.073, T1 = 6,660 and T2 = 4.009’we can expect that the numeri-
cal results will start by following the asymptotic theory. Differences
between the full integration and the small amplitude theory should only
become apparent when the wave amplitudes, which are initially 0(10’3),
become 0(1).

Figure 2.2 shows the results of the numerical integration over the
interval 0 < T < 950. The quantity plotted is the total energy of the
perturbation, The results seem to bear out the prediction of the small

amplitude theory rather well, the difference between the numerical and

the asymptotic results being less than one percent at T = 950.

An interesting feature of this triad is that the total square wave-
number of wave 2, namely (3.363?6)2 + 4w2 = 50.793 is larger than 2F (2F =
40) and so this wave lies outside the range of waves that are unstable
according to linear theory, even when 8 = 0. The triad instability allows
not only stronger growth than the linear theory but also a larger range

of wavenumbers that can extract energy directly from the mean flow.

2.1.6: The Range of Unstable Wavenumbers

Because of the algebraic complexity, both of the resonance conditions

and of the formulae for the interaction coefficients, it is difficult to



82

16

0 400 800

TIME (t)

Figure 2.2: The evolution of the total perturbation energy of an
unstablTe neutral wave triad over the interval 0 < T < 950. The triad
is the one discussed in the text and the figure shows the results of a
numerical integration of the potential vorticity equations.
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calculate the extent of the range of wavenumbers that can be involved in
unstable triads. Instead, we have chosen to map the extent of the unsta-
ble domain in the case of two particular triads as an example of what one
might expect. This was done by fixing F = 20.0 and U = 1.0, choosing a
value of g between zero and the maximum value at which the triad insta-
bility can occur, By = FU = 20, choosing a particular trio of merid-
ional wavenumbers and vertical structures, and then computing the locus
of resonant triads formed by these waves as one varies the zonal wavenum-
bers, At the same time, the interaction coefficients were also calcula-
ted. The regions in which one can find unstable resonant triads of lin-
early neutral modes were then mapped on a plane whose coordinate axes
correspond to total, squared, horizontal wavenumber, and 8. These maps
are shown in Figures 2.3 and 2.4. The marginal curve of linear theory is
also shown.

In Figure 2.3, the waves making up the triad have the following vert-

ical and meridional structures:

Wave Q n = 1 m = -1
Wave 1 n = 1 m = -1
Wave 2 n = -2 m = +1

In Figure 2.4, the vertical and meridional structures used were

Wave 0 n = 1 m = -1
Wave 1 n = 2 m = +1
Wave 2 n = -3 m = -1
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Figure 2.3: A map of the areas in the (s , a2) plane in which may
be found neutral Rossby waves that are elements of an unstable triad
in which the waves have meridional structures given by n = (1,1,-2).
The vertical structures of the three waves are assumed to be given by
m = (-1,-1,1). Three regions are shown shaded, two of which overlap,
Region Dj corresponds to possible values of a%. Given _a

J ;
particular value of g, for each choice of ag in Dj one can find

a pair of values (aE , a%) lying in Dk X 01 (14.k,17] = #

cyclic permutation of [e,1,2]) which complete an unstable resonant
triad. Note, for 8 < 12.95, there are no unstable triads with this

meridional and vertical structure.
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Figure 2.4: A similar map to that in Fig. 2.3, but with n = (1,2,3)
and m = (-1,-1,1).
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For each wave, a range of total wavenumbers that can be involved in an
unstable triad is marked on the appropriate figure. For each choice of
wavenumber in the unstable domain marked for a particular wave, one can
find an unstable triad for which the horizontal wavenumber of that wave
has the value chosen. The horizontal wavenumbers of the remaining waves
will then lie somewhere within the unstable domains marked for those waves.

The distinctive feature of these plots is that the range of unstable
wavenumbers for the triad instability extends beyond the short wave cutoff
of the linear f-plane theory. Since the cases considered are merely arbi-
trarily chosen examples, it is likely that there are unstable triads, with
different vertical and meridional structures, for which the range of un-

stable wavenumbers extends even further into the short wave region.

2.1.7: Concluding Remarks

Linear theories of baroclinic instability overlook a class of nonmodal
instabilities which depend on weak non-linear interactions between "neu-
tral modes" of the linear theory for their ability to extract potential
energy from the basic flows. These take the form of a growing triad of
waves whose rate of increase is "faster than exponential", until the triad
amplitudes reach 0(1) levels at which the small amplitude theory becomes
invalid. These instabilities can be triggered by initial conditions of
arbitrarily small amplitude although, unlike linear instabilities, the
growth rates are proportional to the disturbance amplitudes and so are at
first very small, if the initial conditions are weak.

Although they are non-linear in nature, it seems likely that this

class of instability is obedient to the Charney-Stern criterion for
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stability. Thus, for the two-layer model considered, the triad instabil-
ity can only exist when linear instability also exists. It remains an
open question whether there exist other forms of non-linear instability
which are not constrained by the Charney-Stern result. For any such
instabilities, there will probably be an amplitude threshold that must be
exceeded before growth can occur,

0f the two types of instability, the growth of linearly unstable modes
with 0(1) e-folding time scales can be expected to overshadow the triad
form of instability. Crudely speaking, if one starts with initial ampli-
tudes of 0(e), then the linear mode will reach an 0(1) amplitude in a time
of 0[In(1/¢)], while the non-linear instability will take a time of 0(e'1)
to achieve the same result. Triad instability, at least in the particular
model discussed here, is of only secondary physical importance. However,
it remains an interesting phenomenon by virtue of the novel mechanism
responsible for the instability and of the more extensive range of wave-
numbers that may be excited.

Because of the quantization of zonal wavenumbers present in annular
models of baroclinic instability, it is only in very special cases that
one would expect to see such triad instabilities. However, for a basic
flow in which the zonal scale is much larger than the internal deforma-
tion radius, one might expect such instabilities to occur. This has some
consequences for attempts to numerically follow the finite amplitude evo-
lution of an initial disturbance to such a flow when the flow is only
weakly supercritical. In a spectral model of such evolution, the prac-

tical requirement that one truncate the zonal wavenumber spectrum effec-
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tively imposes an artificial quantization condition which may go some way

towards suppressing such instabilities.

Although non-modal instability has been discussed here in the context
of a baroclinic model, there seems to be no reason why growing triads can-
not occur in cases of barotropic shear flow,

For a particular triad, the domain of instability is bounded. In ef-
fect, there is a boundary analogous to the marginal curve of the linear
instability problem. For triads only slightly inside this boundary, the
flow is, in a sense, only slightly supercritical and the growth of the
triad should be less intense. We may, therefore, be able to construct a
finite amplitude theory of weakly growing triads, analogous to theories
describing the weakly finite amplitude evolution of linear instabilities,
such as that of Pedlosky (1970). It will be interesting to discover whe-
ther alterations to the mean flow become significant for slightly super-
critical triads and whether it is possible to find equilibrated solutions.
For triads that are a 0(1) distance from a stability boundary, the correc-
tions to the mean flow that are induced by the growing waves are unimpor-

tant until the triad amplitudes become of 0(1).

2.2: Interactions Between Two Neutral Modes and a Weakly Unstable
Mode Away From Minimum Critical Shear

Loesch (1974) demonstrated that a slowly growing unstable mode that
lay close to the marginal curve but at a point some distance from minimum
critical shear, could interact with a pair of neutral waves, via a reso-
nant triad interaction, on the same time scale as that of the former's

interaction with the mean flow. This situation was not, however, consid-
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ered in detail. We take up this topic again here because we are curious
about the "stability" of the equilibration mechanism studied by Pedlosky
(1970). As we noted in Chapter 1, in that work Pedlosky demonstrated
that a slowly growing mode could be equilibrated as a result of the
changes in the mean flow wrought by the evolution of the unstable wave.
This is a rather important demonstration: The question we wish to pose
here is, how this equilibration is affected by the presence of neutral
Rossby waves, We will show in this section that, away from minimum crit-
ical shear, the presence of Rossby waves can destabilize this equilibra-
tion process. However, in the more physical case in which the unstable
wave lies close to minimum critical shear, which we shall consider in
Section 2.3, we shall see that this sort of destabilization seems

unlikely.

2.2.1: Evolution Equations

The two-layer model we will use is exactly the same version of Phil-
lips' model as that used in Section 2.1, the potential vorticity equations
for which were given by (4.1) in Section 2.1.4., We will consider a dis-
turbance dominated by three zonal Fourier components. The leading order
part of each of these will correspond to a normal mode of the linear sys-
tem and the amplitudes will be taken to be small so that non-linear inter-
actions between the components are weak (although non-negligible). We
choose a value of g that is less than the maximum critical g (am say)

for instability, and decompose this as

B = B. - A (1.1)
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Here Be is 0(1), 0<a <<l and Be < Bpe We take one of the prin-

cipal zonal wavenumbers, k to correspond to a mode which is mar-

0!
ginal when g = 8. so that for the value of s given in (1.1) this mode
is slightly supercritical with a growth rate of O(Al/z). The remaining

two principal zonal wavenumbers, k1 and kz, we take to correspond to

neutral waves lying a 0(1) distance from the marginal curve.

The evolution time scale of the slowly growing wave is 0(:.\'1/2) so

we define a slow time variable, T = Allzt, and treat the perturbation

quantities as functions of both t and T. We therefore replace 3, by

3, * Allz 37e Loesch showed that the natural scales for the three

t
waves were as follows: the amplitude of the unstable wave should scale as

Allz, while the amplitudes of the sidebands scale as A3/4.
With our definitions of 8 and the time variables, the potential

vorticity equations become

1/2
(a, *Ua, ) gy * (8, *+FU) By, =-a"" 2;p q - (8, q) * 2 ¢y,
(1.2)
2 + (8. -FU) 4, = IRV q, -J (8,, q,) + 2 ¢
t % 7 '8¢ 2% * T % 2> %2 2%
We expand the streamfunctions in the forms
2 s
=1 (1.3)

(3)y [Aj(T) (9 1), Wy, i1 + a2/2 ({1 1), (900 (y.m]

~

e J +* forj=0,1,2



9l

In what follows, we obtain equations for the evolution of the Aj's. These
may be found as Equations (1.15) below. We assume that the three princi-
pal waves are resonant and that their wavenumbers and phase speeds satisfy

the following relations

2
EEO (kj, kjcj) = (0, 0) (1.4)

A third constraint, which deals with the meridional structures of the
waves, must also be satisfied for the resonance to occur. This will be
discussed later. We make the assumption that combinations of the wave-
numbers and frequencies other than those appearing on the left side of
(1.4) do not simultaneously sum to zero and satisfy the meridional con-
straint, an assumption that will generally be true. The non-linear terms
in the vorticity equations will give rise to both resonant and non-
resonant forcing. We have neglected the non-resonantly forced components
in writing the streamfunction expansions (1.3) as these do not affect the
evolution of the Aj's on the 0(a~1/2) time scale.

We substitute (1.3) into the vorticity equations (1.2) and obtain a
1/2y

series of differential problems at different orders in a. At 0(a

we have a linear problem for the meridional structure of the unstable wave

|
o

2 2 (0) (0) (0)
(U -cq) [(ay-kO-F) Yt F 1’2]+(BC+FU) “Pl-
(1.5)
[(ag k2o F) Oy v Oy e - ruy (O,

i
o

..CO

whose solution is

(0)«p = (1, 10) sin g my

-~
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c0 < 3 _ Bc (ag /F +1)
A Y al/F (ab/F + 2)

ac/FU ¥ 1
w=F "l o

where ag = kg + ng uz. We will restrict our attention to the case where
tne marginal mode has the gravest possible meridional structure, ng = L
At this order, the perturbation potential vorticity associated with

this Fourier component is given by

(0). (0) 8e *FU 0y, B¢ -FU (q)
( q1, qz) = <} U—:j:;- ﬁl’ -—ji;—- ¢2

Be * FU 8. - FU

= (— T-¢ " % yo> Ay sinng ny e

+ *

At 0(63/4) we find a linear problem for the meridional structure of

the two neutral waves., Their modal structure is given by

Uy . :
,f = (1, yj) sin nj Ty
2 2 4 4
B B. a 8 a. a; 11/2
O B e L ] F vk s 22
a;/F (aj/F +2) Fe U

BC/FU +1

2
Yj=aj/F+1-1—_Ej70—
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Note that mj is a quantity analogous to a vertical wavenumber in this
low vertical resolution system. It may take either of the values # 1 and
one is free to choose wnich, Having arranged the zonal wavenumbers so
that the resonance conditions are satisfied for a particular choice mss
one will not in general be able to satisfy the resonance conditions with
the alternative ms.

The meridional structures of the principal waves are trigonometric, a
consequence of the meridional umiformity of the basic state. 1In order
that the non-linear interaction product of two waves should have a
non-zero projection onto the third wave, an additional resonance
condition must be satisfied. There are several equivalent forms for
this. We will take it to be

2
Z n’=0 -
j=0 3

We will jump ahead of ourselves a little and consider the vorticity

5/4,

equations at O0f(a After projecting onto the Fourier component

eiij (j = 1,2) we obtain

(3).(1) 1
Ly '8 " TRy

1 [ (3). (0) (0),(0) (3').(0) (3*).(0) (0). (0)
= s O C NS U Tl -3y (e ey )}
1 [ . (3). (0) (0),(0) (3').(0) (3'),(0) (0). (0)
e gt Tlag ) -9y e T )J

where i'=3-13],
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ik.x
J(j)(a,b) is the projection of J{a,b) onto e

and

2 .2 Bc + FU
Loy - kj - F’«Pl i Ff¥;] ' ‘U‘:‘Eg‘7L1

L (¥}, ¥,)=

2 2 B¢ - FU
(a2 - k3 - F) Y, + FY)0 - 5 Y

After evaluating the Jacobians, the equation for (j)ﬁ(l) becomes

- f “
where
\
B, * FU B+ FU . . o«
e ? M w7 R Ay g Kol o - o)
h]

g - c ing ¥ % 1 1
o e Ajp * 7 Ag Ay Yoy (kgny» - kj‘"O)(E'jT' —CE)
\ J i

Since Lj is a singular operator (1.8) is soluble only if the forcing

satisfies the secularity condition

1
J dy ([J}Y’l (J)Rl + (J)WZ (J)Rz) =0
0

from which we obtain an equation governing the evolution of Aj, viz.

M. A A (1.7)
Ay = Wy By o :
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where
-
B FU B. - FU -1
c + c Z T
Mj = (U-c.)z + c? y%] 5 (co-cj.)(konj. - kj‘no) X
- J J
(1.8)
i B. * FU 8. - FU
X L - YAY1Y i—
The potential vorticity equations at 0(a), when projected onto e]kox
give an equation similar to (1.7) for (0{9(1), namely
(0) (1) 1 ( 1 (0) (0) 1 )
L g = 3 3 q ', =— (0)_(0) (1.9)
0 ~ kg \U - o T 1 Cy 237 a5

The secularity condition for this is empty, since < corresponds to a
marginal wave, and we can proceed to solve for (0)¢(1). We normalize

this solution by choosing (0)¢§1) = 0. Then

B. - FU

c .
——5= g AOT sin Ng ™Y

(0)4(1) _ 1
E 0 F CO

The linear operator in the full potential vorticity equations involves x

and t derivatives at each term and so admits of a homogeneous solution

¢'—' é (er)
for a § of arbitrary dependence on y and T. We must include an homogene-
ous solution of this form at 0(a) even though there is no direct forcing
for it. We will see that it is indirectly forced by the secularity con-

ditions of the 0(A3/2) problem.
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It is at 0(A3/2) that the evolution of Ag is determined. If we
consider the 0(A3/2) part of the potential vorticity equations, we find
that the non-linear terms and the slow time derivatives contribute two
types of forcing that are resonant to the linear operator. The first of
these consists of terms that are independent of x and t while the second
type is composed of terms that are proportional to eikox.

Collecting together the terms in the 0(53/2) part of the potential

vorticity equation that are independent of x we find that

B * FU .
0=-a;0Q - ngm — ([Ag[*)y sin 2 ny ny
8. - FU
c e 2 .
0= - 3 0 - ngr <=5— g (|Ag]*)7 sin 2 ny ay
0

where QJ.,E 35 ij v (-1)9 F (§1 -§2), is the potential vorticity asso-
ciated with the correction to the mean flow. If we use initial conditions

that consist only of the basic state and the three principal waves, then

Be * FU

O = -G = - gt ——y [T 2 - |Ag(0)| 21 sin 2 ng xy
-Cq 5

Thus

2+ - o

We have initial conditions é% = 0 at T = 0 and boundary conditions

ay 3T‘§j =0aty =0 and 1, hence
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T B FU 2n.
= 0 5 £ 5 {IAOI2 - ]AO(O)IZ] [sin 2ngmy - 0 sh-ﬁE?'(y-l/Z) }
g YZF VF72
We now go to that part of the 0(A3/2) potential vorticity equation
that is proportional to eikox. This forms a forced linear problem
for the 0(A3/2) correction to (O)ﬂ which, abstractly, is

(0),4(2) i
L0 ] =-1ﬂq;

i + FU + FU
1 (0) (1),[5% (1) (2) (2), (1)

o ((o)¢{o),(0) (1)) 4 g, (D) (010, ] b iy (0(0) ]

1 (0)4(1)_[%c = FY (10, (205 & % =PV . o2y, 1)
:EE"['aT % '[“‘7@;"3(0)‘ bos W) ¥ =Yl e %)

(0) (0) (0) (1) " (0) (1) (0) (0) " (O) (0)

.

Writing this as L, MR . L g (1.10)
~ 0 ~

and evaluating the several forcing terms we find that

1 NACS A g, B * U 1
= - - A sin nany + ik sin n,ry
1° Ucy |~ TRy \™ c2 (Ucy) (u Co’ oTT 0 oho 0
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K o D O
) (U=c; TTU-C,) AjAg sin ngmy

1k
+ 7 (BC + FU) (klnz -

+ FU
- ik, (Qly U._--—_ i’ly)Ao sin nqry

1 1 Be - FU x ; ,
R2 = = I % Yo AOTT sin nyry # 1!!.0 YOAO sin ngry

in

Bc - FU ]
- iko 0 sz - ——CE—-— éZy AO sin nowy

Unlike the 0(a) problem, the secularity condition for (1.10) yields a non-

trivial relation and provides us with an equation governing the evolution

of AD’ namely

2 2
i

Agrr = K2 € Bg - Kohrhy - Nohg ([Rg]% - [Ag(0)] %) (1.11)

where

2 2 2
C% = Co - Uic B "'OFU UEC * Fc 0] (1.12)
0 0| ¢c 0 0
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. "k kn )¢ ) Bc- FU Be + FU
= n - n C4-=C —_— YAY1Y =
07" ‘172 2'1'Y172 Cot1Co 0'1'2 (U;co)(U-cl)(U-cz)

2
, eyl 1, (a2+F) Y LAY
5, ¥ FU T A :

20 X
F+2 now g. *+ a“U (1.14)

22
2n-n" /F 1/2
x| 2 (aZ-F) (F+2nng) + (2F2-a4) <i+2 0 7 tanh (F{§% )
1+2 now JF (F/2)

Equations (1.7) and (1.11) form a closed set and determine the evolu-

tion of AO, Al, and Az. For ease of reference, we collect them here,

2 2 * x 2 2
At = kg <5 Ay - Ko Aty - Ng Ay ([Ag]” - [ A(0)])
. * %
. * *
Ayr = 1 MAT AY

In the latter two equations of this set we recognize relations that
are typical of the usual form of triad interactions between neutral waves.
The first equation is similar to the equation governing the amplitude of a
weakly growing wave in the single-wave theory, modified only by the inclu-
sion of a forcing term arising from the non-linear interaction between the
two sidebands, - KO AI A;. The constants Ng and kg c? are independent of

the choice of sidebands. They are the same constants that occur in the
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evolution equation of single-wave theory for a slowly growing mode at

wavenumber kO'

2.2.2: Asymptotically Unstable Trajectories

From the single-wave theory of Pedlosky (1970), we know that the term
-NoA, (]AOIZ-IAO(O)IZ) in (1.15a) represents the stabilizing effect of
the alteration to the mean flow produced by the growth of the unstable
wave. In the single wave theory, this effect is sufficient to ensure that
AO remains bounded and causes AO to vacillate in a regular, periodic
fashion. One might wonder whether the inclusion of the interaction with

the sidebands, i.e., -K AI A;. can destabilize this equilibration pro-

0
cess and lead to an unbounded increase of Ag (within the current order-
ing scheme). We will show that for this system, such a finite amplitude
instability is indeed possible.

Although the system of equations (1.15) looks fairly simple it is dif-
ficult to obtain a general analytical solution. What we shall do in this
section is show that there are solution trajectories which approach
infinity and find the large-amplitude asymptotic form of these. In Sec-
tion 2.2.3, we shall give an example of a numerical integration of (1.15)
which exhibits a finite-amplitude instability and tends asymptotically to
such a trajectory. This establishes that the unstable trajectories have
some non-zero domain of attraction and hence represent a non-trivial
finite amplitude instability.

We will 1ook for trajectories along which Ags Ay and Ao approach in-

finity as T approaches some finite value T0 from below. We further assume
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that, asymptotically, the Aj‘s behave 1ike inverse algebraic powers of
(TO-T). For simplicity, we wi}l suppress unnecessary constants and
minus signs by shifting the temporal origin to T0 and reversing the
sense of time. Under this transformation we seek instability as T --> 0

from above. The backwards equations are

2 * * 2 2
Agrr = 9° Ag - KgAAy - NAG (1Al S - [A5(0)] )
A . M * %
it = -V hAh,
(2.1)

. * *

Ayr = - 1 MaAgh
2 .2 2
where ¢ = ko cy-

By inspection, the 1leading order form of unstable trajectories
T --»> 0+ will be given by
-1+ iog

Ry " agT

A, ~ anT l (2.2)

where ags a4y, ap are complex constants and %> 9 and 0, are
real constants. Substitution of (2.2) into (2.1) will provide us with
details of the a3 and o appropriate to such trajectories and will
furnish constraints which the constant coefficients in (2.1) must sat-
isfy, if unstable trajectories of this type are to be possible. These

constraints may be found as inequalities (2.21) and (2.22) below.
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Putting (2.2) into (2.1) and retaining only the higher order terms

yields
-3+ig -3-i(9,+0,) ~3*ig
. . 0 L 172 2 0
ag (1-190) (2-190) T =, & KO ay ap T = NO aolaol T
-5/2+ie -5/2-i(e,*0,)
3 1 . * 072
al (—‘2""101) T = = 1M1 GO QZT
-5/2+ie -5/2-i(e,*0,)
3., . 2 . * * 0°1
ay (-2-+102)T =-1M20001T
Hence
9 * 0 * 9, = 0 (2.3)
is.
and setting aj = rje J s S = Sp* Sy s, , we have
r.r
. 12 -iS 2
il = 100)(2-100) + K0 o e + N0 ry = 0 (2.4)
(- %«» fo) =M T0"2 _i(S +a/2) (2.5)
"
4 .3 rar
(- »*+10,) = M 01 _-i(S + 7/2) (2.6)
2. 2 2 Tz—' e

From (2.5) and (2.6) we have that e, = o, and we see that one of the
restrictions on coefficients is that M1 and M2 must have the same

sign. Define sign variables Vo and vy by

K

"0|Kol

v M ]

0
M

1
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and set F"eiY = (=372 + iol), then (2.5) and (2.6) become

*o"2 e-i(5+vlw/2)

L

i
FeY=]M1|

rof1 e-i(S+v1n/2)

rel” - ||
l 2 ro

whence y+ S+ Vi /2 = 2 nn (2.7)

2 2
ro =2, (2.8)

T'z = Wﬂ_ FE (2.9)
Returning to (2.4), it follows that

r,r
2 2 : 12 -
{2 - 491 + NO T'O) + 6 191 = - Ko -—r—o e

iS

and hence

2 .
N 2||K0' e-'l(S*‘:r/Z“‘Votr/Z)

. M
3e1f§ (2 - 49% + M]—(.}W)"’ 6 191 = r‘]z. l—l_'—

or f+S+ §-+ Vg %— = 2 n'r (2.10)
2 R

and P et 2.11
I = W[ IRyl L2111}

From (2.7) and (2.10) we see that
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T

Foamip §' + (v1 * vo) 5+ 2 n" x (2.12)

whether KO has the same sign as, or the opposite sign to that of Ml,
(2.12) is of the form

f = T—g-*'ﬂhr

for some integer m and hence

tanf = - cot vy (2.13)

Using the definitions of f and v, (2.13) affords us an equation determin-

ing oy, namely

N N
0 2 0 9
(8 - MIM:Z-) 01 =2 * MIM'Z—I (2.14)

We have already noted that a necessary requirement for a solution of this
form is that M1 Mz > 0. Equation (2.14) furnishes a second restriction,

that

N
_g_ ¢ “1‘?‘2 < 8 (2.15)

Provided that this holds, we obtain

[(2 Yo 9/4)/ (8 Yo )]112 (2.16)
9, = % + - .
1 M My LA

This determines Fand M and so by using (2.11), (2.8) and (2.9) we find

1/2 N, \-1/2
20 0
r. = - (2.17)
0 G“l‘“’i) ( ‘“1'“'5)

that



1/2 Ny \-1 N ) N )1/4
20 0 0 9 0
« B perieey) 1B ey Uz B = g (2.18
g (1”2“"0') ( M1M2> K My, & < Yy } !

M\1/2 1/2 N \-1 N N.\]1/4
() r- 2 (peler) C- o) | ) - k)
2 \Wm, 1 My TTRo] 1My " 7 M2

(2.19)

The three phases 90, 8 and e, are given by (2.16) and 6, = 04, 05 = -291.
The phases Sg» 51 and s, are not uniquely determined by this asymptotic

analysis, however, their sum must satisfy
2
Z SJ- = tan- —3-— - Vl '2-"' 2nw (2.20)
j=0

We have found that trajectories approaching infinity after a finite

time can exist when the constants in (2.1) satisfy

MM, > 0 (2.21)
and
N
8 0
"3 <o, <8 (2.22)

This suggests that the system (2.1) may exhibit a non-linear instability.
To confirm this, we must first of all verify that there exist triads which
yield values of NO, M1 and M2 that satisfy (2.21) and (2.22). It
will then be necessary to show that the unstable trajectories can attract
a set of solutions generated by some non-trivial set of initial condi-
tions. The first step is simply a question of solving the linear dis-

persion relations to find resonant triads and then computing NO’ Ml
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and My from the appropriate algebraic formulae. We will take a numeri-
cal approach to the second step. If we find initial conditions for which
a numerical integration of (2.1), with appropriate values of ND’ Ml,

and M,, yields a solution which approaches a trajectory of the sort

discussed above, then we will have established that tne unstable trajec-
tories have a non-trivial attractive domain, These steps are taken in
Section 2.2.3.

It may at first seem odd that the coefficient KO which, in a sense,
measures the extent to which the non-linear interaction between the two
neutral waves forces the evolution of Ags does not appear explicitly in
the stability conditions (2.21) and (2.22). The term -Ky A; A, on the
right of Equation (2.1a) is clearly necessary, if A is to grow without
bound, rather than follow the equilibration of the single-wave theory.
We note that, were K, = 0, we could not deduce (2.10). We also observe
that the ratios ry/r; and ry/r, are proportional to |K0[. As
we reduce Ko, we reduce the magnitude of Ao relative to Al and
Az, in the neighborhood of the singularity. In addition, because we
have used an asymptotic analysis, we have not obtained any expression for
the time at which the singularity occurs for a given set of initial
conditions. It seems likely that this will depend on KO (as well as

the other constants) and will increase as |K0| is decreased.

2.2.3: Examples of Triads Exhibiting Non-linear Instability

We will look at two examples of this triad destabilization of the

single wave equilibration process. For ease of reference, we will dis-
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tinguish them as examples A and B. In each case, we will follow the same
procedure, After choosing the meridional and vertical structures of the
two sidebands, we fix 8 at a subcritical value and determine a pair of
zonal wavenumbers for the two neutral modes for which the triad is reso-
nant. We then compute the coefficients 02, Ko, Ml’ MZ’ NO and check to

see whether (2.21) and (2.22) are satisfied. This was repeated for a num-
ber of different values of 8, retaining the same choice of meridional and
vertical structure for the sidebands. Finally, a particular value of 8,
for which (2.21) and (2.22) were satisfied, was chosen and the amplitude
equations (2.1) were integrated using values of 02, KO’ Ml’ M2 and ND
appropriate to this g. The difference between example A and example B
lies in the choices of vertical structure for the sidebands.

The above calculations were performed numerically. In Figures 2.5 and
2.6, we have plotted the values of KO, Ml’ Mz, and N0 as 8 is varied, for
the two cases, Figures 2,7 and 2.8 then show the evolution of the wave
amplitudes under the assumptions of weakly non-l1inear theory for the
particular unstable examples selected.

The meridional and vertical structures for the two cases are:

A: Wave Q : "0 = 1
Wave 1 : ny = -3 mo = -1

Wave 2 : n2 = 2 mz = 1

B: Wave O : n0 = 1

Wave 1 : n =

1}

]
w
3

—

n

'—d

Wave 2 : n2 = 2

3
n

]

i

-
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(a)

-002

-006

-008

Figure 2.5: a) Plots of M}, M and N? as functions of g for a
resonant triad consisting of two neutral modes and a marginal mode.
The marginal mode corresponds to the left (Tong-wave) branch of the
marginal curve. The meridional and vertical structures of the triad
aren = (1,-3,2) , m; = -1 , m =1 (case A in the text).

b) Kp as a function of 8 for the same triad as in Fig.
2.5a.
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(b)




L1

()

B

Figure 2.6: a) As in Fig. 2.5a but with neutral modes of different
vertical structures ( m=1,mp=-1: caseB in the text).

b) Ko as a function of 8 for the same triad as in Fig.
2.6a.
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In each case the marginal mode was chosen to lie on the left side of the
marginal curve. Given the particular choice of meridional structure this
is a necessity, since for this particular triad only wave 0 has an unsta-
ble domain that is contiguous to the marginal curve and then only to the
left branch of that curve (refer to Figure 2.4). To examine the case in
which the marginal mode lies on the right side of the marginal curve, one
would have to consider another triad. Figure 2.5 shows how the interac-
tion coefficients vary with 8 for example A. M, and M, have the same
sign over the entire range plotted, but NO/M1M2 is less than 8 only
for values of 8 1less than a threshold value, Bys of about 15.9., Fig-
ure 2.6 is a similar plot for example B.

In example A, when 8 = 13,0, the interaction coefficients are:

Ko = -49.49366
M, = -8.193586 X 1072
M, = -13.91703
Ng = 5.719176
while W . 7.446278 x 1072

Using these values, the amplitude equations (2.1), derived with weakly
non-linear theory, were integrated numerically. The initial conditions

were taken to be
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Ag(0) = i x 1072
A(0) = 1 x 1072

) (3.1)
A,(0) = 1 x 107

The subsequent evolution is shown in Figure 2.7. The solution approaches
a singularity after about T = 17.49. The behavior of the solution near
this trajectory is similar to that predicted for the asymptotic trajec-
tories of Section 2.2.2. If we set T1 =17.2, T2 = 17.3, and define
R: = Aj (Tz)/Aj (Tl) , then we find that

J
Ry = 1.54291
R, = 1.91666
Ry = 1.91668
R /Ro>/% = 1.00008
Ry /Ry’ = 1.00009

These Tatter two ratios are close to unity. For the asymptotic trajec-
tories of 2.2.2 we expect these ratios to approach one as the singularity
is approached.

Figure 2.8 represents the evolution of a similar triad corresponding

to Case B. We chose g = 11.0, for which
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e L 4 160
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- ~
Nost 3
~J
Q 1 S
§[ - <
04 F 140
o & = =a 20°

TIME (t)

Figure 2.7: An example of the evolution of an unstable triad (case A,
8 = 13.0). The amplitudes of each of the three waves is shown. Dur-

ing the early part of the run (up to about T = 16), the scale at the
left applies. After about T = 16, the three curves are rescaled to

accomodate their rapid growth and one should refer to the right-hand
scale.
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Similar to Fig. 2.7 but for case B at g = 11.0 .
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Ko = -8.917685
M = -0.4922978
M, = -1.472019
Ng = 1.786117
2 -2

4.0630695 x 10

Q
"

The initial conditions used were again those in (3.1). The non-linear
growth of all three waves is again apparent.

We have found that the single wave equilibration of a slightly
supercritical unstable mode, located well away from minimum critical
shear in parameter space, that is produced by the distortion of the mean
flow, can be unstable to a multi-wave interaction involving an additional
pair of neutral waves. We have also observed that this growth can be
rather powerful in that it can force the amplitudes of the three waves
involved to become O0(1) within the O(A'llz) time scale. At such a
stage the weakly finite amplitude analysis becomes invalid.

In view of these results, it would be interesting to discover whether
the equilibration process suggested for weakly supercritical instabilities
near minimum critical shear, is also unstable. We turn to this question

in Section 2.3 below.

2.3 Three-Wave Interactions Near Minimum Critical Shear

We have seen that the equilibration of a weakly growing unstable wave

as described by single-wave theory may be unstable to interactions with
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sidebands when the basic state does not lie close to minimum critical
shear. In addition to weakly growing instabilities, a strongly super-
critical flow possesses unstable modes with 0(l) growth rates which,
unless absent for such reasons as zonal quantization conditions, will
tend to dominate the evolution of the flow. A more significant question
is whether interactions between a slowly growing mode and neutral waves
can produce a non-linear instability that surpasses the ability of the
wave-mean flow interaction mechanism to contain it, when the basic flow
is only slightly supercritical. For such a flow, all of the unstable
modes are weakly growing.

While it is the discovery of the non-linear instability of Section
2.2 which suggests looking at the interaction between a slowly growing
wave and a pair of neutral waves in a slightly supercritical flow, we
already know that the dynamics of this three-wave problem must differ
somewhat from that of the one in Section 2.2. As Loesch (1976) pointed
out, the appropriate scaling for the amplitudes of dispersive sidebands
in a three-wave interaction near minimum critical shear are D(Allz)
rather than 0( a 3/4). This is in part due to the critical layer ef-
fect that is manifest at minimum critical shear, Instead of producing a
secular forcing term at 0(a), the interaction between the two sidebands
produces a variable , O(Al/z) phase shift between the upper and lower
layer streamfunction of the zonal Fourier component with the wavenumber
of the unstable wave. This augments the phase shift due to the slow rate
of change of the potential vorticity of the leading order part of this

Fourier component.
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The problem described above is just the one attempted by Loesch
(1974), although in our development of it we will endeavor to include the
critical layer dynamics described by Pedlosky (1982). Although Loesch
omits these, the amplitude equations that he obtains form the core of the
extended set of amplitude equations that govern the full system. In view
of the consistently stable solutions found by Loesch, one might suspect

that the extended system will also be stable.

Amplitude Equations

We will work with the same two-layer model used in earlier sections,

We will take the basic flow to be only slightly supercritical and set

g =FU -2 {2.3.1)

W

1/2), range of wavenumbers is

For such a choice of 8, only a small, 0(a
unstable. We will assume F < 2 _[—2-“2 so that only the gravest merid-
jonal mode is unstable, then the unstable range of zonal wavenumbers is
centered on Ko where

kg e {TF - «° (2.3.2)

Our aim is to follow the evolution of a trio of waves, each of small amp-
litude, as they slowly interact. One of these waves will be the slightly
unstable mode at k = kO’ with a meridional wavenumber g = 1. The remain-

ing pair of waves will be neutral Rossby waves whose wavenumbers are such
that the triad as a whole is resonant in the sense of Section 2.2. We

noted earlier the amplitudes for which the wave-wave interactions, the
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wave-mean flow interaction associated with the unstable wave and the
growth due to linear instability, all develop on the same time scale.

Accordingly expand the streamfunction for the system in the form

W12 400, (1),

S

LI

(2.3.3)
2 ik, (x-c.t)

: 2 . .
¢(0) - ZO (J)¢(0) - .Zo AJ(T) [(J),wl(y)’(\]).*z(y)] e J J + *
- J= ~ J=

ik, (x-c,t)
where (jlvi(y) e 3 are the three linear modes which form our main

triad. As before, we expect the amplitudes to vary on a slow time scale,
O(A-llz) and have set T = Allzt. As in 2.2, the meridional modal
structure is trigonometric with

Y

(3) _
T(Y) = (l,Yj) sin nJ

The conditions that the triad be resonant are then

(0, 0, 0) (2.3.4)

T ik kcy, 0.
j=0 J J ] J

As is the case at other values of g, there are generally two distinct
vertical modes at wavenumbers other than that of the marginal mode. How-
ever, at minimum critical shear, one of these modes exhibits a peculiar
feature, namely a loss of any dispersive characteristics. At minimum

critical shear the dispersion relation may be written
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2 2 4 4
o= L&) 37t [(;—FT 1) (f:?z' 1)] (2.3.5)

where the choice of sign corresponds to the choice of vertical mode.
Choosing the negative sign yields ¢ = 0, whatever the value of the hori-
zontal wavenumber a, i.e., a non-dispersive mode. The marginal wave also
has this phase speed. This phase speed is the same as the flow speed in
the lower layer, which in this treatment has been taken to be zero. Thus,
the non-linear interaction between any pair of non-dispersive Rossby waves
will produce a resultant that is resonant with a third non-dispersive
Rossby wave. For the present, we shall follow Loesch and consider only
sidebands that are dispersive neutral modes, i.e., we will take the posi-
tive sign in (2.3.5). Loesch shows that when wszE’; F < 4n2LI§ there
is just one such pair of dispersive modes that satisfy the resonance
conditions.

Having chosen the triad we can substitute the expansion of the stream-
functions into the potential vorticity equations and use a perturbation
technique to determine the evolution of the amplitudes of the three main
waves. Since the analysis is really just a superposition of that of
Loesch (1974) and that of Pedlosky (1982), we will not present it here,
We shall just provide the evolution equations that result.

One effect of the non-linear interaction between the marginal wave
and each sideband is to produce a forcing term resonant with the other
sideband. Much as before, this gives rise to an amplitude equation of

the form



for each sideband where j' = 3-j.

The non-linear interaction of the two sidebands produces a non-reso-
nant forcing of the same wavenumber and frequency as the marginal wave.
This, together with the slow rate of change of the potential vorticity of
the marginal wave in the upper layer, produces an O(Al/z) phase shift
between the upper and 1ower streamfunctions of the Fourier component hav-
ing the marginal wavenumber. This is an extension of the phase shift
observed in linear theory. This phase shift appears as an 0(a) correc-
tion to the streamfunctions of the marginal wave. Three other correc-
tions to the streamfunction field as a whole are generated at 0(a). The
first is the familiar zonally independent correction to the mean flow.
Unlike the case considered in Section 2.2, this correction is forced by
both the weak phase shift associated with the near-marginal wave and the
phase shifts associated with the sidebands as a result of their slow
changes in amplitude. The difference between the current problem and
that of Section 2.2 is that now the sidebands are 0(A1/2) so that the
heat fluxes associated with the sidebands are of the same order as those
associated with the slightly unstable wave.

The second correction consists of a collection of non-resonantly
forced Rossby waves generated by the non-linear interactions between the
three principal waves. Although these are not free modes of the system,
their own interaction with the principal waves can produca weak 0(A3/2)

forcing that is resonant. Part of the latter is a component that is
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independent of x and t. It is at the 0(A3/2) level that the structure
of the mean flow correction is determined. This component of the forcing
contributes to the structure of the mean flow correction. However, forc-
ing of this type only occurs in the potential vorticity equation for the
upper layer. The potential vorticity in the lower layer associated with
the mean flow correction is independent of the type of forcing discussed
here. In so far as determining the evolution of the amplitudes of the
three main waves is concerned, we need not explicitly calculate this sec-
ond type of 0(a) correction to the streamfunction fields.

The third correction arises as part of the critical layer dynamics
discussed by Pedlosky (1982). At minimum critical shear, any disturb-
ances that propagates with a phase speed equal to the flow speed of the
lower layer will be a homogeneous solution of the linear part of the
potential vorticity equation for the lower layer, regardless of its hori-
zontal or vertical structure. Since the flow speed of the lower layer is
zero in this instance, such disturbances are those with no dependence on
the fast time variable t. The linear part of the upper layer potential
vorticity equation provides a constraint on the vertical structure of

these perturbations. Thus we have that any disturbance of the form

g = [Xl(X,_Y,T), Xz(x:y;T)] (2.3.6)
where X. = -L @ +F)x (2.3.7)
2 F 1 .

will be a solution of the linear part of the potential vorticity equa-

tions. This is a class of solution that does not exist when the basic
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flow does not correspond to minimum critical shear. In the current prob-
lem, it represents another set of linear solutions which can be resonantly
forced by the non-linear terms. Forcing of this type does indeed occur
at 0(A3/2), being produced by the interaction between the mean flow
correction and the unstable wave. To maintain a non-secular solution, we
must include a correction of the form given in (2.3.6) and (2.3.7). The
slow rate of change of the potential vorticity associated with this cor-

3/2). We have not specified the

rection then balances the forcing at 0(a
horizontal structure of Xy and X,. The interaction between the unstable
wave and the mean flow correction, mentioned above will directly force
¥ iknX
components of X proportional to e 0 . However, the resultant of non-
linear interaction between these Fourier components of strength 0(a) and
#21K X
. Since

the unstable wave includes terms of 0(A3/2) proportional to e
these have no fast time dependence, this forcing is resonant and its
effect is to generate additional Fourier components as part of Xl and
XZ. We are forced to include an infinite set of Fourier components,
both in x and in y, in the structure of X.

In the preceding few paragraphs, we have given a heuristic account of

the structure of the term g(l) in (2.3.3) that a more complete analysis

would reveal. This may be summarized as
(1) (1) (1) (1)

where

(1) _ 2 x e Tkgx
B2p° = Tigw Mot * 170 (amg - Kohy) e yrmme T Mked ST v e

+ %
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represents a phase shift in the Fourier component with the same horizontal

structure as the marginal wave.
¢§1) contains the non-resonantly forced Rossby waves, X = [Xl(x,y,T),

xz(x,y,T)] is the correction arising from the critical layer effect. We
Fourier expand X so that

'imkox
e sin nmy }mn(T) + X

3

—

"
D 3
1]
——

and )(2 is given by (2.3.7). We will adopt the normalization condition

that {; ;= 0.
& = gly,T) is the correction to the mean flow. We will not determine

~

¢ fully. Instead, we will define
2 J ;

Qj = (3y - F)é‘j + F ('1) (§l 'f'z) J = 192

as the potential vorticity of the mean flow correction. Only Q2 is

required in determining the evolution of Ag- We will expand

i

- =]
Q, = Zl Pa(T) sin 2 nmy .
N=

Before continuing we note that the lower layer potential vorticity due

to X is given by

co imk_.x
- Lt -2y - . X O sin nny [(n®%S + n42)2 + 21-'21}’,“’n + *
-1

33
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To simplify subsequent equations it is convenient to define
‘ 2,2 22 2
Bp.n = L(mkg + n%%) + 2F ]‘;m,n

Because of certain symmetries in the system, it will further simplify

matters if we define

cm,n = B21'r|-1, 2n.1 2nd Dm,n = BZm, 2n *

Note that half of the possible Bm,nls are not included in these defini-
tions; those of the form BZm, 2n-1 and BZm-l, on* It turns out that
these are not forced by the dynamics and so need not be included provided
that they do not form part of the initial conditions. (Note that this is
similar to the idea used in the development of the single-wave theory of
the finite amplitude evolution to discard the neutral modes. One could,
if one wished, examine the stability of the evolution to be described

below to disturbances with BZm, on-1 and BZm-l, on non-zero.)

The 0(A3/2) terms in the perturbation expansion of the potential
vorticity equations pose a forced linear problem for 0(53/2) modifica-
tions to the streamfunction field. The linear operator is singular and
the secularity conditions for this problem furnish evolution equations
for Ao, % and X. These, together with the equations already derived

L

for A7 and Ayt form the closed system given below.

2
2 2 2 .o
Aorr = Ag (Mo IALLS + Mg [A,]° + 6% + 2L p) (2.3.8a)
Pr = -H o (JA]2 " 1a 12y - 210 (A% C A C L) (2.3.8b)
11 = =7 3 HAgl - g ) - 01,2 ~ "0 Y1,2 s
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- .
3C1,n = 21D[A0[nPn-(n-1) Pl * Ao["Dl,n-l'("’l) Dl,n]] n>2 {2.3.8¢)

. * * * *
aTPn = 21D“[(Aocl,n'A0C1,n) - (Aocl,n+1'A0c1,n+1)] n>2 (2.3.8d)
. * *
aTcm,n = 210[("+m'1)(AODm,n-1+AODm-1,n) - ("'m)(AODm,n+AODm-1,n-1)]
m»2, n>l (2.3.8e)
* + * :
aTDm,n = Zin[("+m)(A0Cm+1,n Aocm,n+1) - ("'m)(AOCm+1,n+l Aocm,n)]
m>1, n>l1 [2.,3.8F)
. * K
ap Ay = M AghA, (2.3.8g)
* *
By definition, Do,n - Dm’0 = cO,n = Cm,o = Cl,l =0

The constants appearing in the above equations are as follows:

2 2 2 T
ag = ko‘\ro U/ZF H = ZTrF/U D = EkOYO (2.3.9)

M, = I (U-c:)? (ki n,-k.n.) ‘1" Cn
3 = B2 Y 1"27%2"1 TUlco)(U-cl)(U-cz)

where (j,1,m) is a cyclic permutation of (0,1,2). Because we are working

at minimum critical shear
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K2

- = Y7F - 2% and *o=21/2'1

when the gravest unstable mode is chosen.
For comparison, a set of equations equivalent to those integrated by
Loesch may be obtained by formally setting D equal to zero. For the

moment, let us do this. Assuming that Can=0=0D n = P initially, the
]

m,
ampl itude equations reduce to

A, [, + ZLy 0 |A]2 +um (A% - H a1y 12
Rorr = Ao | Mty * FH ) 1Ay gty [A1" - H == [Ay]

(2.3.10)
2 M
: [ &+ ZEH ([ag(0)]? - n‘l’— |A1(0)|2)]A0
. * %
Ajp = 1M AG A, (2.3.11)
. * *x
Ayr = 1M, Ag A (2+3.12)

The constants 02

and H are both positive. One can see from the formula
for M, [Equation (2.3.9)] that My, M; and M, cannot all have the same sign.
If M; and M, have opposing signs, then it follows from (2.3.11) and
(2.3.12) that |A1| and |A,| are bounded. In (2.3.10), the effect of
the term in AOIAOI2 is stabilizing because of its negative coefficient. If
[Aol were to grow, the AOIAOIZ term in (2.3.10) must eventually overshadow

the remaining terms on the right-hand side of (2.3.10) and we would not
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therefore expect to see any unbounded growth of Ay. If M1 and M2 have
the same sign, then MOMZ’ MoMl and MO/M1 must all be negative and so
(2.3.10) will have the form

Agrt = -Ro (3 A%+ x 8,12 + % [agl%) + 23 Ag

where all of the A's are positive constants. Any growth of [Al[ or |A2|
is going to inhibit the growth of Aj. Furthermore, the x5 Ag |A0|2 term
alone will be sufficient to prevent A, growing without bound.

The above discussion makes plausible the conjecture that IAOi will be
bounded whenever MO, M1 and M2 do not all possess the same sign. Con-
versely, it is easy to see that |A0|, |A1| and |A2| can grow without bound
for some initial conditions when My, M, and M, all have the same sign.
Since we know that MO’ My and M, have differing signs, we would not expect
any finite amplitude instability to occur. Loesch's numerical integrations
of (2.3.10)-(2.3.12) bear this out. It remains for us to see whether, when
the critical layer dynamics are restored by taking a non-zero value of D,

the system remains bounded.

Numerical Solutions
We have attempted to answer the question of the finite amplitude sta-

bility of the system (2.3.8) by numerically integrating these equations
for two values of F and a variety of initial conditions. None of these
integrations exhibited any unbounded growth in energy of the three main
waves. While this does not guarantee the absence of any instability, it

strongly suggests that the evolution of the triad is stable.
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For F in the range of »2/4Z < F < 242x2, only one meridional mode can
be unstable near minimum critical shear, namely, ng = 1. The work of
Loesch (1974) has shown that for such values of F, there is only one pair
of neutral waves capable of forming a resonant triad with the unstable
wave. The meridional structures of these waves are given by ny = -2,
Ny = 1. Loesch showed numerically that for F < 10.5, M <0 while
for F > 10.5, Ml > 0. The coefficients MO and M2 are negative and
positive respectively for all values of F. The remaining coefficients in
(2.3.8) are all positive. There is, therefore, a structural change in
the system (2.3.8) as F passes through the value 10.5. (One consequence
of this can be readily predicted. When F is less than 10.5, a solution
that starts with most of the initial energy in wave (0) and only small
amplitudes for both sidebands will continue to have only small sideband
energies. When F > 10.5, we would expect that a solution starting with
very weak sidebands would exhibit growth of the sideband energies.)

Our numerical analysis follows Loesch (1974). We choose two values
of F. One, 8, less than 10.5, the other, 12, greater than this threshold.
Fixing F fixes the zonal and meridional wavenumbers of the one possible

resonant triad. For F = 8, the zonal wavenumbers are

(ko, kl’ kz) = (1.2017, 2.6821, -3.8838)

while for F = 12, these become

(ko, kl, k2) = (2.6648, -0.7999, -1.8648)

At a fixed F, the only freedom in generating solutions is the choice of

initial conditions. Loesch, after making a number of numerical integra-
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tions of (2.3.10)-(2.3.12) for different initial conditions, discovered
that the solutions could be distinguished as being one of nine distinct
types, four occurring for F = 8 and five occurring for F = 12. 1In the
work already cited, Loesch exhibits a solution of each type and specifies
the initial conditions necessary to generate each of these.

Using Loesch's values of F and U, we have integrated the fuller sys-
tem (2.3.8) for some of the same sets of initial conditions as those used
by Loesch and compared these with Loesch's solutions. These will be dis-
played below. In our integrations, the infinite set of equations (2.3.8)
was truncated at either n=m=8 or n=m = 16 as appropriate. Loesch
refers to his canonical solutions as cases 1-9 of which cases 1-4 are for
F = 8 and the remainder, for F = 12. The initial phases of AO’ Al and A2
are chosen so that ph(Ao) + ph(Al) + ph(Az) = 7/2, under which condition
the three separate phases remain constant throughout the integration. We
list the initial moduli of AO, Al, and AZ below for the four cases that we
will consider, together with the size of the truncation. The subsequent
figures show how the moduli evolve with time. It is necessary to specify

an initial value for AOT' In each case we use

where ¢ is the linear growth rate of the unstable mode.

Case |Ao(0)] |A,(0)] |A,(0) ] Truncation
1 .0707 L0177 0.0 16

2 .03535 .03535 .03535 16

4 .03535 .0707 .0707 8

9 0577 .0144 ..0289 16
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Figures 2,9 - 2,12 show tne results of our integrations. In each
case the evolution of [AOI,_ |A;| and |A,| are shown for both the
system with critical layer effects excluded (the left side of the figure)
and the full version of (2.3.8). The results on the left side of the
figures are thus equivalent to those of Loesch although the graphical
format is different. A perusal of the figures reveals that the proper
inclusion of the harmonics associated with the critical layer effect does
not produce any recognizable tendency towards non-linear instability.
The solutions remain bounded and are not terribly different from the solu-
tions of Loescn. Those solutions of Loesch which contain relatively fre-
quent zero crossings of |Aj| (e.g., Case 4) are hardly affected by the
inclusion of higher harmonics. Those solutions with longer intervals
between zero crossings are more noticeably affected.

There is scope for a larger survey of the solutions of (2.3.8), but,
in view of the form of (2.3.8), and the already noted fact that Mg»
Ml and M2 cannot all take the same sign, it seems unlikely that

unstable trajectories exist.
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Figure 2.9: The evolution of a resonant triad near minimum critical
shear, e triad consists of the marginal mode and two neutral waves.
(a) - (d) show the evolution when the critical layer effect is
excluded, (e) - (h) include this effect.

(a) and (e) : Ag

(b) and (f) : Ap
(c) and (g) : Az
(d) and (h) : Py

(F =28, A(0) = .0707, A;(0) = .0177, Ap(0) = 0.0; case 1)
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CHAPTER 3

3. Baroclinic Instability in a Meridionally Varying, Two-Layer Model:
Linear Theory

We begin here the main investigation of this thesis, an examination
of the nature of baroclinic instability in a system in which, to the fun-
damental property permitting baroclinic instability, namely, a reserve of
available potential energy, we have added a single complicating feature,
the presence of meridional variation in the potential vorticity gradient
of the equilibrium flow. Some reasons for wishing to do so will be given
momentarily. Let us note here that this study will concentrate on the
properties of slowly growing unstable modes and on the evolution of such
modes. The presentation will be divided into two parts. The first will
comprise this chapter and will look at a linearized model of instability.
Chapter 4 will then deal with the subsequent evolution of weakly growing
modes once they enter the finite amplitude domain.

This chapter is composed as follows. An introductory section is fol-
lowed first by a short formal description of the theoretical model under
consideration and then a presentation of the behavior of the eigenvalues
as determined by a numerical model. Next we discuss the spatial struc-
ture of the unstable eigenfunction and its attendant eddy fluxes as they
are revealed by the numerical study. A critical layer effect near the
center of the channel is noted. In particular, ¢2 is confined to a
narrow region about the center of the channel. It is shown that the
eigenfunction structure may be related to the horizontal structure of the

basic potential vorticity gradient of the lower layer. An analytical
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model, asymptotic in the supercriticality, is developed for the case in
which the basic state is close to minimum critical shear. Some compari-
son is made between the analytical and the numerical results. In a con-
sideration of the energy balance for an unstable mode, some properties of
the heat flux are emphasized, notably its confinement to the middle of
the channel and the occurrence of both northward and southward fluxes
within this region which almost cancel. Finally, we draw attention to a
class of slow neutral modes and point out their relevance to a weakly
non-1inear theory for the slightly supercritical model.

The most frequently cited linear models of baroclinic instability,
Eady (1969), Charney (1947) and Phillips (1954), examine situations in
which the mechanism of baroclinic instability is isolated in a fairly
pure form. The basic flows possess only vertical shear and have merid-
ional temperature gradients that are independent of y. 1In each example,
the potential vorticity gradients of the basic flow are functions only of
the vertical coordinate. The normal modes supported by each of these
models can be obtained analytically. Thus one can determine the growth
rates and eigenfunction structure of those modes that are unstable and
find the boundaries between stable and unstable domains in the parameter
space of the model (typical parameters being the Froude number, the
vertical shear, the relative importance of 8, etc.).

In a geophysical system such as the atmosphere or ocean, we are often
interested in the stability properties of relatively long, sustained, jet-
1ike flows. Rather than being a flow that is uniform in the cross-stream

direction, these geophysical jets vary significantly across their path,
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from an interior maximum to a small velocity at the edges of the jet.
The interior of the jet may include more than one maximum as is perhaps
the case at times in the Gulf Stream. Typically one is interested in the
stability of a feature that is both confined in the cross-stream direction
and varying in that direction. A channel model will simulate the confine-
ment of the feature of interest -- probably too well, since by preventing
radiation perpendicular to the jet, rigid channel walls probably enhance
the instability of a jet. However, confinement alone is not sufficient
to reproduce a dynamically significant feature of a free jet, namely, the
cross-stream variation of the cross-stream gradient of potential vorticity
that will typically be present. Since the work already carried out on
the nature of baroclinic instability, e.g., Charney and Stern (1962), has
demonstrated the importance of the potential vorticity gradient of the
equilibrium state to the dynamics of unstable perturbations to that
state, it seems worthwhile to study the effects of including a more
realistic, varying gradient.

A second consequence of the cross-flow variations that will generally
be present in baroclinic instability probliems taken from the physical
world, is that the cross-stream structure of the linear wave modes sup-
ported by the equilibrium flow will not be trigonometric. This has
important consequences for the non-linear interactions between these
modes. The dynamical equations are quadratically non-linear, If we
Fourier decompose a disturbance into linear eigenmodes, then the evolu-
tion of these modes is coupled through the non-linear terms. In general,

one can think of the modes as interacting in threesomes; see, for exam-
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ple, Pedlosky (1979b, Section 3.26). 1In the case of a flow whose linear
perturbation problem is separable in its spatial dependence, in order that
three waves interact significantly, the product of the non-linear interac-
tion between two of the waves must have a non-zero projection onto both
the temporal and the three-dimensional spatial structure of the third wave
(this interpretation of wave interactions is really appropriate only for
a weak perturbation field). In particular, the cross-stream structure of
the interaction product must not be orthogonal to the cross-stream struc-
ture of the third wave. When a flow is such that the cross-stream struc-
tures of the linear eigenmodes are trigonometric, the quadratic interac-
tion between two modes will give rise to a product that is orthogonal to
all but two of the possible cross-stream eigenstructures. For example,
if wave Wy has a streamfunction proportional to sin nmy and wave Wo,
a streamfunction proportional to sin mry, an interaction like Wy X ay Wy
will produce terms proportional to sin (n#m) =y only. If the eigenmodes
do not have trigonometric cross-stream dependence, then it will usually
be the case that the cross-flow structure of an interaction product will
be non-orthogonal to all or a large set of the possible modal cross-flow
structures. In the non-trigonometric case many more interacting triads
will be possible (e.g., Domaracki and Loesch, 1977).

Thirdly, the meridional variations of the basic state will promote
the influence of harmonics of the unstable wave, In Phillips' meridion-
ally uniform model, the self-interaction of the slowly changing unstable
wave generates a correction to the mean flow but not a second or higher

zonal harmonic of that wave at any significant amplitude. This is a con-
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sequence of the very simple meridional structure of that model. In gen-
eral, the introduction of a meridionally varying basic state will lead to
the generation of highei zonal harmonics of the unstable wave in addition
to the mean flow correction. When, in the latter part of Chapter Four,
we examine the evolution of a weakly unstable wave against a meridionally
varying background in the absence of triad interactions, we will find that
these higher harmonics are as significant as the mean flow correction in
their effect on the amplitude of the fundamental wave. It is not clear
in advance, whether the effects of higher harmonics will be stabilizing
or destabilizing.

In the non-linear dynamics that is to follow in Chapter 4, we wish to
examine not only the interaction of an unstable wave with the mean flow,
but also its interaction with other linear eigenmodes. The enhanced var-
jety of inter-modal energy exchanges that is made possible by the inclu-
sion of meridional variation will be a factor in this. In the model that
we intend to study, the streamwise direction will be the zonal direction
and the cross-stream direction, the meridional direction. Although the
description above suggested meridional shear of the zonal velocity field
as a source of cross-stream variation it is both algebraically simpler
and computationally simpler to introduce meridional variation via the bot-
tom boundary condition, as a meridionally varying topographic slope. As
well as reflecting a genuine physical source of meridional variation, this
produces effects dynamically equivalent to those features of interest that
were indicated above, namely the introduction of meridional variation into
the potential vorticity gradient and non-trigonometric meridional depen-

dence in the linear eigenfunctions.
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A few more general remarks are appropriate here. Usually problems
which, while retaining the vertical variation of the potential vorticity
gradient necessary to support baroclinic instability, also include merid-
ional variations of that gradient, are difficult to solve analytically.
They involve partial differential equations with coefficients that vary
in y and z. Several investigators have examined the linear stability
properties of such flows and have usually used numerical techniques (e.g.,
Pedlosky, 1964; Simmons, 1974; Brown, 1969). They have usually looked at
such problems from a rather global point of view and have not explored in
detail the nature of the slowly growing unstable modes lying close to the
stability boundary. The main objective of the next chapter is to Took at
the finite amplitude evolution of weakly baroclinically unstable modes of
one such flow when the flow is close to critical. As a prerequisite for
this, we need to have a fairly detailed understanding of the linear prob-
Tem in a part of parameter space that corresponds to slowly growing un-
stable modes. In what follows, we will present a numerical survey of one
such region and then, by taking advantage of the fact that we are inter-
ested in only a small region of parameter space, develop an analytic

description of the properties of the unstable modes in that region.

Model Description

We wish to examine a model that (a) has a vertical structure that is
as simple as possible yet capable of supporting baroclinic instability
and (b) contains meridional variations of the meridional gradient of

potential vorticity yet cannot support barotropic instability. Conse-
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quently, we choose to use a two-layer model confined to a zonal channel
(c.f. the two-level model of Phillips, 1954). The basic flow consists of
a zonal velocity U in the upper layer and a resting lower layer. U is
independent of y (the meridional direction) thus the model contains vert-
jcal shear but not horizontal shear. The height of the Tower boundary is
allowed to vary meridionally so that the topographic slope is a function
of y, hy(y). The contribution of the topographic g-effect introduces
meridional variation into the basic potential vorticity gradient of the
lower layer, ﬂéy.

Making the usual quasigeostrophic scaling assumptions (Pedlosky,
1979b), the linear problem can be described in the following, non-dimen-

sional form:

0 (3.1)

(s +2,) Le® - F) g + F gp] + (8 + FU) 4y,

(3.2)

i
o

2, [92 = F) gy + F #y1 + [ - FU + h(y)] gy =

The layer depths have been taken to be the same, g and U are positive and
the channel walls lie at y=0 and y=l. Subscript 1 identifies the upper

layer. We will take hy to have the form:

hy = h, cos 21y h, >0 (3.3)

Define

8 + FU, the potential vorticity gradient in the upper layer.

Ty
Ty

g - FU + hy(y), the potential vorticity gradient in the lower layer.
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Hiy is uniform and positive. TTéy, which contains contributions from the

planetary vorticity gradient, the equilibrium slope of the interface, and

the topographic slope, has a minimun|ﬂ§ymin

1ine of the channel. Define By = FU + hz. When 8 > Bys rrzy

throughout the Tower layer. The Charney-Stern (1962) sufficient condition

=B - FU - hz, on the center

is positive

for stability is satisfied; the flow must be stable. When g < By ﬂéy be-
comes negative near the middle of the channel. It may now be possible
for unstable modes to exist. When g = By = & where a is small and

positive, 2y takes the form shown in the accompanying sketch.

T, y"

' .
... A
je— ¢ i
O (&%)

Before discussing the numerical results we note, for reasons that will

©

become apparent later, the existence of a neutral mode that is completely

trapped to the upper layer. The system possesses normal modes of the form

¢ = [dl(.Y): ¢2(¥)] exp [ik(x - Ct)] (3.4)

A particular eigensolution is the one:

c=0, g, = sinmy, g, =0 (3.5)

which occurs at a wavenumber k given by

k% = (8/U - %)
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Provided only that 8 > wzu, this mode exists for both 8 « B and 8 > B
and is distinguished by the fact that it is stationary in a frame moving
with the velocity of the lower layer (which, in this exposition, has been

chosen to be zero).

Numerical Results

After substituting the normal mode form (3.4) for g, the differential
equations (3.1) and (3.2) can be transformed to normal form by writing

them in terms of

¢T = (¢1 + ¢2)/2’ ¢C = (¢1 - ¢2)/2

By representing ¢T and ¢c by a spectral expansion in sines and truncating,
the differential problem may be expressed approximately as a matrix
eigenvalue problem. The latter may be solved numerically using standard
routines.

The search'procedure adopted was to fix F = 10.0, U = 1.0, hz = 5.0

and then to vary 8 and kz. The results will be represented in a two-

dimensional parameter domain with axes corresponding to 8 and kz. For

the parameters chosen, B = 15.0. Since B8 > 8 corresponds to a

m
stable flow, we concentrate on 8 < 15,0. Numerically, we find that 8 =

8 is indeed a stability threshold. Given our predilection for weakly

m
growing instabilities, our attention will focus on the region close to

this threshold.

Our first result is that, for values of g8 close to but less than Bmo

2 2

only values of k“ in the vicinity of ko = 5.13 are unstable. The domain

of instability is shown in Figure 3.1 and Figure 3.2, The unstable domain
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Figure 3.1: The _tip of the numerically determined marginal curve
plotted in the (kZ, 8) plane. Case 1: F = 10.0, U=1.0, hp = 5.0
(Bm = 15.0).
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Figure 3.2: The full marginal curve for the gravest unstable mode of
Case I.
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exhibits a cusp, the tip being located at 8 = By = 15,0, k2 = kg = 5.13.
The two branches of the marginal curve that leave this point have some
distinctive characteristics. The left-hand branch corresponds to the
curve k2 = (8/U - wz). In the vicinity of the tip, the right-hand branch

is fitted well by the curve

k2 = (8/U - wz) + const x (B - Bm)3/2 .

3/2y in width

Near the cusp tip the range of unstable wavenumbers is of 0(a
where, A = By - B» the distance below the tip., This interval lies to the
left of the critical wavenumber k%. Thus for a range of wavenumbers
(approximately 2.2633 < k < 2.265), if one were to fix k at a value in
this interval and increase g8 from zero, one would observe first instabil-
ity, then an interval of stability followed by an interval of instability,
and finally stability for all 8 > (k2 + x2)U.

For a fixed value of A » 0, moving k across the interval of unstable
wavenumbers, we find that there are a pair of modes whose phase speeds ¢
are complex conjugates. Considering the variation inc¢ = C. *Cy for the
unstable mode, the numerical results suggest that, as k --» ky(8), the
left-hand branch of the marginal curve, ¢ --> 0, while as k --> kz(a),
the right-hand branch, ¢; --> 0, c. --> constant, co(s), (see Fig-
ure 3.3). As A is increased, co(s) increases in proportion to AZ
(see Figure 3.4). The maximum value of c; attained in going between

ky and k, seems commensurate with cO(B).
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Figure 3.3: The real and imaginary parts of the phase speed, ¢, and
Ci,» plotted against the square of the wavenumber. B8 = 14.96,

s~ 0.04 (F =10.0, U=1.0, hp = 5.0).
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Figure 3.4: The phase speed along the right-hand branch of the

marginal curve, cqo(8), plotted against the supercriticality a.
(F = 10-0, U = 1-0’ %2 = 500)-



152

Eigenfunction Structure

The structures of eigenfunctions near the cusp point are typified by
the example shown in Figures 3.5, which corresponds to 8 = 14.96, k =
2.261. The upper layer streamfunction differs 1ittle from the shape of
sin =y. The lower layer streamfunction is much weaker than that in the
upper layer and is concentrated in a thin region about the mid-line of
the channel. As one increases a while keeping k near the center of the
unstable interval, the lower layer streamfunction increases in amplitude
(relative to the upper layer), the width of the central region broadens
and the difference in amplitude between the central zone and the region
outside this becomes less marked. at the same time the shape of the
upper 1ayer streamfunction departs more from that of sin ny.

At a fixed value of a, as k is moved closer toward the left-hand
branch of the marginal curve, the lower layer streamfunction becomes
steadily weaker,

Numerical results were also obtained for different settings of the
'fixed' parameters, F, U, and h2' These results were qualitatively
similar to those already discussed. For comparison, Figures 3.6 to 3.7
illustrate some aspects of the case F = 6.6164, U =1.0, h, = 9.8836,
for which By = 16.5. Here hleU is larger than the previous example
and the relative meridional variation of oy is correspondingly larger,
As a result, the cusp of the marginal curve is more pronounced in Figure
3.6 than in 3.2. The internal layer structure peculiar to the slowly
growing normal modes can be seen at larger absolute values of the super-

criticality parameter a; for example, the structures of the streamfunc-
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Figure 3.5: a) The magnitude of the lower layer streamfunction for the
unstable mode at 8 = 14.96, k = 2.261 (F = 10.0, U = 1.0, hz = 5.0).

b) The magnitude of the upper layer streamfunction.

c) Zonally averaged heat flux (multiplied by F) as a
function of y.
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Figure 3,6: The marginal curve for the gravest unstable mode when F =
E.EIEI, U=1.0, hp = 9.8836 (Case 2).
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Figure 3.7: a) The magnitude of the 1lower layer streamfunction for the
unstabTe mode at 3 = 16.3, k= 2.544 (F = 6.6164, U= 1.0,

ho = 9.8836).
b) The magnitude of the upper layer streamfunction.

c) Zonally averaged heat flux (multiplied by F) as a
function of y.
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tions of the unstable normal mode at 8 = 16.3 (a = 0.2) and k = 2.544,
which are shown in Figure 3.7, exhibit the same characteristic features
as those in Figure 3.5. The larger extent of the weakly supercritical
regime is also reflected in the values of the phase speed ¢ which are
smaller at a given small value of a for the current choice of F, U and
hz than for the earlier set of parameter values at the same a.

For this second choice of parameters we have also calculated several
diagnostic fields associated with the unstable linear mode. These are

shown in Figure 3.8 and include:

heat flux x F F ve
upper layer momentum flux vy
lower layer momentum flux 'E"Vé
upper layer Reynolds stress divergence -3y (uvy)
lower layer Reynolds stress divergence -3y (EEVE)
upper mean meridional velocity V&
mean vertical velocity W
upper mean zonal momentum tendency Upe
lower mean zonal momentum tendency Eét
mean temperature tendency Ek

The overbar denotes a zonal mean.
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For reference, the zero-crossings of the basic potential vorticity
gradient in the Tlower 1layer, Ty which is parabolic 1in the
neighborhood of y = 1/2, occur at y = 0.47 and y = 0.53.

First, we note that the quadratic fluxes of temperature and momentum

induce a three-cell meridional circulation in the sense sketched below.

,7::0 y=l

The central cell, which is thermally indirect, is stronger and wider than
the two outer, direct cells, Note that in the sketch, the meridional
extent of the cells has been exaggerated. The central cell is located
within the "inner region" defined by the peak of the lower layer stream
function. Note that W does not quite return to zero at y = 0.5 in 3.8(h).
This is a result of error accumulated during an application of Simpson's
rule in the algorithm which computes V.

The meridional eddy heat flux is concentrated in the middle of the
channel in a strong poleward peak but there is a significant negative lobe
near y = 0.42. The heat flux will be discussed in more detail later. The
meridional eddy fluxes of zonal momentum are antisymmetric about y = 1/2
for this symmetric normal mode. Both show positive peaks within the inner

region although the sharper peak is seen in the lower layer,
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The tendencies are related to the eddy fluxes and the mean meridional

circulation by

at=-§_-,a-ay(m

and Vé - -Vi. In 3.8(e) and 3.8(f), we see that the divergence of the
Reynold's stress in each layer exhibits a sharp positive central peak and
a smaller negative lobe just outside this. The divergence is stronger in
the lower layer than in the upper. The senses of the divergences at the
center of the channel are such as to accelerate the zonal flow in each
layer. However, the Coriolis force on the mean meridional flow in the
upper layer is negative at the center of the channel, decelerating the
mean flow. In the upper layer, the magnitudes of the effects of the mean
circulation and the eddy fluxes are similar so that they cancel. As a
result, the mean zonal flow tendency in the upper layer is nearly zero at
the center of the channel, although it is weakly positive equatorward and
poleward of this. MNear the channel center, in the lower layer, the accel-
erating effects of the mean meridional circulation and the eddy momentum
convergence are in the same sanse, although that of the momentum converg-
ence is the stronger. The lower zonal flow is accelerated near the chan-

nel center,
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Equatorward of about y = 0.47, the lower layer zonal flow is deceler-
ated. This deceleration zone still lies within the "inner region" of the
problem, South of y = 0.39, the momentum tendency of layer two ié very
small. The upper layer flow is decelerated south of about y = 0.45 and
the deceleration band extends into the outer region. The magnitude of
the upper zonal flow tendency is always much smaller [by a factor of
0(100)] than the similar lower layer quantity.

The acceleration of the mean vertical shear is dominated by Uét‘ The
shear is reduced near the center of the channel from about y = 0.47 to
y = 0.53 and increased in the regions 0.39 <y < 0.47 and 0.53 <y < 0.61.

Recall that the mean potential vorticity gradient in the lower layer is

where we have decomposed the mean zonal velocity in the upper layer into
its basic state value U and a modification Ul. Fory =1/2 + n, n<<1,

this is approximately

2 2 - - -
W2y= -A*hZan-F(UI—UZ)-Uzyy

If we consider the El and ﬁz that would be generated by the eddy fluxes
and meridional circulation based on the linear modal structure, then

roughly speaking

lF Gll <<l F Gzl <<I ﬁZyyl

Thus Ty T -8 %N, 242 2 . ayy
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In the region where nz < A/2w2h2; i.e., where, for the basic state alone,
Ty < 0; ﬁZyy is negative. Outside this region, in the domain ~ 0.6 >
1/2 + n>~ 0'53'ﬁZyy is positive.  Schematically, the effect of the
corrections is both to reduce the degree of supercriticality in the
central region and to flatten oy broadening the scale of the inner
region in which oy is small,

In the non-linear discussion we shall refer to both of the choices of
parameter settings that have been mentioned. For ease of reference, we

shall 1abel the values as follows:

Case 1. F = 10.0, U 15.0)

n
[}
il

1.0, h2 = 5.0 (Bm

Case 2. F = 6.6164 Uu=1.0, h 9.8836 (Bm = 16.5)

n
n
|

™o
1}

Heuristic Explanation of the Meridional Structure of ¢

There are some striking features in the numerical results. Firstly,
as the maximum critical value of 8 is approached, the phase speed of the
unstable mode tends to zero. Secondly, in the same limit, the 1ower
streamfunction of the unstable eigenfunction becomes increasingly concen-
trated near the center of the channel. Outside this region, ¢2 --> 0
as A --> 0. The neighborhood of the center of the channel is distinguished
by the fact that oy is approximately zero there. Elsewhere T2y is
0(1). We can explain the qualitative structure of d2 as follows.

One can obtain a qualitative feeling for why the lower layer stream-
function is concentrated near the center of the channel by considering
the potential vorticity dynamics of the lower layer. The potential vor-

ticity balance in the lower layer is given by
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C[(ayz-kz-F) ¢2+F¢1]+11'2y¢2=0

We have seen that ¢2 is small so that, as far as an order of magnitude

argument is concerned, we have that
cFé "yt

(In the outer region, a? ¢2 << ¢1, and the suggested balance is not only
correct in terms of magnitu&e but is also a good approximation. 1In the
inner region, 33 ¢2 ~ dl so that the above balance, in general, yields
the correct size for ¢2 but is no longer a good approximation. Note that

the omitted term 33 ¢2 prevents ¢2 from becoming singular at the two

points in the inner region at which oy = 0 as the above balance alone
would suggest.)
We can estimate the size of ¢2 using

In the outer region Toy is 0(1) so that
¢2 ~0 (C F ¢1) ’

but in an inner region of width 0(A1/2) about the channel center, T2y is

small, 0(a), so that there
g, ~ 0 (A'l cF dg,)
2 1

i.e., larger by a factor A'l.

If we normalize dl to be 0(1) and use the
fact that c is O(AZ), then we can see that ¢2 will be 0(&2), in the outer

region and 0(a) in the inner region.
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In Phillips' model, oy is independent of y. As a --> 0, Tay is then

1/2). There is therefore no

of 0(a) over the entire channel while ¢ ~ 0(a
mechanism similar to that above to force g, to be small over some part of

the channel,

Analytical Model

Noting the relations between k, ¢ and A suggested by the numerical
results, one can construct an approximate solution to the equations (3.1)
and (3.2) that is asymptotically valid as a --> 0. This is not a com-
plete solution in this neighborhood, being restricted to those modes for
which ¢ --> 0 as a --> 0.

Rewriting (3.1) and (3.2) in terms of normal modes yields

(U-c) [P -F) gy +F ]+ (s +FU) g =29 (3.7)

(% - F) g, + F g1 +hy (1+cos 2my) = 2 6 (3.8)

We restrict attention to the casa 4 12 > sm/U > nz. The numerical
results suggest that the left-hand branch of the marginal curve is the

locus of the stationary neutral modes noted earlier, namely
k2 = 8/U - 1% = (8 /U - 7°) - a/U

We look at wavenumbers close to this curve and set

2, 32,2

2 2 2 2
k =kO-Ak1 2 where k0=5m/U-‘n‘, k1=1/U

Expand C = Az ¢ t s
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We divide the y-interval into inner and outer regions, the inner corre-

sponding to
!y - %-I ~ U(Al/z), and define Al/z n=Yy - %.
The numerical results show that the unstable mode is symmetric about y =

1/2 so we will restrict our attention to symmetric solutions. We expand

the streamfunctions:

Inner: ¢, =Y (0) + A‘F(l) + 2% 1n (1/A)ﬁk(2) * AZ“Y§3) ¥ oy
(3.9)

1,(1) .

Outer: 4, =“}’£0) * 53/2«%{3) -+(3) B

2P0

=S
~N
]

(3.10)
B

In the inner expansion of ¢1, we have included a term of O[A2 In (1/a)].
When we examine the potential vorticity balance in the inner region, we
will find no direct forcing for this term. However, when we attempt to

match the inner solution to the outer solution, we will discover that the
term in question is necessary to allow the two solutions to join smoothly.
Note that“P{zzn will be a homogeneous solution of the relevant inner
problem,

The potential vorticity equations become

3/2

Quter: (35 + wz) ¢1 = -F ¢2 + kz ¢1 - A (c1/U )(B + FU) ¢1

h2 (1 + cos 2ny) ¢2 = Az ¢, F ¢1 L. (3.11)
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2 2 3
Inner: 3@, =-AT @, ~-AF g, *
m o 1 . (3.12)
2 ' 2 2
(an * [1/C1 - (M/Cl) n ]) dz =-AF ¢1 * oees s M= 21T hz
Boundary conditions are dl =0 = ¢2 at y = 1.

From the outer problem we discover that

(O sinay (3.13)
Y o (kB/2m) (y-1) cos ay (3.14)
2
\Pﬁ) = 1 [9—:—2@- F] (y-1) cos ny
(3.15)
. o LR - sin?
sin wy m n (1 - sin® =y)
T2
(1) ¢y F sin zy
*2 = h, (I+cos 2ny) (3.16)
In the inner region,
Oy, L2, B L (3.17)
and
n n'
¥i¥ . LA J dn'J an* Y () + REP (3.18)
0 0

where A and R(3) are constants.
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«i/él) is determined by

n Cl Cl
1/4
: aM
Rescaling a fois s
I (cl) 4
c,\1/2

this becomes [arz tlor i by 2)] 4 R (m%r (3.19)

1 1/2 1
where v = —-Eiﬂ— -7

Except where v = 0, 2, 4, ... this has a formal solution

(1) °11/2§ T L S N3
"f’z =‘F(EM' o V2N ar Dopn (3.20)

which, when v £ 1, 3, ..., may be re-expressed as

172 Y ¥
il - F(ﬁ ’;;_-;’{72 [D\, (J)I D, (-3') +D_ (-1) f D, (3')} (3.21)

- 00 [ -]
(3.18) may be rewritten

|

172 ]
b G SR (m%r) f d;'J ai Y31 qm + R (3.2)
o o
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e 1/2
As Y --> oo Yol (‘n~4r(m%r) (R

c hi2 ~ 4c
skl ™ ﬂ4n4-F<m%T) [Ifdz P L (f)
0

The asymptotic form of the inner solution in the upper layer as ] -=> ©0

1/2
Find + R34 O(I’Z)J

is then

VY, i - (s gl d sl pat ot a0 (1) A
(3.23)

c\M? = Flc %
- Az[- F(I}ED II al ¥ )+ gt 3+ ROG) o(!‘z)]
0

For the outer solution, as n --> 0,

2
c. F
‘\rz Qut & (l-b %-1[2 ﬂz + AZ 51-14 n4) - 4—%;'—.62 '|n (I/A)
™
2

(3.24)

Matching the terms proportional to Az 1 yields a dispersion relation

L]

c.\1/4
ke = 4F(m%r) L ayH () (3.25)
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By using an integral transform solution of (3.19), valid for -1 < v < O,
integrating to find the integral on the right-hand side of (3.25) and then
extending the result to v e, v #0, 2, ..., by analytic continuation,

one finds that

cy\3/4
k%:wF‘?(Hl) -2 1 PG5 (3.26)

The dispersion relation gives ¢, as an implicit function of kg for

2

general, real K It becomes invalid in the limit k2 --> oo since then

2.
v -=> 2n, where n =0, 1, ..., the operator on the left-hand side of
equation (3.19) becomes singular and the forcing on the right-hand side
does not satisfy the necessary secularity condition. Equation (3.26) is

invalid also when kg < El(Al/2

) on all branches for which ¢y -/-> 0as k%
--> 0 because higher order terms, neglected here, become significant.
However, Equation (3.26) remains valid as k% --> 0 on those branches
for which ¢y --> 0 at the same time. These latter happen to be the
branches that correspond to the growing and decaying modes. In both
regions of invalidity, the expansion procedure can be reordered to obtain
the correct extension of the dispersion relation to these regions.

While it is difficult to plot the two complex branches of Equation
(3.26) in order to compare them with the numerical work, we can reproduce
some of the features of the numerical results. Regarding k% as a
function of Cq, we find that

dk?

2 - 2 R »
i = 0 when Cp =€y = 0.0255 and k2 = k2 (Cl) = 4,39 .,

1
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In the neighborhood of this

2 2 1 2 dzkg

kp = kgt (e - ) 32 | -

‘1 |e

g
so that
3 dzkg WL b7
€1 - ¢ = [2 / Z |- (k5 - k5 ) }
c1 C
1

Thus, provided that dzkgldcflﬁl £0, Eg = kg should correspond to a bi-

furcation from a pair of neutral modes to an unstable and a stable mode.

Thus kg = Eg is a candidate for the position of the right-hand branch of

the marginal curve. Looking at the numerical results in the neighborhood

of the cusp tip we can estimate that branch as

KZ-kB+a /U= k5 b2 where K5 - 4.3

Similarly, we may find numerically that the phase speed of the marginal

modes on the right-hand branch of the marginal curve is given by

C = El A" where El = 0.0258
The numerical and theoretical values for ig and El are in close agreement.

Energy Balance

From the theoretical results, we know that in the outer region
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3/2)

A
=
]

sin ny + 0(a

2 F sin ny
= & ¢ fi, (T * cos Zny)

while in the inner region

1 + 0(a)

: & 1/2
] A —-F'(:—;) f(T;5v)
27\ B

b2y
-
il

where f(¥) is a function satisfying [332 f v+ 1/2 - 1/439)] F = - 47/2.
For the unstable mode, the argument of ¢, is generally 0(1) and ¢ (0,
n/2). The phase shift between the upper and lower layer streamfunctions
is 0(1) over both the outer and most of the inner region,

The energy equation for the unstable mode may be put in the form

1

k *
ag E= g UF dy Im [ (y) d,(y)]
0

where E is the sum of the kinetic and potential energies of the two layers
averaged over a zonal wavelength and integrated over the channel width.
Energy is released by the baroclinic conversion mechanism as the pertur-
bation generates a net rectified heat flux down the meridional temperature
gradient of the basic state.

We can decompose the source term into contributions from the inner and

outer regions and indicate the scale of the various terms in the energy

equation
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k e Kk -
E = UF Im (4, d&,) + x UF I Im (4, ¢,)
t ) inier " 1 72 ] outer 12
/1 f bt f ot
0(s)  o(1) 0(al/2)  o(1) o(a) 0(1) 0(1) 0(s?)
phase shift phase shift
= 0(1) = 0(1)

We see that, locally, the heat flux in the inner region is relatively
strong, 0(a). The width of the inner region is 0(51/2) but most of the
heat flux cancels when integrated across the inner region so that the net
energy release in the inner region is O(Az). The energy released in
the outer region has a similar order of magnitude,O(Azl, thus both the
inner and outer regions are important in the release of available poten-
tial energy to the perturbation.

Figure 3.5(c) shows the heat flux, multiplied by F, as a function of
y, that is associated with the unstable mode whose streamfunctions were
plotted in Figures 3.5(a) and (b). Figure 3.7(c) shows F times the heat
flux for the unstable mode of Figures 3.7(a) and (b). In each case, one
notes that next to the central positive maximum there 1lies a negative
minimum of the heat flux. These two extrema, which are both associated
with the inner region, largely cancel when the heat flux is integrated
across the channel,

In addition to the heat fluxes, there are weak, divergent, horizontal
Reynolds stresses associated with the unstable mode. In the upper layer,
these exist in both the inner and outer regions and are O(Az). In the

Jower layer, the horizontal Reynolds stress is O(AZ) in the inner region
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but 0(a%) in the outer [see Figure 3.8(b) and (c)]. Because of the ab-

sence of horizontal shear, there is no net barotropic energy conversion
associated with these divergent stresses. Had the meridional variation
been furnished by horizontal shear of the basic velocity field rather
than topography, in such a way as to produce similar potential vorticity
gradients one would expect to see some barotropic energy exchange with
the mean flow occurring alongside the baroclinic conversion. This might
either augment or reduce the growth rate of the baroclinic instability
depending on the sign of the barotropic exchange. However, provided that
the shear is such that the general properties of the potential vorticity
gradients are unchanged and the minimum upper layer velocity remains pos-
itive, the essential properties of this baroclinic mode of instability

should remain unchanged.

Neutral Modes

So far attention has been focussed on the unstable mode of the system.
The neutral modes, however, also have some interesting aspects. When k2
is in the neighborhood of kg, one can divide the neutral modes into two
distinct classes. The first class will consist of modes with ¢ = 0(1)
and streamfunctions that are 0(1) in both layers. They will not possess
any internal layer structure and formally they will form an infinite set
with progressively shorter meridional scales. These are simply analogues
of the ¢ = (1,y) sin n xy exp(ikx) normal modes of Phillips' model and
will not be considered further.

The second class is an infinite set of neutral modes, all having phase

speeds of O(Az), an upper layer streamfunction of 0(1), an internal layer
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near the mid-line of the channel, and a lower layer streamfunction that
is weak. The dispersion relations, for k2 near k%, are given by Equation
(3.26) and are simply those branches of cl(k%) that do not correspond to
the stable/unstable mode pair discussed above. These branches are shown
in Figure 3.9. These modes are nearly stationary (more generally, they
propagate at velocities close to the speed of the lower layer). Thinking
back to the analytical study, we see that for these modes the zonal struc-
ture and fast time dependence (w = 0 in this case) are determined together
in the leading order problem but that the meridional structure problem 1is
degenerate, only the meridional structure of the leading order part of the
upper layer streamfunction (i.e., sin ny) is determined at this order, The
full meridional structure, in particular the internal layer structure of
each mode, is not determined until higher order. The neutral modes each
have a different internal layer structure which depends on the c; appro-
priate to that mode, i.e., on the slow time scale behavior of the mode.
The existence of this infinite set of neutral modes each having a
period comparable to the e-folding time of the unstable mode and differ-
ing in their internal layer structures: has a significance for any weakly
finite amplitude study. Heuristically, any non-linear interaction that
produces a resultant that is “"resonant" with the unstable wave will also
be "resonant” with these neutral modes. The tecnnical consequence of this
is that the determination of .the internal layer structure of the finite
amplitude solution is coupled to the determination of the slow time scale

behavior. This is to be contrasted with the weakly finite amplitude solu-

tion for Phillips' model (away from minimum critical shear) where the
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Figure 3.9: Dispersion curves for the first three slow, neutral mode

solutions of (3.26).
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determination of the spatial structure and the slow evolution are

separated.

Concluding Remarks

The results of this chapter have revealed that the introduction of
meridional variation into Phillips' model alters the structure of the
slowly growing normal modes of the linear problem in a rather novel way.
We see a "critical layer" phenomenon in which the lower layer streamfunc-
tion is concentrated in a narrow meridional strip in the region in which
the potential vorticity gradient of the basic state, in that layer, is
small. A similar development is not seen in the meridionally uniform
Phillips model because, when the equilibrium flow is slightly supercriti-
cal, the region of small lower layer potential vorticity gradient is not
localized meridionally. We have observed both a lengthening of the growth
rate time scale for the slightly supercritical modes and a tendency for
them to move with phase speeds that are almost the same as the velocity
of the lower layer.

Although the differences between the meridionally varying model and
the uniform model become less pronounced as one moves away from the near-
critical region of parameter space, the fact that the slightly unstable
modes form the cornerstone of the weakly finite amplitude theory lends
significance to the differences between the two linear models. In addi-
tion, the appearance of a set of neutral modes having similar zonal struc-
ture and fast time dependence as the unstable mode can be expected to

influence the finite amplitude dynamics.
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In view of the small meridional scale and the reversal of sign of the
heat flux associated with a slowly growing mode, a fairly closely spaced
set of point measurements of the heat flux associated with any experimen-
tal or geophysical realization of such a mode, would be required before
the flux could be adequately resolved.

We note the curious feature that, while in this model the presence of
topographic relief has a profound effect on the near-critical modes, both
the mean flow and the disturbaﬁce velocities are weak in the lower layer,
One might not, at first, anticipate the role played by topography in the

behavior of such modes.
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CHAPTER 4

4. Baroclinic instability in a meridionally varying two-layer model:

Weakly non-linear theory.

In this chapter we will describe some of the weakly finite amplitude
behavior of slowly growing unstable modes in the meridionally varying
two-layer model. The results of this should be compared with those of
the weakly finite amplitude theory for a meridionally uni form model (Ped-
losky, 1970). It will become apparent that there is a considerable dif-
ference in the behavior of the two models. This is due to the differences
in the structure of the normal mode solution of the two-linear models.

‘We will not be able to present a complete solution of the weakly
finite amplitude problem. Instead, we shall develop a set of amplitude
equations that govern the evolution of a slightly supercritical unstable
mode in the period immediately following the Tinear phase of its growtn.
We shall include interactions between the unstable wave and some of the
neutral Rossby waves supported by the system. However, only two neutral
waves will be considered and these will be assumed to form a resonant
triad with the unstable wave. Here we are selecting only one of the many
resonant triads involving the unstable wave that actually exist. In this
way, we discover something of the role which wave-wave interaction may
play in the evolution of the unstable wave, yet retain some degree of
tractability in the problem. In the ‘real’, physical problem one would
have to include all such triads. Instead of solving this complete prob-

lem in a consistent way, we are choosing to study a method.
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One of the things to come out of the derivation of the amplitude
equations will be the result that the contribution to the evolution of
the unstable wave that is made by wave/mean flow interaction will be
smaller than the terms that arise as a result of interaction with the
neutral waves. This is a surprising result. It means that, in the asymp-
totic limit of small supercriticality, the effects of modification to the
mean flow induced by the unstable wave, can be neglected in at least the
early stages of the non-linear evolution. In the corresponding theory
for the meridionally uniform model, this wave/mean flow interaction was
responsible for the vacillation cycle into which the unstable wave was
ensnared. If we are forced to neglect that mechanism here, we are left
with the question of whether the interaction between the unstable wave
and neutral waves can halt the growth of the unstable wave that is being
driven by the baroclinic instability mechanism. In fact, we must also
pose the question of whether the amplitudes of the sidebands can grow
from the very small levels that one might associate with noise-like ini-
tial conditions, to levels at which the sidebands can begin to affect the
evolution of the unstable wave. In order to do this the sidebands have
to be able to extract energy from the unstable wave while it in turn is
growing as a result of baroclinic instability. The mechanism of this
will be discussed in more detail later.

At the amplitude scales appropriate to a resonant triad interaction
on the O(A'z) time scale, the harmonics of the three principle waves,
including those of the slow, unstable wave, are not important in the
determination of the evolution. Provided that the triad mechanism equil-

ibrates the unstable wave, the effects of higher harmonics and of the mean
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flow correction will be limited to time scales that are longer than
0(5”2). 1f resonant triad interactions are inhibited, say by a quan-
tization of the zonal wavenumbers permitted in the system, then the
linear instability mechanism will cause the unstable_wave to grow beyond
the amplitude level at which triad dynamics would have been important
[this level will turn out to be O(AZ)]. As the unstable wave grows,
the mean flow correctign and higher harmonics that accompany it will
become larger until they reach an amplitude that enables them to affect
the evolution of the unstable wave on the linear growth time scale,
O(A-Z). At this stage, non-linearity has become non-trivial and there
arises the possibility of equilibration of the unstable wave by the
action of the mean flow and the higher harmonics. It may be shown that
the amplitude of the unstable wave at this point is 0(A3/2). The
triad interaction, when present, is a more powerful non-linear mechanism
than the wave-mean flow/higher harmonics interaction, in the sense that
the former can affect the evolution of the unstable wave on the linear
growtn time scale at a smaller unstable wave amplitude than can the
Jatter process. We will consider the 'single-wave' problem in which the
triad mechanism is excluded, in the latter part of this chapter.

The amplitude equations that we derive for the triad problam are too
difficult for us to solve analytically. To answer the two rhetorical
questions raised earlier, we turn to numerical simulations of this weakly
finite amplitude problem. Some of these are discussed below. They illu-
strate the fact that some triads exist which do restrain the unstable mode
at an amplitude level at which the wave/mean flow interaction can be con-

sistently neglected on the evolution time scale. It may be the case that
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the effects of wave/mean flow interaction, though small, are important on
a longer time scale.

The remainder of this chapter is arranged in the following way. The
section immediately below derives the equations that govern the amplitudes
of the unstable wave and the sidebands in the 1imit of small supercriti-
cality. The first part of this - the material up to Equation (4.1) -
explains the choice of temporal and spatial scales, the appropriate amp-
litude scales for the three waves and the way in which the streamfunction
is broken up. The notation used in the rest of the chapter is introduced
here, The analysis between Equations (4.1) and (4.26) is the routine
application of perturbation methods to obtain the amplitude equations.
Some comments on the inner layer structure of the lower layer streamfunc-
tion, an important feature of the solution, are made between Equations
(4.24) and (4.25). Equation (4.27) summarizes the amplitude equations
for the triad interaction which are the main objective of this section,
while (4.28) offers an alternative form. The latter part of this section
provides a heuristic demonstration that the changes to tne mean flow are
too small to affect the evolution described by (4.27) on the O(A'Z)
time scale.

The next section, beginning a 1ittle above equation (4.31), discusses
the formal energy balance for the three wave system. This is followed by
an account of some numerical simulations of the evolution of the unstable
wave and its sidebands. After this, we turn to the question of the single
wave evolution of the unstable mode. A brief prefatory section is suc-

ceeded by a section summarizing the derivation of the amplitude equations
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for the single wave problem [(4.62), (4.53), (4.54) and (4.55)]. A more
detailed account of this derivation is contained in Appendix B, Some
aspects of the mean flow corrections and of the higher zonal harmonics
are pointed out in a section entitled "Features of the Asymptotic Solu-
tion." Finally, the single-wave problem is modelled numerically. Two
types of simulation were performed. The first, which is of the full
single-wave problem, is related in the section "Numerical Simulations"
while the second type, from which the higher harmonics were excluded in
an attempt to discover the effects of wave-mean flow interaction alone,

js considered in the last section of the chapter.

Asymptotic Evolution Equations

For a weakly supercritical flow with 8 =38, - 4, 0 < aA<¢l, the
linear problem suggests that the time scale for the evolution of an un-

stable mode should be O(AZ). We therefore introduce a slow time scale

Tne quasigeostrophic potential vorticity equations become
2 2
(Ua +a,) [(9°-F) 8, * Fy1 + (8 #FU) 8y, + J(8y, (Y-F) &) * Fdy)

- a8y, * aPap [(FF-F) 8)+F8,] = O
(4.0)

2 2
a, Lv" - F) g,4Fd, 1 + (s, - FU+ hy) + U8y, (97 - F) 8,*F4))

- 88, * AzaT [072 - F) ¢2+F¢1] =0
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The y-domain is divided into two regions, an inner region of width
O(Al/z) about the center line of the channel and the outer region made
up of the remainder. We will use y as the meridional variable in the
outer region but resort to the scaled coordinate, n = A'l/z (y - 1/2)
in the inner region,

We wish to consider a streamfunction dominated by three distinct zonal
wavenumbers and we will develop the solution as an asymptotic series in a.
To keep track of wavenumbers, layers and positions in asymptotic series
requires some cumbersome notation which will be explained here.

¢ will be used to denote a streamfunction when considered as a func-
tion of x, y and t. It may also be used to refer to the y-dependent part

of a separated modal component of a streamfunction, e.g.,

g=¢(x,y,t)

§ = AT) ¢ (y) e K(x-ct)

The particular usage should be apparent from the context.

¢ will carry up to three affixes in the following positions (1)¢£j).

Here i is an index denoting a particular zonal wavenumber, either O,

1 o 2,
j is an index denoting a position in an asymptotic expansion series.

k is a suffix denoting the layer, either 1 or 2.
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The abbreviation ¢ denotes (¢1, ¢2). E.g.,

Dy
-5 g, Mgy .
n=n1

ikn (x-cnt)

o

)y _ (M0, 172 REIMCI

The notation (i)Tﬁj)(y) will be used for the y-structure of (i)ﬂéj). It
will not be necessary to include higher harmonics of the three waves nor
corrections to the mean flow as these only become relevant at higher
orders in A than those to which we need extend our calculations. After
the amplitude equations have been obtained, we will indicate the sizes of
the mean flow corrections,

In the present problem, zonal wavenumbers are really parameters spec-
ified in advance, however, it is convenient to make this specification in

the form of a truncated expansion in a, thus,

()2 L (2 2+ 372 )24 2 )2

Recalling that the natural long time scale for the problem is O(A'z), we
write the phase speeds of the 1inear modes found at the above wavenumbers
as expansions up to 0(a3/2), (e . (j)co + A(j)cl + g3/ (j)cz. Time-
scales up to and including 0(A'3/2) will be regarded as fast time scales.
We require that the three principal waves satisfy the usual conditions for
resonant triads on these fast time scales. These conditions are that the

sums of the frequencies and wavenumbers vanish to 0(A3/2). If we assume
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that (0)k is the wavenumber of the weakly unstable wave while (1)k and

{z)k correspond to the neutral waves, the resonance conditions become

O+ () L2y g Feg, 1,3, 3
Dy W @2y @ g
Dy g 4 @ @ L e (1210 4 (2) (@322 )
(1 Mg o @ @ o L (120 @) (2322 g

An additional notational device that will sometimes be used but often
omitted, is the employment of the suffixes 'out' and 'in' to denote the
outer and inner regions of the y-domain.

We re-define the streamfunctions to take into account the natural

ampl itude scales of the waves. With an obvious abuse of notation,

(0)¢1 i} A2 (0)¢1
(0) 7/2 (0)
¢2 out = 8 ¢2 out
(0) 3 (0)
¢2 in = 8 ¢2 in

Henceforth we will work with the scaled streamfunctions on the right-hand

side of these expressions, unless otherwise indicated.
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In comparison to the triad interaction problems considered by Loesch
(1974), the amplitude scales for the sidebands are unusual. In this prob-
lem, the sideband amplitudes are larger than that of the unstable wave.
They are also larger than one would expect from a consideration of more

traditional triad interaction problems. In a straightforward resonant
2

triad interaction, the amplitudes of waves interacting on a A"~ time-
scale would ordinarily be O(Az) .

The streamfunctions will be expanded
(g . W40, , Wg00) , 372 G)gl2) | 2 )3, i v 1.2

(O (00 (00, (00 (1), 372000y (), 2 (0)y 30,

(00 . (0)g (01, (00 (1), .25y Loy (@), ,2 (01,30

-

(0 - (0, 1), 172 (01, (2)

LU

(0) (0), (1)
by in= 9% *

Because of symmetry considerations we need only solve the problem in
1/2 <y < 1. The '+' suffix is used in two of the terms in the expansion
of (0)¢1 a1t to make this explicit since the functional form of these
two terms is different in the two halves of the channel.

Some further pieces of nomenclature are: the use of J(j) (A,B) to
denote the projection of the Jacobian of A and B onto the j(th) Fourier

:1J
component, e! KX. the use of j' in some equations to denote the second

3
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neutral wave when j denotes the first; and the use of q to symbolize the
perturbation potential vorticity associated with g.

Substituting the neutral streamfunctions into the quasigeostrophic
potential vorticity equations yields the following equations for the

Fourier components corresponding to the neutral waves:

- Geg) 162 -2 g e v 5 v ruy Wy

\ [[1 S ey Zy g G 12 2 gy Wy g ‘j‘¢21] ;

. 32 [(u Wy DN g 4 B 152 (2 gy Wy o ‘j’ﬁzl]

2 [ )y 02 )y L G). G)e () 1 (3)
+ A" (U ="Yi¢c,) k g, + C k d, - 3
0 3 1 1 1 17 0T K T %
1 (0), (i") (i), (0)

\ [(1 P @ (02 (g, 4 e 12 (N2 gy Wy, o g (j)¢11]

. 302 [_(j)co 2 (g, + We, 12 2 gy Wy, v (5)¢1]}

2 3. B2 L (). (3)2 (J) 1 (3)
+ A [- CO k3 ¢2 + Cl kl ¢2 - 1—(3-)‘(_0 BT C|2 -

1 (") (0) .
- TT_i 3 ko J(J) ( qu qz)] j=1,2 (4.2)

Here B = FU - hy(1/2), as in Chapter 3, so that g = B = A
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We use the expansions of the streamfunctions and collect all the terms
of similar order to produce a sequence of problems for the successive

terms in the expansions. At leading order,

g +FU

0
. . -FU+h, ..
2 _ (§)2 (3)400) , = (3)4(0) _ *m y (3)4(0)
0

This pair of ODEs with y-dependent coefficients is an eigenvalue problem
for the leading order part of the phase speed of the sideband, (j)co.
Its solutions can be readily determined numerically. Solving (4.2) yields
the dispersion relations for the side bands

(J) (Jj) (3)
and the 1eading order meridional structure of the streamfunctions. There
is, of course, an infinite set of possible meridional modes. We suppose
that we have selected a particular meridional mode for each sideband.
This fixes (j)co and the functions (jlfiiy), (jlféty), in the leading

order streamfunctions which we write

Ul )
(j)YE(y)

G (x-Mce)

(4000 _ a (my e
! 3

The next two orders 0(a) and O(AS/Z) serve only to determine the

corrections to the phase speeds and meridional structures due to the
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3/2

differences at 0(a) and 0(a”/") between the true wavenumber (j)k and

the leading order term (j)ko. At 0(a), the problem we obtain is
(j) (1)

by T =

(1 . . . . : . . 1)
3 2 (j)2 (3). y(3)29(3),(0) () (3),(0)

u-mco[[ ¢y (oy="1kgF) + 1= (U-Fleq) Bhqn g B + Wi, g5 o
< -

o [(J)cl P @00 4 (W2 DE py 1+ We 120
\ 0

(4.3)

where Lj is the matrix differential operator on the left-hand side of 4.2,

Since Lj is a self-adjoint singular operator, the forcing in (4.3)

must satisfy a secularity condition,

jdy (j)]F , (r.hs.) =0

This yields an auxiliary dispersion relation

(e, W, (W2

With this value of (j)c (4.3) can now be solved for the meridional

1’

structure of (j{gtl). Because of the singular nature of Lj this

will take the form

Glgl) _ ()50, ()gl0)

Here (j¥f(1) = (0, (jhfél)), where (jlfél) can be determined from the
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upper layer equation in (4.3), and an arbitrary multiple of (Jl+(0) can be

added to the solution. We will choose the constant ay SO that

[ay W) (D00 g

1845

- fay 50 (j)“f(m/ fay (j),t(O).(J'),t(O)

C!1=

The problem at O(As/z) is dealt with in a similar fashion.

The first significant higher order problem occurs at O(Az) where,

(3)4(3)
Lj 2 =
o 1, (g0 _ _1 (3')4(0)_(0)4(0)
T, ['imk b A - gy BV M
- 0 0 0

1

- 3]

N

cy [ i

v (W) (2 [

- 3
T3, °T
Ko

1 (1)g(0) _

i'd

1

1500 314100y 4 (e 2 4 (u.e)) (g (g (O
ol {33 EN I LNRC LY S TCI MO I (j)ﬂ’%”]

(3'),(0) (0) (0)
J(5) (Y Ty )

). (3)2y (3,000 , ((3). (,2 _(3)2

e e W) 2y gl 4 (@) (J)¢(1)]
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The secularity condition for this differential problem yields an equation
for tne evolution of the amplitude Aj on the slow time scale. This

equation has the form

%

. ] * 3
AjT = 19‘]- Aj + 9 Mj AO A. , J = 1,2 (4.5)

Mj and o; are real constants whose form is rather complicated. They

involve integrals of the functions (jlY{o)(y) and (ijQO)(y) amongst other
terms and their evaluation requires a full solution of (4.2) and 4.3).
Some values for Mj pertaining to particular choices of triad will be
noted later; these were obtained by solving (4.2) and (4.3) numeri-
cally, computing the necessary integrals and evaluating the expression
for Mj. The formulae for o and Mj are listed in Appendix A. AO(T) is the
ampl itude of the dominant part of the upper layer streamfunction associ-
ated with the unstable wavenumber and, 1like A1 and Az, varies on the
long time scale.

As in the case of a resonant triad of neutral waves, Mj describes
the extent of the non-linear interaction between wave (j) and its part-
ners, A non-zero e; can be interpreted in terms of the dispersion rela-
tion for the linear problem, w = w(k). We have chosen a wavenumber of

2 3/2 .2 2 2:1/2
1 + A kz + A k3)

we have been calculating successive terms in a Taylor series expansion for

2 .
the form (k0 - Ak . In calculating Cos & and Cos

the phase speed of the true linear mode

(el 224 2

3/2

co(ko) * acy (ko,kl) + A Cy (ko,kl,kz) S
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In our specification of the wave-like part of the (j’a, that is,
ei(j)k(x'(j)Ct), we specified a frequency v = (j)k(j}c in which we trunca-
ted our expansion of the phase speed at O(AS/Z). If the O(Az) term in
the expansion of the true linear phase speed is zero, then our specified
frequency w, when expanded as a Taylor series, will match the Taylor expan-
sion of the true linear frequency for a mode with wavenumber (kg - Ak% *
A3/2 k% + Az k§)1/2 up.to and including terms of O(Az). In general, how-
ever, our truncated expansion for the phase speed will not be correct to
O(AZ) so that our specified frequency w will differ from the Tlinear
eigenfrequency w by an amount of O(Az), aze say. It is this differ-
ence in frequency, since it corresponds to a difference in behavior on
the long evolutionary time scale that occurs as 05 in the evolution
equation (4.5).

We now address the question of the evolution of the unstable wave.
As in the case of the neutral sidebands, we project the vorticity equa-
tions onto the Fourier component corresponding to the unstable wavenumber.
However, in the linear problem (Chapter 3) we saw that the structure of
the unstable wave exhibited two meridional scales, and it is again neces-
sary for us to split the y-domain into an inner region of width O(Al/z)
about the center of the channel and an outer region comprising the remain-

der of the channel. In the inner region the meridional variable n will

be used. The equations governing (Olg are then, in the outer region,

2 Bm. (0) 1 (0).2.(0), ..3/2[(0),2 (0) 1 (1), (2)
m+U— ¢1 = A(U‘ - kl) ¢1+A [ kz ¢1- WJ(O)( ﬁls ql) -
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1 (2), (1) 2| 0y, ,(0)2 (0), ,g8+FU _ (0)
"k i A “1’]” [‘F P+ K3 Ty w07 "’1]

(0)y , 1 (1), (2) (2), (1)

c2 O o,
m
" (4.6)
in the inner region
3?1 (0)",1 - . A1r2 ((})ﬂ,1 . a2 £ (0);&2
2% iy o (g, - O, o o a? Oy e far gy (0 (4.7)

-1/2
Y [J(O)((llﬁz’(Z)qz) ' J(o)((z)ﬁz,(1)q2,] - 0
m

+
We have used the symbol k‘i in place of (O)icg to emphasize that the lead-
ing order term in the expression for the wavenumber of the unstable wave,
is just the wavenumber of the marginal wave at maximum critical g8, i.e.,

(0),2

2 2
0=km

= Bm/U = T (4.8)
The leading order problem for the upper layer streamfunction is then just

(3‘3 + 'rrz) ¢{0) = 0

(4.9)
¢{0)=0aty=0and1
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Thus d{o) = AO(T) sinzy . (4.10)
At 0(a):
(35 ¥ 1|'2) d{l) = (1 - (0)k§) ¢{0) = (ﬁ’_ (O)ki) Ao Sin “y

U

(4.11)
¢{1) =0 at y = 0, 1

The solubility condition for (4.11) is that

This can be interpreted as a requirement that, to 0(a), the wavenumber of
the unstable wave must coincide with that of the marginal mode on the
Jeft-hand branch of the marginal curve at the true value of g, 8 = B, - A.
It will turn out that the two wavenumbers mentioned can differ only at a

3/2). The import of this restriction on the 0(a)

still higher order, 0(a
approximation to the unstable wavenumber is that the finite amplitude
analysis is more directly an expansion about the marginal mode at B8 =
By - A rather than the marginal mode at s,. We choose to normalize

the solution such that
sV = o (4.12)

The next problem to consider in the upper layer analysis is that at

0(n3/2), but we will postpone this until after we have examined the

lower layer vorticity equation. From (4.6) we have that at leading order
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m

Replacing the expression enclosed in brackets on the right with Péo)(T,y),

we find that

(0)
P> (T,y)
(1) 1
¢2 = - R 5 - FU+hy (4.13)
. 1/2 .
while solving the 0(a™" ") problem yields
6{?) ---E-a ‘0)/ (s, - FUth) (4.14)
We can now return to the upper layer where the 0(A3/2) terms in
(4.6) imply
(32 " 12) (0)¢ (2) (0)k2 (0)¢(0)
y b (4.15)
1 (1), (0) (2),(0), ., (2),(0) (1) _(0) (0),(1)
We will again compress the formalism by defining
(0) (1) (0) (2) (0) (2) (0) (1) (0)
Substitution for (0)¢(0) and (0)¢(1) in (4.15) yields
(0)
2y g(2) _ 2 A 1 .(0) g Po(Thy)
(22 + ) 85 = k3 Ag sin ay - PV (T,y) + (4.16)
% 0 WAk UL L (m FUFT )

(2)

At y =1 we have the boundary condition ¢ =0. As y -->1/2, we
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must match this outer solution to a solution in the inner region near
= 1/2. This matching will be discussed later.
A particular solution of (4.16) is

(0),2
o2 o - % 1 1
—-— Ay (y-1) cos =y + —cos my I * ;—sin my I (4.17)
where
1 .
. F p(0) '
I = ] W e, - FUY 2 (T.y") - 'E“"p{O’(T,y ) | stn w
y L
i F (0) 1 T
I. = S dy' PAP U TyY) - (0) vy | cos wy'
s L2 _Tkm (Bm -‘FU+hy) 2 iEmU P1 (T,y )-

As y approaches 1/2 from above, say y = 1/2 + ¥, ¥ --> 0 + , the asymp-

totic form of 6{2) is

2
K - ”
A G B W A W W R (4.18)
where
F 1 (1), (1)4(0) (2) (0) _(2),  (1),00) (2),(0)
o e g 0 1, g
0 0° 1/2
gt FU L1
Tk~ \ T- (Z)CO U= (1)CO
1

S dy (i, (Dgf0) (214400 (22 (114(0) (21400

1/2 (4.19)
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Continuing to the O(AZ) problem for the upper layer we find from (4.6)
that

(2 +42) 83 o _F gl s (042 40) 8 FU, (0)

1kU

t

Upon substitution for ¢(2) and ¢10) this becomes

2
2 (3) : (0),2 B8 +FU F
(3 )d = sin ny ke N ¥ + A (4.20)
y K [ 3% (“‘m 2 TK T - FU+hy)> m‘]

(3) (2)

The side conditions on ¢,," are similar to those on 81+ - A particu-

lar solution of (4.20) in 1/2 <y <1 is

FU 2
(3) 1 (0),2 B * F > }
¢ = - 7= (y-1) cos ny kS A % 5 A
1+ ™ [ 3 0 <;km UZ 1km hz OT
2 (4.21)
F™ Aot
—__2. sin Ty []n (ICOS “yl)]
21k h.‘2 T

We have now developed the outer problem for the unstable wavenumber as
far as will be required in the derivation of the amplitude equations.
Next we must resolve the spatial structure of the unstable wave in the
inner region near y = 1/2.

In the inner region, the equations (4.7) apply which may be rewritten as

2 2 2
an ¢1 = = A us ¢1 = A F ¢1
(4.22)

1 .2 RV
2““’2‘“’2*1’*&}%%”2*11&;%“’,(“)* Pp (To n) =0

2 12



198

We quickly realize that

—
i

and (4.23)

|

\
M —

=5

=
OZP

P2 (1, 1/2 + Allzn) = 0(a) so that ¢é1) is determined by

2 (0)

¢‘1) vk, (275 0y n 2 1) ¢(1’ - Far gV - Fag (429)

This latter equation appeared in the linear problem. There the time
dependence was simply exponential for a particular normal mode and so we
could solve for ¢(1). Here the time dependence is more general and
we cannot explicitly solve (4.24). Instead we will merely denote the
formal solution that is bounded as [n] -->ce by ¢(1) (n, T). Note

that as n --> =

g oo _Fho 1
- i2k

and

L % FA
j dn' ¢é1) (n') ~ J dn dél) (n) + ______(2)T__ i
0 0 m™ "2 T
A significant feature of (4.24) is that it couples the spatial struc-
ture of the lower layer streamfunction in the inner layer to the evolu-
tion of the amplitude of the unstable wave. Recall that (0)¢(1) is the

leading order contribution to the Tlower layer streamfunction of the
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unstable wavenumber. Thus, notwithstanding the fact tnat the lower layer
streamfunction is weak when compared to that of the upper layer, the
finite amplitude system possesses the feature that part of the leading
order spatial structure of the unstable wave evolves on the non-linear
interaction time scale. This should be contrasted to the case of the
meridionally uniform two-layer model in which the leading order structure
of the unstable wave does not vary during the evolution cycle. In that
problem, temporal variations in structure are relegated to the higher
order correction to the streamfunction that is responsible for the exist-
ence of a weak phase shift between the two streamfunctions, and hence for
the ability of the unstable wave to exchange energy with the mean flow
via the heat flux associated with the wave,.

One can heuristically account for the structural variations of the
streamfunction in several ways . On the one hand, if we exploit the
notion of the finite amplitude disturbance as being built up from a lead-
ing order term, that has the structure of an adjacent marginal mode, and
higher order corrections associated with finite amplitude effects and with
the fact that we are located a small distance away from the marginal curve
in parameter space, then we discover that the meridionally varying and
uniform cases are not very dissimilar. In each, the temporal variation
of spatial structure is associated with the corrections to the marginal
mode. The distinction is that the marginal mode in the meridionally vary-
ing model does not possess a non-zero lower layer streamfunction so that
in the Tower layer the "correction" term is the leading order contribution

to the structure of the finite amplitude wave.
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On the other hand, there is still a profound distinction between the
two cases and this is tied to the existence of the slow neutral modes
noted in the linear problem (Chapter 3). There we saw that at a slightly
supercritical wavenumber (0)k at which we found a slowly growing un-
stable mode, we also found an infinite set of neutral modes which shared
with the unstable mode a lack of any dependence on the fast, 0(1), time-
scale. Instead, their frequencies were of O(AZ). Like the unstable
wave, these neutral modes had an upper layer streamfunction that
resembled sinry and a weak lower layer streamfunction, concentrated near
the center of the channel, Roughly speaking, the way in which the two
sidebands affect the evolution of the unstable wave is by producing,
through the advection of one by the other, an interaction resultant that
contains a component with the same zonal dependence, ei(O)kx, as the un-
stable wave, and the same absence of fast time scale variation. This com-
ponent is therefore resonant with the unstable wave and forces a modi fi-
cation to the amplitude of the unstable wave on the longer evolutionary
time scale. Because the slow neutral modes have the same dependence on
the zonal coordinate and the short time scale as the unstable mode, they,
too, are forced resonantly by the product of the interaction between the
sidebands. In general the meridional structure of the interaction product
will have a projection on all of the slow neutral modes since the merid-
jonal structures of the eigenfunctions are non-trigonometric. In general
then, the component of the finite amplitude disturbance with the wave-

number (0)k will be a mixture of the unstable wave and the slow neutral

modes in the sense of a generalized Fourier sum. The Fourier coefficients
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depend on the slow time variable but this dependence is different for each
mode. Consequently the mix of modes that make up this sum changes in time
which is equivalent to an evolution in the spatial structure of the com-
ponent with wavenumber (O)k.

Before completing the derivation of the amplitude equations, we must
solve the O(Az) inner region problem for the upper Tlayer. From (4.22)

this is

2 4(3) 2 4(1) (1)
22 93) - a2l o F g (4.25)

Part of the forcing for ¢(3) is proportional to the function ¢(1)(T,n)
1 2

described above so that the spatial structure of ¢{3) will also evolve
in time. The solution of (4.25) is

n n
ﬂ{a) = %I'w4 i Ag - F_[ dnl'[ dn" ¢£1) (T, o") + constant
0 0

As n --> %o this has the asymptotic form

2
had F™ A
63V - Lot B ag - nF [ dn (T ) - ——T— 10+ R
0 12km ™ h2

where R is an unknown constant.

(0)¢§22n, the term which occur-

We have omitted to solve for
red at 0[A2 1n (1/a)] in the expansion of (0)¢1 ine There is no

direct forcing for this term in (4.22) so that it must satisfy.

2 4(2)
3n¢1 =0
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and hence be a constant, Q. This term is indirectly forced by the
condition that the inner and outer solutions match smoothly.

To complete the solution, we must match the inner solution to the
outer. To the orders considered, the lower layer matching yields no
significant new information. Informally, in the upper layer, expanding
the outer solution in the 1imit n --> 0 and the inner solution in the
limit n --> o yields asymptotic expressions

2

F2 A
O que = Ao (1-1/2 8 #° R I N (CR LR VY ;[_gl—

(0) 2
. 2 oy % & F& Agr ,

L R Y P R S NS N (LR LRV

2

\ 2 A
+ 2[-an dn¢(1) ———gT——lnn+R]+...

12km ™ h,

Matching terms proportional to n at O(Az) yields the crucial relation

(0),2
K w
2 * * (0).(1)
LAy Ky A Ay = F j dn '8y i (4.25)

0

This, together with the differential equation for (0)¢£13n, (4.24), and
the two equations for the amplitudes of the sidebands, (4.5), form a

closed set describing the slow, O(Az), time scale evolution of the three
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zonal Fourier components consisting of the unstable wave and two neutral
Rossby waves. For convenience, these evolution equations are collected

together here, after dropping some of the affixes to dz, as (4.27).

*

. . *
=1 A1 + MIAO A2

)

—
e |
[

L} - * *
(4.27)
2 p + KA = F | dngll)
=7 Ay * KAy = n %,
0

2 (1) ; 2 2 (1)
8T3n¢2 "'1km(21r hzn -1) dz =-FA

oT

The constants 9 and 8, are significant only to the extent that
together they reflect the amount by which the three component waves
depart from perfect resonance. To make this explicit, we can transform

" -ie.T
Ay = e L Y jsl, 2

-ionT
0", .
@ d2 3

-
N)
]

using o5 = - (e1 * 05). MWhence (4.27) becomes
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-~ L Akak

Ajr = 1 MAgh,
ﬁ 2 MA*.«*

a1 = 1 MAGA

(4.28)
(0),2
Kz A~ AKXak p- “(1)
LRy * KAy = F I dn d3"' (n, T)
0

N T e S T o x 7
(aT + 100) an ¢2 + 1km(2“ hzn - 1) ¢2 —_— (aT + 100) Ao

It remains for us to verify the initial assertion that the changes
made in the mean flow, as a result of the heat fluxes associated with the
three evolving waves, have a negligible effect on the evolution process
on the O(A"z) time scale. A change to the mean flow should be insig-
nificant, if the perturbation to the meridional potential vorticity grad-
jent of the mean flow due to that change is smaller than 0(a). Referring
to the complete perturbation form of the potential vorticity equations,
(4.0), we can see that the changes in the mean flow are generated by the
advection of the potential vorticity associated with each of the three
main waves by the velocity field associated with that wave, and that the
mean field correction UE’ associated with wave (j)g satisfies

o W a2y (g, Bl
j=0,1,2 (4.29)

-2 (3, (3)
= = A \] ) ( ¢2, qz)

(m
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Here (j)I is the potential vorticity associated with the mean flow cor-
rection (jgé, (j)ﬂlis the potential vorticity of wave j and J(m)(A,B)
denotes the x-independent part of J(A,B), A mean flow correction is a
higher order effect if

(j)ty << 0 (a) .

In (4.29) we have reverted to the absolute scaling of dimensionless vari-

(0)¢{0) is 0(52), etc. From this point, we will again use the

ables. Thus
relative scaling, described in this chapter, for the wave variables and
try to determine the scales of the mean flow corrections.

We begin with the effects of the sidebands in the outer region. When
j=1or 2, the first non-zero contribution to the Jacobians of (4.29)
come from the dinteractions between (j)ﬁ(O) and (j)q(3) [and
(403 yien (3100 thus - 7

oy By o 772 [J(m) (DGO, 30y 4y (g3, (j)q(O)ﬂ

~ ~

Hence (j)g and (j)gy, in the outer region, are each of 0(A7/2) and are
therefore negligible.

The sideband waves also develop some inner structure as a result of
the non-linear interaction. Wnhile this is too weak to affect the ampli-
tude evolution, it should be considered when calculating the mean flow
correction in the inner region., Because of the symmetry properties of
the sidebands, the magnitudes of the inner structure that they develop

will differ. Let us use j to refer to the anti-symmetric sideband and j'
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to refer to the symmetric one. In the inner region, there will be a cor-
rection to the lower layer streamfunction of the anti-symmetric sideband

that is of 0(A17/4). The perturbation to the lower layer potential

vorticity that results from this, (j)qéo) say, will be 0(A13/4
and its meridional structure is given by
(3),, (c) e g0 ()()
c) _ _ 04 0 0) (1
q, = TETEEET;; '+2 (1/2) ¢ jn (4.30)

The corresponding correction to the lower layer streamfunction of the sym-

metric sideband will be 0(A19/4) while the associated perturbation to

(jl)qéﬂ) 15/4)

the Tlower Tlayer potential vorticity, will be 0(a

and given by

(3')q(c)
qa =
A*
J i'),(0) (0),(1)" (3), _(0) (1)* (0), _(0)
- (1_..)_(.,...)_3 T .p (1/2) Tn 208,70 Kgm By Rgm K FA]

When these are substituted into the equations for the mean potential vor-

ticity we find that the anti-symmetric mode gives
s

J
(i) 3, 0 (i), (0) (3*'),00) (0)4(1)
Ty = - A 0 Yoy (1727 57 (172) 1y [AjAj,an (n'"dy W)J

while the symmetric mode gives
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X 3 0 0 i'),(0
IR S 2 i Ol 1/2) B 400 2)

(0)
(0), (1) 0 (0) (1)
Im [ AjAj'[an(n ¢2 ) - G ¢ 3]

nnn kO 2 nnn

In both cases the correction to 2 is O(AB) while the change in oy
is O(AS/Z). Although larger than that produced in the outer region,
the changes in the potential vorticity gradient of the mean flow that are
produced by the sidebands are still too small to affect the triad
dynamics.

Now we must calculate the size of the potential vorticity gradient
correction produced by the heat flux of the unstable wave. As in the
case of the sidebands, the largest change in the potential vorticity
gradient of the mean flow is produced in the inner region, although in
both regions, the changes produced in the velocity of the mean flow are

7/2). In the inner region, the self-advection of vorticity

5/2

similar, 0(a

in both the upper and the lTower layer is 0(a”'“) so that, as a result

3 (O)I = O(AS/Z)

Thus, (011 e O(As/z) while (0)« ~ O(Az), in this inner region, Again,

~y
the change in the mean flow potential vorticity gradient is too small to

affect the analysis leading to (4.27).
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Although these small changes in the mean flow need not be considered
in our calculation of the amplitude equations, they play an important role
in the energy balance of the entire system. As the total énergy of the
three waves fluctuates, energy is being transferred between the waves and
the mean flow so that the total energy of the system (waves + mean flow)
remains constant. This exchange is effected by the heat fluxes associated
with the three waves, and the small perturbations to the mean flow that

they produce account for energy lost or gained by the mean flow.

Energy Balance for the Finite Amplitude System

Each wave contributes an 0(A7/2) change in the velocity and temper-
ature fields of the mean flow over most of the width of the channel which

7/2

lead to 0(a’’/%) changes in the energy of the mean flow. To produce

such changes, each wave must give rise to a heat flux which, when inte-

11/2). We can

grated across the channel, has a net magnitude of 0(a
examine these energy exchanges between the waves and the mean flow by
studying the energy equation for the disturbance field.

If we multiply the potential vorticity equations by the sum of the

three principal Fourier modes of the streamfunctions

2

2 . (3) (3)
s . 3 Wy ket Ly
~ j=0 ~
zonally average the resulting equations and then integrate them across the

channel we obtain an energy equation for the three principal wavenumbers

of the disturbance field. If we take out the leading order scales of each
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of the three waves, i.e., make the transformations

(0) 2 (0)
¢1=A dl

(0) 7/2 {0) (0) 3 (0)
¢2 out = 2 8, By in = 8 ¢2
then this energy equation takes the form

aT(E]. * Ez+ 51/2 Eo) =

22 R [‘”k fay 1, (Mg, Mgy + B fay 1 (‘z’aflmca;)]

(4.31)
£ FU (0)1([ [ o (O g% s [ a1 ((meilma!z)]

outer inner

Ej is the energy associated with the i wave

g - %Id’(lvm”llz *

The terms on the right-hand side of (4.31) are the baroclinic conversion

rates associated with the three waves,

. 7 : ;
(3) (3) {41 «2

Since the phase differences
between (J)¢1 and (J)¢2 are 0(&2) when j = 1 or 2 but 0(1) when j = 0, all

of the heat flux terms are of potentially similar magnitude. The con-
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tribution from wave 0, the wave with the unstable wavenumber, has been
split into a contribution from the inner region and a second contribution

from the outer region. For convenience we will label the conversion terms

so that

srlly +Ep + a2 ) = Wie @ o (O o Oy

Using the results of the asymptotic expansion analysis, one can obtain
expressions for the leading order parts of the baroclinic conversion

rates. These are

1
(3) By * FU M5 ()0 0) 12
thU—_-rj-)c_OIm(AoAlAz)xU_,ﬁ-)c_o- dY(J«h_)
0

NG )[(o)k gy (B(0) (3109000 (4.32)
(u ) q o.[ L"1 Yy sin Y

U, [0 M0 g W]] -

In (4.32) we have reverted to the convention that j' =3 -1].

(0) (1) (2)
hout = ko * ko) (
2T, T Jp (1g(2)(2),(0)
FU I, (AghiA,) xr dy sinmy L i gu +-‘fg [ L
0 y
(4.33)

1 -_1 (1), (1)g00) (2)y(0)  (2), (1),(0) (2)y(0)

' ((1)60 (2)c0>( o PP D) - Bl B
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(0, 2 Uk KuL (AAA) (4.34)
in m 0 m ‘0172 *

A1l of the tnree waves contribute conversion rates that are of

0(atl/2),

Compare this to the rates that would be expected from linear
theory for waves of the same amplitude. Wavenumbers 1 and 2 correspond to
neutral modes in the linear theory and so have no associated heat fluxes
or baroclinic conversion rates. Wavenumber 0 is linearly unstable but
the energy conversion rate associated with a wave of amplitude 0(a%)
would be O(Alzlz) i.e., a factor AI/Z smaller than the expected conversion
rate in the finite amplitude problem, For all three waves the rate of
exchange of energy with the mean flow is increased beyond the 1linear
rates. This increase is brought about by the vertical phase shifts pro-
duced in each Fourier component as a result of the forcing each wave mode
receives from the interaction between the remaining pair of waves. Becausa
it is the non-linear interaction between the waves that is responsible for
the necessary heat fluxes, each of the conversion rates is proportional
to the triple product AghrAp. It is perhaps a little surprising that the
conversion rate associated with the unstable mode should share this
dependence. As we saw earlier, the conversion rate associated with the
changes in structure of the unstable wave forced by nonlinear interaction
dominates the conversion rate that the linear structure of the unstable
wave would produce. In this respect, the three wave system here is
pernaps more reminiscent of the triad composed of three neutral Rossby
waves discussed in Chapter 2 rather than the triad consisting of two

neutral waves and a weakly unstable wave in a wmeridionally uniform

two-layer flow that is discussed later in the same chapter.
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The way in which the energy conversion rate of the unstable wave is
enhanced is perhaps worthy of comment. In the outer region, the interac-
tion between the two neutral waves forces a correction of 0(A7/2) to
the lower layer streamfunction; this 1is much larger than the 0(54)
streamfunction that the linearized dynamics would dictate. In general,
the phase of this correction differs by an 0(1) amount from the phase of
the upper layer streamfunction and so the net heat flux produced can
reach O(All/z). In the inner region, the non-linear interaction between
the neutral waves forces a correction to the lower layer streamfunction
that is of the same order as the streamfunction dictated by linear theory.
However, the correction differs in shape from the latter. The linear,
inner region, lower layer streamfunction has a rather special shape which
means that the 0(A10/2) heat flux in the inner region nearly cancels,
when integrated across the O(Al/z) width of this inner region, to leave
only an O(Alzlz) residual. In general, the part of (0)¢2 ¥ forced
by the interaction between the sidebands does not have a similar property.
The Tocal nheat flux associated with this correction terms is also O(nlofz)
but this does not cancel out when integrated across the inner region so
that the integrated heat flux is O(All/z). In short, the changes in
shape of the inner region (0)¢2 caused by non-linear effects, pro-
duce changes of shape in the inner heat flux, unbalancing the delicate
cancellation process present in the linear problem.

The presence of heat fluxes that are stronger than those required in

the linear theory of an unstable wave is necessary because the energy of

the triad is dominated by the energy in the sidebands, The energy fluc-
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tuations associated with the vacillation of the sideband amplitudes are
larger than those associated with the changes in energy of the unstable
wave that occur on the long, e-folding time scale. They require the
enhanced energy exchanges noted above to support them.

In this section, we have noted that the baroclinic conversion rates
associated with the "neutral" waves have, at least formally, a similar
magnitude to that of the unstable wave., It will be observed in the numer-
ical results below that, in the instances examined, the largest of the

energy fluxes is associated with the unstable wave.

Numerical Results

The amplitude equations, (4.27), that govern the evolution of the
finite amplitude system in the asymptotic limit A --> 0, appear difficult
to solve in any closed form. To learn something of the behavior of the
solutions, we turn to a numerical study of the finite amplitude system.
In view of the many degrees of freedom of (4.27), the detailed behavior

of the solutions may be quite complicated. We do not expect to be able
to explore much of this detail numerically. Rather, what we seek from

the numerical results are answers to the two fairly basic questions out-
lined in the introductory part of this chapter. The first question asks
whether the initial growth of the unstable wave, due to the linear insta-
bility mechanism, will trigger the growth of the neutral sidebands of any
of the possible resonant triads. Such an effect is necessary if initially
small perturbations at the sideband levels are to be able to reach ampli-

tudes at which their interaction can affect the growing unstable mode.
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The second question seeks to discover whether any triads exist for which
the non-linear interactions between the triad elements suffice to curb
the growth of the unstable wave and hold its amp11tude‘ at an O(AZ)
level at which the theory behind (4.27) remains valid. A secondary pur-
pose of the numerical simulation is to give some sort of general idea of
the form that the three wave evolution might take.

The numerical model used integrates the perturbation potential vor-
ticity equations for a two-layer model in an infinitely 1long, zonal
channel on a g-plane. The perturbation is restricted to contain only
three zonal Fourier components. These correspond to the three waves of a
resonant triad. The basic state corresponds to the one assumed thus far,
namely, an upper layer velocity of U and a topographic gradient at the
lower boundary proportional to cos 2 my. The model includes non-1inear
interactions between the three zonal spectral components but alterations
to the mean flow are neglected, so that the zonally independent flow is
always just that of the basic equilibrium state. Similarly, harmonics of
the three zonal wavenumbers are not included. These features are in
keeping with our theoretical results that indicate that alterations to
the mean flow have a negligible effect on the triad evolution when one is
in the weakly supercritical regime. What the model is intended to show
is what the three-wave evolution might look 1ike in the true asymptotic
limit when wave-mean flow interaction is negligible. For practical rea-
sons (computing time required), we will look at cases in which the super-
criticality is small but not really in the truly asymptotic regime., To

isolate the three-wave dynamics, we are filtering out the wave-mean flow

interaction by neglecting it entirely.
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Some of the relevant technical details of the model are as follows.
The main algorithm uses a spectral implementation of the two-layer,
potential vorticity equations. The zonal spectral basis is a set of com-

plex exponentials, eikx.

Only three wavenumbers and the corresponding
conjugate exponentials are included in the basis. The meridional spec-
tral basis consists of sine functions, sin n ry. Because of the merid-
ional symmetry of the problem, the meridional structure associated with a
particular zonal Fourier component will be either odd or even and so the
number of sine functions required can be halved. The meridional trunca-
tion used was varied. For most of the results presented here the trun-
cation is at either sin 38wy/sin 39zy or sin 58wy/sin 59zy for the odd/
even modes. The non-linear interaction terms were calculated using a
combination of pseudo-spectral and direct evaluation techniques. Each
zonal component of each variable involved in a non-linear product was
transformed into the physical y-domain, while retaining a purely spectral
representation of the zonal dependence. The interaction terms were com-
puted using these half-transformed variables and the results were then
transformed back into the full spectral domain. An alias-free technique
was used for this step. A fourth-order temporal integration scheme was
used to preserve the phases of the individual Fourier components accu-
rately over periods of time equal to many sideband periods. The code was
executed on a CRAY-1A processor.

Several tests of the model were made. These included reproducing some
of the vacillations of a neutral Rossby wave triad of small amplitude in
a meridionally uniform version of the model and reproducing some of the

results of the linear theory for the meridionally varying conditions.
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There are really four time scales of interest in the model runs. The
shortest is that of the time step used. The second is that of the period
of the neutral waves that the model system can support. These span a
certain range, but the period of the two sideband waves involved in the
main resonant triad interaction is fairly typical. The third scale is
the e-folding period of the unstable wave according to linear theory,
while the fourth is the length of the model run, We are interested in
the weakly supercritical regime in which there is a Tlarge separation
between the two dynamical time scales, the neutral wave periods and the
e-folding period. In order to approach the asymptotic theory as closely
as possible, we would like to make this separation as large as possible.
Since the ratios of the longer to the shorter period scales as O(A”z),
even a fairly large ratio amounts to only a moderately small value of a.
For the results to be presented this ratio will be of 0(100). The asymp-
totic theory suggests that the slow e-folding time will be the natural
time scale for the variations in amplitude of the three waves in our
triad. For this reason we would 1ike the total length of our modelling
runs to be several times longer than the e-folding scale, Te. We have
used runs of 0(10 Te). As a result of the relations between the latter
three time scales, the modelling runs represent integration over 0(103)
Rossby wave periods., Because we want to model weak non-linear interac-
tions between the three components of the triad, we must represent the
phases of the three waves rather accurately over the entire length of the

run, tolerating only errors that are a small fraction of 2s. The param-

ater that determines the accuracy of our time integration scheme is the
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ratio of the individual time step to the Rossby wave period scale., To
achieve the necessary accuracy we have used a fourth order time scheme

-2 & Rossby wave period). The number

and a rather short time step, 0(10
of time steps in a full run is therefore of 0(105).

Four numerical runs will be discussed below. These will be labelled
Al, Bl, A2, and B2, Two sets of model parameters (8, F, U) and wavenum-
bers will be used; Al and A2 will correspond to one set, while Bl and B2
will refer to runs made with the second set. The difference between Al
and A2 will be in the initial conditions used. The same will be true of
Bl and B2. Al and Bl will correspond to comparatively strong initial amp-
litudes. In these the three waves show significant non-linear interaction
from the beginning of the run. They serve to demonstrate that there exist
triads that lead to containment of the growth of the unstable wave. A2
and B2 will begin with very weak wave amplitudes and verify that for these
triads the growth of the unstable wave, caused by the linear instability
mechanism, is sufficient to trigger the growth of the sidebands.

The sets of parameters used are as follows:

A: F = 10.0, U= 1.0, h 5.0 (8_ = 15.0)

2 = m

.08

8 = 14.92, A

]

ki = 2.261, k1 -1.29806251, Ky = -0.96293749

B: F = 6.6164376, U = 1,0, h, = 9.8835624 (Bm = 16.5)
8 = 16,3, A = .2

-1.07518474

2.544, k1 = -1,46881526, Ky =
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The values of F, U and h2 in (A) correspond to those of Case 1 in the
linear study of Chapter 3, Those in (B) match the values used in Case 2
of the linear study. The topography is relatively stronger in Case B, soO
that the slow growth rates and peaked ¢2 structure characteristic of
the weakly supercritical regime can be found at slightly larger values of
A in this case than for the values of F, U and h2 used in (A).

The time scales of the linear modes associated with the wavenumbers
listed above are as follows:

A: The unstable wave ((0)k) has an e-folding time, Te, of 4889.44, The
sidebands ({1)k and (2)k) have periods, Tg, of 9.74.

B: The unstable wave has an e-folding time of 1619.38. The sidebands
have periods of length 8.25.

In both A and B the separation of time scales is quite marked: Te/
Tp is 0(500) for A and 0(200) for B. The spatial structure of the
unstable wave that is given by linear theory is shown in Figure 3.5 for
Case A and Figure 3.7 for Case B, In both 3.5(a) and 3.7(a), the sharp
central peak of the lower layer streamfunction is well defined.

In order to find the amplitudes at which the interaction between the
unstable wave and the two neutral waves is sufficiently strong as to be
comparable with the tendency of the unstable wave to grow as a result of
the linear instability mechanism, some preliminary runs were made with
different initial conditions. The first set of initial conditions used
were very weak so that the waves were effectively independent linear
modes. The intensity of the initial conditions was repeatedly increased

until significant non-linear interaction was observed. Once this
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"threshold" had been found, a longer run was made using this latter set
of initial conditions. It is this run that we will identify as run Al
for Case A. A similar run using the parameters of Case B will be identi-
fied as Bl. Because we are beginning with non-linear initial conditions,
the interaction between the two sidebands generates some of the higher
meridional modes associated with wavenumber (o)k. These are not close
to marginal and have both the smoother structures and shorter time scales
of neutral Rossby waves. Their presence will be observed later as a hign
frequency noise in some of the heat fluxes. Because the amplitude of
these “ringing" modes is small and their period much shorter than the
evolutionary time scale, their averaged effects are negligible,

Figure 4,1 shows the evolution of the kinetic energy of the upper
layer streamfunction for the unstable wave during run Al. This is the
larger part of the total energy associated with the unstable wave and is
proportional to |A0|2. If the unstable wave was behaving according
to linear theory, the energy would increase by a factor of e in a time of
roughly 2450, and hence by a factor of about 7.5 x 108 over the length
of the run, Figure 4,1 clearly demonstrates that the interaction of the
unstable wave with this particular pair of sidebands is sufficient to curb
the growth that the linear instability mechanism alone would produce. The
behavior of the energy is rather irregular which seems consistent with
the large number of degrees of freedom that we know the asymptotic system
(Equation 4.27) to possess. There seems to be no reason to think that
the period of small energy near the end of the run is anything other than

temporary. The time scale of the major fluctuations in amplitude remains
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Figure 4.1: Kinetic energy of the (0)k Fourier component (wave 0)
of the upper layer perturbation during run Al.
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of O(Te). (That it should initially be so is really a consequence of
the way we selected the initial conditions.)

Figure 4.2 shows the evolution of the upper layer kinetic energies of
all three waves. Since, at leading order, the spatial structures of the
sidebands do not change during the evolution, the upper layer Kkinetic
energies of the sidebands are proportional to |A1|2 and |A2|2.
We see that the energies of the sidebands are larger than that of the
unstable wave as the asymptotic theory suggested. The sideband energies
fluctuate on the same time scale as the energy of the unstable wave: the
tendency is for the sideband energies to vary in anti-phase with the
energy of the unstable wave. The energy of the triad as a whole varies
by amounts comparable with the energies of the sidebands. This variation
is achieved by exchanges of energy between the three waves and the mean
flow, Since the fluctuations in total triad energy are larger than the
energy associated with the unstable wave, the rate of exchange of energy
between the triad and the mean flow exceeds that which would be observed
between a mean flow and an unstable wave of similar amplitude to that of
the unstable wave here, but which was evolving (growing) as linear theory
alone would dictate. We have already seen, in our theoretical discussion
of the energy balance of the triad, how non-linear effects can both
increase the rate at which the unstable wave exchanges energy with the
mean flow and modify the structure of the neutral waves sufficiently that
they, too, can exchange energy with the mean flow at similar rates. How-
ever, computations of the heat flux from the numerical results indicate

that the energy exchange associated with the unstable wave is the largest
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Figure 4.2: As Fig. 4.1 but showing all three principal Fourier
components (waves 0-2),
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contribution to the energy fluctuations of the triad. This will be taken
up more below,

Figure 4.3 is similar to Figure 4,1 but shows the results of run Bl.
The curve plotted is again the kinetic energy of the upper layer stream-
function of the unstable wave. Again we see that the non-linear interac-
tions between the unstable wave and the sidebands curtail the growth of
the unstable wave, For this run, linear theory would give an e-folding
period for the energy of about 810. Over the length of time shown in
Figure 4.3, this would imply an increase by a factor of about 2.5 x 1013.
Again, the behavior of the energy is that of an irregular vacillation on
a time scale comparable to the linear e-folding period of the amplitude
of the unstable wave,

Figure 4.4 presents the evolution of the upper layer kinetic energies
of all three waves for Bl. Again, on average, the energies of the side-
bands are larger than those of the unstable wave, but the difference is
not as pronounced as that in Al,

The rates of baroclinic conversion of energy between each wave and
the mean flow for run Bl are shown in Figure 4.5. The strongest is that
associated with the unstable wave. This indicates the following picture
of energy balances within the system. The largest fluctuations in energy
are associated witn the sideband energies. These dominate the fluctuation
in the combined energies of the three waves. These fluctuations are bal-
anced by transfers of energy between the triad and the mean flow. The
major part of these transfers occurs between the unstable wave and the

mean flow and takes place at a rate more rapid than the rate associated
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with the linear instability of the unstable wave, This is achieved by
modifying the shape of the heat flux associated with the unstable wave
(see below). At the same time that energy is being shifted between the
unstable wave and the mean flow, wave-wave interactions are transferring
energy between the unstable wave and the sidebands at a similar rate.
The result of this is that the energy of the unstable wave changes only
by amounts that are comparable with the relatively small energy of that
wave while the main effect of the triad/mean flow energy exchanges is
passed on to the sidebands.

We noted that the energies of the side bands were generally decreasing
while that of the unstable wave increases and vice versa. Because most
of the triad/mean flow energy exchange occurs through the action of the
heat flux associated with the unstable wave, this means that usually the
sense of this heat flux opposes the rate of increase of the energy of the
unstable wave, When the energy of the unstable wave is decreasing, it is
often extracting energy from the mean flow.

The larger magnitude of the integrated heat flux associated with the
unstable wave, in comparison to the integrated heat flux of a growing
wave governed by linear theory, is brought about by changes in shape of
the heat flux. In the linear case, Figures 3.10 and 3.11, the zonally
averaged heat flux was concentrated near the center of the channel and
exhibited both positive and negative lobes which almost cancel each other
when the meridional integral is computed. Figure 4.6 shows the meridional
profile of the zonally averaged heat flux at various times during the

non-linear run, Bl, One can see that there are no longer nearly equal
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areas of positive and negative heat transport. The changes in shape of
(0)¢£1;n that were produced by the action of the non-linear
interaction of the two sidebands have altered the shape of the neat flux
and destroyed this balance. In doing so they permit the unstable wave to
exchange more energy with the mean flow than was previously possible.

So far, we have only looked at one set of initial conditions for each
of two different sets of model parameters. To demonstrate that there is
a certain degree of robustness to the ability of a triad to preQent the
exponential growth of an unstable wave, we include Figure 4.7 which shows
the evolution of the upper kinetic energy of the unstable wave for sev-
eral runs made with the parameters similar to those used in Run Al. The
values of F, 8, U and h2 remain as they were in Al. Two of the runs
shown in Figure 4,7 use the same three waves as Al but feature different
initial conditions. For one, the amplitudes of the sidebands were twica
as large as in Al while for the other, the initial sideband amplitudes
were twice as small as in Al. Also included are two runs made using sim-
ilar initial amplitudes to Al but in which the wavenumbers of the triads
have been changed slightly. In particular, this alters (0)k%.

In the runs shown in Figure 4.7, the important property, that the
growth of the unstable wave is curtailed by the wave-wave interactions
remains. The time scale of the evolution continues to be of O(Te),
with the timescale of the higher energy run (the run with larger initial
amplitudes for the sidebands) being slightly shorter than that of Al.
The amplitude of the "equilibrated" unstable wave is of a similar mag-
nitude for the experiments of Figure 4.7 and for Al, although tnose of

Figure 4.7 are a little larger than that of Al.



230

®
T

n
T

@
T

KINETIC ENERGY x10°°

R22/24

H

0 10000 | 20000
TIME (t)

Figure 4.7: The kinetic energy of the upper layer perturbation
associated with wave 0 during several different runs. The initial

amplitude of wave 0 was the same for each run. The values of F, U, 8
and ho are the same as those used in run Al, The wavenumbers and/or
the initial sideband amplitudes differ between runs.

R22/24 is the first part of run B1.

R26 As R22/24 but with initial sideband amplitudes increased by
a factor of 2.

R27 As R22/24 but with initial sideband amplitudes decreased by
a factor of 2.

R31 Similar zgitia1 amplitudes as R22/24 but with (0) = 2,253,
(g - -1.2944, (2)x - .0,95858. This corresponds to a triad in
which wave 0 has a smaller value of k% than in R22/24.

R32 Similar initial amplitudes as R22/24 but with (0)k - 2.267,
() - -1.3008, (2)k = -0.96622. Here k% is larger than in
R22/24,
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Experiments Al and Bl have shown that it is possible to find a triad
which will prevent the continued growth of a weakly unstable wave that
linear theory would call for., We have therefore answered one of the
questions we posed at the outset of the numerical investigation. Note
that not all possible triads involving the unstable wave possess this
property. There are other choices of sideband pairs which allow the
unstable wave to grow more or less unchecked,

We now turn to the second question; if we start with very weak (quasi-
linear) initial conditions, will the at first exponential growth of the
unstable wave be accompanied by the growth of the sidebands to such a
level that they become strong enough to curb the growth of the unstable
wave To show that, in the instances of the parameter values used in
Cases A and B, the answer to this is yes, we conducted experiments A2 and
B2. These differ from Al and Bl only in that the initial conditions are

very much weaker. The initial upper layer kinetic energies for A2 were

Nave ¢: 4.3147 x 10°11

Wave 1: 6.4132 x 10710

Wave 2: 1.2841 x 10"10
while those for B2 were

Wave d: 8.1708 x 10'12

Wave 1: 8.3272 x 10711

Wave 2: 2.2055 x 107!

The subsequent evolution of these energies is shown in Figures 4.8 (A2)

and 4.9 (B2). In each case, much the same thing happens. At first the
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unstable wave grows exponentially with the linear growth rate, while the
amplitudes of the sidebands remain constant. Eventually the amplitude of
the unstable wave reaches the level at which the asymptotic theory is ap-
plicable. At this level the time scale of changes in the sideband ampli-
tudes, that are forced by interactions between the unstable wave and the
sidebands becomes comparable to the growth rate of the unstable wave. In
other words, the unstable wave has reached a level at which its upper
layer streamfunctioﬁ is O(Az} so that resonant interactions between the
unstable wave and the much weaker sidebands forces changes in the ampli-

“2), The equations govern-

tudes of the sidebands on a time scale of 0(a
ing the evolution of the sideband amplitudes are the first two equations
in (4.28). Because the coefficients M; and M, in these equations have the
same sign (for A2, M = 4.074, M, = 1.852 while for B2, M; = 4,915, My =
1.725) the "large amplitude" unstable wave is unstable to the two side-
bands and these grow on the O(A'Z) time scale. This process is analo-
gous to the instability of a Rossby wave discussed by Gill (1974) in the
weak interaction limit.

As long as the sidebands are sufficiently weak that their influence
on the unstable wave can be neglected, the amplitude of the unstable wave
has the form

al
AO = Goe

The first two equations of (4.28) become

Ryp = My ag e RJ, (3, 3') = (1, 2) or (2, 1)

From these
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while Rz(T) is given by a similar expression. For most initial condi-
tions, the coefficients of exp [(M1M2)1/2 (|u0|/a) e?T] will be
non-zero., The sideband amplitudes will therefore grow very rapidiy, like
an exponential of an exponential. This analysis becomes invalid once the

7/4

amplitude of the sidebands approaches 0(a'’") because they then begin

to affect the evolution of the unstable wave whose amplitude ceases to be
given by AO = a4 e“T. However, we see two things here. First, 1in
the presence of an unstable wave whose growth is being fed by linear
instability, the sidebands will also begin to grow whenever the triad
chosen is such that the product of the two interactions coefficients Ml
and M2 is positive. Second, this growth is faster than exponential so
that the sidebands can catch up to the unstable wave.

Figures 4.8 and 4.9 show the growth of the sidebands once the ampli-
tude of the unstable wave becomes sufficiently large, O(AZ), that the
growth of the sidebands occurs on the same time scale as that of the expo-
nential growth of the unstable wave. The energy of the sidebands in-
creases beyond that of the unstable wave since it is not until the side-
band amplitudes reach 0(A7/4) that they strongly influence the unstable
wave. The presence of the strong sidebands then inhibits the further

growth of the unstable wave and the evolution progresses in a similar way

to those of Al and Bl'
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In growing from very weak initial conditions, the average energies of
each wave, once the triad has settled down into an "equilibrated" regime,
are several times larger than the average energies in runs Al and Bl
where we started with initial conditions close to the threshold at which
an "equilibrated" state is possible. As a consequence of the higher en-
ergies, the time scales of the energy fluctuations are a little shorter,
being of 0(2000) in run A2.

Runs A2 and B2 demonstrate that there are indeed triads which, start-
ing from very weak initial conditions, nevertheless result in a bounded
energy state in which the growth of the unstable wave has been halted
purely by the effects of wave-wave interactions between the elements of
the resonant triad. Our numerical study has shown that the dynamics of
wave-wave interaction, which the earlier theoretical discussion suggested
should become important before wave/mean flow interactions for weakly
supercritical waves and be described by (4.27), is sufficient to produce
a bounded energy state for some choices of triad. It was remarked ear-
lier that not all triads will halt the growth of the unstable wave. In
any physical realization of our theoretical model, the unstable wave will
be simultaneously a member of many resonant triads whose other elements
are neutral waves. Some of these triads will be ones which, at least by
themselves, will halt the growth of the unstable wave. We have confined
this study to a case in which only one triad is considered. It is not
clear what will happen when more than one triad is at work, modifying the
evolution of the unstable wave. While it is, in principle, straightfor-

ward to obtain the extension of equations (4.27) to the case in which a
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finite number of triads, each involving the unstable wave and two neutral
waves, are present, a more sophisticated (and slower) numerical model

will be required to follow the evolution of this system.

The Single-Wave Problem for the Meridionally Varying Model

In the Timit of small supercriticality, the effects of interactions
between the unstable wave and modifications to the mean flow are of sec-
ondary importance when three-wave interactions of the sort discussed above
are occurring. Similarly, interactions between the unstable wave and its
zonal harmonics may be neglected in the three wave problem. Nevertheless,
the single-wave problem, in which the evolution of a slightly supercriti-
cal unstable wave is modified through its interaction with the mean flow
and with higher harmonics of the unstable wave, retains some theoretical
significance. It has practical relevance in instances when a quantization
condition imposed on the zonal wavenumbers does not admit any stabilizing
resonant triads. Such a condition could occur in the case of a spherical
or annular domain. (In practice, such a condition might also fail to
admit wavenumbers corresponding to weak instability at minimum critical
shear). It also has some pedagogic relevance: in regimes in which the
supercriticality is small but not very small, both three-wave and wave-
mean flow interactions can be expected to be present; a rather complicated
situation, yet one that is still short of the fully non-linear case. By
considering the three-wave and single-wave problems in isolation, we
hopefully provide some basis for understanding this coupled regime.

One of the aims of the single-wave theory is to determine whether the

combined effects of wave-mean flow and wave-nharmonic interactions can
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equilibrate the slightly supercritical wave at small amplitude. We will
discover later, as a result of some numerical simulations, that the
finite-amplitude processes can indeed equilibrate the wéakly unstable
linear mode.

We saw that the amplitude scales used in the three-wave problem were
too small to produce a wave-mean flow or a wave-harmonic interaction that
could affect the amplitude of the unstable wave on the e-folding time-
scale O(A'Z). In the single-wave case, it turns out that we must

3/2) in the upper

rescale the amplitude of the unstable wave to be 0(a
layer. Because of this amplitude scale, one of the differences between
the single-wave case and the three-wave theory is that the energy density
of the wave-field, in the "equilibrated state", is larger than was the

7/2). A second

case in the three-wave problem; O(As) rather than 0(a
feature that we will discover is that the wave-mean flow interaction is
accompanied by the generation of, and the interaction of the unstable
wave with, the zonal harmonics of the unstable wave. This process seems
analogous to the critical layer effect noted by Pedlosky (1982) in the
meridionally uniform two-layer model at minimum critical shear. There
are, however, some differences in the details of the manner in which the
harmonics are created when one compares the two models. In the merid-
jonally uniform situation, if one starts from initial conditions in which
only the unstable linear mode is present, then one finds that the zonal
harmonics are generated indirectly. The self-interaction of the unstable

wave cannot generate a second harmonic, only a correction to the mean

flow. However, the latter has a non-trigonometric structure. The inter-
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action between the unstable mode and the mean flow correction then gener-
ates a series of meridional harmonics of the unstable wave. Lastly, these
meridional harmonics interact with the unstable wave to produce higher
zonal harmonics of the latter. We will see later that the introduction
of meridional variation changes this. Since the eigenfunction structure
of the unstable wave is no longer trigonometric, the self-interaction of
the unstable wave directly generates a second zonal harmonic., The inter-
action between the unstable wave and its second harmonic creates a third
harmonic and so on,

There are also differences in the way in which the harmonics affect
the evolution of the unstable wave. In Phillips' model the sin 3xy merid-
ional harmonic, with the same zonal structure as the fundamental, alters
the mean flow through its interaction with the unstable wave. None of
the higher meridional harmonics of the fundamental directly affect the
mean flow, nor do any of the zonal harmonics. No harmonics appear explic-
itly in the evolution equation for the amplitude of the unstable wave.
Zonal harmonics are important but their influence is due to the changes
they force in the third meridional harmonic at the fundamental zonal
wavenumber, In the amplitude equations that we derive below, it will be
seen that, in the meridionally varying case, the higher zonal harmonics
enter both the equation for the mean flow and that determining the ampli-
tude of the unstable wave.

In Pedlosky's model, the meridional extent of the higher zonal har-
monics involved in the dynamics of the unstable wave, was the entire

channel width., For such a meridionally uniform model, the meridional
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extent of the region of the small lower-layer potential vorticity grad-
jent is also the width of the channel. In our meridionally varying model,
we will find that the higher harmonics are strongest in the inner layer
region about the center of the channel that corresponds to small values
of the potential vorticity gradient of the lower layer.

In what follows, we shall show how the asymptotic governing equations
for the weakly supercritical case may be obtained and indicate the gener-
ation of higher harmonics. Again, these equations are rather complicated.
We include a couple of numerical simulations to show that the unstable
wave is equilibrated. These also show the production of the overtone

spectrum.

Ampl itude Equations

Most of the symbols used in this discussion and their definitions
will be similar to those used in the earlier parts of this chapter. We
will discard the leading superfixes used earlier to distinguish between

the three principal waves of the triad problem. As in the three-wave

case, we take

B =8_=A A << 1

and T=4a1t

We expand the streamfunctions,
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+ a2 ) @My ¢ a2E B y,m -

+ A 1n (1/a) @éﬂ(y,ﬂ

+ oA [¢£2)(x,y,T) +§é2)(y,T)]

v 321y (1) 19 o) ¢ @57 1]

¢ 22 gD xy,m + 83y, L. (4.36)

22 44 3 1 66

A3/2 A(l—A%—wn +A2%-z-1rn -4 3y Ton +...) e

¢1 in~®

¢ 32 B nm ¢ 830,10

SR URCVISIL RO S SOTPUR o) I PIL IR SR SR T S
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B2 10 (1/m g (0,1 +HE (60,11 + 82065 0n T 1B (1]

+

23 10 (1008 (1) +F O 0,11+ 3O 0, G - L

+

+

o 0 (170022 082 (0,1 + 1B B k0,1 ¢ L.

+

£ ton P L% n + 1986 0 * . (4.37)

¢2 in = AS/Z [¢é0)(xsnsT’ +§§0)(HST)] + Al/z [¢£”(X.mn +—6é1)(n!.r)]

* A 1n (1/3) [P(Z)(ﬂsT) * R(Z)(x!nsT)]

co B2 xn T 82 (0,11 + 2 10 (/P01 + R x0T
e 320403 (k0,1 + 830,11 ¢ 200/ PILHD (1) + LB (0,

a2 10 (/m® 6, ¢ R G+ 28 o0, P M1 e

(4.38)

In the above, symbols such as ¢{2) may refer to two distinct func-

tions, one defined in the outer region and one in the inner, For clarity,

we will not bother with additional notation to distinguish these two.

Instead, it should be obvious from the context which function is implied.
Some of the x-dependent terms contain not only a component propor-

ikx inkx

tional to e , but also higher Fourier components; e , N=2, 3,

... The full resolution of the form of these harmonics of the primary
wave and of the mean flow perturbation in all of the sub-domains of the
problem is quite a lengthy process. Here we shall sketch the main steps

necessary to determine the evolution of the amplitude of the primary, A.
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These have much in common with the steps used in the three-wave problem.
We will also 1ist, but not derive, some of the terms in the expansion of
the harmonics and the mean flow. A more detailed outline of the solution
is postponed to Appendix B.

We define k by

The inner meridional variable is

n o= M2y Z1y2)

Rescaling the streamfunctions so that their leading terms are 0(1)
and substituting them in the potential vorticity equations, we can obtain
modified potential vorticity equations that show the relative importance
of the several terms in them. In the outer part of the domain, the upper
and lower layer equations become respectively,

2 372

UV + 8,) By, = 08y, - 8272 006;, 9% 8)) - 4% (ap W2 - F1 4 + FU 4, )
-3 W), q) + I 4y, Q)] (4.39)

R {J (8), Fo) * oy L2 - FI@ + F§2]J - ot
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(8, - FU+ hy) gy = - F gy * & [8, - (&, F8)]
; A3/2[a(¢2, F6) + allay - I &, + Féll] , (4.40)

-0l (2 - F) gy - 2% D6y, Qp) + 3 (F,, 08 - F) 4p)]

In these equations a; is the potential vorticity in the jth layer that is
associated with the x-dependent part of the disturbance field while Qj is
a similar quantity associated with the x-independent part of the dis-
turbance.

Substituting the @# expansions into these equations and considering
each order in a separately, we obtain a series of differential problems

for the various terms that compose the streamfunction. Taking the upper

layer first:

2 2 (0)
At 0(1) [U(ay - km) * Bm] ¢1x = 0
which is satisfied by ¢{0) =A sin wy eikx + * except for terms of
0(a).
2 2 (2) 2, .(0)
At 0(a) [U(ay -k)*te lg " =(-U SR M

which yields K2 - 1/U as a solvability condition. We normalize the

1
solution so that d;l) U

3/2 2 2 (3) 2 4(0)
At 0(s°/%) (Va2 - k3) *+ 81 B3 = Uky 6,
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It is at this order that higher harmonics first appear in the outer solu-
tion. They are not directly forced at this order, but we will see later
that they are generated during the matching process. In general, we will

make the Fourier decomposition:

¢(m) .S (w;m) e1nkx - %)

1 n=1
Then
(3) 5
3
Nl = z——-(y -1) cos =y A
and (4.41)
(3) | —
Nn = Bn sin h ‘n (y-1)
2 22
where Ap = k™n" - Bm/U

853) is as yet unknown,

Switching now to the lower layer, we find that at 0(1)

(a-Fu+h)¢(°’ F¢(0)--Fs1nuy(A eTkX 4 )

thus (0) F sin my . ikx
b2 = kg Fuan, (A e e Az

From here we return to the upper layer where, at O(Az), we find

U(e? g B o Fu gl - (o o) g9

After making a Fourier decomposition of ¢(4) this becomes
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iA

2, .2y 4(®) _ F_ sinny 2., 2 T ..
(By*’w)ul --2kh2coszﬂy ‘IAT-(k+u+F}Uk—s1n1ry
2 2, ,(4)
(ay - A, Wt =0, n>2
Therefore
(4) 1 A S
Nl = MT[T (y-1) cos wy [k Uz - ¥ “2" + " .,,2 sin 7y 1n (]cos =yl|)
2

(4.43)

H(4) = Bg4) sinh Ay (y-1) , n>2

By now we have taken the potential vorticity equations in the outer region
to the same order that we did when developing the linear solution. We
have not yet seen any trace of non-linearity. The latter will finally
make itself felt a couple of orders hence, but it does not significantly
affect the evolution of A(T) on the A‘Z time scale. It is the action of
non-linearity in the inner region that is important in determining A(T)

so we will leave the outer problem at this stage.

Inner Region

3/2 5/2

After scaling ¢1 in with a and dz in with A”/%, the potential vor-

ticity equations in the inner region become

2 2 2 2
U C ¢1x + A(Uax + ﬂm) ¢1x = A (ﬁlx - FU ¢2x) - Ad(dl, ql) - 87 379y

(4.44)
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and

2 2 2 4 4 2
(21’ hzﬂ ‘A3‘h2'ﬂ'n +-lo) ¢2x+aT an¢2‘¢2x+F¢1T

(4.45)
v 3 (B, 328, *F d) *a (32 -F) gy tad (d,, 22d,) =0
2 “q "2 1 X 2T Zr Tg Fage v’
In the above equations J (a,b)=ab - ab_ and
X n nXx
2 2 2
q = 3n ¢1 + A (3‘X - F) ¢1 + A F ¢2 . (4.46}

We turn first to the upper layer. Referring to the streamfunction
expansions given in (4.37) and (4.38), we see that the first few terms in
¢1 are just the asymptotic form of A sin ay e'ikx + *  the 1leading
part of the outer solution, as y --> 1/2. The 0(1) and 0(a) parts of
(4.44) are automatically satisfied. There is no direct forcing for the
0(A3/2) and O[A2 1n(1/a)] terms in the expansion of 1 ine Rather
these satisfy homogeneous equations,

2 (3) 2 (4)
Uala, 6> =0, Ual 3, ¥ =0

and so are linear in n,

63 2w (x,1) 0+ {3, (4.47)
3(4) --'3{4) (x,T) n +3{)4) (x,T) (4.48)

These functions can contain several zonal harmonics, so we set
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(3) (3) _inkx
Hm = 1 (Hn’m e + *x )
(4) (4) _inkx
LI =1(“,me )

At 0(22) ¢(4) - Fu l0),

The contribution from the non-linear term being identically zero. As in

the 1inear problem, ¢{4) is given in terms of the Tower layer streamfunc-

tion by

n
B . _F dn d o 50+ 6P x,T) ¢ sl (4.09)

After making the decomposition

(m) (m) (m) .(m) (m) (m) (m,n) .(m,n), _inkx
[¢ 3 G1 . GO ] = .y [Z n . G1 s GO e + *

(4.50)

and noting the symmetry of the problem, this becomes

n
4 . )
zgn’ « =F da 4 4 vég’ + 3{4’2"’ .
0 0
| N1 (4.51)
n
S8 o y(0) , o(4,20-1)
Iypg = -F datda' Yoo, * G
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In contrast to the upper layer, everything we wish to determine from
the lower layer potential vorticity balance will come out of the leading

order equation. This is

2, 2 400) _ 40),, .2 ((0) , ¢ 4(0) 0) ,2 (0)
2x? hy o 8y - gy + apal 800 e F o))+ atgy®) 62 0 T

P ot f0, 02 g0 v g0 4 as? (004 (gl

2 (0) (0)
2 2. % *F8)=0

The last term on the left side of (4.63) contains a component which is
Xx-independent and compdnents that are proportional to the zonal harmonics
of the fundamental wave. We note two consequences of this. The first is
that the mean flow in the lower layer has the same amplitude (in terms of
A) as that Fourier component of ¢2 which has the wavenumber of the

unstable wave. The structure of this mean flow correction is determined

at the same order as ¢é0). The second consequence is that the

leading order x-dependent part of the Tlower streamfunction, ¢;0)

(x,n,T), is not simply proportional to e1kx, but contains all of the

. inkx
zonal harmonics e « N3l

To clarify the way in which the zonal harmonics are forced, we will

use the Fourier decomposition of ¢§0) indicated in (4.50). Substi-

tuting this into (4.52) produces a rather complicated equation. If we

look at the part of this equation that is proportional to eipkx’ p=0,

1, 2, ..., taking each p in turn, we obtain

io kx
e :

(0% 41 (4.53)

2 (0) _ . (0)* 4u(0)y . . 2 r,(0)
NP ikF (AYln -A*Y1n ) + ik nal [Ynn Y

n=1
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eikx:
2. 2 (0) (0) i, vi0) . ¢i0) (0)
2 xhyn” ik YU+ Y g -k V(T # FAp + ik Y) §2m
Sk (0 e r 830+ i rax vl
(4.54)
< (0) (0)* (0)* (0)
‘ ézi 1) Ynep Yogon =" Ta " Y(n+1)ann
(0)* ,(0) (0) (0)*
" Yagn Yint1)n = D Yinen)gn Yag 1= 0
aiPkx P> 2
2 (0) , (0) . (0) , (0) z(0) (0) (0)
2 T nzn ikp Y© Y - ipk Yo' *+ ipk (vp ézm " pnnf )

(0) (0) (Rl 0),(0) (0)(0)
- 1kF {AY(p 1) A*Y(p"'l), + 'Ik<nz='1 n (Yn Y(p'n)ﬂnn - YnnnY(p_n)n)

00 (4.55)
. [W yyl0) (% (o) (o))

n=1 n#p Ynnnn = Y(n#p)nn Ynn
(0)* (0) (0)* ,(0)
£ Yinioyn - Yn Y(ﬂ*'P)nnn)]):

In each of the above equations, there is only one T derivative. (4.53)

is an evolution equation for 55(0), (4.54) is an evolution equation for

Y{O) and (4.55) determines the evolution of Y(O), p > 2. These equations

are partial differential equations with n -derivatives. They determine



251

the meridional structure of (0) and YéO). These meridional structures are
intimately coupled to the evolution of Q%O) and YLO). The evolution of the
mean flow and each harmonic, including the first, cannot be described by
a T-dependent amplitude coefficient multiplying a stationary meridional
structure. Instead, the meridional shape of each harmonic changes with

time as well as its norm. Another feature of (4.53)-(4.55) is that they

4(0)

nd‘
b a

are coupled non-linear equations. The development of each
ﬁéO) is inextricably linked to all of the others.

We should verify that all of the spectral components are directly
forced. We will consider an initial condition containing only the linear
unstable mode. Thus A and Y{O) (and Y{g)) are non-zero while
iéO) and Yéo), p>2 are all initially zero. The AY£2)*

A*Y{g) term in (4.53) will force the mean flow, 4%0). In
(4.55), 1let us consider the AY%311)n term. The presence of the
(p-l)th Fourier component will force the next highest component
YLO}. We know that Y{O} is initially non-zero, hence Y£0),
YéO), ... Will be successively forced. Moreover, we might expect
that at a time not too far removed from zero, the energy associated with
the pth Fourier component will progressively decrease with increasing p.

Equations (4.53)-(4.55) possess some symmetry properties. As a
result, all odd-numbered harmonics are even functions of n and vice versa.

The central problem at hand is the determination of the evolution of
A(T), at least in principle. We have not yet closed the system. To do
so, we must link the inner solution to the outer. The necessary step is

the same as the one used to complete the linear solution in Chapter 3.
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We match ¢1 in to ¢1 out to relative order Az. We need only consider the

e1kx dependent part of ¢1. From (4.51), for ¢(D) this is

1in
1
n n
7i* - FJ dn'j an YO (e, 1) + 6t (4.56)
0 0
where Gé4’1} is an as yet undetermined function of T.

From (4.53), as n --> oo

v{o) ~ _F A n~C (4.57)
27 hzk
2
o F2iA
Thus z{“ ~ Fj dn v{‘” La Th ¥ -_?lm n+R (4.58)
A 2x’h,

where R is a free constant.

We will perform the matching somewhat informally by comparing the
asymptotic form of the outer solution in the limit y-1/2 ~ 0(a), & --> 0
with the form of the inner solution in the limit n -->ea, Using (4.35),
(4.41) and (4.43), we find that the part of the outer solution that is

ikx

proportional to e is asymptotically

‘2
F~A
-3/2 oaq.l, 22,1 2484 2. 1, A
A ¢10Ut A(]-"Z'Ak'n 'l'Z.IA-“-n +._.)_A 'In(_A_)__z___'
Ak hZ
2 k% inAT
t A% [ g~ An* ——Tna*const] + ... (4.59)

Zk'll' h2
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while (4.37), (4.47) and (4.58) imply that the same part of the inner

solution is given by

A'3/2 ¢1 in ~A (1 - %—A -rrzn2 + %2'_- A21r4n4 ¥ uea) ¥ A3/2 H](.?g)
(4.60)
2 (4,1) , 2 - iF2A
+ 4% (17 F 0 v s [-nFJ dn Y, + —5—1nn*RI+ ...
0 2x‘h,

Matching these two forms tells us two things. Firstly, it shows that the

2

term a% 1n (I/A):?'éq"l) in the expansion of 4, . , which was not

directly forced in the expansion of the vorticity equation, must be

included in order to correctly fit the incoming outer solution. Thus

(4,1) iFoAr
3’«0 = - — (4.61)

The term H{33 is not forced by the matching conditions and so is

zero.

The second and more important matching condition comes from the Azn

terms in (4.54) and (4.60). It is
2
Ky

oo
e FJ dn Y{O) (4.62)
0

The infinite set of equations (4.62), (4.53), (4.54) and (4.55) completely
determine A(T), Y\O (T,1) and €{%) (1,n). Finding their solution will
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enable us to discover how the single-wave model evolves on the A'z time
scale. Unfortunately, obtaining such a solution analytically is very

difficult. We will instead resort to a numerical procedure.

Features of the Asymptotic Solution

If one pursues the asymptotic analysis further, one can obtain details
of the mean flow and harmonics in each of the sub-domains of the problem.
The mean flow correction is most prominent in the inner region of the
lower layer where the associated streamfunction is O(AS/Z). The
attendant zonal velocity is 0(52) while the corresponding alteration in
the mean meridional potential vorticity gradient for layer two is 0(a).
The changes in 2y are therefore of a similar scale to the supercri-
ticality in the inner region, as one might expect. In the inner part of
the upper layer, the changes in the zonally independent streamfunction
and mean velocity are 0[;57/2 Tn (1/a)] and 0[A3 1n (1/a)], respectively.

The alterations to the zonally independent part of the streamfunction
in the outer region are similar in each layer, being of 0(a3). The con-
comitant changes in mean velocity are also of 0(&3). The leading contribu-
tions to the streamfunctions are @{3) and @%’1). 1f we form barotropic

and baroclinic streamfunctions,

£(T) " %_(4;{3) +§é-1)) §(C) - %_ (éi:‘” 'éé-l))
then these take the form

. 2
£ [ia?(amwu)(ﬂg{_ﬂi oy lz)%;mf—y oy c”’] (1A12-1A(0)] %)
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§((:) =[ 2 5 +FU) (sin 2ry _ sinh [ﬁF’(y-l/Z)])

(
(4x2+2F)2 ™ cr Y2F cosh ~F7Z
F2 tanay .1 FAFTZ VO : tanay 1y - VI
B i A A P — ~Y¥rz e
1

y
_e-VEF&] (B _y . g gV?F?]] (1A% - |a@)]?
1

In the inner region, the amplitudes of the zonal harmonics of the
primary wave, in the lower layer, are all similar and match that of the
mean flow correction. The meridional structures and evolutionary behav-
ior of these harmonics are determined by the coupled system formed by
(4.53), (4.58), (4.55) and (4.62). The corrections to 4, . are 0(a3/%)
while those to g, , are 0(A7/2) for even harmonics and 0(A3) for the odd

harmonics. The 1leading contributions to the harmonic components in

By ip are
n (- -]
A7/2 F f dn'J dn" Y!’(IO) (even harmonics)
0 n'
and
X oo
A3 !:-; tanh ZEI dn Yr(‘m (odd harmonics)
0

In the lower layer, the zonal velocities associated with the harmon-

ics dominate the meridional velocities. The former are O(Az) while the
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latter are O(Aslz). In the upper layer, the situation is a little dif-
ferent. The zonal velocities are 0(A3) for both even and odd harmonics
while the meridional velocities are 0(A3) for the odd' harmonics, but
0(57/2) for the even harmonics.

Let us move now to the outer domain., Here, too, the amplitudes of
the leading order terms are different for the two sets of harmonics.
This time, however, the second harmonic differs from the remaining even
harmonics. For the odd harmonics, the leading order contributions to the

upper and lower layer streamfunctions are

[ =]
3F o, (0)

(upper) -A E—seeh 5— sinh A (y-l)J dn Y, (n) (4.63)
0

and

5 iF° 2 n © 0
-A" g SecT my sech z—-sinh . (y-l)J dn YnT (n) (4.64)
2'n
0

respectively. Associated perturbation velocities in the upper and lower
layers are also 0(A3) and O(As), respectively. For each of the even
harmonics except the second, the largest contributions to the streamfunc-

tions are smaller than those above by a factor 51/2. They are

A L -] oo
(upper) -A 7/2F cosech 2—"— sinh g (y-l)j dnj dn' ng (4.65)
0 n
Co

.2 X %
AL Zh_\'('12n sec? ny cosech 5% sinh A (y-l)j dnJ dn' Yr(‘-?)(n) (4.66)
0

n
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and produce upper and Tower Tlayer velocity components of 0(57/2) and
O(Alllz). In the second harmonic component, the highest order part of
the upper layer streamfunction is given by (4.65) with n = 2 but that of
the lower layer streamfunction is given by

A" —m—sec Z«y tan 3ny (Az)T (4.67)

which is A-1/2 larger than (4.66).

The difference between the second harmonics and the higher overtones
is a reflection of how non-linear processes are working in this system.
In the outer region, we see the sort of phenomenon we might expect in a
weak amplitude system containing quadratic interactions. With some over-

ikx’ is "forced"

with some small amplitude O0(e) say, e << 1. In our model eikx is

simplification: a single (zonal) Fourier component e

"forced" by the linear baroclinic instability mechanism. The meridional
and vertical structure of this mode are determined by the leading order
linear parts of the governing equations. The non-linear interaction of

i2kx

this mode with itself produces an e component of 0(52) and suc-

cessive quadratic interactions produce the higher harmonics with a hier-
archical sequence of amplitudes; g ei"kx. Because of the difference
in amplitudes between the upper and lower layer streamfunctions, the form
of the coupling between the upper and lower layer potential vorticity
equations and the nature of the meridional structures of the streamfunc-
tions, the relative strengths of the non-linearly generated harmonics is

a 1ittle different for the two streamfunctions.
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The inner region presents a different picture. Although the stream-
function amplitudes are still formally small, we have to take into account
the critical layer effect. The linear balance in the lower layer is anom-
alously small because of the small size of the coefficient that corre-
sponds to the lower potential vorticity gradient of the equilibrium flow,
The non-linear perturbation terms are the same size as this weakened 1in-
ear balance. Despite the small streamfunction amplitudes, this is a fully
non-linear sort of dynamics. The absence of any difference in size be-
tween the non-linear and linear terms of the lower layer prevents the
system from being able to rank the harmonics. Instead, all the harmonics
in ¢2 in have the same amplitude as the fundamental. Their dynamics
are intimately interwoven [see (4.53)-(4.55)]. The presence of ¢, in
the upper layer potential vorticity equation forces the harmonic compon-
ents of 4.

As we make the transition from the inner region to the outer region,
Ty becomes 0(1) once more, the linear balance in layer two again be-
comes dominant. However, the harmonics 1in dl in are related to the
non-linear forcing (which ultimately resides in the lower layer potential
vorticity equation) not by a simple algebraic relation but as the solu-
tion of a forced, linear differential problem. The harmonics of dl in
do not decay as one moves to the outer region even thougnh the non-linear
terms do become relatively less important. Harmonics in the outer region
are therefore forced indirectly by the matching condition as a result of
non-1inear effects occurring within the inner region. This is the reason

for the integrals of YﬁO) that appear in (4.63)-(4.66). Direct non-
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linear forcing in the outer region is only strong enough to surpass the
effects of the indirect forcing in the case of the second harmonic in the

lower layer, (4.67).

Numerical Simulations
The analysis above indicates that, once the amplitude of the unstable

wave has grown to 0(A3/2), non-1inear effects modify the hitherto expo-
nential growth of the former. For as long as the unstable wave amplitude
remains at this order, the O(A'z) time scale behavior of A will be
described by (4.53)-(4.55) and (4.62) which include the effects of inter-
actions with the mean flow perturbation and higher harmonics. Since we
have not solved these equations we do not know whether these interactions
are stabilizing or destabilizing. We have therefore resorted to some
numerical simulations of the single wave problem. While their results do
not eliminate the possibility of there being some parameter choices for
which equilibration does not occur, the cases examined seem to indicate
stabilization.

The numerical model used is a spectral model with aliasing removed.
The equations solved are the non-linear quasigeostrophic potential vor-
ticity equation for the two-layer model that we have been considering
theoretically. Perturbations to the zonally independent flow, generated
by non-linear effects are included, unlike the three-wave model consid-
ered earlier. The x-dependent parts are spectrally decomposed both
meridionally and zonally as

n=N, m=M
- > r(all),

sin nny + *]
n,m=1

(2), .imkx
Ay m) A
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where k is the wavenumber of the fundamental unstable wave. Parameters
such as U, 8, F and h2 were chosen so that the equilibrium flow was
only weakly supercritical. The meridional structure of the mean flow
perturbations was also resolved spectrally.

We shall show results obtained for two different set of parameters,
these are the single-wave counterparts of the three-wave runs shown ear-

lier., We will therefore 1abel these numerical experiments A3 and B3.

For A3:

F=10.0, U=1.0, 8 = 14,92, h2 =5.0 (a=0.08) k =2.261

The spectral series were truncated zonally at m =5 and meridionally at
sin 38 xy or sin 39 7y (according as the harmonic is even or odd).

For B3:

F = 6.6164, U=1.0, 8 = 16.3, hz = 9.8836 (a = 0.2) k = 2.254

The spectral series were truncated zonally at m = 5 and meridionally at

sin 38 wy or sin 39 xy.

In A3, the initial conditions used consisted of setting the meridional
spectrum of the eikx component equal to that of an unstable linear mode
and choosing an amplitude equal to that used in the three-wave problem,
Al. The initial amplitudes of the remaining zonal harmonics and the mean
flow perturbation were chosen to be zero. The initial conditions for B3
bore a similar relation to Bl.

In both A3 and B3, we start with the weakly unstable linear mode pres-

ent at a small but finite amplitude. During the early stages of the com-
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puter runs the unstable wave should grow through the action of the linear
instability mechanism, while non-linear interactions begin to generate
higher harmonics and perturbations to the mean flow. Eventually the lat-
ter should begin to modify the evolution of the former.

We present, in Figures 4.10 and 4.11, the kinetic energy of the upper
layer flow associated with the fundamental as it evolves during the com-
puter run, for cases A3 and B3, respectively. Both of these show similar
behavior. The unstable wave initially grows at a rate given by the linear
growth rate. This is eventually overpowered by non-linear effects and
the growth of the unsfab1e wave halts, This suggests that the combined
effects of the mean flow corrections and the higher harmonics are indeed
stabilizing.

It would be interesting to follow the evolution numerically for a
longer period of time. This has not been done for two reasons. The first
is that the model requires a substantial amount of computer resources.
The second is more fundamental. We have shown that the dynamics of the
non-linear evolution of the weakly supercritical system rapidly generate
a large number of higher harmonics. Each of these harmonics is suffi-
ciently strong, in the inner region, to affect the evolution of the fund-
amental, in particular, and of the system as a whole. Our numerical model
uses a fairly small zonal truncation limit. This spectral domain starts to
fi11 fairly rapidly and so before long the finite truncation of the model
begins to influence the evolution of the system. The subsequent develop-
ment of the system should be sensitive to the truncation level used. Con-

tinuing the computational runs further will furnish details not of the



262

— — — — —
(@} N R (o)) @
1

KINETIC ENERGY x10-8
(a4]

L 1 | ! ]
0 2000 4000 6000 8000 10000

T
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physical system we wish to model but of a numerical system that departs
more and more from the physical system because of its failure to allow
the appropriate cascade of energy through wavenumber space.

In Table 4.1, we 1ist the energies associated with the various har-
monics at the end of run A3. These show both how, in the inner region of
the lower layer, the harmonics are approaching levels comparable with the
unstable wave and the differences in energies between the even and odd
harmonics. We havé listed the formal amplitude scales for the energies
of each zonal mode that the asymptotic theory suggests in Table 4.2. The

patterns of the two tables are similar.
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Table 4.1: Energies of the Fourier Component eiNKX at the End of A3

n KEL* KE2 PE

1 1.5 x 10-7 2.8 x 10-10 9.8 x 10-8
2 1.8 x 10-19 1.0 x 10-11 6.8 x 10-14
3 4.1 x 10-14 3.4 x 10-11 3.6 x 10-13
4 2.9 x 10-16 1.7 x 10-11 3.8 x 10-14
5 2.1 x 10-14 3.6 x 10-11 4.9 x 10-13

*KEl is the kinetic energy per unit channel length of the sin (nkx)

component of the velocity fluctuations in the upper layer. KE2 is the
similar quantity in the lower layer. KE1, KE2 and PE contain contribu-

tions from both the inner and outer regions of the flow.
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Table 4.2:

Scales for the Energies of Each Fourier Component

Suggested by the Asymptotic Theory

(S T~ B 7S

KEL*

A3

A1372
A12/2
A13/2

A12/2

KE2

9/2
972
9/2

A

A
9/2

9/2

A

A
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The Single-Wave Problem With the Higher Harmonics Excluded

The single-wave problem here contains the phenomenon of zonal harmonic
production that is characteristic of non-linear critical layers (e.g.,
Pedlosky, 1982). The evolution of the unstable wave is modified by the
influence of both the harmonics and of interactions with the mean flow.
It would be interesting to obtain some feel for the way in which these
two non-linear processes contribute to the evolutionary dynamics. Ana-
lytically, this is rather difficult because of the complexity of the
problem. Numerically, we can very easily remove the higher zonal har-
monics of the fundamental from the computational model and examine how
the unstable wave evolves when it is only influenced by the mean flow.
One should introduce a note of caution at this point. The way in which
higher harmonics influence the fundamental is rather complicated. Inter-
actions between higher harmonics can influence the fundamental directly
by appearing as a forcing term in (4.54) or indirectly by first of all
modifying the mean flow. The dynamics of fundamental /narmonics are thus
rather intricately linked to the fundamental/mean flow interactions. The
modifications to the mean flow that will appear in the proposed numerical
experiment will not bear a direct relation to those in the full experi-
ments A3 and B3.

Figure 4,12 shows the evolution of the upper layer kinetic energy
associated with the fundamental in a numerical run lacking any higher
zonal harmonics but including the mean flow, This run, which we will
label B4, uses the same basic state, unstable wavenumber and initial

conditions as B3, with which it should be compared. We see that the
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maximum energy attained is less in B4 than in B3, the differences in
energy between successive extrema are larger, and the time scale of the
energy vacillation is longer,

One could claim that the mean flow alone is more effective in coun-
tering the linear instability mechanism than the combined action of the
mean flow and the higher harmonics. However, tne difference in peak per-

turbation energy between the two runs B3 and B4 is only about 20 percent.
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CHAPTER 5

5. Concluding Remarks

Examples of turbulent flows are often strongly non-linear, exhibiting
large amplitude eddy motions. However, a small amplitude eddy field may
also exhibit some of the aspects of turbulence, in particular, a broad
content of spatial scales continuously exchanging energy in a temporally
intricate fashion.' From considerations similar to those involved in the
non-interaction theorem of Charney and Drazin (1962), one can see that
weak wave-like disturbances in a smooth background flow may evolve into a
spectrally rich weak wave-field, if there are two or more 1inear modes
initially present, or if the amplitude of the wave-mode initially present
is time dependent due to external forcing or some intrinsic instability
of the background flow. The time scale for the generation of additional
spatial scales would, in general, vary as the inverse of the amplitude of
the wavefield. The subsequent evolution of this spatially complex field
will occur on a similar time scale, a scale that is longer than the
characteristic time scale of the wave periods. In possessing this
separation of time scales, a complicated but weak eddy field differs
noticeably from strongly non-linear turbulence.

The weak wave-like disturbances generated by baroclinic instabflity
in an unstable flow that lies close to minimum critical shear follows
this pattern, at least in the instance of Phillips model in an infinite
zonal channel. We will pause here to consider how the production of a
multi-scale flow occurs. In the case of the meridionally uniform model,

the production of energy at scales other than that which is directly
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unstable occurs predominantly through resonant interactions between the
unstable wave and neutral waves. Although harmonics of the unstable wave
are generated by the critical layer dynamics, they are weaker in ampli-
tude than the unstable wave [0(a) cf. O(AI/Z)]. The neutral waves that
interact resonantly with the unstable wave have an amplitude similar to
that of the unstable wave. What is more, this amplitude is sufficient
for secondary transfers of energy to occur from the sidebands to other
neutral waves on the same time scale as that of the linear instability.
In general, each of the sidebands in the primary triad involving the
unstable wave will also be an element in other resonant triads composed
of the sideband and an additional pair of neutral waves. Let us call
such a triad a secondary triad and the additional neutral waves, second-
ary neutral waves. Some of the possible secondary triads will satisfy
the configurational condition necessary for the secondary neutral waves
to be able to grow from very small amplitudes to amplitudes comparable to
the sideband. Because the amplitudes of the sidebands are O(AI/Z),
energy transfers between a sideband and secondary neutral waves will

'1/2), i.e., the same time scale as that of

occur on a time scale of 0(a
the evolution of the primary triad. In a similar fashion the secondary
neutral waves can transfer energy to more neutral waves through more
triad interactions. In this way we see that energy released from the
mean flow at a particular scale by baroclinic instability can be transfer-
red to a broad range of scales producing a spatially complex eddy field.
Loesch (1974) has indicated that there is a threshold value of F below

which this energy cascade is quenched. For F < 22 wz, there is only
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one resonant triad possible that includes the unstable wave. For F below
10.5, the unstable wave is not unstable to the sidebands because of the
signs of the interaction coefficients. If we imagine initial conditions
in which wave amplitudes are much less than O(Allz), then the growth of
the unstable wave to an 0(61/2) level will not be accompanied by any
growth of the sidebands. An energy cascade [on the O(A-llz) time scale
cannot begin and the unstable wave (equilibrated by interaction with the
mean flow) dominates the eddy field.

Qur work on the meridionally varying problem has demonstrated that
significant energy transfer from the unstable wavelength to other zonal
scales can occur in that too. Again, the generation of harmonics of the
unstable wave is not a major process in the production of energy at other
scales. Instead, it is resonant interaction with neutral waves that is
responsible for transferring energy from the unstable wave. Because,
unlike the meridionally uniform case, the meridional structure of the
linear normal modes were not trigonometric, more than one pair of neutral
waves can form a resonant triad with the unstable wave. The sidebands of
the primary triads will once again be able to take part in the dynamics
of secondary triads.

In the meridionally varying model we expect baroclinic instability to
generate a cascade of energy to other (neutral) length scales. However,
it is not clear how to describe tnis process. The model discussed in
chapter four was artificially limited to an unstable wave and only two

neutral waves. The predicted amplitudes for the sidebands, 0(A+7/4),

were larger than that of the unstable wave, O(Az). This suggests that
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the propensity for energy transfer to other length scales is stronger in
the meridionally varying model. However, a sideband of amplitude
0(A7/4) that is taking part in a secondary triad interaction will tend
to experience amplitude fluctuations on an 0(A'7/4) time scale, i.e.,
more rapidly than the evolution of the primary triad. It is not clear
how this will affect the evolution of the primary triad nor how to
consistently formulate a description of energy transfers between the
primary triad and the secondary neutral waves.

If we prevent triad resonance, e.g., by introducing a suitable quan-
tization condition, then as in the meridionally uniform model, we observe
energy generation at other scales in the form of harmonics of the funda-
mental wave. Introducing meridional variation into the problem has not
removed the critical layer effect observed in Pnillips' model. It has,
nowever, changed the latter somewhat. The higher harmonics, instead of
being of uniform magnitude over the width of the channel and within each

layer, are now strongest in the inner region of the lower layer flow,

where their amplitude is similar to that of the unstable wave in that
region, The harmonics are still, however, small compared to the
ampl itude of the unstable wave in the outer part of the upper layer.

One point to be borne in mind is that the linear and non-linear
results indicate that the neighborhood of minimum critical shear in which
one can clearly differentiate between the single-wave and three-wave
mechanisms is rather small., For Equations (4.27) to describe the avolu-
tion of the system requires a very small value of a. For values of a

that are larger but still small, one would expect the evolution of the
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unstable wave to exhibit aspects of both three-wave and single-wave
processes,

Our entire analysis has been inviscid. It is likely that when the
mechanisms that we have discussed are present in a physical system, they
will be modified by the action of dissipation. On the one hand, the
structure of the unstable mode exhibits an interior region of small merid-
jonal scale which may be vulnerable to dissipation. However, it should
be noted that the meridional gradient of the background potential vortic-
jty, which is responsible for the presence of the inner layer, does not
jtself contain small meridional scales. On the other hand, transfer of
energy through the wavenumber spectrum that should arise as a result of
the three-wave interaction mechanism will be influenced by the rate at

which energy is dissipated at smaller scales.
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Appendix A
The constants 85 and MJ appearing in (4.5) are giving by the following
expressions
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APPENDIX B

The following is a summary of the calculations which describe the
weakly finite amplitude evolution of the single-wave; meridionally vary-
ing problem discussed in Chapter 4. The goal of this is to predict the
spatial structure and the evolution of the leading terms in the Fourier
components which correspond to higher zonal harmonics of the unstable
wave. Some of the results of the analysis here were presented in Chap-
ter 4, e.g., the évolution equations (4.62), (4.53), (4.54) and (4.55).
The analysis is presented without comment for the most part. Perturbation
expansion techniques are used to obtain an approximate solution to the
non-linear, quasi-geostrophic potential vorticity equations under the
assumption that the equilibrium state is only weakly unstable and that
the disturbance amplitude is small. The expansion parameter is the super-
criticality a or equivalently the disturbance amplitude and the notation
follows that used in Chapter 4, A multiple (two) time scale technique is
used and the meridional domain is divided into an inner and outer domain
as before. Asymptotic matching is used to link the solutions in these
two domains. We will present this latter part informally, i.e., matching
series that we obtain by allowing the inner variable to tend to infinity
and the outer variable, to zero.

Because of the interlocking nature of the method of solution, the
reader who is intrepid enough to read on should be prepared for a calcu-
lation which weaves backwards and forwards between the inner and outer
regions and the upper and lTower layers.

b=By, -8 By = FU *+ h,
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Rescaling the streamfunctions to remove the outer scalings shown above,
the potential vorticity equations become

Exterior Region
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The wavenumber of the fundamental zonal Fourier component is given by
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2

We proceed by substituting the streamfunction expansions into the poten-
tial vorticity equations and considering the balance of terms at each suc-

cessive order,
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Asymptotic forms. As n -» oo,
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- nY Y(n+1) ] + [(n 1)Y +1Y - nY (n+1)nnn]

S (LER AL T vy

(2)*, (1) (1) (2)* (1)*,(2)
- " (n*l) ] a [(n+1)Y(n+1)nnYnn - nYnnn (n+1)n]

*2 2 1a#
e L@ (N2 e 1v{2)y ver)

3) O ()

(2)* (1) (

Nnn

1 (1) (1) 2 en®ull) (3) £(0) (0) £(3)
LU SR X3 S IR 27 WP S ;0 v ézm

(0) (3) _ (3) (0) (3) (0) (2) (1) , (1) g(2)
lrm"J(5 lnn 'FHI §2nnn 1 é'c‘nnn

D ED_ (D g

Lnn 2n
oi2nkx, (p = 2m)
2uPngn (3 - Lol v - ISR SO Y3k,
v g tRNE) A Etll) ) - «2oFL(p- I)AY%;zl) + (p+1)A vft}l)]
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= (3)y(0)% _ - (3)%,(0) (0)  (3)*
' 5;1 { [(n+p)Y"+PY“ "n Y(P*n)nnn] ) [(n+p)Y(ﬂ+P)nnYnn

(0} y(3) (0)y(3)* _ [y (0)*(3)
- (P*n) 1 [(n+p)Y nnnn " (P+n)nnn

(3) (0)*  (3)*,(0) (2) (1)*
- [(n+p)Y(n+P)nnYnn My Y(P*")n] [(n+p)Yn+p Nnnn

(2)*y(1) (1) (2)* (1)*y(2)
o Y () nand [(n+p)Y(H+P) 'n "hnn (P*n)n]

(1)y (2)* (1)*,(2) (2) (1)*
i [("+p)Yn+p fnnn - Mn Y(p*fn)rmn:I ) [("+p)y(n+p)nnvnn

(2)*,(1) (3) (0)* (3)*,(0)
- nYnnn Y( +n, ] - F [('ﬂ P)H(n+p) OYn - an 0 Y(P*'ﬂ)n] }
(3) (0) (0)y(3) (0) (3) (3) (0)
' Z 4 { Y (p n)ann YﬂnnY(P nn " 'n (p n)nnn nnn (p n)n
(3) (0) (2)y(1) y(1)y(2) (1) (2)
FHn 0 (p-n)n * Y (p n)nnn - nnn (P nn Yn (p—n)nnn
y(2)y (1) }
nnn (P-n)n

+p { Y;3)<§(0) (0)€?(3) (0)‘§(3) y(3) é(O) (2) ${1)

2nnn Pnn 2nnn Pnn 2nnn
(1) x(2) (1) £(2) (2) (1) _
Yprmé ' Y é 2nnn Pnni) } « 0
2n*l)kx, o anh)
2 2,(3) i (3) _ (3) _AF . L(3) _ copy(3) ¥
R e UG ORI ST

+ 2 { [(n+p)Y§3 (0)> nYé3)*Y(0) 1- [(n+p)Y(0) y(3)

n=1 *P)Ynnnn (p*n)nnn (n*p)nn'nn
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-y {0%(3)

(i) ]+ [(n+p)Y(0) (3)* -y (0)%y(3) ]

"*P nn n (P+n)nnn

* * *
- Loy (3 Oy (3%(0) 1 F Linepn (3D v 9)

w3 (0)

(p+n) ] + [(n*p)Y(Z) (1)* nY(Z}*Y(l)

(1) (2)
n+p nn n (p*n) nn ] + [nY 1

(p*n)n

*
i (n+p)YE;lp) Y(Z) 1+ [(n+p)Y£1; 32) ny{t Y%gln)nnn]

T AR L IR ik { ¢(3)4(0)

(n*p) _“nn Y(p+n)n | n (p-n)nnn
(0)y(3) (0)y(3) y(3)y(0) (3)y(0)
Ynnn (p=n)n *Ya Y(p N)nnn ~ ﬂnn (p n)n - FHq OY(p-n)
y(2)y(1) (1)y(2) (1) y(2) (2)y(1)
Yn Y(p-n)nnn = Ynnn (D nn " (p N)nnn ~ nan (P n)n

- { Yé3)i;(0) (0)95(3) ;oy 3(3) (3)55(0) (3) éto)

2nnn Pnn 2nnn Pnn

. Y(z)€5(1) -y ge2) Y(1)5§(2) r(2) g (1) }

2nnn Pan 2nnn pnn

3) . _AF 2, 4(3)
Thus, for p odd, p £1, ! 7152 N
P EEE;ZE_' "7 "p.0
For p even,
2
(3) . iF2 5,1 (3) 1 (3)
YT e T KarH(pe1),0 ~ 5T A *1(pon) 00

Lower, O(Az)

20y n2d5t) + ara? 4) L gl8) + E() w FOE At (aeTX v 1)
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ra(es®, 20+ ais(?), 2% ¢12) - L rala%(0)) + a(sf?), 4% 212
(3) ,2 4(1) (1) .2 4(3) 4 pg(3) (3) ,23(1)
+ 38370, 02 ggthy + atgpt), o2 837) + Py v el B2 01
+ 3(850), a;’; 4+ rB4)) 4 a(é,‘f”, 2 4§00+ Fg{0))
#3852, 0% ¢12) - 2eiZ 20 4 g1, 02 413+ pg(3)
+ (a2 - Pl ¢ a2 B L F L) 4 F EH) 4 (gl +E12), 22 4(0))
a0+ L0V, o2 gf2)y 4+ gg{lds BIV), 32 41Dy L o

To obtain the 1leading behavior of Y(4) as n -» s© , we note the

dominant balance

2. 2.4) . 1 ikx 2. 44,(2) &, 6640)
2e°ynltlye) = - pp Fatnt(AeTX e x ) v EonatitglZ) o dn 6,050
- gl
Thus  y(&) - _dr%F 7, 2
1 ﬁzf 240 1"

(4) . 1 22,(2) 2 44,0) iF (4) -2
"n LR I L N e et L
T 2nk
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The mean flow component of the above potential vorticity balance is

2 r(4) (4) (0) (0) (3) .2 (1)
aTanéz +J(0)(¢ s ¢ + Fgy (0)(95 » 3 ¢2 )

62, o2 4f2) 1

5 Fn 2 2¢{0))

s1), 2 6+ el

* i) (5 Jioy (%

(1)

(2) (0) (0) (2) (1)

whence

g Lo [Ty nurzr [ o2 g

4
vk DA O ey r [T (@‘4’ £32))
+ 0(n Tn?y)

Before proceeding further with this, we need to calculate _@{3) and ﬁ{“.
We return to the upper layer balance for the inner region and skip con-

sideration of 0(A7/2 In 1/4 ), 0{34(1n 1/a)2] and 0[A4(1n 1/a)].
0(A7/2)

- 380, ¢ {5: 30+ (ol - {3 - F 83« pg{l) + F g1

v (% 22 e g, gf3) 4 g8y

a8, (2 - 2 -0 o, (8 - A - g0
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(3) _ §(3)

Taking the zonally independent component

o $](-if)1 =- J(O)(d(O) ¢(5) + (3 - F)¢(3) + F¢£1))

+ 30y & 2P0 ne™% e w1, 93y g e, 2 - - Pl 2o

i §](.3) = N(3)ﬂ

22 8190 = - (Ul + s ) ais) v (8(3) - g atattae™ e w1 ) - Fugly)

- 3080, (&) @8+ (2 kg™ L EH 4 D) s F 8D

122

lnn

a2

X

2 - R0 - a ;6{“, (2 - .2 - F1l®)

(4) (0) (4) (0)
p U8, " Fdp 1 - [+ FET]

Taking the zonally independent component

(4) (0) (0) 4(6) , (2 (4) , p4(2)
(&) +F& 1 =-3.(8 “’1nn"(‘°‘x* 18,7+ Fa )

(4) (0)
i Bl = - Féor
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Hence
SO A F I: j; [Z"Y{O)* S %) - ikF r%n ( J Y;?‘) (0% _
i E—M%O)rf’ . N%znn
N44)(T) is a free constant.
As n --> oo
BiH - Eyl0)3 —{3-( VA2 2 (A2 ndnn *un* ...
27 h2
where u is a disposable constant. Thus,
L 32 . B3 _;:_ QA1) 0 nn + o - BN

T2
We can now substitute for é(“ @(2) in our expression for@‘“ to obtain

4
M - _F_ (2 MBI ¢ F (-

=(2)y 1 3
M=)

22
+[f~ﬁ;—(¢§-7§3)-3%l§;] (A2 - (a0 %) o°
™2

(4)

To improve our estimate of Y1 as n --> oo we use the fact that the

most prominent terms in the potential vorticity balance give

4
2. 2.(4) o (4) .Fr' 4 2. 44,(2). 4. 66,(0)
2nhon Yy T = Yo - dmgp nAp - g hyma Y T g hpme Y

5(4) , 12 2 (2) 1 _44 0) .
-FAézn +21'IF “-HFwnAé;n = 0



295

From this, as n --> oo

2
4 - ,.g;g?%ﬁp_r,ﬁ ; “T:?A (1812 - JA) D) + £
2
) 2 a(2)
17 if uF FM F
+ | - A - A - A(l + =)
[ mﬁ'khg T anye? 4h, .

OQuter Solution

¢{0gut - Asingt ek &+
(2)
% out = 0
iFA
¢£Ggut = Tz sin ny e"kx +
2 k hz cos 1I'y
Upper, 0(A3/2)
Set g{P) . > (iP) ginkx o wy P> 3
N=
2 2y wl3) _ 2 :
u (ay + %) Wy = Uk A sinay
2
k
==> N{3) & - z%—(y-l) cos wy A
Define 2 = k% n? . Bm/U

=
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B
U(ay-xn) wn = 0

(3) (3)
==> Nn = Bﬂ sh )\n (y-l)

0(a%)
u? + s 88 o R gl®) Lo gD
-, (321-“2) N(4)' imiAT (k2+1|' +F) TAT S1n "y
y &Ny cosZay K

FU (2
(4) [1 BTV F F oo

==> W = iA (y-1) coswy [ - ]+ sinry 1n (]cosny|)
1 T| Zn ke M7 kg

2 2 (4)
(ay-x) wn = 0

n

(4) (4)
==> Nn = Bn sh Xn (y-l)

Lower, 0(A)
(8, - FU+ hy ) ¢(2) ég) + F ¢§2) §( -1)

F i .
(2) —2- sin 1y ( 2y ikx
==> iA + *) + (A e + *)
"hz cos 'y 2h2 cos2 Ty

We will determine §( -1) qater.
0(A3/2)

(5, - FUn) 83 = - F(3) - a(al0), Fe{0) - arlw?F) 1)+ P @]



297

-3 (@0, F g0

Set ¢£3) . 251 (V£3) einkx + %)
N=

/() k2 FE0)sin oy

- 2 (y-1) y
1 = Z7Kh, COS ny iAT * A

2 Zhy cos™ my

yB3) PP tandwy o2 E SMpl-l) gy

(A7) —
8h§k coszny T IEE- cos"ry ZT

L]

(3 _dF Smnly-l) sy

n 2h2nk coszuy nT

and from the mean flow component of the potential vorticity balance

(35 - F) éé-l) + F’§£3) - Egi.seczny tan ry (IA}2 - JA(O)IZ)

0[A3/21n(1/b)]

Upper, 0(a%/2)

U (o2 + s /) 8,0 o gl3)

The inverted commas denote the inclusion of terms like k2 ¢(" -2) and kg

" ]
¢(" -3) in v ¢ (")l for the e‘kx Fourier component.

U (33 + 12) w{s) =0
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We normalize the solution by choosing N{s) =0

2 2y W(5) _ y(3) _ o(3) ”
u (ay =) WU = WS = BT shoag (y-1) n>2
g(3)
N£5) = EQ"U' (y-1) ch a, (y-1) + 3(5) h o, (y-1)

n

0(a%)
U (e? a0y 8,8 gl g (gl 02 g3

Ca 92 0 L ru g2 o @, o) g ®), o)

1
Projecting onto e KX yields
(35 v 2 ulE) L2 ) ] [§§3) 22 % & °§3)] A
while the projection onto einkx gives
(2 -2 W) L L "y 2
6 B (6)

i.e., Wy ' = ngﬁ-(y-l) ch A, (y-1) +B."" sh (y-1)

In pursuit of the mean flow we carry on to yet higher orders,

0(a7/2)

u(o? v a0 8 o g8 L (gl0) 92 g8y Ly (g{H), 92 4{%)
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a0 < B P R a @Y, 4l - <¢‘°’, ol#)
-3 80, F 0 - arled - B gt

The zonally independent part of this yields

2, .2
(35 - F) §§3) + Ffé'l) 5 - "—l’j——+£n sin 2wy (IA!2 - IA(O)iZ)

while the eikx component gives

O B L A A S I LU 1o
and the ei"kx furnishes the relation
(35 T PR L B (35 2% -y 3 E )

ola’’2 1n (1/a)1

b+ gu ofl) o eld La (@Y, ol - (60, G4
a8 _ (2 (4) , ¢ @ (0)
where ) -.(ay - F) GDI F®,

Lower, O(AZ)
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S L2 - @S0+ P @I L an 02 - ) 4f0)

io.kx eikx inkx

Projecting onto e and e

; N> 2 in turn yields

FZ 2

B .
v JF ol (y-1) (_E:EP y + SN qn(icosny|)]
1 K TTZw Cosay "y Kh, 2kh21rd cosCry
F sinay Fgﬁy('l) sinwy
M owen el e A
8kh2 cos my 4h2 cos'my
+ _F ‘§(1) sin«y A - ; - - 1 s 2 _ k2 _ py(sinmy
Ty T2 ogl Ty 4 h, cosery y cos‘ry

&) iF_ (a) P Aaly-1)
n = Znkh, SnT 2

2 cos ry
ola* 1n(1/)]
(8, - FU+ hJos) = ca(@f), (0 - at(a 2 - p@0 + FolH)
Projecting onto ei°'kx gives

2 (0) (4)
(ay - F)@2 *F® 7 =0

0(2>/2)

thcos - ¢(5) F‘!,(5) ” ¢(3) 3 F¢§2)§(2) + F¢{i)§( -1) Jw;mﬂ{o),

-agl(a 2 - @) + F @I5)]
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Projecting this onto individual zonal components yields

2 . 3 -
(2,2 - F B+ pgl®) L B fsiney , 25"3"'”) (A% - 1A %)
y 4h,“\cos”ry  cos’ny
“FK.2
v8) _ "2 (y-1) Ay + [ F %JZ) sinty ‘§(0) sinmy
1 81rkh22 cos3ny 2 2y coszny 4h22 co; Ty

k,2F
2 @( -1) (y-n} i
" by F1 cosauy
(S)V ) F (3) (y-1)ch a (y 1) F - (5) sh a (y 1)
B“ZlnUlE ZT cosZ Ty '”z“ 2T cos2 y

sh a (y 1)
F B(3)

+
T 8h22k cos4ny al

2 3
¢ o , tan"ry i(Az)
16kh2 cos wy

(-1)
ﬁ' sh An(y-l) 3(3)

ZHE- coszwy 2
+[F2 25in°ny i 2ok @( -1) tand ﬁz ]
8h237cos77y T CcoSs
n>3
(5) _ F (3) (y-1)ch a (Y 1) . F 13(5) sh xn(y-l)
dnk An UE nT cosz Ty Zﬁhzk nT cosry

F sh (y 1) 8(3) (-1) sh An(y-l) 3(3)

4 ————
4kh22Uk cos4 Ty nT ZHE ly cos -y "

+

Upper, 0(A4)
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U2 + St B g6 | (gl8) 52400y _ g (yl0) 524(5))
car (7 - sl - rusld) L 3@, of®) - aesl®, of))

al(af - R+ FE0Y 2O 5 WBeitkx 4 ) L g pg{0)
n=2

The zonally independent part of this yields

arlla,” - ) E{H) P01

|
o

We previously obtained the result,

aT[(ayz e S I

Hence ég“ = 6(4) ch VZF (y-1) + Y(4),JL.£0) = -3(4) ch v2F (y-1) + YM)

The x-dependent components of the 0(A4) equation yield:

e1kx:

(2,2 2 W(E) < QS P ) LB B0 o2 P+ 0171 A
e1"kx (after integration)
(4)
W8 00 () shoa(y-1) - (y-1)ch x (y-1)]
n =g 3 Yl S aghymRl = AR gty
n
(6)
Bn a2k o (4)
{ Zx U~ 2x KU iB ] (y-1)ch An(y'l)
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o(a*1n(1/a))
o+ gmef8 - - rual®) - ael®), of®) - a(s(®), G5
- aT[(a§ -neM + rel?)
The x-independent part of this is

aT[(a§ -nel® + rel - o

With aT[(ayz N SYc) SURL - this fmplies

@Y - o) cn variy-1) + Y @0 L ol en vaF(y-1) + Y

Upper, O(Aglz)

Il(g)ll

a2 gy (" | gD (4(8) 24100y 5 (gl0) 2yl6)) _ 5403) 24(3))

~(arlo? - F1880% Fugl3)) + ofDp{0)s o3 1x %y

2x
(0) - (2) 2...(0) = -.(3) ikx 2 (5). z(1)
-0(8y Fdy ) - Ky (e ,gzé[wn e x]) - all(a B FIF) N FEy
k2 a8, g{*)

Taking the zonally independent portion of this we find that

(6,2 - %)+ r8LT -k 2l - jaco?)
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g_+ FU 2 2
{1—(y-1) sin2xy[ - F ] + F 5 sinzﬁy in ([COSﬂyl)}
K2 iy

We now have expressions for the 0(A3) and 0(A4) corrections to the
mean potential vorticity for both layers. We will invert these to find

the changes to the zonally independent streamfunctions.

From above

2
( yz - F)é( -1) F§§3) = %E_ seczuy tanwy(fAl2 - |A(0)|2)

Za wl
2 _p@ s rglh LK E L Ginagy(1a12 - a0 D)

In normal form,

2
2dlTh '[%U*“2+ K2+ F)sin2ny - ;ﬁg sec’ry tanay] (1A% - [A(0)]?)

¥
2
2 (c) T .2, ,2 : F 2 2 2
(ay -2F)§ "= -[-Z-U-('u + k°+ F)sin2ny + 2\isec Ty tanwa(lAl - [A(0)]9)
where 372 Lg® + g1y | ple) L L3 gl

Thus,

2,2 2
dE(T)= [ HOAFSIRe oy Ly Eﬁa(ta:“y Sy+rhe C(T?](IAIZ- [A(0)] )

s 1
@(C) - 112(112+k2+|'—) (sinZ my sinh{VZFly - 2')] ;i_(tanny § 1)
(4n2+2F)U 2n VZF cosh vF7Z 2 Z
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-yt %)e'fzry

Z'JZF'[ -{Z'Fy] tanny

y
VY L (ta:ny Sy + %_) eV?F'yH (1A1% - jac0)]?)

Hence

szsinh[w/ﬂ-’(y - %]
]

@{3)= {:(u +k24F) [ (472+F) _2.__51"2”3’ (242+F ) (y - %-) -

(4n"+2F )2V +2F cosh ¥F/?2

2
: aﬁ-—"z”z OGRS TNFSCER N ch (1A% = [a(0)[?)

I*ﬁr(ﬁmm_y+%,gﬁ?y
1 m
2 . 1
27 sinh[v2F(y - )]
§(-1) (1r +k2 +F) [F sinmy - (2 2+F)(y _ 1) + 2
2 (27 2, F)4u Zn ! z V2F cosh vF/2

2,;72—
E'm—" [eﬂr‘y I_- e-ﬂry 1+]

2
+;?gpi-y+§)+d”Jumz-mmn%

The next significant parts of the mean flow are governed by

Lo 2- P80+ FENT -k eiia? - a0 )
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B + FU 2 2
F ] + F 5 sinzuy 1n(|cos«y{)}
U 2 Zkhzu

{1—(3; 1) s1n21ry[

2 3 ,
[( 2_ F) (1), Ff(S)] _af (4sin Ty Zs1n1ry)“A|2 ) !A(O)Iz)

+

4h22 COSSwy cos3ny
Setting 3T - Lal®pll)) | 3lo) . LEls) . gil) we obtain
4 Zé(T) _ anz (251'23«3/ . singy )
Y 4h2 coSs wy cos my
B FU Fz
+ Kk k[{,{-{y 1)cos2ry + '8_ s1n21ry)( kU khz}

2
] S'II'I Ty
W [sinmy cosmy 1n( cosmy ) + 7 Cosy ]ﬂ

x (|A12 - |A(0)]2)

- 2 . 3 5
(3y2 ) 2|:)Q(C) ) F . (251n5wy i sm;y )
lJ,h2 cosS ny COS my
k Zk[( -1) cos? RS M il
+ y-1) cos2wy + sin2wy -
ra i T
+ —Z-IFZ sinty costy In(|cosny]) + = 51"3”]
2h, v T oS I Z cosny

x(1A12 - {A(0)[2)
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3

R L ={ F 2 (1M _ tanny) + h.o.t.} (1A12 - 1A(0)12)
24h cos my
2

2 §
£(c) F sinny F 2 2
= (- + (- o+ 1) tanny) ¢ h.o.t.f (1Al - [A(D)] )
é {24h22n coany T "

Thus

2
él) ={ F — ( inﬁy + (—2-- 2)tanty) + h. ot}(lAI2 - IA(O)[2
24h2 T cos Ty T

3
31> - { ;ﬁ-mtan«y + h.o. t}(]Al - 18(0)]2)

We do not intend to calculate any terms of the form A"/2[1n(1/5)]m,
m > 2, in the innter expansions of ¢1 and ¢2' However, we will have to
try and obtain some information about the O(A"/ZIn(I/A)) terms in dz which

we have not yet dealt with.

Inner, lower, 0[aln(1/a)]

ZnZthZRiz) + ayaan‘Z) - Rff) + Jr(2) 5 ¢‘°)) + J(esém,anzkm)

Note that there is no direct forcing term in this equation; the 0(aln 1/a)

part of g, is forced by the matching conditions which join it to the
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The zonally uniform part of the above equation is

outer solution.
(2) (0)

aTasz(Z) - . J(O)(R(Z) ¢(0) )(¢(0)’ nZR(Z)) _
T 1
(2) % x P " (2) (0) (0) (2)
P8 e [T [ e w8 B ¢ a gy 7a] D
+ 3,0y (R RO + 52),
As n -->00, P(z) 4 §(2)n + const. *+ h.,o.t. where §(2)(T) is a disposable
Looking now at the x-dependent part of the potential vorticity

constant.

balance gives
(0) (0) (2)
) + 3y (85000212

2uhyn 22, 3 ZR2) - R(2) s 3 (R12), 024
2) _, 2 R(2{0)

nnn

(0),(2) (0) (2) (0) (2) (0)
Féy, Rn - Fgy ¢ n t B P

4 R)((Z) é(O) 0

R(2) L S (2o Ginkx , 4

Set
n=1

211' hz

4 In (1/a)] term in ¢1 in» “e

To calculate the mean part of the O[a

must look at

Upper, ola® 1n (1/7a)]
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U2 HE el v s 1A ) Ly (Y

+J (%_ q2“2[Aeikx+*]’}$ﬂ")+ ‘(':1)) -J [31(4)’ (3)2( - 1'2 _ F) ¢§.0))

-J [5(4), (32 _ uz -F) ¢:(10)] _ 3T’3‘g:) -2 (4)

X X ¢nn

Mean component is

(4) _ (0) ol(2)y _ {2,1)* (2,1)
aTg“n = - Fdg)(81s RN = - ikF (A Ry - A% R )

T n n
il (_’}“” - - ikF f dr (A( r(2:1)* _ A*[ r(Z:1)y 4 G{‘”(T) h
0 0 0

The next task is to try to match the inner and the outer solutions.

MATCHING
We will first try to match the x-independent parts of the inner and

outer solutions

R
¢2 out = a3 c}l(‘l) ULRT (1/a) @éo} * A”Zéém + 4% 1n (1/a) @él)

N T N
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We will not try to go so far as including the A4 In (1/a) terms in the

matching process. These terms are omitted henceforth

¢1 in = A3 é{3) + A7/2 1n (1/4) q(4)+ A7/2 @{4) L
gy 1o = 8528500+ W31 4 W72 a0 (170) p(2) 4 W12 4 L
2 2 ([.3..(T) FFTZ 7/2 -
¢1 i (IM - JA(0) ) A [ct - W (D,,_-D_)] - A In (1/a) m‘z‘ n

2

3

7/2 F
+ A n ey
! ! Zth

2,2 2
x 2 <_ Lok *F) (gs 11

3 2
1+sech YF/2) F T ):,
) - £1-1n2+2-—-(D+D)]
24 + F 2“2h2 -

+ 57/21n(1/5 )ifmcosh vF7Z + 'cm] L [8(4) cosh vF/2 + 7(4)]

3
7/2 F -1
R ]>

1/2 )
D, =J' [(S23n) 4 y) &Y =
0 LR

SR IR UL LR VIV

&

L B T WO
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3
+ const + n'l "EI'?' (IAI2 - IA(O)IE)]
24+ h2
u is a free constant and "const" is a determined constant of a complicated

form

Matching yields

N3) 2 0 (and hence ﬂﬂn =0)

2
., EfB .5

c =
2

ol®) _ g

! ah,e
M0 _

2
= GaE [A(O)Iz)l:_ L (2uep)(1s (1; ;ecth‘Fm)
- +

F3 1r2
- E—Zh—-“ [1 - 1n2 "'—2- (D, + D_)]]
A

(8(4) ch +WF/72Z + 1(4)) (IA!Z = IA(O)IZ) = "const", known.

(¢'*) eh 7z + )y 2 0
In the Tower layer

3
by our = UAIZ - [A(0)]2 ‘:AS/ZE- L

2 E77
S R AL E'Iﬁ“'" (D,-D )]
2h21‘l’ 2
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5 3
W20 w2 g
4h. 1 2h,m
2T 2
1/2 kB E 2. 2 F3
+ A nl- («°+ F-1° sech 4F72) + [1- In2 + (D + D )]
. D i —_Tf‘- 27'
(2+°+F)2U 2n h2

=

212 . (%) ch F7Z 4 7(4)] + a2 10 (1/0) I- 8(4) ch vF7Z + t-‘(4)]

2 2
‘ [Af‘/"' LR e A n'llD
m

12h2w 24h2w
52T F2 -1 ,,,,2 2 23,2 2
- s [-—*2—-—71 QA2 - 1A% - —F— a2 (a1 - (A1)
27 hZ 12+« h2
T [~ ] Q0

v 8 [ﬁ(“ n +[ de dn J "L gy (a5t o200y + a0 (30, o2 g1
0 1

n

. (1) (0)
J(O)QEZ , F 8 )]]
+ A7/2 In (1/a)L §(2)n + const ]

(IAJ2 - 1AC0)[2) 4 In g+ WBD
21 h2

° T
[d [i W owy e B a? 1A(0))2)]
/ 5 12,k
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w ¥
2
" %._kFJ dn [{ (.{"vgo’ A% - %) + ; (1A12 - A(0)])]
275h.k
0 0 2

o oo 2
LB [ f [3(0) + 471 -Z—FhZT (IA1Z - 1A0) (2]

+ gl —?—2—2 (2-0ak - jam ) + —2—2 Al2 (@)
24h _f i 47 h
2% ™ M2

Matching yields:

T @ e
2 77
(a2 - At « F—Ezr (D,-D )] =[ dTIdn'Jdn"
0 0 n'

300y (85, 22 800 + 3.0y @5%), 22 851y« 30 BV, 7 g{0)

3(2) _ F3
TR
211

(1A12 - [A(0)]2)
- f(‘” ch vF/2Z + 't(ﬂ') = a known constant

) 2,2
M2 C Al - aold [ I K (2% + F - 2® sech F7Z)

(2+2+F)2U
r_.3 2 FZ
+—2—[1-1n2+;-(0++0_)]-3r] and is real.
21‘rh2 2
P T

s en vz + 4 kr Jdn [ij ar (AY{2)* %) 1-25—21(— (1A12- [A0)2)]
o o
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2 2
+ I KF J dn [iJ a1 (n2v{0) A" - ¥ 4 ;-th—; (Jal% - |a(0)]®)]
0 0 ™ hy
-} (=~ 2
- F j dn f an' 80 + ot B (In% - a1 P)]
0 . 27 hZ

ﬁ“) - 0

ik

We will now match some of the e X terms. For convenience we expand

:}Jp) (x, n, T) = 5% (Egp] einkx + %)

n=1
Upper
81 out = A3/2 A sin ny eikx + A3 ¢{3) + A7/2 ¢§4) % A4 ¢{5)
T %_“2 2, %I_“g;zz ) )
2 2
k k
TR S
2 2 2
. 7/2 F 7/2 F F
+ AL |- A Tn (1/a) + A [ Inn+ n =]
T [ akh. 2kh 2Khon2
2 2 2
2 2
4 1 k™+ ¢ tF F
MR R T ]]
% in =
A3/2A(1- %—wznza ¥ %1-n4n442 R A7/21n (1/a) E{4)+ A7/2 Z§4) + A4Z£5)
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ATEEICLE W PUL AT PLAVC I
.
= iALF

UL S FJ v{0) —T—AT In

B
+ A4 [[%—kgl\ - %'(Um' kz) H(g3’1)] 112 -n FJ

Matching gives

0

EULRINVNRALL

~

vo gt

1 iA;

2
(4) F
By = -y ——
4kh2w
2 o
2a-f | vO i
A= 1 as stated earlier
0
2
~(4,1) F
GO = TAI. 21‘_ In T
Hi21) o
o0
B I B A i
1 =7 kKU~ KA,
0
(5,1) e ()
H®l . o F f I v
0 "¢

Lower layer
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2 A0) 5 9/2 (2) , 5 (3) 11/2 ,(4)
bo ut =2 % % S T gt

iFA i
; A5/2[ L ey Y L A7) + TJ]

%2 out 2K,z ah5n
a4
8772 10 (1/8) —Fgp ATAIZ - 1A D)™ + 2h, <% 072
16hyr
. 172 {“ L2 [ FAUALZ - A D) (2 + K2+ F
12kh, 2hyn” \ (2n%+F)2u

C (F2 + x%) + 2 sech JF7Z] + P [(0,*D ) -=51n2]- 572 ]
x - ﬂ F 2 _? I?ﬁ;

F A(IAI2 - |A(o)12)

- ﬂ-z In q
4h2'ﬂ'
By in " pe Y{O) + 43 Y{l) e 272 a0 (170) R1Z1) 4,772 Y{z)
iF =3 iF
5/2( -2 . A 2
- & [T 1+ 0 L aual? - @) + —515 1+ ...f
{n 2n hzk n 44 hZ 4kh2w
+ 3 F ﬁ(l) "2 A + ...] + A7/2 ‘In (1/5) [ -2 FA §(2) + -..]
ke 2ﬂ2h2 ! k szhz
7/2 | -iF 2 F i
LS iy S CRRLEY ——3~2-A(IAI - A0
{ 2 AT ' s 4y hZ
iFA ~(2) 3 4
R e sl R~ e ~ R RN LI LR ...}
24h21 k 2 h2 24r"h 2 47 °h
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and

Using the forms that we have already derived for ﬁ(ll, ﬁ(z)

3(2) it may be seen that all of the terms match correctly.

We will now try to match the exp(i2kx) components in the upper layer

(.,2) 3 3] 7/2 ,(4) 4 ,(5) 9/2 ,(6)
dlout = A HZ + A Nz + A wz + A wz

~ 3 [-853) sha,/2 ]+ A7/2 [-354) sh ap/2 + nx23é3)ch r9/2 ]

3(3)
A4 [(-Bés)sh AZ/Z - I%Eﬁ-ch 12/2 ) + nszé4)ch A2/2

(4)
B
= nz %-A%Bé3)sh AZ/Z ]+ A9/2 [(-Bés)sh AZIZ - I%EU. ch AZ/Z )
g(3)
(3) 2
+ n(AzB2 ch x2/2 + Eiaﬁ'tz ch AZ/Z = xzsh A2/2 1)

-l %-A%Bé4)sh al2 .3 %-ngéa)ch /2 ]

#1127 = P o TP asel® » AEY v D e g el

IO

¢{§’2) - 43 [nﬂé?z 1+ A7/21n(1la)[nE£f£ 1+ A7/2[n(3{4’2) -F JO YZO))

o 0 -]
+F J; J g2 1wt o B0 ) - F J;Yél))

n

o .®

vr l D v e O nwmik S ¢ ) ]

0 q
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272 p2 3L o) _Lp J’ Y(O)) v 22 J J v{0)

v ({88 _F J; o LR J; _LI_LHYQO’)

"'(FJ\ J fjjvm“rf:fvé”)]
n

Matching we find that

w3 -0, 8.3 = 0
est - 0
o
a{#:2) j; {0
-
84" = _cosech ( 2,72 ) F [0 Lyéo)

(-]

niS) L F I i1 e i®lent 2,72 )
0

00 o0 oo
F J. Yél) - szcoth( A2/2 ) LD j YéO)
0 n

oo _0
B(s) - cosech ( A2/2 ) F Ja JP|Y£1)
n

o

-
—
"
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o0 00 ap oo

o2 e [ e [T

(4) w .0 00 ®
Béﬁ)sh( A/2 ) = l;—-u-r:h( Ap/2 ) - [sz fomf.f f"‘yéﬂ) + Ff jly£2)]
nn n

B;EG) 1—Fu-coth( A,/2 ) cosech( Ap /2 ) f f Y(O)

o0

- F cosech( 2,/2 ) ]0 fu',féz) - Fxg cosech( 1,/2 ) j;) flwf:efa;éo)
n' n" on

L "

n

In the Tower layer,

gl

2 3
Zou2) 221n(1/a) 953) + As[—lemzﬂ- i(A2 el + A11/21n(1/£\)9(4)

8h2k cos " my

. A11/2 [ iF (4) Sh[( 12 )(.Y 1)1 ]

“5“2 2T coszny

ﬂé%EZ) 5 A5/2 YéO) 4 A3Y§1) " A7/2]n(l/A)R(2’2) i A7/2 YéZ)

(3,2)

e atn(/art32) e KB I i arlH2) S

(3)) of#) g(2:2) (3,2 g gl4:2)

We have not calculated 8 so no attempt

will be made to match those terms that include a factor of 1n(1/a). These

will be omitted hereafter.

2 ..2 2 . 2
g2y s Pl g0 g Py 5
2out 4 PN ‘ 12h2 23k
2" 2 7
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(4)
iFB
+ AQ/ZE- 2T2 sh{x /2) n” 2
4kh2w
2:a2 =2 a2
iF(A%) iFe(A%)
gdd - B2 LS 1+ adotn®) + o721 L o3
3h21r k 12h21r k

anT Io {VYQO)

4 5) 9/2
2
4k+“h

+ 4 0(n

2

A11 of the calculated terms match correctly

expli(2p+1)kx], upper, n=2p +1

6,000 | (3 y(3) 4 T/2 () 4 (8 y(8) o 972 y(6) o

~ a3 [- 333)sh(xn/2) 1+ /2 . B£4)sh(xn/2) + nxn3;3)ch(xn/2) ]

(3)

v o 1= 8)sna /2) - een(r /20) + my 84 en(r /2)
41 U

- nz %—xﬁ B;B) sh An/Z]

(4)

+ 2972 (. (6) sh x /2 - Ei_ﬁ' ch A /2)
n

+ (2 B(s)ch(x /2) + Eﬂ—— [2ch(x_/2) - a_sh(xr_/2)])
" 0% n pf=d = APy

41nU

4)sh(xn/2) + g3 %.xg B§3’ch(xn/2) ]

1 .2 ml
=T Bn
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(odd) 3,(3) ,

¢11n = Z / 1n(1/4) E(4) 7/2 (4)

i 2(5’ 2772 1n(1/s) €8

212 76

S S R LS VIV A
v oF .L Thok s gglhB) & g ]6 f vions
n

N B RRULIURE: LA AT DU

go
B Ll T Io AU PUCTI L F'{ f v(0) )

o0 %0 oo

+ n(-F f v‘z’ - aZF f f' f" I y

+ (A2 ] f f e[ ] v{2} . gl8an) 5
n' 0 n
On matching we obtain,
(3) F (0
B = - 3 sech(x /2) f Ya )
n 0
(3) " (0)
3 F 0
Hn '0 = Tnth()tn/Z) I(:) Yn
(4)
En,O = X
8(4) -0
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(4,n) . _F J f Y(0)
(6)
Eng = O
(5) F ® (2) "o
B, n - Kh sech(xn/Z) j; Yhaoo- ApFsech(nrg/2) -L {. £uYn
" (0)
Y
41311 JO "
5) F " 0
- B [0 g om0

+ L ([1 + théy /2] - 2 thix/2)) Jo y{%)

4xnU

(6 n) , P jm NJ»J’:(O) +F J“f Y(Z) B(G)sh(x n/2)
n" n n'

Lower Layer

glodd) 50000 9(3) v a5 [ F sh [, (y-1)] 3(3) 1

2out 2h2nk coszﬂy nT

+ All/zln(lla) oé4) + 4%1n(1/2) eéS)

6p_F Sl @y e By Sh AL

+ oy F
4h§nk costny ot 2h, ly cosery L
o F () LD D gy shogly-l)
L o cos“ny enkhy T cos“ny
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glodd) L 572y (00, 7721001, g2 4 (T/2(2) o iy p(3oM)

IR SUEINER PV R(8.0) , 972 vé4) .

é3) (4) R(E,n)’ p(3:n)

Again, since we have not calculated o, ', 9 ' etc., we

cannot attempt to match those terms which include a factor of 1n(1/a).

Once more we shall omit these in what follows.

(3)
iFB
(odd) 4 o <2 nT
) = & L[w {«sh /2 )
2 out n 2h2nk12

il shix 2)  FBIC A2 - (a0 2)sh(r s2)

-4
ta (- 73 - V!
4h2'ﬂ'

) ]

e (3) (3) 2 2
, 3 Tarheeh 0/2) FB AR - 1a011%) 2 eh (x /2) .
" 4nkh5 " 4 h a
2" 2 T

85990) ~ W2 [ g 0Ly 3 W2 gn"0303)y g

2 o
4. iF (3) -2 9/2 . -1, -iF © 3
+a [ ar H n- 1 + a [ ( Y-)+0(n )]
annzhz T 'n,0 2nknzh2 15 nT

9/2

The leading order terms at 0(A4) and 0(a”"") do indeed match correctly,.



324

The form that the matching procedure takes in the case of the Fourier
components exp(i2nkx), n > 1, may be inferred from the case n = 1
At this point the asymptotic solution has been developed sufficiently

for the purposes of chapter four.
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