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ABSTRACT

The possibility of El Nino being a result of the random superposition of
stochastically forced equatorial Kelvin waves is investigated, with the
help of the theory of statistics of extremes, which provides us with the
tools to evaluate the threshold crossing statistics of the sea level (SL)
and sea surface temperature (SST) anomaly fields. A comprehensive review
of this theory is given, since it might be relevant to other oceanographic
problems. A linear, stratified, equatorial p-plane Kelvin wave ocean model
is forced by stochastic zonal winds. The zonal velocity field is used to
advect mean zonal temperature gradients to produce SST anomalies.
Solutions are obtained in terms of the zonal wavenumber-frequency spectra
of SL and SST. These spectra are used to compute the threshold crossing
statistics of the respective fields. The time and space scales for the SL
and SST excursions above 2 standard deviations are found to be small, when
compared with observed El Nino scales. The stochastic assumption is
reinterpreted as a possible triggering mechanism, rather than as a full
explanation, for El Nino occurrences. Better knowledge of the wind stress
forcing spectrum (zonal wavenumber and frequency) is needed in order to
test the plausibility of the stochastic argument in a more conclusive way.
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CHAPTER 1

INTRODUCTION

Nature confronts us, almost daily, with occurrences of extreme

phenomena of some sort. Whether it is a diluvial rainfall, a sharp rise in

the price of gold on the international market or a strong earthquake, these

extreme events are seen as drastic departures from the usual pattern of

variation of these variables. They can be treated with the use of

deterministic or probabilistic nodels, depending on the degree of disorder

underlying those fields or, in other words, depending on how much we think

we know about them.

The ocean also exhibits extreme variations in some of the fields which

characterize its physical state. The most prominent extreme phenomenon

which has been observed in the ocean is undoubtedly what is known as El

Nino in the oceanographic literature. As a simple definition, El Nino

events are associated with extreme sea surface temperature (SST) and sea

level (SL) conditions in the equatorial Pacific. Positive anomalies are

found in the eastern Pacific, while negative anomalies are generally

confined to the western Pacific Oc-ean. Anomalous atmospheric conditions

are also present in the tropical Pacific, during El Nino. The Southern

Oscillation Index (SOI), being defined as the difference in surface

pressure at Darwin, Australia and Easter Island, hits its highest values.

In fact, the initials ENSO, standing for El Nino/Southern Oscillation, are

commonly used to identify the highly correlated nature of the atmospheric

and oceanic events. The usual trade wind system exhibits strong anomalies

(first easterly and then westerly) and the Intertropical Convergence Zone

(ITCZ) moves southward, carrying along the band of heavy precipitation

normally centered north of 5*N. The whole tropical atmosphere-ocean system



changes dramatically in the region, during El Nino events, and there has

been enough evidence to say that the phenomena is really a coupled

ocean-atmosphere process.

As often occurs with natural extreme phenomena, El Nino has a lot of

social and economical implications, especially in countries like Peru and

Ecuador. When the usually cold waters off their South American coasts are

replaced by anomalously warm waters, the resulting migration of fish away

from the area, delivers devastating blows to the important fishery

industries of those countries. In a wmre indirect and subtle way, there

have been attempts to link the interannual atmospheric and oceanic

variability associated with El Nino, with severe droughts or floodings in

different regions of the globe, occurring in El Nino years. Major

influences of these tropical events on the global earth climate are

certainly a possibility.

In addition to its social, economical and ecological importance, for

the meteorologist or the oceanographer, El Nino is the only large scale

interannual phenomena which couples the ocean-atmosphere system in a

dramatic, observable way. It is, therefore, not surprising, that El Nino

events have been the object of numerous studies and publications,

constituting one of the most active research areas in the field of

oceanography.

Extensive descriptive literature exists on almost every aspect of El

Nino. Wyrtki (1977, 1979, 1984) documents the changes in SL in the

tropical Pacific for the latest El Nino events of 1972, 1976 and 1982/83.

The patterns of SST anomalies and wind stress changes in El Nino years are

analyzed in Rasmusson and Carpenter (1982). The latest ENSO event

occurring in 82/83 was the strongest to be recorded in this century and, by



far, one of the best observed. A collection of papers on the 82/83 ENSO

can be found in Witte (1983). A comparison between the 82/83 event and

previous events is given by Cane (1983), for the oceanographic component,

while Rasmusson and Wallace (1983) provide the atmospheric comparison. The

global changes in the atmospheric patterns of circulation is well presented

in Horel and Wallace (1981).

An intensive theoretical modeling effort has taken place in the last

few years, in an attempt to better understand the mechanisms causing the

onset of ENSO events. Several paths have been taken, but no fully

satisfactory picture has emerged. However, several aspects of the extreme

phenomena have been successfully modeled.

Wyrtki (1975) mentioned, for the first time, the importance of

equatorial oceanic Kelvin waves in carrying the sea level signal from the

western to the eastern Pacific. Relatively simple reduced gravity models,

using realistic winds over the equator, have been able to simulate the sea

level signature of El Nino events (see, for example, Busalacchi and O'Brien

1980, O'Brien et al. 1981). The importance of remotely forced equatorial

Kelvin and Rossby waves in explaining SL anomalies in the equatorial

Pacific is well established.

The other important signal associated with El Nino is SST anomaly.

The inclusion of thermodynamics, as well as dynamics, in theoretical

models, permits a better understanding of the SST anomaly patterns

occurring during ENSO events. For example, advective effects associated

with the passage of wave fronts are seen to be important (Schopf and

Harrison 1983) and may explain the difference observed in SST anomaly

patterns between the 82/83 event and the previous ones (Harrison and Schopf

1984). Changes in wind patterns over the tropical Pacific are believed to



be connected with anomalies in SST and have been simulated quite

successfully, by forcing a simple atmosphere model with anomalous heating

at the sea surface (Gill 1980, Zebiak 1982).

Some of the more sophisticated modeling attempts have been aimed at

describing the air-sea interaction processes which probably control the

evolution and decay of ENSO events. Rather than prescribing some

conditions in one medium and looking for the reaction to this forcing in

the other medium, ocean-atmosphere coupled models let the full system

evolve on its own, after some initial state and mean conditions have been

given (see, for example, Zebiak 1984).

All of the models developed until now, are able to capture some of the

dynamics and thermodynamics involved in El Nino events. However, no

complete picture has been provided. There are still a lot of unanswered

questions about what makes El Nino occur. Sounding a bit like the "chicken

and egg" problem, SST anomalies are invoked as causes for the wind

anomalies, which in turn are held responsible for excitation of equatorial

waves, anomalous -currents and , consequently, production of SST anomalies

through anomalous advection. What process comes first, is still unclear.

Why the aperiodicity of El Nino events? Although we usually talk about a

rough 3-4 year period for recurrence of extreme conditions in the tropical

Pacific region, periods as long as 10 years and as short as 2 years have

been observed. Despite enough similarity between events, permitting

Rasmusson and Carpenter (1982) to talk about the composite El Nino, either

the amplitude (defined by the size of SST and SL anomalies) or the timing

of the events exhibit strong differences over the years. The best example

of an extremely strong event was the 82/83 El Nino, which also started at

the "wrong" time (see Cane 1983). Even aborted events, like the one in



1975, have been spotted (Busalacchi et al. 1983).

The quest for the ability to predict the occurrence of El Nino has

been a driving force behind the theoretical modeling effort going on

during the last decade. Despite the variability and aperiodicity of

events, predictability, in its deterministic sense, is still one of the

goals El Nino modelers would like to achieve. Forecasting schemes using

different advanced statistical ideas, have been tried with some success,

using the zonal winds over the western and central Pacific as predictors

and SST (as in Barnett (1983)) or SL (as in Inoue and O'Brien (1983)) as

predictands. However, this ability to forecast anomalous conditions off the

South American coast 3 to 4 months ahead, does not imply more than the

notion that one are present over some region of the Pacific, a favorable

anomalous wind conditions signal is generated and propagates in the form of

a Kelvin wave towards the east. What triggers the anomalous winds remains

unknown, and hence, does not enter the forecast. The winds are still the

best predictor to be used in forecasting schemes of the kind mentioned

above.

If one could pinpoint the ultimate cause which sets off the ENSO

events, real predictability, in a deterministic sense, would have been

gained. Unfortunately, the complexity of dynamical and thermodynamical

processes has proven to be an unsurpassable barrier and there is probably

no simple cause, but rather some sort of complicated feedback or

instability mechanism, behind the occurrence of ENSO events.

Given this much uncertainty, in the search for the ultimate mechanism

behind the ENSO cycle, as some like to call it. and even though some of the

odd characteristics of the equatorial phenomena like the aperiodicity can

be accounted by relatively simple coupled atmosphere-ocean models (see Cane



and Zebiak 1985), we thought there was enough room to investigate the

extent to which purely stochastic processes could be a factor in describing

such important events. The specter of unpredictability should not prevent

us from exploring this possibility. The appeal of this stochastic approach

is basically two-fold: the responsibility for the start of an event is

delegated to the random components of the forcing; and the variability and

aperiodicity of events stem from the randomness, inherent to the process.

Atmospheric stochastic forcing, at short space and time scales, has

been used to produce a predominantly red response (low frequency and

wavenumber) in the ocean, which acts as an integrator of the random

atmospheric forcing. Frankignoul and Hasselman (1977) produced some

realistic, red SST spectrum from white noise atmospheric forcing.

Frankignoul and Muller (1979) use the same concept to suggest that

stochastic wind forcing could explain some of the eddy variability, in

regions away from boundaries or strong currents, despite the discrepancy

between the dominant time-space scales of the atmospheric and oceanic

disturbances. For similar reasons, the long scales associated with El Nino

signals do not necessarily require atmospheric forcing at those scales.

Bringing the random forcing element into the El Nino scenario

eliminates the need for a deterministic cause for the onset of such events.

There are obvious aspects of the phenomena which are best treated in a

deterministic way. The massive collapse of the Trades over the region west

of the dateline, for example, is certainly caused by SST anomalies which

develop in that area, after the onset phase. Still, these SST anomalies

could be the result of stochastically forced Kelvin waves and the

consequent advection of warm waters from the west.



If tie random hypothesis is a plausible mechanism of generation of

ENSO events, it should produce the anomalous oceanic conditions with a

frequency resembling observed records, in the mean sense. Obviously, the

stochastic assumption only allows us to talk about El Nino occurrences in

a probabilistic way (i.e., involving some averaging operation).

Considering equatorial Kelvin waves as an important part of the

ocean's response to the wind, and in light of the stochastic forcing

assumption, we may imagine the random winds constantly exciting Kelvin

waves in the ocean. Then, the occurrence of an El Nino event could be

interpreted as a result of the superposition of randomly forced Kelvin

waves, in such a way as to produce a big Kelvin wave which is normally

associated with El Nino signals. Once in a while, the timing and strength

of the random wind events over the tropical Pacific could be such as to

generate extreme responses in the ocean by the superposition of the

individually excited waves (implied in this idea is the notion that there

is no need for a single strong wind event in order to generate an El Nino).

Could the stochastic winds force the ocean in a way as to produce the

extreme sea level signals observed during El Nino? Could the strong

anomalies in the equatorial SST field be the ocean response to those winds?

Could the duration and spatial extent of these extreme ocean signals be

accounted for solely by the stochastic superposition argument? In essence,

the mtivation behind this study lies in trying to answer these questions.

In the process of trying to investigate the plausibility of our

stochastic forcing hypothesis of El Nino, we were led to learn about the

theory of statistics of extremes, in the context of random field theory,

described in the classical work of Rice (1945), the mre recent work of

Vanmarcke (1983) and many others. The theory essentially relates the



spectral density function of a given process and its probability density

function, to the statistics of threshold crossings above high levels. A

brief review and discussion of this theory is presented in Chapters 2 and

3. Chapter 2 treats the case of 1-D process, while Chapter 3 extends the

same theoretical concepts to 2-D processes. Expressions for the mean time

or length between two successive upcrossings of some threshold level by a

given process, and for the mean time or length that the process will stay

above this threshold are presented in Chapter 2, as well as an expression

for the probability of having a threshold crossing during some period of

time or over some distance (we are obviously considering either time or

space processes here). Similar expressions are given in Chapter 3 for the

case of 2-D processes, with threshold crossings here occurring over some

area of parameter space (usually time and space).

The possibilities for the useful application of this theory of

statistics of extremes to the field of oceanography are not restricted to

the particular case of this study. The transport of sediment in the ocean

constitutes an example of a process which is critically dependent on the

threshold statistics of the flow field. If the velocity over the ocean bed

does not exceed a certain threshold value, no transport of sediment along

the bottom takes place (Shepard 1963). Therefore, knowledge of the

threshold crossing statistics of the velocity field near the ocean bottom

could be useful in studying sediment transport. The statistical analysis

of sea surface waves is another example of a field in which extreme value

theory could be applied. In this work, the theory is applied to studying

the temporal and spatial scales of SL and SST extremes directly associated

with El Nino events.



Chapter 4 is devoted to developing an analytical model of an idealized

equatorial ocean. We consider the linear response of a continuously

stratified equatorial p-plane ocean to zonal wind stress stochastic

forcing. Only Kelvin waves are permitted in our model. The very simple

dynamics yield a zonal wavenumber-frequency spectrum of SL. Using the

anomalous Kelvin wave zonal velocities to advect existing mean zonal

temperature gradients leads to the generation of SST anomalies. From the

simple thermodynamics, we obtain an SST zonal wavenumber-frequency

spectrum. The particular forms of these spectra are dependent on the

choice of the forcing spectrum.

In Chapter 5, the analytical SL and SST zonal wavenumber-frequency

spectra obtained before are used to compute the statistics of extremes

associated with the respective fields, according to the theory of Chapters

2 and 3. We find that, for reasonable forms of the zonal wind stress

spectrum, the zonal space and time scales of excursions above the 2

standard deviation threshold for SL and SST are somewhat smaller than the

observed El Nino scales. The computed mean period between consecutive

upcrossings of that threshold is shorter than the 3 to 4 year period for

ENSO events, but the reliability of this result is weak due to its extreme

sensitivity to some of our assumptions. A discussion of our results is

given and the importance of some of our model assumptions and

simplifications is examined. A reinterpretation of our results for the

scales of SST anomalies leads to the possibility of the stochastically

forced waves being a triggering mechanism for El Nino (rather than its full

description). Feedback processes between the ocean and the atmosphere are

invoked as a possible way to prolong and extend the anomalous oceanic



conditions resulting from the stochastic model. A brief summary and some

conclusions from our study are left for the last chapter.

The material covered in this work is arranged in a way as to fit the

interests of two potential different readers. For the oceanographer mainly

interested in applying the theory of statistics of extremes to his research

problem, Chapters 2 and 3 offer a concise and comprehensive review of that

theory, as well as a list of references which may be needed for further

details on the theory. For the reader primarily interested in the

particular application of extreme value theory to the El Nino phenomena, he

may want to skip the technical details of Chapters 2 and 3 and concentrate

his attention on the remaining chapters, since a brief summary of the

statistical expressions needed to follow that part of the study is included

in Chapter 4.



CHAPTER 2

STATISTICS OF EXTREMES FOR l-D RANDOM PROCESSES

It is always much easier to think about and rationalize results which

are obtained in the context of one dimensional problems than to deal with

the complexities of an N-dimensional problem. This is why we first shall

pursue here the theory of statistics of extremes for only one dimensional

stationary process. Higher dimensional analysis is left for Chapter 3.

The theory of statistics of extremes for 1-D processes has been worked

out for some time, primarily by Rice (1944, 1945). We shall follow here

Rice's work and also Vanmarcke (1983), which not only reviews Rice's

papers, but also extends the statistical analysis to other parameters not

discussed by Rice.

We hope that, by the end of this chapter, we will be able to answer

questions such as the ones mentioned in the introductory section, which are

the motivation behind this study.

2.1 RICE'S CLASSICAL FORMULA

Consider a stationary random process X(t), where the independent

variable t can be taken as time for the purpose of this section. By

stationary we mean that the autocorrelation function of the process X(t)

only depends on Tl=t-t'.

We are interested in finding an expression for the mean rate of

crossings of some threshold b by process X(t). Rice (1945), in his work on

random noise in electrical circuits, came up with a classical formula for

the rate of crossings of level b for some random field. We shall derive

this important result from which most of the theory presented here

naturally follows.



Consider the picture represented in Figure 1. We want to find the

probability of having X(t) cross the level b in the interval [tr,t'+dt].

The element dt is taken to be small enough so that we can make the slope s

constant over this interval of time. The equation for the line in this

infinitesimal domain is

x=s(t-t')+xo (2.1)

where
dX

s = -- (t=t'), x0 = X(t') (2.2)

dt

Solving for the independent variable t and putting x=b gives

t = (b-xo)/s+t' (2.3)

In order to have X(t) crossing the threshold b with positive slope s

in the interval considered, t has to be contained in the interval [t',

t'+dt]. Hence, the following inequality has to hold

t' < (b-xo)/s+t' < t'+dt

or simplifying it

b-s-dt < xo < b (2.4)

This simply says that for positive slope s (i.e., only upcrossings

considered), to have X(t) = b, the slope s has to be greater than

(b-xo)/dt. If s,xo satisfy inequality (2.4), we have one b upcrossing.

The probability of s,xo satisfying this inequality is

00 b
f dx' f f(x,x')dx (2.5)
0 b-x'd t

where f(x,x') is the joint probability density function (abbreviated as pdf

hereafter) of the random variables X and its derivative X.

For dt sufficiently small in (2.5), we may take

f(x,x') ~ f(b,x')



X(t)

xo -~ --- ~
I I

t' t +dt t

Figure 1. Crossing of threshold b by random process X(t). The element dt
is small enough so that the slope of X(t) can be taken as a
constant in the interval [t',t'+dt].



The probability integral over x is then straightforward and (2.5)

reduces to

dt f x'f(b,x')dx' (2.6)
0

Similarly, we can do the same derivation for downcrossings (i.e.,

crossings with negative slope s). The probability of having a threshold

crossing with negative slope is then

0
-dt f x'f(b,x')dx' (2.7)

Adding the two results and dividing by dt yields

Vb = f Ix'|f(b,x')dx' (2.8)

This is Rice's classical formula. It gives us the probability that

X(t) will cross the level b (either up or down) in one unit of time. vb is

then the expected value of the rate of crossing of the threshold b by the

random process X(t).

The mean rate of upcrossings or downcrossings given by expressions

(2.6) and (2.7) respectively after dividing by dt, are easily shown to be

equal (Cramer and Leadbetter 1967). We may simply realize that, even

though on a finite region the number of upcrossings may differ by ±1 from

the number of downcrossings, in the mean they should be equal. Then we may

write

vb
Vb~ = Vb+ = -- (2.9)

2

where the superscripts + and - relate to up and downcrossings

respectively.

The relations given in (2.8) and (2.9) imply that, by knowing the

joint pdf of a random process X(t) and its derivative X'(t), we can define



what the threshold crossing statistics are. It is important to notice the

dependence of the level crossing statistics on the derivative process

X'(t), a result which we could expect intuitively. We might therefore

anticipate that threshold crossing statistics of the process X'(t),

intimately related to maximum value statistics (X'(t) = 0 at places where

X(t) has a maximum or minimum), will depend on the statistics of the second

derivative process X"(t). This will be seen more clearly in the following

section, where we concern ourselves with the special case of a normally

distributed process, for which the integral in (2.8) can be evaluated

easily.

2.2 THRESHOLD CROSSING STATISTICS FOR THE CASE OF A GAUSSIAN DISTRIBUTED

PROCESS

We now focus our discussion on the extreme value statistics of a

normally distributed process X(t), whose pdf is given by

f(x) = (/21 cY)~exp{-x 2 /2a 2 } (2.10)

where a is the standard deviation. The mean of X(t) is taken to be zero

here, without loss of generality.

Since X(t) is stationary, we can write

B(Tj) = B(-Tj) (2.11)

where B(Tj) is the autocorrelation function of the process. We rewrite

(2.11) as

f X(t)[X(t+Tj)-X(t-TZ)]dt = 0 (2.12)
0

and divide it by 2TI, before letting Tj + 0 to obtain

f X(t)X'(t)dt = 0 (2.13)
0



which just tells us that the correlation at zero lag of X(t) and X'(t) is

zero. Since this correlation is a maximum for -.=0, we deduce that X(t)

and X'(t) are uncorrelated.t Normality then implies that X(t) and X'(t)

are independent and (2.8) becomes

Vb = fx(b) f Ix'Ifx'(x')dx' = fx(b)<Ix'I> (2.14)

where <Ix'I> is the expected value of the absolute value of the process

X'(t) and fx'(x) is its pdf (I shall use subscripts in pdf's whenever it is

not clear what process I am referring to).

For a general Gaussian field X(t), its derivative X'(t) is also

normally distributed with mean zero, since differentiation is a linear

operation. The integral in (2.14) is easily computed to give

00 x' x,22

<|x'I> f ---- exp{- -----}dx' = /(-) axi (2.15)
-w /2ax 2axt n

Substituting (2.15) and (2.10) in the expression for vb yields

vb = ax' (na)~ 1 exp{-b 2/2a2} (2.16a)

or by (2.9)

vb~ = Vb+ = axt (2na)~lexp{-b 2/2a2} (2.16b)

where ax' is the standard deviation for the process X'(t) (when no

subscript is used , I am referring to the standard deviation of X(t)).

We now turn our attention to the question of finding the expected

values for the times Tb and Tb' the process X(t) actually spends above and

below a given threshold b, respectively (see Figure 2).

tThis is not actually true for discrete processes because the derivative
(i.e., its finite difference approximation) depends on two points.
However, we may still take the continuous underlying processes X(t) and
X'(t) to be uncorrelated.



X(t)ib
b eTbT

b -- - - --- - --- --- - --- -

0

Tb+Tb'

Figure 2. Time spent above and below a fixed threshold b by random process
X(t).



The expected value for the time between two successive upcrossings of

level b, is just the inverse of the mean rate of upcrossings of level b,

(Vanmarcke 1969, 1975)

<Tb+Tb'> = 1/vb+ (2.17)

This is the quantity usually known as the return time, so relevant in

extreme value problems (Gumbel 1958).

The fraction of time Tb spent above level b for each period Tb+Tb' is

proportional to the cumulative distribution function (abbreviated as cdf

hereafter)
<Tb> **

-------- = f f(x)dx = Fc(b) (2.18)
<Tb+Tb'> b

where F(x) is the cdf of X(t) and superscript c stands for complementary.

We now can solve for <Tb> and <Tb'>, using the last two equations, to

get

2Fc(b)
<Tb> = ---------- (2.19)

<|x'|>f(b)

and

2F(b)
<Tb'> = ~~-------- (2.20)

<|x' |>f(b)

The values for the standard (i.e., a=1, mean m=0) normal cdf FU(u) are

widely tabulated, permitting thus the evaluation of Fc(x) and F(x) for any

random variable x. For the case of large values of x (i.e., x/a >>1), then

we may use the approximation

FU(u) = 1-(/2if u)~1 exp{-u 2 /2}g(u) (2.21a)

where
1 3 1-3-5

g(u)~1 - -- + -- - ----- + (2.21b)

u2 u4 u6



With this approximation, (2.19) can be simplified (Vanmarcke 1983) to give

an asymptotically exact expression for the mean excursion time

<Tb> = (a//2n bvo+)g(b/a) (2.22)

where vo+ is given by setting b equal to zero in (2.16b). The function

g(u) is tabulated in Vanmarcke (1983).

Consider now the process X'(t) and its derivative X"(t), with

respective variances ax, 2 and ax"2 , instead of X(t) and X'(t) as before.

In this case, (2.16b) becomes

Vb' + = Vb'~ = ax"/(2naxt)-lexp{-b' 2/2ax, 2} (2.23)

Here, b' is a threshold in the X'(t) vs. t plot. If we realize that for

X'(t) = 0 and X"(t)(O, X(t) has a local maximum, then the zero crossings of

process X'(t) with negative slope gain some significance. We have

vm = vo~ = ax"/(2naxt) (2.24)

where vm is the mean rate of occurrence of local maxima for process X(t).

The expressions so far obtained here are given in terms of the

variances of X(t), X'(t) and X"(t). In fact, there is a correspondence

between these variances and the different spectral moments of X(t). A

derivation of these relations is given in Appendix A. Here, it suffices to

accept the validity of the derived results, listed below

Xo = a2

2A= ax'2 (2.25)

X4 = ax"2

where X is the symbol used for the spectral moments, defined as

Xj = f w]@(o)dw (2.26)
0

Here, c(w) is the one sided power density function.



It is useful to introduce, in relation to the spectral moments Xj, two

dimensionless spectral parameters. Vanmarcke (1983) defines a quantity 6

in terms of the zeroth, first and second moments as follows

%12 1/2

6 = (1-- ----) (2.27)

XoX2

A clear interpretation of parameter 6 is best achieved by defining a

characteristic frequency Qj for each moment Xj

Gj = (xj/xo)1/j (2.28)

The spectral density function being analogous to a pdf, we can think

of Q1 and 92, for example, as being the mean and the root mean square

frequencies, respectively. In terms of these characteristic frequencies,

(2.27) becomes

(Q2 2_12 1/2

6=- -(2.29)

22

The factor 6, being a ratio of the frequency standard deviation to the

root mean square frequency, can now be viewed as a measure of dispersion or

bandwidth of the spectral density function, and can only take on values

between 0 and 1 (0 < Xi2 /Xok2 < I by Schwartz's inequality).

Another measure of bandwidth involving the zeroth, second and fourth

moments is defined as follows (Longuet-Higgins 1952)

r = V(1-X 2:/X 4Xo) = V[1-(0 2 /94)'] (2.30)

This parameter is much more dependent on the high frequencies than

parameter 6 but may be interpreted in a similar way. The dependence on

moment X4, which is analogous to the fourth moment of a pdf, makes the

concept of kurtosis useful in the interpretation of r.

For an extremely narrow band process (the most extreme case would be

if Q(o) were a Dirac delta function), both parameters 6 and 1 approach

zero.



Now, using relations (2.25) in the expressions for the mean rate of

crossings (2.16a,b) and mean rate of occurrence of local maxima (2.24), we

obtain

Vb~ = Vb+ = (2)~ 1'(X2/Xo) exp{-b
2/2XO} (2.31)

and

Vm = (2)~1v/(X4/X 2 ) (2.32)

respectively. We can in turn express vm in terms of the dimensionless

parameter r'. Solving (2.30) for X4 , plugging it in (2.32) and using (2.31)

gives

Vm = vo+/V(TFp2) (2.33)

For P approaching zero (for an extremely narrow band process), vm is nearly

equal to vo+, meaning that there is one local maximum for each zero

crossing, as we intuitively expect from a narrow band process. This

implies that all local maxima are positive. The complementary cdf of the

local maxima M (defined as M=X(tm) where t. is the time when X'(t) = 0 and

X"(t)<0 ), is just the number of maxima occurring above b, Vb+-At, over the

total number of maxima, which in the special case of 1=0, is just the

number of zero crossings, vo+eAt. Thus

FMc(b) Vb+/Vo+ = exp{-b 2 /2a2} (2.34)

for I=0 and b >0.

The pdf of M is easily obtained by differentiating (2.34) above

fM(b) = (b/a2)exp{-b2 /2a2} (2.35)

The local maxima are Rayleigh distributed for the extreme case of P=0.

The more general expression for the pdf of local maxima of a stationary

Gaussian process is given in Vanmarcke (1983).

The mean rate of occurrence of local maxima above a threshold b, vb,m,

is then just the rate of occurrence of local maxima multiplied by the



probability of having M > b, or

Vb,m = vmFHc(b) (2.36)

It is easy to prove (Vanmarcke 1983) that only for processes with

-e > 0.98, we can have more than one local maximum per crossing of high

threshold b. Only for extremely wide band processes will the ratio vb,m

over vb+ (always bigger than or equal to one) significantly differ from

one.

Having derived until now a number of statistically important

parameters in the analysis of extreme values of a random process, we should

keep in mind that these formulas were derived specifically for normally

distributed one dimensional stationary processes. Furthermore, it is clear

that the validity of these formulas holds, as long as the moments Xj (or

conversely the variances) are finite. In terms of the derivatives of the

autocorrelation function (see Appendix A), we can generally say that

expression (2.16a) is valid if the second derivative of the autocorrelation

function is finite at Tj=O.

Finiteness of ax, is equivalent to saying that the process X(t) is

mean square differentiable. The necessary and sufficient condition for

mean square differentiability is that the first derivative of the

autocorrelation function evaluated at zero lag is zero (Vanmarcke 1983).

An ideal white noise process (i.e., @(D)=constant), to cite a well known

example, is not mean square differentiable and its spectral moments are not

finite. In some cases, the use of an upper frequency cutoff will be needed

if we want to have finite moments Xj.

The statistical expressions derived for local maxima of X(t), which

depend on second order statistics (i.e., depend on the variance of X"(t))

are valid if also the fourth derivative of the autocorrelation function



evaluated at zero lag is well defined.

In computing quantities such as vb+ and vm from a power spectrum, it

is particularly important to notice the dependence of these parameters on

both the low and the high frequency parts of the spectrum. Reasonable

resolution on the two frequency regions is required, if we are to have

reliable statistical information on the extreme values of the process under

consideration. Most of the variance of X'(t) is contained in the high

frequencies. The importance of the process X'(t) on the statistics of

extremes, well expressed in Rice's formula, then renders extreme value

statistics sensitive to high frequencies, as well as to low frequencies.

2.3 ENVELOPE STATISTICS AND THE PROBLEM OF CLUSTERING OF LEVEL CROSSINGS

The concept of an envelope R(t) of a random process X(t) is intimately

related, in the field of extreme value statistics, to the problem of

clustering of threshold crossings which can especially occur in narrow band

processes.

When talking about group velocity and phase velocity in wave theory,

the concept of envelope arises naturally in relation to the wave group

velocity. The usual example illustrating what an envelope function is,

considers a process composed of two sinusoids of nearly the same

frequencies wo and wi. The addition of these two sine waves produces a

rapidly oscillating sinusoid of frequency wo+wi, modulated by a slowly

varying function, oscillating at frequency wo-ui (Fig. 3). This modulation

function, whose propagation characteristics closely describe the

propagation of the wave energy (hence the relation to group velocity), may

be thought of as the envelope R(t) of the more rapidly oscillating

sinusoid. It is easily seen, by looking at fig. 3, that crossings of a

level b by the underlying high frequency process will occur in clusters,



Figure 3. The result of adding two sine waves of nearly the same
frequencies wo, wi. The amplitude of the resulting wave of
period (wo+)~ 1 is modulated by the envelope wave of period
(Wo-i)~I.



with an apparent period which is smaller than the expected value. This

clustering effect is specially prominent in narrow band processes, such as

the simple example used here. It is important to be aware of this effect

and to try to somehow obtain a quantitative measure of it, in terms of a

mathematical definition of the envelope function R(t).

The envelope R(t) of a process X(t) may be thought of as a slowly

varying function satisfying R(t)>|X(t)| at all times and R(t) = |X(t)| near

the maxima of X(t). The stationary process X(t) may be represented as

N
X(t) = E cncos(wnt+$n) (2.37)

n=1

where $n is a random phase angle. Rice (1944) assumed the existence of a

representative mid-band frequency wm, writing X(t) as

N
X(t) = C encos(ont+Wm+$n-Wmt) =

n=1

= Ic(t) cos wmt - Is(t) sin mt (2.38)

where Ic and Is are given by

N
Ic(t) = E cncos{(wn-Wm)t+$n} (2.39a)

n=1

and

N
Is(t) = Z cnsin{(Wn-Wm)t+$n} (2.39b)

n=1

He then proceeded to define the envelope of process X(t) by the expression

R(t) = {Ic2 (t)+Is2 (t)}1/2 (2.40)

Vanmarcke (1983) chooses Wm to be zero in computing the one dimensional

envelope statistics. The choice of wm = 0 is very convenient for the

analytical manipulation done in computing the statistics of R(t), even

though these statistics do not depend on the specific choice of wm- With



Wm = 0, (2.39a,b) become

N
Xc(t) = Ic(t)(Wm=0) = Z cncos(wnt+$n) = X(t) (2.41a)

n=1
and

N
Xs(t) = Is(t)(wm=0) = Z cnsin(wnt+$n) (2.41b)

n=1

The component Xc(t) is identically equal to the process itself. The

expression for the envelope is now

R(t) = {Xc2 ( + Xs2 (t1)/2 (2.42)

We are now interested in expressing the statistics of R(t) in terms of

the statistics of X(t). The statistical properties of Xc are the same as

those of X(t). Since Xc and Xs only differ by the random phase factor $n,

we should expect their statistics to be the same. Having said this, the

variance of R(t), ar 2, can easily be written in terms of a, the variance of

X(t), by taking the expectation on both sides of (2.42)

ar2 = R2 (t)> = (Xc2 > + <Xs2 > = 2a2 (2.43)

The variance of R'(t) is also important in the context of extreme

value statistics, as we have previously seen. Vanmarcke (1983) derives an

expression for ar' in terms of ax' for the case of a Gaussian process X(t)

ar'2 = <R,2 t)> = 62 2 (2.44)

The parameter 6, described in the last section, becomes relevant when

talking about envelope statistics. Relation (2.44) merely says that for

narrow band processes (i.e., 6 small), the slope of R(t) oscillates much

less than the slope of X(t) (see, for example, fig. 3).

The envelope R(t) of a Gaussian process is Rayleigh distributed (see

equation (2.35)) with mean square given by (2.43), i.e.,

fR(r) = (r/a2 ) exp{-r 2 /2a2} (2.45)



Knowing fR(r) quickly leads to expressions for the mean rate of

occurrence of crossings of level b by envelope R(t), vb,R, and the mean

time spent above it, <TbR>. The derivative R'(t) is normally distributed

with mean zero and variance given by (2.44). Expression (2.14) in terms of

R(t) becomes

Vb,R = fR(r)<R'(t)> (2.46)

The expected value (R'(t)> is given by (see equation (2.15))

)= /2i ar' - 6ax' = 6<|x'I> (2.47)

Using (2.16b), (2.45) and (2.47) in relation (2.46) yields

Vb,R+ = (b/a)/ 2 Svb+ (2.48)

This is the expression for the mean rate of upcrossings of a level b

by the envelope process R(t).

Expression for the mean time spent above b by R(t) may be found by

computing FRc(b) from (2.45) and use the result together with (2.47) in

expression (2.19) to simply get

<Tb,R> = FRc(b)/(<R'(t)>fR(b)) = a/(/2 b6vo+) (2.49)

For the case b>>a, dividing (2.22) by (2.49), with g(b/a)=1, we

obtain
<Tb>

------ ~ 6 for b>>a (2.50)
(Tb,R>

The ratio between the two mean periods at high thresholds approaches

the value of the spectral parameter 6. It is very small in the case of

narrow band processes and becomes close to one for wide band processes.

Turning to the clustering problem mentioned in the beginning of this

section, we hope now to get an estimate of what Vanmarcke (1983) defines as

the mean clump size, i.e., the mean number of crossings of X(t) for each

crossing of R(t), at a given level b. Lyon (1961) defines the ratio



Vb +
rb = (2.51)

vb,R+ / 5b

to be a measure of the mean clump size. This is a good estimate when we

are considering narrow band processes which tend to have the mean excursion

time of the envelope much larger than the mean excursion time of the

process itself. However, for significantly wide band processes we may

actually have more R-crossings than X-crossings (wiggly wide band process

may send the envelope jumping above threshold b without having an

X-crossing within the next cycle). This fact led Vanmarcke (1969, 1975) to

provide a better estimate of the expected value of the clump size Nb

<Nb> ~ (1-exp{-rb~ })~r (2.52)

This expression is consistent with Lyon's estimate of clump size

(2.51) for narrow band processes for which 6b/a is fairly small. We may

then expand the exponent in (2.52) as

exp{-1/rb} = 1-1/rb+.......

to obtain (2.51). The two expressions differ, however, for the wide band

case for which 6b/a is fairly large.

The concept of clustering and the mathematical expressions given here

are important in inferring whether regions of tightly packed crossings of

some level b may be expected or not. It is helpful to keep in mind that

the expected value for the rate of X-crossings above b may be deceiving,

since these crossings may occur in fairly small regions, with much smaller

"apparent" periods, especially if X(t) is narrow band.



2.4 LOCAL AVERAGING AND THE CASE OF NON-GAUSSIAN STATIONARY PROCESSES

The theory discussed in the preceding sections is well developed for

the case of Gaussian random fields. Under the assumption of normality,

Rice's formula (2.8) is very easy to evaluate analytically and the rest of

the theory follows beautifully. However, unfortunately not all processes

in nature are normally distributed. We have to deal with other

distributions and we would still like to be able to say something about the

extreme value statistics of such distributions.

Let X(t) now be a non-Gaussian stationary process. One might hope

that the joint pdf of X(t) and X'(t) is fully defined either from

theoretical or experimental considerations. Obtaining the mean rate of

occurrence of threshold crossings is then just a matter of doing the

integral in (2.8), numerically or analytically. We would not necessarily

know anything about the statistics of local maxima since that implies

information on the second order statistics of the process (i.e.,

information about X"(t) ), which we don't have from only the joint pdf of

X(t) and X'(t). Nevertheless, the mean time between two successive b

upcrossings (Tb+Tb'> and the mean time spent above and below b, <Tb> and

<Tb'>, could still be easily computed.

Having complete knowledge of the joint pdf of X(t) and X'(t) is very

seldom the case. Even in the case of theoretical derived distributions,

quantities such as the mean and the standard deviation are most likely to

be involved and they have to be roughly estimated, probably from the data

available on the process.

If we either know or assume the form of f,(x) in some region, and X(t)

and X'(t) are still independent random variables, we could try to determine

empirically the constant of proportionality <ix'I>, which comes up in the



linear relations (2.14) and (2.19), without having to know anything about

the pdf of the derivative process. Deducing <|x'|> from a record by

numerically computing derivatives is a very noisy procedure. On the other

hand , we can use the linear relations (2.14) or (2.19) to estimate the

proportionality constant <Ix'|>, provided we have enough information about

vb or <Tb> and fx(b) in some region or regions. Once <Ix'I> had been

estimated , we could then assume a general, more arbitrary form for the pdf

to compute values for vb or <Tb> at regions where information on vb or <Tb>

is scarce or not at all available.

This question of empirical estimation gains more relevance when we are

dealing with processes in higher dimensions, where the proportionality

constants which arise, are more difficult to solve for, analytically, even

in the case of a Gaussian process. We will get back to this question in

Chapter 3 of this thesis.

In dealing with non-Gaussian processes and their extreme value

statistics, the concept of local averaging emerges as an important one. A

form of the central limit theorem, well known in statistical theory,

establishes that the sum of N independent variables, tends to become

normally distributed for N large (it becomes Gaussian in the limit N + c).

An immediate conclusion from this theorem is that local integration or

averaging over some period of time T can force an originally non-Gaussian

process closer to a Gaussian one. The requirement of independence between

the averaged variables is not usually met by any real random field.

However, it is well known that the central limit theorem only requires that

the averaging involves many weakly correlated random effects (Vanmarcke

1983). The averaging window should be reasonably large compared with the

typical correlation distance of the process under consideration, to assure



the validity of the central limit theorem.

If by doing a certain amount of local averaging on the non-Gaussian

process X(t), we arrive at a Gaussian process XT(t), we may then plow ahead

and use the theoretical expressions derived in the previous sections to

obtain the extreme value statistics of XT(t). The disadvantage of local

averaging a field is certainly the loss of information about the high

frequency components of the original field.

In practice, any real field will lack resolution at high frequencies

due to the usual sparse data the experimentalist is able to get. Hence,

when modeling stochastic processes, sometimes it is convenient to introduce

some local integration in the model. This will smooth out the unnecessary

fine scale details present in the model and therefore allow for a better

comparison between the model and the data. Vanmarcke (1983) gives

expressions for Vb,T+ and <Tb,T> (where subscript T refers to the process

XT(t)) in terms of the original process parameters, the averaging interval

T, and the variance function y(T) and the scale of fluctuation e defined

as

y(T) = aT22 (2.53)

and

e = lim Ty(T) (2.54)
T2O

where aT is the variance of XT(t). I shall not go into the details of

these expressions, which can be found in Chapter 5 of Vanmarcke's book.

The local averaging concept is introduced here, primarily for the purpose

of identifying one way of dealing with a non-Gaussian random field.



2.5 EXTREME VALUE DISTRIBUTIONS

A relevant question when trying to analyze a random field for its

extreme value statistics is "what is the probability that the process will

cross a level b in a certain period of time to?". Since extremes are

usually connected to safety issues (extreme floods in safety dam

construction, for example), this question is very important and it has

certainly been part of the motivation for studying extreme value

statistics.

In considering X(t) crossings above some threshold b, we may define a

counting process N(t) as

t
N(t) = Z Z(k) t = 0,1,2... (2.55)

k=O

where Z(k) is a two-valued random variable, usually called a Bernoulli

variable, defined by

0, if X(t) < b
Z(t) = { (2.56)

1, if X(t) > b

N(t) gives the number of crossings above b which have occurred during a

time t. Elementary probability theory can be used to show that N(t) has

the binomial distribution

t!

PN(n) = P[N(t)=n] = -------- pn(1-p)t-n (2.57)
n!(t-n)!

for n = 0,1,2,...,t and t = 0,1,..., where p = P[X(t)>b]. For the case of

high thresholds (b + co), p is very small (p<<l) and we can in this limit, say

that p is equal to the mean number of crossings of X(t) per unit time, vb+,

since the excursions above b occur very rarely.

Since it is well known that the binomial distribution (2.57) converges

toward the Poisson distribution, for t sufficiently large (see, for example,

Feller 1957), we may assume that crossings of high threshold b are



independent events which obey the Poisson distribution, with mean rate vb+,

p(N) = exp -{vb+t} (vb+t)N/N! (2.58)

then, the probability Lb that the first crossing of b will occur after time

to is

Lb(to) = Prob {max X~b} = Prob {N(to) = 0} = exp-{vb+to} (2.59)
to

from (2.58). This function is usually called the reliability function.

Cramer (1966) showed that the Poisson assumption is asymptotically exact in

the limit b + -, for a stationary Gaussian process. The error resulting

from making this assumption for finite b is negligible for narrow band

processes and slightly on the unsafe side for wide band processes

(Vanmarcke 1983).

The Poisson assumption leads to two unsatisfactory effects. The

crossings are not really independent, especially in narrow band processes

where they tend to occur in clusters, as we have seen. Also, it does not

take into consideration the finite time X(t) spends above b once it crosses

it.

To deal with these problems, Vanmarcke (1983) starts with an estimate

Lb(to) = Lb(O)exp-{abto) t 0  (2.60)

where Lb(0) is the probability of having X(t)<b at the starting time and ab

is the constant determining the rate of decay of that probability. For

b + c, we should have asymptotically

Lb(0) + 1 (2.61a)

ab + Vb+ (2.61b)

so that (2.60) becomes equal to (2.59).

Now, correcting for finite duration of excursions, we have



Lb(O) = Fx(b) (2.62a)

ab = 1/<Tb'> = vb+/Fx(b) (2.62b)

The probability Lb(O) will decay in a time scale equal to the expected

value for the time X(t) will spend below b.

The other correction applied by Vanmarcke for narrow band processes

takes into account the clump size. The counting process is still a Poisson

process, with reduced mean rate vb+/<Nb> (<Nb>/vb+ is roughly equal to the

mean time between clump occurrences). Therefore, we have

ab = Vb+/<Nb> = vb+(1-exp{-1/rb}) (2.63)

where we have used (2.52).

In his book, Vanmarcke puts the two corrections together to get

finally

Lb(O) = Fx(b) (2.64a)

ab = vb+(1-exp{-1/rb})/Fx(b) (2.64b)

The clustering effect does not affect Lb(O), so that (2.62a) is valid,

while in (2.62b), Vb+ is replaced by its reduced value in (2.63).

The probability that X(t) will stay below level b during time to,

corrected for the clustering effect and taking into consideration the

finite probability of that occurring for to=O, is

vb+( 1-exp -{ 1/rbl)
Lb(to) = Fx(b) exp - {------------------ to} (2.65)

Fx(b)

As b + w, (2.65) is in fact seen to equal (2.59).

A different approach in arriving at largest values distributions can

be taken. Let's suppose we have a set A of N independent and identically

distributed variables A = {X1 ,.. . . . . ., XN}. We define the variable S to be

the maximum value of the above set. The probability of S < s is

Prob {S~s} = FA(s,s,...,s)



or

Prob {S~s} = Fs(s) = {Fx(x))N (2.66)

Gumbel (1958), among others, has shown that for most (but not all)

cdf's Fx(x), and in the limit N + o, the cdf Fs(s) falls into one of the

three following categories

(I) Fs(s) = exp{-exp (-s)} -- < s <

exp{-s~J} s>O, j>O
(II) Fs(s) = { (2.67)

0 s<O

(III) Fs(s) = {
exp{-(-s)J} s<0, j>0

where j is a parameter defined for the initial distribution Fx(x).

These are the three classical asymptotic Gumbel distributions. The

last one is a distribution of minimum values. The normal, exponential and

Gamma distributions all fall in the Type I Gumbel distribution. A look at

expression (2.65) will reveal that, for a Gaussian process, the extreme

value distribution derived using random field theory is consistent with the

classical asymptotic theory of Gumbel and falls in the Type I Gumbel

distribution in (2.67).



CHAPTER 3

STATISTICS OF EXTREMES FOR 2-D RANDOM PROCESSES

The statistical theory for the extreme values of a one-dimensional

process is easily extended to higher dimensional random processes. The

ability to deal with higher dimensions lends this statistical theory of

extremes a greater practical relevance, when trying to cope with random

fields occurring in nature. The importance of the occurrence of extremes

in the time domain is sometimes tied to the spatial extent over which these

extremes occur. It is in these situations, when both the spatial and time

components of excursions above some threshold are important, that higher

dimensional theory of statistics of extremes becomes useful to the

analyst.

The classical extreme value theory dealt almost exclusively with 1-D

random processes. We shall continue here to follow Vanmarcke (1983), where

the theory is expanded to encompass higher dimensional analysis. The

presentation given in this chapter will be more sketchy than the one in

Chapter 2, mainly because the same ideas and arguments invoked before are

again used here. Treatment of the 2-D case is given in detail. The more

general N-dimensional statistical relations can be found in Vanmarcke's

book.

3.1 THRESHOLD CROSSING STATISTICS FOR THE CASE OF A 2-D GAUSSIAN
DISTRIBUTED PROCESS

Most of the concepts and parameter definitions used in Chapter 2, for

dealing with 1-D processes, can be easily extended to higher dimensions.

We start this section by doing this, since we will need these definitions

later.



We shall consider here a 2-D homogeneous process Y(x,t), where x and t

can be thought as a space and time coordinate, respectively, without loss

of generality. These will actually be the physical coordinates, when we

try to apply this theory to El Nino phenomena, later on this study.

Homogeneity here is simply the extension of the concept of stationarity to

higher dimensions. It means that the covariance function of Y(x,t) will

only depend on the lag vector TL, i.e., on the differences t-t', x-x' for

the 2-D case.

The spectral moments of this process Y(x,t) can be defined, in their

most general form, as in Vanmarcke (1983)

00 0j =0,1,2...
Xjn = f f oJkn(ok)ddk n=0,1,2... (3.1)

-- -- j+n even

where (ow,k) is the two-sided spectral density of Y(x,t). The moments Xjn

are referred to as being order j with respect to the frequency w and order

n with respect to the wavenumber k. Homogeneity of Y(x,t) implies

$ (w,k) = $ (-o,-k) (3.2)

and hence, for j+n odd the double integral (3.1) vanishes. These moments

can be represented by using the one-sided spectral density function @(w,k),

just as we have done in Chapter 2. For example,

Xon = Xn = f f knc(w,k)dWdk = f kn@(k)dk (3.3a)
00 0

n=0,1,2,...
or

Xjo = j= f f wcJ(w,k)dodk = f wJ(w)dw (3.3b)
00 0

j=0,1,2...

where we have used the relations



f @(w,k)dw = cD(k) (3.4a)
0

and

f Q(w,k)dk = V() (3.4b)
0

Expressions (3.3) are equivalent to expression (2.26).

If $(w,k) is quadrant symmetric, i.e.,

$(w,k) = $ (w,-k) = $(-wk) (3.5)

then the moments Xjn may be expressed as follows (Vanmarcke 1983)

Xjn = 0 j,n both odd

Xjn = f f wjkn 1(w,k)dwdk (3.6)
0 0

It is convenient to arrange the second order moments in a 2-D matrix

k
+ X02 Xll X2 Xll
A = [ ] = [ W ](3.7)

Xll X20  X11 X2

which reduces to a diagonal matrix, if $(w,k) is quadrant symmetric. This

property of quadrant symmetry simply means, for the 2-D case, that the

partial derivatives of Y(x,t) with respect to x and t are uncorrelated, a

fact which has some relevance in the statistics of Y(x,t), as we will see

later on this section.

k w
The spectral moments X2, X2, Xoo and X11 have very useful

interpretations, in terms of the variances of Y(x,t) and its partial

derivatives, just as for the 1-D case (see Appendix A). From relations

(3.3), Xoo (from now on denoted simply by Xo) is just the variance a2 of
k 2

the process Y(x,t), while X2 gives the variance ax associated with the
L) 2

derivative process Yx and X2 gives the variance at associated with the

derivative process Yt. The moment X1 is in turn equal to the covariance

of these two derivative processes.



The concept of bandwidth, defined in section 2.2 for the 1-D case, is

easily extended to the 2-D case now under consideration. A nondimensional

measure of bandwidth, defined in terms of the second order spectral moments

of Y(x,t) is given by

k w
Xll - X 1 X1/Xo

A = ------------- (3.8)

k w 1/2
(%2 2)

The bandwidth 6 k and 5, associated with the spectral density

functions 15(k) and Z'(w) respectively, are obtained by letting the moments

in (3.8) be with respect to either k or w. Then, we have

i

[1 - ----- ]1/2 i = w or k (3.9)

XoX 2

which is just equivalent to expression (2.27). The coefficients in (3.8)

and (3.9) can be arranged in a 2 by 2 matrix

+ (8k)2 A
A = (3.10)

A (6w)2

If D(w,k) is quadrant symmetric, A becomes diagonal.

The 2-D process Y(x,t) can be treated as two 1-D processes, by taking

either x or t as a parameter, and allowing the other to vary. In each

case, the theory presented in Chapter 2 is valid if the same assumptions

hold true, namely if the second order moments are finite. Therefore, if

Y(xt) is Gaussian with pdf of the form (2.10), we can write

i
vb =1 X2 )/2 e-b2 /2Xo (3.11)

Vb 2- --
2-m X' 0



k,+
for i = w or i = k. Here vb is the mean rate of upcrossings of the

unidirectional process Y(x;to), where t is taken as a parameter, while
W),+
vb is the mean rate of upcrossings for the process Y(t;xo). We obviously

have assumed independence of Y(x,t) and its partial derivatives, which is

true for stationary Gaussian processes.

Similarly, the mean time of excursion <Tb> above b is given by (2.19)

or the approximation (2.22), for b/a large,

a b
<Tb> = ---------- g(-) (3.12)

/2n bva

(superscript + relates to b upcrossings), while the mean length of

excursion <Xb> is given by

a b

(Xb> = -------------- g(-) (3.13)

V2n bvo

For high thresholds levels (say, b/a>2), each crossing for either

unidirectional process, becomes nearly always associated with a single

local maximum, provided that these 1-D processes are not extremely narrow

banded (i.e., 6 k or 8w not very close to zero).

When analyzing a 2-D field, we are interested also in the complete 2-D

statistics of extremes. We talk about regions of excursion above b, which

are associated with some mean area in parameter space (here, x and t). We

might expect, from what has been said about the undirectional processes,

that the shapes of these regions of excursion become less complicated and

irregular, as we shift our threshold b to higher levels. Each of these

simple isolated regions is then associated with a single local maximum.

The occurrence of local maxima obeys a 2-D Poisson distribution for b + w,



just as the crossings of Y(x;to) and Y(t;xo) constitute 1-D Poisson

processes, as seen in Chapter 2.

We should expect that, if the partial derivatives Yx and Yt are

uncorrelated at the points (xm,tm) where Y(x,t) attains local maxima, then

the mean area of excursion, (Ab>, above b is just the product of the mean

dimensions, <Tb> and <Xb>. Thus, for Xi = 0, we may use expressions

(2.15) and (2.19) to obtain

Fc(b) 2i
(Ab> = <Tb><Xb> =-~~~~-2---------- (3.14)

f(b) k W 1/2
(X2 X2 )

k w
where we have used the equivalence between spectral moments X2, X2 and

2 2
variances ax , at , respectively. Use of the approximate forms (3.12) and

and (3.13) yield, in turn

2it X 2  b 2b
(Ab> = --- ----- [g(-)] - large (3.15)

2 k w) 1/ 2  a
b (%2 X2)

In general, the partial derivatives are correlated and X 1*0.

Rotation of the coordinate axes causes changes in the moments, but the

value of (Ab> should be invariant with respect to coordinate rotations.
k o 1/2

The appearance of the factor (X2 X2) , which is just equal to the square

root of the determinant of matrix A, with X1l = 0, defined by (3.7), hints

at the general form that (Ab> should take, namely

Fc(b) 2 +1-/
<Ab> = -~~- ~2 2-xA| 1/2  (3.16)

f(b)

where |AI is the determinant of A. This determinant is a maximum for

X11 = 0 and provides the invariance to <Ab>, compensating for the changes

in the product <Tb><Xb> which occur under rotation of the coordinate axis.

In the same way, (3.15) becomes for the general case XAl*0



2
2- X0  b 2 b

(Ab>--=-~~~~~~~(g(~)] ~ large (3.17)
b2 Ca

IA1l/2

This intuitive derivation of the mean area <Ab>, which is followed by

Vanmarcke (1983), appears to be asymptotically exact, since it leads to the

correct asymptotic mean rate of occurrence of isolated regions of excursion

above b, pb, or the mean number of local maxima above b, per unit area of

parameter space. In a given area ao, pbao is the number of crossing

events. Then the total area of excursion in ao can be expressed in two

different, but equivalent, ways:

<Ab> bao = Fc(b)ao

The term on the right hand side is simply another way of writing the

fraction of the area ao over which Y(x,t)> b. Solving for p'b is trivial,

and with the use of (3.16)

Fc(b) 1 [f(b) ]2  1/2
-b = ~---- = -- ---------- |AI (3.18)

<Ab> 2n Fc(b)

We may also use expression (3.17) for <Ab> and approximate Fc(b) with the

help of (2.21), to obtain a relation for b, valid for b/a large

1 1 |All/2 e-b2 /2k, b
p3b = -~~ ~ ~~~ ~~ ~~ ~~~~~-- - large (3.19)

(2n) A xo b a
g(-)

a

If we compare expression (3.19) and its 1-D counterpart (2.16b), it

becomes evident that the dependence of extreme value statistics on the

correlation properties and higher order statistics of the process under

consideration, gets more complicated for the 2-D case, and even more so for

higher dimensions. The constant factor which captures this dependence, is



easily computed analytically for Gaussian processes of any order (see

Vanmarcke 1983), but we might imagine that for non-Gaussian processes,

this will not in general be true. If these non-Gaussian processes still

satisfy the assumption of independence between them and their partial

derivatives, then the derivation of the statistical formulas can be done by

carrying the dependence on the correlation properties and higher order

statistics as a constant of proportionality, to be determined empirically.

Vanmarcke (1985) gives a detailed description of this alternate procedure.

We will get back to this issue later on this chapter.

With the expressions developed in this section, we can now compute the

mean area of excursion above b or the mean number of excursions per unit

area of parameter space, from knowledge of the frequency-wavenumber

spectral density function of a stationary 2-D Gaussian process.

3.2 ENVELOPE STATISTICS AND PROBLEM OF CLUSTERING OF LEVEL CROSSINGS

The concept of envelope of a process, introduced in section 2.3 in

connection with the problem of clustering of level crossings, can be

applied to higher dimensional processes. The envelope R(x,t) of the

process Y(x,t) is defined by the expression

R(x,t) = [Yc2 (xt)+Ys2 1xt)]l/2 (3.20)

This is the 2-D version of equation (2.42). Here, Yc and Ys are still given

by the sums of sines and cosines (see (2.41) and (2.42)), but now with

arguments being functions of x and t.

The 2-D envelope has the same physical interpretation as the one-given

for its 1-D counterpart in section 2.3. In fact, by fixing one of the

variables in (3.20), we may treat R(x,t) as two 1-D envelopes, Rx(x,t) and

Rt(x,t), with x or t taken as a parameter, respectively. All the relations



between the variances of the process and its envelope, developed in section

2.3, remain valid for these unidirectional fields. Thus, we have

ar = <[RX(x,t)] 2> = <[Rt(x,t)] 2> = 2a2 (3.21)

and

ar = ka
r 6(3.22)

ar = 0"a~t
t

where ar is the standard deviation of Rx(x,t) and ar is the standard
x t

deviation of Rt(x,t). In order to completely determine the relevant second

order statistics of R(xt) in terms of the statistics of Y(x,t), we need an

expression for (RxRt>. A simple derivation given by Vanmarcke (1983) leads

to the relation

<RxRt> = Aaxat (3.23)

with A defined by (3.8).

The concept of bandwidth gains more physical significance here,

appearing as a link between the statistical properties of Y(x,t) and its

envelope R(x,t), like we had seen before.

Using expressions (3.21), (3.22) and (3.23), it is easy to obtain

formulas for the mean area of excursion above b, <Ab,R>, and mean number of

crossings per unit area of parameter space, 4b,R, for the envelope process

R(x,t) in terms of the statistical parameters of Y(x,t). The matrix AR,

associated with R(x,t) is simply

2

ar <RxRt>
x

AR = 2 (3.24)

(RxRt> ar
t

whose determinant can be expressed as



+ + 2 2
jARI = |a a a (3.25)

x t

From relations (3.16) and (3.25), we have
c

FR(b) 
2  2n

<AbR> = [--------- (3.26)

fR(b) + 1/2
atax A1

c
where FR and fR are the complementary cdf and pdf of R(x,t), respectively,

and are given by (2.34) and (2.35) (recall that the envelope of a

Gaussian process is Rayleigh distributed). Using (2.34) and (2.35) in

(3.26) yields, in terms of spectral moments

2n ko 2 1
<Ab,R> = ------------ ------ (3.27)

b2 k wX1/2 i 1/2
(X2 2) |A

The expression for pb,R is just as easily obtained:

c 2 w k
FR(b) b (X2 X2)1 2  +

IbR =2- =-~~- ~~~~~- ~~~~---- A 1 /2 e-b 2 /2 (3.28)
(Ab,R> 2-n 00

We can turn now to the problem of clusterings of crossings. The

simplest measure of the tendency for clustering, defined by (2.51) for 1-D

case, becomes in its 2-D form,

+i1/2
p'b 1 a 1 |A| b
---- = ------------------ - large (3.29)

Lb,R (2n) 1 / 2 b axat + 1/2 a

using (3.19) and (3.28). This is called the mean clump size as before, and

gives a good estimate of the number of crossings of Y(x,t) per crossing of

R(x,t), if Y(x,t) is a narrow band process. For wide band processes, a

better estimate of mean clump size <Nb>, which compensates for empty

excursions of R(x,t), is given by (2.52) as before with rb given by (3.29).
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3.3 EXTREME VALUE DISTRIBUTIONS OF 2-D RANDOM PROCESSES

As it was already discussed in section 3.1, the pattern of crossings

of high thresholds b by Y(x,t) constitute a 2-D Poisson process with mean

rate pLb, in the limit b + w. Thus, the probability that n local maxima

occur in an area ao, as b + = is given by

(aopb)n
P[N(ao)=n] =---------- eaopb n = 0,1,2... (3.30)

n!

The probability of no local maxima occurring in area ao (i.e.,

P[N(a0 ) = 0]), called the reliability function Lb(ao), is simply

Lb(ao) = P[Max Y(x,t)(b] = e-aopb b + (3.31)
ao

The reliability function was seen to be related to safety issues which come

up in connection with extreme natural phenomena. Here, it gives an

estimate of how far and how long (for our case of space and time

coordinates) it takes, to observe a crossing of very high threshold b, by

process Y(x,t). However, as we decrease b, some corrections should be made

to account for clustering effects and the finite size of the region of

excursions, which are neglected in making the "point process" Poisson

assumption. Furthermore, the probability of finding Y(x,t) below b as

ao0O is not one, as implied by (3.31), but should equal F(b). These

corrections have been discussed in some detail in section 2.5, for the case

of 1-D random process. It suffices here to write the final expression for

the reliability function, corrected for all the mentioned effects, derived

in Vanmarcke's book:

4bao PbR
Lb(ao) = F(b)exp{- ---- [1-exp(- ---- )]} (3.32)

F(b) pb



In the limit b + o, the above expression becomes equal to (3.31).

If the alternate approach, followed by Vanmarcke (1985), is taken

(i.e., to carry the dependence of extreme value statistics on the

correlation structure and higher order statistics of the process as a

proportionality constant), we are left with a constant to be determined

empirically. In addition to the methods briefly outlined in section 2.4,

another possible method is to compare the reliability function (derived in

terms of the proportionality constant), with one of the Gumbel type

distributions mentioned in section 2.5 (Vanmarcke, personal communication).

The practical relevance of this procedure will not be tested in this study.

However, it should prove to be a powerful tool, if the random process to be

analyzed is not Gaussian and of high dimensionality.



CHAPTER 4

A SIMPLE ANALYTICAL MODEL FOR SST AND SL SPECTRA IN THE EQUATORIAL PACIFIC

In the previous two chapters, the theory for analyzing threshold

crossing statistics of a random field was discussed in detail. We shall

now apply this theory in the analysis of the SST and SL fields associated

with ENSO events. For the reader who has chosen to skip the lengthy

description of the theory of statistics of extremes given in the first

section of this chapter. This summary may also be helpful in refreshing

one's memory about the material covered in the previous two chapters.

Knowledge of the wavenumber-frequency spectral density function is

necessary to define the crossing statistics of a 2-D random field. The

bulk of this chapter is devoted to developing a simple equatorial ocean

model, which will give us a model wavenumber-frequency spectra for the SST

and SL fields, associated with ENSO events. Some relevant characteristics,-

of the SST and SL signals, evident from the available data, are briefly

discussed and the same is done for the tropical wind stress.

4.1 SUMMARY OF EXPRESSIONS DEFINING THE THRESHOLD CROSSING STATISTICS OF A
GAUSSIAN RANDOM FIELD

The threshold crossing statistics of a 2-D (time and space) stationary

random field are completely determined from knowledge of its one sided

spectral density function, D(wk), where k is wavenumber and w is

frequency, and of its probability density function (pdf). Here, we only

consider the specific case of Gaussian random fields.

The following spectral moments of cD(w,k) are important



00 00

o= f f D(w,k)dwdk (4.la)
0 0

CO CO

11= f f wkZ(w,k)dwdk (4.1b)
0 0

X20 = X2 = f f W2j(W,k)dwdk (4.1c)
0 0

k * *
X02 = X2 = f f k2(,k)dwdk (4.ld)

0 0

The second order moments can be arranged in a 2x2 matrix

W
+ X2 Xll
A = (4.2)

k
Xll X2

If the two sided spectral function Y(w,k) is quadrant symmetric (i.e., if

Y(w,k) satisfies (3.5)), then Xi is zero and A becomes diagonal.

In terms of these moments, the mean rate of upcrossings of threshold b

per unit time, vb , for a given process, is

31 %2 1/2 b2/2
vb ~-- ) e-b /2 0  (4.3)

2-n X0

Similarly, the mean rate of upcrossings of threshold b per unit length,

k,+
vb , is given by

k
kip+ 1 X2 2

vb -- (~~~)1/2 e-b /2Xo (4.4)
2nt Xo

((4.3) and (4.4) are the same as (3.11)). Also, the mean time of excursion

<Tb> above b, for b/a large (a 2 is the variance Xo), is

a b b
<Tb> =---------- g(-) - large (4.5)

/2- bv a



(the same as (3.12)), with g(u) defined by (2.21b). Similarly, the mean

length of excursion <Xb> above b, for b/a large, is

a b b
(Xb> --------- g(-) - large (4.6)

/2n bvo

(the same as (3.13)).

Threshold crossings in 2-D occur over some area of parameter space

(here space and time). The expression for the mean area of excursion <Ab>

above b is just
2'

2n o2 b b
<Ab> = -- -------- [g(-)]2  - large (4.7)

b2+

IA|1/2

(the same as (3.17)). Also, the mean rate of occurrence of regions of

excursion pb above b is given by

+ + 12 2/21 b |A|1/ 2 e-b /2o b
b = ~------- ----- ------ ~-------- - large (4.8)

(2n) 3 / 2 X01/2 X0 b a
g(-)

(the same as (3.19)).

The reader may consult sections 2.1, 2.2 and 3.1 of the two previous

chapters for the full derivation of these expressions. We will use these

formulas to compute the threshold crossing statistics of the SL and SST

anomaly fields in Chapter 5.

4.2 SOME RELEVANT ASPECTS OF THE SST AND SL SIGNALS DURING EL NINO

The two most extreme oceanic signals, during El Nino events, are

certainly observed in the SST and SL equatorial fields. They are also the

fields which are better understood, especially SL. Thus, we concentrate



our effort on the extreme anomalies of these two fields which are observed

in the equatorial Pacific, during ENSO years.

A - SEA LEVEL

A very rough description of SL along the equatorial Pacific, during

non-El Nino years, gives high SL (deep thermocline) at the west, decreasing

towards the east (with the thermocline shoaling). This wind setup

solution, which balances the wind stress exerted by the Trades with the

pressure gradient associated with the sea level slope, drastically changes

as the onset of El Nino occurs. A series of maps of SL anomaly in the

tropical Pacific for the period 1975-1983 can be seen in Wyrtki and

Nakahara (1984) and Wyrtki (1984). This period encompasses the 1976 and

1982/83 events. Two features immediately emerge from those maps: one is

the extremely large spatial scales, on the order of several thousand

kilometers, with high positive anomalies covering most of the eastern half

of the Pacific; the other feature concerns the relatively long time scales,

on the order of several months, associated with these anomalies. These two

characteristics of the SL anomaly field accompanying El Nino events can be

best seen in a time vs. longitude plot, as in Figure 4, adapted from Wyrtki

(1983) and relative to the 82/83 El Nino. Anomalies of 20-30 cm were

observed during this strong El Nino. It is hard to quantify these

anomalies in terms of the standard deviation of the SL field, because of

the variability between stations, the scarcity of long records and

subtleties in defining a mean annual cycle, just to name a few reasons.

The annual variability is' weak, with typical values around 5 cm (Wyrtki and

Leslie 1980). It is fair to say that an anomaly of twice the annual cycle

is significant, and that 2 standard deviations above the mean (including

the annual cycle) is a fairly good representation of the large spatial

and time scales of the observed El Nino SL signals.
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Linear equatorial wave theory (a good review of this theory can be

found in Moore and Philander (1978)) has been used quite successfully to

model the SL response of the Pacific to wind stress forcing (see, for

example, Wunsch and Gill (1976), Eriksen et al. (1983), Cane (1984)). The

forced response can be described in terms of the free waves of the system.

The dispersion relation for the equatorial wave guide is shown in Figure 5.

The low frequency Kelvin and Rossby wave roots are the relevant solutions

describing the variability in sea level associated with El Nino. The mixed

gravity-Rossby wave has vanishing vertical displacement at the equator and

does not contribute to the SL signal there. Short Rossby waves (i.e.,

large zonal wavenumber k) have wavelengths too small to be excited by the

usual wind patterns responsible for El Nino events. They are excited at

the western boundary as part of the reflection process, when long Rossby

waves hit the coast. Nevertheless, their group speed is very small and

they travel a small distance before they decay by frictional processes.

Furthermore, the long Rossby waves have relatively small sea level signals

at the equator, with the highest amplitudes occurring off the equator,

unlike the Kelvin waves (Eriksen et al. 1983). It is therefore

reasonable, to expect the Kelvin wave to be the major contributor to SL

variance at the equator, at the low frequency range characterizing El Nino

phenomena.

The scarcity of long SL records and the poor spatial coverage of the

equatorial Pacific, has caused zonal wavenumber-frequency spectral

estimates to be virtually non-existent in the literature. The most

extensive study of SL spectra I have found is that of Luther (1980).

Without dwelling on details irrelevant to this study, the numerous

frequency SL spectra, shown in Luther (1980), reveal the redness character
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familiar to most geophysical spectra, with frequency dependences, for the

range 1 day-i year, looking like w~P, with 1 4 p 4 2 (here, w denotes

frequency). For periods longer than 1 year, the ambiguity of the estimates

reflects the shortness of the records, but I think it is fair to say that

the spectra becomes whiter (flatter).

The important point here is that, from the existent records, the low

frequency (periods of 1 year and greater) estimates of the power density of

SL have almost no use in assisting on the development of a spectral model,

capable of yielding the 2-D (space and time) statistics of extremes we seek

in this study.

B - SEA SURFACE TEMPERATURE

The SST variability associated with ENSO events has a fairly similar

structure to the SL signal discussed above. The large positive anomalies

appear to cover most of the central and eastern Pacific for several months,

as is evident from the maps of Rasmusson and Carpenter (1982) or from time-

longitude plots of SST anomalies as in Figure 6, adapted from Reynolds

(1983) and relative to the 82/83 El Nino. The same large space-time scales

have characterized all the SST anomaly records in El Nino years. Anomalies

from the composite analysis of Rasmusson and Carpenter (1982) don't exceed

2*C, relative to a long term mean which includes El Nino years. A look

at anomaly maps for the 82/83 event brings to evidence the variability

between events. During this strong El Nino, temperature anomalies of 5*C

were observed (Reynolds 1983).

The difficulty in defining what are the mean and the anomalous SST

conditions, makes it hard to specify, with confidence, 'the departure from

normal conditions that the SST fields experience during El Nino. The

annual cycle, for example, is highly variable spatially, decreasing in
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amplitude westward. Since it will be important to quantify the SST

anomalies in terms of the standard deviation, we take as a fair

"definition" of El Nino SST anomalies, departures from the mean of 2

standard deviations, as we had done with SL.

Modeling of SST patterns, associated with ENSO variability, have been

pursued in the last few years. In general, the ideas of advection and, in

a more unsettled way, air-sea interaction processes, are involved in the

explanation of SST anomalies, the former being the most important.

A study done by Zebiak and Cane (1983) finds a whole range of

advection processes to be important in the complete evolution of SST

anomaly fields during El Nino. Remote forcing by wind stress is important

in creating anomalies by zonal advection, while local winds can induce

variability in the rate of upwelling along the equator (vertical advection)

and thus influence the SST anomaly field. Nonlinear advection (e.g.,

advection of anomalous temperature by anomalous currents) is seen to be

important, as well as meridional advection. Even though all these terms

are a factor at some time or place, zonal and vertical advection are

dominant at the equator while meridional advection is dominant at regions

away from the equator. Vertical advection is probably relevant when the

collapse of the Trades occur, with the consequent cutting off of the

equatorial upwelling, normally driven by the Ekman drift, associated with

the Trades. Zonal advection of the mean SST fields at the equator is

believed to be responsible for the SST anomalies occurring at the onset of

El Nino, at least in the central Pacific, as it has been suggested by Gill

(1983) and Harrison and Schopf (1983).

Much of what was said about SL spectra remains even more true, when

talking about SST spectra. Most of the frequency spectral estimates



available cover periods of 1 year and shorter. Spectral estimates at

longer periods are not possible, due to the shortness of the majority of

the records. The frequency SST spectra are generally red at periods of 1

year to a few days, with a frequency dependence w~P, with 1 < p < 3 roughly

(e.g., Halpern 1984). The w dependence is not necessarily homogeneous, but

no more details can be extracted about the general shapes of SST frequency

spectra with confidence. Zonal wavenumber spectral estimates are also

nonexistent.

Considering the scenario pictured above and the need for knowing the

zonal wavenumber-frequency spectra of SL and SST at the equator, if we are

to be able to compute the space and time scales associated with extremes

occurring in those fields, the development of an ocean model to obtain

those k-w spectra is needed and shall be pursued next. The model should be

aimed at describing the low frequency and large spatial variability of the

SL and SST fields typical of El Nino years.

4.3 A MODEL FOR SL AND SST k-w SPECTRA

The linear theory for the equatorial ocean dynamics has been

extensively studied previously. The review by McCreary (1985) summarizes

the progress. This theory will be used in order to arrive at model k-w SL

and SST spectra.

Linear, Boussinesq, incompressible equatorial p-plane dynamics are

used to describe the dynamical response of a laterally unbounded, flat

bottom ocean to wind stress forcing. Only Kelvin waves will be allowed as

part of the response of our stratified equatorial ocean. The set of

equations governing the dynamical fields of the decribed system is



Px Gz
Ut + -- = -- (4.9a)

Po Po

Py
syu + -- = 0 (4.9b)

Po

pg + Pz = 0 (4.9c)

ux + wz = 0 (4.9d)

Pt + WPz = 0 (4.9e)

where the notation is conventional (u and w are perturbation zonal and

vertical velocities, respectively; p is perturbation pressure). The basic

stratification is denoted by p, while the total density PT can be written

as follows

PT = Po + P + p (4.10)

Also, g is the gravitational acceleration, G denotes the tangential stress

acting in horizontal layers, and Py is just the Coriolis parameter.

Subscripts indicate partial differentiation. The v field was set equal to

zero, to allow only Kelvin waves to be excited.

Equations (4.9a,b) express the zonal and meridional momentum balance

respectively. Meridional forcing is left out, because of its relative

inefficiency in exciting Kelvin waves, when compared with zonal wind

forcing. The zonal perturbation flow is in geostrophic balance with the

meridional pressure gradient. Equation (4.9c) is the hydrostatic balance,

while (4.9d) is the continuity equation and (4.9e) tells us that local time

changes in perturbation density are a result of vertical advection of the

basic stratification.

The tangential stress G, which should equal the zonal wind stress T at

the surface, is confined to a surface mixed-layer of depth hmix. Following

the standard approach, first used by Lighthill (1969), the wind forcing is



applied as a near-surface body force. In this way, a detailed discussion

of the surface boundary layer is avoided. The dependence of G, with depth,

in the mixed layer, is more or less arbitrary, provided it goes to zero at

the base of the mixed layer, z = -hmix- Wunsch (1977) assumes an

exponential dependence, while Gill and Clarke (1974) use a linear

dependence, invoking some experimental evidence for the uniformity of Ekman

currents over the mixed layer. The function G is then given by

z
G = t (---- + 1) -hmix < z < 0 (4.11)

-mix

where -z is the zonal wind stress (G = T at the surface z=0 and decreases

linearly to zero at z = -hmix).

The unforced set of equations (put G = 0 in (4.9)) can be solved using

the standard separation into normal modes, where the u,w,p and p fields can

be expanded as a sum of vertical modes. Thus, we may write

u = E un(x,y,t)pn(z) (4.12a)
n

p ^

-- = Z Pn(x,y,t)pn(z) (4.12b)
Po n

w = Z wn(x,y,t)wn(z) (4.12c)
n

gP A

-- = 2 hn(x,y,t)wn(z) (4.12d)
N2  n

where N2 is the Brunt-Vaisala or buoyancy frequency, defined by

gPz
N2 = - --- (4.13)

Po

The notation hn is used because hn is proportional to the displacement of

density surfaces, following Gill and Clarke (1974).



The forced solutions can be found easily by making use of the

completeness of the set of eigenfunctions pn(z) (or wn(z)) to expand the

forcing function as follows

G z ^
-- = E Xn(x,y,t)pn(z) (4.14)

Po  n

Using expansions (4.12) and (4.14) in the set of equations (4.9) leads

to a separation of the problem into a vertical structure equation

N2
A N A

Wnzz + --- Wn = 0 (4.15)
2

cn

and the horizontal equations

unt + Pnx = Xn (4.16a)

syun + Pny = 0 (4.16b)
2

cn unx + Pnt = 0 (4.16c)

The vertical structure equation (4.15) governs the z dependence of the

solutions. It can be solved for general buoyancy frequency profiles,

either numerically or by using the WKB method when suitable. For our

purposes, N will be taken as constant. The separation constant cn has

dimensions of velocity and gives the phase speed for each Kelvin wave mode.

The eigenfunctions wn(z) and eigenvalues cn are determined by solving

(4.15), subject to the conditions that w vanishes at z=0 and z=-D (D is the

constant ocean depth). The surface boundary condition (w=0 at z=0) is

usually called the rigid lid approximation. Solutions of (4.15) using this

approximation are
N

wn(z) = An sin - z (4.17)

Cn

with the eigenvalues cn given by



ND
en = -- n=1,2,3... (4.18)

nn

We have lost from these solutions, the eigenvalue co (co = co), which

corresponds to the barotropic mode. If we had used a free surface

condition, we would have obtained co~(gD)1/2 for the phase speed of the

barotropic mode. The meridional trapping scale associated with this mode

is much larger than for the baroclinic modes, making the P-plane

approximation invalid. Therefore, treatment of the barotropic mode implies

the use of the full spherical equations. Since this mode presumably has a

very insignificant sea level signal associated with it (Cane 1984), we will

not consider it anymore in our analysis.

It is easy to show that

Pn(z) = wnz(z) (4.19)

from which the functions Pn(z), describing the vertical structure of the u

and p fields, can be computed. The usual normalization procedure for pn(z)

is
1 oA A

- f Pm(z)Pn(z)dz = 6mn (4.20)
D -D

where 6mn is the Kroenecker delta ((4.20) expresses the orthogonality of

the eigenfunctions pn). The normalized functions are

A N

Pn(z) = /2 cos - z (4.21)
Cn

We now turn our attention to the horizontal equations (4.16). Combining

expressions (4.11) and (4.14) and using orthogonality and the normalization

condition (4.20), leads to the following relation between the projection

coefficients Xn of the forcing, and the wind stress T,

Xn = bnT(x,y,t) (4.22)



where

bn = ~~~~~~ f Pn(z)dz (4.23)
pohmixD -hmix

The projection factor bn is in general sensitive to the actual N(z) profile

and the mixed layer depth hmix, as first pointed out by Lighthill (1969).

Depending on the form of the z-dependence assumed for the surface boundary

layer, the integrand in (4.23) may be more complicated.

The horizontal equations (4.16), written in terms of the wind stress

t(x,y,t) are

ut + Px bT (4.24a)

pyu + py 0 (4.24b)

c2uX + Pt = 0 (4.24c)

where we have dropped the subscripts n and consider now the equations for a

particular mode.

The meridional structure of the solutions can be found from (4.24b),

by putting p=uc (this is the free zonally propagating wave solution from

(4.24c)). We have for the y dependence then,

p =e-Y~2/2c (4.25)

The Kelvin wave has a Gaussian meridional structure, decaying away from the

equator.

We may combine equations (4.24a) and (4.24c) to obtain an equation for

perturbation pressure,

c2pxx - ptt = bc2xX (4.26)

The part of the wind stress forcing that will excite Kelvin waves is that

which can be projected on the meridional structure given by the basis

functions exp(-sy 2 /2cn). Assuming

p = P(x,t) e-PY2/2c (4.27)



and doing this projection by multiplying (4.26) by the basis function, we

obtain
Co

c2p Ptt = a f Tx(x,y,t)e~Y 2/2c dy aFx(x,t) (4.28)

where a is a constant for each vertical mode, given by

a = b c( 4.29)

and

Co -py2/2c
F(x,t) = f t(x,y,t)e dy (4.30)

The y dependence in (4.28) has been integrated out and the factor (cs/s)1/2
C py2

which results from the integral f exp(- ---)dy performed on the left hand
-D c

side of (4.28), is absorbed by constant a.

Our goal is to obtain an analytical k-w spectrum from (4.28).

Therefore, we proceed by Fourier transforming the equation in space (zonal

coordinate) and time. The forms

P(x,t) = f f P(w,k)ei(kx+wt) dkdw (4.31)

and

F(x,t) = f f F(w,k)i(kx+wt) dkdw (4.32)
-- W -- c

are assumed and used in (4.28) to simply yield

ika
P(w,k) = ------------- F(wk) (4.33)

(w2-c2k2 )

The tilde symbol ("~") here stands for the Fourier transform. The expected

resonance at values of w = ck is present, for at those values, the Kelvin

wave dispersion relation is exactly satisfied. In the absence of friction,

P(w,k) goes to infinity if there is any forcing at w and k values which



solve w = ck. This resonant singularity can be very easily removed by the

introduction of some type of friction. One simple way of accomplishing this

is to let the frequency w become complex

W + W+ie (4.34)

with e being some sort of dissipation. Wunsch and Gill (1976) let E be

proportional to the square of the wavenumber, in which case e represents a

sort of Laplacian "pseudofriction" as they call it (pseudo because procedure

(4.34) affects also the continuity equation). If we let E be a constant,

the above procedure is equivalent to having Rayleigh friction terms in our

beginning equations, as well as Newtonian cooling, with the additional

assumption of these two coefficients being equal (see McCreary (1985)). We

will follow the later Rayleigh friction representation (e = constant) in

this study.

Making use of the transformation in (4.34), expression (4.33) becomes

ika
P(w,k) = ---------------------- F(w,k) (4.35)

(w2 -E 2 -c 2 k2 +2iwe)

where no resonance is now possible.

In order to obtain the w-k pressure spectrum from (4.35) in terms of

the forcing spectrum, we now make the randomization assumption that

(F(w,k)F*(w',k')> = DF(W,k)8(W-o')5(k-k') (4.36)

with the angular brackets still denoting an ensemble average, * being the

complex conjugate, 6 being the Dirac delta function and DF(w,k) the zonal

wind stress forcing spectrum. The stochastic assumption (4.36) about the

wind forcing implies random phases for different w,k components of the wind

field, ruling out the possibility of standing modes. This assumption of

stochastic winds simplifies the problem a great deal. Multiplying equation

(4.35) by its complex conjugate and using (4.36) quickly yields



Op(o,k) = Hp(w,k) DF(,k) (4.37)

with
a2k2

Hp(w,k) = --------------------- (4.38)

[(W2 -e 2-c 2 k 2 ) 2 +4w 2 e2]

Dp(w,k) is the k-w spectrum of pressure and the function H(w,k), which

depends on mode number n, captures the importance of the ocean dynamics in

"reshaping" the atmospheric input. The oceanic spectrum is in fact red, in

relation to the forcing zonal wind stress spectrum, as we have hinted

before.

It is well known that sea level C can be obtained from the pressure at

z=0, i.e.,

p(O)
= ---- (4.39)

g Po
We thus have, simply

=(,k) Hg(w,k)@F(w,k) (4.40)

with

p(0)
Hg(w,k) = ---- Hp(w,k) (4.41)

g
where @g(w,k) stands for w-k SL spectrum, and Hg(w,k) differs from Hp(w,k)

by the constant p(0)/g ( p(O) does not change with made number). Both SL

and pressure spectra have the same dependence on mode number.

The k-w spectrum of the zonal velocity perturbation can be obtained by

Fourier transforming equation (4.24c), and using (4.37) to express it in

terms of the forcing spectrum DF(w,k). The procedure leads to the

expression

Du(w k) = Hu(w,k)>F(W,k) (4.42)

with
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Hu(w,k) = -- ------------------- = - Hp(w,k) (4.43)
c4 (W2 - 2-c 2 k 2 ) 2+4W2 F2  c4k2

where Pu(w,k) is the u spectrum. This spectrum is needed to derive an SST

spectrum, as we shall see later.

The frequency spectra @g(w), cu(w) can be obtained by integrating the

respective w-k spectra (expressions (4.40) and 4.42)) with respect to zonal

wavenumber k, while (g(k) and Qu(k) result from integrating (4.40) and

(4.42) over frequency, respectively.

It is convenient to keep in mind that, besides the dependence of the H

factors on vertical mode number n, in relations (4.40) and (4.42), DF(w,k)

also depends on mode number, since it is the spectrum of the projection of

the zonal wind stress on the basis functions exp(-py 2/2cn), themselves

dependent on n. As cn decreases with increasing mode number n, the integral

in (4.28) will tend in general to decrease due to the decreasing decay scale

of the exponential. The first baroclinic modes will be the most strongly

forced, from this point of view.

Having used linear Kelvin wave dynamics to get a spectrum of p and u in

terms of zonal wind stress spectrum, we now turn our attention to the SST

problem. A very simple model, based on the findings of Gill (1983) and

Harrison and Schopf (1983) as discussed in section 4.2, is adopted here.

Anomalous zonal currents produced by our Kelvin wave model advect mean

surface temperature fields to produce SST anomalies. Expressing this in

mathematical form, we have

Tt = - u (4.44)

Here, T' is the SST anomaly and T is the prescribed mean surface temperature

field, taking to be independent of time. We shall confine our anomalous

advection balance equation to be valid only at the equator (i.e. y=0) for



reasons previously cited. The primed and barred temperature fields are to

be interpreted in this context. The total surface zonal Kelvin wave induced

anomalous velocity is a sum over whatever vertical modes are excited by the

wind. For a particular mode, we may write (4.44) as

Tt = -U(xt)p(O)T (4.45)

where we have used the form

un = Un(x,t)e~Y 2/2cn (4.46)

evaluated at the equator (y=O).

We have disregarded here terms which express the advection of SST

anomalies by anomalous currents (i.e., nonlinearities), in addition to

vertical and meridional advection terms (obviously with v=O for Kelvin

waves, we can not include the later in our model). Also advection by mean

currents is absent, since our basic state ocean is at rest. We will discuss

the peculiarities and implications of this oversimplified model later in

this thesis.

To arrive at an SST anomaly spectrum, we may Fourier transform the

advection equation (4.45), in space and time. Assuming Tx to be constant,

this transformation is straightforward, yielding

iwT - U Q (4.47)

where we denote the constant Txp(O) by Q, for simplicity. If TX is not

constant, a convolution of transforms appears on the right hand side.

Multiplying (4.47) by its complex conjugate, using the stochastic assumption

implied by (4.36) and expression (4.42) for 1u(w,k) quickly leads to

'DT(W,k) = HT(w,k)@F(W,k) (4.48)

with

Q212 Q2

HT(w,k) = ---- ------------------- = -- Hp(wk) (4.49)

c4 (W2-e2-c2k2 )2+4o262 k2



where 'ZT(w,k) is the SST spectrum. The spectral density is seen to be red

in frequency and wavenumber space, in relation to the wind forcing spectra

as the form of the dynamic factor HT(w k) indicates.

We now have expressions for @C(w,k) and (DT(w,k) in terms of the zonal

wind stress forcing 5F(w,k), from which we can estimate the threshold

crossing statistics of the SL and SST anomaly fields we are modeling.

4.4 CONSIDERATIONS ON THE SL AND SST k-w SPECTRA

Some useful general comments can be made about the spectra derived in

the previous section, before discussing the wind field and any reasonable

forms 'DF(w k) might take.

A marked difference between the behavior of the dynamical factors Hg

and HT at low wavenumber is clearly present (HC + 0 as k + 0 in contrast

with HT). This fact is not surprising if we realize that SL depends on the

zonal derivative of the forcing wind stress. For an unbounded ocean, no

Kelvin waves are excited, if the zonal wind stress r is uniform in x (see

equation (4.26)). In contrast, HT has a maximum at w=k=O. It is obvious

that a constant velocity u would be the largest contributor to the variance

of SST anomaly.

All the factors HC, Hu, HT have a peak along the line w=ck on the w-k

plane, corresponding to the resonance which occurs when there is forcing at

w-k points satisfying the Kelvin wave dispersion relation. A large

percentage of the SST and SL anomaly variance, is accounted for by these

peaks. Along the line w = ck, the magnitude of the peaks is seen to decrease

quickly to zero, as w (or equivalently k) increases, for the case of HT,

while Hg asymptotes to a constant value as w (or k) get large. This fact can

be important when computing statistics of extremes for SL and SST fields,



because of the dependence of those statistics on the high

frequency-wavenumber spectral shapes, as we have seen before.

Even though the model spectral @g, @T are defined for very large w, k

values, realistically, Kelvin wave dynamics will not be important in

determining the spectral shapes of the C and u fields at frequencies shorter

than a few days. At these high frequencies, gravity waves are more likely

to be dynamically important. Different processes have their range of

dynamical significance in shaping the spectral functions of u or C, and it

is not the goal of this study to accomplish a complete and realistic

description of Qu or Dg, with only the simple Kelvin wave dynamics. It will

be, therefore, necessary, to use some frequency and wavenumber cutoffs, at

least at high w, k, to exclude the unrealistic effects Kelvin waves of

periods shorter than a few days would have on the SL and SST extreme value

statistics that we seek to extract from our model. The use of these cutoffs

will also be necessary to avoid infinite spectral moments (e.g., the variance

of SL, as defined by (3.3), is not finite if no cutoffs are used, for

IF(w,k) being a constant).

At very low frequencies (i.e., periods greater than a few years), the

same motivation exists for introducing frequency and/or wave number cutoffs,

although they are not needed to prevent infinite spectral moments. However,

defining these cutoff values is more problematic and subtle, therefore we

will try to avoid introducing them in our future analysis.

It is important to remember that, due to the pointed differences in the

character of HC and HT, the effect of cutoffs on the computation of extreme

value statistics for SL and SST will be drastically different (also

depending on the assumed form for (F(W,k)).



The complete determination of the oceanic model spectra requires

knowledge of ZF(W,k), which can introduce several features into Og or

consequently @T- Any peaks in the forcing spectrum will translate into

peaks in the oceanic spectra. Inhomogeneities in the wind spectrum (i.e.,

different w or k dependences in different regions in w-k space) will show up

in the oceanic spectra. Despite the simplicity of the ocean dynamics

involved, the forcing can produce complicated SL or SST spectral

dependences, according to our model, even though we shall restrict ourselves

here to simple spectral shapes for (F(W,k). What we know about the zonal

wind field in the equatorial regions is discussed next.

4.5 SPECTRAL CHARACTERISTICS OF THE ZONAL WIND STRESS FIELD IN THE

EQUATORIAL PACIFIC

The importance of oceanic wind forcing in El Nino events has sparked an

extensive effort to try to acquire better knowledge of the tropical Pacific

wind field. A substantial number of papers have been published on the

subject (e.g., Goldenberg and O'Brien (1981), Rasmusson and Carpenter

(1982), Luther and Harrison (1984), Halpern (1985)), using ship, island and

buoy wind records in the analysis. The specific details of the zonal wind

records are not important, in our context. We may mention, however, some

important features of the wind field, associated with ENSO events. The

zonal wind anomalies occurring during El Nino years have a pronounced event

like character (Luther et al. 1983) and the strongest anomalies occur after

the first SST anomalies are observed (Luther and Harrison 1984). There is

also an apparent variability of the wind field, if one looks at different El

Nino years, at least away from the equator, and attempts to identify major

areas of precursor winds, important for every event, are not very successful

(Luther and Harrison 1984).



Rather than looking for specific space or time patterns of precursor

winds, responsible for the onset of El Nino. our stochastic approach only

requires that we know the w-k spectra, DF, of the forcing winds, especially

at the time scales of interest, i.e. at periods longer than a few days.

Furthermore, we are only after the rough dependence of DF on w, k.

A large number of frequency spectra of zonal wind stress have been

published in the oceanographic literature. However, only in very few cases

do the observations permit spectral estimates at periods greater than 1-2

years. The picture is much worse, when we look for wavenumber or

frequency-wavenumber wind stress spectra, which are virtually nonexistent.

The only attempt at estimating the w-k spectra of zonal wind (not wind

stress), to my knowledge, was by Luther (1980). Considering the picture,

any attempt to extract unambiguous information from this one case, is doomed

to fail. However, something can be gained by being less ambitious and

looking at the available w, k spectral estimates.

There has been a tendency to find no significant interannual peaks in

wind spectra, in some studies (e.g., Wyrtki and Meyers 1976). Goldenberg

and O'Brien (1981) use ten years of ship wind data and try to see, among

other things, whether or not, the w wind spectra are white at low

frequencies. They find this to be the case for periods >20 months, but

their results are limited by the shortness of the records used. In fact,

there may be strong aliasing in their spectral estimates because of sparse

observations, as suggested by Luther and Harrison (1984).

Zonal wind stress spectra at periods < 1 year are much more frequent in

the literature. They are in general red, with variable w dependences, but

generally close to an w-I form in the range 1 year-days (e.g., see Luther

1980). A peak at 1 year is generally present in all spectra, showing the



strong annual variability of the tropical regions. It is hard to determine,

without ambiguity, where the flattening of the w spectra occurs, from the

situation portrayed above. A reasonable guess seems to point for periods

around 1-2 years, where the transition between white and w-1 spectra takes

place (Frankignoul and Muller (1979) assume whiteness for periods >10-20

days, in mid and high latitudes).

Estimates of the zonal wavenumber spectrum of the wind stress are

extremely rare. Goldenberg and O'Brien (1981) use ship wind data to compute

wind stress magnitude power spectra. They find red spectra with no

statistically significant peaks, and slopes dependent on latitude and month.

Halpern (1985) uses scatterometer data to find kinetic energy spectra with a

k-2 slope, for wavenumbers between 4 and 60 degrees of longitude. The same

dependence is found in mid-latitude atmospheric wavenumber spectra

(Frankignoul and Muller 1979), even though a k-3 slope seems to be more

appropriate for higher latitudes.

The lack of information on the relevant atmospheric spectra DF(w,k)

for this study is evident, especially for low frequencies and generally for

all wavenumber bands. When picking a particular model for DF(w,k), the

scarce information available to us will be used , and some experimenting

with different forcing spectra will be needed , in order to explore the

uncertainties in the assumed form of (F(w,k).



CHAPTER 5

MODEL SST AND SL EXTREME VALUE STATISTICS

We have developed, until now, the statistical model to deal with

extreme values of random fields, and the very simple ocean model to describe

the SL and SST anomaly fields in the equatorial region. We shall now put

these two models together, in order to study the threshold crossing

statistics governing SL and SST anomaly extremes.

5.1 DEFINING RANGE OF VALUES FOR MODEL PARAMETERS (e.g., FRICTION e,

SPECTRAL CUTOFFS)

Before we can assess the time and space scales associated with the

extremes of our modeled SL and SST fields, we have to assign some values to

a number of parameters arising in our model spectra. Most of these

parameters have some definite arbitrariness, when it comes to assigning

values to them. Since, as we will find out later, the statistics of

extremes will be strongly dependent on the values of parameters such as the

Rayleigh friction coefficient e, we try to limit the most, the range of

variation allowed to these parameters, when experimenting with our model.

Let us look at each one of these parameters separately.

A - RAYLEIGH FRICTION COEFFICIENT

The constant e represents the Rayleigh friction in our model, as

discussed in section 4.3.

Kelvin waves are seen to propagate all the way from the western Pacific

to the eastern boundary, at the normal speeds associated with first

baroclinic modes (~1-3 m/s). Any upper bound on e should allow for these

waves to propagate a distance of 10000 km before decaying. The choice of

spindown time (i.e., 1/) will control the amount of friction in the model.



Gent et al. (1983), for example, take the spindown time to be 1 to 3 years.

A spindown of 2 years (i.e., E = (1/2) yrs-1) and horizontal scales on the

order of 300 km give horizontal eddy viscosities values around 107cm2 /s,

compatible with the values used in numerical models (e.g., Philander

1981). We will take 3 years as a upper bound for the spindown time, while

letting the lower bound be around 6 months. Thus, the range of variation of

e is given by

1.057 x 10- 8s-l< e < 6.430 x 10-8s-1 (5.1)

B - HIGH FREQUENCY AND WAVENUMBER CUTOFFS

I already mention, in section 4.5, the need for introducing high

frequency and wavenumber cutoffs, we and ko respectively, in order to have

finite spectral moments and exclude extrenuous effects on the statistics of

extremes, coming from very short time scales which are not damped enough

with our frictional scheme. A sort of absolute frequency cutoff for oceanic

motions would be the buoyancy frequency N, but we certainly don't want to

allow Kelvin waves with periods of a few minutes to be present in our

analysis. A better idea is to assume that atmospheric forcing at spatial

scales less than the atmospheric Rossby radius will not be important in the

generation of Kelvin waves. The atmospheric equatorial Rossby radius takes

on values like 600 km-1300 km (Gill 1982). We use these scales in defining

the wavenumber cutoff ko to be

5.027 x 10-6 rad m-1 < ko < 1.068 x 10-5 rad m~1 (5.2)

We may use now the dispersion relation w = ck to get a value for wo

consistent with our choice of ko. The phase speed c is different for each

mode, but a typical value for the first baroclinic mode is c ~2.9 m/s (see

Eriksen et al. (1983) for a table of values of cn). This value of c yields

1.463 x 10-5 rad s-1 < wo < 3.11 x 10-5 rad s-1 (5.3)



equivalent to periods of roughly 2-5 days. The shortest period Kelvin wave

allowed in our computations will change in this range. Another look at

Table 2 presented in Eriksen et al. (1983) shows that the maximum period for

first mode gravity waves is roughly 5 days. So, our assumption about wo is

consistent with the expectation that, at periods less than a few days,

gravity waves will become the most important part of the ocean response.

C - WIND STRESS SPECTRAL PARAMETERS

The available observational evidence suggests that at least in some

high frequency range, we should allow for some structure in our forcing

spectrum @F(w,k). Using as a remote reason the claim of Frankignoul and

Muller (1979), this spectrum could be white down to periods as short as

10 or 20 days. Denoting the transition frequency, at which Dp(w,k) changes

character, by wT, we can take as its extreme upper bound the value

corresponding to a period of 30 days. The choice of a lower bound for wT is

even more arbitrary since there are very few spectral estimates at long

periods assisting us on our choice. Even though the spectrum probably

becomes white at periods of 1 year or so, we shall take a more conservative

value for the lower bound on wT, corresponding to a period of 5 years.

Thus, we have

3.985 x 10-9 rad s-1 < wT < 2.513 x 10-6 rad s-1 (5.4)

The wide range of variation of wT simply reflects the ambiguity present in

the observational evidence we have used and allows us to be on the safe

side.

The extremely scarce wavenumber spectral estimates of wind stress

strongly constrains our assumptions about IF(w,k). We avoid introducing any

k structure in DF(w,k). The, possible effects this assumption will have on

our computed statistics of extremes will be the subject of speculation and

discussion in a later section.



5.2 THRESHOLD CROSSING STATISTICS FOR SEA LEVEL

Before we actually compute the statistics of extremes, as defined in

Chapter 2 and 3, for SL anomaly, let us consider some important points in

our calculations.

To apply the general theory of statistics of extremes, we have to

assume our field to be Gaussian distributed, which seems to be a reasonable

assumption. If our random field is not normally distributed, then depending

on the assumed pdf, the analysis would be more complicated. With our

presumably Gaussian SL field, we may resort to expressions (4.3), (4.4),

(4.5) and (4.6) to compute the return period or length and the mean time and

distance of excursion of the SL field, above some threshold height, provided

we can also compute the spectral moments involved in those expressions.

To calculate the various spectral moments, we need to specify values

for the white noise level of cZ)F(W,k) and a number of other constants

appearing as part of the dynamical factor H, including the depth of the

mixed layer hmix and the full ocean depth D. Instead of doing this, another

approach is tried. We take as a definition of an extreme SL anomaly

resemblant of El Nino conditions, a value of 2 standard deviations, whatever

the actual value of a might be. Wherever the ratio b/XOl/2 appear on the

statistical formulas, we simply replace it by its fixed value. If we do

this, we are left with only ratios of moments which only depend on the

actual shape of @g(w,k), but not on the constant factors we mentioned above.

These factors cancel out of the calculations.

Since our SL spectrum (and in general all the others) is quadrant

symmetric, the moment X11 vanishes and the 2-D statistics simplify a little,

as outlined in section 3.1 and mentioned in section 4.1. We can then

compute the statistics of crossings in time or space, separately, and the



return time and length for zero crossings is given by (4.3) and (4.4)

respectively. Because we have fixed the value of the ratio b/ko1/2 , the
W ,+

crucial parameter controlling the extreme value statistics is now vo and
k,+

vO (i.e., the ratio of the variance of the derivatives Ct and Cx to the

variance of SL anomaly, which determines the zero crossing statistics). The
W,+ k,+

values of vO , vo will vary, as we experiment with our spectral

parameters (e.g. E:, wo, ko or even spectral shape of QF(,k)), but will be

independent of the constants which are absorbed in the factor Hr in (4.41).

The SL power spectra specified in (4.40) represents the contribution of

only one vertical mode. In general, a number of modes will be part of the

ocean response to the forcing winds and they all contribute to the power

spectrum. In our model, Hg carries a dependence on mode number which

suggests a decreasing importance in the contributions of high n modes to the

total power. Even the wind power input seems to corroborate this idea, as

we have said when discussing the projection of the zonal wind stress onto

the meridional basis functions (see equation (4.28)). In practice, only the

first few modes are observed to propagate in the ocean. Certainly, the

first and second baroclinic modes are predominant in the records (e.g.,

Eriksen et al. 1983). We will assume that only the first mode is present

in our system, for simplicity, without being too unrealistic.

We need now to define a specific form for 'DF(W,k). From what has been

said about wind stress spectrum, we take the following form

(F(w,k) = C W < "T (5.5a)

= C WT~A W > WT (5.5b)

where C is a constant whose value is not important to us, as we have seen

above. The transition frequency wT is included in form (5.5b) to allow for

continuity of 'F(w,k) at wT, and its value will vary as defined by (5.4).



Having defined the forcing spectrum DF(w,k), the SL anomaly power

spectrum becomes, from (4.40),

C p(0)a2 k2 wT
g(o,k) = --------------- (x - for w > wT) (5.6)

g [(W2 -s2-c2k2 )2+4W2C2] W

This spectral function is shown in Figure 7, for specific values of the

parameters E, WT and c. The general red character of @g(w,k) is evident, as

well as the resonance peak along the line w = ck and the decay to zero as

k+0.

If we integrate (5.6) with respect to wavenumber k, we arrive at the

frequency SL anomaly spectrum, cg(w), which can actually be compared with

actual estimates, briefly discussed in section 4.2. The integration was

done numerically for some values of w, using routines available from NAG

Library which are described in the NAG Library Manual (1984). The upper

limit of integration, ko, is chosen according to (5.2), with the lower limit

being zero. The obtained SL power spectrum shape is shown in Figure 8. In

the frequency range of interest, the structure of (%(w) is seen to be that

of (DF. The shape of (%(w) is thus strongly dependent on the assumed

frequency structure for @F- Figure 8 shows that our spectrum g(w) is in

reasonable agreement with the general aspects of the available spectral

estimates mentioned in section 4.2.

w k
We now have to compute the spectral moments Ao,%2 and X2 to

w,+ k,+
determine the parameters vb , Vb and all the other important statistical

parameters involved in characterizing the extreme value patterns of our SL

W k
anomaly fields. The moments Xo, X2 and X2, defined by expressions (4.1) or

(3.3) will be determined up to a constant.

The double integrations necessary to find the spectral moments were

done semi-analytically whenever possible. The first integral was calculated
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with the help of integrals in Gradshteyn and Ryzhik (1965), either in w or

k, as suitable. The algebra is tedious and won't be reproduced here. The

second integral was computed using numerical integration routines available

from NAG Library and described in NAG Library Manual (1984). When

calculating X2, in the range w < WT, no available analytical formula was

found, so double integration was performed using a recursive method (i.e.,

two one dimensional integration routines were used recursively). The

frequency and wavenumber cutoffs, wo and ko, were used as upper limits of

integration, with the lower limits being zero in both dimensions. A number

of different runs were performed, using different values for wo, ko, e and

wT, to explore the ranges over which these parameters were allowed to vary,

as expressed in (5.1)-(5.4). A value of c = 2.91 m/s, as given in Eriksen

et al. (1983), was used in the calculations. This is a typical value for

the phase speed of the first baroclinic Kelvin mode in the equatorial

Pacific (see, e.g., Wunsch and Gill (1976)).
k o

Once the spectral moments Xo, X2 and X2 were computed, finding the

statistics of extremes for the SL anomaly field was straightforward. Values
C'),+

for the mean period for a zero upcrossing, 1/vo , and the mean period for
CA W,+

an upcrossing of the 2 standard deviation (2a) threshold , 1/v2a , are

obtained using the general expression (3.11) or the equivalent expression

k,+
(4.3). The values for the mean distance between a zero upcrossing, 1/vo

k,+
and the mean distance between upcrossings of the 2a threshold, 1/v2a , are

similarly obtained using (3.11) or (4.4). Expressions (3.12) and (3.13) or

the equivalent expressions (4.5) and (4.6) easily give the mean time and the

mean distance that SL will stay above the 2a level, i.e., <T2a> and <X2,>

respectively. A value of g(2) = 0.8429 is used, as tabulated in Vanmarcke

(1983). Because X1i vanishes in our case, the 2-D statistics are trivially



obtained from the 1-D time and space results. The mean area of excursion

above the 2a level, <A2a> is given by (3.14) or (4.7). Once (A2a> is known,

the mean number of local maxima above 2a per unit time, per unit distance,

i2a, can be obtained from (3.18) with approximation (2.21) in place of FC(b)

or from expression (4.8).

The results are presented in Table I, for different values of wo, k0

and wT. The parameters describing the temporal and spatial statistics of

extremes are mean quantities defined as averages over infinite time and

space coordinates. The real ocean has north-south boundaries and hence a

finite zonal extent. Therefore, in practice, a perfect comparison of our

spatial results with statistics computed from ocean records could never be

realized, due to the inherent finiteness of the space domain. In reality,

the same occurs when talking about the time statistics, since the available

data always covers only a finite interval of time. The important difference

is that the time domain can always be extended in practice by collecting

data over longer periods of time, while that is not possible in the space

domain. This fact is relevant when analyzing our statistical results. The

interpretation of the spatial statistics is less reliable, especially if the

expected values yielded from the theory are large compared with the spatial

extent of the ocean (roughly 10000 km for the Pacific). We shall only use

in our discussions the parameter <X2,>, even though all 3 parameters dealing

with the spatial statistics are given in Table I, for completeness.

Only results obtained with spindown time of 1 year are shown, since

varying e did not significantly change the results. This simply reflects

W k
the fact that the dependences of Xo and X2 or X2 on E are roughly the same,

k,+ W +
thus rendering the values of vo , vO rather independent of the value used

for F, at least within the limits specified in (5.1).



TABLE I

Statistics of extremes for SL, for spindown time of 1 year
and various values for WT, wo and ko

a) oo =
ko =

2
n /WT
(months)

1/vo+
(days)

1.463 x 10-5s-1
5.027 x 10~6m~1

Time

1/v 2a+
(days)

<T2a>
(days)

Space

1/vo+ 1/V2a+ <X2a>
(km) (km) (km)

2-D

<A2a>
(km-days)

k 2a
(km~ 1 d ay-1)

60 18.5 137 3.12 1351 9986 227 708 3.212 x 10-5

30 17.6 130 2.96 1364 10081 229 678 3.354 x 10-5

12 16.2 120 2.73 1388 10253 233 637 3.572 x 10-5

2 13.1 97 2.21 1482 10949 249 550 4.136 x 10-5

b) wo = 3.11 x 10- 5s-I
ko = 1.068 x 10-5m~1

Time Space 2-D

2n/WT 1/vo+ 1/v2a+ <T2a> 1/vo+ 1/V2a+ <X2a> <A2a> '2a
(months) (days) (days) (days) (km) (km) (km) (km-days) (km~1 day- 1 )

60 9.2 68 1.54 631 4661 106.1 164 1.387 x 10-4

30 8.8 65 1.47 636 4696 106.9 157 1.449 x 10-4

12 8.2 60 1.37 644 4757 108 148 1.537 x 10~4

2 6.8 50 1.14 674 4977 113 130 1.75 x 10-4



The dependence of the results on WT is also very weak, but because the

range of variation of WT is large (see (5.4)), substantial changes occur on

the results and thus, we have given in Table I, the statistics obtained for

different values of or. A 30-fold change in wT results in a less than

1.5-fold change in the computed statistics. In general, the time statistics

are more affected by wT than the space statistics, an expected feature since

wT directly controls the shape of OCg(w) at high frequencies, as seen in

Fig. 8, while its effect on gC (k) is more spread out. This leads to a
W k

stronger dependence of X2 on WT than X2 and thus, to the different behavior

of the space and time statistics, when wT is varied. Notice that an
W,+ k,+

increase in wT causes 1/vo to decrease, while 1/vo increases. Since all
k

the moments Xo, X2 and X2 increase with wT, we conclude that the most

W k
affected by changes in wT is X2, with the least affected being X2.

The important parameters which seem to have a stronger effect on our

results are the frequency and wavenumber cutoffs, we and ko, respectively.

The cutoffs are crucial in determining the second order moments, but not so

influential in the calculation of the variance X0. This differential

dependence of the spectral moments on woc, ko is what makes these parameters

important in this context. The statistical results clearly suggest that

k,+ w,+ 1/2
V0  , vw go roughly as (woko) for the w and ko ranges defined by

(5.2) and (5.3).

The dependences of the statistical results discussed above can not be

generalized to different areas of parameter space (i.e., ko, wo, E, wT)

because of the complex, nonlinear, interdependence of all these parameters.

For example, the importance of cutoffs wo, ko on the moment calculations is

dependent upon the redness of our spectrum, which is a function of wT- In



general, this complexity increases in proportion to the number of parameters

and the irregularity of the spectral shapes.

The time and space scales of SL anomaly excursions above 2a emerging

from the computed statistics presented in Table I, are somewhat shorter

than the scales usually associated with ENSO events and discussed in section

4.2. The return times for crossings of the 2a threshold are at most 5

months, while the frequency of El Nino events is more like one every 4

years. The mean time SL will stay above this 2a threshold is at most

roughly 3 days in contrast with persistence of SL anomalies of that

magnitude over a few months when El Nino happens. Similarly the distances

over which SL anomaly exceeds 2a, of the order of 200 km, are an order of

magnitude smaller than what is observed during ENSO in the equatorial

region. Assumption of any higher threshold (e.g., 3a or 4a) would yield

much longer return periods. In fact, the return period 1/vb increases

in an exponential fashion, like the term exp{b 2/2a2}. However, the time and

space scales, <Tb> and <Xb>, as defined in (4.5) and (4.6), would only get

smaller.

The 2-D statistical parameters <A2a> and p2a simply reflect the nature

of the extremes for the unidirectional space and time processes. Their

interpretation is clear. If, for example, we take the case where 2n/wT =

60 months and wo, ko are smallest, since every 9986 km we expect to see the

SL signal above the 2a level and each excursion will take 3.12 days, in the

mean sense, we should expect one excursion region for an area (9986)(3.12)

km-day. The inverse of this is just the value of p2a- The mean area of

excursion <A2a> is 708 km-day. Even though this does not say whether the

excursions take place over 10 km-70 days or over 700 km-1 day, we know from

the values of <T2a> and (X2a> that the most probable situation will be one



in which the excursion will occur for a few days and over a distance of the

order of 200 km, which is the rough magnitude of <X2a>. We should keep in

mind that all the results given by the theory refer to mean values and it is

in this sense that they should be interpreted.

At any rate, we have a SL anomaly field which crosses the 2a threshold

much more frequently than the observed El Nino signal, with each event

lasting only a few days and spanning only a few hundred kilometers, in the

mean, contrasting with El Nino conditions. The clustering effect discussed

in section 2.3 could be responsible for these effects, if the crossings

occurred in tightly packed clusters. This does not seem to be the case

here, since our SL spectrum is fairly wide-band, nor does the observational

evidence support a narrow-band SL signal, despite the scarcity of data.

5.3 THRESHOLD CROSSING STATISTICS FOR SST

We now analyze our model SST anomaly spectra, in light of what we have

just done for the SL anomaly field. Much of the strategy used in the

previous section when computing extreme value statistics of our SL field,

can be applied here.

The assumption of normality of the SST field is still made, with no

particular evidence on the contrary. Most of the SST records available do

not allow for a representative test of normality, because of the very few

independent points provided to test the normal hypothesis.

We still fix the value of b/a to be 2, and let the various parameter

ranges be defined as in section 5.1. We may expect their influence on the

SST statistics to be different than in the previous section by the simple

fact that the SST spectrum is different from @g(w,k). Maintaining the same

forms (5.5a,b) for the power density of the forcing, QF(wk), then from

(4.48) and (4.49), the SST spectrum DT(w,k) is given by



C Q2a2 I WT

@T(W,k) = ------ ------------------- (x - for W > wT) (5.7)
c4 (W2 - 2 -c 2 k 2 ) 2 +4W2s 2  W

This function is shown in Figure 9. The resonance peak is still present as

in the case of (o,k) (Fig. 7), but now the redness character is much more

pronounced in wavenumber as expected if we compare the forms of (5.6) and

(5.7). The flattening of @T(wk) at low k, w differs markedly from the

decaying behavior of Cg(w,k), as k + 0.

Integration of (5.7) over k can be done analytically, with the help of

integrals given in Gradshteyn and Ryzhik (1965), to obtain the SST frequency

spectrum (T(W), which is shown in Figure 10. The spectral function 'DT(W)

also compares reasonably well with the general characteristics present in

available spectral estimates of @T(M), which were briefly discussed in

section 4.2, just as it was found with our analytical form for ( ).

Having defined the function DT(w,k) we can proceed to compute the SST

statistics of extremes. The constant factor appearing in (5.7) is not

important in our calculations, just as in the SL computations. We will take

again only the contribution of the first baroclinic mode to the power

density, with the value of c = 2.91 m/s.
W k

The spectral moments, %o, X2 and X2, of (T(wk) were computed

semi-analytically. Either the integration over k or over w was performed

with the help of integrals given in Gradshteyn and Ryzhik (1965). The

remaining integral was calculated numerically using the available routines

described in the NAG Library Manual (1984). The moments were used to

detemine the different statistical parameters of interest. Several runs

were done to explore the dependence of the SST statistics on parameters s,

wT, wo and ko.
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Table II summarizes the obtained SST extreme value statistics. In

contrast with the SL case, changes in cutoffs wo and ko had negligible

effects on the statistics and therefore, only results for cutoffs at

wavelengths of 600 km and periods of roughly 2 days are shown in Table II.

This relative irrelevance of wo and ko to the statistics is expected due to

the redder character of @T(W,k) when compared with ( ,k).

The dependence of the statistical results on parameters E and WT is

strong and highly visible from Table II, since these parameters are allowed

quite a bit of variation. The frequency wT now controls more effectively

k W
the values of X2 and X2- This is easily seen if we notice that as WT

increases, both 1/voW,+ and 1/vok,+ decrease, which together with the fact

that all the moments increase with wT, leads to the conclusion that wT
k W

affects more the moments X2 and X2 than ko. Similar reasoning may be used

to see that the friction coefficient E is more influential in determining
k w k w

XO. The ratio vo/vo ~ X2/X 2 is observed to decrease as WT increases,

therefore meaning a stronger effect of wT on X2, which is expected since wT

affects the frequency structure of @T(w,k) directly.

The time and space SST statistical results shown in Table II (and other

results not presented here) suggest a dependence on wT and e which is less

then linear. Again, different regions of parameter space may yield

different dependences, but at least in our range, the values of vo and

vO vary as wTP and P, with p < 0.5 in general.

The time and space scales for crossings of the 2a threshold by our

model SST anomaly field are much larger than our SL results from the

previous section. There is also a bigger spread in scales arising from the

sensitivity of the SST statistics to the factors bT and e which are allowed

to change significantly. As a general trend, the shorter the spindown time



TABLE II

Statistics of extremes for SST, with wo = 1.463 x 10-5s~1
and ko = 5.027 x 10-6m~1. Units are the same as in Table I

a) E = 6.342 x 10-8s~1 (spindown -6 months)

Time

(/vo+
(days)

1/v2a+
(days)

<T2a>
(days)

Space

1/vo+
(km)

1/V2a+
(km)

<X2a>
(km)

2-D

<A2a> P'2a
(km-days) (km~1 day-1 )

60 610 4511 102 1.4x10 5 1x10 6  2.3x104  2.3x10 6  9.7x10-7

30 491 3626 83 1.1x10 5 8.4x105 1.9x10 6  1.6x10 6  1.4x10-6

12 350 2584 59 8.4x10 4 6.2x10 5 1.4x10 4  8.3x10 5  2.7x10-6

2 174 1289 29 4.3x10 4 3.2x10 5 7.3x10 4  2.1x10 5  1.1xlO-5

b) E = 1.057 x 10~8s~1 (spindown ~3 years)

Time Space 2-D

2n/wT 1/vo+ I/v2a+ <T2a> 1/vo+ I/V2ay+ (X2a> <A2a) 12a
(months) (days) (days) (days) (km) (km) (km) (km-days) (km-1 day- 1)

60 1665 1.2x104 280 4.1x10 5 3x10 6  6.8x10 4  1.9x10 7  1.2x10~7

30 1254 9263 211 3.1x10 5 2.3x10 6 5.2x10 4  1.1x10 7  2.1x10-7

12 863 6373 145 2.2x10 5 1.6x10 6 3.6x10 4  5.2x10 6  4.3x10-7

2 426 3146 72 1.1x10 5 7.9x10 5 1.8x10 4 1.9x10 6 1.8x10-6

(months)

I - % -



'i.e., the bigger E) and the whiter the SST spectrum (i.e., the bigger WT),

the smaller the space and time scales become and vice versa. Physically,

stronger friction (Rayleigh type) in the system effectively drives the

variance down, while a white spectrum enhances the importance of rapid

(short period or short wavelength) fluctuations on the excursions above high

thresholds. These two effects combine to give the lowest values for the

mean period or distance between zero upcrossings. With spindown time around

6 months and the wind stress spectrum white down to periods of 2 months,

excursions over the 2a level occur every 3 to 4 years and last for a month

over distances on the order of 7000 km. This is a typical situation during

El Nino. In contrast, for a spindown time of 3 years and @F(wk) white down

to periods of 5 years only, it would take 32 years in the mean for an

"event" to take place, lasting over 9 months and covering a distance of

18000 km. As a naive comparison with ENSO conditions, we would say that our

"events" occur less frequently but last longer than the observed records in

the equatorial Pacific, generally speaking.

The frequency of occurrence of crossings above some threshold is

critically dependent on whether our threshold is two or any other number of

standard deviations. On the other hand , <Tb> and <Xb> are not so sensitive

to our assumption about the crossing threshold. Thus, these later values

are in a sense more reliable than the computed return times.

5.4 COMPARISON OF SL AND SST EXTREME VALUE STATISTICS

The discrepancy between the space and time scales for the extreme

values of our SL and SST fields is readily seen by comparing results

presented on Tables I and II. This discrepancy is more or less implicit in

the different forms the spectral densities @g and QT take. For example, the

sharp peak at the origin w=0, k=0 which is a dominant feature of (T is not



present in 1g, for reasons related to the dynamical factors H, as discussed

in section 4.4. This difference is likely to affect the values obtained for

the variance ko, since this moment is very sensitive to what goes on at the

low w, small k region of the spectrum, for the case of generally decaying

(red) spectral shapes. The SST variance Xo will be larger than for SL,

relatively speaking, and the ultimate effect of this is to drive the extreme

value space and time scales up for the case of SST. In essence, the shapes

of @g and @T imply that the ratio of the power present at low w-small k to

the power present at higher w and k is bigger for the case of SST than for

SL (see Fig. 7 and 9). This is even more clear if we recall what was said

before about the different behavior of the factors H and HT (see (4.41) and

(4.49)), as we move along the line w = ck in w-k plane, which defines the

resonant peaks (see section 4.4). The fact that HC asymptotes to a constant

value as w (or k) gets large along that line enhances the power present at

high w-k regions of the spectrum, while the decay of HT under the same

conditions leads to the opposite effect. An obvious effect of this spectral

feature is to increase the variance of the derivative processes in general.

A more "wiggly" process (SL in our case) is certainly expected to cross any

k w
high threshold more often than a smoother (smaller X2 , X2) process, with

smaller excursion areas associated with each event in general.

The considerations stated above make us think whether the discrepancy

in the extreme value scales of SL and SST is only the result of some

artificial assumption we have made or whether it is a result of any

intrinsic feature of the SL and SST spectrum which we have reproduced

correctly with our analytical model. Actually, no such major differences in

the SL and SST signals associated with El Nino events are observed in the

equatorial Pacific and, despite the poor area coverage at some regions, it



is hard to believe that a finer observational network should reveal a much

different picture from what is known today in this respect. Thus we are led

to consider the effects of our basic assumptions which differentially affect

the spectra @g and @T.

It is obvious that the model used for the forcing spectrum CF(&,k) is

crucial in determining the overall shape of Qg and @T- The form (5.5)

chosen for (F is certainly quite arbitrary, especially in relation to the

lack of structure in wavenumber k. Some of the sharp differences in the SL

and SST results can actually be accounted for by this less realistic feature

of our stochastic forcing model. The importance of the strong peak at k=0,

w=O, present in DT, can be severely attenuated by assuming for example that

no forcing is available at wavelengths longer than a certain cutoff value.

Frankignoul and Muller (1979), for example, assume a k dependence of

DF(k) for k < kL and a k-2 dependence for k > kL in modeling wind forcing

at mid-latitudes, based on actual estimates of the wind stress spectrum. We

may expect any of these modifications to affect the previous SL and SST

results in a much different way due to the different character of the

dynamical factors HC and HT-

Let us illustrate the sensitivity of SST statistics to a simple change

in the k structure of ZF- We shall take the same form (5.5) for GF but now

we don't have any forcing for k < kL, where kL is our cutoff. We may take

kL to be equivalent to a wavelength on the order of the perimeter of the

earth at the equator, which is roughly equal to 40000 km. Thus, we have

kL = 2 x 10~7 m-1

A more conservative estimate could be taken if we disregarded forcing at

spatial scales longer than the width of the equatorial Pacific basin

(-10000 km).



The statistical results for SST, computed using the slightly different

F, are shown in Table III. Only the parameters (T2a> and (X2a> are

presented this time. A comparative look at Table II reveals the importance

of the modification of (F to the SST extreme value statistics. The mean

time and mean distance spent above threshold 2a are roughly an order of

magnitude smaller than the values computed before. We may also notice that

now the parameter wT is not critical in determining the SST statistics as it

was found before. It appears to become slightly more important at its

higher ranges. Similarly, parameter E is not so important in the

statistical results. These dependences of SST statistics on wT and e

resemble the situation found for SL in section 5.2.

The modification introduced in @F here has little effect on SL

statistical results not only because (g(w,k) + 0 as k + 0 even if we don't

use any lower wavenumber cutoff in the forcing spectrum, but also because

the statistics are less sensitive to what happens at the low w,k parts of

the spectrum @g(w,k) in general. The SST scales shown in Table III are more

consonant with the SL scales in Table I and the large discrepancy observed

before is simply accounted for by making the wind forcing more realistic.

Obviously, this is done at the cost of bringing a new parameter kL into the

analysis. The arbitrariness of kL and the extreme sensitivity of the model

SST results to its assumed value is a rather unfortunate combination. We

thus have to be cautious when interpreting our results. Results in Table

III stand more like an example, to show the delicacy actually involved in

our assumptions about QF(w,k).



TABLE III

Statistics of extremes for SST, with no forcing at
k < 2x1O 7m-1 (values of wo,ko and units are as in Table II)

a) E = 6.342x1O-8s~1 b) e = 1.057x10 8s~I

2n/wT <T2a> <X2cy> 2n/wT <T2a> <X2a>

60 12 2735 60 10.5 2593

30 11.6 2691 30 10.4 2583

12 11.1 2625 12 10.3 2570

2 8.4 2063 2 8.3 2082



5.5 INTERPRETATION OF THE MODEL SL AND SST STATISTICS IN THE LIGHT OF

OCEANIC CONDITIONS DURING EL NINO

We have seen that, for reasonable forms of (F(w,k), the time and space

scales for SL and SST excursions above the 2a threshold obtained with our

model can vary a great deal, but are in general smaller than El Nino scales,

observed to be on the order of a few months and several thousand kilometers.

Our "events" occur more frequently than the mean 3 to 4 year spacing between

El Nino happenings. The reliability of these results is weak. Had we

looked at events defined by a ratio b/a = 3 instead of b/a = 2, the return

times would grow by a factor of 12, while the values of <Tb> and <Xb> would

be reduced by 2/3.

Assuming that the SL and SST fields are really Gaussian processes, our

statistical results can only be changed by modifying the spectral density

functions which we have used in computing our extreme value statistics.

This can be done in two ways, either by changing the ocean model dynamics

and/or thermodynamics or by changing the forcing wind spectrum. The effects

of any such modifications on the SL statistics may be very different than

the effects on the SST statistics.

There is a certain appeal for using our simple ocean model, discussed

in section 4.3, in conjunction with the form (5.5) for the forcing spectrum

DF(w,k), as we have argued previously. In fact, the model yields reasonable

forms for @g(w,k) and @T(w,k), as shown in Figures 7 and 9. Furthermore,

the model SL and SST frequency spectra, shown in Figures 8 and 10, compare

reasonably well with available estimates. However, there is still a lot of

room for different dynamics, thermodynamics and forcing spectra to be tried.

Although our dynamical and thermodynamical model tries to capture some

of the basic ingredients which actually make an El Nino event happen, it is



by no means complete, and its results have to be interpreted accordingly.

Some of the important, realistic elements left out of our simple ocean model

are discussed in a later section, even though their effects on the shapes of

(g and QT are subtle.

Turning to the possible changes in the forcing wind spectra, a lot more

experimenting with spectral forms of (F could have been tried, namely to

include some wavenumber dependence of the form k~P (p is arbitrary), instead

of only introducing the cutoff kL. As an easy illustration, consider the

following form for the forcing function

DF(w,k) = C k-2  W < WT, k > kL (5.8a)

= C k-2WTW-1  w > WT, k > kL (5.8b)

We have just introduced a k- 2 dependence for k > kL and set DF(,k) = 0, for

k < kL, with kL and WT defined as in section 5.3. A k- 2 dependence is

reasonable in light of what has been previously said about the known

spectral estimates of the wind stress. With this forcing spectrum, the

expression for g(ok) becomes identical to the form @T(N,k) used to compute

SST results given in Table III, i.e., the SL statistics for DF given by

(5.8) are the same as the statistics given in Table III. A considerable

increase in the space and time scales of SL statistics results from using

(5.8) instead of (5.5) in the statistical calculations, and even though we

did not compute the new SST statistics using (5.8), we would expect the SST

values of <T2a> and <X2a> to go up in a similar manner. We may say that the

general effect of having 'IF - k~P for some range of wavenumbers is to

increase the spatial and temporal scales for the excursions. Such a redder

wind stress spectrum would primarily limit the power at high wavenumbers,

k W
driving the values of X2 (and also X2 indirectly) down and therefore

increasing the values of 1/vo and 1/vo , if the variance ko were not
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affected much (true where most of the variance is contained in the low w,

small k part of the spectrum). Again, the differential dependence of ko and
k W

X2 and X2 on the spectral shape is what matters here and it can be fairly

complicated for general spectra.

There is also room for trying different w dependences for DF- An w-2

shape for w > wT is certainly very reasonable considering the observational

evidence available, but the general trend for increasing <T2a> and <X2a> is

still true.

Introducing more redness in the forms of DF(W,k) leads undoubtedly to

increased values for the parameters <T2a> and <X2a> for both SL and SST.

How red should the spectra 1g and @T be in order to give extreme value

statistics compatible with El Nino observations? Using the same ocean model

which yielded the forms (4.41) and (4.40) for (D and (T respectively, it

seems reasonable to say that a forcing spectrum of the form (5.8) would be

sufficient to make the results more compatible with El Nino observations.

However, we should keep in mind that the use of (5.8) instead of (5.5) would

make @g(D ) and DT(M) redder than as shown in Figures 8 and 10, leading to

disagreement with most of the available estimates of these two frequency

spectra. This constraint, provided by observational evidence on the shapes

of gW, dT(w), is important when experimenting with different spectral

shapes of @g and DT-

5.6 A POSSIBLE REINTERPRETATION OF OUR SL AND SST STATISTICAL RESULTS

In light of our previous findings, we offer in this section a

reinterpretation of our statistical results.

Even though small by El Nino standards, the values of <X2a> and <T2a>

obtained here and presented in Tables I and III are still significant. The

model's ability to produce extensive SST anomalies is apparent. There is a



101

marked tendency for the spatial scales of excursions to more closely

resemble El Nino conditions, especially for SST. This is in fact important,

if we bring into consideration feedback effects between the atmosphere and

the ocean. These air-sea interaction processes are thought to have a strong

role in prolonging the SST and SL extreme conditions during El Nino. The

massive collapse of the trades over the central and western Pacific is

usually associated with the weakening of the Walker circulation, which

occurs when the normal east-west mean SST gradient (cold in the east and

warm in the west) is disturbed by appearance of warm SST anomalies in the

east. The strongest anomalies in the zonal winds take place after the

advent of SST anomalous conditions (Luther and Harrison 1984). The forcing

of tropical atmospheric wind anomalies by SST patterns has been found to be

important in the theoretical studies of Gill (1980) and Zebiak (1984). In

light of this, our stochastically forced SST anomalies may represent the

right conditions to trigger a longer event by feedback mechanisms.

Anomalies of 2a over regions of 2000 km and for periods of 10 days seem to

be enough large scale to induce significant disruptions in the wind field.

Randomly forced SST anomalies may be crucial in triggering El Nino events

by feedback mechanisms.

5.7 IMPORTANT MISSING ELEMENTS OF OUR MODEL

The ocean model which we have used here for the purpose of studying the

large scale SL and SST signal in the equatorial Pacific is obviously

oversimplified. A lot of important features of the real ocean are grossly

represented in our model or totally absent in most cases.

The absence of meridionally oriented coasts in our unbounded ocean is

very convenient to simplify the dynamics. The effect of coasts is generally

two-fold: it adds the reflected waves to the dynamical fields; and it
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eliminates from the signal the waves which would be forced in the "outside"

regions and propagate into the basin. The reflection of equatorial trapped

waves off meridional coasts is contemplated by Moore and Philander (1978).

It requires the full set of available equatorial wave motions, to satisfy

the boundary conditions of no flow at the coasts. A Kelvin wave model is

insufficient to treat this problem. Coasts can support east-west SL

gradients and make the oceanic response to constant winds very different

from an unbounded ocean. They may be a factor in intensifying the

anomalies close to the boundaries as it is generally seen, for example, in

Wyrtki's maps of SL anomaly (Wyrtki and Nakahara 1984, Wyrtki 1984).

Coastal upwelling normally occurring at the Peruvian coast is certainly

important for the pattern of SST anomalies in the eastern Pacific, but the

inclusion of this process can not be considered in any simple model.

It is hard to tell the effect that coasts would have in the model SL and SST

statistics (i.e., in the shapes of cDg(w,k) and @T(,k)).

The equatorial current system is fairly complicated and strongly

differs from the resting basic state one normally assumes. The mean state

of these currents (south and north equatorial currents, equatorial

countercurrent and the undercurrent) is disturbed by the equatorially

trapped waves propagating in the Pacific, but other effects can produce

departures from the mean state, like changes in the curl of the wind stress.

These effects are not captured in a wave model. The advection processes

seen to be involved in creating SST anomalies are probably more complicated

in presence of the mean currents, even though the onset stages of warm SST

anomalies in the central Pacific are well explained by simple advection of

mean temperature gradients by anomalous currents, which is the mechanism

used in this study.
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There is a full range of thermodynamical processes left out of our

model. Vertical and meridional advection are important at some time.

Obviously, no meridional advection is associated with Kelvin waves (v=O) but

the inclusion of Rossby waves in the dynamics makes this process possible.

The effects of Ekman drift in the upwelling rate at the equator are also

overlooked in our model, where no vertical advection is considered. The

decrease in upwelling at the equator associated with wind anomalies typical

of El Nino conditions, is likely to intensify and prolong the SST anomalous

conditions. Feedback processes are also not contemplated in this study.

Their major influence in the surface winds was discussed at the end of the

previous section.

Nonlinearities are completely excluded from our model. They may have

important effects in various ways. Nonlinear dynamics may lead to different

propagation velocities for the equatorial trapped waves usually considered

and intensification of the dynamical fields of these waves at the crests.

Cane (1984) suggests that an enhancement of the sea level response occurs as

the Kelvin 'waves slow down and steepen, when they approach the Peruvian

coast, because of nonlinear effects much like waves inciding on a sloping

beach. The theoretical work of Boyd (1980) suggests that nonlinear effects

may even cause Kelvin waves associated with El Nino conditions to break,

which would have dramatic effects in the propagation of signals from the

western to the eastern Pacific. Concerning the thermodynamical processes,

the effects of nonlinearities are better established. Nonlinear advection

terms (e.g. u'T'X) left out of the thermodynamic equation (4.44) may play a

role at some point during El Nino, as found by Zebiak and Cane (1983).

The ultimate effect of all the missing dynamical and thermodynamical

processes mentioned above on the spectral shapes of Og and (T, and



104

consequently on the SL and SST statistics of extremes, may be very

complicated. Such a complex model is beyond the scope of this study.

However, we do believe that the spectra @g and @T which have been obtained

from a much simpler model and used in computing our statistical results, are

fairly realistic in their general forms, even though extremely simple in

structure.

The statistical model used to compute SL and SST extremes is sensitive

to some of its uncertainties. The statistical assumption about the pdf

governing the SL and SST fields is critical. Statistics of extremes for

Gaussian fields are very different from statistics of extremes for fields

obeying an arbitrary pdf (see, e.g., Vanmarcke 1985). If SL and SST fields

are not Gaussian, the results would be in general different. There is no

reason to believe that this is so.

Although with all these shortcomings, the model used is believed to

include enough essential features so that the results yielded are

significant in interpreting the large scale oceanic SL and SST anomalies

associated in some way with El Nino occurrences.



105

CHAPTER 6

SUMMARY AND CONCLUSIONS

We have attempted to investigate the possibility of stochastic wind

forcing being an important mechanism in generating El Nino like conditions

in the equatorial ocean. Our analysis has been simplified by a variety of

assumptions. We have considered the linear response of a continuously

stratified equatorial p-plane ocean to zonal wind stress forcing. Our ocean

has a flat bottom and is unbounded laterally. The zonal velocity field

yielded by these dynamics was used to advect a mean zonal SST gradient to

produce SST anomalies at the equator. Rayleigh friction was used to prevent

infinite response at resonance. The solutions were obtained in the form of

zonal wavenumber-frequency SL and SST spectra, valid at the equator. The

zonal winds were assumed to be stochastic and various forms for the spectral

shape of the wind stress forcing were used. Extreme value statistics of our

anomalous SL and SST fields were computed from their analytical spectra,

using the theoretical statistical tools presented in Chapters 2 and 3. The

SL and SST fields were taken to be Gaussian in calculating the mean return

period for excursions above the 2a threshold and the mean time or distance

these fields will stay above this level once they cross it. Excursions

above the 2a level were taken to be representative of El Nino conditions in

general.

We find from our statistical results that stochastic forcing by the

wind may be important in generating El Nino events, even though other

effects like feedback between the atmosphere and the ocean may be

responsible for the long duration of anomalous conditions in the tropical

regions occurring during El Nino years. Randomly forced SST anomalies have

significant spatial extent (on the order of 1000 km) and last for periods on
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the order of 10 days. The need for better knowledge of the k-w zonal wind

stress spectrum in the tropical regions is of primary importance in

corroborating our suggested results. To be specific, more estimates of the k

structure of the wind spectrum are necessary to assist in choosing a forcing

spectrum in our model. The statistics are sensitive to the w and k

dependence of 4F(w,k). In general, any redder form for DF(w,k) than what has

been assumed here will tend to give longer time and space scales for extreme

excursions of SL and SST fields. Available spectral estimates of SL and SST

frequency spectra may be used as a constraint on the possible shapes our

model spectra can take, without becoming unrealistic.

The estimates of the mean return period, 1/vb , are extremely dependent

on the definition of El Nino conditions, taken here to be anomalies in SL

and SST on the order of 2a. Longer records, especially for SST, may be

needed to better determine, for example, what the value of a really is. It

would also be nice if we could be more certain about the pdf underlying the

SL and SST anomaly fields. If reliable estimates of the spectra Z'g(w,k) and

(DT(w,k) were available, extreme value statistics could be computed directly

from them, but there will always be a certain ambiguity on spectral

estimates at very low frequencies. Without reliable estimates of the mean

return period, 1/vb , it is speculative to try to say how often we do

expect stochastically forced El Nino events. Our results may indicate that

at least some events may be triggered by random winds, but I think a more

quantitative statement on this issue is disallowed by the uncertainty of

some of our assumptions and the sensitivity of the value of 1/Vb to them.

The implication of our stochastic assumption on the predictability of

El Nino events is clear. There is no way we can forecast with confidence an

event until it is actually underway, i.e., the triggering effect is not
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deterministic in this study and thus impossible to predict. The results

don't rule out the obvious importance of processes which can be better

understood from a deterministic point of view. In fact, our ndel is itself

deterministic in a sense. The random element comes from the forcing, but a

certain degree of predictability is added by the deterministic ocean

dynamics, as expressed in the redder character of the ocean response spectra

when compared with the forcing spectra (a white spectra corresponds to no

predictability in this interpretation).

Further investigation is needed in onder to refine some of our critical

assumptions made about the wind forcing and the SL and SST pdf. Only then a

better grasp of the importance of the stochastic element in causing ENSO

events can be obtained. A more sophisticated ocean model may also be a

reasonable thing to try, even though the model SL and SST spectra used here

are not unrealistic.
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APPENDIX A

RELATION BETWEEN SPECTRAL MOMENTS OF A PROCESS AND THE

VARIANCES OF THE PROCESSES AND ITS DERIVATIVES

To derive relations between the spectral moments of a process X(t) and

the variance of the process itself and its derivatives X'(t), X"(t), XV(t),

we may use the concept of a transfer function H(w). This function H(w),

defined in the frequency domain, is associated with the response of a linear

system to a unit impulse input function.

If we hit a linear system with a Dirac delta function at t', then the

response function h(t-t') is called the unit impulse response function. Its

Fourier transform is called the transfer function H(w) and completely

characterizes the system.

A relation between input and output can be defined in terms of h(tu) or

H(w). In the time domain, a well known result is that the output O(t) is

given by the convolution of the impulse response function with the input

I(t), which in mathematical terms can be expressed as follows

0(t) = h(t)*I(t) (A.1)

where the symbol * stands for the convolution operation. The convolution

theorem clearly gives then

0(w) = H(w)I(w) (A.2)

where - stands for the Fourier transform operation.

Multiplication by the complex conjugate gives the input-output relation

in the frequency domain

DO(w) = |H(w)2(1I(W) (A.3)

Here, c1(w) is the power density function and subscripts 0, I stand for

output, input respectively.
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Now consider a linear system which differentiates the input signal,

i.e.,
dI(t)

0(t) = ----- (A.4)
dt

From (A.2) the transfer function is simply

H(M) = iw (A.5)

and using, (A.3) we obtain

0(P ) = W21(W) (A.6)

We now define the spectral moments Xj as

Xj = f wi(w)dw (A.7)
0

Taking j=2 in this definition and using (A.6), we have

02 = 2o0(o)dw = 
a 2 (A.8)

0

We know that the autocorrelation function B('rj) is just equal to the

Fourier transform of the power density. Consequently, the variance a2 which

is just the value of the autocorrelation function at zero lag, is given in

general by

2
a = B(0) = f D(w)dw (A.9)

0

Combining (A.8) and (A.9) finally yields

CO

X2 f D0(w)dw = a02  (A.10)
0

The second spectral moment of process I(t) is just the variance of the

derivative process O(t).

In terms of the autocorrelation function

O 2 ) 0d2B
xA2 2 W(o do = |----|I(,rZ = 0) (A.11)

0 drZ2
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The second spectral moment is equal to the absolute value of the second

derivative of the autocorrelation function evaluated at zero.

The relations derived above can easily be extended to establish the

equivalence between higher spectral moments of a process X(t) and the

variances of the derivative processes Xn(t). A relation of particular use

in this study is

4 f x"'(w) dw = ax-2 (A.12)
0

In words , the variance of process X"(t) is given by the fourth spectral

moment of @(w).
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Append ix B Lis t of Figures

Figure 1 Crossing of threshold b by random process X(t).

Figure 2 Time spent above and below a fixed threshold by random
process X(t).

Figure 3 The result of adding two sine waves of nearly the same
frequencies.

Figure 4 Time-longitude plot of the monthly sea level anomalies
at near equatorial stations across the Pacific.

Figure 5 The nondimensional dispersion relation for equatorial
waves.

Figure 6 Time-longitude plot of monthly SST anomalies in the
equatorial Pacific.

Figure 7 Plot of the analytical SL frequency-zonal wavenumber
spectrum.

Figure 8 Plot of the analytical SL frequency spectrum.

Figure 9 Plot of the analytical SST frequency-zonal wavenumber
spectrum.

Figure 10 Plot of the analytical SST frequency spectrum.
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Append ix C List of Tables

Table I Statistics of extremes for SL anomaly fields.

Table 1I Statistics of extremes for SST anomaly fields.

Table III Statistics of extremes for SST anomaly fields
(from spectrum with no forcing at k < 2x1O~7 m~1 ).



119

Appendix D. List of Symbols

ab constant determining rate of decay of Lb(O)
with time

Ab area of excursion above b

Ab,R area of excursion above b by envelope R

B autocorrelation function

b threshold level

bn projection factor

C white noise level of forcing spectrum

cn separation constant

D ocean depth

fR pdf of envelope R

f(x) probability density function

Fc(x) complementary cumulative distribution function

FU(u) standard normal cumulative distribution function

G tangential stress

g gravitational acceleration

H dynamic factor

hmix depth of mixed layer

k zonal wavenumber

ko high wavenumber spectral cutoff

kL low wavenumber spectral cutoff

Lb(to) probability that first crossing of b occurs
after time to (reliability function)

<Nb> expected value of clump size (valid for both
narrow and wide band processes)

N buoyancy frequency

P perturbation pressure (function of x and t only)

p perturbation pressure



120

R envelope of some random process

rb mean clump size (narrow band processes)

T' surface temperature anomaly

T mean surface temperature

Tb time spent above b

Tb time spent below b

Tb,R time spent above b by envelope R

Tb,T time spent above b by XT

t time coordinate

u perturbation zonal velocity

w perturbation vertical velocity

x space (zonal) coordinate

Xb length of excursion above b

XT local average process

y latitudinal distance from equator

Z Bernoulli variable

a constant (defined in (4.29))

Py Coriolis parameter

A matrix of 2nd order bandwidth coefficients

& 2nd order measure of bandwidth of the spectral
density function

6k 2nd-order bandwidth measure (space process)

SW 2nd-order bandwidth measure (time process)

E friction coefficient

one sided power density function

F forcing spectrum

CDP sea pressure spectrum

DT SST spectrum '



y(t)

r

A

Xjn

k
Xj

Xn

Xj

mean value for the
threshold b

+ mean value for the
threshold b

mean value for the
threshold b

mean rate of occurr
threshold b

mean rate of occurr

,R mean rate of occurr
by envelope R

,R+ mean rate of upcros

,T+ mean rate of upcros

rate of crossing of

rate of upcross ings of

rate of downcrossings of

ence of local maxima above

of local maxima

of crossings of b

of b by envelope R

of b by process XT

mean rate of upcrossings in space above b
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sea level spectrum

random phase angle

variance function

4th order measure of bandwidth of the spectral
density function

2x2 matrix of second order spectral moments

spectral moment of j-th order with respect to
w and n-th order with respect to k

spectral moment of zeroth order with respect
to w and j-th order with respect to k

n-th spectral moment

spectral moment of zeroth order with respect
to k and j-th order with respect to w

mean rate of occurrence of regions of
excursion above b

mean number of crossings per unit area for R

return time

p-b , R

1/vb+

V b

V b

V b

vi
Vb

VU:

Vb

V b

Vb

V b



Vb

om

Wo

WT

QjT

Y

P

P

PT

a

aran

ar'

oyr
x

ar
t

at

aT

ax

ae

-r

t'z

+g
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mean rate of upcrossings in time above b

angular frequency

mid-band frequency

high frequency spectral spectral cutoff

transition frequency

j-th characteristic frequency

two-sided spectral density function

perturbation density

basic stratification

total density

standard deviation

standard deviation of envelope process

standard deviation of derivative of envelope process

standard deviation of space derivative of envelope R

standard deviation of time derivative of envelope R

standard deviation of time derivative of Y(x,t)

standard deviation of process XT

standard deviation of derivative process X'(t)

standard deviation of 2nd derivative process X"(t)

standard deviation of space derivative of Y(x,t)

scale of fluctuation

zonal wind stress

time lag

lag vector

sea level

function of z only

Fourier transform


