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Abstract

While the prediction of planetary-scale waves has been studied for many

years, skillful prediction has not been achieved yet. Complexity is found

in some serious problems such as data initialization, domain of integration,

model forcing, physical parameterization, etc.. In this paper the problem

of applying normal mode initialization to planetary stationary wave distur-

bances is investigated.



A linearized baroclinic primitive equation model is explored. The initial

field is a calculated topographically forced and radiating stationary wave on

a beta plane. However, for the purpose of normal mode initialization an

artificial model 'top' is imposed. The emphasis of this paper is to determine

whether normal mode initialization can affect the time behavior of the initial

stationary wave under this circumstance and the dependence of this result

on mean zonal flow. In addition, the effect of the placement of the model

top on the accuracy of forecasting the stationary waves is examined.

It is found that the vertical modes for the streamfunction 0' and v' veloc-

ity are good representations of the vertical structures of initial fields varying

in mean zonal flow. However, for u' velocity only in westerlies do they look

like the original ones. Consequently, the time behavior of the initialized and

the noninitialized fields bears resemblance in the regime of westerly mean

zonal flows. On the contrary, in the presence of easterlies, the initialized

field behaves quite differently from the noninitialized field.

Moreover, it is found that in westerlies both of the noninitialized and the

initialized fields behave far from stationary waves. However, in easterlies the

time behavior of the noninitialized fields is near stationary.
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1 Introduction

Normal mode initialization(NMI) attempts to suppress forecast noise by

excluding gravity waves from initial data. Normal modes are determined for

the system, and the coefficients in the normal mode expansion are determined

from independent initial values of all variables. Since normal mode initial-

ization was first introduced by Dickinson and Williamson (1972), employing

this approach to exclude gravity waves from initial data has been extensively

studied and applied in short and medium range numerical weather prediction.

However, questions remain about the relevance of normal modes to re-

alistic flows. One of these concerns is the prediction of planetary waves.

Although the theoretical study of Lorenz (1969) suggests that the planetary

scales are the most predictable, forecasting experiments indicate that the

long waves are predicted less accurately than the synoptic scales. The errors

of forecasting planetary waves are suggested by Lambert and Meriless (1978)

and Baumhefner and Downey (1978) as due to initial data, numerical formu-

lation, domain of integration or physical parameterization. Moreover, Daley

and Williamson (1981) suggested that the above first three reasons can all

result in the excitation of large-scale free Rossby waves. The purpose of the

present paper is to investigate the impact of normal mode initialization on

the prediction of stationary planetary waves.

The initial field is a calculated stationary wave on a beta plane in the

presence of topography. The stationary wave is obtained for an atmosphere



with no top and hence no complete set of discrete normal modes. One of

the critical issues is to evaluate the validity of the application of NMI to

the stationary planetary wave if an artificial top is imposed for the purpose

of obtaining normal modes. For example, are the initialized fields(4', u', v')

good representations of the original ones?

Secondly, the linearized baroclinic primitive model is employed in our

test. As a rigid top is imposed in the model, the topographically forced

stationary wave response of the model is different from the initial calculated

stationary wave with radiation condition. The difference field is expected to

travel with the phase speed of free Rossby wave. It was found by Lindzen,

Farrell and Jacqmin (1982) that interference can occur between coexisting

stationary wave and Rossby wave with the same horizontal wavenumber but

different phase speeds. In addition, in our baroclinic primitive model, the

traveling Rossby wave may propagate upward. Therefore, the focus of the

paper is to test whether the initialization can make a difference in the time

behavior of the initial stationary waves in our model.

Furthermore, attention is paid to how the NMI is affected by mean zonal

flow, which primarily determines the propagation properties of planetary

waves. It was first found by Charney and Drazin (1961) that energy is

trapped in the region where zonal winds are easterlies or sufficiently strong

westerlies. We propose to examine the sensitivity of NMI to different mean

zonal flows.

In addition, the time behaviors of the initial stationary waves from with a



model lid and without a model lid are compared. One advantage of choosing

stationary waves as initial fields is that stationary waves do not change at all

in nature, and so the solutions from without a lid are already known. When

a model lid is imposed, spurious Rossby waves are excited and so the time

behaviors of the initial fields are expected different from stationary waves.

Therefore, we wish to determine to what extent the spurious Rossby waves

contribute to the errors of forecasting the stationary waves.

Finally, to assess the effect of the more realistic flows of easterlies and

westerlies together, some simple cases of zonal mean flow with shear are

tested.

2 Initial forced stationary wave solution

We are concerned with planetary wave disturbances whose horizontal

wavelength is comparable in size with the earth's radius and whose doppler

shifted period is large compared with the period of the earth's rotation.

Such disturbances are therefore both hydrostatic and quasi-geostrophic. The

initial field is a topographically forced stationary planetary wave on a #-

plane. The perturbation is assumed to be around the basic state , which is

isothermal and has dry static stability N2. The mean zonal flow of the basic

state satisfies the geostrophic relation with the pressure of the basic state.

Let

u = u + u', v = v', w = w',p = p(y,z)+ p',p = (y,z) + p',T = V'+T'



where prime denotes perturbation. P(y, z) and (y, z) exponentially decay

with z with a scale height H.

Linearized perturbation equations are:

_U' 1 Op'
- -(fo+y)v'= -- (1)

-- +(fo+#y) -- / (2)

O-xp - + --~) + 'v = 0 (3)
x P x cy z

op'|_p T'
az T

9T' U (9p' 9T g
U-5 _ + w'(--+--) =0 (5)8x cPP p 8xz c,

--=- + - (6)
p p T

where Z(2 + (-) = N2 is Brunt-Vaisala frequency and c, is heat capacity.

Since P satisfies ( = -fops and T is constant, - satisfies 2 =aY ay RTP

However, we do not include v'l term in continuity equation (3). This isay

because we compared the magnitude of v'a1 't with that of w& and found

that the magnitude of 21'2 is about 4 order smaller than the magnitude ofay

8 , while v' is only about 2 order larger than w'.

Let 0' to be streamfunction:

fop
(7)

We seek perturbations with independent wave form components of the form

of a product of some separable functions of x, y and z, namely:

4" = Re[eikx'(y)(z)] ((8)



So horizontal and vertical equations are separated as:

ikau' - (fo + Py)v' = -ikfoo' (9)

ikiiv'+ (fo + y)u' = -fo a (10)ay
iku'9v' ifokfz

i'+ -- gh ' (11)y ghn

and

iksfoopp; 18p~w'! ikcifo,
-i + - - #2 (12)gp az P az ghn

op2 T'
f -= -(13)az T

iki fo 'i'N2

ikcT' - k /+ w' =0 (14)
c, g

where hn is the equivalent depth.

The horizontal and vertical structures of the stationary wave are resolved

by solving the horizontal equations(9)-(11) and vertical equations(12)-(14)

respectively satisfying their own boundary conditions.

2.1 The horizontal structure of the stationary wave

Our geometry consists in a channel centered at the latitude of 45'N. The

width of the channel is comparable to the radius of the earth. Using this con-

dition, we can solve the eigenvalue-eigenfunction problem of the stationary

solution.



The eigenvalue is found by solving the horizontal equations(9)-(11). The

boundary conditions are:

at y=0 and y=L:

V= 0 (15)

or equivalently:

01 - -- 0' = 0 (16)
9y UU

Solving u' and v' from equations(9)-(10) and substituting them into equa-

tion(11), yields:

a201 (k U)2 _ f220
2  ( h + -k 2 )Vi=0 (17)

By2 ghn u

Let:

2 Uk)2 - f2
12 =k 0 + -k-2k(18)

ghn u

the solution to the equation(17) is:

0'(y) = sin 4lY + A, cos lny (19)

satisfying the restriction(16). So the ln and An are found:

in = , An = (20)
L fo

Correspondingly, from equation(18) the equivalent depth hn is:

ghn = f02- ki _2 (21)
n

Then u' and v' are solved from equations(9)-(10):

fo[k 25$((y) - (fo + 0y) * ](Y)
u(y) = 2 2  (22)

(f + #y)2 - (k )2



fo[ik(fo + #y)40(y) - i(2 3)
o (y)y (23)

(fo + #)2 - (k) 2

2.2 The vertical structure of the stationary wave

Having found the eigenvalue of the problem, we can resolve the vertical

structure of the stationary wave by solving equations(12)-(14). Eliminate T'

and w' from equations(13)-(14) and substitute them into equation(12), yield:

a2# 1 . g N24 N 2  g N 2

-- (- + ) ( )#2 - = 0 (24)
Oz 2  H Tc, g az gH HTc, ghn) 2

where h is obtained from the eigenvalue solution equation(21). The vertical

boundary conditions are:

at z=O:
ikifo a g , ,
N2 ( - -) = (25)N2 z I'c, p

at z=top:
ikifo (a T , = 0 (26)

The w' appearing on the right hand side of equation(25) is the surface forcing:

w' = ikii7 (27)

where 9, is the height of topography.

We noticed that the coefficients of 0' and 8 in equation(24) and in the

boundary condition equations(25)-(26) are slightly different from those in the

classical equations of Charney and Drazin(1961). This is because we added

U29Z term in continuity equation(3) and -- f term in thermal equation(5)ax CPT ax



as we considered the stationary equations as compatible as possible to the

time dependent equations used later. We also calculated that the magnitudes

of the additional terms in equations(24),(25) and (26) are about 1 to 2 order

less than those of the original terms in Charney and Drazin. Therefore, the

change we made here does not matter.

The equation(24) can be transformed into canonical form:

d29 ap22
djz-2 + (a1 - ) = 0 (28)

by setting a1 and a 2 to be the coefficients of 0' and 9 respectively in

equation(24):

N g N2  
(29)

gH HTcP gh

1 g N 2

a2 =-(- + -- ) (30)
H c, g

and

2 =(31)

It's easy to see that the propagating property of the solution to equation(28)

depends on the sign of (a 1 - "1). Here we define

2
2 a 2

72 = ai-- (32)4

72 is a function of mean zonal flow R. In weak westerlies - 2 > 0, and

the stationary wave will propagate, while in easterlies or sufficiently strong

westerlies -2 < 0, and it will be trapped.

Satisfying the boundary conditions(25)-(26), we obtain the vertical struc-

ture solution 0': (for simplicity, use - = [7| > 0)



For propagating wave (/2 > 0):

(Z) = N2 :7 e( 2-)Z (33)

For trapped wave (-t2 < 0):

'(Z) = - e(--#)Z (34)
fo(-2- ?:-)

Therefore, the initial forced stationary wave solution is found:

For propagating wave (-y2 > 0):

' = Re[Ape kx(sin lay + A, cos ly)e-iY~#)z] (35)

where

AP = -(36)
fo(-i-Y - y - g)

For trapped wave (-y2 < 0):

,' = Re[Ateik (sin ly + A, cos ly)e(~)"] (37)

where

At = - "S (38)
fM-7 - ? - c-

3 Normal mode initialization

3.1 Normal modes

First, we are going to find the normal modes of atmosphere. Assume the

atmosphere is restricted between two vertical boundaries with depth of D.



The vertical dependent equations are:

iwfo 1_ Ipw
n /' + - " = 0  (39)

gh, P z

aO' N2
io- n + -- W' = 0 (40)

Oz fo

where w is frequency and hn is the equivalent depth of mode. Eliminating 0'

from equation(39) and substituting it into equation(40), yields:

a2w* N2  1
-+ ( N)W = 0 (41)82z gqhn AH2

where

w* =w'e 2 (42)

To find normal modes is to solve the following eigenvalue-eigenfunction prob-

lem:
82 ,
2= + m2 = 0 (43)

where

m 2 N 2 1im 2 __ _2 __ (44)ghn 4H 2

satisfying the boundary conditions:

at z=0 and z=D:

w* = w = 0 (45)

or equivalently

= 0 (46)az
So ths solution to equation(43) is:

w* = sin mz (47)



and

0' = cos mz (48)

where m = P, p=01,2,...

In order to do normal mode initialization, we then project the initial

stationary wave into normal modes. Set:

k = Re[ E Om cos mz]
M=0

u = Re[ E um cos mz]
m=0

v = Re[ E vm Cos mz]
m=O

(49)

(50)

(51)

the coefficients of normal modes are determined by Fourier expansion of the

stationary wave solutions(35)-(38).

For propagating wave (-y2 > 0):

= AP _(e(-iy-')D

=2
0-(-i7 -?)D

(e( )D( -

- 1)o'(y)eikx

- )u/(y)e ikx

-1)vI(y)e ikx,

M = 0

2 (-iy )Ap (( )Pe(-i- )D 1)7pi(Y)eikx

SDm2 (-i - a, )2

n'=2 (-ig, - ?)Ap (( ?(-i-- D m
"' D m 2 + ( -- 2 -- ( T ) 2 ) ~ '(~ k

and

(52)

(53)

(54)

(55)

(56)



V= 2 (-i7 - g)Ap
m D m2 + (-i -27)2Dm 2 2

w here A , = - M - -

For trapped wave ()j2 < 0):

* ((_1)P e(-i,-)D - 1)v'(y)e ,

m = p = 1 2,3...
D"1= (57)

(58)

(59)

(60)

and
(- - )At (( e( - )D _

m D m2 + - 2

(-- - 2) ((_ lPe( --. )D -

u D m 2 + (- 2 - e)2

V' = 2 (-y- ')At
m D m 2 + ( - 2)2

1)0 (y)e ikx

l)u'(y)e kx

*(-(-(1 -)D _ i kx

m= p= 1 2, 3...

where At = ~ fM-

At (e(-'Y-7 - )D _) ikx

= A~ (e(-,-)D - luyeikz
(-- -') i)D

At (e(-- )D 1)v'(y)eikx,
0 (- c- )D

M = 0

(61)

(62)

(63)



3.2 Normal mode initialization

For normal mode initialization the horizontal dependent equations are

linearized around the basic state of rest. Set the perturbation to be the form

of ei(kx-wt), the linearized equations for each vertical tranformation can be

written in a matrix form:

U'm 0 i(fo + #y). k/g-hi U'

W V, = i(fo + Oy) 0 - 8i AM

(64)

The 3x3 matrix explicitly appearing on the right-hand side of the above

matrix equation(64) is Hermitian, so every eigenvalue w of the matrix is real

value. The three eigenvalues of the 3x3 matrix are Rossby wave frequency

and two gravity wave frequencies.

Since the initial field includes both basic state and perturbation, we need

to initialize both of them by NMI. The basic state is geostrophic and inde-

pendent of x:
8#(y) (5

(fo + /y) = -fo (65)ay
i = 0 (66)

so the matrix(64) for basic state becomes:

f 0 i(fo+#Oy) 0 (

o i(fo +#y) 0 - i y V/goaT (67)



The projection of the stationary wave into Rossby wave and gravity waves

is:

Ur r

V' X g (68)

where r denotes Rosby wave, g and g' denote east and west propagating

gravity waves respectively. The matrix X is composed of the corresponding

three eigen-vectors. Therefore, the r, g, and g' are obtained by inversing the

matrix X:

r Urm

g X-1 V /

For the purpose of normal mode initialization,

nent of the initial stationary wave is excluded by

zero, namely:

Um

V I =X
(69)

the gravity wave compo-

setting both g and g' to

r
0

0
(70)

4 Model description

We employ time-dependent linearized baroclinic primitive equation model.

The basic state is the same as we used in the initial stationary wave. Namely,

isothermal, constant mean zonal flow U and static stability N2 . The time-



dependent linearized equations are:

&u' Bu' 18Op'
- + - (fo + #y)v' = _ (71)

&v' &v' / 18&p'

at ax 7y

aT' + T' 1 ap' f ap' TN2 ,+n ------ _--+ w'=0 (73)
at ax c~Pat c7,P ax g

ap' ap' au' av' apw'
- + f- + X(- + -- ) + = 0 (74)

at ax ax ay az

al T(75)az T
_l pt T'

(76)
p T

The horizontal and vertical boundary conditions are the same as we used

in obtaining the initial stationary solution except that there is a model 'top'

at the height D. Thus, the vertical boundary conditions in our model are:

at z=D,

w' = 0 (77)

at z=0,

w' = iku- (78)

The stationary part of the model can be computed numerically by setting all

ay part in equations(71)-(74) to zero.

As horizontal boundary is satisfied, the solutions to equations(71)-(76)

are set to be the form of the product of function of (z,t) and eikxF(y), where



F(y) is the same as the y-dependent structure of the initial stationary solu-

tions(19), (22) and (23). Therefore, the time-dependent part of our model is

only in vertical modes.

For numerical computation the above time-dependent equations are trans-

formed into prognostic and diagnostic equations:

= -ikiu' + (fo + #y)v' - ikfop' (79)at
a?) - -ikiv' - (fo +#y)u' - fo- (80)a t ayT'RT av'

- -ikiiT'- -(i ku' + -- )

at C., ay

--( /$' - Ofy)at Pss P

az
w

RT&( 1 cTN 2
I

( -)w' - '
CV Dz H cVg

= -iki(pp' - -p') - iEJ?(iku'+

fo
T'
T

= !-($' - P$)+ ikfo , Pt_ p

ga t p g p
+--i p(i ku' + --- )dz

P z Oy

where p' = p'/fop and H is the scale height. .The subscripts s and t denote

the surface and the model top respectively. The tendency equation(82) is

obtained by eliminating p' from equations(75)-(76) and substituting it into

continuity equation(74), and then integrating the continuity equation from

surface to top. The diagnostic vertical velocity is obtained by integrating the

same continuity equation from z to top.

(81)

(82)

(83)

(84)

v'
- )dzTy



The prognostic equations(79)-(82) are integrated in time using mid-point

Euler-backward method. That is: for the first-order differential equation

-= R (85)
4t

where A denotes time-dependent variable and R the right-hand side, the A

forwards in one time step after being computed four times:

An+1 = An+ R(An) At (86)

A**1 - An + R(A*+1)At (87)

A** -A
A*** = An + R( An + An+12 )A t (88)

A*** - A
An+1 = An + R(An + n+12 n)At (89)

where the subscript n denotes time point.

Finite differences are used for vertical direction. Vertical layers and the

displacement of all 5 variables u', v', T', 0', w' in these layers are sketched in

Fig.1.



k=K U', v', V, W=, k=K

k= K-1 .................. T' .................. k=K -1

k=K-2 U', v', ,', WI k=K-2

k=3 I', )' V ', W' k=3

k= 2 ..................... T I ................ k= 2

k=1 U', I' ', W', k=1

Figure 1: Vertical layers k and the displacement of variables on these

layers. k=1: the surface, k=K: the model top

The second-order leap-frog scheme is used to approximate the vertical

spatial derivatives. For y direction the equations(79)-(84) are integrated in-

dependently in specified grid points. All the partial differentials 2- appearing

on the right-hand side of equations(79)-(84) are the direct derivatives of y-

dependent structure if)a~y



5 Results

In this section we present the major results in our test. First we list the

parameters used in our model:

model top: D = 20.Km

horizontal wavenumbers: k=4.44 * 10- 7 m-1, 1=4.8 * 10- 7 m-

scale height: H = 7.99Km

temperature: T = 273 0K

static stability: N 2 = 4.0 * 10- 4sec-2

the height of topography: rj, = 1.Km

fo = 1.03 * 10- 4 sec-1

#=1.6*10-11sec-m~ 1

vertical resolution: 1.Km

time step: 3min.

5.1 The comparison of the initial stationary wave so-

lution and the model stationary wave response

The initial stationary wave solution is calculated by using radiation con-

dition on the top, while the model stationary wave is computed by imposing

a lid on the top. The vertical structure of these two waves against dif-

ferent mean zonal flows are plotted in Fig.2. It is shown that the initial

stationary waves under mean flows of ii = 10.m/s and U = 25.m/s are both

vertically propagating. Due to the reflection of the model lid the model sta-



tionary responses are different from the initial stationary waves especially in

i = 10.m/s. At stronger westerly i = 45.m/s the initial stationary wave

is trapped. However, the amplitude of the model stationary wave decreases

with height up to 14Km and then increases up to the top. Moreover, in

easterlies the initial stationary waves are heavily trapped and they look like

the model stationary waves.
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Figure 2: The vertical structure of streamfunction 0' in m 2/s * 107

of the initial stationary wave with radiation condition (A letter) and

the model stationary wave with a lid (B letter) against different

mean zonal flows: a) z- = 10.m/s, b) U- = 25.m/s, c) U- = 45.m/s, d)

U = -5.m/s, e) U- = -15.m/s.
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5.2 Normal mode initialization

We first initialize the basic state of the initial field. It is found that in

varying mean flows ranging from easterlies to westerlies the Rossby wave

frequencies are near zero and the projections of the initial field almost com-

pletely go into Rossby waves. This result is reasonable as the basic state is

geostrophic. We do not show the result here.

The coefficients of the normal modes of the original perturbation fields

(V)', u ,v' ) and the initialized fields against different mean flows are plotted

in Fig.3-Fig.7. Here we only show the results of initialization at 450 N. In

addition, since in the cases of ii = 10.m/s and i! = 25.m/s the stationary

waves are propagating, and all the variables are complex values, we plot both

of the amplitude and the phase of ', v' and u'. However, in the other cases

the stationary waves are trapped and all the variables are real values, so we

only plot the variables themselves.



u = 10.m/s

2 0 2 4 6 8 10 12 14 1
VERTICAL MODES M

j FA
-2 0 2 4 6 8 10 12 14 1

VERTICAL MODES M

A- 7!l

-2 0 2 4 6 8 10
VERTICAL MODES M

4.5 -

* 4.0

z 3.5
LL 3.0

c 2.5

2.0

U 1.5

0
- 1.0

-. 0

20
1s

16

14

>12

0 10

08

- 6
-j
CL4
Z

0

12 14 16

4.5

4.0

3.5

3.0

2.5

2.0

1.5

1.0

-2 0 2 4 6 8 10
VERTICAL MODES M

-2 0 2 4 6 8 10
VERTICAL MODES M

12 14 16

Figure 3(a): The amplitude of streamfunction 0' in m2/s * 107, V'

and u' in m/s versus vertical modes from mode 0 to mode 15 for

U = 10.m/s. Left: the noninitialized field, Right: the initialized

field.

2 0 2 4 6 B 10 12 14 1
VERTICAL MODES M

S.1 :
-

2.2
2.0
1.8
1.6
1.4

- 1.2
w 1.0
0

.8

.6-j
CL

z.4

.2
0

12 14 16

I R q Pn rA - -



ii = 10.m/s

-2 0 2 4 6 8 10
VERTICAL MODES M

Li
Li

U.
Li

r
cc

U,

12 14 16 0

M 200

8 150

100

S50

0

W
-50

In
L- 100
0

w -150
in

=-200
(L

200

150
Li

100
Li
3 50

> 0

o -50
Li
w -100

-150

-200

200

150

CC 100

C3 50
0

o -50
Li
n 100

(.-150

-200
-2 0 2 4 6 8 10 12 14

VERTICAL MODES M

200

150

100

50

0

-50

-100

-150

-200

200

150

100

50

0

-50

-100

-150

-200

150

100
Li

50

S 0
Li-
0 -50

LiJin-100

C- -150

-200
-2

2 0 2 4 6 8 10 12 14 14
VERTICAL MODES M

2 0 2 4 6 8 10 12 14 1(
VERTICAL MODES M

0 2 4 6 8 10 12 14
VERTICAL MODES M

Figure 3(b): The phase of 4', v' and u' in degree versus vertical

modes from mode 0 to mode 15 for - = 10.m/s. Left: the nonini-

tialized field, Right: the initialized field.

-2 0 2 4 6 8 10 12 14 1
VERTICAL MODES M

200



ii = 25.m/s

12
-11

10

Z 9

7w
6

4

w3
9 2

0
I-

55
50

45

40

>35
30

w 25
820

15

210

0

16

14
cfl
N
m 12

= 10
Lu.

w
6

4

2

0

12 -

11 -
10

8

<7
6
5

U- 4
w3

B 2-

I-1

02:-

55

50

'45
L' 40
> 35

30

w 25
820

15

0

-A

- 14

12

3 10
LU-
08a

6

4.

2

0-
-2

2 0 2 4 6 8 10 12 14 1
VERTICAL MODES M

2 0 2 4 6 8 10 12 14 1
VERTICAL MODES H

-2 0 2 4 6 8 10 12 14 16
VERTICAL MODES M

2 0 2 4 6 8 10 12 14 1
VERTICAL MODES M

2 0 2 4 6 8 10 12 14 1
VERTICAL MODES M

0 2 4 6 8 10 12
VERTICAL HODES M

14 16

Figure 4(a): As in Figure 3(a) but for il = 25.m/s

H
U
Y~

. . .

-

6



U = 25.m/s

200

150

100

50

0

-50

-100

-150

-200
-2 0 2 4 6 8 10 12 14 1

VERTICAL MODES M

W 200

8 150

100

S50

X: 0

-50
cn

L'.. -100
0
w -150

= -200

200

150

100
w
o 50

0
Li.o -50

C -100

C- -150

-200

200

150
Lii

100

9 50

c -50

-100

n- -150

-200
-2 0 2 4 6 8 10

VERTICAL MODES M
12 14 16

200

150

100

o 50

Z 0
Li.
o -50

i -100

a. -150

-200

- 150
w

50w

100
LLi8D 50

100

S-150

-200
-2

2 0 2 4 6 8 10 12 14 1
VERTICAL MODES M

2 0 2 4 6 8 10 12 14 11
VERTICAL MODES M

0 2 4 6 8 10 12 14
VERTICAL MODES M

Figure 4(b): As in Figure 3(b) but for U- = 25.m/s

-2 0 2 4 6 8 10 12 14 1
VERTICAL MODES M

200



i = 45.m/s

5.0

4.5

+ 4.0
3.5

3.0
z 2.5
LL 2.0

0- 1 .0
in

02 0 2 4 6 8 10 12 14 1
VERTICAL MODES M

0 2 4 6 8 10 12 14 1
VERTICAL MODES M

-2 0 2 4 6 8 10
VERTICAL MODES M

24
22
20
18
16
14
12
10
8
6
4
2

12 14 16

2 0 2 4 6 8 10 12 14 11
VERTICAL MODES M

2 0 2 4 6 8 10 12 14 1
VERTICAL MODES M

=r 1 [ 1 ]-1
-2 0 2 4 6 8 10

VERTICAL MODES M

Figure 5: Streamfunction ?P' in m 2 /s * 10', v' and u' in rn/s versus

vertical modes from mode 0 to mode 15 for U = 45.m/s

12 14 16

5.0
4.5

+ 4.0

3.5
3.0
2.5
2.0

i- 1.0

.5
0

22
20
18
16
14
12
10

8
6
4
2
0-

-2

24

0

-



u = -5.m/s
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From the upper two panels in all Fig.3-Fig.7 we found that for both the

propagating and trapped waves the initialized 0' and the initialized v' are

pretty similar to the original ones in terms of their amplitude and phase/or

sign. This means that the projection of V' and v' into gravity wave is much

smaller than that into Rossby wave.

However, the lowest panels in Fig.3.-Fig.7. show that the initialized u'

is different from the original u' and the difference depends on the mean

flow. In westerlies ranging from weak to strong, the amplitude of the leading

mode, which has the largest amplitude among all other modes, changes less

than twice after initialization except at i = 10.m/s. At ii = 10.m/s the

amplitude of mode zero increases about 3 times after initialization. However,

the phase or the sign of each mode remains unchanged in westerlies. On the

contrary, the most pronounced feature in easterly mean flows is that the sign

of the first several leading modes is reversed. Moreover, in Fig.6 and Fig.7

it is found that the relative importance of the first two modes (m=0,1) is

changed. The first mode (m=O), which is originally comparable in size to

the second mode (m=1), becomes much larger than the second one after

initialization. In addition, the amplitude of the first mode increases about 5

times in U- = -5.m/s.

5.3 Time behavior

We plot the time behavior of the noninitialized and the initialized field 4'

within 20 days after day 0 against different mean zonal flows. First we show



in Fig.8(a)-(e) the behavior of the vertical structure of the streamfunction 0'

fixed at point (00E, 45 0N). As reference we also plot the vertical structure

of the initial stationary wave (day 0) and the model stationay wave in the

same picture. It is found that in westerlies ranging from weak to strong the

behaviors of the noninitialized and initialized fields are qualitatively similar.

However, in easterlies about at day 10 the vertical structure of the initialized

field begins apart from that of the noninitialized field. As time increases the

initialized field behaves more and more differently from the noninitialized

one. This feature can be more captured in the case of ii = -15.m/s.

Moreover, we plot in Fig.9(a)-(e) the contour of the noninitialized and ini-

tialized 0' at 5 Km within 20 days after day 0 against different mean flows.

It is found that in westerlies ranging from weak to strong the phase speed

as well as the amplitude of the high and low are similar between the nonini-

tialized and the initialized fields. In the case of - = 45.m/s the similarity

is smaller compared with that in U- = 10.m/s and i = 25.m/s. However, in

easterlies it is noticed that at day 5 the initialized field begins to oscillate

in place with time compared with the noninitialized field especially in its

southern part. And then the oscillation becomes more and more pronounced

as time increases.

In addition, we noticed in Fig.8 and Fig.9 that in westerlies neither of the

noninitialized and the initialized fields behaves like the original stationary

waves. However, in easterlies, the time behavior of the noninitialized fields

is near stationary. We will discuss this later.
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i = 25.m/s
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Figure 9(b): As in Figure 9(a) except that ii = 25.m/s and the

contour interval is 4.m 2/s * 107 .
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i = -5.m/s
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6 Discussion

6.1 The effect of model lid on initialization

In all of our experiments, we impose an artificial top in the model. We

found that the behaviors of the initialized and noninitialized fields are similar

in westerlies and different in easterlies respectively. Thus, we expect that the

initialization is insensitive to the existence of model top. In order to verify

this, we increased the model top to 30Km for the cases of U = 10.m/s and

f = -15.m/s as comparison with the model top at 20Km.

Fig.10(a) and Fig.10(b) show the behavior of the vertical structure of

streamfunction at (00E, 450N) and the contour of the streamfunction at 5Km

respectively for mean flow of ii = 10.m/s when the model top is at 30Km.

It is found that the vertical structures for the noninitialized and the initial-

ized fields are pretty similar within 20 days. Moreover, the contour of the

initialized field looks like the noninitialized one. Thus the behavior of the

initialized field is generally in agreement with that of the noninitialized one

when the model top is placed at 30Km.

Fig.11(a) and Fig.11(b) show the behaviors of the noninitialized and the

initialized fields for the mean flow of U- = -15.m/s when the model top is at

30Km. It is found that in easterly the initialized field begins apart from the

noninitialized one at day 5. As time increases the initialized field behaves

more differently from the noninitialized one.
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Figure 10(a): The time behavior of the vertical structure of stream-
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model stationary wave, C: the behavior of the noninitialized field, D:

the behavior of the initialized field.
48



55*N

50'N

45*N

40*N

35'N
180*W 120*W

55*N

50*N

45*N

40-N

35*N
160*W 120'W

55'N.

50*N - -

40*N -

35*N

180*W 120"W

55*N

50'N -,

45'N-

40-N

35*N 1

1801W 120'W

55*N

5-N

= 1.m/s
56N

50*N

4'N-

35*N
N0W 0* 80O% 1200E 1800E 180*W

180*E

--

-O -0

60'w 0' 80"E 120*E 18(

80*W 0* 80E 120*E 1IC

55"N

45*N-

40*N-35*Nf
180

55"N

50*N

45'N

40*N

36*N

56*N

80N

45*N

40*N

35*N
180

O0N

45'N

40*N

180N

II
120*W 0* 80E 120* 180

I N

120*W 801! 0' 60*E 120E 180

*W 120*W

'V 120*W

( 0 Day)

( 1 Day

'E

( 5 Days)

(10 Days)

601W 0* 80'E 120'E 180*E

(15 Days)

601W 0 0E 120*E 180E

(20 Days)

801W 0" 6O0E 120"E 180E

Figure 10(b): The time evolution of streamfunction at 5Km from

day 0 to day 20 for nu = 10.m/s. The model top is at 30Km. The

contour interval is 2.m 2 /s * 10' and negative contours are dashed.

I i I
I I I

80*W 0* 60*E 120'E 601W 0* W0E 120*E 180'E

2.0 .

'

"W 120*W

- -?

0.0

- - I, I~l -- ,'
- I . . / /

II-- //

*W 120'W



ii = -15.m/s
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Therefore, the results from the study of model top at 30Km are in agree-

ment with those from the study of model top at 20Km. This confirms that

the existence of model lid does not affect initialization.

6.2 The sensitivity of initialization to mean zonal flows

We have found before that the time behaviors of the initialized fields

look like those of the noninitialized ones in westerlies ranging from weak to

strong. However, this does not hold in easterlies. In order to investigate why

the time behavior of the initialized field depends on the mean flow, we recall

the results from the normal mode initialization.

We have seen before that in westerlies in spite of small changes of the size

of U', the phases or the signs of u' remain unchanged. However, in easterlies

the first two leading modes (m=0,1) are heavily affected by the loss of gravity

part in terms of the sign, the relative importance and the amplitude. Since

the initial field is stationary wave, namely c = 0, according to wave phase

speed:

C =U-(90)
k2 + 12 + f0gh

where h is the equivalent depth, in the presence of westerly mean flow Rossby

wave propagates westward, while in the presence of easterly mean flow Rossby

wave propagates eastward. However, eastward Rossby wave is not the eigen-

mode of the 3X3 eigenmatrix in equation(64), and therefore the initial sta-

tionary wave can not be corrected projected into the eigen system.



Thus, we conclude that the change of the mode structure after initializa-

tion is sensitive to mean flow and the change is crucial to the future behavior

of the stationary wave. However, questions still remain about the relevance

of initializtion to more realistic mean flows such as vertical wind shear.

6.3 The role of vertical wind shear

In order to investigate how the behaviors of the initialized and the non-

initialized fields are affected by vertical wind shear, we did some simple ex-

periments as comparison. The wind shears are chosen as one case of all

westerlies from surface to top and two cases of weaker and stronger easterlies

near surface respectively and westerlies above. These are:

(a) U(z) is from 5.m/s at surface to 40.m/s at top.

(b) ii(z) is from -5.m/s at surface to 25.m/s at top.

(c) ii(z) is from -15.m/s at surface to 25.m/s at top.

The three different U(z) distributions are shown in Fig.12.

In the presence of vertical wind shear, the initial field is still the solution

to equation(24) or equation(28) as we used before, but solved numerically.

The radiation condition in model top is assumed as:

d'P
- = i(91)

dz

where -y is the same as in equation(32), and Im(/) < 0 is required. The

initial field is then projected into normal modes by using discrete Fourier

transform.
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Figure 12: The vertical distribution of wind shear. a) in long dashed
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The results of the time integration of the noninitialized and the initialized

fields are plotted in Fig.13 and Fig.14. Fig.13(a)-(c) shows the behaviors

of the vertical structure of streamnfunction at (00E, 450N) for the cases of

54



shear(a)-(c) respectively. Again as reference the initial stationary wave with

radiation condition and the model stationary wave with lid are plotted in

the same picture. In case(a) the initial stationary wave is propagating from

surface to about 11Km then turns trapped on top, while in both case(b) and

case(c) the initial stationary waves are first trapped from surface and then

propagating upward with the latter trapped less heavily.

Comparison from Fig.13(a)-(c) shows that in all three cases the behaviors

of the initialized and the noninitialized fields generally bear resemblance.

However, it is noticed that there is some slight difference of the behaviors of

the initialized and the noninitialized fields in different time scales except in

case(c), where the behavior of the initialized field is pretty similar to that of

the noninitialized one in all 20 days. In case(a) the initialized field is similar

to the noninitialized one in the first several days, but at day 10 it differs

most especially in the upper part. Finally this difference seems diminishing

with time. However, in case(b) the initialized field differs most from the

noninitialized one in the first several days until at day 10. After day 10

the behaviors of the initialized and the noninitialized field look much more

similar than before.

Fig.14(a)-(c) shows the contour of streamfunction at 5Km for cases(a)-(c)

respectively. It is found that in all three cases the behaviors of the initialized

fields are pretty similar to those of the noninitialized ones not only in size

and phase speed but also the fine structures of contours.
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behavior of the noninitialized field, D: the behavior of the initialized

field.
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The above results show the similarity among all three cases. The resem-

blance of the time behaviors of the initialized and the noninitialized fields in

both case(b) and case(c) is a little surprising and interesting, as we found

before that in the presence of uniform easterlies the time behaviors of the

initialized and the nontialized fields are different. It seems that the effect of

the easterlies near surface is vanishing in the presence of mean shear. It is

not clear that this is because westerlies are dominant in the domain and east-

erlies are small. Therefore, it is necessary to further investigate the situation

of mean flows with both easterlies and westerlies.

6.4 The departure of the evolution of the stationary

wave from its initial state

Although we have found that initialization is not affected much by the

existence of model lid, there is some other problem rising from the place-

ment of a model lid. We noticed in Fig.8(a)-(e) and Fig.13(a)-(c) that the

vertical structures of both the initialized and the noninitialized fields behave

differently from those of the initial fields. As planetary stationary waves are

concerned, their time solutions should not change at all in nature. However,

due to the existence of model lid the difference field of the initial stationary

wave and the model stationary wave travels with the phase speed of free

Rossby wave. In order to see how much the time behavior of the station-

ary wave is different from its initial state, we calculated the change of total

energy with time to estimate this difference.



The energy equations involved in our time-dependent linearized baroclinic

primitive model can be derived from equations(71)-(76):

-p| 12 -V. p'+ p'V- (92)

cp _ 1, p'2 p' pw' N 2

- T-u - pV -' -- - -pw (93)2 c, P 8x 2 c p a z g

where V. denotes the divergence in x, y plane, and }-plv| 2 and }-2 are

defined as kinetic energy and internal energy respectively. Now integrate

equations(92)-(93) over x, y, z domain:

a jf |I|2dxdydz = JJp'V - dxdydz (94)

Jfdxdydz = - ' dxdydz - dxdydz

- J Np'w'dxdydz (95)

The advection terms ii in equations(92)-(93) and the V - p'v' term in

equation(92) drop out because of the continuity in x direction and the zero

normal velocity at y boundary. Then adding equation(94) and equation(95),

we get the rate of the change of total energy in whole domain:

V|2+ -- )dxdydz = P dxdydz'97t_ N 2'P 2III -NP2 a
- p'w'dxdydz (96)

Due to the periodicity in x direction the integral at right-hand side of equa-

tion(96) is zero, and the total energy in whole domain is conserved. However,



the column energy over z between zero and model top in a fixed (x,y) point

changes with time. Therefore we use the variable f(}lv'I + } - )dz to de-

scribe the local difference between the time behavior of the stationary wave

and its initial state.

The cases we chose are both the noninitialized and the initialized fields

of ii = 25.m/s, iR = -5.m/s and for wind shear(b), namely U from -5.m/s

at surface to 25.m/s on the top.

Fig.15 shows the time evolutions of the column kinetic, internal and total

energies at (00E, 450N) as compared to those at the initial state. It is found

that in the mean flow of ii = 25.m/s the column energy changes around that

at the initial state with the period about 18 days for the noninitialized field

and 16 days for the initialized one. The maximun increase of the column

energy of the stationary wave from its initial state is by 180% for the nonini-

tialized field, while the maximun increase for the initialized field is smaller

than that for the noninitialized one, namely 110%. On the other hand, at

u = -5.m/s for both the noninitialized and the initialized fields the maxi-

mum departure of the energy from its initial state is within 5%. However,

in the case of shear(b) for both the noninitialized and the initialized fields

the energy first jumps from the initial state to some level, and then oscillates

around that level with the period of 3 to 4 days. The mean value of the

energy oscillation is as about 4 to 5 times larger than the initial value.

Therefore, the above results suggest that in the presence of moderate

westerlies, in which the planetary stationary waves are propagating, the fore-



casting error is large when a model lid is imposed. However, in the presence

of easterlies the stationary waves are trapped, and the forecasting error is

relatively small. This is because in the presence of westerlies the difference

of the initial stationary waves with radiation condition and the model sta-

tionary wave is large, and so spurious Rossby wave is excited. The spurious

Rossby wave travels around with time in the absence of damping. However,

in the presence of easterlies the difference of the initial stationary waves and

the model stationary waves is very small, and so the time behavior of the ini-

tial fields is near stationary. Moreover, the comparison of the noninitialized

and the initialized cases indicates that initialization does not tend to change

the major features of the forecasting errors resulted from the placement of

the model lid.
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7 Conclusion

Applying the normal mode initializtion method to planetary stationary

wave disturbances has been studied. It is found that the vertical modes for

streamfunction 4' and v' are good representations of the vertical structures

of the initial fields varying in mean zonal flows. However, the mode struc-

ture of u' is heavily affected by NMI in the presence of easterlies. This is

because eastward Rossby waves are absent in the eigenmodes of the normal

mode initialization. Therefore, only in westerlies is the time behavior of the

initialized field similar to that of the noninitialized one.

Furthermore, it is concluded that initialization is sensitive to mean zonal

flow but not the existence of model lid. The change of mode stucture by

NMI strongly depends on mean zonal flow and this change is essential to the

time behavior of stationary wave. However, the relevance of initialization to

more realistic mean flows needs to be further investigated.

In addition, it is found that in the presence of moderate westerlies the

error of forecasting stationary waves is large due to the placement of a model

lid. Initialization, however, does not tend to change this feature. On the

other hand, in easterlies the noninitialized fields behave like the original

stationary waves and the forecasting errors are small.
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