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ABSTRACT

The general linear theory of hydrodynamic stabiliiLy of
internally heated, non-rotating, self-gravitating spheres
and spherical shells of highly viscous, compressible fluid
is developed.. The onset of convection in the marginally stable .
state for homogeneous spheres and spherical shells is studied
in detail, and the characteristic values of the Rayleigh num-
ber are computed from the theory for fluids having properties
similar to that of planetary mantle material.

According to the theory devedloped, the actual Rayleigh
number computed for models of the lunar interior and mantle
of the Earth correspond tc wvery high order harmonic convection
( £> 25) and hence =would not correspond to any global wide
current system. Analysis of the size of the viscous dissipation
terms in the entropy transport equation indicates that these
discrepancies of 109 to 107 .in the Rayleigh number for low £
‘values indicates the breakdown of the linear theory for vis-
cosity coefficients greater than about 10'S . A non-tinear ,
theory is probably needed to satisfactcrily remedy the situation;
however, due to bovious mathematical complexities such a theory
does not exist at present.
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Chapter I

INTRODUCTION

Recent investigations of the thermal histories and tempera-
ture distributions of the moor and terrestrial planets, which
were carried out undef the assumption of uniform distribution—
of radiogenic elements K%, th?®*, (yaar' and 1723?, have yielded
prevailing temperatures in planetary interiors to be between
2000° and 4000°K. Tﬁese c;lculations are based on the assump-
tion that the only mechanism of heat transport is conduction
lor in the case of McDonald (1959) by radiation).

However, Kopal [cf. Kopal (1961, 1962b)] has shown that the
conductive temperature gradients hence established may very well
exceed the adiabatic thermal gradients for silicate rocks, which
probably make up the bulk of the Moon or terrestrial planetary
mantles, by one or two orders of magnitude. For convection cur-
rents to arise it is not necessary that the material be molten,
but only that its vis¢osity be finite--no matter how large, the
temperature gradients be strongly superadiabatic, and the time
scale be appropriately long for the existing scale length. |

If one considers a visco-elastic material having a shear

visccsity coefficient # and coefficient of isothermal compression

_ 1 (e
B=7 (5)r (1-1)
. - ‘o_.n. emsec?t B 2> g4
with values of 3B = and A (00— for

silicate rocks, then the Maxwellian relaxation time is



T=Mp ~ 1000 years. Then for forces and iiﬁpulses acting
on time scales where t<< T | thé given plénetary body

- should respond esseﬁtially elastically. However, for forces
‘acting over time scales £>> T » such as gravitational forces
tending toward hydrostatic equilibrium, the Moon or planetary
mantle shouldiéave as spheres and spherical shells of highly
viscdus fluid. When one considers that the age of the solar
system is at least 4.5 x 10? years or 1.4 x 10” ksecondé old,
then on these time scales, the terréstrial planetary masses
are likely to obey the laws 6f hydrodynamiés rather than those
" of elasticity.

The gtudy of gravitationally and thermally unstable viscous
liquid formations has been the object of investigations, both
theoretical and experimental for several years. The first the-
oretical studies were carried out by Lord Rayleigh in (1916) and
followed by ancther English mathematical physicist, Harold Jeffreys
(1926, 1928, and 1930). This work in addition to that of Low (1929)
was concerned with two-dimensional, layered convection, and the
first systematic extension to three-dimensional investigations in
spherical—systems;was'made by - Wasiutyniski (1946):— This paper
_was followed by Jeffreys and Bland in 1952 and on to the most . . .o
modern work by Chandrasekha? (1961) , Kopal (1962) and Ashworth (1969).

With the exception of Ashworth, previous authors have assumed
that the flow was incompressible and hence the ccnvective density
variation Se was due to the variation §T in temperature

alone. As a consequence, the heat propagation was assumed to take




placé througﬁ conduction processeé only and the radiogenetic
energy source rate was assumed neglible compared to the con-
duction terms. In this paper we shall avoid these assumptions
to give a more general study than presen#ly exists in the
literature. Ashworth (1968) recently studied a special case of
kthe problem including compressibility effects and the derived
radial convection flow equation agrees in part with the author's
fesult. It should be noted that the basic equations derived in
this paper were déveloped éﬁer a year prior to Ashworth's recent
publication.

In Chaptef II a brief infroduction to the theory of hydro-
dynamic stabilify is presented along with the general hydrodyna-
mic equations for a non-rotationg, compressible, internally heated
viscous sphere, The linear forms of these equations are obtained
on the assumption that the perturbations in density, pressure,
temperature and gravitational potential due to the convective
motion are very small as compared to the unperturbed, egquilibrium
values. |

In Chapter III the perturbation equations are manipulated
to reduce the general system from seven to five dependent variables
with the only assﬁmption being that the unperturbed values of thé
density, pressure, temperaturc, gravitational potential and material
properties of the fluid be only radially dependent. The case of
a homogeneous fluid and constant material parameters. is also
devedloped and gives a completely uncoupled system for the radial

convective velocity.



Chapter IV is concerned with the detailed mathematical
analysis of a homogeneous fluid with constant material parameters
when applied to entire spheres and spherical shells. '

In Chapter V the theory developed in Chapter IV is applied
to problemé of convection in the Mdon and the mantle of the
Earth. The characteristic values of the Rayleigh number are
computed theoretically from the results of Chapter IV and the
effects of compressibility and radiogenetic heating are studied.
Tables I through IX are included in this chapter and represent
the computation of the characteristic value of the Rayleigh num-
ber under a variety of circumstances. Finally, the theoretical
calculations'of the Réyleigh number are compared to predicted
values for the lunar interior and Earth's mantle and the fesulting
discrepancies are discussed with possible suggestions for future
studies.

Appendices A and B are included for coﬁpleteﬁess in formu-
lating the mathematical problem and as a convenient reference

for the form of the hyarodynamical equations used in the text.




Chapter II
MATHEMATICAL FORMULATION

Basic Concepts of Hydrodynamic Stability

The equétions of hydrodynamics for all their complexity,
allow in some cases, simple flow patterns as stationary solu-
tions. The flow patterns, however, can only be realized for
certain ranges of the parameters describing the given hydro-
dynamical system. Outside these ranges the stationary patterns
cannot be realized. The basic reason for this lies in their
inherent instability againsﬁ small perturbations to which the
system is subject. It is the study of hydrodynamical stability
whicn attempts to differentiate between the stable and unstable
patterns of permissible flows. |

Suppose, though, that we have a given hydrodynamical sys-
tem which according to the equations governing it is in a sta-
tionary state, that is, it is in a state in which none of the
variables describing it are a'function of time. Let §«hd,,--nu;$
be a set of parameters which define the given system. These
parameters will include geometrical parameters such as the di-
mensions of the system; parameters characterizing the velocity
field; and the magnitudes of the forces which may be acting on
the system. These latter may include pressure gradients, tem-
perature gradients, magnetic field, rotation (centrifugal and
ccreolis forces) and others.‘

We seek then to determine the reaction of the system to
small disturbances. More specifically, we wish to examine |

whether these distrubances will die out, or instead will grow
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in time in such a way that the system departs further and fur-
ther from the initial state and never~rever£s to it. In thé
former case, we them the system stable, and in the latter, we
term it unstable. It is clear that the system must be stable
with respect to all possible modes to be termed stable, that is,
stability must imply that there exists no mode of disturbance
for which it is unstable.

If all initial states are classified as stable, or un-
stable, according to the above criteria, then the parameter space
defined by «,,d,, --

& the locus of which separates the stable

and unstable states, defines the states of marginal or neutral

stability.
This locus uvf the marginal stateé in the (d,d,, ...,%,;)~
space will be defined by an equation of the form
(2-1)

%L“|,°L\.) ",qj‘) = o

The determination of this locus is one of the primary ob-
jectives of an investigation in hydrodynamics stability. One
can then think of the parameters of the system being kept con-

stant except one which is continuously varied. The system

 EhhAav MmAaco~a FarAm o
LiiTii paoosl o LiLuvild o

T Rda) + 42 b -
ie when the parcicu.Lar para-

meter takes on a certain critical value. One can then say that

instability sets in at this value of the chosen parameter when

all the others have kept their preassigned values.
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oscillating and stationary--we have supposed we are dealing with

dissapative systems. In conservative, non-dissapative systems,
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the situation is generally somewhat different as the stable ;-

states, when perturbed, execute undamped oscillations with cer-
tain definite frequencies; while unstable states have small dis-
turbances growing expongntially with time.

vThe mathematical analysis of the stability problem begins
with assuming an initial flow which represents a stationary
state of the system. Then, supposing that the various physical
vairables of the fiow, (such as the density, pressure, veloqity,
etc.) suffer Sméll (infinitesimal) increments, we obtain the
perturbation equations governing fhese increments. In finding
these equations we linearize the basic hydrodynamical system,
which is intriniscally nonlinear, by neglépting all products and
higher powers of the perturbafions( Hence, we are discussing
linear stability analysis, as opposed to nonlinear theories
which attempt to take into account the finite amplitudes of the
disturbances. In this paper we shall only be concerned with a
linear perturbation theory.

Since our system is linear, we can in general, express any
disturbance by a lineé; superposition of normal modes. It is
clear that this set of modes must be complete cver the spatial
range considered for such an expansion to be possibie.' Let the
various modes appropriate to a particular problem distinguished by
‘the symbol £ . In practice, several parameters may be needed to
distinguish the different modes} and we assume the symbol K to
represent all the parameters that may be needed. Then if A{x t)
symbolically represents our disturbance, then symbolically we can

write

At = §dk A (t) -  (2-2)
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One can also separate the time dependence by speciali-
zing the form of the normal modes sufficiently to seek solu-

tions of the form

Ag (Xt = A (x) e,sst (2-3)
"where SE i;’a constant to be determined. The subscfipt has
been attached to the s since; in geﬁeral, its value will vary
for different K.

Upon solving the remaining spatially dependent equations,
sﬁbject to the appropriate boundary conditions, one will find
in general that a non-trivial solution will not be allowed for
arbitrary values of Sk . Indeed, the requirement that the

equations will not allow non-trivial solutions satisfying the

boundary conditions leads directly to a characteristic or

eigenvale problem for S . Thus the problem has been essen-

tially reduced to finding the Sk for the various modes. 1In

general the characteristic values for Sk will be complex:

Sk = Se + (S | (2-4)
where S,; and S,;: are real constants for a given & and apart
frecm k will depend on the parameters Zdudg'uvgjfof the sys-
tem. The condition for stability requires theﬁ that S£K< o)

for all ¥ . The states of neutral stability with respect to

the disturbances belonging to a given Kk will be characterized
by
SR o~ - (2-5)
.E (&')"") 5‘_;3 = O
This gives a condition on the parameters §oly,%., ---, ;% and it

will define a lccus

= (2-6)
§§l L*))-.-I«") =0
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in the (db .Vui)—space. This locus will separate those states
which are stable from those which are unstable to disturbances
belonging to a given Kk . Now we can observe that the locus
{11”‘"1«]) separating regions of complete stability from those

of instability in the (o), -,%;)-parameter space is the envelope
of the &5 loci. Also, we can see that when the system becomes
unstable as it crosses this locus at some particular point, the
mode éf the disturbance which will be manifest at the onset will
be one whose locus gE touches 4 at the particular point under
consideration.

Further, we can distinguish between the two kinds of marginal
states (stationary and oscillatory) depending on whether or not
the imaginary part S: of S, vanishes when SE doés. If 52 =0
implies that5§=° for every K, then we have, as termed by
Chandrasekhar, the principle of exchange stabilities being valid,
and a stationary secondary flow is fhe'result. If, however, Sg + o
then we have}overstability and the system will exhibit oscillatory

motinn of a specific mode as predicted explicitly by the theory.

=

The Governing Equations

We wish to consider a non-rotating, self-gravitating sphere
of viscous, compressible fluid which in its equilibrium station-

ary state is couwpletely described by the four scalars: density

£, scaiar pressure EJ temperatu;e 7; and gravitational:
potential ¥, . For a general hydrodynamical system we have the

governing equations: the continuity equation,

2@ = (2-7)
3t + V.CQ‘Q) 0]
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the momentum transport equation (for derivation see Appendix 34),

g( = +uwn) = —vp + VY + uV™y + (u'+Fu)IVL (2-8)
t2 (WY . ve + @vIgM'

the entropy transport equation (for derivation see Appendix B),

@T ' . .
eCv (51 + ?.-v‘l‘) = V.(koT) + L, (Fuvy :@ Yy (2-9)

e -20E Y F Qs - (?5_)5 (V.Q)

Poisson's equation for the gravitational potential,

Ve = -4 | (2-10)

and finally an equation of state relating ?,#,and T,

This gives us a system of seven independent equations in
the seven dependent variables e;§’13~& ;Y and along with
the preper boundary cbnditions will give 2 proper mathematical
formulation of the problem.

In accordance with the previous discussions in the first
part of this chapter, we shall consider the system at
equilibrium; (whether stable, neutral, or unctable we shall
attempt to determine) such that the dependent variables are

functions of radius only in a system of spherical polar coordi-
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nates (v, 6,¢). Then we shall perturb the system in such a way that

the dependent variables become,

g = e, (o> + e'er,8,@,t) (2-12)

b= bty + p'v,8,9,+) (2-13)
T = T,y + THirnee,t) vﬂ o | | (24-14)
¢ = Ppv) + wlev,0,0,t) | (2-15)
v = u'(,00t) | (2-16)

where the primed quantities represent the perturbation quanti-
ties. Substituting these quantities in (2-7) through (2-11)
we arrive at the linearized perturbation equations:

1 -1
?¢€ + w.(pu') =0 (2-17)
°t :

6. %% = —vb' + e, UY + €' VE 4+ _uT R 4+ (W IuvTy (2-18)

>t + 2 vy’ )% V/u + @) gu!

I
eoCV (?D{ + %I‘VTD) = V. (kgT1') +Q..‘ fT(’bﬁ) ]vu! (2-19)
Y = - 4wGe - (2-20)

To find our perturbation equation of state we can expand

the density akout the equilibriur density to give

€= € * [@;r)k ]o T+ [ 'Zap !T’ }o IA) e (2-21)
Then using the definitions of & = -— L [C?f) A and
; . £, 2t/p do
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¢, 00 .
P;—_—-_ e [_<'S_P)T}o .~ we have, considering linear terms only,
= e [-aTi+ppl. (2-22)

One can envision some difficulties in writing down the
linear form of the éntropy transport equation. In equation
(2-19) we have neglected the viscous dissipation terms which
are quadratic in %' which is in accord with our linear the-
ory. However, we are going to be consideting flows Qhere the
viscosities may be extremely lérge (such as for mantle mater-
ial) and hence the terms quadratic in 2! may be as large as
those retained in the linear form of the equation. One should
keep this in mind when considering the rezults of the comple-
tely linear analysis which will follow.

Our system is now complete, excepting formulation of the
boundary conditions, with seven linearly independent equations
in the seven dependent variables ¢', b', T, %', W' - We assume

that e;,#ojT,,¢,, Q}o as well as the material parameters

o« B K,cvjfg/u' are all known functions of position.

-

The Boundary Conditions

We shall consider all houndaries to be perfectly spherical
since the fluid spheres are non-rotating and any perturbstions
of the boundaries will introduce only second-order eifects on

the implied conditions on the perturbation variables themselves.
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Consider a spherical shell which is confined betwecn
r=R and \'=4R where R is the outer radius of the sphere

and o<a<!. In all cases we need to require that

Y =0 at v=R and w=aR. (2-23)

The remaining boundary conditions depend upon the nature of
the surfaces at ¢=R and \'=aR,.Here we shall consider two
cases: The case when the surface is rigid (as approximating
the core-mantle interface of the Earth); and the case when
the surface is free (as at the boundary of an isolated sphere
in space). |

On a rigid boundarj} we must require that the transverse

components of the velocity also vanish,

Up = Ug = O at r=R amd v=aR . (2-24)

For a free boundary, we need to impose the condition that the

tangential viscous stresses, expressed as the off diagonal

terrc of the general perturbation pressure tensor (see Appendix A),
ble and qu vanish, that is,

- (2-25)
P‘rs =0
and
#'v_q, = 0 at ¥=R aud ¥=alR. (2-26)

In addition, when considering the special case of entire

fluid spheres, we have an . additional condition.  Specifically,
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we need to requite that

y' =o0 at v=o0- (2-27)

The specific mathematical conditions imposed on the sys-'
tem by (2-24) through (2-27) will be fully developed in the

following chapter.
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Chapter III
ANALYSIS OF THE PERTURBATION EQUATIONS

Reduction of the System

Let us consider first just the continuity and momentum

transport perturbation equations:

20 4 y.(guy =0 (3-1)
2t :

and

)
82 = —vp + UYL T 4uw Y+t Lu)ve'(3-2)

>t .
| + 2 (VUYLUM + @'y

Then taking the divergence of (3-2) and defining A = wu'

we have,

2A -{—-.b_\“-‘i‘.vep = Vt (.?o"f‘"\" '-Vea'qu‘ —*|V??° (3_3)

% ot t
Yl vE) + [(uem) V78] 4 g,
+ UM+ va.wm v

where

-

£ o= 29w .gu + Awn'. (3-4)

~V

The radial component of (3-2) can be written as

2 iy = o 2h 120 Pu (3-5)
5w (% —P') (’e-,\,*”“-",.;;*-?,;t‘_’

- AR T L.y2A i~
VR IR R
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and to eliminate the combination e,%'—p' we operate on
2 .+ and use the

(3-5) with v ¥™v and on (3-3) with =
identity
— T

which holds for any function 4. sufficiently differentiable.

Then we have
- .

~e e (e %ee) -( "?% (3-7)
- 2 zwe‘ 2 '79b
(v 'i,’b) -y (r‘& 2 )

- (\'2’\‘)1 VzPo) + %— (""'Veo-V‘P’)

~v"'—l

\
-voreee, "2 ovwre [avrud G 3 B
v [(q)* P VEA 4 TE, + T wu 4 VAV (i)

Consider for a moment the linear differential operator

, then we can see that

B, (43 = v k) — 2 (k)
L 2, A
(v * "’S;‘V ’bV‘)’h (__.. 6 * S'bb Sm‘@w )11(3 8)

]

CSP h)
If we define this angular operator as d , then (3-7) can be

rewritten as
2 (¥ e%) + ;% (2 Tpp TH') (3-9)

-2 ,.e)

'bur )

Y SR -
SRR S all PR AU W 5 2+ 4 3
Lo
sl

o 7““ K —ﬁ’ d 1‘ : 14 -+
e (uew) V8 + O f + V7R LIN t va. Y
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At this point let us consider our perturbation equatioﬁ of

state, ‘
?\ = eot__d—r\_‘_ P*M] B - (3=10)
One can conveniently eliminate b! through the use of the

radial component of the momentum transport equation and arrive

at
] § q,l >¢, . A
2 (e ;e;-rr)z @5t ...e\s‘é‘__ s AT+ G2 (3011
[
2u,
+ f,v? - 6 ’;Tf:

For convenience let us rewrite the gradients of ¢, 75 and 4%/

and since these variables are only functions of radius,

‘\_4’_" = = §(r)v- (3-12)
dv ’
ido - —_F@v
dr
‘ﬂ& = -8y .
dr

Finally, if we assume tlat the materiai constants d:ﬁlhcscvu”
and _u' are only radially dependent like Co, To, and ‘P,
then the order of our system is reduced to five with the de--
pendent variables e\T“,%”,'uQ and & . The governing
equations for this system are

20 4o b = Scr)vuy (3-13)
2t
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ry A\
e (5"6‘- SY‘P‘] = ‘S‘v (-YL.D'_SSL) - YV"C\’Q,%;{ ) (3-14)
+rviyr K/uv"u,_‘ + (/u'-r%);)%?_ + ‘Q:"T:]
' d
e (e T - vh b T Y

A
.':v dv (M'_“l»)l

_ 2-
W = et Trur + v CkeT) + Q= (TR A (3-15)
%

' 1 —_— \ Y

2 (e__._+°‘e°T) = (’b'b%“i ~Fre' +u<?y, +uisin) 2T (3-16)
"oué

£ - &

(3-17)
A D LA L

At this point our system is very general, with allowances
for radial variation in all the material parameters as well
as ¢, and T, . Actualiy, the system can be reduced to three
variables W', ' and T' , but even that yields a very
complicated set of coupled equations. Rather than this, in
an attempt to obtain some tractable equations, let us assume
that all of the material parameters are constant. This greatly

simplifies the model and our system"beCdmeé -

T L3ve —Tret] = -2 (\*ZE) ~ v uive, ) (3-18)

+ pr Vv Ty —-,u.s‘r.v"V"‘A

—~
[€8)
1
|
0O
~-

e, - r\"'@_':-)e]o 4
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= (%) + d‘:’%}r‘ €oP(;(: ~3pre’ ¥ ppYT b | (3-20)
&t p - (’.?“"

along with (3-13) and (3-17). AT this point we also need to

consider the form of the heat source term, Q+ . There are

many possibilities; however, we shall consider only the case

of a distribution of energy sources so that Q, = AR -

Then Q,, = i,crle. and Q,!' = Xvrle'- Our system can then

be conveniently rewritten as

e )
[eo3rd + 2.2 v ) (*%,) | (3-21)
= _uv v (roiu) )Anor (r*v*a) +v $ W) —yv? (Vf’.zm")

— \ 3 ) \ 2b
(&- &l - vrw + £ (R)-aq (TGl (3-22)
— ! ._rs
(X +e3pr) (E.;) = & 2’" S LN AT (3-23)

+ c»'“»)@ - eoﬁ”“'

along with (3-13) and (3-17). We shall now apply the above
system to the case of homegeneous fluid spheres where

Ce = constant. ) -

Application to Homogeneous Fluid Spheres

When the fluid is homogeneous, i.e. @, = constant, then
one can readrly réduce the system tc two variables, e' and ur’
by successively eliminating Wr T' and A . First we shall

2k

find it convenient to examine the term [T (wfyelo.d .



; = ) = b, (r) - > 4!_ d
Since To ‘To r and Fo f> )y to zero-order, 5% In 5
and ¥‘ud and 43(r) must satisfy the equation of-
hydrostatic equilibrium,

A_fo = J_qﬁ = —@qvr 3-24)

éy- e eb 3r ] S . (
then
[1(2),]), = Temfeded . o (3-25)

»T/¢ Je ¥

After considerable algebra, and using that rv*u,) = Vi(rull-24,

we have

.. Yy
(3 o) & (e Dl epee] G20

— [« (3+V'ur) y:ur }ro—)]‘g (ru.')
. 2 -
= fRerE) - X (2 eed)] [ G s epTr)
+‘In6,e°‘p%£‘_ L (/“u' M) pr<® V":rbt ‘Q%P"vz‘&%.]

FE +r2)2 v (A + T,,)t)]g( - )

arnd
(9" - & Zv o] (vu) | (3-27)
- 2@

B - > WA
2 -— L 2 —_ «
= (:?Ojvg‘-*—v"bf*-ov'w ~ MY Vot i 2t JL"@')

If one has knowledge of the forms of '?)g‘ and A  such
as §f{§, R = constant, then one can hope to uncouple the
svstem and examine the nature of the time dependenc:. as dis-
cussed in Chapter II. One would likxe then to determine that
a state of exchange stabilities exists and then examine the

nature of the marginal state stationary flow. Rigorous proof
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of existence of the marginal stability state has been obtained
in only an extremely limited case. fhis proof is due to
Chandrasekhar in Chapter IV of "Hydrodynamic and Hydromagnetic
Stability," and is concerned with spheres in which the fluid
is incompressible, which have ¥, 5 and A all constant,
and the density perturbatioéns aré due solely to thermal per-
turbations (i.e. ?:o ). In fact, a proof of the validity
of exchange stabilities for the above cases under the assump-
tion of compressibility or variation in ¥, § and XA does
not exist in the literature at the present time.

-At this point, however, we are going to assume such a
state of S; =0 implying Sg =0 does exist and
attempt to solve for the resulting stationary flow pattern.

Then we have 2 =p and after extensive algebra, the

°>t

system can be entirely uncoupled to yield

Iir ) .
[Vj‘t:‘ 1 T [("T(‘?eo P - deb rot) 74 jcr; (3-28)

+6°P(3+ 'b ]v (rul) —_— Jeo:v‘“ck)icyu )y = o0 .
: A

In the following chapter we shall attempt to apply the

radial flow equation (3-28) to the casec homegenecus £1luid

[

spheres and spherical sheolls.
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Chapter IV

THE ONSET’OF CONVECTION IN HOMOGENEOUS FLUID SPHERES
AND SPHERICAL SHELLS

In Chapter III, the equation governing the radial flow
for the marginal stationary state was derived. Let us intro-
duce the non-dimensional length x = r?R, where R is the outer

radius of the sphere. Also, let us define

(@) Foo = $nGe 3 | (4-1)
(b) Acxy = Ao q(x)
(c) Yy = %7"(-‘20:)
@) Cq = CedroRF
Kk
(e) Cﬁ = _%“G.‘eblpR’L

Co = 4Tr61€§q°(1°CVB_Q ( Mon.-dimensionat Ratjletg'h Nam ber )

(£) T,

-y

and our equation becomes

Y )
) w }v vup) +c9[;;x,+3w.&]v vl 4-2)

~ EY8))
— Cr &) 'Ktru,r‘) = 0

Let us examine the boundary conditions, as defined in Chapter II

in light of the form on the governing egquation (4-2).
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Boundary Conditions

Consider a spherical shell confined between x = 1 and
X = a, where 0 <a<1l. 1In all cases we must require that

U =o at x=a and x=1, (4-3)

then clearly
, ru‘_‘ =0 af x=a and x=1. : (4-4)

The remaining boundary conditions depend upon whether the
surface is rigid or free. On a rigid surface we have discussed
that 1Xé and 14$ must also vanish. Now from the equa-

tion of continuity for the marginal state we have
2u) | 2u) 1 oud toud ) + — M@ _ .. (4-5)
( or _;_r) + ¥ ("—o_é +C°+®u&) Yim® @ °

Then requiring the vanishing of %' on a surface of r = constant

~

for all values of 8, ¢ gives the boundary condition that
2ul _ o on a rigid sprerical boundary - (4-6)
oY

Then we can easily see that

o

2. (vu ) =0 on a rigid spherical boundary. (4-7)

v }

For a free spherical surface we know that the transverse

viscous stresses must vanish ancd this requires that

(Low) _ ug , DUS ) o . (4-8)
\r 26 k= or v
and

L Ug g\ _

vom® Y —§ t v J=o - | (4-2)
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These must hold for all &, on a r = constant surface on

which ot =0 identically, so

2 US
V’,{r( - ) =0 (4—10)
and

2 . udy _ » |  (4-11)
Yor ¢ ¥ ) =0 .

Then using the continuity equation

2 (R, , 2u)/ 2% B S
A = Uy = 2 _|(ruld =u =0 4-12
e lav ¥ F ) = ) T ( )

and hence we have

(et,) =0 on a free spherical surface . = (4-13)
ov*

The Method of Galerkin and Its Application to Homogeneous

Fluid Spheres

From the nature of the previosuly derived radial flow
equation and boundary conditions we see it will be favorahle

to expand the solution in terms of spherical surface harmonics

as
o 2~ "

vt = T T W) YO (O, (4-14)
n:( M-—(’.—t’ i - - ’ )

) . m . th . .
where Yn e, 9l is the 1 spherical surface harmonic of
order m. Further we note that £ Yo = -200¢1) " and if

) 2
we define Dy = j—!, + %-f-x - 2%) ;, "= have
D wWg (1 2 L oxe * « 4-15)

- Cd \ IR .} D'-*N.g(.l) + ER—Q.UH'\) 2 (g Walt) =0 -
gcn
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Since we are considering entire fluid spheres, and
Po = constant, then one can easily show that 3 = constant
so that $(x) is strictly unity in this case. Further, one

has that from the zero—ordér entropy: transport equation

- To = ~ A -
AL S X (4-16)
‘%E: = — E\?’- S}Ltr)\""d\r’ - c——'\-‘_—" = ——icnv (4-17).
and

T = = ) de JAe e+ & vy (4-19)

so that requiring To to be finite at r = O gives Co=0
and specification of Atv) uinquely determines ¥ (r) .

Further, we have that

\
20 = —;%, S—»,cx) x*dx o px) = g;,_‘%x(x’ xX83)) (4-19)
and the radial flow equaticn b=ccmes
d = _ X 4% 2 - _
[D2+ Cp (6+x5, ) D Ca (F+ § 5 ID% (4-20)
+ 2ty Cp 20 ) Weex) =0 - " -

For a moment, let us consider the more genzral problem of
finding the solutions to a differential eguation of the form
D (wy =0 (4-21)
where 1D 1is some ordinary differential operator, subject to

homogeneous bcundary conditions and x = 0 and x = 1 (say).
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Then if § @co0} is an orthogonal set of functions which
are complete on the interval (0, 1) we can consider some appro-
ximation to our solution, W% (say) as

Uy = ,2 ﬂj € o) - (4-22)

Now in order that <w¢w) be the exact solution to (4-21),
it is necessary that ID(®) be identically zero; and this
requirement, if (0 is to be a continuous operator, is equi-
valent to the requirement of the orthogonality of the expres-
sion D (W) to all the functions of the complete set é‘?,“"'{

(c.f. Courant and Hilbert, Methods of Mathematical Physics,

Vol. I, Chapter & ). Hence
) [}
Sogx STl Qe = Sbéx D L% n, Q,'OU]Q:O‘) =0  (4-23)

for k =1, 2, . . . and where 3 ® >} satisfy the ortho-

gonality relations

{
Soéy §oo @ o Py = G 8w (4-24)
where Qi is some normalization constant for a given j and
5 o0 is the weighting function. This procedure, however,

will give: an infinite set of linear equations for the coeffi-
cients EA(S .- One can approximate AW« by letting

YR 'g‘:A;' @'(¥) and then we will have an AMxN system for
finding the ; A; % . This method, first proposed by B.G. Galerkin
[c.f. ZKantorovich and Krylov (1558)] will give an essentially

"best fit" approximation to the solution. In the case of a
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characteristic value problem one finds that the system (4-23)
will give non-zero SAW§ for only a specified set of values of
some characteristic number. One then has an WNxA secular
determinant which upon evaluation yields an'hth—order approxi-
mation to the desired characteristic value.

To attempt to apply Galerkin's method to the equation
(4-20) let us introduce a function

2o0 = P wa - | ~ (4-25)

and expand  Z(¥)  in terms of some 3 &;(x)} which is
complete over (0, 1) and will satisfy the hecessary boundary

conditions at the end points. If we note that

(&5 42 & — gy Tuwn €0 o - Tonn OO0 (4-2¢)
dxt X dx x> Ix T

we can see that a convenient choice for ECLTXIQ will be

% "I\i‘ Jaaie CE()-XI} so that

2Ky = %3( ,)EA’ T-ullaceii” (4-27)

which will satisfy the boundary conditions if 264[3 are

the jth zeros of Jgave ¢ 3) . Then a particular integral
of (4-25) which is free from singularities at x = 0 is é%i 4%:&1555})
®) Ix

Adding to this the homogeneous integral which is non-singular

at the origin,

\ x_tg-l{ Ce.g')
us = 3Wexy = 2 A-( - = ! -
RS ) Q, ) } Lé_':; T (4 28)

wegxt 4 et )
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| At x = 1, Wge, (0 =0 ;, SO clear;iy Bcjj = - Cqg),
while the explicit nature of B(j) must be subsequéﬂﬂy
determined from the other boundary condition at x = 1, namely,
either <dWe;j/dx =0 or 4%Wej /uy* = © depending on whether

the surface is rigid or free. If one applies these conditions,

Bti\ can be conveniently written as
: _
Re) = = Tana ) (4-29)
Y e{}
where b = 2 for a rigid boundary and b =-'i%:' for a free

boundary. One can then write for We, (x),
We 0 = u Tar e 4 b Tl o) (XR- %) (4-30)
e‘l X LleQ)
If we note that the orthogonality condition for the
half-integer Bessel Functions is

( 1 >
de X :r&"'l{?. (€ew X) T_Q{-ll; CG.Q)'X) = JS,J/‘!\’ [xni»(lz,CG(")} . (4_31)
(-]

Then using the definition of 2,0 and Wej ) and multiplying
(4-20) by xaﬁ'ji+uiékax)and integrating over (0, 1) we have
the Galerkin conditions,
T $hdk [T, €]’ (€ + 6Cp) (4-32)

v T - TR *ceuen (TR« TR =0

gc.‘ k:‘) 11 sesen .
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where
© Vo sk d Te+lz (€o; )
(a) I}. = jndx xX Nerh CCerK! d—\( ( __;E;___I )
Gy ) ~ |
(b) Ik = Sbex x Te+n CEarx) Tpyuy €ejxd (£ +
{
Q) )
(c) I,.K = e—;q Spdx x 800 Topy, Ceewx) l-.ul(z,(é'e,-x)
)
@ _ b
@ Ik = ;& Jdx 200 Tavw ceenns (x
/ o

+% X.Q+7/)_} T

l

o

(4-33)

o

)

8

_Q+l(;(6'cl.) -

¢
The matrix component due to :fsk can be calculated

explicitly using one of the recurrence formulae for half-

intéger Bessel functions, specifically,

Eq; X Iﬂwhceqx) = (L) Jowy, Céex) — €¢j X Jawsy C6gx) (4-34)

and using that

|
S dx X" 3_4*5’l (GL" ~) :r-Q,-l-\/), Ce¢Kx)
°

€
-7 G-'ZE%Q? 342,&-\(:, ( €ej) Tl—e*\h« CEer]
R ~ Cek
3 z
@R [ 3y, Cend T
2 €rx

(4%32) becomes

. 3
2 M é [%QP - s’ﬁtl z Sik KI‘Q*-VL C€xj) ]
)

- Lo Eav
+ kP =5 SRR

('—'2," ™

-

—~3 G
+ Cp QD) (I;L + k)

r

T
L - i

]

(4-35)

(4-33)

! — PP A [ R
T'iauy C€ex) Tloaw, (€oy ) Li—oyns

L =o.
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or for non-zero § AR;%,
. @)
| 2 (3¢ - e gix (Thun el — CaTyn (4=30)
+ Cp €e¢y €ax T s Ce;) J’L”(,’Céeu). (1- 3)"‘)
€)'~ Eox

_ «
F oG 2y (ITor+ Th) S\ =0

We see that the specific forms of secular determinants must
depend upon the distribution of energy sources as expressed
by A LX) or equivalently by 4 ¢x) . Some particularly
convenient forms of A cx) will be discuseed in the following

chapter concerning applications to planetary interiors.

Convection in Homogeneous Spherical Fluid Shells

We now wish to consider the application of equation (4-15)
to a spherical shell of homogeneous fluid confined betweer x = 1
and X = a ( 6 < o < ‘) . In this case . §X) cannot strictly
speaking bp unity, for if Mg is the mass contained in the sphere
enclosed by the sphere x = a then 3dxy must be given as

g = 6 [(Ma - $weea®) o, + Fwe. ) (4-35)

or if fe is the average density such that %-uELG? = M.
then

— —; ) A3
g = %‘né'e, 3xy = %n(’oﬁ [(—Cb_‘) ;(—3’-"!] (4-36)

so in general (¥ * I.
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Again we wish to define a function =2} such that 2= dYwy,.
However, this time we need tc expand T in a series of
functions which are complete over (a, 1) and which satisfy
four boundary conditions. One such set of functions can be
constructed as cylinder functions from half-integer Besseli
functions as suggested in a paper by Chandrasekhar (1957). Let
us construct these functions thén as

Gasve, 241 Cle; %)= T uw‘)cg,ia) Javity (§e; X0 (4-37)

— Jovie (%e52) 3.-(_,_+u,_ (Be; ) -
The set of roots §3q§<3f the above equation is infinite but
countable, and all are real, simple, and distinct. Then it
can be shown that ?64“,,” FIYA cgg;x)} will form a complete set
over (a, 1) with the orthogonality relation

\ ‘ 3 ‘
[ 4x x Gavi,arvs CGuen) Gotue, 046 Cha; X = Iy He,)  (4-39)

where

U

(4-40)

B 2 {Siwz (fej0) __l]
et T L Tern (ge) '

Expanding 2} in terms of these cylirder functions we

have

\ . . . ey
Ty T X} %Ai Covite, £+ (T, %) (4-41)
and immediately we see that a particular integral of 2(x)=-35; We
is
P \ v (P
W, (X} = Cavuy @i (FeK) (4-42)

94 —
) ?&, d X
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and adding the homogeneous integrals,
wetx) = % A; [3.,'),- Gty 241 (fo/X) + B,y x2 (4-43)

R+2 —(R4)) -
F RGBT B X ]

The specific forms of B,¢), Baty), B, ¢j) and Byl) are
given from the condition that 4»02’- (x) =0 on x =1, a,
(@) B ) + Ba()) + By(j) + By(j) =0 (4-44)

242 —QH) —(Q-1)
(b) B|Lpoi‘ * Bopa + By -+ Bq(,)a =6

along with conditions on both x = 1l and x = a which depend
upon the exact nature of the boundary surfaces.

If we now substitute the solutions for %(.x! and g (X)
into (4-15), multiply by 7(3{" Go+\hy iz (fex¥) and integrate
over (a, 1) we obtain |

z A { j'u = ( Cavun s (ot ), ( Gasle ,2+:/Jm1)(4—45)
} o

SIx SJdX
! 2+ CPrwX) 3. A G4tz C3ei X)
ep Yoo (Samaann) (30 ) (S ecta)
Ix | wy Ix

(X) CPox X) Egells, 2+ .
- Cq S dx x (,;W %m\ Crtify X+le CfoxX) Crtla, ¥z (%)

+ Cr L(R+1) [ -l:‘q ;i(-r. p,q_#h,j]
]
\

| 2 e
4 cp 2am) [ dx Ceave ey (frex] LB X + Bugnx

—(au — &= | =
J Z ] o.

+ BgIx ¥ By



37

The last integral, call it Rk; ; in (4—45) gives after

some lengthy algebra

1*3-/;
Rki = fﬂ {[Ce+‘&,z+f/z_ Cfu.) - 644!/;,1*%(f«¢ﬁ4'46)
ng(’)
2+% .
+ [Cevin, 2-34 (fan) — A Certh, 2-% (fers) 18, Cj);_
Kh)- can be simplified using the recurrence formulae satis-

fied by . e°.2+\lz,,v and noting that o+, 24 (#.1) and

60—'/».,12*% (§ex a) are both zero. These are
: 24+3

(b)  Crrvz,2+h Cagey = — B3 ol a8

A Pax

201 f
(c) c’.ei—llz., 8-2h Cr) = 2! E erin (Jax)

Per
(a) 6:_44/—;_} 2=, (ager) = %"’ 6'-£+l/;( Ger )
: AT

Further, let us define

| 2+34 '
(a) ?—‘24-\11) kK = Ceoytn CZQKJ - a ze.c-l-l/a (AFer) (4-48)
) ' A+l
(b) 8,(_.,4/“ < = e,g_-f-l/z Cg.eg) — a Eesin (47e1d

and we can conveniently write E,c)' as

Rr; = ;?n L(um Tewta, = B2(j) (4-49)

- (22-Y) €2+l/£; L3 BY (s ] .
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Finally, we can obtain a secular determinant analogous
to (4-34) as
. ) N . - / Jk‘
, 2

U

1(4—50)

=O,
where the matrix elements are defined as

(@) Mu = Slax‘xz 92-&‘1;,@\-‘11 C?,zki)}p“ (62.;1/1_/3'41;‘({&!))(4-51)
} a € Ix W JX

)
a vy JX 3 dx Ix

|
M (v) \
(€ Ok = Sa‘“ X (.'Em (I3 S 2ty 24¥: G Gpyu,, 241 (94X)

with 3&+ij and iip[ given by (4-40) and (4-49) respectively.
As in the case of entire fluid spheres the evaluation of
the matrix elements will depend upon the specific forms of
gravitational field in terms of {(x) and the distribution of
internal energy sources as represented by A«x) or equivalently
4« . In addition, evaluation of jo depénds upon cal-

culating ®B.¢j) and By¢j) from specific knowledge of the

boundary conditions at x = 1 and x = a.

--Determination of B, ¢j) and By¢) for Four Possible Sets

of Boundary Conditions--

As we are considering our bounding surfaces tn be spherical
and either rigid or free there are four distinct cases for cal-
culating B and  Byy) -

(a) ‘lv-ee_ SW-{aces Q.'(" X=a and X=1:
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In this case, Jz“uf/%x° =0 at both # = aand x = 1
so our conditions are:

at x =1
(a) -1 (B, +B,(J‘I] + (A+2) (+1) K,B,,cf) + By (y)] (4-52)

= 2 e:l**h. Cjﬂ')

1)
at x = a
(b)) =-1) (o au) NP By () ) y
oy [ABap + a9 = Q:: Clavun (g2 ).
- 4 v

Using the above along with our previously derived con-

ditions from *umi(x\==o at x = 1, x = a, extensive reductions

yield _
: \ . -} N
Yy = -3 Y. 4-
(a) B, o) (20t 0 (\__Au‘_,)%g R+Yz, ) (4-53)

B 1 S ot
B A mm ey

(b) Rigid surfaces at x = a and x = 1:

Now we must have éUJQiﬂix =6 at both x = a and x = 1
which yields

at x = 1

(a) £B.¢) + @+2) B.) = et B, () —(0=1) By (y) (4-54)

1 ~l PR
?4f oo+ L FRy)

-

at x = a B
' p e -({R+2)
(b) R, ()at" + @IBia — (AF1) Byjle
-R a’"z |
~ (R-1) By¢j)a =-=_- G+ (ZQ/-Q)'

3
Be,
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Then using equation (4-44) we have for this case,

(a) B.¢jpy =

2 - (4-55)
Tvr (2,0) 7‘/3 { (41"’“ ) ?_{,{-‘/1.,

- (oR-1) HC"") elesin e,
) 63-1-1/,, Cic,a)]

) \
+ -0 (T - &,_\,;

(b) Bq(f\ =

t _L ?-M-\ 8 .
Ty (0,8) ?’/3 ( ( ) R+M2)

+ (2R+3) (l -1\ C‘z-n(,_ (92,)

— (22+3) (a” —at*h) €'g+l/,_ (g,e;a)J

where we have introduced
Toe (,8) = (1+4R +42) ( Lovar) — t{( + o) (4-56)

- (3R*+¥3R-6).

(c) Rigid sufface at x = a and a free surface at x = 1.
In this case we have dWe /i, =c at x = a, while at x = 1
sz‘li/d_,t:o . To solve fuor B.() and Byq) we
then use (4-44 a, b) along with (4-56a) and (4-56b) rielding
(@) B, () =— ;:;—-;-;-,_- {(um (" m ) Feewsri (457
‘ " - (3R-1) ( i — 1) Grvi Py 5-_‘1
(2241) (L.— &) vt

—(28+3) (L— u“) @ 2+\a €3] }

(b) l
T\'{- u}“] ?{/

Warloa o

Trg (Kai = (a+1) [ (2R+1) (——~ -az) — 2( ,_m 2 )]‘ _ (4-58)
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(d) Free surface at x = a and a rigid surface at x = 1.

In this final case we have just the reverse of (c) with
Azwe)-/dv." =0 at x = a and “’w‘f/dx =o0 at x=1. Using
(4-44 a, b) along with (4-52b) and (4-52a) we find after lengthy

reductions that

oo \ . .
(a) B = Teg (Qa) §o (:(M-H) (“u“ a%) Fasit, | (4-59)

* 4 + (28— QQ-\&) G‘-Q-”Iz Cr(/'a) -]
Y = { z&+\ E
b ¢ = 2R 41) L4\
(b) B»{ i) Toe 220 12’5 (( (o.’— ) Q ) 2))
-t
“+ (2&\';\ ( FYIIN ¢ ) 6,24»(11. (12, d.)]
where T};(xﬂxy is the same as that given in (4-58).

Finally, if we use the form of Rni given in (4-49)
along with the values of B1(f} and Bv‘f’ for each
of the possible combinations of boundary conditions at x = a

and x = 1,we have

\ {8 a l _l_ ) )
| = 2(1243) (7 o
RKg T,, "Q/“‘gz ?4’1 [ \) (Au+‘ a* c}rul(,,,k ﬂ,uu;“ (4-60)

240

+ 2(2.8-\) ( -—';_ — & ) £1+t(;,t< gqulr.,j

- (a1} (22+43) ( a:.—‘) ( ?}",uu,;, K&U—Hn,{ + g,‘g_-plﬁ__,)'SQqu)—E
for rigid boundaries of x = a and x = 1.

For free boundaries of x = a and x = 1 we have

£ 2 2242
K = =2 Feeu '?.LH-( w (4-61)
R ) (2240 fok 20 (. L—at T t"‘ i . 1
—-— ’ ; e
—é«z—f‘ﬁ:—,' &.—Ur‘lz,,, totth, -) J

for a rigid boundary at x = a and a free boundary at x = 1;
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T4

vt 3 (:C:i_eu) (28-1) (‘;‘z- a }&ww’ &m,lc (4-62)

— (2e+) (22-&3)(;‘-&;‘, - 7;‘-,,) Feoe, C:Lu-m,k

2R ! !
— (2243} (2e-1) (2-;13;.- —a ") Coun(lee) Gouiiy CZ?;”]

e

and for a free boundary at x = a and rigid boundary at x = 1.

v
R" = = | 2‘('&}) —l" "-—'— a‘ e ) (4_63)
] Tvg(Qa) o fx,-) (2241)( (a‘“‘ 03.) iz,

2.-4"(;, K

2R+
&

—(241) (1) (2-& - Z:Ti. ) E'erin Gect) Couy, Cgo;4)

— (a2+1) (22-1) (L- "““)é’.&y/”t Eatlly, ]
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Chapter V
CONVECTION IN PLANETARY MANTLES AND INTERIORS

In this section we wish to attempt to apply the general
anaiysis of Chapter IV to thic discussion of the onset of con-
vection in spheres and spherical shells of planetary size.
For the sake of specific examples, attention will be paid to
models of the lunar interior and mantle of the Earth. The
fluid we are using is considered to be a silicate material
with parameter values corresponding to average values from
measurements on terrestrial rocks.

For a convective model of the lunar interior we cnnsider
an entire fluid sphere which is homogeneous with an average
zero-order density of ¢, = 3.34 g/cm®. 1In the last chapter
we determined that the characteristic values of the Rayleigh
number CR for the marginal stability state were given by the
evaulation of the secular determinant,

@)

“ lz ('qic(& - ee‘, )é)-h [S,‘u-v; CG&,')]z ~ Cd Ty (5-1)

€e; € -
+ CP ._Q..L_i'.i JL.'('“Z (éq, I}Q*'(} (G-Q“, ((—Slk)

2 - 3 ,
621 é{\g Q‘)‘ ”

+ ey (IR + Tl || =0 ”
The specific values of the matrix elements I?:‘ ; I(?L ) Ii&

depend upon the form of %< which is directly related to

Atyy = A¢x(0 . Rather than studying the effect of a parti-

cularly realistic form for 349, which might be poorlj known in

any case, we will take the simplest example where X)) = &, = constant,

representing a uniform distribution of heat sources. Then 2wyis

identigcally unity and the integrals involved in (5-1) can be
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evaluated explicitly using recurrence formulae for half-integer

Bessel functions. Condition (5-1) becomes

R R S (5-2
] ‘
- Ce 24D (2R43) L Cg C e (1-§in) ” =o
2€0€0° (€q-€ek )

where it may be recalled that b depénded upon whether the boun-

dary at x = 1 was free or rigid:

(a) b =2 for a r\.o\'d boundavy (5-3)
B b= - = for a free boundavy.

R4+

One obtains successive approximations to the characteristic

values fér Cr by setting the determinant (5-2) to zero for

\

y=k=l, j= k=2 , etc. Setting the (1, 1) and (2,2) to zero

gives N q

el [+ e G- 1))
. S — (5-4)
Cr 204) € - b (2R+3)

and
{ 1
cg\) = 2q, [Q! z lQ}“qQo@_»] (5-5)
where
@) g, = g - @w2)b (EP+e) (5-6)
3
(b) G, = €€ zf_éng« Ca- 1ca] [€a} ® ~zren)b) €4
+ [ee?i. + Cu- %Cg][é'g\z — (2243)b ] E.Q: ¥ 20x (2,,9_1.3\\,‘%
' | t @oi€a
(@) g, = <egar §let+ ce-2¢ &+ w161 + ¥p ie: <,
Ry T Lex

..c,fg-
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Using (5-4) and (5-5) one can calculate the first and

second approximations to CR for a given set of parameters

ﬂa‘g,1¢, P and R. For our lunar model we have
¢, = 3.34 g/cm?® and R = 1.78 x 10® cm and for average values
v -
for silicate rocks, ¢ = 2.0 x 10° /c and B = 1.0 x 10t % /dyne.

The value for &, is very poorly known for the Moon; however,
assuming a radioactive solute distribution similar toithe Earth,
gives a value from the "Wasgerburg" model (cf. Wasserburg, G.J.,
et.al. (1964))of Moo= 3 x 10 ’erg/qg sec. One then obtains

Cy = 3.17, CB = 0.098 and the results of these calculations
for varying 8 values are given in Table I. The first and
second approximations are seern to différ by about 1 part in 100
for a rigid boundary at x = 1 and by about 1 part in 1000 for

the free boundary case. Since the successive values of C_ seem

R

to converge rapidly, we will use only the first approximation chli
in subsequent calculations.

Table II gives the values of °r when the fluid is assumed
incompressible, so that. f= 0, and hence CB = 0, and the energy
sources are so weak that C, = 0. Compariéqpvof Tables I and II
indicates that non-zerc Cy and CB increase CR'by about a factor
of two for £ = 1 and have virtually no effect for £> 10. As

incrcises the differences between C_, for free and rigid surfaces

R
decreases. Both the above effects are to be expected, for as
increases, the convection ceil diameter is decreasing as 1/X

so the fluid in a given region begins to be governed by motions

of smaller and smaller scale length and does not "see" the
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boundaries or the larger scale variations in the fluid proper-
ties.

For our fluid system the Rayleigh number is given as

4
Co = IrGETACVA R - . (5-7) (,
'Z- FKrZu
Using the values of ¢,,R, ¢, A, for our lunar

model, along with Cy = 7.0 x lO‘erg/g°¢, K =2.0 x 10%erg/cm’c sec

and 4 = lOzzg/bm sec.

Ca = 4o x (0% (5-8)

This:.corresponds to a theoretical mode valiue of £2> 25. If the
above conclusion is correct, then the resulting convection pat-
tern in the lunar interior is considerably bkroken up with no
possibility for large cells corresponding to low & values to
exist. One can argue that the values for A, and _u - used to

R

were increased to the order of 1026, then Cp ~ 4 x 10* and

calculate C, from (5-7) are not well known. If the value of M

would correspond to R = 6 which is quite acceptable in terms

of a "lunar" tectonic theory of convection. However, such an
increase in » will yield a corresponding increase in the
Maxwellain relaxation time, © =u@ ~ ¢0" years. 1In Chapter I,

the condition for a viscous globe to respond hydrodynamically was

¥ s> and for such a larg

Tt 4=
o an uch e T we weculd not

expect that

the lunar interior would have had sufficient time over its Iife

time of about 10° years to reach a stationary convective state.
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One could also argue that decreasing A, by about two or
possibly threecorders of magnitude along with a more acceptable

value of /4~'1023 would again yield a value of C_, in the proper

R
range. However, a decrease in A, of more than about one and

a half orders of magnitude will result in a corresponding de-
crease in the thermal gradient and for A,< 10 ° , the super-
adiabatic gradient necessary for convection will vanish altogkther.
In the considerations of convection in the Earth's mantle that
will follow, exactly similar difficulties will be seen to arise

on comparison of theoretical and computed Rayleigh numbers.

We now wish to apply for stationary cohvection in spherical
shells to a model of the Earth's mantle. Consider a layer of
homogeneous fluid overlaying a core of radius rore ™ 2R with
an average density (”; such that Moore = %V—e—q (ar)3
As discussed in Chapter IV, 3¢ representing the gravi-

tational field, cannot strictly speaking pe unity as in the

case of entire homogeneous spheres. Instead, we have from

Chapter 1V,
fa a?
s = 1r (g-1) % - (5-9)

To evaluate the matrix elements M“f/ Nk/ and 5%1 in the

secular determinant

| Mej +Cp ey — Caly (5-10)
¥ [ 2N © + Re; )] =0
Cp R(0+1) q :f:? P.u-\(,,” + < ) ll
we need to use (5-~9) as well as specific informaticn about the

energy source distribution function Ac¢® . Rather than assume
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some particularly realistic form for Acr) , let Aw) = A, =mstart
and then we can set Bcxy =\ . The material parameters
for the model mantle will be average values for silicate

rocks so that

« = 2.0 x 0-F (5-11)

-2
B= uo x (o~!

6

Cy = 7.0 X 10 tn €qs units.

The average density will be €, = 4.1 g/cm and the energy

source distribution function is the same as previously used

erg
g sec’

The radius of the Earth is R = 6.371 x 10 cm and the computed

for the lunar interior calculations; Ao = 3 x 10

values of Ca , Ca and (Cp are:

Ca = So.0 (5-12)
CP = 2.00

Cp = Lexw0™.

If we assume momentarily, for computatiohal facility, that
§'= 1, then the (1, 1) determinant from (5-10) gives the
first approximation to C_:

R’
Gy e 1
Cn = Qs (l-\— ?.—9.(1 (Cu & Cp ) - ‘Cp) ) P_Q_+llz,\ (5-13)

Lot

S
Feava, 1 + 9, Ry

1 C &)3 4 — =
where $¢.% are the first zeros of T . (& . ¢~ T ey T, Qu) =2

and are given in Table III along with corresponding values of
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;%M&,u . The value of R,, depends upon the specific

11

nature of the boundary conditions and are found on the last

page of Chapter IV. Using (5-12) and (5-13), c .’ is then

R

calculated for varying 4 values and mantle thicknesses under
the rfour possible types of boundary conditions with the results
given in Tables IV--VII.

To examine the effect of gravitational variation, consider

an average gravity function 5 iven as
ge g Yy > 3 g

_ \
3y = T—\_A j‘éx 3 = |+ Y (ec—‘:..\) a(1+a) (5-14)

2

where % and ¢, are the average core and mantle densities

respectively. 2XAn examination of the integrals representing

Mi; , Mk, and (y“j along with the specific form of 3ix)

given in (5-9) indicates that exact evaluation will not be at
all straightforward. Instead, let us approximate the effect
of a non-unity value of ¢ by tzking sy to be its
average value in the mantle, For the Earth, €., = 4.1, and
Ca = 12.5 and a = .55, so that the variation in j&x) is:

3 (=t} = L340 (5-15)

T g{x=&) = Boso. -

The average value is 3 = 1.873, so the approximation Flxd N

)

is fairly reasonable and CR

is:

b \ l p Y - <
ed o A, O+ Qa'f;:'?. { Ca- 3Cp-35Cp + 3}7(&“))](?24—%,;1
L00a3) N ’

Pn+Vz,| + ?Qﬁ @u
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Computed values of Cﬁ“’ using (5-16) are given in Table VIII

for mantle thicknesses corresponding to a = 0.5 and a = 0.6.
Finally, Table IX gives theortical values of Cé” under

the assumption of incompressibility and .very weak energy sources,

i.e. Cy= Cp = 0. For comparison with Tables IV thruough VIII,

) in Table IX are computed for both cases of

values of CR“
¥ =1l and W0 = 3 = 1.873.
The differences between values oflcéj‘ given in Table IX
and those in Tables IV and VII are due to a term _Ll[(d.+cﬁ(g+n-ecp]
and since Cp= 2.00 and ¢, = 8.0553, any compressgbility
effects are very small for all but the lowest few A values.
As expected,the allowance for gravity variation in the mantle
with § %1 resulted in an overall decrease in Cgrs Or equi-
valently, a given value of Cp corresponds to a higher £ value
hence émaller convection cells. Under all conditions it is
seen that narrowing the mantle shifts the convection to higher
and higher harmonics as the fluid finds it increasingly diffi-
cul:t to form large diameter low & -value convection cells.
The most important result is, however, that Rayleigh
numbers for an Earth model with mantle thickrne€ss of a = 0.5
to a = 0.6 fall short of the computed value by several orders
of magnitude. In (5-12) we had CR = 1.8 x 10" and for the
rigid-rigid case (rigid boundaries at x =a and x = 1), this
corresponds to 2> 30
any global tectonics viewpoint. For QR to fall in the proper

range of £ (2 ~ 36) we need to reduce the result in (5-12)
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by about l01 . To accomplish this one needs to increase

M to about 10" and decrease Ao to the order of 107'°
With such values the Maxwellian relaxation time would have
increased to the point where a stationary convection pattern
would not have time to develop over the Earth's lifetime,
and the ambient thermal gradient might very well not exceed
the adiabatic gradient and convection would be prohibited
altogether. Considering the above discussions, one is
.faced with the conc¢lusion that the linear theory may be
inadequate to deal with problemé at hand. In Chapter II it
was pointed out that linearization of the entropy transport
equation by eliminating the viscous dissipation term as a
quadratic in uf could have serious effects. The lineariza-
tion was necessary to obtain a tractable mathematical problem,
but it appears to have limited the application of the theory
to physical situations where the viscosity coefficient is
much smaller than for planetary mantles and interior.

If we conéider an order of magnitude analysis of the
problem, we find that equating the gravitatidnal and viscous

flow terms in the equation of motion (which should be of the

same order of magnitude),

O (3%.) = G(Lvu') = O(g %) (5-17)

From geophysical considerations of continental drift, one

can estimate that convective velocities in the Earth's mantle

would be like u' ~ leow/yr ~ (06" ¢wm/f, - Using this as an
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approximate wvalue,

%) = O (% 31[1?_._) (0~% . (5-18)

I

Using the above value for (9.(9Z%) , and the conductive entropy

transport term is

-\

& (kv2T7') = (3(5 ,iz;(g;)) = (0 (5-19)

and viscous dissipation term gives

CI e . 14;1 = -¢ -
&[4 (% )5:L0315]=(9(/“-é;) 1o~ (5-20)

Even these rough calculations show the difficulties with the
linear theory. A non-linear development which includes the
viscous term in the entropy transport equation does not exist
in the literature. This is not surprising in the light of
the overwhelming mathematical difficulties.

As an example, consider the simplest possible case where
the flow is incompressible, two-Zdimensional, constant gravity g,
énd there is an applied thermal graident 4T =% but no inter-
nal energy sources. The system can be unsoupled to give for
the vertical component of convective velocity

2w

¢ oW —'Dl’J '0_71)‘ 2 2w 2Iu
AN St adY e ¥ 1P [.(uc‘o%) T oaox » va?_-] (5-21)

i ¢ 5 2w W ) of =
“[.»V‘” T geYe Y IR sl 13 3%+ ekt =o

and
_ dtw ? W
£ - ? X* 22

l
|
!
|
3
N
4



We see that even the simplest case yields a rather unpleasant
mathematical problem and as a result, a non-linear theory
for convection in plnaetary interiors is yet to be developed.

In this paper the general linear theory of thermal in-
stability in internally heated spherés énd spherical shells
of viscous, compressible fluid has been developed. The par-
ticular case of marginally stable state at the onset of sta-
tionary conVection for a homogeneous fluid has been studied
in detail and the charactéristic values for the Rayleigh
number under varying conditiohs have been calculated. These
values have been seen to be rather insensitive to th® inclu-
sion of compressibility and energy source effects in the case
of a fluid having silicate rock material properties.

Most significant was that that theoretical values yielded
characteristic values cnrresponding to very high harmonics,
i.e. £ > 25, when applied to models for the lunar interior
and terrestrial mantle. One then concludes that either the
convection is in the;form Of very small cells of a few hundred
kilometers in diameter for the case of the Earth, which is
entirely unsatisfactory for a global tectonic theory, or that
the linear theory is inappropriate when considering fluids
of such high viscosity. An order of magnitude calculation in-
dicates that for M greater than about lO;g , @ non-linear
theory which retains the viscous dissipation terms in the
entropy transport equation is necessary to adequatély for-

rulate the problem. Due to the enormous mathematical diffi-
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culties introduced by a non-linear theory, no such theory

presently exists in the literature.
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First and second

approximations to the characteristic value Cr

for entire homogeneous fluid spheres.

Rigid boundary at x=1

3.17; CB

Free boundary at x=1

= 0.098

2 CR(I) CR(Zl CRCU CR(Z)

1 1.310x10* 1.294x10" 4.975x10°3 4.971x10°3
2 1.142x10% 1.126x10" 5.656x10° 5.653x10°3
3 1.623x10"% 1.598x10"% 9.270x10°3 9.267x10°3
4 2.327x10% 2.291x10"% 1.456x10" 1.456x10"
5 3.279x10% 3.229x10" 2.187x10" 2.1807x10"
6 4,518x10"* 4.450x10" 3.159x10" 3.159x10"
7 6.095x10* 6.007x10" 4.423x10" 4.422x10"%
8 8.057x10" 7.944x10" 6.021x10" 6.020x10"
9 1.045x10° 1.031x10°% 7.999x10" 7.998x10"
10 1.333x10° l.316x105- 1.042x10° 1.041x10°
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Table II. First approximation to the characteristic value CR
in homogeneous fluid spheres in the limit of incompressibility

(Cg = 0) and very weak energy sources (Cy = 0).

Rigid boundary Free boundary

at x=1 at x=1

R Cr(1) Cr(1)

I 8.154 x 10° 3.094 x 10°
2 1.056 x 10" 5.227 x 10*%
3 1.537 x 10" 8.779 x 10°
4 2.235 x 10" '1.399 x 10%
5 3.180 x 10" -~ 2.121 x 10*
6 4.412 x 10" 1 3.085 x 10"
7 5.976 x 10% 4.336 x 10°
8 7.922 x 10* 5.920 x 10"
9 | 1.030 x 10° 7.889 x 10"
10 1.318 x 10° 1.029 x 10°

[Ref. Chandrasekhar, "Hydrodynamic and Hydromagnetic Stability,"

Chap. 4 (1961)]
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Table III. The first zeros of &

!+, 2+ (2)

el e el
L WN O

Reproduced in part from:

S. Chandrasekhar and Donna Elbert, Proc. Camb. Phil. Soc.,

49, pp. 446-48 (1953).

and the corresponding values of P. 1
: 2+3, 1.
- a = 0.2 a= 0.3
- 2 Poil, 12 21 Poil, 2
1 4.68640 0.0851258 5.04273 0.0287565
2 5.79966 0.219152 5.96125 0.0433670
3 6.99345 0.827033 7.05135 0.0804682
4 8.18329 4.07722 8.20089 0.180621
5 9.35590 23.9880 9.36068 0.475005
6 ' 10.5140 1.412574
a=20.4 a= 0.5
1 5.63897 0.0121094 6.57201 0.00532874
2 6.35745 0.0144789 7.11158 0.00574651
3 7.28038 0.0190172 7.84504 0.00644475
4 8.31928 0.0275034 8.71680 0.00752772
5 9.41654 0.0437534 9.68200 0.00917101
6 10.5385 0.0761334 10.70769 0.0116670
7 11.6674 0.1435507 11.7708 0.0155047
8 12.8557 0.0215105
9 13.9521 0.0311069
15.0533 0.0467671
16.1554 0.0728515
17.2560 0.117113
18.3542 0.193877
19.4492 0.329234
20.5410 0.573870
a=20.6 a=20.8
1 8.0553 0.00222241 15.7868 0.000205553
2 8.4428 0.00228887 15.9431 0.000206046
3 8.9913 0.00239297 16.1749 0.000206763
4 9.6717 0.00254054 16.4787 0.000207743
5 10.4563 0.00274015 16.8506 0.000208977
6 1l1.3210 0.00300396 17.2865 0.000210453
7 12.2466 0.00334878 17.7812 0.000212194
8 13.2177 0.00379840 18.3301 0.000214217
9 14.2225 0.00438496 18.9284 0.000216512
10 15.2518 0.00515454 19.5715 0.000219102
11 16.2988 0.00617030 20.2550 0.000221731
12 17.3581 0.00952205 20.9749 0.0002252053
12 18.4258 0.0D933658 21.7274 0.0002286749 -
14 19.4988 0.0117918 22.5094 0.000232640
15 20.5749 - 0.0151818 23.3176

0.000236902
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Table IV. First approximation to the

characteristic value C, for rigid boundaries

at x = a and x = 1. Rca = 50.0; CB = 2.00.

a = 0.2 a= 0.4 a = 0.6 a= 0.8
5.16 x 10* 1.58 x 105 1.10 x 10°© 4.70 x 107
2.95 x 10* 7.0l x 10* 4.16 x 10° 1.62 x 107
3 3.00 x 10% 5.22 % 10% 2.47 x 10° 8.48 x 10°©
3.86 x 10* 5.06 x 16* 1.84 x 10° 5.39 x 10°¢
5 5.00 x 10* 5.68 x 10* 1.58 x 10° 3.85 x 106
6 6.85 x 10* 1.49 x 10° 2.98 x 10°
7 8.54 x 10* 1.52 x 10° 2.44 x 10°¢
1.62 x 10° 2.10 x 10°
9 1.80 x 10° 1.86 x 1068
10 2.05 x 10°% 1.71 x 10°
11 2.37 x 10°% 1.61 x 1068
12 2.76 x 10° 1.55 x 1068
13 3.23 x 105 1.51 x 10°
14 i 3.80 x 10° 1.51 x 10°
15 4.45 x 10° 1.52 x 10°
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Table V. First approximation to the characteristic value Cg

for free boundaries at x = a and x = 1. Ca = 50.0; CB = 2.00.
R a = 0.2 a=0.4 a = 0.6 a = 0.8

1 1.52 x 10° 3.90 x 10* 2.31 x 10° 9.10 x 10°
2 1.32 x 10® 2.28 x 10* 9.91 x 10" 3.23 x 10°
3 1.72 x 10® 2.23 x 10* 6.91 x 10" 1.76 x 10°
4 2.40 x 10* 2.68 x 10" 6;17 x 10" 1.18 x 10°
5 3.33 x 10* 2.48 x 10* 6.28 x 10" 9.00 x 10°
6 4,61 x 10* 6.95 x 10" 7.48 x 10°
7 6.10-x 10* 8.07 x 10" 6.62 x 10°
8 9.63 x 10" 6.15 x 10°
9 1.17 x 103 5.94 x 10°
10 1.42 x 10° 5.90 x 10°
11 1.73 x 10° 6.01 x 10°
12 2.10 x 10° 6.24 x 10°
13 2.54 x 10° 6.57 x 10°
14 3.05 x 10° 7.01 x 10°
15 ‘ 3.64 x 10° 7.54 x 10°
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Table VI. First approximation to the characteristic

value C,, for a free boundary at x = a and

R

a rigid boundary at x = 1. Ca = 50.0; CB = 2.00

a=0.2 a=0.4 a=0.6 a=0.8
4.19 x 10* 1.03 x 105 6.24 x 10° 2.42 x 107
2 2.71 x 10* 5.07 x 10* 2.50 x 10° 8.42 x 10°
3 3.03 x 10* 4.22 x 10* 1.55 x 10° 4.45 x 10°
4 3.84 x 10* 4.48 x 10* 1.23 x 10° 2.89 x 10°
5 5.00 x 10* 5.34 x 10? 1.13 x 10° 2.11 x 10°
6 6.65 x 10* 1.15 x 10° 1.67 x 10°
7 8.43 x 10* 1.24 x1105 1.41 x 10°
8 1.39 x 10° 1.24 x 10°
9 1.61 x>105 1.14 x 10°
10 1.89 x 10° 1.08 x 10°
11 2.23 x 10° 1.05 x 10°
12 2.65 x 10° 1.04 x 10°
13 3.15 x 10° 1.05 x 10°
14 3.73 x 10° 1.05 x 10°
15 4.3% x 10° 1.12 x 10°
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Table VII. First approximation to the characteristic
value Cr for a rigid boundary x = a and a

free boundary at x = 1. Ca = 50.0; CB = 2.00

a=0.2 a=0.4 a=0.6 a=0.8

10
-ll
12
13
14

15

1.90 x 10* 6.62 x 10* 4.8l x 10° 2.16 x 107
1.43 x 10* 3.28 x 1l0* 1.90 x 10° 7.50 x 106
1.76 x 10* 2.78 x 0* 1.20 x 16° 3.98 x 166
2.41 x 10* 3.01 x 10* 9.57 x 1l0*% 2.58 x 10°
3.33 x 10+ 3.68 x 10* 8.84 x 10" 1.88 x 106
4.73 x 10*  9.01 x 10* 1.49 x 106

6.16 x 10* 9.78 x 10*% 1.26 x 1068

1.11 x 10° 1.11 x 1068

1.29 x 103 1.02 x 106

1.52 x 10° 9.67 x 10°

1.82 x 10° 9.41 x 10°

2.17 x 10° 9.34 x 10°

2.60 x 10° 9.46 x 10°

3.10 x 10° 9.71 x 10°

3.69 x 105 1.01 x 106
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Table VIII. First approximation of characteristic
3= 1.873.

Rigid boundary at x = a

value CR with an average gravity variation

Ca = 50.0; CB = 2.00.

Rigid boundaries at x = 1 Free boundaries at x = 1

a= 0.5 a=0.6 . a= 0.5 a = 0.6
1.83 x 10° 5.78 x 10° 7.83 x 10" 2.52 x 10°
2 7.91 x 10% 2.22 x 10° 3.64 x 10" 1.01 x 10°
3 5.27 x 10" 1.34 x 10°% 2.66 x 10" 6.33 x 10"
4 4.47 x 10 1.0l x 10° 2.49 x 10° 5.24 x 10"
5 4.39 x 10* 8.70 x 10* 2.68 x 10% 4.88 x 10"
6 4.76 x 10* 8.28 x 10“ 3.14 x 10% 5.00 x 10%
7 5.47 x 10* 8.44 x 10* 3.82 x 10" 5.44 x 10"
8 6.49 x 10* 9.05 x 10* 4.75 x 10" 6.18 x 10"
9 7.87 x 10" 1.01 x 10° 5.95 x 10*% 7.20 x 10"
10 9.57 x 10" 1.15 x 10° 7.44 x 10" 8.52 x 10"
11 1.17 x 10° 1.32 x 10° 9.24 x 10" 1.02 x 10°
12 1.41 x 10° 1.54 x 10%° 1.14 x 10° 1.22 x 10°
13 1.70 x 10° 1.81 x 10° 1.39 x 10° 1.45 x 10°
14 2.02 x 10° 2.12 x 10° 1.68 x 10° 1.73 x 10°
15 2.42 x 10° 2.49 x 10° 2.02 x 10° - 2.06 x 10°
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Table IX. First approximation of characteristic
value CR for a = 0.6 in the limit of incompressibility (CB = 0)
and very weak energy sources (Ca = 0). Rigid boundary at x = a:

Rigid boundary x = 1
2 $=1.000 ¥ =1.873 . $=1.000 §$=1.873

Free boundary at x = 1

1 6.68 x 10° 3.57 x 10° 2.92 x 10° 1.56 x 10°
2 2.57 x 10° 1.37 x 105 1.18 x 10°5 6.27 x 10"
3 1.58 x 10° 8.41 x 10* 7.64 x 1l0* 4.08 x 10"
4 1.22 x 10° 6.49 x 10* 6.33 x 10*  3.38 x 10"
5 1.08 x 10° 5.78 x 10* 6.07 x 10" 3.24 x 10"
6 1.06 x 10° 5.66 x 10* 6.40 x 10* 3.42 x 10"
7 1.12 x 186° 5.95 x 10% 7.19 x 10* 3.84 x 10"
8 1.23 x 10° 6.56 x 10* 8.39 x 10" 4.48 x 10"
9 1.40 x 10° 7.47 x 10* 1.00 x 10°  5.35 x 10*
10 1.63 x 10° 8.69 x 10* 1.21 x 10° 6.47 x 10“
11 1.92 x 10° 1.02 x 10° 1.47 x 10° 7.87 x 10"
12 2.28 x 10° 1.15 x 10% 1.79 x 10° 9.58 x 10"
13 2.71 x 10° 1.45 x 10% 2.18 x 10° 1.16 x 10°
14 .3.22 x 10° 1.72 x 10° 2.63 x 10° 1.40 x 10°
15 3.82 x 10° 2.04 x 10° 3.17 x 10° 1.69 x 10°
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APPENDIX A

PROPER DEVELOPMENT OF THE EQUATION OF MOTION

We know that Newton's second law will require that for

a fluid

where P is the pressure tensor and 3 the body forces acting

on the fluid element.

- Let us qonsider the pressure tensor for avmoment. The
components of the tensor g z are force per unit area, so‘it
is appropriately termed the pressure tensor; thus tensor is
sometimes used instead and is called the stress tensor.

Pressure forces like Pxydzdy act on the surface of a
fluid particle, and are to be distinquished (as we have done
above) from body forces like gravity and electrical forces which
act on the entire volume of the fluid element. Body £forces are
clearly proportional to size, d€ = dxdydz, of the fluid particle
and consequently, their moment about any point in the fluid par-
ticle is fourih order in the infinitesimals dx, dy and dz. Thus,
if moments are taken about &z of the forces acting on the planes’
parallel to 8% there results
0= (Puydzdy) dx — (Pyx dxd2 )L dy (A-2)

+ Y™ oadn terwms.

Then we see that ignoring fourth order terms in the infinitesimals

gives Pxy = Pyx. Similar arguments follow for Pyz = Pzy,
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Pxz = Pzx, so the pressure tensor P is symmetrié.

Now in the case where the fluid Qelocity is zero, hydro-
statics, we know that the normal pressure acting on a small
fluid element is independent of the orientation of the surface
on which it acts. 1In this case,

P = bz | (A-3)

where p = Pxx = Pyy = Pzz. Then we can conveniently write

B o= bT -

(A-4)

e

where 'E is termed the viscous stress tensor.

If n denotes the outward unit normal to a closed surface

lying in the fluid, the force acting on an element ¥ of S

is - g-’v‘\éﬁ or -—ﬁ‘.'géﬁ by symmetry of g . There-

fore the total force F exerted by the fluid outside ;’ on that

lying within R is
£ = - SS agéﬁ = -SV.QJT: (A-5)
v ,

from Gauss' theorem. If this volume shrinks to a fluid particle

dc- then as the change in V. o can be neglected,

o
o
(
'-
C
U
u

(5) reduces to -V.Pdt.
If the shape of the fluid particle P remains fixed, so
that all parts move with the same velocity v, the rate of doing
work on P is the inner product of this velocity with

itself, i.e., —ﬂg.cv.g)¢1: . Tnis is the rate of doing work

against the pressure and tangential stresses opposing the rigid



69

body displacement of P. The total rate at which the fluid out-
side P does work con P will confain not'only the term for rigid
body displacement, but.also a term giving the rate at which
work is done to change the shape and volume of P. Now the
inwards force on an element id§ of a closed surface S does ﬁork
against the efflux of fluid from the fixed volume;V,through as,
at a rate (-&-P i) . Hence the rate at which the fluid
outside the stationary volume V does work on the fluid within

V is |

—SWs _ __jg.p,a 88 = - Jw(B-y)ar (A-6)

5t s = v
on again applying Gauss' theorem. For an elemental volume d<t
at a fixed point.zlit follows from (6; that this rate is
~ (W = — < (P.v)dT (a-7)
( st )l < (E2) ’

Now using cartesian tensor notation we see that

® . ) - )p:,'o' DL,
V. (Bew) = 55 Py} = 2y + By 5y (A-8)

= ‘}_{(VE\ *Z:V'

o

where 2 refers to the "double inner product" or scaler product
for second rank tensors; Tz A B;" = A:B
T = =

Thex (A-7) is

~

_ (S_lf_).\

P - 2 ryv 4T ~ 2 'CV«Z’Jt - (A-9)

We recognize the last term as the rate of doing work on P to

move it as a rigid body and the ~-P.gu iT is the rate of
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doing work to change its shape an# volume. Then if we move in

a frame of the center at mass of P, the rate of work done is

w
seen to be %1' (say), then
sg‘-’é = Pigudr = {:v.g dt + T:vy dc (A-10)
where we have used g = bI 4+ T .

Now let’%f denote the rate of change in a frame fixed in’
a fluid particle of voiume V, then the rate of change of volume
of thé fluid lying within a volume V at a given instant is the
integral over V of fh(*t‘)' The volume of fluid passing through
a surface element Ndg of V is y.Ad$ units per seocond, and so
the integral of this quantity over the surface of V is anotﬁer

measure of the rate at which fluid within V is expanding. Hence,

§ f}; (4 = fawds = §qudc (a-11)
v s v
then |
§ (.ft @r) - wypdc] =e | (a-12)
v < /

and as this must apply to all the subregionsuinto which V can

be divided, it follows that if all subregions are compact sub-

-~

spaces then the integrand must be zero and

4

T (4T = vy dt . B (A-13)

Now write dT'=V and using (10) and (13) with the first law
of thermodynamics,

§4 = du+ &W, we haue (a-14)
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b

5¢ _ 4V L oV iy v (A-15)
5t Jt &t |

From the second law of thermodynamics, we recognize that
TiF L oS4, Sw
4t

= I t (A-16)

where & is the entropy of the volume V. Then we see that since

'r‘.'_gr.&u

dv (A-17)
dt it Par

where $Wi is the rate of change of irreversible work, then

(A-18)

where & is known as the dissipation function; it is the
rate at which energy is béing dissipated by viscosity.

As P is a symmetric tenéor, this is also true of the
tensor LI = g - bg . Any tensor é can be expressed
uniquely as the sum of a symmetric and antisymmetric tensor,
that is

A = 2 Clef + Aic) + L (Agq — RA) (a-19)

L)'
&g’s )¢'}' + @q)‘l‘). (SW:‘\ )

I

We can also see that

AS: Ea =0 S oy tensa 6:, ond E (A-20)

Then we see that

=

g = -Tivy = -T:@)’. ; (A-21)
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We can understand this thermcdynamically as (vlifxcorresponds
to rigid body rotation and so has no bearing on its thermody-
namics. We state that Qvu)scan be divided into tensile and

shear components of rates of strain as follows. The trace of

a tensor A is defined as

At = r:8 | (A-22)

x =

In particular, we see that

t
(@) = T:@ue’ = w». (A-23)

- That this is purely the tensile component of the rate of shear
is seen from (A-13), which shows it corresponds to just a scaler

change in volume. Now the trace of I is 3 so Qy&bf can be

separated as

@ef = 4T + @uy (a-24)
where

o 3 _ N Ul "b:_))'. A . (25
SIS T S R Y (8-25)

clearly has zero trace. Adapting a similar expansion for T

we see that

T = %1(‘ I + T (A-26)
and then the dissipation function is

t S o g \S
$ = —% T (WY - Tg D (Wul). (A-27)
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5w,

Now we can write — as

] st ) ‘
L2 T o (a-28)
5t

- where o' is the rate of entropy production per unit volume

(a complete derivation of this form is provided in Appendix B).

Then

Tet = g = -3TmE@ERy - TRy (2-29)

Now if we write ¢! =, +0, ( the reason for which will be

explained), then

[-d

s (v (A-30)

ao

T (Pt ) = —3Ti@EE) -

We see that first term on the right is a product of zero-order
tensors while the second term is a product of second order

tensors. The point of the use of J, and ¢, is that separation

into
Tr, = —-ivf@ey 3 Ta = —T: (Fu) (a-31, asb)

is derived from the fact, known as the "Curie principle", that

in anisot

k
0
e
=
Q
=
M
o
4
£
=1
0
(]
=
o
Fh
|
€
»
0
0
[V}
3
u
ot
oy
0
8}
2]
0
o
b
5
o
=
[
Q
Hh
0
s
o}
6}
0
0
rh

the same tensorial character couple. Otherwise, because the
Cartesian components of tensors transform differently depending

upon their tensorial order, the symmetry properties of the

‘médium will not appear to be preserved under rotations and re-

flections of the coordinate system. An important consequence

of the fact that in an isotropic medium there is no coupling
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between fluxes and thermodynamic forces of different tensorial

order, is that each term, 0%, T is separately positive
definite since o' is positive definite.

i1 This assumption of isotropy of the fluid in its
thermodynamic properties, leads to the conclusion that the

correct form for the linear phenomenological equations is

4

-—

3 TT+ = TR

=o

= —2m (VRO (A-32, asb)

where u', u are the phenomenological coefficients known as the

coefficients of viscosity. The bulk viscosity ' vanishes
identically for a monotomic gas whereas the shear viscosity
does not vanish for any fluid save thbse exhibiting super-
fluidity.

" The pressure tensor can now be written as

P = LI + T = LT —2u(Y8)Y @I (A-33)
=~ = = = M M =

= bT —2m (YR = (u'e-3m) Ty T
and since 0o, @ >o then 4y u>o. Then & hecomes
= 1 ‘D'\," DV \*+ 2 k4 > -

= 3 A+ = + - < QAR (A-34)
& zZM ( 0 3%)) 9“ ;/*) -

Finally we have to consider the form of the divergence of
N ® vh —29m @2 - auwevul)t (A-35)

ARV Y PR\ S A (-3 V. TR T

-~
~

Now we can see that

LW (v = Yy o+ weR ., (A-36)

B
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Then finally

“VE = -Vp +mTY o+ (w'Y3a)VTY (a-37)
2@ o+ @y yu

‘and our equation of motion for the fluid partiéle is

(‘Iﬁ = 3 "VF + ATy (/u‘*“}s-},\\ v 7Y (A-38)
+ 2 Q<ﬁg)§ o+ @y

where 3

is the body force per unit volume.
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| Appendix B

THERMODYNAMICS OF A FLUID PARTICLE——
DEVELOPMENT OF THE ENTROPY TRANSPORT EQUATION
In fluid flow the main causes of irreversibility are the
phenomena of viscosity and thermal conductivity. We shall
consider these cases in some detail.
The second law of thermodynamics can be written in the
form -

/

5 . -
e3> B 5 1as = 40+ pdv - M Zude (B-1, a&b)

where equality represents reversible processes and > irreversible
processes. Also, um,= chemical potential of species <
of concentration d¢; -

In simple fluid systems the reversible work is just fDdV
and if SW; 1is the irreversible component of work done on the
system, the first law of thermodynamics gives
§Q + SW, = 4U + pdVv. (B-2)

Let Jde$ be the entropy supplied to thé system by its
surrounding with the transfer of heat J&§ , and let é;% be the
entropy increment due entirely to irreversible processes within
the system, then 4$=d5+d:and the second law for reversible
processes (d(S=0) and natural processes can be written in the
combined form

Td;S = 8§ = TdeS + SW d§>06 . (B-3)

7
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volume 4T in unit time due to radiation. Integration over
S and V ; Plus an application of Guass' theorem gives
¢ = - [#neds v [ dr = [(-ve+a)dt (B-5)

st S V. v -

(7}

Ai — - G'Q Qr = R Q‘ Q—,V -
kS :(S_T_As + __&_‘-—__-Jt ‘S’{V(-T-HT]J"L.(B 6)

o+

While (B-4) applies only to a thermodynamic system P
small enough for T to have a single value for the whole of P,

this development not preclude the possibility of a temperature

gradient at P. Now

V-(%) = +va - %.vr | (B-7)

and therefore (B-4) can be written as

€ =0 + P+ 02) ' (B~8)
where

- .
o, = - ;%.vr S v = X %‘1{9. (B-9, a&b)

We recognize the last expression from Appendix A which ex-
plains the particular form used.

Fourier's law for heat conduction gives an empirical rela-
tion between the heat flux vector and the thermal gradient,

that is,

QL = -~ KNT

-~

-~
to
|
[
O



where X is the coefficient of heat conduction. While such
a linear relationship can be established analytically for
gases using kinetic theory, the application to general fluid
systems is as a phenomenological relation.

| From Appendix A, we saw that the first law of thermodyna-

mics could be written as

$4 _ du S dV _yd = T8 -vE - (B-11)
<t &”’u = dt

Now if we let Vv=4tv' be the elemental fluid volume, the
above equation can be written in several ways. First we must

see that the equation of continuity,

?St + < (ey) =0 nuans that (B-12)
S |
b cee) =0 S

then each of the variables in (B-11l) can be written in terms

of specific values, e.g., <Y _ 4 Vo vdy where u
' gt = qledvw=edv 3

is now the specific internal energy. Then from our previous

results we have

A osq - % _ _ = -
it 50 - ¢ 5%: = LR+ Qy = V.ILK’\'IT) +Q\ (B-14)
and

34 _ A 4 1 '
T%% = 7 vh& (e (B-15)

Substituting these into (B-11l) gives

eT W g ke & & +~Q, | (B-16}

which is the éntropy transport equation.
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Now we can eliminate 4 in terms of T, b, ¢ by using various

'thermodynamic formulae. Now

' 2 4d
T s T+ T G 2 () (B-17)

—¢, 4T - T 2k 4

dt e LaT/e 4t
then (B-16) is, using (B-12),
T _ ~
Plv 5 = V- (kOT) + ® +@ -T L;E)f vy - (B-18)

The above equation is often termed the heat flow equation

as is often incorrectly written as

ecy éé{ = V. (kkaT) + & +Q, —pvu’ (B-19)

which is only true as an approximation when considering small

perturbation values of § and T .



