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ABSTRACT

The general linear theory of hydrodynamic stabiliLy of
internally heated, non-rotating, self-gravitating spheres
and spherical shells of highly viscous, compressible fluid
is developed. The onset of convection in the marginally stable.
state for homogeneous spheres and spherical shells is studied
in detail, and the characteristic values of the Rayleigh num-
ber are computed from the theory for fluids having properties
similar to that of planetary mantle material.

According to the theory devedloped, the actual Rayleigh
number computed for models of the lunar interior and mantle
of the Earth correspond to vezry high order harmonic convection
( ,C> 25) and hence -would not correspond to any global wide
current system. Analysis of the size of the viscous dissipation
terms in the entropy transport equation indicates that these
discrepancies of 104 to 101 in the Rayleigh number for low I
values indicates the breakdown of the linear theory for vis-
cosity coefficients greater than about 10'- . A non-:inear
theory is probably needed to satisfactorily remedy the situation;
however, due to bovious mathematical complexities such a theory
does not exist at present.
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Chapter I

INTRODUCTION

Recent investigations of the thermal histories and tempera-

ture distributions of the moon and terrestrial planets, which

were carried out under the assumption of uniform distribution

of radiogenic elements K", Th , , and T43, have yielded

prevailing temperatures in planetary interiors to be between

20000 and 4000*K. These calculations are based on the assump-

tion that the only mechanism of heat transport is conduction

(or in the case of McDonald (1959) by radiation).

However, Kopal [cf. Kopal (1961, 1962b)] has shown that the

conductive temperature gradients hence established may very well

exceed the adiabatic thermal gradients for silicate rocks, which

probably make up the bulk of the Moon or terrestrial planetary

mantles, by one or two orders of magnitude. For convection cur-

rents to arise it is not necessary that the material be molten,

but only that its viscosity be finite--no matter how large, the

temperature gradients be strongly superadiabatic, and the time

scale be appropriately long for the existing scale length.

If one considers a visco-elastic material having a shear

viscosity coefficient ,A and coefficient of isothermal compression

with values of 1 ' R and LA (0 - Sec for

silicate rocks, then the Maxwellian relaxation time is



T' f ~ 1000 years. Then for forces and impulses acting

on time scales where 4 6 t the given planetary body

should respond essentially elastically. However, for forces

acting over time scales >> -r , such as gravitational forces

tending toward hydrostatic equilibrium, the Moon or planetary

mantle should ,have as spheres and spherical shells of highly

viscous fluid. When one considers that the age of the solar

9 17
system is at least 4.5 x 10 years or 1.4 x 10 seconds old,

then on these time scales, the terrestrial planetary masses

are likely to obey the laws of hydrodynamics rather than those

of elasticity.

The study of gravitationally and thermally unstable viscous

liquid formations has been the object of investigations, both

theoretical and experimental for several years. The first the-

oretical studies were carried out by Lord Rayleigh in (1916) and

followed by another English mathematical physicist, Harold Jeffreys

(1926, 192S, and 1930). This work in addition to that of Low (1929)

was concerned with two-dimensional, layered convection, and the

first systematic extension to three-dimensional investigations in

sphercalsystems was made by-Wasiutyniski (1946)^. This paper

was followed by Jeffreys and Bland in 1952 and on to the most I
modern work by Chandrasekhar (1961), Kopal (1962) and Ashworth (1968).

With the exception of Ashworth, previous authors have assumed

hat the flow was incompr h and h en ce t h e Cconv-.cti d.1 A ity

variation Se was due to the variation ST in temperature

alone. As a consequence, the heat propagation was assumed to take



place through conduction processes only and the radiogenetic

energy source rate was assumed neglible compared to the con-

duction terms. In this paper we shall avoid these assumptions

to give a more general study than presently exists in the

literature. Ashworth (196U) recently studied a special case of

the problem including compressibility effects and the derived

radial convection flow equation agrees in part with the author's

result. It should be noted that the basic equations derived in

this paper were developed over a year prior to Ashworth's recent

publication.

In Chapter II a brief introduction to the theory of hydro-

dynamic stability is presented along with the general hydrodyna-

mic equations for a non-rotationg, compressible, internally heated

viscous sphere, The linear forms of these equations are obtained

on the assumption that the perturbations in density, pressure,

temperature and gravitati6nal potential due to the convective

motion are very small as compared to the unperturbed, equilibrium

values.

In Chapter III the perturbation equations are manipulated

to reduce the general system from seven to five dependent variables

with the only assumption being that the unperturbed values of the

density, pressure, temperaturc, gravitational potential and material

properties of the fluid be only radially dependent. The case of

a homoqeneous fluid and constant material parameters is also

devedloped and gives a completely uncoupled system for the radial

convective velocity.



Chapter IV is concerned with the detailed mathematical

analysis of a homogeneous fluid with constant material parameters

when applied to entire spheres and spherical shells.

In Chapter V the theory developed in Chapter IV is applied

to problems of convection in the Moon and the mantle of the

Earth. The characteristic values of the Rayleigh number are

computed theoretically from the results of Chapter IV and the

effects of compressibility and radiogenetic heating are studied.

Tables I through IX are included in this chapter and represent

the computation of the characteristic value of the Rayleigh num-

ber under a variety of circumstances. Finally, the theoretical

calculations of the Rayleigh number are compared to predicted

values for the lunar interior and Earth's manLle and the resulting

discrepancies are discussed with possible suggestions for future

studies.

Appendices A and B are included for completeness in formu-

lating the mathematical problem and as a convenient reference

for the form of the hydrodynamical equations used in the text.



Chapter II

MATHEMATICAL FORMULATION

Basic Concepts of Hydrodynamic Stability

The equations of hydrodynamics for all their complexity,

allow in some cases, simple flow patterns as stationary solu-

tions. The flow patterns, however, can only be realized for

certain ranges of the parameters describing the given hydro-

dynamical system. Outside these ranges the stationary patterns

cannot be realized. The basic reason for this lies in their

inherent instability against small perturbations to which the

system is subject. It is the study of hydrodynamical stability

which attempts to differentiate between the stable and unstable

patterns of permissible flows.

Suppose, though, that we have a given hydrodynamical sys-

tem which according to the equations governing it is in a sta-

tionary state, that is, it is in a state in which none of the

variables describing it are a function of time. Let (( c--

be a set of parameters which define the given system. These

parameters will include geometrical parameters such as the di-

mensions of the system; parameters characterizing the velocity

field; and the magnitudes of the forces which may be acting on

the system. These latter may include pressure gradients, tem-

perature gradients, magnetic field, rotation (centrifugal and

ccreolis forces) and others.

We seek then to determine the reaction of the system to

small disturbances. More specifically, we wish to examine

whether these distrubances will die out, or instead will grow



in time in such a way that the system departs further and fur-

ther from the initial state and never reverts to it. In the

former case, we them the system stable, and in the latter, we

term it unstable. It is clear that the system must be stable

with respect to all possible modes to be termed stable, that is,

stability must imply that there exists no mode of disturbance

for which it is unstable.

If all initial states are classified as stable, or un-

stable, according to the above criteria, then the parameter space

defined by d,,4 . the locus of which separates the stable

and unstable states, defines the states of marginal or neutral

stability.

This locus of the marginal states in the (h,,(. )

space will be defined by an equation of the form

L . .. , 01) (2-1)

The determination of this locus is one of the primary ob-

jectives of an investigation in hydrodynamics stability. One

can then think of the parameters of the system being kept con-

stant except one which is continuously varied. The system

then passes from stable to unstable when the particular para-

meter takes on a certain critical value. One can then say that

instability sets in at this value of the chosen parameter when

all the others have kept their preassigned values.

In cs s qi fng these mrginal states into two classes--

oscillating and stationary--we have supposed we are dealing with

dissapative systems. In conservative, non-dissapative systems,



the situation is generally somewhat different as the stable -

states, when perturbed, execute undamped oscillations with cer-

tain definite frequencies; while unstable states have small dis-

turbances growing exponentially with time.

The mathematical analysis of the stability problem begins

with assuming an initial flow which represents a stationary

state of the system. Then, supposing that the various physical

vairables of the flow, (such as the density, pressure, velocity,

etc.) suffer small (infinitesimal) increments, we obtain the

perturbation equations governing these increments. In finding

these equations we linearize the basic hydrodynamical system,

which is intriniscally nonlinear, by neglecting all products and

higher powers of the perturbations. Hence, we are discussing

linear stability analysis, as opposed to nonlinear theories

which attempt to take into account the finite amplitudes of the

disturbances. In this paper we shall only be concerned with a

linear perturbation theory.

Since our system is linear, we can in general, express any

disturbance by a linear superposition of normal modes. It is

clear that this set of modes must be complete cver the spatial

range considered for such an expansion to be possible. Let the

various modes appropriate to a particular problem distinguished by

the symbol & . In practice, several parameteis may be needed to

distinguish the different modes; and we assume the symbol k to

reprLesent all the parameters that may be needed. Then if A( )

symbolically represents our disturbance, then symbolically we can

write

(2-2)
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One can also separate the time dependence by speciali-

zing the form of the normal modes sufficiently to seek solu-

tions of the form

AS () -skt (2-3)

where S1. is a constant to be determined. The subscript has

been attached to the s since, in general, its value will vary

for different .

Upon solving the remaining spatially dependent equations,

subject to the appropriate boundary conditions, one will find

in general that a non-trivial solution will not be allowed for

arbitrary values of . Indeed, the requirement that the

equations will not allow non-trivial solutions satisfying the

boundary conditions leads directly to a characteristic or

eigenvale problem for Se Thus the problem has been essen-

tially reduced to finding the sic for the various modes. In

general the characteristic values for 5c will be complex:

A . T (2-4)

where S and S are real constants for a given . and -apart

from k will depend on the parameters J --- ,}of the sys-

tem. The condition for stability requires then that S <0

for all ,. The states of neutral stability with respect to

the disturbances belonging to a given i will be characterized

by

- -. 0c> (2-5)

This gives a condition on the. parameters CC)- --- , C3 and it

will define a lccus

Ldo ) = 0 (2-6)
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in the (d ...3)-space. This locus will separate those states

which are stable from those which are unstable to disturbances

belonging to a given . Now we can observe that the locus

Sg-, ...,.(-) separating regions of complete stability from those

of instability in the (bli,--eai)-parameter space is the envelope

of the } loci. Also, we can see that when the system becomes

unstable as it crosses this locus at some particular point, the

mode of the disturbance which will be manifest at the onset will

be one whose locus , touches ' at the particular point under

consideration.

Further, we can distinguish between the two kinds of marginal

states (stationaiy and oscillatory) depending on whether or not

the imaginary part S of See vanishes when c does. If =

implies thats O for every K then we have, as termed by

Chandrasekhar, the principle of exchange stabilities being valid,

and a stationary secondary flow is the result. If, however, Sg 4

then we have overstability and the system will exhibit oscillatory

motion of a specific mode as predicted explicitly by the theory.

The Governing Equations

We wish to consider a non-rotating, self-gravitaLing sphere

of viscous, compressible fluid which in its equilibrium station-

arv state is comLpletely decribed by the four scalars: density

scalar pressure , temperature T, and gravitational!

potential i, For a general hydrodynamical system we have the

governing equations: the continuity equation,

(2-7)
1Q. C



the momentum transport equation (for derivation see Appendix A),

the entropy transport equation (for derivation see Appendix B),

(? (A) V. d-- l -TC.

Poisson's equation for the gravitational potential,

- Y .. (2-10)

and finally an equation of state relating gf,,and T

-r()T .(2-11)

This gives us a system of seven independent equations in

the seven dependent variables -r., - and along with

the proper boundary conditions will give a proper mathematical

formulation of the problem.

In accordance with the previous discussions in the first

part of this chapter, we shall consider the system at

equilibrium, (whether stable, neutral, or unStable we shall

attempt to determine) such that the dependent variables are

functions of radius only in a system of spherical polar coordi-
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nates (Y-,&c().Then we shall perturb the system in such a

the dependent variables become,

way that

(2-12)
+ + (r - )

S (-) +rG&C 4)

'-f+ NCe f

(2-13)

(2-14)

(2-15)

(2-16)V,7 (r, G/ C, t )

where the primed quantities represent the perturbation quanti-

ties. Substituting these quantities in (2-7) through (2-11)

we arrive at the linearized perturbation equations:

+ 0 v4~- V Q',.3Vt

eb t + V -V. CR V79 4 61 -UT~ 74~

(2-18)

(2-19)

--rr (2-20)

To find our perturbation equation of state we can expand

the density about the equilibrium density to give

-- ', +- [()-7 - (7 --PI7 4 (2-21)

Then using the definitions of and&,~
0

(2Z-17/)



) we have, considering linear terms only,

toLTLI + a'). (2-22)

One can envision some difficulties in writing down the

linear form of the entropy transport equation. In equation

(2-19) we have neglected the viscous dissipation terms which

are quadratic in 1' which is in accord with our linear the-

ory. However, we are going to be considering flows where the

viscosities may be extremely large (such as for mantle mater-

ial) and hence the terms quadratic in U' may be as large as

those retained in the linear form of the equation. One should

keep this in mind when considering the reZults of the comple-

tely linear analysis which will follow.

Our system is now complete, excepting formulation of the

boundary conditions, with seven linearly independent equations

in the seven dependent variables e' }.-,T', 'P', l' - We assume

that eSoT. D 4 7 r as well as the material parameters

, IC, 1c VI ' are all known functions of position.

The Boundary Conditions

We shall consider all boundaries to be perfectly spherical

since the fluid spheres are non-rotating and any perturbations

of the boundaries will introduce only sZcond-order effects on

the implied conditions on the perturbation variables themselves.



Consider a spherical shell which is confined between

r= R and y=AR where R is the outer radius of the sphere

and o444. In all cases we need to require that

= o - v=-R =d roR . (2-23)

The remaining boundary conditions depend upon the nature of

the surfaces at r=-. and v=A.R, Here we shall consider two

cases: The case when the surface is rigid (as approximating

the core-mantle interface of the Earth); and the case when

the surface is free (as at the boundary of an isolated sphere

in space).

On a rigid boundary, we must require that the transverse

components of the velocity also vanish,

I= -U = 0 dr a-. ok vo (2-24)j

For a free boundary, we need to impose the condition that the

tangential viscous stresses, expressed as the off diagonal

termaz of the general perturbation pressure tensor (see Appendix A),

and vanish, that is,

(2-25)

and

0 a '' -C=C (2-26)

In addition, when considering the special case of entire

fluid spheres, we have an additional condition. Specifically,



we need to requite that

S =0 i-r =0-(2-27)

The specific mathematical conditions imposed on the sys-

tem by (2-24) through (2-27) will be fully developed in the

following chapter.
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Chapter III

ANALYSIS OF THE PERTURBATION EQUATIONS

Reduction of the System

Let us consider first just the continuity and momentum

transport perturbation equations:

+e 4 . (Uh -'0= (3-1)

and

= -I" ~ -- ~ +."I -4- (i' )Vv-'(3-2)

+ Q L~VA -.- Ut& /'

Then taking the divergence of (3-2) and defining :

we have,

= 2. -oM y + -q-(3 4

Tp V. (3-) +c ttn a

+ V At. VIM +

where

The radial component of (3-2Or) can be written as

raZv~ (3-5)Y" ~
-"bv



and to eliminate the combination CY -V>'

(3-5) with - and on (3-3) with D

we operate on

and use the

identity

2. y x'7,z 1 r-

which holds for any function 4%. sufficiently differentiable.

Then we have

(3-7)

+ +

ire A + -A&A4V1.&~A(1

Consider for a moment the linear differential operator

6, (-) -r - . , then we can see that

1-' S,;,i& ? - -).(3 -8)

If we define this angular operator as J. , then (3-7) can be

rewritten as

C%) = 2 CVt'LYVCO b Vhr. , b.?' (3-9)

4Jlr(,Ar + 0%1

r7/ A.4

(3-6)

-yty' ( o e'% ) + (r''Y- - (6 'I)
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At this point let us consider our perturbation equation of

state,

(3-10)

One can conveniently eliminate ' through the use of the

radial component of the momentum transport equation and arrive

at

4- e. 14T + '2~e (r) ~ 4 (3-)

+ r o -

For convenience let us rewrite the gradients of - and

and since these variables are only functions of radius.,

.(3-12)

4LT 0

,dr

Finally, if we assume t.at the material constants , ,tC

and pA' are only radially dependent like T' , and 9,

then the order of our system is reduced to five with- the de-

pendent variables T', I', -' and .6 The governing

equations for this system are

'-a? + C=e) (3-13)
;;]L



)L N I (-4

4:p I)V +V 11 - r

CVT q rt' -. CkVT') + Q -(T (3-15)

e'4 4-te,-'- 6

(3-17)

At this point our system is very general, with allowances

for radial variation in all the material parameters as well

as i?, and T. Actually, the system can be reduced to three

variables '4", -A' and 7% but even that yields a very

complicated set of coupled equadtions. Rather than this, in

an attempt to obtain 'some tractable equations, let us assume

sftnplifies the model and our system becomes

r Cv- N ± -9 r (3-18)
L Ob t

4A r V- V ,7- -7-100 I
C.. 4h



23

eve.4) _-+ (3-20)

along with (3-13) and (3-17). AT this point we also need to

consider the form of the heat source term, -. There are

many possibilities; however, we shall consider only the case

of a distribution of energy sources so that Q, 1-

Then QL. = EUli,. and Q Our system can then

be conveniently rewritten as

S; + - - (y.) to 3-1
-t ~o c c ( vT . (3-21)

r-D +

along with (3-13) and (3-17). We shall now apply the above

system to the case of homogeneous fluid spheres where

( = constant. -

Application to Homogeneous Fluid Spheres

When the fluid is homogeneous, i.e. = constant, then

one can readily i-educe th-z system to two variables, g' and %y.

by successively eliminating %P T1 and d . First we shall

find it convenient to examine the term [T () 1 A -



Since T T and ho j to zero-order, 2_

and t. nCA 4(r) must satisfy the equation of

hydrostatic equilibrium,

l o - (3-24)

then

~Ti - _o_- - (3-25)

After considerable algebra, and using that r ' V(r'r')--2A

we have

141

and

r 3

4 - - ) y y ) )L -1-2 )SI)(3-27)

If one has knowledge of che forms of and X, such

as 9,, = constant, then one can hope to uncouple the

systemi and examine the nature of the time dependeno-- as dis-

cussed in Chapter II. One would like then to determine that

a state of exchange stabilities exists and then examine the

nature of the marginal state stationary flow. Rigorous proof



of existence of the marginal stability state has been obtained

in only an extremely limited case. This proof is due to

Chandrasekhar in Chapter IV of "Hydrodynamic and Hydromagnetic

Stability," and is concerned with spheres in which the fluid

is incompressible, which have Y, and X all constant,

and the density perturbatibns are due solely to thermal per-

turbations (i.e. o ). In fact, a proof of the validity

of exchange stabilities for the above cases under the assump-

tion of compressibility or variation in and X does

not exist in the literature at the present time.

At this point, however, we are going to assume such a

state of S =0 implying St -o does exist and

attempt to solve for the resulting stationary flow pattern.

Then we have = o and after extensive algebra, the

system can be entirely uncoupled to yield

14+ r'ieJ 0 LItx. (3-28)

+ lepL~' +-.~~ V1 7 4 ty)-j

In the following chapter we shall attempt to apply the

radial flow equation (3-28) to to flu A

spheres and spherical shells.
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Chapter IV

THE ONSET OF CONVECTION IN HOMOGENEOUS FLUID SPHERES

AND SPHERICAL SHELLS

In Chapter III, the equation governing the radial flow

for the marginal stationary state was derived. Let us intro-

duce the non-dimensional length x = r?R, where R is the outer

radius of the sphere. Also, let us define

(a) (Y. C7 = o CX)

(b) . = cl

(c) X)

(d)

(e)

(4-1)

9aC

Ck

- -- C 4 Cy L3 -I6'm~d ka 14[et *jhmcber)

and our equation becomes

VY - 2)(~r'

CR ACY)-1.-y 0

Let us examine the boundary' conditios, as defined in Chapter II

in light of the form on the governing equation (4-2).

(f) CR



Boundary Conditions

Consider a spherical shell confined between x = 1 and

x = a, where 0 <a<l. In all cases we must require that

S=o A x= 0 0n8 x= I (4-3)

then clearly

srUI= 0 Ga- x~o = 0)0c% 8 =( (4-4)

The remaining boundary conditions depend upon whether the

surface is rigid or free. On a rigid surface we have discussed

that 'zA and '4q must also vanish. Now from the equa-

tion of continuity for the marginal state we have

~Y QYJ ±~ +O-&~~) t-- ~o (4-5)( + + + __f )

Then requiring the

for all values of

9a. t = 0
cD r

Then we can easily

';v %..%r j - %,

vanishing of I3' on a surface of r = constant

qp gives the boundary condition that

on a rigid spherical boundary . (4-6)

see that

on a rigid spherical boundary. (4-7)

For a free spherical surface we know that the transverse

viscous stresses must vanish and this requires that

_ - -1-(4-8)
-b0

and
t

(4-9)



These must hold for all jq o

which -,1 = o identically, so

,'br

and

C (d

Then using the continuity equation

( b VK 2y r ' 'Irb

and hence we have

'D z A-r) on a free spherical surface - (4-13)

The Method of Galerkin and Its Application to Homogeneous

Fluid Spheres

From the nature of the previosuly derived radial flow

equation and boundary conditions we see it will be favorable

to expand the solution in terms of spherical surface harmonics

as 0 -fW
tt 2: -E W I '9ce (4-14x)

where ) is the 1th spherical surface harmonic of

order iL. Further we note that -JL(L4-tw Y£'

we define b:. + - .

3 + AWe )

, we have

(4-15)

- d' 'I\ IL A ) J (p

(4-10)

(4-11)

(4-12)

and if

on a r = constant surface on



Since we are considering entire fluid spheres, and

fo = constant, then one can easily show that = constant

so that is strictly unity in this case. Further, one

has that from the zero-order entropy transport equation

I - (4-16)

KC

i X;2- S i (4-17).

and

T + 4C (4-18)

so that requiring To to be finite at r = 0 gives C.=

and specification of A.t) uinquely determines 7CV()

Further, we have that

i.CK) - ) X-8 '7 (X) =( (4-19)

and the radial flow equation becomes

=02.
C + p (.6+ Y )~ - (x)+)D2. .4-20)

For a moment, let us consider the more general problem of

finding the solutions to a differential equation of the form

b 0(4-21)

where lD is some ordinary differential operator, subject to

homogeneous boundary conditions and x = 0 and x = 1 (say).
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Then if < C) I is an orthogonal set of functions which

are complete on the interval (0, 1) we can consider some appro-

ximation to our solution, U' (say) as

C n= A * V (4-22)

Now in order that -iacv)be the exact solution to (4-21),

it is necessary that 16() be identically zero; and this

requirement, if (0 is to be a continuous operator, is equi-

valent to the requirement of the orthogonality of the expres-

sion t) (U) to all the functions of the complete set R(

(c.f. Courant and Hilbert, Methods of Mathematical Physics,

Vol. I, Chapter ) . Hence

Ax'- £ Ca.col TrC%) X 'L h C~~C( (4-23)

for k = 1, 2, . . . and where ) (X1} satisfy the ortho-

gonality relations

m q1-/ 00~c. q~-c) C (4-24)

where Ci is some normalization constant for a given and

tai. is the weighting function. This procedure, however,

will give an infinite set of linear equations for the coeffi-

cients A0 . One can approximate twC by letting

'( A9/L)) and then we will have an AJx ̂  system for

finding the A . This method, first proposed by B.G. Galerkin

[c.f. Kantorovich and Krylov (1958)] will give an essentially

"best fit" approximation to the solution. In the case of a



characteristic value problem one finds that the system (4-23)

will give non-zero YAik for only a specified set of values of

some characteristic number. One then has an Nx Af secular

determinant which upon evaluation yields' an 'h th-order approxi-

mation to the desired characteristic value.

To attempt to apply Galerkin's method to the equation

(4-20) let us introduce a function

co I Z(4-25)

and expand CX) in terms of some

complete over (0, 1) and will satisfy the necessary

conditions at the end points. If we note that

(~±~- =k~t) ~ - czC6X
4- Z8± (CTY

we can see that a convenient choice for

(6tqJk so that

= 2. A; 1 A'LCE~k X

which is

boundary

(4-26)

(x-' will be

(4-27)

which will satisfy the boundary conditions if E&j are

the jth zeros of ' C - Then a particular integral

of (4-25) which is free from singularities at x = 0 is tT 1E

Adding to this the homogeneous integral which is non-singular

at the origin,

+ 1Cj) X + CcI



At x = 1, 0-,C) =O , so clearly B(j = CCl

while the explicit nature of B(j) must be subsequently

determined from the other boundary condition at x = 1, namely,

either J I"ej /dx = 0 or J4 / -A. depending on whether

the surface is rigid or free. If one applies these conditions,

can be conveniently written as

bo . Cq9) (4-29)

where b = 2 for a rigid boundary and b - for a free

boundary. One can then write for t' (x),

Cx. ~ Zt1.hCeX + 13 ~ 6; x-x4) (4-30)

If we note that the orthogonality condition for the

half-integer Bessel Functions is

Ax X Tr+t-LE,tee) TZCAi.tlz.;ccx) =_ L3z G ) (4-31)

Then using the definition of Q/CY) and t~.j00 and multiplying

(4-20) by X3- ~J~+11, Ccetk) and integrating over (0, 1) we have

the Galerkin conditions,

~P 1 2-, zr+~c~~1H ; + (0C15 (4-32)

4C. 3: C. T M *P,*0 )



where
(j)

(a) ITj W ( s-.T A W4-3)

(b) Ik

(c)

Cd
(d) jK

4X X- T-+t. CEkkx) T7gQ4 (EejX) X) +

I

X T( 
X.

The matrix component due to can be calculated

explicitly using one of the recurrence formulae for half-

integer Bessel functions, specifically,

6 X X+L'cix) (=-Q+(%.) Tiz/ elxt - G X +3/6(C ix) (4-34)

and using that

dx * N T (G6.4v C- x) (4-35)

6a k

4tj k

(44-32) becomes

-1c (4--33)

'~A'~. C~) .'-~I (E~ Ci r

~6.
-I- CRQL~A-I) (T'~ A-I ~ - - )

2
)

T+11% (G-e jx)
(4-33)

X 0-i )
3 dA

:11 JEA- It Z. ( C-.e i ) T Iz "-I" C 6 -e it )

IT +



or for non-zero 4 'J

We see that the specific forms of secular determinants must

depend upon the distribution of energy sources as expressed

by At)or equivalently by jCX) . Some particularly

convenient forms of c will be discussed in the following

chapter concerning applications to planetary interiors.

Convection in Homogeneous Spherical Fluid Shells

We now wish to consider the application of equation (4-15)

to a spherical shell of homogeneous fluid confined betweer. x = 1

and x = a ( a < ) . In this case . () cannot strictly

speaking by unity, for if Mg, is the mass contained in the sphere

enclosed by the sphere x = a then ecx mus be given as

or if 9.. is the average density such that i th Mfg

then

and~~~1 x~ 4 (4-36)s ae A cnotsrit

so in general I cr) 4 1.



Again we wish to define a function T CXI such that -C1)=b

However, this time we need to expand ICY-) in a series of

functions which are complete over (a, 1) and which satisfy

four boundary conditions. One such set of functions can be

constructed as cylinder functions from half-integer Bessel

functions as suggested in a paper by Chandrasekhar (1957). Let

us construct these functions then as

+4CijX)* V- 0'L( CIt C x 1  (4-37)

The set of roots .of the above equation is infiiite but

countable, and all are real, simple, and d"istinct. Then it

can be shown that .. .R;x)I will form a complete set

over (a, 1) with the orthogonality relation

where

- - --i . (4-40)

Expanding -2,:.\ in terms of these cylinder functions we

have

ZEE A (4-41)

and immediately we see that a particular integral of 2.Cx

(4-42)



and adding the homogeneous integrals,

U14 W A - C - +I/ t+1/2.I fe; x- + ,c xA
-4 

--C

The specific forms of 3,tCj)) B3 j) , 31(j)

given from the condition that - i-) =-a

(a) ta,1 j- + B -A.) - j + = .

and BT (j') are

on x = 1, a,

(4-44)

(b) T3 - . ) A 4 (p) C 6

along with conditions on both x = 1 and x = a which depend

upon the exact nature of the boundary surfaces.

If we now substitute the solutions for -(x and 'W;kx)

into (4-15), multiply by - e+ +02 (fec) and integrate

over (a, 1) we obtain

r / C.A.I~~-L'Ia. ,(4-45

C1b Cl CX) ZRi(.L T ~ ) (3 g 3 (
9- It ~ C3X

4 Cj (

r ~ ~ 4 C fi V-,-L+4 C~X £ +(U.AV X~
"7-

~~+ %''* X

(4-43)

t+Z -eI - ii-t
+ .t>x +4(j) X + By(j Xj.) x J.



The last integral,

some lengthy algebra

2.At

call it

e I +. /. (f .)+
x

RN , in (4-45) gives

-t t.-4A

-;: ~~%~Cgq& +

can be simplified using the recurrence formulae satis-

fied by &'.41k,,v

(ae+/s +-/4 (fPek 4. )

(a) 6.e+ c/,,,j i+--/ 

(b)

(c)

(d)

It12 /A+Va

and noting that

are both zero. These are

T. =.

C~

(c~feiu~)

-4

4 AJc

Further, let us define

Cr

(b) C-e *.)

and we can conveniently write

after

4

wt.(/, A+ I/tz (fs.) and

(4-47)

+A. eAt JI P

(4-48)

- ~ £~t4. "~Z~-e~J

J&-) as

(4-49)

13 (9* I I

(e.-

(a) jM K C-f/a (ARec

=-e dIz*va

r

ITZIL



Finally, we can obtain a secular. determinant analogous

to (4-34) as

Jk)))(50)

where the matrix elements are defined as

(a) Ne -, dx x %) (&+vLA- (4-51)

(c) S3j I

with $gtaj and given by (4-40) and (4-49) respectively.

As in the case of entire fluid spheres the evaluation of

the matrix elements will depend upon the specific forms of

gravitational field in terms of 3(x) and the distribution of

internal energy sources as represented by X..c) or equivalently

L) . In addition, evaluation of Rv- depends upon cal-

culating B.p and By from specific knowledge of the

boundary conditions at x = 1 and x = a.

--Determination of Bci and qt(j\ for Four Possible Sets

of Boundary Conditions--

As we are considering our bounding surfaces to be spherical

and either rigid or free there are four distinct cases for cal-

culating Tgy and

(a) qk-ee :s.Iccs alf- (= A S x= (



at both x = a and x = 1

so our conditions are:

at x = 1

(a) .g A-1) (B, t i + B,(J"

at x = a

B.Cf) + 3,(')~ (4-52)

- (4- 1)
3,tp+ o. Bgt (j') I

(, + cj5()]I

Using the above along with our previously derived con-

ditions from eXI =

yield

(a) B1. q -
(24+) (0- A 1 41

(b) JPq (iI

at x = 1, x = a, extensive reductions

'I4+-j (4-53)

I
C OP -

(b) Rigid surfaces at x = a and x = 1:

Now we must have jW E.' /d at both x = a and x = 1

which yields

at x = 1

(a) S ,(j) +- -

at x = a

4 ~
-PI Z~-') 3 (['

3

(4-54)

A p/x /.L 'C I- CIn this case,

(1+2.) (t+I

(b) ,ACR--1) ( c,9

d-wiz, ( reiat).+ ( .2+2.) ( A * i 1 1 0 1B -L L f )

CAt+t)G j G-)~)

= - - I tTA)
^ I f %

'C:-P.t + 14 % - i1e), )

(b) JZ i6,( ') C. X (
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Then using equation (4-44) we have for this

(a) B3.y g~

- (.94-- -Q) C.e 4- /, Cj(,)

case,

(4-55)

+ C2-f) , - % ak-tx) :(z +

(b) Gq (j i = -Cle(v.

-- 2. -- 3 a + ) P A)]

where we have introduced

(4-56)-r, ( CA.o.)

(c) Rigid surface at x = a and a free surface at x = 1.

In this case we have di/gy. at x = a, while at x =

2. -i /% ' .o 0

then use (4-44 a,

. To solve fo.c Bz (f)

b) along with (4-56a)

and G 't) we

and (4-56b) -yielding

(a) . 93'L(+) ( + ~
0.). 

i (4-57)

- L~-I) -~zi -i Sk~ 11 C,)

( ;,P-+I )

T.71h v '

(:a-) (.-. - (4-58)

(b)
Z4I q

CfeiCk ) I

(.i4.2 94's)([.2--- f .4,+ A ')

Irv.

( %-a2.e
--- -+) ( I - eA ) (!>-Q+. t.( .4, .. I
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(d) Free surface at x = a and a rigid surface at x = 1.

In this final case we have just the reverse of (c) with

at x = a and C-- at x=l. Using

(4-44 a, b) along with (4-52b) and (4-52a) we find after lengthy

reductions that

(a) [B ( (2QJO+) t -- . . 1/Zj (4-59)

+ (2A-Vh< 0) e

where is the same as that given in (4-58).

Finally, if we use the form of RI - given in (4-49)

along with the values of S () p and BI (), ) for each

of the possible combinations of boundary conditions at x = a

and x = l,we have

for .rigid boundaries of x = a and x = 1.

For 1te boandaries of x = a and x = 1-we have

4- r _+ j +- 2A+ (4-61)

Jat* -i

for a rigid boundary at x = a and a free boundary at x = 1;

I+ 4L'- 4 If,.



4K)~ __-__CIo.)- __t_ 

4_) (4-62)

2+&) ( + ) .I T
-- (2.~A.3) (nM-,) (-2- - a. ) CQ41j~j a-.) @.z+Ie ( -)

and for a free boundary at x = a and rigid boundary at x = 1.

I - 24.+l)(24z 43 r I I __ I_ (4-63)

%+VI

-- (2y.) (2I- (&- --- ) . , 6 W4,cp4)

:I.Cl (f-Q-4-t6,,jaz- (-t+1) C2.A-1)



Chapter V

CONVECTION IN PLANETARY MANTLES AND INTERIORS

In this section we wish to attempt to apply the general

analysis of Chapter IV to the discussion of the onset of con-

vection in spheres and spherical shells of planetary size.

For the sake of specific examples, attention will be paid to

models of the lunar interior and mantle of the Earth. The

fluid we are using is considered to be a silicate material

with parameter values corresponding to average values from

measurements on terrestrial rocks.

For a convective model of the lunar interior we consider

an entire fluid sphere which is homogeneous with an average

zero-order density of . = 3.34 g/cm 3 . In the last chapter

we determined that the characteristic values of the Rayleigh

number CR for the marginal stability state were given by the

evaulation of the secular determinant,

[I C Gil a ~ - tp ~'~c 2 
- Cs ) (5-1)

+ Cp L_: j2+q (,c. c .. ((

4 t c-z+j C 1Ii +T 1 -j It(
The specific values of the matrix elements T , j&

depend upon the form of j which is directly related to

ALL) =*A,2( . Rather than studying the effect of a parti-

cularly realistic form for , which might be poorly known in

any case, we will take the simplest example where Ac= A-.= constant,

representing a uniform distribution of heat sources. Then 2C)is

identically unity and the integrals involved in (5-1) can be
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evaluated explicitly using recurrence formulae for half-integer

Bessel functions. Condition (5-1) becomes

±(~..-E --. cV.Q10 ) Co. i

-C. £LU40 C21+3) 6 4 Cpo~e (-)~ =0

(E6,I-Et)

(5-2)

where it may be recalled that b depended upon whether the boun-

dary at x = 1 was free or rigid:

(a) (5-3)

(b) bA -- fv a {vee boU&do3V(.

One obtains successive approximations to the characteristic

values f6r CR by setting the determinant (5-2) to zero for

, etc. Setting the (1, 1) and (2,2) to zero

gives

Cc=

and

CR

(5-4)
G .- b ( CAt~b)

(5-5).L-4 Q 60,

where

(a) -*- -- (g+3,)b (e 4 6e,) (5-6)

(b) 4-, C EelE~

[,' 4E1±1- jCp fR -K
(c) C, +t I. + .rC' 1 +Q-'c +

S a rid b8 ounAvq

9
e4z I

I
ko



Using (5-4) and (5-5) one can calculate the first and

second approximations to CR for a given set of parameters

F0,1, p and R. For our lunar model we have

P,.= 3.34 g/cm 3  and R = 1.78 x 108 cm and for average values

for silicate rocks, a = 2.0 x 105 /c and g = 1.0 x 10(-12/dyne.

The value for L is very poorly known for the Moon; however,

assuming a radioactive solute distribution similar to the Earth,

gives a value from the "Wasserburg" model (cf. Wasserburg, G.J.,

et.al. (1964))of X.= 3 x 10 7 erg/g sec. One then obtains

Ca = 3.17, Cg = 0.098 and the results of these calculations

for varying J values are given in Table I. The first and

second approximations are seen to differ by about 1 part in 100

for a rigid boundary at x = 1 and by about 1 part in 1000 for

the free boundary case. Since the successive values of CR seem

to converge rapidly, we will use only the first approximation CR

in subsequent calculations.

Table II gives the values of CR when the fluid is assumed

incompressible, so that .S= 0, and hence C = 0, and the energy

sources are so weak that Ca 2 0. Comparison of Tables I and II

indicates that non-zero C and ' increase CR by about a factor

of two for A = 1 and have virtually no effect for "C> 10. As X

incroases the differentes between CR for free and rigid surfaces

decreases. Both the above effects are to be expected, for as

increases, the convection cell diameter is decracsing as 1/ Z

so the fluid in a given region begins to be governed by motions

of smaller and smaller scale length and does not "see" the
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boundaries or the larger scale variations in the fluid proper-

ties.

For our fluid system the Rayleigh number is given as

C Ir - r fo t C v ; . '. (5- 7 )

Using the values of P.,R, , for our lunar

model, along with Cy = 7.0 x 10'erg/g0 c, /,= 2.0 x 10serg/cm 0c' sec

and A = 102 2g/cm sec.

Cr = 9.o x (0 (5-8)

This1corresponds to a theoretical mode value of R7> 25. If the

above conclusion is correct, then the resulting convection pat-

tern in the lunar interior is considerably broken up with no

possibility for large cells corresponding to low Q values to

exist. One can argue that the values for Xo and ,u used to

calculate CR from (5-7) are not well known. If the value of u

were increased to the order of 1026, then CR - 4 x 101 and

would correspond to 2 = 6 which is quite acceptable in terms

of a "lunar" tectonic theory of convection. However, such an

increase in A will yield a corresponding increase in the

Maxwellain relaxation time, C = a ~ /O7 years. In Chapter I,

the condition for a viscous globe to respond hydrodynamically was

S 1, and for such a large -7 we would not expect that

the lunar interior would have had sufficient time over its life

time of about 10 years to reach a stationary convective state.



One could also argue that decreasing A0 by about two or

possibly threeo orders of magnitude along with a more acceptable

23
value of ?- ~10 would again yield a value of CR in the proper

range. However, a decrease in ;k, of more than about one and

a half orders of magnitude will result in a corresponding de-

crease in the thermal gradient and for >.4 10 9 , the super-

adiabatic gradient necessary for convection will vanish altogether.

In the considerations of convection in the Earth's mantle that

will follow, exactly similar difficulties will be seen to arise

on comparison of theoretical and computed Rayleigh numbers.

We now wish to apply for stationary convection in spherical

shells to a model of the Earth's mantle. Consider a layer of

homogeneoius fluid overlaying a core of radius r core - aR with

an average density . such that M caore

As discussed in Chapter IV, ( representing the gravi-

tational field, cannot strictly speaking be unity as in the

case of entire homogeneous spheres. Instead, we have from

Chapter IV,

(X3 = + (;F-1) - (5-9)

To evaluate the matrix elements M - and in the

secular determinant

U M; 4 CcaJ9- - (5-10)

we need to use (5-9) as well as specific information about the

energy source distribution function Acr) . Rather than assume



some particularly realistic form for Ar) , let Ar) = ,, =-coas4-at

and then we can set ctn =. . The material parameters

for the model mantle will be average values for silicate

rocks so that

cc ..o x to-S (5-11)

CV 0.o 10 Lf4 C S Ltvtlt4+.

The average density will be , = 4.1 g/cm and the energy

source distribution fninction is the same as previously used

for the lunar interior calculations; X0 = 3 x 10 e rg.
g sec

The radius of the Earth is R = 6.371 x 10 cm and the computed

values of Cd% Cc and Cp are:

5o.o (5-12)

If we assume momentarily, for computational facility, that

1, then the (l- , 1) determinant from (5-10) gives the

first approximation to CR

U% ___ Cc P CJ+I (5-13)

-4-

where are the first zeros of T - .T 0q )=)

and are given in Table III along with corresponding values of



PI . The value of R depends upon the specific

nature of the boundary conditions and are found on the last

page of Chapter IV. Using (5-12) and (5-13) , C is thenR

calculated for varying i values and mantle thicknesses under

the four possible types of boundary conditions with the results

given in Tables IV--VII.

To examine the effect of gravitational variation, consider

an average gravity function given as

A) Y 1 C+ (5-14)

where and ?, are the average core and mantle densities

respectively. An examination of the integrals representing

Mxq- and 9along with the specific form of gir
given in (5-9) indicates that exact evaluation will not be at

all straightforward. Instead, let us~ approximate the effect

of a non-unity value of yJ by taking 3tn to be its

average value in the mantle. For the Earth, Qe = 4.1, and

= 12.5 and a = .55, so that the variation irj 5,X) is:

3(v.-t 3 = 134f (5-15)

3 oS

The average value is = 1.873, so the approximation 1) 2

is fairly reasonable and CR ' is

S - C(3:p c s~ T JJ~~

1 4~.
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Computed values of C ( using (5-16) are given in Table VIII

for mantle thicknesses corresponding to a = 0.5 and a = 0.6.

Finally, Table IX gives theortical values of C (1 underR

the assumption of incompressibility and very weak energy sources,

i.e. C, = C = 0. For comparison with Tables IV thraugh VIII,

values of CR in Table IX are computed for both cases of

gl1) = 1 and I(x) = = 1.873.

The differences between values of C R1 given in Table IXR

and those in Tables IV and VII are due to a term _ Cg+(g(A4)-CI1

and since CP = 2.00 and = 8.0553, any compressibility

effects are very small for all but the lowest few I values.

As expectedthe allowance for gravity variation in the mantle

with 3 * I resulted in an overall decrease in CR, or equi-

valently, a given value of CR corresponds to a higher R value

hence smaller convection cells. Under all conditions it is

seen that narrowing the mantle shifts the convection to high3r

and higher harmonics as the fluid finds it increasingly diffi-

cult to form large diameter low A -value convection cells.

The most important result is, however, that Rayleigh

numbers for an Earth model with mantle thickness of a = 0.5

to a = 0.6 fall short of the computed value by several orders

of magnitude. In (5-12) we had CR = 1.8 x 10M and for the

rigid-rigid case (rigid boundaries at x =a and x - 1), this

corresponds to 2 30, which is very unsatisfactory from

any global tectonics viewpoint. For CR to fall in the proper

range of A (.q -6) we need to reduce the result in (5-12)
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by about (0 . To accomplish this one needs to increase

,u to about 10 and decrease X0 to the order of 10.

With such values the Maxwellian relaxation time would have

increased to the point where a stationary convection pattern

would not have time to develop over the Earth's lifetime,

and the ambient thermal gradient might very well not exceed

the adiabitic gradient and convection would be prohibited

altogether. Considering the above discussions, one is

faced with the conalusion that the linear theory may be

inadequate to deal with problems at hand. In Chapter II it

was pointed out that linearization of the entropy transport

equdtion by eliminating the viscous dissipation term as a

quadratic in ' could have serious effects. The lineariza-

tion was necessary to obtain a tractable mathematical problem,

but it appears to have limited the application of the theory

to physical situations where the viscosity coefficient is

much smaller than for planetary mantles and interior.

If we consider an order of magnitude analysis of the

problem, we find that equating the gravitational and viscous

flow terms in the equation of motion (which should be of the

same order of magnitude),

Q.C V' 74t/)) (9(~ C :9L (5-17)

From geophysical considerations of continental drift, one

can estimate that convective velocities in the Earth's mantle

would be like U ~ cW%/1 ~ o c . Using this as an



approximate value,

@ (el/) - .%. = lo (5-18)

Using the above value for (9 (Yg) , and the conductive entropy

transport term is

V2 T(o (5-19)

and viscous dissipation term gives

A (. * s ) - (5-20)

Even these rough calculations show the difficulties with the

linear theory. A non-linear development which includes the

viscous term in the entropy transport equation does not exist

in the literature. This is not surprising in the light of

the overwhelming mathematical difficulties.

As an example, consider the simplest possible case where

the flow is incompressible, two-dimensional, constant gravity g,

and there is an applied thermal graident 42* =- but no inter-

nal energy sources. The system can be uncoupled to give for

the vertical component of convective velocity

(ICDU3- (g 7 b bw 2 b (5-21)

and

(5-22)
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We see that even the simplest case yields a rather unpleasant

mathematical problem and as a result, a non-linear theory

for convection in plnaetary interiors is yet to be developed.

In this paper the general linear theory of thermal in-

stability in internally heated spheres and spherical shells

of viscous, compressible fluid has been developed. The par-

ticular case of marginally stable state at the onset of sta-

tionary convection for a homogeneous fluid has been studied

in detail and the characteristic values for the Rayleigh

number under varying conditions have been calculated. These

values have been seen to be rather insensitive to the inclu-

sion of compressibility and energy source effects in the case

of a fluid having silicate rock material properties.

Most significant was that that theoretical values yielded

characteristic values corresponding to very high harmonics,

i.e. A > 25, when applied to models for the lunar interior

and terrestrial mantle. One then concludes that either the

convection is in the form of very small cells of a few hundred

kilometers in diameter for the case of the Earth, which is

entirely unsatisfactory for a global tectonic theory, or that

the linear theory is inappropriate when considering fluids

of such high viscosity. An order of magnitude calculation in-

dicates that for A greater than about 10 , a non-linear

theory which retains the viscous dissipation terms in the

entropy transport equation is necessary to adequately for-

mulate the problem. Due to the enormous mathematical diffi-
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culties introduced by a non-linear theory, no such theory

presently exists in the literature.



Table I. First and second

approximations to the characteristic value CR
for entire homogeneous fluid spheres. C. = 3.17; Ca = 0.098

Rigid boundary at x=l Free boundary at x=l

C )C ()C R C Z
R R R R

1.310x10 4

1.142x10 4

1.623x10 4

2.327x104

3.279x10 4

4.518x104

6.095x10 4

8.057x10 4

1.045x10 5

1.333x10 5

1.294x10 4

1.126x10 4

1.598x10 4

2.291x104

3.229x10 4

4.450x10 4

6.007x10 4

7.944x10 4

1.031x105

1.316x10 5

4.975x10 3

5.656x10 3

9.270x10 3

1.456x10 4

2.187x10 4

3.159x10 4

4.423x10 4

6.021x10 4

7.999x10 4

1.042x10 5

4.971x10 3

5.653x10 3

9.267x10 3

1.456x10 4

2.1807x10 4

3.159x10 4

4.422x10 4

6.020x10 4

7.998x10 4

1.041x10 5



Table II. First approximation to the characteristic value CR
in homogeneous fluid spheres in the limit of incompressibility

(Cp = 0) and very weak energy sources (C, = 0).

Rigid boundary

at x=l

CR(l)

8.154 x 103

1.056 x 104

1.537 x 104

2.235 x l04

3.180 x 104

4.412 x 104

5.976 x 104

7.922 x 104

1.030 x 10s

1.318 x 105

Free boundary

at x=l

CR(

3.094 x 103

5.227 x 104

8.779 x 103

1.399 x 104

2.121 x 104

3.085 x 104

4.336 x 104

5.920 x 104

7.889 x 104

1.029 x 105

IRef. Chandrasekhar, "Hydrodynamic and Hydromagnetic Stability,"
Chap. 4 (1961)]



Table III. The first zeros of 1+1, + (z)
and the corresponding values of p2+11

2+,.

a = 0.2 a = 0.3

S zi P 1z . P

1 4.68640 0.0851258 5.04273 0.0287565
2 5.79966 0.219152 5.96125 0.0433670
3 6.99345 0.827033 7.05135 0.0804682
4 8.18329 4.07722 8.20089 0.180621
5 9.35590 23.9880 9.36068 0.475005
6 10.5140 1.412574

a =0.4 a =0.5

5.63897
6.35745
7.28038
8. 31928
9.41654

10.5385
11.6674

0.0121094
0.0144789
0.0190172
0.0275034
0.0437534
0.0761334
0.1435507

a = 0.6

6.57201
7.11158
7.84504
8.71680
9.68200

10.70769
11.7708
12.8557
13.-9521
15.0533
16.1554
17.2560
18.3542
19.4492
20.5410

0.00532874
0.00574651
0.00644475
0.00752772
0.00917101
0.0116670
0.0155047
0.0215105
0.0311069
0.0467671
0.0728515
0.117113
0.193877
0.329234
0.573870

a = 0.8

0.00222241
0.00228887
0.00239297
0.00254054
0.00274015
0.00300396
0.00334878
0.00379840
0.00438496
0.00515454
0.00617030
0.00952205
0.0D933658
0.0117918
0.0151818

15.7868
15.9431
16.1749
16.4787
16.8506
17.2865
17.7812
18.3301
18.9284
19.5715
20.2550
20.9749
21.7274
22.5094
23.3176

0.000205553
0.000206046
0.000206763
0.000207743
0.000208977
0.000210453
0.000212194
0.000214217
0.000216512
0.000219102
0.000221731
0.000225205
0.000228749
0.000232640
0.000236902

Reproduced in part from:
S. Chandrasekhar and Donna E
49, pp. 446-48 (1953).

lbert, Proc. Camb. Phil. Soc.,

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

8.0553
8.4428
8.9913
9.6717

10.4563
11.3210
12.2466
13.2177
14.2225
15.2518
16.'2988
17.3581
i8.4258
19.4988
20.5749
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Table IV. First approximation to the

characteristic value CR for rigid boundaries

at x = a and x = 1. C = 50.0; C =2.00.

a = 0.4

1.58 x 105

7.01 x 104

5.22 x 104

5.06 x 1 4

5.68 x 104

6.85 x 104

8.54 x 104

a = 0.2

5.16 x

2.95 x

3.09 x

3.86 x

5.00 x

a = 0.8

4.70 x

1.62 x

8.48 x

5.39 x

3.85 x

2.98 x

2.44 x

2.10 x

1.86 x

1.71 x

1.61 x

1.55 x

1.51 x

1.51 x

107

107

106

106

106

106

106

106

106

16

106

106

106

I

1

2

3

4

5

6

7

8

9

10

11

12

13

14

a = 0.6

1.10 x 106

4.16 x 105

2.47 x 105

1.84 x 105

1.58 x 105

1.49 x 10 5

1.52 x 101

1.62 x 10'

1.80 X 105

2.05 x 105

2.37 x 105

2.76 x 105

3.23 x 105

3.80 x 105

4.45 x 105

104

104

104

104

104

1.52 x 106
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Table V. First approximation to the characteristic value CR
for free boundaries at x = a and x = 1. ca 50.0; C = 2.00.

a = 0.2

1.52 x 103

1.32 x 103

1.72 x 103

2.40 x 104

3.33 x 104

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

a = 0.4.

3.90 x 104

2.28 x 104

2.23 x 104

2.68 x 104

2.48 x 104

4.61 x 104

6.10-x 104

a = 0.6

2.31 x 10s

9.91 x 104

6.91 x 104

6.17 x 104

6.28 x 104

6.95 x 104

8.07 x 104

9.63 x 104

1.17 x 105

1.42 x 105

1.73 x 105

2.10 x 105

2.54 x 105

3.05 x 105

3.64 x 105

a = 0.8

9.10 x

3.23 x

1.76 x

1.18 x

9.00 x

7.48 x

6.62 x

6.15 x

5.94 x

5.90 x

6.01 x

6.24 x

6.57 x

7.01 x

7.54 x 105

106

106

106

105

10.1

105

10s1

10,

105

105

10s1

105

105
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Table VI. First approximation to the characteristic

value CR for a free boundary at x =

a rigid boundary at x = 1. C = 50.0;

a and

C = 2.00

a = 0.2

4.19 x 104

2.71 x 104

3.03 x 104

3.84 x 104

5.00 x 104

a = 0.4

1.03 x

5.07 x

4.22 x

4.48 x

5.34 x

6.65 x

8.43 x

105

104

104

104

104

104

104

a = 0.6

6.24 x

2.50 x

1.55 x

1.23 x

1.13 x

1.15 x

1.24 x

1.39 x

1.61 x

1.89 x

2.23 x

2.65 x

3.15 x

3.73 x

A x 10 r

a = 0.8

2.42 x 107

8.42 x 106

4.45 x 106

2.89 x 106

2.11 x 106

1.67 x 106

1.41 x 106

1.24 x 106

1.14 x 106

1.08 x 106

1.05 x 106

1.04 x 106

1.05 x 106

1.05 x 106

1-12 x 106

105

105

10s5

105

105

105

105

105

105

105

15

105

10.1

105

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15



Table VII. First approximation to the characteristic

value CR for a rigid boundary x = a and a

free boundary at x = 1. Ca = 50.0; C = 2.00

a=0. 2

1.90 x 104

1.43 x 101

1.76 x 104

2.41 x 104

3.33 x 104

1

2

3

4

5

.6

7

8

9

10

11

12

13

14

a=0 .4

6.62 x 104

3.28 x 104

2.78 x 104

3.01 x 10'

3.68 x 104

4.73 x 104

6.16 x 104

3.69 x 105

a=0 .6

4.81

1.90

1.20

9.57

8.84

9.01

9.78

1.11

1.29

1.52

1.82

2.17

2.60

3.10

x 10

x 105

x

x 104

x 104

x 104

x 104

x 10s

x10 5

x 10

x 105

x 10"

x 105

x 10s

a=0 .8

2.16

7.50

3.98

2.58

1.88

1.49

1.26

1.11

1.02

9.67

9.41

9.34

9.46

9.71

X 107

x 10,

x 16

x 106

x 106

x 106

x 106

x 106

x 106

x 10s

x 10s

x 10s

x 1

x 10s

15 1.01 x 101
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Table VIII. First approximation of characteristic

value CR with an average gravity variation 3= 1.873.

C= 50.0; C -2.00. Rigid boundary at x = a

Rigid boundaries at x = 1 Free boundaries at x = 1

i a = 0.5 a = 0.6 a = 0.5 a = 0.6

1 1.83 x 10, 5.78 x 105 7.83 x 104 2.52 x 10'

2 7.91 x 104 2.22 x 10' 3.64 x 104 1.01 x 10

3 5.27 x 104 1.34 x 105 2.66 x 104 6.33 x 104

4 4.47 x 104 1.01 x 105 2.49 x 104 5.24 x 104

5 4.39 x 104 8.70 x 104 2.68 x 104 4.88 x 104

6 4.76 x 104 8.28 x 104 3.14 x 104 5.00 x 104

7 5.47 x 104 8.44 x 104 3.82 x 104 5.44 x 104

8 6.49 x 104 9.05 x 104 4.75 x 104 6.18 x 104

9 7.87 x 104 1.01 x 10 5  5.95 x 104 7.20 x 104

10 9.57 x 104 1.15 x 10' 7.44 x 10 4  8.52 x 104

11 1.17 x 10' 1.32 x 105 9.24 x 104 1.02 x 10s

12 1.41 x 105 1.54 x 10' 1.14 x 10' 1.22 x 10s

13 1.70 x 10' 1.81 x 10' 1.39 x 10' 1.45 x 10'

14 2.03 x 105 2.12 x 105 1.68 x 105 1.73 x 10'

15 2.42 x 10 2.49 x 105 2.02 x 10' 2.06 x 10'
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Table IX. First approximation of characteristic

value CR for a = 0.6 in the limit of incompressibility (C = 0)

and very weak energy sources (C = 0). Rigid boundary at x = a:

Rigid boundary x = 1

1 5 =1.000 S=1.873

1 6.68 x 105 3.57 x 105

2.57

1.58

1.22

1.08

1.06

1.12

1.23

1.40

1.63

1.92

2.28

2.71

3.22

105

10-1

10,

105

105

165

105

105

10,

105

10*

105

105

1.37

8.41

6.49

5.78

5.66

5.95

6.56

7.47

8.69

1.02

1.19

1.45

1.72

x 105

x 104

x 104

x 104

x 104

x 104

x 104

x 104

x 104

x 1s

x 1001

x 105

x 10,

Free boundary

(=1.000

2.92 x 105

1.18

7.64

6.33

6.07

6.40

7.19

8.39

1.00

1.21

1.47

1.79

2.18

2.63

x 10

x 104

x 104

x 104

x 104

x .104

x 104

x 105

x 105

x 105

x 105

x 10,

x 105

2.04 x 10- 3.17 x 10s

at x = 1

=1. 873

1.56 x 10'

6.27 x 104

4.08 x 104

3.38 x 104

3.24 x 104

3.42 x 104

3.84 x 104

4.48 x 104

5.35 x 104

6.47 x 104

7.87 x 104

9.58 x 104

1.16 x 105

1.40 x 101

1.69 x 105

2

3

4

5

6

7

8

9

10

11

12

13

14

15 3.82 x 105
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APPENDIX A

PROPER DEVELOPMENT OF THE EQUATION OF MOTION

We know that Newton's second law will require that for

a fluid

V. (A-1)

where .P is the pressure tensor and 3 the body forces acting

on the fluid element.

Let us consider the pressure tensor for a moment. The

co-nponents of the tensor c are force per unit area, so it

is appropriately termed the pressure tensor; this tensor is

sometimes used instead and is called the stress tensor.

Pressure forces like Pxydzdy act on the surface of a

fluid particle, and are to be distinquished (as we have done

above) from body forces like gravity and electrical forces which

act on the entire volume of the fluid element. Body fdrces are

clearly proportional to size, d'E = dxdydz, of the fluid particle

and consequently, their moment about any point in the fluid par-

ticle is fourth order in the infinitesimals dx, dy and dz. Thus,

if moments are taken about oz of the forces acting on the planes

parallel to ox there results

Then we see that ignoring fourth order terms in the infinitesimals

gives Pxy = Pyx. Similar arguments follow for Pyz = Pzy,



Pxz = Pzx, so the pressure tensor P is symmetric.

Now in the case where the fluid velocity is zero, hydro-

statics, we know that the normal pressure acting on a small

fluid element is independent of the orientation of the surface

on which it acts. In this case,

(A-3)

where p = Pxx = Pyy = Pzz. Then we can conveniently write

S =T 'T(A-4)

where T is termed the viscous stress tensor.

If n denotes the outward unit normal to a closed surface

lying in the fluid, the force acting on an elementS<!? of 5

is - or by symmetry of . There-

fore the total force F exerted by the fluid outside A on that

lying within - is

- . P 4P 4-C (A-5)

from Gauss' theorem. If this volume shrinks to a fluid particle

J-c then as the* charige in V.I across r can be neglected,

(5) reduces to -V.PT

If the shape of the fluid particle P remains fixed, so

that all parts move with the same velocity v, the rate of doing

work on P is the inner product of this velocity with the force

itself, i.e., -v.(2.fl-c . Tnis is the rate of doing work

against the pressure and tangential stresses opposing the rigid
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body displacement of P. The total rate at which the fluid out-

side P does work on P will contain not only the term for rigid

body displacement, but also a term giving the rate at which

work is done to change the shape and volume of P. Now the

inwarids force on an element nd$' of a closed surface 9 does work

against the efflux of fluid from the fixed volume Y,through d9,

at a rate ( $f 3 . Hence the rate at which the fluid

outside the stationary volume V does work on the fluid within

V is

(A- 6)
- V.

on again applying Gauss' theorem. For an elemental volume 4-

at a fixed point x it follows from (G) that this rate is

(&14.) C(A-7)

Now usir

where refei

for second rank

ig cartesian tensor notation we see that

C (P +:P-b' .A±: 1I~

.(v.

(A-8)

to the "double inner product" or scaler product

tensors; I . Ai- 9 AB

Then (A-7) is

AC ! - C .P I a - (A- 9)

We recognize the last term as the rate of doing work on P to

move it as a rigid body and the - is the rate of

S
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doing work to change its shape and volume. Then if we move in

a frame of the center at mass of P, the rate of work done is

seen to be (say), then

_. -U- + V 0 C(A-10)

where we have used

d
Now let denote the rate of change in a frame fixed in

a fluid particle of volume V, then the rate of change of volume

of the fluid lying within a volume V at a given instant is the

integral over V of -(.t') . The volume of fluid passing through

a surface element Yid% of V is v.2 f uni'c3 per second, and so

the integral of this quantity over the surface of V is another

measure of the rate at which fluid within V is expanding. Hence,

S a~ (c 5v - 7,j - (A-11)
V V

then

5 - (A-12),

and as this must apply to all the subregions into which V can

be divided, it follows that if all subregions are compact sub-

spaces then the integrand must be zero and

(Ic' =V y. -r (A-13)

Now write VT.'=\ and using (10) and (13) with the first law

of thermodynami-cs,

4 V 4U + &wf, tue. a a (A-14)



av 4-d_ .4 + -, g \/:VV. (A-15)

From the second law of thermodynamics, we recognize that

SA... =. -+ (A-16)

where 8 is the entropy of the volume V. Then we see that since

J _ u Av (A-17)
d&i ;-t d t

where SJC is the rate of change of irreversible work, then

(A-18)

where ' is known as the dissipation function; it is the

rate at which energy is being dissipated by viscosity.

As P is a symmetric tensor, this is also true of the

tensor Tr -b . Any tensor A can be expressed

uniquely as the sum of a symmetric and antisymmetric tensor,

that is

A;. - = _ g + A ) 4 - A;)

).

(A-19)

C A a

We can also see that

As: Ck~ A KshA K,

Then we see that

~-. ~- y g

(A-20)

(A-21)

s (13



We can understand this thermodynamically as (2v) corresponds

to rigid body rotation and so has no bearing on its thermody-

namics. We state that (vyV can be divided into tensile and

shear components of rates of strain as follows. The trace of

a tensor A is defined as

At T' A (A-22)

In particular, we see that

- - (A-23)

That this is purely the tensile component of the rate of shear

is seen from (A-13), which shows it corresponds to just a scaler

change in volume. Now the trace of I is 3 so can be

separated as

s VV* (A-24)

where

+ V (A-25)

clearly has zero trace. Adapting a similar expansion for

we see that

t (A-26)
Trr -r 4- (lX26

and then the dissipation function is

( :- CV) (A-27)



Now we can write .-. as

6W4 (A-28)

where v'' is the rate of entropy production per unit volume

(a complete derivation of this form is provided in Appendix B).

Then
J.~~ 0 o S

Irt
-T (A-29)

Now if we write er =o + ( the reason for which will be

explained), then

= -- V. V (A-30)

We see that first term on the right is a product of zero-order

tensors while the second term is a product of second order

tensors. The point of the use of C0, and f, is that separation

into
tC

-- TF (.go . -I *(2)T (A-31, a&b)

is derived from the fact, known as the "Curie principle", that

in anisotropic medium only fluxes and thermodynamic forces of

the same tensorial character couple. Otherwise, because the

Cartesian components of tensors transform differently depenhding

upon their tensorial order, the symmetry properties of the

m&Jium will not appear to be preserved under rotations and re-

flections of the coordinate system. An important consequence

of the fact that in an isotropic medium there is no coupling
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between fluxes and thermodynamic forces of different tensorial

order, is that each term, 'o0, 't, is separately positive

definite since Cr' is positive definite.

This assumption of isotropy of the fluid in its

thermodynamic properties, leads to the conclusion that the

correct form for the linear phenomenological equations is

- := - - -- (A-32, a&b)

where are the phenomenological coefficients known as the

coefficients of viscosity. The bulk viscosity ,a' vanishes

identically for a monotomic gas whereas the shear viscosity A
does not vanish for any fluid save those exhibiting super-

fluidity.

The pressure tensor can now be written as

-1 = - (,M'C '5 -3~ I '"U

and since c *, a , o then Af A y, . Then

+ .)-( z-A(.-.

g becomes

(A-34)

Finally we have to consider the form of the diverg

Now we can see that

z v'4- . (A

ence of

~-35)

-36)
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Then finally

(A-37)

a q C-j 'q A~- k ,

and our equation of motion for the fluid particle is

(A- 38)

+4-O 5 -4- C.U)I A

where ~ is the body force per unit volume.

( I ' +3, ) 3gv

4- V + (.,M' 4- L.,u I V 19. V13 1%0
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Appendix B

THERMODYNAMICS OF A FLUID PARTICLE--
DEVELOPMENT OF THE ENTROPY TRANSPORT EQUATION

In fluid flow the main causes of irreversibility are the

phenomena of viscosity and thermal conductivity. We shall

consider these cases in some detail.

The second law of thermodynamics can be written in the

form

d -V -d C (B-l, a&b)

where equality represents reversible processes and > irreversible

processes. Also, i chemical potential of species 4

of concentration 4cC

In simple fluid systems the reversible work is just PrV

and if 6VAL is the irreversible component of work done on the

system,the first law of thermodynamics gives

9q + SW; =av + pdV- (B-2)

Let d S be the entropy supplied to the system by its

surrounding with the transfer of heat 6 , and let d(%E be the

entropy increment due entirely to irreversible processes within

the system, then IS= e and the second law for reversible

processes (JCQ= o) and natural processes can be written in the

combined form

. & = C q - Td 4 C + SIA LV>- (B-3)
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volume J-t in unit time due to radiation. Integration over

and V , plus an application of Guass' theorem gives

. -- - - d'r V Q +-, (B-5)
6t v. Y

TV T

While (B-4) applies only to a thermodynamic system P

small enough for T to have a single value for the whole -of P,

this development not preclude the possibility of a temperature

gradient at P. Now

V.~~- T . -% -T (B-7)
T 'Tya

and therefore (B-4) can be written as

4- L +u..) (B-8)

where

' VT j '+ d - -. (B-9, a&b)
T T S

We recognize the last expression from, Appendix A which ex-

plains the particular form used.

Fourier's law for heat conduction gives an empirical rela-

tion between the heat flux vector and the thermal gradient,

that is,



where K is the coefficient of heat conduction. While such

a linear relationship can be established analytically for

gases using kinetic theory, the application to general fluid

systems is as a phenomenological relation.

From Appendix A, we saw that the first law of thermodyna-

mics could be written as

,S ~ ~ -. .- V> T (B-ll)

Now if we let v=-At.' be the elemental fluid volume, the

above equation can be written in severil ways. First we must

see that the equation of continuity,

+ V( )- o is (B-12)

( .(B-13)

then each of the variables in (B-ll) can be written in terms

of specific valujes, e.g., _ d 4 t where IA

is now the specific internal energy. Then from our previous

results we have

S :I -k =, + 4,I= .O gT +- q r- (B-14)

and

t At (B-15)

Substituting these into (B-ll) gives

which is the entropy transport equation.
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Now we can eliminate A in terms of ~T by using various

thermodynamic formulae. Now

4-A C + -C, )r -(B-17)

then (B-16) is, using (B-12),

Cv ~ V. kT) + 1 4- Q. -r V.13 (B-18)

The above equation is often termed the heat flow equation

as is often incorrectly written as

CV . Q T) + + ,- ' (B-19)

which is only true as an approximation when considering small

t- b ti l = A ~

}r 
Gpe ur. a- on va- ues o L% 7%


