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Determination of Martian Surface Reflectivity from 0.4 to 1.1 Micron
Using a Vidicon Spectrometer

by

Douglas John Mink

Submitted to the Department of Earth and Planetary Science
in part-ia.I fulfillment of the requirements for the degree of

Master of Science on May 23, 1974

ABSTRACT

A new astronomical instrument, the vidicon spectrometer,. is
being developed at the M.I.T. Planetary Astronomy Laboratory.
Based on the silicon diode vidicon system currently in use there,
a low dispersion prism is added between the vidicon image tube and
the telescope, allowing digital vidicon photographs to he taken df
spectra. These spectra are stored on magnetic tape and computer
processed to create intensity vs. wavelength curves for stars -Ind
planets. The high spatial resolution of the vidicon imagle tubte,
combined with a higher spectral resolution than photometer fil ters
currently -in use at M.I.T. give this instrument potent ial in the
study of planetary surface composition from spectral ref lectivitt..
Procedures for reducing the vidicon images to spectra have bf'en
tested on a set of spectra of tio stars and the planet Mlars. It
is concluded that the viclicon response is not linear enough wi th
variations In exposure time at lot, levels of incoming light for
consistent star spectra. although it works well with Mars clue to
the planet's larger intensity where the vidicon tube has i ts
poorest response. The spectrometer slit is so narrow (one seconr
of arc for this data) that uaveleng.th-dependent var iations in
refraction of light from a point source by the atmosphere .caw1r'e
,tar spectra of variable clualitl. Because of the lou quality of
the star spectra. direct spectral rrflectivity measurenwnts (which
are obtained using Mars to star ratios) proved to be impossible.
Although further tests of the spectral and intensi ty response of
the silicon dinde Vidicon should be carried out in the laboratory
before good results can be gua-anteed, the presont Mars spectra
may probably be used in conjunction With photometer-derived
reflectivity data to expand coverage of the surface of Mars.

Thesis Advisor: 'Thomas B. McCord

Title: Associate Professdr of Planetary.Physics
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1. Introduction

Although Mariner 9 has returned a vast quantity of

information about the planet Mars,~ little was learned about

surfsce composition. From such experiments as the infrared

spectrometer., particle size and silica composition were estimated,

but these. determinations had error bars so great as to be nearly

useless In reaching conclusions about the composition of the

surface materialso-f rars. Until the Viking Lander in 1976, there

is no way to physically look at a Martian rock with instruments.

Probably the moot useful technique for remotely sensing

surface composition is reflectance spectroscopy. Dollfus (1961),

studying the polarization of light reflected by Mars , concluded

that limonite, a hydratdd iron oxide, was probably a major

constituent. Hovis (1365) observed absorption bands in the near-

infrared reflectivity of limonite and suggested that they would be

a diagnostic test for limonite on Mars. Sagan et al (1365)

compared absorption pands they observed in laboratory specimens of

lisonite to Dollfus' Martian albedo curves and concluded that a

surface with at least some limonite was not inconsistent with the

data. Adams (1968) observed absorption bands between 0.5 and 2.5

microns in many iron-bearing minerals, the positions of which

varied significantly from mineral to mineral. These bands are

caused by electron transitions in iron ions and by vibrational

bands i.n hydroxyl iokns and water molecules. Adams suggests that
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the absorption feature observed in Tull's (1966) geometric albedo

curve is not inconsistent with a hydrated basalt composi tion. The

feature observed at one micron in their spectra is not due to iron

in iron oxides, but to iron ions in silicates. Adams anrd McCnrd

(1969), using geometric albedoes obtained during the 0i;7

opposition discovered that curves for the bright aras ihad

different shapes than those from the dark areas of the Mar ti:in

surface. They concluded that the surface was conposed of a

combination of oxidized basalt and hydrated iron oxides. The

bright and dark areas were modelled as being composed of of the

same.material in different degrees of oxidation.

McCord and Westphal (1971, see also McCord, Elias, and

Westphal, 1971) observed Mars during the 1969 opposition and noted

that the iron ion absQrp-tions were in different places, indicating

compositional differences. Seven areas were observed, four dark

and three bright, each being about five Martian longitudinal

degrees in diameter. From this data, much compositional analysis

has been. done (see Figure I for examples of mineral ref lectivities

compared to Mars); however, from such a small sample,

generalizations about the rest of the surface cannot be made.

Despite over twenty additional spots obtained during the 1973

opposition, such interesting features as the Coprates canyon and

the Hellas basin remain uncovered; what is needed is tihole disk

coverage at higk $pectral and spatial resolution, A new

technique, vidicon spectroscopy, has been developed to obtain the
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desired high resolution ful -disk coverage. This thesis describes

that technique.
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11. The Vidicon Spectrometer

The silicon diode array vidicon *was originally developed for

television and picturephone use, but because of its large dynamic

range, high quantum efficiency, and linear response, it is being

used by a growing number of astronomers as a digital replacement

for photographic plates. The only advantage a photographic plate

has over a vidicon is spatial resolution; however, that is not a

limiting factor as atmospheric conditions are the resolution-

limiting factor in astronomy. McCord and Westphal (1972), Kunin

(1972), and McCord and Bosel (1973) have reported on the

development of a vidicon system for single-frame astronomical

photography at the Planetary Astronomy Laboratory of the

Massachusetts Institute of Technology (MITPAL). This system is

based on an RCA silicon vidicon tube with a peak quantum

efficiency of 85% at 6.5 microns, sloping off to about 6% at 1.1

microns (see Figure 2). Using filters this system has been

developed as a two-dimensional imaging photometer, using filter

sets similar to those used with photometers for spectral

reflectivity work at MIT. As reported by McCord and Bosel, a

vidicon spectrometer which w

the vidicon combined' with a

a vidicon photometer is under

The vidicon spectrometer

is attached to the front

telescope. Schematically it

ould give the spatial resolution of

greater spectral resolution than such

development.

is basically an optical syctem which

end of the vidicon system on the

consists of a low-dispersion prifm



page 10

20 0.~~4.4 . 6008 .012+ +>4.

WAVELENGTH IN MICRONS

Figu re 2. Quantum efficiency of the RCA vidicon.
This is the percentage of incoming photons which
the diode array and affect it as opposed to being
reflected or passing through without being absorbed.
This graph was made by averaging the published
curve over 250 angstrom segments.



. page 11

through 'hich 'light

telescope is passed.

refocused onto the

practice this is done

from a slit situatec

The dispersed image

surface of the vidi

through a system of

I at the focus of the

of the slit is then

con diode array. In

mirrors (see Figure 3

ls) to avoid the infrared absorpt

vidicon tube consists of a 1024

biased diodes. A photon impinging on the

in a decrease in charge i

read out by scanning the di

recharges the diodes as

proportional to the amount

beam is at any given time,

diode array 'can be known.

passed on to be recorded an

electronics of a silicon v

n the diode

ode array

it hits

of charge I

the inten

it

wi th

them

os t.

si ty

ion of

by 1024

vidico

reache

an ele

prod

By k

at eac

lenses.

array of revereae

n target resul'ts

s. The image is

ctron beam which

ucing a current

nowing where the

h location in the

These intensity elements

d displayed (for further detai

idicon see Crowell and Labuda

are then

Is on the

(1363)).

The vidicon is read out as 250 rows of 256 image elements, each of

which corresponds physically to four diodes. In such a loier

resolution scan, less accurate positioning is required of the

electron beam. No data is lost, and the vidicon's resolution is

still better than the atmosphere allows. The intensity image is

amplified, recorded on magnetic tape, and displayed on a slow scan

TV monitor. This image is then available for further computer

processing. The spectrometer system is diagrammed in Figure 4.

A portion of a vidicon spectrometer image is presented in

Figure 5. The elements along the column correspond to spatial

for detai

The
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CAMERA

image is
in focus

BAFFLES

SPHERICAL
MIRROR

BAFFLES

VIDICON '

Figure 3.

LOW
DISPERSION
PRISM

image is
in focus
here

Optics of the MITPAL vidicon spectrometer.
The telescope is to the right.



Figure 4. The MITPAL vidicon system with the spectrometer attached.
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elements along the slit. Wavelength is along the abscissa. The

magnitude of each element is proportional to the current from the

vidicon diode array at the time a corresponding diode uas read by

the scanning electron beam. The image is now ready to be turnerd

into a spectrum.
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111. Image Processing

The first processing that must be done to the image is to

convert the " column coordinate into wavelength. This is clono

through the use of a calibration function:

S= -SO+ 0 =) +
(X'- xO) (S+ So)-

So, , and C being. three constants determined from three column

number-wavelength correspondences as fol lows:

C =N( - ) (St+ SO) (S2+SO)

so -St+(XXS $ - St) ($- S

(4-t4)(S2-Si)( - Si-X) 6 -

So.= -S + (C -9 $ - 2 A ) S - i
C

9 ..

These correspondences are obtained by observing the spectrometer

image of a calibration lamp with known sharp emission lines fav

show4n in Figure G). From this calibration, which is redons:

periodically as data is taken, the wavelength-column relationship

is known - (see Figure 7 .for an example). The resolution also

0 varies as a function of wavelength, as would be expected (see

Figure 8 for a sample dispersion function plotted from the first

derivative of the calibration function).

Now enough is known to process a spectral image. A program
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37 81 0910 137 0*484S 187 0.7016 237 1.7451
38 0.3314 88 0.3113 13A 0.4874 188 0.7089 238 1.8081
39 C.3401 P9 0. 11 134 0,4101 189 0.7164 239 1.8764
40 0.3411 90 0.31r51 14r 0.4928 190 0.7241 240 1.9505
41 0.34190.3965 141 0.4956 191 0.7319 241 2.C313

42 0.1428 92 0.39V) 112 0.4984 162 0.7401 242 2.1197
~3 ~3 0.3993 143 0.5013 193 0.7484 2432168

46 50 94 0.4008 145 0.507 165 0.5790 245 2.940

4b Oo~43 96 0.4037 146 0.5101 196 0.749 246 2.5758
4 91___ 0..462 117 0.513 197 0.7843 247 2.1256

60.34,0 98 0.46 148 0.5163 198 0.59 248 2.8937
StA 71 0.313 1L/9 ).45195 199 0.8039 229 3.08627290 9 0.314 17 047 1T 6~~16 22~1R

73.4993735 123 0.4522 1C3 0.142 250 3.1077

Figure 7. Wavelength as a function of vidicon column
for a typical calibration function. The three
column(Sn)-wavelergth(Ln) tpairs used to
determine the function are given at the top.
Columxi number is at the left, wavelength at
right,
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has been written which runs as a subroutine under the Planetary

Astronomy Laboratory's image processing system (DIPSYS) which has

been set up to provide a metastructure under which vidicon images

may be easily processed. A simplified diagram of this program

appears in Figure 9. The spectral image is read off the run tape

by DIPSYS and stored on a disk where it is available to the

spectral processing routine, which has three basic tasks. The

first and easiest is to punch out the intensities along one row of

the image onto computer cards for input into a plotting routine

(this was how Figure 6 was produced). Second, it can subtract the

average background from the image, column by column, where the

rows over which the background is to be averaged are read from the

input instruction cards. Last, and most important, the program

can produce a new 'image in which all of the elements have the same

spectral resolution. For spectral reflectivity work, where the

range of interest is 0.4 to 1.2 microns,' a resolution of 250

angstroms, the best resolution at 1.2 microns, was chosen.

Figures 10 and 11 show the effects of this processing on an image

of the standard star Xi 2 Ceti. Portions of these images are then

integrated spatially along the slit. Due to atmospheric and

telescope optical effects, a star image is not a point; it is

smeared out spatialy into to a Gaussian distribution of intensity

which is at its maximum where the point source would be. To use

the full energy output of the star at a given wavlength, the image

must be integrated across all rows where the image intensity is



Figure 9.
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above the background. After this integration, the spectrum vector

is punched out onto cards for plotting and further processing. A

more advanced version of this processor will incorporate the:'

plotting, ratioing, and other functions into one OIPSYS subsyste~m.

where only disk files will be used.

The final procedure needed for good spectral ref lectivi t y

data of the surface of a planet is to know from what part of the

surface the spectrum originates. A photograph is taken through

the eyepiece, loeking at the slit in a mirror tilted 45 clegrees to

the optical axis of the telescope (the first surface in Figure 3).

A similar logging arrangement is used for photometer data. A

plotting program has been written to create Calcomp plots of the

coordinate grid of Mars (or any other planet) projected onto a

disk using the physical ephemeris of the planet from The American

Ephemeris and Nautical Almanac and the time of observation in

Universal Time. Figure 12 is a block diagram of the program,

while Figure 13 is a typical, although smaller than normal,

output. To position the spectrometer slit on the ditk of .the

planet, the negative of the photograph of the telescope image is

projected onto the 'grid, and the slit marked by hand. At this

point the -original vidicon images have been reduced to constant

resolution spectra of stars and known positions on Mars; and

reduction to spectral reflectivity data, as well as testing, can.

begin.



PHYSICAL
EPHEMERIS
(1 MONTH)

CREATE TABLE OF
SUB-EARTH POINT
COG~RDINATES AND
APPARENT DIAMETER

RUN CAR D:
day of month
UT start of run
UT end of run

Lcaption

Figure 12.

Flowchart of grid
plotting program.

ADD HOURLY CHANGE
OF PARAMETERS TO
TABLE

CA LCULATE POSITION
LOF SUB-EARTH POINT

CALCULATE NUMBER
OF MAPS TO BE DONE
(one per five minutes)

DRAW LINES OF LATITUDE
in spherical coordinates,hold
$ constant and rotate in 6.
transform so that sub-earth
point is at 0=900, 6=00 and
project to plane.

DRAW LINES OF LONGITUDE
in spherical coordinates, hold
6 constant and rotate in $.
transform as with latitude lines.

WRITE CAPTION
object, time, sub-earth point,
apparent diameter in arc-seconds.

LOG MAP and INCREMENT TIME

GET NEW RUN CARD and
CHECK FOR LAST INPUT

page 25



MRHS
VIDSP
4
0
T
L
L
D

EC C
OF 4

CT. 18, 1973
= 8: 58 UT
RT= -17.3
ONG= 9. 8
IA= 21.46 SEC

Figure 13. A typical grid plot produced by the program in Figure
the third produced for vidicon spectrometer Mars run

12, )
C.



page 27

IV. Analysis of Data

The first major attempt to use the vidicon spectrometer to

take spectra for reflectivity work occurred during the opposition

of Mars during October, 1973. On two consecutive nights the Mauna

Kea eighty-inch reflector was trained on the planet Mars, and

about 75 spectra were taken, as well as an equal number of spectra

of the standard stars Alpha Lyra and Xi 2 Ceti. Xi 2 Ceti was

chosen because it was near Mars in the sky, while Alpha Lyra has a

spectrum which is well known and is used to calculate planet/sun

ratios to get reflectivity. Figure 14 demonstrates the reduction

methods used to get spectral reflectivities from raw intensity

spectra. To avoid airmass reductions, spectra of Alpha Lyra and

Xi 2 Ceti were taken when the two stars were at -the same airma!-s,

1.38. Since star/star ratios exhibit little variation with loai

airmass changes, the ratio of the two stars obtained from these

spectra can also be used to reduce reflectivities -it oth-r

airmasses. Before any data was reduced to reflectivitin-.,

extensive testing was done to see whether the data would be

usable. This portion of the thesis will describe that work, usinV;

the best results obtained to date.

Figure 15 shows a high resolution spectrum of Alpha Lyrat

which has been averaged over 258 angstrom segments to simulate the

spectrometer output. Figure 16 is an Alpha Lyra spectrum from the

vidicon spectrometer from which the vidicon response has been
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AIR MASS CORRECTED SPECTRA

Production of spectral reflectivity from
raw spectra. Air mass correction not
not needed if objects to be ratioed are at
the same air mass.

Figure 14.
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Figure 15. Spectrum of aLyra, averaged over
250 angstrom resolution elements, from
a 50 angstrom resolution spectrum provided
by Steve Kent.



in

.W)

(1>

0.40 0. b
WR,-VELFNG1 T I IN MrI6h.C

Figure 16. aLyra spectrum from vidicon spectrometer
with vidicon response (Figure 2) divided out.

page 30

Crn

Q. ZO



page 31

removed. Note that the peak is shifted to a slightly longer

wavelength and that the shape is generally broader to about 0.7

microns. To test the repeatability of the data, pairs of spectra

of the same star were ratioed to each other. Results of one such

pair are shown in Figure 17 (all ratios plotted are normalized to

1.0 at 0.S75 microns). Figure 17a is the ratio of two Alpha Lyra

spectra with similar airmasses (1.40/1.38), but different exposure

times (Ssec/lsec). If the response of the system were perfectly

linear, that is, if intensity recorded from a given source is a

linear function of the integration (exposure) time, the curve

would be. flat. It is obvious that it is not; however, .the

relatively flat region corresponds with the peak intensities of

the spectra, so it may be that low level signals are nonlinear

representations of the intensity received from the star. To test

this idea, a 'pedestal' was set up under the spectrum.. All

intensities below a certain value would be ignored, and possibly,

the nonlinear features of the curve would go away. Figures 17b

and 17c show the results of installing pedestals of 300 and 400.

respectively (the maximum intensity registerable is 403S). a

p)edestal of 300 seems to help from 0.5 to 0.8 microns, but a

lIarger pedestal doesn't help at all. Figure 18 shows a similar

ratio for two Xi 2 Ceti spectra with slightly different airmaq'es

(1.67/1.32) and different exposure times (20sec/15reec). Once

again the curve is relatively flat over the peak in incoming

energy, this time from almost 0.4 to 0.8 microns. (Figure 19 is a
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typical Xi 2 Ceti spectrum). this time, however, there is a

smooth upturn which has some undetermined significance. Thut .

star ratios seem to be usable, at best, from 0.4 to 0.8 microns.

Now that there is some idea as to the reliability range of

the spectrometer, indefinite though it may be, the Mars spectra

can be observed. Figure 20 is a typical Mars spectrum, summed

over five vidicon elements down the slit. Note that the peak is

in the red, rather than the blue like the two stars' spectra.

This is because the stars are both of spectral type AO, while the

sun, which is providing the light which is ref lected from Mars is

a cooler, redder type G. Figure 21 shows a saturated spectrum of

Mars. 'The peak intensity of 4095 is surpassed from 0.5 to 1.0

microns, although around 1.1 microns, the signal is unsaturated.

Originally it was thought that the unsaturated portions of a

saturated spectrum could be used to extend the range of an

unsaturated spectrum which had a very low signal beyond 1.1

microns. The data show, unluckily, that there is little or no

overlap between the good signal from one and the good signal from

the other type of spectrum. Once again, an attempt was made to do

away with low, nonlinear signals with a pedestal. Figures

22a.b,and c show the progressive changes as pedestals of 300 and

400 are subtracted from the original spectrum. Ratios of Mars

images seem to be more consistent than those of star images.

Figures 23a,band c and 24a,band c are the results of ratioing

different 'images of Mars to each other. The three images used

g0
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Figure 21. An overexposed spectrum of Mars.

Arrows indicate intensities reading greater
than 4095 in at least one element of the image
which went into the resolution element.
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were taken within 15 minutes of each other. The same portion of

the image was used in each case. Each is a one minute exposure.

Note the flat curve from 6.5 to 1.1 micron, indicating better

repeatability than for the stars, possibly due to more signal

above a nonlinear level. As the pedestal is increased, some of

the apparen.tly good data is lost, but the noise is gone by tho

time a pedestal of 400 is used (c). The Mars spectra are probably

recoverablei.
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V. Recommendations for Future Use of the Vidicon Spectrometer

Although it appears that it will be impossible to do spectral

reflectivity work using the vidicon spectrometer due to an

inability to meaningfully ratio stars and planets over a useful

range, the instrument has advantages which will make it worthwhile

to develop it. The combination of good spectral resolution (250

angstroms or better, compared to 300 angstroms for a filter

photometer), with complete spectral coverage and high spatial

resolution indicate much promise. It appears tha.t the limiting

factor will be the response function of the vidicon tube, with its

nonlinearities in wavelength and intensity. Once more lab work is

done to quantify knowledge about this problem, the instrument will

be ready to gather more data. Another problem which may affect

the star spectra is the problem of differential diffraction of the

star's light.by the earth's atmosphere. Different wavelengths,

diffracted at slightly different angles would show -up at different

positions in the smeared out star spectrum, and if the slit is

smaller than the apparent diameter of the star, part of the stat '

spectrum would be lost, in a wavelength-preferential manner. The

solution is to widen the slit; although the spectral resolution

at the vidicon would be reduced, the spectrum would he much mi e

reliable. But what about the Mars data from Mauna Kea? With the

high spatial resolution and apparent good response of the vicdirdon,

something should be recoverable. The planet in the slit occupi e-



page 51

up to 35 elements in a vidicon column when it is about 23 arc

seconds in diameter, and the slit is two elements wide, so, wi th

good seeing of 1.5 seconds or less, there are fifteen spectra per

spectrometer image. Luckily, the slit passes over some photometer

spots that were taken witlin days of the vidicon spectrometer run,

allowing relative reflectivities to be obta.ined, basically

extending the photometer data for more complete surface coverage.

For example, Figure 25 shows the position of the slit on the

planet's disk during one run. This one slit passes through* the

Coprates canyon as well as a large dust storm to the southwest of

Coprates. Using a photometer spot as a standard and modifying

resolution to match the photometer, some interesting data should

be forthcoming.
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Figure 25. Position of one set of spectra across the
disk of Mars. Latitude and longitude of
the sub-earth point, S, .given.
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