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ABSTRACT

It is found that collisionless damping of unguided

Alfven waves is strong enough in the inner magnetosphere to be

of significance for ground-based diagnostics of the magneto-

sphere and for the understanding of some magnetospheric

processes. The statistical approach to the study of a homo-

geneous Vlasov plasma in a strong, uniform magnetic field is

used to derive a lowest order approximation (in the ratio of

the gyroradius to a characteristic length of inhomogeneities)

to the dispersion equations for hydromagnetic waves propagating

at arbitrary angles to the ambient magnetic field. This approx-

imation is equivalent to the "guiding center approximation,"

and the corresponding physical mechanism for wave-particle

interaction is the magnetic moment-magnetic field gradient

interaction. For a magnetospheric plasma model made up of a

superposition of bi-maxwellian components, numerical solutions

of the dispersion equations show negligible damping close to the

earth. However, in the vicinity of the equatorial plane, in a

region extending a few earth radii inside the plasmapause, hot

protons strongly damp unguided Alfven waves. Typically, a wave

of frequency f cps would be reduced to exp(-33.3f) of its power

after traversing this region. Damping estimates from the shapes

of observed power spectra of magnetic and electric field fluc-

tuations are in reasonable agreement with the calculated damping

rates. Occasionally, much more severe damping is inferred from

the observed spectra. Applications of this study to some magne-

tospheric phenomena are pointed out.
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CHAPTER 1: INTRODUCTION

Hydromagnetic waves (i.e., waves in a magnetized plasma

with freauencies much below the ion cyclotron fr'equency) and

their surface manifestations (micropulsations and telluric

currents) are growing in importance as diagnostic probes of

the magnetosphere. Extensive reviews on this subject have

been written by Jacobs (1970), Aubry (1970), Orr (1973),

Campbell (1973), and others. Most studies focused on wave

propagation characteristics in the magnetospheric plasma

with the assumption of negligible effects of both wave-

particle interactions and the shape of plasma particle

velocity distribution functions. However, there are many

phenomena which, if they are to be understood quantitatively,

require that the effects of wave-particle interactions be

distinguished from other effects, e.g., boundary effects.

Among those investigations which take wave-particle inter-

actions into account are Robert's (1966) study of the "bounce-

resonance" interaction, Kennel and Wong's (1967) study of

the cyclotron interaction for waves propagating at any

angle relative to the ambient magnetic field, and Hasegawa's

(1969) study of the drift mirror instability. Finally, we

come to studies of Landau damping types of wave-particle

interactions -for hydromagnetic waves.



1.1 Brief history

Cornwall, Coroniti, and Thorne (1971) applied Kennel and

Wong's theory to the study of Landau damping of ion cyclotron

waves just inside the plasmapause. In a brief comment,

Parker (1968) directed attention to Barnes' (1966) solution of

the dispersion relation for a two-component, strongly magnetized,

collisionless plasma, which suggested that hydromagnetic waves

in the magnetosphere might be heavily damped by the electro-

magnetic wave analogue of Landau damping, also called "transit

time damping" (Stix, 1962) and "magnetic moment-magnetic field

gradient interaction" (Barnes, 1967). Generalizing Barnes'

(1966) solution to a multi-component plasma, Navato (1970, 1971)

verified Parker's suggestion that hydromagnetic waves propaga-

ting at large angles (but not perpendicular) to the magnetic

field would be damped in a few wavelengths. Following

Kutsenko and Stepanov's (1960) different approach to the solu-

tion of the hydromagnetic wave dispersion relation for a

magnetized, collisionless plasma, Hasegawa (1970) arrived at

damping estimates in the magnetosphere similar to those of

Navato. However, Kutsenko and Stepanov's treatment is valid

only for cases where the ion thermal speed is less than the

wave speed. Consequently, it is'limited to cases of small

damping rates. The present study, which is free of this

limitation, attempts to explore the significance of damping of

hydromagnetic waves in the inner magnetosphere by the "mragnetic

moment-magnetic field gradient" (MMMFG) interaction.



1.2 Scope of the investigation

We will review briefly the evidence for high rates of

damping of hydromagnetic waves from the M.I.T. mid-latitude

telluric station in New Hampshire. Then we will derive the

linearized equations of motion for a collisionless (Vlasov)

plasma in a strong magnetic field following the "statistical"

theory of Chandrasekhar, Kaufman, and Watson (1957, 1958a,

1958b) which will be designated as the CKW plasma theory. This

theory is equivalent to the "guiding center approximation" in

"orbit" theories in plasma kinetic theory. Next we will derive

the dispersion equations for hydromagnetic waves in a homoge-

neous, uniformly magnetized Vlasov plasma made up of a super-

position of bi-maxwellian particle populations. 'A simple model

of the magnetospheric plasma typical of the geomagnetic equato-

rial regions in the midnight meridian will be constructed from

the results of satellite measurements. We will present numeri-

cal solutions of the dispersion equations for the magneto-

spheric plasma, valid for damping rates greater than the limits

of validity of previous studies. We will discuss the physics

of the MMMFG interaction and point out the significance of the

results for magnetospheric physics and micropulsation studies.

The wave mode of special interest in this study is the unguided

Alfven mode since much of the wave energy received by the M.I.T.

telluric station is probably due to waves in this mode.

1.3 Plasma models and wave modes

The large number of plasma models and wave modes in plasma

physics can lead to confusion. For the sake of clarity, the



model and wave modes suitable to the study of hot plasma

damping of hydromagnetic waves will be compared to other more

commonly discussed models and wave modes.

First of all, to study hot plasma damping from first

principles, we need a microscopic model. The principal

parameters which govern the choice of a plasma model and the

characteristics of the wave modes that the plasma can

support are the wave frequency, the plasma density, and the

strength of the magnetic field. in which the plasma is immersed.

The Clemmow-Mullaly-Allis diagram (e.g., Allis, Buchbaum,

and Bers, 1963, p. 80, for a macroscopic plasma model) is a

helpful way of representing the principal parameter regimes

relative to wave propagation.

For high frequencies, a fairly simple plasma model

consisting of free electrons and a stationary, neutralizing

background of ions is used. In this theory, called the

magnetoionic theory, Lorentz's (1909) theory of electrons is

applied to motions of free electrons in a static magnetic

field and an alternating electric field. The equations of

motion are of the linearized, hydrodynamic type. Two different

modes of electromagnetic waves can propagate. When the direction

of propagation is parallel to the static magnetic field, both

modes become circularly polarized, one left-hand circularly

polarized, the other right-hand circularly polarized.

For moderate frequencies, the ion motion in now taken

into consideration. Two compression waves are introduced.

One mode is the plasma-ion wave, which is the acoustic

branch of the compression wave. In this mode, ions and
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electrons move together in the same direction, like sound waves.

The other mode is the plasma-electron oscillation at the plasma

frequency. This is the optical branch of the compression wave

in which ions and electrons move in opposition, thereby increas-

ing the restoring force and increasing the frequency of oscilla-

tion.

For low frequencies, if we take an incompressible, infin-

itely conducting fluid (a macroscopic model) in which the

Lorentz force J X B acts, we get a guided Alfven wave. This wave

is a member of the electromagnetic family but one with the dis-

placement current negligible compared to the real current.

If we relax the incompressibility assumption we get three

magnetohydrodynamic (MiHD) modes. Four modes arise in a two-

component fluid model plasma. In the low frequency limit there

are only three modes because the inertial effect of the elec-

trons becomes negligible.

In contrast, it is shown at the end of Chapter 3 that our

microscopic plasma model can support an infinite number of

separate wave modes. Tajiri (1967) states that the first three

least damped modes, in order of increasing damping, are the

guided Alfven mode, the unguided Alfven (fast magnetosonic)

mode, and the acoustic (slow magnetosonic) mode.

1.4 Evidence for strong damping of hydromagnetic waves

Santirocco and Parker (1963) obtained a series of micropul-

sation spectra in Bermuda. If peaks are disregarded in the

spectra, it becomes possible to fit the curves between .005

and 0.1 ops by a function that is a product of a power-law

factor and an exponential factor. If



P power density, (mv/km)2/cps
f frequency, cps
n =power-law index

= attenuation factor
C a constant of proportionality

the spectra may be approximated by the expression

P = Cf e(1.1)

The basic parameters of the spectra would be n and 8. The at-

tenuation factor is proportional to the damping rate. When

waves with one angle of propagation relative to the earth's

magnetic field predominate, then 8 is independent of frequency.

It seems possible to fit constant S curves to the observed

spectra. The index n, which may be positive or negative, de-

pends on several factors, It depends on the normalization used

for the spectra, i.e., whether power density is given in power

/ cps or in power / octave. Over the limited frequency range of

interest in this study it is hoped that the wave source spectrum

can be adequately modeled by a power-law type spectrum, which

would then affect the value of n. The index n furthermore de-

pends on whether magnetic, d3/dt, or electric measurements are

being made. For electric field fluctuations, the value of n

also depends partly on the relationship between the electric

and magnetic fields. This relationship depends in turn on the

conductivity structure of the earth in the region in which the

telluric station is located.

Figure 1.1 plots values of n and . estimated for the se-

ries of Bermuda micropulsation spectra with power density ex-

pressed in terms of power/cps. The average value of the power-

law index n was -2.13, and the average attenuation factor b
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is 1.6.4 which is high enough to indicate considerable damping.

In this study, we consider damping to be strong when a wave,

with wavelength equal to the height of the damping region in the

plasmasphere, is reduced to l/e of its power wiile traversing

the damping region. We estimate that a value of the attenuation

factor of 50 or greater implies strong damping.

Figure 1.2 shows telluric fluctuations observed at the

M.I.T. telluric station in New Hampshire. The geomagnetic co-

ordinates of the midpoint of the 75 km interval between the lead

plate electrodes of the station are 54.9 N and 357.2 E (43-50

N geographic latitude, 2880 E geographic longitude). The mid-

point lies on a field line with McIlwain's magnetic shell para-

meter L =3. The frequency range is from DC to 2 cps. The top

strip shows amplitude levels in the Pci, or "pearl", band, while

the second strip shows 9mplitude levels in the frequency bands of

most interest in this study, the Pc2 and Pc3 bands. In the top

strip there occurs a sudden enhancement of amplitude at about

16:45 EST lasting for an hour. A simultaneous drop in amplitude

to less than a fourth of its former level occurs in the Pc2 and 3

bands, and lasts as long as the Poi enhancement. This simultaneous

enhancement and drop in levels of the "pearl" band and Pc2 and 3

bands are not unusual.

The "pearl" event is generally believed to be caused by hot

protons (tens of kev) in the vicinity of the plasmapause (e.g.,

Liemohn, 196?). Figures 1.3 and 1.4 show schematic diagrams of

the structure of the magnetosphere to help identify structures

referred to in this study. Figure, 1.3 shows a cross-section along

the noon-midnight meridian plane. Figure 1.4 shows a cross-
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section along the geomagnetic equatorial plane.

It is reasonable to think that the drop in amplitude in the

second strip, the unguided Alfven wave band, was due to the same

hot proton population, or another (but similar) hot proton popu-

lation from the same plasma cloud, which caused the simultaneous

"pearl" event on the top strip. In Chapter 4, we will see how

one and the same hot proton population can simultaneously enhance

the "pearl" band (generally thought to be the ion cyclotron mode,

which is a guided Alfven wave) and damp the unguided Alfven mode

in the Pc2 and 3 bands.

Indirect evidence of damping within the plasmasphere cavity

with a quality factor Q independent of frequency comes from

studies of plasmasphere resonances by Madden (1968).

Meicropulsations and telluric fluctuations often exhibit spec-

tral peaks at periods of 7 to 15 minutes, 60 to 100 seconds, and

20 to 30 seconds (adden, 1968; Saito, 1962). Madden investigated

the interpretation that the two highest frequency peaks (see

Figure 1.5) are the first (i.e., fundamental) and second harmonic

resonance oscillations of unguided Alfven waves trapped inside the

resonance cavity formed between regions of strong gradients of

Alfven speed within the plasmapause. Figure 1.5 is a histogram of

peaks in the dynamic spectra of telluric fluctuations observed at

the M.I.T. telluric station. Figure 1.6 shows Madden's model of

the strong Alfven speed gradients forming a toroidal cavity around

the earth, inside which wave energy may be trapped. Madden used a

spherical model of the plasmasphere. The peak frequencies observed

from the M.I.T. telluric station in New Hampshire agree with the
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Figure 1.6
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predicted frequencies, and their dinrnal variations correlate

well with the variations in the plasmapause geometry. If only

leakage of energy due to imperfect reflection at the cavity

boundaries and collision damping are allowed in the model,

Madden found that the higher harmonics should become increas-

ingly sharp and prominent in the spectrum (see Figure 1.7).

Such higher harmonics are not seen in the observed spectra.

When the Q is independent of frequency, higher frequency

waves with their shorter wavelengths go through more cycles and

suffer greater attenuation than lower frequency waves in trav-

ersing a given distance in the magnetosphere. Assuming this

time a damping distance of one wavelength in the cavity, Madden

showed that on a simple model of the cavity the third harmonic

just ceases to be recognizable (see Figures 1.7 and 1.8). In

the plasmasphere cavity, the calculated spectrum would be affect-

ed by damping in the manner shown in Figure 1.7. The peaks

corresponding to higher harmonics, instead of becoming sharper

and more prominent, become smoothed out and reduced. The

absence of higher harmonics from the observed spectra may

indicate strong damping of hydromagnetic waves in the plasma-

sphere.
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CHAPTER 2

EQUATIONS OF MOTION FOR A VLASOV PLASMA IN A

STRONG MAGNETIC FIELD

The solution of the Boltzmann equation for a collision-

less plasma in a strong magnetic field will be derived in

this chapter following the theory of Chandrasekhar, Kaufman,

and Watson (1957, 1958a, 1958b). The theory is presented

here to make it more accessible (it appeared in a series of

papers), to correct mistakes and to supply omissions in the

original papers. ksterisks mark new and unpublished equations.

2.1 Collisionless Boltzmann's equation in terms of

hydrodynamig-like quantities

The equation to be solved is the collisionless Boltzmann's

equation

+ h1+A f+ A 5(1)

where Aj is the particle acceleration due to an external body

force. Let

( V , t) = C*(ul) + ?'(x.,v- ,t) (2)

distribution function in phase space.

Let us find the equations which 'T and f must satisfy. The

equation that must be satisfied by f0 is



_ 1- + 0A
!kI a

where * i*A (X )A

(3)

(k)

= ambient magnetic field

n = a unit vector in the direction of B , with nl= n2 =0,

n3 = 1.

We want solutions in terms of hydrodynamic-like para-

meters of each particle species of the plasma. We will need

to take moments of equation (2).

Particle number density,

Local mean velocity,

Pressure tensor,

N=i did

N

= M -r - Vi ) ( i - Vj)Ji4-r

Let Bi = Bi0 + 9i

Ai = Aio + Zi

N NO + N

. V + vi'

.p a pig + p'; ,etc,.

where variables with superscript

components, and primed variables

"o" refer to time-dependent

refer to time-dependent

components.

For convenience in deriving the moments of equation (1),

19

(5)

(6)

(7)

(8)

(9)

(10)

(11)

(12)
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we will rewrite equation (1) in terms .of the distribution

function f of the peculiar velocity Vi rather than of the

velocity vi.

've= v .- * (13)

In terms of v; , equation (3) becomes

~tj*) .0  ~E*I~ JV)f (14)

The time-independent component of the acceleration A1 o

due to external body forces is hidden in the pressure divergence

term

Let us now find the equation that must be satisfied by

. Let Ui (t) be a small, first order velocity perturbation

resulting from a small perturbation of the plasma.

f(i 11 , t) : (X;, tV; - U(it ) + '(xt, 6-1) (15)

After a Taylor expansion of f about f0 (xi, vi) and

linearization, equation (1) becomes:
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d. + r r + + UK

a rjax air i aLf (16)

Ui is that part of the particle drift velocity due to the time-

dependent component Ai' of Ai. Using the relation

-A + j U;*x
(17)

assuming the boundary condition that Ui vanishes in the

stationary state of the plasma when Ai' is zero; assuming

furthermore that Ai is independent of v , and neglecting the

second order terms A- and ii tI j a I ,

we can eliminate Ai' and simplify the right-hand side of

equation (16) to obtain

002 -U. -a + a _ (18)

where 5 + (19)

Assuming that T' TO (20)

so that N'<< No, (21)

and assuming further that
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ao (22)

where the heavy bars denote averaging over all particles for

inequalities (20) and (21), and over all velocity space for

inequalities (22), then the perturbation velocity Ui is

related to the change in the local mean velocity by

V ='=U; + .f 0 = i + 5. f (5+ r '(:sd r)dsv~'~~ ~ffv~~i U + ~(23)

-~ 0

where s is the component of v that is perpendicular to B

To write equation (18) in terms of t , N , Vi , and

0

pij, we need the momentum equation for f in order to introduce

the pressure tensor. We must first write equation (1) in

terms of these variables:

-( + +\I"$ .D- + V xm&60$-Si0-$ =
at a ?Xj % -V Kgraos -s .

On taking the zero-order moment of this equation, we obtain

the continuity equat ion

- aV* y' +--(25)the cotnut equationatD tX a aj N as i_

On taking the first-order moment of equation (24), using

equation (25), and doing some partial integration, we obtain

the momentum equation



3(wm )+ (wn Vi *V') D
at ax; ax;

N m[ K + L + M -A,, - V;e ( V j')6) = 0 ( 6
. N 5xi(26)

Using the time-independent terms of this equation to introduce

the pressure tensor term, we can write equation (18) in

terms of - to give the equation that must be solved for

f' in terms of hydrodynamic-like variables:

a v+)f 1+f, ejK 7j 13±hO: +-L a;
at ai

e x-, ao K-axgj aux (27)

2.2 Time-inderendent solution of the Boltzmann equation

The general solution of equation (3) for the time-inde-

pendent component f 0 will be sought first. We will use a

perturbation method to solve equation (3) for f0 . Let us

then write fO as a power series in the smallness parameter i S

* f* + * + + (28)

where -1 : J.. I .. '< (29)

L = characteristic length of plasma

inhomogeneities

-f = wave angular frequency
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To collect terms of the same order in q we substitute

equation (28) in equation (3). We then obtain the following

sequence of differential equations which determine f0, fj,
0 P

easeg , so.

if = (30)

0 '+ e, -C.4O =0 ( 31)

a8 ?' + A e 0 :=ca F0 ( -=I,25.- ..- ) (32)

(33)where 4 r - + A- .-

and ji ~= 4x Pj -a VI (34)

Since f'If is periodic in L with period 271t

(9: 0, 1 , ,---) (35)

where, for any function x(tF) of the azimuthal angle (P

(around the direction of BO), the average ovor P is

indicated by the symbol <> , so that

1)dpd (36)

Hence, on averaging the terms in equation (31) over

> = -LVT f-CL
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all directions of s ( i.e., over (P ), we find integrability

conditions that must be further satisifed by f*, f1, f2a ***0

<d), ,* > = o (X2 = 0, 1. Z. ----- ) (i37)

Let us find the form of the functional dependence of

f* on xi, si, and q, where q is the component of Vi

parallel to Bo.

force so that

Assuming no time-independent external body

0

A1 (38)

equation (30) becomes, in vector form,

( o ) - .b - -h = O

Since this equation demands that fo be symmetrically de-

pendent on (v) , or s, we have

f 0
0 (0 4, , (40)

We then substitute equation (40) into the first integrability

condition in equation (37) to obtain

_ t S * - j OI (41)

From one of Maxwell's equations, we evaluate the divergence

of n as

(39)
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-rb = 7 (42)

Substituting this into the preceding equation, we can now

solve the first integrability condition equation (41) by

the method of characteristics to obtain the general solution

50  (H r (43)

where H = w + w, = the sum of the parallel and per-

pendicular components of the total kinetic

energy of a particle, a constant (44)

2'leK a cletart (45)

= the magnetic moment of a particle a constant

ff = a vector which is constant along a magnetic

line of force. (46)

With this knowledge of the functional form of f" we

can find the first-order part, f4, of f0 from equation (14).

Since we will do much averaging over all directions of s,

let us write equation (14) in terms of s and q:

004 f' + I , :' = 0 (47)
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where 4 (S + q rIj 4 Vj [ 2 - ( ni S 'w- + _)

I *j
9xj 31a x

-? in j ),.+r1; .]{48)4

Substituting equation (28) into equation (47), we obtain the

sequence of equations (30)...(32) for fo, f,2 ... in a

form convenient for averaging over all directions of so The

equation to be solved for fi is

;k 4. ) O 4  < - 0 <40 > (49

From the equivalence of the operators , and 4 we note from

the integrability condition for f given in equations (37)0

that the last term on the right-hand side of equation (49)

vanishes. Equation (49) reduces to

-j '(Af") r = [ Sj C); 4 (5;Sj -- ( 5j>) 4;; 1 (50)

where PL 2?(1

'? xj2)1%i(51)

which is a vector that is independent of the direction of S,



~~a 0
XJ 2V (52)

which is a constant tensor that is symmetric in its indices.

A particular integral ( AfI* ) of equation (50) is then

( * E) = cic (<bt + i <J? S,) Si Yi (53)

The complementary solution ( af ), of equation (50) must

be a function of the independent variables ( 'X , 2

because ( A fi ) must also be a complementary solution

the equivalent equation (49), i.e.,

Hence, = (p + 9(f)

of

(54)

(55)

so that the stationary state solution of equation (1).

correct to first order in , is

{"= f i(X;,S2  ) ( e )7 (56)

A difforential eauation for a fuller determination of

(fi)c can be obtained by substituting ( A fT ), just found

in equation (53) into the integrability condition (37),

which now has the form

and



29

()< (f,*)<> + J < fO (a f,*),> + ((Af"), COj (f) = 0 (57)

However, for the purpose of obtaining the zero-order non-

stationary deviation fe', the information that (fi0o) de-

pends on the independent variables xi, sa , q suffices.

2.) Time-d eendent solution of the Boltzaniguation

We are now ready to seek the solution of equation (27)

for the time-dependent component V. We will use a perturba-

tion method to give ft in the form of a sum of terms of in-

creasing order in 17. To collect terms of the same order in '

we substitute

*( xi, 5 , ) :f ( , S, ) if,( i,S,) f S ) + (58)

and f'(xiSi, t) f(Xi, Si , ) +Vi(Xi, S3tit) (59)
+ 11  ~ ~~t) +.

into equation (27).

We will divide the left-hand side of equation (27)

into two parts, the first of which will consist of terms of

lowest order in I whose average over all directions of s

is zero. The terms left over make up the secnnd part.

We now restrict our considerations to cases in which

the dominant terms are those which contain BO or ~"' as a

factor (these cases have 1 < 1). The first part of

equation (27) is



Ej T Sj' - -( )sEijn 81,- Sy

+ 2 ViSi a' .)

and can be written as

S + I

where

O\"a = {": [ )% i 5hm% -,2 Q jj x } m2

b I 1Kb Z 6 0

and m is a unit vector in the direction of B'. The second

part of equation (2'1) is

0 ( ' , '2f ) - . (f * 1 * +f '.* + . ) 

+- (?{ 't ' '1'[ .) + ^b'Ic\ (1A'** f *+.-)

w h e r e 4O. ; (1 ); * V j. - -- .

c03 U;( ~ ) -( 0 +,)+ 2q..zj/ni Vj'E (67)

Collecting terms of the same order in in equation

(27), and equating to zero each of the coefficients of the

(60)

(61)

(62)

(63)*

(64)*

E J)--j a 10i

( 65) )

( 66 )



various powers -of ( , we obtain the following sequence of.

approximating equations for f0', f,', f2 ', etc.

(68)4c, fe' + K bW = 0

cOafo' +c&,f* + A R, f,'+A lb Jczf =o 0

D~f,' + 9 * + e, f2' + A f0bjid ' * o

(69)*

(70)*

Since the operators <\1

so that

<of,1 f> = 0

and o\02 were defined (cf. equaion 35)

<X2 f" ) =0 (7

on taking the average of equations (69) and (70) over all

directions of s we obtain integrability conditions on fo'

and fi'.

< ce Ifo' 4 c0 3 fo
0  b,' Kc~f > 0 (7

<00d f' 4 0f + Ab z I b> = (7

With foo given by equation (40), we can find f.' from

equation (68) and from the integrability condition (73).

( = 0, 1, 2. )

2)*

3)*



With fo' known, we can find fi' from equation (69) and the

integrability condition (74), Equation (68) can be written

as

EIjK Sj Y__ K P - I K rl j j (

-ZqV;j tc -if Si Y7 x I

where (fe')

(75)

is a particular solution of this equation. It

can be verified that we may take

x - 2

(76)

The complementary solution (fo')

the equation

-j s l(fol = 0

of equation (75) satisfies

(77)*

Following the same reasoning which gave us the functional

dependence of fo on its independent variables in equation

(40), we find that

(78) *

Since fo' (f')+ (fo')r

a fuller determination of (fo'), may be obtained by sub-
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stituting equation (79) into the integrability condition

(73). The resulting equation is

(0, (io).) - - <eds f, - f (80)

where, for ease in averaging over the azimuthal angle CP

we write

(4+ '!~ (:5 )j -+ (1, ,(*J

xj 5x; ax ajsi -Kx a2- ((E ~i;- ) + vt; + v )d;+* ' C(S.. + 7 ? k+ 0x

ax; - -.jf~-- +. j _ ~ r

9 xj C? x j

+J+ 2 via) p. V

Y(82

(82)*
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Equation (80) gives us a first order partial differen-

tial equation for determining (f . For convenience in

certain classes of problems, we may express (f0')C as the

sum of an even and of an odd function of q

f C (x, S%, ) C (83)

When we separate the even and the odd parts of the various

terms in equation (80), we find that the even part Cl con-

tributes to the first-order change in the, pressure tensor

pij, the odd part qC2 contributes to the first-order change

in the mean velocity Vi.

The system of first-order partial differential equations

which have to be solved for Cl and C2 are, in mixed vector

and Cartesian tensor notation,

+ Q, = G -(U) ( 84)
+ C2 V'z -gi ( Ca -C

+ i'+ (~g * ) -z (v,-V") (2c +l1-2 ( V ) RC 440O-'( V') +I. n2 + + , dC*)aQ

= G7,(UJ) .. 2e af' , () '

(85)



where i dn = = -, nj =- (x . r-a150d9j ( 5n 9 a

, L.s ' . -')(6" +Ra a
a as'as ea 9

9.~ ~

"'79

(87)

vfl ax,

?L -V' J

1~
- J

~k) (~ )~
130

d~)
?'XJ

(88)

(89)

(90)G1 (U) -U3 aff 4 z(v, .1) * a + (v4- 0 ) s 2
a> U

(86)

Oz s'[v- (g.;) -

+

VII

extc' 1x; a'

agi

II



G2 ( U) 2(U 3 ' a +'-Ui) 92.
S AJ 9 xj g

0

r'4 * d1 ds

with foo normalized so that

'= ff f.'*d3s

div (div p*). + (div *

d - + ,* n * £-

(day*), % + (," *

36

(91)

(92)

(93)

(94)

(95)

(96)

(97)

(98)
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The remaining unknown in equations (82) to (99) are

B' and U, both of which may be expressed in terms of the

perturbation displacement ( defined by

(100)

U+

where the superscript "+" denotes ions. U is related to

A' and B0 by equation (17).

2.4 Derivation of the plasma eauations of motion

We shall now express the electromagnetic variables in

Maxwell's vacuum equations in terms of ( . First we

break up equation (17) into two equations, one a relation

between the components perpendicular to the ambient magnetic

field Bo, the other a relation between the parallel com-

ponents. To the lowest order in I , the equation for the

perpendicular components yield Ohm's law for an infinitely

conducting plasma in a strong magnetic field,

'(101)

Since mA' = eE',
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U.: = - =(102)

and U, = - ~ - (103)

Substituting equation (100) into the defining equation

(17), and using equation (101), we can write E' as

. (104)

From the linearized Maxwell's equation for and

from equation (104) we find, after an integration, that

SCUrl cur -1 OJ X~4 W~'r ) 142~{f ~) (105)
BOt

where we discarded the term cr (because

it was times curl ( x' ), and we retained the

last term of equation (101) since it was the lowest order

term for 4,, .

The equations of motion for the plasma as a whole are

a set of equations for the components of the perturbation

displacement ( in terms of the moments of the non-

stationary deviations f,+ and f'~ (which were obtained from

equation (76) and the solution of equations (83) to (85)-

A combined momentum equation for ions and electrons
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is obtained by adding the momentum equations (26) for each

species of particle expressed in terms of the moments of

the peculiar velocity ')&; referred to the nonstationary local

mean velocity Vi. When we assume that

A++ I"

the combined momentum equation becomes

+ -- ?t

+ E L tfflJe rn

where

(106)

(107)

= gravitational force per unit mass

t = ie l (N+VL+ - N~ V~)

p = yr7N + -i ~

9 lei (N 4 - N)

current density

mean density

charge density

After linearization, extensive algebra, and an integra-

tion by parts, assuming that expressions of the form

* .1
(,. ad ) V' and rad

are small, the perpendicular component of the equation of

motion for the plasma as a whole, equation (107), becomes

(108)

(109)

(110)

{ Q' rd) *



p*(1 4 to Ij ) 4 = -- div'0) + ' E '

900

+ (*< ') + (coL ( ) * + 'L
I1f

If we make the further assumption that

,~,', <4jE50j and 911j << 8*

we find that the equation of motion for the parallel component

of ( is

o . + c,' + 2 -

In the above equations

1~

W~: (rNoc2y

+ 0 - -b
- { (civ p'), - e N' (V% * )

+ - [ cor-L ( ) )PO ?

= plasma frequency

The divergence of the nonstationary pressure deviation is

ri [nj -; ( >-r
a Xj

- pr; ) 4 J + c- ) aP c
-axj

+ ( ?,', -p' ) ) + ([2 nj " l j'-n Si 3SP ; x( 9; 8x0) 0

- ~~~ ~B 2 njin -2nin xa a nn -
-DJ xj xjxj(

-2 B,<' ni njk 13:< ] (Y;, -n ,)[(115)
+ fi )8 + ~ 3' + __ ..nInJ

(111)

(112)*

(113)

(114)
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where U;c C -f f 2 C1 dg ds2  (116)

'c2ffs2cd ds2  ()

t__ ( o rad) Log )$$* (118)

y -= (119)

= unit vector normal to n and in the direction of the

principal normal to the line of force 3

R =radius of curvature of the line of force.



CHAPTER 3

DISPERSION EQUATION FOR HYDROMAGNETIC WAVES

This chapter outlines the derivation of the.dispersion

equation for hydromagnetic waves in a collisionless (Vlasov)

plasma immersed in a magnetic field strong enough (see equation

(2.29)) to make the cyclotron radius of protons much smaller

than characteristic lengths of inhomogeneities and their gyro-

frequencies much less than characteristic frequencies of per-

turbations. The dispersion equation is obtained by setting the

determinant of the coefficients of the perturbation displace-

ment 4 in the equations of motion equal to zero. When we refer

to equations in other chapters we write "equation (2.29)" to

refer to equation-(29) in chapter 2. Asterisks mark new or

unpublished equations.

1Equations of motion for a homogeneous plasma in a uniform

magnetic field

When we neglect the gravitational acceleration g, the bulk
-,10 -- 1

motion V , the external electric field E, and the stationary

current density J , the equations of motion derived in Chapter 2

(equations (2.111) and (2.113)) simplify to

CA L v? L crlx1

+ +4
__ IL ZO-t)-~ ? e +~(~~ o)~ .~~~ (2)

0 -~ + p

+ A- 0 r



= ratio of Alfven speed to vacuum

speed of light

= deviation in total pressure (with

Vo = V0 )
PC + 

K0
'0~o

0

0

0

0
OrII .

ryn {5A[ dC 35l

mff gC dg dS,

c'V (r L 50 ~ O r

( 0"fe)

(5)

(2.93)

(2.94)

(2.116)

(2.117)

(2.105)

where

E~ I~j2

Ca C,

(3)

(4)
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and C1 in eqs. (2.116) and (2.117) is a solution of the system

of partial differential equations (2.84) and (2.85). The

uniform stationary state plasma and the uniform external

magnetic field which we are assuming allow us to make the

following further simplifications in the differential equations

for C1:

_ o (6)

0(7
0 X

(dN j*)a= o

Equations (2.84) and (2.85) for Ci and 02 simplify to

DC3, , .. n LIUat 9 XC

-C -Q
Dt aX

(8)

(9)

(10)

where
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+(J -AOi~ 0 + (U 4+ 1f

- 9 3 + 8+, aC (11)

s, 74P

(12)

and we have used equations (2.102) and (2.103) in substituting

for U. The difference in form between G+ and G is not

pointed out in the original publications, and this omission may

be a cause of confusion, In equation (10) above,

130VQZ I V1 (13)

3.2 Dispersion equation for waves with real propagation vector

and complex f requenc

To obtain a simple form of the dispersion relation, we

will apply a Fourier transformation to the equation of motion in

order to eliminate differentiation with respect to position and

apply a Laplace transformation to eliminate differentiation

with respect to time. If A(x) is any function of position x,

its Fourier transform is



-o eo
A K (K) =

.,o-,o -CO
Aq(X A (14)

provided this integral exists. The inverse Fourier transform

is

( 15)
CIOVO.0 % . -

6() =( f/f t A)
..co .o .t

If B(t) is an almost piecewise continuous function of time t,

of exponential order do , its one-sided Laplace transform is

00 

(-

W,.9 = f e ~ ~ t
0

The inverse Laplace transform is

jO+ 0

u(t) B('t) FTf eA 5 (J1) dA

(e r. > c;;)

(O, o,0)

where u(t) is the unit step function and 0= ReA -

This last integration is to be performed along a straight

line running parallel to the imaginary (vertical) axis, and

to the right of all singularities of Bj (A. ) on the complex

l plane.

We will approach our problem as an initial value problem

so that in definition (14), k is the wave number and will be

46

(16)

(17)
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considered to be real; and A- is the amplitude of the kth com-

ponent of A(E), a component with spatial dependence proportional

to cos(k . x). In definition (16), the complex Laplace trans-

form variable A is related to the complex wave frequency

We +io by

(18)

Hence, wave-like quantities are proportional to e

and

Re t = ,, W = t, -IJ Re o U (19)

For stable waves, wc S0 , assuming that We 0 .

The Fourier-Laplace transformed form of the variables

involved in the equations of motion (1) and (2) are given

below. For the sake of simplicity, we will drop the subscript

k for the amplitude of the kth-component of Fourier trans-

formed variables and the subscript JL for Laplace trans-

formed variables.

fL +a function of initial values (20)

-+ R+ a function of initial. values (21)



a function of initial values

ff( T(71).

+ 12 KI 3wc5- 3

( {{K.2. - (K K32)]

a function of

[K,2+ 132) .,4- kKzj

initial valuesj (23)

f[CLA~k~ (p)] 2(7J .1', (*)2 f(K + K;) -
_

eC.1

- [o~ +K3~)- I< a 3

- K, K3 'a

[cwd (~')3 -:~

+ a function of initial values]

K, 1(3

+ a function of initial values] (25)

a

48

(22)

(24)

+ Ka K3 )a Lz
- a6-$ + ic,9 x)

- k4Kz) -
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To lowest order in I , the Fourier-Laplace transformed

simultaneous partial differential equations which determine

the solutions C1 and C2 for the nonstationary deviation fl, are,

for ions: (26)

JI C,+ a f t off i2fJC +k9C2+ = iZ (K, (, 4 k2 52 2 + xJ K3LLe 4

+ a function of initial values

(27)

ACz + C(, E'[ Ki K3 1,+ Kz25 K3 fo.f

+ a function of initial values

for electrons:

(28)

) S2 2 - OIz Ks __
as -rr;-2.

+ a function of initial values

(29)

zC2~4 *kC,~ = S2 [x,k3 , +t/2/f( 2 J[4 9 "

+ a function of initial values

ca C~+ 1 K.3 32 C2 = j 31(M1+ K2 1
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After eliminating C2, we find that

+ a function of initial values

-, __ - ~:La +KzKa. 75 ( K, +J 2 1

+ a function of initial values.

The initial values do not enter into the time asymptotic

limit which gives the expression for the dispersion relation

for waves which the medium can support. Hence, we will no

longer retain the initial values in our expressions (Bern-

stein, 1958).

When Cl given in eqs. (30) and (31) is used in the

integrals (2.116) and (2,117) to define the pressure deviation

components p±;c and p, , we obtain the following

formulas for the Fourier-Laplace transformed pressure devia-

tions,



for ions:

P4 c ,K3 fJ1+ + (Y

+ Lk K-4L l~~3 ~ .9- (33)

for electrons:

where,

-> 4
Kal T +(v± - 2

if we denote

+ iK'A 3
(34)

(35)

= A (36)

we define

r A

2 2 2,f d 

nf mt'r

-13
(32)

aror s2 (37)

(38)

0±

2

0+

)75z (39)

*(V, - ) I2,



±1 +r ±f ;2 ~ j j 2;2 O±

j± * m ff ~2 4 ?ft c D

The integrals (37) to ('42) are of the forrm

3 (K3, J )

where is an entire function of A . Let us define the

complex quantity

c + iJLGr K +3

The integral (43) may then be written as

(40)

(41)

(42)

(43)

(44)

00

00
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-y W/O >0 (45)

whe re we have used eq. (18) in the last integral. In the

complex q plane, J is evaluated with the path of integration

passing along the real axis (under the singularity in q).

When Im W' 0 as in the case of stable waves, the analytic

continuation of J is obtained by making the path of inte-

gration loop under the singularity.

Substituting eqs. (32) to (35) into eqs. (4) and (5),

we find that the Fourier-Laplace transform of (div P')L is

±kj2- (JI - iJ9 k K~

* P:) (2 ±+K,% 3 3) (46)*

where

p*= (47a)

+ 0+
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= - ( (J k ])J (47)

Furthermore,

(d e '),, - [CK, a + k 3 i / + (48)

(d -), -(K + K 2 3< (49)

On substituting the Fourier-Laplace transformed variables

into eqs. (1) and (2), we obtain the equations of motion

free of derivatives. Collecting components along each of the
AA Amutually perpendicular axes al, a2 ' a3, with the externally

applied magnetic field B0 along $, we find:

along a1

[ PJ_ - S (,K )J K,k,

-K , - (50)el
1k1 K2 g
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A
along a2

(51)
{ 

2  
, I2

/io K -f *'-4~

along a3

-e. [(R k A,4KK ( ) X- 3K *

(52)

In the case we are considering, that of a uniform

plasma in a uniform, externally applied iagnetic field, the

rotational symmetry around the magnetic field allows us to

choose coordinate axes so that

1<2z 0 (53)

without loss of generality.

Collecting similar terms in ( lr 2, and 3P we

reduce the equations of motion to
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Ef '+ P K,- K (Pi- P*)+ (K,2(+k ,)

(54)

7 k~~2 (p8 ?o))

(Iei( F K3 J + 4 .4

- . * k .K|] f..+ ( -&' t

+ + + [$ (?)i ]l!!!le(

(55)

(56)

where

(57)-'9E ( ))

The equations of motion take a simpler form when written

in terms of the angle of propagation (measured from the

direction of the magnetic field B0), rather than in terms of

the propagation vector k, and when written in terms of plasma

parameters given in dimensionless ratios.

Let tan -= (8(58)



,i=K, 9

CA K%"+IS'3

c I P

R _

(B)a

ic
cu

A/ o
(~2

(+ /46, I 2 C " 0 ,*=

The equations of motion then take the form

(59)

(60)

(61)

(62)

(63)

(64)

+y.' I, (66)

r>W (65)



{0( Cot*G - (I + 0) 2 j2 +f&siJ] 3 ,o

e + { 3 +3 0

(67)

(68)

(69)

The dispersion relation is the condition for eq. (69)

to (71) to have a non-vanishing solution vector ( $ , 2'

3 3). This condition is that the determinant of the coefficient

matrix of this vector be equal to zero. The dispersion

relation may then be written as

4 (70)

where

'A'l -( , 2 c -- cCe +/Rs4J ( 71)

C4-(/.)J of/e / ~ a% (72)
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For a plasma consisting of a superposition of bi-Max-

wellian proton and electron populations (each population is

identified by means of the subscript i), its distribution

function is

fo f = 2 vof7 (73)

where ai and bi are the reciprocals of the mean square per-

pendicular and parallel velocities, respectively, for the ith

particle population, i.e., ai = , bi =

= perpendicular temperature of ith species,

T n , i = parallel temperature

We will describe the plasma by means of the following

dimensionless parameters. Subscript 1 refers to thermal

protons. Odd subscripts refer to protons, while even sub-

scripts refer to electrons.

(go(7

(74)

/7 - K Cq,
P11p



K Me
.2 Q;

2 0; ''.j

p 
,

N1 0

pI ' + , +l -. -

A, t ~ + 2\.3...I;~~J

pNe ( j , z)

PRL. T", + ji-z + ---

+ T + 'U-. + -- --+Z: =1

To evaluate the integrals Ji, J2 ' J3 Il* 2' 13, we

may use the following theorem (Jackson, 1960):

If we define the analytic function I(z) of the complex

variable z by the integral along the real v-axis,

1(z.) = ) ----- ( Im Z. >O)

(79)

where f(v) is a real function of v such that the integral

exists for finite z, then the nth derivative of I(zo) can

6o

and

(2.93)

(2.94)

q44

where

(75)

(76)

(77)

(78)



be expressed in terms of the nth derivative of f(v),

(f fm Jz 0  (80)
.... o v--Z,

For Im zo 0, we can take the analytic continuation of the

above functions.

Let us denote by yi the ratio of the parallel component

of the velocity of particles in resonance with a wave, to the

root mean square (thermal) velocity of the ith particle

population:

. . c f57( 81)

By using bi-Maxwellian distributions, we are enabled to

evaluate the integrals Ji9,... I3, in terms of the plasma

dispersion function (Fried and Conte, 1961)

( X (82)

After lengthy computations, we find that

Yy + Y Y [YZ&tg,) + 2 - (8)
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-X ,1 OM2 70- q17 2  5

3Y~) 1!.{ cv1c LA1  + /3 51(~ 3 4 ..

- / +aaz d') ++ 4 ZZ(g4) j) (85)

o(= 1 + (y-1) (86)

3.3 Disp rsion equations for the guided and unruided Alfven

waves

The condition for the validity of our approximations,

that the radius of gyration of protons be small compared to

the characteristic length of inhomogeneities, say, a wave-

length, means that

~-~ i? - J~A K' N1  " I'~i c y 2

_z7 4Ta/2m 1A (87)

For magnetospheric plasma parameters this implies that the

coefficient of the square brackets in eq. (84) is much greater

than unity. Hence, unless the quantity in the square brackets

vanishes, we conclude that



S>>1 (88)

Barnes (1966) found that for a bi-Maxwellian plasma with

no "superthermal tail" the quantity in the square brackets

vanishes near certain isolated frequencies corresponding to

the k = 0 Fried and Gould ion waves.

From the properties of the plasma dispersion function

z(yi) we deduce that the quantity inside the square brackets

is rever very small unless

>>f a > (89)
i Re Ct)

In the following diagram of the complex yi - plane, Fig.3.1,

the region defined by (89) is marked 2

When yj is in region ,

z'(f) (90)

After considerable computations we find that when yi
is in the region 2 the second term on the left-hand side of

eq. (70) may be neglected in comparison with the first term.

Outside ofX ,

(91)*
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Im ( j )

Re(9t)

Figure 3.1
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and the term (. ).(sinG- ) ( cos 2-- ) in eq. (70) is much
S*,6

smaller than the terms (V .1)(sin2O0)( cos4G or
~S7

(J7sin2 &)(cos2&) in the product 9/4 , unless both 1c(<< I

and « fI<< 1. Since these last two conditions are unlikely

in the magnetosphere, we may neglect the second term in eq.

(70). Hence, the dispersion relation (70) factors into

c , .61)= 0 (92)

;(g, 0) o (93)

The condition that the wave frequency CW be small com-

pared with the ion gyrofrequency % means that

() «(94)

For the magnetospheric plasma this relation leads to the con-

clusion that in the expression (84) for ) (y), the first term

may be neglected in comparison with the second term for all

values of yi not very close to the origin. Hence,

-
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Going back to eq. (92), we find that unless the angle of

propagation is so close to so that | G-YJS ,

then >() >> 1, and eq. (92) reduces to

(96)
4 Q+ cg1 )

which is the well-known dispersion relation for the guided

Alfven wave. Equation (93) is the dispersion relation for

the unguided Alfven (magnetosonic) mode. For a cold plasma

it reduces to the usually given expression

K ' 2 (97)

When the dispersion relation (70) factors into eqs. (92)

and (93), the guided and unguided Alfven modes are uncoupled.

Since 4/C2 may be neglected compared with unity, the

dispersion relation for the unguided Alfven mode becomes,

in terms of hydrodynamic-like plasma parameters and the deriva-

tive of the plasma dispersion function,

l+ R ?_cozi-a

U stO- (98)

Let the subscript 1 refer to the thermal proton popula-

tion, 3 to resonant protons, and 4 to resonant electrom.



67

Then,

{ ' 4

'r3

7-2

2,A 3A4 0 -k /-A 4

(y,+ "z/

( w.>ve phase speed

k CC, C 

( = _ +it ( B*)2.

w -t 103n )

R~j
' 4

(99)

m 7 Yz

(100)

c!04 e~ A, Wj7
(101)

(102)

LP~~
/7~ ;: , 31,

z /(y4) jj

,4 -1 Z (5 Z(Y 9

z T y3 274

( 103 )Ic ( CIGS -0) CA



-68

3.4The number of solutions of the. disDersion equation for the

unguided Alfven mode

The dispersion equation for the unguided Alfven mode is

given by equation (104)

CA i. ~ - r Z :.r (104)
+~ )g i- C05 S(Sm 9) -LN Cos6 +~ (1+ R)SKg 10

By observing the form of the expressions involving the

independent variable yi, i.e., ,, 9 , and R , we conclude

that there are an infinite number of isolated roots of the dis-

persion equation in the complex y1 -plane. Except for 8 , none

of these expressions, since they are transcendental expres-

sions, can be written as a finite polynomial in y1. Since the

expression J/(s5& ) is a meromorphic function of finite

order, the left-hand side of the dispersion equation is also a

meromorphic function of finite order. An extension of

Hadamard's factorization theorem to meromorphic functions

(Titchmarsh, 1939) implies that the left-hand side of the dis-

persion equation has an infinite number of zeros and poles in

the complex y -plane. Furthermore, these zeros and poles are

isolated (see Theorem 43 in Kaplan, 1966), since each one of the

transcendental expressions is an entire function (see Clemmow

and Dougherty, 1969, page 269). Hence the dispersion equation

has an infinite number of isolated roots. This means that the

plasma can support many separate wave modes.

3 Comments on the analytic continjuation of the dispersion

equation to complex values of the proption vector k

For initial-value problems the wave propagation vector k
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is taken to be real and the frequency 6) is allowed to be com-

plex. The dispersion equation for hydromagnetic waves in a

Vlasov plasma immersed in a strong magnetic field was derived

in the preceding sections for real k and complex W. On the

other hand, for boundary-value problems W is real and k is

allowed to become complex. We cannot simply analytically con-

tinue the dispersion equation just derived into ) the complex k

region because the dispersion equation for a Vlasov plasma com-

posed of particle populations with non-zero temperature maxwel-

lian distributions is not an analytic function of k. It has a

branch cut in the complex k space which prevents integration of

the inverse Fourier transform expression along the Fourier con-

tour.

Derfler (1962) show ed that when the particle distribution

function is cut off at a finite velocity the branch out opens

to allow a path for the integration of the inverse Fourier

transform. Except in the vicinity of the branch points the

solutions of the dispersion equation for plasmas with finite

cut-off distribution functions may be approximated by the solu-

tions for maxwellian plasmas (Kusse, 1964). For complex k,

integration alongside the branch cuts reveals a continuum of

spatial van Kampen mode solutions. In the rest of this study

we will disregard., for simplicity, these continuous modes and

only look at the approximate discrete mode solutions from the

zeros of the dispersion equation for maxwellian plasmas.

To do the analytic continuation of the dispersion equation

to complex values of k, we replace sin 09 by ks/k, cos O by
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k 3/k, and tan 6 by k/k , where k k>+ k . Then we allow

k 1 and k to become complex.



CHAPTER 4

PHYSICAL CONSIDERATIONS IN WAVE-PARTICLE INTERACTIONS

4.1 The magnetic moment-magnetic field gradient interaction

In the hydromagnetic regime, where the wave frequency is

much less than the ion gyrofrequency and the wave length is much

larger than the radius of gyration, the magnetic moment of a

charged particle, mv1/(2B 0 ), is an adiabatic invariant. The

parallel equation of motion for the particle is

dt 2B x

where m and e are the mass and charge of the barticle, vi: and

vi are its velocity components parallel and perpendicular to the

ambient magnetic field Bo, where Ent and Bit are the parallel com-

ponents of the self-consistent electric field and the magnetic

field acting on the particle, and x is the distance measured in

the direction of the ambient magnetic field B0 .

If the second term on the right-hand side is -negligible,

there remains only the Coulomb force equation, which leads to the

well-known phenomenon of Landau damping. If the first term is

negligible, the second term gives rise to an interaction which is

the magnetic analogue of Landau damping, with the electric charge

replaced by the magnetic moment and electric field replaced

by the magnetic field gradient. While Landau damping applies to

longitudinal (electrostatic) waves, its magnetic analogue, the

magnetic moment-magnetic field gradient(MMMNFG) interaction,



applies to transverse (electromagnetic) waves. Energy exchange

with the particle occurs by means of the electric field. Even in

the absence of an ambient electric field, the magnetic accele-

ration due to the interaction tends to produce charge separation

in the plasma, which results in a restoring electric field En

(Barnes, 1967). This field, on the average, cancels the magnetic

acceleration and prevents charge build-up. By means of the

quasilinear theory of hydromagnetic waves in a magnetized plasma,

Barnes (1968) showed that energy from the damped waves enhances

the resonant particle -kinetic temperature parallel to the ambient

magnetic field BO, but does not affect the transverse temperature.

_4.2 Velocity space diagram of wave-carticle resIonances

In this section, we will study the effect of a propagating

wave on an individual particle, with the motion of the particle

through the wave field being taken into account. First, let us

find a moving frame of reference in which the wave is static.

Since motion across the ambient; magnetic field. B would introduce

a uniform electric field, for simplicity let us take a frame of

reference moving parallel to BO. An electromagnetic wave (either

guided or unguided Alfven wave) with phase velocity Vp and angle

of propagation 0 (measured from the direction of B0 ) will be

static in a frame of reference moving with a velocity a=VP/ cos0

parallel to B0 (see Figure 4.1). In this moving reference frame,

the wave being static, the electric field will have a potential

which varies sinusoidally with wave phase. A particle moving in

exact resonance with the wave (represented by a point on either



one of the Landau resonance lines) will see no electric field

and cannot exchange energy with the wave. Since particles of

constant energy in the moving frame have velocity space trajec-

tories which are arcs of circles drawn from the origin o' in the

moving frame (full arcs in Figure 4.1), particles in resonance

with the wave have velocity space trajectories in the stationary

reference frame which lie on such arcs. For comparison, the

dashed arcs represent velocities of particles with equal energies

relative to the stationary reference frame.

A partid.le in resonance with a wave may have a parallel

component of velocity a =(wave phase velocity)/ cos 0 . For the

guided Alfven (cyclotron) wave, such particles have velocities

represented by points on the Landau resonance line through o in

Figure 4.1. In this figure, V stands for the phase speed of the

guided Alfven wave, Vpu stands for the unguided wave phase speed,

V stands for the Alfven speed. For resonance with the unguided

Alfven wave, such particles have velocities represented by points

on the Landau resonance line which is also labeled as the magnetic

moment-magnetic field gradient resonance line. The angle of

propagation for the unguided Alfven wave is given by #

For ion cyclotron resonance with the guided Alfven (cyclo-

tron) wave, a particle must have a parallel component of velocity

(b-a) such that the pitch of the particles' helical trajectory V21

divided by ( A /cos ) is an integer. We designate v to be the

parallel component of the particle velocity, A% the ion angular

gyrofrequency and A the wavelength for the guided Alfven wave.
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4.3 Intuitive determination as to whether a wave is damped or

amplified at a resonance

To determine whether a particle in resonance tends to gain

or lose energy in an interaction, we see if, when it moves along

the allowed trajectory in velocity space (full arcs in Figure 4.1)

to diffuse in the direction that tends to produce a ledge in the

density contour, it moves away from, or towards, the origin 0 in

the stationary reference frame. It is well known from quasi-

linear theory (Dungey, 1961; Barnes, 1968) that particles in

resonance with a wave diffuse in velocity space so as to decrease

the slope of the number density profile in the vicinity of the

resonance velocity.

In the example presented in Figure 4.1 for a "loss-cone"

particle velocity distribution, it can be seen that in resonance

interactions represented by lines to the right of the stationary

origin 0, the density contour slopes are such -that more particles

gain energy from the wave than lose energy to it. On the other

hand, in resonance interactions represented by lines to the left

of the stationary origin, more particles lose energy to the wave

than gain energy from it. Hence, for the "loss-cone" distribu-

tion, the guided Alfven wave is damped by the Landau resonance

and amplified by the ion cyclotron resonance. The net effect on

the wave depends on which of the competing interactions predomi-

nates. The form of the particle velocity distribution enters in-

to these considerations. Other resonance lines exist for the

guided Alfven wave, but the resonant velocities are so high that the



density of particles at such velocities are negligible in the

magnetosphere.

Similarly, it can be seen that the "loss cone" distribution

damps the unguided Alfven wave through the MMMFG resonance, which

is represented by a resonance line on the right-hand side of the

origin.

Hence, depending an the form of the particle distribution,

it can simultaneously amplify the guided Alfven wave and damp the

unguided Alfven wave (possibly exemplified by the "damping event"

shown in Figure 1.2 from 16:45 to 17:45 EST), or damp the guided

klfven wave and amplify the unguided Alfv-en wave. Different com-

binations of damping and amplification are also possible depend-

ing on the form of the particle velocity distribution, on the

resulting phase velocities, on the angles of propagation, and on

the frequency of the guided Alfven wave relative to the ion

gyrofrequency.

Kennel and Wong (1967) find that the strength of all reso-

nances at Doppler sh,.fted integral harmonics of the gyrofrequency'

depend on anisotropies in the resonant particle distribution, while

the strength of the Landau resonances (including the MMMFG re-

sonance) depends on the gradient in the distribution of parallel

velocities. Kennel and Wong's study is limited to weakly resonant

wave-particle interactions in vhich the damping rate L/W, is much

less than unity. The results of the present investigation

(Chapter 3) are free of that limitatilon.
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The polarizations of guided and unguided Alfven waves

propagating in directions different from that of the external

magnetic field B are shown schematically in Figure 4.2. These

wave modes are circularly polarized when propagating in direc-
0

tions parallel to B , but become plane polarized when propagat-

ing in other directions.
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CHAPTER 5

SOLUTIONS OF THE DISPERSION EQUATIONS FOR THE MAGNETOSPHERIC

PLASMk

In this chapter we will present a model of the magneto-

spheric plasma in the vicinity of the geomagnetic equator when

the M.I.T. telluric station in New Hampshire is at midnight.

The models give plasma parameters representative of quiet

periods (K < 1+) and of slightly disturbed periods (K 2).

Solutions of the dispersion equations for the magnetospheric

models for the unguided Alfven mode will be given in the form of

graphs from which the numerical values can be scaled.

51The damoing rate

The damping rate is a measure of the rate of wave attenua-

tion. For waves with real propagation vector k and complex

frequency ( , the damping rate is the ratio '/wr of the imag-

inary part of the frequency w; to the real part of the frequency

or. For waves with real w and complex k, the real part of k,

Ir, and the imaginary part of k, ki, are both vectors, but not

necessarily parallel vectors. 'ave-like quantities are propor-

tional to . : r e =

where oc = ki/lkrl . Hence oC is the analogue of the damping

rate cjL/Wr previously defined for waves with real k and complex

w . For loss-free media k-k is real. If k,=O the wave is not

attenuated. If kr ::0 the wave is evanescent. These ideas are

further discussed and applied in section 5.4 and chapter 6.

The damping rate depends on both the wave parameters and

the parameters that characterize the medium. The wave



parameters are frequency-o and the propagation vector k. The

propagation vector, in turn, is characterized by an angle of

propagation 9 ( which we will measure relative to the direction

of the ambient magnetic field B0 ) and the wave number 1k.

For the sake of simplicity we have assumed a spatially

uniform and time invariant medium. The parameters relevant to

the wave-particle interaction we are considering (the MIvMFG

interaction) are the strength of the ambient magnetic field BO,

the number of component populations that make up the plasma,

and for each component, the number density N, the temperature T

in the direction of the magnetic field, and the temperature T,

in the direction perpendicular to the magnetic field.

.2 The magznetospherilTasma model

The ambient magnetic field was obtained. from the satellite

measurements of Sugiura, et al. (1972). Theypresented their

measurements in terms of the deviations of the field from the

International Geomagnetic Reference Field for 1966 (Cain, et

al., 1967). As an indication of the need for this care in

estimating the geomagnetic field, we note that Sugiura, et al.,

found that at the geomagnetic equator in the meridian plane of

the M. I. T. telluric station in New Hampshire, the noon value

of the magnetic field at a geocentric distance of 5.8 Re was

more than 50. greater than the midnight value. If the average

of the two values were to be used for estimating damping rates

at 5.8 Re, the 25% inaccuracy in the field would result in a 56%

inaccuracy in the damping rate. The reason for the escalation



in inaccuracy is that the damping rate depends on the ratio 6

between the particle pressure to the magnetic pressure, and this

ratio varies inversely as the square of the magnetic field.

For the MMMFG interaction-damping estimates, what is im-

portant is the slope of the number density vs. velocity curve

for each particle population that is in resonance with the un-

guided Alfven wave, i.e., whose thermal spped is close to the

parallel trace velocity of the unguided Alfven wave. The mag-

netosperic models are superpositions of double-maxwellian pro-

ton and electron populations. Since the equatorial plasma has

often been found to have a pitch angle distribution with an in-

tensity peak at a 900 pitch angle (Williams, et al., 1973) the

perpendicular temperature T, was assumed to be 1.2 times the

parallel temperature T,, . The hot plasma double-maxwellian

mnodel has the same temperatures as the AP5 and AE2 models,

but the number densities of the double-maxwellian model were

adjusted to give the same gradient of number density with res-

pect to parallel velocity as models AP5 anA AE2.

The hot plasma population was estimated with the help of

Kingts (1967) model AP5 for the low energy outer radiation belt

protons, and Vette, Lucero and Wright's (1966) model AE2 for the

low energy outer radiation belt electrons. These models are

averages of the satellite measurements available at about the
r

time they we'e constructed. King found that the average proton

po-pulation with energies between .4 and 4 Mev had an energy dis-

tribution that could be represented by an exponential. The hot
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proton temperatures of the magnetospheric models given in Tables

IA, IB, IC, IIA, and IIB are taken from the e-folding energies

given in the proton model AP5. Vette, et al. (1966) found that

the hot electron populations in the outer radiation belt could

be adequately modeled by a segmented exponential curve in a flux

vs. energy diagram. For the sake of simplifying the calcula-

tions, only the lowest energy segments are used in the magneto-

spheric models adopted in this investigation.

The equatorial number densities for the thermal (-1.2 ev)

component of the plasma are taken from Chappell, et al, (1970).

Figure 5.1 shows this thermal plasma model.

For points not very far away from the equatorial plane, the

thermal plasma was estimated by using a consequence of Liouville's

theorem, which says that the distribution function behaves like

an incompressible fluid in phase space. Hence, the thermal

plasma at 200 geomagnetic latitude was assumed to have the same

number density as the equatorial plasma on the same magnetic field

line. The hot electrons also show only a weak latitude depen-

dence (Vette, et al., 1966).

The electron number density in the magnetosphere fluctuates

considerably, and may drop to a hundredth of the values used in

our models in a period of one to three weeks, then suddenly

build up again to its former level, all because of geomagnetic

storms. The proton number density is expected to be within a

factor of two of its correct value (King, 1967). Substorms can

increase the number density as much as ten times.in ten min--



Figuire 5.1 (from Chappell,
1971) ~

83

10

1021~.)

()

0

zt

I0-.1

et al.,



84

utes.

Table IA summarizes the parameters of the magnetospheric

plasma model for quiet conditions (Kp< / 1+) on the geomagnetic

equator (latitude =00, geomagnetic) and in the meridian plane

which passes through the M. I. T. telluric station in New Hamp-

shire (2880 longitude). All the models given in Tables IA, IB,

IC. IIA, and IIB refer to conditions in the vicinity of the

midnight meridian. The first column gives the geocentric dis-

tance of the magnetospheric region being modeled in terms of

earth radii. The second column gives the total strength of the

geomagnetic field in gauss. The third column gives the proton

density in protons per cm. 3 The fourth column gives the proton

temperatures parallel to the ambient magnetic field in electron

volts. The fifth column gives the proton temperatures transverse

to the magnetic field. The sixth column gives the electron den-

sity in electrons per cm3 . The seventh column gives the parallel

electron temperature, while the eighth column gives the transverse

electron temperature. Columns three to eight give two rows of

values for each distance. The first row refers to the cooler

plasma population, while the second row refers to the hotter

population. The number densities are given to enough decimal

places to satisfy the requirements for a neutral plasma.

Table IB gives plasma parameters for the same magnetospheric

conditions as Table IA, but at 200 geomagnetic latitude. Tables

IIA and IIB give magnetospheric plasma parameters for slightly

disturbed conditions (K, P2). Table IIA gives equatorial values

while Table IIB gives values for latitudes of 200, geomagnetic.



latitude = 00 (geomagnetic), longitude = 2880, Kp< 1+, midnight sector

K (Re) B (gauss) N+/cm 3 T,,(ev) TL(ev) N~ cm3 T,, ( ev) Tz(ev)

3.4

3.6

3.8

4.0

4.2

4.4

4.6

4.8

5.0

5.2

5.4

5.6

.130 E+04

.1775 E+01

.140
-1359

E+ 04
E+ 01

.716 E-02

.599 E-02

.506 E-02

.431 E-02

.368 E-02

.318 E-02

.274 E-02

.239 E-02

.208 E-02

.183 E-02

.16o E-02

.141 E-02

.1 E+01
.352 E+06

.1 E+01

.320 E+06

.1 E+01
.290 E+06

.100 E+04 .1 E+01

.694 E+00 .270 E+06

.800 E+03 .1 E+01

.608 E+00 .230 E+06

.630

.519
E+03 .1 E+01
E+00 .208 E+06

.380 E+03 .1 E+01

.476 E+o0 .182 E+06

.12
.423

E+01 .1301773 E+04
E+06 .2 - E-02

.12 E+01 .1401358 E+04

.384 E+06 .1 E-02

.12 E+01 .1251000 E+04

.348 E+06 .1 E-02

.12 E+01 .1000693 F+04
*324 E+06 .1 E-02

.12 E+01 .8006069 E+03

.276 E+06 .11 E-02

.12 E+01 .6305175

.250 E+06 . 15

.12 E+01 .3804747

.218 E+06 .13

.250 E+03 .1 E+01 .12 E+01

.596 E+00 .148 E+06 .1775 E+06

.100 E+03 .1

.616 E+00 .130

.6oo
.570

.220

.507

E+02 .1 E+01
E+00 .120 E+06

E+02 .1 E+01
E+00 .114 E+06

.520 E+01 .1 E+01

.40o E+00 .112 E+06

E+01 .12 E+01
E+06 .156 E+06.

.2505947

.13,

E+ 03
E -02

E+03
E-02

E+03
E-02

.1006146 E+03

.14 E-02

.12 E+01 .6056877 E+02

.144 E+06.123 E-02

.12 E+01 .2250578 E+02

.168 E+06 .122 E-02

.12
.134-4

E+01 .5606863 E+01
E+06 .1137 E-02

.1 E+01

.769 E+05

.1 E+01
.108 E+06

.1 E+01

.163 E+06

.1 E+01

.226 E+06

.1 E+01

.250 E+06

.1 E+01

.276 E+06

.1 E+01

.288 E+06

.1 E+01

.292 E+06

.1 E+01
.298 E+06

.1 E+01

.274 E+06.

.1
.255

.12 E+01
.922 E+05

.12 E+01

.1295 E+06

.12

.1957
E+01
E+06

.12 E+01

.271 E+06

.12

.300
E+01
E+06

.12 E+01

.331 E+06

.12 E+0I

.346 E+06

.12 E+01

.350 E+06

.12 E+01
.347 E+06

.12

.329

E+01 .12
E+06 .306

.1 E+01

.240 E+06
.12
.288

E+01
E+06

E+01
E+06

E+01
E+06

.125 E+04

.1001 E+01

TABLE IA:



TABLE IB: latitude 20 (geomagnetic), longitude = 288 , Kp< l , midnight sector

R (Re) B (gauss)

3.2

3.4

3.6

3.8

4.0

4.2

4.4

4.6

4.8

.140

.364
E 04
E 00

.1188 E 04
.228 E 00

.900 E

.233 E

.10 E 01

.308 E 06

.10 E 01

.274 E 06

.10 E 01

.24 E o6

.105 E-01

.871 E-02

.736 E-02

.626 E-02

.538 E-02

.466 E-02

.407 E-02

.357 E-02

.316 E-02

.282

.453
E 03
E 00

.10 E 01

.118 E c6

.100 E 03 .10 E 01

.426 E 00 .109 E 06

.600

.317
E 02
E 00

.10 E 01

.101 E 06

.220 E 02 .10 E 01

.255 E 00 .105 E o6

.12 E 01

.37 E o6

.12 E 01

.329 E o6

.12 E 01

.288 E 06

.12 E 01

.223 E 06

.12 E 01

.173 E 06

.12 E 01
.142 E 06

.12 E 01
.131 E 06

.12 E 01

.121 E 06

.12 E 01
.126 E 06

.1400363 E 04

.10 E-02

.1188227 E 04

.10 E-02

.9002322 E 03

.8 E-03

.7153011 E 03

.9 E-03

.505406 E 03

.10 E-02

.2824517 E 03

.13 E-02

.1004246 E 03

.14072 E-02

.6031567 E 02

.133 E-02

.2225378 E 02

.1215 E-02

.10 E 01

.108 E. 06

.10 E 01

.163 E 06

.10 E 01

.237 E 06

.10 E 01

.195 E 06

.10 E 01

.238 E 06

.10 E 01

.292 E 06

.10 E 01

.239 E o6

.10 E

.29 E
01
06

.10 E 01

.255 E 06

.12 E

.1295E
01
06

.12 E 01
.1955E 06

.12 E 01

.284 E 06

.12 E 01

.234 E 06

.12 E 01

.286 E 06

.12 E

.35 E

.12 E

.347 E

.12 E

.348 E

01
06

01
06

.12 E 01

.306 E 06

N+/cm T, (ev) T, (ev) N /cm T1 (ev) T1 (ev)

.715 E 03 .10 E 01

.302 E 00 .184 E 06

.505 E 03 .10 E 01

.407 E 00 .144 E 06



TABLEr IO: Iatitude = 0 (geomagnetic),

R (Re) B (gaUss) N+/cm 3 T, (ev)

longitud

TI (ev)

e 7 288, K p 1

N /cm

, midnight sector

Tit (ev) T (ev)

.206 E-01

.162 E-01

2.8 .130 E-01.

.105 E-01

.863 E-02

.125 E-02

.350 E+04 .10 E+01

.538 E+00 .647 E+06

.500 E+04 .10 E+01

.938 E+00 .570 E+06

.360

.149
E+04 .1o0 :+o1
E+01 .490 E+06

.320 E+04

.212 E+01
.10 E+01
.410 E+o6

.200 E+04 .10 E+01

.213 E+01 .381 E+06

.840

.337
'E+00 .10 E+01
E-00 .110 E+o6

.12 E+01 .3500525 E+04

.776 E+o6 .130 E-01

.12 E401 .5000929 E+04

.684 E+o6 .900 E-02

.12 E+01 .3601484 E+o4

.588 E+06 .600 E-02

.12 E+01 .3202114 E+04

.492 E+o6 .600 E-02

.12

.458
E+01 .2002126 E+o4
.-+06 .400 E-02

.12 E+01 .1175916 E+t01
.132 E-06 .1084 E-02

2.4

2.6

.10 E+01

.713 E+05

.10 E+01

.564 E+05

.10 E+01

.482 E+05

.10 Ei+ 01

.500 E+05

.10 E+01

.602 E--05

.10 E+01

.223 E-06

.12 E+01

.856 E+05

.12 E+01

.677 E+05

.12 E+01

.578 E+05

.12 E+01

.600 E+05

.12 E+01

.722 E+05

.12 E+01

.268 E+06

3.0

3.2

5.8



longitude = 2880, Kp = 2, midnight sector

R (Re) B (gauss) N+/cm3 T, (ev) T,(ev) N~/cm) T,,(ev) T,(ev)

3.4

3.6

3.8

4.0

4.2

4.4

4.6

.215
:1775

E+04
E+01

.900 E+03
.1359 E+01

.550 E+03

.1001 E+01

.698 E-02

.580 E-02

.486 E-02

.411 E-02

.49 E-02

.301 E-02L

.259 E-02

.225 E-02

.196 E-02

.172 E-02

.151 E-02

-133 E-02

.1 E+01

.352 E+06

.1 E+01

.32 E+06

.1 E+01

.29 E+06

E+03 .1 E+01
E+00 .27 E+06

.43 E+03 .1 E+01

.6o8 E+00 .23 E+06

.75 E+02 .1 E+01

.519 E+00 .208 3+06

.26

.476
E+01 .1 E+01
E+00 .182 E+06

.23 3+00 .1 3+01

.596 E+00 .148 E+06

.21 E+00 .1 E +01

.616 E+00 .13 E+06

.18

.570
E+00 .1 +01
E+00 .12 E+06

.20 E+00 .1 E+01

.507 E+00 .14 E+06

.19 E+00 .1 E+01

.408 E+00 .112 E+06

.12 E+01 .2151772 E+04

.423 E+06 .3 E-02

.12

.384
E+01 .9013576 E+03
E+06 .1396 E-02

.12 E+01 .5510001 E+03

.348 E+06 .9 E-03

.12 E+01 .6306931 E+03

.324 .-+o6 .9 E-03

.12 E+01 .4306069 E+03

.276 E+06 .11 E-02

.12 E+01 .7551752 E+02

.250 E+06 .148 E-02

.12 E+01 .3074663 3+01

.218 E+06 .1337 E-02

.12 E+01

.1775 E+06
.9046850 E+00
.1315 E-02

.12 E+01 48245840 E+00

.156 E+06 .1416 E-02

.12 E+01 .7487660 E+00

.144 E+06 .1234 E-02

.12 3+01 .7057780 E+00

.168 E+06 .1222 E-02

.12

.1344
3+01 .5968630 E+00
E+06 .1137 E-02

.1 E+01

.769 E+05

.1 E+01
.108 E+06

.1

.163
E+01
E+06

.1 E+01
.226 E+06

.1

.250
E+01
E+06

.1 E+01

.276 3+06

.1 E+01

.288 E+06

.1 E+01
.292 3+06

.1 E+01
.289 E+06

.1 E+01

.274 E+06

.1 E+01

.255 E+06

.1 E+01

.240 E+06

.12

.923
E+01
E+05

.12 E+01

.1296 E+06

.12 E+01

.1955 E+06

.12 E+01

.271 E+06

.12 E+01
.300 E+06

.12 E+01

.331 E+06

.12 E+01

.346 E+06

.12 E+01

.351 E+06

.12

.347
E+01
E+06

.12 E+01

.329 E+06

.12

.306
E+01
E+06

.12 E+01

.288 E+06

.630

.694

4.8.

5.0

5.2

5.4

5.6

TABLE IITA: lat-itude = 00 (geomagnetic),



TABLE IIB: latitude = 200 (geomagnetic),

R (Re) B gauss T,, (ev) T.( ev) N~/cm3 T,,(ev) T,(ev)

3.2

3.4

3c6

3.8

.900 E+03 .1 E+01
.364 E+00 .308 E+06

.550 E+03 .1 E+01
.228 E+00 .274 E+o6

.1043 E-01

.866 E-02

.732 E-02

.624 E-02

,537 E-02

.463 E-02

.402 E-02

.356 E-02

.314 E-02

E+03 .1 E+01
E+00 .240 E+06

E+03 .1 E+01
E+00 .184 I+06

E+02 .1 E+01
E+00. .144 E+06

E+01 .1 E+01
E+00 .118 E+06

.210 E+00 .1 E+01

.426 E+00 .109 E+06

.180

.317
E+00 .1 E+01
E+00 .101 E+06

.200 E+00 .1 E+01

.255 E+00 .105 E+06

.12 E+01 .9003627 E+03

.370 E+06 .13 o-02

.12 E+01 .5502271 E+03

.329 E+06 .9 E-03

.12 E+01.6302322 E+03

.288 E+o6 ,8 E-03

.12 E+01 .2533011 E+03

.223 E+06 .9 E-03

.12 E+01 .3920599 E+02

.173 E+06 .101 E-02

.12 E+01 .1871707 E+01

.142 E+06 .1293 E-02

.12 E+01 .6345928 E+01

.131 E+06 .14072 E-02

.12 E+01 .4956728 E+00

.121 E+06 .13272 E-02

.12 E+01 .4537850 E+01

.126 E+06 .1215 E-02

.1 E+01

.108 E+06

.1 E+01

.163 E+06

.1 E+01

.237 E+06

.1 E+01
.195 E+06

.1 E+01

.238 E+6

.1 E+01

.292 E+06

.1 E+01

.289 E+06

.1 E+01

.290 E+06

.1 E+01

.255 E+06

.12 E+01

.1295 E+06

.12 E+01

.1955 E+06

.12 E+01

.284 E+06

.12 E+01

.234 E+06

.12 7+01

..286 E+06

.12

.350
E+01
E+06

.12 E+01

.347 E+06

.12 E+01
.348 E+06

.12 E+01

.306 E+06

.630
.233

.253

.302

.388

.407

.142

.453
4.2

4,4

4.6

lIongrritude = 288 0, Kp=2, midnight sector
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5.3 Solutions of the dis-persion,_equation for real k and complex w

The dispersion equation (3.70) (together with equations (3.83)

to (3.86)) for hydromagnetic waves in a strong magnetic field was

solved numerically for magnetospheric plasma parameters corres-

ponding to various locations in the midnight meridian in the vi-

cinity of the geomagnetic equator. MIagnetospheric parameters used

were for quiet conditions (K < 1+) and for slightly disturbed

conditions (Kp = 2).

The phase velocity diagram for the unguided Alfven wave for

K < 1+, geomagnetic latitude = 0 0, geocentric distance = 4.6 Re is

shown in Figure 5.2. This is a polar plot where the ambient mag-

netic field is directed along the abscissa. The radius vector is

the magnitude of the phase velocity, and the polar angle 0 is

the angle between the propagation vector k and the ambient mag-

netic field B . The rapid increase in phase velocity as the pro-

pagation angle increases beyond 80 and its slight decrease as
0

the propagation angle approaches 90 is typical of the phase ve-

locity diagrams. This feature is also found in Tajiri's (1967)

corresponding phase velocity diagrams for the unguided Alfven

wave in a Vlasov plasma in a magnetic field. Comparing Figure

5.2 with the phase velocity diagram for a Chew, Goldberger, Low

(CGL) plasma, we note that although both phase velocity diagrams

show little variation of velocity over most angles of propaga-

tion, the CKW velocities are some 25/ lower than the CCL veloc-

ities. The rapid increase in velocities for angles of propaga-

tion beyond 80 is peculiar to the microscopic CKWl plasma.

Figure 5.3 shows the variation of the damping rate "'/Wr
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Figure 5.3
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with propagation angle for the same plasma considered in Figure

5.2. A negative Wcimplies damping. The sharpness of the anisotro-

py, and the strength of the maximum damping is worthy of note.

As a check on the computer program, some of Barnes'results were

reproduced. To serve as a broad check on the dispersion equation,

it was verified that the shapes of appropriate CKW damping rate

vs. angle of propagation curves were similar to the one curve

given by Hasegawa (1970). As noted previously, the shapes of the

CKW phase velocity diagrams are similar to the shapes of the cor-

responding diagrams in Tajiri's (1967) paper. Since both Hasegawa

and Tajiri started from Kutsenko and Stepanov's (1960) theory,

which stands independently of the CKW theory used in the present

study, the similarity in shapes of the curves serves as a check

on the derivation of the dispersion equation.

5.4 Solutions of the disersion equation for complex k and real)

In situations where a wave propagates in space, solutions

of the dispersion equation for real &) and complex k are usually

more helpful than the solutions for real k and complex O given

in the preceding section. Since we will investigate the damping

of a wave as it propagates earthward from beyond the plasmapause

in the next chapter, we solved the dispersion equation (3.70)

numerically for an inhomogeneous wave with real frequency CO and

complex k. In this section we shall present aRnd discuss such

solutions, but restrict ourselves again to the unguided Alfven wave.

The real part of the propagation vector, kr, is allowed to

have various (real) propagation angles 0, where ( is measured
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from the direction of the ambient magnetic field Bo. However,

the planes of constant amplitude of the wave are assumed to be

parallel to B0 (and consequently, are parallel to the plasmapause).

The spatial rate of wave attenuation in the direction perpendi-

cular to the plasmapause, ki, is given by the imaginary part of

k. The planes of constant phase are perpendicular to kr-

The first set of solutions for complex k and realcO are

given for quiet magnetospheric conditions with Kp< 1. Figure 5.4

shows the phase velocity vs. angle of propagation curve for the

plasma or the geomagnetic equator at a geocentric distance of

5.8 Re (just outside the plasmapause). This curve is smaller

than, and departs in shape considerably from, the oval that is

the usual shape of the phase velocity curve for the unguided

Alfven wave in a macroscopic plasma model like the CGL plasma

(compare with Figure 5.17).

Figure 5.5 shows the curve for rate of wave attenuation ki

in the direction perpendicular to the ambient magnetic field

vs. angle of propagation 0 for a wave frequency of .02 cps. The

.plasma involved here is the same plasma for which Figure 5.4

gives the phase velocity vs. propagation angle curve. Note the

broad peak in attenuation rate at a propagation angle of 330.

Figure 5.6 shows the curve for kivs. 0 for the same plasma

to which Figure 5.4 applies, and with the same wave mode whose

attenuation curve is given in Figure 5.5, but with four times

the frequency. Note that the shape of the curve is similar to

the curve in Figure 5.5, but the rates of attenuation is four

times greater.
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Figure 5.5 Perpendicular Attenuation Constant ki
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Figure 5.6 Perpendicular Attenuation Constant k.

Real w, complex k, frequency = .08 cps
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Figures 5.7 and 5.8 give the phase velocity and perpendicu-

lar attenuation rate curves for plasma at 4.6 Re (just inside

the plasmapause) and for an unguided Alfven wave of .02 cps.

frequency.

Figures 5.9 and 5.10 give the corresponding curves for

plasma at 3.6 Re. Figures 5.11 and 5.12 give the same curves

for plasma at 200 greomagnetic latitude. Figures 5.15 and 5.16

give the corresponding curves for a slightly disturbed magneto-

sphere (K = 2). Figures 5.17 and 5.18 give the phase velocity
p

curves for a CGL plas-ma with the same parameters as those used

with the CKW plasma in Figures 5.4 to 5.8-for the sake of compa-

rison.

Figures 5.19 and 5.20 give the transmitted power below a

slab 1 Re thick if an incident wave of unit power (.02 cps.

frequency) were to enter the top of the slab and be subsequently

damped by the slab. Figure 5.19 refers to plasma at 5.8 Re (just

outside the plasmapause) and Figure 5.20 refers to plasma at

4.6 Re (just inside the plasmapause). One may note that the

wave is hardly damped outside the plasmapause, but is heavily

damped inside the plasmapause. The difference is easy to under-

stand. The number density of the plasma outside the plasmapause

is much lower than inside the plasmapause, thus making the wave

phase velocities much higher outside than inside. Hence, there

are more plasma particles at the lower velocity that resonate

with the slower wave inside the plasmnapause than there are par-

ticles at the higher velocity required to resonate with the much

faster wave outside the plasmapause.
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Perpendicular Attenuation Constant ka
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Figure 5.10 Perpendicular Attenuation Constant k ,
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Figure 5.14 Perpendicular Attenuation Constant kg
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Figure 5.16 Perpendicular Attenuation Constant kg
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Figure 5.19 Relative Transmitted Power Below 1 Re Slab
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Figure 5.20 Relative Transmitted Power Below 1 Re Slab

Real w, complex k, frequency =.02 cps
L =4.6 Re, lat.= 0* (geomagnetic)
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Figure 5.21 shows how doubling the number density of the

hot proton component more than doubles the damping rate

-i / kr I for most angles of propagation.

Since k i 1kr I , where N is the analogue of the

damping rate for complex k ; and since Ikr 1 2T f/ 1vph '

where 7 is the wave phase velocity, if a plot of V V .weeVPil ph -

angle of propagation 9 is given, a plot of the perpendicular

attenuation constant Ik vs. 0 yields information equivalent

to a plot of 1o41 vs. 9



Figure 5.21 Comparison of Damping Rates When Hot
Proton Number Density is Varied
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CHAPTER 6

GEOPHYSICAL IMPLICATIONS

6.1 Daimping effects on microulsations

This section focuses attention on waves with frequencies

below about .2 eps, at which frequency, modes other than the un-

guided Alfven mode begin to appear superimposed on that mode on

the records from the M.I.T. telluric station in New Hampshire.

Geomagnetically quiet periods are mostly discussed because then

magnetospheric phenomena may be presumed to be at their simplest.

For the same reason we have restricted this early phase of our

investigation of damping only to the vicinity of the equatorial

plane around the midnight meridian. The magnetospheric model

encompasses the regions from i earth radius outside the plasma-

pause down to 2.1 earth radii (in geocentric coordinates), where

damping is expected to diminish rapidly because the increasing

magnetic field reduces rapidly the ratio y between plasma pres-

sure and magnetic pressure.

We apply the damping theory to two cases of hydromagnetic

waves propagating earthward through the inner magnetosphere. The

first case concerns waves with sources outside the plasmapause,

and the second, waves with sources just inside the plasma -

pause. We then relate the results to micropulsation
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observations from a low latitude station in the Bermuda

Islands, and to telluric observations from the I.I.T. mid-

latitude station in New Hampshire.

6.2 wave sources outside the plasmapause

In the first case, for sources outside the plasmasphere,

we take a three-slab model of the inner magnetosphere. Each

slab is of thickness one earth radius. The outermost slab

represents the plasma just outside the plasmasphere. Its

pqrarneters are given in Table IC in Chapter 5, corresponding

to plasma at 5.8 earth radii away from the center of the earth.

The plasmapause is represented by the boundary between the

first and second slabs. This second slab has parameters

corresponding to plasma at 4.6 earth radii as given in

Table IA. The third and innermost slab is described by the

plasma parameters given for a point on the geomagnetic

equator at 3.6 earth radii away from the center of the earth

(Table I)

We want to know how much damping a wave undergoes as it

propagates earthward starting from near the top of the first

slab and emerging at the bottom of the third slab. In this

investirgation, we are primarily interested in the damping

effects. We have thus neglected partial reflections at the

slab bdundaries. In each slab we solve the dispersion equa-

tions for an inhomogeneous wave with real frequency ci and

complex propagation constant k. The planes of constant ampli-

tude are assumed to he parallel to the plasmapause, i.e.,
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the imaginary component of k is assumed to lie in the direction

perpendicular to the plasmapause. The spatial rate of damping

is proportional to this imaginary component. The planes of

constant phase are perpendicular to the real component of k,

so that these planes propagate in the direction of this com-

ponent. This real vector makes an angle 0 with the earth's

magnetic field, which in turn is parallel to the plasmlapause.

Snell's law determines the changes in the (real) propagation

angle 0 as the wave progresses from one slab to the next.

Several characteristics of the waves in each slab are given

in the preceding chapter.

The over-all damping is much affected by two features

that characterize wave propagation from above the plasmapause;

first, the focusing effect of the transmission across the

plasmapause; and second, the highly anisotropic nature of the

damping.

Since the phase velocities are much higher above the

plasmapause than below it, waves at all angles of propagation

above the ulasmap~ause are refracted (Snell's law) into a

narrow band of angles close to 90 in the plasma just below the

plasmapause. The result is a focusing effect. vith the plasma

parameters in this study assumed. for quiet period, midnight

equatorial conditions, the wave phase speeds above the plasma-

pause (at 5.8 earth radii) are about 10 times the phase speeds

just below the plasmapause at 4.6 earth radii, because of the

sharp rise in density below the plasmapause. This speed change
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refracts incoming waves at all propagation angles in the top

slab into a nar-row 7.5 range of propagation angles below the
0 0

plasmapause from 82.5 to 90 .

Below the plasmapause, the phase speeds are so low compared

to the thermal speeds of the hot plasma (see Chapter 5) that the

propagation angles required for wave-particle resonance with the

hot plasma are in the 800's. At such large angles of propaga-

tion, even wide variations in the parallel thermal speed of the

hot plasma correspond to very small variations in the propaga-

tion angle required for resonance. Hence, there is not much

variation in the angle of propagation for maximum damping rate.

In our magnetospheric plasma model, doubling the parallel

temperature of the hot plasma component shifts the angle of
0 0

maximum damping from 82.50 to 85 . This small change in refracted

angle corresponds to a change in incident angle outside the
o o

plasmapause from 12.5 to 37.5

On the other hand, doubling the number density of the hot

plasma component approximately doubles the damping rate and re-

duces slightly the angle of maximum damping (see Figure 5.21).

Since the unguided Alfven wave at a frequency of 0.08 cps

has a wavelength of about i earth radius inside the plasmapause,
waves at lower frequencies could have wavelengths comparable to

some characteristic lengths in the plasmasphere. Among the long

wavelength effects which may be expected, but not considered in

the computations, are resonance peaks in the spectra. However,

since damping is a local wave-particle interaction, our estirrates

of damping rates are still valid at frequencies below 0.08 cps.
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We computed the average power attenuation factor 6 for

unguided Alfven waves from outside the plasmapause which are

incident on our magnetospheric model plasma slab, assuming

that all incident wave directions are equally probable. The

attenuation factor 8 is proportional to the damping rate.

The estimated average value of 3 is 59, which indicates

strong damping. Figure 6.1 shows how varies with the pro-

pagation angle 0 of the incident wave above the plasmapause.

Figure 6.2 shows the weighting function used in the averaging.

In this estimate, the change in angle of propagation as a

wave moves down a slab due to the curvature of the dipole

field lines is taken into account for angles 850 or greater.

Below 850 the rate of change of damping rate with change of

angle is considerably less than for angles of 85 and above.

Hence, the change in angle of propagation as a wave moves

down a slab is neglected for waves with propagaq.tion angles

less than 85

For small geomagnetic latitudes ?A, the change in angle

of proparation AO as a wave moves down a distance Ar is

given by (all angvles in the equation below are to be in

radians):

S +(1 2 2 r (6.1)

where Y -::ngle of incidence at the top of the slab
of thickMess A r

r distance from the center of the earth to the
middlc, of the slab
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Figure 6.1 Power attenuation ,'actor & when source is above
the plasmapause
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6.3 Attenuation factor when the wave source is below the

plasmapause

When we make the same assumptions about the incident waves

as in the previous section, except that we locate the wave

source below the plasmapause at R:=:5.1 Re, and hence take into

account damping by the lowest two of the three slabs considered

in the previous section, we find the average attenuation factor

6 to drop to 33.9. Figure 6.3 shows the variation of S vs.

propagation angle of the incident wave when the incident wave is

below the plasmapause.

6.4 Attenuation factors for ower spectra observed at the

M.I.T. telluric station

Figure 6.4 shows the magnetic meridian plane through the

M.I.T. midlatitude telluric station in New Hampshire from which

the following power spectra of electric field fluctuations were

taken. Figure 6.5 shows a representative spectrum and the

exponential curves which may be fitted to it. Several combi-

nations of n and 8 can be found to fit it. However, n cannot

be varied too much without producing large discrepancies at

lower frequencies. We estimate an uncertainty in our values of

S such that 6/2 < true < K 8.

We express power density in terms of power/octave because

the power density then becomeos directly related to the square of

typical amplitudes. Santirocco and Parker (1963), in presenting

their micropulsation spectra from Bermuda (see section 1.4),

followed the common practice of giving power spectral density

in terms of power/cps.
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Figure 6.3 Power attenuation factor & when source is below
the plasmaause
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Figure 6.6 shows two spectra observed in the afternoon.

The spectrum remained unchanged over several hours. Figure 6.7

shows a series of consecutive spectra observed around midnight.

There was substantial change of power levels and damping rates.

The three spectra in Figure 6.8 were taken on different days.

They differ from the spectra in Figures 6.5 to 6.7 in that while

the electronic filters used to ohtain the spectra in Figures 6.5

to 6.7 had a pass band from 0.005 to 0.15 ops, the electronic

filters used for Figure 6.8 had a pass band at a lower frequency

range, from 0.001 to 0.03 cps. Furthermore,the spectra in

Figures 6.5 to 6.7 were averages over 21 hours, while the spectra

in Figure 6.8 were averages over 8 hours. Figure 6.9 shows

another spectrum taken near midnight. This spectrum, and the

others following in Figures 6.10 to 6.12 were taken using elec-

tronic filters which had pass bands from 0.005 to 2.0 cps. They

were averages over the much shorter interval of 27.3 minutes.

Because of those differences in pass bands, only the latter

group of spectra, Figures 6.9 to 6.12, show the break in the

spectra often found at about 0.1 cps.

Figure 6.13 shows a histogram of observed attenuation fac-

tors 5 based on 112 spectra. An average value for 8 is

about 33.3, which means that a wave of frequency 0.021 will

lose half its energy in traver'sing the plasmasphere. Occa-

sionally much more severe damping is inferred.

When comparing Santirocco and Parker's (1963) spectra of

magnetic field fluctuations from Bermuda with our spectra of

electric field fluctuations from New Hampshire, we note that
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their value of -2.1.3 for the power-law index n would correspond

to a value of -0.1.3 in our representation. First, in converting

Santirocco and Parker's power density in terms of power/cps to

our power/octave, the value of n is reduced by unity. Secondly,

as is clear from equation (6.2) below, in converting power den-

sity of magnetic fluctuations to power density of electric

fluctuations, the value of n is again reduced by unity.

For a semi-infinite uniformly conductive earth, the ratio

of the magnetic flux density B (ir. gammas) to the electric field

intensity E (in mv/km) of an electromagnetic wave which has

penetrated just beneath the surface is given by

I3/iEi = 'f.2T/p (6.2)

where T wave period, in seconds
apparent resistivity of the earth, in ohm-meters

Our estimated value of 6 of 16.4 for the Bermuda spectra

is half of our average value of 33.3 for the New Hampshire

spectra. Considering the large variation of the attenuation

factor 8 with angle of incidence, these values of 8 for the

observed spectra are in reasonable agreement with our computed

values of 59 for wave sources above the plasmapause, and 34

for sources below the plasmapause.

6.5 _stimates of unquided ulfven wave amlitudes

Usingc the soectra of electric field fluctuations observed

on the ground, and taking into account the effects of the

earth's conductivity and hot plasma damping in the plasiasphere,

we arrive at estimates of the unguided klfven wave amplitudes
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just below the plasmapause.

A typical idealized telluric spectrum may be represented

by the following expression for the power density/octave, P:

P = Cf e (1,1)

with parameter values of C = 0.7 (mv/km) 2/octave, n = 0, S=50.

To estimate the effect on the wave spectra of the varia-

tion of earth conductivity in the vicinity of the M.I.T. tellu-

ric station, we used the results of a continuing study being

made in New Hampshire of the IBI/IEI ratios of long period micro-

pulsations down to 50 second periods (Kasameyer, 1973). de

extrapolated the slow trend that we found down to 6 second period

fluctuations. The agreement between the power-law indices n for

magnetic and electric spectra noted at the end of the preceding

section strengthens our confidence in our extrapolation of the

long period trends of the lB'\/11L ratios down to 6 second

periods.

The typical spectrum given above corresponds to waves with

the following amplitudes:

Frequency, cps E on ground, mv/km B just below
plasmapause, Y

0.005 0.738 0.232
0.02 0.508 0.121
0.08 0.113 0.0633

The last column gives the amplitude of micropulsation

fluctuations when the telluric fluctuations on the ground are

traced back to a point just below the plasmapause, taking

into account partial reflection of waves at the earth's sur-

face and hot plasma damping by the EnldFG wave-particle inter-
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action. We note that the micropulsatilon amplitudes in the last

column are below the 0.3 Y sensitivity threshold of recent

satellite instru'mentation (McPherron, Russell, and Coleman, 1972).

6.6 Damping efcts on the mag-netosphrcpam

Unguided Alfven waves with the power spectrum given in the -

preceding section, give up energy to resonant protons inside the

plasmasphere at an average rate of 0.06 ev/cm3 -sec. Assuming

that the hot proton population is that given for R = 4.6 fie in

Table IA, the density of resonant (91 kev) protons is about

0.1 protons/cm . On the average, it will take about 12 hours

for each resonant proton to gain 25 key parallel energy from the

wave. Ordinarily, then , the NMFG interaction has a weak effect

on the energies of plasma particles,

Since, however, telluric amplitudes during disturbed pe-

riods are often ten or more times larger than average (see

Figure 6.14 for example), the rate of energy dissipation goes up

to 6 ev/cm -sec. which adds 25 key to the parallel energy of a

resonant proton in about 7 minutes. Addition of 25 key to the

parallel energy of a 91 key particle with a pitch angle of

450 lowers its pitch angle by 110. Hence, during disturbed pe-

riods, the MIMMFG interaction can have a significant effect on

the hot plasma distribution in the plasmasphere.

6.7 Geophysical apnlications

In this section we will discuss some consequences of the

MMMFG and ion cyclotron wave-partA cle interactions in the inner

magnetosphere. These interactions, which affect both plasma

and wave parameters, can result in growth or attenuation of a

wave, in changes in the shape and power levels of the spectrum,
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and in changes in the sharpness of resonance peaks. The dif-

ferences in effects of the plasma on various wave modes contain

information on the plasma parameters. For example, the growth

rate of the ion cyclotron instability in the guided Alfven mode.

gives information on the pitch angle anisotropy of the ion

population, while the damping rate of the unguided Alfven mode

gives information on the slopes of the energy spectrum. Both

rates give information on the number densities of the plasma

along the propagation path of the wave. Hence, if similar hot

proton populations in one plasma cloud should be responsible

for the simultaneous occurrence of the ion cyclotron instability

in the Pc1 band and damping in the Pc2 and 3 band (possibly

illustrated in Figure 1.2 and discussed in Chapter 4), a study

of this phenomenon can be made to yielrd information on the

magnetospheric plasma parameters by checking computed growth

and damping rates from model plasma populations against observed

rates. This procedure may yield valuable.clues to various

processes going on in the magnetosphere such as rapid transport

of hot protons, and rapid heating or cooling of trapped protons.

Furthermore, leNMFG interaction computations can be

combined with ion cyclotron interaction computations to study

dumping into the atmosphere of particles with pitch angles

close to 90 . Cyclotron interaction of charged particles with

hydromagnetic waves causes strong pitch angle diffusion in par-

ticle populations with "loss-cone" distribution functions. Once

the pitch angle has diffused down to the loss-cone angle, the

particle is lost in the atmosphere. However, particles with
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pitch angles closer to 900 require higher frequency waves for

cyclotron interaction than particles with smaller pitch angles.

Since the power spectra of waves in the magnetosphere drop

rapidly with increasing frequencies, above a certain pitch

angle, diffusion by means of the cyclotron interaction virtually

ceases. Since the MMMFG interaction transfers energy from the

unguided Alfven wave to the parallel corponent of the resonant

particle's kinetic energy, this interaction supersedes in

importance cyclotron interaction for pitch angles close to 90'.
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CH4PTER ?

CONCLUSIONS

We have found that collisionless damping of.the unguided

Alfven wave by means of the magnetic moment-magnetic field

gradient interaction with hot plasma is probably important in

the inner magnetosphere. Damping is strong enough to produce

observable effects on the wave spectrum as the wave propagates

down through the plasmasphere. Damping rates estimated from

observations of telluric and micropulsation spectra fall

within values estimated for typical hot plasma populations in

the inner magnetosphere.

Hot plasma damping is highly anisotropic. The shape of

the attenuation factor vs. angle of propagation of the incident

wave varies considerably depending on whether the incident wave

is above or below the plasmnapause. The anisotropy combined

with the focusing effect of propagation across the plasmapause

inc.reases the difference in shape of these curves.

With the attenuation factor known, we are able to estimate

amplitudes of the unguided Alfven wave just below the plasma-

pause in the vicinity of the geomagnetic equator. During

average conditions, amplitudes are so low that these waves are

not likely to be detected by instruments on recently launched

satellites. The wave energy dissipation rates are small so that

the magrnetic moment-magnetic field gradient interaction exerts

only a weak influence on the plasma particles.

On the other hand, during disturbed periods and during most

daytime hours the wave amplitudes may rise enough to reach the
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sensitivity thresholds of satellite instruments. During these

active periods, the interaction may increase resonant protons'

parallel energy enough to significantly affect the hot plasma

distribution inside the plasmasphere, and to lower their pitch

angles into the range where the cyclotron interaction can effi-

ciently bring the pitch angles down to the loss-cone. The

combined effects of the two interactions may explain how ener-

getic particles with pitch angles originally close to 900 can

enter the loss-cone.

Waves are attenuated much more just inside the plasma-

pause than outside, because the damping rates are higher just

inside than just outside the plasmapause. Mloreover, the shorter

wavelengths inside the plasmapause cause the wave to go through

more damping cycles inside than outside. Farther away outside

the plasmapause, the magnetic field gets weaker, the wavelength

gets shorter, more particles can resonate with the slower wave,

and damping becomes stronger. We expect the unguided Alfven

wave to be severely damped inside the plasma sheet, the neutral

sheet, and the transition region just outside the sunward side

of the magnetopause, because of the abundance of energetic par-

ticles to resonate with the wave, and the short wavelengths due

to the low magnetic field strengths. Close to the earth, just

outside the ionosphere, damping rates are expected to be low

because the strong magnetic field results in high wave velocities.

Since unguided Alfven waves are strongly affected by the

hot plasma, changes in the wave spectra are sensitive indicators

of cnanges in the hot plasma parameters. This implies that
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damping of the unguided Al.fven wave could play an important

role in ground-based diagnostics of the magnetosphere.
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