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ABSTRACT

It is found that collisionless damping of unguided
Alfven waves is strong enough in the inner magnetosphere to be
of significance for ground-based diagnostics of the magneto-
sphere and for the understanding of some magnetospheric
processes. The statistical approach to the study of a homo-
geneous Vlasov plasma in a strong, uniform magnetic field is
used to derive a lowest order approximation (in the ratio of
the gyroradius to a characteristic leng{h of inhomogeneities)
to the dispersion equations for hydromagnetic waves propagating
at arbitrary angles to the ambient magnetic field. This approx-
imation is equivalent to the "guiding center approximation,”
and the corresponding physical mechanism for Waveaparticle
interaction is the magnetic moment-magnetic field gradient
interaction. For a magnetospheric plasma model made up of a
superposition of bi-maxwellian components, numerical solutions
of the dispersion equations show negligible damping close to the
earth. However, in the vicinity of the equatorial plane, in a
region extending a few earth radiil inside the plasmapause, hot
protons strongly damp unguided Alfven waves., Typically, a wave
of frequency f cps would be reduced to exp(-33.3f) of its power
after traversing this region. Damping estimates from the shapes
of observed power Spectra of magnetic and electric field fluc-
tuations are in reasonable agreement with the calculated damping
rates. Occasionally, much more severe damping is inferred from
the observed spectra. Applications of this study to some magne-

tospheric phenomena are pointed out.
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CHAPTER 1: INTRODUCTION

Hydromagnetic waves (i.e., waves in a magnetized plasma
with frequencies much below the ion cyclotron frequency) and
their surface manifestations (micropulsations and telluric
currents) are growing in importance as diagnostic probes of
the magnetosphere. Extensive reviews on this subject have
been written by Jacobs (1970), Aubry (1970), Orr (1973),
Campbell (1973), and others. MNost studies focused on wave
propagation characteristics in the magnetospheric plasma
with the assumption of negligible effects of both wave-
particle interactions and the shape of plasma particle
velocity distribution functions. However, there are many
phenomena which, if they’are to be understood quantitatively,
require that the effects of wave-particle interacticns be
distinguished from other effects, e.g., boundary effects.
Among those investigatiocns which take wave-particle inter~
acfibns into account are Robert's (1966) study of the "bounce-
resonance" interaction, Kennel and Wong's (1967) study of
the cyclotron interaction for waves propagating at any
angle relative to the ambient magnetic field, and Hasegawa's
(1969) study of the drift mirror instability. Finally, we
come to studies of Landau damping types of wave-particle

interactions for hydromagnetic waves.



1.1 Brief history

Cornwall, Coroniti, and Thorne (1971) applied Kennel and
Wong's theory to the study of Landau damping of ion cyclotron
waves just inside the plasmapause. In a brief comment,

Parker (1968) directed attention to Barnes' (1966) solution of
the dispersion relation for a two-component, strongly magnetized,
collisionless plasma, which suggested that hydromagnetic waves
in the magnetosphere might be heavily damped by the electro-
magnetic wave analogue of Landau damping, also called "transit
time damping" (Stix, 1962) and "magnetic moment~magnetic field
gradient interaction" (Barnes, 1967). Generalizing Barnes'
(1966) solution to a multi-component plasma, Navato (1970, 1971)
verified Parker's suggestion that hydromagnetic waves propaga-
ting at large angles (but not perpendicular) to the magnetic
field would be damped in a few wavelengths. Following

Kutsenko and Stepanov's (1960) different approach to the solu-
tion of the hydromagnetic wave dispersion relation for a
magnetized, collisionless plasma, Hasegawa (1970) arrived at
damping estimates in the magnetosphere similar to those of
Navato. However, Kutsenko and Stepanov's treatment is valid
only for cases where the ion thermal speed is less than the
wave speed. Consequently, it is'limited to cases of small
damping rates. The present study, which is free of this
limitation, attempts to explore the significance of damping of

hydromagnetic waves in the inner magnetosphere by the “magnetic



1.2 Scope of the investigation

We will review briefly the evidence for high rates of
damping of hydromagnetic waves from the M,I.T. mid-latitude
telluric station in New Hampshire. Then we will derive the
linearized equations of motion for a collisionless (Vlasov)
plasma in a strong magnetic field following the "statistical®
theory of Chandrasekhar, Kaufmsn, and Watson (1957, 1958a,
1958b) which will be designated as the CXW plasma theory. This
theory is equivalent_to the "guiding center approximation" in
"orbit" theories in plasma kinetic theory. Next we will derive
the dispersion equations for hydromagnetic waves in a homoge-
neous, uniformly magnetized Vlasov plasma made up of a super-
position of bi-maxwellian particle populations. " A simple model
of the magnetospheric plasma typical of the geomagnetic equatow
rial regions in the midnight meridian will be constructed from
the results of satellite measurements. We will present numeri-
cal solutions of the dispersion equations for the magneto-
spheric plasma, valid for damping rates greater than the limits
of validity of previous studies. We will discuss the physics
of the MMMFG interaction and point out the significance of the
results for magnetospherlic physlics and micropulsation studies.
The wave mode of special interest in this study 1s the unguided
Alfven mode since much of the wave energy received by the M.I.T.
telluric station is probably due to waves in this mode.

1.3 Plasma models and wave modes

The large number of plasme models and wave modes in plasma

physics can lead to confusion. For the sake of clarity, the



model and wave modes sultable to the study of hot plasnma
damping of hydromagnetic waves will be compared to other more
commonly discussed mddels and wave modes.

First of all, to study hot plasma damping from first
principles, we'need a miéroscopio model. The principal
parameters which govern the cholce of a plasma model and the
characteristics of the wave modes that the plasma can
support are the wave frequency, the plasma density, and the
strength of the magnetic field in which the plasma is immersed.
The Clemmow-Mullaly-Allis diagram (e.g., Allis, Buchbaum,
and Bers, 1963, p. 80, for a macroscopic plasma model) is a
helpful way of represénting the principal parameter regimes
relative to wave propagation.

For high frequencies, a fairly simple plasma model
consisting of free electrons and a stationary, neutralizing
background of ions is used. In this theory, called the
magnetoionic theory, Lorentz's (1909) theory of electrons is
applied to motions of free electrons in a statlic magnetic
field and an alternating electric field. The equations of
motion are of the linearized, hydrodynamic type. Two different
modes of electromagnetic waves can propagate. When the direction
of propagation is parallel to the static magnetic field, both
modes become clrcularly polarized, one left-hand circularly
polarized, the other right-hand circularly polarized.

For modérate frequencies, the ion motion in now taken
into consideration. Two compression waves are introduced.

One mode is the plasma-ion wave, which is the acoustic

branch of the compression wave. In this mode, ions and
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electrons move together in the same direction, like sound waves.
The other mode is the plasma-electron oscillation at the plasma
frequency. This 1s the optical branéh of the compression wave
in which ions and electrons move in opposition, thereby increas-
ing the restoring force and increasing the frequency of oscilla-
tion.

For low freguencies, 1f we téke an incompressible, infin-
itely conducting fluid (a macroscopic model) in which the
Lorentz force j X g acts, we get a guided Alfven wave. This wave
is a member of the electromagnetic family but one with the dis-
placement current negligible compared to the real current.

If we relax the incompressibility assumption we get three
magnetohydrodynamic (MHD) modes. Four modes arise in a two-
component fluid model plasma. In the low frequency limit there
are only three modes because the inertial effect of the elec-
trons becomes negligible.

In contrast, it is shown at the end of Chapter 3 that our
microscopic plasws model can support an infinite number of
separate wave modes. Tajiri (1967) states that the first three
least damped modes, in order of increasing damping, are the
guided Alfven mode, the unguided Alfven (fast magnetosonic)
mode, and the acoustic (slow magnetosonic) mode.

1.4 BEvidence for strongz dampineg of hydromagnetic waves

Santirocco and Parker (1963) obtained a series of micropul-
sation spectra in Bermuda. If peaks are disregarded in the
spectra, it becomes possible to fit the curves between ,.005
and 0.1 cps by a function that 1is a product of a power-law

factor and an exponential factor. If



power density, (mv/km)z/cps

P =
f = frequency, cps
n = power-law index
§ = attenuation factor
C = a constant of proportionality
the spectra may be approximated by the expression
-5f
P = cfle (1.1)

The basic parameters of the spectra would be n and &§. The at-
tenuation factor is proportional to the damping rate. When
waves with one angle of propagétion relative to the earth's
magnetic field predominate, then 8 is independent of frequency.
It seems possible to fit constant & curves to the observed
spectra. The index n, which may be positive or negative, de-
pends on several factors, It depends on the normalizZation used
for the spectra, i.e., whether power density ié given in power
/ cps or in power / octave. Over the limited frequency range of
Interest in this study it 1s hoped that the wave source spectrum
can be adequately modeled by a power-law type spectrum, which
would then affect the value of n. The index n furthermore de-
pends on whetner magnetic, dg/dt, or electric measurements are
being made, For electric field fluctuations, the value of n
also depends partly on the relationship between the electric
and magnetic flelds. This relationship dependé in turn on the
conductivity structure of the earth in the region in which the
telluric station is located. |

Figure 1.1 plots values of n and 8 estimated for the se-
ries of Bermuda micropulsation spectra with power density ex-
pressed in terms of power/cps. The average value of the power-

law index n was =2.13, and the averagé‘attenuatién factor o
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1s 16.4 which is high enouzh to indicate considerable damping.

In this study, we consider damping to be strong when a wave,
with wavelength equal to the height of %the damping region in the
plasmasphere, is reduced to 1/e€ of its power while traversing
the damping reglon. We estimate that a value of the attenuation
factor of 50 or greater implies strong damping.

Figure 1.2 shows telluric fluctuations observed at the
M.I.T. telluric station in New Hampshire. The geomagnetic co-
ordinates of the midpoint of the 75 km interval between the lead
plate electrodes of the station are 54.9o N and 35?.20 E (43.50
N geozraphic latitude, 288° g geographic longitude). The mid-
point lies on a field 1line with lieIlwain's magnetic shell para-
meter L =3. The frequency range is from DC to 2 cps. The top
strip shows amplitude levels in the Pei, or "pearl", band, while
the second strip shows amplitude levels in the frequency bands cf
most interest in this study, the Pc2 and Pe3 bands. 1In the top
strip there occurs a sudden enhancement of amplitude at about
16:45 EST lasting for an hour. A simultaneous drop in émplitude
to less than a fourth of its former level occurs in the Pc2 and 3
bands, and lasts as long as the Pcl enhancement. .This simultaneous
enhancement and drop in levels of the "pearl" band and Pc2 ang 3
bands are not unusual. |

The "pearl" event 1s generally believed to be caused by hot
protons (tens of %ev) 1in the vicinity of the plasmapause (e.g.,
Liemohn, 1967). Figures 1.3 and 1.4 show schematic diagrams of
the structure of the maghetosphere to help identify structures
referred to in this study. Figure 1.3 shows a cross-section along

the noon-midnight meridian plane. Filgure 1.4 shows a cross-
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section along the geomagnetic equatorial plane.

It is reasonable to think that the drop in amplitude in the
second strip, the unguided Alfven wave band, was due to the same
hot proton population, or another (but similar) hot proton popu-
lation from the same plasma cloud, which caused the simultaneous
"pearl" event on the top strip. In Chapter 4, we will see how
one and the same hot proton population can simultaneously cnhance
" the "pearl" band (generally thought to be the ion cyclotron mode,
which is a guided Alfven wave) and damp the unguided Alfven mode
in the Pc2 and 3 bands.

Indirect evidence of damping within the plasmasphere cavity
with a quality factor Q independent of frequency comes from
studies of plasmasphere resonances by kadden (1968),

Ificropulsations and telluric fluctuations often exhibit spec-
tral peaks at periods of 7 to 15 minutes, 60 to 100 seconds, and
20 to 30 seconds (iiadden, 1968; Saito, 1962), liadden investigated
the interpretation that the two highest frequency peaks (see
Figure 1.5) are the first (i.e., fundamental) and second harmonic
resonance osclllations of unguided Alfven waves trapped inside the
resonance cavity formed between regions of strong gradients of
Alfven speed within the plasmapause. Figure 1.5 is a histogram of
peaks in the dynamic spectra of telluric fluctuations observed at
the M.I.T. telluric station., Tigure 1.6 shows liadden's model of
the strong Alfven speed gradients forming a toroidal cavity around
the earth, inside which wave energy may be trapped. Madden used a
spherical model of the plasmasphere. The peak frequencies observed

from the M.I.T. telluric station in New Hampshire agree with the
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predicted frequencies, and their ditrnal variations corfelate
well with the variations in the plasmapause geometry. If only
leakage of energy due to imperfect reflection at the cavity
boundaries and collision damping are allowed in fhe model,
Madden found that the higher harmonics should become increas-
ingly sharp and prominent in the spectrum (see Figufe 1.7).
Such higher harmonics are not seen in the observed spectra.
When the Q is independent of frequency, higher frequency
waves with their shorter wavelengths go through more cycles and
suffer greater attenuation than lower frequency waves in trav-
ersing a given distance in the magnetosphere. Assuming this
time a damping distance of one wavelength in the cavity, adden
showed that on a simple model of the cavity the third harmonic
just ceases to be recognizable (see Figures 1.7 and 1.8). In
the plasmasphere cévity, the calculated spectrum would be affect-
ed by damping in the manner shown in Figure 1.7. The peaks
corresponding to higher harmonics, instead of becoming sharper
ana more prominent, become smoothed out and reduced. The
absence of higher harmonics from the observed spectra may
indicate strong damping of hydromagnetic waves in the plasma-

sphere,



16

Calculs

(,)iﬁiiouf

14

Taas a’?(ﬁ‘fi

T

4 Rusma pher
| Hmma_;ﬁa?ver% i} g@;sonénces

o

il plesn der
7 gasrm cfZaméa?Mf

~hat

05 0
.‘. . . "2 Lf
—T ! 050
- n

[

fzrsn"a"“cfp'fn‘,&cnﬁ‘ =1

0

|
|
|

(V)

09

91



Figure 1.8
10 | |
gower /\\ Effect of Hot Plasma Dampmﬁ on dpecltum
Dami;{n(i DisTance = Waue Leﬁth

| I
) | j \ | a"r-.\c\
4 / ' e
i 07 \ / \c\owd"
I g 7/
AV
|
g A
0.2
bl i Lo ! | ] |

0 02 .03 .04 .05 .06 '57 .08 09

L Fnec}.-

A



18

CHAPTER 2 |
EQUATIONS OF MOTION FOR A VLASOV PLASMA_IN A

STRONG MAGNETIC FIELD

The solution of the Boltzmann equation for a collision-
less plasma in a strong magnetic field will be derived in
this chapter following the theory of Chandrasekhar, Kaufman,
and Watson (1957, 1958a, 1958b). The theory is presented
here to make it more accessible (it appeared in a series of

papers), to correct mistakes and to supply omissions in the

original papers. Asterisks mark new and‘unpublished equations.

2.1 Collisionless Boltzmann's equation in terms of

hvdrodynamic=like quantities

The equation to be solved is the collisionless Boltzmann's

equation

ﬁ\fjb,‘ = 0 (1)

%

2f o "’%ﬁ NTE S

where A; is the particle acceleration due to an external body

force. Let
f(xi,vi, ) = (a0, i) + P, vi,t) (2)

= distribution function in phase space,
Let us find the equations which % and T must satisfy. The

equation that must be satisfied by O is



19

o° £ 2f° -
Yok * Aj%f‘g +,%B°A€UK5%U§’1K =0 - (3)
where B° = BA(X)N (&)

il

ambient magnetic field

a unit vector in the direction of B%, with n;= n,=0,

o
]

n3=l.
We want solutions in terms of hydrodynamic-like para-
meters of each particle species of the plasma. We will need

to take moments of equation (2).

Particle number density, N = ff d (5)
' . [ J°
Local mean velocity, V" =N ff v dv (6)
Pressure tensor, ?;j = m ff (v; - Vi vi = Vi) d3v (7)
Let B; = B;° + Bj . (8)
Ay = Aio + A’i : (%)
N = NO + N’ | (10)
viz Vit W | (11)
Py = P+ Py - ete. (12)

where variables with superscript "o" refer to time-dependent
components, and primed variables refer to time-dependent
components,

For convenience in deriving the moments of equation (1),
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we will rewrite equation (1) in terms of the distribution
function f of the peculiar velocity ¥ rather than of the

velocity vy

Y, = VD - \/,‘° (13)

In terms of v: , equation (3) becomes

° ° o ,L_ a; 1 bf
('UNVJ-)% + (g € UiBs + mpe a—f v"ax:) = 0 (14)
The time-independent component of the acceleration Aio
due to external body forces is hidden in the pressure divergence

term

L 2p; o
mN°® % 2‘0

Let us now find the equation that must be satisfied by
F'. Let U (t) be a small, first order velocity perturbation

resulting from a small perturbation of the plasma.
F(r UL t) = TP0x, v - Usced) + F (%, Vi t) (15)

After a Taylor expansion of T about T° (xi, v;) and

linearization, equation (1) becomes:
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,% € jx 165,:5%;)”: g—fvl_ (16)

U; is that part of the particle drift velocity due to the time-
dependent component Ajf of Aj. Using the relation
‘bu. 0. g . L.
5t = A+ m Gl B (17)
assuming the boundary condition that Ujg vanishes in the
stationary state of the plasma when A;' is zeroj agsuming
furthermore that Ai is independent of v;, and neglecting the
,. i ~ e M ' i
second order terms  A; g,f/i and Eyn Vi B¢ %fa .
we can eliminate A;' and simplify the right-hand side of

equation (16) to obtain

g oy . vl Uk - ee. vp, of
c@zf = UJ 3,5, + J 31); 2% m 6‘]" J 5" 5;';, (18)
= 2 2 > 2 e )
where D, = 5 * g ¢ A; o; T m Cix Ui Bx 35 (19)
Assuming that f' « fo (20)
so that N* ¢ NO, (21)

and assuming further that
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R AR E AL M4 AP, oo
Ui € ¥, o | (22)

where the heavy bars denote averaging over all particles for
inequalities (20) and (21), and over all velocity space for
inequalities (22), then the perturbation velocity Uy is

related to the change in the local mean velccity by

V, =U; + ,%s ff'v.; dv = Ui + 5. [[(5 +gm)f (sde) dsdg (23)

where § is the component of Vv that is pefpendicular tolﬁo.

To write equation (18) in terms of v; , N° , V;°, and
ﬁ}j, we need the momentum equation for f in order to introduce
the pressure tensor. We must first write equation (1) in

terms of these variables:

( +VJa,< -I-‘L)J% +A'§“)‘? + r%émmvgosm?f

Jaz‘), QUK
(N Ly avua£+ge B, o - M2 . *
( a2t J )ayH m oKem L} BUA '&": 3¢ & (24)

On taking the zero-order moment of this equation, we obtain

the continuity equation

3N*V_Q+Na__\_{; 1,\/3}\1 +NaV = Q (25)
ot o4 % X; 2%

On taking the first-order moment of equation (24), using
equation (25), and doing some partial integration, we obtain

the momentum equation
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d(NmVe) . 2(NmV V) dv.
”é%Ji * ax: -

N[ D5+ W P WU A - g e (WH)B] =0 26)

Using the time-independent terms of this equation to introduce

the pressure tensor term, we can write equation (18) in
terms of V; to give the equation that must be solved for
f* in terms of hydrodynamic-like variabless

a‘+<'u+ af’ [ euva& 7?.&:~Uav]9$

9 a"av_ . aUKa e @‘{"‘ L0 ot

2.2 Tine-independent soluticn of the Boltzmann equation

The general solution of equation (3) for the time-inde-
pendent component f© will be sought first. We will use a

perturbation method to solve equation (3) for f®. Let us

then write f© as a power series in the smallness parameter ﬂ

2 £+ TR e Rore (28)
wh L Y, LTy D
ere q-t’%f“w‘f“wc « 1. (29)
L = characteristic length of plasma

inhomogeneities

N = wave angular frequency



To collect terms of the same order in ﬂ we substitute
equation (28) in equation (3). We then obtain the following
sequence of differential equations which determine f;. fi,

fZ’ sce oy f: p oos

24

A f =0 (30)
By f + A £ =0 (31)
b, p;'_i' $ ALF, =0 (=125 ) (32)
- 9 |
where f, @ v 5 A 53‘-5_. (33)
and oﬁ = %Gug%nz% = ‘%9%0 (34)
Since ¥,  is periodic in ¢ with period 27 ,
o . *
(& £y ) =0 (£=0,1.2, ) (35)

where, for any function x( ¢ ) of the azimuthal angle ¢
-
(around the direction of BC), the average over ¢ is

indicated by the symbol <> , so that

°

at+im

*
(xe)y = [ xcerdy (36)

Hence, on averaging the terms in equation (31) over



all directions of & (ieee, over ¥ ), we find integrability
conditions that must be further satisifed by f;. fz, fg, ooy

(D fy >=0 (£ =0, 1.2, ) (37)

Let us find the form of the functional dependence of

f; on Xjs S8j, and q, where q is the component of v;

parallel to B°. Assuming no time-independent external body

force so that
A = © (38)

equation (30) becomes, in vector form,

c——t

(i) )-Fx7 = 0 (39)

Since this equatlon demands that f be symmetrically de-

pendent on (v) , Or 5, we have
f,=f (4,5 §) | (40)

We then substitute equation (40) into the first integrability

condition in equation (37) to obtain

Y L o,
N ’;‘% S av (23 - af’ ) 0 (41)

From one of HMaxwell's equations, we evaluate the divergence

of n as
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ony _ _ 1 . 98°
2% B’ N 2% (42)
Substituting this into the preceding equation, we can now
solve the first integrability condition equation (41) by
the method of characteristics to obtain the general solution

-
r

e o4 f FE) (43)

4

where H = w, + w. = the sum of the parallel and per-

pendicular components of the total kinetic

energy of a particle, a constant (44)
52 _ Az
A F ZHI°x a comstant ~ B° (45)

= the magnetic moment of a particle a constant

;"a B‘o
o ° . s
dF x 8° = a vector which is constant along a magnetic

P

line of force. (46)
With this knowledge of the functional form of fg we

can find the first-order part, fi, of f° from équation (14).
Since we will do much averaging over all directions of s,

let us write equation (14) in terms of s and qs

O, £+ %Aow%o (47)



© 2" an&‘ .—a-
where f), = (§+gn14%>[5‘3{3’(”£5" 5% * 6’7<J>9~‘r

N 2 Opii _ (s - i ¥
v ] L - (90 2T UG

. *
nem) B %] (48)

Substituting equation (28) into equation (47), we obtain the
sequence of equations (30)...(32) for f;, fz. f;, eses in a
form convenient for averaging over all directions of S. The
equation to be solved for fi is

°y = RC: AN
- (A1) Ry £, - (s 66D (49)*

From the equivalence of the operators O, and ¢ we note from
the integrability condition for fg given in equations (37)
that the last term on the right-hand side of equation (49)

vanichies. Equation (49) reduces to

-ein a%gi) Sy Nk = [SJ' ¢J + (5,5; - <$i5j>) (P‘J} (50)

[ ]

11

° [+ : __,Q_
o 29 (g + %) B (35~ 3 F

where @i 5%,
v

-

Y °
2 995 off . gonm (2% 2, + % 2
MN® 5% 9t 2en; % 95 | Sk agJ fo

(51)

which is a vector that is independent of the direction of s,



and

L MIV(L B - 2 )0 2V, V%) of
QJ.:?(%%‘*%)(Z@@? 952)’2 (57<J+57Ji)§?>‘ (52)

which is a constant tensor that is symmetric in its indices.

A particular integral ( Af, % of equaticn (50) is then

(?"Flo)p = e;,‘jk (d)t + %@;f Sg)sjnk (53)

The complementary solution ( Af ) of equation (50) must
be a function of the independent variables ( X, 8% g )
because ( A f; ) must also be a complementary solution of

the equivalent equation (49), i.e.,

e ‘ g 'rcxo -
L ANE ) = - F Aol =0 (58)
Hence, ﬂ° = :;’\‘ € (¢s ? %@u S ) S Nx + (ﬂo)c (55)

so that the stationary state solution of equation (1),

correct to first order in 7 s is

£°: 177, 6% 9) 4 L€ (B¢ £y S5 IERS P, (56 *

k]

A differential equation for a fuller determination of

° (]
(f1). can be obtained by substituting (A F ) just found

P
in eguation (53) into the integrability condition (37),

which now has the form
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(D (£ Y + £ < (Af5)p) + (AF), 0, (X)) =0 (57)

However, for the purpose of obtaining the zero-order non-
stationary deviation f;*, the information that (£1°), de-

pends on the independent variables Xji, s®* , q suffices.

2,3 Time-dependent solution of the Boltzmann eguation

We are now ready to seek the solution of equation (27)
for the time-dependent component f£'. We will use a perturba-
tion method to give f* in the form of a sum of terms of in-
creasing order in . To collect terms of the same order in i

we substitute

P (40,5,8) = £ (X, §8) # 1 (,80.9) + TR (X, 81, @)+ (s58)"

and £ (xi,Si, §.t) = fo (X, 8,88 + 1R (%, 50, . t) (59)
(K1, Si, Gt ) 4o

into equation (27).

We will divide the left-hand side of equation (27)
into two parts, the first of which will consist of terms of
lowest order in ’7 whose average over all directions of 3
is zero. The terms left over make up the second part.

We now restrict our considerations to cases in which
the dominant terms are those which contain B or B* as a
factor (these cases have ] << 1). The first part of

equation (27) is
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g...&o ' - € of’ L 4
o Kon- gl -goawdon
£° 0 :
v 222 € WS, B }
and can be written as
Lat £+ Iabel &k *
,'1’ 1o + ';" ,bul 2 T (61)
where
D e 2 = - 3 2
L1 = T G Vi 59 ( L 2p (62)*
= ,mf )
K = S {23 (5—?— )é'“‘ S as’ € Vi 5 i} (63"
161 = L85! (64)"

-
and m is a unit vector in the direction of B*., The second

part of equation (21) is

. s %
s (BRI o) 4 o (f’+>7f‘+7'°*~~-)‘ (65)
+-,%-Ad€,(7(,l‘+7f + 24 )+-,4(—x’t/b~/°¥°z('{f'+7
where o,z B ¢ (v +Vi) g + [ 205 - 2 (66)
2X;
2 - ?)Vu —.. - Uk .2, . °ont &
oy = Ui (34 5% 20 (v;+%7) ?ax 2Dy 2%"6”'71"\4/' 5? (67)*

Collecting terms of the same order in 7 in equation

(27), and equating to zero each of the coefficients of the

30



various powers of ’l , we obtain the following sequence of

approximating equations for f,', fl'. o', etce

¥
AL f + A IOk R = 0 | (68)
oozro‘ +095£O+A°\€1£'+7‘,b:<l°§92ﬂ°=0 (69)*
O:F + &£ + ALF + AMbld, £ = 0 (70)*

Since the operators X1 and &2 were defined (cfe equation 35)

so that
(& £/ > =0 (R=0,1,2. ) (?l)*
(G Sy =0 (72)"

on taking the average of equations (69) and (70) over all

directions of s we obtain integrability conditions on fo°

and fl'o
{Ds s + D+ AL LD =0 (73)*
(B f + Dukl + AL T D = 0 (74

With foo given by equation (40), we can find f,*' from

eguation (68) and from the integrability condition (73).

31



With f,' known, we can find f;' from equation (69) and the
integrability condition (74). Equation (68) can be written

as

Ceae D _ 1B Y 2 .3 (75)
é{)K SJnK Bé,.%??-—%’[g%ﬁ;}«n;%mﬂ (agz"asa)

-2 € VP Gy M 8%] fo (%:.8%9)

where (fo'% is a particular solution of this equation. It

can be verified that we may take

9k o Ax (VXE) E)

FD

=

), = 53-[B4(

3
V
o0

(76)

The complementary solution (fo'% of equation (75) satisfies

the equation

ey § T bk L 0 . | (¥

05;

Following the same reasoning which gave us the functional

dependence of f; on its independent variables in equation

(40), we find that

' *
(B = £ (%, 8} g, t), (78)

Since fo = (f')p + (f'), (79 *

a fuller determination of (fo'L may be obtained by sub-



stituting equation (79) into the integrability condition

(73). The resulting equation is

(B () == (B (£ D - Kb £ - AARC AN (80)

where, for ease in averaging over the azimuthal angle @ ,

we write

— - ﬂ's 2)7 977& 9)7
32:-—-4(5‘ *gn; +V}[§} (M Sk 57;—*89)(\,)—*’«95.-*(9;%
L 2py . 21k 21 ) 2ph, on
e [ 20 -(”’=5~ L+ g L) i, s, ,: 2]

~(S+3n)[ ( 71 Sk %’%+89’7¢ 3”7,: aVJ

(¢S - n,n)m + n._a]]

=)

(s1)*

- 2 . 3_)_75 977‘ ]
"05=U.'[a>q (71 S axj"‘ ’axj)asf +5;‘3,?f’§7

. Vi ® :m,g o) 1/ e
Ua[x.~(?7‘5 *3”’)5-5‘if+5‘,§\.'9"]

(& -mn) 2 '+>7;—55~J ¥ (35 +on +v-)[21_ff

J 5x;
- (7 a—'l" or y Al | 5. Ime UL, ey 2
S g% S v s 2z el
+ .
V&—%;] t 29 €y ﬂ‘V’ B, 5%1

(82)*
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Equation (80) gives us a first order partial differen-
tial equation for determining (fo')c . For convenience in
certain classes of problems, we may express (fo')C as the

sum of an even and of an odd function of q:
(fo) = G (%, 8 §t) +9G(%,5,8t) (83)

When we separate the even and the odd parts of the various
terms in equation (80), we find that the even part C; con-
tributes to the first-order change in the pressure tensor
Pije the odd part q02 contributes to the first-order change

in the mean velocity Vj.

The system of first-order partial differential equations
which have to be solved for Cj and C, are, in mixed vector

and Cartesian tensor notation,

G °ac S"fLaq + acz _2Cy_ 2 a%(v, - V) 2
5€'+ Vi axl ¥ 77 [£ g ( 95*) 5 [ V,) z

SH V) & gy ")C‘ * e (I F, (5 +g728)
+Q, = G (U) ' (84)

aC °a, 2 03¢ _ 9C 1 2 ¢
.2 F (25 -8%) 2 (nV)(a g 3%

-
...,53 (VJ. ,va) g-?& + )7 9:; _‘_ .,._... (a’u ro) aC, 4 @g

EVE
d

= G,(U) - 2¢ of° ﬁ.mua')
A\ 24 azl

(85)



{ -
where -6§ divn = "‘é‘oYT_, 2B

(87 agt2E

,X{Qf

Y2 4
A-

37’1 S 2 9.}’;
L5 2gt O]

Q=s[%- ( )- n-B’ 20 g 2 (&)]

t A, 2 9p] ’&ﬂ
( o2%; * e 3’(,;'5 ) (

£

i

oX; J 9)( ;

S < - (- gmd) log 18"}

af e (v, -T)s 2k

B n4s22X 9£
s /U5, m,)( ).

(86)
X 35*
(87)
,' of°
z - 52)
(88)
(89)
£
2 (50)
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z é_\f'_‘. K 9Ux " 9‘{
Ga (B = 2 (U5 B e 72l ) 26

¢ e
Py = g’:mnj tpe (8 -1ny)

i

ns 2 [fgH dg ds’

"

Pl g ffoth dg ds’

with £,° normalized so that

N’:ﬁj]ﬁ%gdf

div ;’« = A (div§e), + (divF°),

; e n- ? "Q ° _° on; . ° o P
(dvg’) )u J ’5% + (39” FL) 5’;; - nJ ?__Pll + PM'P_;_

2% D

Va.ﬂo: + (F. ﬁ) Ja”'

[H

(d"" };‘o )J.

(91)

(92)

*
(93)

(94)

(95)

(96)

(97)

(98)
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2 o 2 = (S -mny) S (99)
V=5 T WY 5y (5 -7y 2% ,

The remaining unknown in equations (82) to (99) are
ﬁ‘ and-ﬁ, both of which may be expressed in terms of the

perturbation displacement £ defined by

(100)

cy
+
]
)]

* —

. 4 .
where the superscript "+" denotes ions. U 1is related to

A' and BO by equation (17).

2.4 Derivation of the plasma ecguations of motion

We shall now express the electromagnetic variables in
Maxwell's vacuum equations in terms of .E « First we
break up equation (17) into two equations, one a relation
between the components perpendicular to the ambient magnetic
field §°, the other a relation between the parallel com-
ponents. To the lowest order in Y » the equation for the

perpendicular components yield Ohm‘’s law for an infinitely

conducting plasma in a strong magnetic field,

-

A+ eUxB =0 (101)

s

dlee

. o ] -
Since mA® = eE°,
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ur = U - —g—g* (102)
- * M —nm*a W

Substituting equation (100) into the defining equation

(17), and using equation (101), we can write E° as

- 2 e
e 2 - 2F «B (104)
el ot at
. . . . . 2B
From the linearized Maxwell's egquation for S and

from equation (104) we find, after an integration, that

[ - Z oo 4 -
e curl (F28)- 2 cont (26) = cort (F<8) et [26] - (105)

+ -
m 2
where we discarded the term Tol curl (-g%) hecause
it was " times curl ( ?,x B’ ), and we retained the

last term of equation (101) since it was the lowest order
term for 5" .

The eqguations of motion for the plasma as a whole are
a set of equations for the components of the perturbation
displacement ?. in terms of the moments of the non-
stationary deviations £'% and £'” (which were obtained from

equation (76) and the solution of equations (83) to (85).

A combined momentum equation for ions and electrons
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39
is obtained by adding the momentum equations (26) for each
species of particle expressed in terms of the moments of
the peculiar velocity’ﬂa referred to the nonstationary local

mean velocity Vi« When we assume that

t el ¥
A; =9i ¥ = E (106)
the combined momentum equation becomes
- (av.-ﬁ VNTY b (2 V2K ) - - 2p; +5;)
MmN t N ;ﬁ) E T A 5% + 09+ EE; (107)
+ éitm Jg Bn
where g; = gravitational force per unit mass
I, o= lel (N"viY -N"V7) = current density (108)
Pz mN" + mN” = mean density (109)
+ - .
€ = lel (N"-N7) = charge density (110)

After linearization, extensive algebra, and an integra-
tion by parts, assuming that expressions of the form
o ._g’ ._;o. d -, ..il' Y‘Qd "\70 and Vo_ gmd) Vc
IV?IIB]  (Ve.grad) V' (V' gred) (

{ B} ? » »

are small, the perpendicular component of the equation of

motion for the plasma as a whole, equation (107), becomes



40

P14+ €& ';‘ ) 364 = -(dw?l*+ div?'-)_LJ- Eogi + 5'51

at‘ »
+ (T B), + [cwrl (.—lf’)] x B +p'G
Ho (111)

" If we make the further assumption that

B, (112)

i

}Ef,’} & IE°) and [91.) K )

we find that the equation of motion for the parallel component

of £ is

k4

€ m'l' _al g"‘ 2" aﬁé,ﬂ 3 -e‘. d, {—)‘ - e'.". o , = _B_.I l
R R R LB )
o [ cort ( >}"
In the above equations
N°e? \% :
Wp = (g’;;;) = plasma frequency (114)

The divergence of the nonstationary pressure deviation is

adfu {7‘2 [nJ a?u,c + (?“’c - l’-’.;, e ) , ] + (S -n; nJ) 2391_ e
CAS DK

“ . [ ] (?” ?A 28°
+(3|le —ﬁ'C)nJ' a“")’i‘ +{E2nln) lkgu*nis_ﬁ-n) s][ (3) 5'):,;

+ (ZR:..ah )]+ [ LN n; 25" B, 2% + B 27

F 2%; a%; 2% 2% A
. an; 2B, . .
-2mmm‘%-4nnru§%-zm4nkg;
- 2 BK n‘ n anKJ (x' 341 }
BO

(115)"



?
where  Pu;c

- 2 [ c dg & | (116)
pic = BI[SG dg ds* | (117)
N 2 . grad ) log |B° 118
5%% - - (A -grad) log I8°) (118)
W (119)

unit vector normal ton and in the direction of the
principal normal to the line of force B°

radius of curvature of the line of force.
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" CHAPTER 3

DISPERSION EQUATION FOR HYDROMAGNETIC WAVES

This chapter outlines the derivation of the .dispersion
equation for hydromagnetié waves in a2 collisionless (Vlasov)
plasma immersed in a magnetic field strong enough (see equation
(2.29)) to make the cyclotron rééius of protons much smaller
than characteristic lengths of inhomogeneities and their gyro-
frequencies much less than characteristic frequencies of per-
turbations. The dispersion equation is obtained by setting the
determinant of the coefficients of the perturbation displace-
ment E in the equations of motion equal to zero. When we refer
to equations in other chapters we write‘"equation (2.29)" to
refer to equation;(29) in chapter 2. Asterisks mark new or

unpublished equations.

3.1 Eouations of motion for a homogeneous plasma in a uniforn

machetic fileld

When we neglect the gravitational acceleration é. the bulk

-—

—
motion Vo, the external electric field E, and the stationary

-—

o}
current density J , the equations of motion derived in Chapter 2

(equations (2.111) and (2.113)) simplify to

"0[14‘2]25 - (div P) + [curl(.—-)]xB (1)
+ I~ ' o'~
M (zt‘ wp )af,_“ - el [2= (div - q—%\-—_(davqo )”] (2)

1 2%
L [C""" (5;;)1,,



«>! et car-
P=P + =
«>/ «> >,
P=7 + P
i
Plie ©
= o] P.L;t.‘.
(o] o

b= dm ] g7 5 dg ds’

f:. = i—m ffszao d? ds*

Pl =i stes dgels

Fnse = -,‘&:mffgzc, d3 ds?

speed of light

deviation in total pressure (with

+ -
VO = \;0)

- - -3 + =
B' = curt(EKB)-% curt[a,(é’_;’:_&:))

= ratio of Alfven speed to vacuum

L3

(3)

(4)

(5)

(2.93)

(2.94)

(2.116)

(2.117)

(2.105)
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and C4 in eqs. (2.116) and (2.117) is a solution}of the system
of partial differential equations (2.84) and (2.85). The
uniform stationary state plasma and the uniform external
magnetic field which we are assuming allow us to make the

following further simplificatiéns in the differential equations

for Cq:s
o *
o .o (6)
2%;
1 _ om -0 ' ' *
DT 2K : (?)
<> *
(divp?), =0 ' (8)

Equations (2.84) and (2.85) for C; and C, simplify to

BC 2 : .a___.cx = Gt(U) .

aé-+3’% 7% , (9)
W, . % L Qg 10
ﬁ$+ T 2 (10)

°

where
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o

of,
25

—

G, (UM = 2(v, T*) ¢ 25 4 (5,.T7)s*
24

2 4 + :
SPRLE “rziif: R TP X A PR 4 (11)
otaxy gt atdy, st 2TOx, 95 ™
+* 2 0~ 7 0" '
‘“('A“- . m 3?’3 19{0 9%1 25 (‘)z.g’— 2 2o
G) ez T 2k 228 b 228 T ok
o otdxg a% L%, s IE0x, o5* -
(12)
and we have used equations (2.102) and (2,103) in substituting
—i
— -
$ for U. The difference in form between GI and G1 is not
pointed out in the original publications, and this omission may
be a cause of confusion. In eguation (10) above,
o By (afe _ 2f (13)
Q?_‘ ) {V_L (‘é“o)] ( a%q_ 951')

3,2 Dispersion eguation for waves with real propagation vector

and complex frequency

To obtain a simple form of the dispersion‘relation, we
will apply a Fourier transformation to the equation of motion in
order to eliminate differentiation with respect to position and
apply a Laplace transformation to eliminate differentiation
with respect to time. If 4(X) is any function of position X,

its Tourier transform is



L6

N o0 %0 20 -IF‘E - a/’
Ay (K) =f[ e  AX)ax (14)
-90-a3 -
provided this integral exists. The inverse Fourier transform
is
o0 o0 o0

12? _
A(R) =(5-,‘,7s_m _fw@ A () d (15)

Y

If B(t) is an almost piecewise continuous function of time t,

of exponential order ¥ , its one=-sided Laplace transform is

8, (2) = [ € B)dE (fo 5L > 03) (16)

The inverse Laplace transform is

0+ &

u(t) B(t) = "'El"ﬁ'f e B, (N)dn (0>0) (17)
“ioG+ O .
where u(t) is the unit step function and 0 = ReVl .

This last integration is to be performed along a straight
line running parallel to the iméginary (vertical) axis, and
to the right of all singularities of B, (JV\ ) on the complex
JU  plane.
We will approach our problem as an initial value pfoblem

so that in definition (14).‘§ is the wave number and will be
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considered to be real; and AE is the amplitude of the xth com-
ponent of A(X), a component with spatial dependence proportional
to cos(k + X)e In definition (16), the complex Laplace trans-

form variable J is related to the complex wave frequency

w = We + W by
J = ~iw (18)
{ (BX -wt)
Hence, wave~like quantities are proportional to e‘( © ’
and
Rel = Imw = Wy , ~ImJb = Re w = Wk (19)
For stable waves, w; %O , assuming that w, >0 .

The Fourier-Laplace transformed form of the variables
involved in the equations of motion (1) and (2) are given
below., For the sake of simplicity, we will drop the subscript
Q for the amplitude of the kthwcomponent of Fourier trans-
formed variables and the subscript JU for Léplace trans-

formed variablese.

oF, =
5¥f - JU fL + a function of initial values (20)
.
4
Qf"'~*~ﬂ'€" + a function of jinitial values (21)

ot*
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2 ' '
Q_fu - N + a function of initial values (22)
9t2 o

Y - n 2 - 2 3
flod ()} B} 8 = ()] flKke e - (P4 D], - [k K5?) e + XAl

*
+kals&, {, + & function of initial values) (23)

(ot (B)] ¢ ] 8 = (B {l0a+ kDS - xiad - [kF 41D - kG ]

n *
- Ki K32, é, + a function of initial values} (24)

[t ()], = o {Ckksdy + k) €, - (Fakadhs + Kiks)R

: ¥
- (KP4 K2) Z\%{ + a function of initial values} (25)
() b4
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To lowest order in 1 s the Fourler-Laplace transformed
simultaneous partial differential equations which determine

the solutions C; and C, for the nonstationary deviation f} are,

for ions: (26)

RCTrikg Qe = (MK, ke £, )saaf N z2K3J1g'3

’ 3
4+ a function of initial values
*
(27)
NG+ ik 6T = ST K K §t Kk ]z 2;;”;’;}
+ a function of initial values
for electronss
%
(28)

ﬂC +‘K33202"0~R(K)€'+K2€>S 9{ (.ZK_aJ?.m 5329}[

4+ a functicn of 1n1t1al values

(29)

RCS 40k 0 = ST Kks g+ Ik g;][z,—; %ﬂ_ - 24 ]

5’5-1
4+ a function of initial values



50

After eliminating Cp, we find that -

29/0 (30)
' g (2 m;'m{w 29" 5 ta4, ]

gl af‘][/«m"*kz@ﬁ
27*  55*

+ a function of initial values

e { RICEACTATIALE 5 RIS RNER

n-rk‘
- K;g)zsz[é’g’-: - %’%;J(K'Ksé. ’*‘szf'ﬂ

+ a function of initial values.

The initidl values do not enter into the time asymptotic
limit which gives the expression for the dispersion reiation
for waves which the medium can support. Hence, we will no
longer retain the initial values in our expreséions (Bern-
stein, 1958).

When Cy given in egs. (30) and (31) is used in the
integrals (2.116) and (2.117) to define the pressure deviation
components pl}c and p,;. » Wwe obtain the following
formulas for the Fourier-Laplace transformed pressure devia-

tions,
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for ions:

Ple —>iksf,d+ (W [RRAR V"?"‘ Jy (32)

37;1;: I ‘.ks‘ i, L+ (% 2:.) I; +iks Yé——;——-:g"' I," (33)
for electrons:

TV B C AR R A biks W8 g *

’ B° (34)

Puse — (I, - K;“I;)(K;Z) *agl;xgx,“és (35)*
where, if we denote

N+ K;ng = A | | (36)*
we define

I, = ffz"”_f 223" Z—g’;t"é’ ds* | (37)

Lt st EES gf;’-:!%/g ds* (38)

2

4 ii/?’—z (aﬁ’ci 9/;01‘ J 0/7- |
=47 ) & 3" L, )dgos (39)



e af " dlp s (40)
a{;oi’ z
Eegmt ([ B Ga s ()
s (@it ol o |
- 4m* [ s (%23—2 95‘)dgds (42)

The integrals (37) to (42) are of the form
@ 2) |
J (I, ) = / *fr,f‘é;— A (43)

where ¢ is an entire function of N1 . Let us define the

complex quantity

o=+l - (4h)

The integral (43) may then be written as
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Zoo 2— "J/K (Imw >0) (45)

whe re we have used eq. (18) in the last integral. In the
complex q plane, J is evaluated with the path of integration
passing along the real axis (under the singularity in q).
When Im W< 0 as in the case of stable waves, the analytic
continuation of J is obtained by making the path of inte-
gration loop under the singularity.

Substituting egs. (32) to (35) into egs. (4) and (5),
we find that the Fourier-Laplace transform of (div f’)i is

m

(d;‘v?;')_,‘ - 8; [SQO(K:Zé+k‘K2 gJz.)" (Jf—- - J:') K K gi
AN ANYE A “—% KaKs §.)]
o . R
PALSE (Kot + kg -0 T ) KKy §,
- o 2 *
- (R™-R0) (674, +5k xksg,)] (46)

where

MRS e T (47a)

o o °
- 4 G oerer e
P. ft;t '3?1;1 .
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DSt sl = - [N GRRD] ()

Furthermore,

s - [k Crkaks )T + KLTE] ()

(-Q/f')

(d;” i

2t *
(") = [, + ks DI IL] e

On substituting the Fourier-Laplace transformed variables
into egs. (1) and (2), we obtain the equations of motion
free of derivatives. Collecting components along each of the
mutually perpendicular axes 31. 32. 33, with the externally

applied magnetic field'§° along 33. we finds

along 31 -

P L1t (2] = - [sh7(k?, t KK ) (ZR T Kk f,

b +(“K’Zt&€;”&:ﬁg>(&égg]
*

-_5“. m"JZ _ o
*/u,,“‘/‘KéTéTg Ky B, ~KBY (50)
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along 22 - |
oLt (%A)zjﬂzgz = - {Sﬂo (K. Kz é. +k=z{z) + (o 3-J )’<‘K3{3

° P.,O—PJ.D
"'(K.Kg, Y-?g—lJ—Z- ;3 '{-K; B g,)(——ga’—)]

- (_/5:?_2( KKzg -+ k}z{ ""k/KB Zi‘:'-r {/9 "Lks!{z )

*
(51)

A
along a3 =
- 1 P
E (\Q"+ujpzf+w; )’—E; &1253:"}%/_?/\’1'35,*/{1}‘/34)‘7/ 7'}6[,{;}
- o
2 L2l [exits 4 kK £, )T - SR LR *

(52)
bER [k f -kt O R ]

In the case we are considering, that of a uniform
plasma in a uniform, externally applied magnetic field, the
rotational symmetry around the magnetic field allows us to

choose coordinate axes so that
K2 =0 | » (53)

without loss of generality.
Collecting similar terms in { 1 é 28 and { 30 We

reduce the equations of motion to



° + + -
[P+ o0 k2 K (- 0 + Bk k), ~ (3= Z TR G =0

A *
(54)
[P - (R-R)Ks + (784) '] f *{Efw?z“ (RN hht]-0
(55)
J,+ "' o 2 7 2"
“31 ( mt " J,;{- )k'Kb} él + 87‘}% K, K3 ;z +{[J22+ Wy twp %rﬂz
o1 * -
(B B EIR) e s
where
-] | *
PR pl14(2)"] (57)

The equations of motion take a simpler form when written
in terms of the angle of propagation (measured from the
direction of the magnetic field B®), rather than in terms of

the propagation vector f} and when written in terms of plasma

parameters given in dimensionless ratios.

Let tan € = 4’-/‘% (58)
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L K:?, (59)

5:. = Ki {z (60)
5, = K3k, C%L (61)
(2
73] I S ¥
§ = Ten Veirek? (62)
- Mo (B°-F7)
=1+ (8°)* (63)
R I+ /‘;;)p; | (64)
*
(65)

_.(‘)*o v -
TG e (N T)

Mt s m* 77

4 2 2* 2" 2 + + - *
J='f‘i{—(%+wz>+ A el cec®e [ L], Zi_)i_:_]j (66)

The equations of motion then take the form
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(et~ (1v §) s [197) 0}y + (Tu'ol s =0 (e
{deﬁ,Q-(l{- %"—;)53} 5, + [dsin%) 8, =0 (68)
[~Teoe®o] b + {eo'a} 5, + {sinto 53] 5, =o (69)

The dispersion relation is the condition for eq. (69)
to (71) to have a non-vanishing solution vector (.g l,aﬁ o
5 3). This condition is that the determinant of the coefficient
matrix of this vector be egual to zero. The dispersion

relation may then be written as

7q’\£+((‘;§ ( 1+ %)sin‘@ eoe*@ =o , (70)

where

T 2 -2 2 ) |
% caw e SinG - [Of Coe %o +urRIsin8] (71)

A s (/14 g—”;)fz-ff

Sz (1 D)4 - [Xf o 4 (14 )50 ] (72)



For a plasma consisting of a sﬁperposition of bi-Max-
wellian proton and electron populations (each population is
identified by means of the sgubscript i), its distribution
function is

P o e "‘52—{2 *
[0- 34y =EEM E e e (73)

<

where a; and bj are the reciprocals of the mean square per-

pendicular and parallel velocities, respectively, for the ith

particle population, l.e., 23 = T » by = A A

2K T, 2051

T, s+, = perpendicular temperature of ith species,

Ty ot = parallel temperature

We will describe the plasma by means of the following
dimensionless parameters. Subscript 1 refers to thermal
profons. 0dd subscripts refer to protons, while even sub-

scripts refer tc electrons.

o 0 042
ﬁ - 2 Ho P” Y = fﬁ C’; = ._(.é-z- o
n pno

(74)
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PIZ«' = 27:2-'-5& = KTy /v('o (2.93)
(3

° YL © and 2.94
671.,‘ = ”%EA—/J = K‘]_'L/.é/vc ( )
oy - N = N:&° . ( j*

Yos o = ! % e b= 3 (i2) 75

where

° ° ° o ° S f e *

Po=fy T G v Po=t0 t Puz (76)
X

A, + 7\'2 + /\3“' '{‘)\“:1 (?7)
X*

T, + Ta + To oot el (78)

To evaluate the integrals Jj, Jos J3. Iys I2’ 13' we
may use the following thecrem (Jackson, 1960):’
If we define the analytic function I(z) of the complex

variable z by the integral along the real ve-axis,

. _
~) d
I(z) = -im—-——(ji v ‘ (ImZ>0)

(79)

where f(v) is a real function of v such that the integral

th

exists for finite z, then the n derivative of I(zo) can
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be expressed in terms of the n®? gerivative of f(v),
o0 _(n) .
n) - V)agv
1z =) )d Im 2o >0 (80)
: - 80 V-2

For Im zo's 0, we can take the analytic continuation of the

above functionss

Let us denote by y; the ratio of the parallel component
of the velocity of particles in resonance with a wave, to the
root mean square (thermal) velocity of the ith particle

populations

w b, (81)

By using bi-Maxwellian distributions, we are enabled to
evaluate the integrals Jjseess I3, in terms of the plasma

dispersion function (Fried and Conte, 1961)

. x*

Sl [T |
e [

After lengthy computations, we find that

v

r(y> = Yo {trgy (e + Z R | Y
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z 2 2 4 . 2 2 (s 2 Zys Y
Sy = 2o Ca (072 47580 58] ()

<t T K e

Jty) =i %’%{1%*[ [Ayz (g + A3 s 2'(ys)+ ] )
- ’wc-l [Az j&zzf(b’z) + 24. 3422'(%4)4......]} (85)

x=1+ b(y-1) A (86)

33 Disnersion'equations for the guided and unsuided Alfven

waves
The condition for the validity of our approximations,
that the radius of gyration of protons be small compared to

the . characteristic length of inhomogeneities, say, a wave-

length, means that

Y 2L
ok MY BN K®C et N
w @)t LI AN 7 Ca® | (87)

For magnetospheric plasma parameters this implies that the
coefficient of the square brackets in eq. (84) is much greater
than unity. Hence, unless the quantity in the square brackets

vanishes, we conclude that
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| | ‘
14 g1 >> 1 BN

Barnes (1966) found that for a bi-Maxwellian plasma with
no ¥*superthermal tail" the quantity in the square brackets
vanisheg near certain isolated frequencies corresponding to
the k = 0 Pried and Gould ion waves.

From the properties of the plasma dispersion function
z(yi) we deduce that the quantity inside the square brackets

is mver very small unless

J nd Im(y) o (89)
[%v!>>1 a tRe(§5l > -1 | |

In the following diagram of the complex y; - plane, Fig.3.l,
the region defined by (89) is marked 2 .

‘When y; is in region 2 ’

‘ ! |
Z'(yi) ~ e | (90)
After considerable computations we find that when y;
is in the region = the second term on the left-hand side of
eq. (70) may be neglected in comparison with the first term.

Outside of Z ,

IO %
(91)



Im(y)

P
2
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. 2
and the term (f%})(’sin%e-) ( cos?6-) in eq. (70) is much

smaller than the terms (A %‘)(sinzé)( coste ) or

(stinz 6)((':0529) in the product #-§ , unless both IXI<<|
and )Szl<< l. Since these last two conditions are unlikely
in the magnetosphere, we may neglect the second term in eqe

(70). Hence, the dispersion relation (70) factors into

J(§5,9)=0 (92)

A(§©)=0 (93)

‘The condition that the wave frequency «w be small com-

. . +
pared with the ion gyrofrequency ¥ means that

2,242
) oe BEE L et | (94)
Cp*

For the magnetospheric plasma this relation leads to the con-
clusion that in the expression (84) for J (y), the first term
may be neglected in comparison with the second term for all

values of y; not very close to the origin. Hence,

x> . _& {4 2 Z(Ys) - Z(%)
A2 S -l (020 ¢ 2 480« Fo
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Going back to eq. (92), we find that unless the angle of

propagation is so close to fg- so that |&-L|< ._:’;’T’ R
then 1%‘(5)] >> 1, and eq. (92) reduces to
wyt o XGE

which is the well-known dispersion relation for the guided
Alfven wave. Eguation (93) is the dispersion relation for
the unguided Alfven (magnetosonic) mode. For a cold plasma

it reduces to the usually given expression
w? 2
—= = G (97)

When the dispersion relation (70) factors into egqs. (92)

and (93), the guided and unguided Alfven modes are uncoupled.
Since C%i/cz may be neglected compared with unity, the

dispersion relation for the unguided Alfven mocde becomes,

in terms of hydrodynamic-like plasma parameters and the deriva-

tive of the plasma dispersion function,

(1+R)-m _ coe?6- | %

u* - K Sin? & . (98)

Let the subscript 1 refer to the thermal proton popula-

tion, 3 to resonant protons, and 4 to rescnant electrors .
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Then,

2 Ayl /v
R= YA {1+ 4V [ 222 (40 + = 2042) (g0

m = YA 7‘312”(5; 4+ 4 (Ye)
- __.._..’ .Y g
<+ {23 3/ Ty “

[ b 2T 7‘429/:.72773)5'(%‘) (laO)*
[£% gy + G2 (9)] T T,
%3 d Ta
o = W . wave phase speed  _ S .Y (101)%
i 7(_;2@, Ca, Coe & S Cee U
- o+ M (PT-RD (102)
O( - I (Ba)z

{ e . *
7" = m, r::"z;p‘ | (/?e w ot Im W) (103)

(X
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3.4 The number of solutions of the. dispersion equation for the

unzuided Alfven mode

The dispersion equation for the unguided Alfven mode is

given by equation (104)
kN 2 2
%E(i+%)5z+ %(60519)(5|n29) - [05 cos’6 + (1+ R) sin 9]=O (104)

By observing the form of the expressions involving the

z
, 4 , and R , we conclude

independent vari=ble y;, i.e., SL, g
that there are an infinite number of isolated roots of the dis-
persion equation in the complex yi«plane. Except for SL, none
of these expressions, since they are transcendental expres-
sions, can be written as a finite polynoﬁial in Ty Since the
expression 3”7(5”g% ) is a meromorphic function of finite
order, the left-hand side of the dispersion equation ié also a
meromorphic functipn of finite order. An extenslion of
Hadamard's factorization theorem to meromorphic functions
(Titchmarsh, 1939) implies that the left-hand side of the dis-
persion equation has an infinite number of Zeros and poles in
the'complex yi—plane. Furthermore, these zZeros and poles are
isolated (see Theorem 43 in Kaplén, 1966), since each one of the
transcendental expressions is an entire function (see Clemmow
and Dougherty, 1969, page 269). Hence the dispersion equation

has an infinite number of isolated roots. This means that the

plasma can support many separate wave modes.

3,5 Comments on the analytic continuation of the disnersion

-
equation to complex values of the propszation vector k

-

For initisl-value problems the wave provagation vector k
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is taken to be real and the frequency & is allowed to be com-

plex. The dispersion equation for hydromagnetic waves in a
Vlasov plasma immersed in a strong magnetic field was derived
in the preceding sections for real k and complex @, On the
other hand, for boundary-value problems @ 1s resgl and ﬁ is
allowed to become complex. We cannot simply analytically con-
tinue the dispersion equation just derived inté, the complex X
region because the dispersion equation for a Vlasov plasma com-
posed of particle populations with non-zero temperature maxwel-
lian distributions is not an analytic function of k. It has a
branch cut in the conplex I space which prevents integration of
the inverse Fourier transform expression along the Fourler con-
tour.

Derfler (1962) showed that when the particle distribution
function is cut off at a finite velocity the branch cut opens
to allow a path for the integration of the inverse Fourier
transform. Except in the vicinity of the branch points the
solutions of the dispersion eguation for piasmas with finite
cut-off distribution functions may be approximsted by the solu-
tions for maxwellian plasmas (Kusse, 1964). For complex ﬁ,
integration alongside the branch cuts reveals a continuum of
spatial van Kampen mode solutions. In the rest of this study
we will disregard, for simpliclity, these continuous modes and
only look at the approximate discrete mode solutions from the
zeros of the dispersion equation for maxwellian plasmas.

To do the analytic continuation of the dispersion equation

to complex values of ﬁ, we replace siné tw‘kl/k, cos @ by
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A . > 5 ,
kB/k’ and tanéd by ki/kB’ where k= Qk14-k3 . Ther. we allow

k., and k., to become complex.

1 3
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CHAPTER 4
PHYSICAL CONSIDERATIONS IN WAVE-PARTICLE INTERACTIONS

4.1 The magnetic moment-magnetic field pradient_ interaction

In the hydromagnetic regime, where the wave frequency is
much less than the 1lon gyrofreguency and the wave length is much
larger than the radius of gyration, the magnetic moment of a
charged particle, mvi/(ZBo), is an adiabatic invariant. The

parallel equation of motion for the particle is

2
'Y‘r’\fs—\ilL :eEu - my}:— 2_?,1
dt 28° ox,

where m and e are the mass and charge of the particle, v, and

Vi are its velocity components psasrallel and perpendicular to the
ambient magnetic field go, where Ew and B, are the parallel com-
ponents of the self-consistent electric field and the magnetic

field acting on the particle, and X3 is the distance measured in

—
the direction of the ambient magnetic field RP°.

If the second term on the right-hand side is negligible,
there remains only the Coulomb force equation, which leads to the
well-known phenomenon of Landau damping. If the first term is
negligible, the second term gives rise to an interaction which is
the magnetic analogue of Landau damping, with the electric charge
replaced by the magnetic moment and electric Tield replaced
by the magnetic field gradient. While Landauw damping applies to
longitudinal (electrostatic) waves, its magﬁetic analogue, the

magnetic moment-magnetic field gradient(MMMFG) interaction,
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applies to transverse (electromagnetic) waves. Energy exchange
with the particle occurs by means of the electric field. Even in
the absence of an ambient electric field, the magnetic accele-
ration due to the interaction tends to produce charge separation
in the plasma, which results in a restoring electric field En
(Barnes, 1967). This field, on the average, cancels the magnetic
acceleration and prevents charge build-up. By means of the
quasilinear theory of hydromagnetic waves in a magnetized plasma,
Barnes (1968) showed that energy from the damped waves enhances
the resonant particle kinetic temperature parallel to the ambient

megnetic field B®, but does not affect the transverse temperature.

4,2 Velocity space diagram of wave=particle resonances

In this section, we will study the effect of a propagating
wave on an individual particle, with the motion of the particle
through the wave field being taken into account. First, let us
find a moving frame of reference in which the wave is static.
Since motion scross the ambient magnetic field'go would introduce
a uniform electric field, for simplicity let us take a frame of
reference moving parallel to gb. An electromagnetic wave (either
guided or unguided Alfven wave) with pnase velocity Vp and angle
of propagzation 6 (measured from the direction oflgo) will be
static in a frame of reference moving with a velocity a:Vp/ cosé
parallel to BO (see Figure 4.1). In this moving reference frame,
the wave being static, the electric field will have a potential
which varies sinusoidally with wave phase. A particle moving in

exact resonance with the wave (represented by a poilnt on either
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one of the Landau resonance lines) will see no electric field

and cannot exchange energy with the wave. Since particles of
constant energy in the moving frame have velocity space trajec-
tories which are arcs of circles drawn from the ofigin o' in the
moving frame (full arcs in Figure 4.1), particles in resonance
with the wave have velocity space trajectories 1n‘the stationary
reference frame which lie on such arcs. For compzarison, the
dashed arcs represent velocities of particles with equal energies
relative to the stationary reference frame.

A particle in resonance with a wave may have a parallel
component of velocity a = (wave phase velocity)/ cos 6 . For the
guided Alfven (cyclotron) wave, such particles have velocities
represenﬁed by points on the Landau resonance line through ot in
Figure 4.1. 1In this figure, Vpg stands for the phase speed of the

o5}

stands for the ungulded wave phase speed,

gulded Alfven wave,'vpu

Vﬂ stands for the Alfven speed. For resonance with the unguided
Alfven wave, such particles have velocities represented by points
on ﬁhe Landau resonance line which is aléo labeled as the magnetic
moment-magnetic field gradient resonance line., The angle of
propagation for the unguided Alfven wave 1is giveh by ¢ .

For ion cyclotron resonaince with the guided Alfven (cyclo-
tron) wave, a particle must have a parallel component of velocity

(b-a) such that the pitch of the particles! helical trajectory W%g

[
divided by ( A/cos ) is an integer. Ve designate v, to be the
parallel component of the particle velocity, N, the ion angular

gyrofrequency and A the wavelength for the gulded Alfven wave.
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4,3 Intuitive determination as 1o whether a wave is damped or

amplified at a resonance

To determine whether a particle in resonance tends to gain
or lose energy in an interaction, we see if, when it moves along
the allowed trajectory in velocity space (full arcs in Figure 4.1)
to diffuse in the direction that tendsvto produce a ledge in the
density contour, it moves away from, or towards, the origin 0 in
the stationary reference frame. It is well known from quasi-
linear theory (Dungey, 1961; Barnes, 1968) that particles in
resonance with a wave diffuse in veloclty space so as to decrease
the slope of the number density profile in the vicinity of the
resonance velocity.

In the example presented in Figure 4.1 for a "loss-cone"
particle velocity distribution, it can be seen that in resonance
interacticns represented by lines to the right of the stationary
origin O, the density contour slopes are such that more particles
gain energy from the wave than lose energy to it. On the other
hand, in resonance interactions represented by lines to the left
of the stationary origin, more particles lose energy to the wave
than gain energy from it. Hence, for the “loss-cone" distribu-
tion, the guided Alfven wave is damped by the Landau resonance
and amplified by the ion cyclotron resonance. The net effect on
the wave depends on which of the competing interactions predomi-
nates., The form of the particle velocity distribution enters in-
to these considerations. Other resonance lines exist for the

guided Alfven wave, but the resonant velocities dre so high that the
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density of particles at such velocities are negligible in the
magnetosphere,

Similarly, it can be seen that the "loss cone'" distribution
damps the unguided Alfven wave through the MMMFG résonance, which
is represented by a resonance line on the right-hand side of the
origin.

Hence, depending on the form of the particle distribution,
it can simultaneously amplify the gulded Alfven wave and damp the
unzuided Alfven wave (possibly exemplified by the "damping event"
shown in Figure 1.2 from 16:45 to 17:45 EST), or damp the guided’
Alfven wave and amplify  the ungulded Alfven wave. Different com-
binations of damping and amplification are also possible depend-
ing on the form of the particle velocity distribution, on the
resulting phase velocities, on the angles of propagation, and on
the frequency of the guided Alfven wave relative to the ion
gyrofrequency.

Kennel and Wong (1967) find that the strength of all reso-
‘nances at Doppler shifted integral harmonics of the gyrofrequency’
depend on anisotropies in the resonant particle distribution, while
the strength of the Landau rescnances {including the MMMFG re-
sonance) depends on the gradient in the distribution of parallel
velocities. Xennel and Wong's study is limited to weakly resonant
wave-particle interactions in which the damping rate w;/z% is much
less than unity. The results of the present investigation

(Chapter 3) are free of that limitation.
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The polarizations of guidéd and unguided Alfven waves

propagating in directions different from that of the external

—
o)
magnetic field B are shown schematically in Figure 4.2. These

wave modes are circularly polarized when propagating in direc-
P

o}
tions parsllel to B , but become plane polarized when propagat-

ing in other directions.
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CHAPTER 5

SOLUTICONS OF THE DISPERSION EQUATIONS FOR THE MAGNETOSPHERIC
PLASHA

In this chapter we will present a model of the magneto-
spheric plasma in the vicinity of the geomagnetic equator when
the M.I.T. telluric station in New Hampsnire is at midnight.
The models give plasma parameters representative of quilet
periods (Kp< 1*) and of slightly disturbed periods (Kp= 2).
Solutions of the dispersion equations for the magnetospheric
models for the unguided Alfven mode will be given in the form of
graphs from which the numerical values can be scaled.

5.1 The damwping rate

The damping rate is a measure of the rate of wave attenua-
tion. For waves with real propagation vector i and complex
frequency w, the damping rate is the ratio “"/ar of the imsg-
inary part of the frequency w; to the real part of the frequency

W, . For waves with real w and complex %, the real part of E,

-

E&, and the imazinary part of k, Ei, are both vectors, but not
necessarily parallel vec@Prs. Wave~like quantities are propor-
kR (R iR)R iReR SRk ke X o1k ReR
tional to ¢ = e = e e = € &
where ™ = ﬁi/iﬁri. Hence o is the analogue of the damping
rate Q%Ap( previously defined for waves with real % and complex
W . For loss-free media %.% is real. If §1=0 the wave is not
attenuated. If'ﬁr: 0 the wave 1s evanescent. These 1deas are
further discussed and applied in section 5.4 and chapter 6.

The damping rate depends on both the wave parameters and

the parameters that characterize the medium. The wave
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parasmeters are frequency w and the propagation vector k. The
propagation vectecr, in turn, is characterized by an angle of
propagation f ( which we will measure relative to the direction

of the ambient magnetic field BO) and the wave number lﬁl.

For the sake of simplicity we have assumed a spatiélly
uniform and time invariant medium. The parameters relevant to
the wave-particle interaction we are considering (the MMMFG
interaction) are the strength of the ambient magnetic field Eb,
the number of component populations that make up the plasns,
and for each component, the number density N, the temperature T,
in the direction of the magnetic field, ahd the temperature T,

in the directlon perpendicular to the magnetic field.

5.2 The magnetospheric plasma model

The ambient magnetic field was obtained from.the satellite
measurements of Sugiura, et al. (1972). Theypresented their
measurements in terms of the deviationsvof the field from the
Intefnational Geomagnetic Reference Field for 1966 (Cain, et
al., 1967). As an indication of the need for this care in
estimating the geomagnetic field, we note that Sugiura, et al.,
found that at the geomagnetic equastor in the meridian plane of
the M. I. T. telluric station in New Hanmpshire, the noon value
of the ?agnetic field at a geccentric distance of 5.8 Re was
more than 50% greater than the midnight value. If the average
of'the two values were to be used for estimating damping rates
at 5.8 Re, the 25% inaccuracy in the field would result in a 56%

inaccuracy in the damping rate. The reason for the escalation
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in inaccuracy is that the damping rate depends on the ratio 8
between the particle pressure to the magnetic pressure, and this

ratio varies inversely as the square of the magnetic field.

5

For the MMMFG interaction damping estimates, what is im-
portant is the slope of the number density vs. velocity curve
for each particle population that is in resonance with the un-
guided Alfven wave, i.e., whose thermal spped is close to the
parallel trace velocity of the unguided Alfven wave. The mag-
netosperic models are superpositions of double-maxwellian pro-
ton and electron populations. Since the equatorial plasma has
often been found to have a pitch angle distribution with an in-
tensity peak at a 90° pitch angle (Williams, et al., 1973) the
perpendicular temperature T, was assumed to be 1.2 times the
parallel temperature T, . The hot plasma double-maxwellian
model has the same teuperstures as the APS5 and AE2 models,
but the number densities of the double-maxwellian model were
ad justed to give the same gradient of number density with res-

pect to parallel velocity as models AP5 and AE2.

The hot plasma population was estimated with the help of
King's (1967) model APS5 feor the low energy outér radiation belt
protons, and Vette, Lucero and Wright's (1966) model AE2 for the
low energy outer radiation belt electrons. These models are
averages of the satellite measurements available at avout the
time they wa% constructed. King found that the average proton
po.pulation with energies between LU and 4 Mev had an energy dise

tribution that could be represented by an exponential. The hot
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proton temperatures of the mégnetospheric models given in Tables
IA, 1B, IC, IIA? and 1IB are taken from thé e-folding energies
given in the proton model APS. Vette, et al. (1966) found that
the hot electron populations in the outer radiation belt could
be adequately modeled by a segmented exponential curve in a fluﬁ
vs. energy diagram. For the sake of simplifying the calcula-
tions, only the lowest energy segments are used in the magneto-
spheric models adopted in this investigation.

The equatorial number densities for the thermal (~1.2 ev)
component of the plasma are taken from Chappell, et al. (1970).
Figure 5.1 shows this thermal plasma model,

For points not very far away from the equatorial plane, the
thermal plasma was estimated by using a consequence of Liouville's
theorem, which says that the distribution function behaves like
an incompressible fluid in phase space., Hence, the thermal
plasma at 20° geomagnetic latitude was assumed to have the same
number density as the equatorial plasma on the same magnetic field
iine. The hot electrons also show only a‘weak latitude depen-
dence (Vette, et al., 1966).

The electron number density in the magnetosphere fluctuates
considerably, and may drop to a hundredth of the values used in
our models in a period of one to three weeks, then suddenly
build up again to its former level, all because of geomagnetic
storms. The proton number density is expected to be within a
factor of two of its correct value (King, 1967). Substorms can

increase the number density as much as ten times in ten min-
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Figure 5.1 (from Chappell, et al.,
1971)
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Table IA summarizes the parameters.of the magnetospheric
plasma model for quiet conditions (Kp<.1+) on the geomagnetic
equator (latitude = 0°, geomagnetic) and in the meridian plane
which passes through the M, I. T. telluric station in New Hamp-
shire (288° longitude). All the mgdels given in Tables IA, IB,
IC, ITIA, and IIB refer to conditions in the vicinity of the
midnight meridian., The first column gives the geocentric dis-
tance of the magnetospheric region being modeled in terms of
earth rédii. The second column gives the total strength of the
geomagnetic field in gauss. The third column gives the proton
density in protons per cm.3 The fourth column gives the proton
temperatures parallel to the ambient magnetic field in electron
volts. The fifth column gives the proton temperatures transverse
to the magnetic field. The sixth column gives the electron den-
sity in electrons per em’. The seventh column gives the parallel
electron temperature, while the eighth column gives the transverse
electron temperature. Columns three to eight give two rows of
values for each distance. The first row refers to the cooler
plasma population, while the second row refers to the hotter
population. The number densities are given to enough decimal
places to satisfy the requirements for a neutral plasma.

Table IB gives plasma parameters for the same magnetospheric
conditions as Table IA, but at 200 geomagnetic latitude., Tables
ITA and IIR give magnetospheric plasma parameters for slightly
disturbed conditions (Kp:ZZ). Table IIA gives equatorial values

while Table IIB gives values for latitudes of 20% geomagnetic. .



TABLE IA: latitude = 0° (geomagnetic), longitude = 288°, Kp < 1+, nidnight sector

R (Re) B (gauss) N+/cm3 T.(ev) T,(ev) N_/cm3 T.{ev) T,(ev)
3.4 716 E-02 ,130 E+O4 .1  E+0L .12  E+01 ,1301773 E+0L .1 E+01 .12 E+01
1775 E+01  ,352 E+06 423 E+06 .2 . E-02 . 769 E+05 .922 E+05
3.6 »599 E-C2 150 E+04 .1  E+CL .12  E+01 .1401358 E+04 .1  E+01 .12 E+01
»1359 E+01  ,320 E+06 .384 E+06 .1 E-02  ,108 E+06 ,1295 E+06
3.8 .506 E-02 .,125 E+04 .1  E+01 ,i2  E+01 ,1251000 E+0% .1  E+01 .12 E+01
.1001 E+01 ,290 E+06 ,348 E+06 .1 E-02  .163 E+06 .,1957 E+06
L,o 431 E-02  .100 E+O4 1 E4+01 ,12  T+01 .1000693 E+04 .1 FE+01 .12 E+01
<694 E+00 .270 E+06 (324 T+06 .1 E-02  ,226 E+C6 ,271 E+06
L,2 .368 E-02 ,800 E+03 .1  E+01 .12  E+01 .8006069 E+03 .1  E+01 .12 E+01
.608 E+00 .230 E+06 ,276 E+06 .11 E-02  .250 E+06 .300 E+05
b, i 318 E-02 .630 E+03 .1 E+01 .12  E+01 .6305175 E+03 .1 E+01 .12  E+01
<513 E+00 .208 E+06 .250 FB+06 .15 E-02 L2756 E+C6 .331 E+06
L,6 .274% E-02 ,380 E+03 .1  E+01 .12  E+01 .3804747 E+03 .1  E+01 ,12  E+01
476 E+00  .182 E+06 ,218 E+06 .13 E-02  .288 E+06 ,346 E+06
h.8 239 E-02 ,250 E+03 .1  E+0L .12  E+01 ,2505547 E+03 .1 E+01 .12  E+0l
<596 E+00 L,148 E+06 1775 E+06 .13 E-02 :292 E+C6  .350 FE+06
5.0 .208 E-02 ,100 E+03 .1  E+01 .12  FE+01 .1006146 E+03 .1 E+01 ,12 E+01
616 E+00 4130 E+06 .156 E+06 .14 E-02  .298 E+06 .347 E+06
5.2 © 4183 E-02 .600 E+02 .1  E+01 .12  E+01 .6056877 E+02 .1 E+01 .12 E+01
»570 E+00 .120 E+06 .1k4 E+06 ,123 E-C2  .274 E+06. ,329 E+06
5.4 .160 E-02 ,220 E+02 ,1 E+01 .12 E+01 .2250578 E+02 .1  E+01 .12 E+01
+507 E+00 L114 E+06 ,168 E+06 122 E-02  .255 E+06 .306 E+06
5.6 <141 E-02 ,520 E+01 .1 E+01  ,12  E+01 5606863 E+01 1  E+01 .12  E+01
408 E+00 112 E+06 .1344 E+06 ,1137 E-02  ,240 E+06 ,288 E+05
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TARLE IC: 1latitude = 0 (geomagnetic), longitude = 288 , Kp-< 1 , midnight sector
R (Re) B (galss) N+/om3 T, (ev) Tl(ev) N./cm3 T“(ev) jL(ev)
2.4 .206 E~-01 .350 EB+04 .10 E+01 .12 E+01 .3500525 E+04 .10 E+01 .12 E+01
.538 E+09 L7 B+06  .776 E+05 .130 E-01 .713 E+05 .856 E+05
2.6 .162 E-01 .500 E+04 .10 E+01 .12 E+01 .5000929 E+04 .10 E+01 .12 E+01
.938 E+00 .570 B+06 .684 E+06 .S00 E-02 .564 E+05 677 E+05
2.8 .130 =-01 .360 E+04 .10 E+01 .12 E4+01 .3601484 E+04 ,10 E401 .12 n+01
.19 E+01 L4900 E+06 .588 E+06 .600 E-02 .482 E+05 .578 E+05

2.0 .105 2-01 .320 E+O04 .10 E+01 .12 E+0%1 .3202114 B+04 .10 E+01 .12 E+01
.212 E+01 .410 E+06 .492 E+06 .600 E-02 .500 E+05 .600 E+05

3.2 .863 E-02 .200 E+04 .10 E+01 .12 E+01 .2002126 E+04 .10 BE401 .12 E+01
: .213 E+01 .381 BE+06 .453 E+06 .L0O E-02 .602 E+05 .722 E+05

5.8 .125 2-02 .840 E+00 .10 E+01 .12 E+01 .1175916 E+01 .10 E+01 .12 E+01
.337 E*00 .110 E+06 .132 E+06 ,108L4 E-02 .223 B+06 ,268 E+06

L8



TABLE IIA: 1latitude = 07 (gecmagnetic), longitude = 288Y, Kp = 2, midnight sector

R (Re) B (gauss) N+/cm3 T.(ev) T,(ev) N'/'cm3 T.(ev) T,(ev)
3.4 .698 E-02 .215 E+04 .1  E+01 .12 E+01 .2151772 E+04 .1  E+01 .12 E+01
1775 E+C1  .352 E+06 .423 E+06 .3 E-02 .769 E+03 ,923 E+05
3.6 .5680 E-02 .900 E+03 ,1 E+01 .12 PB+01 ,9013576 E+03 .1 E+01 .12 E+01
.1359 E+01 .32 E+06 .384 E+06 ,1396 E-02  ,108 E+06 .1296 E+06
3.8 486 E-02 ,550 E+03 .1 E+01 .12 E+01 ,5510001 E+03 .1  E+01 .12  E+01
.1001 E+01 .29 E+06 .348 E+06 .9 E-03 ,163 E+06 ,1955 E+06
4,0 11 E-02  .630 E+03 L1 E+01 .12  E+01 .6306931 E+03 .1 E+01 .12 E+01
694 E+00 .27 E+06 ,324 E=+06 .9 E-03 .226 E+05 .271 E+0%8
L,2 . 349 E-02 43 E+03 .1 E+01 .1 E+01 4306069 E+03 ,1  E+01 .12 E+01
608 E+00 .23 E+06 ,276 E+06 .11 E-02 .250 E+06 ,300 E+06
4.k .301 E-02 .75 E4+02 .1 E+01 .12  E+01 ,7551752 E+02 .1 E+01 .12  E+01
_ .519 E+00 .208 E+06 ,250 E+06 148 E~02 276 E+06  .331 E+05
4.6 .259 E-02 ,26 E+01 .1  E+01 .12 E+01 3074663 E+01 .1 E+01 .12 E+01
A76  E+00 .182 E+06 ,218 E+06 ,1337 E-02 .288 E+06 ,346 E+056
4,8 »225 E-C2 .23 E+00 .1  E+01 .12  E+01 ,9046850 E+00 .1  E+01 .12  FE+01
.596 E+00 ,148 E+06 1775 E+06 ,1315 E-02 292 E+06 .351 E+06
5.0 .196 E-02 .21  E+00 .1 E+01 .12 E+01 8245840 E+00 .1 E+01 .12 E+01
616 E+00 .13 E+06 ,156 IL+06 ,1416 E-02 .289 E+06 347 E+06
5.2 .172 E-02 .18 E+00 ,1  E+01 .12 E+01 .7487660 E+00 .1 E+01 .12 E+01
.570 E+00 .12 I+06 144 E+06 ,1234 E-02 274 E+06 .329 E+06
5.4 »151 E-02 ,2¢C E+00 ,1  E+01 .12  E+01 .7057780 E+00 .1  E+01 .12 E+01
«507 E+00 L14 E+06 .168 E+06 ,1222 E-02 255 E+06 .306 E+06
5.6 .133 E-02 .19 E+00 ,1  E+01 ,12 E+01 .12  E+01

E+01 , 5965630 E+00 .
e 11

2 1
408 E+00 L.112 E+06 1344 E+06 37 E-02 240 E+06 ,288 E+06

88



TABLE IIB: latitude = 20° (geomagnetic), longitude = 2880, Kp=2, micnight sector

R (Re) B gauss N'*'/cm3 T.(ev) T,(ev) N'/cmj_ T.(ev) T,(ev)
3.2 .1043 E-0L ,900 E+03 .1 E+01 .12 E+01 .9003627 E+03 .1 ~E+01 .12 E+01
.34 E+00 .308 E+06 ,370 E+06 .13 2-02 108 E+06 ,1295 E+06
3.4 .866 E-02 ,550 E+03 .1 E+01 .12  E+01 .5502271 E+03 .1 E+01 .12  E+01
.228 E+00 .274 E+06 ,329 E+06 .9 E-03 .163 E+06 .1955 E+06
3.6 .732 E-02 ,630 E+03 .1  E+01 .12  E+01.6302322 E+03 .1 E+01 .12 E+01
<233 E+00 .240 E+06 .288 E+06 ,8 E-03 «237 E+06 284 E+06
3.8 624 E-02 ,253 E+03 .1 E+01 .12  E+01 ,2533011 E+03 .1  E+01 .12 E+01
.302 E+00 ,184 E+06 ,223 E+06 .9 E-03 195 E+06 ,234 E+06
L,o . »537 E-02 ,388 E+02 .1 E+01 ,12  E+01l ,3920599 E+02 .1 E+01 .12  E+01
07 E+00  J1L44 E+06 .173 E4+06 ,101 E-02 0238 E+06 286 E+06
h,2 .463 E~02 ,142 E+01 .1  E+01 .12  E+01 ,1871707 E+01 .1 E+01 .12 E+0%
2453 E+00 ,118 E+06 ,142 E+06 .1293 E-02  .292 E+06 .350 E+06
L,L 102 E-02  ,210 E+00 .1 E+01 .12  E+01 . 6345928 E+01 .1 E+01 .12  E+01
426 E+00 109 E+06 131 B+06 .1L0O72  E-02 «289 E+06 347 E+06
4,5 .356 E-02 ,180 E+00 .1  E+01 .12  E+01 4956728 E+00 .1  E+01 .12 E+01
«317 E+00 ,101 E+06 ,121 E+06 ,13272 E-02 .290 E+06 348 E+06
LR .314 E-02 ,200 E+00 .1 E+01 .12  E+01 4537850 E+01 .1 E+01 .12 E+01

.255 E+00 ,105 E+06 .156 E+06 ,1215 E-02 <255 E+06  ,306 E+06

68
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5.3 Solutions of the dispersion eguation for real % and complex w

The dispersion equation (3.70) (together with equations (3.83)
to (3.86)) for hydromagnetic waves in a strong magnetic field was
solved numerically for magnetospheric plasma parameters corres-

—___ponding to various locations in the midnight meridian in the vi-
cinity of the geomagnetic eguator. ilagnetospheric parameters used
were for quiet conditions (Kp < 1%) and for slightly disturbed
conditions (Kp = 2).

The phase velocity diagram for the unguided Alfven wave for
Kp < 1+, geomagnetic latitude = OO, geocentric distance = 4.6 Re is
shown in Figure 5.2. This is a polar plot where the ambient mag-
netic field is directed along the abscissa. The radius vector is
the magnitude of the phase velocity, and the polar angle & is
the angle between the propagation vector X and the ambient mag-
netic field %O. The rapid increase in phase velocity as the pro-
pagation angle increases beyond 80o and its slight decrease as
the pfopagation angle approaches 900 is typical of the phase ve-
locity diagrams. This feature is also found in Tajiri's (1967)
corresponding phase velocity diagrams for the unguided Alfven
wave in a Vlasov plasma in a magnetic field. Comparing Figure
5.2 with the phase velocity diagram for a Chew, Goldberger, Low
(CGL) plasma, we note that although both phase velocity diagrams
show little variation of velocity over most angles of propaga-
tion, the CKW velocities are some 25% lower than the CGL veloc-
ities. The rapid increase in velocitles for angles of propaga-
tion beyond 80O is peculiar to the microscopic CKv plasma.

Figure 5.3 shows the variation of the damping rate “i/,
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Figure 5.3 Damping Rate Diagram
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with propagation angle for the same plasma considered in Figure

5.2. A negative w;implies damping. The sharpness of the anisotro-
Py, and the strength of the maximum damping is worthy of note.

As a check on the computer program, some of Barnes results were
reproduced., To serve as a broad check on the dispersion equation,
it was verified thzat the shapes of appropriate CKW damping rate
vs. angle of propagation curves were similar to the one curve
given by Hasegawa (1970). As noted previously, the shapes of the
CKW phase velocity diagrams are similar to the shapes of the cor-
responding diagrams in Tajiris (1967) paper. Since both Hasegawa
and Tajiri started from Kutsenko and Stepanov’'s (1960) theory,
which stands independently of the CKW theory used in the present
study, the similarity in shapes of the curves serves as a check

on the derivation of the dispersion equation.

In situations where a wave propagates in space, solutions

-

of the dispersion egquation for real w and cémplex k are usually
more helpful than the solutions for real ﬁ and complex W given
in the preceding section. Since we will investigate the damping
of a wave as it propagates earthward from beyond the plasmapause
in the next chapter, we solved the dispersion equation (3.70)

numerically for an inhomogeneous wave with real freguency w and

complex %. In this section we shall present and discuss such

solutions, but restrict ourselves again to the unguided Alfven wave,

The real part of the propagation vector, ﬁr, is sllowed to

have various (rezl) propagation angles 8, where € is measured
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from the direction of the ambient magnetic field.go. However,
the planes of constant amplitude of the wave are assumed to be
parallel to BO (and consequently, are parallel to the plasmapsuse).
The spatial rate of wave attenuation in the direction perpendi-
cular to the plasmapause, Ei, is given by the imaginary part of
ﬁ. The planes of constant phase are perpendicular to ir.

The first set of solutions for complex ﬁ and real W agre
given for quiet magnetospheric conditions with Kp< 1. Figure 5.4
shows the phase velocity vs. angle of propagation curve for the
plasma on the geomagnetic equator at a geocentric distance of
5.8 Re (just outside the plasmapause). This curve is smaller
than, and departs in shape considerably from, the oval that 1is
the usual shape of the phase velocity curve for the unguided
Alfven wave in a macroscopic plasma model 1like the CGL plasma
(compare with Figure 5.17).

Figure 5.5 shows the curve for rate of wave :ed:tenua.’t:‘1on'i-l'L
in the direction perpendicular to the ambient magnetic field
vs. angle of propagation f for a wave freguency of .02 cps. The
plasma involved here is the same plasma for which Figure 5.4
gives the phase velocity vs. propagation angle curve. Note the
broad peak in attenuation rate at a propagation angle of 339,
Figure 5.6 shows the curve for E}Lvs. 8 for the same plasma
to which Figure 5.4 applies, and with the same wave mode whose
attenuation curve is given in Figure 5.5, but with four times
the frequency. Note that the shape of the curve is similar to

the curve in Figure 5.5, but the rates of attenuation is four

times greater.
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Figure 5.6 Perpendicular Attenuation Constant ki
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Figures 5.7 and 5.8 give the phase velocity and perpendicu-~
lar attenuation rate curves for plasma at 4,6 Re (just inside
the plasmapause) and for an unguided Alfven wave of .02 cps.
frequency.

Figures 5.9 and 5.10 give the corresponding curves for
plasma at 3.6 Re. Figures 5.11 and 5.12 give the same curves
for plasma at 20° geomagnetic latitude., Figures 5.15 and 5.16
give the corresponding curves for g slightly disturbed magneto-
sphere (Kp: 2). Figures 5.17 and 5.18 give the phase velocity
curves for a CGL plasma with the same parameters as those used
with the CKW plasma in Figures 5.4 to 5.8 for the sake of compa-
rison.

Figures 5.19 and 5.20 give the transmitted power below a
slab 1 Re thick if an incident wave of unit power (.02 cps.
frequency) were to enter the toﬁ of the slab and be subsequently
damped by the slab, Figure 5.19 refers to plasma at 5.8 Re (just
outside the plasmapause) and Figure 5.20 refers to plasma at
L,6 Re (just inside the plasmapause). One may note that the
wave is hardly damped outside the plasmapause, but is heavily
damped inside the plasmapause, The difference is easy to under-
stand. The number density of the plasma outside the plasmapause
is much lower than inside the plasm=apause, thus making the wave
phase velocities much higher outside than inside. IHence, there
are more plasma particles’at the lower velocity that resconate
with the slower wave inside the plaswapause than there are par-

ticles at the higher velocity required to resonate with the much

faster wave outside the plasmapause,
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Figure 5.8 TFerpendicular Attenuation Constant k,;
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Figure 5.10 Perpendicular Attenuation Constant k;;
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Figure 5.11
Phase Velocity Diagfam
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Figure 5.17
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Figure 5.21 shows how doubling the number density of the
hot proton component more than doubles the damping rate

—

oL = ki /\k‘,! for most angles of propagation,

-t

Since TE.Li" If(rl o , Where & is the analogue of the
damping rate for complex % ; and since ﬁ{}& = 27Mf/ ﬁphl ,
where ?ph is the wave phase velocity, if a plot of ‘v\ph vs.
angle of propagation & is given, a plot. of the perpendicular
attenuation constant ﬁ;u{ vs. 0 yields information equivalent

to a plot of l&:i\ vs. 6 .



Figure 5.21 Comparison of Damping Rates When Hot
Proton Humber Density 1s Varied
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CHAPTER 6

GEOPHYSICAL IMPLICATIOCNS

6.1 Damping effects on micropulsations'

This section focuses attention on waves with frequencies
below about .2 cps, at which frequencyimodes other than the un-
gulded Alfven mode beglin to appear superimposed on that mode on
the records from the M,I.T. telluric station in New Hampshire.
Geomagnetically quiet periods are mostly discussed because then
magnetospheric phenomena may be presumed to be at their simplest.
For the same reason we have restricted this early phase of our
investigation of damping only to the vicinity of the equatorial
plane asround the midnight meridian. The magnetospheric model
encompasces the regilons from 1 earth radius outside the plasma-
psuse down to 2.1 earth radii (in geocentric coordinates), where
damping 1is expected to diminish rapidly because the increasing
magnetic field reduces rapidly the ratio # between plasma pres-

sure and magnetlic pressure.

We apply the damping theory to two cases of hydromagnetic
waves propagating earthﬁardfthrough the inner magnetosphere. The
first case concerns waves with sources outside the plasmapause,
and the second, waves with sources just inside the plasma -

pause. We then relate the results to micropulsation
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observations from a low latitude station in the Bermuda
Islands, and to telluric observations from the M.I.T. mid-

latituvde station in New Hampshire.

6.2 Wave sources outside the plasmapause

In the first case, for sources outside the ﬁlasmasphere,
we take a three-slab model of the inner magnetosphere. Kach
slab is of thickness one earth radius. The outermost slab
represents the plasma just outside the plasmasphere. Its
parameters are given in Table IC in Chapter 5, corresponding
to plasma at 5.8 earth radii awéy from the center of the earth.
The plasmabause is represented by the boundary between the
first and second slabs. This second slab has parameters
corresponding to plasma ét L,6 earth radii as given in
Table IA. The third and innermost slab is described by the
plasma parameters given for a point on the geomagnetic
equator at 3.6 éarth radii away from the center of the earth
(Table IA). |

Wwe want to know how much damping a2 wave undergoes as it
propagates esrthuward starting from near the top of the first
slab and emerging at the bottom of the third slab. 1In this
investigation, we are primarily interesﬁed in the damping
effects. We have thus neglected partial reflections at the
slab bodundaries. In each slab we sdlve the dispersion egua-
tions for an inhomogeneous wave with real freguency w and
complex propagation constant %. The planes of constant ampli-

tude are assumed to be parallel to the plasmapausz, i.e.,
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the imaginary compcnent of E is assumed to lie in the direction
perpendicular to the plasmapause. The spatial rate of damping
is proportional to this imaginary component. The planes of
constant phase are perpendicular to the real component of ﬁ,
so that these planes propagate in the direction of this com-
ponent. This real vector makes an angle € with the earth's
magnetic field, which in turn is parallel to the plasmapause.
Snellts law determines the changes in the (real) propagation
angle @ as the wave prosresses from one slab to the next.
Several characteristics of the waves in each slab are given
in the preceding chapter. |

The over-a2ll damping is much affected by two features
that characterize wave propazstion from above the plasmapause:
first, the focusing effect of the transmission across the
plasmapause; and second, the highly anisotropic nature of the
damping.

Since the phase velocities are much higher above the
plasmapause than below it, waves at all aﬁqles of propagation
above the plasmapause are refracted (Snell's law) into a
narrow band of angles close to 900 in the plasma just below the
plasmapause. The result is a focusing effect. With the plasma
parameters in this study assumed for quiet period, midnight
equatorial conditions, tne wavé phage speeds above the plasma-
pause (2t 5.8 earth radii) are about 10 times the phase.speeds
just below the plasmapause at 4,6 earth radii, because of the

sharp rise in density below the plasmapause. This speed change
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refracts incoming waves at all propagation angles in the tep

slab into a narrow 7.50 range of propagation angles below the
plasmapause from 82.5O to 900.

Below the plasmapause, the phase speeds are so low compared
to the thermal speeds of the hot plasma (see Chapter 5) that the
propagation angles required for wave-particle resonance with the
hot plasma are in the 800'3. At such large angles of propaga-
tion, even wide variations in the parallel thermal speed of the
hot plasma correspond to very small variations in the propaga-
tion angle required for resonance. Hence, there is not much
variation in the angle of propagstion fof naximum damping rate.

In our magnetospheric plasma model, doubling the parallel
temperature of the hot plasma component shifts the angle of
maximum damping from 82.50 to 850. This small change in refracted
angle corresponds to a change in incident snzle outside the
plasmapause from 12.5O to 37.50.

On the other hand, doubling the number density of the hot
plasma component approximately doubles the damping rate and re-
duces slightly the angle of maximum damping (sée Figure 5.21).

Since the unguided Alfven wave at a freguency of 0.08 cps
has =z wavelength of about 3 earth radius iunside the plasmapause,
waves at lower frequencies couvld have wavelengths comparable to
some characteristic lengths in the plasmasphere. Among the long
wavelength effects which may be expected, but not considered in
the computations, are resonancs peaks in the spectra. However,
since damping is a local wave-particle_interaction; our estimates

of damping rates are still valid at frequencies below 0.08 cps.
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We computed the average power attenuation factor §& for

unguided Alfven waves from outside the plasmapause which are
incident on our maghnetospheric model blasma slab, assuming
that all incldent wave directions are equally probable. The
attenuation factor & is proportional to the damping raté.
The estimated average value of d 1s 59, which indicates
strong damping. Figure 6.1 shows how & varies with the Pro-
pagation angle 8 of the incident wave above the plasmapause.
Figure 6.2 shows the weighting function used in the averaging.
In this estimate, the change in angle of propagation as a

wave moves down a slab due to the curvature of the dipole
field lines is tazken into account for angles 850 or grester.
Below 850 the rate of change of dampiné rate with cnange of
angle is considerably less than for angles of 850 and above,
Hence, the change,in angle of provagation as a wave moves
down 2 slab is neglected for waves with propagation angles
less than 850.

- For small zeomagnetic latitudes A, the change in angle
of propacation A as a wave moves douwn 2 distance Ar is
given by (all angles in the eguation below are to be in

radians):

2 AT
AD = — + S 6.
(1 + x+4>\1)(2>‘ Y) =2 (6.1)
where Y = zngle of incldence at the top of the slab

of thickness Ar

r = distance from the center of the earth to the
middle of the slab
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Figure 6.1 Power attenuation factor © when source is above

the plasmapause o
Lat. = 0° (geomssnetic), Long. = 288 E, Kp < 1t
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6.3 Attenuation factor when’the wave source is below the

plasmapause

When we make the same assumptions about the indident waves
as‘in the previous section, except that we locate the wave
source below the plasmapause at BR= 5.1 Re, and hence take into
account damping by the lowest two of the three slabs considered
in the previous section, we find the average attenuation factor
§ to drop to 33.2. Figure 6.3 shows the variation of & uvs.
propagation angle of the incident wave when the incident wave is

below the plasmapause,

6.4 Attenustion factors for power spectré observed at the

M. I.T. telluric staticn

Figure 6.4 shows the magnetic meridian plane through the
M.I.T, midlatitude telluric station in New Hampshire from which
the following power spectra of electric field fluctuations were
taken. Figure 6.5 shows a reprcsentative spectrum and the
exponential curves which may be fitted to it. Several combi-
nstions of n and & can be found to fit it. However, n cannot
be varied too much without producing large discfepanoies at
lower frequencies. We estimate an uncertainty in our values of
§ such that §/2< true 6§ < 6.

We express power density in terms of power/octave because
the power density then becomes directly related to the square of
typical amplitudes., Santirocco and Parker (1963), in presenting
their micropulsation spectra from Bermuda (see section 1.4),
followed the common practice of giving power spectral density

in terms of power/cps.
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Figure 6.3 Power attenuation factor S when source is below
the plasmapause N
Lat., = 0° (geomagnetic), Long. = 288 E, Kp< 1*
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Figure 6.6 shows two spectra observed in the afternocon.
The spectrum remzained unchanged over several hours. Figure 6.7
shows 2 series of consecutive spectra observed around midnight.
There was substantial change of power levels and dasmping rates.
The three spectra in Figures 6.8 were taken on different days.
They differ from the spectra in Figures 6.5 to 6.7 in that while
the electronic filters used to obtain the spectra in Figures 6.5
to 6.7 had a pass band from 0.005 to 0.15 cps, the electronic
filters used for Figure 6.8 had é pass band at a lower frequency
range, from 0.001 to 0.03 cps. Furthermore, the spectra in
Figures 6.5 to 6.7 were averages over 2% hours, while the spectra
in Figure 6.8 were averages over 8 hours. PFigure 6.9 shows
another spectrun taken near midnight. This spectrum, and the
others following in Figures 6.10 to 6.12 were taken using elec-
tronic filters which had pass bands from 0.005 to 2.0 cps. They
were averages over the much shorter interval cof 27.3 minutes.
Because of those differences in pass bands, only the latter
group of spectra, Figures 6.9 to 6.12, show the break in the
spectra often found at about 0.1 cps.

Pigure 6.13 shows a histozram of observed attenuation fac-
tors § based on 112 spectra. An averasze value for 5 is
about 33.3, which means that a wave of frequency 0.021 will
lose half its energy in traversing the plasmasphere. Occa-
sionally much more severe damping is inferred.

When compzring Santirocco and Parker's (1963) spectra of
maenetic field fluctuations from Bermuda with our spectra of

electric field fluctuations from New Hampshire, we note that
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Figure 6.12 Very severe damping
during a strong
"pearl" event
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their value of -2.13 for the power-law index n would correspond
to a value of ~0.13 in our representation.- First, in converting
Santirocco and Parker's power density in terms of power/cps to
our power/octave, the value of n is reduced by unity. Secondly,
as is clear from equation (6.2) below, in converting power den-
sity of magnetic fluctuations to power density of electric
fluctuations, the value of n is again reduced by unity.

For a semi-infinite uniformly conductive earth, the ratio
of the magnetic flux density 5 (in gammas) to the electric field
intensity B (in mv/km) of an electromagnetic wave which has
penetrated just beneath the surface is glven by

317181 = Y.21/p | (6.2)
where T = wave period, in seconds
p = apparent resistivity of the earth, in ohm-meters
our estimated value of § of 16.4 for the Bermuda spectra
is haif of our average value of 33.3 for the New Hampshire
spectra. Considering the large variation of the attenuation
factbr § with angle of incidence, these values of $ for the
observed spectra are in reasonabie agreement with our computed
values of 59 for wave sources above the plasmapause, and 34

for sources below the plasmapause.

6.5 HKstimates of uncuided Alfven wave amplitudes

Using the epectra of electric field fluctuations observed
on the gzround, and taking into account the effects of the
eafth’s conductivity snd hot plasma damping in the plasmasphere,

we arrive at estimates of the uhguided Alfven wave amplitudes
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- just below the plasmapause.
A typical idealized telluric spectrum may be represented
by the following expression for the power density/octave, P:
n -
o §f

P = Cf (1.1)

with parameter values of C = 0.7 (mv/km)z/octave, n =0, =50,

To estimate the effect on the wave spectra of the varia-
tion of earth conductivity in the vicinity of the M.I.T. tellu-
ric station, we used the results of a continuing study being
made in New Hampshire of the lgl/lgl ratios of long period micro-
pulsations down to 50 second periods (Kasameyer, 1973). Ve
extrapolated the slow trend that we found down to 6 second period
fluctuations. The agreement between the power-law indices n for
nzgnetic and electric spectira noted at the end of the preceding
section strengthens our confidence in our extrapolation of the
long period trends of the ;%\/}E‘ ratios down to 6 secénd
periods.

The typical spectrum given above corresponds to waves with
the following amplitudes:

on ground, mv/km B just below
plasmapause, ¥

—
s
o

Frequency, cps

0.005 0.738 0.232

0.02 0.508 0.121
0.08 0.113 0.0633

The last column gives the’amplitude of micropulsation
fluctuations when the telluric fluctuations on the grouﬁd are
traced back to a point just below the plasmapause, taking
into account partial reflection of waves at the earth's'sur-

face and hot plasma damping by the MELIFG wave-particle inter-
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action. We note that the micropulsation amplitudes in the last
column are below the 0.3 Y sensitivity threshold of recent
satellite instrumentation (McPherron, Russell, and Coleman, 1972).

6.6 Damping effects on the masnetosvheric plésma

Unguided Alfven waves with the power spectrum given in the
preceding section, give up energy to resonant protons inside the
plasmasphere at an average rate of 0,06 ev/cm3-sec. Assuming
that the hot proton populstion is thset given for B = 4.6 Re in
Table IA, the density of resonant (91 kev) pretons is about
0.1 protons/cmB. On the average, it will take about 12 hours
for each resonant proton to gain 25 kev parallel energy from the
wave. Ordinarily, then , the MMMFG interéction has a weak effect
on the energies of plasma particles.

Since, however, telluric amplitudes during &isturbed pe-
riods are often ten or more times larger than average (see
Pigure 6.14 for example), the rate of energy dissipation goes up
to 6 ev/cmB—sec. which =adds 25 kev to the parallel energy of a
resonant proton in about 7 minutes. Addition of 25 kev to the
parallel energy of a 91 kev particle with s pitch angle of
450 lowers its pitch angle by 11°. Hence, during disturbed pe-
riods, the MMMFG interaction can have a significant effect on

the hot plasma distribution in the plasmasphere.

6.7 Geophysical applications

Trn this section we will discuss some conseguences of the
MMMFG and ion cyclotron wave-particle interactions in the inner
magnetosphere. These interactions, which af fect both plasma

and wave parameters, can result in growth or attenuation of a

wave, in changes in the shape and pover levels of the spectrum,
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and in changes in the sharpness of resonance peaks. The dif-
ferences in effects of the plasma on varicus wave modes contain
information on the plasma parameters., For example, the growth
rate of the ion cyclotron instability in the guided Alfven mode.
gives information on the pitch angle anisotropy of the ion
population, while the damping rate of the unguided Alfven mode
gives information on the slopes of the energy spectrum, both
rates give information on the number densities of the plasma
along the propagation path of the wave. Hence, if similar hot
proton populations in one plasma cloud should be responsible
for the simultaneous occurrence of the ion cyclotron instability
in the Pcl band and damping in the Pc2 and 3 band (possibly
illustrated in Figure 1.2 and discussed in Chapfer ), a study
of this phenomenon can be made to yield information on the
magnetospheric plasma parameters by checking computed growth
‘and damping rates from model plasma populations against observed
rates. This procedure hay yield valueble clues to various
processes g£oing on in the magnetosphere such as rapid transport
of hot protons, and rapid heating or cooling of trapped protons.
Furthermore, iiiFG interacticn computations can be
combined with ion cyblotron interaction computations to study
dumping into the atmosphere of pariicles with pitch angles
close to 900. Cyclotron intefaction of charged particles with
hydromagnetic waves causes sirong pitch angle diffusioh in par-
ticle populations with "ldss—cone" distribution functions. Once
the pitch anzle has diffused down to the loss-cone angle, the

particle is lost in the atmosphere. However, particles with
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pitch angles cioser to 90O require higher frequency waves for
cyeclotron interaction than particles with smaller pitch angles.
Since the power spectra of waves in the magnetosphere drop
rapidly with increasing frequencies, above a cerfain pitch
angle,diffusion by means of the cyolotfon interagtion virtually
ceases. Since the MMMFG interszction transfers energy from the
unguided Alfven wave to the parsllel cemponent of the resonant

particlet's kinetic energy, this interaction supersedes in

. X - o
importance cyclotron interaction for pitch angles close te 90,
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CHAPTER 7

CONCLUSIONS

We have found that coliisionless damping of. the unguided
Alfven wave by means of the magnetic moment-magnetic field
gradient interaction with hot plasma is probably importsnt in
the inner magnetosphere. Damping is strong enough to produce
observable effects on the wave spectrum ss the wave propagates
down through the plasnasphere. Damping rates estimated from
observations of telluric ang micropulsatlon spectra fall
within values estimated for typliecal hot plasma populations in
the inner magnetesphere,.

Hot vlasma damping is highly anisotropic. The shape of
the attenuation factor vs. angle of propasgation of the incident
wave varies considerably depending on whether the incident wave
is above or below the plasmapause., The anisotropy combined
with t5e focusing effect of propagation across the plasmapause
1ncreases the difference in shape of these curves,

With the attenustion factor kncwn, we are able to estimate
amplitudes of the unguided Alfven wave Jjust below the plasma-
pause in the vicinity of the geomagnetic equator. During
averaze conditions, amplitudes are so low that these waves are
not 1likely to be detected by instruhents on recently launched
sztelllites. The wave energy dissipatlon rates are small so that
the magnetic homent»magnetic field gradient interaction exerts
onl& a weak influence on tﬁe plasma particles.

Cn the other hand, during disturbed periods and during most

daytime hours the wave amplitudes may rise enough to reach the
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sensitivity thfesholds of satellite instruments. During these
active periods, the interaction may increase resonant protons'
parallel energy enough to significantly affect the hot plasma
distribution inside the plasmasphere, and to lowér their pitch
angles into the range where the cyclotron interagtion can effi-
ciently bring the pitch angles down to the loss-cone. The
combined effects of the two interaclions may explain how ener-
getic particles with pitch angles originally close to 900 can
enter the loss-cone.

Waves are attenuated much more just inside the plasma-
pause than outside, because the damping rates are higher just
inside than just outside the plasmapause. DMoreover, the shorter
wavelengths inside the plasmapause cause the wave to gé through
more damping cycles inside than outside. Farther away outside
the plasmapause, tﬁe magnetic field gets weaker, the wavelength
gets shorter, more particles can resonate with the slower wave,
and damping becomes stronger. We expect the ungulded Alfven
wave to be severely damped inside the plasma sheet, the neutral
sheet, and the transition region just outside the sunward side
of the magnetopause, tecause of the‘abundance of energetic par-
ticles tc resonate with the wave, and the short wavelengths due
to the low magnetic field strengths. Close to the earth, just
outside the ionosphere, damping rates are expected to be low
because the strong magnetic field results in high wave velocities.

Since ungulded Alfven waves are strongly affected by the
hot plasma, changes in the wave spectra are sensitive indicators

of cnanges in the hot plagsma parameters. This implies that
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damping of the unguided Alfven wave could play an important

role in ground-based diagnostics of the magnetosphere,
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