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Fourier tranaform theory in n dimensions is used to
&lscussthe concept of filtering in observational data which
may be a function of more than one variable. The theory is
presented for both the continuous and the discrete cases.

As an example of the one-dimensional filter or operator
in the discrete case, the problem of resolution of a seismic
wavelet complex 1s examined. The inverse operator, obtained
from the inversion of the power series representation of the
epectrum of the original wavelet is examined, and its
appllicablility to the resolution of a theoretical seismic
complex is studied. A symmetric cperstor for an sctual
gseismogranm is derived and its ability to produce resolution
on the selismogram is studied,

The two-dimensional operator is illustrated by deriving
an operator suitable for the detection of an anomaly in the
presence of noise, in the form of a regional gradient. Two-
dé::g:ignal spectra and autocorrelation functions are also
obta .

The one-dimensional operators for seismic resolution are
found to be only moderately successful, particularly in the
noise~free case. However, they do show promise of effective
resolving ability in regions other than that studied.

The two-dimensional operator for anomaly detection
in the presence of noise is impressively successful in the
simple case computed here, and holds great promise for more
complex systems of anomalies and noise, if the computational
procedure can be mechaniged.

The successful application of Pourier transform theory
to geophysical data, which may be functions of more than
one variable, indicates the possibility for development of
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8 new mmmmtatiw tocl. The mathematical development is
mrricmmly general to hold out a posaibility of application
of the general concept to any mass of observational data which
may be msmm & linear combination of noise and signal.

Thesis Superviscr: 8. M. Simpson, Jr.
Assistant Professor of Geophysics
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I. INTRODUCTION

In the course of a sclentific investigation, be it an
experiment in the laboratory, or a geophysical survey in some
remote area, vast amounts of data are obtained, and the
investigator is often faced with the problem of separating
the wheat from the chaff, or, in the language of the
electrical englineer, the signal from the noise.

Unfortunately, the term noise; possibly because of its
popular description as a disturbance, random in nature,
would appear to be ambiguous in the light of the following
analysis; consequently, a definition would not be ogut of
place at this time. We will define noise as that part of
the observational data which represents undesirable signal
content. It 18 not necessarily random in nature. It should
be pointed out that what may represent undesired signal in
one instance may be the desired signal in another. A good
example of this is found in a gravity survey interpretation,
where regional and terraine effects (usually non-random in
nature) are considered undesirable signal (noise) and
congsequently something to be removed from the data.
Depending upon the desired information, the effects of the
basement configuration or shallower horizons may be considered
undesirable signal.

How the interpreter, once he has made his decision as
to what constitutes the noise and what the signal, for his
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particular purpose, has yet to design a device to remove the
noise, and to interpret the nolse-Irec signal. This thesis
will be primarily concerned with some aspects of the problem
of noise removal in data which can be considered a linear
combination of signal and noise.

Perhaps the most frultiul approach to the noise
elimination problem has been in the methods of the commmi-
cation engineer with their emphasis on filtering techniques.

iving much of the theory of
generalized harmonic analysis (Wiener, 1950) has been
promilgated by the Geophysical Analysis Group at the
Massachusetts Institute of Technology. The emphasis here
has been on the derivation of sultable mathematical linear
operators {which can be shown to be the analogue in the
discrete case of the electrical filter in the continuous case -
Smith, 1952), which operate on data in such a way that the une-
desirable gignal i8 removed; or minimiged in the sense of a
satisfactory criterion. Moet of the work has been confined to
exploration seismology, essentially & one-dimensional phenomenm
in that the data is usually considered a function of time only.
The possibility of extending this communicatlion engineering
approach to more than one dimension has been investigated by
Smith (1952), who developed a two~dimensional linear operator
for a set of selsmic traces. Schwartz (1954) alsc uses this
commmnication engineering approach in his paper on residual
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maps, but makes no mention of the application of linear
operators.

The purpose of this thesis is to indicate the possi-
bility of extending the methodology to data which may be a
function of more than one variable, and to give the results
of two groups of experiments, illustrating the derivation
and application of one-dimensional and two-dimensiocnal linear
operators as noise filters (in the sense defined above). The
term experiments 1g used advisedly, because, although the
mathematical formulation of the operator is quite exact, the
derivation of a sultable operator (e.g. an operator containing
less than an infinite number of terms) is often the result of
trial and error and informed intuition. This will be parti-
cularly evident in our examination of a sultable one-dimensional

operator for contracting a seismic wavelet,



il. OSOME ASPECTS OF THE THECRY OF THE LINEAR OPERATOR

II.1. Continuous Case

Geophysical data, or, for that matter, any observational
data, can be represented by a function m(x), where x 18 an
n-dimensional vector. The dimensions of x depend on the
variety of observations made. In selsmology X is usually
considered a one~dimensional variable, time. In potential
field inveatigations, m{x) may be consldered a function of
two variables. Here m(x) would represent the value of the
potential field at a pt x = (xl, X,) on the earth's surface.
In other instances m(x) may be a function of more than two
variables, as in a core-hole survey in which temperature or
mineralization is measured as a function of the thres space
coordinates, and lithology.

The Fourler transform of a function of one variable is
a function of the reciprocal of that variable, and is termed
a spectrum. For example, a function of time, becomes, under
transformation, a function of reciprocal time or freguency.
Analogously; the Pourier transform of a function of n
variables gives us a function in terms of the reciprocals
of those variables. 8ince, in most gecophysical observations,
the data m(x) is a function of the space coordinates, we will
call the transform of the data, M(k), a wave-number
(reciprocal-length) spectrum. x and k are n-dimensional
vectors with components (X3, Xg, +:..esp Xp) and (Ky, Kp, -0esoey
k,) respectively.
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Let 1t he sssumed that m(x) is a well-behaved function
(its n derivatives exist and are continuous). This assumption
can be considered valid for practically all physical data.
Let 1t also be assumed that m(x) 1s "integrable square" over
the n-dimensional space, and hence it can be represented Ly
its Pourier transform, aad that outside the reglon in which
m(x) is defined, it is everywhere zero.
Then
n(x) = fx@ge“ﬁ'ﬁ’ag (2.1.1)

-l

Mk) = 1 Mé)@"i(ﬁ*ﬁ)da, (2.1.2)
(ar)n

The integration is over n~dimensional space, and

% = M}'%baﬁnuidxu
dﬁ = dkldkzu““dkn

kex = klxl%*n..,.%xng the dot product.
Now, a linear constant element filter, or some operation

o the data, may be characterigzed by its impulse response
function h(y), where y is the n-dimensional vector with
components (¥, ¥as »e-es V).

Suppose the observed data m(x) is operated upon by
such a filter. The result of this operation is given by the
convolution integral, for the process of convolution may also
be extended to n-dimensional space (Titmarsh, 1948 )}, and hence
g(x), the output or filtered data, is given by
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date m(x) is usually treated for the Bouger effect, terraine,
and regional effects. When these effects are linear, then
the net result of these operations on our data may be
considered the result of succeseive filtering cperations on
m{x).

Suppose the impulse responses of these variocus operations
are hp(y), ny(y) and h,.(y) respectively, then the wave-number
spectrum of the result of these operations is
Hy(k)H (k)H,(k)M(k), or, in the x domaine,

hypehy #hem = nﬁ(a) f (D) f hp.(c)m(x~c~b-a Jdadbd.

'k

. ((otleex)
/

-o0

The cross-correlation function P12(y) of two functions
my (x) and my(x) is defined by

U, (0K (). (2.1.6)

T
flg(l) “%&Sf ..m&wf my (x)mp{x+y)dx  {2.1.9a)

(e1)"
=T
or, for functions which are transient in behavior,
Pral) = ; my (2 )m, { x4y )ax. (2.1.90)
=00

For observational data which represent local phenomena,
and have a finite total energy, equation (2.1.9b) ig the proper
representation of the cross-correlation function. Eguabion
(2.1.92) would be used for phencmena which persist over all

space.



Now 7” 2?.(;?:) = fzzl(x)mg(;+g)ﬁx
fﬁl(x}dx f Mg(k)wik m‘*’i)d}s@

. fﬁe(g)ai('{ *i'}ﬁk fm (x}ai(zf;m)

{2.1.10)

#

But

f ml(gg)ai Qﬁ""‘)m (2r) M TE) {2.1.21)

- Q0

where the bar indicates complex conjugate.

> G = f[(gf’) ﬁ3}*“53‘52(_)] kwday, (2,1.12)

Pollowing Lee's (19%) definition for functiona of one-
dimenslional variables, let

4,60 = (en) T (@M, (1) (2.1.13)

be the cross wave-number spectrum of my(x) and mp(x) for
functions of n-dimensional variables.
Then

Praly) = ﬁm(}z)eﬁ(g'wd}g {(2.1.14)
and -c0

i‘gg (k) =

(? (et ED 518

(?3 ) KO
Now, if my(x) = mp(x) = m(x), then
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II.2. Discrete Case

The discrete theory for the one-dimensicnal case hag
been well-documented, and although Smith (1952) develops many
of the relations for the two~dimensional coperators, 1t is
felt that, for the sake of completeness, a brief survey of the
n-dimensional operators should be included. It is doubtful
whether operators of greater than three dimensions will ever be
used, primarily because of computational difficulties, but
this non-rigorous development of the n-dimensional cperator
is included for academic completeness.

Smith ghows that the convolution integral in one
dimension (equation (2.1.3) with n = 1) can be approximated
by a series

b.

g(x) = g(1h) = ﬁlzualaslmil"sl {2.2.1)
where s, represents h times the impulse response of our
filter and the totality of terms agy is called the linear
operator. He alsc suggests extending this furm to operators
of dimensicns greater than one, and for the purpcse of this
development, we accept this suggestion as both & reasonable
and valid extrapolation of (2.2.1).

Then the result of operating on our data my ulth a
filter (or operator) whose general term is ag 18
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% b Z LIRS Z aﬁmih"a {202»&2}
8 = a3 8, =8y T 7
where mj“.%l = (13}’113 iehag R inhn)g _& = (Sl) ﬂg@ A ﬁﬂ}ﬂ
and ih-s =~ (1,h =81, i,h,-85 «... 1,h,-8,) and where 81y is

the output of the filter at the point x = ih = (i}‘h.lg 15h,,
ceeey iﬁhn)a hys «... hy are the spacings between the
successlve data points in each of the n dimensions, and 1y
is a running integer.

Let the wave-number spectrum of the discrete data
m(ih) be M(k) = M(Jt) where k = jt = (3383, dpbp ovvo Jpt,)
tys «... b, are the spacing constants in k domaine, and
3}; is8 a running integer.

~¢{ telh
ﬁ& = Z evsuoe izmiha ’MM)n {802&3)

In the x domaine

Mgy = > veanns Z %&@i{ﬁ‘&)w {(2.2.4)

33. dn
How the wave-number spectrum of the filtered ocutput is
a(k).
~1{Jjt-ih
0w - age) T o gt

= Zﬂﬁﬂaae Z(Z sor e ew Z &smih‘_s>ﬁmi(&¢§"§)o
1, i, -

8 8n
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Let ih-8 = 2, then

o) - Z ... Taoten) (T L5, teen)

51 ﬁn""’ 314‘*f§1 zn’é‘gn‘

a(k) = a(k)m(k) {2.2.6)
where A{k) = A(Jt) is the wave-number spectrum of our

operator.

Alk) = 2 ...... Zase'“&“ﬁ)a (2.2.7)

——

8, 8,

Hence, the relationship among the spectral characteristics
of the data, cperator, and output holds in the discrete
cage as well as in the contlnuous case.

The autocorrelaticn function in *he discrete case is

defined as
175 -8y
¢11(§*) = Z LA Z mlhm‘ih + 5‘3 ifﬁﬂgfr{&l
11 = 0 in
Now, the spectrum of my, . ¢ = Z “”me N &@“5‘(4}?3‘&)
Sw——— R il in s ot

where 8 does not enter into the summation.

Let ih + 8 = z; then the spectrum of m,, ., . i8

T ... T opetlezkes)

z1-8, Zy =By



- ﬁ%iééqﬁ Z S0 68 Z 1] @“i(ggg} ] ﬂigg-%(‘%g)

zl“sl anﬁn (2@2 og}

where M{k) is the wave-number spectrum of My

’ 1k-{ih + 8)
. Cpll(g) M*ZEHH 12%(2 g%@ k (@,*g))w
1 N |

ky

me. Z %@iﬁ‘ﬁ(znn Z miﬁig«z(éﬂ))
iﬁ -

¥y ky 7 i1
but Z QZ mi@j"‘lga(‘j"‘!}') = M(k) .
13 i, =

?n(ﬁ) =2 .2 m(g)ﬂ(_@)&ﬁ'ﬂ“ﬁg {2.2.10)
i i,

If we let §1.1(4"5) = W(EM(s) = | M) | 2 ve the energy
density apectrum as beflcre; then

‘Pu‘&) = "‘Zl Z § l(k}@ik 2 {2.2.11)

“ike«s
5 ( )= Lo ... Z?ll(g)e ==, (2.2.12)
3.1 8,
Apparently, analogous relations can be obtained for the

discrete case to those for the continuous case.
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IIXI. THE RESOLUTION OF A SEISMIC WAVELET COMPLEX - AN
EXAMPLE OF A ONE-DIMENSIONAL OPERATOR

III.1. Introduction

Better resolution has always been the desire of the
practicing seismologist, but until recently instrumentation
and interpretative techniques, in general proved quite
adequate., However, in recent years with the expansion of oil
exploration into areas such as the Williston Basin, where
o1l accumulations appear to be controlled, in the main, by
stratigraphy rather than structure, the need for technigques
whereby overlapping seismic reflections could be resolved,
became of paramount importance.

The approach by the industry to this problem has been
essentially mechanical in nature with the emphasis on
instrumentation (the so-called "high-resolution” instruments)
and visual aids in the form of reduced record sections, not
on new interpretative techniques.

Actually the problem of resolution is a problem of
noise minimization, for the difficulty lies not in picking
the earliesat reflection of a wavelet complex, but in
distinguishing the arrival times of the later events, which
may be masked by the energy of the first. Hence, a desirable
"modus operandi” for improving resclution would be to suppress
the initial reflection of the complex, which in this instance
is regarded as the undesirable signal (noise), or, barring
that, to reduce the time expression of the undesirable wave,
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in order thal the following reflection may be distinguished,

The process of reducing the time expression of the
reflection, cr contraction as we shall call it, appears to
offer the best solution to the problem, for ideally it
would permit the separation of the members of the complex, and
stlll retain their relation tc cne another in the time domaine.
In practice, contraction offers the only solution to the
problem, since in most cases the members of & wavelet complex
differ by sc little in thelr frequency content that suppression
by electrical filters is virtually impossible. As a result,
the work done on lmproving resolution has centred upon
designing suitable mathematical contractor methods.

Ricker (1953b) propo..d and bullt an electrical filter,
based on his wavelet theory of scismogram structure (Ricker,
1953a), with which he achieved some resolution of the |
component wavelets of a complex by contracting the individusl
wavelets to 0.8 of their original breadth, and still retained
their individual wavelet shapes. Unfortunately, the wavelet
theory has fallen into disrepute of late, and the applicabillity
of his contractor to other than highly specialized cases is
in doubt.

In view of these developments, it was felt that the
possibility of obtaining new, and perhapa better means of
resolution should be investigated.



I1X.2. BSpecification of the Problem
Ideally, we would like to find some mathematical

filter «r operator whereby a reflection complex consisting

of the superposition of two or more reflections can be resolved
into 1ts component reflections with a minimum distortion of the
interpretaticnal characteristics. Interpretational charscter~
istics may be considered as those features of a seilsmic
reflection, by which it may be identified and mapped. These
characteristics are wave-shape, phasing and the various other
undefinables that constitute reflection “character,” and

the inception or arrival time of the reflection. Undoubtedly,
the most lmportant of these is the arrival time, for without
it, the reflection could not be accurately mapped.

Although the variation in wave-shape of a reflection
throughout an aresa must contain important information as to
lithology (a2t present this information is not interpretable,
except in vague generalities), it i1s not & prerequisite in
mapping the reflection, particularly in these days of
contimious profiling. Consequently, we may relax the
specification of minimum alteration of wave-shape for our
mathematical filter, and restate our problem as: the
determination of an operator (filter), by which a reflection
complex can be separated into its components by contraction
with a minimum distortion of the individual arrival times.
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IXXI.3. Resume of the Theory of the Inverse Operator

Relaxation of the restriction as to retention of wave~
shape after filtering, permite a wider choice in the form of
our filtered output. Ferhaps the best mathematical
representation of our filtered output would be a spike or
impulse function, which, because of its zero width, could
exactly represent the arrival time of the reflection in the
time-domaine (in this section X represents the one~dimensional
variable time) and the ultimate in contraction. Now a spike
in the time~domaine 1s represented by a constant in the
frequency domaine (k domaine), or as it is often called a
white-light spectrum (Guilleman, 1949). This representation
in the frequency domaine has gome fortunate mathematical
advantages, for as we have shown, the spectrum of the filtered
output G(k) is the product of the individual spectra of the
operator and data.

Gk) = AkIM(k)

Hence, to obtain a white-light spectrum and thereby 2 spilke
in the time-domaine, the operator spectrum A(k) should equal

1/M(k), and therefore the output (k) = A(k)M(k) = E:(‘E),ﬁ(ﬁ) =1,

& constant.

Robinson (1953) demonstrates that the spectrum of the
operstor Alk) = :Z,, o a,ﬁ”m mey be represented by a power
series in 2
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He alsoc shows that this operator will be stable (the roots of
the associated difference equation damp to zero) if the roots
z, of this polynomlal fall outside the unit circle in the

2 plane;, or that A(z) is analytic for k| £\, and consequently
the inverse operator A~(z) = 1/A(z) = % ~ = B{z) exists

&aﬁ

and 1s analytic for |z| &1, and hence may also be expanded as

a power series in z, or

ﬁﬁl(K) - T 1 " s = *Z btzt = E(g)v (3&352)
s =0 B

The coefficlents of the inverse operator may be found

m
by disect division of the polynomial > a&.z° into unity.
g =0
The basis of our experimental technique was tc obtain

& representative wavelet of the initial reflection of the
complex, and then considering this wavelet as the operator,
characterizing the undesirable signal or nolse, obtain its
inverse and use this to operate in our complex, in the hope
that the result of this operation {obtained by conveiving the
operator with the complex, according to equation (2.2.2)) will
contract the initial wavelet to a splke at its inception time
with a minimum of energy before and after the spike, thus



a7
permitting the accurate determination of the arrival times of
the later reflections in the complex.

The general plan of the experiments was to derive a
sultable inverse for a wavelet, representative of a theoretical
reflection. (In this instance, the wavelet chosen was the
Ricker wavelet, (III.4)). Then after testing its effectiveness
on & theoretical oomplex, it was intended to extend the
results to a reflection complex obtained from an actual
seismogram (III.5). Here we find that slightly different
techniques are required to obtain suitable cperators.

III.4. The Contrector Operator for the Theoretical Wavelet
The inverse operator, whose spectrum is B(z) contains an
infinite number of operator coefficlents (equation (3.3.2)),
and hence would dbe impracticable as a contractor, unless the
coefficients of the higher powers of z became negligibly small
and can be neglected. Unfortunately, the representation as a
power gseries in g of the spectral characteristics of the

inverse wavelets found in practice gives rise to a diverging
sequence of operator coefficients. However, the inverse
formulation of the operator represents the most desirsble
contractor operator (see above), and as such the inverse

form should be retained, perhaps by approximating the inverse
by the first few terms of the sequence before they become widely
divergent (Dr. Fiety, 1955). The convolution of such
"chopped-off" inverses and the original operator should

produce a spike, valld at least to the number of terms retained



in the inverse.

Ricker's presentation of hls wavelet theory of
seismogram structure and tables of typilcal wavelets (1953a)
offered an opportunity to tust the hypothesis of practical
"chopped-of f" inverses and enabled us to compare some of the
properties of his theoretical wavelets with those of the
wavelets found on a seismogram.

Ricker wavelets V(25) and V(oo) were chosen as
operators, where V(25) represents the Ricker wavelet at 25
dimensionless units from the source and V(oo ), the Ricker
wavelet at an infinite distance from the source. These wave-
lets extend in time from minus infinity to plus infinity with
V(oo ) symmetrical in shape and V(25) non-symmetrical in shape.
In order to have wavelets more representative of physical
reality, the Ricker wavelets were modified sc as tc start at
a time origin with a discrete Jwwp in amplitude. It was felt
that the jJump at the origin would be representative of the
initial impulse, which characterizes the true reflection
(Pig. 3.1).

Figure 3.2 shows the computed inverses of V(25) and
V(o0), designated as ?(;“%7')' and .%%;5 respectively to 180 terms.
Both inverses exhibit the expected divergence, and in both
instances the major share of this divergence was recognized
to be due to an exponential function superimposed on some
function characteristic of the individual inverse. The semi-
log plot of Pigure 3.3 illustrates this exponential divergence
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pes

and permite the calculation of these functions aeP®, where a arm
b are constanta, characteristic of the individual wavelets.
8ince, acecording to our hypothesis, cnly the first few terms

of our inverse are to be usecu as the contractor operator,

the exponentizl functicns were removed by subtraction from
their respective inversesg, in the hope that the resultant

inverses -1 __ - 2e™®. (We shall use V(s) as & generic temm

v(s)
for either V{25) or V(w), when possible), would contain a

larger number of useable terms.

It was realized, however, that the positive intercept,
8, of the exponential function aabx represented the inverse of
the first term of the original operator or wavelet, and es
such 1t should not be removed from the inverse, in order to
retain the discrete jump at the origin of the wavelet. OHur
inverge operator, modified according to these precepts, then

bacomesp

- bX. 1Y,
h a{e™*-1)

This operator will be referred to as the modified inverse
operator, or modified inverse.

Figure 3.4 48 a comparison of the re-inverted :perators.

: i — A . with the original operators
- - %,
Vo~ w(ay AT

and‘ahaws the importence of retalining the intercept term "a” in
the modified inverse. The re-inverted inverse 1
v(s)

- aebX
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bears little, if any relation to the original wavelet V(s),

while the re-inverted inverse - approximates

the original wavelet, fairly cgigglyg aside from end effects.

A symmetric wevelet (operator and wavelet are used
interchangeably throughout this discussion), like V({eo)
has an inverse which is non-stable (the representation of the
wavelet in discrete form is not & solution of a stable
difference equation), and hence the stability of a symmetric
wavelet is non~stable (M.I.T. G.A.G. Report No. 9). ‘The
wavelet V(25), although asymmetric 18 also non-stable, as can
be seen from its divergent inverse (Pig. 3.2). However,
Robinson (1953) shows that the power spectmum @ (W) = \B{Q}\a =
B(wW)B{W of an unstable operator may be factored by the Wold-
Kolmogoroff method to yield a spectrum, whose representation
in the time domaine gives a stable operator. Thus, an
ungtable wavelet whose spectrum is Ba (w) has asscciated with it
a stable wavelet whose Bpectrum is also B2(w).

In view of this, and the experimental evidence that the
two inverses examined consist of some funcition, characteriatic
of the individual wavelet, superimposed on a divergent
exponentlal function, it was felt that the function character~
izing the wavelet may be associated with the stable wavelet,
derivable from the original wavelet by spectral factorigation
(Fig. 3.5).

A comparison of the laverse wavelet

1l _, and the
V(z5)
inverse of the associated stable wavelet of V(25) appears to
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belie this hypothesis (Min 316)&

The modified inverse operator ﬁ;’ - a(e™.1) and its
spectral characteristics are shown in Figure %.7. The
spectral characteristics of the inverse of V(25), approximate
fairly closely our conception of what the spectral character-
istics of the best inverse operator should be--the amplitude
spectra related reciprocally, and the phases, the negative
of one another (Compare Fig. 3.1 and Pig. 3.7). The spectral
characteristics of the inverse of V(oo), on the other hand
do not approximate these desired features very closely.

Our definition of the most sultable operator for
resolution implies that the result of convolving our
operator V(s) with i1ts modified inverse 'ﬁ%’;}’ - a(eP®*-1) should
be & spike at the inception time of V(s), and that, there
should be a minimum of energy after the spike. Pigure 3.8
demonstrates the results of applying this criterion to our
modified inverse operators. Both inverse operators give a
spike at the time origin, and exhibit noise behind the spike
as was to be expected from using approximations to the true
inverse. However, the random noise content behind the spike
for V(oo ) is much larger than that for V(25), so large in
fact that 1t precludes the possibility of using the modifled
inverse of V(oo) to resolve a wavelet complex in which
random noise may be present.

As a test of the effectiveness of the inverse operator
in resolving a wavelet complex, we consider a signal,
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consisting of two wavelets of the V(25) type, of different ampli-
tudes, separated by a time interval, and in which no noige is
present., We operate upon them with the operator VT%?T‘* a{e®-1).
Figure 3.9 illustrates the results of the convolution. In
both examples, resclution is excellent with the spikes
occurring at the inception times of the individual wavelets
of the complex.

This success of our inverse operator as a resolver must
be tempered with the realization that noise-free complexes of
the form examined, rarely, if ever, occur in practice. Noise
in the form of phasing and random energy is an inherent
feature of every selsmogram. Wavelet complexes, in which the
individual wavelets are similar in shape, are the exception,
rather than the rule. It is far more likely that the
individual wavelets of a complex are dissimilar in shape, each
representative of a reflection from a minor velocity dis-
continuity, at which there has been a change in the physical
characteristics of the subsurface.

In view of this, the effects of these various factors
on the contracting ability of our modified inverse operator
were examined.

Figure 3.10 illustrates the effect of phasing in the
ability of the inverse operator to produce a spike, when
convolved with the original wavelet. Ideally, regardless of
where the convolution process begins, at 1/4 h, 1/2 h, 3/4 n
or 1 1/4 h (h 18 the spacing parameter, or the time interval
between successive data points), the position of the spike,
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indicating the inception time of the wavslet, should not be
altered. As can be seen from the figure there is a variation
in the position of the spike, reaching a maximum at a phase
shift of 1/2 h. However, the maximum displacement of the
spike 18 at no time greater than 1 1/2 h, or, in time,
approximately 4 milliseconds (h = 2.5 milliseconds). In
terms of present day interpretative techniques, this repre-
sents a negligible error, especlally if we recall that the
arrival times of a reflection are in reality two-way times,
Hence we may coneclude that phasing has little effect on the
contracting abillty of our cperator, although there is some
evidence that the size of the spacing parameter h, relative to
the wavelet length, may have an adverse affect. However,
this can be easily remedied.

Plgure 3.11 illustrates the effect of noise; in the
form of alteration of wave-shape, upon our inverse operators.
In this instance, we have convolved the modified inverse of
Vv(25) with V(oo) and the modified inverse of V{oo) with V(25).
At best, under such circumstances, we would like some
indication of the arrival time of the wavelet, and &8 minimum
of nolse after such an indication. The modified inverse
operator of V(co) lacks all of the desirable characteristics,
for the results of convolving this inverse with V(25) gives
no discernible indlcation of the arrival time of V(25), and
exhibits a highly divergent tail, which would make resolutlon
of a later wavelet in a complex virtually impossible. On



by
the other hand, the result of convolving the modified inverse
of V(25) with V(oo ) does exhibit a spike at the arrival time
of V(ee}, but once more the noise level following the spike is
guite high, although not as excessive as for the inverse
operator of V(oo).

These results indicate that both inverse operators are
sensitive to noise in the form of variation in wave-shape.
However, it should be pointed out that the wave-shapes of V(e )
and V(25), with which this experiment was conducted, are quite
diverse in character (FPig. 3.1), and, although such wide
variations in wave-form can appear in a real seismic complex,
it i8 more probable that the variation in the shape of the
individual components of such a complex 18 less abrupt, and
hence the effect of such variations less important in the
resolving ability of the inverse linear operator.

In summary, we may say that the inverse operator
3%%7'~ a(ehxhl) is a sultable resolver in the noise-free case,
for the type of wavelets considered, but its effectiveness in
the presence of nolse muat be considered in the light of the
reservations enumerated above,

Unfortunately, as noted in the introduction, the Ricker
wavelets are a poor representation of the seismic reflections
observed in reality, and as & consequence, the experimental
methods used here in deriving the resolving operator can
only serve as a gulde in the derivation of suitable operators
for a real reflection complex.
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II1.5. The Contractor Cperator for a Real Reflection Complex

The reflection complex examined was cbtained from a
suite of records supplied by the Atlantic Refining Company.
These records exhiblt thinning between events A and B, which
may be indicative of a stratigraphic pinch-out., (Fig. 3.12).
Reflections A and B, which appear as two distinct events at
approximately 0.98 and 1.07 seconds on record T.l9, have
apparently coalesced into one complex reflection on record
7.16.

Our objective was to obtain an operator with which the
noise or undesirable signal, represented by event A, could be
contracted to a spike at the arrival time of event A, with a
minimum of energy behind this spike, and thus permit an
scourate determination of the arrival time of event B,
throughout the suite of records.

A typical wavelet of the event A was obtained from
record 7.19 by averaging the digitaliged form of the wavelet
over every other trace of the record. This average wavelet
was then modified so as to have a tail whose amplitude ap~
proaches zero smoothly, and a zero time origin. PFigure 3.13
illustrates this average wavelet and its spectral characteristics.

The inverse of this average wavelet was then caleulated,
and, in contrast to the inverse of the Ricker wavelet, it was
highly divergent, without any recogniszable pattern (PFig. 3.14).
Consequently, no technique was available for increasing the
useable length of the inverse operator, and the inverse
truncated to the first nine terms appears to be the only
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practicable operator derivable directly from the exact inverse,

This nine-term operator should glve resclution over a
time interval of twenty milliseconds (in terms of sur apacing
parameter h,~8 h). However, 1ts short length would preclude
the posslbility of using it for resolving events A and B over
an extensive range.

As a test of the resolving ablillty of such an operator,
a nolse-free complex s8ignal was operated upon by the nine-term
luverse. The signal consisted of the superpositicn of the
average wavelet of event A, and an average wavelet represent-
ative of event B on record 7.19 (obtained in a similar fashion
to that of event A), which lagged A by ten milliseconds (4 h).
Flgure 3.15 lllustrates the result of thils convolution. Spikes
occur at the lnception times of both events A and B, in spite
of the difference in wave-shape between the two wavelets.
However, it must be pointed cut that thisz 1s once again a
noise-free situation, and the effects of noisme, pardiculariy
in an operator of such short length, may well inhibit its
usefulness as a resolver, even in thoge optimum cases, when
the reflections may be separated by an interval of less than
twenty milliseconds.

The effects of random nolse and a wide separation of
events are illustrated in Plgure 3.16, whieh demonstrates the
result of convolving the operator with several digiltallzed
traces of record T.19. It is doubtiul whether any sort of
coherent picture of the relationship between events A and B
can be obtalned. Evidently the presence of noise and the
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separation of the events A and B by & time interval of
approximately ninety milliseconds makes resolution virtually
impossible.

An attempt to approximate the average wavelet of event
4, by the Ricker wavelet V{oco), and thus use its modified
inverse a8 a contractor proved abortive. Convoluticn of such
an inverse with the average wavelet of event A, produced a
series of divergent terms and no recognlzable spike.

Ideally, a8 stated above, to obtain a white light
&péatrum upon convolution, inverse operator should exhibit
spectral characteristics inverse to those of the original
operator or wavelet. The spectrum of this inverse operator
may be expressed as a power serdies (equation 3.3.2), and the
Fourier cosine transform of such a series, should thus be
the representation in the time domalne of the inverse
operator. A symmetric operator, which may be less zensitive
to noise is obtained by unfolding {computing the Lmsge of the
function with respect to the amplitude axis) this cosine
transform.

Pigures 3.17 and 3.18 illustrate the symmetric operators
and their ampiitude spectra, obtained in the above manner for
the average wavelet of event A, modified to exhibiti a large
initial term (sharp-front wavelet), and alsc modified to
start with gradually increasing amplitude (smoothed wavelet).

Pigures 3.19, 3.20 and 3.21 illustrate the resultis of
convolving such symmetric cperator of various lengths with
these modified wavelets. A doublet spike is obtained in each
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instance, However, the amplitude of the extraneocus signal,
preceding and following this splke, appears to be an Inverse
function of the operator length. The operator containing only
fifteen terms has a very low ratioc of spike amplltude to
extraneous signal amplitude.

In an effort to lmprove this ratio, and thus the
reésolution of reflections in the presence of noise, the
operator was smoothed by welghting its coefficlents, according
to the method of Cesarc sums. The result of convolving the
smoothed symmetric operator, derived from a sharp-front
wavelet, and the smoothed average wavelet of event A is
shown in Flgure 3.22, for various lengths of operator.

There 1s little improvement in thls ratio, and what ls perhaps
wholly condemnatory, the doublet spike, representing the
contraction of the wavelet; is no longer well-defined,

As a test of the effectiveness of the symmetric operator
(unsmoothed) in resolving reflections in the presence of
noise, the twenty~five term operator, derived from the smoothed
wavelet, and the forty~nine term operator derived from the
sharp-front wavelet, were convolved with the digitalized
traces of record 7.19 over the interval from 0.91 seconds
to 1.16 seconds. The results of these convolutions are shown
in Pigures 3.23 and 3.24 respectively. There appears to be
little distinction between the effectiveness of the twenty-
five term or of the forty-nine term operator., Although the
presence of event A, in the form of a spike, can be seen on

practically all traces, event B, at approximately 1.07
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seconds, is not discernible. This is undoubtedly due to the
extraneous amplitude content of the symmetric operator, which
tends to emphasize any record noise present between events A and
B, to the detriment of event B, whose amplitude is less than
that of event A,

Although the inverse operator, either truncated, or
modified in some form, has proven successful as a contractor,
and, in the noise~free case, as a resolver, its usefulness
on an actual mimm appears to be limited by its sensi-
tivity to noise and the shortness of its useable length.

Symmetric operators are able to give contraction, even
in the presence of nolse; but cannot be considered suitable
resclvers. However, thelr application as resoclvers on a
piece-meal basis, in which separate symmetric operators would
be used for each event of a complex 18 not unfeasible.

On the basis of experimental evidence, (the differences
in the inverse wavelets, and spectrsl characteristics), the
Ricker wavelet representation of & selsmic reflection appears
to be a rather poor approximation to physical reality.
Admittedly this evidence is obtained from but one area, but
examination of wavelets in other areas supports this
conclusion.

Finally, it should be pointed out that the emphasis in
this section has been on the development of methods whereby
noise, in the form of the initial wavelet of the complex,
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is filtered by contraction in order that the arrival times of
later wavelets may be distinguished. Although these methods
have not been satisfactorily effective in the area represented
examined here, they may well prove to be
the answer to the problem of resclution in other areas, where

by the seismograms

the wave forms of a complex are less diverse in character;,
and where the record noise level is not quite as high.
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IV. THE REMOVAL OF NOISE IN THE INTERPRETATION OF
POTENTIAL FIELD DATA - AN EXAMPLE OF A
TWO~DIMENSIONAL OPERATOR

Iv.l. Introduction-

Prior to the translation of the potential field data
into terms of the subsurface configuration, the usual
objective of the interpreter 18 the preparation of a map of
the residual field. This map is a representation of the
potential field in which the potential due to the undesirable
- effects has been removed.

From our viewpoint, if we regard the observed data,
m(x), as & function of the two-dimensional varisble X = (%1 %5)5
where x,, and x, are the coordinates of the data point on a
plane representing the earth's surface, and if we can in
addition consider the data m(x) as & linear combination of
signal and noise, then preparation of a residual map is
analagous to applieation of a two-dimensional filtering
process, in which the observed data 1s filtered in such a
way, as to remove the noise and leave the desired signal
(residual anomaly). Hence, the problem of preparing the
observed data for interpretation becomes the problem of
designing a suitable two-~dimensional filter for noise removal.

This chapter shall be concerned with the design of such
filters, and their application to the interpretation of a
gravity survey.
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IV.2. Theory
The output of a two-dimensional filter, g, 3 at a point
{1, 1), for the discrete case, is given by
B D

s 8 !
81&3 31;& ag;_c ﬁlﬁami“sll 3”‘2 {2&241 3

where the totality of terms a‘lﬁz is the two-dimensional
3 is the data input at the point
(1, J). This can conveniently be expressed in matrix form,

filter or operator, and m Y

for

Big = Bop, =M, g4c * vt * B0, M, 000 T 0t T 8, 0B, guc

+ a"‘&;"ﬂ'@lmi%;jw"l * saane ¥ %"c*zﬁi’dm-l + see
+ 8, C+181-B, J+C~1

+ I A A S R A ENERE SRS EREEEENE SRS RS RN R EREEERENFER SRR RS EENERE RN NS R NE ]

* FEBOIA SRR RS FUN POV CP VNGB R U205 ERBEPTIRIARNIOEROBEIBOOS

* A 0,0"4n,3-D ¥ cecee * 8o pMy gop ¥ eeeee FOpplyp sp
= [mi*kad*a {‘k,-»cl + [ms,.-k,gw..a {ak',_e*;} + see
-t [mink,Joﬁ]{ak,p} {#.2.1)

Kmaoh, «A + 1; cossy =1, 0 1 4500, B=1, B
or, 8y i8 the sum of (C + D + 1) matrix products of the
form [‘“1-»};, J,Q]{ak’ 53 where [mbk, J-a] is & row matrix
containing (A + B + 1) terms and {ak,ﬂ i8 a column matrix
with a similar number of terms, some of which may be gzero.
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Thus, 8y 3 may be considered the result of operating on
our signal with (C + D + 1) one-dimensional operators. This
is a convenient form for computation, especially for digital
electronic computers.
8y os represented in (4.2.1), may be considered the
product of two matrices, rather than a sum.

gg=na (4.2.2)
where

n “[mm,m, By thed, 4C, *002 B4, 34C, 00 T1-B, J4C; ..o
el Bagp,g, coer Wiy, s BioB,g; ...

403 ygn,gop, ++0s B, 5D, +eos Byp,gp] (4i2.3)

a row matrix of (C + D + 1)(A + B + 1) terms, and

2 ={8.0,-00 Boaed a0 ves B0,u0r o0s Bp,ugyerti Beh,00 tto

8g0s sees %,@3 eewd &‘_&‘gy seoy &0’:) sva} aarb}(h&.k)

a column matrix of a similar number of terms.

Let us consider a reglon 2N x 2N, in which our data
m 4 18 defined, and let our operator 8y 4 be such that its
extension in this region is 2M x 2M, with M <N (or of

extension 28 x 2N, with a sufficient number of terms on the
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periphery of the region equal to zero). Then g, ., will be
defined for -(N-M)< 1, §$(N-M).
If ue c amid@r the cutput along the row 1 = r, where

N

M

I

-M

=N

13

~(N=-M) $r < (N-H), and let the

column matrix

£ = {%.-(n-x)* B, = {M-M)+1,
soo, $r’oa sewy grg(ﬁ”n}} (k;%ﬁ.‘&)

represent the output along this
row, then
E.~na (4.2.5)

whare B, is the rectangular matrix of data points.

M'guaﬂs sagone }%’Eﬁx..gﬁa . dﬁr..m’gﬂxa @ ’%‘”,K

P E RS R E TR RS AR SR AN EEE TS EREEENEE SRS ENFEEEEEEE N N 1

I EINGEP VUSSP OFIFRUILRELEIOBbeBCGaR BB OEREEN

% - M‘,*M““h“3%*14‘“%-'!,%”‘&!’4&,& {ﬂ'egeé)

| &

[ EEEE R SEESREENE IR NERE R RS EE RERE SN ESESENEEE R X RS N

ILE AR EA RS R AR EER S E SR EEEE R R ENE RN SN RSN EEE NN RN ]

B, - N°° 05 00 il gy g * Vo, « N4 © *Tlra, - N42M
=

in which each row of the matrix 1z of the form (4.2,3)
representing the output due to one point on the row and the
matrix a is of the form (4.2.5).

The output of the filter over the entire region is given

by
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; & - Z(:M) ne. (4.2.7)

T

As was pointed out in Chapter 1IX, the location of the
signal {in this instance, the residusl anomaly) 1s the primary
conaideration; its shape, although important, is not of
immediate concern. This is partiocularly true in the interpre-
tation of potential fleld data, where depth estimations, usually
based on the inflection points of the residual anomaly. c&n
only give a lower bound on the depth of the anomsious
configuration. This is a consequence of the inherent ambi-
guity of the potential distribution, for the anomalous body
may be replaced by a surface distribution of poles on an
infinite plane between the body and the point of observation
and still give rise to the same potential distribution at
the observation point. As a consequence, retention of the
anomaly shape after filtering is not significant.

If vie choose to design our operator such that the
loecation of ocur anomaly is to be Indicated by a two~dimensional
spike after filtering, then we have a similar situction to
that of Chapter IXI,

Let ug define our two-dimensional epike as unity at the
centre of the anomaly, and zero everywhere else.

Then, if we consider an operator of extension 2M x 2M, the
output of such a spiking operator L. along the r®h row will ve
the column matrix

L =10 0, 0, veeee, 050, 0} (4,2.8)
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except Ior that row r = v in which the centre of anomely lies.

The output along this row will be the colum matrix.

&“v = igg Qg Q; 'ZLY’ 93 Q; l; Q’ G, gy 0; Qg Q}Q (&“0269)

Then the output of the operator over the entire region
2N x 2N is given by

9; @, "oy Q’y Q‘; Q: newy Gs (3]

(AR EE RN IR ENE NN R RS EE RN RN N N Y ¥

L E A A A E R R A R S R R R R N E R R R E AR RN

=10, 0, voey 0, 1, O, «uu, 0, 0| (4.2.10)

Z B-N
I = ma
P T pee(NeM)T
 ZE RN EZEE SRR ENEEEENE N EE T BN EEEY

(R AR AR S R E R I RS R R SRS EE R RN E LR R XY

95 Qiﬁ suey Q, Qg 6’ ee ey 03 0.

Suppose our data L 313 + ngaai where au is the
slgnal corresponding to the anomaly and nu, the nolise, and
let us choose our operator such that the difference between
our two-dimensional spike (4.2.10) and the output of the
operation due to the input signal only, éﬁr = 5% is %o
be minimized in a least squares senase.

Then we wish to minimize E°, where

Y o
B - W%‘W (_-g,) (4.2,11)
-2 (18] 18] (4.2.22)

where the superscript T, indlcates the matrix transpose.
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B2 nZ E:f:;’_‘.ﬁ?..&p + g% ] (4.2.13)
mt;'f&,-(fgr)?iaaam, since L, and g are both

column matrices, and the transpose of a scalar is the scalar

itself. Therefore, 53&- = gf;l,, and (4.2.13) becomes

k b ? -y T T @ ok o
2 -2 (L L, + £k CERD
But, £, = 8,8 and gF = aTsl and (4.2.14) becomes
- z 4 ?? TgT, o sl od.
2 2 [LL-2"s0, + 2ee,d] (4.2.15)
Now, for a minimum BE® = O
ox? a-; [as(a®)slx,. + s(aT)alsa + aTsls 0(a)] . (4.2.16)

But, as before, 8 828,.5(a) = [e(a™)els 2)T 18 2 scalar,
and hence (4.2.16) becomes

oE” - a; Foa™)slr, + o(e™)sls,8].  (4.2.17)

Hence, for & minimum,

Tyl o _Sa(aT)al ol
2 o(eM s na - 28(a")eL, (4.2.18)
or
\ ‘r - T % ol u
[ els)s -2 £, (4.2.29)

since a is independent of r, and where we assume the elements of
&(_a._)‘T are independent,
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In view of the circular symmetry of the signal, the
operator coefficients aﬁhgg 8, ,0 a@, +1° and a%*i will be
equal, and, hence,determination of the operator, according
to {4.2.20) requires but the inversion of a 2 x 2 matrix.

(Pig. 4.3).

The two-dimensional autocorrelation function of the
signal, for eight lags for one-quarter of the map area of
Figure 4,1 is fllustrated in Figure 4.4, It, too, exhibits
central symmetry, as was to be expected. Slight variations
in this symmetry are undoubtedly due to round-off errors.

The two-dimensional wave-number spectrum of the signal
is illustrated in Pigure 4.5. The power is concentrated in the
region of low wave-mumbers, or, high wave-lengths, and rapidly
falls off to gero in the reglon of high wave-numbers.

Computation of the two-dimensional spectra was
facilitated by taking advantage of the even function properties
of the autocorrelation function, for

- B B | -i(ley By +ic,8,)
$ 1300 k) = alég ,QZ,__@ OV S PR

; 8
- €00, 0) + 2‘12%(::13 0)coslkys, + %gﬂcﬁ% 83 )cosk,s,

g 8
s 2 2 A8ys 8;)conk,8;co8k,8,. (4.3.1)

31‘*1 82"1
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Figure 4.6 1llustrates the autocorrelation function of
our operator (Fig. #.3). Again only one-quarter of the
map ared was used in the computation of the autocorrelation
function because of the central symmetry of the operator.

The wave~number spectrum of the cperator is illustrated
in Mlgare 4.7, Bquation (4.3.1), with suitable limits was
again used to compute the spectrum. The power here is
concentrated in the region of high wave-numbers, and falls off
fairly rapidly to zero in the region of low wave-numbers.
Thus, the spectrum of our splking operator approximates the
inverse of the spectrum of the signal--the design criterion
that was used to detemine the resolutlon operator in a:;xe
dimension.

Figure 4.8 shows the result of convolving our operator
with the signal of Pigure 4.1. Definition of the centre of
the anomaly is immediate. The anomely or signal, originally
4 lme. wide, has been compressed by this operator to a width
of but 2 kms. Section A-A' (Pig. 4.10) illustrates this
compression.

The operator was then used to detect the existence of
the anomaly of Mgure 4.1 in the presence of noise in the
form of a south regional gradient of 40 gravivy units per
kilometre. Pigure 4.2 illustrates this combined field.

(The data for Pigures 4.1 and 4.2 was obtained from
Agoes {1951)). The presence of the anomaly 18 indicated by




75

-
PN E

S I I S

e p— e

' 1
Sl SO O .5

|
i

vo unt'ts.

|

_Costour ?@fgrral £

Scaih P IR tKhn.




| 4,, oL
‘ (] "
&/ ]
/A,

COGP‘W!’ l 'fc ]
sgifc ;»g:r./' 10 u.m’ﬁ

Lﬂmﬁd s,odcr-g 1411 F)

jmw | '
‘f‘y udf‘f‘s P" Avfom.fn“"

76



7

|
1 H
S (SRELSEEK

.mcf&; ]

i

4 R
L p.lr.*;lﬁ.f -
| £~
1 ol |
e E N
! 3 LN }
, | _ i : ¢ NG L
ER A G 0 - P
SO OO R m ki
i | U ]
S ” :
m | 4
I I !
e
.L.llll.
T
m _
= N m
R I




78

I
|
i
4
!
g
8

-t

Contour mterval ! 1000 units.




79

i

nits. |

o

r

A
inTenval :

i TS N T

|
| Signal.
HEERE

?‘bvr

i e e :.:Z:;ﬂ
rum | of |

i




80

Fgtad : ‘_ _

SR |
| [
| !

: =
I
o ]
M,




81

R

W ¢a¢’_'('aw- In?‘;rvh/: z#- unifs,

of Operator:

£
eFrunt

|
1




82

-5

s

&

bovr inlervak 10 units.

%' = en

—— .:- e

|

Signal :

1
|

with

!

Dperatpe. Comre




83

-7 unl’s

Ldseediag]

wr mf-r;tﬂf
o




a slight nose.. Its exact location would be diffioult to
determine. However, convolution of our operator with this
combined field, as illustrated in Pigure 4.9, clearly
indicates the position of the anomaly. Section B-B',

(Pig. 4.11) exhibits the compression, and the resulting
sharper distinction between the anomaly and the superimposed
regional field effect.

Waan

operator, derived according to the eriterion of (IV.2) has
proven to be & suitable detector of the signal in the presence
of noise.

Ite effectiveness in the presence of nolse of a more
complex nature, such as variation in the shape of the anomaly,
or overlapping anomalies, remains to be investigated. However,
we are inclined to think that the two-dimensional operator will
be less sensitive to noise than the one-~dimensional operator,
primarily because of the smoothness of the observational data
in potential field investigations.

It should be noted that the operator coefficients derived
according to this criterion, for the anomaly examined, are
approximately in the ratio of 4:1; that is, the central term
ago is approximately four times the symmetric terms. Now,
the operator used to obtain the second derivative of the
potential fleld alsc is such that the central term ag, is
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~four times the symmetric terma. Whether this 18 a mere
coincidence due to the symmetrical form of the anomaly chosen,
or whether there 1s some relationship between two-dimensicnal
filtering of potential fields and their second derivatives,
remains for further investigation.,

From & practical viewpoint, the application of such
operators in the interpretation of potential data would entail
the formation of a library of operators corresponding to variows
types of anomalies. Prom the two-~dimensional spectra of the
observed data; some idea of the type of anomaly, if present,
could be obtained, and then, after a choice from the library,
of the corresponding operator,detection of the anomaly could
be achieved by convolution.

Admittedly, the computation of spectra and non-symmetrical
operators would be voluming

8. For example, computation of a
five-term operator requires inversion of a 5 x 5 matrix, which
takes approximately three man~hours with a desk calculator.
However, with high-speed electronic digital computers, the
amount of calculation involved should offer no deterrent

to the application of two-dimensional operators to potential
field interpretation.



V. CONCLUDING REMARKS

The concept of considering cobservatlional data to consist
of desirable signal plus obscuring noise is not necessarily
restricted to geophysical data, but can certainly be extended
to other scientific data.

The value of representing such data in the frequency
domaine, or wave~musber domaine; is necessarily dependent
upon the use to which the data is to be put. However; in a
predominantly observational sclence, such as geology, in which
the emphasis is often on obtaining data trends, representation
of the data in the wave-number domaine should prove to be &
‘useful interpretative tool.

In the studies made in this thesis, the two-dimensional
operator hag proven to be more successful in 1ts purpose than
the one~dimensicnal operator. This conclusion must be con-
sidered in light of the data examined, for without doubt the
seismogram is a much more complex representation of nature
than the gravity field data examined.

It should also be pointed out that the aspects of the
filter theory presented here are relevant only for data which
can be considered a linear combination of signal and noise.
Perhaps the limitation in the success of owr one-dimensional
operator for the seismogram lies in the digression from
linearity of the signal and noise relation.
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Effective operators for such data lile, no doubt, in the
field of non=linear filters, in which some work is being done
at present at the Mapsachusetts Institute of Technology.
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