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?ourier transform theory in a dimensions is used to
disoussthe concept of filtering in observational data which
may be a function of more than one variable * The theory is
presented for both the continuous and the discrete cases.

As an example of the one-Miaasional filter or operator
in the 4i4crete case, the problem of resolution of a seismic
wavelet complex is examIned. The inverse operator, obtained
from the inversion of the poer series representation of the
spectrw of the original wavelet is em4ned, and its
applicability to the resolution of a theoretical Saismic
complex is studied. A symmtric operator for an actual
seismogra is derived and its ability to produce resolution
on the seismogram is studied.

The two-dinsional operator is illustrated by deriving
an operator suitable for the detection of an anomaly in the
presence of noise, in the form of a regional gradient . Two-
dimensional speotra and autocorrelation functions are also
obtained.

Te one-dimensional operators for seismic resolution are
found to be only moderately sucoesful, particularly in the
noise-free case. However they do show promise of effective
resolving ability in region other than that studied.

The two-dimensional operator for anomaly detection
in the presence of noise is impressively successful in the
simple case coputed here, and holds great promise for more
complex system of anomalies and noise, if the enputational
procedur can be mechanised.

The successful application of Pourier transform theory
to geophysical data, which may be functions of more than
one variable, indicates the possibility for development of



a nw interpretatlve tool. The nthmtical deelopmnt is
outffic iently vl to hold out a possibility of application
of the gener concept to any ass of obsnrvatioral data which
may be considAred a linear combination of noise ad signal.

thesis Supervlsors $. *N. Sipson, Jr,
Assistant Professor of Geophysics
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I, INTRODUCTION

In the course of a scientific investigation, be it an

experiment in the laboratory, or a geophysical survey in some

remote area, vast amounts of data are obtained, and the

investigator is often faced with the problem of separating

the wheat from the chaff, or, in the language of the

electrical engineer, the signal from the noise.

Unfortunately, the term noise, possibly because of its

popular description as a disturbance, random in nature,

would appear to be ambiguous in the light of the following

analysis; consequently, a definition would not be out of

place at this time. We will define noise as that part of

the observational data which represents undesirable signal

content. It is not necessarily random in nature. It should

be pointed out that what may represent undesired signal in

one instance may be the desired signal in another. A good

example of this is found in a gravity survey interpretation,

where regional and terraine effects (usually non-random in

nature) are considered undesirable signal (noise) and

consequently something to be removed from the data.

Depending upon the desired information, the effects of the

basement configuration or shallower horizons may be considered

undesirable signal.

Now the interpreter, once he has made his decision as

to what constitutes the noise and what the signal, for his
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particular purpose, has yet to design a device to remve the

noise, and to interpret the noise-free signal. This thesis

will be primarily conerned with $me aspects of the problem

of noise removal in data which can be considered a linear

combination of signal and noise.

Perhaps the most fruitful approach to the noise

elimination problem has been in the methods of the commi-

cation engoeer with their imphasia on filtering techniques.

This approach, embodying much of the theory of

generalized harmono analya (Wiener, 1950) has been

proulgated by the Geophysical Analysis Group at the

Massachusetts Institute of Technology. The emphasis here

has been on the derivation of suitable mathematical linear

operators (which can be shown to be the analogue in the

discrete case of the electrical filter in the continuous case

Smith, 1952), which operate on data in such a way that the un-

desirable signal is ramoved, or minimized In the sense of a

satisfactory criterion. Wost of the work has been confined to

exploration seismology, essentially a one-dimesional phenomenen

in that the data is usually considered a function of time only.

The possibility of extending this acum Ucation engineering

approach to more than one dimension has been investigated by

Smith (1952), who developed a two-dimnsional linear operator

for a set of seismic traces. Schwarts (1954) also uses this

comnication engineering approach in his paper on residual
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maps, but makes no mention of the application of linear

operators.

The purpose of this thesis is to indicate the possi-

bility of extending the methodology to data which may be a

function of more than one variable, and to give the results

of two groups of experiments, illustrating the derivation

and application of one-dimensional and two-dimensional linear

operators as noise filters (in the sense defined above). The

term experiments is used advisedly, because, although the

mathematical formulation of the operator is quite exact, the

derivation of a suitable operator (e.g. an operator containing

less than an infinite number of terms) is often the result of

trial and error and informed intuition. This will be parti-

cularly evident in our examination of a suitable one-dimensional

operator for contracting a seismic wavelet,
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11 SOME ASPECTS OF THE THYE 'RY OF THE LINEAR OPERATOR

II.1. Continuous Case

Geophysical data, or, for that matter, any obeervational

data) can be repreaented by a function m(x), where r is an

n-dimensional vector. The dimensions of x depend on the

variety of observations made. TI seismology x is uSually

considered a one-dimensional variable, time In potential

field investigations, m(x) may be considered a function of

two variables. Here m(x) would represent the value of the

potential field at a pt x = (X, x,) on the earth's surface 4

In other instances m(x) may be a function of more than two

variables, as in a core-hole survey in which temperature or

mineralization is measured as a function of the three space

coordinates, and lithology.

The Fourier transform of a function of one variable is

a function of the reciprocal of that variable, and is termed

a spectrm. For example, a function of time, becom e, under

transformation, a function of reciprocal time or frequency0

Analogously, the Fourier transform of a function of n

variables gives us a function in terms of the roiprocals

of those variables. Since, in most geophysical observations,

the data m(x) is a function of the space coordinates, ie will

Call the transform of the data, M(k), a wave-number

(reciprocal-length) spectrum. x and k are n-dimensional

vectors with components (z 1 , x21 *JS * ** n) and (kIC, k2, * **

kn) respectively4
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Let it be assumed that m(x) is a well-behaved function

(its n derivatives exist and are continuous). Mits assumption

can be considered valid for practically all physical data.

Let i t also be 4 that aQg) is "integrable square " over

the n-dimensional space, and hence it can be represented by

its Fourier transform, and that outside the region in which

m(x) is defined, it is everywhere zero.

Then

m(z) - f (k)iX dj (2.1.1)

M( -- (2.1.2)
(2r)n

The integration is over n-dimensional space, and

dg 1 4xdx2.. -nd
dk 4kldk2 ...... 0 dkn

k-z a k, 2  +... .. +)k , the dot product.

Now, a linear constant elemnt filter, or some operation

an the data, my be characterized by its impulse response

function h(z), where y is the n-dmmansional vector with

components (71, Y2 .0 ,,, )

Suppose the observed data m(s) is operated upon by

such a filter. The result of this operation is given by the

convolution integral, for the process of convolution may also

be extended to n-dimensional space (Titmearh, iS ), and hence

s(g), the output or filtered data, is given by
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data m(z) is usually treated for the Bouer effect, terraine,

and regional effects. When these effects are linear, then

the net result of these operations on our data -r -

considered the result of successive filterins operation on

Suppose the impulse responses of these various operations

are hB(z), ht) and hr(.) respectively, then the wave~number
spectrumi of the result of these operations is

- (k)'" (k)H (k)M(k), or, in the x domaine,

hreht*hrem [B() ht(b) hr()m(2-a)dadad

kwe B A0 n

-i(k-x) K- () (k)RHr(k)M()dk. (2 1O)

The cross-correlation function 12(z) of two functions

m(x) and m2(A) is defined by
T

r 12(x) M(()m2(+)d (2-1.9a)
-"T

or, for functions whi are tranient in behavior,

12( am-ia( ('4159b)

For observational data which represent local phenomena,

and have a finite total energy, equation (2,1.9b) th prope-

representation of the cross-correlation functionr Euation

(2,1.9a) would be used for phenomena i ersist over alI

space.
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Now r.2 W mI(x)M2(2+X)

=fM (X)dx M2(Ik'
- eOW#

ax

sM2()e dk mi(xe - d

m ()e (kx)dx (2r)r)i a
(201,10)

(2.1.11)

where the bar indicates complex conjugate.

(21 .12)

Following Lee's (1956) definition for functions of one~
dimensional variables, let

(2.1 .3)

be the cross wave-number spectrum of m,(x) and m2 (x) for

functions of n-dimnensiorial variables.

Then

12 (z)

j2(a((k)
(4"m

(2 -115)
-n

Now, if m1 (4) = m2(x) m(x), then

But

and

g)d

* * ?12 (Z =

12()-(2dr) (_k)Mg(,k)

12-kei dkiYdC
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11.2, Discrete Case

The discrete theory for the one-dimensional case has

been well-documented, and although Smith (1952) develops many

of the relations for the two-dimensional operators, it is

felt that, for the sake of completeness, a brief survey of the

n-dimensional operators should be included. It is doubtful

whether operators of greater than three dimensions will ever be

used, primarily because of computational difficulties, but

this non-rigorous development of the n-dimensional operator

is included for academic completeness.

Smith shows that the convolution integral in one

dimension (equation (2.1.3) with n 1) can be approxinated

by a series b
g(_ a g(ih) 40"W as Mi (2.2.1)

where a., represents h times the impulse response of our

filter and the totality of terms a.1 is called the linear

operator. He also suggests extending this form to operators

of dimensions greater than one, and for the purpose of this

development, we accept this suggestion as both a rean-able

and valid extrapolation of (2.2,1).

Then the result of operating on our data m with a

filter (or operator) whose general term is a is



b bn

-E . . amih-5 (2,2,2)
$ = al gn = a ---n

where ih (ih, i2h2, *** inhnA), A (asi a' * )

and ih-s (i h -a, i2h2-s2 * inhn-sn) and where g iS

the output of the filter at the point x ih (ih i 1 2h23

-P0-, in)d h v h, are the spacings between the

successive data points in each of the n dimensions, and

is a running integer.

Let the wave-number spectrum of the discrete data

m(ih) be M(k) - M(4 ) where Ik - t (jt1, j2 2t2  Jntn)

ty . .. tn are the spacing constants in k domaine, and

Jk is a running integer.

I mine to ih)(aa)M~2 - ... Mile (223)

in
In the x domaine

mm 5  ZMo* S e1 0 444I (2.2-4)

Now the wave-number spectrum of the filtered output is

0(k).

o( ) - G(4 ) S (2,245)ii in

in S n



Let ih-s z , then

G(k) 1 .... z )e(.... m ±
8 ~ + + n

G(k) - A(k)M(k) (2o2.6)

where A(jw) A(Qt) is the wave-number spectrum of our

operator)2

-1i,(kos)
A() =- ...... 1  ge0 -(-! . (2.2.7)

a an

Hence, the relationship among the spectral %haracteristics

of the data, uperator, and output holds in the dicrete

case as well as in the cont!iuous case.

The autocorrelation function in 4te discrete case is

defined as

a 1 .8 an~sn

.mimih + s (2w
11 0 n

Now, the spectrum of mih +! - Z "+eoif.mhh)
where a does not enter into the summation.

Let lb + a = z; then the spectrum of mih + S is

Z1-O1 Z4-6 -
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iL t he wave-number spectrum of

In kj

Xk e

but ± e
in

ik
NOi*e

(i+ a

l in -

a 14(k)

-j)M(M(l)X(k)e- (2.2.10)

If we let 1 1) = FQ14$ zuM(Ic)I 2 be the energy

density spectrum as before then

(k)ek (2.2.11)

and

1 (k)

Apparently,

k*a( )e , - W*= .

81

analogous relations can be obtained for the

discrete case to those for the continuous case4

+ik -S

where m(lt)

;*a

2: 0 * # #

T11(,!

0 WE 11 (2..12 )
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III. W RESQZZWZON OF A WAVBLW' COMPL - AN

MAMLI OF A ONS--IMIDS1IONAL OPRATOR

III.l. Introduction

Setter resolution has always been the desire of the

practicing seismologist, but until recently Instrumentation

and interpretatie techniques, in general proved quite

adequate, However, in recent years with the expansion of oil

exploration into areas such as the Williston Basin, where

oil accumlations appear to be controlled, in the main, by

stratigraphy rather than structure, the need for techniques

whereby overlapping seismic reflections could be resolved,

became of paraout importance.

The approach by the Industry to this problem has been

essentially mechanical in nature with the emphasis on

instrentation (the so-called 4high-resolution" instrumnts)

and visual aids in the form of reduced record sections, not

on new interpretative techniques.

Actually the problem of resolution is a problem of

noise minimization, for the difficulty lies not in picking

the earliest reflection of a wavelet oomlez, but in

distinguishing the arrival times of the later events, which

may be masked by the enery of the first. Rence, a desirable

"modus operandi" for improving resolution would be to suppress

the initial reflection of the comple, which in this instance

is regarded as the undesirable signal (noise), or, barring

that, to reduce the time expression of the undesirable wave,



in order that the following reflection may be distinguished.

The process of reducing the time expression of the

refleci4 or, or contraction as we shall call it, appears to

offer the best solution to the problem, for ideally ±t

would permit the separation of the members of the complex, and

still retain their relation to one another in the time domaine90

In praztice, contraction offers the only solution to the

problem, since in most cases the members of a wavelet complex

differ by so little in their frequency content that suppression

by electrical filters is virtually impossible. As a result,

the work done on improving resolution has centred upon

designing suitable mathematical contractor methods.

Ricker (1953b) propo-d and built an electrical filter,

based on his wavelet theory of seinmogram structure (Ricker,

1953a), with which he achieved some resolution of the

component wavelets of a complex by contracting the individual

wavelets to 0 8 of their original breadth, and still retained

their individual wavelet shapes. Unfortunately, the wavelet

theory has fallen into disrepute of late, and the applicability

of his contractor to other than highly specialized cases is

in doubt,

In view of these developments, it was felt that the

possibility of obtaining new, and perhaps better means of

resolution should be investigated.
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111.2. pcicationot robem

Ideally, we would like to find some mathematical

filter krg operator whereby a reflection oomplex conaisting

of the superposition of two or more reflections can be resolved

into its component reflections with a minimum distortin of the

interpretational charac teristics. Interpretational character-

istics may be considered as those features of a soismic

reflection, by which it may be identified and mapped, These

characteristics are wave-shape, phasing and the various other

undefinables that constitute reflection "character, " and

the inception or arrival time of the reflection. Undoubtedly,

the mnost important of these is the arrival time, for without

it, the reflection could not be accurately mapped.

Although the variation in wave-shape of a reflection

throughout an area must contain important information as to

lithology (at present this information is not interpretable,

except in vague generalities), it is not a prorequisite in

mapping the reflection, particularly in these days of

zontinuous profiling. Consequently, we may relax the

specification of minimum alteration of wave-shape for our

mathematical filter, and restate our problem as: the

determination of an operator (filter), by which a reflection

complex can be separated into its components by contraction

with a minimum distortion of the individual arrival times *
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III.3. bsw. of the T|!h of the Inverse 0 ptWor

Relaxation of the restriction as to retention of wave-

shape after filtering, permite a wider choioe in the form of

our filtered output* Perhaps the beet mathematical

representation of our filtered output would be a spike or

impulse function, which, because of its zero width, could

exactly represent the arrival time of the reflection in the

time-doman (in this section x represents the one-dimensional

variable time) and the ultimate in contraction, Now a spike

ln the time-domain is represented by a constant in the

frequency dmane (L domain.), or as it is often called a

white-light spectrum (uillemn, 1949). this representation

in the frequney an na has some fortunate ma tical

advantage*, for as we have shown, the spec trum of the filtered

output G~j) is the product of the individual speoctra of the

operator and data.

*Qj) - Atjj)Rtg)

bnce, to obtain a white-light spectrum and thereby a spike

in the tim-damin, the operator spectrum A(j) should equal

t/R(k), and therefore the output O() = ALj)N(j) a I I,

a Constant.

Robinson (1953) demonstrates that the spectrum of the

operator AQ) E ae nq be represented by a power
s-0

series in x
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A(&) 21 -ai" a ,
s -O s -O

2mao + alz + az +o4e +%Z

He also shows that this operator will be stable (the roots of

the associated ditference equation damp to zero) it the roots

Zk of this polynomial fall outside the unit circle in the

z plane, or that A(z) is analytic for bz S \, and consequently

the inverse operator A1 (z) l/A(z) a-0 B(z) exists

and is analytic for I s \, and hence msy also be expanded as

a power series in z, or

Am(z) s btt = B(s). (3.32)

a5s0 0

The coefficients of the inverse operator may be found

by divect division of the polynomial Z aaZa into unity,
a W 0

The basis of our experimental technique was to obtain

a representative wavelet of the initial reflection of the

complex, and then considering this wavelet as the operator,

characterizing the undesirable signal or noise, obta its

inverse and use this to operate in our complex, in the hope

that the result of this operation (obtained by convolving the

operator with the complex, according to equation (2.22)) will

contract the initial wavelet to a spike at its inception time

with a of energy before and after the spike, thus

r rr~
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permitting the accurate determination of the arrival times of

the later reflections in the complex.

Te general plan of the experients was to derive a

suitable inverse for a wavelet, representative of a theoretical

reflection. (In this instance, the wavelet chosen was the

Ricker wavelet, (IA.)). Then after testing its effectiveness

on a theoretical omplex, it was intended to extend the

results to a reflection complex obtained from an actual

seismogram (fiI.5)* Here we find that slightly different

techniques are quired to obtain suitable operators.

ix.4. The Contractor _perator for the Theoretical Wavelet
The inverse operator, whose speotrut is B(z) contains an

infinite number of operator coefficients (equation (3.3*g)),

and hence would be impracticable as a contractor, unless the

coefficients of the higher powers of z became negligibly small

and can be neglected. Unfortunately, the representation as a

power series in a of the spectral characteristics of the

inverse wavelets ftud in practice gives rise to a diverging

sequence of operator coefficients. However, the inverse

formulation of the operator represents the most desirable

contractor operator (see above), and as such the inverse

form should be retained, perhaps by approximating the inverse

by the first few terns of the sequence before they become wide3g

divergent (Dr. Piety, 1955). The convolution of such

"chopped-off" inverses and the original operator should

produce a spike, valid at least to the number of terms retained



in the inverse.

Riciker's presentation of his wavelet theory of

seiSMogrM structure and tables of typical wavelets (0953a)

offered an opportunity to tt the hypothesis of practical

"chopped-off" inverses and enabled us to cornpare some of the

properties of his theoretical wavelets with those of the

wavelets found on a seismogram,

Ricker wavelets 7(25) and Y(o) were chosen as

operators, where V(25) represents the Ricker wavelet at 25

dimensionless units from the source and Y(oo ), the Ricker

Wvelet at an infinite distance from the source Thee wavo-

lets extend in time from minus infinity to plus infinity with

V(00) asaMetrical in shape and Y(25) non-symetrical in shape.

In order to have wavelets more representative of physical

reality, the Ricker wavelets were mdified so as to start at

a time origin with a discrete Jump in arplitude. It was felt

that the Jump at the origin would be representative of the

initial impulse, which characterizes the true reflection

(Fig. 3. 1),

Figure 3.2 shows the computed inverses of V(25) and

V(oo), designted as and 1 respectively to 12.80 terms.
V(25) '(

Both inverses exhibit the expected divergence, and in both

instances the major share of this divergence was recognized

to be due to an exponntial function superimposed on some

function characteristic of the individual inverse. The semi-

log plot of Figure 3.3 illustrates this exponential divergence
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and pemits the calculation of these functions bX, w-re a ant

b are constants, characteristic of the individual wavelets,

Since, acording to our hypothesis, only the first few terms

of our inverse are to be uedt as the contractor operator,

the exponential func tions were removed by subtrac tion from

their respective inverses, in the hope that the resultant

inverses - ae . (We shall use V(s) as a generic term
V(5)

for either V(25) or V(e), when possible), would contain a

larger rmnber of useable terms.

It was realized, however, that the positive intercept,

a, of the exponential function ab represented the inverse of

the first tem of the original operator or wavelet, and as

such it should not be removed from the inverse, in order to

retain the discrete jump at the origin of the wavelet . Our

inverse operator, modified according to these precepts, then

becomes

-'(-a )ba 1)

This operator will be referred to as the modified inverse

operator, or modified inverse.

Pigure 34 is a comparison of the re-inverted operators.

3w 1 with the original operators

-VaFY a(e -'4)
and shows the importance of retaining the intercept tem 'a" in

the modified inverse. The te-invertad inverse I

V(a)
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bears little, if any relation to the original wavelet V(s),

while the re-inverted inverse approximates
a (ebXal)

the original wavelet, fairly closely, aside from and effoot.

A ymmtrie wavelet (operator and wavelet are used

interihangeably throughout this discussion), like v(oo)

has an inverse which is non-stable (the representation of the

wavelet in discrete form is n a solution of a stable

difference equation), and hence the stability o a symmetric

wavelet is non-stable (R.aT G A.. Report No. 9). The

wavelet V(25), although asymetrio is also non-stable, as can

be seen from its divergent inverse (Vig. 3.2). However,

Robinson (1953) shows that the power spectrum (LG) \a(d) 1  =

B(_)$(3J of an unstable operator may be factored by the Wold-

Kolmogoroff method to yield a spectrum, whose representation

in the time domino gives a stable operator. Thus, an

unstable wavelet whose spectrum is e2(g) has associated with it

a stable wavelet whose spectrum is also B( ,.
In view of this, and the experimental evidence that the

two inverses examined consist of some function, oharateristic

of the individual wavelet, superimposed on a divergent

exponential function, it was felt that the function character-

izing the wavelet may be associated with the stable wavelet,

derivable from the original wavelet by spectral fac toriation

(Fig 3-5).
A comparison of the inverse wavelet and the

V(5)
Inverse of the associated stable wavelet of V(25) appears to
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belie this hypothesis (Fig. 3.6),
The modified inverse operator a(e*el) and its

spectral characteristics are shown in Figure 347. The

spectral characteristics of the inverse of V(25), approximate

fairly closely our conception of what the speetral character-

istics of the best inverse operator should bev-the amplitude

spectra related reciprocally, and the phases, the negative

of one another (compare Fig. 3.1 and Fig. 3-7). The spectral

characteristics of the inverse of V(ioo), on the other hand

do not approximate these desired features very closely.

Our definition of the most suitable operator for

resolution implies that the result of convolving our

operator Y(s) with its modified inverse - a(eb 1'l) should

be a spike at the inception time of V(s), and that, there

should be a minima of energy after the spike. Figure 3.8

demonstrates the results of applying this criterion to our

modified inverse operators. Both inverse operators give a

spike at the time origin, and exhibit noise behind the spike

as was to be expected from using approximations to the true

inverse. However, the random noise content behind the spike

for f(o) is much larger than that for V(25), so large in

fact that it precludes the possibility of using the modified

inverse of V(0o) to resolve a wavelet complex in which

random noise my be present.

As a test of the effectiveness of the inverse operator

in resolving a wavelet complex, we consider a signl,
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consisting of two wavelets of the V(25) type, of different ampli-

tudes, separated by a time interval, and in which no noise is

present. We operate upon them with the operator A a( 1.

Figure 3.9 illustrates the results of the convolution. In

both exaples, resolution is excellent with the spikes

occurring at the inception times of the individual wavelets

of the complex.

This success of our inverse operator as a resolver must

be teMred with the realization that noise-free complexes of

the form eamind, rarely, if ever, occur in practice. Noise

in the form of phasing and random energy is an inherent

feature of every seismogram. Wavelet complexes, in which the

individual wavelets are similar in shape, are the exception,

rather than the rule. It is far more likely that the

individual wavelets of a complex are dissimilar in shape, each

representative of a reflection from a minor velocity dis-

continuity, at which there has been a change in the physical

charateristics of the subsurface.

In view of this, the effects of these various factors

on the contracting ability of our modified inverse operator

were xamied.

Pigure 3.10 illustrates the effect of phasing in the

ability of the inverse operator to produce a spike, when

convolved with the original wavelet. Ideally, regardless of

where the convolution process begins, at 1/4 h, 1/2 h, 3/4 h

or 1 1/4 h (h is the spacing parameter, or the time interval

between successive data points), the position of the spike,
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indicating the inception time of the wavelet, should not be

altered. As can be seen from the figure there is a variation

in the position of the spike, reaching a at a phase

shift of 1/2 h. However, the marinm displacement of the

spike is at no time greater than 1 1/2 h, or, in time,

approximately 4 milliseconds (h = 2.5 milliseconds), In

terms of present day interpretative techniques, this repre-

sents a negligible error, especially if we recall that the

arrival times of a reflection are in reality two-way tims,

Hence we may oonclude that phasing has little effect on the

contracting ability of our operator, although there is some

evidence that the aise of the spacing parameter h, relative to

the wavelet length, may have an adverse affect. However,

this can be easily remeaed.

Figure 3.11 illustrates the effect of noise, in the

form of alteration of wave-shape, upon our inverse operators*

In this instance, we have convolved the modified Inverse of

V(25) with V(o) and the modified inverse of V(oo) with V(25),

At best, under such circimstances, we would like some

indication of the arrival time of the wavelet, and a minimum

of noise after such an indication, The modified inverse

operator of V( c) lacks all of the desirable characteristics,

for the results of onvolving this inverse with V(25) gives

no discernible indication of the arrival time of V(25), and

exhibits a highly divergent tail, which would make resolution

of a later wavelet in a complez virtually impossible. On
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the other hand, the result of convolving the modified inverse

of V(25) with V(oo) does exhibit a spike at the arrival time

of V(oo ), but once more the noise level following the spike is

quite high, although not as excessive as for the inverse

operator of foo)

These results indicate that both inverse operators are

sensitive to noise in the form of variation in wave-shape.

However, it should be pointed out that the wave-shapes of V(co)

and (25), with which this experiment was conducted, are quite

diverse in character (Fig. 3.1), and, although such wide

variations in wave-form can appear in a real seismic complex,

it is more probable that the variation in the shape of the

individual components of such a complex Ls less abrupt, and

hence the effect of such variations less important in the

resolving ability of the inverse linear operator.

In n==U7* we may say that the inverse operator
"Ly- a(eb-1) is a suitable resolver in the noise-free case,

for the type of wavelets considered, but its effectiveness in

the presence of noise must be considered in the light of the

reservations enumerated above.

Unfortunately, as noted in the introduction, the Ricker

wavelets are a poor representation of the seismic reflections

observed in reality, and as a consequence, the experimental

methods used here in deriving the resolving operator can

only serve as a guide in the derivation of suitable operators

for a real reflection complex.
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iUn.5 The Contractor rator for a Real Reflection CMlex

The reflection complex d was obtained from a

suite of records supplied by the Atlantic Refining Company

These records exhibit thinning between events A and B, which

may be indicative of a stratigraphic pinch-out. (Pig. 3.12).

Reflections A and B, which appear as two distinct events at

approximately 0.98 and 1.07 seconds on record 7.19, have

apparently coalesced into one complex reflection on record

7.16.

Our objective was to obtain an operator with which the

noise or undesirable signal, represented by event A., could be

contracted to a spike at the arrival time of event A, with a

minimum of energy behind this spike, and thus permit an

accurate determination of the arrival time of event B,

throughout the suite of records.

A typical wavelet of the event A was obtained from

record 7.19 by averaging the digitalied form of the wavelet

over every other trace of the record. This average wavelet

was then modified so as to have a tail whose amplitude ap

proaches zero smoothly, and a zero time origin. Figure 3.13
illustrates this average wavelet and its spectral characteristics.

The inverse of this average wavelet was then calculated,

and, in contrast to the inverse of the Ricker wavelet, it was

highly divergent, without any recognizable pattern (Fig. 3.l4).

Consequently, no technique was available for increasing the

useable length of the inverse operator, and the inverse

truncated to the first nine terms appears to be the only



7,18 7.17

Fig. 3.12 'Four records of the Atlantic Refining Co. exhibiting pinchout.
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practicable operator derivable directly from the exact inverse.

This nine-term operator should give resolution over a

time interval of twenty milliseconds (in terms of our spacing

parameter h,--8 h). However, its short lengt h would preclude

the possibility of using it for resolving events A and B over

an extensive range .

As a test of the resolving ability of such an operator,

a noise-free complex signal was operated upon by the nine-term

inverse. The signal consisted of the superposition of the

average wavelet of event A, and an averag wavelet represent-

ative of event B on record 7.19 (obtained in a similar fashion

to that of event A), which lagged A by ten illisecon& (4 h).

Figure 3.15 illustrates the result of thts convolution Spikes

occur at the inoeption times of both events A and B, in spite

of the difference in wave- shape between the two wavelets,

However, it must be pointed out that this is once again a

noise-free situation, and the effects of noise, particularly

in an operator of such short length, may well inhibit its

usefulness as a resolver, even in those optimum cases, when

the reflections may be separated by an interval of less than

twenty milliseconds.

The effects of random noise and a wide separation of

events are illustrated in Figure 3.16, which demonstrates the

result of convolving the opertor with several digitaflzed

traces of record 7.19. It is doubtful whether any sort of

coherent picture of the relationship between events A and B

can be obtained. Evidently the presence of noise and the
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separation of the events A and B by a time interval of

approximately ninety milliseconds makes resolution virtually

impossible .

An attemt to approximate the average wave lot of event

A, by the Rlcler wavelet v(oo), and thus use its modified

inverse as a contractor proved abortive. Convblutic oi ~f such

an inverse wIth the average wavelet of event A, produced a

series of divergent terms and no recogivzable spikeL,

Ideally, aS stated above, to obtain a white light

spectrum upon convolution, inverse operator ahould exhibit

spectral chAracteritiG$ inverse to those of the original

operator or wavelet. The spectrum of this inverse operator

may be expresaed as a power series (equation 3.3,2), and the

Fourier cosine trnsform of such a series, should thus be

the representation in the time domaine of the inverse

operator. A synmetric operator, which may be less zenaitive

to noise is obtained by unfolding (oomputing the iage of the

function with respect to the amplitude axis) this cosine

transform.

Figures 3.17 and 3.18 illustrate the ametrio operators

and their amplitude spectra, obtained in the above manner for

the average wavelet of event A, modified to exhibit a large

initial term (sharp-front wavelet), and also moditied to

start with gradually increasing amplitude (smoothed wavelet)*

Figures 3.19, 5.20 and 3.21 illustrate the results of

convolving auch symmetrio operator of various lengths with

these modified wavelets, A doublet spike is obtained in each

............
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instance. However, the amplitude of the eztraneous signal,

preceding and following this spike, appears to be an inverse

function of the operator length. The operator containing only

fifteen terms has a very low ratio of spike amplitude to

extraneous signal amplitude,

In an effort to improve this ratio, and thus the

resolution of reflections in the presence of noise,, the

operator was smoothed by weighting its coefficients, according

to the method of Cesarc sums The result of convolving the

smoothed sywnetric operator, derived from a sharp-front

wavelet, and the smoothed average wavelet of event A is

shown in Figure 3.22, for various lengths of operator.

There is little improvement in this ratio, and what Is perhaps

wholly condemnatory, the doublet spike, representing the

contraction of the wavelet, is no longer well-defined.

As a test of the effectiveness of the synmuetric operator

(unsmoothed) in resolving reflections in the presence of

noise, the twenty-five term operator, derived from the smoothed

wavelet, and the forty-nine term operator derived from the

sharp-front wavelet, were convolved with the digitalized

traces of record 7.19 over the interval from 0.91 seconds

to 1.16 seconds. The results of these convolutions are shown

in Figures 3.23 and 3.24 respectively. There appears to be

little distinction between the effectiveness of the twenty-

five term or of the forty-nine term operator. Although the

presence of event A, in the form of a spike, can be seen on

practically all traces, event B, at approximately 1.07
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Fig. 3.21 Convolutions of wavelet of Fig.3412with symmetric
operators of various lengths.
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seconds, is not discernible This is undoubtedly due to the

extraneous amplitude content of the symmetrio operator, which

tends to Masie any record noise present between events A ard

B, to the detrinnt of event S, whose amplitude is less than

that of event A#

-.6. Conclusions at Rcon tAm

Although the inverse operator, either truncated, or

modified in some form, has proven sucoessful as a contractor,

and, in the noise-free case, as a resolver, its usefulness

on an actual seismogm appears to be limited by its sensi-

tivity to noise and the shortness of its useable length.

Symmtrio operators are able to give contraction, even

in the presence of noise, but cannot be onsidered suitable

resolvers* owever, their application as resolvers on a

piece-seal bais, in which soeaate symtotrio operators would

be used for each event of a ewlez is not infeanible.

On the basis of experimntal evidence, (the differences

in the inverse wavelets, and spectral characteristics), the

Riokor wavelet representation of a seismic reflection appears

to be a rather poor approximation to physical reality.

Admittedly this evidence is obtained from but one area, but

Ination of wavelets in other area supports this

conclusion.

Finally, it should be pointed out that the aphasis in

this section has been on the development of methods whereby

noise, in the form of the initial wavelet of the complex,
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iv. T R1 VAL OF 0or IN THni PRTTON or
POTXlffL VIELW DATA - AN EXAMPLE OF A

TWO-DINE'gIONAL OP=lRTOR

iv.1. ptroducti2n

Prior to the translation of the potential field data

into terms of the subsurface configuration, the usual

objective of the interpreter is the preparation of a map of

the residual field. This map is a representation of the

potential field in which the potential due to the undesirable

effects has been removed.

Prom our viewpoint, if we regard the observed data,

m(;), as a function of the two-di sional variable x - (zy, 2

where xl, and z2 are the coordinates of the data point on a

plane representing the earth's surface, and it we can in

addition consider the data m() as a linear combination of

signal and noise, then preparation of a residual map is

us to application of a two-dimensional filtering

process, in which the observed data is filtered in such a

way, as to remove the noise and leave the desired signal

(residual anomaly). fence, the problem of preparing the

observed data for interpretation becomes the problem of

designg a suitable two-dimensional filter for noise removal.

This chapter shall be concerned with the design of such

filters, and their application to the interpretation of a

gravity survey.
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17.2. Weogg

The output of a two-4wnsional filter, kJ, at a point

(1, f), for the discrete case, Is given by

B D

, -5A 02 " 2m J2 (2..l )

where the totality of terms as 5 is the two-dimenional

filter or operator, and i 4 is the data input at the point

(i, 4). This can conveniently be exprssed in matrix form,

for

gig * a*,A,.gm + 4 + .. t + #c±,#4g+C + .. + Is. mi-B, +C

+ a-.AgC+lmiM,4ce + ..... + aO,-C+1,j4C- + ..

+

+ a-AD m i+AJ-D + ..... + 0,tDa n + +... +aB -B,J.D

* [- + k,-4{ C. + k,Jc Nkc+A + 0..

+ L' -k, J-D] kD (4.2.1)

k o **A, -wA + 1, ...- , 0, 1 .,.., B-, B

or, g is the sum of (C + D + 1) matrix products of the

form [m-k,s4{k,83 where [1.-.k,a-.8 is a row matrix
containing (A + B + 1) terms and ak,8 is a column matrix

with a similar number of ters, some of which may be zero.
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Tur ebe onsidered the result of operating on

our signal with (C + D + 1) one-dimensioral operators. This

is a convenient form for coputation, especially for digital

electronic coputers.

g as represented in (4.2 .1), may be considered the

product of two matrices, rather than a suma

x% at a (4.2.2)

where

... a, m ±+A*, , .(423)

a row atrix of (C + D + 1)(A + S + 1) terms, and

& 14&4a-A,.0 ,,A+l, ..C"'% o *"' ag,. ' &4a Q* ***$

a0 #** 8,QJ 000) AeA*)D* *0'F &OO a~D(ss4

a colun matrix of a similar number of terms.

let us consider a region 2X x 2N, in which our data

mSj is defined, and let our operator a,4 be such that its

extension in this region is 2M x 2W, with N (N (or of

extension 2N x 2N, with a sufficient number of terms on the
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periphery; of the region equal to zero). Then g will be

defined for -(N-M) <i, $ J (N-M).

It we consider the Qutput along the row i r, where

Pt (H-)Sz'r(*.N), and let the

columi matrix

SM 0 1 a .. g . Srr,-) *'

represent the output along this

-_ 4row, then
____ ___ ___-N

gr - (4.25)

where is the rectangula matrix of data points.

Er -x %(4.2.6)

Lm *99**N #09 @ 0e.eee,9*9*eXo* 4* 0 0 Owe @* *9M

in which each row of the matrix is of the form (4.,2.3)

representing the output due to one point on the row an4 the

matrix a is of the form (4.2.5)0

The output of the filter over the entire region is given

by
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M (4.2.7)
r -(s-m)

As was pointed out in Chapter XXX, the location of the

sigral (in this instance, the rsidual a ly) is the 1m

consIderation; its shape, although Important, is not of

± dte concern. This is partioularly true in the interpre-

tation of potential field data, where depth estimatons, usualy

based on the inflection points of the residual can

only give a lower bound on the depth of he anomalous

configuration. This is a consquence of the inherent ambi-

guity of the potential distribution, for the anomalous body

may be replaced by a surfcoe distribution of poles on an

infinite plane between the body and the point of observation

and still give rise to the sane potential distribution at

the obervation point. As a consequence, retention of the

A No 4 shape after filtering is not significant.

If we choose to design ou operator such that the

location of our is to be indicated by a two-d ansionsl

spike after filtering, then we have a similar situation to

that of Chapter XXX

Iet us define our two-dimnional spike as wity at the

centre of the anomaly, and zero evetywhere else4

Then, if we consider an operator of extension 2M x 2M, th

output of such a spiling operator T along the rth row will be

the oolumn matrix

j4, o{Q, 0 $ 0, ... , 0) O0 0 (4,208)
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except or that row r - v in which the centre off anomy lies.

The output along this row will be the colun matrix.

- 0, 0, .. , 0, 0, 1, 0, 0, ... , 0, 0, 0. (4.2.9)

Then the output of the operator over the entire region

2N x 2N is given by

0* 0, .. , 0, 0, 0, .. , 0, 0

Sr 0, ... , 0, 1# 0, ... 0, 0 (4.2.10)
r rw(N-M)

.. * .... o....o.............

0, 0, *.., 0, 0, 0, *.., 0, 0

Suppose owr data ami " a + n, where st is the

signal correponding to the anomaly and n 4 , the noise, and

let us choose our operator such that the difference between

our two-dimnsIonal spike (4.210) and the output of ta

operation due to the input #ig4na only, 214 - 2a8 is to
r r

be minimised in a least aquas am *es

Thean we wish to minimise e2, where
N-M

0 T(4.2.12)

where the supersoript T, indicates the matrix transpose.
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X2 T +(4.2.13)

But z- S ( 4 t is a saa*r, since 4 and 4g are both

column matrices, and the trasposn of a scaler is the scalar

Itself Therefore, and (4.2.13) becones

E2 - - + 0raZ4a Wl a&~ jr (4.2.14)

But, Xr and T I4T and (4.2.14) becomes

E Z[ -gcg +. (4.2.15)

WE2 2z (6T7 4 + 8(ging,a g + &(I) l (4.2.16)

But, as before, - [I(a)4 is a soalar,

and hence (4.2.x6) becomes

W? g 2 [o(T 5 + g( ).
r a mun

r( )14 r(' )"

(4o2.17)

(4.2.19)
r JeeI~tr

since & Is independent of r, and where we asume the elements of

are independent.

0



RW=*A #AJ UMtUOO mr 404*40do sM!4

fuesoqo ent aouaedo t X r 'uou wnduoo efttvo$ o

I'm 4v f Ot 0*4OP UOflnjTAOflP

Tmfunqod 044 SflWstTTT Tg eeznSid '0nw 00s VT flTpW

24T P" *#4W 000'! IT Oaaqd 4; $o seo jo *zueo egg o

;dep e U S Tun na4SWuoo A;mTwOp so sewf twotaeTds w a; rnp

Eteen g 40$ aogmdTOe 40itr da aM jo uonwavizeq e *A

jo unaoot .4; so nservasea tue edrns TuuSis jo euasa u;

uefgnqip.geip flTOu 044 g' 40$ 'WflOnT$.OdtWe aTc40a1do eiqmln

04; 50 UOTfT e O $ AOWP *mWn Set pI 'eds Wup q Pl .a40
UOTnqp4Otp Oltou M JO pTRO! 404AT eapibea *(VIm) Wswp

sog jo asaod ;ndano 4 or (tu) ewrou nj4 jo aosod ;ndanio og
go om14 egg o neiesuTuta IegW ov go ***V45daggepoq *~

$0 OTttta 4 30 UOThwKTTUT 4; OtI ROMlh **14l40* "440

aq (6rTa) ;o S JpTE ioq fldfT ad en 'O nEg *l#TS0

344

MOW I -



73

a . ,O, a+1,0* aw a,+v, 4

In view of the aircular syptr7 of the sigal, the

operator coefficients ai,o' a+1,0, , and a+o'%v will be

equal, and, hene, determination of the operator, according

to (4.2.20) requires but the inversion of a 2 x 2 matrix.

(Fig. 4.3),

The towo-diansonal autocorrelation function of the

signal, for eight ag for one-quarter of the Map area of

Figure 4.1 is illustrated in Figure 4.4. It, too, exhibits

central aymmtry, as was to be eXpected. Slight variations

in this symnetry are undoubtedly due to round-off errors.

The two-dimensional wve-rnmber spectrum of the signal

is illustrated in Figure 4.5. The power is concentrated in the

region of low wave-nm bora, or, high wave-lengths, and rapidly

falls off to Zero in the region of high wave-numbersa

Computation of the two-ienStonal spectra was

facilitated by taking advantage of the even function properties

of the autocorrelation function, for

(i * + 8 1 ZT (xy a)-(kfl+k2S2)

8
- to, 0)4 2+ g 5-ty 0)oOskls 1 + 2 0, 32)eeak

8 8
+*4 21 Ij , 2)cosksineoskgsv (4*,-l)

Sl01 82"1
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Figure 4.6 illustrates the autocorrelation function of

our operator (Fig. .) Again only one.quarter of the

map area was used in the computation of the autocorrelation

function because of the central symmetry o the operator,

The waventuber spectrum of the operator is illustrated

in Figure 4.7. Equation (4.3.1), with suitable limits was

again used to ompute the spectrun. The power here is

concentrated in the region of high wave-mabors, and tals off

fairly rapidly to zero in the region of low wave-nubers.

Thus, the apeotrun of our spiking operator approximtea the

inverse of the spetrum of the signal--the design criterion

that was used to deterine the resolution operator in one

dimnsion.

Figure 4.8 shows the result of convolving our operator

with the signal of Figure 4.1. Definition of the centre of

the is iaediate. The or signal, originally

4 Im,* wide, has been copreseed by this operator to a width

of but 2 ks. Section A-A' (Fig. 4.10) illustrates this

compression.

The operator was then used to detect the existence of

the of Wigur 4.1 in the presence of noise in the

form of a south regional g adient of 40 vafviy units per

kilometre. Figure 4.2 illustrates this combined field.

(The data for FigureAs 4.1 and 4.2 was obtained fram

Agocs (1951)). The presence of the is indicated by
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a slight nose., Its exact location would be difficult to

determin * However, convolution of our operator with this

combined field, as illustrated in Figr 4.9, olearly

indicates the position of the a section B-B',

(Pig. 4.11) exhibits the comprension, ai the resulting

sharper distinction between the and the superimposed

regional field effect.

I ,4. Gen MUio ad

ltdoubtedly, in this simple case, the two- nsional

operator, derived according to the criterion of (IV.2) has

proven to be a suitable detector of the signal in the proseno

of noise,

Its effetiveas in the preaance of noise of a more

complex nature, such as variation in the shape of the anoSly,

or overlapping to be investigated. However,

we are inclined to think that the two-dimtnsonal operator will

be less sensitive to noise than the one.dinnsional operator,

primarily because of the soiness of the observational data

in potential field investigationsa

It should be noted that the operator coefficients derived

according to this criterion,, for the anomaly exaded , are

approximately in the ratio of 4s1; that is, the central term

a00 is pproximately four times the symmetric terms. Now,

the operator used to obtain the second derivative of the

potential field also is such that the central term &W is

for%.
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-four tims the symmetrie terms. Whether this is a mere

coincidence due to the symetrical form of theanomaly chosen,

or whether there is so= relationship between two- nodonal

filtering of potential fields and their second derivatives,

r alm for further investisation,

From a practical viewpoint, the application of such

operatore in the interpretation of potential data would entail

the foriation of a library of operators corresponding to various

types of anomtales Prom the two-dimional spectra of the

observed data some idea of the type of y, it present,

could be obtaned, and then, after a choice from the library,

of the corresponding operator, detection of the anomAy could

be achieved by convolution*

Admittedly, the caMutation of spectra and non-symetrical

operators would be voluminous* For exaple, computation of a

five-term operator requires inversion of a 5 x 5 satrix, which

takes appro tely three man-hours with a desk calculator.

However, with high-speed electronic digital computern, the

amount of calculation involved should offer no deterrent

to the application of two-dinional operators to potential

field Interpetation.
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The comept of considering observational data to consist

of desirable sigal plus obscuring noise is not neces rily

restricted to geophysical data, but can osrtainly be eatended

to other scientific data.

The value of representing such data in the frequncy

domn, or wave-aumber 4a, is necessarily dependent

upon the use to which the data is to be put, Rowever, in a

predominantly observational science, such as geology, in which

the emphasis is often on obtaining data trends, representation

of the data In the waveawraber doshbould prove to be a

useful interpretative tool.

In the studies made in this thesis, the two-dimensional

operator has proven to be more saueessful in its purpose than

the onetdimsional operator This conclusion aut be con-

sidered in light of the data , for without doubt the

seismogm is a much more aosplen representation of nature

than the gravity field data

it should also be pointed out that the aspects of the

filter theory presented here are relevant only for data which

can be considered a Mier combination of sigal and noise.

Perhaps the limitation in the success of our on maional

operator for the seismogram Iles in the digression from

linearity of the signal and noise relation.
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Effective opentors for such data lie, no doubt, in the

field of non-Uner fltert, in which so= work is being done

at present at the Aseeahusetts Institute of Technology,
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