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THE CHARACTERIZATION OF SEISMIC EARTH STRUCTURES
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PETER PUSTER
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fulfillment of the requirements for the degree of Doctor of Philosophy

ABSTRACT

We consider a time-dependent random field, f(rZt), defined on a spherical shell
[Q=(6,q), O56 , -t<(p it] or cylindrical annulus [92=P, -1E<(P57r].
Examples are the temperature distribution, T(r,2,t), or the radial component of the flow
velocity, u(r,2,t), obtained from numerical simulations of high Rayleigh number
convection. For such a field the spatio-temporal two-point correlation function,
Cff(r,r',A,t*), is constructed by averaging over rotational transformations of this
ensemble. To assess the structural differences among mantle convection experiments we
construct three spatial subfunctions of Cif(r,r',A,t*): the rms variation, af(r) =

Cf(r,r,0,0), the radial correlation function, Rf(r,r?) = Cf(r,r' ,0,0) / af(r) aj(r'),
and the angular correlation function, Af(r,A) = Cff(rr,A,0)/ a 2(r). The integral
transform of Af(r,A) is the angular power spectrum. Rf(r,r') and Af(r,A) are
symmetric about the loci r = r' and A =0, respectively, where they achieve their
maximum value of unity. The fall-off of Rf and Af away from their symmetry axes can
be quantified by a correlation length pf(r) and a correlation angle af(r), which we
define to be the halfwidths of the central peaks at the correlation level 0.75. The behavior
of pf is a diagnostic of radial structure, while af measures average plume width.

We use two-point correlation functions of the temperature field (T-diagnostics) and
flow velocity fields (V-diagnostics) to quantify some important aspects of mantle
convection experiments. We explore the dependence of different correlation diagnostics
on Rayleigh number, internal heating rate, radial viscosity variations, temperature-
dependent rheology, phase changes, and plates. For isoviscous flows in an annulus, we
show how radial averages of UT, pr, and aT scale with Rayleigh number for various
internal heating rates. A rapid 10-fold to 30-fold viscosity increase with depth yields
weakly stratified flows, quantified by q., which is a measure of radial flux. The
horizontal flux diagnostic a,, reveals that the flow organization is sensitive to the depth
of the viscosity increase. We illustrate that T-diagnostics, which are more easily relatable
to geophysical observables, can serve as proxies for the V-diagnostics. A viscosity
increase with depth is evident as an increase in the T-diagnostics in the high-viscosity
region. For numerical experiments with a temperature-dependent rheology we employ a
mobilization scheme for the upper boundary layer. Temperature dependence does not
appreciably perturb the a-diagnostics or aT in the convecting interior. Changes in the
radial correlation length are two-fold. First, the greater viscosity of cold downwellings



leads to an increase in height and width of the radial correlation maximum near the top.
Second, the increase in pT associated with a viscosity jump is markedly reduced. An
endothermic phase transition manifests itself in the correlation diagnostics as a local
minimum in a, and pT and local maxima in UT and aT around the phase transition
depth. Temperature-dependent rheology reduces the amount of layering, however, the
phase-change induced layering is still apparent in the two-point correlation diagnostics.
When the phase change coincides with a rapid viscosity increase the effects of the latter
dominate. We investigate the influence of surface plates on the organization of mantle
flow. Plates whose geometries evolve with time are modeled by using a temperature-
dependent viscosity combined with weak zones (small regions of low viscosity) advected
by the flow. The two-point correlation diagnostics obtained from these flows are similar
to the temperature-dependent runs with a mobilized upper boundary layer. Differences
include an increase in au and aT near the surface, and a shift of the maximum in a. to
shallower depths. The main influence of plates is to organize the large-scale flow
structure. This is best documented in the angular power spectrum, which has more power
concentrated at low wavenumbers. We also quantify some statistics of the plate system,
such as plate-size and relative plate-velocity distributions. Average plate velocities
decrease nearly monotonically with increasing plate size for cases without a viscosity
stratification. Viscously stratified systems exhibit a more uniform average plate-velocity
distribution. Comparing plate system statistics from numerical convection calculations to
the plate tectonic record for the past 120 Ma favors models with a 30-fold viscosity
increase in the lower mantle over those with a viscosity that is constant with depth.

We calculate the two-point moment functions for global and regional models of
seismic shear velocity heterogeneity, 8#(r,.2). The radial correlation function is least
sensitive to the low-pass filtering required when comparing convection experiments to
low-resolution seismic images, making it the most useful tool for comparisons between
the two. As long as thermal anomalies are predominantly responsible for seismic
velocity heterogeneity, a direct comparison between pr and pp is meaningful. We find
significant differences between the tomographic models, which frustrate a detailed
interpretation of individual features of pp. The overall morphology of the pp-profiles,
however, whereas consistent with pT curves for convection models with a 30-fold to
100-fold viscosity increase at 670 km depth, rules out convection models with a viscosity
that is constant with depth. We define stratification indices for the radial correlation
length, S(p), and average radial flux, S(lul), at 670 km depth. Using stratification values
for the seismic models (S(pp) 0.12), we infer S(ul) 0.1, indicating that the present-
day style of convection is dominantly whole-mantle. Together with A(ias), a measure
of the asymmetry of the radial flux distribution at 670 km depth, S(Iul) furthermore
suggests that it is unlikely for the earth to be in an intermittently layered regime.
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CHAPTER 1

INTRODUCTION

One goal of structural seismology is to map the aspherical variations in the seismic

wave speeds in sufficient detail to resolve diagnostic properties of the mantle convection.

The most fundamental issue, posed forty-three years ago by Birch [1951], is the degree to

which the large-scale flow is stratified by changes in mineralogical phase and/or bulk

chemistry across the mid-mantle transition zone from depths of 400 to 700 km. The first

data on seismic heterogeneity directly addressing this issue became available in the mid-

1970's through early attempts to detect the penetration of cold, subducted lithosphere into

the lower mantle beneath zones of plate convergence [Jordan and Lynn, 1974; Jordan,

1977]. Recent tomographic studies of subduction zones in the western Pacific [van der

Hilst et al., 1991; Fukao et al., 1992] and beneath the Americas [Grand, 1987; Grand,

1994] have confirmed the existence of high-velocity anomalies, presumably slab-related,

extending below the 660-km seismic discontinuity in several subduction regions. In other

locations, however, tomographic images seem to reveal near-horizontal high-velocity

anomalies above 660 km, interpreted as slabs deflected sideways by the interface [van der

Hilst et al., 1991; Fukao et al., 1992]. Because of these apparent complexities in the

seismic data pertaining to the deep structure of subduction zones, no consensus has yet

developed regarding the extent to which the 660-km discontinuity forms a barrier to

mantle flow [Olson et al., 1990].

The most plausible mineralogical explanation for the jump in elastic parameters at the

660-km discontinuity is the endothermic dissociation of spinel-structured (Mg,Fe)2SiO 4

(y-olivine) into (Mg,Fe)O (magnesiowiistite) plus perovskite-structured (Mg,Fe)SiO3.

Laboratory measurements of the Clapeyron slope, y, for the spinel - post-spinel transition

yield values of -2.8 MPa/K [Ito and Takahashi, 1989] and -3±1 MPa/K [Akaogi and Ito,

1993]. Convection calculations incorporating phase-change dynamics with two-



dimensional [Christensen and Yuen, 1985; Machetel and Weber, 1991; Peltier and

Solheim, 1992; Zhao et al., 1992] and three-dimensional [Honda et al., 1993; Tackley et

al., 1993; Tackley et al., 1994] flow geometries indicate that an endothermic transition of

this magnitude acts to inhibit convection through the phase boundary.

The 660-km discontinuity could also mark a compositional boundary between the

upper and lower mantle [Richter and Johnson, 1974], at least in some average sense

[Jeanloz, 1991]. The strongest evidence favoring a chemical difference is a discrepancy

between the lower-mantle density profile predicted for an upper-mantle (pyrolitic)

composition and the seismically determined density profile. According to some studies

[Jeanloz and Knittle, 1989; Stixrude et al., 1992], the former is 3-7% lower than the

latter, implying an increase in either the iron/magnesium ratio or the silica content of the

lower mantle, or both (see, however, Chopelas and Boehler [1992]). Numerical

simulations suggest that a density difference near the upper end of this range would imply

layered convection with deformation of the chemical boundary but very little mass

exchange [Christensen and Yuen, 1984], while a density contrast near the lower end

might be maintained by some form of penetrative convection [Christensen and Yuen,

1984; Silver et al., 1988]. The seismic mapping of subduction zones has been sufficiently

ambiguous that compositionally stratified models-even the end-member hypothesis of

layered convection-remain in contention.

Another mechanism for impeding vertical flow is an increase of viscosity with depth.

Most radial viscosity structures obtained from modeling the earth's non-hydrostatic geoid

[Hager et al., 1985; Hager and Richards, 1989; Ricard and Wuming, 1991; King and

Masters, 1992; Forte et al., 1993] exhibit a rapid viscosity increase from the upper to the

lower mantle.

Seismic observations have been a principal tool for probing the earth's deep interior

and addressing questions regarding the organization of convection currents in the mantle.

Global maps of mantle shear-wave velocity heterogeneity, 31, [e.g., Tanimoto, 1990;

Masters et al., 1992; Su et al., 1992] provide snapshots of mantle dynamics, assuming

that 8# is proportional to convectively induced temperature anomalies ST. (This



assumption should be a good working hypothesis in the mantle's interior away from the

chemical boundary layers at the free surface and core-mantle boundary.) Numerical

convection experiments, on the other hand, give insight into the dynamics of the mantle

flow system. Because our understanding of mantle convection is still crude, numerical

simulations cannot reproduce the exact geographical details, but only the grosser aspects

of the flow pattern. Therefore, quantification schemes that measure the effect of different

parameters on convective flow organization and structure are necessary. Examples of

flow diagnostics are the angular power spectrum [e.g. Jarvis and Peltier, 1986; Tanimoto,

1990] and the root-mean-square (rms) variation on horizontal surfaces [Honda, 1987].

Recently, Jordan et al. [19931 and Puster and Jordan [1994] have introduced two-point

correlation diagnostics, the radial and angular correlation functions, that are invariant

with respect to the temperature coefficient of shear-wave speed, (d# / dT)p, and thus

well-suited for comparison to seismic observations.

In chapter 2 we introduce the complete spatio-temporal two-point correlation

functions of the temperature and flow velocity fields as tools for studying high-Rayleigh

number fluid flow and illustrate the concepts with an example calculation of infinite

Prandtl number thermal convection in a cylindrical annulus. We also investigate the

influence of geometry on the flow by quantifying the second-order statistics of 2D and

3D convection calculations.

Chapter 3 applies this formalism to characterize the second-order statistics of mantle

convection experiments encompassing a large number of different effects. In particular,

we quantify the effects of Rayleigh number and internal heating rate and present scaling

relations for different correlation diagnostics. We also investigate the influence of both

depth-dependent and depth- and temperature-dependent viscosities on flow structure and

correlation functions. A lot of recent attention has been paid to mantle flow models

incorporating the effects of phase changes. We show that two-point correlation functions

are sensitive indicators of the degree of flow stratification due to an endothermic phase

boundary. The influence of surface plates on the mantle flow is another important effect.



We present flow models of rigid surface plates, whose geometries evolve with time and

characterize the second-order properties of the resulting flow fields.

In chapter 4 we quantify the second-order properties of several recent global and

regional seismic earth models. As global tomographic models can only constrain the

large-scale pattern of mantle flow it is important to investigate the effects of filtering on

two-point correlation diagnostics. We also address the issues of model resolution and

model parameterization. Using two-point correlation functions also allows us to

quantitatively compare the different seismic structures.

Chapter 5 gives a brief summary of the main results of chapters 3 and 4 and discusses

some implications about the importance of various effects on the style of mantle

convection.



REFERENCES

Akaogi, M., and E. Ito, Refinement of enthalpy measurement of MgSiO3 perovskite and
negative pressure-temperature slopes for perovskite-forming reactions, Geophys. Res.
Lett., 20, 1839-1842, 1993.

Birch, F., Remarks on the structure of the mantle, and its bearing upon the possibility of
convection currents, Trans. Am. Geophys. Union, 32, 533-534, 1951.

Chopelas, A., and R. Boehler, Thermal expansivity in the lower mantle, Geophys. Res.
Lett., 19, 1347-1350, 1992.

Christensen, U. R., and D. A. Yuen, The interaction of a subducting lithospheric slab with
a chemical or phase boundary, J. Geophys. Res., 89, 4389-4402, 1984.

Christensen, U. R., and D. A. Yuen, Layered convection induced by phase transitions, J.
Geophys. Res., 90, 10, 1985.

Forte, A. M., A. M. Dziewonski, and R. L. Woodward, Aspherical structure of the
mantle, tectonic plate motions, nonhydrostatic geoid, and topography of the core-
mantle boundary, in Dynamics of Earth's deep interior and Earth rotation, edited by
J. L. LeMouel, D. E. Smylie, and T. Herring, Geophysical Monograph, 72, pp. 135-
166, 1993.

Fukao, Y., M. Obayashi, H. Inoue, and M. Nenbai, Subducted slabs stagnant in the
mantle transition zone, J. Geophys. Res., 97,4809-4822, 1992.

Grand, S. P., Tomographic inversions for shear structure beneath the North American
plate, J. Geophys. Res., 92, 14065-14090, 1987.

Grand, S. P., Mantle shear structure beneath the Americas and surrounding oceans, J.
Geophys. Res., 99, 11591-11621, 1994.

Hager, B. H., R. W. Clayton, M. A. Richards, R. P. Comer, and A. M. Dziewonski,
Lower mantle heterogeneity, dynamic topography and the geoid, Nature, 313, 541-
545, 1985.

Hager, B. H., and M. A. Richards, Long-wavelength variations in Earth's geoid; physical
models and dynamical implications, Philos. Trans. R. Soc. London, Ser. A, 328, 309-
327, 1989.

Honda, S., The RMS residual temperature in the convecting mantle and seismic
heterogeneities, J. Phys. Earth, 35, 195-207, 1987.

Honda, S., D. A. Yuen, S. Balachandar, and D. Reuteler, Three-dimensional instabilities
of mantle convection with multiple phase transitions, Science, 259, 1308-1311, 1993.

Ito, E., and E. Takahashi, Postspinel transformations in the system Mg2SiO4-Fe2SiO4
and some geophysical implications, J. Geophys. Res., 94, 10637-10646, 1989.

Jarvis, G. T., and W. R. Peltier, Lateral heterogeneity in the convecting mantle, J.
Geophys. Res., 91, 435-451, 1986.

Jeanloz, R., Effects of phase transitions and possible compositional changes on the
seismological structure near 650 km depth, Geophys. Res. Lett., 18, 1743-1746, 1991.



Jeanloz, R., and E. Knittle, Density and composition of the lower mantle, Philos. Trans.
R. Soc. London, Ser. A, 328, 377-389, 1989.

Jordan, T. H., Lithospheric slab penetration into the lower mantle beneath the Sea of
Okhotsk, J. Geophys., 43, 473-496, 1977.

Jordan, T. H., and W. S. Lynn, A velocity anomaly in the lower mantle, J. Geophys. Res.,
79, 2679-2685, 1974.

Jordan, T. H., P. Puster, G. A. Glatzmaier, and P. J. Tackley, Comparisons between
seismic Earth structures and mantle flow models based on radial correlation functions,
Science, 261, 1427-1431, 1993.

King, S. D., and T. G. Masters, An inversion for radial viscosity structure using seismic
tomography, Geophys. Res. Lett., 19, 1551-1554, 1992.

Machetel, P., and P. Weber, Intermittent layered convection in a model mantle with an
endothermic phase change at 670 km, Nature, 350, 55-57, 1991.

Masters, T. G., H. Bolton, and P. Shearer, Large-scale 3-dimensional structure of the
mantle, Eos Trans. AGU, 73, 201, 1992.

Olson, P., P. G. Silver, and R. W. Carlson, The large-scale structure of convection in the
Earth's mantle, Nature, 344, 209-215, 1990.

Peltier, W. R., and L. P. Solheim, Mantle phase transitions and layered chaotic
convection, Geophys. Res. Lett., 19, 321-324, 1992.

Puster, P., and T. H. Jordan, Stochastic analysis of mantle convection experiments using
two-point correlation functions, Geophys. Res. Lett., 21, 305-308, 1994.

Ricard, Y., and B. Wuming, Inferring the viscosity and 3-D density structure of the
mantle from geoid, topography and plate velocities, Geophys. J. Int., 105, 561-571,
1991.

Richter, F. M., and C. E. Johnson, Stability of a chemically layered mantle, J. Geophys.
Res., 79, 1635-1639, 1974.

Silver, P. G., R. W. Carlson, and P. Olson, Deep slabs, geochemical heterogeneity, and
the large-scale structure of mantle convection; investigation of an enduring paradox,
Ann. Rev. Earth Planet. Sci., 16, 477-541, 1988.

Stixrude, L. S., R. J. Hemley, Y. Fei, and H. K. Mao, Thermoelasticity of silicate
perovskite and magnesiowustite and stratification of the earth's mantle, Science, 257,
1099-1101, 1992.

Su, W.-J., R. L. Woodward, and A. M. Dziewonski, Joint inversions of travel-time and
waveform data for the 3-D models of the Earth up to degree 12, Eos Trans. AGU, 73,
201, 1992.

Tackley, P. J., D. J. Stevenson, G. Glatzmaier, and G. Schubert, Effects of an
endothermic phase transition at 670 km depth in a spherical model of convection in
the Earth's mantle, Nature, 361, 699-704, 1993.

Tackley, P. J., D. J. Stevenson, G. A. Glatzmaier, and G. Schubert, Effects of multiple
phase transitions in a 3-D spherical model of convection in the Earth's mantle, J.
Geophys. Res., 99, 15877-15901, 1994.

Tanimoto, T., Long-wavelength S-wave velocity structure throughout the mantle,
Geophys. J. Int., 100, 327-336, 1990.



15

van der Hilst, R. D., R. Engdahl, W. Spakman, and G. Nolet, Tomographic imaging of
subducted lithosphere below Northwest Pacific island arcs, Nature, 353, 37-43, 1991.

Zhao, W., D. A. Yuen, and S. Honda, Multiple phase transitions and the style of mantle
convection, Phys. Earth Planet. Inter., 72, 185-210, 1992.



16



CHAPTER 2

TWO-PoINT CORRELATION FUNCTIONS

INTRODUCTION

Seismic observations have been a principal tool for probing the earth's deep interior

and addressing questions regarding the organization of convection currents in the mantle.

The features of mantle shear-wave velocity heterogeneity, 8#, are now being mapped on

a global scale with increasing precision and resolution [e.g., Tanimoto, 1990; Masters et

al., 1992; Su et al., 1994] provide snapshots of mantle dynamics, assuming that S# is

proportional to convectively induced temperature anomalies ST. This should be a good

approximation in the interior away from the boundary layers, but it is invalid in the

uppermost mantle, where the continental chemical boundary layer exerts a strong control

on aspherical heterogeneity [Jordan, 1981], and perhaps at the base of the mantle, where

chemical heterogeneity may also dominate [Jordan, 1979; Lay, 1989]. Numerical

convection experiments, on the other hand, give insight into the dynamics of the mantle

flow system. Because mantle convection is spatially and temporally chaotic [e.g.,

Vincent and Yuen, 1988] and our understanding of mantle dynamics is still crude,

numerical simulations cannot reproduce the exact geographical details, but only the

grosser aspects of the flow pattern. Therefore, quantification schemes that measure the

effect of different parameters on convective flow organization and structure are

necessary. Attention has thus far been focused primarily on power spectra [e.g. Jarvis

and Peltier, 1986; Tanimoto, 1990] and the root-mean-square (rms) variation on

horizontal surfaces [Honda, 1987]. Recently, Jordan et al. [1993] and Puster and Jordan

[1994] have introduced two-point correlation diagnostics, the radial and angular

correlation functions, that are invariant with respect to the temperature coefficient of



shear-wave speed, (0# / dT)p, and thus well-suited for comparison to seismic

observations.

The spatial two-point correlation functions are useful for capturing the flow

characteristics of mantle convection experiments in a succinct yet comprehensive

manner. Instead of gigabytes of snapshots of the time-dependent flow field, useful for

obtaining qualitative insight into a convective system, two-point correlation functions

provide a means for quantitative analysis of a flow regime that can be directly compared

to seismic observations.

A statistical approach for analyzing fluid flow has been used for many years in the

study of turbulence (see Monin and Yaglom [1971; 1975] for a comprehensive summary).

The focus of statistical fluid mechanics has been on moment functions, or equivalently

power spectral densities, arising from a stochastic analysis of the equations of fluid

dynamics. The simplest examples are the Reynolds equations, which are derived by

ensemble-averaging the Navier-Stokes equations for an incompressible fluid. Moments

arising in this context are, for example, the mean velocity, (v(r,t)), or the covariance of

velocity fluctuations, (3v;(r,t)8vj(r' ,t)). The fundamental problem arising from

statistical averaging of the momentum equations is that any finite system of equations

contains more unknowns than equations (a problem referred to as the closure problem in

the turbulence literature) and is thus unsolvable. We, therefore, determine the statistical

properties of the flow by analyzing numerical solutions of the primitive equations instead.

In the following section we introduce the complete spatio-temporal two-point

correlation functions of the temperature and flow velocity fields as tools for studying

high-Rayleigh number fluid flow and illustrate the concepts with an example calculation

of infinite Prandtl number thermal convection in a cylindrical annulus.

DEFINITIONS

We consider a time-dependent random field, f(r, S2, t), defined on a spherical shell

[S2=(e,(P), 0 19 , -ir<(p r] or cylindrical annulus [=p, -x <p 5ic]



extending over a radial interval b r 1. Examples are the temperature distribution,

T(r,2,t), or the radial component of the flow velocity, u(rDt), obtained from

numerical simulations of high Rayleigh number convection. To characterize the

statistical properties of f(r,S,t), represented by the N-dimensional probability density

function, px1 ...XN (f), we can calculate the N-point moment functions,

Cf---f(X1,...,XN) = ([f(X1)-f(X)]...[f(XN)-(f(XN))]), (2.1)

where X = (r,2,t), and the brackets (...) denote ensemble average. While a complete

knowledge of Px1 ...XN (f) is desirable, much can be learned from examining its low-order

moments. In particular, we focus on determining the one-point and two-point moment

functions. If f(r,Q,t) is a Gaussian random field, second-order statistics completely

describe its properties. Conversely, if f(r,D,t) is characterized by a distinctly non-

Gaussian probability distribution, bimodal for example, the probability that the snapshot

estimates will differ from the ensemble average can be significant. We invoke an ergodic

hypothesis [Beran, 1968], which allows us to estimate the statistical properties of a

random process using observations from a single realization, replacing ensemble averages

with time averages. Ergodicity demands that all states available to an ensemble of

realizations be available to each realization. While difficult to prove formally, ergodicity

is commonly assumed in the analysis of turbulent fluid flow [e.g., Monin and Yaglom,

1971].

In estimating the low-order properties of pX,...xN (f) we further assume that

f(r,jt) is (weakly) stationary with respect to temporal translations and rigid-body

rotations. The physical meaning of stationarity is that all conditions governing the

physical process which has the function f(r,S2,t) as its numerical characteristic will be

time-independent and rotationally symmetric. For the example of thermal convection in a

spherical shell this implies that reference states, internal heating rates, and boundary

conditions are temporally invariant and rotationally symmetric. Furthermore, the average

flow characteristics (e.g., mean temperature, average kinetic energy) must show no

secular behavior over time. For each radius, we define the mean value



j Jf(r,f2,t)df dt / J Jd dt =f(r), and the angular fluctuation, 6f(r,DS,t) = f(r,S,t) -

f(r). Temporal and rotational invariance of the underlying statistics imply that

6f(r,S2,t) has zero mean, (5f(r,D,t)) = 0, and that its spatio-temporal autocovariance or

two-point correlation function,

Cff(r,r',A,t*) = (f(rD,t)3f(r',2',t')), (2.2)

depends only on radial coordinates, angular separation A = arccos(2 -S'), and time lag

t* = t-t'.

Most of the useful information about spatial characteristics of the field is contained in

three subfunctions of Cf (r, r', A, t*): the rms variation,

af(r) = (8f2(rt) 2 = Cg(r,r,0,0), (2.3)

the radial correlation function,

Rf(rr') = Cff(r,r',O,O) / af(r) af(r'), (2.4)

and the angular correlation function,

Af(r,A) = Cff(r,r, A,0) / o(r). (2.5)

Both radial and angular correlation functions are invariant with respect to scaling by a

radially varying function, h(r) # 0; i.e., Rf = Rf, and Af = Af, where f(r) =

f(r)/h(r). Rf(r,r') and Af(rA) are symmetric about the loci r = r' and A = 0,

respectively, where they achieve their maximum value of unity. As their radial and

angular separations increase, structures on spherical surfaces decorrelate at a rate

measured by a correlation length, pf(r), and a correlation angle af(r), which we define

to be the halfwidths of the central peaks at the correlation level x < 1:

pf = min[orlI:Rf(r-or/ Vi,r+r/'JZ)=x], (2.6)

af = min[IAI:Af(r,A)=x]. (2.7)



The (Z scaling factor appears in (2.6) because we measure the halfwidth of Rf(r,r')

perpendicular to its diagonal. For 0.5 < x < 0.9, the diagnostic properties of pf(r) and

af(r) are insensitive to the specific choice of the correlation level; we adopt x = 0.75.

Rotational invariance implies the existence of an angular power spectrum, Sf(r,l),

which can be obtained by a suitable transform of Af (r, A). In a spherical geometry, the

nondimensional wavenumber is the spherical-harmonic degree I = 1,2,... , and { Sf } are

the coefficients in the Legendre expansion

1 00

Af(r, A) = - I Sf (r,1) P,(cos A). (spherical domain) (2.8a)
4 xE c (r) 1,

In the case of a circular geometry, the harmonic functions are cosines, and the expression

is

20
Af(r, A) = 2 Sf (r,l) cos(lA). (cylindrical domain) (2.8b)

o (r) ,

The simplest two-point moment function involving temporal correlations is,

7f(r,t*) = Cff(r,r,0,t*)I /a(r). (2.9)

T f(r, t*) is symmetric about t*= 0, the correlation time, iy (r), is defined as the halfwidth

of 7 f(r,t*) at the correlation level 0.5, i.e., rf(r) = min[lt*I : 7 f(r,t*) = 0.5].

We have used these two-point correlation functions to characterize time-dependent,

high-Rayleigh number convection in a cylindrical annulus. In particular, we have

calculated two-point correlation diagnostics of the temperature field (T-diagnostics) and

of the radial (u) and horizontal (w) components of the flow velocity field (V-diagnostics).

The stochastic analysis of fluid flow in terms of two-point moment functions can be

extended in an obvious way to the calculation of higher order moments, which constrain

the non-Gaussian properties of the fields.

EXAMPLE CALCULATION

We illustrate the concepts developed in the previous section with an example of

convection at high Rayleigh number in a cylindrical shell of inner radius b = 0.5 having a



30-fold viscosity increase at depth z = 1 - r = 0.25. The coupled system of equations

describing incompressible convection at infinite Prandtl number is solved using a version

of the ConMan finite element code of King et al. [1990] adapted to cylindrical

coordinates (r,p) by Gurnis and Zhong [1991]. The governing equations for the

conservation of mass, momentum and energy in cylindrical geometry can be found in

Appendix A. Top and bottom boundaries are free-slip and isothermal. For Boussinesq

convection, Bdnard and internal-heating Rayleigh numbers are defined as RaB =

pogad3ATKy and RaH = RaB Hid 2 /kAT, respectively. Here po is the reference

density, g is the gravitational acceleration, a is the thermal expansivity, AT is the

temperature drop across the fluid layer of thickness d, icis the thermal diffusivity, 77 is the

dynamic viscosity, H is the heating rate per unit volume, and k is the thermal

conductivity. Based on the viscosity in the top layer the Rayleigh numbers for this run

are RaB = 5x10 6 and RaH = 1.5x 108, with an internal heat generation that is 83% of the

time-averaged surface heat flux. The effective Rayleigh number, Ragf, defined as the

Benard-Rayleigh number using the time-averaged strain-rate-averaged viscosity

[Christensen, 1984] is 1.1x106. The finite element mesh used for this calculation

consists of 532x 56 elements.

We monitored the volume-averaged temperature, total kinetic energy, and surface and

bottom heat flux throughout the simulation. We assumed stationarity was achieved when

the running means of these quantities showed no significant secular change. Figure 2.1

displays three snapshots of the temperature field T(r, p, t) and velocity field v(r, P,t)

taken at widely separated times in the stationary regime. The temperature fields are

characterized by a set of four or five strong, nearly vertical upwellings in the high-

viscosity lower zone, which narrow and are distorted as they travel through the low-

viscosity (upper) zone, and a more numerous set of downwellings, which spread out and

become diffuse upon entering the high-viscosity region. Upwellings and downwellings

in the low-viscosity upper layer are regions of the highest radial velocities, while

horizontal velocities are largest near the surface. Flow velocities in the high-viscosity

layer are much smaller than in the upper layer. Weaker downwellings, unable to



penetrate the viscosity barrier at mid-depth, lead to horizontal return flow in the upper

half of the annulus.

For temporal averaging to extract faithfully the low-order ensemble properties, it is

important that a sufficiently long time series of the flow field is available. After the

convection reached stationarity the run was continued for 59 overturn times, defined as

the time needed for a fluid parcel traveling at the rms-velocity to traverse the layer

[Balachandar and Sirovich, 19911. We extracted 167 snapshots at equal time intervals

from this part of the run. We subtracted the mean radial variation in temperature from

each snapshot to form a temperature anomaly 3T(r,p,t) and averaged the products

3T(r, T, t) ST(r', 9', t') over t and p for a fixed angular separation A = V'-p and

temporal separation t* = t'-t to obtain C7T (r, r', A, t*). Most of the spatial information

contained in C7T(r,r',A,O) is accessible by viewing its subfunctions RT(r,r') and

AT(r, A), depicted in Figures 2.2a and 2.2d, and computed according to equations (2.4)

and (2.5), respectively. Similarly, we calculate the V-diagnostics R.(r,r'), A,(r, A) and

R,(r,r'), A,,(r,A), shown in Figures 2.2b and 2.2e and Figures 2.2c and 2.2f,

respectively. The normalized angular power spectra ST(r,l)/uj, S,(r,l)/u., and

S,(r,l)/o calculated from the angular correlation functions via equation (2.8b) are

shown in Figures 2.2g-2.2i. Information on the temporal correlation structure as captured

by 7*T(r,t*) is shown in Figure 2.3. Figure 2.4 plots the horizontally averaged

temperature, T , the rms variation of radial and horizontal velocity, u and a,, the rms

temperature variation, oT, and the radial correlation length, Pr, and horizontal

correlation angle, aT, of the temperature field, as a function of normalized depth z. We

check whether the flow is in a stationary regime by comparing two-point correlation

diagnostics calculated for subsets of the ensemble.

The weak convective stratification caused by the viscosity jump at z = 0.25 is

manifested in all two-point diagnostics of the temperature and velocity fields. It also

leads to a kink in the T profile, evident in Figure 2.4a. u, which measures the radial

flux, peaks halfway through the upper layer and shows a distinct kink at the viscosity

interface (Figure 2.4b). (Note that 0u uses horizontal averages of u2(r, V), whereas the



radial flux diagnostic defined by Peltier and Solheim [1992] is based on horizontal

averages of lu(r, (p)l.) For comparison, the unnormalized, time-averaged radial mass flux

is also plotted in Figure 2.4b.) U, shows local maxima near the bottom and the top,

associated with increased horizontal velocities at the boundaries of convection cells.

Another local maximum is evident directly above the viscosity increase. This feature is

related to horizontal return flow induced by weak downwellings unable to penetrate the

viscosity barrier. UT shows a weak maximum just above the interface, associated with

the disruption of the downwellings at the base of the low-viscosity zone (Figure 2.4d).

The peak-width of UT in the lower boundary layer is larger than the upper-boundary peak

owing to the smaller effective Rayleigh number in the high-viscosity zone. Away from

the boundary layers, AT is dominated by plumes, and aT measures the effective plume

halfwidth, which varies from 0.04 radian (2.30) in the interior of the high-viscosity zone

to as low as 0.01 radian (0.6*) in the upper part of the low-viscosity zone (Figure 2.4f).

Near the top and bottom boundaries the increased angular correlation associated with

horizontal flow in the boundary layers causes aT to increase and the spectrum to redden

[Jarvis and Peltier, 1986]. While aT describes the angular correlation structure at small

lags, AT, A. and A, (or equivalently ST, S. and S.) contain useful information on the

average cell size at larger angular separations. An octapolar pattern, strongest in A.,

indicates that on average the flow is organized in eight convection cells (Figures 2.2d-

2.2f). The normalized angular power spectra, ST/o#, Su/o and S,/ad attain their

maxima at angular degree 4, as expected (Figures 2.2h-2.2i). This can be also seen in

Figure 2.5, which shows the radial average of the angular power spectrum normalized to

unit power at each depth (i.e. f Sf/u 2rdr) and the angular power spectrum at five

depths normalized accordingly, for ST, Su and Sw.

The temporal correlation (Figure 2.3) also shows the effects of the viscosity increase.

In the high-viscosity layer, 7 T(r, t*) is increased and achieves its maximum in the lower

boundary layer. The correlation time, defined by rT is -0.28 overturn times in the upper

layer, and -0.82 overturn times in the high-viscosity layer. The temporal correlation is

also a useful indicator of episodicities in the flow. The most obvious feature associated



with the stratification is the larger vertical coherence of the flow in the lower layer,

displayed as a distinctive broadening in RT, Ru and R,, and an increase in pr at the

viscosity discontinuity. In the upper layer pr. has a local maximum near the top, which

reflects the strong downwellings and scales with the internal heating rate. In the lower

layer, pr increases monotonically to a maximum at z = 0.41 where the upwelling plumes

are best developed. Rw shows a widening of the central correlation ridge, associated with

increased horizontal flow above the viscosity interface.

As evident from this example, the effects viscous stratification has on the average

flow structure can be quantified by the two-point correlation functions of the temperature

and velocity fields. The velocity field defines flow structure, but it cannot be directly

measured by remote-sensing methods. The radial and angular correlation functions of the

temperature field can be constrained seismically. For the remainder of this study we

therefore focus on the T-diagnostics as a proxy for the V-diagnostics and investigate the

signatures associated with varying different flow parameters on these two-point

correlation functions.

GEOMETRY

The numerical convection calculation described above was performed in a cylindrical

annulus. The earth's mantle, however, is a spherical shell. While the next generation of

supercomputers will provide both the speed and memory required for three-dimensional

mantle convection simulations with temperature-dependent viscosity at earth-like

Rayleigh numbers, current 3D calculations either do not account for a temperature-

dependent rheology [Tackley et al., 1993] or use a limited aspect-ratio Cartesian box

[Tackley et al., 1994] at Rayleigh numbers approximately an order of magnitude below

the earth's. Furthermore, when characterizing the properties of a flow regime, it is

important that the flow evolution is followed for several tens of overturn times

[Balachandar and Sirovich, 1991], a condition not satisfied by most 3D experiments to

date. Lastly, 3D calculations, especially with temperature-dependent rheology, are too



time-consuming to allow a systematic exploration of parameter space, desirable when

quantifying the effects of many variables on the flow structure. For these reasons we

study mantle convection in a cylindrical annulus. It is important, however, to understand

the effects of the two-dimensional geometry on the flow structure as quantified by two-

point correlation functions. In this section we illustrate differences between two-point

correlation diagnostics calculated for flows using a cylindrical annulus (2D) and a

spherical shell (3D), respectively.

Figure 2.6 shows a comparison between the radial and angular correlation functions

calculated according to equations (2.4)-(2.5) for a compressible mantle convection

experiment in a spherical shell [Tackley et al., 1993] and an incompressible run in

cylindrical geometry. Both experiments were performed at a volume-averaged Rayleigh

number [Glatzmaier, 1988] of 1.1 x 106. An endothermic phase change at 670 km depth

with a Clapeyron slope of -4 MPa/K impedes flow across it. Viscosity, thermal

expansivity, and thermal diffusivity vary smoothly with depth. Further details on the

reference state can be found in Tackley et al. [1994]. Both runs are predominantly heated

from within, with 25% and 40% of the time-averaged heat flux supplied from the core for

the 2D and 3D experiments, respectively. The radial correlation functions for the 2D and

3D runs show similar characteristics (Figures 2.6a, b). The effect of the phase transition

is expressed by a pinching of the central correlation ridge at the phase boundary depth.

Below the phase change, the correlation increases in the mid-mantle, reaches another

minimum around 2000 km depth, and widens again in the lowermost mantle. The

angular correlation functions (Figures 2.6c, d) attain a local maximum at the phase

boundary and increase monotonically in the lower mantle. Figure 2.7 shows rms

temperature variation, T, radial correlation length, pT, and horizontal correlation angle,

aT. qT has a local maximum above the phase transition and increases in the lower

mantle attaining a maximum both wider and smaller than the peak in the surface

boundary layer. pr and aT show the same behavior as the radial and angular correlation

functions. One goal of characterizing mantle convection experiments with two-point

correlation functions is a comparison to seismically derived correlation functions.



Seismic models have a limited angular and radial resolution; therefore, we calculated the

two-point correlation functions for fields truncated at angular degree 10 and radial

(Chebyshev) order 13 (Figures 2.7b, d, f). Note that p7 and UT retain most of their

characteristic signatures, while aT is altered more significantly. A detailed investigation

of the effects of filtering on the two-point correlation functions will be presented in

chapter 4.

The signatures of an endothermic phase change (local maximum in UT and aT, local

minimum in pT) and of a viscosity increase with depth (increase in p7 and aT, widening

of the arT-maximum in the high-viscosity region) are evident for both 2D and 3D

experiments. However, some differences in these diagnostics caused by the different

geometries (and possibly the effects of compressibility) are also apparent. The radial

correlation function for the 2D run shows less pinching at the phase boundary and a

smaller increase in the mid-mantle than the 3D run. (The radial numerical resolution of

the 3D run is notably inferior in the lower mantle, especially between -1100 and -2400

km depth where the half-wavelength of the highest-order Chebyshev polynomial reaches

110 km, twice the grid spacing of the 2D run.) These differences in the two-point

correlation functions are caused by the following differences in the flow structures. In

the 3D experiment, the phase transition is only penetrated by cylindrical downwellings

that form at intersections of the sheet-like downwellings. These cylindrical features

broaden as the viscosity increases with depth and surround the core with cold material,

inhibiting hot upwelling plumes [Tackley et al., 1994]. Thus, for the 3D run, the radial

correlation function in the mid-mantle is dominated by cold, cylindrical downwellings.

For the 2D experiment, upwelling plumes are more important for the overall flow

structure. Due to geometry and high viscosity, stable (sheet-like) upwellings contribute

significantly to the radial correlation function in the high-viscosity lower mantle.

Furthermore, the fractional surface-area of the core is larger for the 2D case (50%) than

for the 3D case (35%), making a disruption of upwelling plumes by cold downwelling

material more difficult in two dimensions. Both factors, a change from sheet-like to

cylindrical features in the 3D model and an overemphasis of upwellings in the 2D model,



are responsible for differences in the two-point correlation diagnostics. As we shall see

in chapter 3, a temperature-dependent rheology greatly reduces the importance of

upwellings for 2D flows. It should also result in sheet-like high-viscosity downwellings

(slabs), as opposed to the cylindrical features observed for this 3D experiment. Thus the

differences between the 2D and 3D runs are likely to be diminished for a more realistic

temperature-dependent rheology. Nonetheless, as noted above, the general features of an

endothermic phase change and a viscosity increase with depth are evident in the

correlation diagnostics for both 2D and 3D experiments.

Figure 2.8 shows a comparison of the radially averaged normalized angular power

spectra, S7/UY . It is interesting that the spectral roll-off between angular degrees 25 and

75 is approximately the same for both 2D and 3D experiments. Both runs show an

increase in the power at low angular degrees [Tackley et al., 1993]. Details of the spectra

at low angular degrees (1 20), however, differ between the 2D and 3D experiments both

in location of the spectral maximum and spectral roll-off. As we shall document in the

next chapter, both a viscosity increase with depth and an endothermic phase change are

responsible for this reddening of the angular power spectrum.
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FIGURE CAFTIONS

Fig. 2.1. Three snapshots of the temperature field, T(z,p,t), and velocity field, v(z,(,t),

for convection in a cylindrical shell where the viscosity increases by a factor of 30 at

normalized depth z = I - r = 0.25. Grayscale varies from cold (dark) to warm (light)

dimensionless temperatures (T e [0,1]). Velocity arrows are normalized by the maximum

velocity at each instant. Horizontal velocities were constrained to yield zero net

horizontal fluid motion.

Fig. 2.2. Radial correlation functions, Rf (z, z'), angular correlation functions, Af (z, A),

and normalized power spectrum, Sf (z,1)/o , as functions of normalized depth z = 1 - r,

angular lag A, and angular order 1, calculated from the ensemble-averaged fields.

Rf(z,z') and Af(z,A) are unity on the loci z = z', and A = 0, respectively, and decrease

away from these axes of symmetry. (a) RT, (b) R., (c) R, (d) AT, (e) A., (f) A, (g)

Sr/oT, (h) S/ar, and (i) S,/oT. Contours in (a)-(f) are in increments of 0.2. The

scale in (g)-(i) is logarithmic.

Fig. 2.3. Temporal correlation function, TT(Z,t*), for the same convection run as a

function of normalized depth z = 1 - r, and temporal lag t*. T T (z,t*) is unity for t*= 0,

and decreases away from this axis of symmetry. Contours are in increments of 0.2. The

temporal correlation function is shown only for time-lags up to 30 overturn times, to

focus on the region where it has appreciable amplitude.

Fig. 2.4. (a) Horizontally averaged temperature, T, (b) rms variation of radial velocity,

u, (c) rms variation horizontal of velocity, u0,, (d) rms temperature variation, U-r, (e)

radial correlation length, p7, and (f) horizontal correlation angle, aT, as a function of

normalized depth z = 1 - r for the same convection run shown in Figures 2.1-2.3. The

horizontal dotted line marks the depth of the 30-fold viscosity increase in the stratified



model. For comparison, the (unnormalized, time-averaged) radial mass flux diagnostic of

Peltier and Solheim [1992] is shown as a dashed line in (b). Units are dimensionless

temperature, dimensionless amplitude, dimensionless length, and radians, respectively.

Fig. 2.5. Angular power spectrum, ST(z,l). (a) Radial average of normalized spectrum,

ST /oT2. (b) ST (z = 0.009,1), (c) ST(z = 0.125,1), (d) ST(z = 0.25,1), (e) ST (z = 0.375,1),

and (f) ST(z =0.4 9 1,l). All plots are normalized to a maximum power of unity.

Fig. 2.6. (a), (b) Radial correlation functions, RT(z,z'), and (c), (d) angular correlation

functions, AT(z, A), as functions of depth z and angular lag A for a convection run with

an endothermic phase transition at 670 km depth with a phase buoyancy parameter P =

-0.147. (a), (c) Experiment performed in a cylindrical annulus (2D). (b), (d) Experiment

performed in a spherical shell (3D). Contours are in increments of 0.2.

Fig. 2.7. (a), (b) Rms temperature variation, -rT, (c), (d) radial correlation length, Pr,

and (e), (f) horizontal correlation angle, aT, as a function of depth for the same

convection runs shown in Figure 2.6. (a), (c), and (e) Correlation diagnostics calculated

from unfiltered fields. (b), (d), and (f) Correlation diagnostics calculated from ST

snapshots low-pass filtered at angular degree 10 and radial order 13 prior to averaging.

3D experiment (solid), 2D experiment (dotted). The horizontal dashed line marks the

depth of the phase transition.

Fig. 2.8. Radial averages of the normalized angular power spectrum, Sr/aT for the

same convection runs shown in Figure 2.6. 2D (dashed lines, open symbols) and 3D

(solid lines, filled symbols) experiments. All spectra are scaled to a maximum amplitude

of unity.
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CHAPTER 3

CONVECTION MODELS

INTRODUCTION

Numerical modeling of mantle convection has been used for the past two decades

[e.g., McKenzie et al., 19741 to gain insight in the dynamical behavior of the earth

interior. What makes this system particularly interesting is the wide range of physical

processes and parameters potentially important to mantle flow. In this chapter we will

undertake a systematic study of some of those effects on the flow structure and quantify

the flow characteristics using the two-point correlation functions introduced in chapter 2.

These diagnostics can then be compared to two-point correlation functions obtained from

seismic earth structures and a quantitative assessment about the relative importance of

different processes for mantle convection can be made. This will be the topic of chapter

4.

In the following section we apply the formalism developed in chapter 2 to

characterize fields obtained from convection experiments at B6nard-Rayleigh numbers

ranging from 5 x 104 to 5 x 106 (which includes the transition from a steady to a time-

dependent convective regime) for varying degrees of internal heating, and present scaling

relations for different correlation diagnostics. Other mechanisms modifying the flow

field, which we investigate in subsequent sections are radial variations in viscosity,

temperature-dependent rheology, phase transitions, and plates.

SCALING RELATIONSHIPS

Scaling relations, which play an important role in the study of convection, have been

established for quantities such as the Nusselt number, boundary layer thickness and



horizontal surface velocity; these often obey power-law relations as functions of Rayleigh

number [e.g. Howard, 1966]. In this section we investigate the dependence of isoviscous

flows on internal heating rate and Rayleigh number and establish scaling relations for

various T-diagnostics of the flow properties. Numerical details of the convection

calculations discussed in this section are in Table 3.1.

The time-averaged surface Nusselt number, a measure of convective vigor, is plotted

as a function of Rayleigh number for different amounts of internal heat generation in

Figure 3.1. For a convective system heated partially from within, the conventional

definition of the surface Nusselt number as the surface heat flux normalized by the

conductive heat flux is no longer appropriate. Instead we use a definition based on

boundary layer thickness, Nu3 = c/8, where S is the thickness of the surface boundary

layer and c is a geometrical constant (for Cartesian geometry, c = 1/2; for cylindrical

geometry, c ~ 0.258). This definition for Nu8 can be derived from boundary layer

arguments both for systems entirely heated from below (using the heat flux) and for

systems entirely heated from within (using the ratio of conductive over convective

temperature at the bottom). (For cylindrical geometry, c differs only slightly for the

bottom heated and internally heated systems.) Power-law relations, indicated by straight-

line fits on a log-log scale, are apparent for the Rayleigh-Benard experiments, as well as

for the internally heated runs. The power-law exponent for the bottom heated Nu8 -RaB

fit (0.242) is lower than the value predicted from boundary layer theory (1/3) or power-

law exponents obtained from steady-state or time-dependent convection experiments in a

fixed aspect-ratio geometry. Hansen et al. [1992], for example, obtain a value of 0.315

for experiments in a box of aspect-ratio 1.8. They show that steady-state and time-

dependent experiments yield the same Nusselt number, provided that the cell sizes are the

same and that a sufficiently long time interval is employed when calculating the time-

averaged Nusselt number (several tens of overturn times). They also demonstrate the

dependence of Nu on cell size, which follows closely the predictions of boundary layer

theory [Olson and Corcos, 1980], with an inverse proportionality of Nu and cell size for

aspect ratios larger than unity. This decrease of Nu with increasing cell size is the reason



our power-law exponent is lower than for fixed, small aspect-ratio experiments. The flow

system in an annulus has the freedom to find its preferred aspect-ratio, leading to

convection cells with aspect-ratios larger than unity, which become larger with increasing

Rayleigh number. This dependence of preferred cell size on convective vigor, leads to a

Nu-RaB scaling law with a power law exponent lower than usually assumed for thermal

history modeling of the earth, which would affect the results of parameterized convection.

For runs partially heated from within, the preferred cell-aspect-ratio changes less with

increasing Rayleigh number leading to a Nu-RaB scaling law with a power law exponent

larger than for the B6nard case. In Figure 3.1b we use a Rayleigh number based on the

heat flux (Q), RaQ = RaB Qd/kAT, [e.g., O'Connell and Hager, 1980], which is more

appropriate than RaB when comparing experiments with different amounts of internal

heat generation. Least-squares fit parameters for the Nusselt number - Rayleigh number

scaling relations are given in Table 3.2.

Figure 3.2 shows the variation of the two-point correlation diagnostics, UT, pr, and

aT, for different amounts of internal heating, R aH/RaB, at constant Bdnard-Rayleigh

number, RaB = 5 x 106. Increasing the amount of internal heating leads to an increase in

the upper boundary layer peak in UT and a simultaneous decrease in the lower boundary

layer peak. The maximum in pr, which for internally heated experiments is near the top

boundary, also increases with internal heat generation. The average plume half-width,

measured by aT, grows with depth for internally heated runs and is largest for the

highest RaH/RaB. The features observed in the T-diagnostics are caused by downwellings

whose strength and number increases with growing internal heating rate leading to their

dominance over upwellings and resulting in the asymmetries observed above. For

internally heated experiments, contributions to aT for example, are primarily due to

downwellings; as these cold plumes sink toward the bottom boundary they widen leading

to an increase in aT. The observed asymmetry in the correlation diagnostics for the

bottom heated run shows the effects of the cylindrical geometry (for Cartesian geometry

the correlation diagnostics are symmetric about mid-depth). Figure 3.3 shows the

influence of varying the Bnard-Rayleigh number on the T-diagnostics, for Rau/RaB =



15. All three diagnostics show the largest asymmetry due to internal heating at the lowest

Rayleigh number, which for constant Ran/RaB has the largest internal heating fraction

(see Table 3.1). With increasing Rayleigh number boundary layers become thinner,

resulting in an overall decrease in the magnitude of UT, p7, and aT. The radial

correlation length (Figure 3.3b), while not a direct measure of boundary layer thickness,

is influenced by the strength of downwellings, which are more easily distorted as plumes

become thinner. The correlation angle (Figure 3.3c) measures average plume width and

is thus directly related to boundary layer thickness and Rayleigh number.

Figures 3.4-3.6 show the scaling behavior for radial averages of rms temperature

variation, UT, radial correlation length, pr, and correlation angle, UT, for Rayleigh

numbers, RaQ, varying over more than two orders of magnitude and for different internal

heating rates. Least-squares fit parameters for the power laws relating T, Pir and ZT to

RaQ are given in Table 3.2. All of the two-point correlation diagnostics decrease with

increasing Rayleigh number. T shows the least variability with respect to internal

heating (Figure 3.4). Not only does p vary more strongly for the different internal

heating rates, also evident in Figure 3.2, but there is also a difference between

experiments that lead to a steady-state and runs in a time-dependent regime. We obtained

steady-state results only for the Rayleigh-Bdnard experiments at RaB below 10. The

large aspect ratio of our computational domain [e.g., Hansen and Ebel, 1988], the annular

geometry, and internal heating lead to time-dependent solutions for most cases. The

variation of UYT with RaQ is shown in Figure 3.6. Again, a difference in the power-law

relations for steady-state and time-dependent Rayleigh-Bnard experiments is apparent,

while both the Nu-Ra and the iT-RaQ scaling law show no change in power-law

behavior between the steady and time-dependent regimes.

As the results presented in this section make clear, varying the amount of internal

heating and the Rayleigh number leave distinct fingerprints on the correlation diagnostics

of the temperature field. While one might hope to infer such fundamental parameters as

the average Rayleigh number or the average internal heating fraction of the earth's mantle

from comparing seismic observations of pp(r) or agp(r) to those derived from
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convection calculations, the actual situation is more complicated. As we shall see below,

other effects such as depth- and temperature-dependent viscosity also have a significant

influence on flow structure and two-point correlation diagnostics.

DEPTH- AND TEMPERATURE-DEPENDENT VISCOSITY

Convection in the earth's mantle is, of course, far more complicated than what is

modeled in the experiments above. Those experiments made no attempt to mimic details

of mantle flow, but rather to isolate different parameters and study their influence on the

correlation diagnostics. As demonstrated above, two-point correlation functions are

sensitive indicators of modulations in the flow characteristics introduced by Rayleigh

number and internal heating rate.

In this section we investigate the effects on mantle flow due to variations of viscosity

with depth and temperature. Observational evidence from studies of the earth's geoid

[Hager et al., 1985; Hager and Richards, 1989; King and Masters, 1992] indicates that

the radially averaged viscosity increases with depth. Experimental studies of mantle

constituents such as olivine show that viscosity is strongly temperature-, pressure-, and

probably stress-dependent (see Ranalli, [1991]for a recent review). We explore the

effects of radial viscosity variations on the flow structure using simple two-layer

viscosity models. The temperature dependence of viscosity leads to cold, high-viscosity

downwellings and hot, low-viscosity upwellings. Modeling subduction of strong, high-

viscosity plates in a dynamically self-consistent way in a geometry where plate

boundaries are free to rearrange themselves will be investigated in a later section. Here

we focus on the influence of strong, cold, high-viscosity downwellings ("slabs") on the

flow structure.

One way of modeling the earth's strong, viscous lithosphere in a numerical simulation

is to employ a temperature-dependent viscosity. To study the effects of slabs we

parameterize the temperature dependence of viscosity as ?1 (T) =

exp[5.23/(T + 0.23)- 5.23/1.23]. The dimensionless constants correspond to an



activation energy of 52.2 kJ, a surface temperature of 273 K, and a superadiabatic

temperature drop of 1200 K. Using experimentally determined values for the activation

energy (for olivine Ashby and Verrall [1977] find an activation energy of 522 kJ) would

lead to extreme viscosity variations, which probably exaggerate actual mantle conditions,

since at low temperatures the dominant deformation mechanism no longer follows an

exponential creep law. Furthermore, the stress-weakening of viscosity due to non-

Newtonian effects partially counteracts the temperature behavior. Christensen [1984]

showed that for steady-state experiments, non-Newtonian, temperature-dependent

rheology and Newtonian, temperature-dependent rheology with reduced activation energy

yielded similar temperature and flow fields. In our calculations we allow viscosity

variations due to temperature by four orders of magnitude; the exponential viscosity law

implies that a cold downwelling of non-dimensional temperature T = 0.25 in a fluid of

ambient temperature T = 0.5 has a viscosity contrast of approximately 40. Even with the

reduced activation energy used here a stagnant lid with little or no surface motion [e.g.,

Nataf and Richter, 1982] would develop in a temperature-dependent viscosity

calculation. Since our focus here is not to model surface plates but rather subducting

slabs, we mobilize the flow near the surface by limiting the maximum viscosity in the

upper boundary layer, 3 b, to a lower value, 7lbl, that enables surface motion; i.e., we use

the viscosity law,

(min[ bl,fl0(r6f1(T)I 1--8b1 r
?1(r,T) = (3.1)

i o(r)?1i(T) b5r<1-8(t

This form is ad hoc, but successful in permitting the significant surface motion important

for allowing boundary layer instabilities to develop, grow and become high-viscosity

downwellings simulating slabs. Furthermore, this formalism does not impose

geometrical constraints onto the convecting system which might introduce artifacts into

the two-point correlation functions, and it is computationally faster than calculations

where the viscosity is both stress- and temperature-dependent. We will see in a later

section that the resulting flow fields have an average structure that is remarkably similar



to experiments where the cold, high-viscosity surface boundary layer consists of variable-

sized plates.

Numerical calculations using a temperature-dependent rheology are more than an

order of magnitude more expensive than those with depth-dependent properties;

therefore, some of the calculations are performed in a semi-annulus with reflecting

boundary conditions rather than a full annulus with periodic boundary conditions. The

smaller computational domain enables us to perform experiments of sufficient length in a

stationary regime. Two-point correlation diagnostics calculated for semi-annulus and

annulus runs were compared for some cases and found to be in close agreement.

Temperature, flow velocity, and viscosity fields for three snapshots from a convection

experiment with depth- and temperature-dependent viscosity taken at widely separated

times in the stationary regime are shown in Figure 3.7. The effective Rayleigh number

for this run was 1.2x106; 78% of the time-averaged surface heat flux was generated

internally. ino(r) is a two-layer model with a 30-fold viscosity increase at r = 0.75,

identical to the non-temperature-dependent run at similar Rayleigh number and internal

heating rate shown in Figure 2.1. A visual comparison of the temperature and velocity

fields for the two runs illustrates the effects of the temperature dependence of viscosity.

Cold downwellings are stronger and thus able to penetrate the high-viscosity region more

easily. Simultaneously, hot upwellings are mobilized, leading to weaker, less stationary

plumes.

Before investigating the effects of both depth- and temperature-dependent rheology

on the flow structure as quantified by the two-point correlation functions, we first

examine variations in the flow due to changes in the viscosity law (equation 3.1). Figure

3.8 shows UT, pT, and aT for a suite of temperature-dependent viscosity simulations

obtained by varying 7i, and 83b together with an isoviscous calculation for which

Rayleigh number and internal heating rate matched most closely those of the temperature-

dependent experiments. Parameters and results for these experiments can be found in

Table 3.3. (Since the effective Rayleigh number and internal heating fraction are results

of the calculations rather than input parameters, the different experiments were not run at



exactly the same values of these parameters.) We notice that the peak in pr is higher and

wider for the temperature-dependent rheology cases. This is due to the fact that the

downwellings, which are about two orders of magnitude more viscous than the ambient

fluid throughout the upper half of the domain, are able to reach greater depths before they

are disturbed by the return flow. The greater strength of the downwellings is also evident

in the maximum in orT near the surface and in the increased correlation angle near the

top. aT also shows a large increase near the bottom compared to the isoviscous run,

which, can be attributed to the strongest slabs which traverse the entire fluid layer and

pile up near the bottom boundary. Comparing the temperature-dependent calculations

with each other, it can be seen that varying 3 b, from 0.027 to 0.045 and 77l from 10-100

results in minor differences in orT, pT and aT, although some of the variability is

attributable to the different heating rates, average temperatures and Rayleigh numbers.

For subsequent calculations we adopt 3 ;b = 0.036 and ilbl = 50, which leads to strong

downwellings that have both a high viscosity contrast with respect to the ambient fluid

and are sufficiently narrow to mimic slabs.

Figures 3.9-3.14 show a compilation of flow diagnostics for predominantly internally

heated experiments with depth-dependent viscosity and both temperature-independent

rheology (dashed lines) and temperature-dependent rheology (solid lines). The numerical

details of these experiments are listed in Table 3.4. Figures 3.9a-3.14a show T, u, o0,,

ar, pr, and aT, as a function of depth for io(r) = 1. Figures 3.9b-3.14b depict the

same diagnostics for a two-layer viscosity structure with a 30-fold viscosity increase at r

= 0.875. In Figures 3.9c-3.14c the two-layer viscosity structure has a 10-fold viscosity

increase at mid-depth (r = 0.75), while in Figures 3.9d-3.14d the viscosity increases by a

factor of 30 at mid-depth. We attempted to use similar effective Rayleigh numbers and

internal heating rates for corresponding cases with and without temperature-dependent

rheology; an exact agreement is difficult to achieve since both effective viscosity and

internal heating rate are results of the calculations rather than input parameters.

When rheology is a function of depth alone, a viscosity increase with depth results in

a flow pattern with large aspect-ratio cells defined by a few strong, nearly stationary



upwellings and numerous weak downwellings [Hansen et al., 1993]. The viscosity

increase leads to a drop in the average temperature and a decrease of the velocity in the

high-viscosity region, also observed in steady, square-cell B6nard convection [Gurnis

and Davies, 1986]. Both cases with a 30-fold viscosity increase show a kink in the T

profile above the viscosity step (Figures 3.9b and 3.9d). If the rheology is a function of

temperature alone, the average temperature is raised significantly due to the cold, high-

viscosity lid, which inhibits heat transport (Figure 3.9a). The depth- and temperature-

dependent cases show a smaller increase in the interior temperature compared to the

experiments where viscosity was solely a function of depth. This is in part due to a self-

regulating mechanism of temperature-dependent convection, which leads to more

vigorous motion and thus more efficient heat transport as temperatures increase and

viscosity decreases. Note, however, that T varied appreciably for different choices of

flbl in equation (3.1) for the purely temperature-dependent experiments described above.

The temperature-dependent experiment with the 30-fold viscosity increase at mid-depth

still shows a kink in the T profile above the high-viscosity region.

The models where the viscosity increase occurs at mid-depth exhibit corresponding

local extrema in the V-diagnostics (Figures 3.10c-3.10d and Figures 3.11c-3.11d). The

local minima in a. and the local maxima in a, above the high viscosity region can be

attributed to material being transported laterally as the flow encounters the rapid viscosity

increase, which impedes radial mass transport. The model with the viscosity contrast at r

= 0.875 on the other hand shows no distinct expression of horizontal return-flow induced

by the viscosity barrier, but rather a rapid decrease in a, from the low-viscosity to the

high-viscosity region (Figure 3.11 b). Thus the depth of viscous stratification has a major

influence on the overall flow organization. r, and a, are remarkably similar for depth-

dependent and depth- and temperature dependent cases (Figures 3.1Ob-3.1Od and Figures

3.1 lb-3.1 1d). The drop in a. from the upper layer to the high-viscosity layer is smaller

for the temperature-dependent runs (Figures 3.10c-3.10d). This can be explained by the

strong, coherent slabs being able to overcome the viscosity barrier more easily. The

temperature-dependent runs have slightly smaller (larger) horizontal rms velocity



variations near the upper (lower) boundary than their purely depth-dependent

counterparts. However, near-surface values for r, are significant - a result of the

mobilization achieved with the viscosity law (equation 3.1).

Figures 3.12-3.14 show the rms temperature variation, radial correlation length, and

correlation angle, respectively. The largest effect of temperature-dependent viscosity on

UT is a widening of the upper boundary-layer peak, a manifestation of the strong, high-

viscosity downwellings. Aside from this feature temperature-dependence has only a

minor influence on the shape of aT. A viscosity increase with depth has only a weak

signature in rT. The effects of incorporating temperature-dependent rheology in the

constitutive relations is most pronounced for pr. As noted earlier when comparing

temperature-dependent and isoviscous experiments, the strong, high-viscosity

downwellings result in wider and higher peaks in the radial correlation length near the top

boundary. Sharp increases in p7 due to the step-function increase in qO(r) are also

evident, but greatly diminished compared to the cases without temperature dependence

(Figures 3.13b-3.13d). In fact, the peak in the lower layer which exceeded the upper peak

by nearly a factor of three for the case with a 30-fold viscosity increase at mid-depth is

barely larger than the upper peak when temperature-dependent rheology is incorporated.

The decrease in pr in the lower layer compared to the purely depth-dependent

experiments is caused by the less viscous, less stationary hot upwellings. The largest

effect of temperature-dependent rheology on aT (Figure 3.14) is a decrease directly

above the lower boundary (except for the case iO (r) = 1 discussed earlier). This feature

can be attributed to the mobilization of the lower boundary layer due to the temperature-

dependent viscosity. Note that a stress-dependent rheology would counteract this effect

as it would stabilize the lower boundary layer [e.g., Christensen, 1984]. The viscosity

increase with depth also manifests itself in a larger correlation angle in the high-viscosity

layer, which is in agreement with the scaling relation derived earlier (Figure 3.6) that

predicts larger aT at higher viscosity (lower Rayleigh number).

aT characterizes the angular correlation function for small angles and is thus

diagnostic of the average plume-width. To describe the angular correlation properties at
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large scales, either AT (or its spectral counterpart, the angular power spectrum, ST) are

required. Figure 3.15 compares the radial averages of the normalized spectrum, Sr aj,

for the experiments with (a) rio (r) = 1, (b) a 30-fold viscosity increase at r = 0.875, and

(c) a 30-fold viscosity increase at mid-depth. Both cases with a constant background

viscosity are characterized by a "white" spectrum, which only begins to roll-off around

angular degree 30. The viscously layered experiments have more power concentrated at

long wavelengths. The predominance of strong, nearly stationary upwellings for the

experiments without temperature-activated rheology expresses itself in the dominance of

a single angular degree (Figures 3.15b and 3.15c ). These plumes are weakened in a

temperature-dependent regime, thus reducing the dominance of a single wavenumber.

To summarize, the effects of a combined depth-and temperature dependent rheology

on the flow structure as diagnosed by two-point correlation functions are two-fold. First,

cold downwellings are stronger and thus able to reach greater depths relatively

undisturbed compared to their non-temperature-dependent counterparts, leading to an

increase in height and width of the radial correlation maximum near the top associated

primarily with those downwellings. Second, temperature-dependent rheology mobilizes

hot upwellings in high-viscosity regions, which leads to a decrease of the maxima for pr

and ar in the lower layer. The decreased radial correlation length in the high-viscosity

region for the temperature-dependent experiments suggests that in the purely depth-

dependent runs the large radial correlation length in the lower layer is primarily due to

nearly stationary upwellings, while in the temperature-dependent cases pr is dominated

by strong downwellings. Note, that the two runs with a viscosity step at r = 0.875, where

the relative contribution to pr from downwellings may be expected to be largest, differ

the least. We verified that for temperature-dependent rheology the contributions to pr -

even in the lower layer - are dominated by downwellings by considering only positive or

negative temperature anomalies when calculating the correlation diagnostics. The

stratification boundary due to the abrupt viscosity increase with depth is still easily

discernible in pr and ar . The size of the near-surface peaks, however, which has been

shown earlier to scale with the amount of internal heating, is strongly influenced by



temperature-dependent rheology. This makes a direct attempt to estimate the amount of

internal heating from radial correlation functions of seismic earth models problematic.

PHASE TRANSITIONS

Major discontinuities in the radial variations of seismic wave-speeds observed to

occur in the earth at depths of 410 km and 660 km are now widely regarded to be due to

mineralogical phase transformations. The effects of these phase transitions on mantle

flow have received much recent attention [Machetel and Weber, 1991; Peltier and

Solheim, 1992; Honda et al., 1993; Tackley et al., 1993; Tackley et al., 1994], as the

degree to which phase boundaries enforce flow stratification has important ramifications

for the earth's thermal and chemical evolution and structure. The shallower phase

boundary is associated with the exothermic transformation of c-olivine to its p-phase,
while the deeper transition is due to the endothermic dissociation of spinel-structured

(Mg,Fe)2SiO4 (y-olivine) into (Mg,Fe)O (magnesiowiistite) plus perovskite-structured

(Mg,Fe)SiO3. Exothermic phase changes enhance, while endothermic phase changes

inhibit material flow across them. Laboratory measurements of the Clapeyron slope, y,

for the spinel - post-spinel transition yield values of -2.8 MPa/K [Ito and Takahashi,

1989] and -3±1 MPa/K [Akaogi and Ito, 1993]. Bina and Helffrich [1994] recently

reexamined some of the earlier measurements and found values for the Clapeyron slope

to be somewhat reduced (-1.9 to -2.7 MPa/K). Laboratory experiments [Ito and

Takahashi, 1989] require the phase-loop width (the depth interval over which the

multivariant phase change occurs) to be a few km or less, consistent with seismic

observations [Benz and Vidale, 1993]. As the role of the 410-km phase transition in

determining the degree of convective stratification has been found to be less important

than variations in the strength of the 660-km phase change [Tackley et al., 1994], we will

concentrate on studying the influence of an endothermic phase transition at a depth

similar to the y-olivine/perovskite transition on mantle flow.
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We begin by investigating the effects of varying the strength of an endothermic phase

change at a non-dimensional depth r = 0.875. The effectiveness of a phase transition in

inhibiting or assisting flow due to the buoyancy associated with its vertical deflection can

be described by the non-dimensional phase buoyancy parameter, P = yAp/ap2g(a - b)

[Christensen and Yuen, 19851, where A p is the density increase across the phase

boundary, a is thermal expansivity, p is density, g is gravitational acceleration, and b and

a are the inner and outer radii, respectively. Details of the numerical implementation of

phase boundary effects are given in Appendix A. Figure 3.16 shows the influence of the

phase buoyancy for three bottom-heated experiments with P ranging from -0.1 to -0.2

(corresponding to Clapeyron slopes ranging from -2.5 MPa/K to -5 MPa/K, with the

other parameters fixed to their reference values (see Table A.1)). For comparison, results

for a run without a phase change (P = 0) are also shown. Increasing the magnitude of the

phase buoyancy parameter leads to an increased flow stratification. This is evident in the

T -profile (Figure 3.16a) where a temperature increase indicating the development of a

boundary layer takes place around r = 0.875. q, decreases and develops a kink,

diagnostic of flow stratification, at the same depth (Figure 3.16b). UT and aT both show

an increase in the region above the phase transition approaching values of the reference

run (P = 0) below the phase boundary (Figures 3.16d,J). PT exhibits a distinct minimum

around the phase transition, indicating a decorrelation of features across this depth,

characteristic of stratified flows (Figure 3.16e). Figure 3.17 shows experiments

predominantly heated from within for the same values of P. The overall influence of the

phase boundary on the correlation diagnostics is similar. Owing to the emphasized

downwellings, characteristic of predominantly internally heated systems, being closer to

the phase boundary, the phase-change-induced stratification is enhanced compared to the

corresponding bottom-heated runs. A pronounced episodicity in the time series of the

non-dimensional radial mass flux, as found by Peltier and Solheim [1992], was only

observed for the experiments with P = -0.2. Their parameterization of the phase

transition uses the "phase-function" method [Christensen and Yuen, 1985], while the

experiments described above use the "sheet-mass-anomaly" method [Tackley et al.,



1993]. A comparison between the two formulations is shown in Figure 3.18. For the

parameters chosen the two methods yield almost identical results. The agreement is

expected to be less good once the phase deflection becomes comparable in size to the

characteristic scale of convective features at higher Rayleigh numbers and the phase-loop

width is decreased to approach earth-like values [Peltier and Solheim, 1992].

A principal shortcoming of the experiments described above is that cold

downwellings have the same strength as the surrounding material. One might expect

stiff, high-viscosity slabs to penetrate an endothermic phase boundary more easily than

weak downwellings. The only numerical experiments to date that have investigated the

interaction of a strong high-viscosity downwelling with an endothermic phase boundary,

used a specialized geometry with a two-sided high-viscosity slab forced to subduct

vertically along a side-wall boundary [Christensen and Yuen, 1984; Zhong and Gurnis,

1994]. To study the influence of strong, cold, high-viscosity downwellings ("slabs") on

phase-change modulated flows in a more realistic subduction geometry, we use a

temperature-dependent rheology employing the same mobilization scheme as above

(equation 3.1). Figure 3.19 shows the comparison of correlation diagnostics between two

experiments with temperature-dependent viscosity and their isoviscous counterparts for

values of P = -0.1 and -0.15. All parameters diagnostic of stratification show that the

amount of layering is reduced for the temperature-dependent cases. However, the phase-

change induced layering is still apparent in the two-point correlation diagnostics of flows

with a temperature-dependent viscosity (most pronounced in the correlation minimum in

pr). This diagnostic also reveals that the relative decrease around r = 0.875 can be even

larger for a temperature-dependent rheology than for constant viscosity (Figure 3.19e).

Reducing the maximum viscosity contrast due to temperature dependence from 104 to 103

does not alter the correlation diagnostics significantly.

Another aspect of phase-change modulated flow that has received little attention is the

combination of a phase transition and a rapid viscosity increase at the same depth.

Experimental studies indicate that an abrupt viscosity increase at a phase transition may

be expected due to an increase in the activation energy, which is related to the density



increase across the phase transition [Sammis et al., 1977; Ranalli and Fischer, 1984].

With the phase boundary fixed in depth, the "sheet-mass-anomaly" method allows us to

investigate the effects of a combined phase transition with a step-function viscosity

increase. Figure 3.20 shows a comparison between an experiment with an endothermic

phase change (P = -0.1) plus a 30-fold viscosity increase at r = 0.875 and a run with the

depth-dependent viscosity only. The combination of the phase boundary and the

viscosity increase lead to a system slightly more stratified than with a viscosity increase

alone, indicated by a small temperature increase in T, a local minimum in og, local

maxima in U-T and aT, and a larger increase in pr across r = 0.875 (see Figures 3.20a-b,

c-f). However, the influence of the viscosity increase on determining the flow structure is

clearly dominant as can be seen by comparing Figure 3.20 to Figure 3.17, where the

corresponding correlation diagnostics for isoviscous flows are depicted. The same step-

function viscosity increase and phase buoyancy parameter were used for the experiments

analyzed in Figure 3.21. In these simulations the rheology also depends on temperature

according to equation 3.1. Again, the presence of an endothermic phase transition

slightly increases the propensity for layering, evident in the boundary layer structure

discernible for T, the stronger local minimum in a-, local maxima in aT and aT, as

well as in the larger increase in pT across r = 0.875 for the experiment with an

endothermic phase transition (see Figures 3.2la-b, c-f). However, as for the case without

temperature-dependent rheology, the step-function viscosity increase alone is clearly

responsible for most of the stratification features observed (compare to Figure 3.19).

This should come as no surprise, as the local buoyancy force due to a phase change with

P = -0.1 is altered by 10%, while a 30-fold viscosity increase leads to a change in RaB by

a factor of 30.

Figure 3.22 shows the effects of a phase transition on radial averages of the

normalized angular power spectrum. Both the isoviscous run (Figure 3.22a) and the

experiment with a 30-fold viscosity increase atr = 0.875 (Figure 3.22b) show a reddening

of the power spectrum relative to their counterparts without a phase change. This effect

has also been observed in 3D spherical-shell experiments [Tackley et al., 1993; Tackley et



al., 1994]. The peaks in the power spectra with a high-viscosity lower layer, are again

due to the dominance of strong upwellings. As discussed in the previous section, a

mobilizing, temperature-activated rheology would diminish their importance on the flow

structure.

In summary, two-point correlation functions are well-suited for capturing the effects

of phase transitions on mantle flow simulations. Diagnostics of the temperature field, in

particular pT, document phase change effects as well as diagnostics based on the velocity

field. Plus, the temperature diagnostics can be compared directly to seismic observations.

As have others [e.g., Solheim and Peltier, 1994], we find that internal heating increases

the propensity for layering. Strong, cold "slabs" are able to penetrate a phase boundary

more readily, as expected. However, the flow modulation due to the phase change is still

quite apparent for experiments with temperature-dependent rheology. We also find that

combining an endothermic phase change with a rapid viscosity increase does not alter the

flow significantly with respect to the case without a phase boundary. Adding an

exothermic phase transition at 410 km depth, which reduces the propensity for layering

[Solheim and Peltier, 1994; Tackley et al., 1994], should further diminish the net

importance of phase transitions for modulating flow.

SUPERCONTINENTS

One feature distinguishing convection in the earth's mantle from other terrestrial

planets, is the participation of its outer boundary layer in the flow. The earth's

lithosphere, the cold thermal boundary layer of the convecting mantle, is divided into

several plates. Due to the thermally activated viscosity these plates are strong, with

surface deformation concentrated at plate boundaries. The interaction of surface plates

with the mantle flow is expected to have important consequences for the observed flow

structure. Modeling mantle convection with surface plates where plates geometries

evolve with time is a previously unconquered challenge. We will present one approach

for modeling plates with evolving geometry in the next section. Here, we study a



simplified system: the influence of a single large, non-subducting plate

("supercontinent") on the flow system. Gurnis and Zhong [199 1]and Zhong and Gurnis

[1993] have performed this type of numerical experiment for a constant viscosity fluid.

They found that the presence of a supercontinent results in a reorganization of the large-

scale flow structure leading to a reddening of the angular power spectrum (which they

calculated for individual temperature snapshots). We extend this analysis to the complete

two-point correlation function. and calculate the angular power spectrum from the

angular correlation function for flows with depth-dependent and depth- and temperature-

dependent rheologies. The supercontinent is modeled as a high-viscosity cap of size, s,

defined as the ratio of horizontal plate dimension and depth of the convecting layer, and a

dimensionless thickness of 0.036. For further details on the model parameterization see

Zhong and Gurnis [1993].

Figure 3.23 shows a comparison of correlation diagnostics between two flows with a

30-fold viscosity increase at r = 0.75, one with supercontinent. Owing to its high

viscosity the supercontinent thickens the cold thermal boundary layer leading to a lower

average temperature, T (Figure 3.23a). While a, is nearly unchanged (Figure 3.23b),

y, exhibits a disappearance of the return flow peak above the viscosity increase at mid-

depth (Figure 3.23c). This is due to the fact that the supercontinent organizes the large-

scale flow structure beneath it, usually leading to a single, large convection cell aligned

with the plate with most of the return flow in the high-viscosity lower layer. UT shows

an increase near the surface, where horizontal temperature contrasts are enhanced by the

presence of the supercontinent (3.23d). aT is affected in a similar manner (Figure 3.23J).

The size of these near-surface maxima is directly related to the size of the high-viscosity

plate. pr shows a local maximum within the supercontinent and a minimum just below

it. This can be explained by the thermal blanketing effect of the plate, which leads to

hotter than average material below the continent, while the continent itself has a negative

temperature anomaly throughout.

Figure 3.24 shows a comparison between two flows with temperature-dependent

viscosity, one with a supercontinent. We employ the viscosity law introduced in equation



3.1. The two-point correlation diagnostics are modified in a manner similar to that

described above. We have also investigated flows with constant and depth-and

temperature-dependent rheology and found similar modifications of the two-point

correlation functions. Figure 3.25 shows a comparison between radial averages of

ST/o for these four rheologies. Three isoviscous runs, predominantly heated from

within, are compared in Figure 3.25a. The presence of a supercontinent significantly

reddens the angular power spectrum. For the larger plate (s = 4), the power decreases

rapidly from its peak at angular degree, I = 1, with I = 3 being reduced by an order of

magnitude. This decrease in power is somewhat lessened for the smaller plate (s = 2),

where the power is reduced by a factor of three at I = 5 and stays relatively constant out to

about angular degree 30. The case without a supercontinent has its power-spectral peak

around 1 = 20. Similar trends can be observed for the other experiments, with depth-

dependent rheology (Figure 3.25b), temperature-dependent rheology (Figure 3.25c), or

depth- and temperature-dependent rheology (Figure 3.25d). The principal influence of

the supercontinent is to increase the power at the lowest harmonics (always peaking at I =

1). The power spectrum then decreases rapidly with a roll-off and corner-wave number

that depends on plate size. The addition of a high-viscosity, non-subducting plate to the

convective system introduces a second characteristic scale, which dominates the power

spectrum out to wave-numbers characteristic of its size, relatively unaffected by other

variations in rheology.

EVOLVING PLATES

Using a single, large non-subducting supercontinent we gained some preliminary

insight into the influence of surface plates on the mantle flow system. However,

supercontinents were not present for extended periods of time in the earth's history and

thus a more realistic modeling approach with a larger number of plates whose geometries

vary with time, mimicking the evolution of plates on the earth's surface, is clearly

warranted. While the presence of a supercontinent leads to a reorganization of the flow



system, it mainly affects the flow structure beneath the plate. Elesewhere in the fluid

small-aspect-ratio convection cells still dominate. While the large supercontinent leads to

a reddening of the angular power spectrum, the spectrum rolls-off rapidly from the

maximum, which always occurs at angular degree one.

In this section we describe an approach that allows a more realistic modeling of

mantle convection. We model plates by using a temperature-dependent viscosity

combined with weak zones (small regions of low viscosity) advected by the flow. This

results in rigid plates whose geometries evolve with time. The low-viscosity regions

mimic plate boundary regions, where the lithosphere may be weakened due to faulting

and brittle failure or non-linear effects of stress-dependent rheology creating a lower

effective viscosity [King and Hager, 1990]. Past studies have used low-viscosity weak

zones fixed to the numerical grid to allow upwellings and downwellings of an otherwise

immobile, high-viscosity lid [Kopitzke, 1979; Schmeling and Jacoby, 1981]. This

approach has been shown to yield similar results to other methods for modeling plate-like

behavior [King et al., 1992]. Novel to our study are that we use a number of weak zones

not fixed to the grid, but advected by the mantle flow. This leads to a flow system with

cold, strong, high-viscosity surface plates, separated by regions of low viscosity, which

can be identified with ridges and trenches. As the weak zones are advected with the flow,

plate geometries change with time in a dynamically self-consistent manner (i.e., not by

the variation of prescribed boundary conditions). When two weak zones collide, one is

relocated to the region of maximum horizontal stress in the plate system. The viscosity

law takes the form

N.

T) = {o(r)Ti(T)[l + (1)XH(p - q,(.)H(w, + Aqw - ) 1 b , r 13.2)

o(r)i (T)

where io(r) and pi(T) have the same form as before, p,, is the position of the left side

of the ith weak-zone of width A p and viscosity i9, N, is the total number of weak

zones, and H is the Heavyside step function. -

Figure 3.26 shows an example of a convection experiment employing this

formulation with 10 plates. The effective Rayleigh number for this run was 1.5 x 106;



73% of the time-averaged surface heat flux was generated internally. 170(r) is a two-

layer model with a 30-fold viscosity increase at r = 0.75, identical to the temperature-

dependent run without plates but a mobilized upper boundary layer at similar Rayleigh

number and internal heating rate shown in Figure 3.7. Temperature and velocity fields

(Figure 3.26a) and corresponding viscosity fields (Figure 3.26b) show three snapshots

widely separated in time. The variable-sized plates can be best identified in the viscosity

field, where the high-viscosity plates (dark gray) are separated by low-viscosity weak

zones (white). A visual comparison of Figures 3.26 and 3.7 reveals the main differences:

while the experiment without plates has numerous downwellings, leading to many

convection cells of small aspect-ratio, only a few downwellings are present at any one

time for the run using the viscosity law (3.2). Consequently, the aspect ratio of

convection cells is larger. On the other hand, the relative strength of upwellings and

downwellings, and in particular the ability of the strong downwellings to penetrate the

viscosity barrier at mid-depth is similar for both viscosity laws. Before investigating

similarities and differences between flows resulting from the viscosity laws (3.2) and

(3.1) with two-point correlation diagnostics, we first discuss the effects of varying

different parameters in equation (3.2).

Figure 3.27 shows the two-point correlation diagnostics for three convection runs

with different numbers of weak zones. The overall effect of changing Nw from six to ten

to fourteen is relatively small. T decreases slightly with increasing Nw, as the convective

system becomes more efficient in removing heat (Figure 3.27a). The time-averaged

amount of heat generated internally drops from 56% for Nw = 6 to 52% for Nw = 14. au,

u,, and aT are remarkably similar for the different number of plates (Figures 3.27b-d).

The peak of pT is slightly reduced/increased for the cases with six/fourteen plates, as

downwellings (which dominate p7 for temperature-dependent systems without a

viscosity increase with depth) are less/more numerous compared to the run with Nw = 10

(Figure 3.27e). The main difference in aT occurs near the surface, where the correlation

angle is proportional to the average plate size (Figure 3.27f). We also studied the

influence of modifying the weak-zone size, weak zone viscosity, and plate viscosity on
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the flow structure. We found that if the low-viscosity regions were too small or not weak

enough, the plate system would evolve towards a state where a single plate encompasses

most of the surface with many small plates clustered closely together, with little or no

horizontal motion between them. Modifying the plate viscosity, by varying the

maximum viscosity contrast due to temperature-dependence from 103 to 104 has a smaller

effect on the flow structure. For subsequent experiments we used Nw = 10, Ap, x 3 b, =

0.052 x 0.036, i7 = 10- 2.and allowed i7(T) to vary by three orders of magnitude.

Figure 3.28 shows the comparison of two-point correlation diagnostics for the two

convection experiments with temperature-dependent viscosity and a 30-fold viscosity

increase at r = 0.75, depicted in Figures 3.7 and 3.26. While similar in overall character,

some small, but notable differences exist. The T profile for the run with ten plates has a

slightly thicker boundary layer and a somewhat larger negative temperature gradient in

the interior (Figure 3.28a). o is increased near the surface, as the weak zones allow for

both ridges and trenches to develop, while the viscosity law (3.1) does not facilitate for

upwellings to reach the surface (Figure 3.28b). The influence of plates in organizing the

flow structure leads to larger horizontal flow velocities. This is documented as an

increase in a, near the surface (Figure 3.28c). It is remarkable how similar the velocity

diagnostics for the temperature-dependent flow with plates and the equivalent non-

temperature-dependent run shown in Figures 3. 10c and 3.1 1c are. As the rms-velocity

variations, UT shows increased near-surface variability and is reduced in the interior for

the case using the viscosity law (3.2) (Figure 3.28d). A similar decrease in the interior is

also evident for pr (Figure 3.28e). This can be explained by the smaller number of

downwellings for the case with plates. Owing to the presence of plates, aT shows a

large increase near the surface (Figure 3.28f). While all these differences are readily

apparent, it should be emphasized that the first-order features of the two-point correlation

functions, namely features associated with the step-function viscosity increase with depth,

are the same for both experiments employing different rheology laws. This may also

serve as an a posteriori validation of the ad-hoc viscosity law (3.1).

-- , __ I



Two experiments with surface plates, differing only in the presence of an endothermic

phase transition (P = -0.1) at r = 0.875 for one run, are shown in Figure 3.29. The

differences in the two-point correlation diagnostics are similar to those documented in the

section on phase changes. Namely, UT, pr, and aT show small local extrema around

the phase transition depth (see Figures 3.28d-f).

Figure 3.30 shows two experiments with an endothermic phase transition (P = -0.1)

and a 30-fold viscosity increase at r = 0.875, using viscosity laws (3.1) and (3.2),

respectively. As in Figure 3.27 for the experiments without a stratification boundary,

results from the two formulations agree in the first-order features of the correlation

diagnostics, with similar differences in detail as those described above.

From our results in the section on supercontinents, we might anticipate the angular

power spectrum to be altered significantly by the presence of surface plates. First we

determined the influence of the number of variable-sized plates on the radial averages of

ST/a,2. Figure 3.31a shows power spectra for cases with six, ten and fourteen plates.

The spectral roll-off from the maximum (I = 1 for N, = 6, 1 = 2 for Nw = 10 and 14) to

angular degree I = 20 decreases as the number of plates increases. This is not surprising,

considered that the largest plate is of size s = 4 or greater for approximately 90% of the

time for the run with six plates, and only 6% of the time for the run with fourteen plates.

Figure 3.3 lb shows a comparison between an experiment with ten plates, and two runs

using the viscosity law (3.1), one with a supercontinent (s = 4). The case with variable-

sized plates of has a spectrum significantly redder than the case without plates, however,

the spectrum is richer in the low angular degrees and does not roll-off as rapidly as for the

case with a supercontinent.

Figure 3.32 shows radially averaged normalized power spectra for runs with

temperature-dependent rheology and a 30-fold, step-function viscosity increase with

depth. Comparisons between experiments with ten plates, with a supercontinent and

without any plates for cases with a viscosity. increase at mid-depth (Figure 3.32a) are

similar to those discussed above. Figure 3.32b compares two runs with ten plates and a

viscosity increase at r = 0.875, one run also has an endothermic phase change (P = -0.1)



at this depth. The spectral roll-off is reduced for the case with an endothermic phase

change. The same result was obtained for the equivalent experiments without the step-

function viscosity increase, albeit differences between the spectra were somewhat

smaller. This result is somewhat surprising, as we found earlier that for experiments with

non-temperature-dependent viscosity the presence of a phase change caused the spectrum

to redden. This illustrates that for non-linear systems such as mantle convection a

combination of isolated effects does not necessarily yield the results expected from a

linear superposition.

Modeling convection with surface plates whose geometries evolve with time in a

dynamically self-consistent manner allows, for the first time, the investigation of plate-

system statistics. Although somewhat beyond the scope of this thesis, we will introduce

some statistics that have the potential of being compared to the geologic record.

Examples of statistics that may be constrained by observations are the distribution of

plate-sizes and relative plate-velocities with time. Figure 3.33 shows histograms of plate-

size and relative plate-velocity for runs with six, ten, and fourteen plates. The statistics

are compiled from the stationary part of the experiments also used for the two-point

correlation analysis. Plate information is output at every timestep making O(105)

measurements available for each run. The size-frequency distribution shows that for all

three cases, small plates dominate (Figures 3.33a, c, e). As N, increases the prevalence

of small plates increases. While for N, = 6 a single plate occupied as much as 85% of the

total plate area, for N, = 14 no plate ever exceeded a fractional size of 0.4. The plate-

velocity histogram follows a similar distribution (Figures 3.33b, d,f). Peaked at the

lowest velocity bin, it decreases exponentially with increasing velocity. Figure 3.34

shows the same plate statistics for three experiments with ten plates and a 30-fold

viscosity increase with depth. Both the plate-size and plate velocity distributions are less

one-sided. This is particularly evident for the cases with a viscosity increase at r = 0.875

(Figures 3.34c-f). Another statistic of interest is the average relative plate velocity as a

function of plate size (Figure 3.35). Average plate velocities were calculated for the same

size bins used above. The average plate velocities decrease nearly monotonically for



cases without a viscosity stratification (Figure 3.35a). Viscously stratified systems

exhibit a more uniform average plate-velocity distribution (Figure 3.35b).

Plate statistics such as those shown above illustrate some potential applications of this

modeling approach. Being able to model mantle convection with surface plates in a

dynamically self-consistent manner, offers the possibility of applying a new data set to

constrain the range of possible convection models - the plate tectonic record. It is

intriguing that at present, for example, plate velocity is not a function of plate size.

The plate system modeled above can be most closely identified with oceanic plates.

An interesting question is how the presence of non-subducting continental plates (perhaps

with thick roots) would modify the flow system and its effects on the plate statistics. One

of the better established facts about the earth's plate tectonic system is, that at present

(and throughout the Cenozoic) continental plates move slower than oceanic plates

[Gordon and Jurdy, 1986]. Incorporating continents into the convection model is

important for another reason. As global plate-reconstructions are available only for the

last 180 million years [Engebretson et al., 1992], it would be important to use plate

motion information from continents to extend this record back in time.

We introduced a new approach to modeling plates by using a temperature-dependent

viscosity combined with weak zones advected by the flow. This results in rigid plates

whose geometries evolve with time. The main influence of plates is to organize the large-

scale flow structure, resulting in a reddening of the angular power spectrum of thermal

anomalies. The long-wavelength component of the radially averaged power spectrum

shows a structure similar to that calculated from global tomographic models, but differs

from numerical experiments with a single supercontinent, which exhibit a power

spectrum that rolls off rapidly from the maximum at I= 1.

The average flow properties can be quantified using two-point correlation functions.

Comparing calculations incorporating surface plates to other temperature-dependent

experiments where the surface boundary layer is mobilized by limiting its viscosity

(which allows strong, high-viscosity downwellings to form), we find many of the

characteristic features of the two-point correlation functions to be similar. The main



differences are an increase in the near-surface rms-variation of the horizontal velocity and

angular correlation length, and a shift of the maximum in the radial rms-velocity to

shallower depths.

This approach to modeling mantle convection with surface plates lends itself to a

statistical analysis of the plate system, which may be used for comparison to the earth's

plate tectonic history. An analysis of plate-size and plate-velocity distributions reveals

differences between models with a step-function viscosity increase with depth and those

with constant i1o.

DISCUSSION

In this chapter we have shown that the two-point averages of the temperature fields

(T-diagnostics) and flow velocity fields (V-diagnostics) quantify some important aspects

of mantle convection experiments. As an example, we have investigated the effects of a

discontinuity in the radial viscosity profile. The radial flux diagnostic u, indicates that a

viscosity increase of a factor of 30 or less yields a weakly stratified flow (Figure 3.10).

The horizontal flux diagnostic a, reveals that the flow organization is sensitive to the

depth of the viscosity increase (Figure 3.11). A jump at mid-depth induces a significant

horizontal return flow at the base of the upper layer, which is absent in the model with a

jump at quarter-depth. The latter approximates the viscosity increase at the 660-km

discontinuity in the viscosity model of Hager et al. [1985]. We also obtained no return-

flow peak in r, for simulations based on the more elaborate radial viscosity structures

recently proposed by King and Masters [1992] and Forte et al. [1993]. These results

suggest that viscosity increases comparable to those that have been proposed for the

earth's transition zone might have only a minor effect on the overall flow organization,

whereas rapid increases in the lower mantle could significantly influence the pattern of

the return flow.

We have used the two-point averages to quantify the effects of temperature-dependent

viscosity. To avoid the development of a stagnant lid typical of strongly-temperature-



dependent fluids (but not the earth) we have employed two different approaches. In one

method the viscosity in the surface boundary layer is limited to a value low enough for

downwellings to develop. In the second approach a mobilization of the is achieved by

inserting low-viscosity regions into the cold boundary layer. These weak zones are

advected by the flow. This leads to plates whose geometries evolve with time. The

correlation diagnostics obtained from convection experiments using these two methods

are remarkably similar. The most notable differences are an increase in -T and aT and a

reduction in pr near the surface, for cases with plates (Figures 3.28 and 3.30). Surface

plates also influence the overall flow organization, leading to larger aspect-ratio

convection cells. This results in a reddening of the angular power spectrum of thermal

anomalies. Power spectra for experiments with evolving plates differ distinctly from both

cases without plates or runs with a single supercontinent (Figure 3.31). Modeling mantle

convection with surface plates also allows a statistical analysis of the plate system, which

may be used for a comparison with the earth's plate tectonic history. An analysis of plate-

size and plate-velocity histograms reveals differences between flow models with a step-

function viscosity increase with depth and experiments with constant i7 (Figure 3.34).

The effects of temperature-dependent viscosity on the a-diagnostics (Figures 3.10-

3.12) or the aT diagnostic (average plume width) in the convecting interior (Figure 3.14)

are small. Changes in the radial correlation length are more pronounced (Figure 3.13).

The near-surface peak in pr is amplified owing to the greater viscosity of the cold

downwellings, and the increase in pr associated with a viscosity jump at mid-depth

(Figures 3.13c,d) is markedly reduced. The latter effect can be explained by comparing

Figures 2.1 and 3.7: the hot upwellings, which are strong and nearly stationary when the

viscosity is temperature independent, are mobilized by the temperature-dependent

viscosity and disrupted by the cold, high-viscosity downwellings. This suggests that the

hypothesis, that the apparent fixing of upwelling plumes results from the temperature

dependence of viscosity, needs to be reevaluated with three-dimensional flow

calculations. Experiments with a high-viscosity lower layer but without temperature
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dependent rheology greatly emphasize the role of upwellings for the overall flow

organization, especially in a 2D geometry.

Another mechanism for a radial stratification of mantle flow are phase changes. We

have investigated flow systems with an endothermic phase transition at a depth

approximating the depth of the spinel - post-spinel transition in the earth. The effects of

an endothermic phase transition are well documented in the two-point correlation

functions, most notably in prT. This is true even when the rheology is temperature-

dependent, although the flow stratification is weaker in this case. Combining an

endothermic phase change with a rapid viscosity increase does not alter the flow

significantly compared to the case with no phase boundary.

Our experiments have shown that the two-point correlation functions are diagnostic of

radial flow stratification. To define the degree of layering in a convecting system, both

V-diagnostics, such as a, (or, equivalently, Peltier and Solheim's [1992] radial flux

diagnostic) and T-diagnostics, pr for example, can be used. While either is suitable to

characterize numerical convection experiments, T-diagnostics are, through the

dependence of seismic wave speeds on temperature, easily related to mantle observations.

In chapter 4 we will focus on determining two-point correlation functions for global and

regional tomographic models.

Another area (not further pursued in this thesis) where the techniques employed here

might find further application in the study of turbulence. For example, a transition from

soft to hard turbulence has been observed at high Rayleigh numbers, characterized by the

breakup of continuous plumes traversing the fluid layer [Heslot et al., 1987; Castaing et

al., 1989; Hansen et al., 1990]. From a visual inspection of the temperature fields, the

transition is seen to occur at RaB ~ 107 for infinite Prandtl number convection in a small

aspect-ratio box [Hansen et al., 1992]. To date, laboratory experiments [e.g., Heslot et

al., 1987], numerical simulations [e.g., DeLuca et al., 1990; Hansen et al., 1990; Vincent

and Meneguzzi, 1991], and theoretical studies [e.g., Castaing et al., 1989] have

investigated the shape of the probability density functions (PDFs) of flow variables, the

slope of the kinetic energy wavenumber spectrum, and the Nu-Ra scaling law as

____ I
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diagnostics for the transition to hard turbulence. Most of the quantitative analyses have

focused on the local structure of the temperature and velocity fields at only a few points,

and several of the diagnostics have been called into question [DeLuca et al., 1990;

Solomon and Gollub, 1991; Hansen et al., 1992]. A global measure, like the two-point

averages described in this paper, may be better suited for this purpose. We have seen that

there is a clear break in the power-law relationships for pr and NT, but not in those for

Nu6 or UT, at the transition from steady-state to time-dependence (cf. Figures 3.1, 3.4-

3.6). We speculate that the transition to hard turbulence might be similarly reflected in a

change of the power-law behavior for pr and UT.
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TABLES

Table 3.1. Convection experiments with constant material properties

Rayleigh Internal Internal heat Numerical Number of
number heating rate generation mesh overturnst

RaB RaHIRaB (%) NP x Nr

5 x 104  0 0 200 x 32 0*
7.5 71 156
15 97 132

105  0 0 240 x 32 0*
7.5 61 92
15 88 135

2.5 x 105  0 0 270 x 36 0*
7.5 51 111
15 77 98

5 x 105  0 0 300 x 40 0*
7.5 44 93
15 69 92

106 0 0 360 x 48 196
7.5 37 106
15 61 88

22.5 77 78
2.5 x 106 0 0 468 x 52 80

7.5 30 78
15 51 96

5 x10 6  0 0 532x56 73
7.5 27 84
15 44 88

22.5 58 80
30 68 84

*Run reached a steady state.
tWe adopt the definition of Balachandar and Sirovich [1991] for the overturn time.



Table 3.2. Power-law least-squares parameters for scaling relations

Relationship* Internal heating Power-law Power-law
y Oc x rate RaH /RaB exponent mt multiplier logci

Nus - RaB 0 0.242 ± 0.006 -0.275 ± 0.039
7.5 0.299 ± 0.007 -0.707 ± 0.041
15 0.294 ± 0.008 -0.678 ± 0.048

Nus - RaQ 0 0 193 ± 0.003 -0.187 ± 0.026
7.5 0.245 ± 0.006 -0.670 ± 0.044
15 0.251 ±0.008 -0.739 ±0.059

UT cc RaQ 0 (steady-state) -4.141 ± 0.005 -0.760± 0.031
0 (time-dependent) -0.137 ± 0.015 -0.770 ± 0.118

7.5 -0.138 ± 0.001 -0.775 ± 0.004
15 -0.151 ± 0.002 -0.804 ± 0.001

jT - RaQ 0 (steady-state) -0.042 ± 0.028 -1.230 ± 0.184
0 (time-dependent) -0.276 ± 0.015 -0.144 ± 0.121

7.5 -0.204 ± 0.002 -0.700 ± 0.018
15 -0.196 ±0.004 -0.742±0.027

aT cc RaQ 0 (steady-state) -0.107 ± 0.040 -1.193 ± 0.264
0 (time-dependent) -0.223 ± 0.062 -0.563 ± 0.488

7.5 -0.253 ± 0.013 -0.387 ± 0.100
15 -0.247 ± 0.011 -0.407 ± 0.083

*A power law relationship of the form y = cx ' was assumed.

tUncertainties in power-law exponent and multiplier were calculated using a delete-1 jackknife estimator [e.g.,
Chave and Thomson, 19891.

Table 3.3. Convection experiments with temperature-dependent
viscosity*

Effective Internal heat Boundary Boundary Number of
Rayleigh generation layer viscosity layer overturns*
number (%) 7rbi thickness 8

b1
RaBgt

4.0 X 106 78 50 0.036 38
2.9 x 106 79 50 0.027 13
4.6 X 106  82 50 0.045 12
3.3 X 106  68 10 0.036 17
3.6 X 106 86 100 0.036 11

*All calculations were performed using a semi-annulus with 266 X 56 elements using the viscosity law equation
(3.1).

The effective Rayleigh number, Ra , is defined as the B6nard-Rayleigh number using the time-averaged strain-
rate averaged viscosity [Christensen, 1984.

t We adopt the definition of Balachandar and Sirovich [1991] for the overturn time.



Table 3.4. Convection experiments
and temperature-dependent viscosity

with depth-dependent and depth-

Viscosity profile Effective Internal Numerical Number of
Rayleigh heat mesh overturns*
number generation NI x Nr t
RaB (%)

70 (r)=1 0.5!5 r: 1 5 X 106  68 532 X 56 84

4.5 x 106  61 500 x 50§ 35

O50(r)5= 1.8 x 106 78 532 x 56 43
10 0.5:5 r < 0.75

2.6 x 106  71 266 X 56§ 58

i7o(r)= 1075 r1 1.1 X 106  83 532 X 56 59
30 0.5:5 r <0.75

1.2 x 106  78 500 X 50§ 38

o (r)= 1.7 x 106  72 480 X 52 37
.30 0.569r8<00.875

0.9 X 106 69 480 x 521 40

*The effective Rayleigh number, Ra , is
rate averaged viscosity [Christensen, 198.

defined as the B6nard-Rayleigh number using the time-averaged strain-

tThe calculation using a 266 X 56 element mesh was performed in an semi-annulus with reflecting boundary
conditions. All other calculation were performed in an annulus.

$We adopt the definition of Balachandar and Sirovich [1991] for the overturn time.

IViscosity was both depth-and temperature-dependent All calculations were performed using the viscosity law
equation (3.1) with ?Ib = 50 and 6 1 = 0.036.



Table 3.5 Convection experiments with an endothermic phase change

Viscosity profile Effective Internal heat Numerical Phase Number of
Rayleigh generation mesh buoyancy overturns
number (%) N txNr parameter Nr §
Ra.8 r* P rP* oe

70(r)=1 0.5!5 r! 1 5 x 106  0 240 X 56 -0.1 35

5 x 106  0 240 X 56 -0.15 26

5 x 106  0 240 X 56 -0.2 15

5 x 106  69 240 X 56 -0.1 26

5 x 106  69 480 X 56 -0.1 48

5 x 106  71 240 X 56 -0.15 28

5 x 106  71 266 X 78' -0.15 27

5 x 106  73 240 X 56 -0.2 30

3.3 x 106  62 240 X 561  -0.1 24

2.3 x 106  60 240 X 561 -0.15 24

11 0.875 r 1
77r= (r) I 0.875 1.3 X 106 78 240 X 56 -0.1 34

130 0.5!5r<0.875
2.2 X 106  70 480 X 56 -0.1 32

1.3 x 106  78 240 X 56 -0.15 33-

0.9 x 106  69 240 X 56 -0.1 29

*The effective Rayleigh number, Ra , is defined as the Bdnard-Rayleigh number using the time-averaged strain-
rate averaged viscosity [Christensen, 198.

tThe calculations using a 480 X 56 element mesh were performed in an annulus. All other calculations were
performed in a semi-annulus with reflecting boundary conditions.

t The ratio of phase-boundary Rayleigh number and Benard Rayleigh number, Rap IRaB , is 3.5 for all experiments.
The phase change occurs at a non-dimensional depth of r = 0.875.

§We adopt the definition of Balachandar and Sirovich [1991] for the overturn time.

T'he "phase-function" method was used to parameterize the phase transition for this calculation. All other
calculations were performed using the "sheet-mass anomaly" method.

lViscosity was both depth-and temperature-dependent All calculations were performed using the viscosity law
equation (3.1) with i'l, = 50 and 6b, = 0.036.



Table 3.6. Convection experiments with a supercontinent

Viscosity profile Effective Internal heat Numerical Plate Size Number of
Rayleigh generation mesh s overturns
number (%) N, xovert
RaB,*

i (r)=1 0.5:5 r!s51 4.8 x 106  61 532 X 56* 2 54

4.4 x 106  65 532 x 56t  4 70

3.4 x 106  66 500 x 50§ 4 34

0 r)= r 1.1 X 106 81 532 x 56* 4 56
30 0.5:5 r < 0.75

2.1 x 106  79 500 X 500  4 42

(r)= 1 0.875r1 5.3 x 105  80 532 X 56* 4 46130 0.5:S r <0.875

*The effective Rayleigh number, RaB , is
rate averaged viscosity [Christensen, 1984.

defined as the B6nard-Rayleigh number using the time-averaged strain-

tWe adopt the definition of Balachandar and Sirovich [1991] for the overturn time.

*Calculations were performed in an annulus with a purely depth-dependent viscosity.

lCalculations were performed in an annulus with a depth-and temperature-dependent rheology using the viscosity
law equation (3.1) with ilb, = 50 and 4b1 = 0.036.

Table 3.7. Convection experiments with evolving plates

Viscosity profile Effective Internal heat Numerical Number of Number of
Rayleigh generation mesh weak zones overturns
number (%) N x N t NW Nover
Rang*

77o(r)=1 0.55 r5 1 3.3 X 106  54 480 X 52 10 55

3.7 x 106  56 480 X 52 6 52

3.0 X 106  52 480 X 52 14 44

3.0 x 106  52 480 X 56§ 10 54

io(r)= { 0.[!5 1.5 X 106  73 480 X 52 10 37
130 0.5:s5r<0.75

(r)= 0.875r1 1.6 X 106  70 480 x 52 10 32
f30 0.5!! r <0.875

1.0 X 106 59 480 X 566 10 31

*The effective Rayleigh number, Ra8
rate averaged viscosity [Christensen, 1984.

, is defined as the B6nard-Rayleigh number using the time-averaged strain-

ICalculations were performed in an annulus with temperature-dependent rheology using the viscosity law equation
(3.2). Viscosity variations due to temperature-dependence are 103. Weak-zone size, Aop, X 8b = 0.052 X 0.036,
weak-zone viscosity, r, = 10-.

*We adopt the definition of Balachandar and Sirovich [1991] for the overturn time.

§An endothermic phase transition at r = 0.875 with phase buoyancy parameter, P = -0.1 was used.



FIGURE CAPTIONS

Fig. 3.1. Time-averaged surface Nusselt number, Nu, as a function of (a) B'nard-

Rayleigh number, RaB, and (b) RaQ, a Rayleigh number defined using the heat flux, for

convection experiments in a cylindrical shell. Internal heating rates, RaH/RaB, are 0

(squares), 7.5 (circles), and 15 (triangles). Solid squares indicate that a steady state

solution was reached. Further details of the convection calculations can be found in

Table 3.1. Least-squares fit parameters are given in Table 3.2. For display reasons the

RaH/RaB = 15 points were multiplied by 0.9.

Fig. 3.2. (a) Rms temperature variation, rT, (b) radial correlation length, pT, and (c)

horizontal correlation angle, aT, as a function of normalized depth z = 1 - r for
6

convection experiments at Ra 8 = 5 x 10 . Internal heating rates, RaHIRaB, are 0 (long

dashed lines), 7.5 (intermediate dashed), 15 (short dashed), 22.5 (dotted), and 30 (solid).

Further details of the convection calculations can be found in Table 3.1.

Fig. 3.3. (a) Rms temperature variation, UT, (b) radial correlation length, pT, and (c)

horizontal correlation angle, aT, as a function of normalized depth z = 1 - r for a suite of

convection experiments at RaH/RaB = 15. B6nard-Rayleigh numbers are 105 (long

dashed lines), 5 x 105 (short dashed), 106 (dotted), and 5 x 106 (solid). Further details of

the convection calculations can be found in Table 3.1.

Fig. 3.4. Radially-averaged rms temperature variation, UT, as a function of RaQ for

convection experiments in a cylindrical shell. Internal heating rates, RaHIRaB, are 0

(squares), 7.5 (circles), 15 (triangles), and 22.5 and 30 (crosses). Solid squares indicate

that a steady state solution was reached. A dashed line connects the least-squares lines

for the steady and time-dependent bottom-heated regimes. Further details of the



convection calculations can be found in Table 3.1. Least-squares fit parameters are given

in Table 3.2.

Fig. 3.5. Radially-averaged radial correlation length, pr, as a function of RaQ for

convection experiments in a cylindrical shell. Internal heating rates, RaH/RaB, are 0

(squares), 7.5 (circles), 15 (triangles). Solid squares indicate that a steady state solution

was reached. A dashed line connects the least-squares lines for the steady and time-

dependent bottom-heated regimes. Values at the lowest Rayleigh numbers were not

included in the least-squares fits for the internally heated runs. Further details of the

convection calculations can be found in Table 3.1. Least-squares fit parameters are given

in Table 3.2. For display reasons the RaH/RaB = 7.5 points were multiplied by 1.5, the

RaH/RaB = 15 points were multiplied by 2.

Fig. 3.6. Radially-averaged horizontal correlation angle, UT, as a function of RaQ for

convection experiments in a cylindrical shell. Internal heating rates, RaH/RaB, are 0

(squares), 7.5 (circles), 15 (triangles). Solid squares indicate that a steady state solution

was reached. A dashed line connects the least-squares lines for the steady and time-

dependent bottom-heated regimes. Values at the lowest Rayleigh numbers were not

included in the least-squares fits for the internally heated runs. Further details of the

convection calculations can be found in Table 3.1. Least-squares fit parameters are given

in Table 3.2. For display reasons the RaH/RaB = 7.5 points were multiplied by 1.5, the

Ra/RaB = 15 points were multiplied by 2.

Fig. 3.7. Three snapshots for convection with depth- and temperature-dependent

viscosity in an annulus. Viscosity varies according to equation (3.1), with 70(z)

increasing by a factor of 30 at normalized depth z = 1 - r = 0.25 and r7 (T) varying

exponentially by four orders of magnitude. Numerical details of this convection run can

be found in Table 3.4. (a) Temperature and velocity fields. Grayscale varies from cold

(dark) to warm (light) relative temperatures (T e [0,1]). Velocity arrows are normalized



by the maximum velocity at each instant. Horizontal velocities were constrained to yield

zero net horizontal fluid motion. (b) Viscosity fields. Grayscale varies logarithmically

from low viscosities (light) to high viscosities (dark) (1 e [1,104 D.

Fig. 3.8. (a) Rms temperature vaniation, oT, (b) radial correlation length, pr, and (c)

horizontal correlation angle, aT, as a function of normalized depth z = 1 - r for

convection experiments with a temperature-dependent viscosity. Viscosity varies

according to equation (3.1), with 11(z) = 1. Boundary layer viscosity, i1bl, and

boundary layer thickness, 3 bg, are: Tlbl = 50, S = 0.036 (solid lines), ib = 50, 6 b, =

0.027 (dotted lines), fl; = 50, 3 ,b = 0.045 (thin short dashed lines), 17b = 10, =

0.036 (intermediate dashed lines), and Il = 100, 8 b, = 0.036 (long dashed lines). The

isoviscous run at approximately the same Rayleigh number and internal heating rate is

also shown (heavy solid lines). Further details of the convection calculations can be

found in Table 3.3.

Fig. 3.9. Horizontally averaged temperature, Tf, as a function of normalized depth z = 1

- r for convection experiments with depth-dependent viscosity (dashed lines) and depth-

and temperature-dependent viscosity (solid lines). For the temperature-dependent runs

t 1l (T) varies exponentially by four orders of magnitude. Depth-dependent viscosity,

710(z), is: (a) uniform viscosity, (b) 30-fold viscosity increase at z = 0.125, (c) 10-fold

viscosity increase at mid-depth (z = 0.25), and (d) 30-fold viscosity increase at mid-depth.

Further details of the convection calculations can be found in Table 3.4.

Fig. 3.10. Rms variation of radial velocity, a,, as a function of normalized depth z = 1 -

r for convection experiments with depth-dependent viscosity (dashed lines) and depth-

and temperature-dependent viscosity (solid lines). For the temperature-dependent runs,

, (T) varies exponentially by four orders of magnitude. Depth-dependent viscosity,

p0 (z), is: (a) uniform viscosity, (b) 30-fold viscosity increase at z = 0.125, (c) 10-fold



viscosity increase at mid-depth (z = 0.25), and (d) 30-fold viscosity increase at mid-depth.

Further details of the convection calculations can be found in Table 3.4.

Fig. 3.11. Rms variation of horizontal velocity, orw, as a function of normalized depth z

= 1 - r for convection experiments with depth-dependent viscosity (dashed lines) and

depth- and temperature-dependent viscosity (solid lines). For the temperature-dependent

runs, 1 (T) varies exponentially by four orders of magnitude. Depth-dependent

viscosity, 70(z), is: (a) uniform viscosity, (b) 30-fold viscosity increase at z = 0.125, (c)

10-fold viscosity increase at mid-depth (z = 0.25), and (d) 30-fold viscosity increase at

mid-depth. Further details of the convection calculations can be found in Table 3.4.

Fig. 3.12. Rms temperature variation, aT, as a function of normalized depth z = 1 - r for

convection experiments with depth-dependent viscosity (dashed lines) and depth- and

temperature-dependent viscosity (solid lines). For the temperature-dependent runs,

7 (T) varies exponentially by four orders of magnitude. Depth-dependent viscosity,

p0(z), is: (a) uniform viscosity, (b) 30-fold viscosity increase at z = 0.125, (c) 10-fold

viscosity increase at mid-depth (z = 0.25), and (d) 30-fold viscosity increase at mid-depth.

Further details of the convection calculations can be found in Table 3.4.

Fig. 3.13. Radial correlation length, pr, as a function of normalized depth z = 1 - r for

convection experiments with depth-dependent viscosity (dashed lines) and depth- and

temperature-dependent viscosity (solid lines). For the temperature-dependent runs,

i (T) varies exponentially by four orders of magnitude. Depth-dependent viscosity,

770(z), is: (a) uniform viscosity, (b) 30-fold viscosity increase at z = 0.125, (c) 10-fold

viscosity increase at mid-depth (z = 0.25), and (d) 30-fold viscosity increase at mid-depth.

Further details of the convection calculations can be found in Table 3.4.

Fig. 3.14. Horizontal correlation angle, aT, as a function of normalized depth z = 1 - r

for convection experiments with depth-dependent viscosity (dashed lines) and depth- and



temperature-dependent viscosity (solid lines). For the temperature-dependent runs,

rh (T) varies exponentially by four orders of magnitude. Depth-dependent viscosity,

r0(z), is: (a) uniform viscosity, (b) 30-fold viscosity increase at z = 0.125, (c) 10-fold

viscosity increase at mid-depth (z = 0.25), and (d) 30-fold viscosity increase at mid-depth.

Further details of the convection calculations can be found in Table 3.4.

Fig. 3.15. Radial average of normalized angular power spectrum, S7/o for convection

experiments with depth-dependent viscosity (dashed lines, open symbols) and depth- and

temperature-dependent viscosity (solid lines, filled symbols). (a) uniform viscosity, (b)

30-fold viscosity increase at z = 0.125, and (c) 30-fold viscosity increase at mid-depth.

All spectra are scaled to a maximum amplitude of unity. Further details of the convection

calculations can be found in Table 3.4.

Fig. 3.16. (a) Horizontally averaged temperature, Tf, (b) rms variation of radial velocity,

a., (c) rms variation of horizontal velocity, a, (d) rms temperature variation, UT, (e)

radial correlation length, pr, and (f) horizontal correlation angle, aT, as a function of

normalized depth z = 1 - r for convection experiments with an endothermic phase

transition at r = 0.875 and RaHIRaB = 0. Phase buoyancy parameters are: P = 0.0 (solid),

-0.1 (short dashed), -0.15 (intermediate dashed), and -0.2 (long dashed). Further details

of the convection calculations can be found in Table 3.5.

Fig. 3.17. (a) Horizontally averaged temperature, T, (b) rms variation of radial velocity,

a., (c) rms variation of horizontal velocity, a, (d) rms temperature variation, UT, (e)

radial correlation length, pT, and (f) horizontal correlation angle, aT, as a function of

normalized depth z = 1 - r for convection experiments with an endothermic phase

transition at r = 0.875 and RaH/RaB = 30. Phase buoyancy parameters are: P = 0.0

(solid), -0.1 (short dashed), -0.15 (intermediate dashed), and -0.2 (long dashed). Further

details of the convection calculations can be found in Table 3.5.



Fig. 3.18. Two different formulations for the phase transition are compared: "sheet-

mass-anomaly" method (solid) and "phase-function" method (phase loop width 120 km)

(dashed). (a) Horizontally averaged temperature, T, (b) rms variation of radial velocity,

a., (c) rms variation of horizontal velocity, or, (d) rms temperature variation, aT, (e)

radial correlation length, pr, and (f) horizontal correlation angle, aT, as a function of

normalized depth z = 1 - r for convection experiments with an endothermic phase

transition at r = 0.875, a phase buoyancy parameter P = -0.15, and RaH/RaB = 30.

Further details of the convection calculations can be found in Table 3.5.

Fig. 3.19. (a) Horizontally averaged temperature, T, (b) rms variation of radial velocity,

a., (c) rms variation of horizontal velocity, a,, (d) rms temperature variation, aT, (e)

radial correlation length, pT, and (f) horizontal correlation angle, aT, as a function of

normalized depth z = 1 - r for convection experiments with an endothermic phase

transition at r = 0.875. Phase buoyancy parameters and rheologies are: P = -0.1 and

temperature-dependent viscosity (solid), P = -0.10 and constant viscosity (short dashed),

P = -0.15 and temperature-dependent viscosity (intermediate dashed), and P = -0.15 and

constant viscosity (long dashed). Further details of the convection calculations can be

found in Table 3.5.

Fig. 3.20. (a) Horizontally averaged temperature, T, (b) rms variation of radial velocity,

c., (c) rms variation of horizontal velocity, a, (d) rms temperature variation, crT, (e)

radial correlation length, pT, and (f) horizontal correlation angle, aT, as a function of

normalized depth z = 1 - r for convection experiments with an endothermic phase

transition and a 30-fold viscosity increase at r = 0.875, and RaH/RaB = 22.5. Phase

buoyancy parameters are: P = 0.0 (solid), and P = -0.1 (dashed). Further details of the

convection calculations can be found in Table 3.5.

Fig. 3.21. (a) Horizontally averaged temperature, T, (b) rms variation of radial velocity,

a,, (c) rms variation of horizontal velocity, or, (d) rms temperature variation, CT, (e)



radial correlation length, pr, and (f) horizontal correlation angle, aT, as a function of

normalized depth z = 1 - r for convection runs with a 30-fold viscosity increase at r =

0.875, and RaH/RaB = 22.5, and temperature-dependent rheology. Phase buoyancy

parameters are: P = 0.0 (solid), and P = -0.1 (dashed). Further details of the convection

calculations can be found in Table 3.5.

Fig. 3.22. Radial average of normalized angular power spectrum, S~r/aU for convection

experiments with an endothermic phase change at r = 0.875. P = 0.0 (dashed lines, open

symbols) and P = -0.1 (solid lines, filled symbols). (a) uniform viscosity, (b) 30-fold

viscosity increase at r = 0.875. All spectra are scaled to a maximum amplitude of unity.

Further details of the convection calculations can be found in Table 3.5.

Fig. 3.23. (a) Horizontally averaged temperature, T , (b) rms variation of radial velocity,

a., (c) rms variation of horizontal velocity, a, (d) rms temperature variation, aT, (e)

radial correlation length, pT, and (f) horizontal correlation angle, aT, as a function of

normalized depth z = 1 - r for convection runs with a 30-fold viscosity increase at r =

0.75. "Supercontinent" sizes are: s = 4 (solid), and s = 0 (dashed). Further details of the

convection calculations can be found in Table 3.6.

Fig. 3.24. (a) Horizontally averaged temperature, T, (b) rms variation of radial velocity,

a., (c) rms variation of horizontal velocity, a,, (d) rms temperature variation, UT, (e)

radial correlation length, pr, and (f) horizontal correlation angle, aT, as a function of

normalized depth z = 1 - r for convection runs with a temperature-dependent rheology.

"Supercontinent" sizes are: s = 4 (solid), and s = 0 (dashed). Further details of the

convection calculations can be found in Table 3.6.

Fig. 3.25. Radial average of normalized angular power spectrum, S7/a! for convection

experiments with a supercontinent. Sizes are: s = 0 (short dashed lines, open squares), s

= 2 (long dashed lines, crosses) and s = 4 (solid lines, filled squares). (a) uniform



viscosity, (b) 30-fold viscosity increase at mid-depth, (c) temperature-dependent

viscosity, and (d) temperature-dependent viscosity with a 30-fold viscosity increase at

mid-depth. All spectra are scaled to a maximum amplitude of unity. Further details of

the convection calculations can be found in Table 3.6.

Fig. 3.26. Three snapshots for convection with depth- and temperature-dependent

viscosity in an annulus. Ten plates whose geometries evolve with time are present.

Viscosity varies according to equation (3.2), with q0 (z) increasing by a factor of 30 at

normalized depth z = 1 - r = 0.25 and r1(T) varying exponentially by three orders of

magnitude. Numerical details of this convection run can be found in Table 3.7. (a)

Temperature and velocity fields. Grayscale varies from cold (dark) to warm (light)

relative temperatures (T e [0,1]). Velocity arrows are normalized by the maximum

velocity at each instant. Horizontal velocities were constrained to yield zero net

horizontal fluid motion. (b) Viscosity fields. Grayscale varies logarithmically from low

viscosities (light) to high viscosities (dark) ( 7 e [1,1041).

Fig. 3.27. (a) Horizontally averaged temperature, T, (b) rms variation of radial velocity,

o., (c) rms variation of horizontal velocity, a, (d) rms temperature variation, 0 T, (e)

radial correlation length, py, and (f) horizontal correlation angle, aT, as a function of

normalized depth z = 1 - r for convection runs with a RaHIRaB = 15. Viscosity varies

according to equation (3.2). Number of weak zones are: N, = 10 (solid), Nw = 6 (short

dashed), and N, = 14 (long dashed). Further details of the convection calculations can be

found in Table 3.7.

Fig. 3.28. (a) Horizontally averaged temperature, T, (b) rms variation of radial velocity,

a., (c) rms variation of horizontal velocity, a,, (d) rms temperature variation, aT, (e)

radial correlation length, pr, and (f) horizontal correlation angle, aT, as a function of

normalized depth z = 1 - r for convection runs with a RaH/RaB = 22.5 and a 30-fold

viscosity increase at mid-depth. Viscosity varies according to equation (3.2), with N, =



10 (solid), and equation (3.1) (dashed). Further details of the convection calculations can

be found in Table 3.7.

Fig. 3.29. (a) Horizontally averaged temperature, T , (b) rms variation of radial velocity,

o., (c) rms variation of horizontal velocity, or, (d) rms temperature variation, -T, (e)

radial correlation length, pr, and (f) horizontal correlation angle, aT, as a function of

normalized depth z = I - r for convection runs with an endothermic phase transition at r =

0.875, and RaH/RaB = 15. Viscosity varies according to equation (3.2), with N" = 10.

Phase buoyancy parameters are: P = 0.0 (solid), and P = -0.1 (dashed). Further details

of the convection calculations can be found in Table 3.7.

Fig. 3.30. (a) Horizontally averaged temperature, T, (b) rms variation of radial velocity,

a., (c) rms variation of horizontal velocity, oy, (d) rms temperature variation, T, (e)

radial correlation length, pr, and (f) horizontal correlation angle, aT, as a function of

normalized depth z = 1 - r for convection runs with an endothermic phase transition and a

30-fold viscosity increase at r = 0.875. Phase buoyancy parameter P = -0.1. Viscosity

varies according to equation (3.2), with N, = 10 (solid), and equation (3.1) (dashed).

Further details of the convection calculations can be found in Table 3.7.

Fig. 3.31. Radial average of normalized angular power spectrum, S7/a2 for convection

experiments with temperature-dependent rheology. (a) Viscosity varies according to

equation (3.2). Number of weak zones are: Nw = 10 (solid line, filled squares), N, = 6

(dotted line, open squares), and N, = 14 (dashed line, crosses). (b) Viscosity varies

according to equation (3.2), with N, = 10 (solid line, filled squares), and equation (3.1),

with a supercontinent of size s = 0 (dotted line, open squares) and s = 4 (dashed line,

crosses). All spectra are scaled to a maximum amplitude of unity. Further details of the

convection calculations can be found in Table 3.7.



Fig. 3.32. Radial average of normalized angular power spectrum, ST/T for convection

experiments with temperature-dependent rheology and a 30-fold viscosity increase with

depth. (a) Viscosity increase at mid-depth. Viscosity varies according to equation (3.2),

with N, = 10 (solid line, filled squares), and equation (3.1), with a supercontinent of size

s = 0 (dotted line, open squares) and s = 4 (dashed line, crosses). (b) Endothermic phase

transition and viscosity increase at r = 0.875. Viscosity varies according to equation (3.2)

with N, = 10, P = 0.0 (solid line, filled squares), and P = -0.1 (dotted line, open squares).

All spectra are scaled to a maximum amplitude of unity. Further details of the convection

calculations can be found in Table 3.7.

Fig. 3.33. (a), (c), (e) Histograms of fractional plate size, (b), (d), (f) histograms of

relative plate velocity magnitude for runs with evolving plates. Viscosity varies

according to equation (3.2). (a), (b) Nw = 6; (c), (d) N, = 10; and (e), (f) N, = 14.

Further details of the convection calculations can be found in Table 3.7.

Fig. 3.34. (a), (c), (e) Histograms of fractional plate size, (b), (d), (f) histograms of

relative plate velocity magnitude. Viscosity varies according to equation (3.2), with N, =

10, and increases by a factor of 30 with depth. (a), (b) Viscosity increase at mid-depth;

(c), (d) viscosity increase at r = 0.875; and (e), (f) endothermic phase transition with P =

-0.1 and viscosity increase at r = 0.875. Further details of the convection calculations

can be found in Table 3.7.

Fig. 3.35. Bin-average of relative plate velocity magnitude for runs with plates whose

geometries evolve. Viscosity varies according to equation (3.2). (a) N, = 6 (triangles),

N= 10 (squares), Nw = 14 (circles), and N, = 10 with an endothermic phase transition

(P = -0.1) at r = 0.875 (crosses). (b) Nw = 10, and 30-fold viscosity increase with depth.

Viscosity increase at mid-depth (open squares), viscosity increase and endothermic phase

transition at r = 0.875 (filled symbols); P = 0.0 (squares) and P = -0.1 (triangles). Size of



fractional plate-size bin is 0.03. Further details of the convection calculations can be

found in Table 3.7.
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CHAPTER 4

TOMOGRAPHIC EARTH STRUCTURES

INTRODUCTION

One goal of structural seismology is to map the aspherical variations in the seismic

wave speeds in sufficient detail to resolve the pattern of the mantle convection. The most

fundamental issue, posed forty-three years ago by Birch [1951], is the degree to which the

large-scale flow is stratified by changes in mineralogical phase or bulk chemistry across the

transition zone from depths of 400 to 700 km. The most plausible mineralogical

explanation for the jump in elastic parameters at the 660-km discontinuity is the

endothermic dissociation of spinel-structured (Mg,Fe)2SiO4 (-olivine) into (Mg,Fe)O

(magnesiownstite) plus perovskite-structured (Mg,Fe)SiO3. The 660-km discontinuity

could also mark a compositional boundary between the upper and lower mantle [Richter

and Johnson, 1974], at least in some average sense [Jeanloz, 1991]. Another mechanism

for impeding vertical flow is an increase of viscosity with depth. Most radial viscosity

structures obtained from modeling the earth's non-hydrostatic geoid [Hager et al., 1985;

Hager and Richards, 1989; Ricard and Wuming, 1991; King and Masters, 1992; Forte et

al., 1993] exhibit a rapid viscosity increase from the upper to the lower mantle.

Our numerical experiments, presented in chapter 3, indicate that mantle flow

stratification due to an endothermic phase transition or due to a step-function viscosity

increase show a distinct expression in the two-point correlation diagnostics.

Structural information on a global scale is now available from tomographic models of

mantle shear-wave velocities. Data sets with relatively good geographic and depth

coverage have been compiled and inverted by several research groups [Tanimoto, 1990; Su

and Dziewonski, 1991; Dziewonski and Woodward, 1992; Masters et al., 1992;
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Woodward et al., 1993; Su et al., 1994], yielding whole-mantle models with aspherical

variations up to spherical harmonic degree twelve [Su et al., 1994]. Although the resolving

power of these whole-mantle models is insufficient to image the details of individual

upwellings and downwellings, they do constrain the large-scale pattern of mantle flow. In

addition, a high-resolution regional tomographic model of the western hemisphere [Grand,

1994] has recently become available providing additional information at smaller

wavelengths. In this chapter we characterize the seismic models using the two-point

correlation functions introduced in chapter 2.

GLOBAL TOMOGRAPHIC MODELS

In most global tomographic inversions, the aspherical variations in shear-wave speed,

83, are represented by a truncated surface spherical harmonic series,

ima I

8/#(r,D0) = m T S3"(r) Y;"'(0), (4.1)
1=1 m=-l

The radii r range from the core-mantle boundary at b = 3480km to the surface at

a = 6371km, and the angular coordinates D = (9, (p) range over the unit sphere S1. In

regions where compositional and phase differences can be ignored, 8# is relatively small,

typically less than 5% of the mean wave speed 3(r), and can be related to the aspherical

temperature variations by the linear approximation 8#3(r, S2) = (d# / dT)p 3T(r, 2).

Laboratory measurements [Anderson et al., 1992] and seismic observations of slab

anomalies [Creager and Jordan, 1986] yield reliable estimates of the temperature derivative

of shear velocity at upper mantle conditions, but there is considerable uncertainty on the

value of (d# / JT), in the lower mantle; Debye-Griineisen theory predicts that it decreases

substantially with pressure, perhaps by as much as an order of magnitude between the

transition zone and the core-mantle boundary [Duffy and Ahrens, 1992].

This uncertainty aside, a good "general circulation model" for mantle flow should be

able to reproduce the major features of 8#(r,12). It would appear, however, that the

current understanding of mantle convective processes is far too crude to erect such a model;

even if constrained by the observed motions of the surficial plates, dynamical calculations
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can be expected to simulate only the grosser aspects of the flow pattern, not its smaller,

more time-dependent geographical features. Moreover, whole-mantle tomography has the

resolving power to recover only a low-pass filtered image of mantle structure, with features

that are uncertain at the smaller scales.

Distinguishing among competing convection hypotheses must therefore rely on a set of

robust, reliably estimated properties of 5#(r,D). We employ the two-point correlation

diagnostics defined in chapter 2 to characterize tomographic earth structures in a way that

allows a direct comparison to numerical convection experiments. The diagnostic functions

(2.3)-(2.5) embody complementary information about the spatial correlation of time-

dependent fields. Beyond their utility in assessing the structural differences among mantle

convection simulations, demonstrated in chapter 3, the two-point correlation functions of

the temperature fields of numerical convection experiments can be constrained by seismic

observations.

Seismology can at best provide only a single (present-day) snapshot of the aspherical

variation in the shear-wave speeds, 3#(r,D), rather than a time series. Consequently,

temporal averaging cannot be done to obtain CyP(r,r', A) for the real earth. Instead, we

must rely on the 3D snapshot estimators

-2 1
a1  4 (r)=- I 2,d=(r, r) 4) (4.2)

RP(r,r') = 1 . f#(r,Q)8#(r',D) d92
4nxagf(r)ar S1

I I o~Sp"(r)o#;im (r')(43
4n &p (r)o-p (r')I'

p(r, A) = 8#Jj 5(r,D2)85#(r,2')8( 2Q'-cosA)dD d'
8A2 j .(r)s

a (4.4)

S8 (r,1)P; (cosA)

where SP (r, 1)= m 18#m (r) 12 and P, (cos A) are Legendre polynomials.
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Fortunately, the angular averaging in (4.2)-(4.4) is effective in reducing snapshot

variability. A few judicious approximations (e.g., the statistics are Gaussian) can be used

to show that the relative standard deviations in &fg, ef, and Cxf owing to temporal

fluctuations in f(r,2,t) (for example, shear-velocity or temperature) are proportional to

df . Expressing (Xf in radians, we obtain:

S.D.[& / cf] 0.5 af, (4.5a)

S.D.[pf /pj]= 0.7 af , (4.5b)

S.D.[ af ] 0. 4 af (4.5c)

Values typical of the low-resolution seismic models [e.g.,Masters et al., 1992; Su et al.,

1994] are 0.1 < aif <0.2, implying snapshot-to-snapshot variations of 15% or less for all

three diagnostics. This statistical behavior has been numerically confirmed for Tackley et

al.'s [1993] 3D model, shown in Figure 4.1, which depicts the "ensemble averages" T,

pr, and aT as well as the snapshot estimators &T, N.T, and dT for three instants of the

simulation. Should the mantle convective regime be distinctly non-Gaussian, such as a

bimodal regime regulated by a strong endothermic phase change at 660 km and dominated

by periodic, large-scale flushing of upper-mantle material into the lower mantle [e.g.,

Machetel and Weber, 1991], the probability that the snapshot estimates will differ from the

ensemble average can be significant.

While aj is a useful diagnostic for characterizing both numerical convection

experiments and tomographic earth models, using it for comparing between the two is

problematic due to the uncertain variation of the temperature coefficient of shear-wave

speed, (d3 / dT)p, with pressure [Duffy and Ahrens, 1992]. Rf and Af on the other

hand are invariant with respect to any radial scaling of f(r, 0,t).

Figure 4.2 displays equatorial and polar cross-sections of the rms-normalized shear

velocity, 8#(r, D)/d(r), for two whole-mantle shear-velocity models, the Harvard model

S 12_WM13 [Su et al., 1994] (abbreviated HV) and the Scripps model SH10/C17 [Masters

et al., 1992] (abbreviated SC). Different data sets and parameterizations were used in the
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tomographic solutions. The Harvard group obtained spherical-harmonic/Chebyshev

coefficients for l,, = 12 and n,,, = 13 by inverting an extensive collection of long-period

waveforms, including both body and surface waves, as well as sets of SS-S and ScS-S

differential travel times measured by Woodward and Masters [1991; 1991] and their own S

and SS absolute travel times. The Scripps group used the same differential travel-times in

combination with a large compilation of free-oscillation data [Ritzwoller et al., 1988; Smith

and Masters, 1989], plus absolute times of S phases and some higher-order S multiples.

They discretized the radial distribution of aspherical heterogeneity into eleven vertically

homogeneous layers of varying thicknesses and expanded each in a spherical-harmonic

series to l,. = 10. For consistency, we truncated the coefficient series for HV at angular

degree and order 10 and expanded the radial variation of SC in Chebyshev polynomials out

to order 13.

Figures 4.3 and 4.4 show radial and angular correlation functions and &p, yg, and

a#, for the two models. The maps of R, (r, r') (Figures 4.3a, b) are very similar in the

upper half of the mantle, with correlation lengths that oscillate by only a few tens of

kilometers about a mean of approximately 130 km (Figure 4.4b). Below 1500 km depth

the HV model shows a rapid increase in the correlation length reaching a maximum of 320

km at 2400 km before falling off towards the core-mantle boundary. The maximum occurs

at the level marking the best expression of the high-amplitude, low-degree structures that

dominate the lowermost mantle in HV and other tomographic models. In the SC model,

these features are compressed into a thinner zone above the core-mantle boundary;

consequently, #3p remains approximately constant to 2400 km, below which it increases to

270 km at the base of the mantle. The angular correlation functions for HV and SC

(Figures 4.3c, d), are largest near the surface, decreasing at depths of 500 km and 400 km,

respectively, and show another local maximum near the core-mantle boundary. These

characteristics are also evident in dc (Figure 4.4c). &g shows maxima near the surface

and core-mantle boundary (CMB), with the HV model having a near-surface maximum

almost three times bigger than the maximum near the CMB, while for the SC model the

maxima are of approximately equal height (Figure 4.4a). Figure 4.5 shows angular power
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spectra for the two models. The radially averaged normalized power spectrum (Figure

4.5a) peaks at the lowest angular degrees (1= 2-3) for both models. The spectral roll-off is

more pronounced for SC than HV. This is due to the fact that the power in the mid-mantle

is distributed nearly uniformly for HV while for SC low angular degrees dominate. The

change in the spectral character from a white spectrum to one dominated by angular degrees

two and three near the CMB has been documented by the Harvard group [Su et al., 1994]

and is also apparent for SC, even though there the change in spectral character occurs at

greater depth.

MODEL RESOLUTION AND PARAMETERIZATION

The discrepancies between the two models described in the previous section raise the

question of how well resolved the global tomographic models are. Su et al. [1994] have

performed a series of resolution experiments, where they inverted synthetic data sets

calculated for shear-velocity structures specified by a single spherical-harmonic/Chebyshev

coefficient ,S33". From their inversion results we calculated the two-point correlation

diagnostics shown in Figures 4.6-4.8. Figure 4.6 compares the radial and angular

correlation functions computed from the input structure, 633{, with those calculated from

the inversion. The radial correlation function is recovered quite well down to depth of

1800 km, while the structure of the angular correlation function is faithfully reproduced

throughout the mantle. Figure 4.7 shows d-p, P, and dP for the same test structure as

well as for a test structure defined by the spherical-harmonic/Chebyshev coefficient 58fO.

The test structure with n =5 is recovered faithfully throughout most of the mantle. The

amplitude of E-p is clearly the most poorly reproduced quantity. This is probably due to

the damping associated with the seismic inversion process. Figure 4.8 depicts the

recovered angular power spectrum for the 68I3 test structure. The radially averaged

normalized power spectrum decreases by an order of magnitude away from the target

degree I = 11. Power spectra at near-surface depths and especially near the base of the

mantle show the most spectral leakage to adjacent degrees. Trade-offs exist between radial
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and angular smoothness for a tomographic inversion, contributing to differences in the

recovery of radial and angular structures.

These experiments clearly show that the resolution of the HV model degrades towards

the core-mantle boundary. Similar calculations are not available to us for the Scripps

inversion, but we note that this is the region where the difference in the radial correlation

functions for the two seismic models becomes large. Disagreements between the two

models are evident at higher levels as well; in fact, the radial coherence of the HV and SC

heterogeneity fields (cross-correlation coefficient at a specified radius), while high (-0.8) in

the high-amplitude regions of the uppermost and lowermost mantle, is weak (0.4-0.6)

throughout the mid-mantle region where the rms variation is low. Further work to

reconcile the tomographic models, and to assess the ability of the seismic data to constrain

details of the two-point correlation function, is clearly warranted. Preliminary results from

a study of the Scripps group, who used a temperature field of Tackley et al.'s [1993] 3D

convection model as a test structure for their inversion, indicate that the major features of

the radial correlation function for that model are recovered by the seismic inversion (S.

Johnson and G. Masters, unpublished data, 1994).

Above we investigated the effects of data coverage and smoothness constraints imposed

by the inversion procedure on synthetic test structures. In this section we illustrate the

influence of different model parameterizations on the resulting seismic earth models. We

examined two degree-eight tomographic models from earlier Harvard studies [Dziewonski

and Woodward, 1992; Woodward et al., 1993], both of which explain the seismic data

equally well. The first, SH8/WM13 (WM), has the same radial parameterization as HV

(n,. = 13), and its radial correlation function is shown in Figure 4.9a. The second,

SH8/U4L8 (UL), is parameterized by separate Chebyshev expansions in the upper mantle

(n,. = 4) and lower mantle (n,. = 8) and therefore develops a discontinuity in S# at a

depth of 670 km. Its radial correlation function, displayed in Figure 4.9b, shows a sharp

decrease around 670 km depth.

Consider a tomographic model as the output of a filter whose input is the real earth and

whose response is determined by the seismic data and the model parameterization. Given a
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known radial correlation function, Rj", the effects of a given model parameterization can be

calculated as
I T,(r)Tk (r' )Ikk.

Filter k,k'Rf (r,r') = (T((4.6)

STk(r)T. f r )l k. j Tk17 W k-r)Ikk.

where k

1 aa
Ikk = j 'Tk(s)T,,.(s') w(s)w(s' ) Rr"(s, s') dsds' (4.7)

CkCk' b

and Tk(s), w(s) and Ck are the Chebyshev polynomials, Chebyshev weight functions and

Chebyshev normalizing integrals, respectively [e.g., Abramowitz and Stegun, 1972].

To illustrate the effects of the model parameterization, we use a cosine-squared radial

correlation function, R, , of constant width throughout the mantle (p, = 67 km). Figure

4. 10a shows the filter-response, RwM, applied to R . Applying the parameterization of

the two-layer model to N yields the filter response, R , displayed in Figure 4.10b.

Comparing Figures 4.9b and 4. 1Ob we note the similarity between the features around 670

km depth. This is further illustrated in Figure 4.11 where the radial correlation lengths are

compared. UL displays a sharp decrease in P confined to a 200-km interval centered on

the 670-km discontinuity (Figure 4.11 a). A very similar feature is obtained by applying the

discontinuous parameterization to a constant radial correlation function (Figure 4.1 1b).

(The reason the radial correlation lengths decrease toward the boundaries lies in the higher

resolution of the Chebyshev basis functions there. The widths of #p" and y L are larger

than p due to the radial filtering performed.) This experiment suggests that

discontinuous model parameterizations should be avoided in tomographic tests of mantle

stratification.

FILTERING

The current generation of whole-mantle tomographic models parameterize the shear-

velocity structures only up to angular degree 1,,, 10-12 [Masters et al., 1992; Su et al.,

1994]. The radial distribution of aspherical heterogeneity is parameterized using either 13

Chebyshev polynomials or vertically homogeneous layers. When comparing results from
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numerical convection experiments to seismic constraints, we need to low-pass filter the

temperature fields to account for the limited seismic resolution. In this section we illustrate

the effects of calculating two-point correlation functions from temperature fields truncated

at angular degree 10 and radial (Chebyshev) order 13 for different flow models. (For a

detailed discussion of the convection experiments see chapter 3.)

Figure 4.12, shows UT, p7 and ar for a convection experiment with a 30-fold

viscosity increase at mid-depth. The results of truncating the 6T snapshots at angular

order 10 and radial order 13 prior to calculating two-point correlation diagnostics are

shown together with the unfiltered diagnostics. The filtering reduces UT and increases

aT, and it distorts the structure in both caused by the viscosity stratification. The change

in pr is much smaller, except in the lower boundary layer, where the correlation length

increases rapidly owing to the dominance of a few low-degree harmonics. In particular,

the rapid rise in pr at the mid-depth viscosity transition is only slightly smoothed by the

truncation. The next example (Figure 4.13) shows the same diagnostics for a convection

run with an endothermic phase boundary (P = -0.1) at r = 0.875. Both UT and pr

preserve the characteristic signature of the phase boundary for the filtered fields, albeit

slightly distorted. In particular, the rms-amplitude of the filtered fields is decreased and the

minimum in pr is shifted to slightly larger depths. This behavior is also observed for the

radial correlation diagnostics calculated for 3D convection experiments with an endothermic

phase change [Jordan et al., 1993]. The correlation angle is distorted most significantly

both in size and shape. The local maximum in aT centered around the phase transition,

has disappeared entirely. Raising the cut-off in angular and radial order to l,,m = n,,, = 20

leads to similar modifications in the correlation diagnostics. In particular, the local

maximum in the correlation angle associated with the phase transition is still not detectable.

Figure 4.14 shows the same diagnostics for a convection run with temperature-dependent

viscosity and ten plates whose geometries evolve with time. The amplitude of UT is

reduced for the low-pass filtered diagnostic, while pr retains its characteristic signature.

As for the previous examples, aT is distorted most significantly, even though the near-

surface maximum associated with the presence of plates is retained. Figure 4.15 shows a
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comparison between the correlation diagnostics calculated for two experiments with

temperature-dependent viscosity and ten evolving plates, one run with an endothermic

phase boundary (P = -0.1) at r = 0.875. ur, pT, and aT calculated from the unfiltered

fields are shown in Figures 4.15a, c, and e, respectively. Their filtered counterparts are

compared in Figures 4.15b, d, and f. The local minimum in pT near the phase transition

depth, characteristic of flow stratification can be seen for both unfiltered and filtered

diagnostics, while the local correlation maximum in aT has disappeared after low-pass

filtering the temperature fields. The weak expression of the phase transition is preserved

for arT.

To summarize, the radial correlation length is least affected by truncating the

temperature fields at angular degree 10 and radial order 13. With slight distortions, Pr

retains both shape and amplitude of features characteristic to a given flow regime. The

amplitude of UT is always reduced for the truncated diagnostic, however, the variation of

the function with depth is better preserved. The correlation angle is affected most severely

by the low-pass filtering, both shape and amplitude of aT are distorted. The only

characteristic of aT preserved in the low-pass filtered fields is its increase near the surface

associated with the presence of plates, an expression of predominantly horizontal variations

in the flow fields. All other features in the correlation diagnostics were due to some form

of radial flow stratification; for them the diagnostic features of the radial correlation

function are embedded in the low-degree harmonics. This functional is therefore more

suitable than UT or AT for testing stratification hypotheses against the seismic models.

REGIONAL TOMOGRAPHIC MODELS

One limitation of global seismic models is their low radial and angular resolution.

While the radial correlation function is least affected by low-pass filtering to the resolution

typical of today's global tomographic models, an increase in resolution should allow us to

interpret more subtle features of the flow diagnostics. This section investigates a recent

high-resolution regional tomographic model [Grand, 1994] (GR), calculating its two-point
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correlation functions. Grand's [1994] model of mantle shear-velocity structure beneath the

Americas and surrounding oceans is parameterized using blocks of horizontal dimensions

of roughly 275 by 275 km and vertical dimensions varying from 75 to 150 km. The data

consist of S and ScS waves as well as multibounce phases SS, SSS, and SSSS. Synthetic

seismograms were used to measure the travel times accounting for the first-order effects of

velocity heterogeneity on the raypaths. The inversion algorithm is designed to explain as

much data as possible with shallow mantle heterogeneity (above 320 km depth). The

resulting model is slightly smoothed, both laterally and radially using a weighted running

mean. Due to the data sampling the model resolution is probably poorest between 400 and

800 km depth [S. Grand, personal communication, 1994].

Figure 4.16 shows the areal coverage of this model. The shaded regions shown in

Figures 4.16a and 4.16b represent blocks for which a velocity heterogeneity was obtained

by the inversion for all and for at least half of the 22 depth layers, respectively. These

areas comprise 44% and 74% of the earth's surface area, respectively. For simplicity, we

denote the models corresponding to these two regions as G44 and G74, respectively.

Radial and angular correlation functions calculated for these regions are shown in Figures

4.17 and 4.18. Rg and AP were calculated by numerical integration of the velocity

anomalies according to equations (4.2)-(4.4). Anomalies of blocks in G74 for which the

inversion provided no velocity anomalies were calculated from a smoothest-model spherical

harmonic spline interpolation [Shure et al., 1982] (Figure 4.18a, c). Spherical harmonic

splines truncated at angular degree 20, radially expanded using Chebyshev polynomials

(nax = 20) were used for calculating the correlation functions shown in Figures 4.17b, d

and 4.18b, d. Both the radial and angular correlation functions calculated for G44 and G74

are very similar. This is further illustrated in Figure 4.19, where &p, p, and ap are

depicted. The radial and angular correlation diagnostics are characterized by correlation

maxima near the surface, low correlation lengths between 350 and 800 km depths (below

which p increases rapidly from approximately 50 km to 150 km), nearly constant values

down to 2500 km and local maxima at the base of the mantle. The rms-variation (Figures

4.19a, b) is largest near the surface, its amplitude in part probably due to the specifics of
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the inversion algorithm discussed above. Dashed lines in Figure 4.19 show the correlation

diagnostics calculated from the continuously parameterized model for two levels of angular

and radial truncation (l,.. = n,, = 20 and l,. = 20, n,., = 13). These diagnostics are

similar to those calculated from the layered model, with ag showing the largest difference,

illustrating the effects of filtering on the angular correlation function. Figure 4.20 shows

&p, p, and do for different areal coverages. The diagnostics for G44 and G74 are

expanded to angular degree and radial order 20. We also calculated diagnostics for the

S12_WM13 [Su et al., 1994] (HV) using the same regions as well as those calculated from

the complete global model. For both GR and HV the characteristic features are similar for

the two subsets, which themselves are close to the global diagnostics (for HV).

DISCUSSION

In this chapter we have investigated the utility of characterizing tomographic models of

seismic velocity anomalies using two-point correlation functions. Unlike for numerical

convection experiments, only a single snapshot of the earth's seismic heterogeneity field is

available to us. Fortunately, the angular averaging performed when calculating the

correlation diagnostics successfully reduces their variability (Figure 4.1). While &p, Rp,
and AP contain complementary information about the earth's heterogeneity, Rp clearly is

the most useful, especially when searching for signatures of radial stratification. Several

factors limit the utility of the other diagnostics: First, an attractive property of Ro, and Ag
not shared by &p is their invariance with respect to a radially varying function such as the

temperature derivative of shear velocity, whose depth-dependence is uncertain in the lower

mantle. This property becomes important when comparing the correlation diagnostics of

the shear velocity heterogeneity to those obtained from temperature fields of numerical

convection experiments. Second, synthetic inversion experiments for the HV model using

simple test structures indicate that og is more poorly recovered than Ro, and A,
especially its amplitude (Figure 4.7a). Third, calculating correlation diagnostics from

temperature fields filtered to the limited resolution of tomographic models reveals that the
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amplitude of the rms-variation is reduced by this low-pass filtering. The shape of aT is

affected to a lesser degree. Even more affected than rT, is the angular correlation

function. Low-pass filtering of convection runs removes all features diagnostic of radial

flow stratification from aT. The radial correlation length is distorted slightly, but retains

most of its characteristics of radial flow stratification (Figures 4.12-4.15).

With these caveats in mind, Figure 4.21 shows a comparison of &p, A#, and di for

the global tomographic models HV and SC truncated at angular degree 10 and radial order

13 together with the regional model G74. The diagnostics of the regional model are

probably fairly close to what global averages would look like (Figure 4.20). All three

models show increased values of &P near the surface and CMB, however, the size of these

maxima, the ratio of the maxima, and the values in the interior varies between the different

models (Figure 4.21a). As discussed before, the angular truncation of these models is too

severe to expect the detection of any features indicative of radial stratification. Features that

might be associated with horizontal scales in the earth's mantle are the local maxima near

the surface and CMB (Figure 4.21 c). For all models, the radial correlation length between

350 and 800 km depth is relatively constant, albeit by about a factor of two smaller for

G74. Below that depth, yp for G74 increases rapidly to a correlation length of 150 km

constant throughout most of the lower mantle and increases in D" to a maximum of 260

km. Below 1200 km depth, G74 and SC differ only by 20-30 km. HV on the other hand

shows an increase starting at 1600 km depth to a maximum of 320 km at a depth of 2500

km. While some of these features, such as the rapid rise in G74 from 800 km to 1200 km

depth, or a similar increase in HV below 1600 km depth are intriguing, the differences in

N between the three models suggest caution in putting too much stock in any one feature.

Is the mantle below 1200 km depth characterized by a constant correlation length of -150

km with an increase in D" as suggested by G74 and SC and is the increase in HV below

1600 km depth a result of its deteriorating resolution as evident from Figure 4.7? Is the

rapid increase in G74 starting around 800 km depth real, and why are its values of #P
between 350 and 800 km depth less than half those observed for the global models? This

could be due to the fact that the depth range between 400 and 800 km is most poorly
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resolved for G74 [S. Grand, personal communication]. Alternatively, the discrepancies

might be due to the different data sets or the different approximations used to make the

inverse problem tractable. Figure 4.22, which shows the coherency (cross-correlation

coefficient at a specified radius) between two seismic models, reiterates this point. The

coherency of GR with either HV or SC only exceeds 0.5 in the uppermost and lowermost

mantle, while the lower-resolution global models show a slightly higher coherency (note

however, that some of the data used to construct HV and SC were identical). Some of the

questions regarding which (if any) of the seismic models resembles the earth's mantle most

closely may be addressed by looking at the correlation diagnostics of resolution tests

similar to those performed for the HV model, a process we have initiated. However,

ultimately it will be desirable to directly invert seismic observations for the two-point

correlation functions rather than calculating these from tomographic models.
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FIGURE CAPTIONS

Fig. 4.1. (a) Rms temperature variation, (b) radial correlation length, and (c) horizontal

correlation angle, as a function of depth for the 3D convection run with an endothermic

phase transition of Tackley et al. [1993]. The ensemble averages (U-T, pr, and aT) are

shown as solid lines, the snapshot estimates ( &T, j, and 57) for three snapshots widely

separated in time are shown as dashed lines.

Fig. 4.2. Cross-sections of rms-normalized shear-velocity heterogeneity for the global

tomographic models S 12WM 13 [Su et al., 1994] (HV) (top row) and SH1O/C17 [Masters

et al., 1992] (SC) (bottom row). Inset maps denote the great-circle along which the cross-

sections were taken. Grayscale varies from fast (dark) to slow (light) dimensionless shear-

velocity heterogeneity 3#/o- e [-0.5,0.5].

Fig. 4.3. (a), (b) Radial correlation functions, Rp (z, z'), and (c), (d) angular correlation

functions, Ag(zA), as functions of depth z and angular lag A for HV (a), (c) and SC (b),

(d). Both models are truncated at angular degree I = 10 and radial (Chebyshev) order 13.

Rp (z,z') and A#(z, A)are unity on the loci r = r', and A = 0, respectively, and decrease

away from these axes of symmetry. Contours are in increments of 0.2.

Fig. 4.4. (a) Rms shear-velocity heterogeneity, op, (b) radial correlation length, pp, and

(c) horizontal correlation angle, d&p, as a function of depth for HV (solid) and SC

(dashed). Both models are truncated at angular degree 1= 10 and radial (Chebyshev) order

13.

Fig. 4.5. Angular power spectrum, Sp (z,l) for HV (solid lines, filled symbols) and SC

(dashed lines, open symbols). (a) Radial average of normalized spectrum, 5p/&). (b)
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Sp(z=100 km,1), (c) Sp (z = 670 km,1), (d) Sp (z=1400 km,1), (e) Sp (z= 2100km,1),

and (f) Sg (z = 2800 km, 1). All plots are normalized to a maximum power of unity.

Fig. 4.6. Resolution test for HV for a test structure specified by a single spherical-

harmonic/Chebyshev coefficient (50f", n =8, 1=11, m= 6. (a), (c) Radial and angular

correlation function of the input structure. (b), (d) Rp and Ap and of the fields recovered

by inversion of the seismic data.

Fig. 4.7. (a), (b) Rms shear-velocity heterogeneity, &p, (c), (d) radial correlation length,

yp, and (e), (f) horizontal correlation angle, dp, as a function of depth, z for two different

test structures inverted with the HV data set and parameterization. Input structure (solid),

structure recovered by inversion of the seismic data (dashed). (a), (c), (e) Test structure

8011; (b), (d), (f) test structure 5,P 0-

Fig. 4.8. Angular power spectrum, S (z, 1), for the test structure 83#161 recovered from

the resolution test for HV. (a) Radial average of normalized spectrum, So /&. (b)

Sp(z=l00km,l), (c) Sp(z = 670km,l), (d) SP (z=l400km,l), (e) Sfi(z= 2lOOkm,l),

and (f) S (z = 2800 km, 1). All plots are normalized to a maximum power of unity.

Fig. 4.9. Radial correlation functions for two differently parameterized degree-eight

models of the Harvard group. (a) SH8/WM13 [Woodward et al., 1993] (WM), radially

parameterized by continuous Chebyshev polynomials (n = 13). (b) SH8/U4L8

[Dziewonski and Woodward, 1992] (UL), radially parameterized by separate Chebyshev

expansions in the upper mantle (n = 4) and lower mantle (n = 8).

Fig. 4.10. Radial correlation functions obtained by applying different parameterization

filters to a cosine-squared radial correlation function of constant width throughout the

mantle (p"' =67 km). (a) WM parameterization, (b) UL parameterization.
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Fig. 4.11. Radial correlation length, pp, for the radial correlation functions shown in

Figures 4.9 and 4.10. (a) WM (solid) and UL (dashed). (b) Applying different

parameterization filters to a cosine-squared radial correlation function of constant width

throughout the mantle (p' = 67 km); WM parameterization (solid) and UL

parameterization (dashed).

Fig. 4.12. (a) Rms temperature variation, UT, (b) radial correlation length, pr, and (c)

horizontal correlation angle, aT, as a function of normalized depth z = 1 - r for the same

convection run shown in Figures 2.1-2.4. Dashed lines show the results of truncating the

8T snapshots at angular degree 10 and radial order 13 prior to averaging; solid lines show

the diagnostics calculated from the unfiltered fields.

Fig. 4.13. (a) Rms temperature variation, UT, (b) radial correlation length, pT, and (c)

horizontal correlation angle, aT, as a function of normalized depth z = 1 - r for a

convection run with an endothermic phase transition at r = 0.875 with a phase buoyancy

parameter P = -0.1. Dashed lines show the results of truncating the 6T snapshots prior to

averaging at angular degree 10 and radial order 13 (short dashed) and angular degree 20

and radial order 20 (long dashed), respectively; solid lines show the diagnostics calculated

from the unfiltered fields.

Fig. 4.14. (a) Rms temperature variation, UT, (b) radial correlation length, pr, and (c)

horizontal correlation angle, aT, as a function of normalized depth z = 1 - r for a

convection run with ten plates whose geometries evolve with time. Viscosity varies

according to equation (3.2). Dashed lines show the results of truncating the 8T snapshots

at angular degree 10 and radial order 13 prior to averaging; solid lines show the diagnostics

calculated from the unfiltered fields.

Fig. 4.15. (a), (b) Rms temperature variation, UT, (c), (d) radial correlation length, pr,

and (e), (f) horizontal correlation angle, aT, as a function of normalized depth z = 1 - r for
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two convection runs with ten plates whose geometries evolve with time and an endothermic

phase transition at r = 0.875. Viscosity varies according to equation (3.2). (a), (c), (e)

diagnostics calculated from the unfiltered fields. (b), (d), (f) results of truncating the ST

snapshots at angular degree 10 and radial order 13 prior to averaging. Phase buoyancy

parameter P = -0.0 (solid) and P = 0.1 (dashed).

Fig. 4.16. Coverage maps for the regional tomographic shear-velocity model of Grand

[1994] (GR) parameterized by 22 layers of constant slowness anomaly blocks. Shaded

regions show locations where the tomographic model contains a velocity anomaly in all 22

layers (G44) (a), in at least 11 layers (G74) (b).

Fig. 4.17. (a), (b) Radial correlation functions, Rp (z, z'), and (c), (d) angular correlation

functions, Ag (z, A), as functions of depth, z, and angular lag, A, for G44. (a), (c) Model

parameterized by 22 layers of constant slowness anomaly blocks. (b), (d) Model

parameterized by spherical harmonics truncated at l,,m = 20 and Chebyshev polynomials

truncated at n,,. = 20. Rp(z,z') and Ag(z,A) are unity on the loci z = z', and A = 0,

respectively, and decrease away from these axes of symmetry. Contours are in increments

of 0.2.

Fig. 4.18. (a), (b) Radial correlation functions, Rp (z, z'), and (c), (d) angular correlation

functions, Ag(z,A), as functions of depth, z, and angular lag, A, for G74. (a), (c) Model

parameterized by 22 layers of constant slowness anomaly blocks. (b), (d) Model

parameterized by spherical harmonics truncated at l, = 20 and Chebyshev polynomials

truncated at n, = 20. Rp(z,z') and Af(z,A) are unity on the loci z = z', and A = 0,

respectively, and decrease away from these axes of symmetry. Contours are in increments

of 0.2.

Fig. 4.19. (a), (b) Rms shear-velocity heterogeneity, E-g, (c), (d) radial correlation length,

#p, and (e), (f) horizontal correlation angle, a-#, as a function of depth, z , for Grand's
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[1994] tomographic model. (a), (c), (e) G44; (b), (d), (f); G74. Model parameterized by

22 layers of constant slowness anomaly blocks (solid); model parameterized by spherical

harmonics and Chebyshev polynomials with ln,, = 10, n,, = 13 (short dashed) and lna

= 20, n, = 20 (long dashed).

Fig. 4.20. (a), (b) Rms shear-velocity heterogeneity, Cg, (c), (d) radial correlation length,

#p, and (e), (f) horizontal correlation angle, aP, as a function of depth. (a), (c), (e)

Model GR truncated at 1,.,, = 20 and n,ax = 20 with G44 (solid) and G74 (short dashed).

(b), (d), (f) Model HV with an areal coverage according to Figures 4.16a. (solid) and

4.16b. (short dashed). Functions calculated for the complete global model (HV) are shown

by the long dashed lines.

Fig. 4.21. (a) Rms shear-velocity heterogeneity, &p, (b) radial correlation length, #fp, and

(c) horizontal correlation angle, ap, as a function of depth. Model G74 (solid), global

models truncated at l,ax = 10 and n,a = 13 HV (short dashed) and SC (long dashed).

Dotted line marks the upper mantle-lower mantle transition. For a better comparison

between the models we display j# of G74 truncated at l,n = 20 and n,a= 20

Fig. 4.22. Coherency, t~r, of two seismic heterogeneity fields, as a function of depth. (a)

GR and HV, (b) GR and SC, and (c) HV and SC. HV and SC were truncated at l, = 10

and n,,a = 13. Areal coverage according to Figures 4.16a (solid) and 4.16b (short

dashed). For comparison, the coherency between the global fields HV and SC is also

shown (long dashed).
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Figure 4.2
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CHAPTER 5

SUMMARY AND CONCLUSIONS

In this study we have used two-point correlation functions to characterize the average

properties of numerical mantle convection experiments and tomographic earth structures.

We have investigated a large number of mantle flow models and quantified the influence

of Rayleigh number, internal heating rate, radial viscosity variations, temperature-

dependent rheology, phase changes, and plates, both isolated and in combination. Each

of these effects alters the flow structure and is clearly expressed in the two-point

correlation diagnostics.

Chapter 2 introduces the complete spatio-temporal two-point correlation functions of

the temperature and flow velocity fields as tools for studying high-Rayleigh number fluid

flow and illustrates the concepts with an example calculation. Diagnostics of the

temperature field reveal the characteristic flow features as well as V-diagnostics and are

more easily relatable to geophysical observables. We investigate the influence of

geometry on the flow by comparing the second-order statistics of a 2D cylindrical

calculation with a 3D spherical shell experiment [Tackley et al., 1993] for a flow with an

endothermic phase change. The characteristic features of the flow are expressed in the

correlation functions for both geometries.

In chapter 3 we apply this formalism to characterize the second-order statistics of

mantle convection experiments investigating a large number of different effects. For

isoviscous flows in an annulus, we show how radial averages of aT, pr, and aT scale

with Rayleigh number for various internal heating rates. A rapid 10-fold to 30-fold

viscosity increase with depth yields weakly stratified flows, quantified by a., which

measures the rms-radial flux. The horizontal flux diagnostic a, reveals the sensitivity of

the flow organization on the depth of the viscosity jump (a viscosity discontinuity located

at mid-depth leads to horizontal return flow, while one at r = 0.875 does not). In the T-
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diagnostics, a rapid viscosity increase with depth is documented as an increase of UT,

p7, and aT in the high-viscosity region.

For numerical experiments with a temperature-dependent rheology, we employ a

mobilization scheme for the upper boundary layer that allows us to study the influence of

weak, low-viscosity upwellings and strong, high-viscosity downwellings, while

preserving a mobile upper boundary layer. Temperature dependence does not

appreciably perturb the u--diagnostics or aT in the convecting interior. Changes in the

radial correlation length are two-fold. First, the greater viscosity of cold downwellings

leads to an increase in the height and width of the radial correlation maximum near the

top. Second, the increase in p7 associated with a viscosity jump is markedly reduced.

An endothermic phase transition manifests itself in the correlation diagnostics as a

local minimum in a, and pT and a local maximum in UT and aT around the phase

transition depth. Temperature-dependent rheology reduces the amount of layering;

however, the phase-change induced layering is still apparent in the two-point correlation

diagnostics, with p7 being the most sensitive indicator of a phase transition. When the

phase change coincides with a rapid viscosity increase, the effects of the latter are more

important in organizing the flow.

We also investigate the influence of surface plates on the flow organization. Plates

whose geometries evolve with time are modeled using a temperature-dependent rheology

combined with weak zones (small regions of low viscosity) advected by the flow. The

two-point correlation diagnostics obtained from these flows are similar to the

temperature-dependent runs with a mobilized upper boundary layer. Differences include

an increase in or and aT near the surface, and a shift of the maximum in or to

shallower depths. The main influence of plates is to organize the large-scale flow

structure, best documented in the angular power spectrum, which has more power

concentrated at low wave numbers for the models with plates. We also quantify some

statistics of the plate system, such as plate-size and relative plate-velocity distributions.

Average plate velocities decrease nearly monotonically with increasing plate size for
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cases without a viscosity stratification, whereas viscously stratified systems exhibit a

more uniform average plate-velocity distribution.

We have undertaken this systematic study of different effects on the flow structure to

establish a data base for a quantitative comparison between mantle convection models

and tomographic earth structures based on the same set of diagnostics. The radial

correlation function is best suited for such a comparison, as it is least sensitive to the

angular and radial filtering necessary when comparing results from convection

calculations to the low-resolution images obtained from seismic tomography. RT can be

directly compared with R# estimated from tomographic models where the mapping of

shear-speed variations into temperature variations is linear with a coefficient of

proportionality that depends only on depth. This should be a good approximation in the

mantle's interior away from chemical boundary layers.

In chapter 4 we calculate the two-point moment functions for global and regional

models of seismic shear velocity heterogeneity. The tomographic models show relatively

constant radial correlation lengths between 350 and 800 km depth, although the exact

values of pP differ. Below 1200 km depth, two of the three models agree within 20-30

km. Above this depth, the other two models agree. The discrepancy between the seismic

heterogeneity fields can be quantified by the coherency, yp, (cross-correlation coefficient

at a specified radius) between any two models. This analysis indicates low coherencies

except in the uppermost and lowermost mantle, where V > 0.5. The variability between

the correlation functions derived from the different seismic models makes an

interpretation of individual features of Rg difficult.

Despite their differences, tomographic models still provide valuable constraints on the

types of mantle flow models consistent with the observed radial correlation functions.

Figure 5.1 shows radial correlation lengths, pp, for the three seismic models (G74, HV,

and SC) and p7-profiles for various convection experiments filtered to the global

tomographic resolution. For reference, the range of correlation lengths encompassed by

the seismic models is shown as a gray-shaded area. Common to the convection runs are a

temperature-dependent rheology and ten surface plates. In addition, the numerical
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experiments shown in Figure 5. 1b have a step-function viscosity increase at r = 0.875,

while those depicted in Figure 5.1 c exhibit an endothermic phase change at that depth

(and flo = 1). The convection models with a 30-fold viscosity increase (P = 0.0 and P =

-0.1) are most consistent with the seismic results, while a viscosity jump by a factor 100

is marginally consistent (long dashed). None of the pr-profiles for the convection

experiments without viscosity stratification show a morphology similar to that of the

seismic models. Whereas the p -profiles increase with depth, p7 for cases with a weak

endothermic phase boundary (P = 0.0 and P = -0.1) decreases with depth, and the run

with P = -0.2 (long dashed) shows two local maxima well outside the range spanned by

the seismic models. For runs without viscous stratification, the endothermic phase

change manifests itself as a distinct local minimum in pr at the phase transition depth.

Such a minimum in pr is absent for the experiment where the phase change and viscosity

jump coincide.

To quantify the magnitude of flow stratification, we define a stratification index for

the average radial mass flux as S(lul) = 1-luls/lulo, where luls is the value at the

stratification boundary and Iulo is a reference value. For a completely stratified flow, Iuls

= 0 and S(lul) is unity, while for luls = lulo, the stratification index is zero. Using a

definition for lulo based on a reference run, used by Solheim and Peltier [1994], is

problematic for convection experiments with varying viscosity and/or internal heating,

where the proper choice of parameters for the reference case is difficult. Instead, we

choose lulo as the mean of radially averaged fluxes above and below the stratification

boundary away from boundary layers. This definition of lulo allows us to obtain an

estimate for S from each convection experiment individually. Figure 5.2 shows a plot of

S(Iul) versus S(p), the stratification index for the radial correlation length (calculated

analogously), for a suite of convection models spanning a wide range of rheologies with

varying phase change strengths, at Rayleigh numbers RaBe = 1 x106 - 5 x106 and

internal heating rates ranging from 52% to 85%. S(p) can also be calculated for the

tomographic models; the range spanned by the models G74, HV, and SC is shown as dark

gray-shaded bands. Light shaded bands outline the additional range of S(G) allowed

---- I
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assuming that half the correlation length in the seismic models at 670 km depth is due to

noise. To allow a comparison between S(pr) and S(Op) stratification indices were

calculated from the diagnostics obtained by low-pass filtering the temperature fields to

1,a = na = 20 (Figure 5.2a) and 1,a = 10, n,.a = 13 (Figure 5.2b), respectively. For

small values of S(lul), S(pr) increases more rapidly than S(lul), beyond S(lul) ~ 0.1,

S(p-) increases approximately linearly with a slope smaller than unity. Except for a

completely stratified run, S(lul) is less than 0.5. Experiments falling outside the gray-

shaded bands for both levels of filtering are (in order of decreasing S(lul)): the rigorously

stratified case, two experimen ts with P = -0.2, a run with P = -0.15, an experiment with a

30-fold viscosity increase at r = 0.875 and a strong endothermic phase change (P =

-0.15), and two experiments with P = -0.1 and P = 0.0. For the same value of P, both

S(lul) and S(p) are smaller for the runs with temperature-dependent rheology than their

temperature-independent counterparts, consistent with the findings discussed in chapter 3

(Figure 4.19). All experiments inconsistent with the constraints provided by S(pp), also

fail to be consistent with the overall morphology of the p -profiles shown in Figure 5.1,

indicating that the stratification index provides a crude but effective discriminant. The

range spanned by S(Op) (for models G74, HV, and SC) suggests that the present-day

mantle is at most weakly stratified with S(lul) 0.1. While it is possible to calculate an

instantaneous radial flow velocity field for a model of seismic heterogeneity directly

[Hager and Clayton, 1989; Phipps-Morgan and Shearer, 1993], those calculations

involve a scaling of seismic anomalies to density, the choice of a radial viscosity model,

and to date do not incorporate the effects of lateral viscosity variations. The approach

presented here provides an alternative route for determining S(lul).

Is there a relationship between the stratification index S(lul) and the temporal

variability of the radial flux at the stratification boundary, lIs? Figure 5.3 depicts

histograms of IUs for unstratified flows (Figures 5.3a, b), viscously stratified flows

(Figures 5.3c, d), and flows stratified by a strong endothermic phase-change (Figures

5.3e,f). The latter two runs show a distinct asymmetry in the flux histograms, which is

due to episodic "avalanching" events occurring for these strongly phase-change
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modulated flows. A simple measure for the asymmetry of the flux distributions is:

A(I ,,)= l~jjjmed/(Ias),wh e d
A(laiis) = 1-la"/(is~i), where and ls) are the median flux and mean flux,

respectively. For distributions symmetric about the mean, the asymmetry index is zero.

Figure 5.4 shows A(lails ) as a function of S(Iul) for the same suite of runs depicted in

Figure 5.2. All models with S(Iul) 0.1 also have small A(Iails). The runs characterized

by strong episodicity have stratification indices greater than 0.2. For the same values of

P, experiments with temperature-dependent viscosity have smaller values of A(Iis)

than their temperature-independent counterparts, as strong, cold downwellings are

capable of penetrating the phase boundary more readily, leading to a larger mean flux and

smaller avalanches. Results from 3D calculations with an endothermic phase change

[Tackley et al., 1993] exhibit less episodicity than comparable 2D runs. These results

suggest that strong episodicity only occurs for highly stratified flows. As the

stratification index for the present day mantle as constrained by the seismic models

discussed above is small, it appears unlikely that the earth's mantle is in a regime where

long periods of separate upper mantle - lower mantle convection are interrupted by short

episodes of whole mantle style convection as advocated by some workers [Machetel and

Weber, 1991; Peltier and Solheim, 1992].

As seismology provides only a single snapshot of the convecting mantle we cannot

rule out that today's mantle is in an avalanching cycle of an episodic regime, leading to

small values of S(pg) (and by inference S(Iul)). However, as both temperature-

dependent rheology and three-dimensionality reduce episodicity, this scenario appears

unlikely. Other geophysical observations can help us to discriminate further between the

styles of mantle convection. As already discussed in chapter 3, plates are an important

part of the earth's convecting system, and should therefore be incorporated in numerical

models. Convection experiments with plates whose geometries evolve with time also

allow a comparison of the numerical models with a set of observations that extend over a

period of time - the plate tectonic record. While in this thesis the convection experiments

with plates and temperature-dependent rheology are primarily discussed in terms of two-

point correlation functions, we shall illustrate some of the diagnostic potential of the plate
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system statistics. Figure 5.5 shows histograms of fractional plate size and relative plate

velocity for two convection experiments and for the earth's plate tectonic system over the

last 120 Ma compiled by Lithgow-Bertelloni et al. [1993]. The first convection model

(Figures 5.5a, b) has a strong endothermic phase transition (P = -0.2) at r = 0.875 and has

plate-size and plate-velocity histograms peaked at the smallest bins. In contrast, the size

and velocity histograms of the second experiment (Figures 5.5c, d) show less asymmetry.

This model has a 30-fold viscosity increase at r = 0.875 and a weak endothermic phase

change (P = -0.1) at that depth. Figures 5.5e,f show the size and velocity distributions

for the earth's plate tectonic system over the last 120 Ma. It is evident that the histograms

of the plate tectonic record are more similar to the convection model with a high-viscosity

lower layer than to the model with a strong endothermic phase boundary. The asymmetry

of the plate-size and plate-velocity distributions is further quantified using the same

definition for the asymmetry index as above (i.e., using the ratio of median and mean of

the distribution) and is shown in Figure 5.6 for all convection experiments with evolving

plates together with the value for the earth (star). Common to the convection models

closest to the earth's value is a 30-fold viscosity increase at r = 0.875 (triangles). Models

plotting further away either have a constant background viscosity (filled squares), a

viscosity increase at r = 0.75, or a 100-fold viscosity jump (open squares). While these

results are intriguing, it must not be forgotten that the convection calculations are two-

dimensional and an assessment of the importance of three-dimensionality for these plate

system statistics (analogous to that presented in chapter 2 for the two-point correlation

functions) awaits the development of 3D spherical shell calculations with temperature-

dependent viscosity and evolving plates.

In this thesis we have developed a formalism for quantifying the average properties of

numerical convection models based on two-point correlation functions. The same

approach can be used to describe tomographic earth structures. As long as thermal

anomalies are predominantly responsible for seismic velocity heterogeneity, a direct

comparison between p7 and p is meaningful. Such a comparison indicates that a

viscosity increase at 670 km depth by a factor 30-100 is consistent with the tomographic
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models investigated, while a constant viscosity mantle clearly is not. (Should the

increase in P below 1600 km for HV turn out to be an artifact due to the degrading

resolution, these bounds may be further tightened.) This result corroborates findings

from geoid modeling [Hager, 1984; Hager and Richards, 1989; King and Masters, 1992;

Forte et al., 1993], which indicate a viscosity increase with depth of one or two orders of

magnitude. Whether it will be possible to use our approach for distinguishing between

details of these different radial viscosity structures is doubtful, unless the range permitted

by the seismic models can be reduced substantially. What does seem possible, however,

is to rule out convection models without a viscosity increase with depth. This can be

done on the basis of the overall morphology of the radial correlation diagnostic for such

flows, as well as on the basis of the stratification indices, S(lul) and S(p). These

stratification indices furthermore indicate that the present-day style of convection is

dominantly whole-mantle (S(lul) 0.1). Together with A(Ii5s ) they furthermore suggest

that it is unlikely for the earth to be in an intermittently layered regime as proposed by

Machetel and Weber [1991] and Peltier and Solheim [1992] and invoked as a mechanism

for explaining geochemical observations [Stein and Hofmann, 1994]. Independent

evidence comparing plate system statistics from numerical convection calculations to the

earth's plate tectonic record also favors models with a 30-fold viscosity increase in the

lower mantle.
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FIGURE CAPTIONS

Fig. 5.1. (a) Radial correlation lengths, p, for tomographic models G74 (solid), HV

(short dashed), and SC (long dashed). The range of correlation lengths encompassed by

the three tomographic models is shown as a gray-shaded area. (b), (c) Radial correlation

lengths, pr, for convection experiments with temperature-dependent viscosity and ten

plates. (b) Step-function viscosity increase at r = 0.875. 30-fold viscosity increase

(solid); 30-fold viscosity increase and endothermic phase change (P = - 0.1) (short

dashed); 100-fold viscosity increase (long dashed). (c) Convection experiments with io

= 1 and an endothermic phase change at r = 0.875. P = 0.0 (solid), P = -0.1 (short

dashed), and P = -0.2 (long dashed). All temperature fields were truncated at 1,a = 10

and n=,a = 13.

Fig. 5.2. Radial mass flux stratification index, S(Iul), versus radial correlation length

stratification index, S(p), at r = 0.875, for a suite of convection experiments spanning a

wide range of rheologies with varying phase change strength. Reference values were

computed as the mean of radial averages above and below the stratification boundary

(300 km and 600 km thick, respectively) beginning 70 km away from that boundary.

Dark-shaded bands outline the range of S(#N) allowed by the tomographic models G74,

HV, and SC. Light shaded bands outline the additional range of S(#p) allowed assuming

that half the correlation length in the seismic models at 670 km depth is due to noise. (a)

S(p7) calculated from temperature fields truncated at l,a= 20 and n,, = 20. (b) S(pr)

calculated from temperature fields truncated at l,a = 10 and n,a = 13. Filled symbols

represent experiments with temperature-dependent viscosity with 10 plates, open symbols

temperature-independent runs.

Fig. 5.3. Histograms of the snapshot estimator of radial flux, IMas, at r = 0.875 for

numerical convection experiments. (a), (c), (e) Temperature-dependent viscosity and ten

___ I
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plates. (b), (d), () Temperature-independent viscosity. (a), (b) io = 1, P = 0.0. (c), (d)

30-fold viscosity increase at r = 0.875, P = 0.0. (e), (f) t7 = 1, P = -0.2.

Fig. 5.4. Radial mass flux stratification index, S(Iul), versus asymmetry measure of the

flux distribution, A(Iiis), at r = 0.875, for a suite of convection experiments spanning a

wide range of rheologies with varying phase change strengths. Filled symbols represent

experiments with temperature-dependent viscosity and 10 plates, open symbols

temperature-independent runs. The runs for which the lais-histograms are shown in

Figure 5.3 are depicted as circles.

Fig. 5.5. Histograms of fractional plate size and relative plate velocity normalized by the

rms-velocity of the plate system. (a), (b) Convection run with temperature-dependent

viscosity, ten plates, and an endothermic phase change P = -0.2 at r = 0.875. (c), (d)

Convection run with temperature-dependent viscosity, ten plates, a 30-fold viscosity

increase, and an endothermic phase change P = -0.1 at r = 0.875. (e), (f) Earth's plate

tectonic system for the past 120 Ma from the plate-tectonic reconstruction of Lithgow-

Bertelloni et al. [ 1993].

Fig. 5.6. Asymmetry measure of the plate size distribution, A(Plate Size), versus

A(Plate Velocity). Filled squares denote convection experiments with io = 1 and

varying P. Open triangles represent convection experiments with a 30-fold viscosity

increase at r = 0.875 and varying P. The star denotes the point pair for the earth using the

plate tectonic reconstruction of Lithgow-Bertelloni et al. [1993] for the past 120 Ma.
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APPENDIX A

FIELD EQUATIONS OF MANTLE CONVECTION

The governing equations of mantle convection are derived from the principles of

conservation of mass, momentum and energy. Since the mantle has a very high Prandtl

number, inertial and Coriolis forces are negligible. With the Boussinesq approximation

the fluid is effectively incompressible and the conservation equations take the form

[McKenzie et al., 1974]:

V-u=0, (A.1)

V - t= -VP + f, (A.2)

-+u -VT = CV2T + HM (A.3)
dt cp

where u and r and P are the flow velocity, deviatoric stress tensor, and non-hydrostatic

pressure, respectively. T, t, ic, HM and c, are the temperature, time, thermal diffusivity,

heating rate per unit mass and heat capacity, respectively. The body force, f, consists of a

thermal buoyancy term plus buoyancy forces, associated with density changes due to the

deflection of a phase transition present, viz.

f = pra(T -Tr)gi+Apgi (A.4)

Consistent with the Boussinesq approximation phase-change effects enter only in the

momentum equation; the latent heat term scales with dissipation number and is thus

ignored [Christensen and Yuen, 1985]. The effect of latent heat release on the propensity

for layering, however, is small [Christensen and Yuen, 1985].

We solve these equations in cylindrical coordinates (r, p) subject to the boundary

conditions:

Tlr=a=Tr, Tlr=b=Tb, ulr=a= Ur=b= d(wr) d(wr) 0 (A.5)
drr=a dr r=b
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and nondimensionalize using the following characteristic scales (primed variables are

dimensionless):

r = ar'; T =(Tb - Tr)+Tr; t = t u= u'; p= Kp'; It=-T' (A.6)
r /a a a

where, b and a are the inner and outer radii of the cylindrical shell, and u = (u, w) are the

radial and angular components of velocity, respectively. Substituting (A.6) in (A.1)-

(A.4) and subsequently dropping the primes, yields:

V-u=O, (A.7)

V -t= -VP + -3RaB(T- Rap r (A.8)

DT =V2T + 2 RaH Ra (A.9)
Dt RaB'

where 4=(a-b)/a, RaB = prga(a-b)3 (Tb-Tr)K| , Rap = Apg(a-b)3 Kq, and

RaH = RaB HM (a -b)2/C (Tb - Tr) are the Benard-Rayleigh number, the phase-

boundary Rayleigh number, and the internal-heating Rayleigh number, respectively. F

denotes the phase-progress function.

The narrow phase-loop width for the transformation of spinel-structured

(Mg,Fe)2SiO4 (y-olivine) into (Mg,Fe)O (magnesiowiistite) plus perovskite-structured

(Mg,Fe)SiO3 poses difficulties for an accurate numerical representation of the phase

transition effects. An implementation used by many researchers, known as the "phase-

function method" [Richter, 19731, is based on a phase progress function, F(r,T), that

describes the relative fraction of the heavier phase at any point in the fluid. In order to

model the narrow phase loop observed and phase boundary deformations at Rayleigh

numbers appropriate for the earth, extremely high grid resolution is necessary. Even in

two dimensions, however, the highest resolution experiments to date [Solheim and

Peltier, 1994], have a phase-loop width at least a factor of six larger than the results from

laboratory experiments indicate [Ito and Takahashi, 1989]. An alternative approach is to

ignore the effects associated with the phase boundary deflection and to include only the

buoyancy forces due to the phase change. This approach is known as the "effective

thermal expansivity method" [Christensen and Yuen, 1985], or when the buoyancy effects
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are collapsed onto the phase boundary as the "sheet-mass anomaly method" [Tackley et

al., 1993]. The latter approach has the advantage of a zero-width phase loop. As long as

the characteristic size of convective features is large compared to the phase boundary

deflections, this approximation is sufficient to describe the effects of the phase change

[Tackley et al., 1994].

We have implemented both approaches for parameterizing the effects of a phase

transition on the flow. Following Richter [1973] and Christensen and Yuen [1985], we

express the phase function as

F(r, T) = -[1 + tanh rt - r - y(T - T,)/pr (A.10)
2 d

where the contributions from the non-hydrostatic pressure on the phase function have

been ignored. The phase transition occurs over a finite depth interval, d, with a

Clapeyron slope, y, at radius rr and temperature Tt. Using the same characteristic scales

as above (equation A.6), we obtain the dimensionless equation

F(r, T) = -[1 + tanh r, - r - y(T - Tr) (A.11)
2 d

where again the primes have been dropped. The Clapeyron slope is non-dimensionalized

by aprg|(Tb -T,).

In the "sheet-mass anomaly method" [Tackley et al., 1993] the effects associated with

the phase boundary deflection are ignored and only buoyancy forces due to the phase

change are incorporated. In dimensionless form the phase function takes the form

F(r) = -y(T - T)S6(r - r,), - (A.12)

where 6(r) is the Dirac-delta function.

A comparison between the two methods described above can be found in Figure 3.18.
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TABLES

Table A.1. Physical and geometrical parameters

Parameter Value

Inner shell radius b 3.0 x 106 m

Outer shell radius a 6.0 x 106 m

Temperature contrast AT 1200 K

Reference density pr 3.5 x 103 kg/m 3

Gravitational acceleration g 10 m/s2

Thermal diffusivity c 1.0 X 106 m2/s

Thermal expansivity a 2.5 x 10-5 K- 1

Dynamic viscosity r 1022 Pa s

Density jump across phase 3.68 x 102 kg/m 3

boundary
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