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Abstract

This thesis addresses the issue, "Which approach to instabilities-temporal,
spatial or pulse theory-is the most appropriate model for the Gulf Stream?" I also
address the question of how the observations might be compared to theory. This thesis
consists of two closely related parts: analytical studies that compare the three types

of instability using the same realistic velocity and topography profiles; and numerical
modeling that uses a continuous forcing function to examine the three types of theory
in the direct context of the Gulf Stream.

Analytical Studies:

In a QG six-layer model with relatively realistic jet structure and topogra-
phy, spatial instability theory gives a different and larger spatial growth rate (by about
30%) than the equivalent spatial growth rate (ESGR) transformed from temporal in-
stability with Gaster's formula. Faster mean flow or group velocity makes Gaster's
transformation formula work better. Real parts of wavenumbers (or wavelengths) cor-
responding to the most temporally and spatially unstable waves are comparable and
not sensitive to mean velocities, velocity shear and f. In the attempt to reconcile con-
flicts in the literature, it has been found that one of Hogg's (1976) conclusions-that
spatially growing waves are bounded by a low wavenumber cut-off which separates
them from the temporally growing waves-is not valid.

Pulse instability deals with the development of an isolated disturbance. One
of the interesting features is that individual peaks in the leading edge of a wave packet
can grow much faster than temporal instability predicts (Simmons and Hoskins, 1979).
Because examining individual peaks is a common observational practice, this thesis
focuses on how such a peak evolves. Whereas the amplitude of an individual peak
increases with time, the growth rate decreases in the linear model; thus if one follows a
single peak and notices a decrease in the growth rate, one cannot infer that increasing
amplitude (or nonlinearity) was responsible for reducing the growth rate. In the QG
six-layer model, the growth rates of individual peaks can vary from 30% to 220% of



that of the peak of the wave envelope. Direct comparison between pulse and temporal
theory shows that the former allows unstable waves to have local wavenumbers beyond
the short wave cut-off in the latter.

The effects of topography and vertical resolution are assessed in QG two- to
six-layer models. From the analysis of potential density, it is shown that a minimum
of three layers is necessary to address the effect of topography properly in the context
of the Gulf Stream. In the case of pulse instability, a minimum of five layers is
necessary to capture the characteristics of the instability. The effect of ageostrophy
is studied by comparisons between QG and shallow-water (SW) six-layer models.
The QG model overestimates the maximum growth rate by 40% compared to the
SW model. The comparison shows that the QG model gives results quantitatively
different from those from the SW model, but there is no qualitative difference between
the two models in terms of the first most unstable modes. The results from both the
QG and SW models have been compared to the observational analysis by Lee and

Cornillon (1996a,b), and it appears to be a robust common feature in the models and
the analysis that the fastest growing wave has higher growth rate, wavenumber and
frequency than the most energetic wave.

Numerical Experiments:

A two-layer QG model with a jet structure and a single pulse initial condition
or continuous forcing has been used to determine which type of instability theory is
the most appropriate model in the context of the Gulf Stream. The first experiment

shows that it takes about 45 days for a single pulse disturbance to develop close to
its asymptotic form. In that period the wave packet has moved downstream 1100 km
to about 65 0W. Hence there appears to be enough space for the pulse instability to

occur in the Gulf Stream.

In the continuously forced problem, it has been found that the growth rates
of individual peaks from the numerical runs scatter widely in the region from 200

km to 1200 km downstream of the forcing location. It is clear that none of the three
types of instability can explain the pattern given the continuous forcing. However,
the "observations" from the model runs have shown one trend predicted by pulse

instability: short waves tend to move and grow faster than long waves. This cannot

be predicted from temporal or spatial instability. Due to a numerical difficulty, this

analysis has not been extended to the region further downstream, where the pulse

instability has been found to work better in the single pulse experiment.

These numerical experiments support the robust common features of pulse

instability we have studied in the analytical models, that the fastest growing wave

has higher growth rate, wavenumber and frequency than the most unstable wave.



Because the differences between the most unstable and the fastest growing waves
of pulse instability theory in the analytical models seem able to explain substantial
parts of the differences observed, and because the single pulse experiment suggests the
analytical results may be carried over to their corresponding numerical models, pulse
instability theory appears to be the most appropriate model for the Gulf Stream.

Thesis Advisor: Dr. Glenn R. Flierl
Title: Professor, Massachusetts Institute of Technology
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Chapter 1

Introduction

1.1 Meandering of the Gulf Stream System

The Florida Current, after it leaves the Florida Straits, develops meanders

along its path downstream. Beyond Cape Hatteras the meanders develop to large

amplitudes. In the past three decades, many analytical and numerical models have

been developed to explain these meanders as the results of baroclinic and barotropic

instabilities. The Gulf Stream system, however, is too complicated for a single dy-

namic model to incorporate most of its main features. The complexity results from

the following factors. First, the topography and coast have significant effects on the

path and instability of the system (Warren, 1963, Orlanski, 1969). Second, the along

stream variation of mean fields as well as that of the topography affects the devel-

opment of the meanders. Third, the well-developed and studied quasi-geostrophic

models may be inappropriate to handle the significantly large slope of mean density

fields or the large Rossby number of the flow. Fourth, nonlinearity may have an

important effect on the evolution of the meanders. Moreover, the classic theories

of normal mode instability only provide the temporal growth rates that cannot be

compared directly with the observed growth rates of individual wave peaks, which

are often part of nonperiodic wave patterns.



1.2 Previous Studies and Motivation of Thesis
Work

In this section, I will list some of previous studies related to the Gulf Stream

instability in Table 1 and 2. I will review the main results of a few most relevant

papers to provide the background and to build up the motivation for this thesis work.

Summary of Literature Survey:

Table 1: Most relevant Papers

Author Model char. Dimen. Type of inst. Topog. Comment

Orlanski 1969 PE 2-Layer 2D mixed yes

Holland et al 1980 QG 2-Level 2D mixed no

Johns 1988 QG cont. ID baroclinic yes

Kontoyiannis 1992 QG cont. 2D mixed yes

Xue 1991a,b PE cont. 2D, 3D mixed yes

Orlanski et a11973 PE cont. 3D baroclinic yes ivp

Luther et al 1985 PE cont. 3D mixed yes ivp

L : Layer

PE: Primitive Equations

SW: Shallow-Water Eqns

ivp: initial value problem

Topog.: Topography

Orlanski (1969) studied the stability of a two-layer model with bottom to-

pography in the context of the Gulf Stream. Applying two different types of bottom

topography typical in the regions upstream and downstream of Cape Hatteras, he

found that the most unstable disturbances, corresponding to the basic flow upstream

from Cape Hatteras, are markedly different in wavelength and period from those cor-

responding to the basic flow downstream from Hatteras. This suggests the importance

of bottom topography on unstable waves. However, Orlanski used simple analytical

forms for topography; one effort of this thesis is to assess the effect of more realistic



topography and better vertical resolution in the context of the Gulf Stream beyond

Cape Hatteras.

Table 2: Other relevant Papers

Author [Model char. Dim. Type of inst. Topog. Comment

Lipps 1963 QG 1L 2D equiv. bt. no 3-plane
Tareyev 1965 QG cont. 2D mixed no

Sela et al 1971 PE 1L 2D equiv. bt. no ageostr.
Abramov et al'72a PE 2-Layer 2D baroclinic no #-plane
Abramov et al'72b QG 2-Layer 2D mixed no
Nikitin et al 1972 PE 2-Layer 2D baroclinic yes /3-plane
Hart 1974 QG 2-Layer 2D mixed no
Flierl 1975 QG 1-L/2-L 2D bt.,bc./mixed no #-plane
Abramov et al '83 QG 2-Layer 2D mixed yes 3-plane
Ikeda 1983 QG 3-Layer 2D mixed yes
Talley 1983a QG 1-Layer 1D baroclinic no 3-plane
Talley 1983b QG 2-Layer 2D mixed no #-plane
Killworth 1980 QG 2-L/cont. 2D mixed no /-plane
Killworth et al '82 QG 11 L 2D equiv. bt. no coastal front
Paldor 1983a QG 12L 2D equiv. bt. no coastal front
Paldor 1983b QG 1 L 2D equiv. bt. no density front
Killworth 1983 QG 1 L 2D equiv. bt. no density front

Killworth et al '84 QG 2-Layer 2D baroclinic no density front
Barth 1987 SW 2-Layer 2D mixed no coastal front
Paldor et al 1991 QG 2-Layer 2D mixed no coastal front
Flierl preprint QG 2-Layer 2D mixed no contour dyn.

Johns (1988) considered 1-D baroclinically unstable waves on the Gulf Stream

PV gradient near Cape Hatteras. This linear instability model includes the topogra-

phy variation in the cross-jet direction, however it excludes the cross-jet variation of

basic flow, stratification and PV by averaging them across the jet and hence elimi-

nates the barotropic instability. The model calculation results in a temporal growth

rate kci, which is then transformed into an equivalent spatial growth rate (ESGR),

using Ki = kc/C, where k is the along stream wavenumber and Cg is the group

velocity. This continuously stratified model was successful in predicting the time and



length scales of growing meanders, but predicted a smaller growth rate than that

observed by a factor of two.

Two major approximations were employed in Johns' model. The first is

that the basic flow does not have cross-jet variation. This neglect of the variation

may cause significant error as it was first pointed out by Phillips (1964). Moreover,

because the thermocline is located at different depth across the stream, averaging the

flow horizontally across the jet will effectively reduce the vertical gradient of basic

flow across the thermocline. Hence this approximation tends to decrease the growth

rate. The second is the QG assumption, which assumes small Rossby number. This

is not a good assumption because the observations show that Rossby number is from

0.3 to 0.5 in the Gulf Stream (Bower, 1989). Orlanski (1969) has found that the finite

Rossby number decreases the instability. Hence the effect of this approximation is

to increase the growth rate. The two assumptions therefore have competing effects

on instability, and they may cancel each other partially or totally. When this model

was extended to 2-D (i.e., barotropic instability recovered) by Kontoyiannis (1992,

Ph. D. thesis, and 1994) the equivalent spatial growth rate of a mainly baroclinic

mode became comparable to that observed. However, he used phase velocity instead

of group velocity in the transformation (giving an estimate Wi/Cph which we will call

the "pseudo-equivalent spatial growth rate", PESGR), which increased the equivalent

spatial growth rate by a factor ranging from 5/3 (long waves) to 6 (short waves). The

comparison would have been much worse if group velocity had been used instead of

phase velocity in transforming the growth rate.

Xue (1991a, thesis) applied a 2D primitive equation analytical model to

study temporal instability of the Gulf Stream. The model also included the effect of

bottom topography and gave results which were in good agreement with observations

in terms of periods and wavelengths. She extended the study in a 3D numerical

model (Xue, 1991b, thesis) in order to investigate whether the unstable waves in



the 2D model will be able to grow into finite amplitude meanders before the mean

condition of the Gulf Stream changes significantly and whether the result in the 2D

model will be altered considerably if spatially growing modes are also permitted as

well as temporally unstable modes. She estimated a growth rate of the dominant

wave in the model from the change of eddy kinetic energy, but did not resolve the full

dispersion relation. The estimated growth rate was not compared to the observations

directly; nor was the result not analyzed in terms of either of three approaches to

instabilities discussed below. Thus it is hard to infer from these simulations which is

the most appropriate approach for the Gulf Stream meandering.

Luther and Bane (1985) present a numerical model study of the unstable

normal modes of oscillation of the Gulf Stream. Their model uses the primitive equa-

tions and has filtered out all other types of instabilities except spatial instability.

They found that one of modes from the model produces many of the features of an

observed 8-day wave, e.g., comparable phase speed, current and temperature struc-

tures. However they did not compare the model growth rates with observations. Our

study has showed that the differences among temporal, spatial and pulse instabilities

are much more prominent in growth rates than in phase speeds and other structures

(see Chapter 2 and 3). So it is not obvious that spatial instability studied in their

model is the best explanation for the meanders.

All the studies summarized above except Luther and Bane's (1985) and

Xue (1991b) considered dynamically only temporally unstable modes. Gaster (1962)

showed that for small rates of amplification, to the lowest order of approximation,

the frequency for a disturbance growing with respect to time is the same as that of

a spatially growing wave with the same wavenumber, and the spatial growth rate

is related to the temporal growth rate by the group velocity, as I discussed above.

Hogg (1976) found that spatial and temporal waves in a baroclinic model are sepa-

rated in wavenumber with short waves being spatially unstable and long waves being



temporally unstable. A neutral wave separates the two cases. This suggests that the

transformation formula does not hold in that particular case at least. In fact, the

validity of Gaster's formula has not yet been studied in detail in a realistic oceanic

context and the relation between temporal and spatial growth is not well understood.

Many of the authors mentioned above consider that spatial instability is more rele-

vant than temporal one in the context of the Gulf Stream (e.g. Johns, 1988, Xue,

1991a,b); however, spatially unstable modes were not studied in their models because

of the difficulty of "nonlinearity" (the eigenvalue problem for spatial growth rate is

not linear; see Section 2.3.2). Some authors regarded both temporal and spatial in-

stabilities as the results of the same instability mechanism (e.g. Thacker, 1976), while

others considered them as different kinds of unstable modes (e.g. Hogg, 1976, Luther

and Bane, 1985). It appears interesting and meaningful to make this relation clear.

And this is the first goal of the thesis.

Both temporal and spatial instability theories are highly idealized. The

temporal instability paradigm assumes that disturbances are distributed periodically

in the along stream direction, while spatial instability assumes a periodic forcing with

a single frequency (see Section 2.3) and hence a single dominant wavenumber over

the whole domain. These assumptions are far from being realistic. In the context of

Gulf Stream meandering, it is more appropriate to solve an initial value problem or

a locally forced problem. If the initial disturbance is localized in a relatively small

region, it will be simpler to consider pulse instability instead of the most general

initial value problem.

Many studies (e.g., Boudra et al,1988, Xue,1991b) suggest it to be most

likely that the frontal disturbances are initiated and grow in the Florida Straits. Xue

(1991b) concludes that her model is able to produce realistic meanders only when it

is forced at the southern boundary, and meanders entering the domain are amplified

downstream of the Charleston Bump. Observations show that frontal meanders of



the Gulf Stream are not significantly correlated to any apparent forcing, such as local

wind stress, in the South Atlantic Bight (Lee and Waddell, 1983). Many authors

believe that initial disturbances are introduced in some special small regions such

as the Florida Straits, the Charleston Bump, and Cape Hatteras, and are amplified

when they propagate down stream. For this reason, I will also study the development

of locally forced disturbances.

Pulse instability allows wave amplitudes and wavenumbers to change in the

space (see Section 2.3) and hence is less idealized and restrictive than the temporal

and spatial instabilities. However the assumption of a single pulse disturbance and

no further forcing has its own limitations. In the context of the Gulf Stream, it is

more likely that the system is forced continuously. To determine which type of the

instabilities is the most appropriate simple model in this complicated context, I will

study a QG two-layer numerical model in Chapter 5.

Lee and Cornillon (1996) have found that the most energetic meanders in

the Gulf Stream have a period of 46 days and a wavelength of 427KM, while the

fastest growing meanders have a period of 40 days and a wavelength of 350KM.

These differences can not be explained by classic normal mode instability models.

The second goal of this thesis is to provide a dynamic explanation for the discrepancy.

The applicability of the QG model in the study of Gulf Stream meandering

has long been questioned. Since QG models formally apply only in the case of small

Rossby number, and small slopes of isopycnals and topography, we need to examine

first whether these conditions have been violated in the Gulf Stream. From the

observations, the Rossby number was estimated to be .3-.5 in the Gulf Stream east

of Cape Hatteras (Bower, 1989). The depth of the top of the thermocline varies from

around 800m in Southern side to about 200m in Northern side, and the depth of the

bottom changes from about 4900m to 1900m across a CTD section at 68*W running

from 36.3'N to 40"N (Hall and Fofonoff, 1993). Such large changes in the depths of



isopycnals and topography violate the formal assumptions of QG theory. Therefore

one may expect that the QG approximation is not appropriate in the context of

the Gulf Stream, and a question naturally arises whether the results obtained in

QG models are qualitatively similar to primitive equation or shallow-water models

and how large the quantitative differences are. To answer this question, I devote one

chapter (Chapter 4) to the comparison between QG and Shallow-Water models (SW).

This becomes the third goal of the thesis.

1.3 Plan of the Thesis

In Chapter 2, I will first introduce the basic concepts of temporal, spatial

and pulse instabilities. I then start with a simple two-layer QG model with uniform

velocities on each layer, Phillips' model, to study and compare the characteristics

of these types of instabilities. This study is then extended to a QG six-layer model

with more realistic velocity profile resembling the Gulf Stream in Chapter 3. The

effect of bottom topography is also considered in the model. In Chapter 4, I will

develop a shallow-water (SW) six-layer model to investigate the effect of ageostrophy.

Comparisons of QG and SW models with observations will be made in Chapter 4.

In Chapter 5, I will run some numerical experiments with relatively realistic velocity

profiles and forcing to see which type of instability theory is most appropriate for

the Gulf Stream and which are likely to be picked out by common observational

approaches. Summaries and conclusions are presented in Chapter 6.



Chapter 2

Normal Mode and Pulse Instabilities

2.1 Basic Concepts

2.1.1 Normal mode, temporal, and spatial instabilities

Since the pioneering studies of Charney (1947) and Eady (1949), temporal

instabilities in quasi-geostropic systems have been investigated extensively. Charney

and Stern (1962) developed stability criteria for the case of an internal jet, i.e., where

the meridional temperature gradients at the ground vanish. Pedlosky (1963, 1964)

found the stability criteria for more general cases incorporating the effects of surface

temperature gradient and topography and also found bounds on phase speed and

growth rate. These studies contributed to form a more general stability criterion

commonly known as the Charney-Stern stability theorem.

In studies of temporal instabilities, normal mode solutions of the form

exp(i(x - wt)) are investigated. More exactly, real wavenumber k and complex

w are assumed in the above expression. Alternatively, we may take W to be real and

the wavenumber to be complex. This will lead to another type of normal mode in-

stability, spatial instability. There is also another alternative where both k and w are

complex.

Linear spatial instability was first studied by Michalke (1965) in a barotropic

flow with a hyperbolic tangent velocity profile. He calculated the growth rates and

phase speeds numerically from temporal (using PESGR) and spatial instability the-

ories, and compared them with experimental results of Freymuth (1965). The ex-

periments tended to support spatial instability at low forcing frequency and to agree

with temporal instability at high frequency. At higher frequency, the equivalent spa-



tial growth rate converted from temporal instability, the PESGR, was found to be

lower at high frequencies. Michalke estimated that nonlinearity reduced the growth

rate more at higher frequencies and speculated that the tendency to approach the

PESGR at high frequency was due to nonlinearity.

Although both temporal and spatial instabilities are types of normal mode

instability, the relation between them is nevertheless obscure. In the context of

Gulf Stream instabilities, numerous studies have been done of temporal instabilities

whereas only a few have examined spatial instabilities. In papers on the temporal

instabilities of Gulf Stream, many authors (Xue, 1991, Johns, 1988, etc.) agree that

spatial instability is probably more relevant than the temporal one in the context.

However the study of spatial instability is more difficult than that of temporal one

because the linearized QG equations lead to a non-standard eigenvalue problem whose

matrix contains nonlinear terms of wavenumber k when we fix frequency (which is

assumed to be real) and solve for wavenumber (see section 2.3.2). Spatial instability

corresponds to a system forced in a local region at a constant frequency, e.g. by a

wavemaker. Hogg (1976) solves for complex k for a given phase speed, c, rather than

a given real frequency, which rendered the problem a linear eigenvalue one. However

it is not easy to justify a fixed phase speed instead of a fixed real frequency condition

in realistic systems since both the frequency and wavenumber are then required to

be complex, and mechanisms which could fix the phase speed are unknown. I will

return to this issue in Section 2.3.2.

Observations and data analysis normally provide growth rates of individual

peaks by peak-tracking techniques. How can a model of temporal instability be

compared to observations? A relation proposed by Gaster (1962) is frequently used

to convert the growth rate of temporal instability to an equivalent spatial growth rate.

However Gaster's transformation formula is only valid when growth rate is small. Is

the growth rate in Gulf Stream instability problem small enough to use the formulae?



As I mentioned above, Michalke (1965) showed in his problem that the

difference between temporal and spatial instabilities is not very large (the pseudo-

equivalent spatial growth rate, transformed from the temporal growth rate divided

by phase speed, is only 17% smaller than that from spatial instability theory). Such

a result is not, of course, general; in the Gulf Stream context of a baroclinic jet on

the beta-plane, the differences between the various estimators of spatial growth rate

are not known. They will be examined in detail in the next chapter.

2.1.2 Pulse, absolute and convective instabilities

Normal mode instability theories, temporal and spatial, assume that the dis-

turbance is periodic in x or t respectively. These assumptions limit their capability in

explaining the development of localized disturbances. Another type of linear solution

-pulse instability- may be more relevant in this case. Pulse instability represents

the asymptotic solution to the evolution of a localized disturbance, as an approxima-

tion to the full initial value problem as t -+ oo. The full IVP usually requires the

use of a Fourier transform in space and a Laplace transform in time and eventually

double inverse transforms. This in general is a formidable task even for the simplest

of models. However, if we are only concerned about the asymptotic behavior of the

evolution, it is appropriate to consider pulse instability.

Pulse instability may be further divided into two categories-"absolute" and

"convective" instabilities. These two concepts have been known in plasma physics for

a long time and are helpful in explaining the evolution of a localized wave packet.

The concepts can be easily illustrated in Figure 2.1 (from Briggs, 1964). When

absolute instability happens, the disturbance spreads out in both directions so that

the disturbance keeps growing in time wherever the disturbance reaches. On the

other hand, when convective instability occurs, the disturbance "propagates along"



the system as it grows in time so that it eventually disappears if one stands at a fixed

point.

When a system is convectively unstable and is continously forced with con-

stant frequency at a local region, spatial instability may occur. Spatial instability,

as described above, assumes real w and complex k. It also presumes an origin x = 0

where the system has fixed amplitude and frequency, e.g. where a wavemaker gener-

ates disturbances at a constant frequency. When the system is convectively unstable,

disturbances generated at early times propagate away from the forcing location so

that the amplitude at the point is closely related to the amplitude of the forcing.

This makes the condition 'fixed amplitude' at the point more easily satisfied and spa-

tial instability more likely to occur. On the other hand, if the system is absolutely

unstable instead, the growing waves at the forcing location may eventually dominate

the forcing amplitude, which makes it improbable that the amplitude at the point will

be constant, and unlikely that spatial instability will give a reasonable description.



Absolute Instability

Convective Instability
Figure 2.1: Upper panel: absolute instability. Lower panel: convective instability.
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Figure 2.2: Absolute, Convective and Spatial instability.



2.2 Model Description

We start with a simple two-layer quasi-geostrophic channel model (Phillips,

1954, Pedlosky, 1986) to demonstrate the concepts of temporal, spatial, pulse, abso-

lute, convective instabilities. Using such a simple model will allow us to focus on the

basic conceptual ideas. We will solve the linear instability problem analytically and

then run a numerical model with the same sets of governing equations to study how

initial disturbances evolve into these idealized types of instabilities.

The model does not consider friction. The stream function in each layer is

independent of depth. Let n=1 indicate the upper layer, and n=2 the lower one.

Following Pedlosky (1986, Sec. 7.9 to 7.11), the equation of motion can be written

a a a a a
[ + _- _O ][V 2 On - Fn(-1)"(02 - 01) + Oy] = 0 (2.2.1)at ax ay ay ax

with boundary condition

On = 0, y = 0, LY, n = 1,2 (2.2.2)

where # is the nondimensional gradient of planetary vorticity and Fn the Froude

number in each layer, i.e.

3 = 3 0 L (2.2.3a)
U

fo 2 L 2
Fn =g[(P 2 L2  (2.2.3b)

L is the length scale of motion we are focusing on and Hn the depth of each layer.

The standard linear instability theory for a basic state with uniform zonal flows Un

and perturbations O, = Ansin(ljy) ek r(x-ct) gives the eigenvalue problem

det (c - U1)(K2 +F1) + # + F1(U1 - U2), -(c - U1)F1 - 0 (2.2.4)
-(c - U2)F2, (c - U2)(K 2 +F 2)+#+F 2(U2 - U1)

where K is the total wave number,

K 2 = k2 + I32



S j = 0, 1, 2, ... (2.2.5)
LY

For given k or k2 , Equation (2.2.4) is quadratic for c or w. And for given

c, it is also quadratic for k2 or K 2 . Thus both temporal instability and the case of

spatial instability for given c considered by Hogg (1976) have simple solutions. In

more general cases with more layers and/or multiple grid points in y, these two cases

can still be expressed as standard eigenvalue equations for c or k 2 . However for given

w = k c, Equation (2.2.4) becomes a sixth order equation for k (see section 2.3.2).

Therefore even the simple Phillips' model does not have a simple analytical solution

for k given w. In the more general case, the eigenvalue problem cannot be expressed

in standard form. The dispersion relationship Equation (2.2.4) will be analyzed in

Section (2.3) using the three approaches-temporal, spatial, and pulse instabilities.



2.3 Model Results

This section will represent solutions to Equation (2.2.4) in subsections de-

pending on the approaches.

2.3.1 Temporal Instability

The temporal instability approach assumes real wavenumber k and solves

for complex frequency w or phase speed c. Equation (2.2.4) gives a quadratic equation

for c, whose solutions are discussed in detail by Pedlosky (1986, Section 7.11)

U8K 2( K 2 + 2F 2) - p(2K 2 + F1 + F2 )
2K 2(K 2 + F1 + F2 )

[#82 (F1 + F2 )2 + 2fUK 4 (F1 - F2 ) - K 4 U,2 (4F1 F2 - K4 )]1/2+ 20.IK - F2 - I (FF2(2.3.1)
2K 2(K 2 + F1 + F2 )

Here we only take an example to show how the solutions look like for a set

of parameters tuned to oceanic cases where the ratio of the upper layer depth to

the lower one is normally taken to be 1/5, hence F1 and F2 are chosen to be 5/6,

1/6. Two sets of parameters for U1 and U2 were used: (1.3, 0.5) and (1.0, 0.2). The

velocity shear between two layers is kept constant so that we can investigate how the

mean velocity affects the nature of instabilities. # is arbitrarily set to be 0.05 for

most cases. 3 can be varied to change the growth rates of the instabilities. For a set

of parameters (U1=1.0, U2=0.2, 0=.05), the solutions are shown in Figure 2.3.

2.3.2 Spatial Instability

Spatial instability is achieved when a system is forced at a local region with

a constant frequency. For a given w = k c, Equation (2.2.4) can be rewritten as
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det (w - kU 1 )(K 2 + F1 ) + k,8 + kF(U - U2), -(w - kU1 )F
-(w - kU 2)F2 , (w - kU 2)(K 2 + F2) + k# + kF 2 (U2 - U1 )

However this gives a sixth order algebraic equation in k for any given w. Its solution

can only be calculated numerically.

For comparison, the parameters F, and U, are chosen to be the same as in

the temporal instability case. The solutions are shown in Figure 2.4.

In the upper panel of Figure 2.4, there are six solutions for each given real

w (some solutions may have the same real parts or the same zero imaginary parts).

Two solutions have large values of 1k.1 which do not vanish when w goes to 00

These solutions should be discarded according to a "rule" due to Briggs (1964). The

criterion basically says that for given w, = wo, if we increase wi from 0 to oo, only

those solutions of k whose imaginary parts are negative when w. = 0 and change their

signs when wi increases correspond to the growth of the disturbance. The physical

idea behind this rule is that all growing waves have finite phase speeds and growth

rates-which means that signals propagate and grow with some delay with respect to

the forcing source. If we let the amplitude of the forcing grow at a rate, say wi, waves

in the far field will respond to the forcing amplitude at some previous time when it

was weaker. And if we increase wi from 0 to oo, the spatially growing waves which

exist when wi = 0 will eventually become small compared to those near the forcing

source, i.e. the forcing grows faster than waves in the far field. Thus the disturbance

looks like decaying waves. On the other hand, waves which are decaying when w1 = 0

will remain as decaying waves and hence their spatial growth rates will never change

signs when w. increases from 0 to oo. In the following I will take an example to show

how to apply this criterion.

Let us take wo = W, = .2 and we calculate k as a function of w = w,. + iow.

As w. runs from 0 to oo (or to a number large enough), we keep track of the solutions
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of k. Figure 2.5 shows the evolution of k as wi increases. The starting point of each

solution corresponds to w. = 0. Only one solution crosses the real axis of k and also

has a starting point below real axis of k, corresponding to the spatial growing mode.

we will see later on page 78 in Section 2.5.1 that this mode is the only growing wave

we can observe in numerical runs.

Our analysis above assumes that disturbances are generated at x = 0 and are

propagating in the positive x direction. This requires negative kl for the disturbance

to be spatially unstable. For the convenience of comparison, we often compare -ki

with estimates of spatial growth rates.

In the same paper mentioned above by Briggs (1964), he also proved that

for any system to support unstable waves, its dispersion equation must yield complex

solutions with positive imaginary parts for some real k, i.e. it is a necessary condition

for any unstable waves.

In contrast, Hogg (1976) argued that the wavenumber can be complex for

real phase speed in the limit of zero frequency and his analysis implied that spatial

instability does not require potential vorticity gradients to change sign. However, he

did not consider Brigg's criterion (this was first pointed out by Pierrehumbert, 1986)

and so may have included complex k roots which do not correspond to actual spatial

instabilities. In addition, the purely spatially unstable wave Hogg considered is really

better thought of as neutral because its phase speed is real. This can be seen by

following an individual peak of the wave.

Aeikx-wt) = AoeZk(xt)

= [Aoeki(x-'t)ek,(x-'t)

= Aleik,(x-ct)
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where Ao is the initial amplitude of the wave. Following an individual peak, the

phase factor k,(x - ct) is constant, which leads to constant -k,(x - ct) and hence

constant A1 . So the wave propagates (except when c = 0) but does not grow in time

and space, or more explicitly its decay in time -w; * t = kict and growth in space

-kix exactly offset each other. Essentially each peak proceeds downstream without

changing amplitude, but successive peaks generated at the source become weaker

and weaker with time. Thus a pattern with small amplitude waves near the source

and larger amplitudes downstream is set up, giving the false appearance of a spatial

instability.

When c = 0, the wave does not propagate and does not grow in time either-

this corresponds to a steady, spatially growing pattern. Since the wave does not

propagate, the pattern cannot be set up by a localized forcing. Without applying

Briggs' criterion directly to his problem, I cannot rule out the possibility that the

steady, spatially growing pattern is a true spatially growing wave. However, it is

most likely that c = 0 corresponds to a neutral wave as well because neighboring

positive and negative real c correspond to neutral waves. Figure 2.4 shows that the

Phillips' model example does not have spatially unstable modes at w = 0.

2.3.3 Pulse Instability

Temporal instability assumes that disturbances are periodic in the horizontal

direction. This is not proper when the initial disturbance is localized in a region.

In this case it is more appropriate to solve the initial value problem. An initial

value problem usually involves the use of a Fourier transform in space and a Laplace

transform in time. Thus the double inversion of the transforms must finally be done

to convert solution back to physical space and time. This is generally a formidable

task even for the simplest models. However, the asymptotic form of the solution

can be obtained for large times by using a Greens function method (Briggs, 1964).



Briggs shows that the asymptotic response to a localized forcing or a pulse comes from

the double roots of the dispersion relation enclosed in the deformed Fourier contour.

However, the only contributions to the asymptotics come from double roots which are

formed by the coalescence of two k roots originating from opposite sides of the real k

axis. The roots move together as we shift the Laplace inversion contour. He also shows

that a double root is equivalent to a saddle point. Hence the asymptotic approach

with a Greens function used by Briggs is equivalent to a saddle point approach given

that each saddle point found has been formed by two roots of k originating from

the opposite sides of real k axis (Briggs absolute instability criterion). Here absolute

instability occurs in a frame moving at a given group velocity, rather than a fixed

point, except when the group velocity is zero. The criterion is crucial for a saddle

point approach to give a correct solution, as emphasized by Pierrehumbert (1986).

Interested readers are referred to Briggs (1964) and Pierrehumbert (1986).

The pinch singularity method Farrell (1982) will be used to find saddle points

for given group velocity. It is the extension to the complex plane of the stationary

phase technique for stable wave packets. I will follow Farrell's argument (1982) to

introduce the pinch singularity method, but interpret it in a slightly different but

equivalent way-as a version of the steepest descent method.

The solution of the initial value problem can be expressed as an integral

over the normal mode solutions consisting of the exponentially growing and decaying

modes plus another integral over a continuous spectrum. The decaying modes do

not contribute for a large time. The contribution of the continuous spectrum is at

most O(t) (Burger, 1966), and is negligible comparing to the exponentially growing

modes for a sufficient large time. The asymptotic solution then can be expressed as

an integral over the exponentially growing modes only,

/(x, z, t) = 1 d a(k)#a(z)ei(kx~w*) (2.3.3)



where a(k) is the projection of initial conditions on the normal mode at k and '#k (z)

the vertical structure of the mode at k. In order to look at asymptotic behavior for

t --+ oo but fixed I, we define

£(k) = w(k) - k- (2.3.4)
t

In the Equation (2.3.3), variable k is real and runs from -oo to +oo

However, according to the Cauchy theorem, if the integrand is an analytical function

of k, we can deform the integrating contour arbitrarily without changing the integral.

It is reasonable to assume analyticity of a(k). Q(k) or w(k) may have branch points,

but we assume we can avoid going around these points (I will return to this issue

shortly in this subsection). Then we can deform the integrating contour to take a

steepest descent path through the saddle point (see, e.g., Bender and Orszag, 1978).

This implies Qi(k) = w(k) - kE will be constant along the path, i.e.
t

k = 0

And in the vicinity of the saddle point

Q ~ Q(k,) + -Qi"(k,)(k - k,) 2  (2.3.5)
2

where
82

= k 2

Choose the path so that -G"(k,)(k - k,) 2 is real and negative, so that we have

(z, 7Z, t) ~a(k,)OA:,(z)e-in(k.)*I(k, , t)

where

I(k,,t) = dke-in"(k.)(k-k.)2t

1
(2.3.6)

V'r|Gf"(k.)|t/2



And finally we get

(X, z, t) = b(k,)Pkk.(z)t-1/2-iln(k.)t

= b(k.)#'k.(z)t-1/ 2 ie(kIx-w(k)) (2.3.7)

If Gi > 0, the system is unstable, and the growth rate is Di at the point. For

a pair of x and t given, if there is such a point, the growth rate will be valid for any

pair of x and t as long as j is the same. This is to say that an observer in a referencet

frame moving at E will see the disturbance growing at the same growth rate Gi(k,).t

Equation (2.3.7) gives the asymptotic solution seen by the observer.

From Equation (2.3.6), we see that the asymptotic solution may break down

when Q"(k,) is close to zero, i.e., the group velocity is close to its maximum or

minimum points. In that case, the expansion in Equation (2.3.5) has to be carried to

the third order.

It is easy to see according to Cauchy-Riemann condition that aQ = 0 leads

ak = 0, and hence

6 ,+i Gi =( w - -)+i wi = 0
k, Ok, k t ak,

By definition, we have Cg = and hence at the saddle point k = k,, C9 = g for

given x and t. In other words, given x and t, the wave which dominates the point

x at the time t has a group velocity C9= . If we can find solutions for all C, we

have solutions for any x and t given large t. It is important to remember that C, is

evaluated at a complex value of k, not along the real axis.

In the above derivation, I have assumed that when (k) or w(k) have branch

points, we can avoid going around these points in some way. It is difficult to prove

this assumption mathematically. In some cases, (Pierrehumbert, 1986), the contour

cannot be deformed to the saddle point and saddle point analysis gives incorrect

results. For our full model in later chapters, the solutions are too complex for a



detailed analysis of how the contour can be moved. Instead, we show that direct

numerical simulation of pulse instability agrees well with the saddle point analysis.

Readers are referred to page 72 and Figure 2.26 in Section 2.5 for such a comparison.

The pinch singularity method, as long as all saddle points satisfy Briggs'

absolute instability criterion, can be used to determine whether a system is absolutely

or convectively unstable. If such a saddle point is found for Cg = { = 0 witht

Q)(k,) > 0, the system is absolutely unstable. The amplitude of wave envelope at

x=0 (the point of excitation) will grow as exp(Gj(k,)t). And for any x when t is large,

the amplitude of the local envelope grows at the rate

= w .(,) - Im(k,)- (2.3.8)
t

This is a simpler method to determine whether a system is absolutely or convectively

unstable in comparison with the Greens Function method used by Merkine (1977)

and Thacker (1977). Although the latter can provide an analytical criterion for a

simple two-layer model, its application to an even slightly more realistic model will

be extremely tedious and complicated. The steepest descent method only provides an

asymptotic solution for large t, while the Greens Function method can provides a full

solution as long as the integral can be done. However the difficulty in carrying out

the integral generally limits its power to such a extent that eventually an asymptotic

approach has to be taken.

Figure 2.6 shows the results of pulse instability. Growth rate is shown in the

bottom panel, frequency and wavenumber in the middle and upper panel respectively.

The 'x' marks indicate values corresponding to the maximum of the envelope growth,

which is the same as the temporally most unstable wave. This is always true because

aQW = 0 for the most unstable wave, which means that in the plane of w as a function

of k, that point itself is a saddle point for a reference frame moving at Cgm. Ogm is the

group velocity corresponding to the temporally most unstable wave. This information

gives a starting point to search for other saddle points incrementally away from Cgm.
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Since for different C's, real wave numbers are significantly different, pulse

instability predicts variable space scales of a developing disturbance, while temporal

instability assumes the same space scale everywhere.

2.3.4 Comparison with Farrell's Model

Farrell (1982) also studied pulse instability in a two-layer model with pa-

rameters tuned to atmospheric situation. The model dynamics are the same in his

model and model studied here. He used U1 = 2, U2 = 0, # = 1 and F1 = F 2 = 1.

His results are shown (dashed curve) in Figure 2.7. I have rescaled his results so that

they are comparable to mine. His # = 1 is equivalent to # = 0.25 in my model. The

solid curves are the results we seen in the last subsection.

The lower panel shows the growth rates of the envelope. Although in his

model, unstable waves extend to larger range of Cg, there does not seem to be much

qualitative difference. His model has nonzero growth rate at C = 0, implying ab-

solute instability, whereas my model is convectively unstable. This is simply due to

choice of mean velocity. If we add a uniform barotropic velocity Uo to the system,

the growth rates will only shift by Uo in the C coordinate. However, our results

are different from those of Farrell's (1982) in one aspect. From the upper panel of

Figure 2.7, in the two-layer oceanic model used here, real wavenumber increases sig-

nificantly when the group velocity increases while in Farrell's two-layer atmospheric

model, the real wavenumber decreases when the group velocity increases.

This means that in the oceanic case, signals of short waves travel faster than

long waves, while the opposite is true in the Farrell's model. Hence the structures

of growing wave packets in the two models will be qualitatively different. This im-

plies we cannot generalize to the oceanic model the conclusion Farrell made regarding

cyclogenesis in the atmosphere that slowly traveling short waves contribute more to



absolute instability if there is any. For the parameters chosen above, the system is

convectively unstable since vi is zero for C9 =0. And if we reduced the barotropic

component of the flow, we would find absolute instability with longer waves growing.

In order to investigate why such a difference exists, I will vary two inde-

pendent variables 8 = H1/H 2 and P with velocity shear U1 - U2=1 fixed . Here #,
the nondimensional gradient of planetary vorticity, is rescaled as = o (see

(U - U2 )

Equation (2.2.3a)).

In the two-layer model, with U1 - U2=1, the critical value of # for the system

to be unstable is F2 = In the range of [0 F2], I consider three different cases;

the first, 3 = 0.1 * F2; the second, # = 0.5 * F2, which is the midpoint of the range;

and the third, # = 0.9 * F2, which is close the critical value. These three cases are

shown in the upper, middle and lower panels of Figure 2.8 respectively. Only the real

part of wavenumber is drawn as a function of group velocity for each pair of (8, #).
The value of 6 is labeled in the figure near its corresponding curve.

From the upper panel of Figure 2.8, we see that when # is small, the real

part of wavenumber is increasing in the forward segment of the wave packet except in

the very leading edge. The slope depends on the value of 8, but the upsloping trend

does not. In the backward segment, the trend is sensitive to the value of 8 except in

the very trailing edge: fairly flat or upsloping when 8 = 0.2, and downsloping for the

other cases (8 = 0.6 or 1.0). In the middle panel, when # = 0.5 * F2, the trend in the

backward segment is similar to the upper panel. However, the trend in the forward

part is very sensitive to the value of 6. For small 8, the curve is upsloping whereas

for large # it is downsloping. The transition happens between 0.5 and 0.6. 8 = 1 case

is the case Farrell studied and 8 = 0.2 is close to the case I shown in the previous

subsections. From the lower panel, when # is close to its critical value, the trend is

similar for all values of 8.
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In summary, for the oceanic case where 8 is small, short waves tend to

appear in forward segment of the wave packet except when # is very close to its

critical value. For the atmospheric case where 8 is large, long waves tend to appear

in forward segment of the wave packet except when # is close to zero. According

to Stone's argument of baroclinic adjustment (1978), # in the atmosphere is close

to critical value, so the trend in Farrell's model seems reasonable in atmosphere,

although the value of # he used is not close to critical value. The Gulf Stream, on

the other hand, is very far from critical.



2.3.5 The Growth Rate of an Individual Peak in Pulse In-
stability

In the previous section, we have seen that when a disturbance is generated

in a local region in an unstable system, the disturbance will evolve into its asymptotic

form after a large time. The asymptotic form (Equation (2.3.7)) is

xz, t) = b(k,)k. (z)t-1/2-in(k.)t

= b(k,)#k.( z)t-1/ 2ei(kx-w(k.)t)

Also we have shown that given x and t, the wave which dominates the point x at the

time t has a group velocity Cg = i. The growth rate of the amplitude of the local

envelope, for any x when t is large, is given by Equation (2.3.8), repeated below for

convenience.

vi = wi(1k.) - Im(k.)-
t

One interesting feature of the pulse instability is that the individual peaks

generally grow at rates different from that of the envelope (Simmons and Hoskins,

1979). This is because an individual peak propagates at phase speed which is different

from the group velocity. It is easier to understand this phenomenon in a neutral wave

packet. For a neutral wave packet, the envelope decays at a rate proportional to t-1/ 2

due to dispersion. For the simplicity of demonstration, we assume the envelope does

not decay. Even in this case, if an individual peak at the forward paradigm of the

envelope propagates at a phase speed less than the group velocity, it actually moves

towards the center of the wave packet. Hence its amplitude is increasing, and so its

growth rate is positive. On the other hand, if an individual peak at the trailing edge

propagates at a phase speed less than the group velocity, it actually moves away from

the center of the wave packet. Hence its amplitude is decreasing, and so its growth

rate is negative. Therefore, even if the envelope itself does not grow or decay, an



individual peak can still grow or decay depending on its relative position in the wave

packet.

In the case that the wave envelope also grows, the feature is still the same

because the amplitude of the envelope is positively and exponentially related to the

growth rate at the location. In fact, the differential in the envelope growth enhances

such a feature. When an individual peak in the forward paradigm of the envelope

propagates at a phase speed less than the group velocity, it not only moves toward a

region with a larger amplitude and but also toward a region with a larger local growth

rate (the growth rate of the envelope at the location). Therefore it will appear to grow

at a rate higher than the local growth rate in addition to the amplitude differential

effect. The reasoning can be similarly applied to the case when a peak moves toward

a region with a lower growth rate and a smaller amplitude. The opposite is true in

this case.

Because the amplitude of a peak is equal to the amplitude of the envelope

at the same location, we can calculate the growth rate of the peak from the growth

rate of the envelope. Suppose the disturbance is generated at or around xo = 0 and

at to = 0. After a large time t, we start to keep a track of an individual peak in the

well developed wave envelope. The positions of the peak at t and t + St are x and

x + 8x respectively (see Figure 2.9), and the corresponding group velocities Cg and

Cg + SC9 . The average phase speed of the peak between t and t + St is Cph. Consider

St - 0;

Cph = lim -i
5t-O St
x

C, = -t

and the amplitude of the peak at t is equal to the amplitude of the envelope at x,

which is



x x
t t

+ 8x

+ 8t

Figure 2.9: Schematic picture of an individual peak moving downstream.

A = |bkk,.(zIt-1/2 v;(c,)t

= a(Cg)t-1/2e(C,)t (2.3.9)

where a(C,) - |b(k,)bIk(z)|. Note that k, only depends on Cg. a also depends on z

but this dependence is not essential in the derivation and it is omitted for convenience.

The growth rate of the peak is

1 dA
11ipeak - t

dln(A)

Ona 1 vi -
Cg Cg 2t + ci + gCOt (2.3.10)

where a dot over a variable means the first order derivative of the variable with respect

to t.

- = d g

C9 di C9
dx
dt t

= (-C9 +;i)/t = (Cph - C)/t (2.3.11)

these relations lead to

Olna
Vipeak = ( )(Cph - Cg)/t

aC,

1
(2.3.12)+ Vi + (Cph - g

C,

X0 =O
t 0 =

- - F - I - - -



Cg

Figure 2.10: An example of the growth rate of the envelope as a function of C,.

The first two terms in Equation (2.3.12) are proportional to 1/t. Hence for large t,

we have'

Vipeak = Vi(Cg) + (Cph - g (2.3.13)
ag

Given the growth rate of the envelope in Figure 2.10 and Cg > Cph, individ-

ual peaks in the leading edge grow faster than the maximum growth of the envelope,

while peaks in the trailing edge grow slower than the maximum growth of the enve-

lope. This relation was first found by Simmons and Hoskins (1979) in a numerical

experiment on unstable baroclinic waves in atmosphere. Equation (2.3.13) was also

given in their paper without a mathematical derivation. Here I have provided a

detailed theoretical derivation.

In Section 2.5, I will demonstrate in detail how to calculate the growth rates

of the envelope and individual peaks from numerical experiments.

Note that we can similarly derive a more accurate formula for the growth rate

of the envelope (viad). In fact, we can start with right hand side of Equation (2.3.10),

and use the relations Cg = 0 for the envelope, to get

1
Viadj - + Vi (2.3.14)2t

1In the case of a neutral packet, vi = 0, the first two terms are all that appear and we see that

a peak can still grow, if it moves from the front of a packet towards the maximum of the envelope

sufficiently rapidly to overcome the spreading of the packet. But the growth rate decreases as }.



the correction term -I may be significant when t is small. The O(1/t) term will be2t

detectable in the numerical experiments in Section 2.5. And in Chapter 5, we will

see that it takes much less time for a wave packet to reach vi_,d than vi.



Given the growth rate of the envelope vi in Figure 2.6, we can calculate the

growth rate of an individual peak Vipeak from Equation (2.3.13). Figure 2.11 shows

the comparison. Figure 2.11 is the same as Figure 2.6 except that the dark solid curve

in the lower panel indicates growth rate of an individual peaks. It has a maximum at

Cg = 1.02; this point and corresponding frequency and wavenumber are marked with

dark 'x's. The maximum growth (0.176) exceeds the maximum growth of the envelope

(0.099) by 78%. The corresponding frequency and wavenumber are also higher than

their counterparts (marked by 'x's) associated with the maximum of the envelope.

The vip,a curve crosses the maximum of vi curve since at that point a = 0. Behind

the maximum of the envelope, an individual peak grows slower than the envelope.

Vipeak curve crosses vi curve once more at Cg = 0.32 due to zeroCph- C,. A peak

behind the crossing point can also grow faster than its envelope. This feature that

is near the trailing edge the individual peaks grow faster than the envelope does not

appear clearly in the QG and shallow-water Gulf Stream models in Chapter 3 and 4

(see Sec. 3.5. and 4.3.), possibly due to the jet structure used there.

Given the growth rate of individual peak vipak, if we focus on a peak in the

leading edge of a well developed disturbance envelope, we can predict its future po-

sition and amplitude by integration. Assume a starting amplitude of 1 for simplicity.

Given Cg = z/t, we can look up Vipeak and Cph for that spot, from which we compute

the position and amplitude of the peak for next time step. Repeating the procedure

step by step, we collect the history of the individual peak. Figure 2.12 shows the

results of such an experiment. The integration starts at C = 1. In the figure, growth

rate, phase speed and wavenumber are plotted vs time. We see that the growth rate,

phase speed and wavenumber of the individual peak decrease as the peak evolves.

When the peak is on the leading edge of the envelope, its growth rate can be much

larger than that of maximum envelope growth.
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Alternatively, we can plot growth rate, phase speed and wavenumber as

functions of amplitude or logarithm of amplitude. We scale the amplitude of the

peak by its starting amplitude. Figure 2.13 shows these quantities vs logarithm

of amplitude. The pattern is very similar to Figure 2.12. The growth rate of the

individual peak decreases as the amplitude increases, and so does the wavenumber.

This seems like a nonlinear effect of amplitude on the growth rate, but, instead is an

intrinsic property of pulse instability and has nothing to do with nonlinearity since

we are using a linear model. Because the amplitude has been scaled by its starting

amplitude, the absolute amplitude is not important here. It is not the amplitude itself

that matters but the position of the peak relative to the maximum of the envelope.

Given a dispersion relation and a starting amplitude of a peak in a well developed

wave packet, the growth rate can be related to the subsequent amplitude, but the

reduction of growth rate is not due to the increase of amplitude but rather to the

shifting position within the packet.

The implication of this effect is that a set of peaks starting with the same

amplitude but at different positions relative to the maximum of envelope will grow

at different rates and have different properties.

This effect is an important difference of pulse instability from temporal and

spatial instabilities. In a nonlinear system, this intrinsic property of pulse instability

may be coupled with nonlinearity and it may become difficult to tell them apart.
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2.4 Comparison between the three types of insta-
bility theories

Comparison between temporal and pulse instabilities

In Figure 2.14, the lower panel compares the growth rates of temporal and

pulse instabilities as functions of real part of wavenumbers. The growth rate here

refers to the envelope growth in the case of pulse instability. The maximum growth

rate and corresponding properties such as frequency and group velocity of the envelope

in pulse instability is the same as the most temporally unstable wave as we have seen

before. The corresponding properties (in upper panel) such as frequencies and group

velocities in both theories are also the same for that wave.

One interesting feature shown in the figure is that pulse instability allows un-

stable waves to have wavenumbers beyond short wave cut-off of the temporal theory.

This is reasonable because we are comparing the real part of the local wavenumber

in pulse theory with a global wavenumber in temporal theory. The local wavenumber

in pulse theory contains a nonzero imaginary part, so that even if its real part is

the same as the wavenumber in temporal theory, its frequency w(k, + ik) has been

extended to complex k plane and is naturally different from that in temporal theory

(w(k,)).

Around the most unstable wave, the growth rate and group velocity have

multiple values corresponding to a wavenumber. Cg in temporal theory is fairly

uniform in the unstable range, while Cg in pulse theory varies dramatically and can

be different from the former by as much as 100%. The frequencies in the two theories

agree with each other reasonably well. The maximum difference occurs at the short

wave cut-off of the temporal theory.

Comparison between temporal and spatial instabilities
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Figures 2.15 to 2.17 compare the differences between temporal and spatial

instabilities. The solid line always represent the spatial growth rate (SGR) from

spatial instability, while dashed lines the equivalent spatial growth rates(ESGR) esti-

mated from the temporal growth rates divided by group velocity according to Gaster's

transformation formula. The dotted line in the lower panels indicate another type

of equivalent spatial growth rates transformed from the temporal rates divided by

phase speed. Let us call it pseudo-equivalent spatial growth rate (PESGR). This

transformation does not have the same theoretical support but has been used in some

observational studies (e.g., Watts and Johns, 1982, Kontoyiannis, 1992). In the up-

per panels, the dashed lines represent the real wave number from temporal instability.

The parameters are the same as before unless specified otherwise. I varied # to change

the growth rates.

In the lower panel of Figure 2.15, we see that for the most unstable waves,

PESGR are larger and ESGR are smaller than SGR. Actually it is difficult to define

the most unstable wave from PESGR because the small phase speed dominates the

transformation. The SGR curve has narrower shape than ESGR. In the upper panel,

we see that the wavenumbers of the most unstable waves from both theories are

almost the same.

There seems no clear correlation between SGR and PESGR in Figure 2.15,

because when the mean flow is slow, the transformation from temporal growth rate

to PESGR is dominated by large variation of phase speed instead of that of growth

rate itself. When the mean flow increases, relative differences among SGR,ESGR and

PESGR decrease (comparing Figure 2.15 with 2.16).

Figure 2.17 shows a case where SGR is the largest among the three types of

growth rates for the most unstable waves.
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In Figure 2.18, the growth rates have decreased due to larger # (0.13). SGR

has been reduced by a factor of 6 in comparison with that in Figure 2.15. However the

differences between SGR and ESGR are almost the same in the two figures (ESGR is

about 25% smaller than SGR). To see this more clearly, we keep increasing # until it

completely stabilizes the flow, and plot the ratio of ESGR to SGR vs beta in the lower

panel of Figure 2.19. From the figure, we can see that the ratio of difference (25%) is

almost constant when beta (or maximum growth rate) increases. Also shown in the

lower panel is the ratio of PESGR/SGR, which departs widely from 1 when beta is

large. In the upper panel of Figure 2.19, we see that the real parts of wavenumbers

corresponding to most temporally and spatially unstable waves are very close.

If we increase the mean velocities of basic flow without changing the shear,

ESGR will approach SGR (compare Figure 2.15 with Figure 2.16). This can be best

seen in the lower panel in Figure 2.20, where ESGR/SGR increases from 0.73 to 0.98

when Umean varies from 1/3 to 2. Umean is the average of U1 and U2 weighted

by layer depths. This suggests an additional condition on Gaster's transformation

formula-the mean flow or the group velocity needs to be fast for it to be valid.

Also shown in the lower panel is the ratio of PESGR/SGR, which decreases from

1.35 to 1.12 when Umean varies from 1/3 to 2, and it does not converge to 1 as fast

as the ratio of ESGR/SGR. In the upper panel, again we see that the difference in

wavenumbers corresponding to most temporally and spatially unstable waves is very

small.

The lower panel of Figure 2.21 shows how ESGR/SGR and PESGR/SGR

vary with velocity shear between the top and bottom layers. When the shear in-

creases, ESGR/SGR decreases and departs further away from 1, while PESGR/SGR

also decreases but towards 1. From the upper panel, we see that the difference

in wavenumbers corresponding to most temporally and spatially unstable waves in-

creases slowly with shear.
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In summary, smaller growth rates do not guarantee that ESGR gets closer

to SGR. The mean flow or the group velocity needs to be large enough for Gaster's

transformation formula to work accurately. When the mean flow is slow, PESGR can

depart far away from SGR while ESGR seems to be close to SGR within a bound of

30%. Small shear helps to keep ESGR close to SGR, while large shear acts to keep

PESGR close to SGR. Real parts of wavenumbers (or wavelengths) corresponding to

most temporally and spatially unstable waves are comparable and not sensitive to

mean velocities, velocity shear and #.

When the system is continuously forced or only disturbed by a single pulse,

which of the three types of instabilities is most relevant needs to be determined. The

numerical experiments in the next section address this issue.

2.5 Numerical Experiments

In order to test which type of theory is most suitable for a particular sit-

uation, a number of experiments have been done in a two-layer spectral numerical

model. To derive the governing equation of the model, we separate Equation (2.2.1)

into a uniform and purely zonal basic flow Un with stream function Tn(y) and a

disturbance stream 0b,

On = 'n(y) + On(x, y, 1) (2.5.15)

leading to

[ +Un a ]qn+ 4On 11 + [ 4 qn - 4n qn] = 0 (2.5.16)at 0o X a y 0o 0 B y B9y ay
where qn is the perturbation potential vorticity,

qn V 2 #On - Fn(-1)"(#2 - q1) (2.5.17)



and -- H, is the potential vorticity gradient of the basic state,

a a2

aIy = - U - F2(-1)"(U1 - U2 ) (2.5.18)

Linearizing and adding forcing gives

[ + Un a]qn + a IIn = F(x, t) = G(X)f (t) (2.5.19)at ax ax ay
with lateral boundary conditions,

a
-on = 0 y = 0,L,ax

The forcing is introduced at a particular location x0 with Gaussian distribution

Gn(x) = An e- ~ in a small region and time dependence f(t) = sin(wft).

The forcing scale L1 and frequency Wf can be varied. Only the gravest mode in y

direction was retained in the experiments.

Pulse Disturbance

In the experiments concerning evolution of a pulse disturbance, I set F(x, t)

in Equation (2.5.19) to be 0 and 4n = Gn(x) = An e-(x-n/L at t = 0. A1 is chosen

to be 2A 2 and is offset by 1 Rossby deformation radius to the west arbitrarily, i.e.,

X1 = X2 - 1. Lf is 0.6. The upper panel in Figure 2.22 shows the initial condition.

The x axis was labeled with positions of grid points. The lower panel shows a general

picture of the developed disturbance after some time.

Figure 2.23 shows the amplitudes of disturbances at a particular point. Solid

and dashed curve are values of the stream functions at the specified point in the upper

and lower layers, respectively. Whether the system is absolutely or convectively un-

stable becomes clear after the peak of envelope pass that point. The upper and lower

panels are from two separate numerical runs to show the difference between abso-

lute and convective instabilities. The upper panel corresponds to absolute instability,

while the lower one displays convective instability.
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Figure 2.24 demonstrates how to calculate the growth rate of a wave en-

velope. Panel a shows a well developed wave packet at time t. The envelope is

determined by picking out the crests and troughs and using spline method to inter-

polate the amplitudes of the disturbance between crests and between troughs. These

amplitudes form the envelope of a wave packet. We then rescale the horizontal coor-

dinate by t and transform panel a to panel b. The coordinate in panel b is C 9 .t.

Panel c shows the wave packet at t + 1. Again, we transform the envelope in panel

c to panel d (outer envelope) by rescale the x axis. The coordinate in panel d is

C = ft. Panel d also draws the envelope from panel b (inner envelope) for direct

comparison. From panel d, we calculate the growth rate of the envelope for each C

from the amplitudes of the two envelopes. The growth rate is then plotted in panel

e.

We can follow the similar procedure to calculate growth rates of individual

peaks, as shown in Figure 2.25. In panel a-d, the dots mark individual crests and

troughs in the wave packet. The rescaling procedure is the same as described above

for the calculation of the envelope growth. First convert wave packets at time t and

t + 1 (panel a and c) from x coordinates into group velocity coordinates (panel b and

d). In panel d, the corresponding peaks at t and t +1 are connected by solid lines. We

then measure the amplitude difference of each pair and divide it by the time step to

get the growth rate of each peak. The growth rates of individual peaks are then plot

in panel e with '*'s. Note that near the both edges of the wave packet, the amplitudes

of waves are small compared to the maximum of the envelope (panel d), so that the

relative error in the measured amplitudes near both edges may be larger than that

near the center of the packet due to numerical noises. Therefore the resulting error

in the growth rates of peaks near the edges may be larger than that near the center.

'*'s in the upper panel of Figure 2.26 show such determined growth rates of

individual peaks from a numerical run. Also drawn in the panel is the growth rate
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of an individual peak (dark dashed curve) from an analytical model with the same

parameters.

In the lower panel, solid curve indicates the growth rate of the envelope by

the method demonstrated in Figure 2.24. Dashed curve represents the growth rate of

the envelope from analytical model with the same parameters.

The growth rates from numerical models are slightly lower than their ana-

lytical counterparts; for example, the maximum growth rate of the envelope in the

numerical run is 4.5% lower than that in analytical model. However, if we subtract

1 from the latter, the correction term in Equation (2.3.14), the difference is then2t

only 0.17%. Hence the correction term is responsible for 96% of the discrepancy

in growth rates of the most unstable waves between the numerical and analytical

models. Moreover, the discrepancy seems fairly uniform over a large range of Cg in

the middle and is somewhat irregular near both ends of the group velocity range.

There are two plausible reasons; the first is that in the leading and trailing edges,

the numerical noise may be more significant because of small wave amplitudes there.

The second is that the asymptotic solution may break down when group velocity is

near its maximum or minimum point, as discussed in Section 2.3.3. This is less likely

than the first reason because the irregularity in the discrepancy is mainly due to the

irregularity in the numerical curve.

In the derivation of the growth rate of the envelope in Section 2.3.3, I have

assumed that when w(k) have branch points, we can avoid going around these points

in some way when we integrate to get asymptotic solution. It is difficult to prove

this assumption mathematically. However, the reasonable agreement with numerical

results demonstrates that this is a sensible assumption.

Comparing the upper and lower panels in Figure 2.26, we again see that

wave in the leading edge can grow much faster than the maximum of the envelope



and waves behind the maximum of the envelope grow slower than the corresponding

envelope. The relative position of an individual peak to the maximum of the envelope

determines its growth rate and other properties such as wavenumber and frequency.

The upper and lower panels of Figure 2.27 show the corresponding wavenum-

ber and frequency from both numerical and analytical models, and they also seem

to agree very well except slight discrepancies at the low group velocity end, probably

for the same reasons mentioned above. The wavenumber is estimated via the half

wavelength, which is calculated by measuring the positions of an adjacent crest and

trough and the value is assigned to the average position of the two points.

When a single pulse evolves as pulse instability predicts, each component of

a specific wavenumber in energy spectrum still grows according to the growth rate

of temporal instability. This is naturally true mathematically. However I emphasize

it here for future reference by a demonstration in Figure 2.28, which compares the

growth rate of each component measured in a numerical run (marked with 'x') and

the growth rate calculated from temporal instability theory (solid curve). Therefore

when pulse instability occurs, the most energetic wave is the most temporally unstable

wave.

In preparation of comparison with observations in Chapter 4, I have also

performed 2D spectral analysis on the above numerical run. The purpose is to demon-

strate that the most energetic wave picked by 2D spectral analysis is the temporally

most unstable wave. I took the stream function in the upper layer, which is a func-

tion of both position x and time t and transformed it into wavenumber and frequency

domain by 2D FFT. Figure 2.29 shows the energy spectrum of such an analysis. The

most energetic wave from the spectrum has a wavenumber of 0.583 and a frequency

of 0.181, while the most unstable wave from analytical model has w = 0.580 and

k = 0.179. The discrepancies in the wavenumber and frequency are already smaller

than the minimum wavenumber and frequency the 2D spectral analysis can resolve,
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because of the finite length of time series and the finite model domain. Hence we

conclude that in the case of the pulse instability, the most energetic wave, picked

from 2D spectral analysis, is the temporally most unstable wave within the analysis

error.

2.5.1 Single frequency forcing

When a system is continuously forced at constant frequency, a spatial insta-

bility is expected to happen. Only when the forcing frequency is within the unstable

range predicted by spatial instability theory, can the system be spatially unstable.

When the forcing is out of the spatially unstable range, only the initial peak of the
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disturbance can grow convectively as pulse instability theory predicts. Behind the

initial peak, destructive interaction between pulses prevents growth of perturbation.

As we can see from Figure 2.30 or Figure 2.15, the spatially unstable range

is narrower than temporally unstable range. This means that when the system is

forced continuously at a frequency within the temporal instability range but out of

spatial instability range, other types of instability such as convective instability will

occur instead of spatial instability.

When spatial instability happens, the amplitude at a particular point be-

comes constant. The spatial growth rate can be determined by measuring amplitudes

at two points. As an example, for the parameters shown in Figure 2.30 (U1 = 1.3,



U2 = 0.5, # = 0.05), a continuous forcing was introduced with a constant frequency

0.33, the spatial growth rate measured from numerical run is 0.1257, which is marked

with '*' in Figure 2.30, while spatial instability theory predicted a growth rate of

0.1262 (0.4% higher) and the temporal instability theory yielded an equivalent spa-

tial growth rate of 0.1154 (8.2% lower). So the numerical spatial growth rate agrees

well with spatial instability theory as expected when the system is continuously forced

at constant frequency. Note that the other analytical root with large spatial growth

rate identified as spurious solution by Briggs' rule (see Section 2.3.2) indeed does not

show up in the numerical experiment.

2.6 Summary

The first part of this chapter has introduced basic concepts of temporal,

spatial, pulse, absolute and convective instabilities which have already appeared in

the literature. The calculations herein are similar to others but show all three kinds

of instabilities using the same model and parameter values. I will summarize in the

following subsections the results from the literature and from this work which are

most relevant to the further work in the later chapters.

2.6.1 Temporal Instability

Briggs (1964) proved that for any system to support unstable waves, its

dispersion equation must yield complex solutions with positive imaginary parts for

some real k, i.e. it is a necessary condition for any unstable waves. This implies that

spatial and pulse instabilities only occur when temporal instability also occurs.



2.6.2 Spatial Instability

Briggs also shows that not all solutions with the right sign for spatial in-

stability are growing waves. We need to apply Briggs criterion (described in Section

2.3) to distinguish real growing waves from other solutions with the same sign. I have

used the criterion to say that implication in Hogg's (1976) work that spatial insta-

bility does not require potential vorticity gradients to change sign is not legitimate.

In addition, I have shown that the purely spatially unstable wave Hogg considered is

really better thought of as neutral because its phase speed is real. Hence one of his

conclusions, that spatially growing waves are bounded by a low wavenumber cut-off

which separates them from the temporally growing waves, is not valid. That conclu-

sion has been drawn based on nonzero c although he focuses on the limit of zero c in

his study and it is not clear whether or not c = 0 also corresponds to a neutral wave.

Michalke (1965) first studied the difference between spatial growth rate

(SGR) and pseudo-equivalent spatial growth rate (PESGR). He found that PESGR

was 17% smaller than SGR in a barotropic flow with a hyperbolic tangent velocity

profile. In this chapter, I have made comparisons among SGR, PESGR and ESGR

(the equivalent spatial growth rate) and examined the validity of Gaster's formula in

Phillips model.

Spatial instability theory gives different and generally larger spatial growth

rates than the equivalent spatial growth rate (ESGR) transformed from temporal

instability with Gaster's formula, especially when growth rate is large and group

velocity is small. Smaller growth rates do not guarantee that ESGR gets closer to

SGR.

The mean flow or the group velocity needs to be large enough for Gaster's

transformation formula to work accurately. When the mean flow is slow, PESGR can



depart far away from SGR while ESGR seems to be close to SGR within a bound of

30%. Small shear helps to keep ESGR close to SGR.

Real parts of wavenumbers (or wavelengths) corresponding to most tempo-

rally and spatially unstable waves are comparable and not sensitive to mean velocities,

velocity shear and /.

2.6.3 Pulse Instability

The maximum of the envelope of the growing disturbance moves at group

velocity of the most temporally unstable wave, and grows at the rate of the same

wave. The growth rate of an individual peak depends on the location of the peak

relative to the maximum of the envelope. Given Cg > Cph, individual peaks behind

the maximum of the envelope grow at a rate smaller than wm. At the leading edge,

individual peaks can grow much faster than the peak of the envelope, which makes

the envelope move faster than the individual peaks. These general results were first

found by Simmons and Hoskins (1979) in atmospheric observation. The formula of

growth rate of an individual peak was also given in the paper without a mathematical

derivation. In this chapter, I have provided a detailed theoretical derivation of the

formula and focused on the behaviors of individual peaks. In particular, when the

growth rate of an individual peak is plotted as a function of its amplitude, it decreases

as the amplitude increases. It has been demonstrated in this work that the relation

between the growth rate of an individual peak and its amplitude is an intrinsic prop-

erty and an important feature of pulse instability. Thus if one follows a single peak

and notices a decrease in the growth rate, one cannot infer that increasing amplitude

(or nonlinearity) was responsible for reducing the growth rate.

Direct comparison between temporal and pulse theory in this chapter shows

that pulse instability allows unstable waves to have wavenumbers beyond the short



wave cut-off of the temporal theory. This is reasonable because we are comparing the

real part of the local wavenumber in pulse theory with global wavenumber in temporal

theory. The local wavenumber in pulse theory contains a nonzero imaginary part, so

that even if its real part is the same as the wavenumber in temporal theory, its

frequency w(kr + ik1) has been extended to complex k plane and is naturally different

from that in temporal theory (w(k,.)).

When a single pulse evolves as pulse instability predicts, each component of

a specific wavenumber in energy spectrum still grows according to the growth rate

of temporal instability. Therefore when pulse instability occurs, the most energetic

wave is the most temporally unstable wave.



Chapter 3

The Instabilities of the Gulf
Stream QG Models

3.1 Motivation

From the two-layer model discussed in the last chapter, we have already

seen that there can be significant differences between temporal, pulse and spatial

instabilities, and Gaster's transformation formula is valid only when a spatial growth

rate is small and the group velocity is large. In order to answer the question whether

Gaster's formula and the other transformation formulae commonly used hold well in

the context of the Gulf Stream, we have to consider models more realistic than the

two-layer uniform velocity model we have studied.

There are several ways we can improve the model used in the last chapter.

First, a jet structure in the basic state may have significant effect on the instabilities.

Second, topography is expected to modify instabilities in some ways (Orlanski, 1969).

Third, we want to know the effect of additional layers or more detailed stratification.

Fourth, it is more reasonable to use a shallow water model than a QG model because

the slopes of isopycnals and topography and the Rossby number are large in the

context of the Gulf Stream.

In this chapter, we first consider a six-layer QG model with a jet structure

basic flow and with relatively realistic topography. We then proceed to compare the

six-layer QG model with two to five-layer models to examine the effect of vertical

resolution. Our study shows that a minimum of three layers is necessary to properly

address the effect of topography and at least five layers are required to capture the



rapid change in velocity profile (see Section 3.3). Hence a six-layer model is desirable

in this regard.

The variations in topography and thicknesses of layers between isopycnals

in the Gulf Stream are large enough that the conditions for QG theory to be formally

valid are violated. In the next chapter, I will examine a shallow water model with

the same topography and jet structure to determine how the predictions of the QG

model are changed.



3.2 Model Description

We will use two to six layer quasi-geostrophic inviscid channel models in this

chapter. These models are identical in dynamics except for the different number of

layers and can be classified as a multiple layer model. The stream function in each

layer is independent of depth. Let n=1 indicate the top layer, and n=N the bottom

one. Based on layer models described in Pedlosky (1986, Sec. 6.16), the equations of

motion for a N layer model can be written

{ + 1 a1 a}{V2 2 1 - F 1,o(1 - 0 2 ) + ,y} = 0 (3.2.1a)at ax ay ay ax
{ + _n _ - n }{ V 24O + Fn_1,n(O,_ 1 - #n) +at ax ay ay ax

+Fnn(#n+1 - On) + #y} = 0, 1 < n < N (3.2.1b)

at ao ay ay x
+#y + fOrlB/HN} = 0 (3.2. 1c)

where 3 is the gradient of planetary vorticity and 7B the topography. Fs are Froude

numbers,

Fmn-fo 2 L 2

cmgHn

where fo is Coriolis force at 38"N, em the nondimensional density jump between m-th

and (m+1)-th layers and Hn the depth of n-th layer. L is the length scale. F, 1 and

FN,N are defined to be 0.

The standard linear instability theory for a basic state with zonal flows Un(y)

and perturbations 4n = Re(Pn(y) eik(xct)) gives the eigenvalue problem

(U1 - c) [ -k 2 11 - F1,0(( 1 - #2)1 + 41 II1 = 0 (3.2.2a)

(Un - c) [; 2 n -k 2 4P + F._ 1 ,n(4_ 1 - 4n) + Fn,n(Dn+1 - cIn)] +



a
+ (D-aUn = 0, 1 < n < N (3.2.2b)B9y

(UN - c) ($N -k 2 PN - FN-1,N( N - 4N-1) - N + HN 0 (3.2.2c)

with the boundary condition

Pn=0, y =- 0, LY, n =1..,N (3.2.3)

where -kll is the potential vorticity gradient of the basic state,

-l = a 2 U1 - F1,o(U2 - U1 ) (3.2.4a)
ay ay

-HI = U F - Un) - Fn,n(Un+1 - Un) (3.2.4b)

a N = ~a 2 UN -FN-1,N(UN-1 - UN) tPB (3P2B4c)
ay (3y24c

and #B is the bottom topographic # parameter, fO r/B/HN.

A finite difference method has been used to solve this linear eigenvalue prob-

lem. Discretization renders the problem a matrix equation, which can be solved di-

rectly for temporal instability by standard procedures. I have developed a code based

on a method introduced by Lin and Pierrehumbert (1993), the saddle point finder (see

Appendix A), to solve the dispersion equation in the complex (w, k) plane for pulse

instability. Solving for spatial instability requires mapping of dispersion relation on

complex k plane, and the method is described in Appendix B.

In all the models we will use, the channel width is fixed at 320km and reso-

lution 10km except where otherwise specified. The effects of resolution and channel

width are tested in Appendix C.



3.3 Basic Flow and Parameter Calibration in Mul-
tilayer Models

The same set of CTD data mentioned above (Hall and Fofonoff, 1993) has

been used to calculate the density field, the stratification profiles, and the geostrophic

velocity field. We then determine the depth of each layer in layer models based on

potential density analysis. And after the depth of each layer in a layer model has

been calibrated, the geostrophic background velocity is averaged over the depth of

each layer. The layer-averaged velocity field is then interpolated into the grid points.

We assume a zonal basic flow in our model.

In order to determine the depth of each layer in layer model appropriately, we

first look at potential density field. Figure 3.1 shows the contours of potential density

field across the stream at 68 0W. The contours pass the center of the jet (38 0N) at

depths of 500,700,1100 meters, etc, which are labeled in the figure for convenient

identification. The interval is 400m in the interior and 200m near the top and the

bottom. From the figure, we can see that the thickness between contours increases

towards North in the interior and decreases near the top and bottom. To see this

feature more clearly, we calculate a spread ratio between every two contours. The

spread ratio is defined as
h1 - h2

S =
h

The thicknesses hi and h2 are measured at 90km and 80km away from the jet center

respectively (indicated by the dotted lines in Figure 3.1), where isopycnals start to

level off. h is the thickness between the two contours at the jet center. The spread ra-

tio is the percentage change in the thickness between the two contours and it captures

the part of the potential vorticity gradient purely due to the depth change.

In Figure 3.2, '*' indicates the spread ratios for layers between each pair of

potential density contours. The solid line separates the positive spread ratios from
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negative ones. In general, the spread ratios are negative in the interior except two

layers with slightly positive values. The layers with the largest spread ratios appear

near the surface (above 700m) and the bottom (below 3500m). This suggests that we

need an interface to separate the top layer and another one to separate the bottom

layer from the interior if we want to capture the dynamics of the Gulf Stream properly.

If we use two-layer model to represent the Gulf Stream and put the only

interface at the thermocline, the effect of topography will penetrate through the whole

bottom layer. To see this more clearly, we calculate the spread ratio in the lower layer

between thermocline and the bottom. The spread ratio in the lower layer is positive

(9.5m/100m) as indicated by dashed line in Figure 3.3, while the average spread ratio

in the interior is negative (-8.4m/100m, dotted line; the length of the line covers the

depth range of averaging). Hence the spread ratio in the lower layer bounded by the

thermocline and the topography does not reflect the real situation and using a two-

layer model in the context may alter the characteristics of the instability concerned.

If we use flat bottom instead of the real topography, the spread ratio (25.0m/100m,

dash-dotted line) in the bottom layer triples the average spread ratio in the interior.

So neither form of the two-layer model will take the topographic effect into account

properly. In Chapter 5, I will use a slope which is less than the true value to capture

interior spread ratio better, but this model still cannot represent the change in sign

occurring below 3500 meter.

Since the CTD data I used was only a snapshot of the Gulf Stream, I have

included in Figure 3.4 a temperature contour plot from Leaman, et al (1989). The

contours represent a multiyear average of temperature, obtained using PEGASUS cur-

rent profilers off Cape Hatteras. Estimated directly from plot, the thickness between

30 C and 50C changes from 1570m at the Southern edge to 1900m at the Northern

edge, leading to an interior spread ratio of (-9.5m/100m). This is comparable to the

interior spread ratio (-8.4m/100m) from the CTD section I used. If we use a two-layer



model to represent the system and put the only interface in thermocline, for example,

along 10*C contour, the spread ratio below the interface will be positive (10m/100m)

because of the large bottom slope. Hence a minimum of three layers is also necessary

in this case.

We will use real topography with a little modification because our model

cannot deal with the intersection of topography with a layer interface. In Figure 3.5,

'o' represents where CTD stopped, typically a few meters above the bottom, '*' the

topography we have chosen to use. At about 50km south of the jet, we have modified

the topography slightly to smooth out a small scale bump which is very unlikely to

affect large scale dynamics. At the southern edge, the topography is made flat. This

is expected not to affect the dynamics significantly and the position of the station is

actually beyond our model domain (320km in width). The dashed curve (overlapped

in part by solid curve) is the topography we actually used in all experiments when the

'real topography' is claimed, and has constant slope beyond 87km from the center

of jet. The difference in using such topography and the topography indicated by

the solid curve is demonstrated in Figure 3.6, where solid curves represent the result

corresponding to the topography identified by solid curve in Figure 3.5 and dashed

curves to that identified by dark dashed curve Figure 3.5. In the experiment, I used a

three-layer model with lowest interface at 3000m. The differences are almost invisible,

suggesting that the effect of topography far away from the jet is small.

In all the models, the first interface is set at 660 meters at the core of the

stream, and the lowest one at 3500 meters except for the two-layer model, as suggested

by our potential density analysis. The six-layer model has three additional interfaces

at 1370, 2080, and 2790 meters so that the thickness between the first and the lowest

interfaces are equally divided. We have chosen the additional interface in the four-

layer model at 1800 meters so that the model best matches the results of the six-layer

model. In the five-layer model, the two additional interfaces are at 1370 and 2370
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Figure 3.4: Contours of average temperature off Cape Hatteras. From Leaman, et al (1989).

meters. In all models, the topography is the modified "real topography" defined in

the previous paragraph.

After we have determined the depth of each layer in multilayer models, we

then take average of the geostrophic velocity over the depth of each layer. Taking

the six-layer model as an example, we show the layer-averaged velocity structure in

Figure 3.7 (narrow lines). There are six velocity profiles corresponding to six layers

in the model. The maximum velocity in each layer decreases with the depth of the

layer. We then fit the velocity structure in each layer with Gaussian type profile. The

magnitude and width of the jet in each layer are determined by the magnitude and

transport of the unsmoothed jet in the layer. The fitted profiles are also shown in

Figure 3.7 (dark lines).
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3.4 Comparison Among Multilayer Models

Figure 3.8 shows the results of temporal instabilities corresponding to models

with different number of layers. The upper panel shows phase speeds vs wavenumber,

while the lower one shows temporal growth rate. For clarity, only the main unstable

mode in each model is plotted and labeled with its corresponding number of layers.

As we can see in Figure 3.8, as the number of layers increases, the results tend

to converge. In particular, the wavenumbers of the most stable waves are comparable

except that in the two-layer model. The two-layer model gives a very different result

in terms of the shape of the curve, maximum growth rate and wavenumber of the

most unstable wave. The agreement among other models is worst on short wave side

of the most unstable waves. In addition, when we plot more modes for four to six-

layer model in Figure 3.9, we see the curves on short wave side have not converged

as much as on long wave side when the number of layers increases.

Figure 3.10 is the pulse instability version of the comparison. The 'x' mark

on each curve indicates the value at the peak of the envelope of a developed distur-

bance. Again we see the similar pattern that when the number of layer increases:

the results tend to converge. However, some features here are more sensitive to the

number of layers than in the case of temporal instability. Besides the ill-behaved

two-layer model, the three-layer model has the opposite trend in term of wavenumber

or frequency as a function of group velocity and the curve of the growth rate does

not compare well with the four to six-layer models. This demonstrates that pulse

instability is more sensitive to vertical resolution than temporal instability. This is

probably because we need to use the group velocity as a variable in the pulse instabil-

ity instead of wavenumber. Since a group velocity depends on the derivative of phase

speed with respect to wavenumber, any inaccuracy in phase speed or wavenumber

will be amplified in group velocity. So when we study pulse instability, we need to
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use higher vertical and horizontal resolutions, especially near the surface and the core

of the jet where the mean velocity changes rapidly.

From the above comparison, it appears that a six-layer model is appropriate

in study of the Gulf Stream instability, especially for the main unstable mode. Hence

we will focus on the analysis of a six-layer model in the next section.

3.5 Temporal, Spatial and Pulse Instabilities in a
Six-Layer Model

Figure 3.11 redraws the three most unstable modes of temporal instability

in the six-layer model. The most unstable wave (at the peak of the mode) has a

wavelength of about 350km, a period of 44 days and a growth rate of 0.063/day.

The growth rate corresponds to an e-folding time of 16 days. These results will be

compared with observational analysis by Lee and Cornillon (1996b) in Chapter 4.

The other two modes have growth rates of .026 and .023/day respectively, which are

less than 50% of the first mode.

Figure 3.12 compares spatial growth rates (SGR) with equivalent spatial

growth rates (ESGR) and pseudo-equivalent spatial growth rates (PESGR) for the

three most unstable modes. The bumps on the SGR curve look peculiar and will

be discussed later. The vertical lines indicate the real parts of the frequencies at

the peaks of temporal unstable modes. The corresponding periods are also labeled.

As I described in Chapter 2, SGR is calculated through dispersion equations with

real frequency. Both ESGR and PESGR, estimates of SGR, are calculated from the

temporal growth rates divided by group velocity and phase speed respectively.

For the most unstable mode, the maximum SGR exceeds by 32% ESGR

predicted from the temporal instability at the most unstable wavenumber. Dominated
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by the small group velocity in transformation, however, the ESGR curve peaks at

w=0.04, which corresponds to a period of 160 days.The maximum SGR is at w=0.14

(52 days), while the most temporally unstable wave is at w,=0.164 (44 days).

For all of the three modes, ESGRs are closer to SGRs than PESGRs are,

especially at low frequency where PESGR almost triples SGR. This suggests that

ESGR is a better estimate of SGR than PESGR,

The upper panel of Figure 3.12 shows group velocities and real wavenumbers

of the three modes. Group velocities have been calculated from temporal instability.

The solid curves are real wavenumbers calculated from spatial instability, while the

dashed curves temporal instability. The wavenumbers from both instability theories

are actually very close, especially right at the peaks.

I now return to discuss the strange bumps on the SGR curve. They are

plausibly due to multiple roots merging together. In this model, there are 186 grid

points. The model gives 186 roots of w when k is given and 558 roots of k when W is

given. It is possible that some of these roots merge together to form a mode with such

bumps. Figure 3.13 redraws the first mode of spatial instability (the solid curve with

a larger maximum growth rate) from Figure 3.12 and an additional mode labeled as

pinch-off mode. (The dashed curve will be explained in the next paragraph.) For

convenience I call the first mode as a merger mode. Near w, = 0.21, it seems that the

merger mode has be formed by connecting the upper parts of two roots which could

have been separate for some parameter range, whereas the pinch-off mode has been

formed by connecting the lower parts of the two roots.

These bumps in the first mode are very sensitive to the strength of the mean

flow. To see this more clearly, I have added a uniform barotropic flow of 0.02m/s to

the velocity profile shown in Figure 3.7, and compute the spatial growth rate with

the same model. The dashed curve in Figure 3.13 shows the first mode of the spatial

104



U)

0.25 -

Cz

merger mode
00.15

pinch-off mode

0.1

0.05-

0
0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

Real Frequency Wr

Figure 3.13: Comparison of spatial instabilities between the six-layer models with and without

an additional uniform barotropic flow of 0.02m/s. The solid curves represent the former case and
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instability. We see that the bumps in this case have been smoothed substantially

by the weak additional barotropic flow. This is probably because the additional

barotropic flow has changed the structure of the roots significantly so that the way

they intersect, merge or overlap has become much smoother.

Figure 3.14 shows pulse instability for the three most unstable waves. The

upper and lower panel display the growth rates of individual peaks and the envelopes

respectively, as functions of the group velocity. The growth rate of an individual peak

is calculated from Equation 2.3.13, which is

Vipeak = Vi(Cg) + (cph - Cg__
9gc
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The 'x' mark on each curve indicates the maximum of the envelope, whereas the

dark 'x' mark represents where an individual peak grows fastest among all waves

corresponding to the same mode.

From Figure 3.14, again we see the similar feature as in Phillips' model:

the growth rate of an individual peak closely depends on its position relative to the

peak of the envelope and can be very different from that of the envelope. The ratios

of the growth rates of the fastest growing waves to the maximum growth rates of

the envelopes are 2.39, 3.67 and 2.07 for the first three modes, whereas it is 1.78 in

Phillips' model. So the feature is stronger in this Gulf Stream model.

Figure 3.15 shows the wavenumbers and frequencies of the first three modes.

The 'x' and dark 'x' marks indicates the most unstable waves (the maximum of the

envelope growth) and the fastest growing waves. Over a large range (Cg from .15 to

.60m/s), the first and second modes have the same sloping trends of wavenumbers

and frequencies, similar to the trends in Phillips' model, whereas the third mode has

the opposite trends. Since the growth rate of first mode is dominant over the others,

this model suggests that the fastest growing waves should have shorter and higher

frequency than the most unstable wave in the ocean given the velocity profile.

Figure 3.16 and Figure 3.17 show how a peak in the leading edge of the enve-

lope evolves according to the most unstable mode in Figure 3.14. The demonstration

has been done in the Phillips' model, but it is important to use a more realistic model

to see whether the conclusion from Phillips' model still holds. The method has been

described in Section 2.3.5 and will be briefly repeated here for convenience. Suppose

a disturbance is initiated at x = 0 and t = 0. After a significant amount of time,

the wave envelope approaches its asymptotic form of the solution. If we focus on

an individual peak in the leading edge of the disturbance envelope, we calculate the

values of Cg = x/t and can have Vipak and vi for that spot from Figure 3.14. We then

compute the amplitude and phase speed of the peak for next time step. Repeating
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the procedure step by step, we collect the history of the individual peak. Figure 3.16

and Figure 3.17 show the results of such an experiment. In Figure 3.16, growth

rate, phase speed and wavenumber are plotted vs time, while in Figure 3.17 vs log

of amplitude (assuming initial amplitude of 1, or scaling the amplitude by its initial

amplitude). What we can see from the both figures is that the growth rate, phase

speed and wavenumber of the individual peak decrease as the peak evolves. When

the peak is on the leading edge of the envelope, its growth rate can be much larger

than that of maximum envelope growth. The pattern is very similar in Figure 3.17.

The growth rate of the individual peak decreases as the amplitude increases, so does

the wavenumber. So the features appeared in Phillips' model also appear here.

In the experiment, an individual peak in the leading edge grows as fast as

220% the rate of the envelope growth. And when it falls in trailing edge, it grows as

slow as 30% the rate of the envelope growth. Thus a peak in the leading edge can

grow several times as fast as another peak in the trailing edge. In Phillips' model,

the fastest and slowest growing individual peaks have growth rates of 178% and 80%

of the maximum envelope growth, respectively. So the difference between the waves

in the leading edge and slowest growing wave behind the maximum of the envelope

is much larger here than in Phillips' model, probably due to the jet structure which

is not present in Phillips' model. Whether such a huge difference can be realized in

the context of the Gulf Stream will be addressed in Chapter 5, where I will use a

numerical model with relatively realistic features of the Stream.

3.6 Summary and Conclusions

From the analysis of potential density and spread ratio, we have shown that

a minimum of three layers is necessary to address the effect of topography properly.

Comparison among two to six-layer models support this point. The comparison also
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shows that short waves are more sensitive to vertical resolution. In the case of pulse

instability, a minimum of five layers is necessary to capture the characteristics of the

instability.

Spatial Growth Rate (SGR) is generally larger by about 30% than Equivalent

Spatial Growth Rate (ESGR) converted from temporal instability. Pseudo-Spatial

Growth Rate exceeds SGR by 200% at low frequency and is not a good estimate of

SGR in general.

In the case of pulse instability, the growth rate of an individual peak can

be very different from that of wave envelope. If the initial disturbance is a single

pulse, the growth rates of individual peaks can vary from 30% to 220% of that of the

peak of the wave envelope and cannot be predicted by temporal or spatial instability

theories.

To avoid repetition, we will defer comparison of our results of the QG model

to data until the next chapter, where a shallow water model will be studied and

compared with the QG model as well as observations.
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Chapter 4

Shallow-Water Models

4.1 Motivation

In Chapter 2 and 3, we have used QG models to study the characteristics

of temporal, spatial and pulse instabilities. Since QG models can only handle well

small Rossby number and small slopes of isopycnals and topography, we need to

examine first whether these conditions have been violated in the Gulf Stream. From

the observations, the Rossby number was estimated to be .3-.5 in the Gulf Stream

east of Cape Hatteras(Bower, 1989). The depth of the top of the thermocline varies

from around 800m in Southern side to about 200m in Northern side, and the depth

of the bottom changes from about 4900m to 1900m across a CTD section at 68"W

running from 36.3*N to 40*N (Hall and Fofonoff, 1993). Such large changes in the

depths of isopycnals and topography may violate the assumptions of QG theory.

Therefore one may expect that the QG approximation is not accurate in the context

of the Gulf Stream, and a question naturally arises whether the results obtained in

QG models can be extended to the primitive equation model or shallow-water model.

This chapter is devoted to the comparison between QG and Shallow-Water models

(SW).
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4.2 Model Description

In this chapter, I will use a six-layer channel model. The model, however,

has been developed for N layers as long as there is no outcropping or intersection of

interfaces with topography. The model configuration and topography are the same

as in the QG six-layer model used in the last chapter. The channel width is 320km

and the boundary conditions assume no normal flow across the channel walls.

Let n = 1 indicate the top layer, and n = N the bottom one. The equations

of motion can be written

jUn + ?un iuU + nu - fon = a (4.2.1a)
a U + +na + V .9a

on +unoVn +Vn gen + fun = - g / (4.2.1 b)

where un, vn, and r/n are along stream, across stream velocities, and elevations of the

surface and the interface. The reduced gravity factors are

Pn - Pn-1
gn = g

Pn

and po is 0 by definition.

The equations of continuity are

-hn + -(hnun) + a (hon ) = 0 (4.2.2)
at ax X a0

with ha = Hn + rn - r/n+1. When n = N, 7N+1 =7N+1 = hb, the elevation of the

bottom. The lateral boundary conditions are chosen to be

on = 0, at y = 0, LY (4.2.3)

where L, is the width of the domain. We consider the case where the basic flow only

has an along-stream component (x-direction) and we separate physical quantities into
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basic state fields and perturbation components,

Un = Un(y) + u/n(y) (4.2.4a)

on = v/n(y) (4.2.4b)

77n = n(y) + Tfn(y) (4.2.4c)

hn = h7n(y) + h/n(y) = Hn + (Vn -Van) + (77n -- n7in) (4.2.4d)

where 71N+1 is defined to be 0. Hn1 is constant and represents the mean thickness of

n-th layer.

We assume the mean field is in geostrophic balance. Given the basic state flow Un,

the displacement of interfaces in the basic state can be determined as

1 f-
j on = no - - (Un - Un_1 )fdy (4.2.5)

gn

where 77o is an integration constant and U0 is defined to be 0.

We now substitute Equations (4.2.4a-d) into Equations (4.2.la-b) and Equa-

tion (4.2.2). If we study only the linear instability problem, we can neglect nonlinear

terms in the resulting equations. For simplicity, we drop all primes and have

n

Unt +Unun. + UnYVn - fvn + Z gi7i 0 (4.2.6a)

i=1
n

Vnt +Unonv + fun + gi 71 = 0 (4.2.6b)
i=1

N

7/nt + Z{(Hi + 1h - W1±)(u.X + v-Y) + (7y1 -7 L1(i)y)vi + (U - Ui- 1 )7/ i.} = 0

(4.2.6c)

where Unt means 'un. Other similar notations can be interpreted accordingly.

115



To search for only normal mode solutions, we can assume

(un, n, )k (x-c t)

Substitute Equation (4.2.7) into Equations (4.2.6a-c), drop all

nience, and we have

(4.2.7)

signs for conve-

UnUn + (Uny - f)vn + S 0gi = cUn
i=1

k
2 Un + Unen + -2' = CVn

i=1

N

E{Tius + Bivi + (Ui - Ui-1)ri} = cr/
i=ni

(4.2.8a)

(4.2.8b)

(4.2.8c)

where

T = H-L + V% - +1

B, = Tiy + T
ay

= (iY - V(i+1)Y) +

(4.2.9a)

a(Hi + - -- +1) (4.2.9b)

The lateral boundary conditions are

(4.2.10)

As an example, for the simplest case of two-layer model (N=2), Equa-

tions (4.2.8a-c) become

-gi a

U1

gl a
k2 8y
0

0
0

T2

U2
f

k2

T2

0
0

B2
U2, - f

U2
B2

0
0

U2 -U 1
92
928
k2 8y

U2

U'

V 1

771

U 2

V
2

S772 _

= C

U1

V 1

771

U 2

V
2

772

(4.2.11)
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We will use a finite difference method in y with a staggered scheme to solve

this linear eigenvalue problem.
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4.3 Comparison of the SW and QG Six-Layer
Models

In the SW six-layer model, the depths of the interfaces, velocity profiles and

topography are the same as in QG case (see Figure 3.5) and Figure 3.7).

Figure 4.1 shows the results for temporal instabilities in the QG and SW

six-layer models. The dashed curves represent the results of the QG six-layer model

we have studied in the Chapter 3, and solid curves the SW six-layer model. The main

modes from the two models are similar in wavelengths (349km in QG6 vs 363km in

SW6) except the maximum growth rate (0.063/day) in QG model is about 40% higher

than that in SW case (0.044/day). This agrees well with previous study by Orlansky

(1969) who shows in a two-layer model that the growth rates and corresponding

wave numbers of unstable modes decrease when the Rossby number increases. As we

can see from the upper panel of Figure 4.1, the difference between the phase speeds

of the main modes in the QG and SW model is relatively small compared to the

difference in growth rates. As far as the main mode is concerned, there appears to

be a quantitative difference between the QG and SW models in growth rate but no

qualitative difference in the shape of the curve of the growth rate and the phase speed

of the mode.

In both models, there are two more significant modes, which have higher

phase speeds and wavenumbers than the main modes. Numbered in the order of

wavenumber at peak, the second mode in SW model seems to correspond to both the

second and third modes in QG model as seen in the phase speeds. The third mode

in SW model is not present in the QG model.

Figure 4.2 is the pulse instability version of the comparison. As we can see

in Figure 4.2, the characteristics of the main modes in the SW and QG models are

comparable except that the main mode in SW model truncates at lower group velocity
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Figure 4.1: The results of temporal instabilities corresponding to QG and SW six-layer models.

The solid curves represents the results of the SW model, and dashed curves the QG model.
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than the main mode in the QG model, so that the former only corresponds to the

first part of the latter. This can be seen more clearly in Figure 4.3, which also plots

the growth rates of individual peaks. Despite the difference in the maxima of the

envelope growth of the main modes, the growth rates of individual peaks agree very

well between the two models. This appears to be coincidental; the curve of individual

peak growth in one model happens to pass very nearly through the maximum of the

envelope growth in the other model, so the two curves agree at both of these points.

This implies that when we compare the growth rates of individual peaks from the

models with observations, the difference between the QG and SW models does not

tend to show up as clearly as when we compare those of envelopes with observations.

Figure 4.4 shows the three most unstable modes of pulse instabilities in QG

and SW models. In the SW case, the second mode dominates the first mode when

group velocity is greater than 0.35m/s; whereas, in the QG case, the first mode is

strongly dominant over most of the range where the growth rates are high. Thus the

comparison between QG and SW is more complex than Figure 4.2 might suggest.

To determine which mode the fastest growing peak actually comes from, we need to

compare the maximum growth rates of individual peaks in the regions where their

corresponding envelope growth rates dominate. Figure 4.5 shows the growth rates

of individual peaks corresponding to the three most unstable modes. The maximum

growth rate of an individual peak from the first mode turns out to be 0.105/day at

group velocity of 0.35m/s and period of 40 days, while that from the second mode is

0.091/day at group velocity of 0.50m/s and period of 16 days. Moreover, the maxi-

mum growth of an individual peak from the third mode is 0.110/day at Cg = .71m/s

and corresponds to a period of 6 days. The maximum growth rates of individual

peaks from the three modes are actually comparable and it is difficult to differentiate

between them. However, because of the difference in group velocities, they will ap-

pear at different locations and have different wavelengths, and may therefore all be

observable.
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Xue (1991a) also carried out similar instability analysis of the Gulf Stream on

the South Atlantic Bight in a primitive model. She only studied temporal instability.

The most unstable waves in her models with topography have wavelengths between

215 and 225km and e-folding times of about 3 days. This is very different from the

most temporally unstable wave in this model, which has a wavelength of 350km and

an e-folding time of 23 days. This large difference is probable due to the different

basic states and topography used in her model (intended for the Stream before Cape

Hatteras) and mine.

4.4 Comparisons With Observations and Conclu-
sion

In this section, I will draw connection between our model results and obser-

vations, and conclude our findings in the chapter. In the comparison with observation,

I will focus on the studies by Lee and Cornillon (1994a,b) since only their work dis-

tinguishes the fastest growing wave from most energetic wave in a well-defined way,

to the best of my knowledge.

Lee and Cornillon used two-day composite sea surface temperature (SST)

images obtained from the thermal infrared (IR) channels of the Advanced Very High

Resolution Radiometer (AVHRR) flown on the NOAA polar-orbiting satellites. From

these satellite images, they digitized the path of the Gulf Stream from Cape Hatteras

(about 75"W) to 450W. The path of the Gulf Stream is defined by the sharp SST

gradient along the northern edge of the stream. After removing the mean position (a

smooth curve) of a path, the positions y(x, t) of the Gulf Stream as a function of (x, t)

were obtained. They then performed spectral analysis to find the most energetic wave

band. They used FFT in the time-frequency transform. In the position-wavenumber

transform, they used either FFT or autoregression method. Using the former resulted
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in the most energetic wave of 427t70km in wavelength and 46 days in period. Using

the latter gave the same results except that the error estimate in wavelength became

i16km.

The fastest growing wave was obtained by a peak tracking technique. Given

a path of the Gulf Stream, they repeated three-point averaging a few times to get a

heavily-averaged path. This path intersects the original path, and these intersections

define the nodes between crests and troughs. For an individual peak, the wavelength

associated is defined as twice of the distance between the two adjacent nodes. If the

positions of a peak are x1 and X2 , and amplitudes A1 and A 2 , at the time ti and t2

respectively, the growth rate and phase speed between t1 and t 2 are defined as 1 A2-A,
At

2
-tl

and Cph =-- 1, respectively. These values are assigned to the average position x2 xi

and the average time *t. To be consistent, the wavelengths and amplitudes of the

same peak at t1 and t2 are also averaged to get the mean assigned to the time t2 +ti

They used bins of wavelengths (50km interval) to group the observational data and

average the growth rates in each bin. Their analysis in this way has found the fastest

growing wave of 350km in wavelength and 40 days in period.

In Chapter 2, I have emphasized that even in the case of pulse instability, the

amplitude and energy of each Fourier component still grows as temporal instability

theory predicts. This suggests that the most unstable wave from temporal instability

or maximum of envelope growth from pulse instability should be compatible with the

most energetic wave Lee and Cornillon described, if the nonlinearity in the obser-

vation is not considered. And the way they calculated the fastest growing wave is

straightforward and also compatible with the fastest growing individual peak wave in

my models.

The following table summarizes the differences between the most unstable

wave and the fastest growing wave described by Lee and Cornillon (1994b) as well

as those predicted from our models. Although Lee and Cornillon attributed the

126



differences to nonlinearity, I will first compare their results with linear models and

return to the nonlinearity issue in Section 6.3.

most energetic wave fastest growing wave

L (km) wi (1/day) T (days) L vi (1/day) T

Lee and Cornillon 427 i 70 .032 46 350 .063 40

SW6 363 .044 48 339 .105 37
QG6 349 .063 44 293 .151 22

When it comes to the difference between the most unstable and the fastest

growing modes, the results of different models spread widely and there is tradeoff

between how well a model can explain the period and the wavelength, taking obser-

vations as given (i.e. without error). For example, in the QG six-layer model, the

ratio of the wavelength of the fastest growing wave to that of the most unstable wave

is 84%, which compares well with the ratio observed (82%). However, the ratio of the

period of the fastest growing wave to that of the most unstable wave is only 50%, too

small compared the ratio observed (87%). In the six-layer SW model, on the other

hand, the ratio in wavelengths is 93%, larger than the observed (82%); the ratio in

periods is 77%, which agrees better than the QG model with that observed (87%).

The ratio of the growth rate of the fastest growing wave to that of the most unstable

wave is 2.0, 2.4, and 2.4 from the observation, the QG and SW six-layer models,

respectively. The ratios of the growth rates seem to be in reasonable agreement.

Despite the discrepancy among the models and the observation, it appears

to be a robust common feature that the fastest growing wave has higher growth rate,

wavenumber and frequency than the most unstable wave. And the differences between

the most unstable and the fastest growing waves in the models seem able to explain

substantial parts of the differences observed.

The QG six-layer model overestimates substantially the maximum growth

rate compared to the SW six-layer model (e.g. 40% higher in QG6 than that in SW6).

This is consistent with the previous study by Orlansky (1969) that finite Rossby
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number reduces the growth rates of unstable waves. However, QG and SW models

give comparable wavelengths and phase speeds of the main unstable modes (e.g.

349km and 7.9km/day in QG6 vs 363km and 7.5km/day in SW6). The growth rates

of individual peaks in the two models agree very well as functions of the group velocity,

though the maximum growth rates are still significantly different. The conclusion from

this comparison is that the QG model gives results quantitatively different from those

from the SW model, but there is no qualitative difference between the two models in

term of the first most unstable modes.
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Chapter 5

The Instabilities of the Gulf
Stream Numerical Simulation

5.1 Introduction

In Chapter 4, I have compared the pulse instability from the QG and SW

six-layer models with the observational analysis by Lee and Cornillon (1996b). The

conclusion is that the differences between the most energetic and the fastest growing

waves in the models appear able to explain substantial parts of the observed differ-

ences. Before we conclude that pulse instability is the most appropriate model for

Gulf Stream movements, we need to address a couple of issues. The first is whether

there is enough time for pulse instability to establish itself in the Gulf Stream be-

cause we are using an asymptotic solution which requires that the time after the initial

perturbation be large. Since the center of a wave packet moves at a specific group

velocity, the issue can be translated into whether there is enough space for the pulse

instability to occur. This issue will be addressed in Section 5.5, where I consider the

development of a single pulse in a two-layer model with jet structure and a sloping

bottom.

The second issue concerns an assumption implicit in the comparisons be-

tween pulse instability from the models and the observed motions. The assumption

is that the initial disturbance is a pulse and no further perturbation is added in the

region. This seems unlikely to be the case in the Gulf Stream. To address the effect

of continuous disturbances in the Gulf Stream as well as the first issue, I will use a

forced two-layer numerical model in this chapter. For comparison, I will first study

a two-layer analytical model which uses the exact same parameters as the numerical

model.
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The reason I study a two-layer numerical model instead of six layers is

the computational difficulty. As we already know from the spread ratio analysis in

Section 3.3 neither form of the two-layer model, with flat bottom or real bottom, will

take the topographic effect into account properly. However, since we already know the

dispersion relation of the six-layer model, we may choose the slope of the bottom and

velocity structure in a two-layer model so that its dispersion relation best resembles

that of the six-layer model. It is important to keep in mind that without the results

from the QG six-layer model, we could not choose the parameters in the two-layer

model from the section data meaningfully to get a reasonable dispersion relation.

The numerical model has three dimensions instead of two dimensions in

the analytical model, the third dimension being the along-stream direction. Because

mean flow and waves are moving along that direction, it needs to be much longer

than the cross-stream width of the channel model. As discussed in the next section,

the parameters of the two-layer model and especially the topography will be adjusted

so that the instability properties are similar to the QG six-layer model.

I will use the satellite data analyzed by Lee and Cornillon (1996a) to force

the numerical model in the upper stream, and investigate how differently disturbances

evolve compared to the one single pulse idealized case studied in this chapter.

5.2 A Two-Layer QG Analytical Model

Because of computational difficulty in multilayer numerical models, I will

focus on a two-layer numerical model in this chapter. To prepare for the comparison

between numerical runs and analytical results, a two-layer analytical model is first

studied here. For the model to have a dispersion relation as close to the Gulf Steam

situation as possible, I search for a two-layer model with proper topography and
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Figure 5.1: A two-layer model with a sloping bottom (solid curve). Also plotted is the topography

used in the multiple layer model (lower dashed). Upper dashed curve is the interface between the

upper and lower layers.

velocity structure which best approximates the dispersion relation of the six-layer

model.

As we have found in Chapter 3, a two-layer model with a realistic topog-

raphy will overestimate the effect of topography. In this two-layer model, I take the

alternative to use a sloping bottom and choose the slope so the maximum growth rate

of the main mode in the model will match the maximum growth rate of the main mode

in the QG six-layer model. Figure 5.1 shows the configuration of a two-layer model

we will use. The solid curve is a sloping bottom. Its slope is determined to be 0.0054.

Also plotted is the topography used in the multiple-layer model (lower dashed). The

upper dashed curved is the interface between the upper and lower layers.
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In two-layer models, we do not fit the velocity structure with a Gaussian

profile since the purpose is to match the dispersion relations in the six-layer model and

it turns out the Gaussian fit does not make the best match. Figure 5.2 shows the layer-

averaged velocity profile calculated from CTD data (Hall and Fofonoff, 1993) for the

two-layer model. The region marked with '?' sign in the figure has an unusual small

scale structure, which arises from a single data point and does not appear in other

cross-stream profiles. This may be due to an eddy or the lack of barotropic velocity

component. In order to see the effect of the small scale structure on instabilities, I

have modified the velocity profile slightly, as shown in Figure 5.3.

Figure 5.4 shows the instabilities calculated for these two profiles (using

sloping bottom), with dash-dotted curves associated with the original profile and solid

curves with the modified one. We can see that the peak of growth rate at k=2.9 (or

a wavelength of 217km) has been significantly reduced by smoothing the profile and

becomes negligible. From the phase speed associated with this peak, we can identify

that this peak as arising from barotropic instability in the top layer. By smoothing

the velocity profile slightly on the edges of the jet, the peak has been reduced more

than 70%. Because this peak is so sensitive to the profile and the structure in the

original profile in this region arises from a single data point, we do not believe that

the peak at k=2.9 is a robust feature in the Gulf Stream. Therefore, we will use the

modified profile hereafter.

Figure 5.5 shows temporal instability in the model. The upper panel shows

phase speeds vs real wavenumber k, while the lower panel gives temporal growth

rate wi. For comparison, the results from the QG six-layer model are represented

with dashed curves. The two-layer model agrees well with the six-layer model in the

main mode. The maximum growth rates in the two models are the same because

the slope in the two-layer model is such chosen to best match the maximum growth

in the six-layer model. Moreover, the shapes of the main modes in the two models
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are similar. This is also true with wavenumbers and frequencies in pulse instability

calculation shown in Figure 5.6. Although for given group velocity, the two-layer

model has higher wavenumber and frequency, the slopes of the curves compare well

with the six-layer model. The figure only compares the most unstable modes in each

models. The lower panel shows how the growth rates of individual peaks differ from

corresponding envelope growth rates. It is clear that the patterns are similar in the

two models.

5.3 Temporal, Spatial and Pulse Instabilities in a
Two-Layer Model

The purpose of this section is to prepare for comparisons between analytical

and numerical models in later sections. Since we have already chosen parameters in

this analytical model so that the dispersion relation for the primary mode resembles

that of the QG six-layer model, the differences between temporal, spatial and pulse

instabilities in this model are similar to those in QG6 and will not repeat the similar

comparisons here. However, we do need to examine spatial instability and to consider

other modes as well.

The results of temporal and pulse instabilities have been shown in last sec-

tion (Figure 5.5 and Figure 5.6), but we redraw the corresponding figures here for

clarity. Figure 5.7 shows three most temporally unstable modes. The peak with

largest growth rate has a wavenumber of about 1.9 (with unit: 1/100km), or a wave-

length of 334km. Its maximum growth rate .063 corresponds to an e-folding time

of 16 days. The phase speed and group velocity right at the peak are 12cm/s and

29cm/s. Its period is 32 days. The second and third largest peaks with k = 3.1 and

2.5 are fast moving waves concentrated at the upper layer of the Stream.
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The upper panel of Figure 5.8 shows the spatial growth rates of the first three

modes in spatial instability as a function of forcing frequency. The maximum growth

rate of the first mode is about four times of those of the second and third modes. The

second and third modes are numbered in term of wavenumbers and frequencies. The

three modes do not overlap in the frequency domain. It is important to remember that

it is the frequency of forcing that determines which mode will dominate in a system,

not the magnitude of the maximum growth rates of modes. In spatial instability,

given a forcing frequency, there will be a dominant wave which moves at constant

phase speed determined by dispersion relation. The spatial growth rate multiplied

by the phase speed will give the growth rates of individual peaks, which are shown

in the lower panel of Figure 5.8. The three modes which do not overlap in frequency

domain now overlap in part in wavenumber domain. It is interesting to note that the

third mode has a maximum growth rate about 75% of that of the first mode when

one follows an individual peak, whereas the corresponding spatial growth rate is only

about 25% of that of the first mode.

Figure 5.9 and Figure 5.10 show the results from pulse instability for the

three most unstable waves. In all the panels, the horizontal coordinate is group

velocity, which is multiplied by the time to derive the position of the individual peak

from where the disturbance originated. The upper and lower panel of Figure 5.9

show the growth rates of individual peaks and the envelopes. 'x' and dark 'x' marks

indicate the properties corresponding to the maximum growth rates of envelopes and

individual peaks, respectively. From the previous chapters, we already know that the

growth rate of an individual peak closely depends on its position relative to the peak

of the envelope and can be very different from that of the envelope. In this model, an

individual peak in the leading edge of the wave packet can grow as fast as 170% the

rate of the envelope growth (for the most unstable mode). For the second or third

mode, that ratio is about fourfold. A peak in the leading edge can grow several times

as fast as another peak in the trailing edge.

139



0.5

- 0.4 -

S0.3 -

cc

0.2 -
0

C')
I 0. 1 --

0
0 0.2 0.4 0.6 0.8 1

Real Frequency (1/day)

0.05

-00.04-
C

cie

C0- 0.03 --

g0.02-
c

0
cn 0.01 --

0 0.5 1 1.5 2 2.5 3 3.5
Real part of wavenumber Kr (1/100km)

Figure 5.8: Spatial instability: Upper panel: spatial growth rates. Lower panel: growth rates of

individual peaks.

140



0.2

-6
-0.15-

C,,

a)

CD 0.1
0

CnS0.05 -

0
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Group Velocity Cg (m/s)

0.1

r0.08 -
a)
CL
0

c 0.06 -W

0.04-
a)

CE

0.02-

0

01
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Group Velocity Cg (m/s)

Figure 5.9: Three most unstable modes in pulse instability: Upper panel: growth rates of individual

peaks. Lower panel: growth rates of the envelopes.

141



0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
Group Velocity Cg (m/s)

0.8 0.9

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Group Velocity Cg (m/s)

Figure 5.10: Pulse instability: wavenumbers and frequencies.

142

4-

E 3.5

-Q

E 2.5
=3)1.

Ix

1.5

1.5

Z 1
-0

D0.5

I I I I I



The upper and lower panels in Figure 5.10 show the corresponding wavenum-

bers and frequencies. Again, 'x' and dark 'x' marks indicate the properties correspond-

ing to the maximum growth rates of envelopes and individual peaks, respectively. For

the first mode, the most unstable wave (marked with 'x', at the center of the enve-

lope) has a wavenumber 1.88 (a wavelength of 334km), a frequency of .287 (a period

of 32 days) and a phase speed of 12cm/s, but the envelope itself moves at group

velocity of 29cm/s. The most rapidly growing individual peak (marked with dark 'x')

has a wavelength of 292km, a period of 20 days and a phase speed of 16cm/s. The

corresponding envelope moves at a group velocity of 64cm/s. Thus the most rapidly

growing wave, compared with the envelope, has higher phase speed and group velocity,

shorter wavelength and period.

Figure 5.11 compares the properties of individual peaks predicted by the

three theories as a function of wavenumber. This is to prepare for the comparisons in

Section 5.6 where the group velocity is not a proper variable because of the continuous

forcing. Only the first mode from each theory has been plotted. The upper and lower

panels show the phase speeds and growth rates respectively. As we can see from the

both panels, the three theories give clearly distinguishable pattern of properties as

function of wavenumber. Pulse instability gives the largest maximum growth rate,

whereas the spatial instability the lowest.

5.4 A Two-Layer QG Numerical Model

5.4.1 Model Description

The model here differs from Phillips' model used in Chapter 2 in two aspects.

The first is the inclusion of topography, in this case a sloping bottom. The second

is the nonuniform velocity profiles used here. It is a QG two-layer inviscid channel

model. The stream function in each layer is independent of depth. Again, n=1
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indicates the upper layer, and n=2 the lower one. Based on layer models described

in Pedlosky (1986, Sec. 6.16), the equation of motion can be written

a
{t

a a a a+ - 1 - -- 1 -If }{V 2 01 - F1 (b1 -- 0 2) + Sy} = 0ax ay ay ax

{ + _0 2 - 2 }{V2 -F2 ('b2 - 01) + y + 77B} = 0

(5.4. la)

(5.4. 1b)

where # is the nondimensional gradient of planetary vorticity and YB the topography.

F1, and F2 are Froude numbers on each layer.

I separate Equations (5.4.1a-b) into a nonuniform and purely zonal basic

flow Un with streamfunction Wn(y) and a disturbance stream /n,

,'n = 'n(y) + On(x, y, t) (5.4.2)

leading to

a a
[ + Un ]qn +

a a a a
+ [ #nqn

where qn is the perturbation potential vorticity,

= V 2 #2 - F,(-1)(4 2 -

and g-- is the potential vorticity gradient of the basic state,

a1  a2
a 1 =l # 9 - U1 - F1(U2 - U1)

a ay ay 2aH2= - y2 U2 - F2(U1 - U2 ) +3B

where 3B is the bottom topographic # parameter.

Linearizing and adding forcing gives

[a + Un ]qn + -qOn a H = F(x, y, t) = Gn(X, y)f(t)at ax ax ay
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where F(x, y, t) = G,(z, y)f(t) is the forcing function. G,(x, y) has the form of

G.(x, y) = Bn e{(x-on) _f, g2 /(5.47)

The forcing is introduced at a particular location around (xn, L) with

Gaussian distribution. LY is the width of the channel; 320km is used. The forcing is

therefore concentrated in the center of the channel and the jet. Lfx and Lfy are the

forcing scales in x and y directions respectively. The time dependent part f(t) will

specified in Section 5.6

The lateral boundary conditions are

aa = 0 y = 0,LY (5.4.8)ax

Pulse Disturbance

In the experiments concerning evolution of a pulse disturbance, I set F(x, y, t)

in Equation (5.4.6) to be 0 and , = Gn(x,y) as described in Equation (5.4.7) at

t 0. A1 is chosen to be 4A 2 and is offset by 50km to the west arbitrarily, i.e.,

1= X 2 - 50. For convenience, X1 is chosen to be 0 and hence the initial pulse in the

upper layer is generated at the origin of the along stream coordinate. Lfx is 60km

and Ljy is 30km. The upper panel in Figure 5.12 shows the initial condition. The x

axis was labeled with downstream distance. The lower panel shows a general picture

of the developed disturbance after some time.

In this numerical experiment, I use an FFT in x direction and sine transform

in y direction to solve Equation (5.4.6). The sine transform automatically satisfies

the boundary conditions in Equation (5.4.8). I use leapfrog time stepping combined

with Euler time stepping. An Euler time step is performed every fiftieth time step

to remove the computational instability which occurs when leapfrog timestepping is

used.
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Figure 5.12: Pulse instability. Upper panel: the initial condition used. Lower panel: a typical

well developed wave packet. Solid and dashed curves represent the streamfunctions along the center

of the jet in the upper and lower layers respectively.

147

t=0

/ \

\



In the pulse disturbance case, I will use a model domain of L. = 10240km

and LY = 320km. Because the model is periodic in x direction, the numerical run will

be stopped when the developed wave packet wraps around the domain. The model

resolution is Ax = Ay = 10km and the time step At = 2000 seconds.

The numerical model also includes friction which is necessary to keep the

numerical run stable. The friction has the form r 1 V2 4$2 + r 2V'#n, where r1 and r 2

are friction coefficients and are minimized as not to affect the comparison between

analytical and numerical models.

5.5 Development of a Single Pulse

With the initial condition shown in the upper panel of Figure 5.12, I have run

the model until the leading edge of the unstable packet reentered the upstream end of

the periodic channel. At any time, stream functions in the two layers can be plotted

as functions of downstream distance, for example; see the lower panel of Figure 5.12.

Starting from the figure, we can locate all the crests and troughs, and use a spline fit

to determine the envelope of the wave packet. We can also track individual peaks and

calculate the corresponding growth rates. The methods to calculate the growth rates

of individual peaks and the envelope have been detailed on page 69 in Section 2.5

and will not be repeated here. Figure 5.13 shows the growth rates calculated from

the numerical run on 24th day.

In the upper panel of Figure 5.13, '*' indicates the growth rate of individual

peaks from the numerical run. Also plotted in the figure are the three most unstable

modes from the analytical model, for the purpose of comparison. 'x' and dark 'x'

marks on the analytical curves correspond to the maximum growth rates of the en-

velope and individual peaks respectively. The lower panel plots the growth rates of

the envelope from the numerical model (solid curve) and from the analytical model
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(labeled in the figure). We can see from both panels that the wave packet is still far

from the asymptotic solution.

The analytical modes plotted in the figure include the correction term -1/2t

because this term accounts for a significant portion of the maximum envelope growth

rate for the time scale shown here. In particular, this portion is 33%, 18%, 13%

and 8.7% on day 24, 45,61 and 91 respectively. This correction term -1/2t does

not depend on the group velocity and will hence not affect the relation between

the envelope and individual peaks. Adding this term makes easier the comparison

between the analytical and numerical results.

Figure 5.14 shows the corresponding wavenumbers ('*' in upper panel) and

phase speeds ('*' in lower panel) of the unstable waves in the wave packet. The three

modes of pulse instability from analytical model are also drawn and labeled in the

figure. From the upper panel, the wavenumbers from the numerical run appear to

agree well with the first analytical mode in a large range of group velocity (0.1 to 0.7).

This seems to suggest that the wavenumbers are not sensitive to whether asymptotic

form of solution has been achieved. When the group velocity is greater than 0.7, the

wavenumbers seem to match the third and second modes. This phenomena can also

be seen in the phase speed plot in the lower panel. This is probably because, in that

range, the third and second modes have higher envelope growth than that of the first

mode. The phase speeds from the numerical run follow the pattern of the analytical

modes, but are still far off from those modes.

Figure 5.15 shows growth rates on 45th day. In a range of Cg from 0.1 to

0.48, the numerical results agree reasonably with analytical counterparts. When Cg is

greater than 0.6, the growth rates again seem to follow the second or third analytical

modes for the reason mentioned above. This seems to be a persistent feature showing

up even on 24th day (see Figure 5.13) and also on the 61st and 91st days shown later.

The second and third modes have similar structures in growth rates and it is difficult
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Figure 5.13: Development of a single pulse disturbance. The upper and lower panel represent

the growth rates of individual peaks and the envelope, respectively. Also shown are the three most

unstable modes (labeled) of pulse instability from the analytical model. Time=24 days, always

shown on the top panel. The arrows in the upper figure show the maximum growth rate of temporal

instability.

150

0.2

C,,

( 0.15
C.

0 0.
-6

C 01

C,

S0.05

O

K )K

0.8 0.9



Time=24 days

mode 3 . A_ * *

- -- -- --x -

mode 2 x
- x

mode 1--

AC X -_)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Group Velocity Cg (m/s)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Group Velocity Cg (m/s)

Figure 5.14: Similar to Figure 5.13 except that the upper and lower panel represent the corre-

sponding wavenumbers and phase speeds instead.
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to tell them apart. Between Cg = 0.48 and Cg = 0.6, the first and second modes

have comparable envelope growth, and the growth rates of individual peaks in the

transition range shift from the first mode to the second.

Figure 5.16 shows the wavenumbers and phase speeds. Again in the range

of Cg from 0.13 to 0.48, the numerical results agree reasonably with analytical coun-

terparts. Between Cg = 0.48 and Cg = 0.7, the numerical results seem to follow the

first mode and appear feel the influence of the other modes. Beyond Cg = 0.75, three

peaks observed are closest to the second mode and then two peaks at leading edge

are in the neighborhood of the third mode.

Figure 5.17 converts the horizontal coordinate from Cg to downstream dis-

tance. As we can see from the figure, the maximum of the envelope is now at

x = 1100km. Since the disturbance was generated at x = 0, the maximum of the en-

velope has traveled about 1100km. Taking the Gulf Stream as a system ranging from

75'W to 45*W, the region covered by Lee and Cornillon's analysis, there appears to

be enough space for the pulse instability to reach its asymptotic form. However, the

time at which the envelope reaches 70*W (about 20 days) is not long enough. The

time at which it reaches 65*W (about 45 days) is sufficient.

Figure 5.18 shows growth rates on 61st day. The patterns in the figure are

not much different from those in Figure 5.15. In the lower panel, the growth rate of

the envelope now has better agreement with analytical model in terms of the shape

of the curve. The spike in the trailing edge has been caused by large relative errors

due to numerical noise amplified by the spline interpolation. The range of Cg where

the first mode can explain the numerical results well has expanded slightly from (0.13

0.48) to (0.12 0.54). This also shows up in the top panel. The fastest growing wave

associated with the first mode now is at Cg = 0.54, whereas it was 0.48 on 45th day.

The patterns in the leading edge do not change much between the two figures.
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Figure 5.15: As in Figure 5.13 but Time=45 days.
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Figure 5.16: As in Figure 5.14 but Time=45 days.
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Figure 5.17: As in Figure 5.15 except the horizontal coordinate is the downstream distance.
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Figure 5.18: As in Figure 5.13 but Time=61 days.
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Figure 5.19: As in Figure 5.13 but Time=91 days.
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Figure 5.20: As in Figure 5.19 except the horizontal coordinate is the downstream distance.
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Figure 5.21: As in Figure 5.13 but Time=61 days.
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Figure 5.22: As in Figure 5.14 but Time=61 days.
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Figure 5.19 shows growth rates on 91st day. The patterns in the figure are

very close to those in Figure 5.18, suggesting that the development of wave packet has

finished its transient stage by the 61st day. The agreement of the growth rates between

numerical and analytical models improve slightly but not significantly. This suggests

the remaining difference is mostly the effect of friction. The slight improvement in the

agreement is probably due to other O(1/t) contribution other than the correction term

-1/2t taken account already. In both figures, the fastest growing peaks occur slightly

to the left of Cg = 0.55, which is the point where the envelope growth of first and

second mode are the same. This suggests that the fastest growing peak associated

with the first mode can only be realized in the region where its envelope growth

dominates. This fastest growing peak has slightly lower group velocity, wavenumber

and phase speed than that predicted from the first mode of the analytical model. I did

not include this term in the demonstration of pulse instablity in Chapter 2 because

the time there was chosen to be large.

Note that in the top panel, the fast growing waves associated with the second

or the third mode are not picked because I have set a threshold in software to pick only

crests or troughs which have amplitudes at least 1% of the maximum amplitude in the

model. As the time increases, the difference between the maximum envelope growth

rate in the model and the envelope growth rates in the leading edge has amplified

the ratios in amplitudes. Therefore the small amplitude but fast growing waves in

the leading edge become 'unobservable' with our predetermined threshold. This may

have practical implication in the Gulf Stream observations where the very fast growing

but small amplitude waves are unlikely to be observed due to the resolution limits in

tracking techniques, for example, errors in pulling out north wall positions.

Figure 5.20 converts the horizontal coordinate from Cg to downstream dis-

tance. As we can see from the figure, the maximum of the envelope is now at around

x = 2200km. However, the fastest growing wave associated with first mode occurs
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near x = 4200km; this is beyond the domain of the Gulf Stream. Figure 5.21 shows

that on the 61st day, the fastest growing wave associated with first mode occurs near

x = 2800km. Again taking the Gulf Stream as a system ranging from 75"W to 45*W,

as covered by Lee and Cornillon's analysis, this fastest growing wave is still in the

domain. This fastest growing wave is much more likely to be picked by observational

techniques because it has much larger amplitude than the fastest growing wave asso-

ciated with the second mode in the leading edge for the reason I mentioned above.

Therefore I take the fastest growing wave associated with first mode as the plausi-

ble fastest growing wave in the numerical model. The fastest growing wave in the

following analysis refers to this plausible fastest growing wave.

In the derivation of the growth rate of the envelope in Section 2.3.3, I have

assumed that when w(k) have branch points, we can avoid going around these points

in some way when we integrate to get asymptotic solution. It is difficult to prove this

assumption mathematically, in particular in such a complicated model. However,

the reasonable agreement with numerical results demonstrates that this is a sensible

assumption in this model.

In summary, it takes about 45 days for a single pulse disturbance to develop

close to its asymptotic form. In that period the wave packet has moved downstream

1100km to about 65 0W. This is still in the range where the Gulf Stream system has

been intensively observed. Hence there appears to be enough space for the pulse

instability to occur in the Gulf Stream. In about two months, the development

reaches its equilibrium stage. On 61st day, the growth rate of the fastest growing

wave has a growth rate 0.086/day, which is 60% higher than the maximum envelope

growth 0.053/day. The former has a wavelength, phase speed and period of (310km,

14km/day, 22 days), and latter (336km, 12km/day, 29 days).
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The following table summarizes the differences between the most unstable

wave and the fastest growing wave from our analytical and numerical models, and

that described by Lee and Cornillon (1996b).

most energetic wave fastest growing wave

L (km) wi (1/day) T (day) L vi (1/day) T

Lee and Cornillon 427±70 .032 46 350 .063 40

SW6 363 .044 48 339 .105 37
QG6 349 .063 44 293 .151 22

QG2 analyt. 334 .063 32 292 .108 20

QG2 num. 61st day 336 .054 29 310 .086 22

QG2 num. 45th day 338 .052 29 326 .077 23

To make comparison easier, I scale all quantities of the fastest growing wave

by the quantities of the most energetic wave to get

most energetic wave fastest growing wave
L (km) wi (1/day) T (day) L ratio vi ratio T ratio

Lee and Cornillon 427±70 .032 46 0.82 2.0 .87
SW6 363 .044 48 0.93 2.4 .77
QG6 349 .063 44 0.84 2.4 .50
QG2 analyt. 334 .063 32 0.87 1.7 .63
QG2 num. 61st day 336 .054 29 0.92 1.6 .76
QG2 num. 45th day 338 .052 29 0.96 1.5 .79

From the above table, it appears that the QG two-layer analytical and nu-

merical model have comparable ratios of quantities between the fastest growing waves

and most energetic waves despite the fact that the maximum growth rate in the nu-

merical model is 18% lower than its analytical counterpart on 45th day or 14% on

61st day. This difference is mainly due to the O(1/t) contribution neglected in the

analytical growth rate. When t is as short as 45 days or 61 days, the main features of

pulse instability already show up clearly in the numerical model. This suggests that

the analytical results of SW6 and QG6 may also be carried over to their corresponding

numerical models.
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5.6 Continuously Forced Problem

To have a forcing function with characteristics as close to the real situation as

possible, I will use the displacement of North wall of the Gulf Stream at 200km down-

stream from Cape Hatteras. The data was digitized by Lee and Cornillon (1996a,b)

from sea surface temperature (SST) images obtained from the Advanced Very High

Resolution Radiometer (AVHRR), as described in Section 4.4. The reason I did not

use the displacement of North wall at Cape Hatteras as the forcing function is that the

displacement there is small and has the same order of magnitude as the errors from

observations and digitizing processes (digitization error 4.8km, Gangopadhyay, 1990).

Figure 5.23 shows a portion of the displacement of North wall at 200km downstream

as function of time. 'x's indicate the digitized position available in two day interval

and the solid curve is the interpolation of the position into higher resolution for the

numerical runs. The distribution of forcing in space is described in Equation (5.4.7).

The along stream coordinate is such chosen that the forcing is centered at the origin.

The model is only forced in the upper layer.

Because of the large contrast of amplitudes at the ends of the periodic do-

main, a sponge layer does not work well in this model. If the damping in the sponge

layer is too strong, the large amplitude wave near the downstream end of the domain

will be reflected back to the domain and cause a resonant growing global mode in

the domain. If the damping is too weak, a small fraction of the large wave will pass

through the sponge layer. This small fraction of the large amplitude wave will, in

fact, dominate over the small amplitude forcing upstream and the forcing becomes

ineffective. Therefore I will use a very long domain of 20480km without a sponge

layer in this experiment. The numerical run will be stopped when the large ampli-

tude wave wraps around and reenters the upstream area. I will only analyze the

streamfunction in the upper layer, which is compatible with most observational anal-
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yses (for example, Lee and Cornillon, 1996a,b, Halliwell and Mooers, 1983). Due to a

numerical difficulty explained later, I can study only the upstream region from 200km

to 1200km. The upper panel of Figure 5.24 shows a typical pattern of waves in the

continuously forced problem. Also shown is the way I define a half wavelength and

the amplitude of the wave. At time t, a half wavelength is calculated by measuring

the positions of an adjacent crest and trough and the value is assigned to the average

position x of the two points. The half wavelength is converted to wavenumber (k) by

k = 7r/L. A double wave amplitude (2A) at time t is defined as the difference of the

stream functions between the crest and the trough. Such a definition seems to give a

reasonable measure for small amplitude crests and troughs even when pairs of crests

and troughs are pushed around by relatively large amplitude long waves. The value

of this amplitude A is assigned to the average position x of the two points and is also

associated with the wavenumber k. This method is performed every 2x105 seconds

(2.3 days). The lower panel of Figure 5.24 shows how I track the wave peaks and

crests. The streamfunction at t2 has been shifted down by 5 units for the convenience

of comparison. Corresponding peaks or troughs at time t1 and t2 are connect by

dashed lines. If the position of the pair are x1 and X2, and amplitudes A1 and A 2, at

the time t1 and t 2 respectively, the growth rate and phase speed between t1 and t 2 are

defined as A2--A and Cph = - , respectively. These values are assigned to theA, t2 -tl t2 1

average position x2 x and the average time t . To be consistent, the wavelengths
22

and amplitudes of the same pair at t1 and t2 are also averaged to get the mean value

assigned to the time t-+.

The starting time for measurement of wave activity is determined by a con-

trol run of a single pulse development as in the previous section. The measurement in

the continuously forced problem starts sightly after the maximum of the wave packet

in the control run passes the downstream end of the area. This is demonstrated in

the upper panel of Figure 5.25. The ending time of the measurement, however, is

determined either when the waves wrap around the periodic domain and reenter the
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Figure 5.24: Upper panel: a typical pattern of waves (streamfunction in the upper layer) in the

continuously forced problem. Also shown is the way I define a half wavelength and the amplitude

of the wave. Lower panel: how wave peaks and crests are tracked. The stream function at t2 has

been shifted down by 5 units for the convenience of comparison.
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upstream end of the study area, or when the limited precision used starts to cause

large numerical error. The lower panel of Figure 5.25 shows the latter case. For a

given precision, the model will blow up after a certain amount of time when the am-

plitude contrast in the model becomes very large. This probably is a specific problem

of the model due to the use of periodic domain and Fourier expansion. It also hap-

pens in the single pulse experiments. Essentially, the problem comes from the use of

Fourier series to expand the streamfunction with large amplitude contrast in different

regions. When the amplitude contrast is small, the Fourier components will cancel

among themselves exactly where the wave packet has not reached, in the case of the

single pulse experiments. When the amplitude contrast becomes substantially large

(e.g., 106), however, there will be large relative errors due to inaccuracy in the Fourier

transformation (FT) and inverse FT. These errors will grow in time as the amplitude

contrast increases. The errors will be larger in the region with smaller amplitude,

especially in the upstream region or in the front of the leading edge of the first wave

packet caused by the onset of the forcing.

The measurements from different runs, corresponding to different segments

of the forcing function, are pooled together for statistics. In the continuously forced

problem, we cannot plot quantities such as growth rates and phase speeds as functions

of Cg = x/t. This is because we do not know, when we observe a particular developed

wave, the time when its corresponding initial disturbance was generated. Hence in this

problem we plot phase speeds and growth rates vs. their corresponding wavenumbers.

Figure 5.26 shows such a plot.

Figure 5.26 plots phase speeds (dots in the upper panel) and growth rates

(dots in the lower panel) of individual wave peaks in the area from 200 to 1200km

downstream. Also plotted are the first analytical modes from pulse (solid curve),

temporal (dark dashed) and spatial (dashed) instabilities. In the figure, the dots

measured from the numerical runs scatter widely, which cannot be explained by any
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Figure 5.25: A demonstration how the starting and ending times from measurement are deter-

mined. Upper panel: time series at 1200km (downstream end of the study area) from the single

disturbance run. Lower panel: time series at 200km (upstream end of the study area) from the

continuously forced problem.
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of the three idealized types of instabilities. It is unlikely that the errors arise from

measuring positions, calculating wavenumbers and growth rates. Interpolation errors

should be about a kilometer spatially and a few percent of maximum amplitudes.

In addition, the same method was also used in the single pulse experiment where

phase speeds, wavenumbers and growth rates were well-behaved and agreed well with

analytical results. It is most likely to be associated with interference of different waves

generated by the forcing.

Figure 5.27 shows the least square fit (dark straight line) to the growth rates.

The slope is 0.2029 and has a 95% confidence interval of [0.1637 0.24201. The slope

at the maximum envelope growth from the pulse instability is 0.2449, slightly higher

than the upper bound of numerical interval. This could be explained by the friction

used. In the numerical experiments, I used minimal friction to avoid the numerical

instability. The friction has the form r1 V 2 0" + r 2 V6 4n,, where r1 and r 2 are friction

coefficients and has stronger damping effect for short waves. The straight line fit

almost passes both of the maximum of the envelope growth and the maximum of

individual peak growth. This might be by accident. However, these measurements

form a general trend: the short waves tend to grow faster than long waves. This

trend seems consistent with the pulse instability theory and cannot be explained by

temporal and spatial instabilities.

To quantify this trend, I break the measurements into different wavenumber

bins. The interval of the bin is 0.1(1/100km). Sufficient number of measurements in a

bin allows calculation of mean and standard deviations (hence error bars). Figure 5.28

shows these averages and errorbars. The averages, indicated by 'o', are connected by

dash-dotted curve for convenience of comparison with theories. The errors are so

large that we cannot exclude the temporal and spatial instabilities. Only the pulse

instability seems to agree with measurements within errors near the maximum growth
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Figure 5.26: Phase speeds (dots, upper panel) and growth rates (dots, lower panel)

peaks as functions of wavenumber. Analytical curves: solid: pulse, dashed: spatial,
temporal. Area studied: 200-1200km.
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Figure 5.27: As in the lower panel of Figure 5.26. The dark straight line is the least

numerical results. Area studied: 200-1200km.
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Figure 5.28: Similar to Figure 5.27. Average growth rates ('o') and error bars of individual

peaks as functions of wavenumber. Dash-dotted curve connect these averages for the convenience of

comparison. Analytical curves: solid: pulse, dashed: spatial, dark dashed: temporal. Area studied:

200-1200km.

of individual peaks. Pulse instability cannot explain the growth rates (some negative)

in the trailing edge.

Figure 5.29 is similar to Figure 5.28 except average phase speeds are shown

instead of average growth rates ('o'). The average phase speeds do not seem to fit

any of the analytical curves. This is probably due to forcing and interaction between

pulses. When the wave amplitudes are small, errors in measuring the positions of

peaks will be large because peaks are close to flat. In Figure 5.29, the waves with

173



0.4

0.35-

0.3-

Area: 200-1200km
0.25-

E 0.2-
pulse

U)

01 temporal _F - - -

.9 - sptail

0.05-

0-

-0.05-

-0.1
1 1.5 2 2.5 3 3.5

Wavenumber (1/1 00km)

Figure 5.29: Similar to Figure 5.28 except average phase speeds are shown instead of average
growth rates ('o'). Analytical curves: solid: pulse, dashed: spatial, dark dashed: temporal. Area
studied: 200-1200km.

wavenumber higher than that of most unstable wave still have tendency to move

faster than longer waves.

The upper panel in Figure 5.30 shows a histogram of the probability distri-

bution of growth rates of individual peaks. 'x' and 'o' indicate the maximum growth

rates from temporal and spatial instabilities, respectively. The dark 'x' is the max-

imum growth rate of individual peaks predicted by pulse instability. The bins have

width of 20% (0.013) of the maximum temporal growth rate (0.063/day). This growth

rate is the most probable growth rate in the area. From the cumulative probability

distribution in the lower panel, we can see that a significant portion (40%) of the
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peaks have growth rates higher than the maximum temporal growth rate, and half of

these have growth rates higher than the maximum peak growth predicted by pulse

instability. Such large growth rates are probably due to constructive interference be-

tween different wave pulses. Similarly, distructive interference may also be the reason

for the decaying waves on the left end of the upper panel. One very important impli-

cation of the experiment is that if we measure the growth rate of an individual peak

in the Gulf Stream, there is a good chance of finding that its growth rate exceeds the

maximum growth rate predicted by either temporal or spatial theory.

From the single pulse experiment, we know that it takes about 45 days for

a single pulse disturbance to develop close to its asymptotic form. In that period

the wave packet has moved downstream 1100km to about 65 0W. The area further

downstream (1000 to 2000km) is where the asymptotic pulse instability theory is

supposed to work better. An attempt was also made to analyze the wave activities in

the area. Similar to Figure 5.25, Figure 5.31 shows how to determine the starting and

ending times for the measurement. The method is the same for the upstream area.

However, as we can see from the figure, the appropriate starting time is determined

to be later than appropriate ending time, which leaves no time for measurements.

The ending time is limited by the large amplitude contrast and the precision used

in the model, as explained in the above analysis in the upstream area, and is almost

the same for the upstream and downstream area considered. However, the starting

time is delayed substantially in the downstream area for two reasons. First, the wave

packet has to travel extra 1000km to reach the downstream end of the area, at the

group velocity (Cgmax) corresponding to the maximum of the envelope. Second, the

wave packet becomes much longer than it was in the upstream area and it takes much

longer time for the whole packet to pass through the downstream area. A solution

to the problem is to increase the precision and accuracy of the model, and hence the

ending time. However, since we are not able to implement a sponge layer without

serious reflection, we need a long domain for the wave packet to travel downstream.
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Figure 5.30: Upper panel: a histogram of the probability distribution of growth rates of individual

peaks. 'x' and 'o' indicate the maximum growth rates from temporal and spatial instabilities,
respectively. The dark 'x' is the maximum growth rate of individual peaks predicted by pulse

instability. Lower panel: cumulative probability distribution of growth rates of individual peaks.

Vertical lines indicate the maximum growth rates from the three types of theories: solid: pulse,
dashed: spatial, dark dashed: temporal. Area studied: 200-1200km.
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The demands for long domain and high accuracy require more computing resource

and I have not been able to obtain sufficient "observations" to give reliable answers

in the downstream area.

5.7 Summary and Discussion

From the numerical experiments, we have found that it takes about 45 days

for a single pulse disturbance to develop close to its asymptotic form. In that period

the wave packet has moved downstream 1100km to about 65 0W. This is still in the

range where the Gulf Stream system has been intensively observed. Hence there

appears to be enough space for the pulse instability to occur in the Gulf Stream. The

development reaches its equilibrium stage in about two months.

In the continuously forced problem, we have found that the growth rates of

individual peaks from the numerical runs scattered widely, in the region from 200km

to 1200km downstream of the forcing location. It is clear that neither of the three

idealizations of the instability can explain the pattern in this area. However, the

"observations" from the model run do show trends predicted by pulse instability:

short waves tend to move and grow faster than long waves. This cannot be predicted

from temporal or spatial instability. Unfortunately, due to a numerical difficulty, I

have not been able to extend the analysis to the region further downstream, where

the pulse instability has been found to work better in the single pulse experiment.

These numerical experiments again support the robust common features of

pulse instability we have studied in Chapter 2 to 4, that the fastest growing wave has

higher growth rate, wavenumber and frequency than the most unstable wave.

Xue (1991b) also carried out similar numerical experiments of the Gulf

Stream on the South Atlantic Bight in a 3D primitive model. She used both cyclic
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Figure 5.31: A demonstration how the starting and ending times from measurement are deter-

mined. Upper panel: time series at 2000km (downstream end of the study area) from the single

disturbance run. Lower panel: time series at 1000km (upstream end of the study area) from the

continuously forced problem.
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boundary condition and the gravity wave radiation condition. The former is the

same as the periodic domain in this model. In the experiments with cyclic boundary

conditions, she used a domain length of 800km and the disturbances were generated

automatically by numerical noise in the nonlinear model. She only estimated a growth

rate of the dominant wave in the model from the change of eddy kinetic energy and

did not resolve the full dispersion relation. Since the most unstable waves in her mod-

els travel at phase speed of about 40km/day, it only takes 20 days for waves to wrap

around the periodic domain of 800km. Hence what she resolved was probably close

to temporal instability. In the experiments with the gravity wave radiation boundary

condition, the model was forced by an oscillating temperature field at the southern

boundary (starting end of the model). The period of forcing (6 days) was chosen

based on observed period. The most unstable waves in the model appear to have

periods of about 6 days and wavelengths very close to those observed. This is not

surprising in light of our discussion in Chapter 2 based on Briggs (1964) work. When

the system is forced with constant frequency, spatially instability tends to occur and

the dominant wave has the same frequency as the forcing. The result was not ana-

lyzed in terms of any of three types of instabilities. Thus it is hard to infer from these

simulations which is the most appropriate theory for the Gulf Stream meandering.

This thesis work differs from her work in the emphasis on the comparison between

temporal, spatial and pulse instabilities. And the continuously forced problem in this

chapter uses a more realistic nonperiodic forcing (north wall displacement) obtained

from satellite data.

In light of our findings from the continuously forced problem, it appears

very difficult to extract analytical dispersion relation based on the numerical mea-

surement, even in this simple model which has many fewer complicating factors than

the real Gulf Stream (e.g. no nonlinearity, no downstream variation of basic flow and

topography, etc.). However, when we average the growth rates of individual peaks

in bins of wavenumbers, the average tend to agree with pulse instability to some ex-
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tent. Hence this experiment suggests that the better way to compare observations

with analytical model is to group observational data into bins of wavenumbers before

comparison. This in fact was the way Lee and Cornillon (1996b) used to find out the

fastest growing wave. In their analysis, they used bins of wavelengths (50km interval)

to group the observational data. Because the difference in wavelengths between the

most energetic and the fastest growing waves is of the order of 50km, we suggest use

of bins with smaller interval, e.g., 15km or 20km. However there is trade-off between

the resolution and the number of data points in a bin, and a balance has to be struck

based on the total number of data points.

The continuously forced problem does not support spatial instability. Hence

it discourages the way Johns (1988) and Kontoyiannis (1992) compared their model

analytical dispersion relations with the observations. They extracted spatial growth

rates from EOF analysis and compared them with equivalent or pseudo-equivalent

spatial growth rates (ESGR or PESGR) from temporal instability discussed in Chap-

ter 2 and 3.
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Chapter 6

Summary and Conclusion

In Chapter 2, we used Phillips' model (two-layer QG) to determine and compare the

characteristics of temporal,spatial and pulse instabilities. We then extended the study

to a more realistic QG six-layer model with jet structure and topography in Chapter

3. Chapter 4 studied non-quasigeostrophic effect by comparison of a SW six-layer

model with the QG six-layer model. In Chapter 5, we used a QG two-layer numerical

model to examine which of three idealized types of instabilities is most appropriate

in the context of the Gulf Stream given continuous forcing. The conclusions have

been made at the end of each main chapter. Here I will organize these conclusions

in terms of types of instabilities and important issues addressed. Some results from

others will also be cited here to provide a complete context of this study.

6.1 Analytical Studies

Temporal Instability

Briggs (1964) proved that for any system to support unstable waves, its

dispersion equation must yield complex solutions with positive imaginary parts for

some real k, i.e. it is a necessary condition for any unstable waves. This implies

that spatial and pulse instabilities only occur when temporal instability also occurs.

This furthermore implies that Charney and Stern's necessary condition for temporal

instability in geophysical context (1962) is also necessary condition for spatial and

pulse instabilities.
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Spatial Instability

Briggs also shows that not all solutions with the right sign for spatial insta-

bility are growing waves. We need to apply Briggs criterion (described in Section 2.3)

to distinguish real growing waves from other solutions with the same sign. I have used

the criterion to say that the implication in Hogg's (1976) work that spatial instability

does not require potential vorticity gradients to change sign is not legitimate. In ad-

dition, I have shown that the spatially unstable wave Hogg considered is really better

thought of as neutral because of the assumption that phase speed is real. Hence one

of his results, that spatially growing waves are bounded by a low wavenumber cut-off

which separates them from the temporally growing waves, is not valid.

Michalke (1965) first studied the difference between spatial growth rate

(SGR) and pseudo-equivalent spatial growth rate (PESGR). He found that PESGR

was 17% smaller than SGR in a barotropic flow with a hyperbolic tangent velocity

profile. In Chapter 2 and 3, I have made comparisons among SGR, PESGR and ESGR

(the equivalent spatial growth rate) and examined the validity of Gaster's formula

in the Phillips model and the QG six-layer model with relatively realistic jet struc-

ture and topography. In the QG six-layer model, we have found that spatial growth

rate (SGR) is generally larger by about 30% than the equivalent spatial growth rate

(ESGR) converted from temporal instability. The difference is slightly bigger than

that in Phillips model probably due to jet structure or topography. Pseudo-equivalent

spatial growth rates (PESGR), transformed from temporal growth rates divided by

phase speeds, exceed SGR by 200% at low frequency and are not a good estimate of

SGR in general.

As seen in both Chapter 2 and 3, real parts of wavenumbers (or wavelengths)

corresponding to the most temporally and spatially unstable waves are comparable

and not sensitive to mean velocities, velocity shear and 0.
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Pulse Instability

The maximum of the envelope of the growing disturbance moves at group

velocity of the most temporally unstable wave, and grows at the rate of the same

wave. The growth rate of an individual peak depends on the location of the peak

relative to the maximum of the envelope. Given C > Cph, individual peaks behind

the maximum of the envelope grow at a rate smaller than wm. At the leading edge,

individual peaks can grow much faster than the peak of the envelope, which makes

the envelope move faster than the individual peaks. These general results were first

found by Simmons and Hoskins (1979) in atmospheric observation. The formula of

growth rate of an individual peak was also given in the paper without a derivation. In

Chapter 2, I have provided a derivation of the formula and focused on the behaviors of

individual peaks. In particular, when the growth rate of an individual peak is plotted

as a function of its amplitude, it decreases as the amplitude increases. It has been

demonstrated in this work that the relation between the growth rate of an individual

peak and its amplitude is an intrinsic property and an important feature of pulse

instability. Thus if one follows a single peak and notices a decrease in the growth

rate, one cannot infer that increasing amplitude (or nonlinearity) was responsible

for reducing the growth rate. This is also demonstrated in Chapter 3 with a more

realistic dispersion relation.

When the study of pulse instability is extended to the QG six-layer model

in Chapter 3, we have found that the growth rates of individual peaks can vary from

30% to 220% of that of the peak of the wave envelope. Therefore the waves in the

leading edge of a wave packet may grow several times faster than the waves in the

trailing edge in the exponential sense. This can not be predicted by temporal or

spatial instability theories.

Direct comparison between temporal and pulse theory in Chapter 2 shows

that pulse instability allows unstable waves to have wavenumbers beyond the short
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wave cut-off of the temporal theory. This is possible since we are comparing the real

part of the local wavenumber in pulse theory with a global wavenumber in temporal

theory. The local wavenumber in pulse theory contains a nonzero imaginary part,

so that even if its real part is the same as the wavenumber in temporal theory, its

frequency w(k, + ilki) has been extended to the complex k plane and is naturally

different from that in temporal theory (W(kr)).

When a single pulse evolves as pulse instability predicts, the amplitude of a

specific wavenumber in the energy spectrum still grows according to the growth rate

of temporal instability. Therefore when pulse instability occurs, the most energetic

wave is the most temporally unstable wave.

Effect of Topography

In Chapter 3, from the analysis of potential density and the spread ratio,

we have shown that a minimum of three layers is necessary to address the effect of

topography properly in the context of the Gulf Stream. The main reason is that the

effect of topography on potential vorticity distribution is confined in a layer near the

bottom and should be represented separately from the interior of the flow system.

Comparison among two to six-layer models support this point. The comparison also

shows that short waves are more sensitive to vertical resolution. In the case of pulse

instability, a minimum of five layers is necessary to capture the characteristics of

the instability. This is because the growth rates of individual peaks depend on the

difference between the phase speed and group velocity. The latter depends on the

derivative of the former and is more sensitive to vertical and horizontal resolution,

especially in regions where the mean velocity changes rapidly.

Effect of Ageostrophy
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In Chapter 4, we have found that the QG six-layer model overestimates

substantially the maximum growth rate compared to the SW six-layer model (e.g.

40% higher in QG6 than that in SW6). This is consistent with the previous study

by Orlansky (1969) that finite Rossby number reduces the growth rates of unsta-

ble waves. However, QG and SW models give comparable wavelengths and phase

speeds of the main unstable modes (e.g. 349km and 7.9km/day in QG6 vs 363km

and 7.5km/day in SW6). The growth rates of individual peaks in the two models

agree very well as functions of the group velocity, though the maximum growth rates

are still significantly different. The conclusion from this comparison is that the QG

model gives results quantitatively different from those from the SW model, but there

is no qualitative difference between the two models in terms of the first most unstable

modes.

Comparisons with Observations

In Chapter 4, I have drawn connection between our model results and ob-

servations. In the comparison with observations, I focused on the studies by Lee and

Cornillon (1996a,b) since only their work distinguishes the fastest growing wave from

most energetic wave in a well-defined way, to the best of my knowledge. Despite

some discrepancies among the models and the results of their analysis, it appears to

be a robust common feature that the fastest growing wave has higher growth rate,

wavenumber and frequency than the most unstable wave. And the differences be-

tween the most unstable and the fastest growing waves in the pulse instability models

seem able to explain substantial parts of the differences observed.
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6.2 Numerical Experiments

Development of a Single Pulse

In the context of the Gulf Stream, it takes about 45 days for a single pulse

disturbance to develop close to its asymptotic form. In that period the wave packet

has moved downstream 1100km to about 65 0W. This is still in the range where the

Gulf Stream system has been intensively observed. Hence there appears to be enough

space for the pulse instability to occur in the Gulf Stream. On 61st day, the fastest

growing wave has a growth rate of 0.086/day, which is 60% higher than the maximum

envelope growth 0.053/day. The former has a wavelength, phase speed and period of

(310km, 14km/day, 22 days), and the latter (336km, 12km/day, 29 days).

It appears that the QG two-layer analytical and numerical model have com-

parable ratios of quantities between the fastest growing waves and most energetic

waves despite the fact that the maximum growth rate in the numerical model is 18%

lower than its analytical counterpart on 45th day or 14% lower on 61th day . This

difference is mainly due to the O(1/t) contribution neglected in the analytical growth

rate. When t is as short as 45 days or 61 days, the main features of pulse instability

already show up clearly in the numerical model. This suggests that the analytical

results of SW6 and QG6 may also be carried over to their corresponding numerical

models. And it seems reasonable to compare the analytical results of SW6 and QG6

directly with observations.

Continuously Forced Problem

In the continuously forced problem, we have found that the growth rates

of individual peaks from the numerical runs scatter widely, especially in the region

from 200km to 1200km downstream of the forcing location. It is clear that neither of
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the three types of instabilities can explain the pattern given the continuous forcing.

However, the "observations" from the model runs have shown one trend predicted by

pulse instability: short waves tend to move and grow faster than long waves. This

can not be predicted from temporal or spatial instability. Unfortunately, due to a

numerical difficulty, I have not been able to extend the analysis to the region further

downstream, where the pulse instability has been found to work better from the single

pulse experiment.

These numerical experiments again support the robust common features of

pulse instability we have studied in Chapter 2 to 4, that the fastest growing wave

has higher growth rate, wavenumber and frequency than the most energetic wave.

Because the differences between the most energetic and the fastest growing waves of

pulse instability theory in the analytical models seem able to explain substantial parts

of the differences observed and the single pulse experiment suggests the analytical

results may be carried over to their corresponding numerical models, pulse instability

theory appears to be the most appropriate model for the Gulf Stream.

In light of our findings from the continuously forced problem, it appears

very difficult to extract analytical dispersion relation based on the numerical mea-

surement, even in the simple numerical model which has many fewer complicating

factors than the real Gulf Stream (e.g. no nonlinearity, no downstream variation

of basic flow and topography, etc.). However, wavenumber bin-averaged rates tend

to agree with pulse instability to some extent. Hence this experiment suggests that

grouping observational data into bins of wavenumbers- the technique used by Lee

and Cornillon (1996b) to find the fastest growing wave-is the most appropriate way

to compare with analytical models.

The continuously forced problem does not support spatial instability. Hence

it does not fit the way Johns (1988) and Kontoyiannis (1992) compared their model

analytical dispersion relations with the observations. They extracted spatial growth
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rates from EOF analysis and compared them with equivalent or pseudo-equivalent

spatial growth rates (ESGR or PESGR) from temporal instability discussed in Chap-

ter 2 and 3.

The greatest strength of this experiment is the use of time series of north

wall displacement near the inlet as a forcing function, which is more realistic than

the idealized forcing used in other models (e.g. Xue, 1991b, used a periodic forcing).

In addition, we have tried to compare the results carefully with analytical theory.

6.3 Limitation of This Study and Future Work

Our research on pulse instability has provided a plausible explanation for the

differences between the most energetic wave and the fastest growing wave observed

in the Gulf Stream. However, we have not yet studied how the nonlinearity may alter

the picture. In fact, Lee and Cornillon (1996b) attribute the observed differences

to nonlinearity based on evidence that the fastest growing meanders (350km) are

somewhat shorter than the most energetic meanders (427km). This observation is

consistent with the theoretical notion (Pedlosky, 1981) that the most energetic wave

realized at finite amplitude is longer than the linearly most unstable wave. However,

we know from this thesis study that the observed differences are also consistent with

linear pulse theory and continuously forced numerical experiments. It is conceiv-

able that nonlinearity can also contribute to the difference, with the pulse instability

mechanism setting up the main trend and the nonlinear effect gradually increasing

its role and perhaps enhancing the trend as the ratios of wave amplitudes to their

wavelengths increase.

From the single pulse experiment, we know that it takes about 45 days

for a single pulse disturbance to develop close to its asymptotic form. However in

45 days, the maximum amplitude of wave packet is 17 times its initial amplitude
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(exp(.063 * 45) = 17.0). Assuming an initial amplitude of 10km at Cape Hatteras,

the amplitude of the wave envelope will be 170km at about 65"W, about half of

the wavelength. So the effect of nonlinearity may have already become significant,

making it harder to compare data with analytical results directly. Without a study

of nonlinear effects in the context of the Gulf Stream with realistic forcing, we cannot

answer to what extent the nonlinearity will alter the results obtained from linear

theories and linear numerical experiments. Neglecting nonlinearity is the greatest

limitation of this study and I hope we will be able to address this issue in the future.

Swanson and Pierrehumbert (1993) carried out a nonlinear numerical study

of pulse instability in a QG two-layer model. Their work was to study the fundamental

nature of the midlatitude storm tracks in the atmosphere. Their experiments were

similar to the single pulse experiments shown in Chapter 5. In their model, longer

waves move faster and short waves appear in the upper stream end of the wave packet,

in the linear stage of development. This pattern is consistent with analytical results

of Farrell (1982) in the similar two-layer model with parameter tuned in atmosphere.

And as I pointed out in Chapter 2 that this pattern is the opposite of the trend in

the oceanic two-layer model.

As the nonlinearity became significant, they found that the short waves

in the trailing edge started to equilibrate earlier at smaller amplitudes and phase

speed started to decrease while fast moving and fast growing long waves continued to

develop in the leading edge. This contrast eventually separated the wave packet into

leading edge and trailing edge parts. This is unlikely to happen in the oceanic QG

two-layer model since short waves travel faster and grow faster than long waves. If

the effect of nonlinearity is also to slow down the phase speed and short waves start

to equilibrate earlier than long waves, the trailing edge part will catch up the leading

edge part so the development will be different from that observed by Swanson and

Pierrehumbert. Thus, the results obtained from atmospheric studies are not directly
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applicable in the ocean and it is worth while studying nonlinear effect directly in the

oceanic model.

The second limitation of this thesis study is that we have not considered any

variation of velocity and topography along the stream. We can expect this variation

may alter the picture of instability to some extent; for example, when the structure

of the mean flow changes downstream, the growth rates of waves will adjust and this

will alter the picture of pulse instability. When the flow moves down the stream,

the underlying bottom topography becomes flatter and may cause the flow to be

more unstable, and the wave patterns in the system may look different from our

numerical experiments which assumes no variation of velocity and topography along

the stream. Topography may also cause reflection of waves to form resonant global

modes. Including any or all of these effects-nonlinearity, variations in jet structure,

topography-may affect the picture of wave activities in the Gulf Stream to some

extent. Despite the limitations of the linear model, however, the trend which shows

up in the analytical and numerical models and in the observational analysis may still

appear because the waves are still not periodic. However these limiting factors will

make the comparison between data and models much more difficult.

The third limitation is that the model cannot run long enough so our results

are based on the responses to segments of the forcing function but not the full,

multiyear record. The fourth limitation is that, due to the limited model precision,

the analysis in the continuously forced problem has not been extended to the further

downstream region from 1000km to 2000km where the pulse instability has been found

to work better from the single pulse experiments.

We know from Chapter 4 that in the SW six-layer model, the second most

unstable mode has a maximum of growth rate very close to the most unstable mode

(84%) whereas in the QG six-layer model, this ratio is 41%, and in the QG two-layer
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model 62%. If we could run a SW six-layer numerical model, we might expect the

results to have some significant differences from the QG two-layer model.
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Appendices

A The Saddle Point Finder

When a dispersion relation A(w, k) = 0 or w = w(k) is defined numerically,

there are two ways to locate a saddle point.

1. Direct search of w, for each k,..

Plot real part of the frequency w in complex k plane. For any given k,., we

increase or decrease ki from real k axis until hitting the point Qw= 0(
- 0 (see Figure A.

1). Repeat this procedure for adjacent value of k,., and we will find a curve satisfying

the saddle point condition a, 0. For each point on the curve, group velocityak,

C,= g-, a can be calculated. So for each k,. value, we will find a saddle

point (k,, w.,, C,), where subscript 's' simply indicates a value at a saddle point.

We then use Cg, as an index to sort out k, and w, as functions of C,

This method is more direct but is less efficient numerically compared to the

second method showed below. Moreover, it is more difficult to look for solutions in

some segments of the curve such as the part between A and B when there are multiple

values of w corresponding to one value of k,..

2. The saddle point finder.

This method can be easily illustrated in one dimensional search for a maxi-

mum or a minimum of a function f(x) (see Figure A. 2). Both f(x) and x are real.

To find the point with 2f = 0, one can make an initial guess of x, and calculate

f1 = f(x - Ax), f2 = f(xi) and f3 = f(xz + Ax). Then we can fit these three points

with a second order polynomial F(x) = ax 2 + bx + c. After (a,b,c) are calculated,

8F(x) = 2ax + b = 0 gives an estimate x1 = - for the next search. Drop one of
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k

k r

B

Figure A. 1: A sketch to show how to search for saddle points directly in complex k plane.

f(x)

xi -A ax xi +AX

Figure A. 2: A sketch to show how to search for a maximum of a real function efficiently.

the three points (z, - AX, xi xi + Az) which is farthest away from x1. With a new

set of three points including x1, the next prediction can be made. In such a way true

location with yf = 0 can be found very efficiently.

Now we return to our problem of finding aw 0. The above method can

be applied directly except now w and k are complex. However, since (a~bc) can also

be complex, we are still able to determine 6 parameters of (a,, aj, b,, bi, c,, cz) from

6 given values (Wi,, wi, W2,, W2';, w3,, Wa%-) and to find the location with yo= 0

similarly. This point with aw = 0 is automatically a saddle point if W(k) is an

analytical function of k in a small region nearby.

The search for saddle points should start at the group velocity C9 cor-

responding to the most unstable wave (o ,,m2x) in temporal instability, since
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w(km,) itself is a saddle point of function Q = w - Cgk. Then we increase or de-

crease C, to find a saddle point for (Cg + AC 9 ) or (Cg - ACg). The result from

each step is used as the initial guess to locate the next saddle point. The method

was first used for this problem by Lin and Pierrehumbert (1993). The drawback of

this approach is that it is very sensitive to initial guesses; hence the increment of C,

ACg, must be very small, otherwise branch switching will happen. This sensitivity

costs significant amount of computing time. I have modified the code by extrapolat-

ing the next saddle point from previous three saddle points (second order polynomial

extrapolation) and reduced the computing time by an order of magnitude.

195



B Method for Solving Spatial Instability Prob-
lem

Similar to the temporal instability problem, we need to solve the dispersion

relation A(w, k) = 0. However, as I mentioned in Sec. (2.3.2), an additional difficulty

arises because the original linear eigenvalue problem for w now become nonlinear

problem for k. No standard software is available to solve the whole nonlinear problem

as far as I know. I have used the following method to search for spatial instability

corresponding to a few most temporally unstable branches of the dispersion equation.

The best place to start the search is the most unstable frequency Wmax

(complex) and wavenumber kmax (real) of a temporally unstable mode. For given

W =W,-max , use kmax - oiM. as an initial guess. We contour A(w, k) on the (k,, k1c)Cgmaa.

plane around the initial guess to find the zero point of A(w, k). Because the initial

guess may be quite far away from the solution, it may need several trial and error

experiments to include the solution in the search domain. As long as the first point

can be found, the rest is easier. After we have found the first solution ko, which is

typically complex, we decrease (or increase) w by a very small amount Awi, take

ko as the initial guess and search for the next solution k1 , then we can use (ko, k1)

to extrapolate k2 linearly for w2 = W,max - Awi - Aw2 . After we have found three

solutions, we use a second order polynomial to extrapolate the next initial guess. By

using such interpolation, we are able to increase the step Aw significantly without

switching to other modes.

Briggs' method of selecting solutions of spatial instabilities described in Sec-

tion 2.3.2 must be performed to confirm that solutions obtained correspond to am-

plifying waves.
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C Effects of Resolution and Channel Width

This appendix is related to the QG analytical models used in Chapter 3.

In this appendix, I will perform sensitivity tests on horizontal resolution and on the

effect of channel width. I use a two-layer model with flat bottom and the modified

profile described in Section 3.3. Figure C. 1 shows the differences between different

resolutions used. The upper panel shows phase speeds vs real wavenumber k and

the lower panel temporal growth rate w- vs real wavenumber k . Solid curves are

associated with Sy=2.5km; dashed, 5km; and dotted, 10km. Channel width is fixed

at 300km for all three experiments. The figure only shows the three most unstable

curves. As we can see from the figure, the differences among the results associated

with all three resolutions are small and the results converge when the resolution

increases. Hence I am confident that Sy=5km or 10km is adequate for all the other

experiments.

Figure C. 2 shows the difference in phase speeds and temporal growth rates

resulting from channel widths of 300km and 400km. Solid curves are associated with

channel width of 400km and dashed 300km. Model resolution is fixed at 2.5km. The

difference between the two cases is insignificant and hence I will use channel width of

300km for all other experiments except where otherwise specified.
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Figure C. 1: Resolution Test. Upper panel: Phase speeds vs real wavenumber k. Lower panel:

Temporal growth rate w vs real wavenumber k . Solid curves for Sy=2.5km; dashed, 5km; and

dotted, 10km. Channel width is fixed at 300km
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199



200



References

Abramov, A. A., B. A. Tareyev, V. I. Ul'yanova, 1972a: Baroclinic instability in

Kochin's two-layer model of a frontal wave on the beta plane. Izv. Atm. and

Oc. Phys. 2,131-141.

Abramov, A. A., B. A. Tareyev, V. I. Ul'yanova, 1972b: Instability of a two-layer

geostrophic current with antisymmetric velocity profile in the top layer. Izv.

Atm. and Oc. Phys. 8,1017-1028

Barth, J. A., 1987: Stability of a coastal upwelling front over topography. PH. D.

Thesis. MIT/WHOI, WHOI-87-84.

Bender, C.M. and S. Orszag, 1978: Advanced Mathematical Methods for Scientists

and Engineers. McGraw-Hill Book Company.

Boudra, D. B., R. Bleck and F. Schott, 1988: A numerical model of instabilities in

the Florida Current. J. Mar. Res., 46, 715-751.

Bower, A. S., 1989: Potential vorticity balances and horizontal divergences along

particle trajectories in Gulf Stream meanders east of Cape Hatteras. J. Phys.

Oceanog. 19, 1669-1681.

Bretherton,F.P., 1966: Baroclinic instability and the short wavelength cut-off in

terms of potential vorticity. Quarterly Journal of the Royal Meteorological

Society 92.

Briggs, R.J., 1964: Electron stream interaction with plasmas. Chapter 2. MIT

press, 8-46.

Cushman-Roisin, B., L. J. Pratt, and E. Ralph, 1993: A general theory of equivalent

barotropic thin jet. Journal of Physical Oceanography, 23, 91-103.

201



De Szoeke, R. A., 1975: Some effects of bottom topography on baroclinic stability.

J.Mar. Res., 33, 93-122.

Farrell, B. F., 1982: Pulse asymptotics of the Charney baroclinic instability problem.

J. Atmos. Sci., 39, 507-517

Gangopadhyay, A., 1990: Wind forcing of the Gulf Stream: A space-time analysis.

Ph.D. thesis, Graduate School of Oceanography, University of Rhode Island,

190pp.

Gaster, M., 1962: A note on a relation between temporally increasing and spatially

increasing disturbances in hydrostatic instability. Journal of Fluid Mechanics,

14, 222-224.

Griffiths, R. W., P. D. Killworth and M. E. Stern. 1981: Ageostrophic instability of

ocean currents. J. Fluid Mech., 117, 343-377.

Hall, M. M. and Fofonoff, N.P., 1993: Down stream variation of the Gulf Stream

from 68"W to 55"W. J. Phys. Oceanog. 23, 225-249.

Halliwell, G. R. Jr. and C. N. K. Mooers, 1983: Meanders of the Gulf Stream

downstream from Cape Hatteras. Journal of Physical Oceanography, 13, 1275-

1292.

Halkin, D. and T. Rossby, 1985: The structure and transport of the Gulf Stream at

73"W. J. Phys. Oceanog. 15, 1439-1452.

Hart, J. E., 1974: On the mixed stability problem for quasi-geostrophic ocean cur-

rents. J. Phys. Oceanog. 4, 349-356

Hogg, N. G., 1976: On spatially growing baroclinic waves in the ocean. J. Fluid

Mech., 78, 217-235.

202



Ikeda, M., 1983: Linear instability of a current flowing along a bottom slope using

a three-layer model. J. Phys. Oceanog. 13, 208-223

Johns, W. E., 1988: One-dimensional baroclinically unstable waves on the Gulf

Stream potential vorticity gradient near Cape Hatteras. Dyn. Atmos. Oceans,

11, 323-350.

Killworth, P. D. and M. E. Stern, 1982: Instabilities on density-driven boundary

currents and fronts. Geophys. Astrophys. Fluid Dyn., 23, 1-28.

Killworth, P.D., 1983: Long-wave instability of an isolated front. Geophys. Astro-

phys. Fluid Dyn., 24, 235-258.

Killworth, P. D., N. Paldor and M. E. Stern, 1984: Wave propagation and growth on

a surface front in a two-layer geostrophic current. Journal of Marine Research,

42, 761-785.

Kontoyiannis, H., 1992: Variability of the Gulf Stream path between 74*W and

70*W: observations and quasi-geostrophic modelling of mixed instabilities. Ph.

D. dissertation, Graduate School of Oceanography, University of Rhode Island,

137pp.

Leaman, K. D., E. Johns and T. Rossby, 1989: The average distribution of volume

transport and potential vorticity with temperature at three sections across the

Gulf Stream. J. Phys. Oceanogr.,19, 36-51.

Lee, S. and G. T. Csanady, 1994: Instability waves in the Gulf Stream front and its

thermocline layer. J.Mar. Res., 52, 837-863.

Lee, T., 1993: Variability of the Gulf Stream path from 750 to 60"W observed from

satellite infrared imagery. Spring AGU meeting, Baltimore, MD, May, 1993.

Lee,T., P. Cornillon, 1996a: Propagation of Gulf Stream meanders between 740 and

70 0W. J. Phys. Oceanogr., 26, 205-224.

203



Lee,T., P. Cornillon, 1996b: Propagation of Gulf Stream meanders between 750 and

450W. J. Phys. Oceanogr., 26, 225-241.

Lin, S.J., R.T. Pierrehumbert, 1993. Is the midlatitude zonal flow absolutely unsta-

ble? J. Atmos. Sci.,50, 505-517

Lipps, F. B., 1963: Stability of jets in a divergent barotropic fluid. J. Atmos. Sci.,20,

120-129

Michalke, A., 1965: On spatially growing disturbances in an invisid shear layer.

Journal of Fluid Mechanics,23, 521-544

Nikitin, 0. P. and B. A. Tareyev, 1972: Meanders of the Gulf Stream interpreted as

resultants of baroclinic instability predicted by a simple two-layer model. Izv.

Atm. and Oc. Phys. 8, 973-980

Luther, M.E. and J. M. Bane, Jr., 1985: Mixed instabilities in the Gulf Stream over

the continental slope. J. Phys. Oceangr., 15, 3-23.

Orlanski, 1969: The influence of bottom topography on the stability of jets in a

baroclinic fluid. J. Atmos. Sci., 26, 1216-1232.

Orlanski and M. D. Cox, 1973: Baroclinic instability in ocean currents. Geophys.

Fluid Dyn., 4, 297-332.

Paldor, N., 1983a: Stability and stable modes of coastal fronts. Geophys. Astrophys.

Fluid Dyn., 27, 217-229.

Paldor, N., 1983b: Linear stability and stable modes of geostrophic fronts. Geophys.

Astrophys. Fluid Dyn., 24, 299-326.

Paldor, N., 1991: Shortwave stabilities of coastal currents. Geophys. Astrophys.

Fluid Dyn., 58, 225-241.

204



Pedlosky, J. 1964a: The Stability of Currents in the Atmosphere and the Ocean:

Part I . JAS,21,201-218

Pedlosky, J. 1964b: The Stability of Currents in the Atmosphere and the Ocean:

Part I . JAS,21,342-353.

Pedlosky, J. 1981: The nonlinear dynamics of baroclinic wave ensembles. Journal

of Fluid Mechanics,102, 169-209

Pedlosky, J. 1986: Geophysical Fluid Dynamics. Second edition. Springer-Verlag,

NY.

Pierrehumbert, R. T., 1986: Spatially amplifying modes of the Charney baroclinic-

instablity problem. Journal of Fluid Mechanics,170, 293-317.

Phillips, N. A., 1964: An overlooked aspect of the baroclinic instability problem.

Tellus, 16, 268-270.

Sela J. and S. J. Jacobs, 1971: Ageostrophic effects on Gulf Stream instability. J.

Atmos. Sci.,28, 962-967

Simmons, A.J., and B.J. Hoskins, 1979: The Downstream and upstream develop-

ment of unstable baroclinic waves. J. Atmos. Sci.,36, 1239-1254

Stone, P., 1978: Baroclinic Adjustment. J. Atmos. Sci.,35, 561-571

Talley, L. D., 1983a: Radiating barotropic instability. J. Phys. Oceanog. 13, 972-987

Talley, L. D., 1983b: Radiating instabilities of thin baroclinic jets. J. Phys. Oceanog.

13, 2161-2180

Tareyev, B. A., 1965: Unstable Rossby waves and the instability of ocean currents.

Izv. Atm. and Oc. Phys. 1,426-438

205



Tracey, K. L., and D. R. Watts, 1986: On Gulf Stream characteristics near Cape

Hatteras. J. Geophys. Res., 91, 7587-7602.

Watts, D. R., 1983: Gulf Stream variability. In: Eddies in Marine Science, edited

by A. Robinson, pp. 114-144, Springer-Verlag, New York.

Watts, D. R., and W. E. Johns, 1982: Gulf Stream meanders: observations on

propagation and growth. Journal of Geophysical Research, 87, 9467-9476.

Xue, H., 1991a: Stability Analyses of the Gulf Stream Front Using the linearized

Primitive Equations. Ph. D. Thesis, part I.

Xue, H., 1991b: Numerical Simulation of the Gulf Stream Meanders Using a Three

Dimensional Primitive Equation Model. Ph. D. Thesis, part II. Princeton Univ.

Xue, H., and G. Mellor, 1993: Instability of the Gulf Stream front in the South

Atlantic Bight, J. Phys. Oceanogr., 23, 2326-2350.

206


