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I. INTRODUCTION

The application of electromagnetic wave theory

to engineering problems involving low frequencies and the

frequencies used in radio communttion has been in an ad-

vanced stage for some time. Such theory has not been applied

as frequently to problems involving the ultra-high-frequen-

cies. Particularly in the last few years, following the

advancement of technique in the generation and application

of the ultra-high-frequency waves, the problems concerning

transmission, radiation and circuits have been actively

studied from a theoretical basis. One instance where an

exact analysis on an electromagnetic basis has been very

valuable is the case of transmission inside of conducting

pipes.

The pioneer paper in this field was published

by Lord Rayleigh in 1897. In this paper1 , he discussed

the possibility of transmiting electromagnetic waves of

sufficiently high frequency inside a perfectly conducting

uniform tube of either circular or rectangular cross-see-

tion. He discovered that theoretically two types of waves

may exist inside tubes of any cross-section, one without

'Lord Rayleigh: "Scientific Papers" Vol. IV pp227-280
(1897)
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the longitudinal component of magnetic field, and the other

without the longitudinal component of electric field. Inci-

dently, he determinelthe critical frequencies for waves

inside ideal non-dissipative tubes of circular and

rectangular cross section, ie., the frequencies below

which they cannot exist. In 1898, R. C. Maclaurinl obtained

the natural frequencies of oscillation for tubes of

elliptical cross section, but he did not treat the case

of transmitted waves. In the years that follows, very

little can be found in the literature that related to this

problem, until 1910, when Hondros and Debye2 described

theoretically the transmission of electromagnetic waves

along a dielectric wire. A recent paper by Schelkunoffo

is confined to problems associated with coaxial conductors

which is still another type of system.

The recent interest in the transmission of Ultra-

high-frequency electromagnetic waves inside hollow conducting

pipes started apparently with papers by W. L. Barrow* of

M. I. T. and by G. C. Southworth!, J. R. Carson, S. P. Mead,

and S. A. Schelkunoffb of the Bell Telephone Laboratories.

1R.C.Maclaurin, Cambridge Philosophical Transactions,
Vol. XVII, Part I, pp. 5-100, (1898).

2D.Hondros and P.Debye, Ann. d. Phys. Vol.32, pp. 465-476,
(1910)

6S.A.Schelkunoff, Bell Sys. Tech. Jour. Vol. 13, p. 533
(1934)
4W.L.Barrow, Proc. I.R.E. Vol. 24, No. 10, pp.1298-1328,
(1936)

5G.C.Southworth, Bell Sys. Tech. Jour. Vol. 15, pp. 284-309,
(1936)
'J.R.Carson, S.P.Mead, and S.A.Schelkunoff, Bell Sys. Tech.
Jour. Vol. 15, pp. 310-333. (1936).



In these papers, special attention was given to pipes made

of finitely conducting materials filled with low-dissipative

dielectrics such as air or vacuum.

The pipe they considered has a circular cross

section. The wave, generated by an antenna placed at one

end of the pipe or by some other means of excitation, pro-

pagates along the pipe. If the conductor hadan infinitely

high conductivity, the waves would confine themselves within

the dielectric and no energy could be absorbed by the con-

ductor. Otherwise, the absorption of energy by the condu-

ctor causes the attenuation of the wave. -It has been re-

ported that the phase velocity of the waves inside the cir-

cular pipe is greater than the light velocity and the at-

tenuation of one type of the waves decreases with increas-

ing frequency. Both phenomena are quite extraordinary to

the ordinary experience of guided waves.

After the presentation of the above three papers,

L~on Brillouin immediately published a paper1 , in which he

studied the problem from an entirely different angle, giving

a clear physical picture of the nature of the waves inside

a non-dissipative pipe of rectangular cross-section. The

waves are constructed by projecting the ordinary plane waves

into a rectangular pipe at an appropriate angle with respect

ILeon Brillouin, Revue Generale de Ellectricit6, Vol.XL
pp 227-239. (1936)
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to the axis of the pipe. The multiple reflections, caused by

the four perfectly conducting walls, transform the plane wave

into a composite wave which acts like a standing wave in the

transverse direction and like a traveling wave in the longitu-

dinal direction. That the original wave does not travel in

the axial direction explains the phenomenon of the increas-

ing of phase velocity of the wave in the pipes as compared

to their free-space velocity. He also tried to explain the

peculiar behavior of the attenuation for the afore-mentioned

type of wave by pointing out that waves possessing this proper-

ty can only exist inside the tubes having perfect symmetrical

cross-section like a circle or a square. This, however, does

not seem to be so.

Following Brillouin's paper, L. Page and N. I.

Adams Jr.1 mathematically constructed the waves in circular

pipes from plane waves by a similar method as for the ree-

tangular pipe. The last paper on this subject appeared on

the November 1937 issue of the Proceedings of the Institute

of Radio Engineers, by S. A. Schelkunoff2 . In this paper,

he presented a general theory of hollow-pipe waves includ-

ing the attenuation, and as a special example, treated the

rectangular pipe in detail.

The radiation of electromagnetic waves from the

1 L.Page and N.I.Adams Jr., Phy. Rev. Vol. 52, pp.647-651
(1937)

2 S.A.Schelkunoff, Proc. I.R.E. Vol.25, pp.1457-1493. (1937)



open end of a hollow pipe or from a horn goes hand-in-hand

with the hollow-pipe transmission problem. Bergmann and

Kruegell reported in 1934, the experiment of measuring

the radiation from the open end of a very short hollow metal

cylinder in which a half-wave coaxial antenna was properly

excited. Schelkunoff2 , in his paper titled"Some Equivalent

Theorems of Electromagnetics and their Application to Ra-

diation Problems", calculated the radiation loss from the

open end of a coial tube. No papers dealing with the

electromagnetic horns are known to exist, although their

use for directive radiation has been suggested in several

papers in the last two years.

My work during the past year and a half, has

concerned mainly foir aspects of these problems, namely:

(1) the transmission characteristics of waves in rectan-

gular pipes; (2) the transmission characteristics of waves

in elliptical pipes; (3) the radiation from the open end

of rectangular pipes; and (4) the transmission and radia-

tion characteristic of a special type of the electromagnetic

horn. The natures and the backgrounds of the problems and

the results obtained during my research are summarized as

follows.

In the fall of 1936, Professor Barrow, afterhe

has concluded his research on transmission of waves in

'Bergmann and Kruegel, Ann. der Phys. Vol. 21, ppll3-138.
(1934)

2 S.A.Schelkunoff, Bell Sys. Tech. Jour. Vol.15,pp.92-112
(1936)
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circular pipes, turned to the study of rectangular pipes.

Some of his work will be summarized at the begining of

the second chapter. I took over the problem and tried to

calculate the attenuations of waves in the finitely con-

ducting rectangular pipe as a boundary-value preblem.

Difficulty was encountered in trying to find a wave fun-

ction which would represent the fields inside the metal,

on account of the discontinuity of curvature at the four

corners of the rectangular pipe. The possibility of

resolving the waves in a rectangular pipe into ordinary

plane waves, as suggested by Brillouin, inspired the idea

that the problem might be treated in a way similar to the

reflection of light by an imperfect reflector. In this

respect, A. Sommerfeld1 has treated the problem of travel-

ing electromagnetic waves along a finitely conducting sur-

face. In our problem it was found that the best way of

presentation was probably to resolve the waves insidearec-

tangular pipe into waves which exist between two parallel con-

ducting surfaces of infinitely large area. In the Appendix,

the solution of waves between two parallel and finitely con-

ducting surfaces is given. The attenuation and the loss in

the conductor were calculated under the assumption of a rea-

sonably high conductivity (1r1 >> l'E1 ), a condition usually

satisfied in practical problems. In Chapter II, the attenua-

1P.Frank and R.Mises, die Differential und Integralgleichun-
gen. pp 876. (1935)
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tions of waves in a rectangular pipe are calculated by uti-

lizing the results obtained in the Appendix. Comparisons

are made for a given wave inside pipes of different ratios

of dimensions but of equal peripheries; and also for dif-

ferent waves in a square pipe and a circular pipe of equal

peripheries. None of the waves in a rectangular pipe pos-

sesses the peculiar characteristic of attenuation which

decreases with increasing frequency, except for the degen-

erate rectangular pipe which results when one of the trans-

verse dimensions is extended to infinity.

A circular pipe is a degenerate form of

the pipes of elliptical cross-section. In order to study

the effects of deformation of the circular cross-section

on the properties, especially the attenuationof the waves

in a circular pipe, the waves in the elliptical pipes were

studied. Maclaurin has treated the problem of standing-

waves in an ideally conducting elliptical pipe. Of course,

this solution is not exactly of the same nature as the

present problem which deals with traveling waves. The

treatment of waves in elliptical pipes required the use

of elliptical coordinates. The solutions of the wafe

equation in elliptical coordinates are the Mathieu fun-

ctions. For the non-dissipative case, the general expres-

sions for the fields in the dielectric, the phase constants,

the critical frequencies And the other constants for
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various types of waves in the elliptical pipe, have been

obtained. I am much indebted to Prof. P. M. Morse for the

use of his "Tables of Mathieu Function", to calculate the

numerical values of critical frequencies and later on, the

attenuation constants. To calculate the attenuation of the

waves in elliptical gipes as a boundary-value problem, the

same difficulty occurs as in case of waves in rectangular pi-

pes, i.e., the choice of a proper wave function for the fields

in the conductor. This is overcome by using the asymptotic

forms of the Mathieu functions derived by Prof. J. A. Stratton1 .

The attenuation constants, thus obtained, are illustrated by

laborious numerical calculations, and comparisons are made for

various types of waves in elliptical pipes of different

eccentricities but equal peripheries. The transmission

characteristics, including the attenuation, for waves in a

circular pipe are partly duplicated here, as they represent a

degenerate case of an elliptical pipe, and comparisons are

made with the general oases. It is discovered in this

chapter that, so far attenuation is concerned, a circular

pipe is inferior to an elliptical pipe with small eccentricity

except for the waves whose fields have a circular symmetry in

the circular pipe. It is also discovered that no wave in

an elliptical pipe can have a decreasing attenuation with

increasing frequency. This exceptional attenuation can only

1J.A.Stratton, Proceedings of the National Academy of Sciences.
Vol.21,No.1,pp 51-62.(1935) Vol.21,No.6,pp 316-321.(1935)
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occur when the pipe degenerates into a circular one.

As a conclusion to the work on hollow pipes,

the anomalous phenomenon of the decreasing attenuation with

increasing frequency is explained in terms of the absorp-

tion coefficient of metal and a general theorem is deduced.

After the completion of the work cited above,S. A. Schel-

kunoff's paper appeared in the Proceedings of I. R. E.

Although this paper represents a valuable contribution

from the mathematical aspect, he failed to emphasize the

most important type of wave in a rectangular pipe

the H .- wave - for which, the attenuation was not even

given. Yery little effort has been made by him to clear

up the question of the anomalous attenuation phenomenon

reported by Carson, Mead and Schelkunoff in their first

paper on hollow-pipe waves.

The theoretical work on the calculations of the

radiation from the open end of rectangular pipes and horns

has been colaborated with the experimental work on the same

subjects carried on by Messrs. F. M. Green and F. D. Lewis

under Prof. Barrow. In the calculations of the radiations

from the open end of rectangular pipes, the waves inside

the pipes are represented by the vector potentials. By

means of Huygens' principle' the vector potentials, and

consequently the fields too, in the outside space are cal-

culated. Special attention is paid Athe H -wave, which

lK.F8rsterling,"Lehrbuch der Optik" (1928)
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has the electric field everywhere parallel inside the rectan-

gular pipes and gives a single-beam directive pattern. In

agreement with the experimental work and a rough theory,

it is found that the sharpness of the beam depends upon the

ratios of the linear demensions of the pipes to the wave-

length. A sharper beam may be obtained by increasing the

ratios. The effects of the high order H m-waves (m = odd),
is

in the pipeAstudied. Other types of waves than the H m

wave (m = odd), do not give single-beam radiation.

The horn that was actually studied, is, in a

sense, an extension of a rectangular pipe, with the side

walls only turned outward at a certain angle. Since the

horizontal cross-section of the horn (Fig. 5.1) is a sector

of a circle, we will call this the "Sectoral Horn". The

measurements made during the last summer' on this shape

of horn revealed amazingly good results. With the proper

angle between the sides of the horn, the radiated energy

can be concentrated within a very sharp beam. This horn

may find an immediate application in ultra-high- frequency

directive transmission, particularly to the blind landing

of airplanes. Later mesaurements have shown that the rectan-

gular pipe is not essential for proper functioning of the

horn, as had been earlier suggested, and an antenna with a

simple plane reflector or a parablic reflector, properly

shielded at the throatof the horn may serve equally well.

1F.M.Green, E.E.Thesis, M.I.T. (1937)
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Most of the essentials of a rigorous treatment

for the hovn has been obtained by starting from Maxwell

equations and using the proper boundary conditions.

The problem is similar to the transmission of waves along

a circular pipe. In the sectoral horn, the wave propagates

in the radial direction, which is represented by the Bessel

function of the third kind, i.e., the Hankel function.. Only

one type of wave, in which the electric fields are every-

where parallel to the divergent sides of the horn, has

been analyzed. This wave can be most conveniently produced

experimentally, and it alone has the possibility of radiat-

ing a single-beam pattern. Based upon the property of the

Hankel functions, the transmission characteristics of waves

inside a horn are determined. It is found that the waves

are highly attenuated at the small end of the horn and are

freely transmitted beyond a certain distance from the

hypothetic center of the horn. The radiation patterns are

calculated in a way similar to that used for the rectangular

pipe, but more approximations must be imposed because of the

difficulties of integration.

Units and Definitions.

A practical system of units will be used in

which:

L6
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E = electric field intensity in volts per cm.

H = magnetic field intensity in amperes per cmi

= conductivity in mhos per cm.

,= permeability in henrys per am. (for air L = f.= 4cx10 )

L= dielectric constant in farads per am. (for air

S= .= 10 11 /36E

The quantity E and H are real. For convenience in analysis,

the complex field intensities E and H will be employed throu-

ghout, but it should be kept in mind that, in the end, the

real part of E and H must be taken. Similarly the vector

potential used here-after will be a complex quantity. The

complex vector quantities are usually expressed in terms of

their components,. and the directional unit vectors cf the

coordinate system. The components are therefore complex

scalar quantities and will be hereafter indicated by a sub-

$cript to denote the direction of the component. The con-

jugate of a complex quantity is denoted by a A under the

letter representing the quantity. For example, the con-

jugate of Ex is 6.

In the treatment of electromagnetic waves, the

Maxwell equations will be frequently used. Although they

were originally derived for real quantities, they can also

be used for complex quantities, The wave equations are

usually derived vectorially from the Maxwell equations.

Therefore, the wave equations for the component fields in

curvilinear orthogonal coordinated, do not necessarily
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have the same form. The wave constant k which appears in

the wave equation is defined as i?2e^ - icator . In a di-

electric having negligible conductivity, the wave constant

is simply equal to ojg . The constant 1/73(7 for air

is equal to the light velocity in air, and for a dielectric

having other values of f and A , it is equal to the light

velocity in that medium. Hence it is convenient to l6t c

represent the light velocity in that medium. The constant

w has its usual meaning and is equal to 27tf. Sometimes,

the frequency of a wave will be expressed in the equiva-

lent form f = c and it will be sometimes conv&nient

to speak of wave length alone. Unless otherwise specified,

it will be understood that the wave length is to be mea-

sured in the dielectric considered. The following expres-

sions are therefore identical:

k = = /c = 2xf/c =27./x

and will be used interchangeably hereafter.

In calculating- the attenuation of waves in pipes,

the fields in the metal and the constants of the metal will

also be encountered. In order to make the nomenclatures

unique throughout the present work, we will use primed let-

ters to indicate constants or fundtions in the metal and

leave the unprimed letters exclusively for constants or

functions in the dielectric. The wave constant in the

metal is defined as k' = V-i 7'joj
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The electromagnetic waves in a sufficiently

long non-dissipative hollow pipe aan be classified into two

main types. They have been defined in various ways according

to the properties of the waves. The more exact one was given

by Prof. Barrow as follows:

"All waves that may be propagated within any hollow
conducting pipe or tube will be called hollow- pipe
waves."
"Any hollow-pipe wave having both a longitudinal and
a transverse component of magnetic field but only
a transverse component of electrii field will be
called an H-wave."
"Any hollow-pipe wave having both a longitudinal and
a transverse component of electric field but only a
transverse component of magnetic field will be called
E-wave."

If the wall of a pipe is finitely conducting,

it is sometimes misleading to consider that one of the

longitudinal fields may be set arbitrarily to zero, since

the finiteness of the conductivity requires different boun-

dary conditions. The difficulties of the mathematics obscure

the actual situation in the pipe. However, if the conducti-

vity of the conducting wall is very large but finite, the

electromagnetic waves inside a dissipative pipe may be con-

sidered as either a modified H-wave or a modified E-wave.

The following definitions will introduce the correct idea

when we discuss the attenitations of the hollow-pipe waves.

An H-wave or an E-wave in a slightly dissipative
hollow-pipe is one which would degenerate into the
H-wave or the E-wave respectively in a non-dissipa-
tive hollow-pipe, were the conductivity to approach
infinity as a limit.
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Inside a straight hollow-pipe of sufficiently great

length, the waves propagate along the longitudinal or axial

direction. Let the X-axis be in the axial direction of the

pipe and consider only the waves having simple sinusoidal

time variation. The propagation of the waves along the axial

direction may be described by the factor eist-hx , where h is

the propagation constant. By substituting this factor into

the Maxwell or the wave equations, they are reduced to the

partial differential equations of the two remaining coordin-

ates, and the factor elot-hx remains as a constant in these

equations.

For a non-dissipative pipe, the propagation cons-

tant h is zero when the frequency is equal to a critical value.

Below that frequency, the propagation constant is a real

quantity. This frequency is defined as the critical fre-

quency, and the corresponding wave length A and wave cons-

tant k are defined as the critical wave length and the cri-

tical wave constant of the wave respectively, and they will

be denoted by a subscript "

The transmission and radiation of electromagzne-

tic waves of ultra-high-frequency by means of the horns is

but little explored, and their general properties are still

to be determined. In the Chapter V only one type of wave

in a particular shape of horn has been investigated. The

horn is named the "sectoral horn" on account of its geome-

trical shape, which resembles a sector slice of a cylinder.
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Inside the horn, two types of waves may exist, one without the

radial component of electric field and the other without the

radial component of magnetic field. Only the first type has

been preliminarily investigated. Another condition has been

imposed that the waves are independent of the coordinate y of

cylindrical coordinate system (r,%,y), r being the direction

of transmission. This type of wave will be refered in the

text as "horn waves".



II TRANSMISSION CHARACTERISTICS

OF WAVES IN RECTANGULAR PIPE

The transmission characteristic of waves in-

side a non-dissipative pipe of rectangular cross-section

have been studied by various authors. In the present work,

it is intended to study the transmission characteristic,

principally the attenuation of dissipative rectangular

pipes. A summary of the results of non-dissipative pipe

is given here with the courtesy of Prof. W. L. Barrow1.

Non-dissipative Case -Summary.

In Fig. 2.1, a section of a rectangular pipe

is shown. The X-axis of the Cartesian coordinates (x,y,z)

is chosen to coincide with. one of inner cornes of the pipe.

Thus the dielectric is bounded by conducting walls, y = 0,

y = a, z = 0 and z = b. The pipe is sufficiently long that

the end effects may be neglected. The conductivity of the

conducting walls is assumed infinity for the present, and

the dielectric,which fills the inside, is assumed to be

a perfect insulator.

'A paper titled "Electromagnetic Waves in Hollow Metal
Tubes of Rectangular Cross Section" jointly by W.L.Barrow
and L.J.Chu was sent to the Institute of Radio Engineer-
ing for consideration for publication in their Journal.
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Fig 2.1
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Two types of waves may exist inside such a

non-dissipative pipe. The H-waves have only transverse

electric intensity and both longitudinal and transverse.

components of magnetic intensity. The E-waves have only

transverse magnetic intensity and both longitudinal and

transverse components of electric intensity.

The double subscripts n,m are used to denote

the order of harmonics of the waves along the two linear

dimensions (y and z) in the cross-section of the pipe.

All the waves are assumed to propagate in the positive x

direction and to have a sinusoidal time variation. There-

fore the variation in X-axis and also the time variation

can be discribed by the exponential factor e

T1 fields of the H mwaves in the dielectric

are following:



where K +2.2

k. is defined as the critical wave constant.

All combinations of n and m are possible ex-

cept the one, n = m = 0 . The HO ,.-wave has only a tran-

verse component of magnetic intensity H , which of course

has no physical meaning. For n = 0, the H.,, -waves have

only these components of fields, H, , Hz and E :

H = B ces ( -4-7 (Wt- PX)(T

= Sin (.2tz) e

=Sin ( z e

2.3

The vector electric intensity of the Horn-wave is every

where parallel to the Y-axis. All the fields are indepen-

dent of the variable y.

The field expressions of the E ,, -waves are as

following.

= B

S3 L

K 0

Hf = 7t

Sin { 5 in {gzj

Cos ( )Sin (n z)r

sen( y) Cos ( z )

9I ) Co5- (n' Z)

Cos )Si r

e

e

e L(et -

.( i t -go )

2.4
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The E,,-wave with n or m or both equal zero

is not possible since all the six components of fields va-

nish. Thus the lowest order of the E,,,-wave is E,. -wave.

For all the waves in a rectangular pipe, the

r8les of y and z are interchangable with appropriate changes

of sign. The indices n,m have the physical significance

that the fe lds have n half-periods of sinusoidal variation

along Y-axis from 0 to a, and m half-periods of sinusoidal

variation along Z-axis from 0 to b.

The expressions for the constants of the waves

are the same for both the Hn.,-and the E n, -waves and are

as follows:

Phase constant:

~j ~ ) ~ ' . 2.5a

Critical frequency:

f* OT + 2.5b

Critical wave length:

2 .+ rn2.5c

Wave length in pipe:

S= 2 7r/3. 2.5d
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Phase velocity:

V = 2.5e

Group velocity:

v9 = _ = - C 2.5f

The field distribution diagrams may be calcutated

by a procedure similar to that used for circular pipe'. The

differential equations for the lines of constant H and con-

stant E can be solved since they involve only sine or co-

sine funtions. In Fig. 2.2 the field distributions of H.43 -,

Hill- and EL,1 -waves in a square pipe are plotted. We must

remember that three dimensional fields can not be represent-

ed by a two dimensional diagram. Thus in the transversal

cross-sectional view of the H, 1 -wave, the electric lines,

which have only transversal components, end normally on the

conducting walls, while the magnetic lines, which have both

longitudinal and transversal components end irregularly

nearly the corner, where the magnetic lines seem apparently

crowded. Actually the magnetic lines near t1 corner turn

gradually into the x dimension. There seems no means to

represent the magnitude of the magnetic fields by the con-

centration of the lines.

'W. L. Barrow, Proc. I.R.E., Vol. 24, pp.1298-1329,(1936)
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Dissipative Case - General Considerations.

While the waves inside a nondissipative rectan-

gular pipe have simple analytic solution, there is doubt

whether the problem of a dissipative rectangular pipe has

a rigorous mathematic solution or not. In a dissipative

pipe, the waves no longer confine themselves to the di-

electric. The conductor is no longer a perfect reflector

and absorbs energy. There seems no mathematical solution

that may take care of the discontinuity of curvature at

the four corners. Therefore, we have to use the approxi-

mate perturbation method, based upon some assumptions

which are juatified within the practical range of frequen-

cy and conductivity. The method will be explained in the

following pages.

The principal tai1k is to calculate the atten-

uation constant of the waves. For a pipe made of a conductor

of finite conductivity filled with a dissipative dielectric,

the attenuation constant may be assumed to consisted of

two terms, one caused by the conductor and the other by the

dielectric. Therefore, we shall be able to treat them separa-

tely. The attenuation caused by the conductor will be treat-

ed first.

In Appendix , we have solved the attenuation of

waves between two parallel conducting planes in a rigoroua

straight forward manner. We may consider it as a degenerate
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case of the rectangular pipe waves, with the dimension a

extended to infinity in both directions. There is no ques-

tion of the soundness of the solution. Therefore we may

pickup a few fazts from there, which will be useful to
of

make assumptions in calculationthe attenuation of waves

in rectangular pipe.

First, the waves do not penetrate any consider-

able distance into the conductor. The propagation constant

of waves inside the metal in the direction normal to the

boundary is rt
g

r'= + f. /A.'"

Its real part is the attenuation constant in that direc-

tion. With commercial coper and at a frequency of 3x109

c.p.s. ( X = 1 m), the attenuation constant is 8300 nepers

per cm. That is to say, the field intensity drops to

0.1% within a distance of .0008cm. For a pipe of practical

dimension, tlie effect of the discontinuity of the curvature

at the four corners extends to only a negligible distance

from the corners as compared with tle periphery of the pipe.

Therefore, this effect can be neglected.

Second, the finite but large conductivity of the

conducting wall does not distort appreciably the field dis-

tribution within the dielectric. The constant rg, which

controls the distribution in tranverse direction, appears

in Eq. A.12 and A.26b as a complex number with an imaginary
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part of insignificant magnitude. If again we use commer-

eial copper as the conductor, at a wave length of one meter

or less, the maximum possible distortion of field from the

the fields of the non-dissipative case is not more than

0.1%.

The pipe now considered is the same as shown

in Fig. 2.1. The conductor has a finite conductivity

and the dielectric is assumed to be a perfect insulator.

The walls are so thick that no energy may exist at the

outer surface. The waves in the dielectric, strictly speak-

ing, do not have the form of either the H- or E-wave as

previously defined. We are not able to impose again the

condition that one of the longitudinal components of field

intensity identically vanishes everywhere inside the pipe,

since the boundary conditions do not permit so, except

in some special cases. We will find it convenient to define

an H- or E-wave of a dispipative pipe as one, which would

degenerate into the H- or E-wave of non-dissipative pipe, were

the conductivity of the conducting walls to be increased

indefinitely.

It has been an established fact that the waves

inside a non-dissipative rectangular pipe may be resolved

into ordinary planes waves with conjugate directions of

propagation! It is from this idea that we are able to

iL6on Brillouin: Revue Generale de Etlectricitg Vol. XL,
1936 pp 227-239.
L. Page and N.I.Adams,Jr. Physical Review, Vol. 52, 1937
pp 647-651.
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calculate the attenuation of waves inside a dissipative

rectangular pipe as a boundary problem. However, we may

find it more convenient to resolve the waves inside a non-

dissipative rectangular pipe into components of parallel-

plane waves, which exist between two parallel conducting plan-

es as discussed in the Appendix.

The attenuation constant is equal to half the

ratio of power loss per unit length of the pipe to the power

transmitted through the pipe. If the field inside the pipe

is not appreciably distorted by the finite conductivity of

the metal, the power transmitted is just the summation of

the longitudinal Poynting't vector calculated from the field

expressions of a non-dissipative pipe.

To calculate the loss, we start also with the

non-dissipative field expressions, and see what would be

the loss, were the pipe dissipative, but not sufficiently

so to disturb appreciably the field adjacent to the wall.

The loss may be divided into two parts, (A) the loss

dissipated into the set of walls z = 0, b and (B) the

loss into the set of walls Y = 0, a. To calculate (A)

the loss into the walls z = 0, b , we resolve the complete

field expressions in the non-dissipative rectangular pipe

into component parallel-plane waves between walls z = 0

and z = b. The effects of the two side walls are now

neglected. Each component wave would be modified in the

manner we discussed in the Appendix, if. the walls z = 0
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and z = b were dissipative. This loss in the walls z = 0,b

can be calculated from Eq. A.17 and A.32. Similarly the loss

in the walls y = 0, a,may be calculated. The total loss

is the sum of loss of each component parallel-plane waves

between z = 0, b planes and y = 0, a planes.

It can be proven that the total losses into the

walls z = 0, b of the pipe is the sum of loss of each com-

ponent parallel plane waves as follows. The fields in a

non-dissipative rectangular pipe have a general form as below,

smn a sin b

By spliting lae sine or cosine of y into exponentials, the

fields expressions separate into two groups (G, ahd G 2 ),

one having the exponential e Q ad the other

having the exponential e . In each group, we may

replace x and y by new coordinates x' and yt such that the

fields are independent of y'. According to Eq. A.l and

A.2, the fields of each group fall into two subgroups, one

having E., , H , and Hz ( H -wave) and the other having

Hy,, Ex, and Ez (E -wave). These two subgroups have abso-

lutely no interaction between them at the boundary, since

the magnetic field of one is always parallel to the elec-

tric field of the other.

There is interaction between the two groups,

(G, abd G2 ). Suppose we take a component of electric field

of G, tangential to the boundary surface
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K, e

aid a component of magnetic field of G2 also tangential

to the boundary surface

If the two are normal to each other, the power transmitted

per unit area in the normal diredtion of the surface is

half the conjugate product of the two:

I ni

2 1 e (real part)

That is, at any point y, there will be an interaction between

the two groups. However, if we integrate the exponential

from y = 0 to y = a, the result is zero. It proves that

the average interaction between two groups is zero. Even

if the factor n is modified by adding a small imaginary

part to it, as it ought to be in the case of dissipative pipe,

the integralof the exponential is still negligible as compared

to unity.

The H -wave is a special case of the Hnm"

waves. Its attenuation can not be deduced from general

formula of attenuation constant of the H -wave. Hence,

we shall treat it separately.

Attenuation of H om-wave in a Rectangular Pipe

The expressions for fields of the H -wave in the

dielectric bounded by perfect conducting rectangular pipe are
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given by Eq. 2.3 . The power loss dissipated into the

walls, if they are finitely conductive may be divided into

two parts: (A), the loss into the walls z = 0 and z = b

and (B), the loss into the wall y = 0 and y = a. The two

will be treated separately.

(A) Loss into walls z = 0 ahd z = b

Between the metallic walls z = 0 and z = b, the

field expressions look exactly like Eq. A.36, the H -wave be-

tween the two non-dissipative conducting planes z = 0 and

z = d, treated in the Appendix. The corresponding constants

are tabulated below:

H -wave Ho,m-waves between walls
z = 0 and z = b

B B

d

(9

Were the pipe dissipative, there would be loss into the walls

considered and the field would be distorted by the two side

walls y = 0 and y = a. This effect of the side walls is of

secondary order and will not be considered. The power

loss per unit area of H -wave is given by Eq. 4.17. Since

the two waves behave exactly in the same way we may obtain

the power loss of the Ho,m-wave per sq. cm. of the walls

z = 0 and z = b, by substituting the constant into Eq. A.l7.

Multiplying it by an area 2a, we have the total loss (A)
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Loss (A) =B' per cm length of the pipe

2.6

(B) Loss into walls y = 0 and y = a

The fields of the HO,,A -wave between the side

walls y = 0 and y = a may be resolved into the form of parall-

el-plane wave by spliting the sine and cosine functions of

z into exponentials ts follows:
*vMn7C

= -e eZ

Z -e -;~

Substituting them into Eq. 2.3, we may aeparate the Eq. 2.3

into two groups of expressions characterized by different

exponentials as follows:

Group 1.

Group 2.

BZ
H-i = e Ce x-9 z

9 2 m e

HB = X MEeH z =-- e be

2 rn 7r

2 eb

a 40 e Wb 2

2 mir

2.7a

)

) 2.?b
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per em. length of the pipe.

sin ( ) -- 2 -e

L(Cat -tax +
a



The first group travels

with directional cosine

cos 6. - ,

where K=f

and the second group tr

respect to X-axis. Let

tate the XZ-plane by an

coincides with the dire

x= x' co

Z = X '

Substituting these x an

H and Hz into EH 1 , a

that

9

0

H ,z

These field

in the xt-direction. Si

walls y =0 and y= a W

ctive. When the conduc

the electric field norm,
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in a direction normal to Y-axis

s

cos rz 7r// 2.8

- for the H -wave

avels in a conjugate direction with

us consider the group 1 first. Ro-

angle -Ox, so that the new X'-axis

ction of propagation:

s - Z'Son e,

2.9
n +

d z in Eq. 2.7a, and resolving E ,

nd Hz, by means of Eq. 2.9, we find

e
b

2*10

2 -

s belong to a plane wave traveling

uch a wave can only exist between the

hen the conductor is perfectly condu-

tor is finitely conductive, however,

al to the sufface tends to tilt over

t
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against or toward the direction of propagation by an infi-

nitesimal complex angle. Thus, besides E and Hz , there

will be an Ex, component which causes the power dissipation

into the metal walls.

If we put m = 0 in Eq. A.37, we may see that

the group 1 wave is just a special case of the E -wave for

m = 0 , with equivalent constants tabulated below.

E -wave (m=0) Group 1 of the H o,, -wave

Hg Hz'

E3  - Ei

b

P, .

The power loss per sq. cm. is given by Eq. A.32.

Substituting the equivalent constants of Group 1 of the He, -

wave and multiplying the result by the area 2b , we have

the power loss per am, length of the pipe into the waills

y = 0 amd y = a caused by the Group 1 of H,,, -wave. Since

the behavior of group 2 is exactly the same as thnt of group

1 , except for the direction of propagation, it must cause

same amount of loss. Hence the total loss (B) per cm. of

the pipe into the wall y = 0 and y = a is

_L I12 w 2

Loss (B) = -( ) b )"tper cm of the pipe,

2.11
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The total loss per cm. of the pipe is the sum

of (A) (Eq. 2.6) and (B) (Eq. 2.11)

L+ 2

2Jej2can ,2

The power transmitted along the pipe in the X-

direction is equal to the integral over the cross-section of

the Poyntingts vector in X-direction. Using the E and Hy z
of Eq. 2. we have

| 4 (M 7)2

The attenuation constant of H,,,, -wave are there-

fore as following.

nepers per cm.
-6 2.12

Attenuation of H,,, -wave in a Rectangular Pipe.

The fields of the H,,11-wave in a non-dissipative

rectangular pipe are given by Eq. 2.1 . The power loss dissi-

pated into the metal, if the walls are finitely conductive

may be divided into two parts: (A) loss into the wall z=O

and z = b and (B) loss into the wall y = 0 and y = a.

(A) Loss into walls z = 0 and z = b

Between the walls z =0 and z =b, x and y are
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tangential to the boundary and z is normal to it. Expressing

Cs(niccos(-y) and sin( n- y) in exponnential forms and sub-aL a
stituting them into Eq. 2.1 , the latter way be split into

two groups according to the exponentials. The expressions

for the group 1 are:

H os (az) e

Group 1 t 2. 3
2 K

The expressions for the group 2 are the same as those of

group 1 except for th1 replacing of by ~ The
a a

group 1 wave propagates parallel to the XY-plane, having

the directional cosines

Coso, = co60 =- 4 2.14

and the group 2 wave travels in the conjugate direction with

respect to X-axis. We shall consider the group 1 wave only.

Rotating the XY-plane through an angle -e
x

by using Eq. 2.9 into the new Cartesian coordinates (x',

y' and z ) such that the direction of propagation coincides

with X'-axis, the component fields become
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Subgroup Bc ( )

H - BT .(~

Subgroup EHs (n z') 2.156

where
B L4/qm bk

2 j3+-iaK

--O X(+)L

After the rotation of XY-plane, the fields be-

come independent of the variable y' . It is shown in the

Apperdix that under such condition, the Maxwell Equations

fall into two independent groups, defined as the H -wave

and the E -waves. Thus, we may separate Eq. 2.15 into two

subgroup as indic ated. The subgroup H cons is ts of three

component fields, Ey, , H,, and Hz and the subgroup E con-

sists of three other component fields H , E, and Ez

Sub-group H

Comparing the Eq 2.15a with Eq. A.26, shows

that the two are similar with the following correspon-

ding terms:
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H -wave Subgroup H
g

B9

Both waves are for non-dissipative case. If the walls are

dissipative, the loss of the H -wave is given by Eq. A.l.

The power loss per cm. of pipe at tI# walls z = 0 and z = b

caused by the subgroup H of group 1 may be obtained by sub-

stituting the constants into Eq. A.17 and multiplying the

results by the area 2a

4 2.16

Sub-group -E

Except for the following tabulated constants,

the subgroup -E-wave (Eq. 2.15b) and the E -wave (Eq. A.37)

are identical.

E -wave Subgroup E
g

rn~r n Tr

Substituting the corresponding constants of subgroup E

wave into Eq. A.32 and multiplying the result by the area

2a , we have the power loss per cm of pipe at walls z = 0
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and z = b caused by the subiogroup E is following.

)7T2 j<4

4 K2' + 2*17

The total loss caused by group 1 is the sum

of losses caused by the subgroup H and subgroup E. Since

the group 2 wave differs from group 1 wave only in the

direction of propagation and otherwise they are same, the

group 2 wave must have the same amount of loss as group 1

wave. Hence the total loss (A) into the wall z = 0 and

z =b is

2 I 2.18

(B) Loss into the wall y =0 andy= a

By changing the constantsn, M., a, and b of Eq.

2.18into m, n, b and a respectively, we have the total po-

wer loss into the walls y = 0 ard y =b

2 + (J) 2.19

The total power loss into four walls per cm.

of the pipe is

L~~ 1j if4b + 2 I'
L 2 2''



27r/4- f )_ _

cr/4 b
nepers per cm.

2.21

Attenuation of the E ,, -wave in Rectangular Pipe

The precedure for the calculation of attenua-

tion constant the Enm-wave is the same as that for the

H ,, -wave. In the following, the results at various stages

will be given without detail explanation.

The field expressions for the E ,,,-wave are gi-

ven by Eq. 2.4 . Consider the loss into walls z = 0 and

z = b.By replacing the cos( nl y) and sin( y) bya a
exponentials and separating the fields into two groups

according to the exponentials, the fields of the group 1

- 39 -

The power transmitted through the pipe is cal-

culated from the field expressions of non-dissipative pipe

(Eq. 2.1 )

s=±~ JH -~~ d, dz
KO 2

The attenuation constant of Hn,,-wave is

I L

2.20
For a square pipe and n = m
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wave are

B !.. ( z) f(lt-fr

8 sin ( )e .t-x-

j3 cos~ ("L Z)eL(wt -/ r

2. #;bz'G

2 K b 2*22

-B S n rb7~ got 4 3X

H$= 0

The field expressions of the group 2 wave are

the same except for the change of A and into -A and

- nit . The group 1 wave travels in a direction parallel

to the z 0 arx z= b walls and with the directional co-

sines:

niT/oC7s 1 2.23

Rotate the XY-pland through an angle - so that the X'

axis is in the direction of propagation. The fields in the

new system of coordinates are

t +
Subgroup H Hg =3, CO'S(- Z) e.24
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Subgroup E: , =r c) e 2.24b

where E.. CBs 
X')

2.

and B2B -- ~-
Ba 7 ~

2 N.

The fields are separated into two sulOgroups as indicated.

By comparing the constants in above equations with those

in Eq. A.36 abd A.27 , the total power loss for Group 1

may be determined by means of Eq A.32 and subsequent sum-

mations. The group 2 wave causes exactly the same amount

of loss. Thus,

Total loss/cm. of pipe on walls z = 0 and z = b is

2 a b 2

Similarly, the total loss/ cm of pipe on walls y = 0 and

y =a is

2 K. 0 -

The total power loss per cm. of pipe on four walls is

2 K

The power transmitted through the pipe is

S K..

= a2



The attenuation constant is equal to

For a square pipe and n-m,

22

nepers per em.
2.25

nepers per cm.
2.26

General Discussion

The expressions for attenuation constants

(Eq. 2.12, 2.20 and 2.25) caused by the absorpsion by

conductor have been arranged in three factors. The first

factor for all waves

2 7rL C 2 7 r/wF
ffTAA A-1 *

2.27

depends only upon the electric and magnetic properties

of the materials. The attenuation is inversely proportion-

al to the square root of the conductivity of the conductor.

Were the conductivity infinitely great, the wave would

be unattenuated. The permeabilities of most dielectrics

are arroundiunityin e.m.U. Metals of high permeability and

dielectrics of high dielectric constant would be useful in

the experiment of testing the attenuation, since a shorter

pipe may be used to give measurable attenuation than the

- 42 -
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materials of low permeability or dielectric constant.

The second factor depends upon the order

(m or n) of harmonic and one of the linear dimensions of

the cross-section of the pipe. For waves of constant

n/m in pipes of constant a/b , the attenuation is pro-

portional to the square root of m and inversely propor-

tional to the three-halves power of the linear dimension.

Thus for a given pipe, the E2,2 -wave has an attenuation

V2 time as great as the E , -wave.

The remaining factor depends upon the ratio

n/m , a/b, and f/f, of the waves and pipes. The expre-

ssions are different for the H 4,-, H ,,,,- and E m,,-waves

and will be discussed separately. This factor will be ab-

breviated as F hereafter.

H ,,,-wave

The factor F for HO,, -wave is

F- 2, 2.28

At the critical frequency, tle attenuation of the H0  -

wave like all other hollow-pipe waves, is infinity. How-

ever, above the critical frequency, the denominator in-

creases rapidly to unity. At sufficiently high frequency,

the two terms of F behave in opposite ways. The first
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term decreases with the increase of frequency and vanishes

at infinitely high frequency. The second term is proportion-

al to the square root of frequency, and therefore is res-

ponsible for the attenuation of the H0, -wave at high fre-

quencies. This term is caused by the dissipation of power

into the walls y = 0 and y = a, where there is a transver-

sal component of magnetic field tangential to the two walls.

If the pipe is degenerated by moving the two

walls to infinity; the ratio b/a becomes negligible, and

the factor F becomes

F 4 (L2.29

and at sufficient high frequency, F= ( - The atten-

uation decreases with increasing frequency. A similar

phenomenon for the H. -wave in a circular pipe has been

discovered by Carson and his co-workers. The general dis-

cussion of this type of attenuation is defered to the end

of the next chapter.

Brillouin has pointed out in his paper that

the peculiar property of attenuation such as possessed by

the H.-wave in a circular pipe is attributed to the symme-

trical cross-section like a circle or a square. Then he

proceeded to constyut the wave of similar properties in

a square pipe by superposing a H.a -wave and a H2, -wave

together. Although a part of configuration of the result-

ant field is similar to that of the H.-wave (Fodtnotep.3)
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the constructed wave does not posseds: the peculiar property

of the H.-wave. We may judge from the general field expres-

sions of the Hom-waves, that the H,. -wave has two transver-

se' fields E and Hz and that the H 2 -wave has two other

transverse-. fields Ez and Hy. A linear superposition by no

means eliminates any particular component of field. The

magnetic field Hy of the H,.2 -wave will cause the same

amount of less on the walls y = 0 and y = a whether the

H,,-wave is present or not. The attenuation of the constru-

cted wave is judt the same as that of the H,.2 - or H zO -

wave. The wave in rectangular pipe similar to the H0 -wave

of circular pipe, is the degenerate H.,,-wave or the H -wave

so far as the attenuation is concerned.

By equating to zero the derivative of the

factor F with respect to f, we find that for a given

pipe, the H.,,m-wave has a minimum attenuation at the

pptimum frequency

({ + + 9 (a; 4 + - 2.30

For a square pipe, this ratio is 2.96. If the dimension a

is extended to infinity, the ratio becomes infinity, i.e.,

the attenuation always decrease with the increase of fre-

quency. In Rig. 2.3, thejurves show the variation of cri-

tical and optimum wave lengths with the ratio a/b , for

the H ,,, -wave.

Perhaps the most reasonable comparison of
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Fig. 2.5 II -wavz: in air--filed Copper Pipe of
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Fig. 2.6 H -wave in Air-filied Copper Pipe
o,i

of Optimum si/b ratio = l.18
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rectangular pipes is one in which the shape is changed, but

keeping the periphery and so also the amount of metal used

in the construction and the cost at some constant value, while

the range of the frequency is disregarded. To obtain the

most favorable ratio of a/b, for pipes of constant periphery,

the optimum attenuation constant in arbitrary units, of pipes,

having a + b = Constant, are plotted against the ratio a
a+b

in Fig. 2.4. The curve is faily flat around a = .5 .

The most favorable ratio of a/b is found to be 1.18. Of

course this value is not very critical. In Fig. 2.5, the

attenuation constant of the H ,,-wave is plotted against

the operating frequency for pipes having a = .25,.5,

1,1.18,2 and 4, the periphery being 40 cm. for all pipes.

From these curves, we may see that for a square pipe, the

optimum attenuation is only 1% greater than for the pipe

of ratio 1.175, however, the corresponding wave length is

greater by 17%. While the generation of ultra-high fre-

quency power is still in the experimental stage, pipes having

ratio a - =1 or even smaller may be the most economicalb

ones. We may also see that the larger the ratio a/b the

flatter the curve.

Fig. 2.6 shows the optimum attenuation, cri-

tical wave enough, and optimum wave length of H , -waves,

in pipes having ratio -b- = 1.18 and variable periphery.
-3/

It indicates the part which the factor b plays in the

expression for attenuation.
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H n.m -wave

The factor F of the attenuation constant for

the H,.,- wave in a rectangular pipe is the following:

FM 2.31

For a square pipe, a = b and n = m, it is

F foi ~;~+) 2.32

If n = m, a square pipe has a lower attenua-

tion constant for the Hrma than pipes having other

ratio of a/b but the same periphery. This fact is attri-

butable to symmetry, By comparing expression Eq. 2.32

with expression Eq. 2.28, in which a/b is put equal to

unity, we see that in a square pipe, the H I,-wave of

n = m always has greater attenuation than the Ho,,-wave.

At sufficiently high frequency, the ratio of the two is

2.83 for same frequency. The H ,,,--wave has 5 time higher

critical frequency than the H o,,-wave. The minimum atten-

uation of H n,r-wave occurs in a square pipe and n = m,

when 2.415

If one set of the opposite walls of the rec-

tangular pipe is moved to negative and positive infinity,

that is,a/b or b/a equal to infinity, then within a finitV



-52-

portion of the cross-section the Hn,,,-waves are degenerated
ne

into the degerate HO,, -wave, and have the same anomalous

attenuation function (Eq. 2.29).

E ,, -wave

The factor F of the attenuation constant for

the E,,, -wave in a rectangular pipe has only a single term

as follows

(i+ (&fZ( f)Zj /J -(f'/4 , 2.33

Unlike the H 0,-wave or the H ,,, -wave, the attenuation of

the Enrn-wave consists of only a single term and therefore
ut

there is no possibly for obtaining a decreacing attenuation

with increasing frequency by degenerating the shape of the

pipe. For a given pipe, the minimum attenuation occurs at

.= 3.
For a square pipe of = 1 and n = m, the

factor F becomes

F2.34

It has a lower attenuation than pipes having other value

of the ratio a/b and same periphery. It may be recognized

that it is the same as the first term of F for the H ,n -

wave in a square pipe. At sufficiently high frequency,
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the two will have same attenuation which is 2.83 times

greater than that of the H.,,4-wave for same frequency.

In Fig. 2.7 are shown curves of attenuation

constant vs. frequency for the three lowest order waves

the Hea -, H I - and EJ in an air filled square pipe of

copper, 10 cm. on a side. For these cases, we find the

following values:

Table 2.1

Wave type He_ H 1 E',

Critical freq.(c.p.s.) 1.5x109  2.12x109  2.12x109
Freq.for min.atten.(c.p.s.) 4.44xl0* 5.18x109  3.67x10 9

Min. atten. db./mile 8.55 18.1 14.6

Comparison of Attenuations in Square and Cicular Pipes

The expressions for attenuation constants for

different types of waves in a circular pipe 4ave been

presented by Carson, Mead, and Schelkunoff and for the

EO-wave by Prof. Barrow. All these values have been check-

ed in Chapter III by degenerating an elliptical pipe into

a circular one. Those expressions are rewritten here in

terms of a square pipe b.centimeters on a side having the

same periphery:

E. -wave
.32

4 -wave

ot =1K b 2 1.081
i -I *
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Fig. 2.7 For a Squacre Air-filled Copper

Pipe a = b = 10cm.

H-wave

h wave
l0

-4

.H

.H-

S16-

O'

8

4

01
0 2 4 6 8 10 12 1l

9
Frequency in 10' cycles per sec.
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H0 -wave

1 1.087 2.35
N1 -(j't

H -wave
3 (f./g )N + 0. 419(9 )

bc-K o.753(f/Y .9(fa'

OL - (-

where 2nrte

Except for the H0-wave in circular pipe, whose

attenuation decreases with increasing frequency, the atten-

uation in a circular pipe passes through a minimum value.

The following table shows the relative magnitudes of the

minimum attenuations, the critical wave lengths, and the

optimum wave lenghtB, for waves in circular and square

pipes of equal peripheries.

Table 2.2

Shape of Wave ab Critical Wave length for
pipe type g Wave length/b min. atten./b

H 0.597 2.174 0.690
ir i E 1.203 1.622 0.960cross-section o 1.518 1.041 0.602

E_1_518_1_041_0*102

H 1.12 2.00 0.676
rsuaeH' 2.375 1.414 0.579Cross-section E', 1.917 1.414 0.817

For air-filled copper pipe

On the basis of attenuation, none of the waves

in a square pipe is as good as the corresponding wave in

a circular pipe. The H0-wave requires an excessively high

operating frequency for sufficiently low attenuation. Al-

though, the critical wave length of the H 1 -wave, which is

the longest of all, is only a little above that for the
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H0, 1-wave, the attenuation of the H -wave is less than one

half of that of the H -wave in a square type. Unless the

generation of very high frequency power is made commercially

possible, it would appear that the Hrwave in a circular pipe

is the most promising one for hollow pipe transmission for

longdistances. On the other hand, the H -wave in a square

or rectangular pipe will,beceause of its pppropriate field

pattern, probably find early application to radiation pro-

blems.

Attenuation Caused by the Conductivity of Dielectric

Consider a cylindrical pipe of any geometrical

cross-section. The conductor is assumed to have infinitely

large conductivity. For all types of waves, the propagation

constant h is determined from the expression

k2 + h2 = k2
0

where k is the wave constant aid is equal to -ioU(ist + a-)

and k is the critical wave constant corresponding to the cri-

tical frequency and is a real quantity for a perfect conduc-

ting pipe. We may write k as OVZ-/7 . Thus,

h = io/&f - iOgt-

=iV&Lm-(a ~j- i) 2*36
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Expanding the square root by the B-inomial Theorem, and

neglecting high order terms of a' , we have

h= 1 + o

f . 2.

The real part

f

oL= - 0 ( 2-a) nepers per cm. 2.37

This expression is valid for all types of hollow pipe waves

if the appropriate value of critical frequency fo is used.

At tI critical frequency, the attenuation caused by the

conductivity of the dielectric is infinitely great but it

decreases rapidly with increasing frequency, and approaches

a constant value 2 . Such a variation is shown in

Fig. 2.8.

This phenomenon may be explained pictorially
and particularly

for the waves in a rectangular pipe,for the H -wave.
oym

We have learned while calculating the loss of the H -

wave into the walls y = 0 and y = a, that the wave may be

resolved into components waves traveling in a direction

at an angle e with the X-axis which is the longitudinal

axis of the pipe

cose'
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Although the apparent distance traveled by the

wave along the pipe is a x, the actual distance travels by

its component waves ia a x/cosex . Since the component

waves are equevalent to plane waves traveling in free space,

their attenuation caused by the conductivity of the dielectric

is given by . The expression 2.37 may be obtained by

multiplying by the ratio of the distance actually

traveled to the distance apparently travel&d along the pipe.

Summary of Equations

Non-dissipative Case

Fields in the dielectric:

Hn m-waves

HB Co CS(Mi

K: a _o

H2  B J -T -Ilr itX

9 Co z) S ~r C

a2 -aL(it/F

-S in-oQ7rZ

Eb z=z

2.1
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H -waves

Erm 7T

cos ( z)

sin ( -gz) e

Sin ( z -

E nmwaves

Si;,,{ ysins f z)

j " rCos (21 ) sin( e) e o -3

-B si m{ j ) Cos( Z)e
X. b

' (
HIz

In ( y9 )

'*5(Os )

L(<et - p )

t-{3")

2.3

=B

H- C

2,4

e z(4t- %

Cos( z)e

to (Qz) e
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The constants for above three types of waves:

Phase constant:

}3- b ) G A ~ f 1 2 .5a

Critical frequency

- (n)2 + ( )2

Critical wave length:

2.5b

2.5cA = 2 ( ( ) + (W

Dissipative Case

The attenuation constants of the waves inside

the rectangular pipe caused by the finite conductivity of

the metal(the dielectric is assumed absolutely non-con-

ductive):

H -waves

o___ ' Y 2) + - (

cr,~A4 -p

2.12

nepers per cm.

H n-,waves

---------- -~ bA;
c,(~~~~~~~ zJ~A i __________7; _k f 1 (.)

(ba~n)
2020

nepers per cm.
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E -waves

2,25

nepers per cm.

LX 41+($ ( -")2) ( f/f.o

+($$ ) ] M 4

For a square pipe a = b and n = m:

H -waves

27 'y4 c Tj( 0)4 + (f'/f)4

H (-f +2

2k = ;
jETrI 4:M: b3'

Hn -~waves

''m

nepers per am.

2.21
nepers per cm.

E -waves

S-(f/ ) 2.26

nepers per cm,

The Attenuation constant of waves inside any

hollow-pipe, caused by the conductivity of the dielectric

(the conductor is assumed absolutely conductive)

0(4y )2I~iY) nepers per cm.
2 *37
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We will now consider waves in elliptical con-

ducting pipes, i.e., pipes the inner boundary of which forms

an elliptical cylinder. Inside the pipes, the space is fill-

ed with a dielectric, which is assumed to be a perfect in-

sulator throughout this chapter. The effects of a small con-

ductivity of the dielectric have been discussed in the last

chapter. The conductor may be either non-dissipative or it

may have a finite but large conductivity. In either case,

the conductor is assumed to be thick enough to prevent the

currents from reaching the outside surface. A perspective

view of such a pipe is shown in Fig. 3.1.

Maxwell and Wave Equations

In dealing with waves in elliptical pipes , we

use the elliptical coordinate system (x,g , 7). They are

defined in terms of a Cartesian system by the equations:

x =x

y q cosht cos7 3.1

z q sinh gsin7,

The contour lines of constant 9 are confocal ellipses, and

those of constant i as confocal hyperbolae as shown in Fig.

III. TRANSMISSION CHARACTERISTICS

OF WAVES IN ELLIPTICAL PIPES
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Fig. 3.1

Z gooQ

Fla. 3.2

15

0
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of
3.2. The constants q is the one-half the distance between

the foci. For large values of , cosh sinh E, the ellip-

tical coordinates reduce to polar coordinates. For this rea-

son, T may be referred to as the radial variable and q as

the angular variable.

We may make one of the confocal ellipses coin-

cide with the inner boundary of the elliptical pipe. At

the boundary, -= '.. The major axis of the boundary ellipse

is qcosh E. and the minor axis is q sinh'%. The eccentricity

e of the boundary ellipse is d efined as the reciprocal of

cosh ,

We shall confine our interest to waves having

simple sinusoidal time variations and a propagation in the

positive x-direction along the axis. In complex represent-

ation, the wave functions inside the pipe are multiplied by

iw~t - hx
the factor e . The propagation constant h = L+ i

is to be determined from the boundary conditions.

The Maxwell equations in elliptical coordinates

are as follows:

V x H = l ($ h,)~(Sat $ *{(N)

+ g E + + 6XE.) 3.2a

hl xE3 -, L" CJ, + j +± CX Eti~

+ H+ 32

where i5,, i,, and i are three orthogonal unit vectors in

the direction of g,, Y and x. The variable q, is defined as:
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gj=a- = qVsinh",_ + sin">7 3.3
grad1, grad I

Equating the three vectorial components of the two equations

gives the six equations:

+ I ) 3.4a

-E 2.u + __j

~t + , 3.4b
( + C'w F (.)1-1 ..1( H >).4+ ~ ~ 2 X'L I.-___ - ____3.4c

- -H + h E 34S"+3.4d

- H + 3.4e

- 21 i HX __ 3*4f

It is more convenient to solve for the transverse&. co.mponents

Et, E,, Heand H, in terms of the longitudinal components, Ex

and H Thus in place of Eq. 3.4a, 3,4b, 3.4d and 3.4e, we

have,

cs. (4 h" )E ..- h -Cp *3.4a'

is (+ h) E -h + - tX 3.4bt

c(K4 * )Mg "(oia) - - h -_ 3.4d'

K, (i' + h") Ht W-(<r ) -EA h __ 3.4e'

where k is the wave constant.

To find the wave equation for E , we take the

partial derivative of Eq. 3.4d' and 3.4e' with respect to 1,

and I respectively, and substitute the results into Eq. 3.4c.

We have:

L + + (X + ) FX =0 3.5a

Similarly, by manipulating Eq. 3.4a', 3.4b' and 3.4, we

have the wave equation for H :
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21+ 3± W(aJZl)X=

p%2 20 - 3.5b

The two wave equations for the longitudinal components of

fields have the same form. The wave equations for the tran-

sverseL field may be similarly obtained but have different

forms. Solution of the equation requires a separation of

the variable. Let

E = F (,) G() e

and use the value of qin Eq. 3.3. Substitute both into

6
Eq. 3.5a, and separate the variable4

(.~ 4(ht ~JFZ) 03.6a

S +(h K;L)j C5,(l - *6

where g is the separation constant. Equation 3.6b is called

the Mathieu Equation and Eq. 3.6a the associate Mathieu Equa-

tion; their solutions are known as Mathieu Functions. All

the equations thus far derived are valid in the dielectric

and in the conductor.

Waves in Non-dissipative Elliptical Pipes

If the conductor has perfect conductivity, no

energy may penetrate the wall. The boundary conditions re-

quire simply that the electric field intensity tangential to

the boundary must vanish at the boundary. Since the dielec-

tric is assumed to be a perfect insulator, the waves propa-

gates through the pipe without attenuation. Therefore the
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real part of the propagation constant h is zero. The solutions

of the wave equations 3.5a and 3.5b are then as follows:

E X (B, Se,() Re,(X) + So,,(') Ren(g)) e 3.7a

HA= [ B,Se,, (1) Re,() + Ba5a, () Ro,(Ig) eo 3.7b

where B1 and B2 are constants, taking care of the phases and

amplitudes of the wave; Sen and Son are the even and odd an-

gular Mathieu Functions, Ren and Ron are the radial Mathieu

Functions of the first kind and nth order, and n is a posi-

tive integer. Both Mathieu Functions are functions of (k2 _

j2) q2.

The longitudinal components E and H may exist

at the same time in the pipe, but we shall study the two

simple types: the H-wave, with only transverse electric

field and both longitudinal and transverse magnetic fields;

and the E-wave, with only transverse magnetic field and both

longitudinal and transverse' electric fields.

H-wave

Under the condition that E = 0, the remaining

components may be obtained from Eq. 3.4a', 3.4bt, 3.4d' and

3.4et:
HB s ' (,) ~ ell)

H-I _h__ RenZ(tt-3

Eg B Wt

E ej e pn 4(t-1x
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The primed Mathieu Functions denote their derivative with

respect to y or q. The boundary condition requires that the

tangential component. of electric field E g . 0, where

.is the value for the boundary ellipse. Thus,

Re'

The Re? and Rot are also functions of qvk- , whichn n

is a constant and may be determined from the zeros of the

radial Mathieu Functions for a given type of wave in a given

elliptical pipe. When the operating frequency is so low

that the value qk is equal to the above constant, the phase

constantibis zero. This frequency or wave length is defined

as the critical frequency fo or wave length A., and the cor-

responding wave constant is denoted by ko. Hence, the phase

constant f. of the non-dissipative wave may be deterrined

as:

-~~ K!1.~23

A* 3.9

For wave lengths shorter than N., the propagation constant

is imaginary, and the wave travels unattenuated. For wave

length longer than X., the propagation is purely dissipative

and no travelling wave may exist inside the pipe. The Eq.

3.8 may be simplified by substi tuting ko for

Other propagation properties, such as the wave

length in the tube, the phase velocity and the group velocity
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are the same as they are for waves in pipes of circular or

rectangular cross-section of the same critical wave length

(Eq. 2.5).

Solutions with a zero radial component of the

electric field in the dielectric are generally impossible

in elliptical pipes; only when the cross-section dogener-

ates, into a circle are such solutions possible. For the H-

wave, (E = 0), if E % is to be zero, Eq. 3.4a' requires that

- 0 or H is independent of i . If this were true,

the second derivative in the wave equation would vanish and

leave

(k2 + ho ) q2 sin2  g)

Since g is a constant, namely the separation constant, the

above equality is not true unless both q and g are zero.

The same reasoning may be applied to prove that 0 0 un-

less the pipe is circular.

E-wave

By putting H = 0 in Eq. 3.4af, 3.4b', 3.4d',

and 3.4e', the remaining five components of field intensi-

ties are:

= 8 t(~li3~)Son(~ Ron .1

.n

F_ I I RnL
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H=-B Sen Re e(lot p
so, o

To satisfy the boundary conditions that E and E vanish at

1 ,,, we set Re ) 0

Ro
n

From this relation we are able to solve for V1 j-[ and

determine the critical w'ave length in a way similar to that

used for the H-wave. The phase constant is therefore,

Other properties may be derived from the critical wave length,

being discussed in the section of H-wave. By a similar pro-

cedure, we may prove that none of the five components of

fields may vanish unless the cross-section is a circle,

a degenerate ellipse. The Eq. 3.10 may be simplified by

substituting ko for 1/k" -{3 2

What we have discussed so far are the general

E- and H-waves in elliptical pipes. An H- or E-wave is defined

to be a nth even or odd wave according to whether the solu-

tion of the component field H or E is the evenor odd Ma-x

thieu Function of nth order. A prescript e or o ts used to

indicate the even or odd wave and a subscript n to indicate

the order of the wave. Thus, we have the eHo-, eH1 -, oB1-,

eEo-, eE-, and oEj-waves (read as the "even-E-zero" wave,

etc.). The oo- and the oEo-wavesdo not exist, since there

is no odd Mathieu Function of zero order. Only the six waves

of the lowest orders will be studied. Our investigation will
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also be confined to the first zero of the radial Mathieu

Function for the E-waves and the first zero of the deriva-

tives of the radial Mathieu Functions for the H-waves. No

additional subscript will therefore be used to indicate the

nature of the zeros.

Mathieu Functions

!e shall now review the property of the Mathieu

Functions of the first kind, and of zero and first orders.

The functions in series form as given by Prof. P. M. Morse

in hisunpublished tables are the following:

3.11
5o 1 ( F) F ( Sn +

Re.o Znd

1
Mao

The e and o of Se and So indicate that they are even or odd

functions about = 0. There is no zero odd Mathieu Functions.

When q approaches zero as a limit, the ellipse degenerates

into a circle-all D's vanish, except one with subscript

= n, and the angular Mathieu Functions become the following

trigonometric functions:

,0 Se, ( , ) = COS VI 3.12
cI.40 A
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1La'" So,( "2, A ) =Sn 3.12

The radial Mathieu Functions and the angular ones of equal

order subscripts have the same separation constant. When q

approaches zero, t must be large and qcosh t is the radial

coordinate r of the polar coordinates; and tanh 5 = 1.

Therefore the degenerate'forms of the radial Mathieu Functions

are
L J(Re,, (:r)

X 3.13

Referring to the solution of waves inside the

pipes of circular cross-section, we may consider them as de-

generate cases of ellipticalAwaves. The following table

corelates the wave in pipes of elliptical and circulat cross-

section.

Table 3.1

Waves in degenerated into Waves in
Elliptic Pipe) dCircular Pipe

eE- ---------------------------- EO

eEj 1,---------------------------E
oEi --- -------------------------

eHO - ---- ---- -------------------- Ho

o~I---------------------------- H

That the EO- and the HO-waves in circular pipes have a cir-

cular symmetry is probably the reason why there is only one

corresponding wave for each in pipes of elliptical cross-

section. The higher order waves in circular pipe do not
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have a circular symmetry. The deformation of the circle may

occur along either one of the two axes of symmetry in the

cross-section; therefore, there are two waves for each order

higher than zero in elliptical pipes.

Zeroes of Mathieu Functions

In general, there are n zero between j = 0 and 7r

for the angular Mathieu Function. The following table shows

the location of the zeros of the angular Mathieu Functions

as based upon the series representation.

Table 3.2

Zeros of Angular Mathieu Functions

Angular No. of Zeros between
Mat. Func. 1  0 to 27t

Seo(j) 0 -----

Seo(j) 4 0, , 7r -

Se (q) 2 7r 37r
22 2

b Sel(j) 2 0, 7r

So1 (l) 2 0, 7r

_o_) 7r 3 7r~ S1(~)2 2~* 2

The determination of the critical wave length

depends upon the zeros of radial Mathieu Function at 'E 0.

The functions Rol, Reo and Re, are equal to zero

when V, = 0. The radial Mathieu Functions are periodic. So

S. Goldstein, Trans. Camb. Phil. Soc., Vol. 23, No. 11,
p. 326,, Oct. (1927).---Footnote to next page.
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far, there is no rule for determining their zeros except for

large values of the variable where the asymptotic expressions

may be used! However, for ellipses of not too large eccen-

tricity, the Bessel Function series (Eq. 3.11) converges

rather rapidly, and it would not be too difficult to use

cut-and-try methods and numerical computation. The value of

%. for the zeros depends upon the constant 2 -. In Prof.

Morse's Table,, sets of D's are given for constant values of

21q. Hence a reverse process is required to determine the

size and eccentricity of the elliptical pipe that would fit

the values of q and ,, In Fig. 3.3 are plotted the eccen-

tricities of >, ellipse a' ainst 27r gcosh . The cons-

tant "qcosh9." is the semi-major axis of the ellipse, and .

is the critical wave length. Hence the ratio is equivalent

to 27r-- of circular pipe. For eccentricity = cosh = 0,to co shE =

the ordinates are the roots of the Bessel Functions or their

derivatives.

If we reduce the length of the minor axis (

2q sinh .) of the boundary ellipse of an elliptical pipe gra-

dually to zero, while keep the length of major axis (=2qcosh,

) constant, the Fig. 3.3 represents the variation of the

critical frequency fo with the eccentricity, (since foor- -).

The critical frequencies of all waves, except those of the

eHl-wave, go to infinit* s the ellipse degeneratesinto a

straight line. The critical frequency of eHl-wave remains
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Fig. 3.3 2jeros of Ra,-dial Mathie-u Functions and Their DerivAtives.
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fairly constant and approaches a finite value as the ellipse
as

becomes a line. So farthe critical frequency is conezined,,

this particular type of wave behaves exactly like the Ho,-

wave in rectangular pipes, when the dimension "a" is reduced

to zero while the dimension"b" is kept constant.

It is probably fair to compare the crifical

wave length of waves in elliptical pipes of equal peripheries.

Practically, this is the situation when a circle is deformed

into ellipse by pressing the circle along one of the diame-

tees. The priphery of an ellipse is:

S= Jqi dg J q 1 /sinhwg sin4 ? dr

or
5 2a 3.14

coshy. J 0 N Cosh * .

The left side of Eq. 3.14 is the ratio of the length of peri-

phery to the length of the semi-major axis, and the right

side is an Elliptical Integral, for which, tables are avail-

able. In Fig. 3.4 is plotted the ratio of X against the

eccentricity h of the boundary ellipse. All the
cosh 9.

curves drop to zero at eccentricity = 1, except the curve

for eHl-wave. The latter has a value of -r= 0.84. Under

the similar condition, the ratio X, of the Ho, 1-wave in rec-

tangular pipe is equal to unity.

Field Configuration

In the cross-section of the elliptical pipe,
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Fig. 3.6a

*Eo -wave

----- Magnetic Intensity
Electric Intensity

Fig. 3.6b

eE1 -wave

Fig. 3.60

oR: -wave
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the electric and magnetic field intensities are equal in time

phase. For any one of the simple waves, we may find that

Eg H

That is, the components of electric and magnetic field inten-

sities in the cross-section are always normal to each other.

Since there are longitudinal components of fields, the lines

of force donot necessarily form closedlobe or terminate nor-

mal to the boundary. Ordinary method of flux plotting for

two dimensional electrostatic or magnetic field by forming

squares cannot be applied here.

In the present investigation, an arbitrary el-

lipse is chosen. From its semi-focal length q and the eccen-

2-mq
tricity e, the constant 2 may be determined from Fig.

3.4. Then, the zeros and the directions (whether positive

or negative) of the transverse component fields may be deter-

mined and plotted in the ellipse on separate sheets. By add-

ing these components vectorially, the approximate directions

of the resultant fields must lie between E and E if both

exist, olin the hyperbolic direction if E is zero and so on.

Finally, smooth lines are drawn to link points with constant

changing slope, under the rule that the electric and magnetic

lines are normal to each others. The results are not as ac-

curate as those for square pipes, but serve the purpose.

Fig. 3.5a to Fig. 3.6c show the field distribu-

tions of the first six waves in the cross-section obtained by
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the above method. This particular ellipse has an eccentri-

city = 0.75. A set of field distribution diagrams ofCos t

waves in circular pipe shown ih Southworth's paper may serve

as the degenerate case of the present diagrams.

Referring to Fig. 1 of Southworth's paper, the

so-called even or odd waves correspond to two types of defor-

mation of a circular-pipe wave. If we lengthen the vertical

diameter and shorten the horizontal diameter, the waves are

deformed into the even waves. If the vertical diameter is

shortened and the horizontal diameter lengthened, the results

will be the odd waves. Since the Ho-wave or Eo-wave in a cir-

cular pipe has a perfectly symmetrical field distribution,

there is only one type of deformed wave no matter along what

diameter the cross-section is deformed into ellipse.

The field distribution of the eHo-wave is shown

in Fig. 3.5a. Part of the electric lines form con-center

lobes, and the rest terminate on the boundary. As the eccen-

tricity of the ellipse becomes less, the lobe portion looks

more circular and less electric lines terminate on the boun-

dary. At the same time, the curvatures of the magnetic line's

are gradually straightened up. When the ellipse degenerates

into a circle, all the electric lines become circular and

the magnetic lines become straight radial lines. The vanish-

ing of the electric field normal to the boundary is respon-

sible for the ever-decreasing of attenuation with increasing
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frequency.

For the eBo-wave (Fig. 3.6a) the foci of the

ellipse, in these cross-sectional diagrams, look something

like sinks or sources of the electric lines. Part of the

magnetic lines forms closed lobes around each focus. As the

eccentricity increases, the length between the foci is short-

ened,and such magnetic lines find less space for themselves.

Eventually, such lines vanishes for a circular pipe.

For the Hl-wave in a circular pipe, there are

two corresponding waves in elliptical pipes; because the

field distribution has two lines of symmetry instead of a

single point of symmetry. The lines of forces of the Hi-

wave of a circular pipe are almost parallel. This wave has

the lowest .cut-off frequency. In an elliptical pipe (Fig.

3,5b,c) the lines of forces become more parallel. For the

eHl-wave, the configuration of the magnetic lines become

elongated, while for oH,-wave, the electric lines become

elongated. If we compare the eHi- and the oH-waves with

the Hot,-wave ( 2b) and the H1 ,g-wave (N,=2a) in rectan-

gular pipes (a< b), we may see why for ellipses of constant

periphery, the critical wave length X0of the eH,-wave increases,

and that of the oH,-wave decreases with increasing eccentricity.

For large eccentricity, the magnetic lines of

the eEj-wave (Fig. 3.6b) form closed lobes around each focus.

As the foci are moved nearer to the center, such lobes follow



- 84 -

along until the eccentricity is about 0.7. Then they stay

right there as the foci are moved closer, This phenomena may

be explained mathematically, in that a new zero of ReL appears

between 9 = 0 and X = . when the eccentridity is less than

0.7, which stops the shifting.

The field distribution of the oEj-wave may be

obtained from the eEl-wave b3harrying out a ninety degree ro-

tation of the latter. Both waves have a close resemblance to

the Eo-wave of a circular pipe.

Attenuation of Waves in the Elliptical Pipes

Before calculating the attenuation of waves in

pipes of elliptical cross-section, let us see first what the

difficulties are, so as to justify the necessary approxima-

tions used hereafter. In the problems of circular and rec-

tangular pipes we have learned that,strictly speaking, no

simple E- or H-waves as defined heretofore may exist in a

finitely conducting metal pipe. Instead, all six components

of fields must be present. The same situation prevails in

the present problem. In addition to that, as in the case

of a rectangular pipe , an elliptical pipe does not possess

circular symmetry. The variations of the wave functions

along the two orthogonal coordinatesin the cross-section of

the pipes are all dependent upon the constants of materials



-85-

used and the dimensions of the pipe. Therefore, if inside the

pipe, there were a wave which might be represented by Mathieu

Function of a single order, the wave outside would likely

have to be represented by a infinite series of Mathieu Func-

tions in order that the boundary conditions might be satisfied.

Fortunately, the conductivities of the ordinary

commercial metals likely to be used for hollow pipes are so

very large, though not infinite, that we are able to use the

two following approximations: (1) The field inside the pipe

is not appreciably effected by the imperfect conductivity,

so that the fields inside the pipe remain essentially one of

the types considered before, but very slightly modified. (2)

In the conductor, the asymptotic forms of the wave functions

for large values of Y may be used.

Since the wave can only penetrate the conductor

by an infinitesimal distance, we may limit our investigation

to the region of the conductor in the immediate neighborhood

of the boundary. The dielectric is assumed to be a perfect

insulator. The metallic wall is assumed to be thick enough

to dissipate all the energy penetrating from the interior.

An H-wave or an E-wave in a dissipative hollow

pipe may be defined as one, which would degenerat 'into the

H-wave or the E-wave of non-dissipative pipe, were the con-

ductivity of the conducting wall to become infinitely large.

Eq. 3.8 and 3.10 for the fields in the non-dissipative ellip-
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tical pipe will be used with necessary modifications for the

fields in the dielectric portion of the dissipative pipe.

The Maxwell equations and the wave equations for

the longitudinal components of fields, Ht and Et, in the

metal are as in Eq. 3.4 and 3.5. The constant iet' may be

neglected. The wave functions and constants in the conductor

ar rimed to differentiate them lose in the dielectric.

Since the propagation constant h of all the waves in the X-

direction must be the same in both the conductor and the di-

electric, it is negligible as compared to the wave constant

k' of the conductor. Hence

kta + ha 5t k' 2 .

The wave equations of 1 or H, after separating the variables,X x

become [ + ( sinhZ) + 9) H, 0

S +in X 2 +3 . 1 5

81 L4(~;y -)4

The solution of H' or E' will be of the formx x
(tt 3.16

(K~ e

where Re* are the even radial Mathieu Functions of the fourth
m

kind, and ip is the approximate value of the propagation con-

stant h. Of course, there is a similar solution of odd Ma-

thieu Functions.

Prof. Stratton' has treated the radial Mathieu

Functions of fourth kind, which for the even functions are

defined as Re' = R1 - iRe2 .
m M m

'J.A.Stratton, Proc. Nat. Acad. of Sciences, Vol.21,No.1,
pp. 51-62, Jan. (1935), and No. 6, pp. 316-321, June
(1935).
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Thqe#ponentials/denote the, kinds of Mathieu Function. The

asymptotic forms for large k'qcosh4 are

Rem ( K'S c ) es c(K'cposh n -cor)

4

and therefore,

Re (K'Cosh ) e 3.17

Then HI or EB for the even waves are as following:x x
-i f (wt -p~x - x'S cosh % ~ n(K cosh ) 4 A

=' (K'cos h ) e T("--*,, 3.18

The factor Ten(k'q, g) represents the summation and is only

a function of i and k'q. B' is a new constant.

H-wave

Inside a finitely conducting pipe, the electric

fields tangential to the boundary no longer vanish at the

boundary, but they have a very small amplitude. The tangent-

ial magnetic fields, H, and H , which do not vanish at the

boundary in the case of perfect conductivity, are not appre-

ciably affected by the finite conductivity. Hence, we may

select from Eq. 3.8, for the even H-waves:

HN X B Ren( SeC(,)e t

H T B - R 3.19

In the conductor, assume that,

HN mS( Ki cosh ) 2e LTen 3.20
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i (o P j oh32
Hi =c'(K x sh ) e Te( 3.21

where Te' is the derivative of Ten with respect to l . Thenn

Htq in this form may be proven to satisfy its own wave equa-

tion.

Equate the H to H', the tangential magnetic
x x

intensities at the boundary 4 = E., and solve for B':

A' B Ren ( )V qcosh, e . n(
n ni*

Since Sen(1) and Ten( ) are only functions of I while the

remaining factors are not, the ratio must be equalTe n) must b

to a constant. We may arbitrary set the ratio equal to unity

since the amplitude of Ten (1) so far is not definite-. The

angular Mathieu Function in the metal is the same as that

in the dielectric. Consequently, TeA(I) = SeA(j) and

31= BRen k) / sh . e ikqcosh1* 3.22

Equate the H, and Ht)1 , the tangential magnetic

intensity at the boundary E = %., and solve for Ct:

C' = -3-- Re (.) co 3.23
qikO n

With known H'I and HI, , the remaining tangential

electric field in the metal may be found by Eq. 3.4a',bt, c'

and d'. The four tangential components of fIld in the metal

near the boundary are as follows:

e3 Rjt-cKj(X. )oh~)

n4 n
Re,, /3.24
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- 'cosh ))
E' = B Re,, (E)Sen9Q *e____V Cosh~

At the boundary =

H i' = B Ren ( e,) Ge,,(I) e(Wt..,,I

EX' / B ' Re, ( g) Sp.' t -/ % I

H' - - -
1,K.

3*25

The longitudinal component of electric intensity Et does not

the
really vanish in Adissipative pipes.

The loss per unit area, dissipated into the metal

at the boundary is:

-L - Ex 14' +

- J-ii~' 181
2~J~ 0~' fP h V + 1 ,5 ni . (Se " (I plxI/

Obtain the total power loss per unit length of the tube,

L = : (o108/ cmaJ q, dI dx

=- $N[e,() , + cSinh .N, I

where M = [Se( d)
n fo isn

Nn = n [e d

The total power transmitted through the pipe:

S = 1
Vr

fo
4

2 2 K .

-E H
q 4Y73

gi d dj

I

3.26

3.27a

3.*28

Re, ( ,)Se', (1) e' -e
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The attenuation constant Is therefore,

sin-

(( 4) (-tn- K2_ qasngE - 1 )(lo J, ( 2

V, nepers per am.

Similarly, we may prove that for the odd H A-waves, the atten-

uation constant is

(Jog)i +~ *( g' (yj,]d nepers/om3. 22K2

where M1 = [So ( d
3.27b

N = S { Sn " dy(

29a

9b

E-wave

The attenuation of the E-wave may be calculated

in a similar way as for the H-wave. The even wave wil[e con-

sidered first. The component fields for the non-dissipative

case are given by Eq. 3.10. Out of the five componentsthere

is only one tangential magnetic field H * which does not vanish

at the boundary. Since the magnitude and phase of H is only

slightly affected by the finite conductivity, the boundary
be

condition is that the Ht in the conductor mustgequal to it.

From Eq. 3.10, for even waves, we have:

H = i Re (p,) Sen e - 3.10
Ind qtk n n e

Inside the metal, the longitudinal electric

3K
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field is:

E = B' Te e i(wt - px -X'qcoshI) 3.30a
1/k'qcosh

The longitudinal magnetic field HI, if any, has a magnitude

of infinitesimal order. From El and by Eq. 3.4bt, el, Htx

may be found as follows:

, 'P Wa'sn ( C( t -3X .- K' cash (=8 2-- e Te, e s3.30b

Equate HI and H at the boundary ' , and solve for A':

B = - a 0j Csosh' eK lssIh t. Te.OQ 3.31

The ratio must be equal to a constant. Let it beTe nUV

equal to unity. Thus, Sen ( ) Ten ( ) and consequently,

Set ( ) ) = Tel (

In the metal and near the boundary:

- Go 
3.30

I3a Re* i(t.) S.(,)Sl~~C~h

At the boundary:

4 - 8 F

, tet et - 3.32

The loss per aquare centimeter into the conductor at its

boundary is:

I E

2/- 
C' -- T

X~2T K

- IhI1 4 /~~z is
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The total power loss into the metal per cm2 of the tube:

L = less /crnz) , d1 dx

- Be i n 33

The total power transmitted through the pipe is

obtained by calculating the Poynting Vector in axial direc-

tion, using fields inside a non-dissipative pipe,

S f AJJ A . cgd
-8 6E Jen (Ml(9) 1'4jcd 3.34

The attenuation constant, in nepers per am. is,
1 L
2 S

Y'.4 2.-' ~ 3.35a

Similarly the attenuation constant of the odd En -wave may be

found to be:

' T (i/ 0 )'2 [_____ ,',____,, R __]2

The problem confronting us is how to evaluate

these integrals, Mn, Nn, etc. The value of Nn and N' for

different angular Mathieu Functions of various value of kq

has been calculated by Prof. Morse in his Table. By differ-

entiating the angular Mathieu Function in its series form,

we have,

Ser' (E 2 n 0 = -2mD's (2~ r
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in no. + 2n

Sjo; ( , Z (Zn o (2n+ 1) 3s(2 +6

The integral of their square from 0 to 2 or from IEto -*x are

therefore,
ILr

M f 7. Se') E (32
0mtD

M: f [So 2 r.((m1i~

Based upon the above three series, M's are cal-

culated. In Fig. 3.7, the ratio 's are plotted. For a

circle, q = 0, M0  is zero and = eNo NJ NJ equal unity.

The square of the radial Mathieu Functions or

their derivatives at the boundary 9=t.may be calculated

directly from Prof. Morse's Table. They are plotted in Fig.

3.8.

The analytic method for integration of the squares

of the radial Mathieu Functions or their derivatives has not

been developed yet. In the present investigation, attempts

have been made trying to replace the Bessel Functions in Eq.

3.11 by hyperbolic functions and to develop the squares of

these series into series of hyperbolic functions. The latter

would be integrable, but a large number of terms would have

to be used because the series converge slowly. Also, an

integration of the square of Eq. 3.11 has been tried, but the

not
products of Bessel Functions are~always integrable.

Finally, it was decided to use a graphical
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Table 3.3

Integration of Square of Radial Mathieu's

Functions and Their Derivatives

Wave ',.2 Rd( d d

eHo 1 2.04 .753 1.163
2 1.36 .2515 1.052
3 1.01 .1042 .991

e H, 1 1.23 .3364 .0458
1.414 .78 .2865 .00645

oH, 1 1.37 .1979 .2474
2 .81 .1009 .3806
3 .56 .0556 .4828

eEo 1 1.57 .718 .745
2 .915 .219 .638
3 .596 .0791 .546

eE, 1 2.03 .513 .712
1.414 1.67 .494 .673
2 1.315 .415 .640

oE, 1 2.045 .315 .438
2 1.37 .1803 .963
3 1.02 .1049 .698
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method. The square of the radial Mathieu Functions and

their derivatives were plotted against , . The areas under

the curves were measured in appropriate units. The results

thus obtained are fairly accurate. In Table 3.3, R represents

the even or odd radial Mathieu Functions.

Degeneration into Circular Pipes

When the ellipse degenerates into a circle, the

expressions for the attenuation constants are still valid.

However, they may be simplified by carrying out the integr-

ations. For a circle,

3.38
qcosh= qsinh = r

The ratio is M = = n2  3.39
n n-

The integral,

or j n )) (dy 4 3.40

appears in all the attenuation constants. By substituting

r for qcoshE and qsinh 1,, letting the radius of the circle

be ro, and using the following equations:

dr

Ren (U) Ro(4 - xy 'r)

where J' (x4r) = J(K,r)

the Eq. 3.40 becomes,
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f ' n 2 J ( K ._ + K .r Jd ( K . ) I

0 &n~~r K, r(r, K~]~L

= ' K. > + x.r'< Kr) 212 K. {Kr) j'(K. r) Kr

3.41

The second term is simply equal to -2nJ2 (kor)j. The first

term is equal to, (by Eq. 16, p.158 McLachlan)

S( , rf (KJO' (K, r.) +(- ) J .(,~r 3.42

This may be expressed in terms of Jn (koro) and J'(koro), and

combined with the second term of Exp. 3.41. The integral is

therefore as follows:

7 ((<.2r _2)J|(x..) + 2 Mar.Jn(K.')J(Kor. + Ki r ( KrJ 3.45

Here, koro is the root of J (kor) = 0 or JI(kor) = 0. For
n n

the H-wave, J'(koro) 0, and for E-wave, J (koro) = 0. The
n n

attenuation constants of circular pipe are reduced to the

form:

H -wave:n

Ok *( (1 - ( ) f[ ) L. ) 3.44

E -wave: n 4 (f ,3. 4

They are the same as given by Carson, Mead and Schelkunoff.

Discussion of Attenuation in Elliptical Pipes

Referring to Eq. 3.27a,b and Eq. 3.35a,b, the

attenuation constants of waves in elliptical pipes consists

of a number of factors; most of them are common to waves in
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pipes of any geometrical shape. The factor - V1nh playsqsinh ply

an important part when the eccentricity of the ellipse ap-

proches unity. The qsinhtis the half length of the minor

axis. The critical frequency fo varies in the opposite way

as the eccentricity except for the eH,-wave, as shown in Fig.

3.4. Since the remaining factors do not approach zero at

unit eccentricity, the attenuation always approaches infi-

nity at unit eccentricity.
as

So far the ratio - is concerned, the atten-

uation constant may be divided into two terms, one prop or-

tional to V/7/fo and the other proportional to (-f 4) at

high frequency. Both terms are equal to infinity at the

critical frequency. At very high frequency, the two terms

behave differently, one approaching infinity and the other

approaching zero as a limit. Only the first terms are sig-

nificant at high frequency. We may trace this term back

and find that it is caused by the angular component of mag-

netic field, and never vanishes unless that component of

field disappears. Only the Ho-wave in the circular pipes

and the H-wave in a degenerated rectangular pipe (referred to

II) satisfy this condition. The angular component of mag-

netic field always exists in an elliptical pipe. For eHo-

wave, this field varies as the eccentricity.

Except for the Ho-wave of a circular pipe, there

is always a ratio f/fo at which the attenuation of a given
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elliptical pipe is minimum. The optimum ratio may be cal-

culated by setting the derivative of the attenuation constant

with respect to the frequency ratio equal to zero. Thus

for all types of E-wave, the optimum ratio is equal to fT/i.
For the H-wave, the optimum ratio is equal to

f - 1 1/

-- (3A + 3 + V9A" + 14A + 9 ) 3.46

where A = j.!n Kj s'i7hzg- I

For eHo-wave, this ratio gets smaller as the eccentricity in-

creases.

As a numerical illustration, let us take a set

of air-f ilbd copper elliptical pipeqof equal peripheries ( s

40 cm.). The attenuation constants are expressed in deci-

bels per mile. Fig. 3.9a to Fig. 3.10c show the curves of

attenuation constants as functions of frequency. Various

curves in same sheet represent different eccentricities.

Unfortunately, all the calculations must be made in a reverse

way, so that the eccentricity is the last item obtained.

Thus, it is quite difficult to interprete these curves quan-

titatively. All the curves rise when the fre&iquency exceeds

the optimum value, except the HO-wave in a circular pipe.

The ecc. =o.256 curve of eHo-wave does not rise again within

the range of the variable shown in the curves, but of course

it will do so for larger values of frequency.

In Fig. 3.11, the minimum attenuation constants

of different waves are plotted as functions of eccentricity
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for the elliptical pipes of equal peripheries ( s = 40 cms.)

regardless of the frequencies used to obtain such attenuation.

Curves for the even waves are plotted on the righthand side

and those for the odd waves on the lefthand side.

The eHo-wave has no minimum attenuation when the

eccentricity is equal to zero. As the eccentricity increases,

the peculiar property of the decreasing attenuation with in-

creasing frequency disappears. The curve has a zero slope

and a zero attenuation at zero eccentricity. It means that

for this degenerate form of the elliptical pipe, the eHo-wave

has a lower attenuation than waves in a pipe of any other geo-

metrical cross-section, though it must be operated at infi-

nitely high frequency. It also indicates that any deform-

ation to the cross-section of circular pipe increases the

attenuation.

The curve for the eEo-wave has also zero slope

at the zero eccentricity, and the curve goes up as the eccen-

tricity. Therefore, it shows that a circular pipe is better

than an elliptical one for the transn'ission of the eEo-wave.

The fields of both the Ho- and the EO-waves have a circular

symmetry for e = 0. This is analogous to the fact that the

H.,1 -wave and the E1 ,1 -wave in a square pipe have lower at-

tenuations than the corresponding waves in a rectancular

pipe having the same periphery.

The eHi- and the oHi-waves both degenerate into



- 108 -

the HI-wave in the circular pipe when the eccentricity be-

comes zero. It has been pointed out that this two waves can

be obtained by degenerating a circular pipe containing the

Hl-wave along two orthogonal diameters of symmetry. The

curve shows a continuous slope ( 0) at zero eccentricity.

It may be recalled that the Ho, 1-wave in a rectangular pipe

with the ratio of the cross-sectional dimensions a--= 1.18b

has a lower attenuation than in a square pipe. Similarly,

the Hi-wave in a circular pipe does not have a circular sym-

metry and any deformation of the circular pipe may decrease

the attenuation. Thus, we find from the curve that the low-

est attenuation for this type of wave exists in pipes with

slight eccentricity, namely the oHi-wave. 'The configuration

of the fields for the oHi-wave shows that the electric line

is nearly parallel to the major axis. (For the Ho,1 -wave

in rectangular pipe, the dimension"a" is parallel to the elec-

tric lines.)

The attenuation of the eEl-wave and the oE,-

wave behaves in a similar way. This time, however, the even

wave has a lower minimum attenuation. This phenomenon may

be similarly explained by the fact that the El-wave in a cir-

cular pipe does not have a circular symmetry.
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Discussion of the Anomalous Attenuation Characteristics

All the waves, which we have investigated in the

last two chapters and also in the appendix, have an atteni

uation increasing with the frequency at sufficiently high

frequencies, except for the Ho-wave in a circular pipe and

the H-wave in a degenerate rectangular pipe (which is equi-

valent to the H -wave between two parallel planes). The
g

anomalous attenuation characteristics of the Ho-wave and the

H -wave may be explained physically by referring to the

problem of light reflection by a finitely conducting mater-

ial. But we must first observe that both the above-named

waves do not have a transverse component of magnetic field

tangential to the conducting surfaces.

Consider a light wave in a dielectric projected

at an angle to the normal of the finitely but highly conduc-

tive metallic surface. The total energy is partly reflected

back to the dielectric and partly absorbed by the conducting

metal. The absorption coefficient of the metal depends upon

the polarization of the light wave. The case that interested

us is that in which the angle of incidence is at or about

900, i.e., the grazing angle. For this angle of incidence,

the absorption coefficient is zero when the wave is so po-

larized that the electric field is normal to the plane of

incidence, that is to say, the wave has no transverse
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magnetic field tangential to the surface. The absorption

coefficient is not zero when the wave is polarized to the

other way, i.e., the magnetic field is normal tolthe plane

of incidence-a transverse field tangential to the surface.

Now let us turn to the hollow pipe waves again.

For a pipe of any cross-section, the phases constant may be

written in the form:

where fo is the critical frequency of the hollow pipe waves.

At f = o, the phase constant 3 approaches the value - - , which

incidentally is the phase constant of a plane wave. The long-

itudinal component fields for a non-dissipative pipe vanish

under this condition. That is to say, at infinitely high

frequencies, the hollow-pipe waves become transverse, tra-

veling in the longitudinal direction of the pipe and parallel

to the wall. If we take an infinitesinal longitudinal slice

of the wall, the situation is reduced to grazing angle case

of light reflection, which we have discussed above. On this

infinitesimal slice of surface, the hollow-pipe waves at in-

finitely high frequency may have a composite polarization or

a simple one. If there is a transverse magnetic field tan-

gential tothe surface, we may predict, in terms of light,

that the absorption eoefficient is not zero, i.e., the loss

into the wall cannot be eliminated. On the other hand, if

there is no transverse magnetic field tangential to the
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surface, the absorption coefficient of the wall is zero, ie.,

there is no loss caused by the metallic wall.

Therefore, we mav conclude that the attenuation

of a wave in any hollow pipe is zero at infinitely high

freauencies if there is no transverse component ofmagnetic

field tangential to any part of the wall or walls. So far

as we have discovered, only the Ho-wave in a circular pipe

and the H-wave in a degenerate rectangular pipe ( bv extending

the dimension 'b' to infinity) satisfy the necessary condition

of the above theorem. For the Ho-wave in a circular pipe, the

absence of that component field is possible on account

of the circular symmetry. For the H-waves in a rectangular

pipe, the re are always transverse components of the magnetic

fields tangential to the:metallic surfaces, but their effect

may be eliminated by extending the dimension 'b' to infinity.

Summary of Equations

Non-dissipative Case

Component fields of the eHn- and oHn-waves:

NH = 8 5, (V'~ -ji

If ~~B Sr $r(1) R. ( L e~-~ .
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E., - p' r o i)e '"
3.8

R'(E) e-6(tt- X)

F x - (

where R represents He and Ro, and S represents Se and So

for the even and the odd waves respectively.

Component fields of the eEn- and OEn-waves:

= 8 ,Sn(1) Rn(r) eL("4tt^)

F'" ( ) e

5'n (y) .( ) e' C(

8q = L -n ( 1,() R'n ()

.x= 0

Dissipative Case

Attenuation constant of the eHn- and the oHn-

waves in an elliptical pipe:

21 sinh ( f
+ (23.29

where 0

n 3.27

tLq3
p K

~43

b4~ L4O~

3.10

l(at-ps)
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zr 2 3.27a

For the Hn-wave in a circular pipe, the attenuation constant

is:

- L* a - )

K ' 3*44

Attenuation constant of the eEn- and the oEn-

wave in an elliptical pipe.

Q( A/f t 2 ~ ()
Nr~w 21inh V,-3.35a

For the En-wave in a circular pipe, the attenuation constant

is:

fK()} 3.45
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IV. RADIATION FROM THE OPEN END

OF A RECTANGULAR PIPE

It is known that an electromagnetic wave with

distributed charge and current density can be represented by

a vector potential A and scalar potential g, which are gen-

erally called Lorentz or retarded potentials. They may be

started by the following expressions:

A = -- u(t-r/c) dv 4.la
47E j r

- p(t-r/c) dv 4.lb

where u is the vector conduction current density and p is

the charge density, both in complex representation. The

electric and magnetic field intensities may be expressed

in terms of the two potentials:

H = curl A

E =-grad 0-CwpA . 4.1c

The two potentials are related to each other by

div .A + b Pf = 0

with this functional relation, the scalar potential may be

eliminated from the field expressions 4.1c.

H = curl A 4.2a

E = -CWfA + grad div A 4.2b

Both A and 9 satisfy the D'Alemberts equation, which for

A is:
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a'A +-A = U $ .

In a region free of conduction current, this equation reduces

to the wave equation.

Inside a hollow pipe of any geometrical form and

of sufficient length, if we set aside the problem of how waves

of different types are produced, it is possible to choose a

vector potential whose divergence is ze'o. The vector elec-

tric field intensity is thus reduced to the form

E = - wA . 4.3

The vector potential can then be calculated readily from the

electric field vector of a hollow-pipe wave.

From Eq.4.3 and the definitions of the E-wave,

and the H-wave, it is apparent that for the E-wave, the vector

potential has both longitudinal and transverse components.

For H-wave, on the other hand, the vector potential has only

transversa. component. The latter fact is particularly sig-

nificant for the Ho0 -waves in rectangular pipes, which may

be produced experimentally by placing an antenna perpendi-

cular to the XZ-plane. The conduction current oscillates in

the antenna, and from Eq. 4.la, we would expect the vector

potential to have the same vertical direction.

For the calculation of the radiation pattern

from the open end of the pipe, it is convenient to represent

the hollow-pipe waves by a single vector potential. From this

vector potential, we are able to calculate the corresponding

vector potential of the radiated wave in the surrounding free



- 116 -

space. The method which we shall use to calculate the

radiation is Huygens' Principle, often used in the calculation

of diffraction problems. The derivation may be found, for ex-

ample, in Forsterling's "Lehrbuch der Optik" pp.224-227.

The general form of the expression is- as following:

A = _ L 44

P 4,4

where A is the vector potential, the one on the left is the

quantity for the point where the fields are to be calculated,

and those on the right are the value over any enclosing sur-

fatre. The radial distance between the point of observation

and the surface is p, and n is the inner normal to the surface;

the time t is replaced by (t-L) to take care of the time

retardation. For a space free of charge and conduction cur-

rent, the volume integral is zero. Eq. 4.4 is only good for

A in Cartesian coordinates. The equation must be modified,

if A is expressed in some other orthogonal coordinate system

since it is a vector function.

We will assume a pipe of rectangular cross-sec-

tion of finite length. It is excited at one end to produce

one or more types of the hollow-pipe waves. The exciting

system is shielded to prevent the radiation of energy direct-

ly into space. The walls of the pipe are so thick that no

energy is able to penetrate them. The only radiation into the

external space is from the open end of the pipe. The pipe is
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assumed to be of sufficient length for the use of the field

and potential functions calculated for a pipe of ideal ma-

terials and infinite length, It is also assumed that the fields

at the open end of the hollow pipe are not appreciably dis-

torted by end effects. (Refer to Fig. 4.1)

Since the vector potential of the hollow-pipe

wave is known, we may substitute it into Eq. 4.4 to calculate

the vector potential of the radiation field. From the latter

potential, the magnetic and electric field intensities of

the wave in free space may then be calculated by Eq. 4.2.

Eq. 4.2 may be simplified for the radiation field

by carrying out the vector operations. The vector potential

of the radiated wave will be first calculated in Cartesian

coordiantes:

A = i Ax+ iYAY + izA.

It can be expressed in spherical coordinates (R, 0, r) by

A = iA,+ioAG+ iCA

where i, i, and i are a set of orthogonal unit vectors.

The two expressions of A are related as following.

AR = A cosQ + A ycostsin9 + Az sintsing

Aq =-A sing + A ycosteosg + A sintcosg 4.5

A = -Aysin C + Az CosC

The wave function for any wave radiated from a single source

muat be a function of R of the form 1 eiw(t-R/c). TheR

factor (t- R~ in the exponential represents a wave travel-
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ing radially from the source. Terms with higher power of R

than (-1) can not exist, if the function is to vanish at

inifinity, and terms with lower power of R then (-1) can

be neglected when R is sufficiently large. Hence we may

write

A = (iR4j + iAt + i At) iatR/
e R

where AR , At and A' are scalar functions of e and ' only.

By applying the vectorial operation to such a potential

for large value of R and using Eq. 4.2ab, the radiated elec-

tric and magnetic field iitensities may be found as below.

E = -icof(i 0Ae + 1A ) '.6

H = curl A 4.7

( ieAg - i A0).

Both the electric and magnetic field intensities

thus derived have no radial components. This means that all

the fields are transverse to the direction of propagation,

a special characteristic of radiated waves in space. It

is obvious from the expression of E and H that

E =H
4.8

Both E and H satisfy the wave equation.

The Poynting's vector which represent the tran-

smission of energy per sq. cm. of area is always in the
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radial direction, since the radial components of fields are

zero:

8 = ( EeH - E,,e)

-+f~ (JHOI 2 + IH"J 2

)2 IA81 2 + A IA' 2  4.9

The power radiated in any solid angle is constant,

The radiation pattern may be defined as the

curve expressing the relative magnitudes of electric or

magnetic field intensity, radiated from a certain source,

over a sphere of radius R with the source as center.

Radiation Patterns of the Ho -wave (m = odd)

The field expressions for H -wave with the

X-axis at the center of the tube for m = odd are

H =B nmsin (n ) e i((at-px)

Hz = -B ir cos ( z) ei(wt-px)

y b
E =-B imot cos ( XZ) ae~t-x

The most important type of wave so far as ra-

diation is considered is H 0-wave, in which the electric

field intensity is parallel to the Y-axis, and has a si-

nusoidal variation with the maximum at the center. It

will give a maximum radiation directly in front of the

pipe. Higher orders of Ho -wave are interesting as they

are apt to appear in the tube when the operating frequency

- I MW__

_Mr "I
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is sufficiently high. We shall first consider the m = odd

Ho,,,-waves, in which the electric field is evenly symme-

trical with respeet to the X Y plane. With a H0 ..,-waves

in which m is even, the electric fields are zero at the

center and possess odd symmetry with respect to the XY-

plane. The radiation field of such types of waves will

have a zero directly to the front of the tube but it will

have symmetrical side lobes. Since the scalar potfntial

inside the pipe is zero, we have from Eq. 4.3

E = - Lu A ,

The vector potential inside the pipe is as follows:

A = 8os(2 z) (e w"t -x)
V 4.10a

AX A-z ~o

We as5tse this expression to be valid at the opening of

pipe, which coincides with the x = 0 plane. Let P be

any point in the space where field is to be calculated and

the distance to any point (x, y, z) on the opening be p.

Since insidethe pipe, the wave function is a function of

x and t, of the form e iatnPix for all types of waves in rec-

tangular pipe the expression for Huygenstprinciple can be

further simplified. The volume integral is equal to zero,

and the remaining terms are

A (t~.
'A e

- 120 -
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C-os ( npP)2 Cos (

(t-?)
So C

2-_LA

6X

. P
A (7 +)Cos e aA e 4. 11

Put the value of Ay of Eq. 4.10a into the right-hand side

of the expression and neglect the term proportional to -'

and put x = 0. We have the vector potential in the ex-

ternal free space.
b q

A2 = cose + -c. B cos ( Z ) e
b

Low4(t-2

As p is a large number, we may neglect its variation over

the surface of integration and use an average value R so
as

farA magnitude is concerned but introduce an approximation

into the exponential ( Fig. 4.1 )

P = ( R.sine 0 os -y + (R-SinOson - T ) +( Ros e

a R - (ycos4 + Z se sin

and the integral becomes:

A- B os + je e d 2 cos(- ze .C

c (t-A) sin( _ __COSCSin _ _) ( __S i,

- B e (cose 4O1-(
0

since 2b

Wo 2 7r
C A

4.10b

-
4
d£0
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Using expressions 4.5,

spherical coordinated

we resolve (Eq. 4.10b) into

2Wr Lw~(t - A) 1
A= - B e -', 

- 2nRb

A 0 ------ Be (cose + ,-j f)

A; 8e B (cos e

Sn "cosesine) cos (2- ing sine)
2 2

Sin 2 1sin' 8 (

A

* ( )2
A

+Si *T)2  C * in8)s( m sn aine)

s a n'en - (i

Co+ e

tan C

sine

The magnetic arx electric field intensities in the external

space are

oJ Hz;

n BMco sL o+ s i e o (.n _ nL4

B*ns o sO - (0

=T -- 4.13

= ( Af Os + -( * r_0. Ssin8) C '(t -

-sA 4 c inzo - ( i e

ER=Q

Poynting's vector (in radial direction)

mnn cos n0 0
It . -( t

is given by

]k I 2 (<ote .+
si 10 41

=. -m

= - HA

Ha = 0),

4,14
.s n g. (L-,

-



- 124 -

The factor (Cos 6 + (-)() contributes to the

directivity of radiation by a relatively slow variation.

For ()) equal or greater than 2, the expression is appro-

ximately equal to C1 +oeJ. It is maximum directly in front

of the surface of integration and approaches zero behind

the surface of integration. It would disappear if we use

equivalent theorem' to introduce fictitious magnetic and

electric current sheaths at the opening of the pipe.

The analysis of the remaining factor may be

simplified if we confine our attention to two perpendicular

planes X Y and X Z-planes:

Radiation Pattern in XY-plane

(= 0 )

By putting r equal to zero, we find

-B~fH 10 L(Jin ('2sie Cot 1

4.15

E E He onsl HR O

Poyntings vector (in radial direction)

- ZB1cose + (gj sinz (46 sin, 4.16

Omitting constant factor for the present, we have

three factors which effect the radiation pattern of the H.,,-

waves, it is amusing to see thatexcept for the term

1. S: A. Schekunoff, Bell gys. Tech. Jour. Vol.XV
pp 92-112 January 1936
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which is approaching a constant at sufficiently high ratios

of A*, all the three factors are independent of the criti-

cal wave length or the dimension b of the tube. This

is caused by the symmetry of field with respect to the

XY-plane at the opening of the pipe. Thus it is possible

to control the radiation patterm in this plane practically

adjusting the dimension a .

The order of harmonic, m, of the H ,, -wave

(m = odd ) has little to do with the radiation pattern in

XY-plane, aile6 the fields at the opening are independent of

y , regardless of the order of harmonics. It enters the expre-

ssion only in the critical wave length, and its effect on

the pattern in XY-plane is of minor importance.

The factor iN(Ta'6 m ine has its first zero at

e6in1 ($) 4.17

It is apparent that smaller the dimension athe larger the

value E, and the broader will be main beam of radiation.

For large values of a, there will be a number of zeros or

lobes beyond the first one, the maximum amplitude of which

varies inversely as sine.

The significance of the factor cose can be

easily visualized if we refer to the solution for the

radiation field from a small oscillating dipole placed at

the origin and coinciding with the Y-axis. T1v same( and

only) angular function cos8 appears in that solution.

The radiation field is identically zero at all points on
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the prolongation of the axis of the dipole. In our case

we have an infinite number of displacement current elements

whose directions are all parallel to Y axis, consequently

there is no radiation along the +Y axis.

For the sake of convenience, the beam anglelis defined

as that including the main lobe of radiation. It is twice

the angle measured from the X-axis to the first zero of

the radiated field functions. Using the expression 4.17,

Fig. 4.2 is plotted with beam angle against the value of

-; for radiation field of H.,,-waves in XY-plane. The

discontirnity of the slope of the curve at - = 1 is caused

by the coincidence of zeros of cose and si (n s. e)/e

Fig 4.3 shows the radiation pattern of H.,-

wave in XY-plane. The calculation covers only the front half

of the sphere. Comparing the two curves, we see that the lar-

ger the dimension "a" the narrower the beams, and at the

same time, the larger the secondary lobe. The dimension "b"

has but little effect on the shape of the pattern. A curve

with a/\=2 and b/x =1 was calculated and discarded because

it lies too close to the curve (a/, =2, b/x =2). In fact,

the beam becomes slightly broader as the value of b/\ is

decreased. The radiation pattern of H0 3 has essentially

the same form,
1The beam angle is not always defined in this way. It is
sometimes defined as the angle within which, the electric
or the magnetic field intensity is equal or greater than
one half of the maxinum intensity of radiation. By this
definition, the lowest power density at the edges of the
beam is one-fourth of the maximum power density.
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Radiation Pattern in XZ-plane

By~~ putig = % t
By putting IE =in Eq 13 and 14, the

radiated field intensities are

-J 1 H 8 ~2 4.18

Ea, E.,H, arid H = 0

The Poyntingts vector in radial direction:
%X1

mCostios (

XZ-plane ( y = 0 ) is the one which is perpen-

dicular to the orientation of electric vector at the open-

ing of the pipe. We would expect the result that the elec-

tric field intensity in this plane is everywhere parallel

to the Y-azis. The field is not always zero at e = + --- ,

points on the Z-axis. The field patern in the XZ-plane is

independent of the dimension "a".

The same factor, Cos O + -.t, as in the XY-

plane, appeard here also. The third factor has the form

c o5 (L sin e)
sin~ - ( )" ,4.20

In Eq. 4.20 the factor cos soe) is zero for a series of

values of e, viz.,

son) n = 1. 3,, *.... 4.21a

but the denominat6r is zero for only one value:

' = Im Mn 4.21b
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where m denotes the order of harmonics. Thus, the first

zero of the fraction with m = 1 , i.e. for the H0 ,1 -wave,

occur at

9 in ),4.22a

while that for the H,.3 -wave is at

S=sin ~I ( :L) 4-22b
2 b

The angle of the first zero determines the spread of the

main or center lobe. The beam angles are twice of this

angle, i.e. twice the values of G corresponding to the

first zero, and are plotted in Fig. 4.2. The field pattern

of the H4,i-wave ( m = 1 ) in XZ-plane will not have any

zero, if \ E b ( except the zero in the negative X-

direction). The curve for the H,. -wave is also plotted

in Fig 4.2. Naturally, the curve does not extend beyond

the critical wave length for the particular wave type.

Consider the H . -wave only, the beam angle

in XY-plane is always narrower than that in XZ-plane for

a square tube. If it is desired to have the same beam

angle in both planes we need a tube with a/b = 2/3 .

For the HOL -wave, besides the main or center

lobe, there will be side lobes wh-n the ratio b4  is above

3/2 . The narrower the main beam, the more the side lo-

bes appear. However the maximum magnitude of the side lobes

is small, compared to that of the main lobe. The denomi-

nator of Eq. 4.20 goes through zero within the main beam,

and therfore the main beam has the largest magnitude of all.
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This is not so for the H0  -wave. There will always be

side lobes when any H -wave is allowed to exist inside
0,a~

the pipe. The magnitude of the second lobe is always

greater than that of the center lobe, because, for this

wave, the denominator of zsq. 4.20 goes through zero with-

in the second lobe of the beam.

Fig. 4.4 shows the radiation patterns of the

H -wave in the XZ-plane, for ratio b/x = 1 and 2. For

b/ = 2, the operating wave length is below the critical

wave length of the H -wave. Let us assume there is a

H -wave existing alone inside the pipe operating at

b/\ = 2, and the maximum amplitude of its electric field

intensity is equal to that of the H -wave used in the
o,1

calculation of the curve (b/\ = 2), Fig. 4.4 . The radia-

tion pattern of this H -wave in XZ-plane, plotted to the

same scale as curve (b/\ = 2), Fig. 4.4 , is shown in Fig.

4.5 . Thus, by comparing the two curves, the amplitude

at the center main lobe of H -wave is only 28.2% of that
o,a

of the H 0 1 -wave, while the amplitude at the center of the

secondary lobe is 58% of the same. In Fig. 4.5 , the ra-

diation pattern of the H 0-wave in the XY-plane is also

shown in dotted line for ratio a/? = 2 .

The H -wave does not exist alone in a rectan-
0,3

is
gular pipe practically, butAalways accompanied by the H -

wave since the critical wave length of the H -wave is three

times longer than that of the H -wave. The phase velocity
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of the two waves are different, and since ihe resultant

field distribution over a cross section of the pipe is

just the vector and complex sum of the fields af the two,

the resulatant field distribution inside the pipe varies

with the axial distance. Ohly the field distribution at

the ppening is important for the radiation. The radiation

pattern of such composite wave is just the linear super-

position of the radiation patterns of the H0,, -wave and

the Ho,3 -wave, taking into consideration - the relative

magnitude and phase difference of the two waves at the

opening. In Fig. 4.6 , the inner curve shows the result-

ant radiation pattern, in XZ-plane, of an H1,,-wave and an

HO,3 -wave of 20% amplitude and equal phase., i.e. at the

opening, the resultant field distribution is as follows

E occos (11 Z ) e + 0. 2 Ers (z ) e 4.23b 4.23a

and the outer curve represents the radiation pattern of an

Ho ,1 -wave and an H 0 ,3 -wave of 20% amplitude and opposite

in phase, i.e. at the opening, the resultant field distri-

bution is as follows.

oc co Cos (. ) 4.Z3b

By comparing them with radiation pattern of

H ,1 -wave (Fig. 4.4 inner curve), we see that the main lobe

is sharpened but the side lobe enlarged by introducing

an H 0 , -wave in phase at the opening; the greater the am-

plitude of H .3 -wave, the sharper the beam and larger the
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secondary lobe. The reverse is true when the H -wave

and H 0-wave are opposite in phase. Thus it is possible

by tuning the length of the pipe to sharpen the main beam

at the expense of larger secondary lobes.

Eq. 4.23a represents a sharpened sinusoidal dis-

ttibution. and the radiation pattern from this distribution

is also aharper.than the radiation pattern of the H0  -

wave. Eq. 4.23a represents a flattened sinusoidal distri-

bition, and the radiation pattern is also broader than the

radiation pattern of the H0 -wave.

From these fact we may conclude that a sharp

field distribution at the opening is favorable for the

single beam directional radiation.

One method of expressing the single beam dire-

ctivity of a certain wave is to compare the power which would

be needed to feed a non-directional wave from a dipole sour-

ce to the power actually needed to feed the directional wave

under consideration, such that, the maximum power densities

of the two cases at equal distances from the sources are equal.

This ratio is generally defined as power gain of the direction-

al system. Let us take a dipole, lying on the X-acis at the

origin, whose radiated power density on a given sphere of

radius R is sinG . Thus the maximum radiated total density

on that sphere is unity. The total power radiated from

the dipole is the integration of radiated power density
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over that sphere:

Ru Sin2 S~nO 3ed iI

The maximum radiated power density if the H, -wave of a

rectangular pipe is obtained by putting e = 0 in either ex-

pression 4.16 or 4.19:

8~I 1'''2 2

when the dipole have the same maximum power density on the

sphere of radius R, the power output from the dipole would

be 8 R b1

IT R \R , 18 (2 + dJI + ( 2- 4.25

The actual power output from the rectangular pipe, is the

energy transmitted along the tube, if we neglect the re-

flection, etc. caused by the end effects.

81 z -b 4.26

Therefore the power gain Q as compared to a dipole is

Power Gain =L C -(7a

This expression does not tell the truth when the ratio -O is

near unity since at critical wave length, no wave may pos-

sibly travel along the pipe. This ambiguity is caused by

the assumption that a wave would exist at the end of the pipe,

though it did not propagate at such wave length. Hence, if

we exclude t e region around 1 p the power gain isL expressed as
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Power Gain nT 4*27b3 6 X

The power gain is proportional to the square of the ratio

-* or at sufficiently high frequency.

Radiation pattern of Other types of Wave

The essential requirement for directive radia-

tion is to have the flow of radiated energy condentrated

within a sharp angle. Using a rectangular pipe as a ra-

diation device, the point of maximum radiation energy usual-

ly lies on the axis of the cylinder, the X-axis, on account

of the symmetrical field distribution over the cross sec-

tion of the pipe about that axis. This is so for Hl -

wave, which has the electric field vector parallel to one

side of the pipe. It has been shown also that the maximum

of the central lobe of tie radiated field for an H, ,-

wave, where m is an odd integer, lies on the X-axis.

No other type of wave in a rectangular pipe has this pro-

perty. For the sake of simplicity, we shall proceed to

prove that for all types of wave, except the H o.m, m=odd,

the fields and therefore the flow of energy at any point

on the X-axiz is zero, and therefore the production of a

single beam of radiant energy is impossible. We shall also

illustrate the gereral shape of a radiation pattern of this

kind with a special example, viz., H1l -wave.
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Let us rewrite the expression of HIuygens' prin-

ciple for space free of charge and conduction current, and

for radiation from a rectangular pipe (Eq. 4.11):

A= { + F)COse + Clj]Ae ~ ds

The p2 term is to be neglected for the radiation field.

Since e is equal to zero at any point on the X-axis, it

is obvioua from Eq. 4.12 that the distance from that point

to any point over the cross-section at the end of the pipe

is constant and equal to R. Putting e to zero and p to

R , all factors under the integration become independent

of y and z except the factor A. Thus

A ds 4.28

We shall 'investigate the integral 3Ads along, because

if we can show that it vanishes on the x-axis, there can

be no radiation in this direction and our theorem will be

proved.

H -wave ( m = even)

The component fields of the Ho,m-wave for m =

even with the center of the pipe coinciding with the x-axis

are as follows:

4(wt -jX)

'1 Si (j )r Z
Sin( B£ n~z) e4(~i)42

- 8 CAs('" ) e4(01 P

Using Eq. 4.3, we have the vector potential at the opening

of the pipe as below:
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A ,=0 4.30

The surface integral jAds for AJ at any point on X-axis

2

e -

and since A and A are identically zero in all the space,

the electric and magnetic field intensities vanish along

that line.

We may similarly prove for the H, -wave ( m

= even) that the radiated fields in the entire XY-plane

is zero. It is because the vector potential of the Hor,-

wave ( m = even ) inside the pipe has an odd symmetry with

the XY- plane.

H n. -wave

For Hn,,,-wave we place one corner instead of

the central axis, of the rectangular pipe coincide with

the X-axis, so that we may write a single set of field

expressions for both even and odd values of n and m .

(Refer to Fig. 2.20 , field diagram of H1, -wave.) The

expressions of fields are given in Eq. 2.1. The components

of the vector potential inside the tube are consequently
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Mir

A, ~~ ~ ~ a -- Pos-9s(9

A2~ B ' 5 (3'-( ) Cos (.2 z) e t'tpx 4.31.AK -Po

The component A at any point on the X-axis in the space

is proportional to the integral, omit the constant coeffi-

cient,

- t h~nt (' in )s

Similarly, the surface integral of A-z is zero. Therefore

the radiation fields of H n,m-wave along X-axis are equal

to zero.

E n,-wave

By placing one corner of the rectangular pipe

coincide with tie X-axis, the fields for the En,,-wave

inside the pipe are given in Eq. 2.4.

tial inside the pipe is

A -Sin( )sin(! z) e

The vector poten-

A T2 7~.. r co (1: #j 6n 2

£~ CO n7a

4. &At - Y.

4.32
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Comparing the above A9 and Al with the A, and A. of the

H ,, -wave (Eq. 4.31) respectively, we conclude that the

components of vector potential A. and A, along the X-axis

are zero.

Along the X-axis, x is equal to R, and A. is

the radial component AR of the vector potential. It is ahown

in Eq. 4.6 and 4.7 that both E and H are independent of A.

Therefore, both the fields and flow of energy along X-axis

are zero.

We have mathematically proven that all types
have

of waves in retangular pipes do not single beam radiation

pattern except for the Hor-wave ( m = odd ). The HOm -
(m-even)

wave laas zero fields in the XY-plane.

Whether a type of wave in a hollow pipe yields

directional radiation pattern or not may be visualized

from its diagram of electric field distribution over the

cross-section at the mouth. Each area element over the

cross-section is occupied by a displacement current ele-

ment, which, in a way, behaves as a dipole. Since the

current element is proportional to the time derivative of

electric field intensityit is represented by the same

distribution diagram. Referringo Fig. 2.2 , it is obser-

ved that for any type of wave, the displacement current

elements located at two points diametrically symmetrical

about the center of the cross-section, are always vector-

ially parallel. If their vector sense is the same, their
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radiation fields at points along the X-axis are cumulative,

and we obtain a case of directional radiation in a single

beam. On the other hand, if their vector senses are oppo-

site, their radiation fields at points along the X-axis

cancel each other, and give zero fields at those points.

A check of the field distribution diagrams reveals that the

Hi,I-, E3ik.a-, and Hom- ( m is an even integer) waves do not

give directional radiation. Since the diagrams of the Hnm-

and Enm-waves can be constructed by piling n times m number

of the diagrams of the Hi,i- and the Eii-waves together in

one pipe, they also do not give directional radiation. Only

the Hom-waves, where m is odd integer, have a radiation

pattern possessing a central lobe.

Similar analysis may be applied to the radiation

patterns of waves inside pipes of circular cross section.

Referring to the field distribution diagrams of waves in

circular pipes'., we see that only the Hi-wave and probably

the El-wave of the four simplest types, possess the pro-

perty of directional radiation. The Hi-wave is similar to

the Hop,-wave in rectangular pipe, since the electric

fields over the cross section are all nearly parallel.

Therefore, it will have a radiation pattern possessing

large central lobe. Although the radiation pattern of the

G. C. Southworth, Bell Sys. Tech. Jour. Vol. 15 , April
issue, Fig. l, (1936)
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A, = 0

E -wave may probably have a central lobe, the side lobes

will have much larger amplitude.

Radiation Pattern of the H -wave
I,1

Let us pick up the H -wave as a special case

of those types of waves, whose radiation patterns do not

have central lobes. With the axis of the pipe coinciding

with the X-axis, the field expressions of H -waves inside

the pipe may be written as

HI COS $in e4.34

B -- Si ((A co I

The vector potential inside the pipe is

4 *34
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Substitute these two components of vector potential into

Eq. 4.11 , and carry out the integration. The results are

A ~
A 0A9 =AZ

Az

COc +e -(--) 5 ; os t G 05 C sin 6 cos sin s-r, e
[(os 9 sine)' ]3 (sinsiref - (A )

Cosr 4 (f 0
2.

4*35

By resolving A into spherical coordinates and calculat-

ing the field ±ntensities of radiation, we have the ra-

diated field as follows

He ~4~; ~ sin sineco" os ecodtssntino ef

((Cos ;Sin 6 )2- (AIQ;

tz A +'* */ tijk { o os' -btsI,
2 ++

COS I cosin . COssin eAc ( xs;n anoje

L('os CSine 0) - (A f (sin C s;ne, -( a j

H g meO

In the XY-plane, ( * = 0)

Hz -;.

H0 e , HA,

+sin -- )

4.37

E4 I and

4.36

;.(O(t - )
L An 61 e

. (}), + (-7 f

F-

=-B
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In XZ-plane ( 4 = )

H - E = B (cosG *dI-thf] csesine rosU $ snO) -L&>{-R

H , nj E= 4.39

The radiation field distributions in XY-and

XZ-planes have the same function except the reverse role

of a and b . In Fig. 7 is plotted the radiation pattern

in both planes for a square tube of a = b = 2 .

Summary:

The H0 m-waves ( m = odd)

Vector potential inside the pipe:

A 8 ( Z) " 4,1a

Radiation Patern in XY-plane

Be (cosO + C)Jsj("sn8)(ot e

Er, E, H anJ He = ,* 4* 15

Beam angle

2e = 2sin~ /a
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Radiation Patern in XZ-plane

E. -w-- - Rb

E, H I and *

___ __ rb
(s +Co s.1no)

4-18

Beam angle

2e = 2sin~1

2e = 2sin~1

3 )
2b for H -wave

for H a -wave

4.21

4.22

4.27b

Power Gain of the H -wave:

Power Gain = 16_ ) 2

Other Types of Waves

Other types of waves, the H - (m=even) the

H nm- and the E -waves, do not have single beam radia-

tion patterns. For example:

The H. -wave
191-

Radiation pattern in XY-plane

iT ~ o~s0+ L X(J

Sil e (g 4.37

H8 , eH ES,5 and E = 0
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Radiation pa.ttern in XZ-plane

.86 L~ 4 (cos e +1 - (, cos eOs,,Ocs {VsinJ e] 2(t--E)
6 It RN A '+b s - A 2-

24( *439

He, Hi, E , and E = 0
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V. SECTORAL HORN

We have studied in the last chapter, the radia-

tion characteristics of various types of waves within a pipe

of rectangular cross-section. Only one type of wave, the

Ho,m-wave, gives a single beam radiation pattern. The beam

angle of the radiated wave depends upon the ratio of the lin-

ear dimensions of the cross-section to the wave length. The

larger is the ratio, the narrower is the beam. The Ho,,-

wave is characterized by the property that the electric field

intensity is everywhere parallel to one pair of opposite

sides. If we increase the cross-sectional area of the pipe

in order to obtain a sharper beqm, we need a proportionally

longer pipe for the formation of this wave. These results

might naturally sug-est the idea of forming an electromagnetic

horn with its smaller end attached to a rectangular pipe or

some other forms of excitation systems. In this chapter,

the properties and the radiation characteristics of the sim-

plest geometrical construction will be investigated.

The shape of the horn now considered is illus-

trated in Fig. 5.1. It is generated by revolving a rectan-

gular surface, with one side parallel to the Y-axis, about

the Y-axis through an angle 2o less than 1800. The top

and bottom of the horn are bounded by two parallel conducting
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Fig.

Fig. S.z
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planes, "a" ems. apart. The two remaining sides are bound-

ed by conducting planes, which, if extended, would pass thru

the Y-axis. The volume around the Y-axis will be excluded

from this analysis, since it is a singular point mathematic-

ally. The horn is assumed to be extended to infinity in the

radial direction, so that the wave inside the horn may be

investigated. The end-effect for a horn of finite length

will not be considered. The conductor is assumed to have

infinitely great conductivity. We may define it as a see-

toral horn because of its geometric shape.

Waves Inside the Horn

Inside a horn of this kind, the wave propagates

in the radial direction. It is possible to have waves whose

field intensities and potentials vary both angularly and

vertically, i.e., with and with y. It is also possible

to have two types of waves, corresponding to the E- and H-

waves inside a hollow pipe, one without a radial component

of magnetic field intensity and the other without a radial

component of electric field intensity. Since we are princi-

pally interested in those types of waves which give single-

'The mathematical background of this chapter may be found in:
Slater, J.C. and Frank, N.H. :"An Introduction to Theo-

retical Physics"
Watson, G.N. :"Theory of Bessel Functions"
Jahnke, E. and Emde, F. :"Tables of Functions"
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beam radiation patterns, we will limit our attention to the

type of wave corresponding to the Ho,m-wave inside a rectan-

gular pipe. This wave has wave functions independent of the

coordinate y, and the electric field intensities are all par-

allel to the y-axis, i.e., perpendicular to the top and bottom

boundary surfaces. The problem of obtaining the fields inside

the horn is then reduced to a two dimensional one. Fig. 2

shows the horizontal cross-section, in which, the several

functions vary.

The Maxwell equations, expressed in cylindrical

coordinates (y,r,) for space free of conduction currents

or charges, with a time variation e are:

i"Lr E = r (r) - Hr 5.1 a

io ErE = -4H - rH 5.1 b
r 20

WL. E= ~ H 5.1 c

-iwr H = -r r Er 5.1 d
y 2 r r~-

-iwr H = E - rE 5.1 e
r b 0 y a L

-i = Er E 5.1 f

div E = 0 5.1 g

div H =0 , 5.1 h

Let us impose the conditions that the radial com-

ponent of electric field intensity Er is zero and the wave

functions are independent of y. Under these two conditions,

Eq. 5.1-b shows that H is also equal to zero, and incident-
y
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ally, from Eq. 5.1-c or 5.1-d, E is also zero. Thus, out of

the first six equations, there remain only the following

group of three:

1wtr E = _ rH -Hr 5.2a

-iw/r H = E 5.Pb
r 3# y

i jA H = 3 E 5.2c

Thia type of wave has an electric field intensity parallel

to the Y-axis, and a magnetic field intensity lying entirely

in planes y= constant. The components of magnetic field in-

tensity has components H and Hr as given by Eq. 5.2b,c in

terms of E . By eliminating H and Hr, we have the two di-

mensional wave equation for E
y

-4 E =0 5.3
r r r

The general solution of this equation is

E A =Lsin (n L;) + 13c. nV)LJ, ! r D y (.r)J eL

where A, B, C, and D are arbitrary complex constants, n is

a positive integer, 11 is a real constant to be determined

from the boundary conditions, and Jy and Y,,v are Bessel

functions of the first and second kind respectively. This

solution is similar in two respects to that of the Ho,m-

wave in rectangular pipes. First, in a pipe there is a sin-

usoidal variation in the Z-direction, and in a sectorsl horn

there is a sinusoidal variation in the i-direction, i.e.,

along an arc. Second, in a pipe the wave is propagated in
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the X-direction in exponential form,and in the horn, it is

propagated in the radial direction in the form of a Besqel

function. Since solutions having odd syrnmetry about the

line = 0 do not give single-beam radiation patterns, we

will retain the cosine term alone. We note also that as a

practical matter, the sine terms do not exist if the horn

is excited by an antenna placed vertically in the b = 0

plane. As we desire a wave traveling outward in the radial

direction having a time function e t, we may put C = 1 and

D = -i. The solution is thus reduced to the form:

E, B cos (n4) Kn (r) e , 5.4a

where K is the second Bessel function of third kind or Ean-

kel function' usually written as H .) It is:

K v= Jnjv - iYns 5.5

From Eq. 5.2b and 5.2c, we have Hr and H:

H, $In (""'k) Kny (. r) e 5.4b

Co's(nr ', r) 5.4c

E E= H = 0
xy

where K' is a derivative of K with respect to its variable (r)

This wave can be represented by a single vector

potential whose divergence is equal to zero. By using Eq.

4.2b, we have,

A = - cos (nsub) KnL,( r) e 5.6

This function will be useful in the calculation of radiation

'Watson, G.N. : "Theory of Bessel Functions" pp 73
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field.

The boundary condition is that the tangential

component of electric field intensity is equal to zero on

the surface of the conductor. Therefore, at the two side

where = + io, E must equal zero, which requires that:
- y

cos (nato) = 0

and n = 2

where m is an odd integer. Since n is an undefined integer,

we may set n = m and therefore the constant V becomes

7= 
5.7

2 Oo,

The integer n is now limited to be an odd one. It specifies

the order of harmonic of the wave. Thus when n = 1, it is

the fundamental wave, having a half-period sinusoidal varia-

tion along the arc between the two sides. When n = 3, it is

the third harmonic wave, having three half-period sinusoidal

variation along the same and so on. The order of Fankel's

function is no and equals V for the fundamental wave; it is

inversely proportional to the angle betwwen the two sides.

A sectoral horn approaches a pipe of rectangular cross-sec-

tion, as be becomes vanishingly small, and a sectoral horn

of 2 io = 1800 represents a single reflecting plane. The

useful range as a horn is somewhere between, say, 2 o = 200

to 904. The value of P changes correspondingly from 9 to 2,

not necessary an integer.



- 157 -

Before we go on the discussion of the charac-

teristic properties of the wave, let us review the general

behavior of the Hankel function. We have excluded the point

at the origin of the coordinate, since it is asingular point

for Neumann's function. For small value of the variable (

27r ), the real part of the Hankel function (i.e., Bessel

function of the first kind) is nearly zero and the imaginary

part (Neumann's function) is very large, being infinity when

the variable is zero. So, as a whole, the absolute magnitude

of the Hankel function is very large, and decreases with an

increase of the variable. The phase remains almost constant.

For large value of variable, both the real part and imaginary

part of the Hankel function vary periodically; their magnitudes

are approximately inversely proportional to the square root

of the variable. They differ by a quarter a period in phase.

iwt
With a time function e , the Hankel function represents a

wave propagated radially outward. We shall hereafter call

the regions of small values of the variable and of large

values the "attenuation" and "transmission" regions, respect-

ively, of the Hankel function for reasons explained later on.

The boundary betweem these two regions is not definite. How-

ever, we may roughly define it as the point at which the Neu-

mann's function passes through its first zero.

Fig.A3 is plotted with values from Jahnke and
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Fig. 5.3 First Zeros of Bessel Functions
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Emde: "Tables of Functions". It shows the variation of the

first zeros with the order for Bessel functions of the first

and second kinds. We note that the value of the variable

that gives the first zero of the function is nearly propor-

tional to the order . The larger is the order, the wider the

attenuation region of the Hankel function.

The asymptotic expansion of the Hankel function

in the tralnsmission region is the complex sum of the asymp-

totic expansions of its two components. For the Bessel func-

tion of the first and second kinds, they are as follows:

for large x,

Thus the asymptotic expansion of the Hankel function is

I -L (x - 2""i n +I7
(x) e4 , 5.8

Phase Constant and the Phase Velocity

The wave functions in a horn do not appear ex-

plicitly as an exponential function. The Thase constant,

therefore, can not be obtained in the conventional way. How-

ever, we may define the phase constant by analogy with the

plane wave as the imaginary part of the ratio 2 //E.

This expression gives the correct phase constants for hollow

pipe waves or plane waves.

Substituting into the ratio, we have,

K r Jimag. part 5.9
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For the sake of simplicity of discussion, let us limit no to

a positive integer for the present. In the transmission

region, where the ratio r is large, we may use the asymp-

totic expansion (Eq. 5.8). Substitute Eq. 5.8 into Eq. 5.9:

-i ~-ic or p=
For values of 2 r . , and integer orders of the Hankel

function, the approximate formulae for the Hankel function is

no (no) PL) 2 7t~

7E '5.10

Using this expression, we find,

With this value of phase constant, the general

trend of its variation may be found. The phase constant in-

creases with the ratio --- from zero at = 0 and approa-

r
ches the value -- asymptotically for large values of X .

The wave length in the horn is equal to .

Therefore, it decreases with the increase of ratio r from

infinity at = 0 and approaches the value N -wave length

in free space-asymptotically for large value of -2- . The

phase velocity has the same form of variation as that of the

wave length, and approaches asymptotically the light velocity.

It depends upon the order of harmonic of the wave; the higher

the harmonic, the larger the phase velocity. For sufficient-

ly large value of , the phase velocity approaches the
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same velocity, viz., the velocity of light, regardless of the

order of harmonic. Thus, the third harmonic will travel fast-

er than the fundamental, but both will be slowed down gradual-

ly to the same speed. The resultant field, along an arc,

being linearly superposible, changes constantly with the ra-

dial distance and finally takes on a constant pattern.

Fig. 5.4 and 5.5 are sketches showing the va-

riations of phase constant, phase velocity and wave length

in the horn with the radial distance. The dotted lines are

the asymptotic values to which the functions approaches for

large value of r

Attenuation

The horn is assumed to have a conductive boundary

of perfect conductivity while the dielectric inside it is as-

suned to be a perfect insulator. The word "attenuation" here

applies to the decreasing of the magnitudes of field inten-

sities as r increases. Since there is no transfer of energy

between planes parallel to the top and bottom of the horn, if

the total power along an arc transmitted in the radial direc-

tion were constant, the magnitude of the field intensity

1
should be proportional to . Dissipation of energy is

represented by field intensity which decreases more rapidly

than the above.

In the transmission range, for large values of
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r
, using the asymptotic expansion, we have,

OC I

_ r 5.lla
and e a ( "3 r)

Ar

It shows that there is nearly no dissip:ation of energy during

transmission in that part of horn. In the attenuation region,

for 2c << 1, using approximate Eq. 5.10, the fields are
1
r- " 5.llb

The constant V is always greater than 2 for a horn having do

<904. Thus the region near the origin is highly dissii-ative,

The narrower the horn, or the higher the order of harmonic,

the greater is the dissipation of energy. This is the reason

why the two regions of Hankel function have been here named

tre attenuation and transmission regions respectively. The

curves in Fig. 5.3 indicate the approximate boundary of the

two regions. Suppose the horn is excited at the converging

end at a wave length \ such that the ratio 2 i- r near that

end falls within the first region: then only a very small

part of the energy is able to be transmitted radially forward.

This loss of energy can only be eliminated by either decreas-

ing the wave length or shortening the horn at its converging

end.

In Fig, 5.6, the absolute magnitude of Hankel
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function is plotted against its variable in logarithmic scale

for three different values of nv-the order of the Hankel

function. The magnitude of the asymptotic value (_nar) 7

of Hankel function is also plotted to the same scale. The

latter is a straight line with slope = - 1/2. The differen-

ce of the ordinate of the asymptotic line and that of the

Hankel function line, is proportional to the attenuation of

the Hankel function. Thus, we see graphically that the

higher the order of Hankel function, the larger the atten-

uation, and consequently the wider the attenuation region.

The dissipative property of the horn ray be used

for the suppression of higher harmonics. It has been shown

that the value of 2 T at the above-mentioned boundary isA

roughly proportional to the order of the Hankel function nv,

where n indicates the order of harmonic of the wave. For ex-

ample, if the attenuation region of the fundamental wave for

a given wave length extends to the value r = rl, then the

attenuation region for the third harmonic will extend about

three times as far or to 3rj. Now, if we want to transmit

only the fundamental wave, we may cut off the horn between

r = ri and r =3r& and set the excitation system there. Be-

yond the region r =3r1 , only a trace of the third harmonic

wave will be left, while the fundamental.wave is almost un-

altered. A similar procedure may be used to suppress the

fifth and higher harmonics.
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Field Distribution Inside the Horn

The field distribution of the fundamental wave

and the third harmonic wave is sketched in Fig. 5.7a,b. It

is not drawn to scale but rather symbolically. At the con-

veging end, the wave length in the horn is very large, and

the crowded magnetic lines represent the great magnitudes

of the field intensities in the attenuation region. In this

attenuation region, the magnetic lines do not form closed

loops. Beyond the open field lines, the wave enters the

transmission region. The wave length in the horn decreases

gradually, as also does the concentration of the lines.

The radial component of the magnetic field intensity is still

considerable. At the remote end of the horn, (- >>> 1), the

radial component of the magnetic field intensity is negligible

since it is proportional to 1 .*-, and the closed magneticr y rI

lines are broken up. As the electric field intensity is al-

ways normal to the direction of propagation, the wave behaves

precisely as a plane wave with transverse- electric and mag-

netic field intensities.

The field distribution of the third and higher

harmonics may be similarly sketched. Instead of a single set

of closed magnetic lines along the arc between two sides,

there will be three or more sets equally spaced. The first

group of closed magnetic lines will occur at a larger radial

distance from the origin. The field distribution of the
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third harmonic wave is shown in Fig. 5.7b.

The behavior of waves in a sectoral horn bear

several striking similarity to that of waves in hollow pipes,

*specially the Ho,m-wave of rectangular pipe. The arc length

21or corresponds to the dimension b of the rectangular pipe,

and the variation of the fields is sinusoidal along both these

dimensions. While the Ho,1 -wave has a definite cut-off wave

b
length, depending upon ---- , the corresponding wave in a sec-

toral horn, too, has a kind of cut-off wave length that de-

pends upon the ratio --. The shapes of the curve of 6 vs.

b r
-N and that of p vs. -i- are similar. A horn is therefore

in a way, a rectangular pipe with an ever linearly increasing

cross-section. It may be considered as a tapered hollow

pipe transmission line.

Radiation Patterns of Horn

The transmission characteristics of waves in

horn thus far discussed has been limited to horns that ex-

tended to infinity in the radial direction. Ve are not able

to treat rigorously a horn of finite length. However, if

the angle made by the two sides of the horn is not too large

(2&o< 90*), and the length of the horn is above several wave

length, any type of wave that is impressed at the throat end

of the horn will be able to transform itself into sectoral-
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horn-wave. Furthermore', if the horn is long enough, the end

effects will not distort the field distribution too much.

Therefore, we will aasume that the radiation patterm of a

finite horn can be calculated from the field distribution

appropriate to an infinite horn.

The vector potential of the sectoral horn wave

is A cos (nP 6 ) K (-r) e 5.6
y ipno c

Let us cut off the horn at a circular cross-section r = rl.

A cross-section of the finite length horn looks like the sket-

ch:,: of Fig. 5.8. We also assume that the horn is excited

at its throat so that only one harmonic or a number of har-

monics are able to transmit through the horn. The throat and

source is taken as shielded. As we have discussed before,

the radiation pattern in the XY-plane depends roughly only on

the dimension "a" for the Ho,m-wave in a rectangular pipe.

Now, the field distribution of a sectoral horn wave in the

XY-plane is exactly the same as that of Ho,m-wave of rectangu-

lar pipe. Therefore, it is reasonable to assume that the ra-

diation pattern in the XY-plane has the same form as that of

the Ho,m-wave of rectangular pipes, (refer to Fig. 4.3).

For this reason only the radiation patterns in XZ-plane will

be considered.

In the expression 4.4, the surface integration

is carried out overkhe outer surface of the metallic boundary

and the open end along the sector of the cylindrical surface.
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Since it is assumed that no energy penetrates the boundary

surface, the integration over that surface is zero. By Huy-

gens? Principle, the vector potential at any ppint P (R., 9)

in the XZ-plane is

A = )(t- V) cos (n,p)

+ (3 (t- ds.

Substituting A into the right hand side gives,
y .

+B( oos(nu4) e C# d, 5.11

If the angle between the two sides is small, the factor in

the square bracket has a slow variation compared to the re-

maining factors. Let us use the mean value of - e

over the surface, and bring the square bracket out of the in-

tegral. We shall use the asymptotic form of K and Kt so

as to be consistant with the above approximation. These

approximations are not essential in the following process

of derivation, but help to simplify the result.

The variable p is the distance from P to a point

on the surface of integration. Since P is in XZ-plane,

p = V%- r' - 2Rricos (# - )

2'R - ricos ( - e)

for large values of R. Substituting this value for p into

the integral, it becomes:

e~Cs.G 5.12
04
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Consider the integral

cos (nv') el-rcos ( - ) 5.13
0.

It is an integral with cosine in the exponential. It is pos-

sible to expand the exponential into Bessel-Fourier series

and perform the integration term by term. However, as - -r
c

is much greater than unity, such series converge very slowly

and will be useless in actual calculation. We have to use

some other means of integration.

Its known that the cosine may be expressed as

the infinite product:

cos x =( -( ) jtI -(O )(I - ( )2J

For values of x within t---, all except the first factor are

nearly unity. By expanding the product of the first two fac-

tors, and neglecting the tern of fourth power of x, we have

the approximate value of cos (b - 9):

cos(-) 2 )s 1 g

for (- e)2 5 (_ _)

This is equivalent to replacing the cosine by a parabola.

Split cos (n4') into two exponentials,

cos(nV /) = (e in )

The integral 5.13 becomes,

2 r -e -T 94 d , 5.14

*0

It consists of two terms corresponding to the upper and lower

signs in the exponential. Bring the constant factor out of

the integral:
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2nL - (0 -6a) 9-20 . So g] nx

5.15

Since

t'he integral 5.13 becomes

(2(-d 5.16

It has been reduced to the form of Fresnel's integral. De-

tailed discussions of this integral appear in Slater and

Frank's "An Introduction to Theoretidal Physics" and Watson's

"A Treatise of the Theory of Bessel Functions". Let

0 r - no 6 ir 5.17X 4. 160 r,

and d9 = Et? dv 3 _ dv
8Or, avJ-V riXv

The integral part of 5.16 becomes (omit the coefficient out-

side the integral),

(osv - LSin vi

r *fV4 1IJ1 (v) - i-Jc(v)] dv 5.18

Either the real or the imaginary terms turns out to be an

infinite series of Bessel functions of half orders, and is

called Fresnel Integral. Numerical values for a range of v

from 0 to 50 have been tabulated in Watson or Jahnke and Emhde.

The complete expression of radiation vector po-

tential A is :t-B 8e-r e.nv *c

LewWe e f4J,(v) -1 (v)1 dv+6 C (v)-& Jr(v)/.dv
n2 2 5.19

'V1  r, 9 -- V [4.-e +no.9ME^ 0r,

v, =4-.- -\ V3 v =-+.-e +n& ') 2 8or
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This above value is true only for points in the XZ-plane.

The magnetic and electric field intensities are:

E (=-E )= wLgA
E y y 5.20

H H4= E = EO = 0

Fig. 5.9' is a reproduction of a three dimension-

al plot of Presnel Integral taken from Jahnke and Emde's

"Tables of Functions", p.111. The variable and functions

are

C (V) dv

5 - ' 4f(v)dav

Both C 5and S are periodic functions. The projection of this

curve on u = 0 plane is called Cornuts Spiral. Both the real

and imaginary parts osaillate about the asymptotic value 0.5.

This three dimensional curve is actually extended into the

diagonally opposite rectangular box of the space, one eighth

of which is represented in this figure, for negative value

of u. In terms of the limits of integration, the absolute

magnitude of the integral is the projection on u = 0 plane

of a straight line joining two points on the curve cut by

u = ul and u = us planes. Thus, when uland u2 are of oppo-

site sign, the two planes cut through the straight-line

portion of the curve, the integral will have its maximum am-

plitude. This somehow determines the beam angle of the ra-

diation pattern.
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As an illustration to the above result, a series

of radiation patterms in the XZ-plane are plotted under dif-

ferent conditions. These patterns are for the ratio r, 8,,

r, is the distance from the hypoth.etical center to the end

of the horn. So far the fundamental wave is concerned, the

wave has travelled five or six cycles beyond the attenuation

region,and it is quite safe to use the asymptotic form of

Hankel function. Calculations are made only for v up to 50,

corresponding to the value of 9 from 50 to 60 degrees. Be-

yond that value, the table of Fresnel Integral is not readi-

ly available. Fortunately, the plotted portion of the pat-

terns covers the main lobe of radiation; the maximum ampli-

tudes of the side lobes is estimated to be not over 10% of

that of the main lobe on a field intensity scale.

From Fig. 5.9 to Fig. 5.13, a fundamental wave

is assumed to exist alone inside the horn. Since it is the

least attenuated wave, it plays a dominant part in the problem

of directional radiation. Other harmonics are usually pre-

sent in small magnitude. The distribution of electric field

intensity or vector potential along the are at the opening

of the horn is cos 2 eI

Fig. 5.9 to 5.11 are plotted with horns with con-

stant ratio = 8 but of different opening angles, do= 30P

40, and 50*, It shows that by increasing the angle from

small value, the beam angle is sharpened steadily up to cer-
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Fig. 5.9' Fresnel's Integrals

(From Jahnke-Emde:"Tables of Functions" n.ll.)
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tain value and broadened again. The opening angle giving min-

imum beam angle is about 2do= 400.

The broadening of the radiation pattern by either

increasing or decreasing the opening angle from its optimum

value is not surprising. We learned from the radiation prob-

lem of rectangular pipe that the sharpness of beam angle de-

pends upon the dimension "b" of the pipe. When the opening

angle of a sectoral horn is small, the two sides are almost

parallel to each other, and therefore it must behave subs-

tantially like a rectangular pipe. On the other hand, if

the opening angle of the horn is too great, itis evident thLt

it will lose control of the wave even inside the horn, since

there is almost no guiding action by the sides of the horn.

It may be recalled that a sectoral horn of 2o= 180* is no-

thing other than a reflecting plane surface, -ahich is ob-

viously not very effective in the problem of directional

radiation.

With the optimum value of opening angle 2d=

400, another set of radiation pattern is plotted for several

horns of different radial lengths (-p =8, 10 and 12). With-

in this range, there seems no appreciable variation in the

forms of the patterns. The beam angles are almost constant.

Such a range of p has practical importance. It is neither

too short to hinder the formationhf horn waves within the

horn, nor too long to make its construction impracticable.
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Let us see what happens if the radial length of

the horn is very large. The length of the arc at the mouth

of the horn is a great number of wave lengths. We may per-

form the integration of Eq. 5.12 in a simple approximate way

known as Fresnel's zone. The process is illustrated on p.308,

Slater and Frank, and it will not be repeated here. The ra-

diation field in XZ-plane of such a horn would have the form

1 a>(t --
ce e ) e '

That is, the pattern is same as that exists inside the long

horn. As a matter of fact, it is none the better than a short

horn of optimum beam angle.

The fumdamental wave does not exist alone in-

side ahorn.. For a horn (20,= 400), it is possible to have

an appreciable amount of third harmonic wave at the radiating

end. Higher order of harmonics may exist but their magni-

tudes will be so small as to be neglected without much error.

The radiation pattern of third harmonic wave is

plotted in Fig. 5.14. The horn has -r- = 8 and 2&= 400. Its

magnitude is so related to Fig. 5.10 radiation pattern of

fundamental wave that the two have equal amplitude of elec-

tric field intensity or vector potential at the opening of

the horn. Namely,

J3_B K[ (Er,)osv4~ os. * O
B1gv(-r.)oekJ absolute a.m.v.

max. value

It shows a central lobe with two side lobes of greater magni-
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tude. The shape is quite similar to the corresponding one

for a rectangular pipe.

Since the fields and potentials are linearly

superposible, we are able to construct the composite pattern

from Fig. 5.10 and Fig. 5.14 with appropriate magnitude and

phase angle. Fig. 5.10 and Fig. 5.14 are repeated but in

Ctesian's coordinates in Fig. 5.15. Besides the magnitude,

the relative phase angles are also plotted. It is understood

that the two waves at the opening are equal in phase. The

phase difference is almost zero within the first lobe of

third harmonic wave. Then it suddenly increases to appro-

ximately 180* at the beginning of the second lobe. This

means a change of sign of the third harmonic.

The composite radiation patterns are shown in

Fig. 5.17 and 5.18. In Fig. 5.17, the third harmonic is

taken as opposite in phase to the fundamental at the opening

of horns. The Tpresence of third harmonic serves to broad-

en the pattern. The largeris the third harmonic, the flatter

is the pattern. The field distributions at the opening are

represented by Curves 1 and 2 of Fig. 5.16. In Fig. 5.18,

the third harmonic is taken as in phase to the fundamental

at the opening of horns. Its role is now the reverse to that

above. The larger is the third harrronic, the sharper is the

pattern. The corresponding field distribution at the open-

ing are represented by Curves 3 and 4 of Fig. 5.16. Thus,
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we may conclude that a sharp field distribution at the open-

ing of the horn produces sharp radiation pattern, and a flat

one produces a broad radiation pattern.

The fundamental and the third harmonic waves do

not travel at the same speed unless --- is very large. Thus,

in a real horn, we are able to adjusthe phase difference by

either shifting the position of the exciting system or turn-

ing the length of the horn. We may recall that the Ho,a-wave

in a rectangular pipe has the same effect on the resultant

radiation pattern,a'nd the method of tuning is nearly the same.

The experimental work of sectoral horn has been

carried on by Prof. W.L.Barrow and Messrs. F. M. G'reen
1 and

F. D. Lewis at M. I. T. The sectoral horn is fed with the

Ho ,1 -wave from a rectangular pipe. The field distributions

measured inside the horn reveal the presence of high order

harmonic whose magnitudes decrease with the decreasing angle

of the horn. For 2o= 20*, only the fundamental and the third

harmonic are present. The variations of the radiatiorattern

with the ratio r, and 2 bo, also checks with the present

theoretical work. A horn of 2bo= 400 gives the sharpest

beam angl obtained in the measurement.

1E. E. Thesis, 1937, by Mr. F. M. Green.
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Summary and Conclusions

The transmission and radiation characteristics

of a sectoral horn may be summarized as follows. Only waves

which are independent of the variable y and whose electric

fields have an even sysmmetry about the = 0 axis, are

studied. They have a sinusoidal variation along any are of

the horn. The space inside the horn is divided into two

regions:-(l) the attenuation region to the small end of

the horn, where waves are highly attenuated and their phase

constant is nearly zero, and (2) the transmission region to

the large end of the horn, where waves are free to propagate

along the radial direction. The boundary between the two

regions is not definite. For a given harmonic, the attenu-

ation region increases with decreasing horn angle (2o).

For a given horn angle (2&o), the range of the attenuation

region is nearly proportional to the order of harmonic of

the wave. Therefore, if it is desired to suppress the third

and higher order harmonics, the small end of the horn must be

cut off beyond the attenuation region of the fundamental and

within the attenuation region of the third and higher order

harmonic waves. Waves of different order of harmonics do

not travel with the same speed except at a great distance

away fron their respective attenuation region.

The radiation patterns from the sectoral horn
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depend upon the radial length and the angle of the horn, and

also the order of harmonic and frequency of the wave. Con-

sider there is only a fundamental wave inside the horn. A

long horn (large - ) does not give the sharpest beam. A

too short horn does not allow the complete transformation of

wave from exciting system to horn-wave. The most suitable

one is about -l = 8, r, being measured from the hypothetic
>h

line of intersection of the two side planes to the mouth of

the horn. The radiation pattern does not change appreciably

if the length is increased by 50%. The optimum angle of the

horn, which gives the sharpest beam is about 2d= 400. The

presence of the third harmonic wave distorts the resultant

radiation pattern. Whether the resultant radiation pattern

of the fundamental depends upon the phase difference of the

fundamental and third harmonic waves at the mouth of the horn.

A sharp resultant electric field distribution is favorable

for the purpose of single beam directive radiation. Only

the main center lobes of the radiation pattern of the horn

waves have been studied. The side lobes, if any, are esti-
not

mated to beAover 10% in magnitude.



VI. CONCLUSIONS

The results so far obtained will be briefly

reviewed here.

Hollow-pipe Waves

In a pipe of rectangular eross section, the

wave which is most conveniently handled is the H -wave.

It has a lower critical frequency than any other type of

wave in rectangular pipes. It has- all the electric fields

parallel to one of the walls, and consequently, the con-

figurations of the fields are not symmetrical in the y and

z directions, the two linear coordinates of the cross

section. Rectangular pipes whose ratio of cross sectional

dimensions a/b equals 1.18 have lower minimum attenuation

than pipes of equal peripheries but different ratios of

a/b. However, the attenuation of a square pipe is not

very much greater than that for the optimum a/b ratio

and would probably be as good for most practical purposes.

Other types of waves have higher critical

frequencies, depending upon the orders of the wave and

the linear dimensions of the cross-section. No wave

whose attenuation decreases with increases with increasing

frequency are possible in a realizable rectangular pipe.

However, if the dimension "b" were to be increased indefi-
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nitely, all the H-waves with finite values of n and m

would degenerate into a type of wave which possesses an

anamolous attenuation characteristic. This is made possi-

ble by reducing the effects caused by the transverse com-

ponent of magnetic field tangential to the walls of the

pipes.

We have used the resolution method to calculate

the attenuation of waves in rectangular pipe. It must be

pointed out here that such resolution is only possible in

a sufficiently long and uniform pipe, and can not be relied

upon to explain the phenomena associated with the analysis

of a non-uniform rectangular pipe like the terminal or the

joint of the pipe. For a plane wave with a small ratio of

the width of the wave (that is, t1ae distance measured along

the wave front ) to the wave length, the plane wave does

not follow a straight forward path but spreads side-wiue.

The method of construction of waves in rectangular pipes

by directing a plane wave from outside into an open end of

the pipe, as illustrated by Lbon Brillouin, are for an

idealized case, and are not practically realizable.

The effect of the deformation of a circular

pipe into an elliptical one depends upon the type of the

wave and the axis along which the pipe is deformed. For

waves whose fields have a circular sysmetry, both the

critical frequency and the attenuation are increased by

the deformation. For waves whose fields do not have the cir-

cular symmetry, there is no reason why a circular pipe
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should be better than pipes of other eccentricities. The

eH -wave and the oH -wave are similar to the H -wave,
1o 1

corresponding to the cases a/b 41 and a/b>l repectively

in a rectangular pipe with sides a and b. Therefore, one

is not surprised to find that the eH -wave has a lower

critical frequency and the oH -wave has a lower attenuation

for a small value of eccentricity, than they do in a circu-

lar pipes of equal peripheries. Anologously, the eE -wave

has a lower attenuation than the E -wave in a circular pipe

of equal peripheries. For large eccentricity, the attenua-

tions of all types of waves increase and approach infinity

when the eccentricity is unity.

No waves inside a dissipative non-degenerate

elliptical pipe may have a decreasing attenuation with

increasing frequency. This is explained by the fact that

the transverse electric fields tangential to the boundary

do not vanish at the boundary.

The exact nature of the anomalous characteristic

of attenuation of the H0-wave in circular pipe may be explain-

ed by the absorption coefficient of the metal; because,

when a light beam is directed on to a plane surface of

finite conductivity at grazing incidence the absorption

coefficient is zero when the light wave is so polarized that

the electric field is transverse to the plane of incidence.

There is no transverse magnetic field tangential to the
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boundary for the H0-wave. The deformation of a circular

pipe into a elliptical one produces -a new angular magnetic

field for the eH0 -wave and the anomalous characteristic

of the attenuation disappears.

Radiation from Oen End of rectanfular Pipes ardI Horns.

The H -wave in a rectangular pipe gives a more

effective single beam radiation pattern than all other types

of hollow-pipe waves. The beam angle of the radiation

patterns depends upon the ratio of Lhe linear dimensions

of the cross-section of the rectangular pipe to the wave length.

Large ratios are desirable when a sharp beam is required. The

H om-waves ( m = odd) for m $ 1, have radiation patterns with

a small central lobe but a number of large side lobes. The

radiation patterns of other types of waves have zero fields

directly in front of the rectangular pipes.

In a non-dissipative sectoral horn, which can

be considered as a " tapered hollow pipe transmission line",

the waves are attenuated in a way similar to that in the

hollow pipes. However, the boundary between the attenuation

region and the transmission region is not definite. In

general, this boundary is farther from the hypothetical

center of the sector for higher order harmonic waves.

Hence it is possible to suppress the high order harmonic

waves for radiation purpose. Horns having an angle
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20 0= 404 and of several wave lengths long give a very sharp

beam of radiation for the fundamental wave and substantially

suppress the higher order waves. A narrower hern has a too

small opening and is not as effective a means for producing

a single beam directive radiation. A much wider horn is not

advisable since it loses control of the direction of the waves

even inside the horn. The presence of the third harmonic

wave may sharpen or broaden the main beams, depending upon

whether the third harmonic wave is in equal or in opposite

phase with the fundamental wave.

Other Problems Associated with Hollow-pipes and Horns.

Most of the theorebical work concerning the

hollow-pipe system has been confined to the study of the

fundamental nature of the waves in the pipe. Little has been

done about the related problems of the system. The study of

horns in this thesis has also been confined to one type

having a special geometrical form. The following outline

includes some problems of immediate importance concerning

the applications of the hollow-pipe system and the electro-

magnetic horns.

Terminal, joint, and branch devices:- The waves

inside a hollow-pipe are subjected to distorsion and reflec-

tion wherever the conditions are different from that of an

infinitely long and straight pipe. Some forms of terminal
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devices have been suggested to generate various types of

waves in hollow-pipes1' 2 . The joints, branches, and curved

portions of the pipes are unavoidable in practical case.

Some of the simple forms might be analytically investigated.

Resonant chamber:- A problem which has the same

physical and mathematical background, and one that has been

suggested for practical use is the hollow cavity resonator2

or resonant chamber3, an elementary form of which is simply

a short section of rectangular or circular pipe closed by

a conducting sheet at both ends. The method and analysis

used in Chapter II might also be applied in this problem,

Dielectrics:- The use of dielectric of high

dielectric constant is always a temptation to those interest-

ed in hollow tube transmission. Apparently, the operating

frequency can be greatly reduced because of the decrease

of light velocity in dielectric. However, the attenuation

constant is higher for materials of large dielectric con-

stant. It is worthwhile to study the range of frequencies

within which, dielectrics may be used to advantage.

Horns:- The sectoral horns, heretofore inves-

tigated can only control the beam in one dimension. It may

be possible mathematically to treat a horn with all the four

1G.C.Southworth, Eng.Jour.(Canada)Vol.20,No.4.(1937)
2 W.L.Barrow,Proc.I.R.E.Vol.24,No.l,pp 1324(1936)
3G.C.Southworth,Bell Sys.Tech.Jour.Vol.15,pp 300.(1936)
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sides making an angle with respect to a reference axis, or

a conical horn. Such horns have the possibility of radia-

ting sharp two dimensional beams, i.e., confining the radiat-

ed energy within a small solid angle of the space.
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APPENDIX

ATTENUATION OF WAVES BETWEEN PARALLEL CONDUCTING PLANES

Consider a piece of dielectric of a- = 0 extend-

ing to infinity both in x and y directions and bounded by

two parallel conducting planes at z =*$ (Fig. A.l )

The conductor has a large but finite conductivity and suf-

ficient thickness that no energy from the dielectric may

penetrate it. Let the waves of sinusoidal time variation

travel along the X direction. The wave functions will be

independent of y but will be functions of x and z; the

latter comes in on account of finite thickness of dielec-

tric in that direction.

Waves traveling in the x direction are functions

of x and t in the form of e b. being the peopoga-

tion constant in x direction. Owing to the absence of y,

the Maxwell equations may be divided into two independent

groups:

(+ h')L E 3 HZ

hj E 9
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..Le H = hF ,

+ A*

(o- + iet) Ex - El_ A.2

(+ C4t) Ez = -- 5 Hy

The first group involves only E , H and Hz , and the

second group involves only H , E and E . We may definey x z
these two as the H -wave and the E -wave respectively in

accordance with the definitions of the hollow-pipe waves.

The subscript g is used to specify the waves between two

parallel conducting planes, or parallel-plane waves. These

two groups of equations are applicable in both the dielec-

tric and the conductor. Letters without primes are used

for the dielectric, while those with primes are for the

conductor.

H -wave

By eliminating H and Ht from Eq. A.l , the

wave equation of E is

+ + h ) 0 A.3

where

< for dielectric
A.4

= for conductor,
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The solutions in the dielectric are

E, = ,9 cos (r9 z) e
. it -hj

and E = B9 sin ( rz) e

As will be shown later, in the real part of =
integer

m is an odd for the first solution and even for the second

one. The wave is called an even or odd harmonic according

to the value of m.

Odd harmonicz ( m = odd) H -wave

By Eq. A.l the three component fields in the

dielectric are:

E 55 8, os ( rz) e

z =B, os ( rt xA.5

where h is the propagationconstant of the wave along

the X-axis. Inside the metal, since the waves are symme-

trical about the z = 0 plane, we will only consider the

upper half ( z ). The field E is chosen as2 y

, t- hx - '

E~ = B, e

and from Eq. A.l
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B, , i~t hx .. r'3 z A.6

,=-, B, e
, . rW/A' 9

The propagation constant h in the x direction must be the

same in both the conductor and the dielectric if the wave

travels with same velocity in the two mediums. The pro-

pagation constant in the Z-direction is denoted by .

Eq. A.6 represents a wave traveling in both the x and z

directions. If we substitute Eq. A.5a and A.6a into Eq.

A.3, r and Y I are found to be
g g

2 2 + hA 2 A.7a

y' ''' -h9, A.7b

Since h2 is of the order w2L.. , it is neglegible as com.
9

pared to C*>"'r'. Hence

e1

rf - a>/'<r'A.8
d

At the surface of the conductor of z =

the tangential components of the fields in the dielec-

tric and in the conductor are equal. Equating Eq. A.5a

be Eq. A.6a and Eq. A.5c to A.6c respectively and simplify-

ing, we have

'd
B, os (3 r ) ='

B Sin (r ) =2B A.,9
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We nay solve from these two equations for the

values of r and B' if B is known. Take the quotient of

the two equations:

as cot ( ) { - r

52. (m = positive integer)

for values of r d near Use this value of

cot( 4 ) and solve Eq. A.10 for r,

r a + -2 Al

The approximate value of Yr is known (Eq. A.7b). The
g

expression r may be further simplified on account of the

fact .that 0-' is a quite large number:

+o A.12

since X 2 +b h' ~ A. Va

h~((lI + 40

TZ 2

W -(Z- 4 We,___
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The phase constant g and attenuation constantoc of the
g

wave inside the dielectric are

139 = P-(fA.13a

(7C) A.13b

The above expressions are not exact enough for conductors

having very low conductivity. For metals of perfect con-

ductivity, the attenuation constant is zero.

The phase constant 3 would be imaginary if

1A )2

No wave can travel in the dielectric under such condition.

The cut off or critical frequency O is therefore

27rf. _ m
C d

t = MC A.14
2d e

With this notation, o and f3 may be written as

27rf

f - ~~A~ -(f'/ A.15a

___ rn f 0 )2
3 _L ( _L~- A.15b

By eliminating the sine and cosine in Eq.A.9,

the constant PI may be obtained in terms of Pg.
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B1 * , ', e 2

The sigh is positive or negative if m is divisible or

nondivisible by 4.

The fields in the donductor at z d are2

, rn er

, Pyen 7
k W/, e

4/*

A. 15

is h3X - 7-(z

ot -bx - ,(z ,

int 6,x r' 2-a

The loss per sq. cm. into the conductor at

the boundary is

H k) ( A.17

Even Harmonic (m = even ) H -wave

The three component fields in the dielectric

are

Esin(rz) e sAot -hx

A.186 ine t-h x
Hz WIB s9" r'.) e 3

Hit Bg 8 cos{ r z) e, x

..........
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The fields in the metal for z d are same as Eq. A.6

The boundary conditions require

A.18

Take the quotient

io d9t AO 19

since tan ( r,9 ) -n A,

2

2 2-

(m = even integer)

M 7C
9 ~ 2p' A.lla

d+-

This is the same expression as that for odd harmonic waves

except that m is even integer(Eq. A.ll). The expressions

for the phase constant P , the attenuation constant and

the cut-off frequency fo are given by Eq. A.14, and Eq.

A.15ab. The constant Bt may be similarly obtained

B ~ ~ ~ . d±-- i~e
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If m is divisible by 4 the lower sign is used and if not,

the upper sign is used. The expressions for the fields in

the conductor at z A d are the same as Eq. A.16, with

appropriate positive or negative sign. Also the loss per

sq. cm. into the metal is given by Eq. A.l7 with appropriate

signs.

If m = 0, Eq. A.19 becomes indeterminant. It

means that the H -wave for m = 0, does not exist.

E - wave

From Eq. A.2, we have the wave equation for H
y

+ (Kz +h) h. = A.20

The two solutions of Hy in the dielectric are

H B. s (r z)e Z0t e h, X

N9 = B os Y5(rz) e 3 ,

The former is the solution which has an odd number of

half-period sinusoidal variation in the z direction (odd

harmonic). The latter is the even harmenic solution.

Odd Harmonic (m = odd) E -wave

Here, we have, by Eq. A.2
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H! - 8.

-B s ( )

E.z -3 - sin( r 5 e

In the metal ( z),we choose the exponential solution

of the wave equation for H' and by Eq. A.2, we have7

,X .,
E5 

i

B' S
E0

E'z .'~

IWt - -rs

L'-hX ~3

By substituting Eq. A.21a and A.22a into Eq. A20, we have

K4 + h' - v = A.23a

K + h + = A.23b

d
At the boundary z = -2-- , the two tai gential fields are

continuous. Equating H and E, to HI to E' respectively,y a y x
and simplifying, we have

85 sin (r }=8;,
A.24

-83- cos(Y ) = 8'- e~

Take the quotient of the two equations

cof ( r A) = - A.25
r a'

iet -h x
A.21

A, 22

- d,
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The real part of Y3A is approximately M , where2 y 2

m = odd integer.

d r~r -Y d M Tr d
cot ()Tr) = fn(- -r )r

With the approximate value of ' =Jaa2.'' (from Eq. A.23b),

Eq. A.25 becomes

-rn +mit 2

solving for r,,

2 -d 2 A.26b

This may be simplified by applying the Binomial Theorem

to the aquare root and neglecting the high order terms of

M Tr 2()

~Oand

A, 27

= O 4. COP%

Equate the real and imaginary parts respectively,9 we have

n ( 2

o{ 2rC3" t

A:,28a

A*28b

'Th,

since

A. 26b
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By setting the phase constant equal to zero,

the cut off ftequency is found to be

too0 1 A.29

With this notation, the phase and attenuation constants

may be weitten as

A.30afa = 1 - ( f )

= 7r/4'i mrn
2r'- ( -) J

2 -~

A.30b

A. 24 , the

By elimination the sine and cosine in Eq.

constant 3' may be obtained in terms of

r' "

B8 * B, e,92

The upper sign is used for m = 1 , 5 , 9 ,....., and the

lower for m = 3, 7 , 11 , ..... . The fields in the metal

(z ) are therefore

H~ ~*B~

44t.t -h - r( Z-j)E=1x B e

E= c 2.Ez

where

The power loss into per sq. cm. of the metal is:

-T - H2 A

2d

= -L (,B 2 4114' 1
1 1 SZ(r,
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Even Harmonic (m = even) E -wave

In the dillectric the solution for the fields

are:

H = 13B cos( rz) e S

Ez o -r, .*y,
89 sin(r, )e A.33

Ei =-a, $ cos(,5e'*-s

The field expressions in the metal are the same as those

for odd harmonic waves. (Eq. A.22) At the boundary, the

tangential components of fields are equal, and so we have

g g

6<40 L Y'
f 0an ( rd) = A.35a

The real part of ?gi is around when mn = even integer

so fntr,- = ani(r r -n:

With the approximate value of r' , Eq. A.35 becomes
g

'2 MIt

to n A. 35b
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This is the same as Eq. A. 26a . Hence the results for

odd harmonic Eg waves also apply for the even harmonic

E -waves.

The constant a' may be solved in terms of B
g g

89 = 18e

The upper sign is for m = 2 , 6 , 10 , ..... and the lower

sign is for m = 4 , 8 , *... * The expressions for the fields

in the conductor (z 1 --- ) and the power loss into the con-

ductor per unit area are the same as Eq. A.31 and A.32.

For m = 0 , Eq. A,3 become s

2'o2

- +2

d

Hence ( >

Both jg3 and o<,may be derived from Eq. A.30. The expression

for power loss also applies to the m = 0 case.
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For the H - or E -wave, the expressions for

thr losses and attenuation constants are identical. As

judged from the value of h and r for both waves, the
g g

field distributions inside a dissipative pipe do not differ

appreciably from the non-dissipative case unless the con-

ductivity of the conductor is too small. By setting the

conductivity equal to infinity, and shifting the center

plane of the system to the z = 0 plane, the field expressions

in the diblectric Eq. A.5, A.18, A.21 and A.33 may be sim-

plified : (Refer to Fig A.2 )

H -wave, m = 1 , 2 , ... nondissipative case

Lwp COS,, e A.36

rdd
Eg-wave, m = 0 , 1 , 2 , .. nondissipative case

X 2.it Sina (7T ) e A.37

( - z) e .

Waves between parallel conducting planes are

of a very simple types and their attenuation constants

may be calculated directly from boundary conditions.
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Other method available are rather synthetic. The results

obtained here are simple examples of ihe general attenuation

characteristics of guided waves. We note that at sufficiently

short wave lengths the H -wave has an attenuation constant

proportional to the three-half power of the operating wave

length, while the E -wave has attenuation constant inverse-

ly proportional to the square root of operating wave length.

That is to say, when the operating wave length is nearly

zero, the attenuation of H -wave is zero and that of E -

wave approaches infinity. We may recall that in a circu-

lar pipe, the H -wave has an attenuation characteristic

simialr to that of the H -wave.

Summary

Summarize the results for parallel-plane waves:

H -wave

Fields in the dielectric (Fig. A.2)

= 8 Sin e

m = 1 , 2 , 3 ,

The ofttical frequency

M~ C

.J * = A. 14
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Phase constant

C 11 -(Tf A.15a

Attentuation cons tant

) -
ot'/

A. 15b

The power loss per sq. cm. into the conductor

at the boundary

A. 17

E -wave

Fields in the dielectric (Fig. A.2 )

Cose -mg.).xCI2

-cs ) e

m = 0, 1, 2, 3, *... .

The eritical frequency,

m c

The phase constant,

2 Trr2- 74 A z - (

- t~3jJI A. 37

A. 29

A.30a

I Is ( r2



- 219 -

The attenunation constant

al = ' -QR + . -iA.30b
ze? afo f

The power loss per sq. cm. into the conductor

at the boundary

2 A.32
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