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I, INTRODUCTION

The application of electromagnetic wave theory
to engineering problems involving low frequencies and the
frequencies used in radio communi}ion has been in an ad-
vanced stage for some time, Such theory has not been applied
as frequently to problems involving the ultra-high-frequen-
cies, Particularly in the last few years, following the
advancement of technique in the generation and application
of the ultra-high-frequency waves, the problems concerning
transmission, radiastion and circults have been actively
studied from a theoretical basis, One instance where an
exact analysls on an electromagnetic basis has been very
valuable 1s the case of transmission inside of conducting
pipes.

The pioneer paper in this field was published
by Lord Rayleigh in 1897, 1In this paper*, he discussed
the possibility of transmiting electromagnetic waves of
sufficlently high frequency inside a perfectly conducting
uniform tube of either clrcular or rectangular cross-sec-
tion, He discovered that theoretically two types of waves

may exist inside tubes of any cross-section, one without

1Lord Rayleigh: "Scientific Papers" Vol, IV pp227-280
(1897)
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the longlitudinal component of magnetic field, and the other
without the longitudinal component of electric field. Incl-
dently, he determinedthe eritical frequencies for waves
inside ideal non-dissipative tubes of circular and
rectangular cross section, ie., the frequencies below

which they cannot exist. In 1898, R. C. Maclaurin?® obtained
the natural frequencies of oscillation for tubes of
elliptical cross section, but he did not treat the case

of transmitted waves. In the years that follows, very
1ittle can be found in the literature that related to this
problem, until 1910, when Hondros and Debye® described
theoretically the transmission of electromagnetic waves
along & dielectric wire. A recent paper by Schelkunoff®

is confined to problems associated with coaxial conductors
which is sti1ll another type of system.

The recent interest in the transmission of Ultra-
high-frequency electromagnetic waves inside hollow conducting
plpes started apparently with papers by W. L. Barrow* of
M. I. T. and by G. C. Southworth), J. R. Carson, S. P. Mead,

and S. A. Schelkunoff of the Bell Telephone Laboratories.

1R.C.Maclaurin, Cambridge Philosophical Transactions,

Vol. XVII, Part I, pp. 5-100, (1898).

3?.Hon?ros and P.Debye, Ann. d. Phys. Vol.32, pp. 465-476,
1910

8S.A.Schelkunoff, Bell Sys. Tech. Jour. Vol. 13, p. 533
(1934)

*W.L.B?rrow, Proc. I.R.E. Vol. 24, No. 10, pp.1l298-1328,
(1936

SG.c.s?utnworth, Bell Sys. Tech. Jour. Vol. 15, pp. 284-309,
(1936

‘J.R.Carson, S.P.Mead, and S.A.Schelkunoff, Bell Sys. Tech.
Jou.r. VOl. 15’ ppo 510"553. (1956);
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In these papers, special attention was given to pipes made
of finitely conducting materials filled with low-dissipative
dielectrics such as alr or vacuum,

The pipe they considered has a circular cross
section, The wave, generated by an antenna placed at one
end of the pipe or by some other means of excitation, pro-
pagates along the pipe. If the conductor hadan infinitely
high conductivity, the waves would confine themselves within
the dielectric and no energy could be absorbed by the con-
ductor., Otherwise, the absorption of energy by the condu-
ctor causes the attenustion of the wave. -It has been re-
ported that the phase velocity of the waves inside the cir-
cular pipe 1is greater than the light velocity and the at-
tenuation of‘one type of the waves decreases with increas-
ing frequency. Both phenomena are quite extraordinary to
the ordinary experience of guided waves,

After the presentation of the above three papers,
Léon Brillouin immediately published a paper®, in which he
studied the problem from an entirely different angle, giving
a clear physical piecture of the nature of the waves inside
a non-dissipative pipe of rectangular cross-section. The
waves are constructed by projecting the ordinary plane waves

into & rectangular pipe at an appropriate angle with respect

1160n Brillouin, Revue Generale de E'lectricité, Vol.XL
pp 227-239. (1936)



to the axis of the pipe, The multiple reflections, caused by
the foumr perfectly conducting walls, transform the plane wave
into a composite wave which acts like a standing wave in the
transverse direction and like a traveling wave in the longitu-
dinal directlon. That the original wave does not travel in
the axial direction explains the phenomenon of the increas-
ing of phase velocity of the wave in the pipes as compared

to their free-space velocity. He also tried to explain the
peculiar behavior of the gttenuation for the afore-mentioned
type of wave by pointing out that waves possessing this proper-
ty can only exist inside the tubes having perfect symmetrical
cross-section like a circle or a square., Thils, however, does
not seem to be so,

Following Brillouin's paper, L, Page and N, I,

Adams Jr.' mathematically constructed the waves in circular
pilpes from plane waves by a similar method as for the reec-
tangular pipe., The last paper on this subject appeared on
the November 1937 issue of the Proceedings of the Institute
of Radio Engineers, by S. A. Schelkunoff®, In this paper,

he presented a general theory of hollow-pipe waves 1lnclud-
ing the attenuation, and as a speclal example, treated the
rectangular pipe in detail,

The radiation of electromagnetic waves from the

1L.Pege and N:I.,Adams Jr., Phy., Rev, Vol., 52, pp.647-651
(1937)
2S.A.Schelkunoff, Proc. I.R.E. Vol.25, pp.1457-1493. (1937)



open end of a hollow pipe or from a horn goes hand-in-hand
with the hollow-pipe transmission problem. Bergmann and
Kruegel® reported in 1934, the experiment of measuring
the radiation from the open end of a very short hollow metal
cylinder in which a half-wave coaxial antenna wes properly
excited, Schelkunoff®, in his paper titled"Some Equivalent
Theorems of Electromagnetics and their Application to Ra-
diation Problems", calculated the radiation loss from the
open end of a cdxial tube., No papers dealing with the
electromagnetic horns are known to exist, although their
use for directive radiation has been suggested in several
papers in the last two years.,

My work during the past year and a half, has
concerned mainly fd} aspects of these problems, namely:
(1) the transmission characteristics of waves in rectan-
gular pipes; (2) the transmission characteristics of waves
in elliptical pipes; (3) the radiation from the open end
of rectangular pipes; and (4) the transmission and radia-
tion characteristic of a specilal type of the electromsgnetic
horn., The natures and the backgrounds of the problems and
the results obtained during my research are summerized as
follows,

In the fall of 1936, Professor Barrow, after he

has concluded his research on transmission of waves in

1Bergmann and Kruegel, Ann, der Phys, Vol, 21, ppll3-138,
(1934)

2S.A.Schelkunoff, Bell Sys. Tech, Jour., Vol,15,pp. 92-112
(1936)



circular pipes, turned to the study of rectangular pipes.
Some of his work will be summarized at the begining of

the second chapter., I took over the problem and tried to
calculate the attenuations of waves in the finitely con-
ducting rectangular pipe as a boundary-value preblem,
Difficulty was encountered in trying to find a wave fun-
ction which would represent the fields inside the metal,

on account of the discontinulity of curvature at the four
corners of the rectengular pipe. The possibility of
resolving the waves in a rectangular pipe into ordinary
plane waves, as suggested by Brillouin, inspired the idea
tha% the problem might be treated in a way similar to the
reflection of light by an imperfect reflector, In this
respect, A. Sommerfeld* has treated the problem of travel-
ing electromagnetic waves along a finitely conducting sur-
face, In our problem it was found that the best way of
presentation was probably to resolve the waves insidefrec-
tangular pipe into waves which exist between two parallel con-
ducting surfaces of infinitely large area., In the Appendix,
the solution of waves between two parallel and finitely con-
ducting surfaces is gilven, The attenuation and the loss in
the conductor were calculated under the assumption of a rea-
sonably high conductivity (¢l > > |«& ), a condition usually

satisfied in practical problems, In Chapter II, the attenua-

1P,Frank and R.Mises, die Differential und Integralgleichun-
gen. pp 876, (1935)
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tions of waves in a rectsngular pipe are calculated by uti-
liaing the results obtained in the Appendix. Comparisons
are made for a given wave inside pipes of different ratios
of dimensions but of equal peripheries; and also for dif-
ferent waves in a square pipe and a eircular pipe of equal
peripheries, None of the waves in a rectangulsr pipe pos-
sesses the pecullar characteristic of attenuation which
decreases with increasing frequency, except for the degen-
erate rectangular pipe which results when one of the trans-
verse dimensions 1s extended to infinity,

A circular pipe is a degenerste form of
the pipes of elliptical cross-section. In order to study
the effects of deformation of the circular eross-section
on the properties, especially the attenuation of the waves
in a ecircular pipe, the waves in the elliptical pipes were
studied. HMaclaurin has treated the problem of standing-
waves in an ideally conducting elliptical pipe., Of course,
this solution 1is not exactly of the same nature as the
present problem which deals witnh traveling waves. The
treatment of waves in elliptical pipes required the use
of elliptical coordinates. The solutions of the wave
equation in elliptical coordinates are the Mathieu fun-
ctions, For the non-dissipative case, Ehe general expres-
sions for the fields 1in the dielectric, the phase constants,

the critical frequencies and the other constants for
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various types of waves in the elliptical pipe, have been
obtained., I am much indebted to Prof. P, M, Morse for the
use of his "Tables of Mathieu Function", to calculate the
numerical values of critical frequencies and later on, the
eattenuation constants. To calculate the attenuation of the
waves in elliptical ;ipes as a boundary-value problem, the
same difficulty occurs as in case of waves 1n rectangular pi-
pes, i.e., the cholce of a proper wave function for the fields
in the conductor. This 1is overcome by using the asymptotic
forms of the Mathieu functions derived by Prof, J. A. Stratton®.
The attenuation constants, thus obtained, are illustrated by
1aboﬁbus numerical calculations, and comparisons are made for
various types of waves in elliptical pipes of different
eccentricities but equal peripheries, The transmission
characteristics, including the attenuation, for waves in a
circular pipe are partly duplicated here, as they represent &
degenerate case of an elliptical pipe, and comparisons are
made with the general cases, It is discovered in this

chapter that, so far attenuation is concerned, a circular

pipe is inferior to an elliptical pipe with small eccentricity
except for the waves whose fields have a circular symmetry in
the circuler pipe. It is also discovered that no wave 1n

an elliptical pipe can have a decreasing attenuation with

inecreasing frequency, This exceptional attenuation can only

17,A.Stratton, Proceedings of the National Academy of Sciences.
Vol.21,No.1,pp 51-62.(1935) Vol.21,No.6,pp 316-321.(1935)
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occur when the pipe degenerates into a circular one,

As a conclusion to the work on hollow pipes,
the anomalous phenomenon of the decreasing attenuation with
increasing frequency is explained in terms of the absorp-
tion coefficient of metal and a genersl theorem is deduced,
After the completion of the work cited above,S., A, Schel-
kunoff's paper appeared in the Proceedings of I. R. E,
Although this paper represents a valuasble contribution
from the mathematical aspect, he failed to emphasize the

most important type of wave in a rectangular pilpe

the Ho,l-wave for which, the attenuation was not even
given, V\ery little effort has been made by him to clear
up the question of the anomalous attenuation phenomenon
reported by Carson, Mead and Schelkunoff in their first
paper on hollow-plpe waves,

The theoretical work on the calculations of the
radistion from the open end of rectangnlar pipes and horns
has been collaborated with the experimental work on the same
subjects carried on by Messrs. F. M. Green and F., D. Lewis
under Prof, Barrow, In the calculations of the radiations
from the open end of rectangular pipes, the waves inside
the pipes are represented by thé vector potentisls, By
means of Huygens' principle® the vector potentials, and
consequently the fields too, in the outside space are cal-

to
culated, Special attention is paid the Hj , ~Wave, which
’

1K.FBrsterling,"Lehrbuch der Optik" (1928)
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has the electric field everywhere parallel inside the rectan-
gular pipes and gives a single-beam directive pattern, 1In
agreement with the experimental work and a rough theory,

it is found that the shdpness of the beam depends upon the
ratios of the linear demensions of the pipes to the wave-
length. A sharper beam may be obtained by increasing the
ratios. The effects of the high order H -waves (m = odd).

is o,m
in the pipe,studied. Other types of waves than the H -

o,m
wave (m = odd), do not give single-beam radiation,

The horn that was actually studled, 1s, in a
sense, an extension of a rectangular pipe, with the side
walls only turned outward at a certain angle. Since the
horizontsl cross-section of the horn (Fig. 5.1) is a sector
of a circle, we will call this the "Sectoral Horn". The
measurements made during the last summer* on this shape
of horn revealed amazingly good results, With the proper
angle between the sides of the horn, the radlated energy
can be concentrated within a very sharp beam. This horn
may find an immediate application in ultra-high- frequency
directive transmission, pmrticularly to the blind landing
of airplanes. Later mesaurements have shown that the rectan-
gular pipe is not essentlal for propsr functioning of the
horn, as had been earlier suggested, and an antenna with a

simple plane reflector or a parabélic reflector, properly

shielded at the throatof the horn may serve equally well.

ip ,M.Green, E,E,Thesis, M.I.T. (1937)
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Most of the essentials of a rigorous treatment
for the hoen has been obtained by starting from Maxwell
equations and using the proper boundasry conditions,

The problem is similar to the transmission of wa&es along

a circular pipe. In the sectoral horn, the wave propagates
in the radisl direction, which is represented by the Bessel
function of the third kind, i.e., the Hankel function, Only
one type of wave, in which the electric fields are every-
where parallel to the divergent sides of the horn, has

been analyzed., This wave can be most conveniently produced
experimentally, and it alone has the possibility of radiat-
ing a single-beam pattern, Based upon the property of the
Hankel functions, the transmission characteristics of waves
inside a horn are determined., It is found that the waves
are highly attenuated at the small end of the horn and are
freely transmitted beyond a certain distance from the
hypothetic center of the horn, The radiation patterns are
calculated in a way similar to that used for the rectangular
pipe, but more approximations must be imposed because of the

difficulties of integratlon,

Units and Definitions.

A practical system of units will be used in

which:
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o]
]

electric field intensity in volts per cm,

=g
]

magnetic field intensity in amperes per cm?

¢ = conductivity in mhos per cm,

g = permeabllity in henrys per cm. (for air pm= i = 4ux10'9)

{ = dielectric constant in farads per cm, (for air

&= &, =10"*/36m )
The quantity E and H are real. For convenience in analysis,
the complex field intensities E and H will be employed throu-
ghout, but it should be kept in mind that, in the end, the
real part of E and H must be taken, Similarly the vector
potential used here-after will be a complex quantity, The
complex vector quantities are usually expressed in terms of
their components. and the directional unit vectors o the
coordinate system, The components are therefore complex
scalar quantities and will be hereafter indicated by a sub-
gscript to denote the direction of the component, The con-
jugate of a complex quantity is denoted by a A under the
letter representing the quantity., For example, the con-
jugate of Ey is E e
In the treatment of electromagnetic waves, the

Maxwell equations will be frequently used. Although they
were originally derived for real quantities, they can also
be used for complex quantities, The wave equations are
usually derived vectorially from the Maxwell equations.
Therefore, the wave equations for the component fields in

curvilinear orthogonal coordinated, do not necessarily
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have the same form, The wave constant k which appears in

the wave equation is defined as\lwg.{/u.- iour. In a di-
electric having negligible conductivity, the wave constant
1s simply equal to wyfs . The constant 1//¢m for air
is equal to the light velocity in alr, and for a dielectric
having other valuesof £ and s , it is equal to the light
velocity in that medium. Hence it 1s convenient to let ¢
represent the light veloeity in that medium, The constant
w has 1its usual meaning and 1is equal to 2nf. Sometimes,
the frequency of a wave will be expressed in the equiva-
lent form f = —i-— , and 1t will be sometimes convénient
to speak of wave length alone., TUnless otherwise specified,
it will be understood that the wave length 1s to be mea-

sured in the dielectric considered, The following expres-

sions are therefore identical:

k =/ Emx =wfc = 2nf/ec =21/N

and will be used interchangeably hereafter,

In calculating the attenuation of waves in pipes,
the fields in the metal and the constants of the metal will
also be encountered., 1In ofder to make the nomenclatures
unique throughout the present work, we will use primed let-
ters to indicate constants or fundtions in the metal and
leave the unprimed letters exclusively for constants or

functions in the dielectric. The wave constant in the

metal is defined as k' = \/-_uo/J o'
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The electromagnetic waves in a sufficiently
long non-dissipative hollow pipe ean be classified into two
main types. They have been defined in various ways accordinfg

to the properties of the waves, The more exact one was given

by Prof., Barrow as follows:

"All waves that may be propagated within any hollow
conducting pipe or tube will be called hollow- pipe

waves.,"
"Any hollow-pipe wave having both a longitudinal and
a transverse component of magnetiec field but only
a transverse component of electric field will be

called an H-wave,"

"Any hollow-plpe wave having both a longitudinal and

a transverse component of electric field but only a
transverse component of magnetic field will be called

E-wave,"
If the wall of a pipe is finitely conducting,

it is sometimes misleading to consider that one ef the
lohgitudinal fields may be set arbitrarily to zero, since
the finiteness of the conductivity requires different boun-
dary conditions, The difficulties of the mathematics obscure
the actual situation in the pipe. However, if the conducti-
vity of the conducting wall is very large but finite, the
electromagnetic waves inside a dissipative pipe may be con-
sidered as either a modified H-wave or a modified E-wave,
The following definitions will introduce the correct ides
when we discuss the attenuwations of the hollow-pipe waves.

An H-wave or an E-wave in a slightly dissipative

hollow-pipe is one which would degenerate into the

H-wave or the E-wave respectively in a non-dissipa-

tive hollow-pipe, were the conductivity to approach
infinity as a limit,
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Inside a straight hollow-pipe of sufficiently great
length, the waves propagate along the longitudinsl or axial
direction., Let the X-axis be in the axisgl direction of the
pipe and consider only the waves having simple sinusoidal
time variation, The propagation of the waves along the axial

direction may be described by the factor gloot-hx

s, where h 1s
the propagation constant, By substituting this factor into
the Maxwell or the weve equations, they are reduced to the
partial differential equations of the two remainins coordin-

lot-hx remains as a constant in these

ates, and the factor e
equations,

For a non-dissipative pipe, the propagation cons-
tant h is zero when the frequency is equal to a critical value,
Below that frequency, the propagation constant is a real
quantity. This frequency 1s defined as the eritical fre-
quency, and the corresponding wave length A and wave cons-
tant k are defined as the critical wave length and the cri-
tical wave constant of the wave respectively, and they will
be denoted by a subscript ",".

The transmission and radiation of electromagne-
tic waves of ultra-high-frequency by means of the horns 1s
but little explored, and their general properties are still
to be determined., In the Chapter V only one type of wave
in a particular shape of horn has been investigated. The

horn is named the "sectoral horn" on account of its geome-

trical shape, which resembles a sector slice of a c¢ylinder,
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Inside the horn, two types of waves may exist, one without the
radial component of electric field‘and the other without the
radial component of magnetic field. Only the first type has
been preliminarily investigated. Another condition has been
imposed that the waves are independent of the coordinate y of
cylindrical coordinate system (r,d,y), r being the direction
of transmission, This type of wave will be refered in the

text as "horn waves",



ITI TRANSMISSION CHARACTERISTICS

OF WAVES IN RECTANGULAR PIPE

<

The transmission characteristic of waves in-
side a non-dissipative pipe of rectangular cross-section
have been studied by various authors. In the present work,
it is intended to study the transmission characteristie,
principally the attenuatlon of dissipative rectangular
pipes, A summary of the results of non-dissipative pipe

1s given here with the courtesy of Prof. W. L. Barrow',

Non-dissipative Case——Summary.

In Fig. 2,1, a section of a rectangular pipe

is shown. The X-axis of the Cartesian coordinates (x,y,z)
is chosen to coincide with one of inner cornem of the pipe.
Thus the dielectric is bounded by conducting walls, y = O,
y=a, 2=0 and z = b, The pipe is sufficlently long that
the end effects may be neglected, The conductivity of the
conducting walls is assumed infinity for the present, and
the dielectric,which fills the inside, is assumed to be

a perfect insulator,

1A paper titled "Blectromagnetic Waves in Hollow Metal
Tubes of Rectengular Cross Section" jointly by W.L,Barrow
and L.J.Chu was sent to the Institute of Radlo Engineer-
ing for consideration for publication in their Journal.
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Two types of waves may exist inside such a
non-dissipative pipe. The H-waves have only transverse
electric intensity and both longitudinal and transverse.
components of magnetie intensity. The E-waves have only
trangverse magnetic intensity and both longitudinal and
transverse components of electric intensity,

The double subscripts n,m are used to denote
the order of harmonics of the waves along the two linear
dimensions (y and z) in the cross-section of the pipe.
All the waves are assumed to propagate in the positive x
direction and to have a sinusoidal time variation, There-
fore the variation in X-axis and also the time variation

can be discribed by the exponential factor gl00t-1px

The fields of the Hn m-Waves in the dielectric

s
are following:

He = B cos (2T y) cos (BF ) ¢ (A0

Hy = B %"T" sin (22 4 ) cos (%—Ez)ei(mt"“)

"= B %DEI cos (G y) sin (TEx) o LWt .
E, =B %4:3';,5 cos (TXy) Sin(%ﬂz)eé("’t“ﬁ")
Ez=-B-%?~§!5h(%?y) cos (2T 7) IEICIEYD

m
»
"
o]
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b3 2 2 2 o 2
where Ko = K "[32 = "la)z) + (:%_7[) =(,‘z_} 2.2
ko 1s defined as the critical wave constant,

All combinations of n and m are possible ex-

cept the one, n =m =0 , The Ho, o-wave has only a tramn

verse component of magnetic intensity Hx’ which of course

has no physical meaning, For n = 0, the H,,. -waves have

only these components of fields, Hx’ HZ and Ey:

H, = B cos (_’_"b_’f Z) e;'(“"'(’”’

H, = B ;sb Sin (X g) e ‘(0470 2,3
- Lo . L (ot - Bx

Byt B s (e e Y

The vector electric intensity of the H,, -wave 1s every

where parallel to the Y-axis, All the flelds are indepen-

dent of the variable y.

The field expressions of the E,, -waves are as

.\

following:
= - . L (wt -
E, = B sin () Sm(gtrrrz)et(w px)
= L ((wt -
g 2o B BT o () sin(mayy e HETRY
E, =- B LE; mn . nt mr i(wt-Px)
z % Y Sin (TH)COS(T Z) e 2.4
= Lwé . -
R A () () o
H, =— g %€ nr ,
2 — nn . [ t - px
<X a Cos(_a_g) Sm(";,” zZ) e (w px)

T
n
o]
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The E, ,-wave with n or m or both equal zero
is not possible since all the six components of fields va-
nish., Thus the lowesbt order of the E,,-wave is E, , -wave,

For all the waves in a rectangular pipe, the
rSles of y and z are interchangable with appropriate changes
of sign, The indices n,m have the physical significance
that the f¥ 1lds have n half-periods of sinusoidal variation
along Y-axis from O to a, and m half-periods of sinusoidal
variation along Z-axis from 0 to b,

The expressions for the constants of the waves
are the same for both the H,, -and the E, , -waves and are
as follows:

Phase constant:

P () -B -8 i- (3. e.sa

Critical frequency:

= < 2 m 2
fo = 20 (&) « (2, 2,5b

Critical wave length:

- 4%

A = 2[(;’1)2+(2)2] : 2.5¢

e b

Wave length in pipe:

A= 27/p. 2.5d
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Phase velocity:

V, = ‘0/(3‘ 2.5e

Group velocity:

vy = l//gg - Lc . 2.5¢

The field distribution diagrams may be calcutated

by a procedure similar to that used for circular pipe*., The
differential equations for the lines of constant H and con-
stant E can be solved since they involve only sine or co-
sine funtions., 1In Fig. 2.2 the fleld distributions of H -,
H,, - and E, ; -waves in a square pipe are plotted, We must
remember that three dimensional fields can not be represent-
ed by a two dimensional diagram, Thus in the transversal
cross-sectional view of the H, , -wave, the electric lines,
which have only transversal components, end normally on the
conducting walls, while the magnetic lines, which have both
longitudinal and transversal components end irregularly
nearly the corner, where the magnetic lines seem apparently
crowded, Actually the magnetic lines nesar the corner turn
gradually into the x dimension. There seems no means to
represent the magnitude of the magnetic fields by the con-

contration of the lines,

‘w, L. Barrow, Proc., I.R.E., Vol. 24, pp.1298-1329,(1936)
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Dissipative Case —— General Considerations.

While the waves inside a nondissipative rectan-
gular pipe have simple analytic solution, there is doubt
whether the problem of a dissipative rectangular pipe has
a rigorous mathematic solution or not, In a dissipative
pipe, the waves no longer confine themselves to the di-
electric. The conductor is no longer a perfect reflector
and absorbs energy. There seems no mathematical salution
that may take care of the discontinuity of eurvature at
the four corners. Therefore, we have to use the approxi-
mate perturbation method, based upon some assumptions
which are juatified within the practical range of frequen-
cy and conductivity, The method will be explained in the
following pages.

The principal tadk is to calculate the atten-
uation conatant of the waves, For a pipe made of a conductor
of finite conductivity filled with a dissipative dielectriec,
the attenuation constant may be assumed to consisted of
two terms, one caused by the conductor and the other by the
dielectric. Therefore, we shall be sble to treat them separa-
tely, The attenuation caused by the conductor will be treat-
ed first,

In Appendix , we have solved the attenustion of
waves between two parallel conducting planes in a rigoroua

straight forward manner, We may consider it as a degenerate
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case of the rectangular pipe waves, with the dimension a
extended to infinity in both directions, There is no ques-
tion of the soundness of the solution. Therefore we may
pldcup a few fagts from there, which will be useful to
make assumptions 1in calculatioﬂfthe attenmuation of waves
in rectangular pipe.

First, the waves do not penetrate any consider-
able distance into the conductor. The propagation constant
of waves inside the metal in the direction normal to the

boundary is ré

Its real part is the attenuation constsnt in that direc-
tion. With commercial coper and at a frequency of ledg
CePeSe ( N =1 m), the attenuation constant is 8300 nepers
per cm, That 1s to say, the field intensity drops to

0.1% within a distance of .0008¢m, For a pipe of practical
dimension, the effect of the discontinuity of the curvature
at the four corners extends to only a negligible distance
from the corners as compared with tte periphery of the pipe,
Therefore, this effect can be neglected.

Second, the finite but large conductivity of the
conducting wall does not distort appreciably the field dis-
tribution within the dielectric., The constant rg, which
controls the distribution in tranverse directlon, appears

in Eq. A.12 and A.26b as a complex number with an imaginary
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part of insignificant magnitude., If again we use commer-
elal copper as the conductor, at a wave length of one meter
or less, the maximum possible distorsion of field from the
the fields of the non-dissipative case is not more than
0.1%.

The pipe now considered is the same as shown
in Fig. 2.1, The conductor has a finlte conductivity
and the dielectric 1is assumed to be a perfect insulstor,
The walls are so thick that no energy may exist at the
outer surface. The waves in the dielectric, strictly speak-
ing, 4o not have the form of either the H- or E-wave as
previously defined., We are not able to impose again the
condition that one of the longitudinal components of field
intensity identically vanishes everywhere inside the pipe,
since the boundary conditions do not permit so, except
in some speclal cases. We will find it convenlent to define
an H- or E-wave of a dispipative pipe as one, which would
degenerate into the H- or E-wave of non-dissipative pipe, were
the conductivity of the conducting walls to be increased
indefinitely.

It has been an established fact that the waves

inside a non-dissipative rectangular pipe may be resolved
into ordinary planes waves with conjugate directions of

propagationt It is from this idea that we are able to

1Léon Brillouin: Revue Generale de E'lectricité Vol, XL,
1936 pp 227-239,

L. Page end N,I,Adams,Jr. Physical Review, Vol, 52, 1937
PP 647-651,
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calculate the attenuation of waves inside a dissipative
rectangular pipe as a boundary problem, However, we may

find 1t more convenient to resolve the waves inside a non-
dissipative rectangular pipe into components of parallel-
plane waves, which exist between two parsllel conducting plan-
es as dlscussed in the Appendix,

The attenuation constant is equal to half the
ratio of power loss per unit lengbh of the pipe to the power
transmitted through the pipe. If the field inside the pipe
is not apprecigbly distorted by the finite conductivity of
the metal, the power transmitted is just the summation of
the longitudinal Poynting3 vector calculated from the field
expressions of a non-dissipative pipe,

To calculate the loss, we start also with the
non-dissipative field expressions, end see what would be
the loss, were the plipe dissipative, but not sufficiently
80 to disturb appreciably the field adjacent to the wall,
The loss may be divided into two parts, (A) the loss
dissipated into the set of walls z = O, b and (B) the
loss into the set of walls y = 0, a o To calculate (4)
the loss into the walls z = O, b , we resolve the complete
field expressions in the non-dissipative rectangular pipe
into component parallel-plane waves between walls z = 0
and z = b, The effects of the two side walls are now
neglected. Each component wave would be modified in the

menner we discussed in the Appendix, ift the walls z =0
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and z = b were dissipative., This loss in the walls z = 0,b
can be calculated from Eq, A.,17 and A.32. Similerly the loss
in the walls y = 0, a,may be calculated. The total loss
is the sum of loss of each component parallel-plane waves
between z = 0, b planes and y = 0, a planes.

It can be proven that the total losses into the
walls z = 0, b of the pipe is the sum of loss of each com-
ponent parallel plane waves as follows, The fields in a

non-dissipative rectangular pipe have a general form as below,

COS(!LE.j) cos Mz)et‘«)t-(i’()

Sin a Sin b

By spliting th e sine or cosine of y into exponentials, the
fields expressions separafe into two groups (G, abhd G, ),

L (wt -px + 3 y)
one having the exponential e and the other

Lt -px-Ty)
having the exponential e ( f e In each group, we may
replace x and y by new coordinates x' and y! such that the
fields are independent of y'. According to Eq. A.l1l and

A.2, the fields of each group fall into two subgroups, one

having Ey, » Hyy and H ( Hg-wave) and the other having
H E and.Ez (Eg-wave). These two sdbgroups have abso-

-y(’ x!
lutely no interaction between them at the boundary, since

the magnetic field of one is always parallel to the elec-
tric field of the other.

There is interaction between the two groups,
(G, abd G, ). Suppose we bake a component of electric field

of G, tangential to the boundary surface
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. . . hr
twt - (fx -LFTY

1 ©

ard a component of magnetic field of Gz also tangential
to the boundary surface
K. o bt - P +i%y
2

If the two are normal to each other, the power transmitted
per unit area in the normal diredtion of the surface is

half the conjugate product of the two:
1 Ly
2 KK, e (real part)

That is, at any point y, there will be an interaction between

the two groups. However, if we integrate the exponential

from y = O to y = a, the result is zero. It proves that

the average Interaction between two groups is zero. Even

Ny
a

part to 1t, as it ought to be in the case of dissirative pipe,

if the factor 1s modified by adding a small imaginary
the integralof the exponential is still megligible as compared
to unity.

The Hb,m-wave is a special case of the Hn
waves., Its attenuation can not be deduced from general

s M

formula of attenuation constant of the Hn m-Wave. Hence,
14

we shall treat it separately.

Attenuation of Ho n-vave in a Rectangular Pipe

5 K

The expressions for fields of the Ho novave in the

s

dielectric bounded by perfect conducting rectangular pipe are
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given by Eq. 2.3 « The power loss dissipated into the
walls, i1f they are finitely conductive may be divided into
two parts: (A), the loss into the walls z = 0 and z = b
and (B), the loss into the wall y = 0 and y = a, The two
will be treated separately.

(A) Loss into wells z = 0 ahd 2 =D

Between the metallic walls z = 0 and 2z = b, the
field expressionslook exactly like Eq. A.356, the Hg-wave be-
tween the two non-dissipative conducting planes z = 0 and
z = d, treated in the Appendix, The corresponding constants

are tabulated below:

Hg-wave Ho,m-wives betwefn walls
z=0and z =D
39 B -f;‘%;‘—;-
m m
d b
s P

*

Were the plpe dissipative, therec would be loss into the walls
considered and the field would be distorted by the two side
walls y = O and y = a, This effect of the side walls is of
secondary order and will not be considered, The power

loss per unit area of Hg-wave is given by Eq. A.17. Since
the two waves behave exactly in the same way we may obtain
the power loss of the H, y-wave per sq. cm. of the walls

z =0 and g8 = b, by substituting the constant into Eq. A.1l7,

Multiplying it by an area 2a, we have the total loss (A)
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per cm, length of the pipe.

2 w
Loss (4) =|B|a /3€; per cm length of the pipe
2.6

(B) Loss into walls y =0 andy = a

The fields of the H,, -wave between the side

walls y = 0 and y = a may be resolved into the form of parall-

el-plane wave by spliting the sine and cosine functions of

z into exponentials &8 follows:
mr . ﬂ'ﬂtz
-4

n iTZ b
(e + e )

i

cos (2%3 z)

sin (B2 2) = (-t T, o HE

Substituting them into Eq. 2.3, we may separate the Eq. 2.3

into two groups of expressions characterized by different

exponentials as follows:

B v ( ot - x-.:"_n
T
8 ((wt -px . Zh;
Group 1. H, = -3 mz e’ P b 2 2470
. mn
= -B wpb i(et-px-577)
E5 2 rn7te
8 ((wt - px + 10,
He =7 e )
- . mr
Group 2e HZ = ._g.. m: e t(wt px + 5 Z) 2.7b
. mT
E, = g“‘ﬁ:“‘;be Clat -fxr572)
T
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The first group travels in a direction normal to ¥-axis

with directional cosines

rnrr/b

cos e" = —E- ! cos eZ = K 2.8

where - 2 mnr 2 _ @ -
K —,/fa +(_.bl) = for the Ho,m wave

and the second group travels in a conjugate direction with
respect to X-axls, Let us consider the group 1 first. Ro-
tate the XZ-plane by an angle -ex, so that the new X'-axis
coincides with the direction of propagation:

X = X cos 8, - 2 sin O,

2.9

/]

Z = X'sin® *+ 2 cos 6,

Substituting these x and z in Eq. 2.7a, and resolving Ey,
Hxand Hz into E_,,H

v 1 and Hz' by means of Eq. 2.9, we find
that
(0/4— g(wt ~2x’)
By = =B F3ar ©
b
H!' = 0 2.10

wlEpe (st -Tx)
Hz, = ~-B . ©
2 5 ,

These flelds belong to a plane wave traveling
in the x'-direction., Such a wave can only exist between the
walls y = O and y = a when the conductor is perfectly condu-
ctive. When the conductor is finitely conductive, however,

the electric field normal to the sufiface tends to tllt over
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against or toward the direction of propagation by an infi-

nitesimal complex angle., Thus, besides Ey and H,y » there

will be an Ex' component which causes the power dissipation
into the metal walls,

If we put m = 0 in Eq. A.37, we may see that
the group 1 wave is just a speclal case of the E_-wave for

g
m =0 , with equlvalent constants tabulated below,

Eg-wave (m=0) Group 1 of the H, ., -wave
Hs sz
E, - E,
K
Bg "B{E?
=2 =
Ps =< c

The power loss per sq. ¢m, is given by Eq. A.32.
Substituting the equivalent constants of Group 1 of the H,, -
wave and multiplying the result by the area 2b , we have
the power loss per cm, length of the pipe into the walls
¥y =0 and y = a caused by the Group 1 of H, ,, -wave, Since
the behavior o? group 2 is exactly the same as that of group
1, except for the direction of propagation, 1t must cause
ssme amount of loss. Hence the total loss (B) per cm, of

the pipe into the wall y = 0 and y = a is

i 2o wb v TGL
Loss (B) = \B‘ (=) b/‘/?/“}' per cm of the pipe,
2.11
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The total loss per cm, of the pipe is the sum

of (A) (Eq. 2.6) and (B) (Eq. 2.11)

L PEEN R )

2
2clrn n

The power transmitted along the pipe in the X-
direction is equal to the integral over the cross-section of
the Poynting's vector in X-direction. Using the Ey and Hz
of Eq. 2. we have

3

w ab

S = lBlz 4(m7r)2

The attenuatlon constant of H_ , -wave are there-

fore as following.

o <-L

L
T 25

foyE, B f s
_ [ 2an < 7 /¢
= [2I2KC Sm (%) + 3a (") nepers per cm,

3
T M b7t /_1 " ()%)z 2,12

Attenuation of H,, -wave in a Rectangular Pipe.

The fields of the H, ,-wave in a non-dissipative
rectangular pipe are given by Eq. 2.1 . The power loss dissi-
pated into the metal, if the walls are finitely conductive
may be divided into two parts: (A) loss into the wall z=0
and z = b and (B) loss into the wall y = 0 and y = a,

(A) Loss into walls z =0 and z = b

Between the walls z = 0 gand z = b, x and y are
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tangential to the boundary and z is normal to it. Expressing

5 gﬁ y) in exponnential forms snd sub-

cos( éx y) and sin(
stituting them into Eq. 2.1 , the latter may be split into
The expressions

two groups according to the exponentisals,

for the group 1 are:

nn

8 t{wt -px - —
Hey = 7% (.os(*?zje( proy)
8 T (et - -on
Hy = -3 G cos () (ot -Pr-Fy)
H, = B if mn _.  m C(ot -px-2T
Z 2 ‘Ef b s‘n(—-b-—zrz)e P Qﬁ)
Group 1 B 2,13
- L . ¢ -
A I LR
= B8 «mn (wt-px-0T
&, 2 7?—55 cos(ﬂglz)e‘( fx-=4)
E, =0

The expressions for the group 2 are the same as those of

ny -n7
a by a e The

group 1 except for the replacing of
group 1 wave propagates parallel to the XY-plane, having

the directionsal cosines

nx-
F l 2.14

Cos6 < €050, = —
AP R

and the group 2 wave travels in the conjugate direction with

respect $o X-axis, We shall consider the group 1 wave only,
Rotating the XY-plane through an angle -ex

by using Eq. 2.9 into the new Cartesian coordinates (x!',

y' and 2z ) such that the direction of propagation coincides

with X'-axis, the component fields become



m
"

y B8 Sin ( Z) "(‘“"/ +(—")zx)

nw

BT cos(.’l’bEZ) < (et r/F ) X)) 2,15

Subgroup H{ H,-

X ‘L%b
/J(Pf +(8Ey m ¥ i 2
= . T \.(‘ot- nm P
He = BUTIOE s (flz) & TP
Hy = B, cos lE'TZ)e “let -mf"'}

x

z..w b

Sy L (ot~ e () x
EZ :-BZ-._‘:____.‘;_ cos(——'giz)e"( P*(Q)X)

“l

Subgroup E{ £.-= B 2 Sin (_"_"Bﬁz)e‘(‘“t ‘A//B‘*(Dz?)zx) 2.1EP

where

B =£ Lw/w{imn/b
[} 2 /P‘__"—(Q) Kz
B --B8 _hn/
R T

After the rotation of XY-plane, the fields be-

(4

come independent of the variagble y'. It is shown in the
Appendix that under such condition, the Maxwell Equations
fall into two independent groups, defined as the Hg-wave
and the Eg-waves. Thus, we may separate Eq. 2.15 into two

subgroup as indicated. The subgroup H conslsts of three

component fields, Ey, R Hx' and Hz and the subgroup E con-
sists of three other component fields Hy, s By and Eg,
Sub=group H

Comparing the Eq 2.15a with Eq. A.26, shows
that the two are similer with the followlng correspon-

ding terms:
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Hg-wave Subgroup H
B, B,
2 nT ¢
s NB ()
=% mn
d b .

Both waves are for non-dissipative case, If the walls are
dissipative, the loss of the Hg-wave is given by Eq. A.17 .
The power loss per cm, of pipe at tle walls z =0 and z =D
caused by the subgroup H of group 1 may be obtained by sub-
stituting the constants into Eq. A.1l7 and multiplying the
results by the area Z2a
2 Pl(ﬁéz){*a W
4&M[p (DA 20

2416

= [8]

Sub-group -E

Except for the following tabulated constants,
the subgroup -E-wave (Eq. 2.15b) and the Eg-wave (Eqe A.37)

are identicsal.

Eg-wave Subgroup E
B, B,
Ps Py
mmT mr
g b

Substituting the corresponding constants of subgroup E
wave into Eq. A.32 and multiplying the result by the area

28 , we have the power loss per cm of pipe at walls z =0
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and z = b caused by the sub«group E is following,
: (F)' k*a
- |8 ,/ 2417
l4t< NIIESY| .

The total loss caused by group 1 is the sum

of losses caused by the subgroup H and subgroup E, Since
the group 2 wave differs from group 1 wave only in the
direction of propagation and otherwise they are same, the
group 2 wave rust have the same amount of loss as group 1
wave., Hence the total loss (A) into the wall z = 0 and

=D is

2 a W 2 2, mn
= 15‘ 2 K:[Pz w2 ,/—é‘%t: [(%H) K4+f3 ‘T)‘j

2 S 2
8] % (1 -,%(%’—’)’] 2,18

L}

(B) Loss into the wall vy = 0 and y = a

By changing the constantsn, m, a, and b of Eq.
2.,18into m, n, b and a respectively, we have the total po-

wer loss into the walls y =0 and vy =D
2 b wal _E: ni 2
B| 7//-23_:, [ 1+ Kf(?)j. 2,19

The total power loss into four wslls per cm,

of the pipe is

IB‘ wa Pl"'l n: m?
L =—"§‘-/_2£03 {a+b + ——Eo? [T+TJ}
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The power transmitted through the pipe is cal-

culated from the field expressions of non-dissipative pipe
(Eqe 2.1 )

P :%[a£°[55yz-Ezy3]dgdz

AN =

%

wrpls fm &[0 G RN - [ RIE)E)

q’ % 2
R L& RIE T

2,20
For a square pipe and n = m
Xy 'ic i 3 7‘. ?’3/2
o = [2TMEC Jm 1 () +% nepers per cm,
Ul b% ol 2.21
/v / n—(é?) .

Attenuation of the E, ,-wave in Rectangular Pipe

The precedure for the calculation of attenua-
tion constant the E, ,,-wave 1s the same as that for the
H,m=wave. In the following, the results at various stages

will be given without detail explanation,
The field expressions for the E, ,-wave are gi-

ven by Eq. 2.4 . Consider the loss into walls z = 0 and

Zz = b, By replacing the cos( 2“ y) and sin( gﬂ y) by

exponentials and separating the fields into two groups

according to the exponentials, the fields of the group 1
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s et o __25
& = B %sin(%'fz)e'“ P*-=y)

Ea = -B ol kil Sin ﬂ’lz)e L(wt—l%x~%'3)

2K a b
Fr = B Lol s (BEg) e (TP 520
Hy = - :i'?: <os (.’.'{‘Z‘.Z)ei(‘“t‘ﬁx-%zy)
H, = -B é;::r;ﬂ Sin (_,.%,_,2) e.‘,(cot-[:lx-ﬂ;-'-;j)
H, = O .

The field expressions of the group 2 wave are

the same except for the change of A and ;m into -A and

Iam « The group 1 wave travels in a direction parallel
to the 2z = 0 aml 2 = b walls gnd with the directional co-

sines:
£ nw
Cos O, = ——— Cos 8, = e 2.23
Y n_rLz ’ . ¢
e TP,
Rotate the XY-pland through an angle -6, so that the X!
axis is in the direction of propagation, The fields in the

new system of coordinates are

ety @ (T x)

E.j' = Bn Sin ( TE’IZ)C
. - PN _n_n'). ’
Subgroup H ) H,, = B, W/:b cos ( -@Blz)eu(wt ,JP () ")2.24a
o vty  (wt -/ R EE) &
Hz - B' pw*(a)Sh‘(’r%EZ)eb(w JP* )()



Subgroup E:( Hy = B, cos (1) e 2,240
mn (et - /p% (20y
ﬁ‘: - L‘;wtb Sin (mrr ) //P Q
_ &+ (20, (ot - Ams
E, = lef.w_&_e_.m (2= 3) Lot/ 1)
where .
B cK nm
B| = = —2~ {314-(9-")1 Kza
and e’ °
B;_ 2 ﬂt-r(%'!)"‘o b .

The fields are separated into two subgroups as indicated,
By comparing &he constants in ebove equations with those
in Eq. A.36 abd A.27 , the total power loss for Group 1

may be determined by means of Eq A.32 and subsequent sum-

mations., The group 2 wave causes exactly the same amount

of loss. Thus,

Total loss/cm, of pipe on walls z = 0 and z = b is
2 ' m*nta g
= | S
IBI > K: b2 T

Similarly, the total loss/ em of pipe on walls y = O and

y = alis

P Y
_ Br o' nn //T
/ 2kfo? 2q .

The total power loss per cm. of pipe on four walls is

2 2
2 wEn F::' n*b ’
L IBI ZK: 20’ ? ¥ bt I
The power transmitted through the pipe 1is
b a
l -
S=e2~£):[£3fz Ez“zsjdgdz

. 2 féwtob
- 1Bl e .
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The attenuation constant is equal to

n2 b3 _i z
x 2 Ta EC ,j_y La+(m)('— (f,)z nepers per om
el N GG Tk -y 2.25

For a square plpe s#nd n=m,

{5
,/Zmiéc ,J'_ 2}4 (/j,)z nepers per cm,

WZ 2.26

Genergl Discussion

The expressions for attenuation constants
(Eq. 2.12, 2.20 and 2,25) caused by the absorpsion by
conductor have been arranged in three factors, The first

factor for all waves

/ 2"’“’“ ,/”/"’ 2.27

depends only upon the electric and magnetic properties

of the materials, The attenuation is inversely proportion-
al to the sqguare root of the conductivity of the conductor,
Were the conductivity infinitely great, the wave would

be unattenuated. The permeagbilities of most dielectriecs

are arround unity in e.m.u, Metals of high permeabilitv and
dielectrics of high dielectric constant would be useful in

the experiment of testing the attenuation, since a shorter

pipe may be used to give measurable attenuation than the
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materials of low permegbility or dielectric constant,

The second factor f% depends upon the order
(m or n) of harmonic and one of the linear dimensions of
the cross-section of the pipe, For waves of constant
n/m in pipes of constant a/b , the attenuation is pro-
portional to the square root of m and inversely propor-
tional to the three-halves power of the linesr dimension.
Thus for a given pipe, the E, ,; -wave has mn attenuation
V2 time as great as the E, ; -wave,

The remaining factor depends upon the ratio
n/m , e/b, and f/f° of the waves and pipes. The expre-
ssions are different for the H,, -, H,.- and E , ,-waves
and will be discussed separately. This factor will be ab-

brevisted as F hereafter,

Ho m=-wave

The factor F for H, . -wave is
f. % b, f.\%
_ (_f_)z + 23 (—f:)
B — 2.28
- L\
/1 () :

At the critical frequency, tle attenuation of the H, , -

wave like all other hollow-pipe waves, 1s infinity. How-
ever, above the critical frequency, the denomlimnator in-
creases rapidly to unity, At sufficiently high frequency,

the two terms of F behave in opposite ways. The first



term decreases with the increase of frequency and vanishes

at infinitely high frequency. The second term 1s proportion-
al to the square root of frequency, and therefore is res-
ponsible for the attenuation of the H, ; ~-wave at high fre-
quencles, This term is caused by the dissipation of power
into the walls y = 0 and y = a, where there 1s a transver-
sal component of magnetic field tangentisl to the two walls,

If the plpe 1s degenerated by moving the two

walls to infinity, the ratio b/a becomes negligible, and

the factor F becomes
_ ot % A
F—(f)/‘ (£) 2,29

%
) « The atten-

and at sufficient high frequency, F= ( —}i
uation decreases with increasing frequency. A similar
phenomenon for the H, -wave in a circular pipe has been
discovered by Carson and his co-workers, The gemeral dis-
cussion of this type of attenuation is defered to the end
of the next chapter.

Brillouin has pointed out in his paper that
the peculiar property of attenuation such as possessed by
the H -wave in a circular pipe is attributed to the symme-
trical cross-section like a circle or a square, Then he
proceeded to constyntt the wave of similar properties in
a squere pipe by superposing a H,, -wave and a H, , -wave
together, Although a part of configuration of the result-

ant field is similer to that of the H.-wave (Fodtnote,p.3)
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the constructed wave does not possess’ the peculiar property
of the H,-wave. We may judge from the general field expres-
sions of the Ho,m-waves, that the H, ,-wave has two transver-
se. fields Ey and Hz and that the H, , -wave has two other
transverse. . fields Ez and Hy. A linear superposition by no
means eliminates any particular component of field, The
magnetic field Hy of the H, , -wave will cause the same
amount of less on the walls y = 0 and y = a whether the
H,,-wave ls present or not. The attenuation of the constru-
cted wave is judt the same as that of the H,, - or H,, -
wave, The wave in rectangular pipe similar to the H,-wave
of ecircular pipe, is the degenerate qu—wave or the Hg-ane
so far as the attenuation is concerned,

By equating to zero the derivative of the
factor F with respect to f??o, we find that for a given
pipe, the H,.-wave has a minimum attenuation at the

poptimum frequency

(j;o)of,_ =/3(-§ +3) [T 1T 2 2.30

For a square pipe, this ratio is 2,96, If the dimension a
is extended to infinity, the ratio becomes infinity, 1.e.,
the attenuation always decrease with the increase of fre-

quency., In Rig. 2.3, theleurves show the variation of cri-
tical and optimum wave lengths with the ratio a/b , for

the H,, -wave,

Perhaps the most reasonable comparison of
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rectangular pipes is one #n which the shape is changed, but
keeping the periphery and so also the amount of metal used

in the construction and the cost at some constant value, while
the range of the frequency is disregarded. To obtain the
most favorable ratio of a/b, for pipes of constant periphery,

the optimum attenuation constant in arbitrary units, of pipes,

a
a+b

in Fig. 2.4. The curve 1s faifly flat around 2= .5,

having a + b = Constant, are plotted against the ratio

The most favorable ratio of a/b is found to be 1,18, 6f
course this value is not very critical. In Fig. 2.5, the
attenuation constant of the H , ,6 -wave 1s plotted against
the operating frequency for pipes having ~%— = ¢25,45,
1,1.18,2 and 4, the periphery being 40 cm, for all pipes.
From these curves, we mgy see that for a square pipe, the
optimum attenuation is only 1% greater than for the pipe
of ratio 1.175, however, the corresponding wave length is
greater by 17%., While the generation of ultra-high fre-
quency power is still in the experimental stage, pipes having
ratio —%— = ] or even smaller may be the most economical
ones, We may also see that the larger the ratio a/b the
flatter the curve,

Fig. 2.6 shows the optimum attenuation, cri-
tical wave enough, end optimum wave length of H,, -waves,
In pipes having ratio —%— = 1,18 and variable periphery,
It indicates the part which the factor b~ plays in the

expression for attenuation,
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H ,m=-wave

The factor F of the attenuation constant for

the H,, - wave in a rectangudar pipe 1s the following:
£ 2 o 15
L+ )LL) s (1@ (2] ()% o 51
25/ .3
(1 @R3VT* [1- %y .
For a square plpe, a = b and n =m, it is
f .3 fs %
() + ()%
9 0
F _._._If"' f f

2 /TGC—Z 2432

If n = m, a square pipe has a lower attenua-

F:.-.

tion constant for the H, ,-wave than pipes having other
ratio of a/b but the same periphery., This fact is attri-
butable to symmetry, By comparing expression Eq. 2,32
with expression Eq. 2,28, in which g/b is put equal to
unity, we see that in a square pipe, the H ,m-wave of

n = m always has greater attenuation than the H, .-wave.

At sufficiently high frequency, the ratio of the two is
2,83 for same frequency, The H,.-wave has {/2 time higher
eritieal frequency than the H, ,,-wave, The minimum atten-

nation of H,m-wave occurs in a square pipe and n = n,

when

f/s. = 2.415

If one set of the opposite walls of the rec-
tangular pipe 1s moved to negative and positive infinity,
that is,a/b or b/a equal to infinity, then within a finits
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portion of the cross-section the H,,-waves are degenerated
ne
into the degerate H, ,-wave, and have the same anomalous

attenuation function (Eq. 2.29).

E, m-wave

The factor F of the attenuation constant for
the E,. -wave in a rectangular pipe has only a single term

as follows .
(1+(27 (2] (t4)*

F = 2 21% 2
RXSIAEI BN ARIL I 2,33

Unlike the H ,,-wave or the H, ,h -wave, the attenuation of
the E,, -wave consists of only a single term and therefore
there is no possib£§ for obtaining a decreacing attenuation
with increasing frequency by degenerating the shape of the
pipe. For a given pipe, the minimum attenuation ocecmrs at
5= 5 .

For a square pipe of ~%— =1 and n = m, the
factor F becomes

o ()

F =42 ; 2,34
J1-(%)

It has a lower attenuation than pipes having other value

of the ratio a/b and same periphery, It may be recognized
that it is the same as the first term of F for the H, -

wave in a square pipe. At sufficilently high frequency,
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the two will have same attenuation which is 2,83 times
greater than that of the H,, -wave for same frequency,
In Fig, 2,7 are shown curves of attenuation
constant va, frequency for the three lowest order waves
the H,, -, H,, - and E,;, In an air filled square pipe of
For these cases, we find the

copper, 10 om, on a side,

following values:

Table 2.1

Wave type H,, H,, B,

Critical freg.(c.pes.) 1,5x10° | 2.,12x10°| 2.12x10°

Freq.for min.atten,(c.p.s.) |4.44x10°| 5,18x10°| 3,67x10°
Min, atten., db,/mile 8.55 18,1 14,6

Comparison of Attenuatlons in Square and Cicular Pipes

The expressions for attenuation constants for
different types of waves in a circular pipe lave been
presented by Carson, Mead, and Schelkunoff and for the
E, -wave by Prof, Barrow, All these values have been check-
ed in Chapter III by degenerating an elliptical pipe into
a circular one, Those expressions are rewritten here in
terms of a sgquare pipe b centimeters on a side having the

same periphery:

E, -wave .
- (15 y2
x = Kb x 0862 /i) :
J1 -
E. -wave
-2 s P %
o = K b *x 087 )

Jb-dgy
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36— Fig. 2.7 Tor a Square Air-fililed Copper

ripe a =b = 10cm.
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Ho-wave
- (fwy)%
a =K b 1.087 7——=,
,/1 ‘(fe/f) .
Hl-wave y
-3 (fo/ff" + 0419 (T4)"
o = K b x 0.753 //-[—:m
where

- 27alEC
K - /2=

Except for the Hc-wave in circular pipe, whose

attenuation decreases with increasing frequency, the atten-

uation in a circular pipe passes through a minimum value.

The following table shows the relative magnitudes of the

minimum attenuations, the critical wave lengths, and the

optimum wave lenghtls, for waves in circular and square

pipes of equal peripheries.

Table 2,2
Shape of Wave  mab” Critical Wave length for
pipe type E Wave length/b |min, atten. /b

Cireular H1 0,597 2,174 0,690
cross-section Eo 1.205 1.622 0,960

E1 1.518 1.041 0,602

B 1.12 2,00 0.676
orossaare on| o7t 2.375 1.414 0.579

E:’m 1.917 1.414 0.817

FYR

For air-filled copper pipe

On the basis of attenuation, none of the waves

in a square pipe is as good as the corresponding wave in

a circular pipe,

operating frequency for sufficiently low attenuation.

The Ho-wave requlres an excessively high

Al-

though, the critical wave length of the Hl-wave, which is

the longest of all, 1s only a little above that for the
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Ho 1-wave, the attenusation of the Hl-wave is less than one
b4

half of that of the Ho’l-wave in a square type. Unless the
generation of very high frequency power 1s made commerclally
possible, it would appear that the Hrwave in a circular pipe
1s the most promising one for hollow pipe transmission for
longdistances. On the other hand, the HO,I-Wave in a square
or rectangular pipe will becemse of its appropriate field
pattern, probably find early application to radiation pro-

blems,

Attenuation Casused by the Conductivity of Dielectric

Consider a cylindrical pipe of any geometrical
eross-section, The conductor is assumed to have infinitely
large conductivity, For all types of waves, the propagation

constent h is determined from the expression
2 2 =2
k* + h® = ko

where k 1s the wave constant md is equal to -iwu(lw¢ +4a)
and ko is the critical wave constant corresponding to the cri-
tical frequency and 1s a real quantity for a perfect conduc-

ting pipe. We may write ko as deC/W . Thus,

h

i

W% - 10 ,«»o"—wgz}'u

1w e (1- (—%9—)2] - dopa 2.36

W
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Expanding the square root by the Binomial Theorem, and

neglecting high order terms of ¢ , we have

h

iP-+a

— 3

1
oerls £+ GV E (1]

The real part

D -8
o = —%; VLJE;. ['1-(;%1)?} nepers per cm. 2,37

This expression is valid for all types of hollow pipe waves
if the appropriate value of critical frequency f, is used.
At tke critical frequency, the attenuation caused by the
conductivity of the dielectric 1s infinitely great but it
decreases rapldly with increasing frequency, and approaches
a constant value —%%EL e Such a varigtion is shown in
Fig. 2.8,

This phenomenon may be explained pictorially

and particularly

for the waves in a rectangular pipe,for the Ho’m-wave.
We have learned while calculating the loss of the Ho,m'
wave into the walls y = O and y = a, that the wave may be
resolved into components waves traveling in a d@irection

at an angle ex with the X-axis which is the longitudinal

axis of the pipe

6

= = - (-
cosé_ n vV 1-(=%
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Although the apparent distance traveled by the
wave along the pipe is ax, the actusl distance travels by
its component waves im z>x/cosex o Since the component
waves are equevalent to plane waves traveling in free space,
their attenuation caused by the conductivity of the dielectric
is given by g}_ « The expression 2,37 may be obtained by
multiplying 2" 7— by the ratio of the distance actually

traveled to the distance apparently traveléd along the pipe.

Summary of Equations

Non-dissipative Case

Fields in the dielectric:

Hn’m-waves
H = B c nn mi L(wt -03x)
X °S(05)COS(TZ)€- P
= iﬁﬂ . N (ot -Px)
Hy B K’ a Sin (—5-5) (,05(_’%_7__72) e (w Px
= i m ¥ -
H, B —th cos (25-3) Sin (_r%;sz)eu(wt £*)

= L‘*’ﬁmn . A
E.y = B K b cos (.’:2_7"5) Sin ‘glbzz)eu(wt Bx) 2,1
= Lwpae ap . .
By = 7B S F Thsin (M) sin (15 (4R



H -waves

o,m
= B cos (F2z) e "ot PY
Cab L(wt - Bx)
= B —-';‘—‘37‘: Sin ( ﬂbEZ) €
, 2e3
= Lwpb . m7T “lot - Bx
= B -7“-%\ Sin (TZ) <
En,m-waves
S B () s ) et
P hn . L(wt-@x
=-B K‘f;ﬁcos(%‘y)sm(%’—‘z)e £
i . N i(wt-f)
=-B ‘;‘%%’ESM(%EQ cos(FGrz)e
g(ut—[&x)z.4

Ll nr

Lm&m . nm mT7t
B =% 5'“(‘6‘9)“5(7’2)5

- nx nm . mn ((wt -Bx
=B SF Ges () sh(Fra)e a
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The constants for agbove three types of waves:

Phase constant: _
= & (B (B = -4 2.50

Critical fréquency

- €
fo = 5/ + (%7, 2.5b
Critical wave length:
- n \* m 2172 ‘
A= 2 [ (B 2.5¢

Dissipative Case

The attenuation constants of the waves inside
the réctangular pipe caused by the finite conductivity of
the metal(the dielectric is assumed absolutely non-con-
ductive):

H -waves

3

%
w - [2TREE S Gp B ()" 2,12
T % - (4)" nepers per om.

H m-waves

u-,/.zl'z:_*://m Z(1+ &), }(ﬂ‘*f”""‘a’J‘{V 2,20

b b q—)(,”)'}4 1.—(%)

nepers per cm,
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E -Waves

n,m
a = [2Rpte w1+ @P(RY) )
TR @y -y 2025

nepers per cm,

For a square pipe a = b and n = m:

o’
’ ' 3
x = [27MEc ,/5 L%+ ({4)4
M b* JI- () nepers per cm,

x = TR R s ()7 ()

a % T 2421
4 Al “(F4 ) nepers per cm,
En,m-Waves
x =//2n’_ﬂ_'tc Jm 4= (f/f,)'é 2,26
au g A2 2
,/1 - (f%c) nepers per cm,

The Attenuation constant of waves inside any
hollow-pipe, caused by the conductivity of the dielectriec

(the conductor is assumed absolutely conductive)

c, -
x = —Z—I{. (1 ~(fyf)2] ‘ nepgrgvper cm,



ITI, TRANSMISSION CHARACTERISTICS

OF WAVES IN ELLIPTICAL PIPES

We will now consider waves in elliptical con-
ducting pipes, i.e., pipes the inner boundary of which forms
an elliptical cylinder. Inside the pipes, the space is fill-
ed with a dielectric, which 1s assumed to be a perfect in-
sulator throughout this chapter. The effects of a small con-
ductivity of the dlelectric have been discussed in the last
chapter, The conductor may be either non-dissipative or 1t
may have a finite but large conductivity. In either case,
the conductor 1s assumed to be thick enough to prevent the
currents from reaching the outside surface. A perspective

view of such a plpe 1s shown in Fig. 3.1.

Maxwell and Wave Equations

In dealing with waves in elliptical pipes , we
use the elliptical coordinate system (x,£ , 7). They are
defined in terms of a Carteslan system by the equations:

X =X

il

y = q cosh§cosy 3.1

Z q sinh§ siny,
The contour lines of constant € are confocal ellipses, and

those of constant 4 as confocal hyperbolae as shown in Fig.
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Y
Flg. 3.1
Z ‘ ,‘:: 900
$=2 n= 75°
N £0°
"= 45°
'g: as V)’—-" 300
g 1 ,\;—_- 1.6c
5
s S

Fig. 3.2
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of
3.2, The constants q is the one-halfAthe distance between

the foci. For large values of §, cosh®¥ sinh §, the ellip-
tical coordinstes reduce to polar coordinates. For this rea-
son, § may be referred to as the radial variable and 5 as

the angular variable.

We may mske one of the confocal ellipses coin-
cide with the inner boundary of the elliptical pipe. At
the boundary, &= ¥,. The major axis of the boundary ellivpse
is gcosh Esand the minor axis is g sinh §,. The eccentricity
e of the boundary ellipse is d efined as the reciprocal of
cosh §,.

We shall confine our interest to waves having
simple sinusoidal time variations and a propagation in the
positive x-direction along the axis. In complex represent-
ation, the wave functions 1lnside the pipe are multiplied by
the factor eiut - hx. The propagatiop constant h =«+ ip
is to be determined from the boundary condltions.

The Maxwell equations in elliptical coordinates

are as follows:

L M ¢ IH, ix .
V x H .—.—5[%}'1 +h7.H,‘] —-;iil‘ [hﬁ,HE'r_a_EJa,:;?[?_‘ajE‘_‘g)_ lg;‘fi)]
= (iwg + o) ig Ey + igEy + LE) 3.2a

_ Y% [ 2h, -G 2y L iy (209,5)
VxE-=-7 [b'l + hg.Ey) - g (hg.Ey Y52 +:1?[\_;:‘ - 3(;1'52’]
=-Lw/&[5gHg +lgHy o+ iy ) 3.2b
where ig, 17, and 1x are three orthogonal unit vectors in

the direction of E, 7 and x. The variable q3 1s defined as:
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U= et Zrad 7 qvsinh® € + sin®n . 3.3

Equating the three vectorial components of the two equations

gives the six equations:

(¢4£w{)£2s7;7-;{;1 + hH, 3.4a
~ (0 +iwg) Eq = 3 g.ga + hHg 3.4b
(Friee)p . 2.5 3‘:)‘2“& 3.4c
~lopm Hga-%i_i’ + hE,‘ 3.4d
Lwm Hy = -é-.%%‘ + hEE S.4e

- i.w,u‘]‘z H, = %%E'—) - a(;‘Eg) ) ’ 5.41

It is more convenient to solve for the transverse ' ccmponents
EE ’ E’i’ Hgand H'l in terms of the longitudinal components, Ex

and Hx Thus in place of Eq. 3.4a, 34b, 3.4d4 and 3.4e, we

L

have,
q,(xls\h‘)gz,. -h:—i’-‘ -g;w/ug-;i" 3.4a!
q.(x‘w.‘)a,‘z -h%% HW‘%% 3.4b!
q, (K*+ h') He = (c+ wg).:_;? - h :_;. 3.44!
U (K" + h) Hy = ee)3 - n %gi 3.4e!

where k is the wave constant.
To find the wave equation for Ex’ we take the
partial derivative of Egq. 3.4d4' and 3.4e' with respect to g

and ] respectively, and substitute the results into Egq. 3.4c.

We have:
2 2?2 2 2. 2 _
g top ) Bos0, 3.5a

Similarly, by manipulating Eq. 3.4a', 3.4b' and 3.4£, we

have the wave equation for Hx:
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- Y * 2 2, 2
L 4+ = +(K +h) H, =0
[ 2g" o’ 1=, 3.5b

The two wave equations for the longitudinal components of
flelds have the same form. The wave equations for the tran-
sverse. field may be similarly obtalned but have different
forms. Solution of the equation requires a separation of
the variable, Let

E. =F(§) G (] e
and use the value of qg;in Eq. 3.3. Substitute both into

jot - hx
3

Eq. 3.5a, and separate the variable,

[-ﬁfz +(h' +K)q sin*q gl 6 () =0 3.6b

where g 1s the separation constant. Equation 3.6b 1s called
the Mathieu Equation and Eq. 3.6a the assocliate Mathieu Equa-
tion; their solutions are known. as Mathieu Functions. All
the equations thus far derived are valid in the dielectric

and in the conductor.

Waves in Non-dissipative Ellipticel Pipes

If the conductor has perfect conductivity, no
energy may penetrate the wall. The boundary conditions re-
quire simply that the electric fleld intensity tangential to
the boundary must vanish at the boundary. Since the dlelec-
tric is assumed to be a perfect insulator, the waves propa-

gates through the pipe without attenuation. Therefore the
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regal part of the propagation constant h 1s zero, The solutions
of the wave equations 3.5a and 3.5b are then as follows:

= [B,Se,(n) Re,(€) + B, Sea(n) Ron(5)] e Cot TP
. nt—épx

S.7a
H, = [ B, Sen(q) Re,(E) + BySo,(n) Ron(E)]e® 3.7
where B, and Bz are constants, taking care of the phases and
amplitudes of the wave; Sen and Son are the even and odd an-
gulaer Mathieu Functions, Ren and Ron are the radial Mathleu
Functions of the first kind and nth order, and n is a posi-
tive integer. Both Mathieu Functions are functions of (k® -
Fz) q2.

The longitudinal components Ex and Hx may exlist
at the same time in the plpe, but we shall study the two
simple types: the H-wave, with only transverse electric
field and both longitudinal and transverss magnetiec fields;
and the E-wave, with only transverse magnetic field and bofh
longitudinal and transverse” electric filelds.

H-wave

Under the condition that E_= O, the remaining

components may be obtained from Eg. 3.4a', 3.4b', 3.44' and

3.4e': <
n Re, M -[ox
H, = BSo (r‘) R:n (E) e (wt P)
= Re, wt -
e B‘i(x p’)so,,('l) « S (€)e Hot-po
H = {(wt - )
L B q,‘K~P) Son(q)ken(g) e w ‘3‘ 5.8
E = ﬁ L(wt -px)
g B i(K ‘3) Son(,‘) RQ,.‘(E) (w PI
L@, (st - fBx)

m
-
|

< BT se,
B Iwp So () Re"(‘E)
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Ex =0
The primed Mathleu Functlons denote their derivative with
respect to¥orn . The boundary condition requires that the
tangential eomponent of electric fileld Eq ‘g-gf‘o’ where

§.1s the value for the boundary ellipse. Thus,
Re;,

RoJ(E) =0

The Re! and Ro! are also functions of q/ k* - p° , which

1s a constant and may be determined from the zeros of the
radial Mathieu Functions for a given type of wave in a given
elliptical pipe. When the operating frequency 1s so low

that the value gk 1s equal to the above constant, the prhase
constant p1ls zero. This frequency or wave length 1s defined
as the critical frequency fo or wave length A,, and the cor-
responding wave constant 1s defoted by ko. Hence, the rhase

constant P of the non-dissipastive wave may be determined

as.: e
P = L4 K-k
. (V3] .
= L1y, 3.9

For wave lengths shorter than A,, the propagation constant
is imsginary, and the wave travels unattenuated. For wave
length longer than A,, the propagation 1s purely dissipative

and no travelling wave may exist inslde the pipe. The Eq.

3.8 may be simplified by substl tuting ko for y/ k* - p= -

Other propagation properties, such as the wawve

length in the tube, the phase velocity and the group velocity
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are the same as they are for waves in pipes of circular or
redfangulan cross-section of the same critical wave length
(Eq. 2.5).

Solutions with a zero radial component of the
electric field in the dielectric are generally lmpossible
in elliptical pipes; only when the cross-section dsgener-
ates. Into a circle ;re such solutlons possible. For the H-
wave, (Ex= 0), LfIEEis to be zero, Eq. 3.4a' requires that
——%;gl—= 0 or H_1is independent of B . If this were true,
the second derivative in the wave equation would vanish and
leave

[(® + n®) q® sin®n - g}H, = 0.
Since g is a constant, namely the separation constant, the
above equality is not true unless both ¢ and g are zero.

The same reasoning may be applied to prove that H,z% 0 un-

less the pipe is circular.

E-wave
By putting HX= O in Eg. 3.4a', 3.4b', 3.44!',

and 3.4e', the remaining five components of field intensil-

ties ars:
Ex = B son () Ren(g) e tlotpo
= - vp ¢ (ot ~
Eg=-8 (<) so.. ity R""(E)e“‘ £)
=-B =L s b(wt - 5.10
By =B 3D SOV R (g) e MR

- g tet s
e = B S Q"(’() er"'(6)

¢ ((-Jt -ﬁx)
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= Lt Ren L(wt- x)
Wy = = B s ~ (e ¢
HX = O .
To satisfy the boundary conditions that Ex and E,z vanish at

£ =%, we set Ren}( £) -
Ron ‘
From this relation we are able to solve for vk? - g% and
determine the critical w_ave length in a way similar to that
used for the H-wave., The phase constant 1s therefore,
P=ifk - - Y _( 3.9
Other properties may be derived from the critical wave length,
being discussed in the section of H-wave. By a similar pro-
cedure, we may prove that none of the five components of
fields may vanish unless the cross-section is a circle,—
a degenerate ellipse. The Egq. 3.10 may be simplified by
substituting ko for vk* -p=.
What we have discussed so far are the general
E~- and H-waves in elliptical pipes. An H- or E-wave 1s defined
to be a nth even or odd wave according to whether the sclu-
tion of the component field Hx or Ex is the evenor odd Ma-
thieu Function of nth order. A prescript e or o is used to
indicate the even or odd wave and a subscript n to indicate
the order of the wave. Thus, we have the eHo~-, eH;-, oHi-
eEyo-, 6E;-, and oE,-waves (read as the "even-E-zero" wave,
etc.). The oHo- and the oEo-wsvesdo not exist, since there
is no odd Mathieu Function of zero order. Only the six waves

of the lowest orders will be studied. Our investigation will
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also be confined to the first zero of the radisl Mathieu

Function for the E-waves and the first zero of the deriva-
tives of the radial Mathieu Punctions for the H-waves. No
additional subscript will therefore be used to indicate the

nature of the zeros,

Mathieu Functions

%We shall now review the property of the Mathieu
Functions of the first kind, and of zero and first orders.
The functions in series form as given by Prof. P. M. Morse

in his unpublished tables are the following:

i

) A

I
2
:\] Nhl ?“ Z"‘

56.(2"7 D' cos (2m+1)q

am+

Fl . sin(2m+1)N

2m+ti

So, (£, n)

2n b’ Ry
Re. (211 ) Z, DD T (B cash )

2ng
Re, ( €)= § (- 1) Dzma,JZ'nﬂ( 277:7

coshg}
2w - .
Ro, (-;—;E) ‘,/—’Zr— *cnhingo(_‘) FZmﬁjlmfn(Z:i coshE).

The e and o of Se and So indicate that they are even or odd

functions about ' = C. There is no zero odd Mathieu Functions.
When q approaches zero as a limit, the ellipse dezenerates
into a circle——all D's vanish, except one with subscript

= n, and the angular Mathieu Functions become the following

trigonometric functions:

1*0



o S (2 q) = sy 3.12
The radial Mathieu Functions and the angular ones of egqual

order subscripts have the same separation constant. When q
approaches gero, € must be large and qcosh § 1s the radial

coordinate r of the polar coordinates; and tanh § = 1.

Therefore the degenerate forms of the radial Mathieu Functions

are

4o Re (B e) < JE 5 (220
Lim 3.13
q-o0 Ro, ('T,i S) ’r (2" ')

Referring to the solution of waves inside the
pipes of circular cross-section, we may consider them as de-
generate cases of ellipticaf}%gves. The following table
corelates the wave in plpes of elliptical and circulat cross-
section.

Table 3.1

Waves in
Circular Fipe

Wegves in

Elliptic Pipe;} degenerated into

eE‘U """""""""""""""""""""" Eo
SE;\, ____________________________
OE]_} El
eHQ -------------------- Ho
OH1)
OH]_} H“

That the Eo- and the Ho~waves in circular pipes have a cir-
cular symmetry 1s probably the reason why there 1s only one
corresponding wave for each in pipes of elliptical cross-

section. The higher order waves in circular pipe do not



have a circular symmetry. The deformation of the circle may
occur along either one of the two axés of symmetry in the
cross-section; therefore, there are two waves for each order

higher than zero in elliptical pipes.

Zeroes of Mathleu Punctions

In general, there are n zero between N = 0 gnd 7
for the angular Mathieu Function. The following table shows
the location of the zeros of the angular Mathlieu Functions
as based upon the serles representation.

| Table 3.2

Zeros of Angular Mathieu Functions

Angular No. of Zeros between
Mat. Func. N=0 to 2= n
Seo(‘) c  se---
L)
X Seo (1) 4 0, 5= 2
T 37
Sea(n) 2 = Tz
b .
S 2 o, ™
Y el("l) ’
S01(7) 2 0, 7
Po) T 3T
-1;5——601(n) 2 5 — 5

The determination of the critical wave length
depends upon the zeros of radlal Mathieu Function at E# 0.
The functlions Ro,, -3§%~ Reo, and _3%f_ Re; are eaqusasl to zero

when € = 0. The radial Mathieu Functions are periodic. So

IS, Goldstein, Trans., Cemb, Phil, Soc., Vol. 23, No. 11,
p. 326, Oct. (1927).---Footnote to next page.
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far, there is no rule for determining their zeros except for
large values of the variable where the asymptotic expressions
may be used® However, for ellipses of not too large eccen-
tricity, the Bessel Function series (Eq. 3.11) converges
rather rapidly, and it would not be too difficult to use
cut-and-try methods and numerical computation. The value of
%. for the zeros depends upon the constant —2;?—. In Prof.
Morse's Table, sets of D's are given for constant values of
_2;%_ . Hence a reverse process 1s required to determine the
size and eccentricity of the elliptical pipe that would fit
the values of q and A\,. In Fig. 3.3 are plotted the eccen-
tricities of §, ellipse 8 gainst 27r—999§%lé~ . The cons-

tant "qcosh £." is the semi-major axis of the elllipse, and A,

is the critical wave length. Hence the ratlio 1s equivalent

Tro = ..._____.1 =
to 27 ~, of circular pipe. For eccentricity Sosh € o,

the ordinates sre the roots of the Bessel Functions or their
derivatives.

If we reduce the length of the minor axis (=
2q sinh €,) of the boundary ellipse of an elliptical pipe gra-
dually to zero, while keep the length of major axils (=2qcosh g,

) constant, the Fig. 3.3 represents the varlation of the

critical frequency fo with the eccentricity, (since foo° i ).
The critical frequencies of all waves, except those of the
eH, -wave, go to infinitmbs the ellipse degenerategﬁnto a

straight line, The critical frequency of eH,-wave remalns
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0 ] - \ 1 1 9
O 0'2 O‘L 006 . ODS l.o
becentricity

Fig. 3.3 Zeros of Radial Mathieu Functions and Their Derivetives.
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fairly constant and approaches a finite value as the ellipse
becomes a line. So fagfthe critical frequency 1s conceéerned,,
this particular type of wave behaves exactly like the Ho,1-
wave in rectangular pipes, when the dimension "a" is reduced
to zero while the dimension"b" is kept constant.

It 1s probably fair to compare the crit_ical
wave length of waves in elliptical pipes of equal peripheries.
Practically, this is the situation when a circle 1s deformed
into ellipse by pressing the circle along one of the dlameg-
ters. The piriphery of an elllpse is:

s = fj’;h dn =fmq Vsinh® g * sinir»i— dan

or
3.14

i
qers. = |, 1T (R
The left side of Eg. 3.14 is the ratlo of the length of peri-
phery to the length of the semi-major axis, and the right
side is an Elliptical Integral, for which, tables are avall-
able. In Fig. 3.4 is plotted the ratio of -%1 against the
eccentricity _35%575 of the boundary ellipse. All the
curves drop to zero at eccentricilty = 1, except the curve
for eH,-wave. The latter has a value of —%L = 0.84. Under
the similar condition, the ratio 4%L of the Ho,i1-wave in rec-

tangular pipe 1s equal to unity.

Field Confilguration

In the cross-section of the elliptical pipe,
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the electric and magnetic field intensities are equal in time

phase. For any one of the simple waves, we may find that
I_E.s_. = |-ta_

Eq He
That 1s, the components of electric and magnetic field inten-

sities in the cross~-section are always normal to each other.
Since there are longltudinal components of fields, the lines
of force donot necessarily form closedpobe or terminate nor-
mal to the boundary. Ordinary method of flux plotting for
two dimensional electrostatic or magnetic fileld by forming
squares cannot be applied here.

In the present investigation, an arbitrary el-
lipse 1s chosen. From its semi-focal length q and the eccen-
tricity e, the constant _2%%_ may be determined from Fig.
3.4. Then, the zeros and the directions (whether positive
or negative) of the transverse component flelds may be deter-
mined and plotted in the ellipse on separate sheets. By add-
ing these components vectorially, the approximate directions
of the resultant flelds must lie bestween Egand E 1 if both
exist, orfin the hyperbolic direction if E 1s zero end so on.
Finally, smooth lines are drawn to link points with constant
changing slope, under the rule that the electric and magnetic
lines are normal to each others. The results are not as ac-
curate as those for square pipes, but serve the purpose.

Fig. 3.5a to Fig. 3.6c show the field distribu-

tions of the first six waves in the cross-section obtained by
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the above method. This particular elllpse has an eccentri-

1
cOsS g,

waves in circular pipe shown 1h Southworth's paper may serve

city = 0.75. A set of fleld distribution diasgrams of
as the degenerate case of the present dlagrams.

Referring to Fig. 1 of Southworth's paper, the
so-called even or odd waves correspond to two types of defor-
mation of a circular-pipe wave. If we lengthen the vertical
dismeter and shorten the horizontal diameter, the waves are
deformed into the even waves. If the vertical diameter 1is
shortened and the horizontal diameter lengthened, the results
will be the odd waves. Since the Ho-wave or Eo-wave in a clr-
cular pipe has a perfectly symmetrical field distribution,
there is only one type of deformed wave no matter along what
diameter the cross-section is deformed into ellipse.

The fileld distribution of the eHo-wave is shown
in Fig. 3.5a. Part of the electric lines form con-center
lobes, and the rest terminate on the boundary. As the eccen-
tricity of the ellipse becomes less, the lobe portion looks
more circular and less electric lines terminate on the boun-
dary. At the same time, the curvatures of the magnetic 1lin€_s
are gradually straightened up. When the ellipse degenerates
into a circle, all the electric lines become circuler and
the magnetic lines become straight radial lines. The vanish-
ing of the electric fleld normal to the’boundary 1s respon-

sible for the ever-decreasing of attenuation with increasing
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frequency.

For the eEo-wave (Fig. 3.6a) the foci of the
ellipse, in these cross-sectional dlagrams, look something
like sinks or sources of the electric lines. Part of the
magnetlc lines forms closed lobes around each focus. As the
eccentricity increases, the length between the focl 1s short-
ened,and such magnetic lines find less space for themselves.
Eventually, such lines vanishes for a circular pipe.

For the H;-wave 1n a circular pipe, there are
two corresponding waves in elliptical pipes; because the
field distribution has two lines of symmetrf instead of a
singlé point of symmetry. The lines of forces of the H;-
wave of a circular plpe are almost parallel. This wave has
the lowest_cut-off frequency. In an elliptical pipe (Fig.
345b,c) the lines of forces become more parallel, For the
eH,-wave, the configuration of the magnetic lines become
elongated, while for oH,-wave, the electric lines become
elongated. If we compare the eH;- and the oHi-waves with
the Ho, -wave ( A= 2b) end the H, ,g-wave (A,=2a) in rectan-
gular pipes (a<b), we may see why for ellipses of constant
periphery, the critical wave length A of the eH;-wave Increases,
and that of the oH,-wave decreases with increasing eccentricity.

For large eccentricity, the magnetic lines of
the eE,-wave (Fig. 3.6b) form closed lobes around each focus.

As the foecil are moved nearer to the center, such lobes follow
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along until the eccentricity is about 0.7. Then they stay
right there as the focl are moved closer, Thils phenomena may
be explained mathematically, in that a new zero of Re{ aprears
between £ = 0 and £ =%, when the eccentridity is less than
0.7, which stops the shifting.

The field distribution of the oE;-wave may be
obtained from the eE,-wave bmbarrying out a ninety degree ro-
tation of the latter. Both waves have a close resemblance to

the Eo-wave of a circular pipe.

Attenuation of Waves in the Elliptical Pipes

Before calculating the attenuation of waves in
pipes of elliptical cross-section, let us see first what the
difficulties are, so as to justify the necessary approxima-
tions used hereafter., In the problems of circular and rec-
tangular pipes we have learned that, strictly speaking, no
simple E- or H-waves as defined heretofore may exist in a
finitely conducting metal pipe. Instead, all six components
of flelds must be present. The same situation prevails in
the present problem. In addition to that, as in the case
of a rectangular pipe , an elliptical pipe does not possess
circular symmetry. The variations of the wave functions
along the two orthogonal coordinatesﬁn the cross-section of

the pipes are all dependent upon the constants of materials



- 85 -

used and the dimensions of the pipe. Therefore, if inside the
pipe, there were a wave which might be represented by Mathieu
Function of a single order, the wave outside would likely

have to be represented by a infinite series of Mathieu Func-
tions in order that the boundary conditlons might be satisfied.

Fortunately, the conductivities of the ordinary
commercial metals likely to be used for hollow pipes are so
very large, though not infinite, that we are sble to use the
two following approximations: (1) The field inside the pipe
is not appreciably effected by the imperfect conductivity,
so0 that the fields inside the pipe remain essentially one of
the types considered before, but very slightly modified. (2)
In the conductor, the asymptotic forms of the wave functions
for large values of § may be used.

Since the wave can only penetrate the conductor
by an infinitesimal distance, we may llmit our investigation
to the region of the conductor in the immediate nelghborhood
of the boundary. The dielectric is assumed to be a perfect
insulator. The metallic wall is assumed to be thick enough
to dissipate all the energy penetrating from the interior.

An H-wave or an E-wave 1in a dissipative hollow
pipe may be defined as one, which would degeneratq&nto the
H-wave or the E-wave of non-dissipative pipe, were the con-
ductivity of the conducting wall to become infinitely large.
Eg. 3.8 and 3.10 for the fields in the non-dlissipative ellip-
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ticael pipe will be used with necessary modifications for the
flields in the dielectric portion of the dissipative pipe.

The Maxwell equations and the wave equations for
the longitudinal components of flelds, Hi and Ei, in the
metal are as in Eq. 3.4 and 3.5. The constant iw¢ may be
neglected. The wave functions and constants in the conductor
argbrimed to differentiate the%ﬁgﬁbse in the dlelectric.
Since the propagation constant h of all the waves in the X-
direction must be the same in both the conductor and the di-
electric, 1t is negligible as compared to the wave constant

k' of the conductor. Hence

k'® + n® 2 12,

The wave equations of Ei or Hi, after separating the variables,

become [%%: + (K'qsinhg) +9) H, =0
» . 2 _ , 3,15
(35 + K9sinn) -9]u =0
The solution of Hé or Ei will be of the form
&2 (ot -
S AnRen (xq.E)Se (kg.q)e (7P 3.16

m=Q
where Re; are the even radial Mathieu Functions of the fourth

kind, and 1P is the approximate value of the propagation con-
stant h. Of course, there is a similar solution of odd Ma-
thieu Functions.

Prof. Stratton! has treated the radial Mathieu

Functions of fourth kind, which for the even functions are

4. - b S 2
defined as Re Rém iRe>.

15.A.Stratton, Froc. Nat. Acad. of Sciences, Vol.21,No.l,
pp. 51-62, Jan. (1935), and No. 6, pp. 316-321, June

(1935).
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Theexponentialsg/denote the kinds of Mathieu Function. The

asymptotic forms for large k'qcosh § are

, -2 , 2m+ |
Re‘ = (KiCOSh E)/zws(KjCOShE‘ 2 n‘)

m

Ren ¥ (K'qewsh E)_és'm(l('qcosh £ - 2:” r)

and therefore,
, =X - ‘ K’ Cosh g - 2—mfi )
Rer = (Kqesh%) e L 3.17

[

Then H:'c or EJ'( for the even waves are as following:
, -4+ i(wt-px -KqcoshE) L 3"—"L‘rr)
( Kqcosh £)'e G k $A.e ° Se..(kq.1)

L(wt—px-&écoshg)

’

Hy

il

]

’ . -4 4
B’ (Kqcoshg)?e Te,(Kq.M) 3,18

The factor Ten(k'q, !}) reprresents the summation and is only

a function of n end k'q. B' 1s a new constant.

H-wave
Inside a finitely conducting pipe, the electric
fields tangential to the boundary no longer vanigsh at the

boundary, but they have a very small amplitude. The tangent-
1al magnetic flelds, Hy‘ and Hx’ which do not vanish at the
boundary in the case of perfect conductivity, are not appre-
ciably affected by the finite conductivity. Hence, we may

select from Bq. 3.8, for the even H-waves:

H, = B Re,(§)Se, (e P

twt - ipx 5.19

=i

H'l £ B "% Re, (%) Se (e
In the conductor, assume that,

., -3 L (el -px - K hE
ux’.B(choshE) e (OF P g% )Ten('])’ 3.20



- 88 -

i(wt -F:-K'gwshE)Te;(Kzi"l) 3.21

Hy = €(Kqeosh§ e
where Teﬂ 1s the derivative of Ten with respect to n . The
H'y, in this form may be proven to satisfy its own wave equa-
tion.

Equate the Hx to Hi, the tangential magnetic
intensities at the boundary % = %.,, and solve for B':

: ' g, >
8 =B Ren( E.nk'qecosh® olk'qcosh ‘?Zn (’1 ).

Since Sen(ﬂ) and Ten(q) are only functions of 7 while the

Se_(n)

be equal
Te, (n) must

remalning factors are not, the ratio
to a constant. We may arbitrary set the ratio equal to unity
since the amplitude of Ten(q) so far is not definite. The
angular Mathlieu Function in the metal 1s the same as that
in the dielectric. Consequently, Teﬁ(ﬂ) = Seﬁ(q) and
B'= BRe_(§.) \/"E"cIEEsT,eik'q""Shg‘: 3.22
Equate the Hy and H! , the tangentlal magnetic
intensity at the boundaery £ = €., and solve for C':
ot = -Blpr Re, (3) VETGEoRR 61K 00 E 5.5
With known H!

n
electric field in the metal may be found by Eq. 3.4a',b', c!

and HY , the remaining tangential

)
and d'. The four tangential components of fild in the metal

near the boundary are as follows:

H,l < B Ren(gc)scn()‘)ljfi% eL[ut-p;-x&(c-shg - <osh g’)]

, wm'i , he, et Bx-Kg(cosh & -cosh )
E. = 3—~—~L‘,‘15M§K: Re,.(E.)Se,,(q)/:_:f_h_% et 5

' . . 3.24
- - i . ochy.,  lwt-px -k3(cosh¥ ~cosh )] y
b =B B Re, (556, « f
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Cshg, e&(lob[ax-K'? (cosh § -coshgo)J J

E,l ——-—-—-—w/‘::" Re,(E) Se,, (1) ST
At the boundary % = %. ‘
Hy = B Ren (8. Se, ()& @tpx
RI:Bﬁ%ﬁfk(W&Jwemﬁ”
Hy = ‘B'éﬁé Re,(E,) Se, (n) et P 5425
Ef = B LR Re (B Se, (el FY

The longitudinal component of electric intensity E} does not
the
really vanlsh in, dissipative pipes.

The loss per unlt area, dissipated into the metal

at the boundary is:
’ ’ ’ ’ ’
=3 [~ Ex ‘,:‘r‘ + E,l ”a ]real port

lBl (sen( : 2
2,/2»/": o (Ren(2] {i pps :g + qsinh §,[5en(rl>]} .

Obtain the total power loss per unit length of the tube,
j ‘j [1033/ cm J da dq dx
lor o [ (Ren (2] [w Py ""n +qsinhEN,]  3.26
where M= f [se! (D]?

N, = j:ﬁsen (7)]2 d

The total power transmitted through the pipe:

e L6,

f [Bg B, - B, H¢] af axdy

€,
='.;Tﬁ"f (Ee,,(E)} ""n*[‘?cn<i)]~} . 3.28

3.87a
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The attenuation constant is therefore,

=Lk
®=5 =

- [ i L%
G/“' Zis-fnh'g [.-(-fo/f)J 2'
[(f/,c.)2 + (3 K, q*sinh, ‘1)(f )‘][Ren“)]

I[Rc,.(i)}dz +* == j [Re,,(i)] J¥E
Similarly, we may prove that for the odd Hn-waves, the atten-

nepers per cm, o292

uation constant is

[,f ¥ Hme Kok s, -1 ) Re (2]

i( i’ldi*‘mf'[lto'n(i)]zd% nepers/om; .29

where M! I[SOI'I(’\)]Qd’l
Ny = (Tlson ()] ® an

X = 7\'/~£ ﬁ: - fo2 -3
O‘/lv 11:nh§ [' (T)}

3.27b

E-wave

The attenuation of the E-wave may be calculated
in a similar way as for the H-wave. The even wave will!be con-
sidered first. The component fields for the non-dissirative
case are given by Eq. 3.10. Out of the five comronents,there
is only one tangential magnetlc fileld Hylwhich does not vanish
at the boundary. Since the magnitude and phase of H,( is only
slightly affected by the finite conductivity, the boundary

be

condition is that the H',‘ in the conductor must,equal to it.

From Eq. 3.10, for even waves, we have:
-f w§ et - 1px .
H.,l B—q—k-r-Re' (E,) Se (’l) e F . 3,10
Inside the metal, the longitudinal electric
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fleld 1is:
| ol(wt -px -K'qcoshE)

vk'gcoshe .
The longitudinsal magnetic field H;, if any, has a magnitude

3,304

Eé = B! Ten(Q)

of infinitesimal order. From E; and by Eq. 3.4b!', e!, H%

may be found as follows:

, iKYSinh L(wt. -P*-Kqcosh§)

_B l‘T
H,‘ e, 1 ,_M_K?“sh ‘

3+30b

Equate H', and ant the boundary € =%¥., and solve for A':

1
' we K Rel () " - LK'Q cosh §, Sen(q)
B =-B O_aK: ‘isinh Z, ,Kclcosh go e Ten('() . 3.51
The ratlo %Z (7) mist be equal to a constant. Let it be
n

equal to unity. Thus, Se ()l) = Te (1 ) and consequently,
Se! (n) =T"Te! (M).
In the metal and near the boundary:

, ©E 0 Ren (8 . o
= -R—% /-~ niS, <osh X, »(«)t— x -Kq({wsh¥ -cosh E,)
E, B 9" qsinh¥, Sen(n) ':.:;;% e ¢ I
3430

= Sinhg h "'[‘“’t‘[a" ‘“’2(“5*\ E -cosh £.)]
H,‘ B n K" Re.,, (%) Se, (rl) oy, '/z::hg

At the boundary:

’ “ [TTom Re,. (%) L(wt-gx
B =8B 22 s op) g
Lwg , (ot - 332
=~ B 7T Re, (5 Se () e TP ’

The loss per aquare centimeter into the conductor at its

boundary is:

=-—%—E, Hy
= ’Bl w R (.)S )
Y Ki’ (Ren (&) Senc))’

9.9 sinh €. .
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The total power loss into the metal per cm® of the tube:

Voar
f f [ loss /cm‘] 9, d'l dx

_ ‘B[ w w 2 Nn ’
= 2’,_. [ Kl Ren(Eo)] ﬁs'mhi. . 5.33

The total power_transmitted through the pipe 1s

L

obtained by calculating the Poynting Vector in axlial direc-
tion, using flelds inside a non-dissipative pipe,

wr ¥, 2
"2‘“(, L [Eg‘iq"ﬁ'zﬁi] 9. 9% dq

S =
© Ec 2 2
| = nef-‘i—i{[‘ (mnfRen(®)f + Ny fRe ) ] A5 3434
The attenuation constant, in nepers per cm. 1is,
1 L
O = e ——
2 S )
= [ At A (Ren (0] % 35e

ap 29sinh % /| -@)‘ %7". f"[gen(zfdz + i zg(ee',.(‘éﬂldg

Similarly the attenuation constant of the odd En-wave may be

found to be:

o = [Tt 4 (Ran (B
Lo inh &, - 2 M (% €,
£ 295 - () ] TRes ) s + [Tree))ag

The problem confronting us 1s how to evaluate
these integrals, Mn, Nn’ etc. The value of Nn and NA for
different angular Mathieu Functions of various value of kog
has been calculated by Prof. Morse in his Table. By differ-

entiating the angular Mathieu Function in 1its series form,

we have,

(27"1 yl)-——Z ZmD Sm(zr,,)z)
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<. 'y 2

Se“"‘;,i"l) = 'm§‘2m+1)DZ;*‘ sin (2m+ 1) q

. 2mg ‘ 3036
So, (<I.q) = Z (2m+ 1) F) | cos(am+ 1) .
The integral of their square from O to 2 or from Mto -T are
therefore,
‘rlﬂ‘ , 2 5
M, =) [Se,(q)] dn = Trmgl (2m D,.)
M = jZﬂ'[ , 2 2
1 =) [se/(pan = nE [zm+)D, ] 3.37
v arn 2 ,
sl = T E (Gmenr,)

Based upon the above three series, M's are cal-

culated. In Fig. 3.7, the ratio -—%L's are plotted. For a
=g, Mo oo M
circle, g o, Vo is zero and Ny ¥! equal unity.

The square of the radial Mathleu PFunctions or
their derivatives at the boundary § =%.may be calculated
directly from Prof. Morse's Teble. They are plotted in Fig.
3.8.

The analytic method for integration of the squares
of the radial Mathieu Functions or their derivatives has not
been developed yet. In the present investigation, attempts
have been made trying to replace the Bessel Functions in Eq.
3.11 by hyperbolic funetions and to develop the squares of
these series into serles of hyperbolic functions. The latter
would be integrable, but a large number of terms would have
to be used because the serles converge slowly. Also, an
integration of the square of Egq. 3.11 has been tried, but the
products of Bessel Functions arggglways integrable.

Finally, it was decided to use a graphical
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Table 3.3

Integration of Square of Radial Mathleu's

Functions and Their Derivatlves

2ng
A,

G VHH N O HEFE GO

L[]

o
b..J
NS

L ]

RN
}-J
N

€,

2.04
1.36
1.01

1.23
.78

1.37
.81
.56

1.57
.915
.596

2.03
1.67
1.315

2.045
1.37
1'02

~§-—J:E°Rz at

763
«2015
.1042

. 3364
. 2865

1979
.1009
.0556

.718
.219
L0791

.513
.494
.415

.315
.1803
.1049

2 (" 4R
“Tr“j (—5 )%y

1.163
1.052
991

.0458
.00645

2474
. 3806
.4828

.745
.638
.546

712
673
.640

.438
963
.698



method. The square of the radial Mathieu Functions and

their derivatives were plotted against € . The are&s under
the curves were measured 1ln approprlate unlts. The results
thus obtained are fairly accurate. In Table 3.3, R represents

the even or odd radial Mathieu Functions.

Degeneration into Clrcular Pirpes

When the ellipse degenerates into a circle, the
expressions for the attenuation constants are still valid.
However, they may be simplified by carrying out the integr-

ations. For a circle,

=14
3.38
. gcosht= gsinh & =r
M - M _ 2
The ratlo 1is Sy o 3.39
n n .
The integral,
29
[ _— [Re, (8 +[Ref,,(5)r}d
£, ’ ,
or {2 (Ren®))" 4 (Ren(B)} 9% 3,40

appears in all the attenuation constants. By substituting
r for qcosh¥ and gsinh ¥, letting the radius of the circle

be ro, and using the following equations:

dy = 9r
Ra,(€) = Ron(E) = AT T, (kr)
—-é'Re (%) ‘—"Ro(i) '/\/__ K,](K,)
where Jn (Kgr) = 2 ,‘(K,)

d(K,r)
the Eg. 3.40 becomes,



d (K.r)

Ko r

Vi
o——
3

T(n? g (Ker) * Ker 32N CK)]

T

"sz {[nj,‘ (K,r) + K, rJ'n’( K,rjjz_ 2n KQrJ,,(K,r)J":(K,,r)}_C_I_._(_

° .

. The first

2
The second term is simply equal to -2nJ> (kor)
[

term is equal to, (by Eq. 16, p.158 McLachlan)

—’g-f 30 (k) Kord (Kor)

3%(&%’2“’:“,“(.-",',’)J ‘(&r>} 3,42
This may be expressed in terms of J (koro) and Jﬁ(koro), and
combined with the second term of Exp. 3.41. The integral 1is

therefore as follows:

_1[ [(K: 2 -nd) J: (Kr) + 2 K‘,Van(Ko'o)J,:‘KDro) + K22 J',;z(KQ"o). 345
Here, koro 1s the root of Jn(kor) =0 or Jﬂ(kcr) = 0. For
the H-wave, Jﬂ(koro) = 0, and for E-wave, Jn(koro) = 0. The

attenuation constants of circular pipe are reduced to tine

form:
Hn-wave:
3
N/‘ifOI[1 (fo)} [(faz Kz,z,,(f)] 3,44
Ty -wave: °‘=,/ i L& ) ['"f/)) 3.45

They are the same as given by Carson, Mead and Schelkunoff,

Discussion of Attenuation in Elliptical Pipes

Referring to Eg. 3.27a,b and Eq. 3.35a,b, the

attenuation constants of waves in elliptical pipes consists

of & number of factors; most of them are common to waves in
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pipes of any geometrical shape. The factor ag%%%%; plays
an 1lwportant part when the eccentricity of the elllpse ap-
proches unity. The gsinh%.1s the half length of the minor
axls. The critical frequency fo varies 1n the oprosite way
as the eccentricity except for the eH,-wave, as shown 1in Fig.
3.4, BSince the remaining factors do not apprroach zero at
unit eccentricity, the attenuation always approaches infi-

nity at unit eccentricity.

as
So far the ratilo —%: is concerned, the atten-

uation constant may be divided into two terms, one propor-
tional to \/f/fo and the other proportional to (—%3)3/2 at
high frequency. Both terms are equal to infinity at the
critical frequency. At very high frequency, the two terms
behave differently, one approaching infinity and the other
approaching zero as a 1limit. Only the first terms are sig-
nificent at high frequency. We may trace this term back

and find that it is caused by the angular component of mag-
netic field, and never vanishes unless that component of
f1eld disappears. Only the Ho-wave in the circular pipes

and the H-wave in a degenerated rectangular pipe (referred to
IT) satisfy this condition. The angular component of mag-
netic field always exists in an elliptical plpe. For eHo-
wave, this field varies as the eccentricity.

Except for the Ho-wave of a circular pipe, there

is always a ratio f/fo at which the attenuation of a given
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elliptical pipe is minimum. The optimum ratio may be cal-
culated by setting the derivative of the attenuation constant
with respect to the frequency ratio ~%: equal to zero. Thus
for all types of E-wave, the optimum ratio is equal to y/ 3.
For the H-wave, the optimum ratio 1s equal to
-f—=7%-g3A+5+¢éI’+14A+9)1/8, 3.46

fo
N
where A = ° K4 sinh ¥, - |

For eHo-wave, this ratio gets smaller as the eccentricity in-

creases.

As a numerical illustration, let us take a set
of air-f11¥d copper elliptical pipedof equal peripheries ( s
= 40 cm.). The attenuation constants are expressed in deci-
bels per mile. Fig. 3.9a to Fig. 3.10c show the curves of
attenuation constants as functions of frequency. Various
curves in same sheet represent different eccentricitiles.
Unfortunately, all the calculations must be made in a reverse
way, so that the eccentricity is the last item obtained.
Thus, it is quite difficult to interprete these curves quan-
titatively. All the curves rise when the fre_guency exceeds
the optimum value, except the Ho-wave in a circular pipe.
The ecc. =0.256 curve of eHo-wave does not rise again within
the range of the variable shown in the curves, but of course

1t will do so for larger values of frequency.

In Fig. 3.11, the minimum attenuation constants

of @ifferent waves are plotted as functions of eccentricity
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for the elliptical pipes of equal peripheries (s = 40 cms.)
regardless of the frequencles used to obtain such attenuation.
Curves for the even waves are plotted on the righthand side
and those for the odd waves on the lefthand side.

The eHo-wave has no minimum attenuvation when the
eccentricity 1s equal to zero. As the eccentricitj increases,
the peculiar property of the decreasing attenuation with in-
creasing frequency disappears. The curve has a zero slope
and a zero attenuation at zero eccentricity. It means that
for this degenerate form of the elliptical pipe, the eHy-wave
has a lower attenuation than waves in a pipe of any other geo-
metrical cross-section, though it must be operated at infi-
nitely high frequency. It also Indicates that any deform-
ation to the cross-section of circular pipe increases the
attenuation.

The curve for the eEgo-wave has also zero slope
at the zero eccentricity, and the curve goes up as the eccen-
tricity. Therefore, it shows that a circular pipe is better
than an elliptical one for the transmission of the eEo-wave.
The fields of both the Ho- and the Eo-waves have a circular
symmetry for e = 0., This is analogous to the fact that the
H,,,-wave and the E,,;-wave in a square pipe have lower at-
tenuations than the corresponding waves in a rectangular
pipre having the same periphery.

The eH,- and the oH,-waves both degenerate into
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the H;-wave 1n the circular pipe when the eccentricity be-
comes zero. It has been pointed out that this two waves can
be obtalned by degenerating a circular pipe containing the
H,-wave along two orthogonal diameters of symmetry. The
curve shows a continuous slore (# 0) at zero eccentricity.
It may be recalled that the Ho,,-wave in a rectangular pilpe
with the ratio of the cross-sectional dimensions —%—= 1.18
has a lower attenuation than in & square pipe. Similarly,
the Hy-wave in a circular pipe does not have a circular sym-
metry and any deformation of the circular pipe may decrease
the attenuation. Thus, we find from the curve that the low-
est attenuation for this type of wave exists in pipes with
slight eccentricity, namely the oHi-wave. The configuration
of the fields for the oH,-wave shows that the electric line
is nearly parallel to the major axis. (For the Ho,,-wave

in rectangular pipe, the dimension"a" is parallel to the elec-
tric lines.)

The attenuation of the eE;-wave and the oE, -
wave behaves in a similar way. This time, however, the even
wave has a lower minimum attenuation. This rhenomenon may
be similarly explained by the fact that the Ei-wave in a cir-

cular pipe does not have a circular symmetry.
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Discussion of the Anomalous Attenustion Charscteristics

All the waves, which we have investigated in the
last two chapters and also in the appendix, have an atten=
uation increasing with the frequency at sufficiently high
frequencles, except for the Ho-wave in a circular pipe and
the H-wave in a degenerate rectangular pipe (which is equi-
valent to the Hg-wave between two parallel planes). The
anomalous attenuation characteristiecs of the Ho-wave and the
Hg—wave may be explained physically by referring to the
problem of light reflection by a finitely conducting mater-
ial. But we must first observe that both the above-named
waves do not have a transverse component of magnetic field
tangential to the conducting surfaces.

Consider a 1light wave in a dielectric projected
at an angle to the normal of the finitely but highly conduc-
tive metallic surface. The total energy 1s partly reflected
back to the dielectric and partly absorbed by the conducting
metal. The absorption coefficient of the metal depends upon
the polarization of the 1light wave. The case that Interested
us is that in which the angle of incidence is at or about
90°, 1.e., the grazing angle. For this angle of incidence,
the absorption coefficient is zero when the wave 1ls so po-
larized that the electric field 1s normal to the plane of

incidence, that is to say, the wave has no transverse
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magnetic field tangential to the surface. The absorption
coefflicient is not zero when the wave 1s prolarized to the
other way, l.e.,, the magnetic field 1s normal togthe plane
of incidence——a transverse field tangential to the surface,

Now let us turn to the hollow pipe waves again.
For a pire of any cross-section, the phases constant may be
written in the form:

p=2/1-Ef

where £, 1s the critical frequency of the hollow pipre waves.
At £ =o0, the phase constant 3 approaches the value —%%—, which
incidentally is the phase constant of a plane wave. The long-
1tudinal component fields for a non-dissipative pipe vanish
under this condition. That 1s to say, at infinitely high
frequencies, the hollow-plpe waves beoome'transverse, tra-
veling In the longltudinal direction of the pipe and parallel
to the wall. If we take an infinltesinal longitudinal slice
of the wall, the situation is reduced to grazing angle case
of light reflection, which we have discussed above. On this
infinitesimai slice of surface, the hollow-pipe waves at in-
finitely high frequency may.have a composite polarization or'
a simple one. If there 1s a transverse magnetic field ten-
gential tothe surface, we may predict, in terms of light,
that the absorption eoefficient is not zero, i.e., the loss
into the wall cannot be eliminated. On the other hand, if

there 1s no transverse magnetic fleld tangential to the
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surface, the absorption coefficient of the wall is zero, 1le.,
there is no loss caused by the metallie wall,

Therefore, we mav conclude that the attenuation
of a wave in any hollow pipe is zero at infinitely high
frequencies if there 1s no transverse component ofmagnetic
field tangential to any part of the wall or walls, So far
as we have discovered, only the Hy-wave in a circular pipe
and the H-wave in a degenerate rectangular pipe ( bv extending
the dimension 'b' to infinity) satisfy the necessarv condition
of the above theorem, For the H,-wave in a circular pipe, the
absence of that component field 1s possible on account
of the circular symmetry. For the H-waves in a rcectangulsr
pipe, there are alwayvs transverse components of the magnetic
fields tangential to the metalliec surfaces, but their effect

may be eliminated by extending the dimension 'b' to infinity,

Summary of Zgquations

Non-dissipative Case

Component fields of the eHp- and oHp-waves:

He= 8 S0 R.(5) e (P
; , i(wt ~px)
H “%Jj?: S, () R, (%) e (ot op
L (ot-px) 3.8

< -piB g
Hy = -Bga S.(p Ra(B) e
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E. =B % Sl (n) Ro(%) e (<t P
E ‘i'Ko Y‘ n 5.8

((wt-px)

. Cwp p
E,l =-B v Sn(q) R(E) e

where R represents ie and Ro, and S represents Se and So
for the even and the odd waves respectively,

Component fields of the eE,- and oEp-waves:

Ex = B Sa (P R (%) e (atpn

E, = -B ;‘:: S,,(r‘! R,(E) e flat=fo)

Eq = o ShOp R.(B)e e 3.10
e = Bb s (pR.ee TR

My < - B o Sa () Ry (8) et P

Dissipative Case

Attenuation constant of the eH,- and the oHy-

waves 1in an elliptical pipe:
*x = [TMe Jfs -
T 215:.1h2 ‘ (f J
'f'i Mn 2 2 . ,2 __f_O_% R ( )2
(L) + (R Kg'sin's- D(F) T (Ra(8.)

i E 3,29
[ Racs s v T [ Trin)] 9%

where

M.+ | s, e 3,27
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2w 2 3.279.
= f, Is.op)an

For the Hn-ane in a circular pipe, the attenuation constant

is: .
« = (- “‘)J’

()

3e44

Attenuation constant of the eEn— and the oEn-

wave in an elliptical pipe.

X A/.L‘:_‘ WE_ (3" (&e5)"
oM zganhid/‘ (f/‘) ,___f = (g)Jdg +f§°[2 (F,)j dg

36358

For the En-wave in a circular pipe, the attenuation constant

is:

tf ' 2 -3
x /f"'“ + ({:)"[1 - ()7 3445



IV, RADIATION FROM THE OPEN END

OF A RECTANGULAR PIPE

It 1s known that an electromagnetic wave with
distributed charge and current density can be represented by
a vector potential A and scalar potential @, which are gen-
erally called Lorentz or retarded potentials. They may be
started by the following expressions:

1 {u(t-r/c)
4 JIr r dv

g = | alter/e) gy 4.1b

A=

4,1a

where u 1s the vector conduction current density and p is
the charge density, both in complex representation., The
electric and magnetic field intensities may be expressed
in terms of the two potentials:
H= curl A
E =-grad f-icprA | 4,1lc
The two potentlials are related te each other by
div A +iwpM g = 0
with this functional relation, the scalar potential may be
eliminated from the field expressions 4.lc.

H=curl A 4,2a
+ grad div A

(w§

E = -6(»/-‘A 4,2b

L4

Both A and ¢ satisfy the D'Alemberts equation, which for
A 1is:
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By 20 4= B
VA+ ch c.

In a region free of conduction current, this equation reduces
to the wave equation,

Inside a hollow pipe of any geometrical form and
of sufficient length, 1f we set aside the problem of how waves
of different types are produced, it is possible to choose a
vector potentlial whose divergence is zero., The vector elec-
tric field intensity is thus reduced to the form

E = «lwup | 4,3
The vector potential can then be calculated readily from the
electric fleld vector of a hollow-pipe wave.

From EqQ.4.3 and the definitions of the E-wave,
and the H-wave, it is apparent that for the E-wave, the vector
potential has both longitudinal and transverse components.,
For H-wave, on the other hand, the vector potential has only
transverss .. component. The latter fact is particularly sig-
nificant for the Hgn.-waves in rectangular pipes, which may
be produced experimentally by placing an antenna perpendi-
cular to the XZ-plane., The conduction current oscillates in
the antenna, and from Eq. 4.la, we would expect the vector
potential to have the ssme vertical direction.

For the calculation of the radiation pattern
from the open end of the pipe, it is convenlent to represent
the hellow-pipe waves by a single vector potential, From this

vector potential, we are able to calculate the corresponding

vector potential of the radiated wave in the surrounding free
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space., The method which we shall use te calculate the
radiation is Huygens' Principle, often used in the calculation
of diffraction problems, The derivation may be found, for ex-
emple, in F8rsterling's "Lehrbuch der Optik" pp.224-227.

The general form of the expression is as following:

(& A-5EY L a L [f 2 At-£) 24
‘- o s[4 A D), Jas
i 5 P H TP e
A 4,4

where A 1s the vector potential, the one on the left 1s the
quantity for the point where the flelds are to be calculated,
and those on the right are the value over any enclosing sur-
fave, The radial distance between the point of observation
and the surface is p, and n is the inner normal to the surface;
the time t is replaced by (t-«%—) to take care of the time
retardation., For a space free of charge and conduction cur-
rent, the volume integral 1s zero, Eq. 4.4 is only good for
A in Cartesilan coordinates. The equation must be modified,
if A 1s expressed in some other orthogonal coordinate system
since it 1s a vector function,

We will assume a pipe of rectangular cross-sec-
tion of finite length, It is excited at one end to produce
one or more types of the hollow-pipe waves., The exciting

system is shielded to prevent the radiation of energy direct-
ly into space. The walls of the pipe are so thick that no
energy is able to penetrate them, The only radiation into the

external space is from the open end of the pipe. The pipe is
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assumed to be of sufficient length for the ﬁse of the field
and potential functions calculated for a pipe of ideal ma-
terials and infinite length, It is also assumed that the fields
at the open end of the hollow pipe are not appreciably dis-
torted by end effects., (Refer to Fig. 4,1)
Since the vector potential of the hollow-pipe
wave is known, we may substitute it into Eq. 4.4 to calculate
the vector potentlal of the radiation field, From the latter
potential, the magnetic and electric field intensities of
the wave in free space may then be calculated by Eq. 4.2.
Eq. 4.2 may be simplified for the radiation field
by carrying out the vector operations., The vector potential
of the radlated wave will be first calculated in Cartesian
coordiantes:
A= 1xAx+ 1yAy " 1zAz

It can be expressed in spherical coordinates (R, 6, [ ) by

.

A= 1A+ 1A+ icAz

where 1., 1,, and i1, are a set of orthogonal unit vectors,
The two ®xpressions of A are related as following.

AR = Axcose + Aycoscsino + Azsin§sin0
Ae =-Axsin0 + Aycosccoso + Azsinzcoso 4,5

Ac = - Aysinl: + Azcosl:

L4

The wave function for any wave radiated from a single source

1 io(t-R/e)

mist be a function of R of the form = The

factor (t- —%— ) in the exponential represents a wave travel-
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ing radially from the source., Terms with higher power of R
than (-1) can not exist, if the function is to vanish at
inifinity, and terms with lower power of R than (-1) can

be neglected when R 1s sufficiently large. Hence we may

wrlte
olo(t-R/c)
= 1 [ ' —
A= [4pAL + 1AL + 1.AL] =
where Al , Al and A' are scalar functions of © and ¢ only,

R e
By applying the vectorial operation to such a potentisl

for large value of R and using Eq. 4.2ab, the radiated elec-
tric and magnetic field intensitlies may be found as below,

E = -fop(ighy + 1,4,) 4.5

H curl A 4,7

]

16
= (lghy - 14

ole

Both the electric and magnetic fleld intensities
thus derived have no radisl components, Thls means that all
the flelds are transverse to the direction of propagation,
& special characteristic of radiated waves in space. It

is obvious from the expression of E and H that
~ (A

EG—E H,

E, = //12- H,

Both E and H satisfy the wave equation.

4,8

The Poynting's vector which represent the tran-

smission of energy per sq. cm. of area i1s always in the
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radial direction, since the radial compoments of fields are
zero:

w
"

~2— ( EeH, - B,He )
—JdE (512 + (8] 9
= GOl s g e

The power radiated in any so0lid angle 1s constant,

1}

n

The radiation pattern may be defined as the
curve expressing the relative magnitudes of electric or
magnetic field intensity, radiated from a certain sources,

over a sphere of radius R with the source as center,

Radiation Patterns of the Ho n-Yave (m = o0dd)

2

The field expressions for H0 m-"ave with the

]
X-axls at the center of the tube for m = odd are

Hx = B gﬂ sin ( —%ﬂ—z) ei(wt'Px)
H, = -B 1p cos ( —%E—z) ol(0t—px)

E, = -B 1wm cos ( —%E—z) ei(wt"FX) .

The most important type of wave so far as ra-
diation 1s consldered is Ho,l-wave, in which the electrie
field intensity is parallel to the Y-axis, and has a si-
nmusoldal varlation with the maximum at the center, It
will give a maximum radiation directly in front of the
pipe. Higher orders of H° n-¥ave are interesting as they

b

are apt to appear in the tube when the operating frequency
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is sufficiently high, We shsall first consider the m = odd
H, .-waves, in which the electric field is evenly symme-
trical with respeet to the X Y plane, With a H, ., -waves
in which m is even, the electric fields are zero at the
center and possess odd symmetry with respect to the X,Y-
plane, The radiation field of such types of waves will
have a zero directly to the front of the tube but it will
have symmetrical side lobes., Since the scalar poténtial
inside the pipe is zero, we have from Eq. 4.3

E = -lopmA |
The vector potential inslide the plpe 1s as follows:
A, =B cos(%’fz)e(-(wt“a)‘)

y 4,108

Ac= A; =0,
We assume thls expression to be valid at the opening of
pipe, which coincides with the x = O plane, Let P be

any point in the space where fleld 1s to be calculated and
the distance to any point (x, y, z) on the opening be p.
Since insidethe pipe, the wave function 1s a function of

X and t, of the form ole0t-1px

for all types of waves in rec-
tangular pipe the expression for Huygens'principle can be
further simplified. The volume integral 1s equal to zero,

and the remaining terms are

1 DA _ lw
‘;._‘('5{)( = — Ae



So < .
| Lw 1
A:fj.‘:[(—c—-+?)cose+op]i\e ‘3'5 4,11
Put the value of Ay of Eq. 4.10a into the right-hand slde

of the expreasion and neglect the term preportional to -}f—;

and put x = 0, We have the vector potential in the ex-
ternal free space,

w(t-£)

ds 4,22

P

2 2 N

= Lw PC- m7 v

Ag LI < [cose + = ]B cos(__.b zZ)e
sl

)

As p 1s a large number, we may neglect its variation over

the surface of integration and use an average value R so
as

far,magnitude 1s concerned but introdace an approximation

into the exponential ( Fig. 4.1 )

P=/(RsinBcosg -4) +(Rsinbsinl - Z) + (Rcosg)

s R - (gCOSC + Zsinl)sin®

and the integral becomes:

tw Pe Lw(c—-'—:-) 2 ‘2 Ycosy sinb 4 mn (225insin@

Ag--:_'——e-B[cosa +.a_]e Le dﬁf cos(Tz)e dz
. R
O Lw(t-2) sin (S cosg si TbGnl si
=-°;-—-:; Be “cose +mf] n (R cost m?)“’s( A S':C:"'e’
o . . .2
COSCSme[Sm Esin'@ -~ (;.O)J
A= A =0
since . 25

4,10b

> >
i
ole
N
]
013
-
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Using expressions 4,5, we resolve Ay (Eq. 4.10b) into
spherical coordinates

cw(t- Sln(wcosCSmG)cos(-——Sm§5m6)

Ll\zm
— Be

(_ AN
Ag = ~3rrt Ycose +1 2r)

Sin’C sin*e -(%\_)

(Xm «‘w(t-%) . Sin (22 cos5$in6) cos (T sinLsin )
Ae=——‘."———Be (cose+ j“A) A »—R Cn; in
2nRb ,/-:) Sig e - (A ) Cot @

By cw(t - b
AC= 2:'12: Be"w( )(cose +/1 (’s‘z) sih (2 <05 T sin @) cos (12 5‘”55”“9) tanl
sin® Z sin ') (A SinB

The magnetic and electric fleld intensities in the external

space are

. L2
Fo =B 1 =iy - - S5 B A,

= ___:_’2_”/"‘ B(cwse + )Sm (.05;5016) cos( smc 5in®) ﬁeeito(:-g)
; sin® 6 (L)
4,18
O .
= - ,_/: = e N B e — Kbl
By = fE =~ iophs = -TJE A,
. R
=Am /&g (cosé + /1 -( ) sin (I8 cosCsinp) cos(m’ $inL5in®) tan e"“’("?)
bR f_ 5"" 1" s;n e ( ) Sin 6
Hﬁ = 0 , ERzo

Poyntings vector (in radial direction) 1is given by

s-Lls 2*""["[@%»/1’(71} sin* (Fasg sin @) cos (—Sm;me)[ e s T

an&‘"‘ﬁ -(-;la)lj . S 6] 4.14
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The factor [c<>se +/1-(3)'] contributes to the
directivity of radiation by a relatively slow variation.
For (%‘) equal or greater than 2, the expression is appro-
ximately equal to (l+cwsé], It is maximum directly in front
of the surface of integration and approaches zero behind
the surface of integration, It would disappear 1f we use
equivalent theorem® to introduce fictitious magnetic and
electric current sheaths at the opening of the pipe,

The analysis of the remeining factor may be
slmplified if we confine our attention to two perpendicular
pleanes X Y and X Z-planes:

Radiation Pattern in XY-plane
(¢=0)
By putting ¢ equal to zero, we find

a t"E) 2
h/uR,/z e [COSG *,/l‘(i)}gin(%siﬂe)cote

Eo

4,15

E  E

g+ Fr. He,ond Hy =

Poynting% vector (in radial direction)

_.Amgrlsl C%é*ﬂj Sin ("" sine)c,otle ) 4.16
Omitting constant factor for the present, we have
three factors which effect the radiation pattern of the H,, -
waves, Lt 1is amusing to see that,except for the term,fzizésl

1. S: A. Schekunoff, Bell gys, Tech., Jour., Vol.XV
pp 92-112 January 1936
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which is approaching a conatant at sufficiently high ratios

of 2*, all the three factors are independent of the oriti-
cal wave length or the dimension b of the tube. This

is caused by the symmetry of field with respect to the

XY-plane at the opening of the pipe. Thus it is possible
to control the radiation patterm in this plane practically

adjusting the dimension a .

The order of harmonic, m, of the H,, -wave
(m = odd ) has 1little to do with the radiation pattern in
XY-plane, sincs the fields at the opening are independent of
Y , regardless of the order of harmonics., It enters the expre-
ssion only in the critical wave length, and its effect on
the pattern in XY-plane 1s of minor importance.

The factor sin(%?“"‘e%me has its first zero at

o = s (3) 4,17
It 1s apparent that smaller the dimension a,the larger the
value ©, and the broader will be main beam of radiation.
For large values of a, there will be a number of zeros or
lobes beyond the first one, the maximum amplitude of which
varies inversely as sin®,

The signiflcance of the factor cos€ can be
easlily visualized 1if we refer to the solution for the
radlation fleld from a small oscillating dipole placed at
the origin and coinciding with the Y-axis, Tte same( and
only) angular function cos® gppears in that solution,

The radiation fleld is identically zero at all points on
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the prolongation of the axis of the dipole., In our case
we have an Infinite number of dlsplacement current elements
whose directions are all paralled to Y axis, consequently
there 1s no radlation along the +Y axis,

For the sake of convenience, the beam anglells defined
as that including the maln lobe of radiation, It is twice
the angle measured from the X-axis to the first zero of
the radisted field functions. Using the expression 4,17,
Flg. 4.2 1s plotted with beam angle against the value of
~ for radiation field of H,,-waves in XY-plane, The
discontinlty of the slope of the curve at — = 1 is caused
by the colncldence of zeros of cosé and sin -%?shé%/ﬁne

Flg 4.3 shows the radiation pattern of H,,-
wave in XY-plane., The calculation covers only the front half
of the sphere, Comparing the two curves, we see that the lar-
ger the dimension "a" the narrower the beams, and at the
same time, the larger the secondary lobe, The dimension "b"
has but little effect on the shape of the pattern, A curve
with a/A =2 and b/ =1 was calculated and discarded because
it lies too close to the curve (a/A =2, b/x =2). In fact,
the beam becomes slightly broader as the value of b/ is

decreased. The radiation pattern of H,, has essentially

the same form,
1The beam angle is not always defined in this way., It is
sometimes defined as the angle within which, the electric
or the magnetic fleld intensity 1s equal or greater than

one half of the maximmm intensity of radiation. By this

definition, the lowest power density at the edges of the

beam is one-fourth of the maximum power density,
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Radiation Pattern in XZ-plane

(T =-%)
By putting § = —5— in Eq 13 and 14, the

radiated fleld intensities are
uw(t xy cos( b g, e)
[ He = g% " [“56*/41 - J sn(e - 4,18

EGJE‘K;HCIand Hﬁ=o

The Poynting's vector in radial direction:

2 ob .
mna cos ('—5109)

[B 18] [coso + A T-(2) A Siné 4,19
ZR b [ Ao ] [sjnze - (%o)]l

XZ-plane ( y = 0 ) is the one which is perpen-

dicular to the orientation of electric vector at tke open-
ing of the pipe. We would expect the result that the elec-

tric field intensity in this plane 1s everywhere parallel

to the Y-axis, The field is not always zero at € = + —%— s

points on the Z-axls, The field patern in the XZ-plane 1is

independent of the dimension "a",
The same factor, cosé +,./1~(,’%.)’ , a8 in the XY-

plane, appeard here also, The third factor has the form

cos (P—é sin ©)

4,20
Sin e - (MA 2 .

In Eq. 4.20 the factor cps(jriﬂQ)iS zero for a series of

values of O, viz,,
.-l
e ::.Sln ("‘_‘ = l‘ 3’ 5’ o e 0 4.21a

but the denominatér 1s zero for only one value:

o = sin (22 4.21Db
2b .
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where m denotes the order of harmonles, Thus, the first
zero of the fraction withm =1, i.e, for the H,  -wave,
occury at A

© = sin 1(;: , 4.22a

while that for the H, j; -wave 1s at
6 =$3n"1(%) . 4.22b

The angle of the first zero determines the spread of the
main or center lobe. The beam angles are twice of this
angle, i.e, twice the values of © corresponding to the
first zero, and are plotted in Fig. 4.2, The field pattern
of the Ho, -wave ( m = 1 ) in XZ-plane will not have any
zero 1f N33 b except the zero in the negative X-
direction). The curve for the H,, -wave 1s also plotted
in Fig 4.2. Naturally, the curve does not extend beyond
the critical wave length for the particular wave type.

Consider the H,, -wave only, the beam angle
in XY-plane 1s always narrower than that in XZ-plane for
a square tube, If it 1s desired to have the same beam
angle in both planes we need a tube with a/b = 2/3 .,

For the H,, -wave, besldes the main or center
lobe, there wili be side lobes when the ratio % is above
3/2 « The narrower the main beam, the more the side lo-
bes appear, However the maximum megnitude of the side lobes
is small, compared to that of the main lobe. The denomi-
nator of Eg. 4.20 goes through zero within the main beam,

and therffore the main beam has the largest magnitude of all,
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This 1s not so for the Ho S Wave, There will always be
9
side lobes when any Ho 3-wave is allowed to exist inside
’

the pipe. The magnitude of the second lobe is always
greater than that of the center lobe, because, for this
wave, the denominator of u#q. 4.20 goes through zero with-
in the second lobe of the bean,

Fig. 4.4 shows the radiation patterns of the

H,  -wave in the XZ-plane, for ratio b/A = 1 and 2, For
’

b/x = 2, the operating wave length is below the critical

wave length of the Ho 8--wave. Let us assume there is a
’

Ho 3-wave existing alone inside the pipe operating at
s

b/x = 2, and the maximum amplitude of its electric field
intensity is equal to that of the H_ ,-Wave used in the

b4
caleculation of the curve (b/x = 2), Fig. 4.4 . The radia-

tion pattern of this Ho -wave in XZ-plane, plotted to the

3
same scale as curve (b/x = 2), Fig, 4.4 , is shown in Fig.

4,5 ., Thus, by comparing the two curves, the amplitude
at the center main lobe of H  _-wave is only 28,2% of that

3

of the Ho ,~Wave, while the amplitude at the center of the
s
secondary lobe is 58% of the same., In Fig. 4,5 , the ra-

diation pattern of the Ho -wave in the XY-plane 1s also

23

shown in dotted 1line for ratio a/n = 2 .

The Ho 3—wave does not exist alone in a rectan-
}

is
gular pipe practically, but, always accompanied by the Ho "
’

wave since the critical wave length of the Ho ,~Wave is three
»

times longer than that of the Hb Swave, The phase velocity
’
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of the two waves are different, and since the resultant
field distribution over a cross section of the pipe is
Just the vector and complex sum of the fields of the two,
the resulatant field distribution inside the pipe varies
with thé axlal distance, Ohly the fleld distribution at
the opening 1s important for the radiation, The radiation
pattern of such composite wave is just the linear super-
position of the radiation patterns of the H,,, -wave and
the H, ; -wave, taking into consideration ' ' the relative
magnitude and phase difference of the two waves at the
opening, In Fig. 4.6 , the inner curve shows the result-
ant radiation pattern, in XZ-plane, of an H,,-wave and an
Ho -wave of 20% amplitude and equal phase., i.e, at the
opening, the resultant fileld distribution is as follows

‘wt - @ x cwt ..i.pax

+ 0.2 ¢os (J—EZ) (3 . 4,23a
L}

E, co.S(%z)e
and the outer curve represents the radlation pattern of an
H,, -wave and an H,, -wave of 20% amplitude and opposite
in phase, i.e6. at the opening, the resultant field distri-
bution 1s as follows,

bt =8P s (3R ) et TP 423

Eﬂ oc COS(L:-Z)e

By comparing them with radiation pattern of
H,,-wave (Fig. 4.4 inner curve), we see that the main lobe
is sharpened but the side lobe enlarged by introducing
an H,, -wave in phase at the opening; the greater the am-
plitude of H.s -wave, the sharper the beam and larger the
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secondary lobe, The reverse 1s true when the Ho -wave
1

and Ho,a-wave are opposite in phase. Thus it 1s possible
by tuning the length of the pipe to sharpen the main beam
at the expense of larger secondary lobes,

Eg. 4.23a represents a sharpened sinusoldal dis-
tribution. and the radiation pattern from this distribution
is also sharper then the radiation pattern of the Ho,l-
wave, Eq. 4,238 represents a flattened sinusoldal distri-
bition, and the radistion pattern is also broader than the
radiation pattern of the Ho, -wave,

From these fact we may conclude that a sharp
fleld distribution at the opening is favorable for the
single beam directional radiation,

One method of expressing the single beam dire-
ctivity of a certain wave is to compare the power which would
be needed to feed a non-directlional wave from a dipole sour-
ce to the power actually needed to feed the directional wave
under consideration, such that, the maximum power densities
of the two cases at equal distances from the sources are equal,
This ratio is generally defined as power galn of the direction-
al system, Let us take a dipole, lying on the X-acls at the
origin, whose radiated power density on a given sphere of
radius R is sin® . Thus the maximum radiated total density

on that sphere is unity. The total power radiated from

the dipole is the intepration of radisted power density
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over that sphere:

2 r3 3 X 2 8 2
R f j sin’@ sing d6 dg =~§-"R

.

The meximum radiated power density if the H,, -wave of a
rectangular pipe is obtained by putting 6 = 0 in either ex-
pression 4.16 or 4.,19:

87(:;119z
e AG 18l [ TG
when the dipole have the same maximum power density on the

sphere of radius R, the power output from the dipole would

be

22).
AR LG

AT TR rerr

The actual power output from the rectangular pipe, is the
energy transmitted along the tube, 1f we neglect the re-

flection, etc., caused by the end effects.

1B S [ L1 - (R ] 4.26

Therefore the power gain Q as compared to a dipole 1is

EKZ%(_;\:)z Ll "’,\/1‘(,:)] 4.27a

Power Gain = 3
1-(&)

This expression does not tell the truth when the ratio %E is
near unity since at critical wave length, no wave may pos-
sibly travel along the pipe. This ambigulty 1s caused by

the assumption that a wave would exist at the end of the pipe,
though it did not propagate at such wave length, Hence, if

we exclude the reglon around = = 1 , the power gain 1s

A,
expressed as
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bu 2 Q &a 2
Power Galn-= —° m*—% (%) 4.27b

The power gain is proportional to the square of the ratio
f

.’;:f* or — at sufficiently high frequency.

Rediation pattern of Other types of Wave

The essential requirement for directive radig-
tion is to have the flow of radiated energy eondentrated
within a sharp angle., Using a rectangular pipe as a ra-
diation device, the point of maximum radiation energy usual-
ly lies on the axis of the cylinder, the X-axis, on account
of the symmetrical field distribution over the cross sec-
tion of the pipe about that axis. This is so for H,, -
wave, which has the electric field vector parsllel to one
8lde of the pipe. It has been shown glso that the maximum
of the central lobe of the radiated field for en H,,-
wave, where m is an odd integer, lies on the X-axis.

No other type of wave in a rectangular pipe has this pro-
perty. For the sake of simplicity, we shall proceed to
prove that for all types of wave, except the Hom, m=o0dd,
the fields and therefore the flow of energy at any point

on the X-axis is zero, and therefore the production of s
single beam of radiasnt energy is impossible, We shall also
1llustrate the gereral shape of a radiation pattern of this

kind with a special example, viz,, H,, -wave,
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Let us rewrite the expression of Huygens'prin-
ciple for space free of charge and conduction current, and
for radiation from a rectangulsr pipe (Eq. 4.11):

W ] . R
R=II%{(E“+F)mw-*¢]Ae°°°¢k
The Jéﬂ term is to be neglected for the radiation field,

Since © 1s equal to zero at any point on the X-axis, it

is obvioua from Eq. 4.12 that the distance from that point
to any point over the cross-section at the end of the pipe
is constant and equal to R, Putting © to zero and p to

R , all factors under the 1ntegfation become independent

of y and z except the factor A. Thus

. R
w By T C 4,28
A=gll+55)e LAdS

We shall.ﬁnvestigate the integral 1£Ads alone, because
if we can show that it vanishes on the x-axigs, there cmn
be no radilation in this direction and our theorem will be
proved,

H, n.~wave ( m = even)

The component fields of the H, m-wave for m =
even with the center of the pipe colnciding with the x-axis

are as follows:

. ] t ~pBx)
E.,j = Lwu B s.q(ﬁ‘sl"z)e°(‘° ¢

. ; t -3x)

Hy = of B sim(mrg) ot £ 4.29
L (wt-px
Hx=ﬂ§8“s('—"§z‘r2)eb( P)

Using Eq. 4.3, we have the vector potential at the opening

of the pipe as below:
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Ax = Al =0 4.30

The surface integral JAds for A, at any point on X-axix
5

KR b
2 5 ‘
c(wt - Bx)
-j dﬂj sira(-——""b'r Z) e (ot dz
-4 ,.%

2P G [coS(!p’zE) - cos('an-.)J

’
and since A , and A, are identically zero in all the space,
the electric and magnetic fleld intensities vanish along
that line,

We may similarly prove for the H,, -wave ( m
= oven) that the radiated filelds in the entire XY-plane
is zero. It 1s because the vector potential of the H,,, -
wave ( m = even ) inside the pipe has an odd symmetry with
the XY- plsane,

H,.-wave

For H, m-wave we place one corner instead of
the central axis, of the rectangular pipe colncide with
the X-axis, so that we may write a single set of field
expressions for both even and odd values of A gnd m .,
(Refer to Fig. 2.2¢ , field diagram of H,, -wave.) The
expressions of fields are given in Eq. 2.1, The components

of the vector potential inside the tube are consequently



- 141 -

mn .
B nr - “(ot -px)

Ay =B mm cos(Tysin(FRa) e ¢
nm . < t-

A, = B Kxan Sin 2}3)(05 _’_‘_"Bﬂz)e (wt-3x) 4,31

The component A, at any point on the X-axls 1n the space
1s proportional to the integral, omit the comstant coeffi-
cient,

b _a
LS (MK
££°°5(05)5‘"(T2)d3d2

- -2 ;”; [ sin(mm) - 0] (cos(mr)-1] =0

-

Similarly, the surfaee integral of A, 1is zero., Therefore
the radiation fields of H,,-wave along X-axis are equal

to zero,

E  n~wave
By placing one corner of the rectangulsr pipe

coincide with th e X-axis, the fields for the E, , -wave
inside the pipe are given in Eq. 2.4. The vector poten-

tial inside the pipe is

. . nn . m Lot -iax
A, top S0 y)sin(Frz) e f
8 B nn : bt X
Ay =5wf‘7‘7‘§5‘l?‘°5(%&5)5‘"(:’§2) ehw ¢
B 8 mnr . ot -0
Ay~ T S () cos () @ St i 4.2
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Comparing the above A, and A, with the A, and A, of the
H,.-wave (Eqe. 4.31) respectively, we conclude that the
components of vector potential A, and A, along the X-axis
are zero,

Along the X-axis, x 1s equal to R, and A, 1is
the radial component A, of the vector potential., It is shown
in Eqe 4.6 and 4,7 that both E and H are independent of A, .
Therefore, both the fields and flow of energy along X-axis
are zero.

We have mathematlically proven that all types
of waves in retangular pipes do noghggggle beam radiastion
pattern except for the H,,-wave ( m = odd ), The H_ , -~

(m=even) '
wave has zero fields in the XY-plane.

Whether a type of wave in a hollow pipe ylelds
directional radiation pattern er not may be visualized
from its diagram of eleetric field distributlon over the
cross-section at the mouth, Fach area element over the
eross-section is occupied by a displacement current ele-
ment, which, in a way, behaves as a dipole. Since the
current element is proportionasl to the time derivative of
electric field intensity,it is mepresented by the same
distribution diagram, Referringf‘bo Fig, 2.2 , it is obser-
ved that for any type of wave, the displacement current

elements located at two points dismetrically symmetrilcal

about the center of the cross-section, are always wector-

1ally parallel. If their vector sense 1s the same, their
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radlation flelds at points along the X-axis are cumilative,
and we obtaln a case of directional radiation in a single
beam. On the other hand, if their vector senses are oppo-
site, their radiation fields at points along the X-axis
cancel each other, and give zero fields at those points,

A check of the fleld distribution diagrams reveals that the
Hi,1-, Baya=-, and Ho,m- ( m is an even integer) waves do not
give directional radlation., Since the dlagrams of the Hp,m-
and Ep,m-Wwaves can be constructed by piling n times m number
of the dlagrams of the Hi,i- and the E,i-waves together in
one pipe, they also do not give directional radiation, Only
the Hp,m-waves, where m i1s odd integer, have a radiation
pattern possessing a central lobe,

Similar analysis may be applied to the radiation
patterns of waves inside pipes of circular eross section.
neferring to the field distribution diagrams of waves in
circuler pipes®, we see that only the Hj-wave and probably
the E,-wave of the four simplest types, possess the pro-
perty of directional radiation., The Hi-wave 1s simildar to
the Hp,1-wave in rectangular pipe, since the electric
fields over the cross section are all nearly parallel.
Therefore, it will have a radiation pattern possessing

large central lobe., Although the radiation pattern of the

* G. C. Southworth, Bell Sys. Tech. Jour, Vol., 15 , April
issue, Fig. 1, (1936)
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El-wave may probably have a central lobe, the side lobes

will have much larger amplitude,

Radiation Pattern of the H 1-wave

Let us pick up the H1 l-wave as a special case
2
of those types of waves, whose radiation pattemms do not

have central lobes, With the axls of the pipe coinciding

with the X-axls, the field expressions of H _-waves 1inside

1,1

the plpe may be written as

H, - B s;n(gg)s;n({l—z)e““’“‘a"

. c(wt - B3x)

Ty)sin(Za)e ™ F 4,33
. (Wt -

w/u-% B “‘t“*)+(,r)z 5“"(77;"3) cos(%z)e ( £*

The vector potential inside the pipe is

R/b .
= ~— §i (ot -
A5 B (%),_+(%)1 Sin (g- 4) cos (_%'. Z) e ( Px)

7('/ (~]

- _Ta__ (ot - )
A= B G )e

Cos (alg) Sin (JET_ ?
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Substitute these two components of vector potentiasl into
Eq. 4.11 , and carry out the integration, The results are

colt - R
A =B N cose +41 - (2 cosfsing Cos [32 cosg sine) cos["rbsinl,'sinejew( <)
a 2 2 2 . .
9 bR (Z)'+(E) [(costsine)‘—(z’\a) ] ((sinZsin0) - (21}’ Y]

s C -R
A. =-B A Cos 6 +m‘ Sing sin® <os [-’—;2 c“;s;"el‘“L{éS‘thiw] euo(t, <)
7 R T2 T : . ' ; '
q &) + () [(costsme)‘_(zl‘a)J[(s,,,;sMe)z_ (%);] 4,35

By resolving A into spherical coordinates eand calculat-

ing the field intensities of radiation, we have the ra-
diated field as follows

ﬂ/ . [ ; Lw(t-B
H, =- /L E, =B i2A [‘056 " IQ(A)IJ Sin 5 sin@ cos[ 19 cos C'S""OJC"S[%ES"‘CSMe]e, w(t-3)
e B 7; g R Ao

leossin ) - (2 [(sin g sine)’ ~ (2 )]

(A 2 2 2 .
- [ ian (<030 71 -(2]] {aPcos’s - bPins
H, = /& }

i Ee=BaR

a" +p?

: -R
€050 sin @ cos [-7%9- cos&sin O] cos [%Sl’n gs’-nejeue(t )

‘ , 4,36
[“o_;;s,,.e)z -(;\—a)zl [(.SmCsine)z - (5)\;)2]

Hg =0 Eqs=0
In the XY-plane, (% =0)

o 4 _—
H - Jz e =-8 v8a” [cosq +ﬁ/‘,(%)*] CosO Sin cos[?x" Sing) Cm(t—%)
(4 VN 4 TRA ot + b $in*0 - (%)z

4,37
H9| Ha , Ez;, and ER’-O
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In XZ-plane ( G = 2y

2
H =,/§ E. <8 i—_fﬁ (cos® *,Jl~('§ﬁ)‘] cosesfnecosil—;? sin@] i,w(t-E)
< A mRA a*+b* sin*e ~ (&) <
Hy . Hg, Eg and E; =0 4,39

L

The radiation field distributions in XY-and
XZ-planes have the same function except the reverse role
of a and b, In Fig. 7 is plotted the radiation pattern
in both planes for a square tube of a = b =2

Summary:

The Ho’m-waves ( m = odd)

Vector potential inside the pipe:

A, = Bas (3E2) HHEY

b 4,10a

Ax "Az’O

Radiation Patern in XY-plane

R
- [ M _4b co(t-7) 2y - .
E, =d% H, = ZR d ’i— Be “Tcos6 + 1 ~(£-°)J5m(—’;35me) wt 6

E EA, He and HK =0 4,15

Beam angle

20 = 2sin”™* Mg
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Radiation Patern in XZ-plane

Ee » - [Rw, - BB cose + 15 R ey 2 (5 )

Sin’® - M)
Ee , Eﬁ, Hg and HR = 0 ) 4,18
Beam angle
-3 3 A

20 = 2sin ( =5 ) for Ho 1-wave 4,21

2
26 = 2sin”t ( 5% ) for Ho a-wave 4,22

’ [ J
Power Galn of the H -wave:

091

Power Galn = 716— 32 (-77:-9-)2 4,27

.

Other Types of Waves

Other types of waves, the H, - (m=even) the
’
Hn,m" eand the En’m-anes, do not have single beam radia-~
tion patterns. For example:

The H.-wave
P

Radiation pattern in XY-plane

PR [1 -2y
c8a’ <os@ +,41 ~(x) coses:néws[‘s”‘el ot )
‘————%\“ — —

H =IJ}:-E' =—BTI’
RA 2 2
5 ATe atrb sin*0 - (L) 4,37

H
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Radiation pattern in XZ-plane

H =,/?E = B.‘:‘Eﬁj [6056*,\/1~(x;)1 c0s 0 5in0 o5 [-’—',Tbsinel Lo(t -%)
5 Y 6 TRA a* + b*

Sin' @ "({%)1 4,39

H, H

) R:E,andEB==o



V. SECTORAL HORN

We have studied in the 1last chapter, the radia-
tion characteristics of various types of waves within a pipe
of rectangular cross-section. Only one type of wave, the
Ho,m-wave, gives a single beam radiation pattern. The beam
angle of the radiated wave depends upon the ratio of the lin-
ear dimensions of the cross-section to the wave length. The
larger is the ratio, the narrower 1s the beam., The Ho,.-
wave 1is characterized by the property that the electric field
intensity 1s everywhere parallel to one pair of opposite
sides. If we increase the cross-sectional area of the pipe
in order to obtaln a sharper besm, we need a proportionally
longer pipe for the formation of this wave. These results
might naturally sug-est the idea of fofming an electromagnetic
horn with its smaller end attached to a rectangular pipe or
some other forms of excitation systems. In this chapter,
the properties and the radiation characteristics of the sim-
plest geometrical construction will be investigated.

The shape of the horn now considered is illus-
trated in Fig. 5.1. It is generated by revolving a rectan-
gular surface, with one side parallel to the Y-axls, about
the Y-axis through an angle 20o less than 180°. The top

and bottom of the horn are bounded by two parallel conducting
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Plg. 5.2
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planes, "a" cms. spart. The two remaining sides are bound-
ed by conducting planes, which, if extended, would pass thru
the Y-axis. The volume around the Y-axis will be excluded
from this analysis, since it is a singular point mathematic-
ally. The horn 1s assumed to be extended to infinity in the
radial direction, so that the wave inside the horn may be
Investigated. The end-effect for a horn of finite length
will not be considered. The conductor 1is assumed to have
infinitely great conductivity. We may define it as a sec~

toral horn because of its geometric shape.

Waves Inside the Horn

Inside a horn of this kind, the wave propagates
in the radial directionf It 1s possible to have waves whose
field intensities and potentials vary both angularly and
vertically, i.e., with 0 and with y. It is also possible
to have two types of waves, corresponding to the E- and H-
waves inside a hollow pipe, one without a radial component
of magnetic field intensity and the other without a radial

component of electric field intensity. Since we are princi-

pally interested in those types of waves which give single-

1The mathematical background of this chapter may be found in:
Slater, J.C. and Frank, N.H. :"An Introduction to Theo-
retical Physics"
Watson, G.N. :"Theory of Bessel Functions"
Jahnke, E. and Emde, F., :"Tables of Functions"
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beam radiation patterns, we will 1limit our attention to the
type of wave corresponding to the Ho,m-wave inside a rectan-
gular pipe. This wave has wave functions independent of the
coordinate y, and the electric field intensities are all par-
allel to the y-axis, i.e., perpendicular to the top and bottom
boundary surfaces. The problem of obtaining the fields 1nside
the horn is then reduced to a two dimensional one. Fig. 2
shows the horizontasl cross-section, in which, the several
functions vary.

The Maxwell equations, expressed in cylindrical

coordinates (y,r,0) for space free of conduction currents

or charges, with a time variation ei“t are:
foer B = —r—(rHy) - —5— H, 5.1 a
toer B, = —&—H_ - —5y— rH 5.1 b
1wt By = —g— B, - —r— H 5.1 ¢
~ilepr H = —7— T - —55—E, 5.1 d
“Lopr H, = —2— Eg - ;j rEg 5.1 e
_1uyAHé = ;Z EP - - ;1 Ey 5.1
div E = 0 5.1 g
div H=0 5.1 h

Let us impose the conditions that the radial com-
ponent of electric field intensity Er is zero and the wave
functions are independent of y. Under these two conditions,

Eq. 5.1-b shows that Hy 1s also equal to zero, and incident-
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ally, from Eq. 5.1-¢c or 5.1-4, Eé i1s also zero. Thus, out of
the first six equations, there remain only the following

group of three:

© - I -)

lwer B = 55— rHy - 55— H, 5.2a
v B, = =P B 5.2b
tepHy = 22— E 5.2c

This type of wave has an electric field intensity parallel

to the Y-axis, and a magnetic field 1intensity lying entirely
in planes y= constant., The components of magnetic field in-
tensity has components Hé and Hr as given by Egy. 5.2b,c in
terms of Ey' By eliminating Hé and Hr’ we have the two di-

mensional wave equation for E_:

2’E, , 1 2E L dE w?
Y =8 45 2 = = .

The general solution of this eqguation 1is

E, = [Asin(nvg) + Beos(nve)][cTn (E1)+ DY, (2r)]e "
where A, B, C, and D are arbitrary complex constants, n ,is
a positive integer, V 1is a real constant to be determined
from the boundary conditions, and J,p and Y,, are Bessel
functions of the first and second kind respectively. This
solution is similar in two respects to that of the Ho,m-
wave in rectangular pipes. First, in a pipe there is a sin-
usoidal variation in the Z-direction, and 1n a sectoral horn

there is a sinusoldal variation in the f-direction, 1i.e.,

along en arc. Second, in a pipe the wave is propagated in
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the X-direction in exponentisl form,and in the horn, it 1s
propagated in the radial direction in the form of a Bes=sel
function. Since solutions having odd syrmetry about the
line 6 = 0 do not give single-beam radiation patterns, we
will retain the cosine term alone. We note also that as a
practical matter, the sine terms do not exist if the horn
is excited by an antenna placed vertlicslly in the 6 =0
plane. As we desire a wave traveling outward in the radial
direction having a time function eimt, we may put C = 1 and
D = -1i. The solution is thus reduced to the form:

t

E, = B cos (nvg) Kn (£r)e , 5.4a

where K is the second Bessel function of third kind or Ean-

kel functlon’} usually written as BE? It 1is:

Knv = Jnw - 1Ynu. 5.5
From Eq. 5.2b and 5.2¢c, we have Hr and Hé’
H, =£—}g—5in(nv¢) Ko (21) et 5.4b
H¢ = -LB/f/:*;cos(nu¢) K., (2r) e‘:“)t' 5.4¢

E_= Eé =H_=20
X Y
where K' is a derivative of K with respect to its variable (27),
This wave can be represented by a single vector
potential whose divergence is equal to zero. By using Eq.

4,2b, we have,

B

—_ w
Ay = = "T;";‘—' cos (n”¢) Knu (*E—I‘)

This_funétion wilill be useful in the calculation of radiation

o1t 5.6

lWwatson, G,N, : "Theory of Bessel Functions" pp 73
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field.

The boundary condition is that the tangential
component of electric field intensity 1is equal to zero on
the surface of the conduétor. Therefore, at the two slde
where f = ﬁ_ﬁo, Ey must equal zero, which requires that:

cos (nvfo) =0

and nV éo= mét

where m is an odd integer. Since n is an undefined integer,

we may set n = m and therefore the constant v becomes
T

V= = 0.7

The integer n is now limited to be an odd one. It specifies
the order of harmonic of the wave., Thus whenn =1, it is
the fundamental wave, having a half-period sinusocidal varia-
tion along the arc between the two sides. When n = 3, it is
the third harmonic wave, having three half-reriod sinusoidal
variation along the same and so on. The order of tankel's
function 1s nv and equals v for the fundamental wave; it is
inversely proportional to the angle between the two sldes.

A sectoral horn approaches a plpe of rectangular cross-sec-
tion, as fo becomes vanishingly small, and a sectoral horn
of 2 fo = 180° represents a single reflecting plane. The
useful range as a horn is somewhere between, say, 2 fo = 20°
to 90°. The value of ¥ changes correspondingly from 9 to 2,

not necessary an integer.
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Before we go on the discussion of the charac-
teristic properties of the wave, let us review the general
behavior of the Hankel function. We have excluded the point
at the origin of the coordinate, since it 1s apingular point
for Neumann's function. For small value of the variable (
2Ty ), the real part of the Hankel function (i.e., Bessel
function of the first kind) 1s nearly zero and the imaginary
part (Neumann's function) is very large, being infinity when
the variable 1is zero. So, as a whole, the absolute magnitude
of the Hankel function is very large, and decreases with an
increase of the varlable. The phase remains almost constant.
For large value of variable, both the real part and imaginary
part of the Hankel function vary periodically; their magnitudes
are approximately inversely proportional to the square root
of the variable. They differ by a quarter a period in phase.
With a time function eiwt, the Hankel function represents a
wave propagated radially outward. We shall hereafter call
the regions of small values of the varlable and of large
values the "attenuation" and "transmission" regions, respect-
ively, of the Hankel function for reasons explained later on.
The boundary betweem these two regions 1s not definite. How-
ever, we may roughly define it as the point at which the Neu-
mann's function passes through its first zero.

Fig.53 is plotted with values from Jahnke and
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Fig. 5.3 First Zeros of Bessel Functions

ATTENUATION REGION

ny
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Emde: "Tables of Functions". It shows the variation of the
first zeros with the order for Bessel functions of the first
and second kinds. We note that the value of the variable
that gives the first zero of the function is nearly propor-
tional to the order . The larger 1s the order, the wider the
attenuation region of the Hankel function.

The asymptotic expansion of the Hankel function
in the tra’nsmission region is the complex sum of the asymp-
totic expansions of 1its two components. For the Bessel func-

tion of the first and second kinds, they =2re as follows:

1
x = - va*l
Jnu ( ) [‘ZL\T(X Cos‘x h_r n)

} for large x
Y;y(x) Y Sin (x - 2nv+1 n)

4§Nx 4
Thus the asymptotic expansion of the Hankel function is
Kl == e 4 . 5.8
2

Phase Constant and the Phase Velocilty

The wave functions in a horn do not appear ex-
plicitly as an exponential function. The phase constant,
therefore, can not be obtalned in the conventional way. How-
ever, we may define the phase constant by analogy with the

b,
plane wave as the imeginary part of the ratio-——ggiTJEy.

This expression gives the correct phase constants for hollow

pipe waves or plane waves.

Substituting into the ratio, we have,
K, (%

- = .
F [ K. (gn Jimag. part 5.9
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For the sake of simplicity of discussion, let us limit n» to
a positive integer for the rresent. 1In the transmission
region, where the ratio —%— 1s large, we may use the asymp-

totic expansion (Eq. 5.8). Substitute Eg. 5.8 into Eg. £.9:

¥ g L = L
ip i s+ OT o

For values of 2w i << | , and integer orders of the Hankel

function, the approximate formulae for the Hankel function is

ny

I b (nU‘l,! 2 ny
K, 0 =gyt — ()
~ . (nv-1)1! 2 hv
g i (3 5.10

Using this expression, we find,

: a3~ O
-lP .
With this value of phase constant, the general

trend of its variation may be found. The phase constant in-

creases with the ratio —%— from zero at ~§— = 0 and approa-

ches the value —g— asymptotically for large values of —%— .

The wave length in the horn is egusl to 1: .

Therefore, it decreases with the 1lncrease of ratio —%— from
infinity at —%— = 0 and approaches the value A —wave length
in free space——asymptotically for large value of —%—-. The
phase velocity has the same form of variation as that of the
wave length, and approaches asymptotically the light velocity.
It depends upon the order of harmonic of the wave; the highrer
the harmonic, the larcer the phase velocity. For sufficient-

ly large value of —%— , the phase velocity spproaches the
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same velocity, viz., the velocity of 1light, regardless of the
order of harmonic. Thus, the third harmonic will travel fast-
er than the fundamental, but both will be slowed down gradual-
ly to the same speed. The resultant field, along an arc,
being linearly superposible, changes constantly with the ra-
dlsl distance and finally takes on a constant pattern.

Fig. 5.4 and 5.5 are sketches showing the va-
riations of phase constant, rhase velocity and wave length
in the horn with the radial distance. The dotted lines are

the asymptotic values to which the functions approaches for

large value of : .

Attenuation

The horn is assumed to have a conductive boundary
of perfect conductivity while the dielectric inside 1t 1s as-
sumed to be a perfect insulator. The word "attenuation" here
applies to the decreasing of the magnitudes of field inten-
gities as r increases. Since there 1s no transfier of energy
between planes parallel to the top and bottom of the hern, if
the total power along an arc transmitted in the radial direc-
tion were constant, the magnitude of the field intensity
should be proportional to v:%r-. Dissipation of energy is
represented by field intensity which decreases more rapidly
than the above.

In the transmission range, for large values of
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—E—, using the asymptotic expansion, we have,

A
Elj oc [Kny(%')]
o L
AT 5.11a
and Hy o (K, (£n]
1
AT

L]

It shows that there 1s neerly no dissiration of energy during
transmission in that pert of horn. In the attenuation region,
for 27t—%%-<< 1, using aprroximate Eq. 5.10, the fields are

1

By o 5.11b

H 1
¢ o yrowi
The constant v is always greater than 2 for a horn having 266

< 90°. Thus therregion near the origin is highly dissiyative,
The narrower the horn, or the higher the order of harmonic,
the greater is the dissipation of energy. This is the reason
why the two regions of Hankel function have been here named
tre attenuation and transmission regions respectively. The
curves in Fig. 5.3 indicate the approximate boundary of the
two reglons. Suppose the horn is excited at the converging
end at a wave length A such that the ratio 27?—%— near that
end falls within the first region: then only a very small
part of the energy is able to be transmitted radially forward.
This loss of energy can only be eliminated by either decreas-
ing the wave length or shortening the horn at its converging

end.

In Fig, 5.6, the absolute magnitude of Hankel
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function is plotted against its variable in logarithmic scale
for three different values of nv —-the order of the Hankel
function. The magnitude of the asymptotic value (j%;r)wé
of Hankel function 1s also plotted to the same scale. The
latter 1s a straight line with slope = - 1/2. The differen-
ce of the ordinate of the asymptotic line and that of the
Hankel function line, 18 proportional to the attenuation of
the Hankel function. Thus, we see graphically that the
higher the order of Hankel function, the larger the atten-
uvation, snd consequently the wider the attenuation region.
The dissipative property of the horn mray be used
for the suppression of higher harmonics. It has been shown
that the value of 2I‘f§— at the above-mentioned boundary is
roughly proportional to the order of the Hankel function nv,
where n indicates the order of harmonic of the wave. For ex-
ample, if the attenuation region of the fundamentzl wave for
a gilven wave length extends to the value r = r;, then the
attenuation region for the third harmonic will extend about
three times as far or to 3r,. Now, if we want to transmit

only the fundamental wave, we may cut off the horn between

r = r, and r =3r; end set the excitation system there. Be-

yond the region r =3r,, only a trace of the third harmonic
wave will be left, while the fundamental wave is almost un-
altered. A simllar procedure may be used to suprress the

fifth end higher harmonics.
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Field Distribution Inslide the Horn

The field distribution of the fundamental wave
and the third harmonic wave is sketched in Fig. 5.7a,b. It
is not drawn to scale but rather symbolically. At the con-
verging end, the wave length 1n the horn is very large, and -
the crowded magnetic lines represent the great magnitudes
of the field intensitles in the attenuation region. 1In this
attenuation region, the magnetic lines do not form closed
loops. Beyond the open field lines, the wave enters the
transmission region. The wave length in the horn decreases
gradually, as also does the concentration of the lines,

The radial component of thé magnetic field intensity 1s still
considerable. At the remote end of the horn, (-§—>>>]J, the
radial component of the magnetic field intenslty i1s negligible
since it is proportional to _%_.V%-’ and the closed magnetic
lines are broken up. As the electric field intensity is al-
ways normal to the direction of propagation, the wave behaves
precisely as a plane wave with transvérse electrlc and mag-
netic field intensities.

The field distribution of the third and higher
harmonics may be similarly sketched. Instead of a single set
of closed magnetic lines along the arc between two sides,
there will be three or more sets equally spaced. The first
of closed magnetic lines will occur at a larger radial

group
distance from the origin. The fileld distribution of the
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third harmonic wave is shown in Fig. 5.7b.

The behavior of waves in a sectoral horn bear
several striking similarity to that of waves in hollow pipes,
ospeclally the Ho,m-wave of rectangular pipe. The arc length
2for corresponds to the dimension b of the rectangular pipe,
and the variation of the fields is sinusoidal along both these
dimensions. While the Ho,1-wave has a definite cut-off wave
length, depending upon —%— , the corresponding wave in a sec-
toral horn, too, has a kind of cut-off wave length that de-
pends upon the ratio —%— . The shapes of the curve of £ vs.
—%— and that of g vs. —%— eare similar. A horn 1s therefore
in a way, a rectangular pipe with an ever linearly increasing

cross-section. It may be considered as a tapered hollow

pilpe tramsmission line,

Radiation Patterns of Horn

The transmission characteristics of waves in
horn thus far discussed has been limited to horns that ex-
tended to infinity in the radial direction. We are not able
to treat rigorously a horn of finite length. However, 1if
the angle made by the two sides of the horn 1s not too large
(200< 90°), and the length of the horn is above several wave
length, any type of wave that 1s impressed at the throat end

of the horn will be able to transform itself into sectoral-
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horn-wave. Furthermore, 1f the horn is long enough, the end
effects will not distort the field distribution too much.
Therefore, we will assume that the radiation patterm of a
finlte horn can be calculated from the field distribution
appropriate to an infinite horn.
The vector potential of the sectoral horn wave

is Ay = - 1E¢4 cos (nv f) L (—%—T) eimﬁ
Let us cut off the horn at a circular cross-section r = r;.

5.6

A cross-section of the finite length horn looks like the sket-
ch: : of Fig. 5.8. We also assume that the horn 1s excited
at 1ts throst so that only one harmonic or a number of har-
monics are able to transmit through the horn. The throat and
source 1s taken as shielded. As we have discussed before,
the radiation pattern—in the XY-plane depends roughly only on
the dimension "a" for the H,,mn-wave in a rectangular pipe.
Now, the field distribution of a sectoral horn wave in the
X¥plane 1s exactly the same as that of Ho,m=wave of rectangu-
lar plpe. Therefore, it is reasonable to assume that the ra-
diation pattern in the XY-plane has the same form as that of
the Ho,m-wave of rectangular pipes, (refer to Fig. 4.3).
For this reason only the radiation patterns in XZ-plane will
be considered.

In the expression 4.4, the surface integration
is carried out oveqkhe outer surface of the metallic boundary

and the open end along the sector of the cylindrical surface.
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Fig. 5.8



- 172 -

Since it is assumed that no energy penetrates the boundary
surface, the integration over that surface 1s zero. By Huy-
gens' Principle, the vector potential at any point P (R , ©)
in the XZ-plane 1is

A=J‘j %}[1’ : )(t _p_) cos (n,p)
DA (t _R+ ds.

Substituting Ay into the right hand side gives,

B8 7 ¢¢ <
Ay = -5k f§[‘ < [Knu(%?)ws (P¢-e)
Lot ay 5.11

+ (——

+ i K"w %r.)]cos(nu¢) e

If the angle between the two sides is small, the factor in
the square bracket has a slow variation compared to the re-
maining factors. Let us use the mean value of -0 Foe
over the surface, and bring the square bracket out of the in-
tegral. We shall use the asymptotic form of Knu and Kﬂv 80
as to be consistant with the above approximation. These
approximations are not essentlal in the following process
of derivation, but help to simplify the result.

The variable p is the distance from P to a point

on the surface of integration. Since P is in XZ-plane,

p = VR® - ri - 2Rr,cos 6 - 0)
¥R - picos ( B - 0)
for large values of R. Substituting this value for p into

the integral, 1t becomes:

Ba i(w __C_LE
Aa":?»;kch/‘-‘[l +cose] e ()
C‘
@, . w
I cos(nu¢)e"° cos (¢ -0) dé 5.13
e, .
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o Consider the integral

° : - -

g cos (nwf) el c ¥r008 (6 - e as 5.13
¢ .

It ia an integral with cosine in the exponential. It 1s pos-

sible to expand the exponential into Bessel-Fourler seriles

and perform the 1ntegratioh term by term. However, as ry
is much greater tham unity, such series converge very slowly
and will be useless in actual csalculation. We have to use
some other means of 1integration.
Itﬁs known that the cosine may be expressed as
the infinite product: |
cos x —[1‘( )1[1~(3R)][1 ( ]
For values of x within t—g—, all except the first factor are
nearly unity. By expanding the product of the first two fac-
tors, and neglecting the terms of fourth power of x, we have
the approximate value of cos (6 - @):
cos (6 -8)¥1 - lEL*-g—QQ (b - 6)*
for (6 - 0)2F ()?
This i1s equivalent to replacing tLe cosine by a parsbola.
Split cos (nvf) into two exponentials,
cos(ny B) = —%—(einvé » e-inué)
The integral 5.13 becomes,
é'f%e' Sn(1-3e°- g2+ Bog) 2 invd ‘ 5 14
It cons;tts of two terms corresponding to the upper and lower

signs in the exponential. Bring the constant factor out of

the integral:
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02 — 1- ;e . 8o
Lt > )fe~~3;{-[¢‘-ze¢;np9""¢]

-6, .
5.15

Since

é = [¢ 6¥nv9”'\1 [6:&009")\2

- ny |—
¢ 26¢ ¥ loor, lbo T,

80'

the integral 5.13 becomes
n L[n:;:i £ nve 4-*-“;;,: (nv)'] % g‘,’,i [¢-e an‘bo,]
ze €
=&,
It has been reduced to the form of Fresnel's integral. De-

d¢ 5.16

tailed discussions of this integral appear in Slater and
Frank's "An Introduction to Theoretiéal Physics" and Watson's

"A Treatise of the Theory of Bessel Functions". Let

- 80 r - 9N 2
v —-9—1-‘—,%—[5 8,F nv 160 I';,] 5.17
and e = [97N dv - 3T /X dv

gor, 2V 4 NIoY J2rv .

The integral part of 5.16 becomes (omit the coefficlent out-

side the integral),

3",]”, f (cosv - usmv] =

34" ,o,._f (T, -id w] dv 5.18

Elther the real or the imaginary terms turns out to be an
infinite series of Bessel functions of half orders, and is
called Fresnel Integral. Numerical values for a range of v
from 0 to 50 have been tabulated in Watson or Jahnke and Fmde.

The complete expression of radiation vector po-

i iR 9 A 2
tentisl A 1s: -B gmigse’ (ot -2mX + Sgm ] X[ +eore]

Y
[wef 7{%, “””J"V’}"V"e e_[‘é"{{%(v)-i.fi(v)}dvj

QA 42 5.19
{Vz‘[d’ -6~ l’WoborJ 98?-;,: =[¢.- 0+nv‘%"t] 8or, *
= [-¢° -e -ny 96":] {V - [-¢ e +n 9"“ 98::’
ko 9n7\ 3 = v lbor.J .

9NN
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This above value 1s true only for points in the XZ-plane.

The magnetic and electric field intensitles are:
lw

He = = 3 Ay
E‘(= "'Ey) = i“’/‘*A_y 5.20
H_X, = HC= Ex = Ee = 0 R

Fig. 5.9”1is a reproduction of a three dimension-
al plot of Fresnel Integral taken from Jahnke and Emde's
"Pables of Functions", p.111. The variable and functions

are u = /%V
C, =j;3'J_%(v) dv
S [ T4
L]
Both Csand SS are periodic functions. The projection of thils

curve on u = 0 plane 1s called Cornu's Spiral. Both the real
and imaginary parts oseillate about the asymptotic value 0.5.
This three dimensional curve is actually extended into the
disgonally oprosite rectangular box of the space, one eighth
of which is represented in thls figure, for negative value
of u. In terms of the limits of integration, the absoclute
magnitude of the integral is the projection on u = 0 plane
of a stralight line jJolning two points on the curve cut by

u = u; and u = ug planes. Thus, when uwiand uz are of oppo-
slte sign, the two planes cut through the straight-line
portion of the curve, the integral will have 1lts maximum am-

plitude. This somehow determines the beam angle of the ra-

diation pattern.
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As an illustration to the above result, a series
of radiation patterms in the XZ-plane are plotted under dif-
ferent conditions. These patterns are for the ratio -%l— 38,
r; 1s the distance from the hypothetlical center to the end
of the horn. So faru%he fundamental wave 1s concerned, the
wave has travelled five or six cycles beyond the attenuation
region,and it is quite safe to use the asymptotic form of
Hankel function. Calculations are made only for v up to 50,
corresponding to the value of 6 from 50 to 60 degrees. Be-
yond that value, the table of Fresnel Integral is not readl-
ly avallable. Fortunately, the plotted portion of the pat-
terns covers the main lobe of radiation; the maximum ampli-
tudes of the side lobes 1s estimated to be not over 10% of
that of the main lobe on‘a field intensity scale.

From Fig. 5.9 to Fig. 5.13, a fundamental wave
is assumed to exist alone inside the horn. Since 1t 1s the
least attenuated wave, it plays a dominant part in the problem
of directional radiation. Other harmonics are usually pre-
sent in small magnitude. The distribution of electric field

intensity or vector potential along the arc at the opening

144
of the horn is cos (—3—%:——).

Fig. 5.9 to 5.11 are plotted with horns with con-

©

stant ratio ~§i = 8 but of different opening angles, 2fo= 30,

40, and 50°, It shows that by increasing the angle from

small value, the beam angle is sharpened steadlly up to cer-
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Fig. 5.9 Fresnel's Integrals

(From Jahnke-Emde:"Tables of Functions" p.111.)
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tain value and broadened again. The opening angle giving min-
imum beam angle 1s about 20.= 40°.

The broadening of the radlation pattern by either
increasing or decreasing the opening angle from its optimum
value is not surprising. We learned from the radiation prob-
lem of rectangular pipe that the sharpness of beam angle de-
pends upon the dimension "b" of the pipe. When the opening
angle of a sectoral horn is small, the two sides are almost
parallel to each other, and therefore it must behave subs-
tantially iike a rectangular pipe. On the other hana, 1if
the opening angle of the horn 1s too great, itﬁs evident thdtbt
it will lose control of the wave even inside the horn, since
there is almost no guiding action by the sides of the horn.
It may be recalled that a sectoral horn of 2fo= 180° 1is no-
thing other than a reflecting plane surface, which 1s ob-
viously not very effective in the problem of directional
radiation.

With the optimum value of opening angle 20, =

40°, another set of radiation pattern is plotted for several

horns of different radial lengths ( i* =8, 10 and 12). With-
in this range, there seems no appreciable variation in the
forms of the patterns. The beam angleg gre almost constant.
Such a range of f%l has practical importance. It is nelther
too short to hinder the formationpof horn waves within the

horn, nor too long to make its construction impracticable.
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Let us see what haprens if the radial length of
the horn 1s very large. The length of the arc at the mouth
of the horn is a great number of wave lengths. We may per-
form the integration of Eq. 5.12 in a simple approximate way
known as Fresnel's zone. The process 1s illustrated on p.308,
Slater and Frank, and it wlll not be repeated here. The ra-

diation field in XZ-plane of such a horn would have the form
- R
ctw(t - )

J%c%(';-‘f‘)e

That is, the pattern is same as that exists inside the long
horn. As a matter of fact, it 1s none the better than a short
horn of optimum beam angle.

The fumdamental wave does not exist alone in-
side ahorn. For a horn (2@, = 40°), it is possible to have
an appreciable awmount of third harmonic wave at the radiating
end. Higher order of harmonics may exist but thelir magni-
tudes will be so small as to be neglected without much error.

The radiation pattern of third harmonic wave 1is
plotted in Fig. 5.14. The horn has —;} = 8 and 20o= 40°. Its

radiation pattern of

magnitude is so related to Fig. 5.10

fundamental wave that the two have equal amplitude of elec-

tric field intensity or vector potential at the opening of

the horn. Namely,

= B, K., (£r)cos3p
absolute 3TV Re ¢ a.m.v,

max. value

BIK‘,(%,‘)cosugt

.

It shows a central lobe with two side lobes of greater magni-
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tude. The shape 1s quite similar to the corresponding one
for a rectangular pipe.

Since the fields and rotentials are linearly
superposible, we are able to construct the composite pattern
from Fig. 5.10 and Fig. 5.14 with aprropriate magnitude and
phase angle. PFig. 5.10 and Fig. 5.14 are repeated but in
Céﬁesian's coordinates in Fig. 5.15. Besides the magnitude,
the relative phase angles are also plotted. It is understood
that the two waves at the opening are equal in phase. The
phase difference 1s almost zero within the first lobe of
third harmonic wave. Then it suddenly increases to appro-
ximately 1B0° at the beginning of the second lobe. This
means a change of sign of the third harmonic.

The composite radistion patterns are shown in
Fig. 5.17 and 5.18. 1In Fig. 5.17, the third harmonic is
taken as opposite in phase to the fundamental at the opening
of horns. The presence of third harmonic serves to broad-
en the pattern. The largeqﬁs the third harmonic, the flatter
is the pattern. The field distributions at the opening are
represented by Curves 1 and 2 of Fig. 5.16. 1In Fig. 5.18,
the third harmonic 1is taken as in phase to the fundamental
at the opening of horns. Its role 1s now the reverse to that
above., The larger is the third harmonic, the sharper is the
pattern. The corresponding field distribution at the open-

ing are represented by Curves 3 and 4 of Fig. 5.16. Thus,
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we may conclude that a sharp field distribution at the open-
ing of the horn produces sharp radiation pattern, and a flat
one produces a broad radiation pattern.

The fundamental and the third harmonic waves do
not travel at the same speed unless 7%— is very large. Thus,
in a real horn, we are able to adjusﬂthe prhase difference by
either shifting the position of the exciting system or turn-
ing the length of the horn. We may recall that the Ho,s-wave
in a rectangular pipe has the same effect on the resultant
radiation pattern, £nd the method of tuning 1is nearly the same.

The experimental work of sectoral horn has been
carried on by Prof. W.L.Barrow and NMessrs. F. M. fGreen® and
F. D. Lewis at M. I. T. The sectoral horn is fed with the
Ho,1-wave from a rectangular pipe. The field distributions
measured inside the horn reveal the presence of high order
harmonic whose magnitudes decrease wilth the decreasing angle
of the horn. For 20o= 20°, only the fundamental and the third
harmonic are present. The variations of the Padiatioq@attern
with the ratlio —— end 2 fo, also checks with the present
theoretical work. A horn of 20.= 40° gives the sharpest

beam angleobtained in the measurement.

18, E. Thesis, 1937, by Mr. F. M, CGreen.
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Summary aend Conclusions

The transmission and radiation characteristics
of a sectoral horn may be summarized as follows. Only waves
which are independent of the variable y and whose electric
fields have an even sysmmetry about the g =0 axis, are
studied. They have a sinusoidal variation along any arc of
the horn. The space inside the horn is divided into two
regions:——(1) the attenuation region to the small end of
the horn, where waves are highly attenuated and their phase
constant is nearly zero, and (2) the transmission region to
the large end of the horn, where waves are free to propagate
along the radial direction. The boundary between the two
regions 1is not definite. For a given harmonic, the attenu-
ation region increases with decreasing horn angle (200).

For a given horn angle (Zﬁo), the range of the attenuation
region is nearly proportional to the order of Harmonic of

the wave. Therefore, if it is desired to suppress the third
and higher order harmonics, the small end of the horn must be
cut off beyond the attenuation region of the fundamental and
within the attenuation region of the third and higher order
harmonic waves. Waves of different order of harmonics do

not travel with the same speed except at a great distance
away from their respective attenuation region.

The radiastion patterns from the sectoral horn
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depend upon the radial length and the angle of the horn, and
also the order of harmonic and frequency of the wave. Con-
sider there is only a fundamental wave inside the horn. A
long horn (large —%} ) does not give the sharpest beam. A
too short horn does not allow the complete transformation of
wave from exciting system to horn-wave. The most suitable
one is about —;l = 8, r, being measured from the hypothetic
line of intersection of the two side planes to the mouth of
the horn. The radiation pattern does not change aprreciably
if the length is increased by 50%. The optimum angle of the
horn, which gives the sharpest beam is about 20o= 40°. The
presence of the third harmonic wave distorts the resultant
radiation patterm. Whether the resultant radiation pattern
of the fundamental depends upon the phase difference of the
fundamental and third harmonic waves at the mouth of the hornm.
A sharp resultant electric field distributlion is favorable
for the purpose of single beam directive radiation. Only
the main center lobes of the radlatlion pattern of the horn
waves have been studied. The side lobes, 1f any, are esti-

not
mated to bepover 10% in magnitude.



VI, CONCLUSIONS

The results so far obtained will be briefly

reviewed hera.

Hollow-pipe Waves

In a pipe of rectangular eross section, the
wave which 1s most conveniently handled is the Ho’l-wave.
It has a lower critical frequeney than any other type of
wave§ in rectangular pipes, It has all the electric fields
parallel to one of the walls, and consequently, the con-
figurations of the fields are not symmetrical in the y and
z directions, the two linear coordinates of the eross
section. Rectangular pipes whose ratio of cross sectional
dimensions a/b equals 1,18 have lower minimum attenuation
than pipes of equal peripheries but different ratios of
a/b. However, the attenuation of a square pipe is not
very much greater than that for the optimum a/b ratio
and would probably be as good for most practical purposes,

Other types of waves hQVe higher critical
frequencies, depending upon the orders of the wave and
the linear dimensions of the cross-section, No wave
whose attenuation decreases with increases with increasing
frequency are possible in a realizable rectangular pipe.

However, 1if the dimension "b" were to be increased indefi-



- 195 -

nitely, all the H-waves with finite values of n and m
would degenerate into a type of wave which possesses an
anemolous attenuation characteristic, This is made possi-
ble by reducing the effects caused by the transverse com-
ponent of magnetic field tangential to the walls of the
pipes.

We have used the resolution method to calculate
the attenuation of waves in rectangular pipe. It must be
pointed out here that such resolution is only possible in
a sufficiently long and uniform pipe, and can not be relied
upon to explain the phenomena associated with the analysis
of a non-uniform rectangular pipe like the terminal or the
- Joint of the pipe, For a plane wave with a small ratio of
the width of the wave (that 1s, the distance measured along
the wave front ) to the wave length, the plane wave does
not follow a straight forward path but spreads side-wise,
The method of construction of waves in rectangular pipes
by directing a plane wave from outside into an open end of
the pipe, as illustrated by Léon Brillouin, are for an
idealized case, and are not practically realizable,

The effect of the deformation of a circular
pipe into an elliptical one depends upon the type of the
wave and the axis along which the pipe is deformed. For
waves whose fields have a circular sysmetry, both the
eritical frequency and the attenuation are increased by
the deformation., For waves whose fields do not have the cir-

cular symmetry, there 1s no reason why a circular pipe
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should be better than plpes of other eccentricities. The
eHl-wave and the oHl-wave are similar to the Ho,l-wave,
corresponding to the cases a/b<1l and a/b>1 repectively
in a rectangular pipe with sides a and b, Therefore, one
is not surprised to find that the eﬁi—wave has a lower
critical frequency and the oHl-wave has a lower attenuation
for a small value of eccentricity, than they do in a eircu-
lar pipes of equal peripheries, Anologously, the eEl-wave
has a lower attenuation than the El-wave in a eircular pipe
of equal peripheries. For large eccentricity, the attenua-
tions of all types of waves increase and approach infinity
when the eccentricity is unity.

No waves inside a dissirative non-degenerate
elliptical pipe may have a decreasing attenuation with
increasing frequeney. This is explained by the fact that
the transverse electric fields tangential to the boundary
do not vanish at the boundary.,

The exact nature of the anomalous characteristic
of attenuation of the Ho-wave in circular ripe may be explain-
ed by the absorption coefficient of the metal; because,
when a light beam 1s directed on to a plane surface of
finite conductivity at grazing incidence the absorption
coefficient 1s zero when the light wave is so polarized that

the electric field is transverse to the plane of incidence,

There 1s no transverse magnetic field tangential to the
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boundary for the Ho-wave. The deformation of a circular
pipe into a elliptical one peoduces a new angular magnetic
field for the eHO-Wave and the anomalous characteristic

of the attenuation disappears,

Radiation from Open End of rectanfular Pipes aml Horns,

The Ho’l-ane in a rectangular pipe gives a more
effective single beam radiation pattern than all other types

of hollow-plpe waves. The beam angle of the radiation
patterns depends upon the ratio of the linear dimensions

of the cross-section of the rectangular pipe to the wave length.
Large ratios are desirable when a sharp beam is required, The
Hb,m-waves (m = o0dd) for m # 1, have radiation patterns with

a small central lobe but a number of large side lobes, The
radiation patterns of other types of waves have zero fields
directly in front of the rectangular pipes,

In a non-dissipative sectoral horn, which can

be considered as a " tapered hollow pipe transmission line",

the waves are attenuated in a way similar to that in the
hollow pipes. However, the boundary between the attenuation
region and the transmission region is not definite., 1In
general, this boundary is farther from the hypothetical

center of the sector for higher order harmonic waves,

Hence it is possible to suppress the high order harmonic

waves for radiation purpose, Horns having an angle
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2¢° = 405 and of several wave lengths long give a very sharp
beam of radiation for the fundamental wave and substantially
suppress the higher order waves., A narrower hern has a too
small opening and is not as effective a means for producing
'a single beam directive radiation, A much wider horn is not
advisable since 1t loses control of the direction of the waves
even inside the horn., The presence of the third harmonie

wave may sharpen or broaden the main beams, depending upon
whether the third harmonic wave 1s in equal or in opposite

phase with the fundamental wave,

Other Problems Associated with Hollow-pipes and Horns,

Most of the theoresical work concerning the
hollow-pipe system has been confined to the study of the
fundamental nature of the waves.in the pipe. Little has been
done about the related problems of the system., The study of
horns in this thesis has also been confined to one type
having a special geometrical form., The following outline
includes some problems of immediate importance concerning
the applications of the hollow-pipe system and the electro-
magnetic horns,

Terminal, joint, and branch devices:- The waves
inside a hollow-pipe are subjected to distorsion and reflec-
tion wherever the conditions are different from that of an

infinitely long and straight pipe. Some forms of terminal
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devices have been suggested to generate various types of
waves in hollow-pipes®’®, The joints, branches, and curved
portions of the pipes are ungvoidable in practical case.
Some of the simple forms might be analytically investigated.

Resonant chamber:- A problem which has the same
physical and mathematical background, and one that has been
suggested for practical use 1s the hollow cavity resonator®
or resonant chamber®, an elementary form of which is simply
a short section of rectangular or cdrcular pipe closed by
a conducting sheet at both ends. The method and analysis
used in Chapter II might also be applied in this oroblem,

Dielectries:- The use of dielectriec of high
dielectric constant is always a temptation to those interest-
ed In hollow tube transmission, Apparently, the operating
frequency can be greatly reduced because of the decrease
of light velocity in dielectric, However, the attenuation
constant is higher for materials of large dielectric con-
stant, It is worthwhile to study the range of freouencies
within which, dielectrics may be used to advantage.

Horns:- The sectoral horns, heretofore inves-
tigated can only control the beam In one dimension, It may

be possible mathematically to treat a horn with all the four

1@.C.Southworth, Eng.Jour,(Canada)Vol.20,No,4.(1937)
“W,L.Barrow,Proc.I.R.E,Vol.24,No,1l,pp 1324(1936)
®G.C.Southworth,Bell Sys,Tech,Jour.Vol,15,pp 300,(1936)
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sides making an angle with respect to a reference axis, or
a conical horn, Such horns have the possibllity of radia-
ting sharp two dimensional beams, i.e., confining the radiat-

8d ensergy within a small solid angle of the space,
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APPENDIX

ATTENUATION OF WAVES BETWEEN PARALLEL CONDUCTING PLANES

Consider a piece of dielectric of ¢ = 0 extend-

ing to infinity both iIn x and y directions and Bounded by
(Fig. A.1)

two parallel conducting planes at z =t g
The conductor has a large but finite conductivity and suf-
ficient thickness that no energy from the dielectric may
penetrate it., Let the waves of sinusoidal time variation
travel along the X direction., The wave functions will be
independent of y but will be functions of x and z; the
latter comes in on account of finite thickness of dielec-
tric in that direction.

Waves traveling in the x direction are functions
of x and t in the form of e“n—%x; hgy being the peopoga-

tion constant in x direction, Owing to the absence of 7y,

the Maxwell equations may be divided into two independent

groups:
. d Hy
(0 + {wi) Es = hg“z + >z
_bw/‘( HX = - 259 A.I

-Lw/u H, = -hng
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DE,
-iwp Hy = hgEp + o7
(¢ +iwg) Ex = - 2Hy A,2
F4
(0+LWL)EZ = - hg“s

The first group involves only Ey s Hk and Hz » and the
second group 1lnvolves only Hy ’ Ex and Ez e We may define
these two as the Hg -wave and the Eg -wave respectively in
accordance with the definitions of the hollow-pipe waves,
The subscript g is used to specify the waves between two
parallel conducting plasnes, or parallel-plane waves, These
two groups of equations are applicable in both the dielec-
tric and the conductor. Letters without primes are used
for the dielectric, while those with primes are for the
conductor,

H _-wave

S
By eliminating Hxand H, from Eq. A.l , the

wave equation of Ey is

D:Ea > 2 -
5—27 + ( K + hg ) E3 =0 A3
where K* = —iwpm (0 +iwg)
K* = oigpm for dielectric}
2 ! ’ A-4
kKi=-ioma for conductor
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The solutions in the dielectric are

Lot -hgX
ES = Bacos(l’sz)e
A L@t'hjx
and E, = Bgsm(rsz)e
As will be shown later, in the real part of vg~=5%5 ’
integer

m is an,odd for the first solution and even for the second
one. The wave 1s called an even or odd harmonic according
to the value of m,

0dd harmonicm ( m = odd) Eg-wave

By Eq. A.l the three component fields in the

dielectric are:

Lot - hgx
E’g = By cos (gz) €
hg Cwt = hgX
H, = B, Fyyn ©s(gz)e 3 A5
. Lwt - hgX
H, =~B§ c‘:e Sin (rj Z) e/uo 3

N\

where h.g is the propagatidh\gonstant of the wave along
~
the X-axis., Inside the metal, since the waves are symme-

trical about the z = 0 plane, we will only consider the

upper half ( z 2 g e The field E; is chosen as
E'l = B’ ew)t "Ry s E

b I .

and from Eq. A.l
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’ I-u3

r Cwt ~hgx -T2 A.6
z Lw/u,'

B, e

S Lwt - hyx ~TgZ

The propagation constant hg in the x direction must be the

same in both the conductor and the dielectric if the wave
travels with seme velocity in the two mediums, The pro-
pagation constant in the Z-direction is denoted by ;;.‘é
Eq. A.6 represents a wave traveling in both the x and z
directions, If we substitute Eq. A.5a and A.6a into Eq.

A3, Y_and T are found to be

1
g g
r; = wiEpm + h; A, 7a
Y'; =Lw/u.'a" - h29 . A7
Since hg 1s of the order w’tmu , 1t 1s meglegible as com-

pared to swpm'r, Hence

Y;z = I;LO/“-’G'I A,.8
At the surface of the conductor of z = —%—
]

the tangential components of the fields in the dielec-
tric and in the conductor are equal, Equating Eq. A.5a
o Eq. A.6a and Eq. A.5¢ to A.6c respectively and simplify-

ing, we have

d
BS cos ( @_2..)

|
oY
[0
o

T

. d ’ ’
/“ .B3 Sin (Yg*z-') 3}—:25 € A.Q
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We may solve from these two equations for the

values of rg and Bé if Bg is known, Take the quotient of

the two equations:

"
o
K3

>
®

o)
o

cot (13 %)

YS’/"
d T d
as c_of(rs-{) =+an(—rr2.— ‘VS?)
= ﬂz’.! - 7 -‘3— (m = positive integer)

for values of rg —-%—- near —s— . Use this value of

9

d
t(Y_  — end solve Eq. A.10 f
cot( g 3 ) q or rg

mTC
s T, aa A,11
Ys/! .

The aspproximate value of ré is known (Eq. A.7b). The

expression r may be further simplified on account of the

g
fact that ¢' is a quite large number:

£

mTT . MU o

2 — o+ 2pm°
Ty 2 75 7 =, A,12
Y
since K>+ R - r; = O A,7a
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The phase constantﬁg and attenuation constant<><g of the

wave inslide the dieleectric are

Py = Sop Ty 108
X, = [2m (mint
s AT (Gag), A.13b

The gbove expressions are not exact enough for conductors
having very low conductivity, For metals of perfect con-
ductivity, the attenuation constant is zero.
The phase constant Pg would be imaginary if
2
wiep < (F)

No wave can travel in the dielectric under such condition,

The cut off or critical frequency jo is therefore
2w f. mw

c d
mc
fo

With this notation,txg and Pg may be written as

2wf
Bs =< A4 -dy )y A.15a

= 2mpuEc m f°i fo 2 oy
o, “ﬁ? % (?_)2[1_(?_” 2 A,15Db

*

i

A,14

2d

-

By eliminating the sine and cosine in Eq.A.9,

the constant[3é may be obtained in terms of/3g.
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’ ~ Y 7 y'_d_.
Bg=isgi(ﬂ e 3?2
M N s’

The sigh 1is positive or negative if m 1s divisible or

nondivisible by 4.
The fields in the donductor at z = —g— are

mrr,«' twt -hsx -yé(z-_g.)

A Lot - hgx -1 (2-2)
o A.15

The loss per sq. cm, Into the conductor at

the boundary 1is

- L | mi |2 ;
7 By H, =+ 18,1 (ZE) =

AL7

Even Harmonic (m = even ) Hg-WaVe

The three component fields in the dlelectric

are
. Lt ~ hox
E.j = BSSm("gZ) e“" I
Ho = -5 g s'(rz)efwt-%x A.18
zZ Cwpm g 2" \’g .

Tg G
— r
. Fp BS s (rgz) e
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The fields in the metal for z = —%~ are same as Eq. A.6

The boundary conditions require

. d
’ -Tq9 5
Bss.;\(rgg) = Bs e 972
. . A,18
9 Y , <<
m %‘“(@%)=‘ﬁ836r2
Take the quotient
dy o o A.19
tan (’3 ) = Y
since *dn(fg-g—) = ton (rg < -_"_;E
Fyd _mo
?3‘ 2
(m = even integer)
v m 7T
= . «11
Kla .

This 1s the same expression as that for odd harmonic waves
except that m is even integer(Eq. A.11l). The expressions
for the phase constant Pg’ the attenuation constant and
the cut-off frequency f are given by Eq. A.1l4,snd Eq,
A.158b, The constant Bé may be similarly obtained

B = tB, = o7
9 I M A



- 210 -

If m is divisible by 4 the lower sign is used and if not,
the upper sign is used. The expressions for the fields in
the conductor at z = —%— are the same as Eq. A.16, with
appropriate positive or negative sign, Also the loss per
sq. cm, into the metal is given by Eq. A.17 with sppropriate
signs,.

If m = 0, Eq. A.19 becomes indeterminant, It

means that the Hg-wave for m = 0, does not exist,

E - wave
B S
From Eq. A.2, we have the wave equation for H
Yy
2*H, . 2 A.20
S5t (K hy) Hy =0 . .2

The two solutions of Hy in the dielectric arse

vt —hgx

\

Hy, = B, sin(152) e

Lt - hgyx
Hﬁ'—'Bjcas(yaz)ebw 3

L]

The former 1s the solution whiech has an odd number of
half-period sinusoidal variation in the z direction (odd
harmonic), The latter is the even harménile solution,

0dd Harmonie (m = odd) Eg-uave

Here, we have, by Eq. A.2
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Y twt - hgx
= - —39 J
E. By oo cs(nm)e A.21
. vot - h X
E, = - B, ‘:Z sin(r,z) e hy )

In the metal ( z é-—%—- ), we choose the exponential solution

of the wave equation for H?'T and by Eq. A.2, we have

Hy’ < B’g ecut-hjx—rs'z

E. = B, 2 et 72 A.22
cl

E =-B‘;_A~, e c«>t-hjx-f32 .

2 ;

By substituting Eq. A.21la and A.22a into Eq. A20, we have

K*+ hy =¥ =0 A.238
K:+ hy + 0 =0 A.23b
d

At the boundary z = < s the two ten gential filelds are

continuous. Equating Hy and Ex to Hz'r to E;: respectively,

and simplifying, we have

. r d
63 Sln("g%) = Bg e-rﬂT
A.24
'3 d) = B "3 “34;‘
-Bjmcos(rg—z 33-;6
Take the quotient of the two equations
Y cwg
cot (rg3) - - -———-’r — A.25

9 »
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The real part of Yg-g‘ is approximately —-—2@—— , where
m = odd Iinteger,

~ M
ot (4 = (B - $) £ 3T -t

With the approximate value of v =Jiw.™ (from Eq. A.23Db),

Eq. A.25 becomes

oDy 4 2 fem -
s T d 9 TdAdTg we =0 A.26Db

solving for vg ,

~T_ _. ’"’V‘_ o we
B=5a 3 = A,26b

This may be simplified by applying the Binomlial Theorem

to the aquare root and neglecting the high order terms of

i
e’ 57

mTt . W 7
Y95 gt bwmmd L A.27
RO
1
since K+ h; - ¥ =0 and hg = o+ .:[aq’

th/u._[rldrs +om£.,/__¢] =‘_[«“““'(3‘3]1

Equate the real and imaginary parts respectively, we have

Pe ,/GJ&/-“(MWZ A.28a

1
w§ o m -—
X —_— 2 - M 2 A,28b
9 d 2¢’ [‘0 tﬂ d ]

f

]
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By setting the phase constant equal to zero,

the cut off filequency is found to be

- Me A.29
5 2d .

With this notatlon, the phase and attenuation constants

may be weltten as

2 f 3
Py == d 1 -(Ey A.30a

X, = [muec mE o f o f oo -F
3 A SeAE % (;j) (1 (7)) A, 50D

By elimination the sine and cosine in Eq.

A. 24 , the constant B§

may be obtained in terms of Bg
, rg’_‘:‘.
B, =+B;e”2

The upper sign is used form =1, 5, 9 ,¢e.0.., and the

lower form =3, 7 , 11, +.e.. «» The fields in the metal

(z -%—— ) are therefore

Hy' + Bs cot -—h’x - Y;(l-%)

h

. ’ d
Ei =t B figtot-he nh(xP
o’

. 4 d
hgy vt ~hx - rg(2-3%)
El B 3 9 2 [}
z = F 30"e ’

’ = - ’ )
where rg / Lopg

The power loss into per sq, cm, of the metal is:

A g ’ & 2 ord’
2 Bty = 28y /3
[ ]
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Even Harmonic (m = even) Eg-wave

In the dialectric the solution for the fields

are:
H, =B bl - hgx
Y 3 cos(pz) e
- s . cot - hyx
E, = gmsln(gz) J . A,33
E, =-B hg c th-hsx
2= -By 7 cos(y2)e .

The field expressions in the metal are the same as those
At the boundary, the

for odd harmonic waves. (Eq. A.22)
tangential components of fields are equal, and so we have
; ~ved
BSCos(rs%) = BS e 32
o A.34
| A ’ r,
2 g, d .o -5
B, &thm(rs_z) = 83(;7? e 92 .
By eliminating Bg and Bé s We lmve
(;toi.Y;
- A.SS&

32 a’r, .
Yf} is around -%m—- when m = even integer
80 fon(l’a%) = +an(fe%-‘n%’-t)

With the approximate value of r{s » Eqe A.35 becomes

2 miT 2 ,
Y - —_—r + £ w§ «w,
3 J—ﬁ =0
d ‘;o" . A.55b

zypg - mo
2

The real part of
3 2
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This 1is the same as Eq. A. 26a . Hence the results for

odd harmonie Eg waves also apply for the even harmonic

Eg-waves.
The constant Bé may be solved in terms ofB8

’ V, ——
= 32
By, = ¥B;e

The upper sign is form =2 , 6 , 10, e..es and the lower

8ign 1s form =4 , 8, ... o« The expressions for the fields

in the conductor (z 2 —%— ) and the power loss into the con-
ductor per unit area are the same as Eq, A.31 and A.32,

For m = 0 , Eq. A.3D becore s

er.-i_‘gi: wp”

e T e

e
ST

T &g+ 6{39

Hence : W
Pa' c
=L feore 1 o/
T d i TN

Both fgand xgmay be derived from Eq. A.30., The expression

for power loss also applies to the m = 0O cass,
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For the Hg— or Eg-wave, the expressions for
thr losses and attenuation constants are identical., As
judged from the value of hg and r'g for both waves, the
field distributions inside a dissipative pipe do not differ
appreclably from the non-dissipative case unless the con-
ductivity of the conductor is too small, By setting the
conductivity equal to infinity, and shifting the center
plane of the system to the z = 0 plane, the fleld expressions
in the dlsiectric Eq. A.5, 8.18, A.21 and A,33 may be sim-
plified : (Refer to Fig A.2 )

Hg-wave, m=1, 2, ,.., nondissipative case

ES - Bg .Sl'n (%7_{ Z) e ‘f(‘dt -‘S,X)
miT .
Hy = By foug cos (I z) g Clet-30) A.36

- £ ) ‘ -
Ho= By 2 gin (mr,) g S0t R

Eg-wave, m=0,1, 2 ,..,nondissipative case

Hy = B, cos (T z) e S AY

. " t -px)
E, = Bg‘:—r-t- Sin (5"5’51) e (ot - A, 37

_ mmn L (b= f3x)
EZ'UBST{COS(TZ) e .

Waves between parallel conducting planes are
of a very simple types and their attenuation constants

may be calculated directly from boundary conditions,
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Other method available are rather synthetiec., The results
obtained here are simple examples of the general attenuation
characteristics of guided waves. We notethat at sufficiently
short wave lengths the Hg-wave has an attenuation constant
proportional to the three-half power of the operating wave
length, while the Eg-wave has attennation constant inverse-
1y proportional to the square root of operating wave length,
That 1s to say, when the operating wave length is nearly
zero, the attenuation of Hg-wave is zero and that of Eg-
wave approaches infinity. We may recall that in a eircu-
lar pipe, the H -wave has an attenuation characteristic

simiaglr to that of the Hg-wave.

Sumary
Summarize the results for parallel-plane waves:
H_-wave
8
Fields in the dielectric (Fig. A.2)
E,j a BS sin (f? z) e,”wt'é[asx
= cot - ¢
He= 8,50 «5(Zfa) e “Ps A.36
Hy = B, L sin(mn,y o ot =P
d

I wp
m=l,2,3. seccee

The c*itical frequency

mc¢
Jeo > g A,14

.
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Phase constant

2m NUES
P f JL-(ky A.15a
[ ]
Attentuation constant
'z A,15b

2mmec ‘s ¢ r fo 1- ( )
o (¢ y [ f ]
The power loss per sq. cm, into the conductor

at the boundary

= Zy 4 A.17
- 2 ‘B) ( 2wo’
E_-wave
g~V
Flelds in the dielectric (Fig. A.2 )
H, = B, Cos(%tz) e COt - Cfyx
- mTt . < ~C x
E, = B, Cotd Son(f'_\d__ftz) o “ot - Ps AL 37
- I Cot - ofyx
E,=-B8 'TZ cos (———-z) €
= O, 1, 2, 5, esce e
The eritical frequency,
f. = e A.29
o 2d

The phase constant,

2§ .
Ps =T AL~ () A.30a
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The attemunation constant

N < [FuEe AR f ko foanT A.30
"2%"“{5(?’) [" (f)} Sb

The power loss per sq. cm, into the conductor

et the boundary

1 2 -
= T (B o
z VBl /35, 4,32



BIBLIOGRAPHY

References on Hollow-pipe Waves:

Lord Rayleigh: "Scilentific Papers" Vol, IV
pp. 227-280. (1897)

R, C. Maclaurin, Cambridge Philosophlcal
Transactions, Vol. XVII Part I. pp. 5=
100. (1898)

D. Hondros and P, Debye, Ann, d. Phys, Vol.

32, pp. 465 - 476. (1910)

S. A. Schelkunoff, Bell Sys. Tech, Jour,
Vol, 13, pp. 533, (1934)

W, L. Barrow, Proc. I. R. E, Vol, 24, No. 10,
pp. 1298 - 1328, (1936)

G. C. Southworth, Bell Sys. Tech, Jour, Vol.
15, pp. 284 - 309. (1936)

J. R, Carson, S, P, Mead and S, A, Schelkunoff,
Bell Sys. Tech, Jour. Vol. 15, pp. 310 -
333. (1936)

Leon Brillouin, Revue Generale de E'lectricite,
Vol. XL, pp. 227- 239, (1936)

L, Page and N, I, Adems Jr., Phy. Rev. Vol. 52,
pp. 647 - 651, (1937)

S. A, Schelkunoff, Proec. I, R, E, Vol. 25,
pp. 1457 - 1493. (1937)

G. C. Southworth, Eng. Jour. (Canada), Vol.
20, No. 4 (1937)

W. L. Barrow and L, J. Chu, "Electromagnetic
Waves in Hollow Metal Tubes of Rectangular
Section ", paper submitted to the Institute
of Radio Engineers for consideration for
publication in their Journal,

References on Radiation:

K. F8rsterling, Lehrbuch der Optik, (1928)

J. C. Slater and N, H, Frank, "An Introduction
to Theoretical Physics"

Bergmann and Kruegel, Ann., d. Phys, Vol. 21
pp. 113 - 138, (1934)

S. A. Schelkunoff, Bell Sys, Tech. Jour,
Vol. 15, pp. 92 - 112. (1936)

F. M. Greeny E. E, Thesis, M. I. T. (1937)



Mathematical Reference:

P. Frank and R, Mises, die Differentials
und Integralsgleichungen, pp. 876
(1935)

G. N, Watson, A Treatise 6f the Theory of Bes-
sel Functions,

E, Jahnke and F, Emde, Tables of Functions.

G. N, Watson and E, T, Whittaker, A Course of
Modern Analysis, (1927).

S. Goldstein, Trans, Camb. Phil. Soc. Vol., 23
No. 11 (1927)

Je. A, Stratton, Proc. of the National Academy
of Sciences, Vol, 21, No, 1,pp.51-62,
and No. 6, pp. 316-321, (1935).

P. M. Morse, Tables of Mathieu Functilons,
(manuscripts)

N. W, McLachlan, Bessel Function for Engineers.
(1934)



BIOGRAPHICAL SKETCH

Born at Hwei-ying, Kiangsu, China, on August
24, 1913. Admitted to Chiso-tung University,
Shanghal in 1930, Awarded the degree of
Bachelor of Science 1n Electrical Engineering,
July, 1934, Admitted to the Graduate School
of Massachusetts Institute of Technology in
September, 1934, Awarded the degree of
Master of Science in Electrical Engineering,
June, 1935, Associate Nember of the Soclety
of Sigma Xi, April, 1936,



