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ABSTRACT

We develop a quasi-analytical solution for mantle flow in a compressible, spherical shell
with Newtonian rheology, allowing for continuous radial variations of viscosity. We
analyze how assumptions about compressibility affect geoid kernels. In order of
decreasing importance, they are: assumptions for g(r), transformational superplasticity,
density contrasts at the surface and core-mantle boundaries, change in flow-dynamics,
compressibility of the outer core, presence of the ocean layer, and compressibility of the
inner core. The largest effects from compressibility are comparable to the effects of a
moderate (40%) change in the viscosity contrast between the upper and lower mantle.

We develop a model of transformational superplasticity (TS) of the mantle. We estimate
the strain rate associated with reshaping of the grains required to accommodate the
volume change and relate it to the macroscopic dilatation rate of the composite. The
latter is evaluated both by applying a kinetic theory of the transformation and by
implementing the seismically-observed sharpness of the phase transformation. We
estimate that the mantle viscosity decreases by 1-2 and 2-3 orders of magnitude at 400
and 670-km depths respectively. When TS is included, the change in the long-
wavelength geoid is comparable to that caused by increasing the lower mantle viscosity
by a factor of two, and the change in the short-wavelength geoid is similar to an
extension of an upper mantle low-viscosity zone down to 450-km depth.

We investigate the constraints on the mantle viscosity profile from the geoid and surface
dynamic topography using a variety of earth's inner-structure models when both
compressibility and superplasticity are accounted for. We consider uncertainties in the
observables and density data, and deficiencies of forward modeling. The inversion
reveals three distinct viscosity profile families that all identify one order of magnitude
stiffening within the lower mantle, followed by a soft D"-layer. The main distinction
between the families is the location of the lowest-viscosity layer, -- at 400-km, 670-km,
or right under the lithosphere. All viscosity profiles have a reduction of viscosity within
the major phase transformations, leading to reduced dynamic topography, so that whole-
mantle convection is consistent with small surface topography.

Thesis Supervisor: Bradford H. Hager
Title: Cecil and Ida Green Professor of Earth Sciences



4



ACKNOWLEDGMENTS

I appreciate the extensive, fulfilling, and critical discussions of my work during the
graduate study at MIT by the members of my thesis committee, Brad Hager, Tom Jordan,
Chris Marone, Rick O'Connell, and Rob van der Hilst. Your valuable opinions always
were and will be a substantial contribution in my forming as a scientist.

Special thanks are to my advisor, Brad, for taking risk of admitting his first
international student, for the generous financial support during my study at MIT. My
Moscow alma-mater, MIPT, had taught me to have an independent opinion and fight for
it, to argue and disagree with others until an understanding is reached. Only by the end
of my term at MIT I realized to appreciate Brad's patience dealing with this difficult side
of my character. His unique intuition in physics allowed me to form and strengthen one
of my own. I value his teaching me to work independently and letting to present the
results by myself.

I thank Rick O'Connell and Tom Jordan for numerous, inspiring scientific discussions
during my course work and research study, at MIT, Harvard, and different conferences.
Thank you, Rick, for reducing my stress level before the defense and giving me the
confidence. I gained much knowledge in kinetic theory and statistical mechanics in
application to geophysics from my communications with Slava Solomatov (I remember
those many hours spent on several-page e-mails back and forth!). I am grateful to
Alessandro Forte for being a generous and willing collaborator, you will always be an
authority for me in theoretical work.

My indoor study was well mixed by the GPS "outing club". Astonishing view of the
sky-high Tien Shan mountings, glacials, and captivating glide of the Issuk-kul lake were
always in my mind, even during never-ending hours against the computer while patching
gaps in the data. The Central Asia GPS crew: Brad, Tom Herring, and Peter Molnar
have taught me to do the experiment right and the GAMIT-software experts: Bob King
and Simon McClusky have guided me through the millions of data-points. Thank you all
for the great experience, I wish I could fit this part of my research into the thesis.

At MIT I met a great, supportive group of students and made new friends. Carolyn
Ruppel, the incredibly thoughtful, caring, and understanding, made our transition from
Russia to America much less painful and stressful. Carolyn, your unbounded energy and
enthusiasm always wonder and encourage me. Steven Shapiro and his family welcomed
us to a world of American traditions and hospitality. Steve's open and warm nature won
Sanka's love from the first day my son came to our office. Thank you, Steve, for being
such a good friend to my family and me! Summer ice-cream with the post-glacial
relaxation-time discussions with Mark Simons, and the life-science chats with Mousumi
Roy, Susan Mercer, Gretchen Eckhardt, Anke Friedrich and Yu Jin kept my spirits up. I
am grateful to know the sixth floor students and post-docs to shear the offices, computer
labs, the disc spaces and cpu: Steve, Danon Dong, Bonnie Souter, Clint Conrad, Katy
Quinn, Gang Chen, Simon and Ming Fang. Thank you guys for the great parties! The
discussions with always energetic fifth floor students: Jim Gaherty, Peter Puster, and Pat
McGovern, the loudly bouncing rock-people upstairs: Gunter Siddiqi and Gretchen, and
the top-floors geologists: Steve Parman and Anke, have opened my eyes on other
geosystems.



I am thankful to Terri Macloon, who was not only the patient and understanding
listener of my at first primitive English, but who introduced me to many nuances and
subtleties of the American life and language. You and Jane Shapiro contribute greatly to
the friendly atmosphere of the sixth floor. I would also like to thank Beverly Kozol-
Tattlebaum for her warm hospitality, charming and caring spirit that sets the welcome
tone of the whole Department administration.

Our Department hockey team helped me to gain back my confidence on the ice. I am
grateful to Brad for introducing me to the hockey, because this game led me through the
hardest time of my graduate school: several months prior the defense. This time would
be much more painful and stressful, if not for the Cambridge Youth Hockey, where I
started to coach my son's squirts team and still enjoy this experience. Thank you,
coaches Frank and Danny, parents, and mainly the kids for trusting me, letting me to
shear with you my love for the skating and hockey!

My family -- my pride, there is something which one cannot explain in words, but
only through the feelings. My parents, Elena and Valerii Meleshkin, and my sister Lina
are always close, always with me, even when I realize how long it takes for the telephone
signal to cross the ocean and reach Moscow. Your rare visits and often calls led me
through the lonely home-sick times. My dearest, precious men, Alexander and Sanka,
without you I would have not be here right now. Your smiles and happiness, your joyful
spirits and generous nourishment, your critique and the trust, are all so much an essential
and necessary part of me and my life. This work is for you.



TABLE OF CONTENTS

Abstract ......................................................................................................................... 3
Acknowledgm ents..................................................................................................... 5
Table of Contents .................................................................................................... 7
Chapter I. Introduction............................................................................................ 9
Chapter II. Understanding the Effects of Mantle Compressibility on Geoid Kernels13

Summ ary ................................................................................................................. 13
Introduction............................................................................................................. 14
M athem atical Formulation................................................................................... 17

Propagator m atrix ............................................................................................ 21
Boundary conditions ....................................................................................... 22
Compressible inner and outer core ................................................................... 25
Phase changes .................................................................................................. 28

Kernels calculated using various assumptions....................................................... 30
The effects of g(r)............................................................................................ 32
Density contrasts at the OM B and the CM B .................................................... 36
Compressible flow .......................................................................................... 38
Transform ational superplasticity ...................................................................... 39
Outer and inner core........................................................................................ 41
Ocean..................................................................................................................42

Discussion and Conclusions................................................................................. 43
Acknowledgments ................................................................................................ 47
References...............................................................................................................47

Chapter III. A Model of Transformational Superplasticity in the Upper Mantle. 2 51
Abstract...................................................................................................................51
Introduction.............................................................................................................52
M ethodology ....................................................................................................... 54

Grain geometry evolution................................................................................. 57
Geometry effect, F , ...................................................................................... 60
Volumetric strain rate, Es .............................................. .................................... 66
M ixed rheology / weak framework.................................................................. 68

Results.....................................................................................................................70
Phase change at 400 km depth.............................................................................71
Phase change at 670 km depth.............................................................................75
Transform ational Superplasticity field. ............................................................ 76
TS effect on m antle flow ................................................................................. 78
TS effect on the geoid..................................................................................... 81

Sum m ary ................................................................................................................. 82
Acknowledgments ................................................................................................ 84
References...............................................................................................................84
Appendix.................................................................................................................86



Chapter IV. Gravitational Constraints on the Mantle Viscosity Profile. .... ... 91
Introduction.............................................................................................................91
M ethod description .............................................................................................. 92

Forward, analytical m odel............................................................................... 92
Inverse problem .............................................................................................. 95
Error analysis................................................................................................... 99

Uncertainty in density anomaly distribution, 2
adensity................................***"99

Uncertainty in the observed field, 2 ....................... 105
Uncertainty due to incompleteness of forward model, a ode ..................... 108

Results of the inversion.......................................................................................... 111
Discussion ............................................................................................................. 120
Conclusions ........................................................................................................... 123
Acknowledgm ents ................................................................................................. 125
References ............................................................................................................. 125
Appendix A ......... ......................................... 128

Continuous variations of viscosity handled by matrixant approach.................... 128
Appendix B ........................................................................................................... 130

Exponential viscosity variations versus constant layer approximation ............... 130
Chapter V. A Model of Dynamic Topography. ............ ............. 135

Introduction........................................................................................................... 135
M ethod description................................................................................................136

Effect of crustal correction................................................................................ 137
Effect of oceanic lithosphere ............................................................................. 139
Effect of continental tectosphere ....................................................................... 141
M odel uncertainties........................................................................................... 142

Results ................................................................................................................... 144
Discussion ............................................................................................................. 146
Acknowledgm ents ................................................................................................. 147
References ............................................................................................................. 147



Chapter I. INTRODUCTION

Recent meetings of the geophysical community recognize a rapid development of Earth

sciences, from high-accuracy instruments for experiments and observations, to

complicated analytical and highly sophisticated numerical models. The flood of new

data and information produced requires scientists to cooperate in order to gain insight on

the earth's structure and its evolution with time. It becomes necessary to develop

interdisciplinary methods that allow us to assemble the results of observational,

analytical, and numerical studies. However, such a unification requires a thorough

analysis of each constituent of the information, an understanding of the extent to which

the results of each study are robust, and an estimation of the associated uncertainties,

errors, and model deficiencies.

The papers assembled within this thesis describe our ongoing effort to build an

interdisciplinary approach in order to understand Earth's behavior on a global scale; long

times and large distances. We start by analyzing the effects of Earth's compressibility,

introducing it into a method that was used to relate the slowly creeping mantle material

to anomalies in the gravitational field (Chapter II). To understand the physics of the

strongest changes in the mantle's density, related to solid-solid phase transitions, we

develop a model of transformational superplasticity of polycrystalline mantle material

(Chapter III). We analyze the cumulative effect of compressibility and superplasticity on

the mantle viscosity profile inferred from geoid field modeling (Chapter IV). We

construct an inverse problem that allows us to find viscosity profiles based on the fit to

the geoid and the surface dynamic topography. An analysis of the analytical method

uncertainties and the errors associated with the data involved is done within Chapters IV

and V. To complete the joint inversion, we develop a model of surface dynamic

topography and the related uncertainties (Chapter V). A more complete description of

the chapters follows.

In Chapter II we analyze the effects of mantle compressibility on geoid kernels. We

develop a quasi-analytical solution to compute geoid kernels for a compressible mantle

with Newtonian rheology. Compressibility enters into the flow problem directly, through

the continuity equation, and indirectly, by influencing parameters such as gravitational



acceleration g(r) and density contrasts across compositional boundaries. In order to

understand all these effects, we introduce them sequentially, starting with an

incompressible Earth model and ending up with a realistic model that includes a

compressible mantle, inner, and outer core, phase changes in the transition zone, and an

ocean.

In Chapter III we develop a model of transformational superplasticity (TS) of the

mantle as it undergoes a solid-solid phase change. By considering various scenarios of

the evolution of the grain-geometry in a polycrystalline material composed of two phases

of different densities, we estimate the strain rate and stress associated with the reshaping

of the grains required to accommodate the volume change. We relate the deviatoric

strain rate of the reshaping grains to the macroscopic dilatation rate of the entire

composite, where the latter is evaluated both by applying a kinetic theory of the

transformation and by implementing the seismically-observed sharpness of the phase-

transformation. We calculate the degree of softening of the mantle which would occur at

the onset of the phase transformations at 400- and 670-km depths. To account for

uncertainties in stress (or strain rate) and grain size, we construct a deformation

mechanism map for a three-component mantle and a variety of grain sizes, tectonic

stresses, and strain rates. We calculate the TS-field for a particular mantle flow model.

We describe the effects of a phase transformation on mantle dynamics as jump conditions

on the vertical and the lateral velocities across the thin two-phase layer.

In Chapter IV we investigate how gravitational potential and surface topography

constrain the mantle viscosity when compressibility and superplasticity are accounted

for. We perform a joint inversion of geoid and dynamic topography for the radial mantle

viscosity structure with a simultaneous accounting for errors. We identify three classes

of errors, which are related to density perturbations (e.g., uncertainty in the seismic

tomography models), to insufficiently constrained observables (e.g., dynamic topography

derived from surface topography and bathymetry after an ambiguous correction for static

topography, such as subsidence of crust, oceanic lithosphere, tectosphere), and to the

limitations of our analytical model (e.g., absence of lateral viscosity variations). We

estimate the errors for geoid and dynamic topography in the spectral domain and define a

fitting criterion. Our minimization function weights the squared deviation of the



compared quantities with the corresponding error, so that the components with the most

reliability contribute to the solution more strongly than less certain ones. To improve the

convergence and accuracy of the inverse method, we modify the analytical approach

developed in Chapter II in order to account for a continuous, exponential variation of

viscosity, together with a possible reduction of viscosity within the phase change regions

due to the effect of transformational superplasticity.

In Chapter V we create a model of surface dynamic topography based on a global

crustal model and the ages of the oceanic floor. We model the static topography fields

following several commonly accepted methods. Since the modeled fields scatter widely

around the mean, we build a model of dynamic topography by reducing the observed

topography by the field averaged over the assemblage of modeled static topography

fields. Carrying the uncertainties associated with the crustal structure and the oceanic

ages and with the scatter of static topography, we estimate the spatial and the spectral

errors which accompany our model. We compare the dynamic topography obtained by

correction for the static topography with the dynamic topography calculated based on the

geoid-topography inversion.
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Chapter II. UNDERSTANDING THE EFFECTS OF MANTLE

COMPRESSIBILITY ON GEOID KERNELS'

SUMMARY

We develop a quasi-analytical solution to compute geoid kernels for a compressible

mantle with Newtonian rheology. By separating the stresses induced by self-gravitation

from the stresses resulting from viscous flow, we simplify the equations and gain some

insight. For realistic variations in the background density field p,(r), the solution,

obtained using propagator matrices, converges rapidly. Compressibility enters into the

flow problem directly, through the continuity equation, and indirectly, by influencing

parameters such as gravitational acceleration g(r) and density contrasts across

compositional boundaries. In order to understand all these effects, we introduce them

sequentially, starting with an incompressible earth model and ending up with a realistic

compressible model that includes a compressible inner and outer core, phase changes in

the transition zone, and an ocean.

The largest effects on geoid kernels are from different assumptions for g(r); possible

effects of transformational superplasticity and differences in assumptions for density

contrasts at the surface and at the core-mantle boundary are next in importance. The

effects of compressibility on the flow itself are somewhat smaller, followed by the effect

of compressibility of the outer core. A gravitationally consistent treatment of the ocean

layer yields geoid kernels that are very similar to those for a "dry" planet. The

compressibility of the inner core has a negligible impact on the geoid kernels. The

largest effects from compressibility are comparable to the effects of a moderate (40 per

cent) change in the viscosity contrast between the upper and lower mantle.

Key words: geoid, Green's functions, mantle convention, mantle reology, mantle

viscosity, phase transitions.

' published in Geophysical Journal International, by Panasyuk, S.V., Hager, B.H., and A.M. Forte, 124,

121-133, 1996.



INTRODUCTION

Since the pioneering work of Pekeris (1935), it has been recognized that mantle

convection causes dynamic deformation of the Earth's surface, and that this surface

deformation has an important, often dominant, effect on the geoid. With the

development of geophysical models of mantle heterogeneity, there has been substantial

interest in increasingly realistic computations of geoid anomalies for a given distribution

of density anomalies within the mantle.

Parsons and Daly (1983) formulated the problem of the calculation of geoid

anomalies for a convecting mantle in terms of kernels. They expressed lateral variations

in density, as well as geoid anomalies, in the harmonic domain. For a model in which

there are no lateral variations in viscosity, one can compute the geoid kernel, the geoid

produced by a unit mass anomaly of a given wavelength at a given depth, including the

effects of dynamic topography. The total geoid anomaly caused by an assumed density

distribution in the mantle is obtained by a convolution of these kernels with the density

field. Parsons and Daly (1983) presented kernels for an incompressible, isoviscous

mantle, assuming Cartesian geometry.

Richards and Hager (1984) and Ricard et al. (1984) extended the kernel approach to

spherical geometry and included the effects of self-gravitation, a fluid core, and radial

variations in viscosity. The resulting equations can be solved analytically using

propagator matrix techniques (e.g., Gantmacher 1960; Hager and O'Connell 1981; Hager

and Clayton 1989) to calculate geoid kernels for an incompressible planet. Because they

had determined that the net effects of adding a self-gravitating ocean layer on geoid

kernels are negligible to first order, these authors published only the simpler formulation

for an oceanless planet, without explicitly mentioning the ocean. Forte and Peltier

(1987) extended the Earth model to include the effect of a global ocean layer on dynamic

topography and the geoid, but under the assumption that the ocean surface remains

spherical, rather than following an equipotential surface. Using either approach, and

taking the distribution of interior density anomalies as given by a plate tectonic model or

by seismic tomography, it is possible to generate models that explain most of the long-



wavelength geoid (e.g., Hager et al. 1985; Forte and Peltier 1987; Hager and Clayton

1989; Hager and Richards 1989; King and Masters 1992; Ricard et al. 1993).

However, a parcel of mantle that flows from the uppermost mantle to the core-mantle

boundary almost doubles in density, so the effects of compressibility on mantle flow and

geoid kernels should also be considered. Forte and Peltier (1991 a) and Dehant and Wahr

(1991) derived the equations for compressible flow driven by internal density

heterogeneities. The resulting equations are more complicated than for incompressible

flow, and they were solved using numerical techniques. Forte and Peltier (1991a)

investigated the effects of realistic radial density variations on geoid kernels using the

density profile from earth model PREM (Dziewonski and Anderson, 1981) and found

that for a constant-viscosity mantle, these effects result in changes in geoid kernels of 10

per cent or less, with relatively little dependence on spherical harmonic degree.

An isoviscous mantle cannot, however, explain the geoid. Although models of mantle

viscosity structure that predict the observed geoid vary in detail, all have an increase in

viscosity between the upper and lower regions of the mantle. For these models, geoid

kernels typically change sign with depth. In this case, Forte and Peltier (1991a) showed

that the kernels calculated for an incompressible model can be quite different from those

calculated for a more realistic model with a compressible mantle and outer core. They

corrected their previous (1987) formulation to include a gravitationally consistent

treatment of the ocean, which allows its surface to deform according to the equipotential

surface. The calculated geoid differed significantly (up to 32 per cent at degree 2 for

their preferred viscosity profile) from one computed under the assumption of an

undeformed (spherical) ocean surface. They also presented a gravitationally consistent

treatment of a compressible outer core, concluding that its impact was comparable to that

of the ocean surface deformation (up to 26 per cent at degree 2). Forte and Peltier

(1991b) also noted the strong effect of the additional internal loads created by the

interaction of the perturbed gravitational potential with the radial gradient of the

background density profile in the mantle.

These results elicited significant interest and controversy. For example, Thoraval,

Machetel and Cazenave (1994) computed kernels for a compressible mantle with the

PREM density structure, including a deformable ocean surface. They concluded that the



deformation of the ocean surface has an important effect, but that compressibility of the

outer core has a negligible effect, in agreement with the conclusions of Ricard et al.

(1984), who had used a simpler model with an inviscid mantle to address the effects of

compressibility. Corrieu, Thoraval and Ricard (1995) discussed the effect of the ocean

by comparing the total response of a dry versus a wet planet. They concluded that the

total effect of the ocean is negligible, as is compressibility of the outer core.

One of the main reasons that these seemingly contradictory conclusions have been

reached is that there are a number of parameters that affect geoid kernels, and different

workers have assumed different values for these parameters. These different parameter

choices have had effects on the kernels that are often larger than the effect of

compressibility alone. For example, the function assumed for the gravitational

acceleration g(r) has varied among models and the effects on the geoid kernels of

assuming different g(r) are large compared to the effects of compressibility on the flow

itself ( Panasyuk, Forte and Hager, 1993). The treatment of the ocean is also different in

different models. In our view, a useful way to understand the differences among the

models is to introduce these differences one at a time, investigating the effect of each

separately.

In this paper, we present a detailed analysis of the effects of compressibility on geoid

kernels. We first present the equations governing flow in a form that leads to physical

insight into the separation of the effects of self-gravitation and of flow-induced stresses,

and also which can be solved quasi-analytically using a propagator matrix technique. We

then consider the various effects of compressibility separately. First, we investigate the

effects of g(r). Next we determine the effects of different assumptions about density

contrasts at the surface and at the core-mantle boundary. We then investigate the effects

of compressibility, sensu stricto, on geoid kernels, and examine the effects of

transformational superplasticity at phase change boundaries. We next determine the

effects of compressibility of the core and deformation of the inner core, as well as the

effects of the ocean. To place these effects in context, we also consider the effects on

geoid kernels of altering the viscosity contrast between the upper and lower mantle by a

moderate amount.



MATHEMATICAL FORMULATION

We can treat the Earth's mantle as a high-viscosity fluid, with flow driven by a

distribution of density anomalies that is assumed known, for example from a

geodynamical model (e.g., Hager 1984; Forte and Peltier 1991a; Ricard et al. 1993) or

from seismic tomography (e.g., Hager et al. 1985; Forte and Peltier 1991a; Forte,

Dziewonski and Woodward 1993; King and Masters 1992). The governing equations

include the continuity equation

d+ div(pv)=0, (II-1)

and the equation of motion

p-=F, (11-2)

where p is density, v is the flow velocity, and F denotes both viscous forces and

gravitational forces: F = divt + pVV . The potential V is given by Poisson's equation:

AV = -47typ, (11-3)

where y is the gravitational constant. Finally, we assume the constitutive law for a

Newtonian viscous fluid with zero bulk viscosity:

Tij = -poij + T d=-pi, + 27d (11-4)

where p is the pressure, T is the deviatoric stress, i = i, - ei /3 is the deviatoric

strain rate, and 'i is the shear viscosity. Since the density perturbations that excite mantle

flow are much smaller than the ambient hydrostatic densities, it is useful to express the

flow-related quantities as first-order deviations from their hydrostatic reference values:

p(r, 0, 0) = p0(r) + p (r, 0, 6)

p(r,0, ) = p(r) + p,(r,0, 0) (11-5)

V(r,0, a)= V(r)+V,(r,6,6)



Subtracting the hydrostatic reference state and ignoring the inertial term in (2), as is

appropriate for mantle flow, leads to:

(po + p,)div(v)+ v -V (po + p)= 0
- Vp, + div(tr)+pVV + pVV =0 (II-6)

AV = -4ryp

In eq. (6), the time derivative of density is ignored since mantle-flow velocities are

much smaller that the acoustic-wave velocity (e.g., Landau and Lifshitz 1987). This

system is solved in spherical coordinates (r,0,p). The continuity equation, keeping

terms to first-order accuracy, is:

div(pv) ~ po(r)div(v) + vr = 0 (11-7)
rdr

or

Vr dpj(r) v(11-8)

pd (r) dr r

where X(r)= r dpr
A (W dr

The momentum (Stokes) equations are:

rd(-p, + pXV)-pMV +rdivrd = rpg (II-9a)

+ (- p, + pOV) + r(-F diverd + idivrT)= 0 (II-9b)

The variables are expressed in terms of products of radial functions and spherical

harmonics [e.g., Hager and Clayton (1989), although here we use complex harmonics]:

vr(r,0, (p)= I y''(r)Y.(6, (p) (II-1Oa)
1,m

v,(r,, (p)= {y (r)Y,* (0, cp)± ym(r)Y,;"(0, (p)} (II-1Ob)
l,m



rr(, ) y (r)Y,,1 (,)
I,m

r,, (r, 6,p) = y "'4 (r)Y' (, (p)+ y (r)Y,*,', (0, (P)
l,m

V,(r,6,p)= y(r)Yl,,(6 9,p)

p,(r,6, P)=

where f,(r,6, p)= y,'m(r)Y, (6, (p)
I,m

and derivatives are Y,(6,p)= ("'
d

dV, (r, 6,p)

dr m
y'm (r)Ym (6,(p)

1 y"" (r)Y,,,(0,,(P),
I,m

L I

= I I ym(r)Pm(cos 6)exp(im p)
1=0 m=-I

(6,<p) 1 dY,1 (6 <p)
and Y,,(6,9)= (9

)6 sin 0 d9p

(II- 1Oe)

(II-1Of)

To make the derivation of the set of equations simpler and the resulting equations

better conditioned, we used the operators

90 rd . 1
d and d~ =- Idr AK

where A = ,(,+1)

and a new set of poloidal variables:

_ id

96 sin0 dp'

u(r)=[yfi y2IIA (Y 3 +poy 5)r y4rA y5rjYA Y 6r2] T

where 3j is a (constant) reference viscosity and p is a (constant) reference density.

A few comments about the choice for u3 may be useful. The term pIy5 represents

the contribution to the total perturbed pressure from the interaction of the perturbed

potential with the background density field. This gravitationally induced pressure

perturbation, which is not directly associated with viscous flow, is subtracted from the

total r,r to keep only that part of r,, associated with viscous flow in U3

After some manipulation, we obtain the following matrix equation:

dou, = AIu1 +b,

(II-1Oc)

(II- 1Od)

(11-11)

(II-12)



where the source vector is

br)= 0 g(r) 0 0 -4ncyr]r2y 8  (11-13)

and, defining i* = g(r)/if , the matrix A, is

(2+X) A 0 0 0 0

-A 1 0 1/7* 0 0

(1 ,~767* 1Pr AoZ"
(12+4)* -6A 1 A AjY (11-14)

-(6+2)Arl* 2(2A2-1)i* -A -2 0 0

0 0 0 0 1 A
0 0 0 0 A 0

Henceforth, for notational convenience, we omit the subscript 1.

Note that A can be represented as a sum of three matrix expressions:

X(r)p,,(r)
A(r) = AO +(r)A+ A2 (11-15)

p

Here AO is equivalent to the matrix for incompressible flow (Hager and Clayton, 1989).

The matrix A, gives the effect of compressibility on flow. Compressibility also enters

into b due to its effect on g(r).

We can gain some physical insight into A2 (see also, Forte and Peltier, 1991b),

which expresses the coupling of u3 , the term involving the radial stress caused by flow,

and u5 , the potential term, by considering the problem of a planet loaded by an external

potential. [If this external potential is the tidal potential, this is the classic problem in

which Love numbers are defined (e.g., Vening Meinesz 1946; Munk and MacDonald

1960; Sleep and Phillips 1979; Hager 1983).] For loading by an external potential V1,

after equilibrium is reached, there is no flow, so [u1 u2 U3 u4 ] are identically zero

throughout the interior. In particular, u3 = 0 requires that ',. = -pOVI, so the total radial

stress is due only to the potential, with no contribution from viscous dissipation. The

requirement that du3 =0 is met, because, in the case of loading of a compressible fluid



planet by an external potential, the condition that surfaces of constant density be

equipotential surfaces (displaced by an amount 8N) gives for the perturbed density p,:

dpo xpO V,
p,_-- 3N - - (II-16)dr r g(r)

In this case, the contribution to du, from b3 cancels the contribution from A,,u,. Thus

the single nonzero term in A2 expresses the "correction" to the perturbed density for the

gravitationally induced change in pressure.

Propagator matrix

Because AO is a constant within a layer of uniform viscosity, the set of equations for

incompressible flow can be solved analytically using the propagator matrix technique.

The depth dependencies of Al and A2 bring additional complications into the solution,

since A(r) is no longer permutable in subintervals. However, under the condition that

A(r) is "almost" permutable in small intervals of thickness Ar between radii r, and r2 ,

that is, that A(r')A(r") = A(r' ')A(r') + (*), (r' ,r" ')e (r, , r2 ), where (*) is much less than

the product of the matrices, the propagator Pc between the upper external boundary, a,

and lower one, c, can be written as

fc ]a-Ar
Pf (A) = lim exp A(r)d in r x...x exp A(r)d n , (17)

where we evaluate analytically the integrals in the sub-propagators Pr:

rr pAr, p(r )-p (r2)Pr2=exp ALoIn- +Alln +A 2 - (11-18)
r2 p. (r2 ) P

We can write the value of the u vector on boundary c in terms of its value on

boundary a and the source terms b(r) as

C

u(c) = Pau(a) +JfPrb(r) dr/r (11-19)
a



Assuming that neither P' nor b(r) varies rapidly with depth, it is computationally

convenient to approximate the continuous volumetric density contrast pl(r) distributed

throughout the j-interval (r, - 8r, /2, r, + 6r, /2) as a sheet density contrast

r(r,)= p1 (r,)r,. Then the integral in (19) can be represented as a summation:

u(c) = Pcu(a) + I d(r,) (11-20)
J=1

where the source vector

d(r,)= P 0 0 g(r,) 0 0 - 4zyr, j r, a(r,).

Expression (20) is a quasi-analytical solution to the system of differential equations

(12) expressed in terms of the matrixants of boundary values and sources. The solution

is quasi-analytic in that we evaluate the limit in (17) numerically. The product of layer

propagators converges to its limit in (17) rapidly and monotonically. Sufficient accuracy

is achieved by dividing the mantle into ~ 30 layers. Except for the case of phase

changes, discussed below, u is continuous across the mantle.

Boundary conditions

PREM contains discontinuities in p0(r) at a number of depths. In calculating geoid

kernels, we must choose which of these to treat as boundaries separating layers of

different composition, and which to treat as due to phase changes. We assume that the

discontinuities in PREM at 220, 400 and 670 km depth are due to phase changes and that

the other discontinuities are compositional in origin (the discontinuity in the PREM

model at 220 km is probably more spread out in the Earth.). These are the boundaries

between the inner and outer cores (ICB) at r=1221.5 km, between the core and the

mantle (CMB) at r=3480 km, between mantle and crust at a depth of 24.4 km, between

upper and lower crust at a depth of 15 km, between upper crust and ocean at 3 km depth,

and the boundary between ocean and air at the surface (SUR).

We assume that the crust responds as a passive layer on top of the convecting mantle,

so that the crust does not change its thickness, but is only deflected radially, in response



to mantle flow. For this assumption, the dynamic topography and total mass anomalies

are nearly identical to those for a model which has no crust. For simplicity, we replace

the lower and upper crust in the PREM model with material with the same density as the

top of the mantle (p0=3.38 Mg m-), and define the interface at 3 km depth as the "ocean-

mantle boundary" (OMB). Alternatively, one could treat the boundaries at 24.4 km and

15 km depth as phase changes, allowing flow to penetrate through the crust. The

dynamic topography in such a treatment is different, but the geoid kernels are unaffected

for density anomalies within the mantle.

Mantle flow and self-gravitation lead to dynamically maintained topography at the

compositional boundaries SUR, OMB, CMB, and ICB. Since the time scale of mantle

convection is long compared to the time scale for development of quasi-steady dynamic

topography, we assume that the radial velocity at each of these compositional interfaces

is zero (e.g., Richards and Hager, 1984). At any (deformed) boundary between two

materials, the physical boundary conditions are that, in addition to the normal velocity

vanishing, the tangential velocity, the traction vector, the potential, and the gravitational

acceleration are all continuous. However, the matrixant approach requires the

propagation of the boundary values between surfaces of constant radius. The physical

boundary conditions at a boundary d deflected a distance 6b away from reference radius r

can be analytically continued to r using a Taylor's series (e.g., Richards and Hager 1984;

Hager and Clayton 1989; Forte and Peltier 1991a). To first order, mathematically, there

is a jump in normal stress at the reference boundary

,, = brr = 0 - pog d+3b= Apdg~b, (11-21)Zrr I r- d- - -

d d- d+
where we choose the unconventional definition Ap = p - P to keep the numerical

value positive. There is also a jump in perturbed gravitational acceleration g1 :

-'1  -4ny 'p 0 d_ ddg +=-z += 4 7rAp d(11-22)

ar T _ rsl i-

at the reference boundary. These result in a jump condition for u:



0 0 -41Ayb2, b .T

Note that the jump in u3 depends on the deflection b away from the equipotential

surface Vb/gb , not from its reference radius. This deflection is the quantity that is

preserved in the geological record of sea-level. We define the quantity (Sb - Vb/gb) as

the "dynamic" topography, i.e., that part of the topography maintained by stresses from

viscous flow. The total topography b has contributions both from flow stresses and

from gravitationally induced boundary deformation Vb /g b

We now apply these boundary conditions to the interfaces that we assume to be of

compositional origin. To begin, just above SUR (r = e), the perturbed potential satisfies

Laplace's equation, so

g,I(r)- V,+
I r

Ve+, forr--e+

1+1

r

(11-24)
for r -+ e+

To apply eq. (23), we must know Se, but this is just the surface geoid anomaly

Se = SN' = Ve'ge So

Ve- = ve
e- e+ e+

g, = g I - g,\_e-
Ive+ + ,y~e (1 +

+ 1e K

4ryApOee ve+
1)+ e

Note that u3 remains zero within the ocean because the total stress is just due to the

gravitational potential, with no contribution from viscous dissipation.

To determine u"+, we need only to "propagate" u5 and u6 from the SUR to the OMB

(r=a) using Laplace's equation. The solution in terms of R = ale becomes:

V," = G, - V,

where

GI = R-('+) + (R' - R-('*)) .e ;
21+1

(11-26)

(11-25)

ulb = [0 0 Apobgb(45b-Vblb) (II-23)

e)+1

r



= G2Ve+/a,

where

G = -(1 + 1)R-('+') + (lR' + (1 + 1)R-('+) 4A e eg (II-27)
21+1

The values of G, and G2 are given in Table 1 for degrees 2-5. Because R is very

close to unity, G, is nearly unity and G2 = -1-0.5, as can be seen from the first-order

Taylor's series approximations

e-a 3 Ap"e
G 1 =1+l(- and G2 =-(l+1)+ _

e p

The quantities G, and G2 are derived in a similar way to the quantities P and G in Forte

and Peltier (1991a), with a different normalization and misprints corrected.

Table 1. G Matrix

1 Gn G, G,

2 1.7927 1.001152 -2.4488
3 2.8385 1.001624 -3.4521
4 3.8673 1.002096 -4.4563
5 4.8872 1.002568 -5.4615

The remaining boundary is the CMB. Within the core, the entire perturbed stress is

due to interaction of the background density with the perturbed potential. The perturbed

radial gravitational acceleration is proportional to the perturbed potential:

g,- = G. V,-/c (11-28)

For an incompressible core, Go is found by solving Laplace's equation within a

homogeneous core, with the simple result that Go = 1.

Compressible inner and outer core

For a compressible core, the perturbed potential results in density anomalies within the

core (e.g., Munk and McDonald 1960; Forte and Peltier 1991a), since surfaces of equal

potential and equal density must coincide. Furthermore, there is a mass anomaly that

results from the deflection of the ICB.



The potential in the outer core satisfies Poisson's equation with a "secondary" source

defined as

ps V, dpo

g dr

In analogy with the gravitational part of system (14), we write Poisson's equation as a

system of homogeneous differential equations:

{au, = us+u
0u = [A2 + 4/ (11-29)

or in matrix form: du = A(r)u,

where u(r)= 2 ,

and the matrix A can be presented as a sum of two matrix expressions:

A(r)=[2 1]+ 47 r = A + f(r)rA1 , (11-30)
_A 2O_ g(r) _1 0

with A 0 , A, matrices that are independent of radius.

The solution can be obtained in the same manner as for compressible mantle flow.

The values of the u vector between the CMB (C) and ICB (b*) are related by

u(c)= Pcu(b*), (11-31)

where the propagator is P = PfA,... Pb-2Arb and each sub-matrixant can be

approximated for small intervals Ar as

P, = exp f A (r) - dr = exp A 1n +A 4cyf g dr. (11-32)
2 r r J2 r 2 g (r)

The connection between the two boundaries can be written as:

cV'- bV b*

2Ie = Cli- 2 , (II-33)
c g, _ b g,

Therefore, compressibility of the outer core is expressed as a self-gravitational load

accounted for in calculating the propagator (32).



The potential anomaly and its derivative on the ICB can be related to the value for

the potential at a surface that is very close to the centre of the Earth. The inner core is

treated as a passive (i.e. non-convecting) creeping solid, gravitationally loaded by the

perturbed potential, and is in a quasi-static equilibrium (Forte and Peltier, 1991 a). It can

be treated as a compressible fluid sphere with a surface of constant potential. Applying

the boundary conditions across the reference ICB, the value of the u vector on the outside

of the reference ICB in terms of its values inside is:

bVb+ bVb-
2 b+ 2g- -4yApbV-gb)(

where the deflection of the equipotential surface is 8b= V .

Substitution of eq. (34) into eq. (33) gives the matrix equation

cV c-~Pc- 1 0] bV b- ]

c2 e - ~ + -4n7ey bp 1 b 2g- ,(II-35)

where the connection between the surface of the compressible inner core and the surface

of the arbitrarily chosen small incompressible sphere around the center of the Earth is

similar to the solution of Poisson's equation for the outer core, eq. (33), and can be

written using boundary conditions across the surface of this sphere at reference radius x

as

LbVb 1 [xVX+" xVxp1b- b ' [ = PIX I I.XV (11-36)

b 2 b- [x+2  x [x+ X( _4nryxApxgx)V X+

Combining eq. (35) and eq. (36) into one matrix equation gives

= pcore xV"X, (11-37)
c 2 e - 41ryxAp"|g X

where the complete matrixant for the compressible core is defined as

pcore = P-[ P4-. (11-38)
Pb+ b 4ah'bx+



The matrix equation (37) can be solved with respect to g"'- in terms of Vc- using eq.

(28), gc- = Go -V"- /c to define the unknown quantity GO:

[pore pcore] I A /

Go = - - (11-39)
[p core eP1 ] 1 -4 ,-,A px/lg xt

The quantity Go derived here is similar to the quantity R derived in Forte and Peltier

(1991 a), but includes the effect of a compressible inner core.

As can be seen from the last equation, the effects of core compressibility and the

deflection of all internal surfaces are decoupled. The importance of the outer and inner

core self-gravitational load for geoid calculations can be checked by letting the value for

the background density be constant, i.e. X =0 in the propagator eq. (32) and similarly

for the inner core. The isolated effect of accounting for the mass anomaly due to

deflection of the ICB can be determined by setting its value to zero, i.e. Apb = 0 in the

expression for the complete matrixant (38).

Values of Go for the PREM density structure are given in Table 1. For I=2,

Go/l ~ 0.9, with the value approaching unity as 1 increases.

Phase changes

PREM contains discontinuities in p0(r) at several depths z within the mantle (670, 400,

and 220 km) that we treat as phase boundaries, where density changes continuously,

albeit very rapidly, over intervals of thickness Az of approximately 1 km (e.g., Benz and

Vidale 1993). Within these regions, there is at least one unusual effect, and potentially

two. First, the compressibility parameter X becomes very large, so that the terms in A,

and A2 that are elsewhere relatively small corrections become much greater than the

terms in AO . Second, within a region undergoing a phase change, the effective viscosity

may be dramatically decreased, a phenomenon know as "transformational

superplasticity" (e.g., Sammis and Dein 1974; Paterson 1983; Ranalli 1991). In this case,

A24 could become very large. While we could, in principal, continue to propagate our



solution through this region in the usual way, it would be necessary to subdivide the

thickness Az of the phase change region (- 1 km) into many even thinner layers. This

procedure would lead to very time-consuming calculations. We choose instead to

evaluate the system of equations (12) in the limits that the density jump is constant, but

Az/z approaches zero, and that the effective viscosity of the region, 1,*, also approaches

zero. Our approach is similar to that Corrieu et al. (1995), who considered only the

effects of large X through the phase-change region. But if * becomes small enough,

however, the 1/77z term in A could become comparable to or larger than the terms that

involve X, and the product 7*X could become negligible. In this limit, there is a jump

condition on u given by

u+ =[uiK u -4J*u1  -ApzV 2A *u1 0 0], (11-40)

U1 uJ A 2z + AP77+ .
where u2 K - ; u - _ ; and r is the normalized viscosity of the region

ere z U 1+ Z _ Z

undergoing the phase change.

The jump in u1 results directly from continuity of mass flux across the boundary

(e.g., Forte and Peltier, 199 1a). The jump in u2 results from the interaction of a finite

shear stress on a material with a (potentially) very small effective viscosity. There are

also jumps in radial stress (u3 ) and tangential stress (u4 ), first pointed out by Corrieu et

al. (1995). The latter jump occurs because the normalized hoop stresses, TOO and T, ,

are required to enforce the change in shape that occurs as an element of mantle traverses

the phase-change region, changing its volume without changing its angular width (Hager

and Panasyuk 1994). These are proportional to 11* X. As the thickness of the phase-

change region decreases, X increases, such that the product of hoop stresses times layer

thickness remains constant. It is interesting that the shear traction does not vanish,

despite the effective viscosity becoming very small, so long as 7*% remains finite.

These "jump" conditions are calculated assuming that the phase boundary is at a

constant radius. In addition, we might wish to apply a model of topography 6z, for

example from seismology (Shearer and Masters 1992) or from consideration of



thermodynamics (Dehant and Wahr, 1991). In this case, the jump in u at the boundary

becomes

uj~ = | u2|" {4*u4|+ +zAp z(j&-VjJ 2An*ul| 0 -4nYApzZ2z].

(11-41)

KERNELS CALCULATED USING VARIOUS ASSUMPTIONS

At the OMB and the CMB, shear tractions vanish, so u4 =0. Combining the internal and

external boundary conditions with the matrixant approach (including the effects of phase

changes) leads to the system of equations

0 0
uC+ ua-

Apccg"(6c - Vic / gC) -- Apaaga(Sa - GV / g)(11-42)

0 0+dr, (I-2

VcpcA G V"yaA

(GoVcc - 4ryApcc)Ac2 (G 2V"/a +4 yop"Sajga2

which can be solved with respect to the new vector

w =[u- u* Sa 2c V," Vi] (II-43)

to obtain tangential flow velocities, total boundary deflections, and potential anomalies.

The solution depends on the normalized viscosity if (r) (including the viscosity

assumed for the phase change region, 1*), on the density structure, po(r), and on the

radii e, a, and c that enter into the propagators. It depends on the gravitational

acceleration, g(r), that enters in the source term and boundary conditions. It also depends

on the values of the density contrasts Ape, Apa, and Apc that enter into the boundary

conditions. Note that the mass anomaly resulting from the dynamic topography

(Sc -V,/gc or a -V,"/g") is independent of the density contrast at a surface -

increasing this density contrast results in a proportional decrease in the dynamic



topography, keeping the net mass anomaly from dynamic topography, as well as the

gravity anomaly from this mass anomaly constant. However, the mass anomaly

associated with the total topography (Sc or Sa), which includes the effects of self-

gravitational attraction of deformed boundaries, does depend on the density contrast at

each boundary. Hence the effects of self-gravitation enter only indirectly, through the u6

term.

Table 2: Parameters Used in the Models

Model lu, 2u, 3u, 4u,
lj 2j 3j 4j 5j 6j 7j 8j 9j 1Oj 11j 12j

g(r) P C 10 P P P P P P P P P

e Mg 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.02 1.02
m

a 4.45 4.45 4.45 3.38 3.38 3.38 3.38 3.38 3.38 3.38 2.36 2.36

Mg 5.45 5.45 5.45 4.34 4.34 4.34 4.34 4.34 4.34 4.34 4.34 4.34
m

x 0 0 0 0 P P P P P P P P

* aver 1/20 1/100 1/20 1/20 1/20 1/20 1/20

outer I I I I I I I P P P P P
core
inner I I I I I I I P I P P P
core

ApCBAp C 0 0 0 0 0 0 0 P P 0 P P

Compressibility enters the system of equations governing flow (12), in three

fundamentally different ways. First, through its effect on the flow field - in order to

conserve flux, flow velocities decrease as the density increases with depth. This effect of

compressibility on the flow field is given by A1 . Second, there is the less direct effect of

compressibility on the stress due to self-gravitation, given by the single non-zero term in

A 2 linking the flow variables and the potential variables. This term provides a

correction to the density field to account for the warping of surfaces of constant density

to conform to equipotential surfaces. Finally, there is the indirect effect of

compressibility on gravitational acceleration g(r). Since g(r) enters both in the body



force terms b, eq. (13), and in the relation between stress and dynamic topography, eq.

(23) and eq. (41), variations in g(r) are important (Panasyuk et al. 1993). In the

following section we investigate these effects separately to gain insight into the physics

of compressible flow in a self-gravitating planet. We start with the incompressible Earth

model used initially by Richards and Hager (1984), adding complications sequentially,

until we end up with a "realistic" model based on the PREM po(r) (Fig. la). The

parameters that are varied in these models are identified in Table 2.

PREM DENSITY PREM GRAVITY

3.38 4.45 5.57 Mg/m 3 9.6 10 10.4 m/s2

Figure II-1. (a) Density as a function of depth for our modified PREM mantle model (solid) and our
incompressible model (dashed). (b) Three choices of g(r) used to calculate geoid kernels. The solid line
is for the PREM po(r). The dashed line is calculated in a consistent way for the incompressible mantle
p =4.45 Mg m", while the dot-dashed line is for a constant value of 10 m S-.

The effects of g(r)

For the Earth, g(r) is determined uniquely by the actual po(r). For a model planet,

however, the choice of g(r) is arbitrary, and different modelers have chosen different

values. [There is no requirement that g(r) be consistent with the density assumed for the

OMB

CMB



"fluid" mantle. For example, in laboratory convection experiments, it is common to

embed fine wires attached to thermocouples in the convecting fluid. This mesh of wires

has negligible effect on the flow. One could similarly conceive of a fine mesh of dense

wires in a self-gravitating fluid sphere that does not participate in the flow, but that does

affect g(r).] In the earlier work assuming incompressible flow, it was common to choose

g(r) (dashed lines in Fig. 1) consistent with a given mass of the core and a constant p(r)

in the mantle (e.g., Richards and Hager 1984; Ricard et al. 1984; Hager and Richards

1989; Corrieu et al. 1995). For such a model (Fig. lb), g(r) has a maximum of 10.6 m s-

at the CMB, falls to 9.4 m s- at mid-mantle depths, then rises to 9.8 m s- at the OMB.

Forte and Peltier (1987; 1991a) and Thoroval et al. (1994) chose, for simplicity, a

constant g(r) = 10 m s- , close to the radially averaged value for PREM, while Corrieu et

al. (1995) chose g(r) consistent with the PREM po(r) (solid lines in Fig. 1) for their

compressible flow model. For this choice, g(r) has a maximum of 10.6 m s- at the CMB

and a minimum of 9.8 m s- at the surface, but has a value near m S2 10 throughout most

of the mid-mantle.

To isolate the effects of g(r) on the geoid kernels, we plot (Fig. 2a) kernels at

spherical harmonic degrees 2 and 5 for an incompressible mantle with uniform viscosity

for these three choices of g(r). Model lu (solid line) uses the PREM value of gravity;

Model 2u (dashed) uses a "self-consistent" g(r), while Model 3u (dot-dashed) uses a

constant value of 10 m S-. (Here, "u" denotes uniform viscosity.) These kernels behave

as might be expected from the different assumptions for g(r).

For example, the kernels for the "self-consistent" g(r) are always more positive than

the kernels for the PREM g(r). The geoid anomaly produced by a density anomaly at a

given depth in the mantle depends both on the mass anomaly itself, and on the mass

anomaly resulting from the dynamic topography induced by the mantle flow, which has

the opposite sign. For an isoviscous mantle, the negative mass anomaly from the

dynamic topography dominates, and the total geoid anomaly is negative. Because the

self-consistent g(r) is consistently less than that for PREM, for a given internal mass

anomaly, there is a smaller body force driving flow and hence less dynamic topography

for the same mass anomaly. Less dynamic topography leads to a less negative geoid

anomaly, regardless of harmonic degree.
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CMB

Effects of variable g(r)

-0.3 -0.2 -0.1 0
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Figure U-2. Geoid kernels at spherical harmonic degrees 2 (heavy line) and 5 (light line) for an
incompressible mantle. Kernels for models with a uniform viscosity are shown in (a), while kernels for
models with a viscosity jump by a factor of 20 at 670 km depth are shown in (b). Kernels are shown for
the three choices of g(r) plotted in Fig. 1(b). The "consistent" g(r) (dashed line, Models 2u, 2j) is that
calculated assuming a constant mantle density of 4.45 Mg m . The "constant" model (dot-dashed line,

-2
Models 3u, 3j) has a constant value of g(r) = 10 m s , while the "PREM" g(r) (solid line, Models lu and
lj) is calculated from the p,(r) given by the PREM model.



The kernels for the "constant" g(r), which are close to those for the PREM g(r),

illustrate the effects of different g at the boundaries. For example, in the vicinity of 670

km depth the PREM g(r) and the constant g(r) are approximately equal, so the body

forces and viscous stresses are comparable in both models. The models, however, have

different surface gravity; the larger g(r) at the surface for the "constant-g" model results

in less dynamic topography for the same flow stress. Less dynamic topography results in

less negative geoid kernels. The effect of different gravity at the CMB can be seen for

the kernels at degree 2. For example, the body forces and viscous stresses are

comparable in the two models for density contrasts at a depth of about 2000 km. The

kernel for constant g(r) is more negative than for PREM g(r) at this depth because the

former model has smaller g at the CMB, and hence more dynamic topography for the

same stress. At degree 5, however, the influence of the CMB is severely attenuated. In

this case, the kernel for constant g is more positive than that for PREM g because only

the effects of deformation of the OMB are important, and g at the OMB is higher for the

former model.

All mantle viscosity models proposed to match the geoid have at least a moderate

viscosity increase between the upper and lower mantles. To show the effects of varying

g(r) for a more "realistic" viscosity model, we plot the kernels for simple two-layer

models with a viscosity jump of a factor of 20 at 670 km depth (Fig. 2b). Although all

kernels are shifted to the right as the result of a viscosity increase with depth, the

differences among the kernels for different assumptions of g(r) are similar to those for an

isoviscous model. For example, the kernels for the consistent g(r) (Model 2j; "j" denotes

viscosity jump) are always more positive than the others, for the same reason. At degree

2, Model 3j, with constant g(r), still has more positive kernels in the upper mantle, and

more negative kernels in the lower mantle, than does Model lj, with PREM g(r), but the

crossover of the kernels occurs at a different depth because the increase in viscosity with

depth makes the effects of CMB topography more important than for a mantle with

uniform viscosity. Again, at degree 5, the effects of CMB topography are negligible, and

the effects of different values of g at the surface dominate.



Density contrasts at the OMB and the CMB

The values assumed for density contrasts at the OMB and CMB are important because of

the effects of self-gravitation on the total topography and mass anomalies at these

interfaces. Given the same flow stresses acting on the OMB (or CMB), larger density

contrasts there do not change the mass anomaly due to the dynamic (flow induced)

topography, but do increase the mass anomaly associated with the geoid undulations,

therefore acting to amplify the geoid anomalies at these boundaries. In Fig. 3(a) we

show kernels for incompressible Model 4u (solid line), which has the modified PREM

values for Apc=4.34 Mg m 3 and pa =3.38 Mg m 3 (without a crust or ocean), along with

kernels for Model lu (dashed line), which has self-consistent values for density contrasts,

Apc=5.45 Mg m3 and Apa=4.45 Mg m 3 . [For these and all subsequent models, we

assume the PREM g(r).] For an isoviscous mantle, the geoids at both the OMB and the

CMB are negative for all degrees. Since Model 1 has larger density contrasts across

these boundaries, the self-gravitation of these boundaries amplifies the geoid anomalies

considerably. The effect is largest at degree 2, as would be expected for a process that

results solely from self-gravitation, but is still substantial at degree 5.

The kernels for Model 4j, with a viscosity jump at 670 km depth, are positive near

the top of the mantle and negative near the bottom of the mantle. At degree 5, the larger

density contrast at the OMB in Model lj behaves as expected, amplifying the geoid

kernels. At degree 2, however, the effects are more subtle. For this model, the dynamic

topography and the geoid at the CMB are negative, even for density contrasts in the

upper mantle. The self-gravitational amplification of the topography at the CMB gives a

negative contribution to the geoid at the surface from the deformation of the CMB. This

effect is larger for the larger density contrast at the CMB in Model lj. The additional

negative contribution from the CMB more than compensates for the slight amplification

of the relatively small positive geoid anomaly at the surface due to the larger density

contrast at the OMB, so the net effect is a slightly more negative kernel.



Effects of density contrasts
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Figure U-3. Geoid kernels at spherical harmonic degrees 2 (heavy line) and 5 (light line) are for
incompressible mantle Model 4 (solid), which has the same density contrast at the CMB as PREM (4.34
Mg m3 ), and a density contrast at the OMB of 3.38 Mg m3 . For comparison, kernels for Model 1

(dashed), with respective density contrasts of 5.45 and 4.45 Mg m3, are also plotted. The PREM g(r) is
used. Kernels are shown for an isoviscous mantle [(a), Models lu, 4u] and for a model with a jump in
viscosity by a factor of 20 at 670 km depth [(b), Models lj, 4j].
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Compressible flow

The next level of complication is to include the effects of compressibility on mantle flow.

In Fig. 4 we show kernels for two models with the same density contrasts (based on

PREM) and viscosity profile (jump by a factor of 20 at 670 km depth). Model 5j (solid)

has the PREM compressibility structure, while Model 4j (dashed) is the incompressible

model discussed above. In both models, we assume no ocean, an incompressible core,

and that no softening occurs, so * = ( * + g* )/2, when evaluating the jump conditions

across the density discontinuities representing phase boundaries.

Effects of mantle compressibility
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Figure U-4. Geoid kernels at spherical harmonic degrees 2 (heavy line) and 5 (light line) for a model
with a viscosity jump at 670 km depth by a factor of 20, assuming the "PREM" g(r) and PREM density
contrasts. Kernels are shown for a compressible model with the po(r) given by the PREM (Model 5j,
solid) and for an incompressible model with constant po(r) (Model 4j, dashed).

For a compressible mantle, to maintain constant mass flux, flow has slower velocities

at depth and faster ones at the surface than for an incompressible mantle. Slower/faster

flow velocities result in lower/higher viscous stresses, leading to a decrease/increase in

the dynamic topography at the CMB/OMB. Correspondingly, surface geoid anomalies

for higher harmonics are more affected by changes of OMB topography, leading to a



shift to the left of the kernels. This expectation holds at degree 5. On the other hand,

lower harmonics are sensitive to changes at the CMB as well, and show a more

complicated response, depending on the specific density and viscosity structure. For

example, at degree 2, the rapid variation of density with depth within the transition zone

in the PREM model, coupled with the jump in viscosity at 670 km depth, leads to slightly

more positive kernels in the upper mantle. Unlike the effects of self-gravitation shown

by Figs 2 and 3, the direct effects of compressibility on the kernels are larger at degree 5

than at degree 2. We might expect the kernels for a compressible model to resemble

those of an incompressible model with a decrease in viscosity with depth. Since the

normal stress has coupled dependence on viscosity as well as on the radial velocity

gradient, T, = -p + 27 dv, /dr , a reduction in lower mantle viscosity leads to higher flow

velocities everywhere, but being coupled with smaller viscosity at depth results in lower

stress/topography at the CMB.

Transformational superplasticity

Sammis and Dein (1974) first pointed out that mantle convection might be affected by

extreme softening of material as it undergoes a phase transition - a general phenomenon

known as "transformational superplasticity." A number of microphysical processes have

been proposed (e.g., Sammis and Dein 1974; Paterson 1983; Poirier 1985; Ranalli and

Schloessin 1989; Ranalli 1991; Hager and Panasyuk 1994). While it is generally agreed

that transformational superplasticity leads to a dramatic reduction in effective viscosity,

neither the mechanism, nor the magnitude of this effect is well constrained.

We can evaluate the impact of transformational superplasticity on geoid kernels by

comparing kernels for models based on different assumptions about the viscosity of the -

1 km thick phase-change regions. We show geoid kernels of three models (Fig. 5), from

the case in which no softening occurs, a* = 1*"" =( + )/2 = 10.5 (Model 5j, dot-

dashed line), to the proposed 1* = 1/20 (Model 6j, solid line), and for an even more

significant reduction in viscosity 1* = 1/100 (Model 7j, dashed line). The overall effect

of two thin regions of reduced viscosity on the flow and the geoid is subtle and depends

on wavelength as well as on the particular background viscosity and density profiles. To



show two possible situations, we plot kernels for harmonics 1=2 and 1=12 on Fig. 5

(harmonic 1=5 shows the same changes as 1=2, but with slightly smaller amplitudes).

Effects of transformational superplasticity
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Figure II-5. Geoid kernels at spherical harmonic degrees 2 (heavy line) and 12 (light line) for models
with different assumptions about the viscosity used in evaluating the jump conditions at the density

discontinuities at 220, 400, and 670 km depth in the PREM model. 7 = *aver = 10.5 (Model 5j, solid

line), 17 = 1/20 (Model 6j, dashed line), 11 = 1/100 (Model 7j, dot-dashed line).

In general, the presence of thin low-viscosity layers in the upper mantle facilitates the

turning of the flow in the vicinity of the OMB. The ability of the flow to turn more

easily as it approaches the OMB leads to reduced stress/topography there. The geoid

kernels shift to the right due to the weaker gravitational compensation of interior density

anomalies by deflection of the OMB (compare heavy dash and dash-dotted lines with the

solid one in Fig. 5). If the centre of a convecting cell is above the low viscosity layer for

short wavelength sources (e.g. 1=12) the situation reverses: there is less dynamic support

from below and larger dynamic topography at the OMB. Correspondingly, the geoid

kernels shift to the left (compare the heavy dash and dash-dotted lines with the solid one

in Fig. 5). Intermediate-wavelength sources induce a flow which experiences a trade-off

between these two situations, depending on the density and viscosity profiles of the

mantle. Given our simplified 2-layered viscosity structure (jump by 20 at 670 km depth),



PREM density profiles, and two softened phase regions in upper mantle (at 400 and 670

km), geoid kernels of 1=2 shift to more positive values (see Fig. 5) and 1=12 kernels shift

to more negative values. The effect of a reduction in effective viscosity by a factor of

100 in 1 km thick zones at 400 and 670 km depth is comparable to the effect of

increasing the viscosity of the lower layer by 40 per cent (compare Figs 5 and 7 and see

later discussion).

Outer and inner core

To evaluate the effect of compressibility of the outer and inner cores, in Fig. 6, we

compare kernels for Model 8j (solid line) calculated assuming the PREM compressibility

of the core and PREM density jump at the ICB with those for Model 6j (dashed line)

calculated assuming that the core is incompressible, with uniform density.

Effects of core compressibility
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Figure U-6. Geoid kernels at spherical harmonic degrees 2 (left) and 5 (right) for models with different
assumptions about the compressibility of the core. Model 8j (solid line) has the PREM compressibility
structure in the core, while Model 6j (dashed) has an incompressible core.

The effects of including compressibility of the core are quite similar to the effects of

increasing the density contrast at the CMB (Model 4j, Fig. 3b). The self-gravitational



amplification of the negative geoid anomaly at the CMB shifts the kernels for degree 2 to

slightly more negative values. Because of the rapid attenuation of the effects of the CMB

with increasing harmonic degree, there is no resolvable effect of the density structure of

the core at degree 5. To investigate the effects of compressibility of the inner core, we

calculated kernels for Model 9j, which has an incompressible inner core. To investigate

the effects of the assumed density jump at the ICB, we calculated kernels for Model 10j,

in which we set the density contrast at the ICB to zero. Kernels for these two models

overlay those for Model 8j - the gravitational effects of the inner core are essentially

invisible in the geoid kernels.

Ocean

In Model 11j, we add the total effect of an ocean by using the density of sea water for the

density contrast at the SUR and decreasing the density contrast at the OMB by the same

amount. The kernels overlay the kernels for Model 8j in Fig. 6. The reason for this

small contribution of the ocean to geoid undulations on the surface becomes clear when

we treat the total topography as the sum of the dynamic topography and the geoid

anomaly. The mass anomaly associated with the former is independent of the density

contrast at the OMB - the reduction in density contrast associated with adding an ocean

layer is exactly counterbalanced by an increase in dynamic topography. The geoid

anomaly includes the self-gravitational interaction of mass anomalies at all boundaries,

including both the OMB and SUR. Adding an ocean layer increases the density contrast

at boundary SUR by exactly the same amount as it decreases the density contrast at the

OMB. Because the thickness of the ocean is negligible compared to the radius of the

Earth, the equipotential surfaces at OMB and SUR are essentially parallel. Thus the total

mass anomaly from self-gravitational interaction of these surfaces is almost identical for

the cases with and without an ocean. These arguments are still correct locally for a

planet such as Earth that is partially dry and partially covered with an ocean, so long as

the effects of an elastic lithosphere are negligible at the wavelengths where self-

gravitation is important.



DISCUSSION AND CONCLUSIONS

Finally, to place the effects of compressibility in perspective, we also show (Fig. 7) the

effects of increasing the viscosity jump of the lower mantle by 40 per cent, to a factor of

28 (Model 12j). The changes are rather large, and comparable in magnitude and form to

those caused by differing assumptions of g(r) (Model 2j, Fig. 2b), and to those caused by

a 1/100 reduction in viscosity of the phase-change regions (Model 7j, Fig. 5). So there is

a trade-off between mantle viscosity structure, the effects of compressibility (see also

Forte, Woodward and Dziewonski 1994; Corrieu et al. 1995), and transformational

superplasticity at phase-change zones.

Effects of assumed viscosity profile
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Figure II-7. Geoid kernels at spherical harmonic degrees 2 (heavy line) and 5 (light line) for models with
different values of lower mantle viscosity. Model 11 j (solid) has a viscosity jump by a factor of 20;
Model 12j (stars) has a viscosity jump by a factor of 28 at 670 km depth.

In order to quantify the relative importance of all the effects described, we calculate

the absolute difference between geoid kernels for a model which considers a particular

effect and one which does not, and show it on the a plot in two perspectives: one shows

the differences in geoid as a function of depth of the source for the most sensitive

harmonic, 1=2 (Fig. 8a), and the other shows the changes in geoid from a single upper



mantle density source as a function of order of spherical harmonic, 1=2-15, of this load.

To clarify the significance of one effect versus another, we use a logarithmic scale for the

absolute differences in geoid. The sharp features of reduced amplitude on both Figs 8(a)

and (b) are due to zero cross-overs.

For example, to illustrate the effects of constant g(r) and consistent g(r) versus

realistic g(r), we difference models 3j with lj, and 2j with lj (dotted lines in Figs 8a and

b); to show the effects of choices for the density contrasts at the OMB/CMB and at the

ICB, we difference models 4j with lj, and 10j with 8j (dot-dashed lines, heavy and light

respectively). The effects of compressibility of the mantle (models 5j with 4j), core

(models 8j with 6j) and inner core (models 8j with 9j) are displayed by solid lines, those

of superplastic softening (models 6j and 7j with 5j) with dashed lines, and those of the

ocean (models 8j with 1 lj) with circles. Finally, to put all effects in perspective relative

to changes in effective viscosity of the lower mantle, we plot the difference between our

reference model (1 lj) and one which has a 40 per cent increase in lower mantle viscosity,

model 12j (crossed line).

The largest differences in geoid kernels for our different models at degree 2 (Fig. 8a)

come from different assumptions for the gravitational acceleration g(r) (dotted line) and

from the introduction of a significant (1/100) softening of the phase-change region

(dashed line). These reach a value of almost 10-1, which, for the model with a viscosity

jump by a factor of 20 at 670 km depth, can change the kernels by nearly 50 per cent.

The maximum differences caused by different assumptions about the density contrasts at

the SUR and the CMB (dash-dotted line) are about a factor of 2 smaller, but still

important.

The effects of compressibility of the mantle senso stricto and of moderate

transformational superplasticity (viscosity reduced by 1/20) are third in importance at

degree 2 (thick solid and dashed lines). The effects of compressibility of the outer core

(thin solid line), important only at degree 2, are small, but noticeable.

The effects of a "realistic" treatment of the inner core are negligible. So are the total

effects of the ocean. Earlier studies that chose not to discuss the effects of the ocean

(e.g., Richards and Hager 1984; Ricard et al. 1984) were justified in their neglect of the

ocean layer on geoid kernels.
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Figure 11-8. Summary. Logarithm of the absolute value of the difference between the kernels at degree 2

(a) and between the surface geoid from an upper mantle source (at 525 km depth) for different 1=2-15 (b).

The crossed solid line is for a jump in mantle viscosity by a factor of 28 at 670 km depth. The dotted

heavy and light lines are for the "consistent" (thick line) and "constant" g(r). The dashed heavy and light

lines are for the moderate transformational superplasticity (1/20 reduction in viscosity) and for significant

(1/100) softening of the phase-change regions. The light dash-dot line shows the effects of density jumps

at the OMB and the CMB, while the heavy dash-dot line shows the effect of the density jump at the ICB.

The heavy solid line is for mantle compressibility; the light solid lines are for outer and inner core

compressibility (the latter has much smaller amplitude). The light 0 line is for the ocean.



The relative significance of these effects changes as a function of wavelength, as is

shown on Fig. 8b for a source located at 525 km depth. For intermediate wavelengths

(1=4-8), the dominant effects are a significant reduction in the phase-change-region

viscosity and mantle compressibility, following by the choice of g(r), density contrasts at

boundaries, and transformational superplasticity. For short wavelengths (1=9-15), the

dominant effects are softening of the phase-change regions, following by the mantle

compressibility, and then by the choice of g(r). The different assumptions about the core

and the presence of the ocean become completely insignificant as the order of the

harmonic increases.

For comparison, the effect of increasing the viscosity of the lower mantle by 40 per

cent is to change the geoid kernels by an amount comparable to all of the effects of

compressibility taken together. Current models of mantle viscosity structure estimated

from matching the observed and predicted geoids vary by orders of magnitude. The

main reason for this large variation in inferred viscosity structure is that the models of

density heterogeneity used differ substantially.

However, although the effects of ignoring compressibility and transformational

superplasticity are relatively small compared to the effects of the uncertainties in density

heterogeneities driving the flow, we believe that, in the future, these models should use

realistic assumptions about the background density structure. Using our quasi-analytical

formulation, kernels for compressible flow are not much more difficult to calculate than

those for incompressible flow.

Although our attempt to understand quantitatively the effects of compressibility on

geoid kernels has been comprehensive, it has not addressed other phenomena that affect

the geoid. In particular, we have not addressed in this paper the effects of the lateral

variations in effective viscosity that occur within the convecting mantle and at plate

boundaries. Just as compressibility contributes both to Al and b, in eq. (12), lateral

variations in viscosity also contribute, both to A, and to b, (e.g., Richards and Hager

1989; Zhang and Christensen 1993; Forte and Peltier 1994). For lateral variations in

interior viscosity of the magnitude of those models inferred using seismic tomography,

these changes are small enough that general inferences from geoid models, such as a

moderate increase in viscosity with depth, are robust (e.g., Richards and Hager 1989;



Forte and Peltier 1994). As we have seen in our analysis of the effects of

compressibility, however, relatively small changes in A, and b, can lead to quantitative

differences in geoid kernels comparable to those resulting from moderate changes in the

radial viscosity structure. Furthermore, studies that have treated plate boundaries as low

viscosity regions have demonstrated that weak plate boundaries can result in changes in

the long-wavelength geoid of tens of per cent or more (e.g., Ribe 1992; Zhang and

Christensen 1993; King and Hager, 1994), even changing the sign of the geoid (Simons,

1995). A quantitative study of the effects of lateral variations in viscosity along the lines

of our study of the effects of compressibility would be very useful.
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Chapter III. A MODEL OF TRANSFORMATIONAL SUPERPLASTICITY IN

THE UPPER MANTLE. 2

ABSTRACT

We develop a model of transformational superplasticity of the mantle as it undergoes a

solid-solid phase change. By considering various scenarios of the evolution of grain

geometry in a polycrystalline material composed of two phases of different densities, we

estimate the strain rate associated with the reshaping of the grains required to

accommodate the volume change. We relate the deviatoric strain rate of the reshaping

grains to the macroscopic dilatation rate of the entire composite, where the latter is

evaluated both by applying a kinetic theory of the transformation and by implementing

the seismically-observed sharpness of the phase-transformation. We estimate that,

depending on the grain-geometry and the kinetics, the deviatoric strain rates can exceed

the dilatational strain rates by an order of magnitude.

We calculate the degree of softening of the mantle which would occur at the

beginning of the phase transformations at 400- and 670-km depths. For a power-law

rheology with stress exponent n=3, mantle viscosity decreases by up to one to two orders

of magnitude within the first 1.5 km of the upper transition, and by two to three orders of

magnitude within the first 1 km for the transition at 670-km depth. To account for

uncertainties in strain rate (or stress) and grain size, we construct a deformation

mechanism map for a three-component mantle and a variety of grain sizes, tectonic

stresses, and strain rates. In the dislocation creep regime, the high transformational

stresses place an upper bound on the effective viscosity of the composite.

We calculate the transformational-superplasticity (TS) field for a particular mantle

flow model and show that variations of effective viscosity on the order of one order of

magnitude occur at half of the dominant flow wavelength. We describe the effects of a

phase transformation on mantle dynamics as jump conditions on the vertical and the

2 in press in Geophysical Journal International, by Panasyuk, S.V., and B.H. Hager, 1998.



lateral velocities across the thin two-phase layer. An abrupt change in the azimuthal

velocity would facilitate mixing across the phase-change region and cause refraction of

currents passing through this depth. The largest deviation of the flow velocities occurs

within the major up- and down-wellings. We also show that when TS is included, the

change in the long-wavelength geoid is comparable to that caused by a 50% increase in

the viscosity of the lower mantle, and the change in the short-wavelength geoid is similar

to an extension of an upper mantle low-viscosity zone down to 450-km depth.

Key words: mantle convection, mantle rheology, mantle viscosity, phase transitions,

upper mantle.

INTRODUCTION

That polycrystalline material might deform superplastically during a solid-solid phase

change has attracted the attention of materials science. The large elongations in metals

and alloys (discovered by Sauveur 1924) and increased creep rate in some ceramics were

repeatedly observed and are now commonly recognized as superplastic phenomena

(Edington et al. 1976; Poirier 1985; Maehara & Langdon 1990; Meike 1993). However,

the possibility of superplastic deformation of other non-metallic materials, such as rocks

and minerals under geologic conditions, has received less attention. There have been

only a few geologic experimental studies of phase transitions, first done by Sammis &

Dein (1974), attempting to measure and observe the superplasticity of rocks. Besides

direct experimental measurement, the anomalous softening of mantle material might be

seen through its effect on the viscous response of mantle rocks. For example, a thin layer

of reduced viscosity associated with a phase change is seen in some models of the global

geoid (e.g. Forte et al. 1993; Panasyuk 1998), of glacial isostatic adjustment (e.g. Milne

et al. 1997) and of polar motion (Steinberger & O'Connell 1996). The complex bending

of subducted slabs depicted by regional seismic tomography (e.g. van der Hilst 1995)

might be associated with anomalous weakening during phase transformations. We

develop here a model of transformational superplasticity (TS) for the upper mantle and

investigate its effect on mantle flow. Before describing our method, we introduce the



basis of our model, discuss characteristic features of TS from the experimental studies,

and outline the paper content.

Numerous experimental studies show that superplasticity occurs during diffusional

(e.g., nucleation and growth type) as well diffusionless (e.g. martesitic type)

transformations. Hence, no unique microscopic mechanism exists (Edington et al. 1976).

Nevertheless, several characteristic features of transformational superplasticity have been

reported in experimental studies: 1) strain rate is proportional to applied load, volume

change, and heating/cooling rate; 2) a low applied stress, sufficient to cause flow during

the transformation, is insufficient to cause the same deformation outside the

transformational environment. Based on the second observation, an internal stress

generated during the phase change was considered to play an important role in

deformation (first by Greenwood & Johnson 1965). An increased strain rate during

transformation was associated with a rise of stress which caused an additional flux of

dislocations (Kot & Weiss 1970; Poirier 1982) in the low-temperature dislocation creep

regime.

In this paper we develop a model of transformational superplasticity (TS) associated

with mantle convection through the phase transitions at 400 km and 670 km depth. The

key assumption in this model is that, because the pressure at these depths is so high,

individual mineral grains are forced to deform in order to maintain the mechanical

integrity of the material. The rate of reshaping of the grains is controlled by the rate at

which mantle convection moves the material through the phase transition region. Given

the geometry of the mineral grains and the rate of volume change, the deviatoric strain

rate of an individual mineral grain can be estimated. We can then use the well-known

empirical relations between imposed strain rate, stress, and effective viscosity to

calculate the reduction in effective viscosity caused by this mechanism.

For a range of plausible grain geometries, the deviatoric strain rate associated with

the reshaping of individual mineral grains to maintain geometric compatibility can be an

order of magnitude or more larger than the volumetric strain rate. The volumetric strain

rate may be much greater than typical strain rates associated with mantle convection.

Thus, the grains deform faster than the typical ambient mantle, and it seems likely that

the grain reshaping occurs in the power law creep regime. Although the microscopic



mechanism by which power law creep occurs is not well understood (e.g. Karato, 1989),

for our purposes, the exact mechanism is not important, since the length scales that we

consider are those of individual grains, for which the experimental evidence for power-

law creep is well established. This macroscopic approach distinguishes our approach

from those that focus on a particular, more speculative, microscopic mechanism (e.g. by

Paterson, 1983). In the Methodology section we explore the effect of different grain

geometries, different types of transformation kinetics, and the presence of an

untransforming component in an aggregate. We build a mathematical apparatus to

estimate the amplitude of the TS phenomenon.

In the Results section we estimate the degree of softening for mantle material that

starts to change phase at 400 km and 670 km depths. For the upper transition we apply

kinetic theory for a metastable reaction and estimate the TS magnitude for n=3 power-

law rheology, including moderate variations in grain geometry. Constructing a

deformation mechanism map (DMM) for a range of possible mantle parameters, we

evaluate the degree of softening for linear-to-power law rheologies. Then we estimate

the TS for mantle flow across the phase transformation at 670 km depth. Because our

model is based on an assumed grain geometry that may or may not be realistic, it is

important to investigate how geodynamical observations can be used to test the

predictions of the model. We build a model of compressible mantle flow in response to

density anomalies (deduced from seismic tomography) and construct a map of the

reduced viscosity at 670-km depth. We discuss the characteristic features of the TS-field

and how both uniform and laterally varying softening inside the transformation region

affect flow velocities, slab trajectories, and the geoid.

METHODOLOGY

Laboratory experiments designed to investigate mantle rheology are often carried out

under an externally imposed shear strain rate j. The relationship between the scalar j
and the shear stress r is often written



f= A - - , (1II-1)
y d

where p is the shear modulus, b is the Burgers vector, d is the grain size and A

(dimension time') is a function of temperature, pressure, composition, oxygen fugacity,

grain orientation, and other parameters.

For mantle flow calculations, the state of the deviatoric stress at each point of the

media, a tensor a,, is related to the deviatoric strain rate tensor t, as:

a = 2ei, (111-2)

where 77,l is the effective viscosity. To link the laboratory description of rheology to the

convection description of rheology, the usual assumption is that the scalar strain rate f

and the scalar shear stress r in (1) can be related to the second invariant of strain rate and

stress tensors respectively, e.g., I=I = V I /2. (We use Einstein summation

notation unless otherwise specified). To describe the effective viscosity we can use

either the stress r or the strain rate f:

m

fleff2~In yr b (111-3)2A (II-3

To illustrate how the reshaping of grains associated with a phase change increases the

second invariant of the strain rate tensor and hence reduces the effective viscosity, we

carry out a thought experiment. Let us consider two nearly identical samples of a

material, where the only difference is that one undergoes a phase change and the other is

stable. An external, macro-scale strain rate is imposed on both pieces, tmande (e.g. of

tectonic origin), of such amplitude that they both deform with power-law rheology

(n=3), independent of grain size (m=O). For these assumptions, the effective viscosity is

inversely proportional to the cubic root of second invariant of the deviatoric strain rate

tensor. Non-transforming sample grains deform with an effective viscosity

oc 2 a. The grains of the transforming sample, as we show later, in addition to



the externally imposed deformation undergo continuous, randomly oriented ((trs) 0,

zero average over the scale of the entire sample) reshaping until the phase-change

reaction is complete. That is the strain rate components within each grain could be

expressed as, t =ansf mante + rsh . Hence, the transforming grains deform with a

reduced effective viscosity 1 ltansfoc Thus, deforming in response to the same

externally imposed strain rate, t mantle, the transforming sample appears to be softer than

the stable one with the ratio of effective viscosities:

(1/3
5 = ltransf 2 ( mantle (111-4)

O ~~transf II4
flmantle 2

Therefore, to evaluate the TS magnitude one needs to compare the deviatoric strain rates

increased by the transformation (f)= transf to the ones of the ambient mantle.

To characterize the transformational strain rate (f), let us consider a piece of

material which undergoes transformation from the lower density phase (A) to the denser

phase (B). During time interval dt the B-phase grows by the same mass as the A-phase

decays. However, due to the density mismatch, now the mass occupies less space, and

the volume of the entire piece reduces by dV. That allows us to define the macroscopic

volumetric strain rate for the material:

.dV dp
ol - - (111-5)

Vdt pdt

The composite material displays a finite compressibility, although each phase is

assumed to be incompressible. How do the incompressible tightly-packed grains

accommodate the volume change? To relate the macroscopic volumetric strain rate to

the grain-scale processes inside the aggregate, we consider the evolution of the grain

volume and shape. Mantle phase transformations are mainly controlled by pressure.

Macroscopically, the reaction proceeds up to completion as mantle flow drags material to

different depths. Microscopically, the pressure gradients along the transformational front

(A-B grain interface) may affect the local transformation rate and therefore the grain



shape. We propose that the adjoining/contiguous grains accommodate the overall

volume change by reshaping: the deviatoric deformation causes an additional

intragranular strain rate and stress. As we show in the next section, the deviatoric strain

rate of reshaping is proportional to the dilatation rate:

(f) = Fgiv , (111-6)

where the effect of grain geometry, F ,eom, is evaluated in section 2.2, followed by

methods of estimating ivol.

It is worth noting here that the combination of equations 2-6 is in agreement with the

experimentally observed characteristic features of transformational superplasticity

mentioned above: the strain rate is proportional to the applied load (e.g. tectonic stress,

lan"), the volume change (e.g. dV), and the rate of volume change (e.g. dV/dt).

Grain geometry evolution

To investigate how the deviatoric strain rate of a reshaping grain is related to the macro-

scale dilatation rate, we consider the phase transformation on the scale of several grains.

We analyze two distinct types of grain geometry, characterized by the geometry of the

denser phase (Figs 1 and 2). In both cases we assume that the rate of the transformation

is given by the rate of the volume reduction, dV/dt, which is similar to the condition that

the volumetric strain rate is given (eq. 5).

One possible scenario of grain geometry evolution is shown in Fig. 1, where we

assume that the B-grains (black) grow with roughly equant geometry (e.g., controlled by

strong surface tension). For illustrative purposes, although the transformation progresses

continuously, we consider a thought experiment in which the transformation proceeds in

three discrete steps, with the strain increment in each step small compared to the total

transformational strain. During these steps, the microstructure is assumed to be in

equilibrium with the imposed deviatoric strain rate and deviatoric stresses, so steady-state

flow prevails. We focus on two areas: one is the contact between the growing and

dissolving (gray) phases and another is the outer border of the region considered.
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Figure II-1. Cartoon of the grain geometry evolution during a solid-solid phase transformation

involving a density change, assuming that conditions favor the roughly equant geometry. Hfigher density
B-phase grains (black) grow at the coners of less dense A-phase grains (gray). In time dt the old phase
loses the same mass as the new phase gains, and the entire aggregate collapses by the volume dV (white

gaps in c or white area in b). The grains supporting the framework (here the A-phase) change shape: the

A-A borders move inward, and the A-B interfaces move outward to preserve continuity (compare c and

b). That deviatoric deformation is related to the macroscopic dilatation of the entire sample. [The white

line in b) repeats the geometry in a)].

In step one (Fig. la), the grains of the denser phase B are in equilibrium with the

grains of old phase A. In step two (Fig 1c), during time interval dt a part of the A-grain

transforms to B-phase at the A-B contact. Due to the density mismatch (PA <pB), now

the transformed mass occupies space less by dV, which would open up a gap between

grains of the two phases (shown by white areas). In step three (Fig. lb), to preserve

continuity and avoid empty space, flow toward the boundary between the A-B phases is

required. For the geometry given, at least the A-phase grains would have to deform to

fill in the gap. On the other hand, in the same time period dt the overall volume

reduction dV (see Fig. lb) occurs on the scale of the aggregate. Thus, the grains

supporting the framework have to change shape in accordance with the aggregate volume



collapse. Controlled by the rate of the entire volume collapse, the incompressible A-

grains accommodate the total volume change by reshaping: the A-A interfaces move

inward, and the A-B interfaces move outward. Similarly, at the end of the

transformation, when they touch each other, the B-grains undergo the same kind of

deviatoric deformation.

B-grain a) b)

dV
dt

dL

reshaping B -grains

Figure M-2. Cartoon of the grain geometry evolution during a solid-solid phase transformation
involving a density change, assuming that the pressure along the phase-contacts causes the B-grains
(black) to grow first via development of thin films between the A-phase (gray) grains, and later through
thickening. In time dt the old phase loses the same mass as the new phase gains, and the entire aggregate
collapses by the volume dV (white area). The framework-supporting grains (here the B-phase) change
shape: the B-B contacts move inward (by dL), and the A-B interfaces move outward to preserve
continuity. That deviatoric deformation is related to the macroscopic dilatation of the entire sample.
[The white line in b) repeats the geometry in a).]

The grain geometry evolution could change dramatically if the pressure gradient

along the A-grain surface [introduced by its reshaping or externally by strong

nonhydrostatic stress (Green et al. 1992)] were large enough to control the

transformation front at the B-grain surface. Higher effective pressure would tend to

cause a speed-up of the reaction near the A-A contact (or at the surfaces experiencing

higher normal stresses) and a slow-down of the reaction closer to the A-grain corners. A

plausible geometry resulting is shown in Fig. 2, where B-grains develop a star-like shape.

As in the case considered above, there are two types of interfaces in the system, those

between similar phases and those between different phases. Once the B-grains touch

each other, they stop growing at the B-B contact areas. Moreover, the B-grains would

have to contract parallel to the newly formed films, with the centers of the "stars"



moving closer together, to accommodate the overall volume change (Fig. 2b). The

transformation proceeds at the A-B interface, where the complementing flow would be

directed from the shape-changing B-grain toward the A-grain. Since the B-grains adjoin

each other early in the transformation, they would undergo internal deformation

(thickening and shortening) throughout most of the reaction.

Although the two scenarios of transformational geometry are quite different, the

magnitude of the reshaping-grain surface displacement can be described in a similar way.

The inward displacement equals the decrease in the radial dimension of the entire piece

dL (see Fig. 2b). Considering the volume change in time, dt, we introduce the radial

velocity of the reshaping grain surface in 3D and 2D coordinates:

3D dL . L A D = L
Vin o dinEo -. (111-7)

dt 3 2

Since the reshaping grain is incompressible, the outward flux must be equal to the inward

flux:

v outS 1 u =Vin S in (111-8)

where Sout is the A-to-B contact area, and Sm is the similar-phase contact area. Note, that

although the mass of each grain is changing during transformation, the deviatoric

deformation considered here can be described as for an incompressible grain.

The last equations are written in terms of the macroscopic dilatation rate, but the

displacements they describe are purely deviatoric: they cause a change of grain shape, not

volume. The inward and the outward fluxes imposed at the grain surface create stresses

which drive flow of matter inside the reshaping grains. We propose that the gradients of

the internal flow velocities are the origin of the intra-grain strain rate during the

transformation.

Geometry effect, F,

The magnitude of the internal deformation is controlled by the amount of grain to be

displaced inward in response to the volume collapse. For each particular grain it depends

on the hardness and geometry of its neighbors. If we consider all the complexity of these



interactions, the problem becomes overwhelmingly difficult to solve. Instead, to

understand the general effect of grain reshaping on material rheology, we assume that the

rate of transformation is given, and simplify the grain geometry in Fig. 1 and Fig. 2 to

the two end-member situations shown in Fig. 4 and Fig. 3 respectively. Then we

calculate the second invariant of the deviatoric strain rate tensor inside the reshaping

grain, I2 = 505 /2, and compare the deviatoric strain rate, (i)= j (as in eq. 6),

averaged over the grain volume, to the ambient mantle strain rates in order to calculate

the reduction of the material viscosity.

Vout

Vin

Figure IH-3. Homogeneous deformation of the B-grain film occurring at the beginning of the
transformation in the scenario in Fig. 2. To accommodate the macroscopic volume collapse, the B-B
contact areas (in 2D, of length li) move inward with velocity vn.. To preserve continuity a flow occurs
toward the A-B contact with velocity v.u, across the surface distance l.

We begin with the simpler case of reshaping grain geometry, a B-grain cage growing

around the A-phase grains (Fig. 2). While the volume of the central part of the B-grain is

relatively small, the deformation of the B-grain wings is almost homogeneous.

Therefore, to calculate the deviatoric strain rate averaged over the B-grain volume at the

beginning of the reaction, (y)bck' we consider a pure shear deformation of a single B-

wing: a two dimensional brick, which shortens in the horizontal direction and thickens in

the vertical (see Fig. 3, where 'i and l0u in 2D have similar meaning as Sin and So, in 3D).

The inward velocity for the 2D rectangular brick would be:

in o 

in analogy with eq. (7). Since the off diagonal shear components, is , are zero for that

deformation, the second invariant of the strain rate tensor simplifies to I2 =k = k2

where the horizontal normal component is



1dx v
E X

xdt lo

Substituting the inward velocity, we write the averaged deviatoric strain rate as:

lin + lut . 1
i)brick 2l 2AVo (111-9)

where A is in terms of the fraction of the reshaping material: A = 1-

The "pure shear" approximation breaks down when the contribution from the central

part of the grain grows. The requirement of zero deviatoric strain rate at the grain center

and the high gradient of the flow at the radius of the central part (where the wings are

attached) enlarges the second invariant significantly. To estimate the average strain rate

of this highly heterogeneous deformation, we consider a more complicated grain

geometry and mass flux distribution.

0out

m

Vsurf

Figure II-4. Heterogeneous deformation simulating the reshaping of the A-grain in the case of the
equant geometry (as in Fig. 1) or of the B-grain in the late stage of the star-like geometry (as in Fig. 2b).
The flow of the incompressible circular grain is driven by boundary conditions on the radial velocity.
The flux inward with velocity vin across length 'in (in response to the macroscopic volume collapse)
equals the flux outward with velocity voutt across length lo. The surface velocity contrast v, is related to
the macroscopic dilatation rate.

The bulkier shape of the B-grain resembles the deformation state in the reshaping A-

grain of the round-geometry case (Fig. 1). The reshaping of the A-grain can be viewed

as viscous flow of an incompressible medium driven by surface boundary conditions on

the radial velocity. Then the amplitude of the deviatoric strain rate is scaled with the

surface velocity contrast, v. = vi + Vout, and the length scale is related to the ratio

between the outward and the inward flow areas. To get a qualitative estimate of the



deviatoric strain rate, we consider viscous flow of a 2D-circular grain of radius R which

is driven by its surface motion, with velocity contrast (using eq. 7 and eq. 8):

vL .V- " L . (111-10)
A 2/A

(see Appendix for complete derivation). The actual problem is very complex due to the

variety of grain geometries. Our choice of a circular geometry underestimates the

amplitude of the deviatoric strain rate because the introduction of any sharp edges or

corners will increase the flow velocity gradients (if the flux and the volume are kept the

same), and hence will raise the deviatoric strain rate, (i).
The second invariant of the strain rate tensor for 2-D cylindrical incompressible flow

in terms of shear and normal components of the deviatoric strain rate:

I2( (III-11)

is a function of position inside the grain.

On the local (r, 0) scale, the introduction of sharp edges in the grain geometry,

particularly at the triple junctions where the outward flow is close to the inward flow,

enlarges the flow gradients and therefore the second invariant significantly. For the same

reasons, the amplitude of I2 is sensitive to the relative size of the grains; it enlarges

locally around the A-B border at the beginning and end of the transformation. To

investigate these effects on the scale of the entire grain, we calculate the amplitude of the

deviatoric strain rate averaged over the grain:

( cir2e (\/2(r,6)) , (111-12)

where the strain rate partitions proportionally to the volume fraction. The weak (high

strain rate) outer layers of the grain would accommodate more strain compared to the

central ones. Later, when calculating the viscosity of the entire composite, we use an

approach which accounts for the effect of the interconnected weak layers (see eq. 16).

However, here we use a simple averaging to illustrate the similarity between the results



of a numerical evaluation of the (i) -amplitude in the general case (12) and the results of

analytical solutions in several distinctive situations.

First, let us consider the state of the transformation when the areas for outflow and

inflow are almost equal to each other. The surface boundary condition on the reshaping

grain can then be approximated by a monochromatic function, for example, a sinusoid

with a wavenumber equal to the number of outflow areas. The second invariant becomes

a radial function only, and the averaged deviatoric strain rate simplifies to:

(f) o c 2 Z (111-13)mono 2< -eo

At the very beginning of the transformation, the size of the B-grain is much smaller

than the A-grain, and its shape is close to spherical. Then the flow is mainly

concentrated around the B-grain and, being little influenced by the neighboring B-grains,

can be approximated as radially symmetric. The problem becomes similar to one of a

collapsing bore-hole (or pore) in glaciology or to a micro-flow described by Morris

(1992). The continuity equation in 3D-spherical geometry gives the radial flow velocity

as: vr = C/r 2 , where r is the distance from the center of the B-grain, and the constant

1ldV.
C = --- is determined by conserving mass across the A-B contact area. The

4i7 dt

deviatoric strain rate averaged over the grain volume becomes:

(fpore = 2fIn A o (111-14)
9 fm RB

where RA >> RB. If during the nucleation period the new-born grains are a hundred

times smaller than the old grains, the deviatoric strain rate can exceed the dilatation rate

by an order of magnitude. The larger the number of nucleation sites, the bigger the

transformational strain rate.

In a more realistic, general case (eq. 12), we evaluate the amplitude of (i)
numerically for two cases: when the number of A-grains equals the number of B-grains,

s= 1, and when the number of nucleation sites is four times more, s=4 .



To summarize the effect of the grain configuration, we plot the geometry function

F geo (as in eq. 6) versus the fraction of B-phase for the different approximations (9, 12,

13, 14) on the same axes (see Fig. 5). We display the areas where the approximation

does not work with dashed lines. Note that the "circle" case curves show a weak

dependence on s, which is in accordance to the "mono" and the "pore" approximations.

Since the Fourier set is not effective in expanding a delta-function, the "circle" case

blows up at f. -+0, 1. We thus have to bound this case by the value from the collapsing

pore estimation. Also, these curves exceed the "mono" approximation due to the

introduction of sharp edges (coupling between long- and short-wavelength flow).

Fgeom

10 -- -
pore, s=1 I/

circle, s=1
circle, s=4

5-

Lbrick mono

0
0 0.5 B-fraction 1

Figuire 111-5. The geometry function (the coefficient of proportionality between the deviatoric strain rate
of the reshaping grain and the volumetric strain rate of the entire aggregate) versus the degree of
trans-formation. The solid lines correspond to the areas of validity for the different approximations
considered. The "pore" and "brick" cases describe the beginning of the transformation in the equant and
the star-like geometry respectively. The "circle" is for the heterogeneous deformation of the contiguous
grains in the developed stage of the transformation, where s equals the number of the new-phase grains
per old-phase grain. The "mono" line corresponds to an idealized monochromatic deformation of the
reshaping grain.

Summarizing, the value of the transformational deviatoric strain rate is proportional

to the dilatational strain rate, with a factor of one to ten. A sharp geometry of the

transforming grains and a difference in the phase volume fractions enlarge the coefficient

of proportionality.



Volumetric strain rate, ev.1

The next step in evaluating the transformational strain rate is to calculate the macroscopic

volumetric strain rate, eo, (eq. 6). According to its functional dependence (5) the

dilatation rate can be expressed through the rate of the relative density or volume change.

Correspondingly, we consider two ways to determine evol.

One way is to estimate the rate of relative density change. Dealing with phase

transformations associated with mantle convection, one should keep in mind that

convective flow drives the material through the transformational pressure for a given

temperature. For a Lagrangian piece of mantle the pressure changes at rate proportional

to the flow velocity, v.. This velocity relates the volumetric dilatation rate to the

sharpness of the density change:

ivo =" .fd (III-15)
dzp

It is possible to estimate the thickness dz of the sharp changes in density by analyzing

seismic waves reflected from them (Engdahl & Flinn 1969; Whitcomb & Anderson

1970). Analysis of the reflection coefficient as a function of acoustic impedance contrast

across the phase change region constrains its thickness to about 1-4 km (Richards 1972;

Lees et al. 1983; Benz & Vidale 1993) for both major phase changes, at 400- and 670-

km depths. This does not necessarily mean that the transformation has completed inside

such a small pressure interval, but it assures that most of the density change dp occurs

within it (we discuss the nature of metastable transformations below).

Two uncertainties arise when using seismic reflectivity estimations. The first is that

the dilatation rate depends on the rate of vertical mantle flow. Secondly, the data

represent the overall change in density, without distinction as to whether it is mainly due

to a large number of new-born small grains, or to fast growth of a few grains born at the

beginning of the reaction, a distinction that is crucial for the rheology.

To resolve this dilemma we use an additional way of estimating e,0; we calculate the

rate of relative volume change. Assuming that the volume of a particular phase is V=NV,

(here V, is the volume of one grain and N is the number of grains), its change with time



can be written as dV/dt = V, dN/dt + N dV, dt , where dN/dt can be seen as a

nucleation rate and dV, /dt as a growth rate. Although it is very difficult to estimate the

nucleation and growth rates for the actual non-isobaric, non-isothermal solid-solid phase

transformations occurring in the mantle, one can at least estimate their relative

importance under specified conditions.

To describe a non-isothermal solid-solid transformation of normal hot mantle

material, an analytical approach was taken by Solomatov & Stevenson (1994). A phase

transformation between the a-# structure of multi-component olivine is assumed to

occur by the nucleation and growth mechanism. Due to the small concentration of

fayalite in mantle olivine, Mg1 Fe0 2SiO4 , there is a thin region where both phases coexist

in equilibrium and where the macroscopically observed density changes occur.

Depending on the particular pT-composition path taken by a piece of material, the

thickness of the two-phase region varies, directly affecting the seismic reflectivity

coefficient. Similar to many solid-solid transformations involving a density change, deep

mantle phase changes cannot initiate at equilibrium conditions. A finite protrusion into

the metastable region produces a driving force large enough to overcome an energetic

barrier created by the elastic stresses and the surface tension around a nucleus. Many

factors, such as chemical diffusion, multiple components, or an effective shape factor can

increase this metastable overstep further. If at equilibrium conditions the transformation

width is about 10-20 km (Rubie at el. 1990), sluggish kinetics (the transformational front

propagates slower than the convective one) and a large nucleation barrier (comparable to

the equilibrium width) can reduce the width to 3-4 km (Solomatov & Stevenson 1994).

The non-equilibrium reaction starts by an avalanche-like nucleation and proceeds

through a long period of return to equilibrium mainly through the growth of stable

grains. Since olivine consists of two components, growth is controlled by chemical

diffusion. Thus, the growth rate depends not only on the value of the metastable

overshoot, but also on the crystal size. The domination of one process over the other

allows us to view the overall volume change in terms of the nucleation rate,

dV/dt ~ V, dN/dt, during the nucleation period, and in terms of the growth rate,



dV/dt ~ N dV, /dt , during the rest of the reaction (if post-nucleation ripening can be

ignored).

Applying seismic reflectivity data, we estimate an order of magnitude volumetric

strain rate (due to uncertainty in the vertical velocity). To calculate the functional

dependence of avol versus depth for the phase change at 400-km depth, we apply

Solomatov's model. Both approaches give comparable results (see Results section).

Mixed rheology / weak framework

Introducing the degree of softening due to grain reshaping (eq. 4), we did not take into

account that only a fraction of the grains experiences the additional deformation, and that

the size and the number of the new-phase grains change continuously with time. The

heterogeneous distribution of the parameters controlling deformation (e.g., diffusion

coefficient, grain size and shape) strongly affects the rheological law of the entire

aggregate. There are several methods to calculate the volume averaged strain rate or

stress for a composite material. Here we apply a phenomenological approach suggested

by Handy (1994), who analyzed the flow laws of rheologically and structurally

heterogeneous rocks consisting of interconnected strong/weak phases. The advantage of

Handy's approach is that when calculating the degree of stress and strain partitioning, in

addition to the volume fraction of a particular phase, it also accounts for the viscosity

contrast between phases, as well as the impingement effect.

Since mantle phase transformations are mainly pressure-driven, it is likely that the

new phase would tend to form an interconnected frame (e.g. the geometry in Fig. 2 or a

developed stage of the reaction shown in Fig. lb). Due to smaller grain size and larger

intragranular stress, that phase might be weaker than the old, dissolving one. An

aggregate with an interconnected weak phase would tend to creep more easily than one

with isolated weak grains. To account for the particular configuration when calculating

the bulk rheology, we write the viscosity of the aggregate composed of strong (s) and

interconnected weak (w) phases:

17gg = 77wf w- + 17s1- fW fs-,(I-6



where 'q and f are the effective viscosity and the volume fraction, and 0<6<1 is the

parameter defining the viscosity contrast between phases, 6 = 7, /7, (Handy, 1994).

When the phases are very different, 6->0, the aggregate viscosity is mainly determined

by the weaker phase, which is compensated by its volume fraction. In order to reduce

the extrapolation ambiguities, instead of calculating the absolute value we consider the

reduction of the effective viscosity, ( = 17mantle/?laggr : the ratio of the ambient mantle

viscosity (when no transformation exists) to the viscosity of the aggregate undergoing a

phase transformation under the same pT-conditions. Substituting eq. (16) we obtain the

macroscopic effective viscosity reduction inside the transformational region:

= [7,f 2 .5_1 + 77s (I1_f!)2 f_1] (1-17)
71mantle mantle f

Here we evaluate equation (17) analytically for different types of mantle rheology, but

under the condition that only one creep mechanism operates. Later, in the Results

section, we calculate the viscosity reduction for the most relevant plastic deformation

mechanisms for the mantle: diffusion creep and climb-controlled creep (Ranalli 1991),

which can operate simultaneously.

Suppose that the ambient mantle and the transforming aggregate have a power-law

rheology with n=3. Then the reshaping phase would be weakened due to additional

deformation, and the viscosity contrast parameter is: 8 = (I matne /ransf) (as in eq. 4).

Therefore, for climb-controlled creep the viscosity reduction becomes:

(disI - + (i1- + f)2 f,~ , (III-18)

which can be further simplified for the high-viscosity-contrast phases (using eq. 6):

I 2k \2/3 .F ~2/3
dislI 0  r Wm2/3l= fW FgeomeVOl 23(111-19)

xW ( mantle mantle

Suppose that the ambient mantle and the transforming aggregate have a linear

rheology. That is, assume that the stresses are low and that diffusion creep, sensitive to



grain size, becomes dominant, defining a linear rheology with effective viscosity:

<xeff Oc d' (Frost & Ashby 1982). Then the newly growing phase would be weaker due

to reduced grain size. Let us consider the beginning of the transformation, when the new

grains are very small and the dissolving ones are about the same size, d, as the ones of

the ambient mantle. Then the viscosity contrast parameter is: 8 = (dB d)m , and for the

highly different phases the viscosity reduction becomes:

4'dlff 1K 0 -:1f j d). (111-20)dB"

Since the number of new-born and successfully growing B-grains may be constrained

by the saturation of the available nucleation sites, we express the volume fraction in

VB d N
terms of the grain number and size: = B B

3  Introducing the number of

nucleation sites per grain, s = NB/N, we write the viscosity reduction for diffusion

creep as:

dB(daffLr lao~ (III-21)

A greater effect is expected for material deforming by Coble creep (m = 3) when the

viscosity reduction is determined by the number of nucleation sites per grain, s. To

provide a noticeable softening during Nabarro-Herring creep (m = 2), the number of

nucleation sites has to exceed the grain size ratio: s >> d/dB-

RESULTS

Here we integrate our model of TS-phenomenon with available kinetic theory, seismic

and rheological data. Complications arise because the TS value is related to the

deviatoric deformation, so it varies laterally with the flow pattern. How important are

these variations? To answer, we first estimate the mean TS value for the two major

phase changes, at 400- and 670-km depths. Then we calculate the laterally varying



transformational softening and discuss the TS-effect on the geoid and on mantle flow

velocities.

Phase change at 400 km depth.

In this section we estimate the reduction of effective viscosity for the phase

transformation at a depth of about 400 km. We apply kinetic theory (Solomatov 1995) to

calculate the grain growth and the phase fractions as functions of time (depth for steady

flow). For the mid-point of the transformation we estimate the TS for power-law

rheology, and then we calculate the degree of softening for mixed rheologies using the

DMM technique and available rheological data for olivine.

fraction a) density, b)

3.7-
fB

0.5[X 
f

A ~3.6-

0 -
415 420 depth, 415 420 depth,

Figure 111-6. The olivine-spinel phase transformation of mantle sinking at velocity v. =5 cm year- at
depth 400 km and temperature 1800 K. An equilibrium thickness of the two-phase region is assumed as
10 km. The parameter characterizing the maximum overpressure (or supercooling) is p=60. Volume
fractions of the olivine phase (fA) and the spinel-structure phase (fB) are displayed versus depth (a). Most
of the 6 per cent density change occurs in the 2-3 km thick layer (b).

As was discussed in the Methodology section, we consider a transformation which

starts from high-temperature metastable conditions. The nucleation stage completes

rapidly and the relaxation proceeds through grain growth alone. We assume an

equilibrium thickness of the two-phase region of 10 km and a parameter for the

maximum overpressure (or supercooling) of p=60. Assuming that the mantle sinks

through the phase change region at a characteristic velocity of v. =5 cm year~1, we

calculate the volume fraction of dissolving, fA, and growing, fB, phases as functions of

depth (Fig. 6a). The major part of the 6 per cent density change occurs during the first 2-

3 km (Fig. 6b).
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Given the rate of density change we calculate the macroscopic volumetric strain rate

kkietic and plot it versus depth in Fig. 7 (thick line) together with the dilatation rate

evaluated from seismic reflections (eS is"" , dashed line) and a typical creep rate for the

mantle (yme =10-" sec-', dashed-dotted line). The theoretical curve, 5 k"etic (z)

reaches its maximum value of 5. 10-14 sec-' at a depth near the mid-point of the

transformation. The result is consistent with the estimate from seismic reflectivity data:

oisl" = 6 -10-'4 sec~'. where we applied eq. 15 and assumed that 6 per cent of the
vVodalod

density variation occurs in a 1.5 km thick two-phase region. Given 8e"" and a moderate

effect of grain-geometry, Fgeom =5, we calculate the transformational strain rate (y) (eq. 6,

thin line in Fig. 7)

sec _

10- 12 . seismi~c

0- 13 Vol
10l

10- -4 .kinetic__ __ _

15 mantle E Vol
10- 1

415 416 417 418 depth, km

Figure III-7. Strain rates versus depth of polycrystalline material passing through the transformational

conditions. The macroscopic volumetric strain rates, Skoe (thick solid line, calculated using the kinetic

theory) and 5 seisruc (dashed line, evaluated from the seismic reflections), are superimposed on a typical

creep rate of the mantle, imantle~ 10 - sec- (dash-dotted line) and the transformational strain rate, (M

(thin line, calculated given 5kinetic and F,=5).

Given volume fractions (Fig. 6a), transformational strain rate (Fig. 7), and creep rate

of the ambient mantle, and assuming power-law rheology we can estimate the viscosity

reduction using eq. 19. For high transformational strain rates, (?)>> ?mantle, we obtain

the effective viscosity reduction in the first 1 km of the reaction:

40 =25+35. (111-22)



Of course, variations of vertical flow velocity and ambient mantle deviatoric strain rate

would affect the TS value.

To estimate the superplasticity for a mixed-rheology mantle one needs to define the

deformation parameters: grain size, tectonic stress or strain rate, diffusion coefficients,

activation volume, etc., and their variation with depth. Unfortunately, no data are

available to describe the deformation of mantle material at the depths of the phase

transformations on geologic time scales. Extrapolation of results from laboratory

experiments by several orders of magnitude in strain rate and poorly constrained oxygen

fugacity introduce large uncertainties to the absolute values, but should still be

representative of their relative dependencies. To account for this we normalize the

constitutive relationships (Frost & Ashby 1982) and build a DMM to explore the relative

dependencies (Fig. 8). Although the preceding discussion is cast in terms of strain rates,

DMM are typically plotted as contours of relative effective viscosity in stress vs. grain-

size coordinates. We arbitrarily choose a reference grain size and stress where strain

rates from two linear rheologies (Coble creep, m=3 and Nabarro-Herring creep, m=2) and

power-law rheology contribute equally.

Contours of the ambient (no transformation) effective viscosity are calculated

according to Frost & Ashby (1982) and are shown in Fig. 8 by the thick solid lines.

These fields of dominant flow mechanism can be distinguished on the map. Below and

to the left of the NW-SE diagonal the material creeps mainly by diffusional flow;

viscosity increases with grain size and is independent of stress. For d<d, viscosity

decreases as d3, while for d>d, viscosity depends on d2, so the vertical contours of

effective viscosity are more closely spaced on the left side of the DMM. Above and to

the right of the diagonal power-law creep is dominant and the effective viscosity is

independent of grain size but decreases as stress increases.
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Figure 111-8. Deformation mechanism map for mantle material at a depth of about 400 km and
temperature 1800 K. The axes, grain size (abscissa) and deviatoric stress (ordinate), are scaled with
reference values chosen such that the three deformation mechanisms, climb-controlled creep (above and
right of the NW-SE diagonal), diffusion-through-lattice creep (right side, below the diagonal), and
diffusion-along-grain-boundaries creep (left side, below the diagonal) contribute equally at the reference
stress, grain size, and mantle strain rate. Contours of the effective viscosity of the non-transforming
mantle are shown by the thick lines. The contour levels relative to the reference value are displayed
along the right side of the map. The relative effective viscosity of the transforming mantle is shown by
the thin contour lines. The field forms a dislocational creep "plateau" of constant viscosity (right bottom
corner) controlled by the transformational stresses. A value of s=10 is assumed.

To construct a DMM for a superplastic mantle, we calculate the effective viscosity

(16) by converting the transformational strain rate from Fig. 7 into stress and display the

contours by the thin lines in Fig. 8. The transformational stress controls the viscosity in

the low stress power-law regime (at lower tectonic stress and large grain size): the

effective viscosity field develops a dislocation creep "plateau" of constant viscosity

(bottom right corner). For the data used in Fig. 8, the effective viscosity of the

transforming mantle reaches its maximum at the plateau with a value of about 5 per cent

of the reference viscosity. The effect of the transformation is small when the internal and

external stresses are comparable (upper part of Fig. 8) and/or when the grain boundary

diffusional regime becomes dominant (left side of Fig. 8).



By comparing the viscosities for the ambient (thick contours) and transformational

mantle (thin contours), we can determine TS value, (, as a function of the assumed stress

and grain size in the ambient mantle. There are three main regions of variation in TS,

corresponding to the three participating deformational mechanisms. The maximum

reduction, by over a factor of 1,000 in the bottom-right corner, occurs in the low stress,

large grain size regime. The diffusion creep region (vertical contour lines) is subdivided

into two areas. For did <1 softening is controlled by Coble creep (left contour (= 1.5),

while in the region dominated by Nabarro-Herring creep in the ambient mantle, the

reduction in viscosity due to TS results from moving the high-stress regime into this area.

If we constrain the number of nucleation sites to one (s=1), grain-size related

superplasticity provides only a small degree of softening - less than a factor of two. To

explore the effect of granularity, we show the effect of TS when s=10. In agreement

with eq. (21), the degree of softening equals the site number in Coble creep (far left).

The viscosity is 7 times less, compared to its value for the untransforming mantle during

Nabarro-Herring creep.

For a broad range of typical mantle parameters, the reduction of the effective

viscosity varies from 10 to 200 times. Of course, one should remember that in estimating

the transformational strain rate, we chose a moderate value for the grain-geometry effect.

Should the particular configuration cause larger internal strain rates in the aggregate, the

effect of transformational superplasticity becomes stronger.

Phase change at 670 km depth.

The solid-solid phase transformation at a depth of about 670-km is fundamentally

different from the a-fl transition because it involves a change in the chemical

composition between the components. The olivine and pyroxene-garnet components

transform into an aggregate of magnesiowustite and perovskite. Since there are no

reliable rheological data for these components, and no well-developed theory to describe

the kinetics of this phase transformation, we do not present a detailed analysis of

transformational superplasticity of the mantle at that depth. However, assuming that

chemical diffusion is a controlling factor in this non-isothermal reaction and that a



similar transformation-imposed strain-rate mechanism to the one we have been studying

operates, we estimate the effective viscosity reduction using the same approach we have

been using.

Given a 10 per cent density change across the 1 km thick phase change region, a

mantle flow velocity on the of order 5 cm/year, and a geometry effect Fgeom=5, the

transformational strain rate is ()670 = 7.5 -10- sec-'. Using eq. (19) we obtain a

reduction of viscosity in the power-law regime:

67s = 70. (111-23)

Transformational Superplasticity field.

Although anomalous softening is a characteristic feature at 400- and 670-km depths, its

magnitude varies with the pattern and vigor of the flow. The lateral variations of

viscosity within the thin layer couple the various wavelengths, introducing a non-

linearity into the dynamics of mantle flow. In this section we calculate the laterally

varying softening for an Earth model and analyze its frequency characteristics.

The maximum effect would occur if the mantle deformed by power-law rheology and

the softening were large enough to approximate it with eq. (19). The TS magnitude then

would be a power function of the spatial ratio between the radial flow velocity and the

deviatoric strain rate:

2/3

phase = vra (11-24)
p YmantledZ

where we assumed that the combined effect of the relative density change, the geometry

effect, and the volume fraction is of order unity. We built a compressible mantle model

with PREM density (Dziewonski & Anderson 1981) and reference viscosity profile W4a

from Hager & Richards (1989). Following the approach of Panasyuk et al. (1996), we

calculated the mantle flow velocity and strain rate kernels and convolved them with the

density anomaly model, a seismic tomography model converted with a dlnp/dln V

profile. For illustrative purposes we chose the global shear-wave seismic velocity



anomaly model by Masters et al. (1996), and the conversion factors of 0.056 and 0.09 in

the upper and the lower mantle, respectively. Note that this mantle flow model assumes

a Newtonian rheology, so we are not being self-consistent, but the results from this

model should serve as a useful first approximation.
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Figure III-9. Transformational superplasticity map at 670-km depth for a mantle flow model with lateral
density contrasts inferred from a global seismic tomography model (see text for description and
references). The viscosity decreases by a factor of 1 to 500, with the mean value of the reduction about a
factor of 90. It has order of magnitude variations at intermediate-to-long wavelengths (white and light
gray areas). The locations of the biggest viscosity reductions (dark gray areas) roughly correlate with the
major upwellings (such as beneath the Central Pacific, the North Atlantic, and south of Africa) and
downwellings (near the circum Pacific subduction zones, West Africa, and the South Atlantic) of the
mantle flow in this model. There are a few spots where the TS reaches 3 to 5 times the mean (the black
area).

The flow that develops is characterized by large-scale upwellings beneath the Central

Pacific, the North Atlantic, and south of Africa, and downwellings near the Circum

Pacific subduction zones, West Africa, and the South Atlantic. The locations of the

biggest viscosity reductions inside the transformational region at 670-km depth roughly

correlate with the major up- and down-wellings in this model. The TS-field shows that

viscosity reduces by 1 to 500 times (Fig. 9). The mean value of the viscosity reduction

due to superplasticity is about 90 and it has order of magnitude variations at



intermediate-to-long wavelengths. However, there are regions where the TS is 1 to 3

times the mean (dark gray areas), and a few spots where the TS reaches 3 to 5 times the

mean (the black area). That the lateral variations in TS are dominant at 1=6, as in Fig. 9,

can be understood from eq. (25). Since TS is related to the magnitude of the radial flow,

it fluctuates at half of the flow-dominant wavelength, which is l=3 for this viscosity and

density anomaly model. However, if density anomalies generate mantle flow with

increased power at the intermediate wavelengths [as for the models which include the

subducted-slab-associated density anomalies, (e.g. Hager & Clayton, 1989) or as for

regional seismic tomography (e.g. Grand 1994)], the power of the TS-field would tend to

flatten, increasing the significance of short wavelength variations.

TS effect on mantle flow

The effect of a uniformly softened layer on mantle flow with linear rheology is

straightforward to investigate. However, to evaluate the effects of coupling of different

harmonics one needs to apply a non-linear analysis or numerical methods. We approach

some aspects of the problem below, but the complete analysis is beyond the scope of this

paper.

Previously, we briefly discussed the effect of transformational superplasticity on

global mantle flow (Panasyuk et al. 1996). Particularly, we evaluated the system of

equations governing mantle flow across an assumed uniform viscosity phase

transformation region and reduced it to a set of boundary conditions in the spherical

harmonic domain [eq. 40 in Panasyuk et al. (1996)]. However, in the case of a thin layer

with laterally variable viscosity, the boundary conditions across this layer should be

written in the space, not the frequency, domain. For a thin layer with significantly

reduced viscosity within it, the stresses can be considered as continuous across the

transformation region. The vertical velocity jumps, preserving continuity. The lateral

velocity also changes across the layer:

Av, (0, p)= -2((6, p)i,rT (, (p)Az . (111-25)



Two interesting phenomena result. One is that the sign of the jump is controlled by

the sign of the ambient shear strain rate. This leads to an interesting change of the

mantle flow in the transition zone (between 400 and 670 km depth). Another is that one

can recognize the places in the mantle where the greatest perturbations of the lateral flow

occur.

For flows with a convecting cell center located in the lower mantle, the sign of the

shear is similar at both transformational depths. Therefore, the velocity changes in a

similar fashion. But what happens if the shear changes sign between the two slippery

layers? The stream lines of this current would bend from a circular toward a square

shape, so the flow would be "squashed" between the transformational depths. To

investigate this, we use the same flow model with the W4a viscosity model.

surface 1=12
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670-
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depth, km
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Figure 111-10. Azimuthal velocity of the flow excited by a unit density anomaly of harmonic degree 12
located within the transition zone, at 525 km depth. When transformational superplasticity is included at
the phase transformations at 400- and 670-km depths (thick line, mPh =100), there are significant shears
across the two-phase regions. A similar effect is observed for any wavelength flow driven by a source
located within the transition zone. The discontinuity in the radial gradient of the azimuthal velocity
across the transformational layer is related to an abrupt shear strain rate reduction below 670-km depth
(which is proportional to the degree of lower mantle hardening assumed in the viscosity model).

Fig. 10 illustrates the effects on the azimuthal flow velocity excited by a unit density

anomaly of harmonic degree 12 at 525 km depth -- within the transition zone, at a depth

where we expect substantial density contrasts at this wavelength from subducted slabs.

When transformational superplasticity is included at both 400- and 670-km depths, there



is significant shear across the phase transitions (thick line in Fig. 10), with "plug flow"

within the transition zone. The increase in lateral velocity would facilitate mixing across

the two-phase regions at 400- and 670-km depths. A similar effect is observed for any

wavelength flow driven by a source located within the transition zone. Note that,

although the radial gradient of the azimuthal velocity is discontinuous across the

transforming layer, the shear stress is still (nearly) continuous due to the compensating

effect of the vertical velocity change with azimuth and the relatively small effective

viscosity.

To estimate the change in the horizontal velocity field for a laterally varying viscosity

reduction, we calculate the shear strain rate components for the mantle model described

in the previous section and substitute them, together with the TS field (as in Fig. 9), into

the boundary conditions (25). By this we assume that the deviatoric stress and the radial

velocity at each wavelength are only slightly affected by the TS-induced coupling. Fig.

11 shows the map of the lateral velocity near 670-km depth, with the maximum arrow

length equal to 2 cm year-. The black arrows show the direction and the amplitude of

the horizontal velocity just above the 1-km thick transformational region and the gray

arrows show them just below the region.

Significant changes in the horizontal velocity are observed over the major

up/downwellings (such as the East Australia, South America, and South Alaska down-

wellings, and the North Atlantic and South Africa upwellings) in Fig. 11. To interpret

this, we combine eqs. (24) and (25) and obtain the result that the absolute vertical rate of

the current defines the largest magnitude, and the ambient stress determines the sign of

the lateral velocity change:

Av oc abs{ Vrad sign+ .rp

Note that, in contrast to a single-wavelength flow, in the multi-wavelength flow the

shears are non-zero where the current is vertical. Given slab trajectories depicted by

regional seismic tomography, it might be possible to relate the change in the dip angle to

the amplitude of the softening inside the transformational region.
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Figure I-11. Map of lateral flow velocity across the 670-km transition for a compressible mantle flow
model with W4a viscosity, with lateral density contrasts inferred from a global seismic tomography
model (see text for references), and the TS field as in Figure 9. The maximum arrow length equals 2
cm/year. The black arrows show the direction and the amplitude of the horizontal velocity just above the
1-km thick transformation region and the gray arrows show the azimuthal velocity just below the region.
Large changes in horizontal velocity are observed over the major up/downwellings (such as the East
Australia, South America, and South Alaska downwellings, and the North Atlantic and South Africa
upwellings).

TS effect on the geoid

Geoid anomalies are affected by TS through a change in the dynamic topography at the

surface and the core-mantle boundary. In general, the presence of thin low viscosity

layers in the upper mantle facilitates turning of the flow in the vicinity of the surface,

acting like a distributed zone of low viscosity. The inclusion of TS shifts the long-

wavelength geoid kernels to more positive values (thick lines in Fig. 12). The situation

reverses for short-wavelength sources (e.g., 1=12) when the center of a convecting cell is

above the low viscosity layer; the geoid kernels shift to the left (Panasyuk et al. 1996).

Fig. 12 illustrates the effect on geoid kernels at degree 2, 5, and 12 for a compressible

mantle model with the W4a viscosity profile.
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Figure III-12. Geoid anomaly kernels for a compressible mantle model with W4a viscosity. The
inclusion of TS at phase transformations at 400- and 670-km depths shifts the geoid kernels to more
positive values with the shaded area showing the change in kernels as Phase increases from 1 (thin lines)
to 100 (thick lines). The situation reverses for the short wavelength sources (e.g., I=12); when the center
of a convecting cell is above the low viscosity layer, the geoid kernels shift to the left, as Phase increases
from 1 to 100.

The effect of the reduction of viscosity by a factor of 100 in 1-km thick layers at 400-

and 670-km depths on the long-wavelength geoid is comparable to the effect of

increasing the viscosity of the lower mantle by 50 per cent. The effect on the short-

wavelength geoid is similar to extending the boundaries of the upper mantle low-

viscosity zone down to 450-km depth.

SUMMARY

We present quantitative and qualitative analyses of the transformational superplasticity

(TS) phenomenon applied to creeping mantle material undergoing a solid-solid phase

transformation with a density change. To accommodate the volume change, there must

be a reshaping of the frame-supporting grains. We relate the corresponding deviatoric

strain rate of the reshaping grains to the macroscopic dilatational strain rate of the entire

aggregate and show that the transformational strain rates can exceed the dilatational ones

by an order of magnitude.

We calculate the degree of the effective viscosity reduction for mantle material

within the two-phase regions at 400 km and 670 km depths. We estimate that the mantle



becomes softer by one to two orders of magnitude in the power-law (n=3) regime. The

viscosity reduction would be even more significant in a low tectonic stress environment,

where the relatively high transformational strain rates and stresses alone control the

effective viscosity of mantle material. In the diffusional creep regime the granularity of

the new phase defines the degree of softening, ranging from none to a factor equal to the

number of nucleation sites per dissolving grain. Applying the same approach to the

phase change at 670-km, we estimate that mantle viscosity falls by two orders of

magnitude or more due to the larger volumetric strain rates observed across that phase

change region and the lower tectonic strain rates due to the higher viscosity of the non-

transforming, ambient mantle material.

The magnitude of transformational superplasticity varies with the pattern and vigor of

mantle flow. The lateral variations in TS-magnitude introduce a coupling between flows

of different wavelengths. We use a flow model for a compressible Earth, a seismic

tomography-based density model and a viscosity structure supported by geoid studies to

calculate the TS-field inside the 1-km-thin phase transformation layer at 670 km depth.

On average, the viscosity decreases by two orders of magnitude. The TS-field varies by

one order of magnitude at intermediate-to-long wavelengths. However, there are regions

where TS is 1 to 3 times its mean, and a few spots where it reaches 3 to 5 times its mean.

Being related to the magnitude of the radial flow, TS fluctuates at half of the flow-

dominant wavelength, increasing the significance of short wavelength variations. The

locations of the biggest viscosity reductions roughly correlate with the major up- and

down-wellings of the flow.

The presence of the thin soft layers causes an abrupt change in the lateral velocity of

the flow. Depending on the position of the driving density anomaly relative to 400- and

670-km depths, the corresponding currents are refracted by the two transformational

regions in a similar or an opposite fashion. Density anomalies inside the mantle

transition zone develop a "plug flow" within the zone. When compared to the flow

speeds at the same location, the lateral velocity variations across the thin phase change

region are 10 to 20 percent nearly everywhere in the mantle. However, the biggest

refraction by the slippery layers is observed within the major up- and down-wellings.



We also show that incorporation of transformational superplasticity changes the

geoid. The effect on the long-wavelength geoid is comparable to a 50% stiffening of the

lower mantle, and the effect on the short-wavelength geoid is similar to an extension of

the upper mantle low-viscosity zone down to 450-km depth.

Based on the analysis conducted, we speculate on some other possible effects of

transformational superplasticity on the behavior of mantle material and the flow pattern.

We hypothesize that the TS phenomenon may help to explain the difference in the

character of tomographic mantle models across the region at 670-km depth and the

richness of slab structure revealed by regional tomographic models.

The greatly increased strain rates inside the transformational region would facilitate

the mixing (stirring) of temperature and compositional heterogeneities carried by the

flow. The small vertical scale of the enhanced strain-rate area eases the breaking down

of the heterogeneity length scale. The fact that the TS-effect is maximum in the areas of

intense vertical motion suggests that it facilitates mixing most in these regions.
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APPENDIX

We describe here the deformation state of a reshaping grain with a nearly round

geometry (Fig. 1). We approximate the reshaping as viscous flow of a 2D-circular grain

of radius R which is driven by its surface motion, with velocity contrast:

v R . (A 1)I -8 EO

as in eq. (10), no body force is considered.

The governing equations for incompressible viscous flow are continuity: divv = 0, and

motion: Va = 0, where we assume that the stress and strain rate tensors are linearly

related, Y = 277eff . Since the equations are linear and the coordinate vectors are

orthogonal (we use a 2D cylindrical (r, 0) coordinate system), we can separate the radial

and angular variables and express the flow parameters through their Fourier expansion.

Then the radial and tangential velocities can be written as:

v,(r,0) = Xv'(r)cos k0 and v, (r,0) = v (r) sin k6 ,

and the normal and shear stress components as:

ar(r,6) a,. (r)cos k0 and ,O (r,)=X ,(r) sin k0 .

Similarly, we expand the surface velocity, vsuf, into a Fourier set, and approximate it by a

rectangular function of period k (k = 4 in Fig. 4 assumes that the number of new-born B-

grains is the same as A-grains, s = NB/NA = 1):

K =2v sinrk AA
Vsr = Eakcos k8 , where ak = 2v - , (A 2)

k=4 IC



(later we omit the summation limits unless they are different).

To solve for the stresses inside the grain, we use a well-developed propagator

technique. Introduction of the radial-dependent vector:

U= vr 4k7 a, r kr (A3)

allows us to rewrite the governing equations in the form of the first-order matrix

rd
differential equation: -u = Au, where the matrix A is:

dr

-1 -k 0 0

k 1 0 4k
A= 1/k 1 1 -k (A 4)

1 k k -

The solution of the system can be expressed as:

u(r) = P(r, ro)ukr),

where the propagator for cylindrical coordinates is:

P(r,r)= .r)

r

Characteristic numbers for the A matrix are: 2'2 = ±(k +1) and A, = ±(k -1).

To propagate the flow variables from one boundary to another, we write the

boundary conditions at a single radius. That is, given the variables at the grain center

Vr 0 = V4 0L, = C,'|, = 0, we propagate them to the grain surface:

- T

u(R) = ak 1 23 P33 P43
13 13 13

Calculating the propagator, we get:

u(R) =ak[I k+2 (k+1)(k-2) _k+1 ] (A5)
k 2k t 2k I

Now all the flow parameters can be calculated from the surface inside the grain as:



u(r) = P(r, R)u(R). (A 6)

Since the flow is driven by periodic boundary conditions, and the deviatoric strain rate is

zero at the grain center, the normal and shear components of the deviatoric strain rate

tensor have similar radial dependence f, (r):

i,(r,6) = If,(r) cos k6 and ir (r,O) -2'f(r)sin k6. (A 7)

(the same is true for flow in a 2D half-space). That feature allows us to obtain an

analytical solution. Defining the radial dependence of the deviatoric strain rate as:

fk(r) = ,(r) = -4,(r) = -4,,(r), we write the matrix equation for the stresses only:

rd [u31 [1 2 . .[U3  (A 8)
dr u4 k 2k-iL u4 _

Convolution of the new propagator with the boundary conditions (A 5) gives the radial

component of the deviatoric strain rate:

ak(k +1) r )*Afk(r)= - .~k (A 9
r R

The amplitude of the deviatoric strain rate is defined in terms of the second invariant

of the strain rate tensor: (r, 6) = I2(r, 0), where the latter is defined in terms of the

strain rates, I 2 - 2 +k2, for a 2-D cylindrical incompressible flow (A 7 ). On the local

(r, 0) scale, the large, sharp contrasts in the flow velocity cause high amplitudes of the

strain rates, which increase the second invariant significantly. To investigate these

effects on the scale of the entire grain, we calculate the amplitude of the deviatoric strain

rate averaged over the grain:

R 27r

( 2) f(r, 6)rdrd6, (A 10)

where the sub-integral expression is simplified to the following:



K K-1 K

I~ ~ +m 1:X+2:X,1 .COs(k - m)6 (A 11)
k=2 k=2 m=k+1

ak k+1( r - .nd 2ar
with Xk= -- and7 1 - 2-

a1  2 R R

We calculate the integral numerically for different k and K to explore the effect of fine

granularity (when the new phase develops many fine grains instead of a few coarse ones)

and the effect of sharp grain edges.

To assist understanding of the numerical results, we consider a situation that allows

an analytical solution. When the areas for outflow and inflow are almost equal to each

other, the surface boundary load on the reshaping grain can be approximated by a

monochromic function, for example, a sinusoid, with a wavenumber equal to the number

of outflow areas. Then the second invariant becomes a radial function only, I2 = f (r),

and by substituting eq. A 9, we simplify eq. A 10 to the following:

2a k+1 ir k+1 .
R k+2 2 k+2 (A 12)

where a = irvin/2. The monochromic approximation shows that the averaged deviatoric

strain rate depends only weakly on the load wavelength.





Chapter IV. GRAVITATIONAL CONSTRAINTS ON THE MANTLE VISCOSITY

PROFILE. 3

INTRODUCTION

The deviations of earth's gravitational potential field from a hydrostatic pattern are due to

lateral density contrasts, which are related to thermal and/or compositional variations

within the planet and to the deflection of external and internal boundaries, such as the

surface, the core-mantle boundary, and others related to chemical or phase changes.

Over thousands of years the large-scale internal density anomalies force the mantle rocks

to creep; the consequent mantle flow deflects the boundaries. The long-wavelength, non-

hydrostatic geoid is highly sensitive both to the internal density distribution and to the

radial stratification of mantle viscosity (Richards and Hager 1984; Ricard et al. 1984).

Seismic tomographic imaging of the structure of the interior (e.g., Dziewonski et al.

1977; Clayton and Comer 1983; Su and Dziewonski 1991; Masters et al. 1996; Ekstrom

and Dziewonski 1996), as well as geodynamic models of slab reconstructions (e.g.,
Hager 1984; Ricard et al. 1993) allow us to estimate the density distribution within the

mantle. An analytical description of mantle circulation driven by those anomalies can

give an estimate of the deflections of the equipotential surfaces and the mantle

boundaries (e.g. Richards and Hager 1984; Ricard et al. 1984; Hager and Clayton 1989;

Forte and Peltier 1991; Dehant and Wahr 1991; Panasyuk et al. 1996). The resemblance

of a modeled geoid to the observed geoid field is used as a measure of the feasibility of a

proposed mantle viscosity profile (e.g. Hager and Richards 1989; Ricard et al. 1989;

Forte et al. 1994; King 1995).

A viscosity stratification inferred from the gravitational fit should not be sensitive to

the fitting criteria, e.g., variance reduction (e.g., Mitrovica and Forte 1997), degree

correlation (e.g., Ricard et al. 1989), or power spectrum (Cizkova et al. 1996), used in

the inverse method. However, several distinct viscosity profile families are found by the

3 to be submitted to Journal of Geophysical Research, by Panasyuk, S.V., and B.H. Hager, 1998.
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above mentioned inverse studies, which all satisfy observed geoid reasonably well. In

order to improve the resolution of the viscosity structure, the most recent studies carry

out joint inversions, where, in addition to gravity, simultaneous fits to other observables

are performed, such as to seismic data (Forte et al. 1994), post-glacial rebound data

(Mitrovica and Forte 1997), or dynamic topography estimates (Quinn and McNutt 1997).

An interdisciplinary approach, assembling results of observational, analytical, and

numerical studies, can bring us closer to understanding the mantle viscosity structure.

However, the downside of such an approach is that to carry it out effectively, one ought

to consider the reliability of the information, that is, include an error analysis of the data

(measured or modeled) and an estimate of the model deficiencies.

We suggest carrying out a joint inversion, simultaneously accounting for these error

sources. We identify three classes of errors, related to the density distribution (e.g.,

uncertainty in the seismic tomography models), to insufficiently constrained observables

(e.g., dynamic topography derived from the surface topography and bathymetry after an

ambiguous correction for static topography, such as the subsidence of the oceanic

lithosphere and the tectosphere), and to limitations of our analytical model (e.g., absence

of lateral viscosity variations). We estimate the errors for geoid and dynamic topography

in the spectral domain and define a fitting criteria. A minimization function weights the

squared deviation of the residual quantities with a corresponding error, so that the

components with the most reliability contribute to the solution more strongly than the

less well constrained ones. Following this approach, we decrease the contamination of

our results by errors.

METHOD DESCRIPTION

Forward, analytical model.

We assume that mantle rocks creep slowly subject to stresses generated by rising and

sinking material. Following the now standard approach (Hager and O'Connell 1981), we

employ the equations of continuity and motion, the constitutive equation, which relates

stress and strain rate linearly, as for a Newtonian viscous rheology (for large time and



length scales). Self-gravitation is accounted for through Poisson's equation. We consider

also the gradual (due to pressure) and step-like (due to solid-solid phase change) radial

variations in rock density throughout Earth (Dziewonski and Anderson 1981) and the

corresponding variations in gravitational acceleration (Panasyuk et al. 1996). In

addition, we assume a uniform ocean layer overlying a free-slip Earth surface, and

azimuthal symmetry of viscosity, and we consider possible softening of the deforming

rocks during phase transformations (Panasyuk and Hager 1997).

We modify the previous analytical models in order to handle a continuous radial

variation of mantle viscosity, together with step-like, discontinuous changes. The latter

are meant to simulate major discontinuities in viscosity, which are expected to occur

across phase change boundaries (Sammis et al. 1977). In ambient mantle of a constant

solid phase, however, the effects of gradual pressure and temperature changes will lead to

a continuous variation of viscosity (Ranalli 1991). Under the old formulation, to

simulate continuously varying viscosity, the number of isoviscous layers within the

mantle had to be increased at the cost of over-parameterization of the viscosity profile

and of significant slow-down of computer calculations (see Appendix B). These become

a serious problem for a highly non-linear inversion when thousands of runs are to be

done, as in the case we discuss below.

The constraint of constant viscosity within a layer comes from the analytical method

used to solve the matrix differential equation, the so-called matrixant, or propagator

technique. This method requires an exponent matrix to be constant from the top of the

layer to the bottom in order to provide permutability in subintervals (Panasyuk et al.

1996). We modify the mathematical representation of the governing equations and the

boundary conditions, and the subsequent matrix differential equation to allow for

exponential variations of viscosity within the layers (see Appendix A). The matrixant

solution is still valid, because the new exponent matrixes are permutable (to the accuracy

of the solution for compressible flow).

We solve the resulting system of equations with respect to ocean-mantle boundary

deflection, Sa, and potential anomaly, V,, at the ocean surface (see Appendix A). By

definition, the Green's function, V,(rl), represents a gravitational potential disturbance at

the earth's surface caused by a unit density anomaly of degree 1 within a layer of unit



thickness located at radius r. To obtain the geoid anomaly field, 6N, or its spherical

harmonic expansion coefficients, we convolve the potential Green's function with the

density perturbations, D,,, over the radius, and approximate the integral by the sum:

1 omb 1 I

SNI = f fVi(r, l)D,,,(r)dr ~ Vi(r, l)D1,(r)Ar , (IV- 1)
gsur cmb gsur

where the summation is done over I-propagation layers of thickness Ar, centered at radius

r, (the notation is consistent with Panasyuk et al. 1996, unless stated differently). The

number, I, and the distribution of layers is chosen to provide a sufficient accuracy of the

minimization function (see an example in Appendix B). The lateral density anomaly is

expanded in a spherical harmonic set:

D(r,0,qp)= iD,,,(r)Y,(6,(p),
im

where the Dim coefficients can be obtained from a tomographic model of seismic velocity

anomalies, dv/v:

Dm(r) - p . (IV- 2)
d ln v (v )IM

The conversion factor, dlnp/dlnv, depends on the type of seismic velocity (e.g. v, or

vs), temperature, pressure, and the compositional state of the mantle, and usually on the

type of tomographic inversion. However, due to the large uncertainties of these

dependencies, we consider only its radial variation, approximated as constant within

three layers: 0-220, 220-670, and 670-2891 km depth range. The density anomaly field

can also be derived from a geodynamic model tracking slabs and reconstructing their

trajectories within the mantle. In that case, we consider the scaling factor as the density

contrast between the slab and the ambient mantle.

The forward solution described above provides us with the predicted geoid anomaly

at the surface, SN, and the dynamic topography at the ocean-mantle boundary, Sa, (with

the density jump across it given by Apa). These two fields are to be compared with the

observed ones during the inversion. The gravitational potential field is provided by



satellite geodesy (GEM-L2, Lerch et al. 1983). To obtain the non-hydrostatic geoid, we

correct the observed geoid for J20= 1072.618- 10-6 and J40= -1.992-10-6, according to

Nakiboglu, 1982 (assuming zero uncertainty associated with the correction). The

dynamic topography field is unavailable for direct measurement; therefore, we derive the

surface undulations from the observed topography and bathymetry by correcting for the

deformations due to static loads (see Chapter V). Since the resulting dynamic

topography refers to the deflection of the air-mantle boundary (with the density jump

across Ape+Apa), we correct for the difference in density across the boundaries and

obtain the spherical harmonic coefficients for the dry-planet dynamic topography by

convolving with the density anomaly:

ST, =(r, A)Dp (r)Ar (IV- 3)AlmAP e+Ap a I&rlDi~)r

The predicted fields, SNm and STM , and the model parameters, such as viscosity and

velocity-to-density (or trajectory-to-density) conversion factor, are used for setting up the

inverse problem discussed below.

Inverse problem

Traditionally, an inverse problem deals with the minimization of a multivariable function

which determines the fitting criteria. Some of the previous studies utilized the reduction

of variance between the two fields (e.g., Hager and Clayton 1989; Mitrovica and Forte

1997; Forte et al. 1994; King 1995), or the increase in degree correlation (Ricard et al.

1989), or the resemblance to slope of the geoid spectrum (Cizkova et al. 1996).

However, none of the mentioned methods takes into account the errors associated with

the forward and inverse problems.

We suggest using a minimization function which weights the misfit of a quantity by

an error related to the uncertainty of measuring, observing, and modeling this quantity.

Such a treatment makes the fit to a well-determined parameter much more important than

the fit to a poorly resolved one. In the case of a joint inversion, when the fit is performed

to two or more quantities simultaneously, the minimization function is determined for



each quantity separately, and their sum is minimized. For example, when we perform a

joint inversion for the viscosity profile (see Results section later) based on the fit to the

geoid and the surface dynamic topography, we minimize a function in the spectral

domain:

fgoi 2e + ft2 (IV- 4)

The fitting criteria for any of these fields, say an F-field, is:

1 [Fobs -mod] 2

f l ]2 (IV- 5)
nF Im Ulm

where the error includes contributions from the different error sources,

n2 = sy o+bs m 2ode , and the scaling factor nF equals the number of lm-coefficients

of the F-field for which the error is defined. The errors associated with the density

anomaly distribution, a2  reflect the uncertainty in the velocity-to-density conversion

factor, the seismic anomalies, and the location and density contrast of slabs. The second

type of error, a2 , is related to the uncertainty in an observed field, such as the geoid (or

gravity, or dynamic topography). The errors amode1 contaminate the terms which are

mostly affected by the incompleteness of the forward model (e.g., a short wavelength

signal when lateral variations of viscosity are ignored). In cases when the errors are

related to a poor spatial coverage, e.g., an estimate of the dynamic topography under the

continents vs. under the oceans, one could use a minimization function in the spatial

domain, where the errors are defined in a similar way as above but as a function of

position.

Once we estimate the errors (see the description in the next section) and define the

observed fields (see the description of a model of dynamic topography in Chapter V), we

characterize the minimization function and proceed with an inversion for mantle

viscosity. To perform an inversion, we use an algorithm based on a Sequential Quadratic

Programming method (Matlab 5, 1997), where in order to determine the search direction,

the gradients and the second derivatives are estimated numerically. The method analyzes

the second derivative matrix, the Hessian, constructs a quadratic multi-parameter



function and determines its minimum as a tentative solution. The Hessian is usually

modified or updated until the inversion converges successfully (defined by the custom-

supplied tolerance level), or aborts due to exceeding the control parameters (e.g., the

number of iterations).

In order to minimize the fitting criterion function, the inversion program is allowed

to vary the viscosity profile and the density scaling factor within the specified

stratification and value range. To reduce the number of inversion parameters and yet

achieve fast convergence and good resolution, we conducted an elaborate study altering

the number and the depths of viscosity layers, choosing constant and exponential laws for

viscosity variations. As a result we define nine parameters to successfully and optimally

describe mantle viscosity. This parameterization is based on knowledge that the effective

viscosity of the mantle can change abruptly across (Sammis et al. 1977) and within

(Sammis and Dein 1974) the phase change regions; otherwise it varies continuously

under the influence of temperature and/or pressure for a constant-phase material (Ranalli

1991). The viscosity jump across a transformation and the reduction of viscosity within

the region we describe by two parameters, a total of four for the entire mantle: two for

the 400-km and two for the 670-km phase boundaries. We also approximate the

viscosity variation associated with the thermal boundary layers near the ocean-mantle

and core-mantle boundaries with discontinuous jumps in viscosity at 75-km and 2600-km

depth. Continuous variations of viscosity are generally described as an exponential

function of activation energy Ea and volume V, pressure p, and temperature T,

i(z) = A d_ exp Ea + , (IV- 6)
a -1 RT

with the proportionality term related to the stress -and grain size d dependence of the

creep mechanism (Ranalli 1991). We assume that outside the phase and thermal

boundaries the total radial variation of the under-exponent functions is close to linear,

and the pre-exponential term changes weakly with depth (that is, is independent of stress

and grain size as well). Then the viscosity can be approximated with a single exponent

slope within the layer of constant phase. Under this assumption we prescribe a viscosity

parameter above each inner boundary: 400-km and 670-km phase changes, and 75-km



and 2600-km thermal boundaries. The viscosity of the mantle around 2500-km is taken

as a reference value, with the other eight values permitted to vary during the inversion.

Note that all nine parameters used to describe the viscosity profile are pinned to a

particular depth level, and only their values can be changed. Such an imposed

inflexibility on the viscosity stratification is based on the fairly hard constraints on the

depths of phase change regions and on the existence of thermal boundary layer in the

convecting mantle. The ranges for viscosity parameter variations allow but do not

require reduction of viscosity within the phase transformations, or discontinuous changes

across them.

The density conversion factor is kept uniform in the upper and in the lower mantle,

with these two values inverted for during each solution. We chose this simple

parameterization for two reasons. First, the amplitude of the conversion factor (and even

its sign) is still highly ambiguous (explanation follows). The possibility of an erroneous

estimate of this factor for the whole mantle increases because it is used as a

multiplication term between the kernels and the seismic anomaly data (eqs 1 and 2).

Therefore, varying the conversion factor spatially allows the alteration of the

geoid/topography kernels and/or the density anomaly signal directly, creating numerous,

mainly artificial, density disturbances within the mantle.

Although mineral physics experiments (e.g., Karato 1993; Chopelas 1992) provide

some constraints on the value and variation of the dlnp/dlnv-factor, the conversion from

velocity to density anomalies is not obvious. Besides being dependent on pressure,

temperature, composition, and melt fraction in the crust and mantle, the factor also

depends on the characteristics of a particular tomographic inversion, e.g., the types of

seismic waves involved, the Earth reference model, and the method of inversion used.

The most poorly constrained region is the top part of the upper mantle, where the effects

of chemical composition (e.g., continental tectosphere, Jordan 1988) in combination with

thermal variations and anelasticity obscure the interpretation of seismic anomalies. The

signal visible to the seismic waves near the surface has contributions from static surface

features, such as the crust and affixed lithosphere ("frozen in" oceanic lithosphere and

tectosphere coupled to the continents) as well as from the features participating in

convection (plates and hot ridges). Sharp horizontal heterogeneities get smeared out over



larger scales and radial variations get smeared out over depths. To reduce the

contamination of our results by the high uncertainty of the signal from the top part of the

upper mantle and to avoid double counting the dynamic features, we make two

assumptions. First, we account for the crustal and lithosphere static load in our model of

dynamic topography (see Chapter V). Second, we assume that within the errors

considered, the first 220-km from the surface do not contribute to the density anomaly

signal (though this does not stop the top layer from participating in the mantle flow). In

addition to the seismic anomaly models, we also consider a geodynamical model which

identifies the slab trajectories based on the locations of earthquake epicenters. Assuming

that the slabs consist of cold (and presumably heavy) material, we assign a conversion

factor (similar to velocity-to-density) which equals the density contrast between the slab

and the ambient mantle. These two types of density distribution models, seismic

tomography and slab recovery, provide us with a wide spectrum of input data.

Error analysis

The intricate part of the approach is the way in which one estimates the errors. For

statistically well-represented problems, such as seismic tomography, which deals with the

thousands arrival-times of events, yet is often of poor spatial coverage, there are several

successful error-analysis methods (e.g. Tarantola 1997) which help to determine a well-

suited solution. However, having a dozen density distribution models, several analytical

and numerical studies of convection, and a few measurements of observed fields, we

suggest here a first approximation of an error analysis to be applied to the inversion for

mantle viscosity problems.

Uncertainty in density anomaly distribution, crdensity

Recent developments in seismic tomography techniques, together with a growing data

base and computerized methods of data processing, have made it possible to produce

several elaborate models of seismic velocity anomaly distribution inside the mantle (e.g.,

Masters et al. 1996; Ekstrom and Dziewonski 1996; Grand 1996; van der Hilst et al.

1997). The models generally agree on the lower mantle signal (Gordon Research

Conference 1996); however, the discrepancy among them grows in the more



heterogeneous upper mantle. The different depths of seismic wave resolution in

combination with the variety of tomographic methods and data sets are responsible for

the disagreements. The conversion of seismic anomaly to density perturbation introduces

additional errors. Although some authors perform an error analysis, there is still

deficiency in such analysis for a major number of models, and there is no straightforward

way to account for all errors.

Instead of evaluating the uncertainty in density-anomaly models, we estimate the

discrepancies in the geoid and dynamic topography fields predicted by our viscous-flow

approach when several density-anomaly models are used as input data. For this study we

consider nineteen density-anomaly models. Ten of these are derived from ten seismic

tomography models (Tanimoto 1991; Masters and Bolton 1991; Su and Dziewonski

1991; Su, Woodward and Dziewonski 1994; Master et al. 1996; Ekstrom and

Dziewonski 1996; Grand 1994; Inoue 1990; Clayton and Comer 1984; van der Hilst et

al. 1997). The other nine are modifications of all of the above, except the one before

last, such that an upper mantle signal is replaced with the geodynamic model of slab

locations (Hager 1984). The last four references above are given on a spatial grid. Since

our analysis is spectral, we define the spherical harmonic coefficients of the data field by

numerical integration on a sphere at each depth where data are defined. There are many

differences in the way the tomography models were built and in the range of data which

were used. For example, in a case of data with poor coverage over the South Pole, a

regional tomography model that inverts for a signal within blocks would not resolve that

area at all, whereas a global tomography inversion (e.g., the first six references) using

polynomials would assign a value despite poor data coverage. To handle the gaps in the

block-type models during the numerical integration, we zero them out in models 7, 8,

and 10 for the depths below 220-km, and we apply horizontal and radial filtering in

model 9 (Hager and Clayton 1989). To minimize the effect of the gaps in the block-type

models one could invert for spherical harmonic coefficients, using the least-square

technique. To ensure that the density models provide a consistent representation of the

inner structure that drives the convection, we perform a test on the compatibility between

the models (the description follows). Then we continue our analysis with the most

coherent models and estimate the errors, based on averaging over those chosen.
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initial and total range of viscosity viscosity for error analysis
0 0

100 100

400 400

670 670 -

2600 ------..-. 2600 -.. -.. -.. -
(a) (b)

-5 0 5 -4 2 0
log1 (viscosity) log1 (viscosity)

Figure IV-1. Decimal logarithm of relative mantle viscosity versus depth (km). a) Inversions are started
from a randomly chosen viscosity profile constrained by the light gray shading. During the inversions,
the viscosity is allowed to vary within the dark gray shading area. b) The logarithmic mean of 19
viscosity profiles chosen for the first-step of the error analysis (solid line with the circles centered at each
step) and the standard deviation around the mean (gray shading).

To determine the models most compatible with each other, we complete the inversion

several times for each of the nineteen density models, each time starting from randomly

chosen initial values for the viscosity parameters and the density conversion factors. The

initial parameter range allows roughly one order of magnitude viscosity variation (light

gray shading in Fig. la). The conversion factor in the upper mantle is varied initially

near zero (positive and negative) for the seismic models and between 100 and 200 kg m-

for the hybrid models. In the lower mantle the dlnp/dlnv-factor varies between 0.1 and

0.2. The range of viscosity variations that is allowed during inversion exceeds the initial

range by several orders of magnitude (dark gray shading in Fig. la). The dlnp/dlnv-

factor can change between -2 and 2 in the upper mantle, and between 0 and 2 in the

lower mantle. The slab density contrast is allowed to vary from 40 to 300 kg m3. The
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fitting criterion used at this stage of our analysis is the reduction of the geoid and

dynamic topography variances:

[3Ns -SNmod]2 [r3Tobs Trod] 2
F = 1+ -m . (IV- 7)

I10 I 5T 2

Im im

Note, the topography variance reduction is lessened ten times relative to the one for the

geoid. We apply this scaling because the dynamic topography is much more poorly

constrained, as compared to the observed geoid (see observed error analysis in Chapter

V).

For each of the 19 density models, we select a viscosity profile that provides the best

combined variance reduction. To show the common characteristics of all 19 profiles, we

calculate their logarithmic mean and plot it in Fig. lb (the solid line with the circles

centered at each step). The standard deviation around this mean is shown by the gray

shade. In the next step we consider each of the selected 19 profiles as a fixed parameter

and perform an inversion again for each of the models. This time, using the same fitting

criterion, we allow for the free adjustment of only the density conversion factor and its

jump between the upper and lower mantle. Such a choice of fixed viscosity and free

conversion parameters allows us to compare the self-tuned density models against each

other under otherwise equal conditions. After all inversions have converged, we obtain

the 361 sets of spherical harmonic lm-coefficients for geoid and topography fields, Clrn

calculated, using signals from the 19 different density distributions and the 19 fixed

viscosity profiles. To estimate the dispersion of the predicted geoid and topography, we

arrange the density models into a pure seismic and a hybrid group. Within each group

we calculate the geoid and the topography means over the models (total of K=9 or 10

depending on the group) in the spectral domain:

(hC,)g - Ck, (IV- 8)
group K ,C'Kk=J

and the standard deviation (std) for each model k and each viscosity profile h (total of

H=19):

102



h k 2 
_ h ( h im)gr up

IM
(IV- 9)

The total of 361 standard deviations reflect the solution sensitivity to the variation of

the viscosity profile, as shown in Fig. lb for each model, and to the variation of the

driving density model for each viscosity profile. To differentiate among the models, we

normalize the std for each profile and model by the mean within the group for the same

profile:

( 2) = I h0 .k2

group K (IV- 10)

relative standard deviation, geoid and topography

- - -

- -

- - -. S 3

02 01 12 11 22 21 32 31 42 41 52 51 62 61 72 71 82 81 92

Figure IV-2. Geoid (large dots) and topography (small dots) standard deviations for each viscosity
profile (total of 19 as in Fig 1b) and each density model (abscissa) normalized by the mean within a
group (see text). The std averaged over the viscosity profiles is shown by wheels (geoid) and squares
(topography) for each density model.

The results of the last normalization are shown in Fig. 2. For the names of the

density models (abscissa) we use a two-digit abbreviation, where the first digit

corresponds to the model number by order in the reference list above and the second digit

corresponds to a group number: 1 is for a pure seismic model and 2 is for a hybrid model
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(the upper mantle signal is replaced by slabs). The ordinate corresponds to the

normalized std, where large dots are for the geoid, and small dots are for the topography.

Each point in the plot shows by how much the field from a particular model deviates

from the mean field in units of mean deviation for a particular viscosity profile. To

generalize the information over the range of viscosity profiles, we plot an std value

averaged over 19 profiles for each model. The wheels (for geoid) and the squares (for

topography) show the normalized standard deviation for each density model for the

viscosity assemblage (such as in Fig. lb). We define a cut-off line at a level of 1 (solid

line in Fig. 2). That is, we assume that the models that produce fields within one

standard deviation form a self-consistent group. Based on the selected density models,

we calculate errors and use only these models for the final inversion runs.

sigmagoid [im] sigmat [mi]

6 90
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Figure IV-3. Uncertainty in the density anomaly models, geoid (a) and topography (b) in meters, versus

spherical harmonic degree and order. The dots are the standard deviations for each viscosity profile

(from assemblage as in Fig. lb), and the symbols connected by solid lines are the average over the

viscosity profiles.

To estimate the errors related to the variety of density models used, we calculate the

standard deviation around the mean-over-models for each viscosity profile and display it
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in Fig. 3 by the dots versus spherical degree and harmonic number. To generalize the

errors for a set of viscosity profiles, we calculate the mean-over-viscosity std as well,

1 K,H 2

KHC=,,h=1 -( C ,)chsn

and show its values by the solid lines (Fig. 3a is for geoid and Fig. 3b is for topography).

The standard deviations calculated as above reflect the sensitivity of the different

harmonics to the variations in viscosity profile (as long as there is a low viscosity zone in

the upper mantle) and to the variations in the density models (as long as the models are

from the chosen set). Later in the final inversions we use these errors, adensity =()

(marked by the wheels in Fig. 3a for geoid and by the squares in Fig. 3b for topography),

to account for uncertainty in the density anomaly models.

Uncertainty in the observedfield, qsa,

The undulation of the gravitational equipotential surface is rather well measured by

satellite gravimetry. Therefore, we could assume that any errors related to that

observation are much smaller than the ones discussed above and could be ignored in the

inverse problem. However, there are some relatively small geoid anomalies which are

not related to the steady-state viscous mantle flow described by our approach (as in

section 1). For example, the gravitational signal due to post-glacial relaxation over

Hudson Bay (e.g., Simons and Hager 1997) and due to isostatically compensated crust

and lithosphere (e.g., Hager 1983; Le Stunff and Ricard 1995). Although these geoid

anomalies were estimated in several studies, the uncertainty relative to the signal is high

owing to the variety of data and models used. Due to the relatively small and highly

uncertain amplitude of the signal at the long wavelength 1=2-6, at this stage of our

investigation we assume that the total geoid anomalies related to post-glacial relaxation

and the crustal/lithospheric formations are zero. We assume that the observational

uncertainties for the geoid are equal to the spectral amplitude of a modeled geoid due to

both processes. As an example of the post-glacial-relaxation geoid we adapted a model

by Simons and Hager (1997). The root-mean-squared (rms) amplitude is shown by the

crosses in Fig. 4a with the total non-hydrostatic geoid rms represented by the solid line.
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The geoid anomaly due to the isostatically compensated crust we calculated using the

CRUST5 model by Mooney et al. 1997 (see Chapter V). The geoid signal related to the

isostatically compensated lithosphere and tectosphere were calculated using a model of

oceanic floor ages by Muller et al. 1997 and the tectonic regionalization by Jordan 1981

(see Chapter V). The total surface-formation-geoid rms is shown by the plusses in Fig.

4a. We summed the geoid anomalies due to rebound, crust, lithosphere and tectosphere

and display the rms by the circles in Fig. 4a. The significant excess of the total geoid

amplitude over these observational errors for the high-amplitude harmonics justifies our

earlier assumption in application to the inverse modeling.

rmsgeoid & sigmaobs, [im]

1 2 3 4 5 6
harmonic degree and order

rmstopo & sigmaobs' in]

1 2 3 4 5 6
harmonic degree and order

Figure IV-4. Observational uncertainty, geoid (a) and topography (b) in meters, versus spherical
harmonic degree and order. The rms amplitude of the signal (solid lines) is compared with the total
observational error rms (circles). Crosses represent the rms of the geoid due to post-glacial-relaxation
(a), plusses are for the geoid due to static topography (a) and for errors in topography due to uncertainty
in the ocean-floor-age and crust data (b).

The other observable in the geoid-topography joint inversion, dynamic topography, is

not as well constrained as the geoid. The topography due to mantle-dynamics processes

is distorted by the crust and the lithosphere attached to it. There are only a few
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measurements of the dynamic topography amplitude, such as flooding records related to

the rise and fall of continents (Gurnis 1990), or the smooth topography over the oceanic

basins (Parsons and Sclater 1977). To recover the frequency pattern of the dynamic

topography, the observed topography and bathymetry is usually corrected for crustal

thickness variations (e.g., Cazenave et al. 1988; Forte et al. 1993) and the attached

lithosphere under the oceans (e.g., Marty and Cazenave 1989; Stein and Stein 1992),

assuming general principles of isostasy (e.g., Love 1911).

"observed" dynamic topography, rms=341 m

sqrt of power spectrum [m]
250

200

1 2 3 4 5 6
harmonic degree, I

Figure IV-5. A model of "observed" surface dynamic topography of spherical harmonic degree 1=1-6.
The field is contoured at 200 m interval (a), solid lines are for zero and positive values, dashed lines are
for negative, the field rms is 340 m. Square root of the power spectrum of a set of topography fields
(non-solid lines in b) used to construct the final field (solid line in b) versus spherical harmonic degree.
The assemblage (b) consists of fields built under assumptions of thin- (open symbols) and thick-plate
cooling (crossed symbols), global isostasy (dashed lines), continent vs. ocean (dash-dotted lines), and
shield-platform vs. ocean-orogenic zones (dotted lines) baseline leveling.
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Since the ambiguity of the corrections is so high, we avoid using any particular

model to retrieve the dynamic topography for inverse modeling. Rather, we follow

several currently accepted approaches and analyze the contribution of the considered

phenomena to the amplitude and pattern of the obtained dynamic topography (see

detailed description in Chapter V). Applying combinations of the assumptions, we build

several fields of dynamic topography (the spectral amplitudes are shown by the dashed,

dot-dashed, and dotted lines in Fig. 5b). On the basis of this assemblage we calculate the

mean long-wavelength dynamic topography field displayed in Fig. 5a, with the spectral

amplitude and the rms shown by the solid lines in Fig. 5b and 4b, respectively. The total

errors reflecting the scatter of all the topography fields (as in Fig. 5b) and the

uncertainties in the ocean-floor-age and crustal data (crosses in Fig. 4b) are shown by the

circles in Fig. 4b. Thus, the obtained dynamic topography represents the general

amplitude and frequency characteristics, and it is within the errors of our understanding

of the physical processes controlling the topography formation. The dynamic topography

field has a maximum in the power spectrum at the second degree with a slight decrease in

the power at 1=1 and 1=3 and a relatively strong contribution from the higher harmonics

(see Fig. 5b). The depressions are associated with the European and American

continents, and with the Circum Pacific. The dynamic topography (Fig. 5a) and its

sigma (Fig. 4b) are used later in the final inversion runs as the "observed" dynamic

topography field and the associated observational errors, aC = (o . The high

ambiguity has been apparent from comparing the global dynamic topography models

calculated previously (e.g., Hager et al. 1985; Cazenave et al. 1988; Hager and Clayton

1989; Forte 1993). Our way of estimating and including the errors into the inverse

procedure allows us to fit the general features (such as the Central Pacific and African

Uplifts, or the Pacific Circum and North America lows) and their amplitudes without

tying the solution to poorly constrained regions, such as questionable depressions under

the all continents.

Uncertainty due to incompleteness offorward model, umode

Our current model treats only spherically symmetric variations of viscosity and it

assumes free-slip boundary conditions at the surface. However, lateral variations in
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viscosity (LVV) are undoubtedly present due to temperature, composition, and deviatoric

stress variations within the mantle. Closer to the surface, they become critically high due

to the change of mantle rheology from viscous to elastic, and to brittle within the plates.

The essentially rigid plates, driven by mantle flow, act back on the flow, maintaining

their integrity and geometry. Having relatively weak boundaries, a plate causes a

toroidal flow of the mantle. Thus, the density-driven poloidal flow is coupled to the

plate-driven toroidal flow, and the resulting, total flow creates the dynamic topography

and determines the gravity field. Therefore, our assumptions are justified to only some

extent, and they restrict us from explaining the part of geoid and topography signal

related to the lateral viscosity variations, the toroidal flow, and the surface plate-like

behavior. On an optimistic note, however, we recognize that for the long-wavelength

flow these effects are of second order compared to those due to changes in radial-

viscosity structure. Thus, instead of elaborating our model, at this point, we attempt to

estimate the maximal errors in geoid and dynamic topography due to ignoring such

effects, based on different studies of the above mentioned phenomena.

In earlier studies, the observed equal poloidal/toroidal energy partitioning at the

surface (Hager and O'Connell 1978) was directly related to the plate-like surface division

(O'Connell et al. 1991; Olson and Bercovici 1991), and plates were incorporated into

models (Hager and O'Connell 1981; Ricard and Vigny 1989; Gable et al. 1991; Forte and

Peltier 1991). The importance of the poloidal-toroidal coupling on dynamic surface

topography and the geoid was pointed out (Forte and Peltier 1987), and later investigated

analytically and numerically (Richards and Hager 1989; Christensen and Harder 1991;

Ribe 1992; Zhang and Christensen 1993; Cadek et al. 1993; Forte and Peltier 1994).

Although each approach above analyzes the effects of LVV and boundary conditions by

different means, there are some general points they agree upon. For example, the effects

are much stronger when the viscosity of the mantle increases with depth compared to the

isoviscous case. The strongest effects on the flow (and hence surface deformation and

geoid) are produced by the self-coupling between the density source and the viscosity

anomaly and by the coupling at the doubled harmonics. The relative effect is stronger

for the higher harmonics. We realize that evaluation of the error amplitudes is very

ambiguous; however, we attempt an estimate for the low harmonics (1=1-6). Richards
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and Hager (1989), based on the results of perturbation theory and numerical models of

mantle convection, concluded that the longest wavelength geoid anomalies (1=2,3) are

not seriously contaminated, however, for the higher degrees (1>4) the effect could be

significant due to coupling between density heterogeneity and viscosity variation. They

showed that the self-coupled anomalous surface deformation and the anomalous geoid

behave as l and estimated an anomalous geoid, in percent, as a function of the

load/viscosity mode number for different strengths of viscosity variations. The size of

the effect increases linearly with the wave number for the geoid due to its i-dependence

on the load. We use this result as an estimate of the geoid and topography errors:

og*1 (i) o I N,", and o (1) oc l1:0o (IV- 12)

To account partially for the higher order coupling, we doubled the errors at 1=2, 4, 6.

sigma [i] (a) sigmatp, [ml

1 2 3 4 5 6 1 2 3 4 5 6
harmonic degree and order harmonic degree and order

Figure IV-6. The total error (solid line), geoid (a) and topography (b) in meters, versus spherical
harmonic degree and order. Three types of errors are show: the density model uncertainty (stars), the
observational error rms (circles), and the modeling errors (triangles). The numbers on the top show the
percent of the harmonic degree error relative to the total signal amplitude of the same harmonic.
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To show the contribution of each error type to the total errors assigned with the geoid

and dynamic topography during the inversion, we plot individual errors together with the

total error in Fig. 6 (stars are for density model errors, circles are for observational

errors, triangles are for the model deficiency, and the solid line is for the total error). For

the geoid field the density-model-related errors dominate strongly (Fig. 6a). The total

error is on the order of 20 per cent of the observed geoid rms for long wavelengths,

increasing to about 50-70 per cent for the shorter wavelength signals. For the topography

field the observational errors define most of the total error (Fig. 6b). The least resolvable

features of topography are at 1=1, 3, where the uncertainty reaches 70-80 per cent. For

other harmonics, the errors vary between 50 per cent and 70 per cent of the signal.

RESULTS OF THE INVERSION

We performed an inversion based on a simultaneous fit to the geoid and dynamic

topography, defined by the criterion in eqs 4 and 5. The observed geoid was obtained

from the spherical harmonic expansion data (Lerch et al. 1983) by the removal of the

hydrostatic deflections (Nakiboglu 1982). The observed dynamic topography was

reduced from the surface topography and bathymetry by correcting for the crust and

lithosphere (see Chapter V). The errors associated with the geoid and dynamic

topography modeling were taken as in Fig 6. We inverted for the viscosity profile and

the density conversion factor. The mantle viscosity was parameterized in five layers.

Three layers were assumed to consist of a constant-phase material with the viscosity

changing continuously by an exponential law. The other two layers simulate the thermal

boundary layers, lithosphere and D", and were assigned a constant viscosity within and a

jump in viscosity at their borders. The viscosity within the phase transformation regions

(400 and 670 km depths) was allowed, but not required, to drop in magnitude relative to

the ambient mantle. The density conversion factor was set free to adjust its constant

value within the upper and the lower mantle during all runs of the inversion. The density

anomaly models used are those which fall under the cut off line in Fig. 2. To make sure

that the final results do not depend on the initial values of the parameters, each time we

started the inversions from randomly (uniform distribution) chosen initial conditions
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within the assigned range (see light gray area in Fig. la). During the inversion, the

parameters are allowed to vary within a range of several orders of magnitude (dark gray

area in Fig. la). To gain a statistically significant result, we carried out tens of inversion

runs for each of the density models.

Fm. = 4.7 (a) Fm. = 4.7 (b) Fmin= 4.8 (c)

100 --
400
670

0W.

2600

-4 -2 0 2 -4 -2 0 2 -4 -2 0 2
49 % of 1069 solutions 37% 14%

Figure IV-7. Three families of mantle viscosity profiles (decimal logarithm relative to the viscosity at

2500 km depth) versus depth (km). The weighted average (solid line), the standard deviation (shaded
area), and the weighted minimization function F, are shown for the first (a), second (b), and third (c)

family.

All inversion runs successfully converged. The solutions formed three families of

viscosity profiles (see Fig. 7a-c, where we plot the logarithm of normalized viscosity

versus depth). Since the solutions scatter within each family, we calculate the

logarithmic average of the viscosity profiles, where each term is weighted by the inverse

of its minimization function value,f (solid lines in Fig. 7). Therefore, the solutions with

the best fit to the observables contribute more to the representative profile. The standard

deviation of all the participating solutions from the weighted average is shown by the

gray area around the solid line (each squared std was weighted correspondingly). Each

group of solutions in Fig. 7 can be distinguished by the depth of the low-viscosity zone

(LVZ) in the upper mantle, clearly identified by the peak in the geoid ke'rnels (Fig. 8).

Almost all of the viscosity profiles have a significant viscosity drop within one or both
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phase-change regions, and display an increase of viscosity within the lower mantle down

to 2600-km depth, followed by a soft layer above the CMB.

Family 1 Family 2 Family 3

0 0.2 0.4 0 0.2 0.4 0 0.2 0.4

Figure IV-8. Geoid kernels for spherical harmonics 1=2-6 corresponding to the three families of mantle
viscosity profiles (as in Fig. 7). For clarity, only one fifth of the standard deviation around the weighted
average is shown. The darkness of the shading increases for the shorter wavelengths.

To show the general trend in the geoid/topography kernels of each family, we

calculate a representative geoid/topography kernel for each 1 weighted by the

minimization function of the solution. The weighted standard deviation when plotted

around the representative line overlaps for most harmonics. To maintain a clear

presentation of the results, we plot only one fifth of the std around each representative

kernel and plot the area with the shading getting darker toward the higher harmonics.
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(a) Family 2 (b)

-0.8-0.6-0.4-0.2 -0.8-0.6-0.4-0.2 -0.8-0.6-0.4-0.2

Figure IV-9. Surface dynamic topography kernels for spherical harmonics 1=2-6 corresponding to the

three families of mantle viscosity profiles (as in Fig. 7). For clarity only one fifth of the standard

deviation around the weighted average is shown. The darkness of the shading increases for the shorter

wavelengths.

The most popular family (half of all solutions) has a LVZ centered at the 400-km

phase change region (Fig. 7a). The geoid kernels peak with a positive value at this depth

(Fig. 8a). The surface dynamic topography kernels are nearly linear from the surface to

the LVZ-depth and decrease gradually down to D", from where they diminish to zero at

the CMB (Fig. 9a). The next family of viscosity profiles (more than one third of all

solutions) has an exponential decrease in viscosity from the surface down to the 670-km

phase change region (Fig. 7b). The geoid kernels peak at 670-km depth, but in contrast

to the first family, they have negative values in the top part of upper mantle in addition to

the lower half of mantle (Fig. 8b). The topography kernels are almost linear from the

surface to the LVZ depth, and stay nearly constant throughout the lower mantle down to

D" (Fig. 9b). The final group of viscosity profiles (a little over 10 per cent of all

solutions) has a LVZ right under the lithosphere with an increase of viscosity to 400-km,

followed by a decrease to 670-km (Fig. 7c). The geoid kernels reach maximum values in

the top of upper mantle and cross over to negative values around mid-mantle (Fig. 8c).

The topography kernels decrease sharply within the first 200 km, and then fall linearly to

zero at the CMB (Fig. 9c).
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Figure IV-10. The observed geoid (a) and surface dynamic topography (b). The contour levels are 20 m
(geoid) and 100 m (topography). Zero and positive values are solid lines, negative contours are shown by
the dashed lines.

To analyze the spatial characteristics of the geoid and topography fields obtained, we

calculated f-weighted mean fields within each solution-family and display the results in

Figs 11-13 (geoid is on the left and topography is on the right). For comparison, we also

show the observed geoid and the dynamic topography.

(a)(b

Figure IV-11. The geoid (a) and surface dynamic topography (b) fields corresponding to the first family
(as in Fig. 7a). The contour levels are as in Fig. 10. Field characteristics: variance reduction,
VRgeid=83 % and VR 0 =20%, degree correlation, DCgeod= 9 3 % and DCOPO=46%, minimization function,
Fmin =4.7, and rms,, 0 = 193 m.

The first (Fig. 11) and the second (Fig. 12) solution-families produce similar

minimization function fit values, f=4.7. However, the geoid variance reduction and

degree correlation in the first family (VR=83%, DC=93%) exceed those of the second

family (VR=79%, DC=90%) providing obviously better resemblance to the observed

field (compare Fig. 1la and Fig. 12a to Fig. 10a). The fit of the topography fields is
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relatively poor, with the better fit for the second family (VR=20% and DC=46% for the

first family versus VR=38% and DC=62% for the second family).

(a)(b

Figure IV-12. The geoid (a) and surface dynamic topography (b) fields corresponding to the second

family (as in Fig 7b). The contour levels are as in Fig. 10. Field characteristics: variance reduction,

VRgeoid=7 9 % and VR,,=38%, degree correlation, DCgeoid =90% and DC,,=62%, minimization function,

F =4.7, and rms,= 216 m.

The third solution-family (Fig. 13) produces a fairly good geoid (variance reduction

80% and degree correlation 91%), but rather poor resemblance to the topography (15%

and 5%), which is responsible for the higher value of minimization function, f=4.8. The

amplitudes of the surface dynamic topography field are under-predicted, the rms are 193

m, 216 m, and 194 m for the first, second, and third families correspondingly (compare

to rms of 340 m for the observed field, Fig. 10b). The maxima for the geoid and

topography coincide closely, although for the topography it is displaced further into the

Central Pacific.

(a) (b)

Figure IV-13. The geoid (a) and surface dynamic topography (b) fields corresponding to the third family

(as in Fig 7c). The contour levels are as in Fig. 10. Field characteristics: variance reduction,

VRgeoid= 8 0% and VRt 0 =15%, degree correlation, DCoid =91% and DCt,,=5%, minimization function,

F =4.8, and rms,= 194 m.
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We also analyzed the contribution of each density model to the different solution-

families and their density conversion factors in the upper and lower mantle obtained

during inversion. The results are shown in Fig. 14, where each plot corresponds to a

density model with the abbreviated name shown in the title. The abscissa always

represents the dlnp/dlnv-value in the lower mantle. The ordinate is for the conversion

factor in the upper mantle. For the hybrid-models (names ending with digit 2) it

corresponds to the subduction slab density contrast (kg m3 ) relative to the ambient

mantle density. For the pure-seismic models (names ending with digit 1) it becomes the

dlnp/dlnv-value. Each data-point in the plots corresponds to a solution of one inverse-

run, and in most cases the data show a strong minimum in conversion factor space. We

show the first family solutions by stars, the second family by circles, and the third family

by triangles. The pure seismic models lead to convergence only to the first and second

families of viscosity profiles. The hybrid models converge only to the first and third

families of viscosity profiles. Thus, the only viscosity profiles seen by all density

models are those from the first family.

The conversion factor varies from model to model, as we would expect. Generally,

dlnp/dlnv-value is around 0.1 for the lower mantle, except for the Scripps model (0.04-

0.05) and the block-type models, Grand (0.28) and van der Hilst (0.54). For the upper

mantle the dlnp/dlnv-value is about the same as for the lower mantle or could be slightly

higher. The slab density contrast varies around 110 kg m_.
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Figure IV-14. The conversion factor inverted for each density model. The abscissa corresponds to
dlnp/dlnv-value of the lower mantle. The ordinate is dlnp/dlnv-value of the upper mantle for pure-
seismic models (plot titles ending with digit 1), and it is the slab density contrast (kg m ) relative to the
ambient mantle density for the hybrid-models (plot titles ending with digit 2). Solutions correspond to
the first, second and third viscosity families (stars, circles, triangles, respectively) as in Fig. 7.
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The three families provide different levels of fit to the observables. The first and the

second families provide equally good fits, f-4.7 (the value was calculated based on the

weighted average), the third family has f=4.8. Note, that the fitting criterion we use has

information on the geoid and on the topography, including the corresponding errors. It

differs from the generally used variance reduction and degree correlation. To analyze the

relationships among those three, we calculate the corresponding values for each inversion

solution accounted for in Fig. 7. We plot the value of the minimization function, f
(ordinate in Fig. 15) as a function of variance reduction in per cent (stars are for the

geoid and crests are for the topography in Fig. 15) and degree correlation in per cent

(circles are for the geoid and triangles are for the topography).

E
U-

0

04

N

E

0 10 20 30 40 50 60 70
Variance reduction, % Degree correlation, %

Figure IV-15. Relationship between the minimization function value (ordinate),
(abscissa) and the degree correlation (abscissa). Variance reduction (stars
topography) and degree correlation (circles for geoid, triangles for topography)
points are inversion solutions, as in Fig. 7.

80 90 100

the variance reduction
for geoid, crests for
are in per cent. Data

The data points in Fig. 15 are grouped within each density model, therefore the

values do not fall on a single line, however, the general slope values are negative. This is

related to the fact that different density anomaly models produce different fits to the
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observables. We clarify this in Fig. 16, where the ordinate corresponds to the

minimization functions for the geoid (crossed symbols) or for the topography (open

symbols), calculated separately as in eq. 5. The abscissa corresponds to the abbreviated

name for each density anomaly model used in the inversions. The different symbols

represent the different families of viscosity profile chosen by a particular inversion

solution.

Convergence for different models
3.6 I

3.4-

3.2

3 -

.2.8 -
2.6

.02.4-*-

UE2.2- +'++ + -

1.8-

1.6
21 22 31 32 41 42 51 52 61 62 72 02

Figure IV-16. The degree of convergence for each density model participating in the inversion. The
minimization function value (ordinate) is calculated separately for the geoid (crossed symbols) and for
the topography (open symbols) and plotted versus model name (abscissa). Data points correspond to the
first, second and third viscosity families (stars, crosses, crests for geoid, and squares, circles, triangles for
topography, respectively) as in Fig. 7.

DISCUSSION

The fields of the geoid and the dynamic topography at the surface obtained during the

inversion reproduce many features of the observed fields (compare Figs 11-13 with Fig.

10). The spectral resemblance is typically good, although the amplitude of the signal is

usually under-predicted. To understand the general spectral characteristics of the fields,
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we present the results in terms of the power spectrum slope (Fig. 17, where the top panel

is for the geoid and the bottom panel is for the dynamic topography).

Geoid [m]

3 4 5
harmonic degree, I

Dynamic Topo [m] (b)

2 3 4 5 6
harmonic degree, I

Figure IV-17. The square root of the power of the geoid (a) and the surface dynamic topography (b)
fields versus spherical harmonic degree (abscissa). The observed fields are shown by the solid line with
stars surrounded by the gray shading, which represents the uncertainties associated with each harmonic.
The calculated fields are shown by the lines, with the error-bars corresponding to the standard deviation
around the mean. The data are for the first, second, and third families of a-profiles (the solid line with
squares, the dashed line with crosses, and the dash-dotted line with circles, respectively).

The observed fields (solid lines with stars) with corresponding spectral errors (gray

shading) have an amplitude which always exceeds the predicted values for all three

viscosity profile families (solid, dashed, and dash-dotted lines with the error bars

corresponding to the first, second, and third families with the std around the mean). The
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geoid field amplitudes are under-predicted for all harmonics, although the values lie

within the assumed uncertainties. The gradual decay of the observed signal at shorter

wavelengths is repeated by all three solutions for the geoid. The observed dynamic

topography spectral behavior (the relatively strong signal from the shorter wavelengths,

as in Fig. 17b) could not be reproduced by the inversions. Moreover, the estimates of the

first and third families of solutions lie beyond the assumed uncertainties for the shorter

wavelengths. The power spectrum of the predicted topography is similar to the geoid

spectrum slope: the peak is at 1=2, followed by a weakened signal at the higher

harmonics. The inability to reproduce the spectral characteristics of the dynamic

topography at shorter wavelengths suggests that there are probably errors and

uncertainties unaccounted for in our analysis of the short-wavelength surface dynamic

topography. On the other hand, the small amplitudes of the dynamic topography for all

the inversion solutions prove the compatibility of whole-mantle convection with the

small dynamic topography observed on the surface. The success in modeling of the

small topography amplitude is a consequence of a strong reduction of viscosity within the

phase change regions (shown by all three families of viscosity profiles) in combination

with the absence of density signal from the top part of the upper mantle. The material

weakening within the 400-km and the 670-km solid-solid phase change regions could be

related to the effect of transformational superplasticity (Panasyuk and Hager 1997). The

small density anomaly in the top part of mantle is probably associated with strong

chemical and thermal heterogeneities that cancel out the gravitational signature of each

other (e.g., the isopycnic model by Jordan, 1988).

The viscosity profile solutions obtained can be compared with previously published

results. However, the fact that our forward method considers continuous variations in

viscosity and density should be kept in mind as a possible reason for disagreement. One

way to compare the results is to match the shape of the geoid kernels at lower harmonics.

This, for example, allows us to see the similarities between our second family (Fig. 7b)

and the viscosity profile preferred by the joint inversion by Forte and Mitrovica 1996.

Our first family of solutions identifies the high-viscous transition zone (Fig. 7a), which

could result if a strong garnet phase controls the deformation, instead of the weaker

olivine and pyroxene phases (Karato 1989; Jeanloz 1989). A stiff-transition-zone
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viscosity profile has been previously found by King (1995); however, the exact profiles

and the geoid kernels are hard to compare due to the differences in the forward modeling.

The third family of geoid kernels (Fig. 7c) resembles those of the lower-viscosity

asthenosphere models (Hager and Clayton 1989). The third family of viscosity profiles

is also somewhat similar to those of Cizkova et al. (1996) and Cadek et al. (1997). The

familial similarity to the results of the different mentioned studies is explained by the fact

that in our analysis we consider not a single density anomaly model, but nineteen models,

which include P-, and S-wave seismic tomography and a slab reconstruction. As a result,

we are able to determine that the second type of a-profiles is seen only by the purely

seismic-tomography based models (with the exception of a couple of solutions for the

two hybrid-models), and the third type of a-profiles is seen only by models with the slab-

related signal. It is interesting to note that the first family of viscosity profiles was found

by all density models.

Besides the viscosity profile, we simultaneously invert for the conversion factors for

each of the density models. The slab-to-ambient mantle density contrast is in general

agreement with earlier proposed values (Hager and Clayton 1989; Ricard et al. 1993).

The seismic slowness-to-density anomaly conversion obtained during our analysis differs

from model to model, however, it is generally smaller than the ones predicted by

experimental (Karato 1993; Chopelas 1992) or analytical (Forte et al. 1994; Hager and

Clayton 1989; Cadek et al. 1997) studies. There are many reasons for these differences.

When comparing to the experimental results, one has to remember that the factors

obtained during the inversion depend on the types of seismic waves involved, the earth

reference model, and the method of inversion. The analytical studies adopt a different

parameterization of the conversion factor, continuous or step-like profiles, and a different

modification of the seismic/slab models, such as a combination of signals from seismic

tomography, slab reconstruction, and dynamic topography of internal boundaries.

CONCLUSIONS

The main goal of this study was to analyze the gravitational constraints on the mantle

viscosity profile using a variety of models for the earth's inner structure and additional
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constraints applied by the surface topography. We suggest a new approach in rl-inverse

studies, which takes into consideration uncertainties in the observables and in the input

density data, and deficiencies of forward modeling. This method uncovers the reasons

for the inexact resemblance to the geoid field, which are mainly due to the uncertainties

in measurement and interpretation of the earth's inner structure. This careful error

analysis allows to reduce the impact of the most erroneous information on the results of

the inversion.

To improve the quality of the forward model, we modified the formulation to handle

more realistic, continuous variations in radial viscosity, allowing for discontinuous jumps

where appropriate (Appendix A). To perform a joint inversion in a self-consistent way,

we built a model of the surface dynamic topography with associated spectral errors. We

also accounted for errors associated with neglecting the geoid anomalies produced by the

isostatically compensated crust, lithosphere, and tectosphere. To gain statistical

confidence, we performed the inversion using a variety of density models (based on the

global, block-type, S-, P- seismic velocity tomographic models in combination with a

slab reconstruction model) starting from a hundred randomly distributed initial

conditions.

The inversion revealed three distinct viscosity profile families (Fig. 7). All three

solution-groups identify a similar viscosity profile in the lower mantle: one order of

magnitude stiffening from 670-km to 2500-km, followed by a three orders of magnitude

reduction in viscosity of the 300-km thick boundary layer at CMB. The small standard

deviations around the mean profiles show the apparent robustness of this viscosity profile

within the lower mantle. The main distinctions between the families lie within the upper

mantle: the depth of the layer which has the lowest viscosity is at 400-km, 670-km, or

just under the lithosphere. The most popular group of solutions is characterized by a soft

layer around the 400-km phase change, with gradual stiffening to the surface and to 670-

km depth. The second family displays a gradual reduction of viscosity to 670-km depth,

with strong softening at both phase change regions, 400-km and 670-km depth. The

third family favors a soft asthenosphere followed by a stiff transition zone.

A characteristic feature of all viscosity profiles is a one-to-two orders of magnitude

reduction of viscosity within the major phase transformations, at 670-km depths, with
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two families having reduction at 400-km as well. Such a viscosity profile leads to a

reduced dispersion of the geoid and the dynamic topography kernels in the upper mantle:

the different wavelength kernels essentially overlap at the location of the softest layer.

This leads to a strong positive correlation of the modeled geoid with the density

anomalies at the base of upper mantle, and to a relatively small amplitude of calculated

surface dynamic topography.
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APPENDIX A

Continuous variations of viscosity handled by matrixant approach

The general physical assumptions and their mathematical representation are based on the

theory presented in Panasyuk et al. 1996; therefore, we omit the detailed description

here. The formulation treats flow stresses without separating them into viscosity and

strain rate parts. That is, when a stress component is expanded into spherical harmonics,

the radial function (e.g. y4, as in equations 10, Panasyuk et al. 1996) reflects both

viscosity and strain rate depth dependencies. Therefore, the equations used to derive the

matrix differential equation,

9ou, = Au, + b,, (A 1)

are true for continuously varying viscosity ij(r). The exponent matrix A, has five non-

diagonal terms containing the normalized viscosity. Since the mantle viscosity could

vary by several orders of magnitude, the A, matrix could change significantly within the

layer, prohibiting use of the matrixant approach. We resolve this complication by

introducing a new set of poloidal variables (the notation is similar to that used in

Panasyuk et al. 1996):

u(r)= [y1i* y 2 i*A (y3 + pOy 5)r y 4rA y5 rjpA y 6r2 ] T , (A 2)

where q* = g(r)/If is viscosity as a function of radius, normalized by the reference

value. In analogy with the compressibility factor,

(r)=r dp,(r) (A 3)
po(r) dr

we introduce a viscosity factor:

r ( =(r) (A 4)
(r) dr

so that the matrix A, becomes:
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(2 +Z - () A 0 0 0 0
-A 1+( 0 1 0 0

(12+4X) - 6A 1 A XP 0
Ap

-(6+2X)A 2(2A2 -1) -A -2 0 0

0 0 0 0 1 A
0 0 0 0 A 0 (A 5)

Note that now A can be represented as a sum of four matrix expressions instead of three

terms as in Panasyuk et al. 1996:

x(r)p(r)
A(r) = A0 + X(r)A, + A 2 + ((r)A

P (A 6)

Here A, is equivalent to the matrix for incompressible flow (Hager and Clayton 1989).

The matrix A, gives the effect of compressibility on flow, A2 is related to a specific

combination of stress and potential into one variable (Panasyuk et al. 1996). And the

matrix A3 accounts for the continuously changing viscosity. Solving the matrix

differential equation, we write the propagator between the upper (ocean-mantle

boundary) and the lower boundary (core-mantle interface) as a product of sub-

propagators (similar to the handling of compressible flow). Each sub-propagator now

has one more additional term:

Pr = exp A In - +A In +A 2  _ +A3 Ino }
4 . (A 7)

To be able to apply the propagator technique, we ought to make sure that the

argument of the exponential does not vary significantly within the layer. Analysis of the

variations due to the density change was done in Panasyuk et al. 1996. The variations

due to a non-constant viscosity are expressed by the last term. It is only when the

viscosity changes exponentially between r, and r2, that the A, term is constant within the

layer. Where the slope of the exponent changes or the viscosity change is discontinuous,

it is necessary to stop to tie up the propagators. Similarly, when the viscosity changes

dramatically within/across a thin layer, such as a phase change region, it is reliable to
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treat it as a boundary and couple the solutions across it. We approximate the u-vector

across the density/viscosity discontinuity and derive the boundary conditions for the new

system. In the limit of a thin phase change region, there is a jump condition on u. The

first two terms related to the flow velocity change as:

_ ij p_ 11 Z+ Z 7 Z_ + 77 _ Az Z+
u = uZ1 and uj = u * + * . (A 8)

The third and the fourth u-components are approximated across the phase change as:

Z u + U3 + _u and uZ- = -2A _(A9
p~ np p fl+

The gravity-related fifth and six components are continuous since we assume that the

phase change or the thermal boundary is located at a constant radius.

We combine the internal and external boundary conditions with the matrixant

approach to obtain a system of equations similar to eq. 42 in Panasyuk et al. 1996, and

solve it with respect to the ocean-mantle boundary deflection, 3a, and the potential

anomaly, Ve(r) at the ocean surface (r = e). The geoid kernels, displayed in the figures,

are normalized by the geoid deflection due to a mass at the surface:

(21+1)
G'(r)= V (r). (A 10)

47eye

Note that the normalized geoid kernels are identical to the potential kernels normalized

by the potential due to a mass at the surface. In the main text we omit the superscript e

assuming that the gravity field is considered at the ocean surface.

APPENDIX B

Exponential viscosity variations versus constant layer approximation

We investigate the advantages of the new treatment of viscosity variation in the mantle

by comparing the results of geoid and topography kernels calculations for both types of

viscosity variation; continuous and step-like. We chose a viscosity profile that provides a
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somewhat similar geoid kernel at 1=2 to that one obtained by the inversion. However, the

test profile does not have the reduction in viscosity associated with the phase changes

(Fig. B1). To simulate the test-viscosity profile, the mantle is subdivided into several

layers, so that the depths of each layer are the same for both treatments, continuous and

step-like. The only requirement of such a parameterization is that a layer boundary has

to coincide with the depth of a discontinuous density/viscosity change, or with the depth

where the viscosity functional dependence changes. Within the layer the viscosity is set

to change exponentially in case of the "continuous" treatment, and it is kept constant in

case of the "step-like" approach.

log10 of test viscosity

108

400

670

2600

-3 -2 -1 0 1

Figure IW-B1. Decimal logarithm of the viscosity profile versus depth (km) for the test comparison
between the approaches considering continuous and step-like variations in viscosity.

The geoid and topography kernels for this test are displayed in Fig. B2, left and right

panel correspondingly. We start with the accurate approximation, where we sample the
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upper mantle every 10 km and the lower mantle every 50 km (total of 114 steps). Both

approaches lead to very similar kernels; the solid lines in Fig. B2 overlap.

Geoid Kernel, I = 2

-0.2 0 0.2

Topography Kernel, I = 2

108

400

670

2600

0.4 0.6 -0.5

Figure IV-B2. Geoid (left panel) and surface dynamic topography (right panel) kernels for the test-
viscosity profile (as in Fig. BI). The kernels of the different mantle sampling are shown by the solid
lines (114 and 26 steps), circles (16), and triangles (8) for the step-like approach, and by the solid lines
(114, 26, 16 steps) and crosses (8) for the continuous approach. The accuracy for the step-like approach
is calculated in per cent of the maximum amplitude of the kernel.

Next we roughen the approximation by considering fewer layers. To estimate the

accuracy of each approximation, we calculate the difference between the calculated

kernel and the accurate one (with 114 steps) in per cent of the maximum value of the

kernel (which is about 0.45 for the geoid, at a depth of 400-km, and -1 for the

topography, at the surface). Since the step-like approach provides results not as accurate

as the continuous treatment, we display the accuracy for only the step-like viscosity

profile in the right corner of the plots (it is zero for the first test). The deviation of the

kernels for the exponential approach could be barely detected on the plot for the most

rough mantle sampling. The second mantle sampling is every 75 km in the upper mantle

and 200 km in the lower mantle (total of 26 steps). The deviation of the step-like
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approach is about 2 per cent and could be distinguished as a slight mismatch in the solid

lines at 400-km depth for the geoid kernel (1 per cent for topography). The third test

samples the mantle every 150-km and 400-km in the upper and lower mantle,

correspondingly, (total of 16 steps). The departure of the step-like approach is about 7

per cent for geoid and 3 per cent for topography, and it is marked by the circles centered

at the sampling depths. The exponential approach solution is still indistinguishable from

the first test kernels. As the largest degree of roughening, we consider only 8 steps

across the entire mantle. The constant-in-layers approach deviates as much as 23 per

cent for the geoid and 9 per cent for the topography, its solution is marked with triangles

located at the sampling depths. The departure of the exponential solution is finally seen

around the 400-km depth and is displayed with the crosses centered at the sampling

depths.

As a result of this test, we conclude that the new approach which considers the

exponential variations of mantle viscosity is very accurate. It allows us to calculate the

geoid and the surface dynamic topography kernels with the minimum number of depth

sampling points. The choice of a particular mantle stratification is crucial to the level of

the accuracy achieved. The layer boundaries have to coincide with the discontinuities in

density and viscosity, as well as with the depth of viscosity exponential law changes. In

this case the minimal number of layers necessary to calculate mantle flow equals the

number of density/viscosity discontinuities (which is three for the PREM density profile)

plus the number of changes in the exponential law of viscosity variation.
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Chapter V. A MODEL OF DYNAMIC TOPOGRAPHY. 4

INTRODUCTION

The topography of the earth's surface reflects the distribution of compositional and

thermal heterogeneities within the planet. Deep-seated, presumably thermal, anomalies

drive mantle convection, creating normal stresses that deflect the chemical interfaces

(e.g., the surface). The deflections of the mantle boundaries (top and bottom), shaped by

viscous mantle flow, vary on the scale of mantle convection and are often referred to as

dynamic topography. Unlike its origin, the amplitude and the pattern of dynamic

topography causes unsettling debates within the geophysical community. The analysis is

complicated by the fact that the dynamic topography signature is obscured by the crust

and lithosphere. Owing to the continuous differentiation of mantle material, surface

erosion, sedimentation, and active tectonics, a thick layer of generally light material

overlies the mantle. These surface formations are often referred to as static topography.

The term is probably accurate for the long-lived crust and stable tectosphere, e.g.,

billion-year-old cratonic rocks are found which have been brought to the surface from the

depth 150-200 km (see review in Jordan, 1979). However, for the sub-oceanic

lithospheric formations, what we call "non-dynamic topography" describes the changes

due to a different material rheology, e.g., the transition to elastic behavior, which cannot

be analyzed successfully in terms of current viscous flow models. In this paper we

define the observed topography as a combination of dynamic and static parts, and we

estimate the dynamic topography by correcting the observed topography for the static

part. Since previous studies of dynamic topography suggest (Colin and Fleitout 1990;

Cazenave and Lago 1991; Gurnis 1990; Le Stunff and Ricard 1997) or predict (Hager

and Clayton 1989; Ricard et al. 1993; Forte et al. 1993) fields of extremely different

amplitude and pattern, we also estimate the uncertainties associated with the dynamic

topography.

to be submitted to Geophysical Research Letters, by Panasyuk, S.V., and B.H. Hager, 1998.
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A knowledge of dynamic topography would allow us to constrain the earth's mantle

viscosity profile, the temporal and spatial variations of sea-level, and to apply these

additional constrains on the earth model. There are several quantitative models of crust

and tectonic regionalization (e.g., Dziewonski et al. 1975; Mauk 1977; Jordan 1981;

Mooney et al. 1997) based on geological sampling of the upper crust and the seismic

wave analysis. Models of sub-oceanic lithosphere subsidence (e.g., Cazenave et al.

1988; Marty and Cazenave 1989; Stein and Stein 1992) follow the general principles of

isostasy (e.g., Love 1911). Each of these alterations of the observed topography is based

on a model which describes the origin of the static topography and is compared with the

acquired data. There are few indirect measurements of the dynamic topography

amplitude, such as flooding records related to the rise and fall of continents (Gurnis

1990), or smooth topography over the abyssal oceanic floor (Parsons and Sclater 1977).

In our approach, we apply recent models of the crust and the age of the ocean floor to

estimate the static topography and to build a model of dynamic topography. Carrying the

uncertainties associated with the crustal structure and the oceanic ages through the

model, we estimate the spatial and the spectral errors which accompany our model. We

compare the dynamic topography obtained by correcting for the static topography with

the dynamic topography calculated based on the geoid-topography inversion.

METHOD DESCRIPTION

The observed topography and bathymetry (ETOPO5, 1992) are well correlated with

crustal heterogeneities (see field expansion for 1=1-12 in Fig. 1), which favors the

hypothesis of isostatic compensation. A general principle of local isostasy states, to first-

order accuracy, that if a heterogeneous mass is in static equilibrium, the pressure from

any vertical mass-column has to be equal to pressure at a given depth, the so-called depth

of compensation (e.g., Love 1911; Jeffreys 1970; Garland 1977). That is, if an

isostatically compensated layer consisting of all static mass heterogeneities is subtracted

from the observed topography, the isobaric surface at the compensation depth should

have no topography. However, if residual topography is still observed, it is probably

due to processes unaccounted for, static or/and dynamic.
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ETOPO-5, contours +/- 1 km,

Figure V-1. Spherical harmonic expansion, 1=1-12 , of the observed topography and bathymetry based
on the data set ETOPO5, 1992. Contour intervals are 1km (solid lines are positive and zero values,
dashed lines are negative).

To build a model of dynamic topography, we follow the conventional way and

correct the observed topography for the static one assuming isostasy. That is, we

calculate the thickness of a layer consisting of an isostatically compensated crust and

remove it from the observed topography. Then we correct the residual topography for

ocean floor subsidence due to lithospheric cooling. We also analyze the amplitude of the

possible effect of isostatically compensated tectosphere. To estimate the uncertainties of

the modeled dynamic topography, we analyze the errors brought by the input data-

models (e.g., of ocean floor age) and by the variety of the currently acceptable

assumptions (e.g., thickness of the plate in a model of the oceanic lithosphere cooling).

Effect of crustal correction

To correct for the static topography due to isostatically compensated crust, we use crustal

model CRUST 5.1 (Mooney et al. 1997). The model provides data for seven structurally

different layers (ice, water, soft and hard sediments, upper, middle, and lower crust); the

density p, and the thickness hi for each layer as a function of position on a 5*-by-5' grid.

First, we calculate the pressure due to the overburden at the base of the crust:
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I

Pcrust (o, (p) = Ipi gh1
(V-i1)

where I=7, and hcrust (0,p)= h, is the distance from the air-surface down to the base of
i=I

the last crustal layer (we treat water as any other compositional layer in the model).

Next, we assume a compensation-depth value, domp, under a surface point (0*,(p*) and

calculate pressure at this depth and location:

(V- 2)Pcomp = Pcrust + Pnanle hane,

where h*mte = d_, - hrust*, *)

Assuming that the density below the crust equals that of the

calculate the thickness of the mantle hmantle( 0,(p) needed to

every location:

PCOMP = pcrust (o, p) + pmantleghantle (0, (p).

reference mantle, Pmantle' we

reach pcomp (as in eq. 2) at

(V- 3)

To get the residual topography, the calculated thickness of the isostatically compensated

layer, hcmst (0, cp) + hmntle (0, qp), is subtracted from the air-surface elevation.

rms=591 m

Figure V-2. Residual topography (spherical harmonic expansion, 1=1-12) after correction for the
isostatically compensated crust. Contour intervals are 300 m (solid lines are positive and zero values,
dashed lines are negative).
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We plot the topography field obtained by removing the isostatic columns of the crust

and mantle material from the observed topography in Fig. 2, where we assumed dcomp=70

km, which corresponds to the crust's deepest point under the Himalayas. The crustal

residual topography field exhibits a clear correlation with the continents (depressions

under Eurasia and the Americas) as well as with the mid-ocean ridges (uplifts over East

Pacific, North Atlantic, and Indian oceans). The rms of the field, 591 m, is larger than

we would expect from the geological record of continental flooding (Gurnis 1990).

Noting that the residual topography was obtained by stripping only the crustal effect

from the observed topography, we believe that the remaining signature of the continents

and of the ridges is related to other lithospheric formations which we analyze next.

Effect of oceanic lithosphere

To correct for the effect of the lithosphere, we calculate the subsidence of the oceanic

floor. Strictly speaking, the cold oceanic lithosphere is not static. Plate velocities on the

order of several cm per year prove that it changes on the scale of mantle convection. Its

lateral dimension is determined by the opening and closing of the oceans. However,

despite the similarity with the deeper mantle, the lithosphere exhibits a distinctly

different rheology. Due to lower temperatures near the surface, the sub-oceanic

lithosphere behaves as an elastic plate. Therefore, we prefer to estimate the oceanic floor

subsidence due to lithospheric cooling independently, without involving the crustal or the

mantle material description. We follow two approaches, both relying on an assumption

of isostasy: the thin plate (Stein and Stein 1992) and the thick plate (Marty and Cazenave

1989) cooling models for the lithosphere. First we correct for the crustal isostasy as

above, then we use the ocean floor age data (Mtiller et al. 1997) to estimate the

subsidence of the dry ocean floor, and we add the subsidence depths to the crust-

corrected residual topography.

According to the model GDH1 by Stein and Stein (1992), the ocean floor depth could

be calculated as a function of the ocean floor age:

d(t) = 2,600 + 365, for t<20 Myr (V- 4)
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d(t) = 5,651 - 2,473 exp(- 0.0278t), for t220 Myr.

For comparison, we also calculate a model proposed by Cazenave and Lago (1991),

who assumed a thick plate cooling for the lithosphere, and obtained the worldwide mean

of age-depth relationships regionally for all ages as:

d(t) = 2,400+ 315,7, for t<80 Myr

d(t) = 6,400 - 3,200 exp(- t/63), for t 80 Myr.

Both models of lithospheric subsidence produce close results on a global scale (amplitude

for the thick-plate cooling model is a few percent higher for 1=1-12).

As an example, we calculate ocean floor subsidence using the thin-plate cooling

assumption and apply the correction to the residual (Fig. 2) topography. Since the

residual topography corresponds to the deflection of the mantle-air boundary, we correct

the ocean floor subsidence for the difference in density:

d Pmante - Pwater d wet (V- 6)
Pmante

rms=389 m

Figure V-3. Residual topography (spherical harmonic expansion, 1=1-12) after correction for the

isostatically compensated crust and lithosphere subsidence. Contour intervals are 300 m (solid lines are

positive and zero values, dashed lines are negative).
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The resulting residual topography is shown in Fig. 3, where we adjusted the sub-

oceanic and sub-continental lithosphere baselines (that is the mean elevation over the

continents was removed and the mean elevation over the oceans was removed). This is

partially related to the uncertain lateral scales of isostasy: are the continental and the

oceanic baselines level? If not, the ocean edges near the subduction zones would be

uplifted up to 2.5 km relative to the closest continental coast. This would lead to a global

relative depression of all continents by more than 2 km, including Africa and Antarctica.

The resulting high correlation of dynamic topography with the ocean-continent pattern is

in contradiction with the density anomaly distribution inferred from seismic tomography

models. In addition, if the continents are to move on top of the dynamic topography,

then they would have to undergo peak-to-peak vertical motions in excess of 4 km, which

is at least one order of magnitude greater than the observations based on the

sedimentological records of continental platforms (Gurnis 1990, 1993). The balancing is

done on the base of the GTR 1 regionalization model (Jordan 1981) in the spatial domain,

and then the fields are converted into the spectral domain. In comparison to Fig. 2, the

dynamic topography in Fig. 3 has significantly lower amplitudes (rms = 389m), and it

displays no correlation with the continental or mid-ocean ridge signatures. There are

noticeable, broad uplifts associated with Africa, Antarctica, and the Central Pacific. The

large scale depression along the Circum Pacific is surrounded by a thin belt of uplift.

More localized depressions are over Asia, North Siberia, and Eastern North America.

Effect of continental tectosphere

We estimate an order of magnitude variation in the dynamic topography that might be

related to the deep-rooted continental tectosphere. Our main assumptions are based on

the model presented by Jordan (1979). However, we extend the isopycnic model to

allow the tectosphere to be slightly heavier than the surrounding mantle. We assume that

it is much stiffer than the surrounding mantle and it is kept close to the surface by the

viscous forces from the mantle flow (Shapiro 1995). First we assume that the

tectosphere is static, that is at least its first 200 km is attached to the continental crust and

does not participate in the mantle convective motion below. Therefore, we assume that

the tectosphere exists over a long time, which allows it to reach isostatic equilibrium. To
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distinguish between the short- and the long-lived formations, we refer to the tectosphere

regionalization (GTR1, Jordan 1981), which separates the Phanerozoic orogenic zones,

Phanerozoic platforms, and Precambrian shields and platforms. To estimate the depth

extent, we examine seismic tomography models of the upper mantle. As a first

approximation, we assume that all three regions of tectosphere have constant thickness,

and we consider the base of Precambrian shields (the oldest and the thickest) as the level

of compensation. Then, the dynamic topography due to the variation in the tectosphere

thickness is:

d = (hshield - hregion, (V- 7)
Pmantle

where hregion is the thickness of the orogenic zones or the Phanerozoic platforms, and 6p is

the density contrast between the tectosphere and the surrounding mantle. To determine

the density excess associated with the tectosphere, we rely on the research done by

Shapiro, 1995. A weak correlation between the tectosphere regionalization and the geoid

signal suggests only slight variations of the tectospheric density. An additional analysis

of travel times allowed Shapiro to constrain the value of the conversion factor between

seismic velocity, v, and density, p, anomalies as dlnp/dlnvZ0.03, which gives only 0.2

per cent density variation assuming a maximum of 7 per cent in the seismic velocity

variation associated with the tectosphere. Therefore, assuming that the contrast in the

tectosphere thickness could reach up to 300 km, one estimates the subsequent dynamic

topography to be on the order of 60 meters (peak-to-peak). These deviations are

indistinguishably small on the scale of the dynamic topography in Fig. 3 and on the scale

of the model uncertainties, which we discuss next.

Model uncertainties

To determine the model uncertainties, we start with an analysis of the data involved

(Miiller et al. 1997; Mooney et al. 1997). The ocean-age errors are estimated for each

data-point. They include the uncertainties in the floor ages identified from the magnetic

anomalies along ship tracks, and the interpolation errors which depend on the distance of

a given grid cell to the nearest magnetic anomaly identification and on the gradient of the
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age grid (MUller et al. 1997). Using the age-uncertainties, we calculate the related errors

in the ocean-floor subsidence (e.g., for the plate cooling model):

d -365 3t , for t<20 Myr (V- 8)

&we = 2473 x 0.0278 exp(- 0.0278t)3t, for t_>20 Myr.

The errors related to the crust model CRUST 5.1 are on the order of several hundred

meters for the crustal thickness (Mooney et al. 1997). Since a more extensive error-

analysis is currently not available from the primary source, we assume that there is 50 per

cent uncertainty in the residual (after the crust correction) topography.

Another source of uncertainty in the dynamic topography comes from the variety of

assumptions and approaches used to determine the field. For example, as we discussed

earlier, both models of sub-oceanic lithosphere cooling provide fairly good estimates of

the ocean floor subsidence on a global scale. The question of the ocean-continental

baseline balancing is still open to discussion. Are all continental areas leveled with the

oceans or only with the old Phanerozoic platforms and Precambrian shields and

platforms? To relate these uncertainties in modeling to the errors in the resulting

dynamic topography, we build several dynamic topography fields, altering the

assumptions used. The final field is then the spectral mean of all the fields,

(n)N n(V- 9)
n=1

and it reflects all the assumptions to a certain degree. For this set of modeled dynamic

topography fields, a total of N, we calculate the standard deviation from the mean for

each lm-coefficient:

1 N

S"(TN 2(T . (V- 10)
(Gl~m Nn=lIm mN

The total error in the spectral domain is then the sum of the data-related and the model-

introduced uncertainties.
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RESULTS

We build six fields of dynamic topography, pn, N=6, where we consider assumptions of

the crustal compensation depth (70 kin), of the cooling lithosphere (thin- and thick-plate

like) in balance with continents, and assumptions of three types of residual topography

balance: no balance; GTR1-continent/ocean; GTR1-sheilds and platforms versus the

oceans and the orogenic zones. We calculate a mean dynamic topography field (Fig. 4)

and plot the harmonic rms for each combination of models considered (Fig. 5) together

with the mean field (shown by the solid line with squares).

rms=436 m

Figure V-4. A model of "observed" surface dynamic topography of spherical harmonic degree 1=1-12.
The field is contoured at 200 m interval (a), solid lines are for zero and positive values, dashed lines are
for negative, the field rms is 340 m.

The assumption of global isostasy (no balancing) produces the fields which are

shown by the dashed lines (Fig. 5, crests and circles are for the thick- and the thin-plate

cooling models respectively). The dash-dotted lines are for continent-ocean balancing

(pluses and triangles are for the thick- and the thin-plate cooling models respectively).

The final type of baseline leveling, shield-platforms versus ocean-orogenic zones, is

shown by the dotted lines (stars and diamonds are for the thick- and the thin-plate

cooling models respectively). The resulting topography field has a spectral peak at

degree 1=2 with the decrease in the power to 1=1 and 1=3, and a relatively strong

contribution from the higher harmonics (Fig. 5). The depressions are associated with the
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Eurasian and American continents, and with the Circum Pacific. The oceans are

generally uplifted together with Africa and Antarctica.

sqrt of power spectrum [m]
250

200

50 - -

0
1 2 3 4 5 6 7 8 9 10 11 12

harmonic degree, I

Figure V-5. Square root of power spectrum of a set of topography fields (non-solid lines) used to
construct the final field (solid line) versus spherical harmonic degree. An assemblage consists of fields
built under assumptions of thin- (open symbols) and thick-plate cooling (crossed symbols), global
isostasy (dashed lines), continent vs. ocean (dash-dotted lines), and shield-platform vs. ocean-orogenic
zones (dotted lines) baseline leveling.

For the set of six modeled dynamic topography fields, we calculate the standard

deviation from the mean for each lm-coefficient according Eq. 10. The total errors (the

sum of the data- and the model-related uncertainties) are shown by the line with circles in

Fig. 6, together with the mean field rms (line with squares) versus the degree and order

of spherical harmonics. The dynamic topography (Fig. 4) and the uncertainties (Fig. 6)

can be used in geophysical analyses involving knowledge of the "observed" dynamic

topography. As an example, we used them in a joint, geoid-topography, inversion for the

mantle viscosity profile as the dynamic topography field and the associated,

observational errors, 2= ( ) (see Chapter IV).
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Figure V-6. The degree rms of the surface dynamic topography field (solid line with the squares) in
meters versus the spherical harmonic degree and order. The signal is compared with the total
observational error rms (circles) and the data-error rms (dots).

DISCUSSION

The ambiguity associated with the correction models has been apparent from comparing

the global dynamic topography models calculated previously (e.g. Hager et al. 1985;

Cazenave et al. 1988; Hager and Clayton 1989; Forte 1993). Our way of estimating and

including the errors into the analysis allows us to describe the general features of the

topography (such as Central Pacific and Africa Uplifts, or Circum Pacific and North

America lows) and their amplitudes without tying the field to the poorly constrained

regions, such as questionable depressions under all the continents.

Finally, we relate the dynamic topography model to the dynamic topography

predicted from mantle flow driven by deeply settled density anomalies. The description

of the inverse procedure can be found in Chapter 4. The "observed" dynamic topography

is shown in Fig. 4. Its spectral amplitude is shown in Fig. 7 (solid line with stars), with

the standard deviation shaded. The three minimums obtained during the inversion

predict the dynamic topography fields displayed by the solid line with squares (first
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solution-family), by the dashed crossed line (second family), and by the circled dash-

dotted line (third family), with the error bars corresponding to one standard deviation.

Although the amplitudes of the fields are the same order of magnitude, there is a striking

difference in the power of the higher harmonics. The dynamic topography generated by

mantle flow displays a maximum at 1=2 and the power gradually declines at the shorter

wavelengths. However for the estimated dynamic topography, the contribution from the

higher orders is as strong as for 1=3.

Dynamic Topography [m]
300

250

200

1501

100

1 2 3 4 5 6
harmonic degree, I

Figure V-7. The square root of the power of the surface dynamic topography fields versus spherical
harmonic degree (abscissa). The estimated field is shown by the solid line, with stars surrounded by the
gray shading representing the uncertainties associated with each harmonic. The calculated fields are
shown by the lines, with the error-bars corresponding to the standard deviation around the mean. The
data are for the first, second, and third families of a-profiles (the solid line with squares, the dashed line
with crosses, and the dash-dotted line with circles, respectively).
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