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Abstract

Numerical methods and algorithms have developed and matured vastly over the past
three decades now that computational analysis can be performed on almost any per-
sonal computer. There is a need to be able to teach and present this material in
a manner that is easy for the reader to understand and be able to go forward and
use. Three popular course at MIT were without lecture notes; in this thesis the
lecture notes are presented. The first chapter covers material taught in Numerical
Methods for Partial Differential Equations (2.097/6.339/16.920) specifically the In-
tegral Equation Methods section of this course, chapter two shows the notes for the
course Introduction to Numerical Simulation (2.096,/6.336/16.910), and chapter three
contains the notes for the class Foundations of Algorithms and Computational Tech-
niques in Systems Biology (6.581/20.482). These course notes give a broad overview
of many algorithms and numerical methods that one can use to solve many problems
that span many fields - from biology to aerospace to electronics to mechanics.
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Introduction

Numerical methods and algorithms have developed and matured vastly over the past
three decades now that computational analysis can be performed on almost any per-
sonal computer. There is a need to be able to teach and present this material in
a manner that is easy for the reader to understand and be able to go forward and
use. Three popular course at MIT were without lecture notes; in this thesis the
lecture notes are presented. The first chapter covers material taught in Numerical
Methods for Partial Differential Equations (2.097/6.339/16.920) specifically the In-
tegral Equation Methods section of this course, chapter two shows the notes for the
course Introduction to Numerical Simulation (2.096,/6.336/16.910), and chapter three
contains the notes for the class Foundations of Algorithms and Computational Tech-
niques in Systems Biology (6.581/20.482). These course notes give a broad overview
of many algorithms and numerical methods that one can use to solve many problems

that span many fields - from biology to aerospace to electronics to mechanics.
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Chapter 1

Integral Equation Methods

Numerical Methods for Partial Differential Equation is a course that covers several
techniques for discretizing partial differential equations in order to solve them. Very
often partial differential equations do not have analytic solutions and one needs to
apply an appropriate method to solve them. In this thesis, the Integral Equation

Methods used for solving Partial Differential Equations is covered.

1.1 Discretization of Boundary Integral Equations

Numerical Methods for PDEs

Boundary Element Methods, Lecture 1
Introduction to Discrelization of Boundary Integral Equations

L. Proctor, S. De, C. Coelho, D. Willis, X. Wang, & J. White

November 23, 2008
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1 Module Outline - 6 Lectures

Overview Integral Equation Methods
Applications: Aero, MEMS, IC Design
Informal Overview:
Formulation & Discretization
Quadrature and Cubature for computing integrals
1-D, 2-D, and dealing with Singularities
1°t and 2™ Kind Theory - Part 1
Discretization
Formulating 3-D Integral Equations
Radiation Conditions, Ansatz & Green’s Formulations
1%t and 2"¢ Kind Theory - Part 2
Convergence theory
Fast Multipole and FFT-based methods

2 QOutline for Today

Background
Exterior versus interior problems
Point source approach
Test Function Selection
Collocation Method
Galerkin Method
Some issues in 3D
Singular integrals

3 Background

3.1 Interior vs Exterior Problems

Interior Exterior

Temperature in a tank  Ice cube in a bath

What is the heat distribution?

Heat flow = Thermal conductivity fsm. Face ‘g’—f
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3.1.1 The Interior Problem

Example: Heat Distribution in a Tank

known
T(x) xel'

How does one determine the heat distribution using the finite difference method?

Use the above example of heat distribution in a tank, to see what is meant by
an interior problem. This is a Dirichlet problem because T'(Z), the temperature,
is defined on the surface ¥ € I'. The steady state two dimensional heat flow
equation is defined using the Laplace Equation, V*T'(#) = 0. The domain of
this problem is clearly the interior of the tank, @ € (2.

3.1.2 The Exterior Problem

Up until this time, all problems that have been studied using finite-element and
finite-difference methods have been interior problems, but now, we begin to
wonder how to form an exterior problem. This poses some problems for these
other methods such as generating the grid as well as mesh truncation.

Example: Ice Cube in a Bath

Needed
‘ _ Information
| ik
known
Bath ) xel

Above is a problem showing an ice cube in a bath which is used to indicate an
exterior problem. Again, this is a Dirichlet problem because T'(Z) is defined
on the surface ¥ € T’ and described by the steady state two dimensional heat
flow equation defined using Laplace’s Equation, V?*T(Z) = 0. The problem
domain is the infinitely extending region exterior to the ice cube. A point that
we will expand in a later lecture is that with exterior problems, an additional
boundary condition is needed to specify what happens at a large distance away
from our point source. Assuming there are no heat sources exterior to the cube
will impose the following radiation boundary condition
lim T(r) — 0.

l|€]| — o0
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Suppose that for this specific problem, we are only interested in what occurs at
the surface of the cube. It seems inefficient to use the finite-difference or finite-
element methods where one needs to compute the temperature everywhere in (2.

T=0 atx

For FDM/FEM — -
one must (
truncate
the mesh

3.2 Examples
3.2.1 Computation of Capacitance

What is the capacitance?

potential

V¥ =0 Outside
¥ is given on Surface

ov
Capacitance = Dielectric Permittivity / I
n

In the example in the slide, the yellow plates form a parallel-plate capacitor
with an applied voltage V. In this 3-D electrostatics problem, the electrostatic
potential ¥ satisfies Laplace’s equation V2W(z) = 0 in the region exterior to
the plates, and the potential is known on the surface of the plates (Dirichlet
boundary condition). Furthermore, far from the plates,

lim W(r) — 0.

1] —oo

(Exterior Radiation Boundary Condition to be studied further in a future lec-
ture). The value of interest is the capacitance, C, which satisfies

qg=CV

where g, the net charge on one of the plates, is given by the surface normal of
the potential integrated over one plate and scaled by a dielectric permittivity.

16



Note 1 Example 1: Capacitance problem

This is a typical application example, determining the charge density on the
surface of conducting plates given an applied voltage. In this particular example,
the top plate potential is ¥ = 0.5V and the bottom plate potential is ¥ =
—0.5V, where V is the voltage noted in the figure.

For this exterior Dirichlet problem, one can write an integral equation that re-
lates the surface charge density on the plates o to the potential on the plates.
This integral equation, ¥(Z) = . mg(i‘f’ )dS’ , is often referred to by physi-
cists as the superposition integral. In the integral equation, z is any point on
the plate surfaces and the surface being integrated over is the union of the top
and bottom plate surfaces. Note that the integration surface is not a connected
domain, but this presents no difficulties.

3.2.2 Drag Force in a Microresonator

PR RRRA R

Resonator Discretizéd Structure

= 4 !_':
Computed Forces £ Computed Forces
Boltom View = Top View
: ALALLL RS el
Note 2 Example 2: Drag force in a MEMS device

The example in the slide is a microresonator, it is a structure that can be made
to vibrate using electrostatic forces. The changing character of those vibra-
tions can be used to sense rotation. The particulars of how the microresonator
operates is not directly relevant to our discussion of integral equations, except
for one point. In order to determine how much energy is needed to keep the
microresonator vibrating, it is necessary to determine the fluid drag force on
comb structures shown in the bottom part of the slide. The fluid is the air
surrounding the structure, and at the micron-scale of these devices, air satisfies
the incompressible Stokes equation,

Viu(x) = Vp(x) (1)

V-u(x)=0
where u is the fluid velocity and p is the pressure. By specifying the comb
velocity, and then computing the surface pressure and the normal derivative

of velocities tangent to the surface, one can determine the net drag force on
the comb. Once again, this is a problem in which the known quantities (the
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comb velocity) and the quantities of interest (the derivative of the tangential
components of fluid velocity) are on the surface.

3.2.3 Aircraft Drag

Discretization for F-18 pressure simulation (no lift)
Inviscid, Irrotational, Steady Flow
Potential flow: VZu(z) =0 Vu = velocity

Note 3 Example 3: Aircraft Drag

The potential flow model for aircraft drag computation will be discussed in more
detail in subsequent lectures, so we only give a brief description here. In order to
compute the drag on the wing of an aircraft, one must determine the difference
between the wing velocity and the velocity of the air very close to the wing. If
the air can be assumed inviscid, irrotational, and incompressible, the velocity
is given by the gradient of a scalar potential which satisfies Laplace’s equation.
The boundary conditions for the Laplace’s equation are given as a velocity
boundary condition on the aircraft surface, equivalently a Neumann condition
on the potential, and it is usually assumed that the potential approaches zero
at infinity. The boundary condition at infinity is more subtle than it may seem,
as we shall see in later lectures. Finally, it is common to introduce an artificial
boundary in the domain, and specify a condition on that boundary to introduce
rotational effects.

3.2.4 Capacitance of Microprocessor Signal Lines

18



Note 4 Example 4: Capacitance of microprocessor signal lines

This last example in the above slide is a picture of the wiring on a microprocessor
integrated circuit. A typical microprocessor has millions of wires, so we are only
looking at a small piece of a processor. The critical problem in this example
is determining how long signals take to get from the output of a logical gate
to the input of the next gate. To compute that delay, one must determine the
capacitance on each of the wires given in the slide picture. To do so requires
computing charges given electrostatic potentials as noted above.

3.3 Advantages of Integral Equation Method
3.3.1 What is common about these examples?

Exterior Problems

MEMS device - fluid (air) creates drag

Aircraft Design - exterior air flow

Signal Line - Exterior fields.

Quantities of interest are on surface

MEMS device - Just want surface traction force

Aircraft Design - Just want surface tangent velocities

Signal Line - Just want surface charge.

Exterior problem is linear and space-invariant
MEMS device - Exterior Stoke’s flow equation (linear)
Aircraft Design - Laplace’s equation, plus wakes.

Signal line - Laplace’s equation in free spce (linear)

But problems are geometrically very complex

3.3.2 Why not use FDM / FEM?

2-D Heat Flow Example

Surfacex:_,,__ ———
\\
4N o oy I T=0ates
Il ] \ But, must
\t,, . —r 1| /} truncate the
N - ' % mesh
~L__ L

Ounly need % on the surface, but 7" is computed everywhere.

Must truncate the mesh, = T'(occ) = 0 becomes T'(R) = 0.

Consider the two dimensional exterior heat conduction problem in the above
figure in which the temperature is known on the surface of the square. Suppose
the quantity of interest is the total heat flow out of the square.

The temperature T satisfies

V3T (x) =0 x e

19



T(x) givenx €T (2)
lim T'(z)=0
lzll—oc

where 2 is the infinite domain outside the square and I' is the region formed by
the edges of the square.
Using finite-element or finite-difference methods to solve this problem requires
introducing an additional approximation beyond discretization error. It is not
possible to discretize all of €2, as it is infinite, and therefore the domain must be
truncated with an artificial finite boundary. In the slide,the artificial boundary
is a large ellipse on which we assume the temperature is zero. Clearly, as the
radius of the ellipse increases, the truncated problem more accurately represents
the domain problem, but the number of unknowns in the discretization increases.

3.4 Point Source Approach
3.4.1 Green’s Function
Heat Distribution in 2-D

“point charge”

(,-l_'gr,"n)
~— 2 2
e Sy - y)

Green’s Function: T = log (\/(3: —20)? + (y — yg)z)

From basic electrostatics, one knows that in 3-D, the potential field produced
by a point charge decays inversely with the distance to the point charge. Since,
roughly, one can represent any charge distribution using a sum of point charges,
one can express the potential due to a charge density as a sum of point charge
potentials. Therefore, point charge potentials play a special role, and are often
referred to as Greens’ functions for the problem.

In 2-D  The potential due to a point charge is:
u = loy (\/(__,- —a0)* + (y - yu)z) (3)
V(z.y) # (x0.0)

In 3D  The potential due to a point charge is:
1
U= - : , (4)
V(@ —x0)? + (y — yo)? + (2 — 20)?

V(z,y,2) # (20, Yo, 20)

20



In 2D IfU—log(\/(ﬂz—SC{}z-F(y y{}))
0 V¥V (x,9)# (o, v0)

then %r% -+ gy“

_ 1
In 3D Ifu \/(;c 20)2+(y—y0)2+(2—20)2

thenau+w+8u-0 v (:E;yuz)#(mO:yO:zO)

Proof: Just differentiate and see!

In the next few slides, we will use an informal semi-numerical approach to de-
rive the integral form of Laplace’s equation. We do this in part because such a
derivation lends insight to the subsequent numerical procedures.

To start, recall from basic physics that the potential due to a point charge is
related only to the distance between the point charge and the evaluation point.
In 2-D the potential is given by the log of the distance, equation (3), and in
3-D the potential is inversely proportional to the distance, equation (4). These
functions are sometimes referred to as Green’s functions for Laplace’s equation,
but have the physical interpretation as the potential due to a point charge. We
will be studying Green’s functions in more depth later on.

> Exercise 1 Show by direct differentiation that the functions in equations (3)
and (4) satisfy V2u = 0, in the appropriate dimension almost everywhere. m

3.4.2 Scaling Green’s Function
u is given on surface

) o'u  d'u
+

le—Surface —»| 5
. oy’
Let u=log

(-"nv)‘n)
2 2
(r t..) (}‘*}‘u)
%‘.“ + g—“ =0 outside M

Boundary conditions are not satisfied!

=0 outside

,__‘

A simple idea for computing the solution of Laplace’s equation outside the
square is to let

u(z,y) = alog v/ (z — 20) + (y — 4o)?

where (20, y0) is a point inside the square. Clearly u will always satisfy V2u=0
outside the square, but © may not match the boundary conditions. By adjusting

21



«, it is possible to make sure to match the boundary conditions at at least one
point.

This concept is applied to a circle as a simple example of how to match the
boundary conditions.

T =log 1/x2 +y2)

T(J?e F)=logR=1? \s

on circle
Multiply by a constant: |

=?log(1/x2 +y? ) MO) ="

pointcharge  /
charge strength N S

i

> Exercise 2 Suppose the potential on the surface of the square is a constant.
Can you match that constant potential everywhere on the perimeter of the
square by judiciously selecting o 7 m

u is given on surface

St e | @, o

. o ' oy
{x.5) .

{¥,-¥,)

=0 outside

u—Zatlog( (z— )%+ (y — ,Ut) Zm (T — i,y — yi)

Pick the «;’s to match the boundary conditions!

To construct a potential that satisfies Laplace’s equation and matches the
boundary conditions at more points, let u be represented by the potential due
to a sum of n weighted point charges in the square’s interior. As shown in the
slide, we can think of the potential due to a sum of charges as a sum of Green’s

functions. Of course, we have to determine the weights on the n point charges,
th

and the weight on the *" charge is denoted hereby a;.

Source Strengths selected
to give correct potential at

-~~~ test points.
G(Itl _:L'i:yll —yl) G(i‘h '_:En:yfl —yn) 03] m(a;h:yh)
G(:L‘:,, - T1,Yt, — ‘yl) o Gy, — . Yt, = Yn) %n Bl W)
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To determine a system of n equations for the n «;’s,consider selecting a set of
n test points, as shown in the slide above. Then, by superposition, for each test
pOiIlt (‘Tﬁi ) yti)’

n n
u(ze,p,) = Y ailog /(ze, — 20)2 + (4, — 90)2 = Y iGl(@e, — 20, Ye, — Yo)-
i=1

i=1
(5)
Writing an equation like (5) for each test point yields the matrix equation
G(ﬂfgl — L1, Y, — yl) oo G{$t1 — Tn, yh - yn) aq \I,(:Eh ) ytl)
G(:L.t_" - '1:1' yt?t - yl) o G(wtn - mn? ytu - yﬂ) Cp qj(mtrL7 yt'n)
(6)

The matrix 4 in equation (6) has some properties worth noting:

¢ A is dense, that is A;; never equals zero. This is because every charge
contributes to every potential.

e If the test points and the charge points are ordered so that the i*" test
point is nearest the it" charge, then A;; will be larger than A; ; for all j.

The 2™ item above seems to suggest that A is diagonally dominant, but this
is not the case. Diagonal dominance requires that the absolute sum of the off-
diagonal entries is smaller than the magnitude of the diagonal. The matrix
above easily violates that condition.

> Exercise 3 Determine a set of test points and charge locations for the 2-D
square problem that generates an A matrix where the magnitude of the diagonals
are bigger than the absolute value of the off-diagonals, but the magnitude of
the diagonal is smaller than the absolute sum of the off-diagonals. m

3.4.3 Source Point Locations

Where should the sources be located?

ote,
. seta,
| .' *

.
eee
ALl
o
e T

0
| eaest®

|
* & 8 & v s e 8 8w

Close to the boundary Clustered in the center
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Problems with these placements:

More singular
weight matrix

‘ \ u=logR
ceid "
-'.... .‘.'n
Close to the boundary Clustered in the center
3.4.4 Computational Results
Circle with Charges r=9.5
Potentials on the Circle

n=20 i n=40

It is possible to construct a numerical scheme for solving exterior Laplace prob-
lems by adding progressively more point charges so as to match more boundary
conditions. In the above graph, we show an example of using such a method
to compute the potential exterior to a circle of radius 10, where the potential
on the circle is given to be unity. In the example, charges are placed uniformly
on a circle of radius 9.5, and test points are placed uniformly on the radius 10
circle. If 20 point charges are placed in a circle of radius 9.5, then the potential
produced will be exactly one only at the 20 test points on the radius 10 circle.
The potential produced by the twenty point charges on the radius 10 circle is
plotted in the lower left corner of the slide above. As might be expected, the
potential produced on the radius 10 circle is exactly one at the 20 test points,
but then oscillates between 1 and 1.2 on the radius 10 circle. If 40 charges and
test points are used, the situation improves. The potential on the circle still
oscillates, as shown in the lower right hand corner, but now the amplitude is
only between 1 and 1.004.

3.5 Charge Density

Want to smear point charges to the surface

24



Results in an integral equation
V(F) = f G(Z, 7)o (Z)dS’ (7)
r

How do we solve the integral equation?

In equation (7) for which variable are we trying to solve?

alx'y")
Charge
density
delined
on the
surface

W(x,y) = / o(a’,y') log /(z — ') + (y — y')?da’dy’
T

Single Layer Potential

The oscillating potential produced by the point charge method is due to the
rapid change in potential as the separation between evaluation point and point
charge shrinks. If the point charges could be smeared out, so that the produced
potential did not rise to infinity with decreasing separation, then the resulting
computed potential would not have the oscillation noted on the previous slide.
In addition, it makes the most sense to smear the point charges onto the surface,
as then the charge density and the known potential have the same associated
geometry. The result is the integral equation (7), where now the unknown is
a charge density on the surface and the potential due to that charge density
is given by the well-known superposition integral. In the case of two or three
dimensional Laplace problems, G(#,#) can be written as G(Z — @), as the
potential is only a function of distance to the charge density and not a function
of absolute position. For such a Green’s function, this equation is,

U(F) = ﬂ@(f—f’)a(f')ds’, (8)

which one may recognize from system theory as a convolution integral. This
connection is quite precise. A space-invariant system has an impulse response,
which is usually referred to as a Green’s function. The output, in this case, the
potential, is a convolution of the impulse response with the input, in this case,
the charge density. Such an integral form of the potential is referred to as a
single layer potential.
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Note 5 Types of integral equations

The single layer potential is an example of a class of integral equations known as
“Fredholm integral equation of the First Kind”. A Fredholm integral equation
of the Second Kind results when the unknown charge density exists not only
under the integral sign but also outside it. An example of such an equation is

() = o(@) + [P K(Z - #)o(#)dS". (9)

Fredholm integral equations, in which the domain of integration is fixed, usu-
ally arise out of boundary value problems. Initial value problems typically give
rise to the so-called Volterra integral equations, where the domain of integra-
tion depends on the output of interest. For example, consider the initial value
problem
dx(t)
dt

=tx(t); te€l[0,7],T>0.
z(t =0) = o

The “solution” of this equation is the following Volterra integral equation:

it
#(t) =0+ | (€t

4 Basis Functions

4.1 Basic Idea

Represent J(.t]zZag @ (x)
= asis buncrions

Example Basis
Represent circle with straight lines

Assume ¢ is constant along each line

The basis functions are “on” the surface

Basis Functions can be used to approximate the surface charge density in a similar
way in which they approximate geometry for finite elements.

Numerical solution of the single layer potential

As we have studied extensively in the finite-element section of the course, one
approach to numerically computing solutions to partial differential equations is
to represent the solution approximately as a weighted sum of basis functions.
Then, the original problem is replaced with the problem of determining the
basis function weights. In finite-element methods, the basis functions exist in
a volume, for integral equations they typically exist on a surface. For 2-D
problems that means the basis functions are restricted to curves and in 3-D the
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basic functions are on physical surfaces.

As an example, consider the circle in the above figure. One could try to represent
the charge density on the circle by breaking the circle into n sub-arcs, and then
assume the charge density is a constant on each sub-arc. Such an approach is
not commonly used. Instead the geometry is usually approximated along with
the charge density. In this example case, shown in the center right of the slide,
the sub-arcs of the circle are replaced with straight sections, thus forming a
polygon. The charge density is assumed constant on each edge of the polygon.
The result is a piecewise constant representation of the charge density on a

polygon.

4.2 Geometric Approximation

Piecewise Straight surface basis  Triangles for 2-D FEM
Functions approximate the circle approximate the circle too!

¥(x)= G(x,x’)izlaoeﬂ(-\")ds'
‘ i

The idea that both the geometry and the unknown charge density has been
approximated is not actually a new issue. As shown in the figure in the above
slide, if FEM methods are used to solve an interior problem, and triangular
elements are used, then the circle is approximated to exactly the same degree
as when straight sections replace the sub-arcs for the surface integral equation.
As shown at the bottom of the above slide, we can substitute the basis function
representation into the integral equation, but then we should also note that
the integral is now over the approximated geometry. It is common, but not
mathematically justified, to ignore the errors generated by the geometry ap-
proximation. We will also ignore the error in the geometric approximation in
our analyses, just for simplicity. In the case of polygonal geometries, there is no
geometric approximation, so there is at least one case where the assumption is
precise. It should be noted, however, that there are often analytic results only
for smooth geometries, and then before making comparisons to such analytic
results, it is necessary to examine the effect of the approximated geometry.

If the original problem is a polygon
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there is no geometric approximation

4.2.1 Piecewise Constant Straight Sections

x5

X, . 1) Pick a set of n Points on the
* surface
2) Define a new surface by
connecting points with n lines.
3) Define ¢, (x) =1 if x is on line /,
otherwise, @ (x)=0

‘li(f) B /apprOX G(I‘ :E,) Z ai@i(f’)d’sf B Z] “ ‘/h'n(: I, G(f 4’)de

=1
surface

How do we determine the «;’s?

We complete the description of using constant charge densities on straight sec-
tions as the basis. If we substitute this example basis function into the integral
equation, as is done above, the result is to replace the original integration of
the product of the Green’s function and the density with a weighted sum of
integrals over straight lines of just the Green’s function. The next step is then
to develop an approach for determining the weights, denoted here by «;’s.
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5 Test Points
5.1 Residuals

5.1.1 Definition and Minimization

R(&@) = U(#) — f approx. CEE) Y aii(a)as’ (10)

i=1
surface

Pick the «;’s to minimize R(Z)
General Approach: Pick a set of test functions ¢4, ..., ¢, and force R(Z) to be

orthogonal to the set:

] 6:(Z)R(F)dS =0 Vi (11)

One way of assessing the accuracy of the basis function based approximation
of the charge density is to examine how well the approximation satisfies the
integral equation. To be more precise, we define the residual associated with
the integral equation and an approximate solution, equation (10). Note that
R(Z) is just the difference between the given potential on the surface and the
potential produced by the approximated charge density. Note also that the
equation is now over the approximate geometry and therefore # and ' are both
on the approximated surface.

If the representation satisfies the integral equation exactly, then the residual
R(F) will be zero for all £ and the approximate solution is equal to the exact
solution (provided the integral equation has a unique exact solution ...more
on this later). In general, though, this is not possible, and instead we will try
to pick the basis function weights, the «;’s, to somehow minimize R(Z). One
approach to minimizing R(Z) is to make it orthogonal to a collection of test
functions, which may or may not be related to the basis functions, equation
(11). Enforcing orthogonality in this case means ensuring that the integral of
the product of R(Z) and ¢(Z) over the surface is zero.

5.1.2 Residual Minimization Using Test Functions

[ $i(®R(F)dS =0|=

f $:()U(F)dS - f f approx HECET) Y ayips(#)ds'ds =0 (12)
surface =1
We will generate different methods by choosing the ¢1,..., ¢
Collocation : ¢;(%) = §(F — ;) (point matching)
Galerkin Method : ¢;(&) = i(Z) (basis = test)
Weighted Residual Method : ¢;(Z) = 1 if ;(Z) # 0 (averages)
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As noted in the equation (12), by substituting the definition of the residual into
the equation (11), it is possible to generate n equations, one for each test func-
tion. The generated equation has two integrals. The first is a surface integral of
the product of the given potential with the test function. The second integral
is a double integral over the surface. The integrand of the double integral is
a product of the test function, the Green’s function, and the charge density
representation.

Three different numerical techniques can be derived by altering the test func-
tions.

5.2 Collocation
Collocation: ¢;(%) = §(Z — &,) (point matching)

f 3(T—T¢; )R(T)dS=R(Ty;)=0| =

Aij
Zaj /approx G(it-“f’)‘pj (f’)ds’ = ‘D("fti) =
i=1 surface
Al‘j A[‘n x] ‘D(‘Ef])
An,l S An,n (847} ‘I’(j‘jt,.)

The collocation method, described in the above slide, uses shifted impulse func-
tions as test functions, ¢;(Z¥) = d(& — &;). Impulse functions, also called “delta”
)

functions, have a sifting property when integrated with a smooth function f()

/ F@)S(E = F)de = f(70).

Impulse functions are also referred to as generalized functions, and they are
specified only by their behavior when integrated with a smooth function. In the
case of the impulse function, one can think of the function as being zero except
for a very narrow interval around Z;, and then being so large in that narrow
interval that [6(7 — &)dx = 1.

As the summation equation in the middle of the above slide indicates, testing
with impulse functions is equivalent to insisting that R(Z;) = 0, or in words,
that the potential produced by the approximated charge density should match
the given potential at n test points. That the potentials match at the test
points gives rise to the method’s name, the point where the potential is exactly
matched is “co-located” with a set of test points.

The n x n matrix equation at the bottom of the above slide has as its right-
hand side the potentials at the test points. The unknowns are the basis function
weights. The j** matrix element for the i*" row is the potential produced at
test point z; by a charge density equal to basis function ©j-
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5.2.1 Centroid Collocation for Piecewise Constant Bases

line center

Al,l e Al,n g qj(ftl ) n

: . : 2= : =SW(F,, )= ajf G(&e;,&)dS’
A‘n.l T An,‘n (279 ‘Il(fh) =1 \"E'T"?'_\’_J
]
In the above slide, a specific collocation algorithm is described. First, the basis
being used is the constant charge density on n straight sections or lines, as de-
scribed above. Note that therefore the geometry is being approximated. Second,
the collocation points being selected are the centroids of the basis functions, in
this case just the center of each straight line. Note that the collocation point is
on the approximated geometry, not the original geometry. So, one can think of
the problem as having been restated to be on a polygon instead of the original
circle. One could also have selected the collocation points on the original circle,
but then the replacement interpretation does not hold.
In collocation, or point-matching, the charge densities on each of the straight
lines are selected so that the resulting potential at the line centers matches the
given potential. As the equations on this slide make clear, the matrix element
A; ; is the potential at the center of line ¢ due to a unit charge density along
line j.
It should be noted that the matrix A is dense, the charge on line j contributes
to the potential everywhere. Also note that if line j is far away from line 4, then

A j =~ length(line;) x G(%,, %4;) (13)

> Exercise 4 Suppose we are using piecewise constant centroid collocation
to solve a 2-D Laplace problem, so G(z.y,2',y") = log\/(z — a’)2 + (y — y')%.
Roughly how far apart do line sections i and j have to be for equation (13)
to be accurate to within one percent? Assume line j has length of one. Does
your answer depend on the orientation of line j7 Does your answer depend on
the orientation of line i7 (You should answer yes to one of these and no to the
other, do you see why?) m

5.2.2 Centroid Collocation Generates Nonsymmetric A

Aij
A

™

U(F,) = ay / G, #)dS’
i=1 Jline j
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X,
/ \{
1 Az

Ay g = / Gla,#)iS # | G, #)dS = As, (14)
Jline 2

line 1

Consider the two line sections, I; and ls given in the above figure. For Laplace
problems, G(Z,#') = G(i’,%), which suggests a symmetry in the underlying
integral equation that is not represented in the collocation discretization. This
asymmetry is shown in equation (14) by noting that Ay o # As ;. That is, the
potential at the center of I; due to a unit charge density on [; is not equal to
the potential at the center of I; due to a unit charge on [s.

It is possible to scale the variables to improve the symmetry, consider a change
of variables

&; = a; x length(line;).

In this change of variables, the unknowns &; are now the net line charges rather
than the line charge densities. In this new system, A@ = ¥, where the elements
of the matrix A are given by

~

G(Z,,,&)dS".

Aim
o ]ength(l'mej) Jline;
Under the change of variables, if line j is far away from line 4, then
Ai,j ~ G(ij“.fg_,) ~= Aj,i' (15)

In other words, the elements of A corresponding to distant terms are approxi-
mately symmetric.

Is ¥(Z) due to o(2") the same as W(7’) due to o(x)?

Green’s Function is due to log R

> Exercise 5 Give an example which shows that the scaled entries of A can be
far from symmetric. Assume we are using piecewise constant straight sections
with centroid collocation and the 2-D Laplace’s equation Green’s function. m
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5.3 Galerkin
Galerkin: ¢;(z) = wi(z) (test=basis)

[o.x) REx}as= o () ¥(xhis— [ | @(2)6(x.0) T ap,(x)asa5 =0

[ a@was=3e [ [ Gle)aide,(«asds
. 1 g appe

Lfonr fasnppere

h A,
Al,l o Al,ﬂ (431 b
A'n.,l “hE A'n..'n CGp bn

If G(Z, f’) = G(f’,f) then A;; = A;; = A is symmetric

In the Galerkin method, the test functions are equal to the basis functions. In
particular, one generates n equations for the basis function weights by insisting
that R(Z) is orthogonal to each of the basis functions. Enforcing orthogonality
corresponds to setting

f o(F)R(Z)dS = 0

and substituting the definition of R(Z) into the orthogonality condition yields
the equation in the center of the above slide.

Note that the Galerkin method yields a system of n equations, one for each
orthogonality condition, and n unknowns, one for each basis function weight.
Also, the system does not have the potential explicitly as the right hand side. In-
stead, the i*" right-hand side entry is the average of the product of the potential
and the i*" basis function.

5.3.1 Galerkin for Piecewise Constant Bases

[¥(x)ds= Z":a, | [6(xx)dsus

i fine,

b A,

Arn - A a by

An.,l . i b,

In the Galerkin method, the basis has constant charge density on n straight
sections or lines. We will think of the problem as having been restated to be
on a polygon instead of the original circle. The charge densities on each of the
straight lines are selected so that the resulting line averaged potential matches
the line averaged given potential. As the equations on the above slide make
clear, the matrix element A; ; is the average potential over line 7, scaled by the
length of line 4, due to a unit charge density along line j.
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As with the collocation method, the matrix A is dense because the the charge
on line j contributes to the averaged potentials everywhere. Also note that if
line j is far away from line i, then

A; j = length(line;) x length(line;) x G(&y,, 7y;) (16)

> Exercise 6 Suppose we are using piecewise constant centroid collocation
to solve a 2-D Laplace problem, so G(x,y,2",y') = log\/(x — 2')2 + (y — y/')2.
Roughly how far apart do line sections ¢ and j have to be for equation (16) to
be accurate to within one percent? Assume line j has length of one. Does your
answer depend on the orientation of line j7 Does your answer depend on the
orientation of line 1?7 (Your answer should be different than the answer you gave
for the collocation method. Do you see why?) m

5.4 Summary

Compare the Collocation and Galerkin methods on a two-dimensional circle.

What do the test functions look like?
What do the Residuals look like?

Test Functions

Collocation Galerkin
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Collocation Method

bAx) Ks ~ A

/
—
g

Residual
is zero

Integral
is zero

6 Issues in 3D

6.1 Geometric Representation
6.1.1 Introduction
Example: Ship’s Hull

More errors are introduced with expansion of dimensions

In2-D In3-D

Note 6 “Leaky Panels”

Many papers in the literature on solving integral equations refer to “panel meth-
ods”. The name is derived from the idea of breaking a surface into flat panels.
In the application area of analyzing ocean wave forces on ship hulls, panel meth-
ods are commonly used. However, it is not possible to represent a curved hull
with quadrilateral flat panels. Researchers in the area often create a best fit
panelled surface in which there are gaps between the edges of the panels. Such
a discretization technique is often referred to as using “leaky panels”, a very
compelling image.
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Integral Equation : ¥(z) = [ Face Hz—i—x‘[la (z)dS"

Discretize Surface into
Panels

Represent O'(x)=ia,- ¢, (x)
i=1 e

Basis Functions

@, (x)=1 ifxis on panel j

Panel j 9, (x)=0 otherwise

Consider solving the integral equation where the surface is the surface of the
cube shown. The first step, as we have mentioned in previous lectures, is to
develop a basis in which to represent the surface charge density o.

The cube pictured in the slide has had its surface divided into panels, and
a basis is derived from the panels. In particular, one can associate a basis
function ¢; with each panel j by assigning ¢;(Z) the value one when 7 is a
point on panel j, and setting ¢;(&) = 0 otherwise. If ¢ is approximated by
a weighted combination of these basis functions, then the approximation is a
piecewise constant representation of the charge density on the surface of the
cube.

A few aspects of this basis set should be noted.

e The basis functions are orthogonal, that is if 7 # 7,
[ei@ei@a=o

e These basis functions are normalized with respect to l.., not ly. That is,
lielloo = 1 but

lmﬁ=/wmwmm=mmMm
6.2 Centroid Collocation
Put collocation points at panel centroids

" 1 ,
Yix )= —dS
( K ) JZ':QJ pml;‘:’.'j “\. _“"II

A'—i
Collocation
point
A, A e | Pl)
A e A e ‘i’(.1 )
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After one has decided on a basis with which to approximately represent the
surface charge density, the next step is to develop a system of equations from
which to determine the basis weights, denoted as the «;’s. The most commonly
used approach to forming such a system is to use collocation, though Galerkin
methods are also quite widely used. Recall that in collocation, the basis function
weights are determined by ensuring the the integral equation is exactly satisfied
at a collection of “collocation” points. For panel methods, the most common
choice for the position of the collocation points are the panel centroids, as shown
in the cube diagram above.

The equation in the top of the above slide relates the potential at collocation
point F., to the weights for the panel-based basis functions. To see how the

equation was derived, consider evaluting the potential at the i** collocation
point using the original integral equation
o(Z,,) —/ —:"”E'Ta(f')dS’, (17)
sur face ”'T(-‘i - ”

where ® is the know potential on the problem surface and ¢ is the unknown
charge density. Substituting the approximate representation for o,

o(#) = Y gy (@)

into the integral equation results in

9 Tl
B(7,,) = / G(Fe,, @) Y s (&)dS, (18)
sur face j=1
where G(Z,7') = I —l'f’\l is used to simplify the formula. Exploiting the fact

that ¢;(#) = 1 if Z is on panel j, and zero otherwise, results in the formula at
the top of the above slide.

The system of equations from which to determine the basis function weights is
given in the lower corner of the slide. The right hand side of the system is the
vector of known potentials at the collocation points. The i, j** element of the
matrix A is the potential produced at collocation point i due to a unit charge

density on panel j. The vector of a’s are the unknown panel charge densities.

> Exercise 7 Determine a scaling of the a’s (& = c¢;a;) such that the scaled
matrix A has the property

A; !

T
LI T —
”‘rﬂi — T “

when [|Z., — Z, | is much larger than a panel diameter. m
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6.2.1 Calculating Matrix Elements

o

Mllocation point i

Collocation

z c— point
1 .
A= | s
X, —x

panel j

Panel j

q?xg?!rg?;?:a : 1 ‘ A, = !|fm1€i A_rea“
Approximation : | v~ Keeniraid,

Four point olre & 0.25% Area
quadrature 4"/ ‘ ./|I/. A, zZ'
=

Approximation |":'7 - “';~vim.|

In order to calculate the matrix entries for the system of equations described in
the previous slide, recall that A; ; is the potential produced at collocation point
¢ due to a unit charge density on panel j. The formula for A; ; is given on the
top right of the above slide.

The figure on the left of the above slide is a diagram of how one typically
computes the panel integral given on the top right. First, consider a shift and
rotation of the coordinate system so that the panel lies in the 2-y plane at z = 0,
with the panel’s center at @ = 0, y = 0. The figure in the top left shows the
panel in the shifted and rotated coordinate system. Note that the collocation
point must also be placed in the new coordinate system.

If panel j is reasonably well separated from collocation point ¢, it is possible to
approximate the integral given in the top right by a single point quadrature.
More specifically, one could approximates the integral of qu_l_—f’H by a product

of and the panel area. As show in the middle figure, a single

TFe; —Feentrord, |
point qua,dratu;e is like treating the panel as if it were a point charge at the
panel’s centroid, where the point charge’s strength is equal to the panel area.

If the collocation point is close to the panel, then a single point quadrature
will be insufficiently accurate. Instead, a more accurate four point quadrature
scheme would be to break the panel into four subpanels, and then treat each of
the subpanels as point charges at their respective centers. This simple idea is
shown in the figure at the bottom of the above slide. This four point scheme is
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equivalent to

/ Z 0.25 % Area
yel - ﬂ’” “IL‘C1

anel; “-L"r? Tpoint; I

If the panel is a unit square in the x-y pla.ne whose center is at the coordinate
system origin, then the four Zpyins,’s are (z,y,z) = (0.25,0.25, 0), (z,y,2) =
(—0.25,0.25,0), (z,y, z) = (—0.25,-0.25,0), and (z,y, z) = (0.25, —0.25,0).

6.2.2 Calculating "Self Term"

X, Collocation

z point

A = J‘ U

e

— X
'\\ panel i
Panel i

One point anel Are(r
quadrature ‘Zk—‘ %—
Approximation
A= dS” is an integrable singularity

panel i ||xr; -X ”

The diagonal terms A; ; can not be computed using the quadrature approxima-
tion given on the previous slide. To see this, consider the figure at the top left of
the above slide, where a panel has been shifted and rotated into the x-y plane,
and the collocation point is the center of the panel. The integral that must be
computed is given on the right side of the top of the above slide.

As shown in the middle of the slide, using a single point quadrature scheme will
fail, because the distance between the point charge approximation to the panel
and the collocation point will be zero. Therefore, the single point formula will
require computing the reciprocal of zero, which is infinite. The problem is that

the integrand in
' 1
/ —dS’ (19)
Jpanel; ”CL‘C':' - H

is singular. That is, the integrand approaches infinity at a point 2’ which is in
the domain of integration. What is not so obvious is that (19) is an integrable
singularity. Therefore, even though the integrand approaches infinity at some
point, the “area under the curve” is finite.
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x Collocation

. point |
X‘--"'Panell A= e _x1|d5
panel i ||¥e,
Disk of radius R
surrounding

collocaﬂon point
| ,
Integrate intwo A, = j' ——dS’+ I ——dS

pieces "‘ -] rest of punet ||%e, -
Disk Integral has R

singularity but has J‘” I“’S j _[—rdrdf) 27rRi

s

analytic formula

In the above slide, we both show that

1
| s
panel; “'r(-'i o ”

is integrable, and also give an idea about how to compute the integral.

As shown in the slide, first rotate and shift the coordinate system so that the
panel is in the z-y plane at z = 0, and so that the collocation point (or equiv-
alently the panel centroid) is at the origin. In this new coordinate system, the

integral can be written as
Aii = f ds’
" panel(rs) “'L’“

where the notation panel(rs) is used to indicate that the integral is over the
rotated and shifted panel.

On the top left of the above slide, a circular disk of radius I? and center at the
collocation point is inscribed in the rotated panel. In the equations that follow
the figure, it is noted that the panel integral can be recast as the sum of an
integral over the disk plus an integral over the rest of the panel. The integrand
in the integral over the rest of the panel is no longer singular, but the integrand
in the integral over the disk is still singular.

The integral over the disk can be computed analytically by using a change of
variables. After rotating and shifting the panel, the disk is in the z-y plane and
its center, equal to the collocation point, is at zero. Therefore,

[ ds'= [ s
disk |1 Te: — 27|l aisk 1211

Apply a change of variables as transformations of two-dimensional regions. Re-
call this mapping from an earlier lecture in the finite difference method. Suppose
that a region 2 in the 7-@ plane is transformed one-to-one into the region by
differentiable equations of the form

x = rcost. y = rsing.

Any function f(z,y) defined on {2 can be thought of as a function f(x(r, ), y(r,8))
on 2. The integrals of these functions are related by

//fwdmy—[ff 2 0)) 1 (r, 6)] drd8
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where J(r,#) is the Jacobian determinant of the coordinate transformation
where

Jdx Oz . :
oL L costl  —rsind ; ;
r = O 10 e = & o " = s
) = g:’ 30 ’ sinf  reost T ) r

So. now the integral may be put into the transformed coordinates using this

transformation o
/ = ast = / / = dOdr
lisk | - H

The integral over the disk is (‘d‘all\ seen to be 27 R

z
X Collocation

y % point , # <
APanelu = m‘[, "\—r“ o

X

)
Integrand 1s singukir

1. If panel is a flat polygon, analytical formulas exist.
2. Curved panels can be handled with projection.

7  Summary

Integral Equation Methods
Exterior versus interior problems
Start with using point sources
Standard Solution Methods
Collocation Method

Galerkin Method

Integrals for 3D Problems
Singular Integrals
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1.2 Numerical Quadrature

Numerical Methods for PDEs

Methods, Lecture 2
Numerical Quadrature

Notes by L. Proctor, S. De and J. White

November 26, 2008
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1 Outline

Gaussian Quadrature
Convergence properties
Essential role of orthogonal polynomials
Multidimensional Integrals
Techniques for singular kernels
Adaptation and variable transformation
Singular quadrature.

2 Introduction

Numerical Quadrature is employed as an approximation used to evaluate in-
tegrals. We seek an appropriate numerical procedure applied to a definite in-

tegral, I{f} = f; f(z)dz, where the approximation is essentially of the form
n
L{f} = Zai f(z;). The n distinct points, x; are the quadrature nodes we

=1
have chosen and the quadrature coefficients, or weights, are the a; terms. In
general, we would like to have the smallest possible quadrature error, E,{f} =

I{f} B In{f}‘

2.1 Simple Quadrature Example

[ s (3)

Area under the
curve is
approximated by
a rectangle

o
o=
-

To simplify notation, consider the more generic problem of developing a good
numerical technique for evaluating the integral of a function f(x) on the domain
[0,1]. We assume that the integrand is a “smooth” function, though we will ex-
amine this assumption later. First we have developed a naive approach for
obtaining a good approximation of the integral, one we call a simple quadra-
ture scheme.

The simplest approach is to replace the integral with the the product of the
interval (in this case one) and the integrand evaluated at a point inside the
interval. If the selected evaluation point is the center of the interval, z = 0.5,
we call the scheme midpoint quadrature.

A midpoint quadrature scheme replaces the area under the curve f(z) by a
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rectangle whose height is the function f(x) evaluated at the midpoint = = 0.5.
The scheme is exact when f(x) is a constant. However, what is less obvious is
that the scheme is exact when f(z) is a line (an affine funcion of ) as well. The
most obvious way of seeing this is by realizing that when f(z) is a straight line,
the area under it is a trapezoid. This trapezoid has exactly the same area as

the rectangle which this scheme uses to approximate the integral (can you see
why?).

Midpoint Quadrature

fa Exact for:
fx)=ay
I{U) = bﬁ
e 4 R
I T
%2%22%2%32;7771 R
///// //////////%;/ X
0 Y2 1 x

> Exercise 1 Suppose endpoint quadrature (in which the area under the curve
is replaced by a rectangle whose height is f(z) evaluated at z = 0 or x = 1) is
used instead of midpoint quadrature. For what class of functions is endpoint
quadrature exact? m

2.2 Improving the Accuracy

/0 fle)de ~ if (Z) + Ef (Z)

(_\.) Area undgr the
curve is
approximated by
two rectangles

f
/]

z

o
==
=
FS R
-

One way of improving the midpoint quadrature scheme is to divide the interval
[0,1] into subintervals [0, 0.5] and [0.5, 1], then write the integral
0.5

1 1
flx)dr = fla)de + fla)dx,

0 0 0.5

and finally apply a midpoint rule to the integral in each subinterval. We obtain
the scheme shown in the slide. The factor 5 appearing in front of f(3) and f(2)
are just the domain lengths.

44



> Exercise 1 Can you come up with an expression for the error in this case?
How much does the accuracy improve? m

Dividing the interval into two reduces the error, now consider using n subinter-
vals and repeating the midpoint quadrature rule on each subinterval. We obtain

the scheme )
. = 1
]O =Y 1 flwe)

i=1 ——
subinterval
length
. . i1 )
where the centroid of the i*" subinterval is z., = (1 +£) = 2. There is no

doubt that the accuracy improves, but the key question is by how much? How
does this error decrease with the number of subintervals used? And finally, are
there clever ways of obtaining better accuracy with less effort?

2.3 General n-point formula

/01 f{m)da:zg i, @

weight test point
1

;1

- 11— 5

n 2
n

Key questions about the method:
How fast do the errors decay with n?
Are there better methods?

2.4 Different Geometric Approximations

Which geometry is the most accurate?

Endpoint Midpoint Trapezoid
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3 General Quadrature Formula

3.1 General 1-D Formula

/0 flz)de ~ Z \wfb flz:)

——
Weight  Evaluation
Point

Free to pick the evaluation points.
Free to pick the weights for each point.

An n-point formula has 2n degrees of freedom!

After all the hard work we did dividing the domain into subintervals, we realize
that we cannot even integrate a quadratic function exactly on the domain. There
must be something that we can do to improve this scheme. We go back and look
at the general form of the quadrature approximation scheme. All we are doing is
approximating an integral by a weighted sum of function evaluations. So far we
have been choosing these weights as the subinterval lengths. We have also been
choosing the evaluation points as the center of the interval, in the midpoint
quadrature scheme. The weights are just some normalizing factors which we
have taken to be the fraction of the domain over which we are evaluating. The
equality of areas of trapezoids and rectangles that we previously discussed gives
us the extra polynomial accuracy of being able to obtain the area under a
straight line exactly. So, what would happen if we were to choose both the
integration points and the weights intelligently? For an n-point formula we
have n weights and n evaluation points to choose. That gives us 2n degrees of
freedom. Hence we must be able to exactly integrate a polynomial of degree at
most (2n — 1). This idea gives rise to the Gaussian quadrature scheme.

3.2 Evaluation Points & Weights Selection
Can make the result exact if f(x) is a polynomial
f(x) = a0+ a1z + agz® + - + aizt = py(x)

Select z;’s and w;’s such that

n

1
[ pi(x)de = Z w;ipr(x;)
Jo

i=1

for ANY polynomial up to (and including) /** order
With 2n degrees of freedom, | = 2n — 1
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Let py(z) denote a polynomial of degree ! in the variable = (a; # 0). We want
to select the weights and integration points such that the formula

/01 f(z)dx = ./01 pi(z)de = gwwz(:ﬁ)

is exact for all polynomials of degree up to (and including) . Obviously, with
2n degrees of freedom, the best we can dois | = 2n — 1.

Note 1 Example: Third Order Polynomial

As an example, consider integratin the function f(z) = z — z®. from z = 0 to
x = 1. The exact solution is, I{f} = fol(a: — z3)dz = §. It is stated above
that since we have a polynomial of degree three (I = 3), then we will be able
to find an exact solution using two point quadrature (n = 2). But, one must
note, that finding the exact solution is not simply a matter of applying midpoint
quadrature, as we have done previously. The solution using midpoint quadra-
ture is 0.2813, not very close to 0.25. Using Gaussian Quadrature, the method
of which will be studied in further detail later on, will provide the exact solution.

f@=x-x

Assuming the weights, w;, remain bounded, and the derivatives of f(x) are
bounded on [0, 1],

1 n K
[G f(:r:}d:r—;wﬂaf(wz) < )

Gaussian quadrature converges very quickly!!
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4 Error Analysis

4.1 Taylor Series Expansion

To derive the error of the midpoint quadrature scheme analytically, consider the
interval [0, h],h > 0 and Taylor expand f(z) about the center of this interval,

xzﬁ,

¥(@) AR ()
dz 21 da?

fl@) = f(z) + A=) for some £ € |0, h,

where A(z) = z — Z. The last term in the expansion is the Taylor series
remainder. Integrating this expansion over the interval [0, h]

& oy BB
[O fla)de = h(E) + 5 )

Hence the error in the midpoint quadrature approximation is

s R dEf(E)
E_/O fla)de ~ hf(&) = or ST

A function that is first-order polynomial in x would have zero as the second
derivative, and therefore the above expression tells us that the error of mid-
point quadrature for such functions is identically zero. In addition, the above
expression tells us that the error scales as the cube of the domain length.

> Exercise 2 If the midpoint quadrature scheme uses rectangular geometry to
approximate the area under the curve, then why is the first derivative needed
in the Taylor Series expansion? How does one represent the expansion of the
trapezoidal approximation? m

4.2 Example - Error vs. n

! < i-1
/0 sin(x)dr ~ Z ;sin ( - 2 )

i=1




Note 2

Above is the example of integrating f(x) = sin(z) on the domain [0,1]. We
obtain progressively better answers to the integration by increasing the number
of subintervals n. The error in evaluating the integral is plotted as a function
of the number of subintervals (n) above. The error appears to be going down
as O (n~ )

From what we have just seen, the error inside the i*" subinterval (of length

h=1)i & %rf— for some & € [©=1, 1]. Hence, for the entire interval [0, 1]

we can sum these errors and obtain the error, F, for an approximation using n
subintervals as
E - nh? (1.~ d*f(&)
"T24 \n —~  da?

M

It is easy to see that if f(z) is a continuous function, M (being the mean) must
be bounded by the maximum and the minimum of f(z) on the interval [0,1]
and hence, there must exist some & € [0, 1] such that M = d?f(£)/dz?. Hence
we obtain the estimate

nh® d*f(€) _ 1 d*f()

E. = =
T 24 da? 24n2  dx?

since h = 1/n. This error estimate tells us that the scheme is again exact for
constants and linear functions on the domain (no higher order polynomials!)
and, for a smooth function, the error decays algebraically.

4.3 The Exactness Criteria

Consider the Taylor series for f(x) expanded about x = 0

!
fx) = f(0) + dfi)i‘-i----wL;ag;E?)m’-i—Riﬂ

R, is the remainder

where Z € [0, 2|

Note 3

Of all functions, why are we interested in integrating polynomials? The reason
comes from the structure of Taylor’s series expansion. The Taylor expansion
of a function in a local neighborhood of a point (here this point is chosen as 0
without loss of generality) is nothing but a power series expansion. The higher
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the order of polynomials that our scheme can integrate means a higher order of
the remainder term in the expansion. The integral of the remainder over the
domain is precisely the error in numerical integration.

The exactness condition requires

1 1 n
[ pi(z)dx = / (ap + a1z + agz® 4+ - - + qyzt)dz = Z wipr(x;)
Jo 0

i=1
for any set of [ 4+ 1 coefficients ag, ay,...,q

Equivalently

1 1 1 1 n
f apdx + / arxdr + / asx’dz + -+ / ag;r:ld:c S Zwipi(ivi)
0 0 Jo

0 i=1
This slide needs little clarification. Our exactness criterion is

1 1 n
/ m(z)dz = f (ap + a1z + azz® + - - + qzl)dz = Z wipi(x;)
0 0

=1

which is the same as

1 -1 1 n n n
aU/ da:+a1/ mda:—t—----l-m/ 2ldr = aozwz"l—alZwii'i‘l‘""f‘alzwi:ﬂii
0 0 0 i=1 i=1 i=1

For this to be an identity for the (I + 1) arbitrary coefficients a;, we must have
the (I + 1) conditions

n 1
Zu,Q.LI" = / de  for j=0,1,...,1
i=1 /0

Using the Taylor series results, the exactness criteria, and the innate linearity

of the quadrature scheme
n

/o flx)de — Z‘wz‘f(l'i) =

=1
1 3I+].f (z) ! I+1 . I+1
(+1) ozt /u o da — Z wiT;
' i=1

S

~
Remainder

Exactness condition will be satisfied if and only if
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i=]

1 I
/ Flp = Z Wy X

0 i=1

|
11 1w .
X % X w | _0
. g l
! ! N
N % x| w, j,\ dx

Nonlinear, since x;’s and w,’s are unknowns

What is a practical way of computing the evaluation points and weights? The
system of equations is not easy to solve since a;’s and w;’s are unknowns.

5 Computing the Points & Weights

5.1 Newton’s Method
Could use Newton’s Method

Fy)=0= Jp (y*) ("' —y*) = =F (y")

The nonlinear function for Newton is then

I
[ I w :
w XX W
- (I 2
P i Iy
X R - ;
i ! Ha
o ol w, I.\ dx
0

Note 4

Newton’s method is an iterative technique for finding a value y such that F(y) =
0. The method is based on linearizing the problem about a guess at y, and then

o1



updating the value of y by solving the linearized problem. In particular, the
iterate y**1 is determined from y* by solving the linear system of equations

F(y*) + Jr@®) (" = %) =0

where Jp(y*) is the Jacobian (multidimensional derivative) of the nonlinear
function F(y). The iteration is continued until the updated y is sufficiently
close to the exact solution, a criterion that can be difficult to verify. Newton’s
method does not always converge, a phenomenon that is more likely when Jg(y)
is nearly singular. For more about Newton’s method, see the 6.336/16.910/2.096
course notes (available under open courseware).

starting point

\.f (x)

0 ’ A

ending point

Newton Method Jacobian reveals the problem

Columns become
linearly dependent for
high order

Looking at the Jacobian of the problem, we realize that the first n columns
become increasingly linearly dependent for large [. This is bound to happen
since we are looking into the space span{1,z,...,z'}. This basis always becomes
ill-conditioned with increasing [. The solution is to obtain a polynomial basis
that is “normalized” in some sense so that it is properly conditioned.
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5.2 Orthogonal Polynomials
5.2.1 Introduction

Exactness criteria will be satisfied if and only if

1
n \
j( o(x)dx= Z wiey (%) BUT
0 i=l
! g Each ¢, polynomial must

I(‘, (x)dx we (%)

H = Contain an x' term

Be linearly independent

j"; (x)dx= ‘Z“:w‘.c, () )

0

The only difference from the previous set of criteria is that these polynomials
have better properties than the ones we chose before.

5.2.2 Orthogonality

For the normalized integral, two polynomials are said to be orthogonal if
1
/ ci(z)ej(z)de =0 for j#i
Jo

The above integral is often referred to as an inner product and ascribed the
notation

1
((‘,-.(-,):/ cilz)e;(z)dz

40

The connection between polynomial inner products and vector inner products
can be seen by sampling.



5.2.3 Exactness Criteria
Consider rewriting the exactness criteria

1
1

_[Cn (x)dx= Z”}f’n (x,) J‘c'” (x)dx= i we, (x,)

0 i= A

. 0 .
I § n I : "
j'("n--l (x)dx=p we, (%) j""'z..ml (x)dx= z W.Cy,y (%)
0 i=1 0 i=l
Low order terms High Order Terms

Recall that [ = 2n — 1

where | = degree of polynomial & n = number of coefficients

Call the first (n—1) conditions the “lower order terms” and the last n conditions
the “higher order terms.”

5.2.4 Higher Order Terms Contain Lower Order Terms

Write the higher order terms differently

1 L 1 n
/ en(z)de = Z wicn(z;) = [ cp(x)en(x)de = Z wicy, (x;)eo(x;)
Jo

i=1 v 0 i=1

1 n 1 7
/ Csn—i () do= E wicn, —1(x;i) =% / cil®)en—i(z)de = E WG (5 VG =1 ()
Jo Jo

i=1 i=1

The products ¢, (x)c;(x) are linearly independent.

In this slide we express the “higher order terms” as conditions involving “lower
order terms.”

5.2.5 Using Orthogonality and Roots

Use orthogonal polynomials



Pick the x;’s to be n roots of ¢, (x)
The higher order constraints are exactly satisfied!

This elegant step relies on polynomial orthogonality. If we choose the poly-
nomial c¢,(z) such that it is orthogonal to all polynomials of inferior degree
(i.e. co(z),c1(z),...,cn—1(x)) and the x;’s are roots of this polynomial, then
the higher order n conditions are automatically satisfied. Note that for this
derivation we used polynomials which are orthogonal on the interval [0, 1]. Such
polynomials are shifted and scaled versions of the classical Legendre polynomi-
als, which are orthogonal on the interval [—1,1].

5.2.6 Satisfying Lower Order Constraints

An abbreviated exactness equation

co(z1) -+ colzn) wy ﬁ)l co(x)dx

Cn_l(fl,'l) e Cp—1 (ln) Wp, fol Cn_l(.'l.')dl

Now linear, x;’s are known
Rows are sampled orthogonal polynomials.

By using the roots of ¢,(z) for the x;’s, the higher order constraints are au-
tomatically satisfied. Since the x;’s are now known, only the weights are still
unknown. The lower n constraints can be used to determine the weights, gen-
erating a linear system.

6 Gaussian Quadrature Algorithm

1. Construct n + 1 orthogonal polynomials

1
[Oct( @)z =0 forj#i

th

2. Compute n roots, x;, i = 1,...,n of the n*" order orthogonal polynomial

such that ¢, (z;) =0

3. Solve a linear system for the weights w;
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4. Approximate the integral as a sum
1 n
/ f(z)dx = Zwif(:x,-)
0 i=1

6.1 Example

Note 5 Example: Third Order Polynomial

Recall the example of the third-order polynomial, f(z) = = —2®. We would like
to determine wy, wa, x1, and 3 so that the integration formula,

L{f} = w1 f(z1) + caf (22)

gives the exact result.
Generalize this problem to any third-order polynomial of the form

f(x) = ap + arz + aga® + azz®.

Given the exactness condition, the integral can be written:

1
f (a(}+a1m+a2$2+a3m3)dm =u; (a()+a1m1+agm?+a3xf)+w2 (a0+a13:2+aga:§+a3x%)
0

Gather the like terms:

ag w1+wz=f01dw=1

a; 1 wixy + woelo = [01 xdr = %
ay : wnz? 4 wgnd = ][}1 widr = %
az 1w Th 4w = jol Pdr = }

There are four equations above and four unknowns, so the system can be easily

solved to giVe, wy = 1 wy = 1 r = 376\5 To = 3+T\E'
Plugging in these values, for the equation above, gives the exact solution of 0.25.

Jx)=x-x
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6.2 Summary

This slide summarizes the technique of finding weights and integration points
for Gauss quadrature.

6.2.1 Accuracy Result

n

1
flz)dz ~ Z w; f(x;)

<0 i=1

Key properties of the method

e An n-point Gauss quadrature rule is exact for polynomials of order 2n—1

e Error is proportional to — (like -5 )

(2n)! nn

6.2.2 Simple vs. Gauss QQuadrature

1 n 1 ] .
A f(;r)d.rwzﬂf( ?)

n

Key property of the method

e Error is proportional to -4

n2

> Exercise 3 Do you see that the simple quadrature scheme is a special case
of Gauss quadrature?” m

) Simple Quad

10° <

Ew‘

' Approximately Gatss-Cuad |
re Integrating
0, '

r‘° Jcns 27 xdx

10" 1

10'

Number of Points

Notice that for a smooth function f(x) = cos(27x), which is infinitely differen-
tiable, Gauss quadrature far outperforms the simple quadrature scheme
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6.2.3 Evaluation Point Placement

Simple-Quadrature Points

-HHHH%HHH*H

1 0 1
Gauss-Quadrature Points

IERIEEE NS RN RT

-1 0 1

Notice the clustering at interval ends

In the Gauss quadrature scheme the evaluation points are roots of Legendre
polynomials which are clustered at the ends of the interval.

7 The Singular Kernel Problem

7.1 Calculating the “Self-Term”

Now lets go back to our problem of solving Laplace’s equation on a 3D domain
using boundary integral representation. We realize that we now have some
sophisticated tools to handle integrals of functions that are smooth. But what
about the integral on the panel where the centroid z., is located? The Green’s
function blows up at the centroid. However, the function is integrable because
the integrand blows up at a rate that is slower than the rate at which the
surface measure goes to zero in the vicinity of the singularity. So we know that
the integral exists and is finite, but is Gauss quadrature capable of performing
well in the presence of this singularity?

X . Collocation
o point

Panel i
One point A = anel Area
quadrature #‘ _j{_ [7\}‘ " ”
Approximation 5
1 1 H B .
A= dS’ is an integrable singularity

7
ot |5, =]

7.2 Symmetric 1-D Example

In 1D we look at a function f(x) = \/%_l which is integrable on [—1, 1] but has

a singularity at = = 0.
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Lo

- " Quad Point
"Note nox, =0

7.2.1 Integrable and Nonintegrable Singularities

1
f(x) = —F— fix) =
4 - I‘ I . Ay
25 .
Area — finite Area —» oo

i -as a 0.4 3 1 os

7.2.2 Comparing Quadrature Schemes

16
ol Approxtmately l')t
Integrating ﬂ
E -1
1.2}
r Gauss-Quad
r oA Large errors
o ‘ even with many
. s points! \
o8 Simple Quad
2 4 6 8 10 12 14 16

Number of Points

We observe that Gauss quadrature is not very good at integrating this function.
The convergence is rather poor. As a matter of fact, it is more inaccurate than
the simple quadrature scheme. In the next few slides we present several tech-
niques of handling integrals with singularities (which are integrable, of course)

e Subinterval (adaptive) quadrature
e Change of variables of integration

e Singular (Gaussian) quadrature



7.3 Improved Techniques
7.3.1 Subinterval (Adaptive) Quadrature

N

el e es—

Subdivide the integration interval
-1 1 n—=().1 ] 0 1 0.1 1 l
——dx = / —dz + ——dx + / ——dx + ——dx
./_1 VT J=1 af|=] J—01 +/|x| Jo /|| Joa /x|
Use Gauss quadrature in each subinterval
Polynomials fit subintervals better

Expensive if many subintervals used.

7.3.2 Change of Variables - for Simple Cases

Change variables to eliminate singularity
Y=z = 2ydy = dx

1

1 1 1
|
—dx = Qf —2ydy = 2/ 2dy
/_1 V]z| o V|¥? Jo

Apply Gauss quadrature on desingularized integrand.

7.3.3 Singular Quadrature - Complicated Cases

Basic Concept

Integrand has known singularity s(x)

1
/ f(x)s(x)de where f(x) is smooth
ghi=]
Develop a quadrature formula exact for
|
/ pi(x)s(x)dx where p;(x) is polynomial of order [
1

Calculate weights like Gauss quadrature
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Note 6 Chebyshev Polynomials

It is possible to generate Gaussian quadrature schemes of the form

/_ (o) f(@)de = 3 wif (@)

1

for functions which have a known singularity s(z) > 0. The quadrature formula
needs to be exact when f(z) is a polynomial of order at most [. Not surprisingly,
it turns out that the integration points are the n roots of a polynomial ¢, (x)
of degree n = (I + 1)/2 which is orthogonal to all polynomials of inferior degree
with respect to the weight s(z), i.e.

1
/ s(z)en(z)ej(z) =0 forj=0,1,...,(n—1).

1

An example is the singular integral

I /1 f(=)
-1 V1—22
Here, s(z) = 1/v/1 — 22 and the corresponding orthogonal polynomials turn out
to be the Chebyshev polynomials. The integration points are given in closed

form by
21—1
T; = CoS (‘.’T o )

and the corresponding weights are w; = 7/n.

Singular Quadrature Weights

colx) o colzn) wy I colx)s(x)dx

en-1(21) - Ca—1(Tn) Wn f_ll Cn—1(x)s(x)dx

Need (analytic) formulas for integrals of ¢(x)s(x)

The lower order constraints can be used to compute the integration weights.

8 Summary

Easy technique for computing integrals
Piecewise constant approach
Gaussian quadrature
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Faster convergence

Essential role of orthogonal polynomials
Techniques for singular kernels
Adaptation and Variable Transformation
Singular quadrature

What about multiple dimensions?
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1.3 First and Second Kind Equations

Numerical Methods for PDEs

Integral Equation Methods, Lecture 3
First and Second Kind Equations

Notes by L. Proctor, S. De and J. White

December 1, 2008
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1 Outline

Convergence issues in 1D
First and second kind integral equations
Develop some intuition about the difficulties
Convergence for second kind equations
Consistency and stability issues
Nystrom Methods
High order convergence

2 Example Problems in 1D

2.1 First Kind Equation

U(z) = / |z — 2'|o(z')dS"  ze[-1,1]

-1

The potential is given The density must be computed
W(x)=x'-x o (x) is unknown
¥ o
X v

In the next several slides we will investigate the convergence properties of in-
tegral equation discretization methods. How these methods converge depends
on what kind of integral equation is being solving. Examining this issue will
introduce one of the subtle points about integral equations.

To begin, consider the example one-dimensional first-kind integral equation on
the above slide. For this equation, we assume that the potential, ®(x), is known
and that the charge density o(x) is unknown. Here, « is in the interval [—1, 1],
and the integration is over that same interval. Note that for this example, the
Green’s function is given by G(z,z2") = |2 — 2/|.

In the left plot below the equation, an example potential, 2 — x, is given and
plotted as a function of z. On the right is a plot of charge density as a function
of x which is a possible solution to the integral equation. As we will see shortly,
the solution for the charge density is not so easy to find.

2.1.1 Collocation Discretization
1
U(z) = / lz — 2'|o(2")dS’ xz € [-1,1] (1)
J-1

Piecewise-Constant Centroid-Collocation
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U(ze,) ZJM‘/J |ze, — 2'|dS’ (2)

To compute the numerical solution to this one-dimensional problem, consider
solving integral equation (1) using a piecewise-constant collocation scheme. In
such a scheme, we first select n + 1 points on the interval, in this case [—1,1].
We denote those points as {x, 21, ..., 2, }, as shown in the above figure. For

this example, zp = —1 and x, = 1. Over the subintervals define a set of basis
functions, {¢1(x), p2(z),...,on(z)}, where
. B 1 T e [331'_1, $1]
i) = { 0 otherwise ) (3)

The charge density ¢ can then be represented approximately as
O'( ' = Op .T) Z O"ru(fol (4)

where o,,; is the weight associated with the i** basis function. It may seem odd
that we used the same letter to represent the density and the basis function
weights, but there is a reason. The above basis set is such that only one basis
function is nonzero for a given z, and basis functions only take on the value zero
or one. Therefore, o,; will be equal to the approximate charge density when
xr e [.’L',,'fl,.’,l’]i].

Charge Density Representation

on(z) = Z Onitpi(T)
i=1

1
Basis [unctions

Plugging the basis function representation of the charge density, equation (4),
into equation (1) yields

V(z) = /I»LJ:IZJM@1 "ds',
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which can be simplified by exploiting equation (3). Recall that the residual,
R(z), is defined as how well the weighted combination of basis functions satisfies
the integral equation. In this centroid collocation case,

|z — 2'|dS".

T

Rz) = W(z) i:lanj /

-1

If collocation is used to solve this equation, then R(z.,) = 0 for all i, where 2z,
is the ** collocation point. The collocation points shown in the figure are the
subinterval center points, x., = %(mi_l + z;). Note that there are other choices
for collocation points, such as z., = z;.
Using the fact that R(z.,) = 0 leads to

n z;
R(mci) = 11’(3301-) - Zanj / lﬁﬂ‘c{ — m’ld.S" =0
Jj=1 '

Tj—1
which can be reorganized into equation (2).

The Matrix

We can now generate a system of equations that can be used to solve for the
oni’s, the piecewise constant charge densities for each of the subintervals.

J|&,—x' o “I‘xl_l—x'tdS' w1 T¥(e)
i
<I|—‘1-,‘1'|ﬂ’5' o e —ofas T LY G)

One row for each collocation point

The right-hand side of this system of equations is a vector of known poten-
tials at the interval centers (the collocation points). The i*" row of the matrix
corresponds to unfolding the sum in the collocation equation
n i
U(ze,) =Y 0n / |2, — 2'|dS’,
jZl -1

a1

g

and the entries in the j** column correspond to how much the charge on the

4" interval contributes to the i** potential.
Note that the matrix is square and dense.

> Exercise 1 Is the above matrix symmetric? If we used z., = x;, would the
matrix still be symmetric? m

66



2.1.2 Numerical Results with Increasing n

One usually believes that a discretization scheme should produce progressively
more accurate answers as the discretization is refined. In this case, as we divide
the interval into progressively finer subintervals, one might expect that the piece-

n
wise constant representation of the charge density given by o, (x) = Z Tnii(T)
i=1

would become more accurate as n increases.

25—

20t =40

15

10

5- n=10

(o

ol

-5
-10- n =20
-15
-20-  Answers Are Getting Worse!!! ]

21 —05 o 05 1
X

As is clear from the above plot, the piecewise-constant centroid-collocation dis-
cretization of (1) is not converging. In the plot, which is hard to decipher
without looking at a color version, the o,,;’s produced using n = 10, n = 20 and
n = 40 subintervals are shown. For each discretization, a point is plotted at o,
x; for i = 1,..,n, so there are ten points plotted for the coarsest discretization
and forty points plotted for the finest discretization, but all sets of points span
the interval z € [—1,1].

What is clear from comparing the blue points (n = 10) to the red points (n = 20)
and to the green points (n = 40), is that the charge density seems to be ap-
proaching infinity as the discretization is refined. The results are certainly not
converging.

Why is this happening? Is the numerical technique at fault, or is the integral
equation a problem?

2.2 Second Kind Equation

We are going to postpone examining what went wrong with the discretization
the first-kind integral equation, and instead examine a Second Kind integral
equation example. As in the first-kind case, we are assuming the potential,
U (z), is known and that the charge density o(z) is unknown. Also, x is in the
interval [—1,1], and the integration is over that same interval. Once again, the
Green’s function is given by G(z,2") = |x — 2'|.

U(z) *o(m)—l—]l |z — 2'|o(x')dS’  we[-1,1]
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The potential is given The density must be computed
W(x)=x'—x o(x) is unknown

22

The above equation is second-kind instead of first-kind because the unknown
charge density appears both inside and outside of the integral. In the first-kind
equation, the density appeared only inside the integral. This seemingly small
difference has enormous numerical ramifications.

In the left plot above, an example given potential, ¥(z) = z° — z is plotted as a
function of . On the right is a plot of a charge density as a function of z which
satisfies this second kind integral equation. As we will see below, this equation
is easily solved numerically.

3

2.2.1 Collocation Discretization

1

U(z) = o(z) + / iz — 2'|o(z')dS’ z € [~1,1] (5)

~1

Centroid Collocated Piecewise Constant Scheme

O‘RJ 0""
i3 ﬂ?_,'
U(ze,) = Oni + Zonj / lze, — 2'|dS’ (6)
j=1 Ti—1

To compute the numerical solution to the one-dimensional second-kind equation
(5), once again consider using a piecewise-constant collocation scheme. Again,
we select n+ 1 points on the interval and denote those points as {zg, 1, ...,z },

as shown in the figure above. For this example, 2o = —1 and x,, = 1. The corre-
sponding basis functions, {¢1(z), p2(x), ..., pn(x)}, are the same as in equation
(3):
_ o 1 T e [Iz'__l,:ri]
wi(w) = { 0 otherwise ' (™)

The charge density ¢ is approximately represented by
n
o(z) ~ on(x) =) onitpi(), (8)
i=1
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where o,,; is the weight associated with the ith basis function.
Plugging the basis function representation of the charge density, equation (8)
into the second kind integral equation (5) gives:

n 1 n
W) = Y owerle) + [ oo/ 3 owila s’
i=1 /-1 i=1
which can be simplified by exploiting the specific basis functions, equation (7)

to
™ n Ej
U(x) = Z onjei(x) + Z Onj [ |z — 2'|dS". ()
=1 =1 Tj—1

As shown in the above figure, the collocation points are the subinterval center
points, T, = 3(zi—1 + ;). When collocation is used, equation (9) must be
satisfied exactly at the collocation points and therefore

Tj-1

n n z;
U(xe,) = Z Onij(Ze;) + Z Onj / |z, —a'|dS". (10)
i=1 j=1

Note that ¢;(z.,) = 0 when i # j, and @;(z.;) = 1. Using this fact yields
equation (6).

The Matrix

Just as in the discretized first-kind equation, we generate a system of equations
that can be used to solve for the o,;’s, the piecewise constant charge densities
for each of the subintervals.

QBJXQ -x|ds" - ‘_[ |x‘.L —::"| ds’ . ‘P(.\’(,{)

The right-hand side of this system of equations is a vector of known potentials at
interval centers (the collocation points). The i" row of the matrix corresponds
to unfolding the sum in the collocation equation

n '1'_}
\I}(.'L'(;,l) = Oy + Z Tnj / |"I:C-,‘, - :‘Ef|dS,
i=1 i1
and the entries in the j* column corresponds to how much the charge on the
4" interval contributes to the i*" potential.
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The major difference between the matrix in this discretized second-kind example
and the first-kind example is circled on the above slide. There is an additional
one on the diagonal of the discretized second-kind equation that did not appear
in the first-kind equation. In other words,

Asecond kind — I+ Afirst kind-

2.2.2 Numerical Results with Increasing n

Unlike the results from discretizing the first kind equation, progressively refining
the discretization of the second kind equation produces more accurate answers.

=1 —o.5 o 05

Answers Are Improving!!!

Once again, the plot is a little hard to decipher without looking at the color
version. It shows the o,,;’s produced using n = 10, n = 20 and n = 40 subinter-
vals. For each discretization, a point is plotted at o,,;, ; for i = 1,..,n, so there
are ten points plotted for the coarsest discretization and forty points plotted for
the finest discretization, but all sets of points span the interval z € [—1,1].
What is clear from comparing the blue points (n = 10) to the red points (n = 20)
and to the green points (n = 40), is that the charge density seems to be ap-
proaching a smooth solution.

What is the essential difference between first and second kind equations?

Is it some aspect of the numerical technique or are these two equations really
that different? In the next slides, we will try to answer this question.

2.3 Difficulty with the First Kind Equation

We will make use of operator-function notation for much of the next sections,
both for clarity and brevity. For example, the charge density,s, and the po-
tential, V¥, are functions of the independent variable z. When we mean the
function, we use just use the function name, such as ¢ or ¥. When we give an
explicit formula in terms of x for the function, or are denoting the function’s
value for a particular Z, we use follow the function name by the value of the
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independent variable in parentheses. For example, c) is the value of function
o when evaluated at x = 2.

The operator-function notation is a little less obvious in the case of operators
that map functions to functions, like the integral operator. The integral operator
takes a function, in this case o, and produces another function that we might
refer to as the potential. If we denote the integral operator from (5) as K, then
Ko is a function. If we wish to evaluate the function generated by applying
K to o at some #, then we write (Ko)(z). Note that Ko(z) would NOT BE
CORRECT. The operator K takes functions and o(z) is a value.

2.3.1 Singular Integral Operator

Denote the integral operator as K
1
(Ko) (z) = f o — 2/ |o(2/)dS' = U(z) = Ko = W (1)

-1

The integral operator is singular : K has a null space

| : | O’O(x)=0,x¢0, O'U(D):l
- 0 1

1

(Kog) (z) = / |z — 2'|oo(z")dS’ =0 for all z (12)

—1
= Kap =10 (13)

If Ko®=9 then K(o%+4o0p)=1T
In equation (11), we introduce the abstract notion that

1
f |z — 2'|o(z")dS’
-1

is an operator on the function o, which we denote with the symbol K. As shown
on the top of the slide, this notation makes writing the integral equation look
just like writing a matrix equation.

The key problem is that the operator K is singular. And if

Ko=W¥

were a matrix equation with a singular K, one would not be surprised to discover
the system of equations is hard, or impossible, to solve.

We will not try, in this lecture, to be formal about the concept of a singular
operator. To do so, we would necessarily be examining details about certain
types of function spaces. Instead, we will try to develop some intuition. In
particular, we will draw an analogy to matrices and note that if an operator is
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singular, it must have a null space.

To see that K does have a null space, consider the spike function oo(z) depicted
in equation (13). This spike function is one at x = 0 and zero otherwise. Note,
this function is not an impulse function. Unlike the impulse function, the spike’s
value at x = 0 is finite and the area under its curve is obviously zero.

As noted in equation (13), Koy = 0. To see this consider that since og is nonzero
only at x = 0, and therefore

1 1
f lz — 2 |og(z")dS" = |1|/ oo(z')dS’.
-1 —1

Since [ _11 oo(z")dS" = 0, as the area under o¢’s curve is zero, then Kog = 0.
The statement “If Ko® =¥ then K(o® + 0p) = ¥” says that if K has a null
space, and there exists a solution, then there exist infinitely many solutions.
One last comment should be made. The spike function we generated is not
unique. Simply shifting the nonzero point would generate and infinite number
of spike functions which would all be in the null space of K. That is, K has an
incredibly rich null space.

2.3.2 Eigenvalues

Difficulty from the Matrix

Collocation generates a discrete form of K
Koe=V% — K, 0 =Y,

anl

j!_r‘.,—x'!dS' ‘leﬂ-.\"!ds' )

‘-‘”,\'_A —A’Ids' .‘]' |‘ _r\”lth' Cpn

X
et

g
E!I

K: functions to functions, K :: vectors to vectors!

As shown above, discretizing the integral equation by combining a piecewise
constant charge density representation with collocation at subinterval centers
results in a system of equations which relates the subinterval o;’s to the colloca-
tion point potentials. From this perspective, the matrix above can be thought
of as a discrete representation of the operator K. We denote the matrix with
K, with an underline to indicate that it is a matrix, and was generated using
a discretization with n basis functions. We also denoted the vectors &,, and \i}n
with arrows to avoid confusing vectors with functions. Later, we will need an
operator version of the discretized representation of the operator K, but for the
moment, the matrix is sufficient.

Numerical Results with Increasing n
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If the operator K is singular, one might expect to see that reflected in the
eigenvalues of a matrix generated by discretizing K. In particular, one would
expect the matrix to have eigenvalues that are near zero.

Eigenvalues accumulating at zero.

In the figure above, the eigenvalues of matrices generated by discretizing K
for the 1-D problem are plotted. Discretizing using 10 subintervals generates
a matrix with 10 eigenvalues plotted in blue. The blue eigenvalue closest to
zero is &~ 0.01. As the discretization is refined to 20 subintervals, the mini-
mum eigenvalue (plotted in red) drops to ~ 0.003, and with 40 subintervals
the minimum eigenvalue (plotted in green) drops to ~ 0.0009. Examining this
data suggests that as the discretization is refined, the generated matrix more
accurately reflects the operator K, and therefore the matrix is becoming closer
to being singular.

As the discretization is refined, the matrix is larger and has more eigenvalues.
Notice that as the discretization is refined from n = 10 to n = 20 to n = 40, all
the additional eigenvalues are closer to zero.

Intuition About Eigenvalues

As the discretization is refined, oo(z) becomes better approximated

A-4I = _I "I _!':\" = I

As the discretization is refined, K’s null space can be more accurately
represented.

As an alternative view of why refining the discretization for the first kind equa-
tion produces a matrix with more and more smaller eigenvalues, consider the
figures above. In the top plot, one of the basis functions is plotted for a coarse
discretization. In the bottom plot, one of the basis functions is plotted for
a finer discretization. Notice that as the discretization is refined, these basis
functions look progressively more like the spike function mentioned previously.
And since the spike function is in the null space of K, one would expect that
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finer discretizations would generate “spikier” basis functions whose associated
eigenvalues would be near zero.

2.4 Second Kind Equation Has Fewer Problems

Second Kind equation

I
((I+ K)o)(z) =o(x) + ]I |z — 2'|o(2")dS" = ¥(x)

= (I +K)o=1U (14)

(I+K)(op+0)# I +K)o

a,(x)=0. 120, a,(0)=1

e

- 1

As shown in equation (14), the abstract operator for the second-kind equation
is denoted by I + K, where [ here is just the identity operator and K is the
integral operator.
To see why the spike function, oy, is not in the null space of the operator I + K.
or equivalently that

(I+ K)(oo+0)#(I+ K)(0)

consider the figures above. If a spike is added to a smooth o, the (I + K)
operator will preserve the spike. Another way to see this is to consider that
since og is in the null space of K,

I+ K)og=({)og + Kog = ap # 0.

2.4.1 Eigenvalues

Numerical Results with Increasing n
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n=10

- n=20 n = 40

Eigenvalues do not get closer to zero.

As we noted before, the matrix associated with discretizing the operator I + K
is identical to the sum of the identity matrix and the matrix associated with
discretizing K alone. In the plot above, we once again present the eigenvalues
generated by discretizing the 1-D example problem. Discretizing using 10 subin-
tervals generates a matrix with 10 eigenvalues plotted in blue. The blue eigen-
value closest to zero is & 0.2. As the discretization is refined to 20 subintervals,
the minimum eigenvalue (plotted in red) is still ~ 0.2, and with 40 subintervals
the minimum eigenvalue (plotted in green) is still ~ 0.2. Examining this data
suggests that as the discretization is refined, and the generated matrix more ac-
curately reflects the operator I + K, the matrix is not becoming more singular.
In fact, the eigenvalues are accumulating near one, an unsurprising result given
that the eigenvalues of the discretized K operator were accumulating at zero.

> Exercise 2 Estimate how many iterations will be needed for a Krylov-
subspace based algorithm to converge for the 1-D discretized second-kind ex-
ample. Will the number of iterations increase as the discretization is refined?
|

> Exercise 3 Suppose the integral equation were changed to
1
U(z) =0o(z)+ < / |z — a'|o(2")dS’.
-1

For what value of A would the solution no longer be unique. (you can answer
this just by looking at the eigenplot above). m

As the above exercise makes clear, a second-kind integral equation does not
always have a unique solution. However, a first-kind equation almost never has
a unique solution, the exception being when the Green’s function is singular, as
we will investigate in a subsequent lecture.

3 Theory of 2 Kind Equations

The convergence theory for discretization methods applied to second-kind inte-
gral equations has an elegant simplicity, but only when examined using a care-
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fully chosen abstraction. The theory is also surprisingly practical; the insights
gained can be used to construct very high-order discretization schemes.

3.1 Comparison problem

General Second kind integral equation
U(x) =o(x) + / Gz, 2 )o(a')ds' = ¥ = (I + K)o (15)

Discrete matrix equivalent

-

U, = (I+K,)d, (16)

—n
How to compare function o to vector &, 7

How to compare operator K to matrix K7

One approach to overcoming the comparison problems is to construct repre-
sentations of the discretization that are functions and operators on functions.
The most obvious approach to generating the functions associated with a dis-
cretization is by interpolation, but generating the operators associated with the
discretization is a little more subtle.

3.1.1 Operator-Function Notation

General Second kind integral equation
V(z) =o(x) + / Gz, 2" )o(z")dr' = ¥ = (I + K)o (17)
Discretized operator-function equivalent

\pn - (I + Kn)an (18)

on, ¥, are functions of x (e.g. by interpolation)
K, maps functions to functions like X' (How constructed)?

3.1.2 Orthogonal Galerkin

Representation o,(z) = Zamtﬁi(l’) /i,al(;r)fpj () =46(1—7)
i=1 :
Projection on = (Po) (2)




n
= Z TniPi (‘T)
i=1

If the density sigma is to be approximated by a weighted combination of n
orthogonal basis functions, then the functional representation o, associated with
the vector of weights &, is given. If the basis functions are orthonormal, then
the o, associated with an arbitrary o can be constructed by simple projection.
It is worth noting that the projection operator, denoted P, has no effect on oy,.
That is Po, = oy,.

> Exercise 4 Why does the formula for the projection operator above require
orthogonality of the basis functions? m

If a Galerkin method is used to discretized the integral equation, then the as-
sociated operator is easy to construct, as shown below.

3.1.3 Ortho Galerkin Operator

( )(1’)_ KPJ Zgnz[G(x z' 9/1 ) &£

n

(PKPo)(z) = ( / @;(x)K Pa(x )dl) ©;(x)

— Z (Zcm //WJ(L}G . x')p;(a')dwdx ) @;()

7=1 \i=1

P(I + KP)o, = (I + PKP)o, = P¥

(I + K)o, =¥,

The last equation on the above slide contains a subtle point. P(I+K P)oy, really
equals (P + PK P)o,,. However, P is equivalent to the identity operator when
applied to o,, as projecting o,, reproduces a,. So, we are free to conveniently
chose to interpret (P + PKP) as (I + PKP) as a difference appears only when
applying the operator to functions that are not weighted combinations of the n
Galerkin basis functions.

For second-kind integral equations, one can prove a convergence theory for al-
most any reasonable discretization scheme, assuming that the equation has a
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unique solution. As noted above, second-kind integral equations do not neces-
sarily have unique solutions, but we will restrict ourselves to the unique solution
case in analyzing convergence. In particular, we will assume that the second-
kind integral equation operator has a bounded inverse.

Before beginning the derivation, let’s readdress the notation definitions.

Let K denote the integral operator, and therefore the general form is

Ko = fG(m,m’)a(:c’)dfc’

Let 0, denote a numerical approximation to ¢ on z based on using n basis
functions. Note here that o, is a function of  and would typically be given by

on(z) =Y onii().
i=1

Let K, be the discrete representation of the integral operator. Note that K,
is not the matrix K, but an operator that maps a function of = into another
function of x. For example, if the discretization scheme uses a basis to approx-
imate o, and the basis weights were determined by a collocation scheme, a not
necessarily unique associated K, could be given by

(Kno) (z) =V ( f G(z, .I")Pa(m’)dac’)

where in the orthonormal basis set case
(Po)(z) = Z (f ar(:r:')goi(w')da:’) wi(z), (19)
i=1
and

(Va) () = ulae, o). (20)
i=1

where u is a arbitrary function used to define the action of operator V.
Equations (19) and (20) deserve some explanation. The piecewise constant basis
is orthonormal, so the formula in equation (19) is a simple projection of o onto
the basis. If centroid collocation is used, then the discrete potentials computed
by evaluating the integral operator at the collocation points must be converted
to a function of z by interpolation. In equation (20), the ;(z)’s act as interpo-
lation functions.
With the examples of how Galerkin and centroid-collocation discretization schemes
lead to function and operator representations, the second-kind integral equation
convergence theory can be presented in a very transparent fashion, as will be
show below. What the theorem demonstrates is that if a discretization scheme
generates progressively more accurate representations of the integral operator
as n increases, then the discretization method converges. That is,

lim |lo — x| — 0,
n—oc
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where the comparison between o and o, is unambigious as both are functions
of z.

& Exercise 5 Suppose a nonorthogonal basis is used to represent . How would
the projection operator in equation (19) change? m

3.2 Main Theorem
Given (I+K)o=V & I+ K) | <C

Means Equation uniquely solvable
(I+ K)o, =Y,

Reminder of Discrete Equivalent

Consistency:
If lim max ||[(K — K,)o| =0 and lim ||V —W,|| -0
n—00 [laf|=1 n—0o0

Then lim |jo — o, — 0
n—oc

3.3 Rough Proof

To derive a relationship between the errors in the computed solution and the
errors in the operator representation, we write the exact equation alongside the
discrete equation.

Exact Equation Discretized Equation
U= (I + K)J v, = (I + K'n.)gn

=¥V, =I+K)o— 1+ Kg)on

= (0 -V,)=(0—0,)+ Ko — Ko,

= (V-V,)=(0c—0,) + Ko—-K,o+ Ko — Kyo,

= (U -",)= I+ K,)(oc—0,)+ (K- Ky)o

= (U -0,) — (K — Kp)o = (I + Kn)(0 — on)

= I+ Ky) (T —T,) — (K = Kp)o| = (o —0n).
The results on the slide below skip many of these intermediate steps but present
the essential results.

Operator Form for Discretized Integral Equation
the integral equation
(’+K]6:‘P I+ K, Op =¥,
A ot

> |discretized [
dicreed N gemsizs | Ignore
far simplicity

w e
(1+K,)(%n-0) + (K, —K)o’+(\,}ln¢0

= (0,~0)=U+K) | (K-K )o+(¥-¥,)|

79



The equation for the solution error (previous slide)
(Uri, - 0) = (I + Kn)_I(K - Kn)o'
g
solution error

Taking norms  ||o, —o|| < ||(I +K.)7'| (K — K)ol
: ) J! - Lol )

v

Error which Needs a Goes to
should go to bound, that is ZEro
ZEro as n stability by consistency
increases

We complete deriving a relationship between the errors in the computed solu-
tion and the errors in the operator representation. In order to establish that
consistency implies convergence, the inverse of the discretized operator must be
bounded.

3.3.1 Stability Bound
Norm of solution error

l(on — )l < [I(T + Kn)7H| [|[(K — Kn)all

Deriving the stability bound
IT+Ky) '=I4+K-(K-Ky)]'=[I-(I+K) Y K-K,)] '(I+K)!

Taking norms
_ - _ -1
T+ Ka)M < [[+E)7H] 1=+ E)"H(K = Ku) |
| A——

Bounded by C
by Assumption

Repeating from last slide
T +E)H < I+E)7Y (=T +K)7H(K - Ka))
| R A——

Bounded by C
by Assumption

1

Bounding terms

I+ K,)™ Y < 2
I+ BTl = [+ K) (K=K <2 o
Will be less than 0.5 for n larger
than some ng by consistency and solvability
n > ny

Final result:

lim [[(K — K,)o|| =0
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IMPLIES

lim ||(on —o)|| =0

n—oc

What does this mean?

The discretization convergence of a second kind integral equation solver only
depends on how well the integral is approximated.

The final result, noted on the above slide, is that the solution error is bounded
by a constant Inultlplymg the error in the integral operator representation. This
suggests that any method which can ac curately represent the integral operator
can be used to discretize a second-kind integral equation.

4 Nystrom Method

4.1 1-D Second Kind Example
4.1.1 Collocation Discretization

Integral Equation

W(r) = /c (@)dS'  xel-1,1]

Apply quadrature to Collocation equation

1
W) = olz;) + G(x;,z)o(z')dS’

=1

= U(x;) =o(x;) + Z w; G(zi, z;)o(x;)

i=1

After applying quadrature to Collocation:

W(x;) =o(z;) + Z w;G(xi, xj)o(r;)

£ it; a collocation point
s are quadrature pomrs
Now set quadrature points — collocation points
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In Gaussian quadrature, described in the previous lecture, an integral is ap-
proximated using weighted combinations of the integrand. As a reminder, the
Gaussian quadrature formula for integrating a function on the unit interval is

fo Fa)ds =Y wif ()

where the z;’s are the evaluation points given by the zeros of an n'f-order
orthogonal polynomial on the unit interval, and the w;’s are the weights deter-
mined by solving exactness equations.

The key idea behind a Nystrom method for discretizing an integral equation is
to use the Gaussian quadrature evaluation points as the test points in a collo-
cation method for solving an integral equation. Then, the collocation method
integrals can be approximated using the Gaussian quadrature scheme, resulting
in a system of equations which only require evaluations of the integrand at the
test=quadrature points. The second kind theory predicts that the error in such
a scheme is proportional to the error in the quadrature scheme for computing
the collocation integrals.

Set quadrature points — collocation points

L

\I‘(ﬂ','l) =0p1 + ij'G(.'El,J:j)O'nj

=1

n
‘I’(:L'n) = Onn t+ ZTUjG(:En’ T )U"j

=1

System of n equations in n unknowns
Collocation equation per quad/colloc point
Unknown density per quad/colloc point

4.1.2 Discretization-Matrix Comparison

Nystrom Matrix
T+wG(x.x) - wG(x.x,) HUM

\P(:\'?
W(x,)

Piecewise Constant Collocation Matrix

ili-‘j(;(l_.‘l’)ﬂsl "[1;(\3‘.#}(:5' r.

i wG(x,.x) o 1+w,G(x,,x,)

O

|
! }U[.\- X)dsT e 1 ‘]’(.‘(.ll )8
L .
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Nystrom Matrix
Just Green’s function evaluations — No integrals
Entries each have a quadrature weight
Collocation points are quadrature points
High order quadrature=faster convergence?

Piecewise Constant Collocation Matrix
Integrals of Green’s function over line sections
Distant terms equal Green’s function
Collocation points are basis function centroids
Low order method always

4.2 K, and ¥, for Nystrom Method

n n

K.,,,(J:Z Z-ur..,»G(;r,,-..lf_,-)(r(:r:j) wi(z)

i=1 \ j=

4.3 Convergence
4.3.1 Theorem

In the limit as n — oo (number of quad points — o)

The discretization error lmtux (K — K,)a|| = 0
lisll=1

AT THE SAME RATE as the underlying quadrature!!

Gauss Quadrature = Exponential Convergence!

4.3.2 Comparison

s
cos 2mx = o(x) + / (z — z')2o(2)dS’
J—1

E 107
I o
r -
10° Gauss-Quad
0 Nystrom
r 10°
4 5 L] 7 a a 10 "



4.3.3 Caveat

If Nystrom method can have exponential convergence, why use anything else?
Gaussian quadrature has exponential convergence for nonsingular kernels

Most physical problems of interest have singular kernels (% % ete)

5 Summary

Convergence Issues in 1D

Ist and 2nd kind integral equations, null spaces
Convergence for second kind equations

Show consistency and stability issues
Nystrom methods

High order convergence

Did not address singular integrands
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1.4 Radiation Conditions and Formulations

Numerical Methods for PDEs

Integral Equation Methods, Lecture 4
Radiation Conditions and Formulations

Notes by L. Proctor, C. Coelho, and .J. White

December 3, 2008
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1 Outline

Laplace Problems
Exterior Radiation Condition
Potential Representations
Monopole and Dipole Densities
Principle Value
Ansantz and Green’s Theorem
Dirichlet and Neumann problems

2 3D Problems

2.1 3D Laplace Equation

Laplace’s equation in 3-D

=0

_ Pu(@) | 0%u(@) | (@)

2
Vu(@) a2 y? 022

where

and 2 is bounded by I'.
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One feature of using integral equation methods is that exterior problems can
be solved using the same surface discretization required to solve an interior
problem (assuming a linear space-invariant problem like Laplace’s equation).
This is true even though the exterior domain is infinite and the interior domain
is finite. Exterior problems do introduce an additional complication, one must
consider the boundary condition “at infinity” (later).

2.2 Boundary Conditions
2.2.1 Dirichlet

Dirichlet Condition
u(Z) = ur () zel

Interior Problem

. f
e

Boundary Condition
Yx)=1 xeI’

Can you determine the solution to Laplace’s equation inside the sphere?

The solution of the interior Dirichlet problem is unique.

2.2.2 Neumann

Interior Problem
V¥ =0
ade of SPh, Neumann
* Z7 7 L1 IANS ¢  Boundary Condition

8w _
on
\P(x) =7 any constant

Nonunigue Solution

xel

The solution of the interior Neumann problem is not unique.

For the solution of the exterior Neumann problem to be unique, it is sufficient
to impose a radiation condition. In this case, a radiation condition would be a
specification of how u(Z) approaches zero as ¥ — oo.

2.2.3 Exterior

Dirichlet Boundary Condition

—

u(Z) = ur(x) zel
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Neumann Boundary Condition

ou@) _our(@
Onz  Ong zel
PLUS

A Radiation Condition

3 Radiation Condition

3.1 Condition at “Infinity”

3.2 Types of Conditions

A radiation condition of the form
. _ll}m u(z) — 0

is not specific enough!
Need
u(@) — O(l& ")

lim
[[#]]—o00

OR

H ”llilm u(T) — O(||Z||~2)

3.3 Examples

The criteria for chosing a radiation condition are best understood by considering
several physical examples.
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3.3.1 Radiated Heat
Problem Set-Up

Vu() =0 re
u(Z) = uo(T) rel

Radiated Heat = [ %ds
Jr an

) known forx € I’

mperature is
known on the surface

The body is radiating
heat at a constant rate.

Limit of Expanding Domain

e Infinite Problem
Limit as B — o

e Heat Leaving Sphere
ou
/ —dS is Constant!
J Spherer

n

3.3.2 Rad Heat Case 1

u (T :
lim u(r) — O(|F|™") — lim ‘ I‘I(]) — O(||Z|~%)
(| ]| — 20 £ —oo O

Since the surface of a sphere increases as R*:

. ‘ du

lim / —dS — Constant
JSpheren

R—oc on

Radiation condition models net heat loss.

89



3.3.3 Rad Heat Case 2

lim u(f) — O(||&|| %) - lim —
[EIRES |2l —oe  On

= Oz %)

AND

] - - dsS — 0
Sphereg an

Can NOT model heat loss!

3.3.4 Heat Transfer

V() =0 FeQ u(@) =up(¥) FeT

-

Heat flows from higher temperature object to lower temperature object, but
no heat radiates out.

If
lﬁm w(T) — O(||Z]|~2)
|Z][—o0
Then Sl E
lim - ”(1) — ()(HI'H_R)
|T]| —oc O )
And

' Ju(T)
/ ( r‘J(: )(IS il
J Spheren ()”

This condition ensures all heat transferred.

90



3.3.5 Electrostatics

The above image is supposed to represent two scenarios, each senario has two
conducting bodies.

In the first senario, on the left, there are two conductors that are treated as
if there is a voltage source across them. There is a positive charge on one
conductor, a negative charge on the other conductor, and the net charge should
be zero. If the net charge on the two conductors is zero, then the integral of
the normal electric field, 615515:‘)) over a bounding sphere, one that contains both
spherical conductors, should be zero. This is just a statement of the well-known

Gauss’s theorem in electrostatics. In particular

f ulT) 45 _
Spherep an

for any Spherer containing the two conductors. In order for this integral to be
zero regardless as the radius of Spherer approaches oo,

lim ou(r)

|Z]|—oe  On

must decay at least as fast as O(||Z]|~3). Therefore, u(¥) must decay like
Ol 2).

For the senario on the right, the two spherical conductors are set to two different
potentials with respect to the point at infinity. In such a case, it is unlikely that
the sum of the charge on the two spheres will be zero,

/ Ju() 45 40
Spherep E)n

and therefore u(#) should not be forced to decay any faster than O(||[|=2).
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3.3.6 Potential Flow

Assumptions
Irrotational flow (velocity = potential gradient):

v(Z) = Vu(F)
Air is incompressible (velocity divergence free):
V- v(&) = V2u() = 0.
Nonpenetrating wing boundary condition:
Vu(Z) - n(Z) = Vying (T) - n(Z).

What is the right radiation condition?

4 Formulations — Problem Types

4.1 Single Domain

EXTERIOR INTERIOR

LI THOTI(]

NNVIANEN

oy Or
on,

4.2 Coupled Domain

Example: Bimetallic Electrical Conductivity




Potential and Electric Current Continuity:
w(@T) = w(T7) rel

L Ou(@™) . ou(r™)

— = —
onz Ong

rel

4

An example of a coupled domain problem would be a conductivity problem
involving multiple materials. To determine the electrical conductivity between
two terminals of an object made of multiple materials, one would determine the
ratio of the voltage across the object’s terminals and the current flowing through
the object. Electrical current density in an ideal linear conductor is a vector
quantity given by the gradient of the potential, Vu, scaled by a factor known
as the conductivity of the material. In an ideal linear conductor there is no
accumulation of charge at any interior point, implying that the current density
has zero divergence. Therefore, the potential in an ideal linear conductor satifies
Laplace’s equation, VZu = 0. If an object is made of multiple materials with
different electrical conductivities, then the boundary between materials satisfies
interface conditions. At the boundary between materials, both the potential and
the current density in the surface-normal direction are continuous. Since the
conductivities of the two materials are different, continuity of the current density
implies a jump in the gradient of the potential across the material boundary.

4.3 Normals

Normals usually point from Interior to Exterior.

NORMAL DIRECTIONS )
exterior problem

Typically, the surface normal is assumed to point in the direction from the
interior domain to the exterior domain. There are many situations where this
typical practice is confusing or ambigious, so it is often necessary to be explicit
about the direction of the normal.
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5 Surface Density Integrals
5.1 Monopole & Dipole

Potential due to a monopole density (o):

= 1 1y gt
)= | ———5o(@)dl
@~ | e @

Potential due to a dipole density (u):

_' 7\ dl
() /an ||:e—*'|| HE)

where the normal points out of the domain §2 bounded by I'

MONOPOLE: DiroLE:
+++++++ +++++++
+ + +F- o o= =)+
+ + ol —1+
2, —

+ + Vu=0 +- —|+
_LJ_ . . 4 M) g

+ u{\) IIV T dar |+ Sat]sﬁed MH,['\' P dr'|-++

+ + 1l el -+

+ + Vou -+ 1+

+ + e P B

Monopole or dipole densities can be used to generate potentials that satisfy
V2u(#) = 0 for all # € Q. The monopole and dipole potentials differ in the
radiation condition they satisfy. If the surface, ~y, is finite in extent, then in the
limit as ||#]| — oo, the monopole potential decays like ||Z]|~!, and the dipole
potential decays like |||~}

FEither representation can be used to derive surface integral equations, but care
must be used when evaluating the associated potentials when 7 € T".

5.2 Surface Potentials

The monopole potential is continuous as a passes through T', so
up (& f —m——o(@)dl’Y ZeT
1@ — ||

The dipole potential “jumps” as x passes through T', so the limit as & — T of
) 1 ,
m ‘,‘:' — - = dl—n’
0= | oz =2

depends on how I' is approached.
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MONOPOLE: o[ 20

© = constant 5
. ‘ ‘ ‘j
: I X
disk

Don’t be put-off by the graph above. The monopole potential is continuous (it
does not go off to infinity, as it may seem to in the above figure), but it is not
continuously differentiable, there will be a discontinuity in the derivative at xq.

DIPOLE: mofi 2570 o W

(O NC

()

5.2.1 Principle Value Integral
If f(y) is singular for some y = 2y, where zy € I', then the principle value

integral is

e—0

PV 5
/ f@dr = lim / F@dr
JI I'— B(xq,e)n I’

when (g, €) is the e radius ball about xq.

The P.V. is a special kind of limit
Limit of deleting and ever shrinking portion of the integration domain.
NOT EQUIVALENT TO limiting processes on f!




5.2.2 Monopole Derivative (MD)

Consider a cube geometry:

6“?(53) s
——=1li ')l rel
Bnz s+ Ong / =7’ *
The plus (+) in I'" indicates exterior approach.

In the above slide, we consider computing the normal derivative of the monopole
potential just outside the boundary . As will be shown in the next few slides,
the derivative can be represented as the sum of a principle value integral and
an extra term.

5.2.3 MD Disk Removal

our@ _ oy |2 / &) _ypry O / BLACORPY
(")n;; F—T+,e—0 anj Jr-B(z,) ” T — .’L"“ Bnm B(z,e€) ||27 - T ”

cut out

Consider the entire side panel on the right of the cube in the above slide, and con-
sider evaluating the normal derivative of the potential generated by a monopole
distribution on the suface of the cube’s right side. Specifically, assume that we
wish to evaluate the derivative at a point Z in the center of the green disk on
the cube’s right side. The matter is complicated by the fact that the integrand
goes to infinity when ¥ = &’. Thus, we need to break up the integral into two
pieces. One piece is the entire panel minus the green disk, and the other piece
is just the green disk.

5.2.4 MD Disk Picture

dur(T) J / o(Z") 3] f o(Z’)
= lim —_dl" + — — T’
3n5 Z—T+ e—0 d’l‘?‘ﬁ; I'—B(x.e) ||3: - "“ C‘)T?.T B(z.e) ”’L - ”
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Jrow rectangular prism

The first integral is the Principle Value Integral and the second integral is the
integral of just the disk.

Given that the disk was extracted from right the surface of a cube, the disk is
flat, and the normal is in the z-axis direction.

5.2.5 MD Disk Eval

lim o ! - ————o(F)dIl"
F—I an'a: B(x.€) ”:C - ”

27 €
~ lim / g(m) rdf

T + z P
= 111}]1+ —QWJ(ﬁ) [\/e + 22 — |z|] .

= 727ra(;r).

Note 1 Disk Evaluation Math

For this problem, it is quite straightforward to see how one changes from carte-
sian to cylindrical coordinates. But, the algebra and calculus involved in solving
this integral may not be as straightforward, herein is presented one method,
broken down into bite size pieces:

lim —

2T
Jim, 82 f \/T'rd?'d{?.

Use tugonometm( Sl]b‘-’;tltlltl()l’l to solve the integral with respect to r. Substi-
tute r = z tdna and dr = zsec? ada and simplify to get the following integral:

27 pale)
)z sin v
= lim — / —————dade.
=—0+ Oz cos?
This integr a.l is ea,blb solved using direct substitution of u = cosa:
afe)]
27 pulaf e)] 0_ 7 ] 27 ol ul
= lim — / ( dudf = lim —/ z-ﬁ(l do.
~ o+ Oz 0 Dot 0z u |

Plug back in for u = cosa = —=—

r=€

: 27
= lim g— a(Z)Vr? 4 22
0

z—=0t 02 Jg

27
= lim 82 ( [\/ €2 4+ 22 — ﬁ] do.

z—0+ 0z Jy
Integrating the Tast part is quite simple,

do
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= lim _—U (m \/z_z) F)-

=270 (&) lim e
L0t Oz {

-u_,o

0
Finally, take the derivatives with respect to z, the normal,

= 2nr0(Z) 1 = .
o (& z_1,161+(\/€“+“~ \/;2)”

~ .
It can now be seen that, since lim ————— =0 and lim

z—0+ /€2 + 22 20t /22
27 pe ,"
lim - / ————rdrdf = —2nc(I).
40

V12 + 22

2—0+ 07

O (Vv

“~

= sign z that

5.2.6 MD Final
Qi) = lim i/‘—1—--—0(:;1':”)(51“'
F

on F—=T+ dng Jp || — 47|

= lim lim

- . ﬂf =75
m AT s L T
F-T+e=0 | Ong Jr_p.o 1T — 7 Onz Jp(e.e 1T — 2|

PV
_ 0 1 =/ g o
= /1“ Iz T 7] o(@)dl" — 2wa(T")

5.2.7 Dipole Potentials (DP)

If T is a Hat surface

PV
19, i
—_—dl’ = 0 rerl.
/F Ong [T — || '

Why? Rewrite using explicit form of integrand

PV vz s T
/ (x - a L u“,3 AT’
Jro (lE =2

Integrand is zero when ¥ — & orthogonal to surface normal

5.2.8 DP Flat Surface

Flat result applies locally on smooth surfaces.

2N
+++

4+
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5.2.9 DP General Surface

If I is a general surface

ur () = 2m() + [

Joo (I =21

ur(Z) = —2mp(x) +/ — (@")dI"
v (lE=a)?®
when T approaches I' from inside.
Note 1 Derivation of the Dipole Surface Potential

The following derivation goes through the step-by-step process of deriving the
dipole surface potentlal when Z approaches I" from inside.

’ =
u(Z) = f@n—f =" w(z')dl el

0 1 ] 1
= lim ————u(F)dl" + lim / — ————u(F)dl’
=0 Jr-B(e0.0 ong |7 — & =0/ B(ao,e) Onar [T — 7| )
0 1 1
- _— dr’ + lun/ Tyt - == (&')dr”
/F onz -2 o V-

PV T
:/ Hp(f’)df’-k hmf f Mgt ( ),ur sin ¢ do db
1

=0+ hr%/ / BT () sin¢ do¢ dé

T— T
— hn})/ / ( > )T sin ¢ d¢ df

/ / wsing do df = [/ JLCOS ¢ df)} = f —2u db
0 0

= [_211,9]0 = =27 i

6 Ansatz Formulations

6.1 Dirichlet Problem
6.1.1 Monopole Potential

For an interior or exterior problem:

. 1 ’
f)= [ ———o(@)dl’
’.‘_L['(.L') L ”i» _ f,:“(f(’I )
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What radiation condition?

The point of the above slide is to show that when using monopole potentials to
solve Dirichlet problems on a single domain bounded by -, the equations are
the same for either the interior or the exterior problem.

6.1.2 Dipole Potential

For an exterior problem:

- - Py .’E"— f’ T‘nfr
ur(Z) = 27u(%) +/I: Wu(f’)dﬂ

and for an interior problem:

T — f’)Tnj'l

PV
ur(Z) = —2mp(Z) +~/r WM

Normal points from interior to exterior.

(&)dI

INTERIOR PROBLEM
ux)=u(x) xel

u(x) =—2mp(x) +
/ £_Lx XV ()T

Note that the radiation condition satisfied by the monopole potential is different
than the radiation condition satisfied by the dipole potential, even when used
to solve the same Dirichlet problem.

6.2 Neumann Problem
6.2.1 Monopole Potential (MP)

Derivative of the monopole potential “jumps” as @ passes through T, so

o [ 1
Ong ]1 I — *,f||"(“'"' )l
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takes different values just inside and just outside I'.

6.2.2 MP Int/Ext

For an exterior problem

Bur(T) _; ]”" E=2)ng_
R A

and for an interior problem

dup (&)

onz

PV (= =T, _
= 427 () —/ (z—7) nmo(i'”)dl"'

ko WE-
Normal points from interior to exterior.

Note that the signs for the Neumann monopole potential integral equation are

different than the signs for the integral equation in the Dirichlet Dipole case.

The sign changes are due to the location of the derivative evaluation. In the

Neumann Monopole potential case, the derivative is taken with respect to nz

whereas for the Dirichlet Dipole potential case, the derivative is taken with
respect to ngr.

6.3 Kinds of Equations
First Kind Equations

¢ Dirichlet Monopole potential integral equation.
Second Kind Equations

e Dirichlet Dipole potential integral equation.

e Neumann Monopole potential integral equation.

Dipole potential for Neumann?

7 Green’s Theorem
Laplace’s Equation Green’s Function
V2G(F) = 4w (T)

d(Z) = impulse in 3-D
Defined by its behavior in an integral

f 5(@)f(#)dSY = 1(0)
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Not too hard to show

Note 1 47

Just as an aside, Green’s Function may be defined using a different scaling vari-
able depending upon which source one is using. Sometimes Laplace’s equation
will be written:

V3G(Z) = §(2).
Where you can see that the value of 47 has been left off. This will simply mean
that the Green’s Function is now written:

4
1]
For our purposes, we will be using the notation in the above slide, and not the
notation given in this note.

7.1 Normal Directions

A note here about normal directions is essential. In the above section, the
“normal points from interior to exterior” whereas, in the image below, the normal
points from inside the domain to outside the domain. How would this impact
the solution?

NORMAL DIRECTIONS
A
7l

exterior prob

When we go through Green’s Theorem in the following section, remember that
the normal always points “out” of £2, as it does in the above figure.

7.2 Divergence Thm

The general Divergence Theorem:
For any sufficiently smooth F

=

/ V. F(z)dV = / F-7,dS
Q Jr
where I' is the surface which encloses (2.

Green’s theorem follows from the divergence theorem.
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7.3 Volume Theorem

If u satisfies Laplace’s equation in {2, then

Au(x") 9
4wu(:€)4/{ _on _ ! ” (’)] dr’ #eQ
I

|Z—&| Ong || -2

where the normal points out of 2.

7.3.1 Surface
Using the Principle Value Integral:
2mu(Z) = i;‘idf" - j‘PV i—1——'11(:1":"') dr’ zel
-7 r o Ong ||Z -7

r[lZ =2

where the normal points out of £2.

This is one of the cases where it is generally easier to define the normal as
pointing out of 2 rather than having the normal point from the interior to the
exterior.

7.3.2 Boundary Conditions

The boundary conditions, Dirichlet or Neumann, can be determined by using
the surface form of Green’s Theorem. For Dirichlet Problems, v = ur when
# € I'. So, put the known values for u into Green’s Theorem for the surface,
and put these known terms on the right hand side, leaving the unknown on the
left hand side. Likewise, for Neumann problems, % = 3”]‘ denotes that the
derivative of u is known on the boundary when Z € I'. Again, put the known
term on the right hand side, so that the unknown value, u is on the left hand

side.
For Dirichlet Problems

o PV up(@
= d“=2mwm%Ff _ur@)_

o721 Y ER

dr’

For Neuman Problems

PV (:) 1 dm;
2rul(d +/ (&) dI = f on___ 41
@+ ]

where normal points out of 2 (interior or exterior!)
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7.4 Overview

a 1
on |x -

o1
on |jx—x'

8 Summary

Laplace Problems
Exterior Radiation Condition
Potential Representations
Monopole and Dipole potentials
Principle Value
Ansatz and Green’s Theorem
Dirichlet and Neumann problems
First and Second Kind Equations.
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1.5 First and Second Kind Theory, part 2

Numerical Methods for PDEs

7]

Boundary Element Methods, Lecture
First and Second Kind Theory, part 2

Notes by L. Proctor, C. Coelho and J. White
December 8, 2008
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1 Outline

Interior Neumann

Use Nystrom to Solve

Look at 2-D Problems
Fredholm Alternative

Connection to Linear Algebra
First Kind Convergence Theory

2 Exterior Formulations

2.1 Dirichlet Problem
2.1.1 Monopole Potential

For an 3D exterior problem:

For an 2D exterior problem:

(@) = [ log|7 - #o(a)dr
JI

2.1.2 Dipole Potential

For a 3-D exterior problem:

For a 2-D exterior problem:

PV (
ur () = wp(7) + / —
Jr (I|£ -

Normal points from interior to exterior.

2.2 Neumann Problem
2.2.1 Monopole
For an exterior 3D problem

Soira( P e S
dup () = —2na(F) - / Lﬁ'r}),_“flﬂ[-r”)‘ﬂ‘,
i o

Ing
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For an exterior 2D problem

U‘l.’.y(:'ﬁ) =il / o (r 7——"?) T"”':E’ =
e A, ————(1")dl
B R A (T

Normal points from interior to exterior.

3 Interior Example

3.1 3D Case
3.1.1 Monopole Potential

Surface Potential
up( / B Hllla(i"")df rel
7 —

Surface Normal Derivative

Our(: » o
— 1 rel
an, an-/ @A Ee

Normal points to exterior.

3.1.2 Interior Neumann

Monopole Potential Using the P.V. Integral

dur ()

on

PV ‘
1
g #,“a(.f-’)dr’

Jr Ong||r-=Z

looks 2" Kind Equation, Try Nystrom.

Ou Ou
\On  On

onl

3.1.3 Nystrom Method

Set quadrature points = collocation points

F; — T P .

ur(ry) 7] |

—— =27mon + E wl"j()‘;——'r‘-ﬁa”j
7 &

ang



dur(x, 1
0] — g + Z TN

Z|

n equations in n unknowns
j =i case (self-term)?

314 i=j
For the monopole 3-D Neumann Formulation,
. o 1 Z— ) nz
G, ) = - — =f( - _)q ;
ongz || — || (| — &)

PROBLEM: G(#,7") blows up as ¥ — &',

3.2 2-D Case

Monopole Neumann Formulation

8u r (I‘) / PV &
- = 7o(Z) + — 1 Z)dr
onz ToT) Jr Onz @)
Simplifying the Green’s function,
d (& — ) nz
G(Z,T) = — loo r—&| = ————L
( ) {) h” || ”‘T*.—,"“ 2

3.2.1 Smooth I
G(7,7") finite as ¥ — &’ if T" smooth.

normal "

dircctions ™

e P

3.2.2 Nonsmooth I

G(2,7") not finite as ¥ — 7 if 1’ is on a corner.

Problem
near
corners

outward normals

108



3.2.3 Disk Example

Aup(x;) 2 fooy « (Ti — T5)
B, =" N L Ty - O

Note uniform quadrature weights on the circle.
Resulting matrix is singular! Why?

4 Second Kind Theorem

4.1 Theorem

Given
(I + K)o =V (Integral Eqn.)
(I + K,)on, =V, (Discretized Eqn.)
AND

(I + K)~'|| < C'" Unique solvability

If
limy—oo|[(K — Kp)|| — 0 and ||¥ — ¥,|| — 0

Then

lim |jo—on]| — 0
n—0oc

4.1.1 Scaled Example

Define Scaled Variables . -
o= 1 C)‘?.i.['(,T')
T Ong

1 ¥ @
K=- / — log || — @ ||o(&)dT”’
I

T Jr onz

The 2-D Neumann problem becomes

I+ Klo=1¥



4.1.2 Key Property

Main assumption of second kind theory:
(I + K)~!is bounded.

Is (I + K) ! bounded for Interior Neumann Problem?

4.2 Linear Algebra

Given Az =b, AeR™™™, a,beR"
A~1 exists and is bounded iff
Ay = 0 implies y = 0 (no null space)
If Ay =0 for y # 0 then either
Az = b has an infinite # of solutions
Ax =bthen Az + ay)=1b
OR

Ax = b does not have a solution
b is not in the column space of A

4.3 3-D Null Space
Consider ¢ defined by
— . 1 ~ ¢ —f / — -
U[‘{Jf) = [l = ﬂ—ﬂ—()’(.t’ }dr rel
JrlE =
Then

Aur (7]
on

L S |
= (= 2ma(Z) + / ———a (2" )dI’
I

ong |T—2|°

o 18 in the Null space of I + K

(I + K) ! is not bounded!!

4.4 Fredholm Alternative

General Theorem
For [ + K either
(I + K)o = ¥ has an infinite # of solutions

OR

(I + K)o = W has no solution
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4.4.1 2D Example

Scaled Equations:

1 Qur (¥ L ¥ @
i s\ S —/ = log ||F — &||o(&)dT"
A

7w Ong T dng

For a solution to exist

nz

/ ()ur(.l‘)dr .
JI

2D Neumann Second Kind Integral equation
has a one-dimensional Null space.
4.4.2 Fixes

Add a point constraint

Fix u at some point
Force o orthogonal to null space

Need the null space

May need to solve 1% kind equation
Use SVD to solve singular system

Can be computationally expensive

5 1st Kind Convergence
Three-dimensional Laplace’s equation
e Unknowns might be physically meaningful.

' 1 _—
u(z) = / — o(&) dY
. HJ. - ” At

charge
density
e Might match boundary conditions

— Dirichlet and Ii‘, radiation condition

5.1 Nonsingular Green’s Function

Denote the integral operator as i
(=

1
Ko = / |z — &'|o(z')dS" = Ko =¥
J—1
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The integral operator is singular : X has a null space
| by 6, (x)=0, x20, 6,(0)=1
1 0 1

3
Kog = / iz — 2 |og(2")dS" = 0
-1
If Ko*=W¥ then K(o"+o09)=0"

5.2 The Singular Kernel

5.3 Convergence Analysis

Partial Differential Equation form:
Viu=f inQ 2 is the volume domain
=10 on I’ I' is the problem surface
“Nearly” Equivalent weak form

VuVuede = | fodx Yo e HY(Q)
a(w,v) l{v)

Introduced an abstract notation for the equation, v must satisfy:

alu,v) = I(v) Voe H(Q)

n
Introduce an approximate solution u" = E P

i=1
= u" is a weighted sum of basis functions
The basis functions define a space

T
Xp=quveX,|v= 5 Bip;  for some f,’s

i=1
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Example

Piecewise linear Space

{ A \“a‘\
AY \ ‘f\ N\

“Hat” basis functions

A '/X\;"\,
{ AV

Key Idea
a(u,u) defines a norm on Hj(Q) a(u,u) = [[[ul||
u is restricted to be 0 at 0 & 1!

Using the norm properties, it is possible to show

If a(u®,01) = (ps) Vs € {01,0, -, 0n)

Then |||[u —u"||| = min |[|u—w"|||
S— — Wy, n
Solution Projection
Error Error

5.3.1 Optimality Result

How well can you fit the exact solution with a member of X7
You must measure the error in the ||| ||| norm

5.3.2 Sobolov Space

“Weak” Form for the integral equation

// v(:r:)—l—a(‘r:’)rlS'dS = / v(2)W(x)dS Yve H(I)
r (e JT

a(o,v) 1(v)

The difficulty is defining /(") with right properties

1 :
Must exclude o(z)’s where /”—7”0(3:')(55’ =0
J JJe—=

H(T) is a fractional Sobolev Space
We won’t say more about this!
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5.3.3 Use FEM Key Idea

a(o, o) defines a norm on H(I") a(o,o) = |||o]||

mn n
o = E a; @) Xy = {U € Xnlv= E Biw; for some 3s

i=1
Basis

Functions

5.3.4 FEM Idea Cont.

Using the norm properties, it is possible to show
g Proj ; I

If
a(u”, i) = (i) Vi € {$1,02, .-, 0n}
Then ||lu—u"|] = min |ju—w"||
N’ Wi €A G N, e’
Solution Projection
Error Error

6 Summary

Interior Neumann

Use Nystrom to Solve

Look at 2-D Problems
Fredholm Alternative

Connection to Linear Algebra

First Kind Convergence Theory Mostly Waved hands.
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1.6 Fast Algorithms for Integral Equation Meth-

ods

Numerical Methods for PDEs

Boundary Element Methods, Lecture 6
Fast Algorithms for Integral Equations

I.. Proctor, S. De, K. Nabors, J. Phillips, B. Buchmann, & J. White

Decemmber 10, 2008
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1 Outline

Reasons for Fast Solvers
Collocation System Reminder
Fast Solver General Approach
Using Tterative methods

Fast matrix-vector products

Fast Multipole Algorithms
Precorrected-FFT Algorithms

2 Background

2.1 Discretize Surface Into Panels
2.1.1 Piecewise Constant Basis

Integral Equation : ¥(z) = [ ACORPPY

Jsur face |lx—a’||

Discretize Surface into
Panels -

2.1.2 Centroid Collocation
Put collocation points at panel centroids

1 "
a | W:m

A

i=1 panel j

_ Collocation
point
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2.2 Dense Matrix
2.2.1 Resultant Dense Matrix

Matrix Entries Are Never Zero

1
Ai,j :/ “—‘——,dS’
panel; ”3: - H

Distant Elements Decay Slowly
1

K e
|z — ']l

Too Slow To Ignore.

N

Need More than 100,000 unknowns!!
Need 100 Gigabytes to Store Matrix.

2.2.3 Gaussian Elimination

Fori=1ton-1{ “For each Row”
Forj=i+1ton {  “For each Row below pivot”
For k = i+1 to n_{ “For each element beyond Pivot”
f by
|

.
Aj F:.A“"‘ / A Form n-1 reciprocals (pivols)
Multiplier ~ A s ip
} N Form S (n-i="-multipliers
iv - L2
} } Pivot Perform };(_l.‘ —i) = ‘n
Multiply-adds

n® - Too Expensive!

3 Iterative Methods

3.1 [Electrostatics Application

General Iterative “Algorithm”
0 : Guess at panel charges a
1 : Compute the centroid potentials from the charges

Aa
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2 : Compare the computed to known potentials

R=W¥-Ax

3 : Fix the panel charges, go to Step 1.
a

3.2 Conjugate Gradient (CG)

Conjugate Gradient (CG) Methods are iterative methods useful for solving sys-
tems of equations involving symmetric matrices A = A”. The rate of iteration
convergence for CG can be related to the ratio of the maximum to the minimum
eigenvalue of A.

3.2.1 CG for 2nd Kind

Eigenvalues for 2"¢ Kind Integral Equation

; Notice
Eigenvalue
Cluster at 1
n=10
n=20

3.2.2 CG for 2nd Kind Cont.

Conjugate-Gradient convergence rate

k
ke //\111:1\ / max 0
H" ' o ( l]ll” / Tlllll ) Hr ||

For discretized Second Kind equations

/\TH ar
)\m in

is bounded independent of n

Number of CG iterations independent of n!!
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3.2.3 Steps of CG
The k" step of the Conjugate Gradient Algorithm

For discretized integral'
compute Ap, equations, A is dense

) :M Determine optimal step size
(Ap.) (4p.) in kth search direction

M =d o p, Updaté?ﬁeiéolution

and the residual

r =t - o Ap, -
e ),
- (Ap) (ap)

Compute the new |
orthogonalized
_search direction

3.2.4 Cost of CG
Complexity of the Conjugate Gradient Method

compute Ap Dense Mairix-vector'
[ )[_) ] P product costs O(n?)

) (Ap, : i -

=) () r Vector inner products, O(n) ]

=t = e Ap,

oA ap) i Inner products, total

Pt Y tamy L costO(m)

Sl an | Vector Adds, O(n)

Algorithm is O(n?) for integral equations even though # of iterations, k, is small!

3.2.5 Accelerate CG?

Accelerate the Conjugate Gradient Method
Exactly compute Ap;

Dense matrix-vector (M-V) product costs O(n?)
Approximately compute Apy

Reduces M-V product costs to O(n) or O(n log n)
Need a fast approximation for matrix-vector products

4 Fast Solvers

4.1 Direct Computation

- d evaluation points “

/ - _ d panels . .
v S v

Bé\é—;%;;é_}?f 4

e Physical interpretation:
Ap = N “potentials” due to N charges.
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e O(N?) if done naively

4.2 1D Strip of Charge in 3D Space
4.2.1 Simplification of the A Matrix
1-D Strip of Charge in 3-D Space

[ ] [ ] [ ] ® [ ] [ ] [ ] [ ]
Ay Ay o Agg ] (a5 Wy
Agr Ao Aoy Xy v,
A81 ASQ e ABS ] g qJB

What can one say about the A matrix?

4.2.2 Properties of A.

The A matrix is:

e Symmetric
Panel ¢ exerts the exact same charge on j that j exerts on ¢

o All the Diagonal Values are the Same

1
A :/ M= = 1
ll:ln(-}, ”;P = -I,'(-' |

e Each Superdiagonal & Subdiagonal Element is Equal along Its Own Di-
agonal as Well

4.2.3 More Properties of A.

How many unique entry values are there in A7
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Note 1 Toeplitz Matrix

The above matrix is one of a class of matrices called Toeplitz Matrices. In a
Toeplitz matrix, the matrix entries along any diagonal have the same value,
but the different diagonals can have different values. For this reason, an n x
n Toeplitz matrix has only 2n — 1 distinct values. A particular important
special case of Toeplitz matrices are Circulant Matrices. Circulant matrices
are “periodized” Toeplitz matrices in that the first super-diagonal has the same
values as the n — 1 sub-diagonal, the second super-diagonal has the same values
as the n — 2 sub-diagonal, etc. Circulatant matrices are diagonalized by the
discrete Fourier transform, a property we will use in the section covering the
Precorrected-FFT methods.

4.2.4 Geometric Simplification

Approximate (by grouping) the elements that are a “reasonable distance” away from
the element which you are evaluating

otential on this element

l Would like to find the
p

§ ; : [ ] L] ‘ L] l ® L] [ ] [ ]
N ERTY
o’
efel o o ]
4.3 Fast Potential Concept
g d l’\'ﬁ:lu:lzi:::lfui:u \
L
T —

e Decompose potential into short- and long- range.

Approximate long-range part of potential.

Sum short-range part in normal manner

Multilevel decomposition for “O(N)” algorithm
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4.4 Computational Costs

10° ' .
o
| NA3
NA2
10* \ 0
= o
[0]
N,
T 1
Z10
Q
A=
4]
E10°
1072[
10° 10° 10"

e Gaussian Elimination: O(n?) time, O(n*) memory

o Iterative with direct M-V: O(n?) time, O(1?) memory

N

e Fast Methods: O(n) time, O(n) memory

5 Multipole Algorithms

5.1 Direct Potential Evaluation

e Potential at point 7

— d evaluation points
. d panels e

{ )

.o p,

Y S |

d

v;(ry, @, 0;) = Z s Fige

7=1

N <7

e Complete evaluation at o points costs d” aperations.
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DEC 21164-333

N | Gaussian Elim | “Fast” O(N)
300 MFLOPS | 30 MFLOPS
5ed | 3 days,20GB 80sec, 130M
led | 25 days,80GDB | 2.5min, 300M
5eb | 8.8yrs,2TB 15min, 1.5GB




5.2 Multipole Representation
5.2.1 1D Strip in 3D Space

How many operations are needed to form the clusters?

(\n{' MTERTaERT'Y

N Ny

O(n/2)

@]

The cost of forming clusters is, in general, O(n+ 5 + 5 + g + ...

What is the cost of estimating the evaluation point potential?
(CIDLDEDY et Ll L)
° ; .. . N \/ \./ N
k‘.‘..'.l.‘..., )
W' \.‘.{ S \.|./| Lol e TeleTe]
\“/ N T N

The cost of gathering clusters is O(nlogn)

5.2.2 Computational Example

A few multipoles (monopoles, dipoles, quadrapoles, etc) can accurately repre-
sent the potential due to a cluster of charges, with the accuracy improving with
increasing distance from the cluster increases. For example, if one is very far
from the cluster, the potential due to the cluster will be nearly identical to the
potential of a point charge whose location is at the center of the cluster and
whose value is the sum of the cluster charges. The accuracy of such a monopole
representation can be improved by adding dipole, quadrapole and higher order
multipoles. Note, however, that higher order multipoles generate potentials that

depend on the multipole’s orientation, and that must be considered.

Monopole Dipole Quadrapole

‘) e




5.2.3 General Case

_ d evaluation points

% d panels

Approximate potential at point

order J f'tfj'

vi(ri, i, bi) = Z Z = Y (¢4, 6;)

j=0 k=—j "1

Multipole coefficients function of panel charges:

d
ME2 . ] / PY %, B)dA.
. Z Ai Jpanel i~ )

i=1 """

Computing Multipole expansions costs order d operations.

Each approximate potential evaluation costs order 1 operations.

d potential evaluation due to d panels in order d operations

5.3 Error Scale Invariance

R’
Evaluation I’mn:_‘/',_/ \
= %

3 erdar+l 78 der+1
Error < K (_?) ( Error < K (%)U““

5.4 Multipole Algorithm Hierarchy

® @ e Hierarchy guarantees:
e Dounded error:

- - order+1
Error <K (#)

| order—+1
= I‘f (z)
order = 2 yields one percent accuracy.
e Order n ops for n potentials.
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5.5 Local Representations
5.5.1 Cost Reduction

ole|e|e
BXEEKS) o
XTIOR0)
(O]
o m\hﬁ ® | @ e Construct a local expansion to represent distant charge potentials.
L= With local expansion use instead

e Evaluate a single local expansion, rather than many multipole ex-

A ’:J;‘ pansions, at cach evaluation point.

5.5.2 Clustered Evaluations

52 d charge panels
% d evaluation points
= & o

——

e Lacal expansion summarizes the influence of distant charge for clusters of
evaluation points.

e Gives O(n) potential evaluation when combined with coalescing of charge
done by multipole expansions.

order ]
e Approximate potential at point iz v;(r;. 9;,8;) = E E Llj‘—'Y'f'(m,-.(),-)u--;.’_
i=0 k=—j
5.5.3 Summary of Operations
cube 2
MM
——
~ QM
b ) sl R
N
//

e Multipole and local expansions are built using complementary hierarchies.



e Complete calculation consists of:

1. Build multipoles (Upward Pass).

2. Build locals (Downward Pass).

3. Evaluate local expansions and nearby charge potential (Evaluation

Pass).

5.5.4 Hierarchy Construction

e First build the multipole expansions moving upward from child to
parent.

e Then build the local expansions by moving downward from parent
to child.

e Computation has a tree structure.

Conversion of multipole expansions to local expansions.
A child’s local expansion is its parents local expansion plus conver-
sions of multipole expansions in child’s interaction range.
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5.6 Adaptive Algorithm
5.6.1 Multipole Inefficiency

Direct Evaluation

va(z,y,2) = 1Py + @2 P2 + q3FPy3

Multipole Evaluation

| z
va(z,y,2) = .-U(-lj’v—__ + MY

MY o — M} Y

— =]
3

1 5,3
Using Multipole MORE expensive than Direct.
5.6.2 Simple Adaptive Scheme

If there are fewer panels than multipole coefficients, calculate the panels™ influ-
ence directly.

e Similarly, local expansions are not used if there are fewer evaluation points
than local expansion coefficients.

e Retains O(mn) complexity for nonuniform panel distributions.
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5.7 Computational Examples
5.7.1 Sphere Potential Distribution

e Potential given by ¥(z) = —ﬁg“%
e Charge given by o(x) = g—g.’lﬁg.
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tolerance = 0.001, order = 2

tolerance = 0.0001, order = 3
0.0150 tolerance = 0.0001, order = 4 ~
tolerance = 0.0001, order = up to 6 i

§ E

0 r }

8 [ -

% 00100 - N

o k= -

[}

2 . l
0.0050 -
00000 1 1 1 i | 1 1 1 1 | 1 I 1 1 | 1 1 1 1 | 1 1 1 1

0.0000 0.0010 0.0020 0.0030 0.0040 0.0050

1/ (Number of Panels)

e Error should decay like %
e Multipole approximations eventually interfere.

e Higher-order multipole expansions needed for higher accuracy.
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5.7.2 Two Sphere Example

e Potential on each sphere: ¢(1) = — 558+,

e Does not correspond to a simple physical problem.
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Total Operation Count

108 T T III'IIII T T IIIIII? T T

[ L L
: Order 1 :
Order 2
R Order 3 =
Order 5
10" D Direct _|
10° | e
i ]
105 I oo a1 yaal 1 1 ool L I T T P O |
10° 10° 10* 10°

Number of Panels

o Direct matrix-vector product cost increases like n”.

Multipole matrix-vector product cost increases like n.

e The slope for the multipole algorithm depends on accuracy.

¢ For arder 2 expansions, breakpoint is about n = 400.

5.8 Complexity Summary

For an integral equation discretized with » pancls:
e Gaussian elimination: O(n?).
e Iterative Matrix Solution. direct M-V O(n?).

e Multipole accelerated Iterative method O(n).
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6 Precorrected-FFT

6.1 Introduction

Strip of Charge in Space

Bring the ends of the strip of charge together to form a ring.

Flattening the ring leads to the figure shown below on the left. Forming a ring
from the strip of charges results in a system of equations with even more struc-
ture that the Toeplitz matrix system described above. The matrix in the ring
case will be circulent.

Produces a “Circulant Matrix”

- \:E g

5

The above circulant matrix is the matrix representation of periodic convolution.
This convolutional structure is partly due to the homogenity of the geometry,
and partly because the Green’s function is translation invariant. The Green’s
function for Laplace’s equation, G(x,2"), is translationally invariant because
G(xz,2") only depends on the difference, x — 2’. As mentioned above, the dis-
crete Fourier transform diagonalizes circulent matrices, and therefore circulent
matrices can be inverted in nlogn time using the fast Fourier transform.
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6.2 Algorithm Outline

1. Project panel charges on grid
2. Calculate grid-charge potentials o
3. Interpolate grid potentials onto p

4. Local corrections
|[compute nearby interactions dire

6.2.1 PFFT Grid Balances Costs
[ ] [ [ ] L ] [ ] [ ] [ ] [ ]

e Grid Selected So Direct. Cost equals FFT Cost.

e Finer Discretizations Usually Yield Finer Grids.
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6.3 Algorithm Analysis

6.3.1 Interpolation and Projection

Approximate potential ¥ at = due to charge at y by interpolating potential using
points and weights @, w;

Interpolate: potential at @ due to unit charge at y

V(aly) = Ulaly) =D wig(xi,y)

Anterpolate: potential at y due to unit charge at x

U(yle) ~ U(yle) = " wigly, ;)
So A ﬁ
U(yle) = ¥(xly)
Same as representing charge at @ with w; and evaluating at y

“

p interp. nodes

anel in cell

Equivalent conditions:
e Approx Potential in cell due to charge at large R.
e Approx Potential at large R due to charge in cell.

e Cost is O(N)
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6.3.2 Grid Potentials

§——===% =
o o o o o o
¢ o 8 o o 8

e Let H be grid charge-potential mapping

H:q9— ¥y

o [ is Toeplitz

e Embed H in circulant matrix

e Use FFT for matrix multiply
Must Have Translation Invariance

o Cost O(Mlog, M), M = # cells



6.3.3 Nearby Interactions

Direct interactions
Cost O(N[n.])

[n.] = max # panels /cell

Local corrections [ PR I T I S—— @
Cost O(1) — O(N) — O(Nn3) bad

6.3.4 Inhomogeneity Problem

e Lmpty Grid due to FFT - Inefficient

6.4 Examples



bus3x8
sram

woven
via

S
W

N
SR
BLiNER
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SLIDE 49

[ Example | CPU | Memory | Product | Error |

6.5 PFFT vs. Multipole

¢ Comparisons: PFFT p = 3 to Multi! = 2| cube

| N[ |- [
=72 ===
o |c|Ioc|Icollc
eRin R RS a | =]
N S | |
[enjjan ] lanl fanl) fanl | el
= (0O |69 |I= |20 ||~
o= @ | = |
(el fan i [an) fan ) fanl) | fan]
— [ |00 [[= | ||
ARl A el e
clo|lo|e|s|le
udy

A

r] 60 |
5] A=
S nﬁwAa
e S|l &
=B cSn| s

y !

er accurac

e Faster with 10x bett
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6.6 PFFT vs. direct
6.6.1 Memory

Example Memory Usage
Name Panels|conductors| | P/FFT Direct
via 61204 21 Mb (286 Mb)
wovendsx5  9360[10] 50 Mb (668 Mb)
wovenld  82080[30] 246 Mb  (50.2 Gb)
cube 126150(1] 225 Mb (119 Gb)
6.6.2 Time

Example CPU Usage

Name P/FFT Dir. Iter. Gauss. Elim.

via 1.1 min (5.6 min) (1.9 hrs)
wovensxh | 5.2 min (42 min) (6.9 hrs)
wovenls 1.7 hrs  (11.5 days) (194 days)
cube 3.3 min (8.4hrs) (2.7 yrs)

7  Summary

Reasons for Fast Solvers

Collocation System Reminder

Fast Solver General Approach

Using Iterative methods

Fast matrix-vector products

Two Fast Methods

Fast Multipole - Multiresolution
Precorrected-FFT - Translation Invariance



Chapter 2

Foundations of Algorithms and
Computational Techniques in

Systems Biology

Engineering has always played a role in biology. specifically in the past couple of
decades the field of computational biology has emerged and contributed greatly. Foun-
dations of Algorithms and Computational Techniques in Systems Biology is a course
that gives an overview of topics of interest to a computational biologist. The course
covers protein modeling, modeling networks, and image processing. These are the top
three areas in computational biology. and this course shows how one may use com-
putational techniques to solve various problems with a biological application. This is

very interesting to both the biologist and the computer scientist.
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2.1 Motivation/Overview

MIT 6.581/BE.482 7 February 2006

FOUNDATIONS OF ALGORITHMS AND COMPUTATIONAL Tuesday
TECHNIQUES IN SYSTEMS BIOLOGY
Spring 2006

MOTIVATION/OVERVIEW

There is a disconnect between biology and A
computer science.

The biologist will pose the problem statement,
but it may not be amenable for the computer
scientist to solve it.

There is a need for scientists who posses the
breadth of knowledge to marry the two
realms.

progress

Y

time

FORMULATION » SOLUTION
* assumptions » algorithms

* setup * computer techniques

+ numerical methods

PROBLEM

ecologies
populations

individuals
i

organ systems
It

organs
iT

tissues
]
2§ cellular 5 experiment
Jocus of this course i
2¢ molecular 5 physics

MOLECULAR LEVEL | CELLULAR LEVEL | IMAGING
(atoms) (concentration of
biomolecules)
v v Fast Fourier Transform
v v Combinatorial Search
v | Model Reduction

v v v Singular Va]u.e.

- Decomposition

i v Multipole Algorithm
v v v | Numerical Differentiation
v v v Optimization

v v Newton Methods
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PHYSICAL, CHEMICAL, & BIOLOGICAL MODELING OF PROTEINS *

Proteins:

- biological polymers of about 20 amino acids
polymers are any kind of large molecules made of repeating identical or similar subunits called
monomers

« “perfect” homogeneous, pure synthesis

. around 10k copies in a cell

. linear, unbranched chains of a unique sequence

. generally fold to characteristic structure with no additional information

sequence folding structure chemical biological network
(1D) - — (3D) ——— functions —— functions ——— _functions
protein X-ray binding synthesis/ control points —
(h crystallography ~ catalysis degradation decision
mRNA NMR energy storage/  “robustness”
T utilization time keepers
genome (DNA) gene expression  oscillators
development

important area

|mmune‘ of growth
surveillance -
Why Model?
« Understanding : model facilitates development of understanding reason for
properties
- mechanistic basis for function
- disease

« Prediction

- experiment planning

- validate a model or select among models
« Design

- perturbation : improve properties

- intervention : repair

8]
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2.2 DModels of Proteins

MIT 6.581/BE.482 9 February 2006
FOUNDATIONS OF ALGORITHMS AND COMPUTATIONAL Thursday
TECHNIQUES IN SYSTEMS BIOLOGY
Spring 2006

LECTURE 2 : MODELS OF PROTEINS

?
selection of selection of
problems & methods,
phrasings algorithms, &
techniques
BIOLOGY COMPUTATION
Fundamental role of models:
Understanding DNA — mRNA - Protein
Prediction (genome)
Design

side chain

bﬂckBone

H O
| u
N\C/(
4%
R; H

The “R;” groups are chosen from the common 20 amino acid side chains — chemical

diversity _
(1) size: small — large \\‘
Raiy : =H —> Ry A{@
(2) polarity: hydrophobic - polar —  charged
A~ A AN Do,
Rl.uu . /\< = R:\xu . ‘ \N}I— . Rr\rg H T\/“-N[[;
: 1
(3) uniformity of character
(4) local backbone flexibility
Gly Pro
(flexible) (rigidity)
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Coordinate systems:
1) Absolute Cartesian Coordinates

X

X, cartesian coordinates of 1* atom

e

X-l

R=| =
X6
X< | ¢ N™ atom
L "c;'\. -
2) Relative Coordinates — Internal
Think of the molecules as graphs where

- atoms are vertices bond lengths & bond angles — rigid
- bonds are edges torsions — soft

19 atoms 57 cartesian
: degrees of freedom

e 10 torsional
RO degrees of freedom

Desire : Mapping X" — E(X“ )
“energy”
scalar value
= Bias toward mechanistic basis for model

Chemistry — Physics (Quantum Mechanics) nuclear & electrons
P T _
Schriadinger Equation: if %; = —;I—V‘LF +V(x)¥(x,0)= H¥(x,1)
m

Linus Pauling
Observations:
« bond lengths, angles — fixed
. torsions — ““soft” & sinusoidal
. atoms appear to have a fixed spherical size & approach to contact neighbors
« complementary electrostatics
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MIT 6.581/BE.482 9 February 2006
FOUNDATIONS OF ALGORITHMS AND COMPUTATIONAL Thursday
TECHNIQUES IN SYSTEMS BIOLOGY
Spring 2006

&8 9 3 o
——Q ++* H—N
H_)
hydrogen bond

@o H;N’Cy\/

@)
salt bridge

Molecular Mechanics Potential:
E(X*)

=Ucovarent + Unon-covavent
— bonded — through space

UL()\;‘-\II NT = E %k/w (bﬁ —bn.f): T E%kb‘.l(er _en.ty + z%kihi(q)i me”J ;

i :bonds i rangles

+ Z%ko,[l +cos(no, —8,)|

itorsions

simpropers

LT - E Bu _(r: i Z‘I’:qi
< NON-COVALENT 12 © -
>l By ry i €L
—— e e’
van der Waals \  Electrostatics

= Lennard-Jones »Coulombic

U
vdW electron
cloud

repulsion

(]

144



2.3 Discrete Conformational Search
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2.4 Binding and Docking
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2.5 Binding and Docking - Molecular Dynamics
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2.6 Molecular Dynamics and Electrostatics
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2.7 Continuum Electrostatic Modeling 1
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2.8 Continuum Electrostatic Modeling 11
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2.10 Electrostatics Modeling

050\ [ee 482 'rueui%
10: EVECTROSTATICS
LECTURE 5 i

T*Y=0

¢TI MODEL ovigom)
_— 3
Onteide water:  pint Tickilove
&Kv e E"“{ﬁ.h-tl) F
) - r\ r,—-«unw'tw&‘i‘paﬂd
‘: e 6“1 “ &)-‘Plzzl.-‘@ PV s
Uz 2 )
M** ik g\ e 7
" il
Fad" A )
weepsilon « 5.
Com i 8051 e
S E'Jﬂ'—'j&t{(x)dx ) o
= Atowre , v
g L N A g
Iy Gy Dundivg, watey
V-E= 41% M f J
; vww 4 \\ '4?‘
/ Mot chnvg, | %

\maae of) nexdpade .
i

, Beiter

158



W) 0 _ ¥R
n &! ) an
PASL R
otondial Tt
’Densaj
N pofential

PG= Y derivatives from

ness at G .. Mulltipole

N chavaes usin

ftevate: .
P = Resi
culate m \f_’;c_grmtdual) Bin)
G “f(%ﬂﬂal)
i jth
RW%, [ |
. Ve
AL |
9\ 1 o
d{iﬁ e e 4 s = e 4 ﬁj Il'- ‘ds
! hndinj
Row T, —> L

3

F"t;

1

2 %i
’—"‘tz il - Kol

4i
;,%jZ il

| AZaR




2.11

LO8 (BE.4g2

LECTURE 11 STATISTICAL MEcEMlICS
—_— T MERN=

ke
?-'rm@...iw

\owey T

E= 2 (x-n)

! admsa Hﬂ'gtm %
dremhggs Mad it '"j

move
ok X
)= rd( blalmbm = f;*z - #af
”@Amx I e F‘Qd!' S 2 H= s
Ke= Boltznmavin onstant ; ’ Two Possibilities:
=403 }n".‘EEEl Fiawmtiond) 1)@ £
T o Topuatu 1
"2?9l5+fi K
')
J fm&: j %"“1)4,. é“’i - o~
7.
Wit i av ition ? )<E>=§E:
Re Z (provaiility ot )-(value at {hat position; 1) ™
Y
whaurarion! €NERL  SPEUFIC limmamm\wdﬂnmwsgmulmma:
= ;]c % Su le'ﬂ”%rdx The matie:
ehf“”‘ of Ry, Lt i > 21y 00)
avag, of 1
ankis: 3 qu.)g%d il M= i L g8
= _ ’ Total
g “ally ‘dj }j ez%rdj ﬁtemm< uy= ﬁi_’u(m
=%, Metroplic Mantc (arlp,like MU, 150
Computing Average. Fluctuation; produces & trajecond that converges
J'=hl " ®a Sfahsnalm ical ensemiple
xRF = ] PERTE = W Metvopatis e 4, T Cemphys 2t 037-10RZ (5%,

KT > higher T= 5rmﬁr{-lu+uamn
X, — higher R = lower fluctuation
W?uh A\mw, Potenttial energy

E=<E>= L

"2_

~ 3,000 &toms of provein
10,000 ATOYMS of SoIeRL
NVIa 000 partichés =

o

160

Statistical Mechanics

IMTARSAAR |

leMARCH 2006

Compute Perage ¢ S1r ofﬁnmn
¢ KH> j S dx™

firet pvo'p\em. ELE™) is not analyhicad
D muct do it nmu,au
seeond proble: o ll ona ook %
ints pey dimepeion
(wm “° painte total
magine Catstracting ¢(<) from EXperimental Observation

aunrq:m

F\'abltm tqig 1) 3& the frw merg
ih.i;

statistical Mechanics ﬂt\kﬁ a‘s adefinition:
AT s 8= KTt e

Doyt hlp, becaust Lk 1000™5%
dimensional Inteqral

rﬂﬁe*ﬂardx uS!U‘ 1.)‘5%&1



P AA=A-Ao m wowm
oOM—0Q | —> | o0

SYSTEM 0 SysTeM 1

Thermodynamic Integvation (Kirkwood 14 2h)

v) Constuck a yorid Potential that Smesky
tonnats prr L.

KA =O-ueraw, 078
2-)Fv.ndamml Thtmm# |rda5m (akulus
™

A(R)= x.'m[ E

X% 0,4&’ 5
"u’:-u.':."r. %

161



2.12 Statistical Mechanics
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2.13 Formulating Models

0581 [BE.432
LECTURE 14 : FORMULATING MoDELS IuEsl‘:gm
DIFFERENTIAL EQUATION MODEL D""‘z"ﬁ{‘[ﬁ“x&ﬂ
[P = A .
CELL
1= 4Z (ad
063" \[Ku] suersce Alp mn@
D(i} A(o):le A0)=0
=» intial conditions
Steady-State:
AT+2 (A=A
CHEMICAL KINETICS ForM
VeR| qe%smm Frchs é'f‘ J] etiarin
] _-;’ o L (T;tpaax Case '(‘<o)
| f] degadation process
{;er riafion of 7 d LI N,
agons EDK DA
iz e U
AT YRR ) Typical Concimption Focess
Py ?f <0
Wﬁuﬁﬁdﬂ ‘?;MP“M TJ'PICa\ ?(oduchonﬂ—m
: % x’o
B g ] MN
- A= LI zz m.;wtm*zd DN
A=K WE-L i e
A= KLI-KIAE] + _z: Z.‘ fgjk[.q]m
e]= k1 -KIKIEL N
N MWTIRLE W
it NS .
i mmﬂo%;;f%) ¥, <0 = models degradation .,:a
EY: mMﬂi?A’fEm ‘X‘#‘o::models conversion X = c'f;— 2 ;
A-;E——:A’ ?:1:‘ xi+Xy —_LA‘?;-:;-‘- X.

JJE (A= [AT[A] - Ko (Al
Al = 2160A - 26 TAIA
STEADY-STATE (Equilibrium)
Reattiong ave in balance
d
slxl=0
AgPotmation
be molecules ave
reasf. bt overal

me it batayced
Lots o{ topies of X

(7

If' T is mvolvedonlm AT PO

eactions that tonsumd (1= 7} 0, T‘.so a0/ g
AV veackions that corisinie %) Vgt mcluuic B61={7:
[xil20 at t=0
Then Al 01 20 for all ¢ 9
Preog: Suppose, [X;J<0 for ome s at Some,t ¥
2ogeo = meo®
ancnou K_ m‘ 0

163



R r [XI][K‘] 1 ﬁrms dPPQm,-
:TX= Amx + @ [*ﬂslhl"'z twice ...
% o ripd 4
: lel X'] t“&]:[.‘z "
[x“-l o) Ji J [K’j[x“] N™tums
> K=t [x(x] l
\ D‘n']b‘h] ‘\
1
E)
| A
N
» AL
[ (nek+1)
KROENEKER PRODUCT:
/ *X
R
XOX = | 1R
Kok

d3_ o - - E-og—— -
g{X—A x+ﬁ®x+5u+w®x +DUdU

X
WX | _

X

164

x]
[ull:[x,]

WX ]
Dlz]_[xa]

_{uﬂjb(ul

i ﬂbt‘ﬂ deat



2.14 Nonlinear Dynamics and Stability

0581/ BE.482

THIRSDAY
& APRILZ006

LECTURE 15: NONLINEAR. DYNAKIICS S STABILITY

BDHPM‘HN(} STEADFITATES
%= AK K@K 48R 180K+ BV
hzm inore ﬁr.swud{y

M
% AP A® o AgB

" {enfe [“»3 b ""'“] s

At ;.,B hts] |
- Xe
s % Kia
KOX= B |= |y,
X 5
Knkn

REACTIONS ARE IN BALANCE: X, +Xa = Xs
In Steady-State: § [x]=0
mmmﬂ

ax=0 (%)
FIND .
558 = AR APR@X B =0

IS THE STEADY-STATE STABLE?
Suppose X*: AYK'+AOY'@R+ BV =0
1 X1)=R4Z for Small 2,
does Soin-»3s ?
da
at XEADX AR + o
only STiEi.E Sfeady-afamdreabumbi&
bl means X* is approached
when &tarﬁry from X*+€
H - .
LASE: A®=0 < o7 Blological

FXO=AXG Bl i
AX*EI=0
?X=-K'eil
For SCALLR CASE:
‘g'x' b
X'= f %(0)

Mllr F

ﬂ""ﬁ Stabili !y tan onl;

FoR. VECTOR CAGE:

‘.A_ - -
;_.;x:Ansu‘
PA=-A"BU

8]

R;f&égmalm o A} <0
e Y
BT, WY EIGENNALUES?

El

In o¥der for this 1o be $tabl,
what must be 32id about A!

AE;ﬂ}%_,qu
A " x, 0
(835 = u.,,l_][-ﬂ

qarimwm 100:
XB=d, B3+ 3p. 10835,
2 X =[saw)
e
» a0 ', Jaosred
4= A (3B,
o= haoi? (SB),
2= Mt (SR
Re (1) <0 ¥i =->o<i‘s dou%b\mqa

=

T ONSDER, A
NONLIN smewf ERATONS

L 0% .
25=F(0)= [s.‘i}:,.’i‘o’]

Fa ki Yay., Xn)
F) = A%+ % 8%+ il

STEADY-STATE EAMN ¢
Find ¥ s1. FUI*)=0

FIXtE) = F(X)+3,. (X)E
“aabum of F(X)
for Salar ca
( {(ue.)'- {t;)ﬁ}ﬁ e+ HOT.
SYSTEM ABOKT X* <>
AVFR)> 4 (30 58)-F(o2)
Y é.e J (K') £

-ytage \F

¥is a stavie, st
(X%} <0

[Re feigenvalues of




se

b 4p (Biological (ase)

F)= WR+RP RO+

T @)= K74 49 (107)+A” (XOT)
STEADY-STATE PROBAEM*

@ FND ¥ s4 AR A RoeRt v eil=0

@VeiEy AN AP (183 +701))
have, negative veal pants

use. NEWTON'S METHOD 1o dolués
Problem: Find X* s4. F(X")=0
FOR THE SCALMR CAER:

® ’f & TX9=-fx)
Gquess 1 ,
comarTE 1 = ~(%) o)

foop 409 Mo

ONCE AGAN, FOL THE SCMLAR CASE:
Ja I §ix) hag wo

solutfons, then
/—\ i
_ N

0
50,F0R F{X)=0 T0 HAVE MWTIPLE SOLNS

SOMEANE,

—>%

V= For somo X, thereis
= JN=0 4 Flat dicaerion
1F Jo(R) 15 NONSGULAR, FoR, ALL Y.

THEN F(X)=0 HAS oNE SOLUTioN

1§ A A‘"(miﬁ(ﬂ) s Aways
NONYy

“Then 61 STHE 2oUcTioN ie

QLE

Y st ﬂi') 0
uess at X
>, I vf)--F(x‘)*vLz
T ()R =-F &) #K
¥
where

K

FUE)= AKC+ VK@K + 3
ﬂ' (geJ A%y Am ('.t@x +XW)

[A“‘+ A® (183 +X9 L) (

RX)=-F()

[A‘"+ A‘"(I‘gx X 01)][)( X')= -FX)

i

166



2.15 Steady-State Problems
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2.16 Parameter Fitting and Estimation
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2.17 Parameter Estimation; Robustness, Fragility,

Control
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2.18 2-D and 3-D Light Microscopy; Image Recon-

struction
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2.19 Deconvolution
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2.20 Deconvolution II
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2.21 Blind Deconvolution
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2.22 Optical Flow
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2.23 High-Throughput Data and Analysis
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2.24 Inference and Statistics
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Chapter 3

Introduction to Numerical

Simulation

Introduction to Numerical Simulation teaches an immense amount of material, it’s a
general overview for graduate level nmmerical analysis and covers everything from how
to formulate equations based on a model to procedures one should use when solving
linear equations. This chapter offers in depth analysis as to why these procedures work
and allows the reader to look at problems from several different perspectives. The
material is presented in an easy to follow manner with several examples to elucidate

each point.
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INTRODUCTION TO NUMERICAL Sl.\llfl.A'l‘l()N

LecTure 1. Example Problems and Basic Equations

COURSE OUTLINE:
+  Assembling system of equations automatically
*  Steady state solution
Linear Problems: Ax=b
—  Non-Linear Problems: F(x)=0
+  Dynamics (ODE solvers)
Time domain integration
—  Periodic steady state
+  PDE solvers
Integral Equation Methods
—  Finite Element Mcthods (FEM)
—  Finite Difference Methods (FD)
- Preconditioners for PDE solvers
+ Model Order Reduction

RELATION TO OTHER COURSES

12 lec]
|1 lec]
[2 lec]
1 lec]
[2 lec]

6.255J)/ 2.098) / 15.093)
Optimization

Breadth course

Computational Biology

~

6.242 Model Order Reduction

P
6.337J/18.3351 6.581/20.482
Numerical Linear Algebra
e x g
| Fooo ]
e— ; 2:096J+ 6.336)/ 16,910+ “HTTLERE
Numerical Simulation
Breadth course
)
2.0971 7 6.339] / 16.920)
PDE solvers (biannual)

TopaY’S OUTLINE:
*  Uses For Simulation
Engineering Design
Virtual Environments
—  Model Verification
+  Course Philosophy
+  Example Problems
~  Power distribution on an Integrated Circuit [Electrical |
Load bearing on a space frame [Structural]
~ Temperature distribution in an engine [Thermal]

USES FOR SIMULATION
s Circuit Analysis (e.g. cell phone)

From www.maxim.com
o Equations
= Current-voltage relations for circuit elements (resistors, capacitors,
transistors, inductors), current balance equations
o Recent Developments
= Matrix-Implicit Krylov Subspace methods.
« Llectromagnetic Analysis of Packages .
o Equations Thanks to
= Maxwell’s Partial Differential :"‘ir?‘;‘:‘;‘i“?
Equations
o Recent Developments
= Fast Solvers for Integral - -
Formulations
 Structural Analysis of Automobiles
o Equations
=  [orce-displacement relationships for
mechanical elements (plates, beams,
shells) and sum of forces = ().
= Partial Differential Equations of
Continuum Mechanics
o Recent Developments
= Meshless Methods, Ilerative Methods.
Automatic Error Control

SUO[J,EHbE[ sy pue swajqoaidq E)ICIUIBX{E[ e

=]
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&
-

Force Analysis of Aircraft
Ixquations
= Navier-Stokes Partial
Differential Equations
Recent Developments
= Multigrid Methods for
Unstructured Grids
lysis of Cell Traps for Sorting
Cytometry
Equations
s Navier-Stokes Partial
Differential Equations
Recent Developments
= Multigrid Methods for
Unstructured Grids

e Engine Thermal Analysis
Equations
*  Poisson Partial
Dittferential Equations
Recent Developments
= [ast Inte Equation
Solvers, Monte-Carlo
Methods
¢ Micromachined Device Performance Analysis
o Equations

= Elastomechanics, Electrostatics,
Stokes Flow
o Recent Developments
= Fast Integral Equation Solvers,
Matrix-lmplicit Multi-level Newton
Methods for coupled domain
problems
« Stock Option Pricing for Hedge Funds
Equations.
= Black-Scholes P
Recent Developments
= Financial Service il P
Companies are hiring DR
engine
mathemall
physicists

1l Differ

LN

fans. and

 Virtual Environments for Computer Games
o Equations
= Multibody
Dynamics, Flastic
Collision
Equations
o Recent Developments
= Multirate
integration
methods, parallel
simulation
* Virtual Surgery
o Equations
= Partial Differential Equations of
Elastomechanics
o Recent Developments
= Parallel Computing,
Methods
& Biomolecule Electrostatic Optimization
o Equations

ast

* The Poisson Partial Differential Equation

o  Recent Developments
= Matrix-Implicit lterative Methods.

Ligand Receptor
(drug molecule) (protein molecule)

“ast Integral Equation Solvers

Ecm protein



THE COMPUTER SIMULATION SCENARIO a) Voltage across every function block > 3V
Prublem oo complicated for hand analysis b) Minimize the area used for the metal wires
o First Step — Analysis Tools
Given the topology and metal widths and lengths determine the voltage across

e the ALU, Cache and Decoder.
Toss out somie Simulie us canned routine, a frend’s o Who uses VLSI Tools?
Terms advice. or a recipe hook *  Several big companies
“Macromode T 1BM, Motorola, T1, Intel, Compag, Sony, Hitachi
l Nonfunctional prototype costs:
Sabven ! Develop Develop *  Increases time to market
Simplitied 7 Understanding of Understanding of * Design rework costs millions
Problem 0 Computational Convergence = 1000°s of small companies
i . complesity Issues « Small companies make application circuits disk drives, graphics
. ! ’ ’ Iy accelerators. CD players, cell phones
. Faster Method Rabist Method * What is the cost of nonfunctional prototypes?
N = o Out of business
S o Who makes VLSI Tools?
e Cadence. 4,000 1.3 billion 3.8 billion
: Synopsis/Avanti 5,000 1.5 billion 6.9 billion
. Mentor Graphics 2.600 0.6 billion 1.4 billion
COURSE PHILOSOPHY

. . (Data from 2003)
Examine Several Modern Techniques Companies compete by improving analysis efticiency.

Understand, practically and theoretically, how the techniques perform on o Modeling VLSI Circuit Power Distribution
representative, but real, applications e Power Supply provide current at a certain voltage
Why Prove Theorems?

@ Functional blocks draw current

Guarantees, given assumpltions, that the method will always work. e The wire resistance generates losses
Can help debug programs. * Modeling the Circuit
The theorem proof can tell you what to do in practice. * Supply becomes a Voliage Source
E . )
XAMPLE PROBLEMS Power Supply
¢ Power Distribution on an Integrated Circuit I
I|— = V=V,
current
. _ —
] e Voltage M

1 181 1 Constitutive Equation
* ALU " Decoder| q

Physical Symbol Circuit Element

™~ Power Supply

Is there at least 3V across the ALU?
o Design Objectives for the VLSI Problem
Seleet topology and metal widths and lengths so that

[
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s Functional Blocks become Current Sources Element current is related to voltage across the element

" « Two Types of Equations
I +ilf = Sum of currents at each node = 0
I * Conservation/Balance Law Equations
ALU |— r_j-- - I=1,

\ y . / g Lo I L (i —ip+i3=0)
Constitutive Equation e N e AN !
Physical Symbaol 73 bl
Circuit Element 1

y S hz OR
e Metal Lines become Resistors /Lj = ::j'_? - )
e “% (=i +iy—i3=0)
!
:: —— M— IR—V=10
%—/ N ~ ) % ~ J Note: here i; = —3 means it goes to the right i.e. opposite 1o the arrow
Physical Symbol Constitutive Equation e Load Bearing on a Sg?!:e Frame
Circuit Element (Ohm’s Law) L] '
e e ” . i D
length o Joint *"Je -
R = —=—-resistivity AT
arca L] Beam + Cargo
g
Y Material
Property L]
o ™ Attachment to __ Vehicle
e Putting it all together _~ the ground
A A
e et \)
= Io Does the Space Frame droop too much under the load?

o Design Objectives for the Space Frame
Select topology and strut widths and lengths so that
a) Droop is small enough
b) Minimize the metal used
o First Step — Analysis Tools
Given the topology and metal widths and lengths determine the droop ol the
space frame under load

o Power Supply — Voltage Source
o Functional Blocks — Current Sources
o Wires — Resistors
Result is & schematic
* Formulating Equations from Schematics
e Two Types of Unknowns
Node voltages, element currents
e Constitutive Equations

-
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o Maodeling the Space Frame

Bolts
< 9
p ~
Struts @ | 3
) |
S [
|
. 4
- a |
i * ®
< : ;
Example is simplified for illustration Grbunc& Load
* Load becomes Force Source
® y

= E
\ ) Schematic Symbol

Physical Symbol
* Beam becomes Strut

b =

Beam

H_/

Physical
Symbol

I, = Unstretched Length
A= Cross-Sectional Area

E = Young's Modulus } Material Property
Abstraction - leads to simplifications, such as:
No bending/buckling
ing
No breaking

bt Ly

Fload - _ Mass » Gravily

Constitutive Equation

“e=lrp

—%
Only solve for the force, . on one side

The force on the other side is [ = —f

It f =(3,-2) itmeans B i
v J—,*

thus the strut is turned around

e S W

f=(-32)
A
= (=30
’—"I:’_*_‘ s the restoring force of the strut
A B (internal force)

Is this strut compressed or stretched?

The force of the strut is pulling the end in this means that the
strut is being stretched.

Think of what happens when you pull on the ends of a spring.

Is the force from the spring pushing your hands away from one
another or pulling them towards onc another?

10
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it vegiary
(unit vector) f o ‘,\,l‘ =[ - "‘0

7 = mil = Lgp =g el =l 70|J

EA, Constitutive Equation

IFAL = 0. the strut is E = - 5
stretched, the internal Ly (Hooieisilaw)
force will pull to the left,

and thus be negative

Example

e=10, Ly=3 x =5
7= 10(3-5-0) = -204 F=-20¢

Pra—
00— Fws—s

Ly=3
{ fy=0

In this case '
fo=r

/1 (it vector along divection of strut)

I - # *
7 =F _[x -Xy —y]

it ,

F—F L L

L= \“"'(x' - ,\‘]2 + (}-'* —,!’)2

Example.

£=10,Ly=3

L=l -#|=B--) +(6-3)2 =5 suetched st

. X -x 3-(-1
fr=t 2t e @o-n==
)
* ya—rv 6-3
=Y Y e (-1 = 10 (3-5)=-12
fr=r T e Up-1="57 10 G3-9)

10 (3-5)=-16
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Example. e=10,Ly=3 = Putting It all Together

S0l

(30) P &
A (S fo )2 +(0-3)F =5 srerched sirut 3 d
GSE =EE AT R0=8) =0 REREes How much does the load droop?
v 3-(=1) ot o o Formulating Equations from Schematics
e(ly-L)= —5 10 (3-5)=-16 =  Two Types of Unknowns
- = Joint Positions, Strut Forces
S 0-3 o = Conslitulive Equations
o= ! ellg-L)= 5 10 (3-5)=+12 Element Force is related to the change in Element Length
N =  Two Types of Equations
Example.  £=10, L,,@ Sum of Forees at cach joint = 0
i L i 9 : = = 1'— s = Conservation/Balance Law Equations
L= =Py (2=(=D)" +(0-3)" =3
-13) '.‘:L"“_‘ 3 i compressed strut
: \ 575) Relivfi=o0
7= (+24.-18)
7
Strut”’
(3. o =%
A f3

f=Eir"e u,.,fu:};'” 10 (8-5) = 424

Negative

2 0-3
— g ([yp—-L)= = 10 (8=5)=—-18 because it is |
= the toree l\
here, i.c.

opposite of /3

Note: f; =(- 3,0) means the foree goes to the left.
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o Design Objectives for the Engine

Temperature Dist ion in an Engine

Does the engine get too hot?

Select the shape so that
a) The temperature does not get 100 high
b) Minimize the metal used
o Heat Flow 1-D Example
= (Conservation Laws and Constitutive Equations

www.adind’eem

Incoming Heat

TR AN

7o) () Unit Length Rod D )
Near End Far End
Temperature Temperature

Question: What is the temperature distribution along the bar?

T
)
7o)
X
= Discrete Representation
1. Cut the bar into short sections
2. Assign each cuta temperature
70x] ) (1)

T T
= Constitutive Relation
Heat Flow through one section

T Ty

- Ny —>

Tia-T;
T D T iy ; = heat ﬂow/:'x '*i“ i

thermal conductivity

T o AT 1k
Renermai  Ax

i

Conservation Law
Net Heat Flow into Control Volume = 0

Incoming Heat #

e /‘

heat in heat out

from right from left

By =iy = =hyAx

incoming heat
per unit length

Contral Volumes,
fill the space (Av)

Limit as the sections become vanishingly small:
hy =

i = hiict i

lim R
Av—0

Circuit Analogy

Vi =¥
R
Tg-T;
higi= %
K

T

Ty
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* Conducting Bar — Temperature, Section Heat Flows

—
B

Femperature analogous to Voltage
Heat Flow analogous to Current

A o Two Types of Equations
= Conservation/Balance Laws
*  Circuit - Sum of Currents at each node = 0

+  Struts — Sum of Forces at each joint = 0

v,=T{(0)

I
i R T. 4 + Bar - Sum of heat flows into control volume = 0
SUMMARY OF KEY POINTS: ' P

Many Applications of simulation Incoming Heat ,

= Picked Three Representative Examples J #‘l “

Circuits, Struts and Joints, Heat Flow in Bar
o Two Types of Unknowns ( ) j ) ) -1

= Circuit - Node Voltages, Element Currents
Ty Iy T fiey,

—Ar—>

= Constitutive Equation
*  Circuit — current-voltage relationship
; R
I‘, i A ‘J’
LY

* Struts — force-displacement relationship

(x1, ) (x2, 2)

BT 717547, =0

i =AY =0
Rayig=Vi=Vi,
* X2 ,\I
=L\l 0-L
,f 1,x L/' ( A0 ‘-l)

Vet g0 1.4)
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Bar — temperature drop-heat flow relationship
—Ax—+
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LECTURE 2. Equation Formulation & Node-Branch Stamping Sten 2 on L
« Step 2: Conservation Laws

Sum of currents = 0 (Kirchhoff’s Current Law)

i

TOoDAY'S OUTLINE:
»  Formulating Equations
—  Circuit Example
Struts and Joints Example
+  Marrix Construction From Schematics
Node-Branch “Stamping Procedure™
«  Circuits
< Struts and Joints

FORMULATING EQUATIONS FROM SCHEMATICS
Circuit Example

 Step 3: Constitutive Equations
Use Constitutive Equations to relate branch currents to node voltages

(Currents flow from plus node to minus node)

Struts Example

M) ¢ 17"* :(x*’y*]

with one node as (. Assign each element a current.

Assign each node a voltage,

Sun

-durelg youeag apoN - uoljenuwao uorjyenbr g'e
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Will the solutions be the same?
Will the set of conservation law equations be different?

Cons

rvation laws for the two examples will be exactly the same. The

perceived foree “direction™ is inconsequential, it is the adjacent forces
that matter.

Twao struts aligned with the v axis

—

4’2

N

X

=0

Conservation Law
Atnode 1:

Atnode 2:

Constitutive Equations

-0
70|cfl.(,~ x-0)

o )

Six

X

EL=2 {1 |y, - xgl)
X —x7

Assign each joint an x, y position, with one joint as zero.

Reduced (Nodal) Equations
S f2c=0
eflg = )+ T2
Xy =

X
-L lg—x -x3])=0
&l

Six N
- fac+ S =0

»n=0 »n=0
Example.) fi' =10¢ (force in positive x direction)
Solution of Nodal Equations

10 10
Xp=Lg+ Xy =xp+ 1L+
£ &
Notice the signs of the forces
_f; ¢ =10 force in positive x direction

flt‘. ==10 force in negative x direction

# Step 1: Identifying Unknowns

A i e (x202)

(U.OJ inged

7/
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Comparing Conservation Laws
* Circuit

f:'narf bamigtis = 0

* Heat Flow

. / 7 Incoming Heat k,
Assign each strut an v and y force component.

* Step 2: Conservation Laws
Falm . .
| Sax+ Bt o =0

| Lay+ Soy+ Jiy =0

By iy =Py — A
_f(;)’+fj;t +f1:.¢d_,=0 ji=1 " iy — g

= oy * S0y + Soady =9

(7o Fi-Ta+Fi=0

Summary of Key Points
* Two Types of Unknowns
o Circuit: Node Voltages, Element Currents
o Struts: Joint Positions, Strut Forces
o Bar: Node Temperatures, Heat Flows
* Two Types of Equations
o Conservation/Balance Laws

0.0

Force Equilibrium
Sum of y-directed forces at a joint =0
Sum of y-directed forees ata joint = 0
= Step 3: Constitutive Equations

fé *ﬂi&"-{i-c_a -Le) = Circuit: Sum of Currents at each node = 0
a0t ) * Struts: Sum of Forces at each joint = 0
e 40~ Ly .y .
% fe, —ZL(' ellco-Lc) = Bar: Sum of heat flows into control volume = 0
fu= (Lao=La) £ 3 o o Constitutive Equation
N (xr0n) oo . .
" W ' (¥2,)2) = Circuit: curent-voltage relationship
Ly=le, =0F = (3, ~0F
= Ve V) 1
o A —" i= 10,0
1 ! R
. x
¥ Tox =2 el ~Ln)
e = x;., #ltgo-Ls) = Struts: force-displacement relationship

(0,0 (1,0 R ) el o)
| Wm = 8o —Lp
W‘d‘ =j‘j°{‘"-ﬂ'r"') A s

Use Constitutive Equations to relate strut forces to joint positions.
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(a0} (xi, 0)

stretched

X0 (xp+Ax, 0)
(x,,0) b =

U,

x, —(xp + Ax) d
X, —(xp + AY)

f. is a positive number — force is to the right, this
makes sense for a stretehed strut.

= Bar: temperature drop-heat flow relationship

——Ar—>

T“DT"'

B
Bieyy

GENERATING MATRICES FROM SCHEMATICS

Number of Columns

Number of Rows

Number ol i,

A :
Equations /
\ IH

row  colummn

[, =] = + 2]

-

Circuit Example
Assume linear constitutive equations. ..
B N
branch node
currents  voltages

N KCL Eqgns i
b |
B Constitutive Eqns Vi
*  One matrix column for each unknown
- N columns for the Node voltage
- B columns for the Branch currents
*  One matrix row for each equation
- Nrows for KCL
- Brows for element constitutive equations
(linear and square system!)
o Conservation Equation
i Re
® gty
©) o —ig —ip ==l —iy
(o] e =l
e o ic+ip =iy tig
0

in Vi i

Matrix Form for the Equations

i 4
T [ N el By
one row ig ) |
forcach 9 =1 1 i b= L e i
K[‘F, e 1 o fie ;
equation i ) ‘ |
o =11 : isq+isp |

—p — UE

one column for cach right hnd side
branch current for source
currents



86T

Four Nodes
| Do we know how many rows the A4
. e matrix will have?
3 because there are 3
nonzero nodes

. .

0 3

Do we know how many columns the A matrix will have?

Could have any number, depends on the number of
nents

| ; ;; 2 1 %; E 2
versus
0 3 0 3

Input file of a circuit

imulation has one line per resistor:

Rname nodel  node2 varlue
Spice — circuit simulator
code...

RnameA nl n2 {0 2

Rnamel3 nl n3 5

Iname n2 ni 5

Ry R

Nodele KCLeV, [ +1 +]
Node2e KCLeV, | -1 +1

Node3e KCLe V3 -1

How does each resistor contribute to the mat

A has no more

Ry

than 1wo non-
5 St k
m ._._/V\A/_. ny  LeTOSPLr column
' \

m

|
|
KCLat... i
i qumm- +ig = Zf.. " ‘ -1
(58 Z"uﬂhw' == Z’.\-

How does each current source contribute to the Conservation Law
Equation?
Aftects the Right Hand Side

Ish
m n

4

mo Dk
KCLat...

me Xi's=Ris,, i om 2o
na Zl}"‘ z"-\‘.w“"’

RHS
Conservation Matrix Equation Generation Algorithm
Ry

For each resistor
if (my # 0) then  A(m k) — | i m

il (n2# 0) then A k) — -1

Set /= zero veclor

For each current source i
i (m £ 0) then L) o L{m) —ild’
if (2 # 0) then  [y(m2) +— Idm3) + i

m



Constitutive Equation

66T

First relate branch currents to branch voltages
Second determine voltages across resistors (Branch Voltages)

- One column for each associated branch voltage.
The matrix a is square and diagonal.
Relationship between branch voltages and node voltages:
-1

- o
M1
R A
1 ry !-I
Ry Vg i
8 ! V- |
ke |
‘ 1 D |
] Rp LVe
1
L Rg

T'he A" resistor contributes "! 1o w (kk)
R

One row for each unknown current.

Vy=0-V, ¥,
|
Vg =W -V < . i |
I'B Vl lf Examine Ve |
G=1y 8 Matrix Ve |=

Vp=Vy-0 Construction |V
I‘JL =0- V: | Ve

The matrix a relates branch voltages to branch currents.

=]
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The node-to-Branch matrix is the transpose of the KCL Matrix.

KCL Equations . Node to Branch Relation
=1 " v,
1
Vy
= I.« -
| 3
| v
fl
J =]
AT
14, '
= @ 4]
il fi i

O .
O] @, ey V‘:()

| 7 ¥
| '8 | .
gl | ¥
N T2
i ‘7 ad’| ~|=
i | s
i (1]
D v
; J Ll 1y
L'E
¥
The node voltages can be related o branch currents
- A’ relates node voltages 1o branch voltages
- relates branch voltages o branch currents.
« is square and diagonal
13

o Node-Branch Form

Ii—-a A Vy=10  Constitutive Relation
A= Conservation Law
BT -ad" [1] [0
N4 0 Pl L
> s
B N

N = number ol Nodes with unknown voltages
B = number of Branches with unknown currents

Struts Example

In 2-D
= One pair of columns for each unknown
* Jpairs of columns for the joint positions
*  Spairs of columns for the strut forces
= One pair of matrix rows for each equation
* Jpairs of rows for the force equilibrium equations
o Spairs of rows for the linearized constitutive relations

o Follow Approach Parallel to Circuits

(1) Form an “Incidence Matrix,”
(2) Determine strut deformation usi
(3) Use linearized constitutive equations 1o relate strut deformation.
(4) Combine (1), (2), and (3) o generale a node-branch form.

from Conservation Law.

o Conservation Laws

x, v/
e B

= 0
- 0
= Yo + Fha = =St
- S * Jos = ooy
Note that struts A & B only contribute one pair of entries into the A4 matrix
and strut C contributes two pairs of entries into the 4 matrix. This is because
struts A & B arc connected to the wall (ground) and strut C has two free ends.
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Stamping Approach

Matrix — load 1 column at a time
— .

e e
Load pair of columns per strut
Load right side for load

x[1 1

I
1 1
Xy -1 I
-1 |

'

-~

for cach
end of
the strut

]

= Jioad x

= St

| fox |

.[f'j
[ |

o}

Conservation Matrix Generation Algorithm

For each strut
I (71 is not fixed) Ah) =1

Ay =1

1T (j2 is not fixed) A(frd) = -1 A(jz by = =1
For each load [RYRY))
I (jr is not fixed) Fi(i) = Frlin) = Jinads 7
Fuljid = Filie) = foay Lo

A has at most 2 non-zeros per column

o

o Constitutive Laws

Ver;ical strut

f=elly-L)
—llr
: fo=2r=—elly-1)
L —
—u,

Linear with respect to displacement (..}
-y a.k.a. incrementally linear
Uk . (If u, is doubled,

w, =y —Lo then f'doubles)

j}()ﬂ

Linearize the Constitutive Equations.

- -L x e

;r:if,n_, 1111‘“ :ZS(LUAL) (vl
- — -
e LU 0.0 )

Determine the first derivatives of the non-linear constitutive equations as a first
step o linearize the equations.

Evaluate these first derivatives abhout the point (xo,

Linearization becomes
-

= (x—xp)+=X (v= 1)
% l(xgu) 3 l(x0,10)
of, of,

S N
“lixaovo) Y eyzo)
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Linearization is only a valid estimate if the strut is very close to its oni
configuration - v and v are very close 1o xg and yy.

What if the strut is rosared, is this linearization sull valid?
It seems like it should be because the strut is not stretched (only rotated), but it
isn’t. Because the non-linearity is mor in the relationship between how much
the strut is stretched and the force going through the strut but the non-linearity
is in the projection of that foree onto the x and v axis.
Referred to as the “geometric™ nonlinearity in finite element literature.
Example.

Vertical strut Horizontal strut

A
$

) —==%0
('\

Note: NON-LINEAR

L=yx 4y
LINEARIZI: the constitutive relation
are close to some Xy . vy — Ny F iy = I.ﬂ

it :[,r'- r(',,| =)

¥ it = (x=xg,¥=1p)
| by Bk :
. o o HH o
. Hp =1 =

':'Ll'_ (\',;, v;‘ ) e

]}F\'{n;‘ %)

- o2
Ml )
Jacobian Matrix
We will learn more about linearizing equations later on when we study
Newton’s Method.
The a(s.s) block

-

A

Initial positimD u\iliu] position
Xpos Vio

Xa0, Vau
aFy oF,
—Elxy =x 12 =0 —X Xy =x . =¥
P -1 0>F2y o 5, V20 0?2y
ox o
als,s)= oF,

( ) 2 )

T U2 TN V2 T M) A2 TN Y2 T R,

Note that the arguments in the o matrix are the difference in the original
position between node T and node 2. This is because the force of the strut is
dependent upon the relative position of the two joints on either side.

.

xvfe X2, V2
s O
Sroad

[o]

|

|o|

ey | |0

7 uey | fo

uea| |0

wa| |0

0

Lo

I8
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Node-Branch Form
fimad u=0 Constitutive Equation
Afs= 1. Conservation Law

25 i1 —ad [£]_[0
2771 A4 0 u Ir
> —
2.8 2
§ = Number of Struts
J = Number of Unfixed Joints

Comparison

LS —adT T fe _[0]
24 0 Jul Lfi]
25 24
 BY1 —ad" 1] O]
o N 4 0 __VN - I |
E N

B

Summary of Key points...
o Developed algorithms for automatically constructing matrix equations from

schematics using
= Conservation law
= Constitutive equations

o Looked at one formulation: node-branch
o Next time: nodal formulation

19
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INTRODUCTION TO NUMERICAL SIMULATION

LECTURE 3. Equation Formulation - Nodal Analysis

ToDAY'S OUTLINE:
*  Matrix Construction from Schematics
— Nodal “Stamping Procedure™
+  Struts and Joints
+  Circuits
~  Comparing Node-Branch vs. Nodal
«  Solution of Linear Systems
Existence and Uniqueness

MATRIX CONSTRUCTION FROM SCHEMATICS
Nodal “Stamping Procedure”
% Struts and Joinls
Two struts aligned with the X axis
—% =%

N f2 1

Conservation Law
- - K
Alnode I: fre+fa=0

a D -®
At node 2: A
Constitutive Lquations
. x =0 \
fre=""""elly—x ~0)
X =0
* X AeY
fro=——=

- &Ly =[x ‘-":U
¥1 = X2
Reduced (Nodal) Equations
* ,s
Jiy + 12, =0

gLy = )+ 2 g2y — vy —xa )= 0
X x| — X2

fioe F
¥ .
— S+ f1=0
TN Ly - x4 £ =0
¥ =1

.
-

Two struts aligned with the X axis

»=0 »n=0
Example.) f', =10 (force in positive x direction)
Solution of Nodal Equations
10 10
xp =Ly + - Xy =x + Ly +—
€ - €
Notice the signs of the forces:
j:_).__( =10  force in positive x direction

- - . . . .
f1.x =-10 force in negative x direction
< Circuits

: 1 1
i, +Eﬂ_+‘§;(‘ﬁ =¥3)=0

z 4 1 1
s Tl +E(V2 -V1)+R—E-Vz =0

(1) Number the nodes with one node as 0.
(2) Write a conservation law at each node except (0) in terms of the node
voltages!
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o - 1yt . :
n AN i Tioter =, =V J= T

| ) AN N iper + RI*(' =V }’— i
et k

One row per node,
One column per node
For cach resistor

[ o B |
| R R Ry
[[#a #& B L
l . "1 =i 1|
: R R | v i =i, |
KCL equations J g Re _3 - g e |
= ! ] Vs ig
[ B =l
Re Re' Rp .

9

Notice that the contributions are positive on the diagonal and negative on the
off-diagonal.
(s square.

l Node-Branch Matrix l Nodal Matrix |

N+B

I —ad” “i[a]
A 0 &

e
N+B

Circuit Example.)

oy ]
LE
What does the nodal form for the equations look like?
0,0 ]
| & ) 1{ Wl Tial
| =l | v, i, | Diagonally
| . " | S dominant
WY |
‘ -1 1) €D | lmJ
I S0
R
1
i
What does the nodal form for the equations look like?
1'l +1+1 -1
SR T S W [ia
=1 1+1+1 =1 Vol |2
-1 1+1+1 L £ [i_‘.\,
=1 L+1+1
Strictly
Diagonally
Dominant



Nodal Matrix Generation Algorithm
ity > 0) & (2 > 0)

Gl )= Gl )+ ;\, Gliaam) = Glina.ny)

R
. . | . = 1
Glryom )= Gliypns )= Glnaum ) =Gl ,na )+

Uryonz )= Glnonz) = Glng.na )= Gleana )+

else il (i = 0)

|
Glryp.on )= Gl )+
Glnyom )= Glmyom 5
clse

1
Glia iy )= Glnyony )i
(115,015 ny.my) 5

Resistor A LG ,/" = Ia
<

Networks
v
[ Struwsand | il =
! Joints 249 g u" Fi
1 ! 3%
(xa0) (X3,V3)

90¢

Nodal formulation for struts and joints will
not have nodal forees.... replace them with
expressions in terms ol nodal position.

0

Comparing Node-Branch vs. Nodal
<+ Comparing Matrix Sparsity
Lxample.) Resistor Grid

Voo

Matrix non-zero locations for 100 % 10 Resistor Grid.
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Node-Branch

!
A

—adT
0

&

£

Conservation Law | 4

Node-Branch Matrix

Conslitutive I —aAd T 11’) 0
o |"v] UL

8
Nodal Matrix

Conservation Law [G][VN ] = [15]

(constitutive pre-substituted)

G matrix properties

¢ Smaller NxN << (N+B)x(N+B)
2Ix2J << (20 +28)x(2J +25)

o Symmetric Gy =Gy,

o Diagonally Dominant

Gulz Y Gy

j#i

Node-Branch Form

|

1
A

=
M x ]

mwﬂ 5] Jo
0 j{%]{f\}

o Not Symmetric, nor Diagonally Dominant
o Matrix is (n+b) X (n+h)

Deriving Formulation from Node-Branch
constitutive equations

I—odVy =0 = I,=ad"Vy

substitute into conservation equations:

Problem Element

o

Al =1, = Aad Vy =1,
G v,
Voltage Source ]

Constitutive Equation
i 4 =V
0. +V"| —L”: =V,
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I'orm Node-Branch Constitutive Equation with Voltage Source

KCL1: kel =V p)+...= RHS
R, 4
i

KCL2: ..+ R (Vy =V )4 j}IS
P \

I'I Tii] 0
/ 4
I iy 1 0
| i 2 0
" ‘l' AuAril'_; 8
) .
I 'iD |V 0
[ A
04 | =

Cannot Derive Nodal Formulation

resisior currents=3 1 Vﬂ Y itutive E. i
i:;r]_(‘mr'{\’ ‘ }((msmullu Equation)

voltage source-—1"
currents missing

ALy =1 (Conservation Law)

™
Cannot Eliminate 7, since /, :[ [’; ]

Nodal Formulation requires Constitutive relations in the form:
Conserved Quantity = /7 (Node Voltages)!

Rigid Rod
% * *
F =x ,y

Ll

=

| 2 —_—
\J"(",* B ,\')_ 5 (-V _'l‘)‘ _ med constitutive
. equation
The constitutive equation does not contain forces!!
< Summary of Equation Formulation
o Developed algorithms for automatically constructing matrix equations from
schematics
= Used conservation laws + constitutive equations
= Node-branch
* General constitutive equations
e Large sparser system
* No diagonal dominance
= Nodal
e Conserved quantily must be a function of node variables
¢ Smaller denser system
e Diagonally dominant & symmetric

10
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SOLUTION OF LINEAR SYSTEMS

Mi=h
: by
G R o il e
= ; - X3 by 2 . = y
My My - My| T |=| 0| = aM+xM et xyMy =b
T
Xy by

Find a set of weights, x, so that the weighted sum of the columns of the matrix M is equal
to the nght hand side b.

A

sl -y iy = B

I 1 [4] M1 2 3 4
'\.L +I2 = |
2 0|7 [2)

Key Questions
 GivenMx=b
o Is there a solution”
o s the solution unique?

Mmoo I
r M=o 1 1 Can h=|1|?
L) 00 1
"I 1o
No — so change M so that b can be a solution => M =0 1 |
[t o
L k2
o Note that the third column is the sum of the
Whatif M =10 1 1} firg two columns in this case. The
I 01 columns of M are not linearly independent.
| 1
Can b={0}2 X = l)i
I 0]
4 1 ol
Can bh=[3|? \:3nr';i2
1 Lo Lt

My=0c=> v=|1
-1
Existence and Unigueness
< Is there a solution”
There exist weights xy, .... Xy, such that
My +xa My 4+ +xy My =b
A solution exists when b is in the span of the columns of M

spani¥y, My oo, My §= {og M) + ag My + .+ ay My, 0 en}
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V A YRR Y My =b X is a solution
oy M| Fa, M, = .\,UuJi{M, Moy V=0 lincarly dependent columns in M

)
i M(i+i)=h X+ yisasolution
5] M, { } b & span\M,, M |
No Solution
I,
-2 -l 1 2 3 4
T1-1
1-2
1-3
_ F-211-4
f') :[ j|
5
3-D .
[T1 (0
1 lo M

{\|
| ¥ =l
| I |

0

M, M: be ‘spcur{.‘l?]..ﬂz}
mmp No Solution 7 N\ 2

M,

Apﬂn{ﬂrfi :'-’f')}
= oy M| +o,M,

b=

X

++ s the solution unique?
Suppose there exist weights, vy, ..., vy, not all zero
M "ﬁ! + 12 }':1‘3 +..+ PN M v =0 —[nullspace]
Then it M¥ = b, then M(‘\'- 4 _f-) -
A solution is unique only if the columns of M are lincarly independent.
Linearly independent columns means Zaijl;[,. * M}{

izk
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Physical Circuit Example.)

|4

Physically this means that the current
values must be equal and opposite. This
makes sense as there is only one path for
the current. Any & volt difference, where
¥y = V> + k will give the solution.

1o solution
L.D. <: =

Infinite solns

il

08, +2My=b = V=0
or —A_f|+1';!2 =bh - K==l
Infinite number of or 8M) + 108, =b — =8 b
sululiuns.rarc ol the torm: 1-2 or 20, +0M, = b - ¥=-2 h=
Xi= L2]+ a[z} -i or  —1036) +105M, = b — ¥y=-103 ¥,=105
0 | 1-

efc...
Physically we can shift ¥, and ¥ by the same amount!

Where does this
Ta= current (from iy} go?
$2

|0
cg b :I: ] no solution
0 '
l,|=1

Makes no sense.



cle

Struts and Joints Example.)

*
X '/\ X2
Strut is on the v-axis
Xo1 o2 Forces must be
iy, =X X Uy, = X2 - X2 equal and opposite

fr = f7 = el(xos — x01) = (x2 - 3 )]= F—(’-’.\“ —Hy, )
A==

e vefuy | [A =i ""l”-h =l )=0
+e fg}[lf‘:}_{‘fz} -/ +1:{u”7u“):0
”\I |: g :| +ar, {_ E:| - { f] _‘ The :mmliml is i\lllthc spm! of the
ul_g =] I Jf> | matrix columns if’ = - /5
[n]_[1
.]

Solution is not unique because for v = | = {
)
Lrz.l

e —€
NERE

L=g] 3
Singular System.

=1 1
= If the solution
1 =1 M, hysically exists
- physically CNIStS,

need fy=-f;

there will be an infinite
M, number of solutions

Heat Conducting Bar Example.)

heat i heat out
IR T, To O

Boundary conditions
if heat in = heat out = no unique solution

Could displace solution by a factor
of 100, and it would still solve the
system

if heat in # heat out = no solution
v Table

berange{M| | b e range{M}
L.1L columns Solution exists | No solution
B ~ andis unigue |
L.D. columns __ Infinite solutions | No solution

M
must be

underdetermined
|::> L.D
N<M
/N

no
solns  soln

M

:> There exists a b for which
there is no solution
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N
Square B
17 o] [1]
1 1 2
o] 1] |1]
M, M, M

Square Matrices

N=M [:> L.I. = Solution exists & unique
l;,DKThere exists 5 for which there

is no solution

o,
All other values of b will have
infinite solutions

5en?

Given Mx = b, where M is square

If a solution exists for all b, then the solution for a specific b is unique.
For a solution 1o exist for any b, the columns of M must span all N-length vectors.
Since there are only N columns of the matrix M to span this space. these vectors must

be linearly independent.

A square matrix with linearly independent columns is said to be nonsingular.
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INTRODUCTION TO NUMERICAL SIMULATION

LECTURE 4. Linear Systems — LU Decomposition

Use updated equation 2 to eliminate x, from the updated equation 3

TODAY'S OUTLINE:
»  Solution of Linear Systems My, x) by
- Gaussian 0 X |= .',;1
+ LU factorization ~ M
+  Computational Complexity 0 3 by = R, by
+  Pivoting for Growth Control My
SOLUTION OF LINEAR SYSTEMS . '
Gaussian Elimination Basics Right-hand side Fivst loop

5 g izali multipliers
“ LU lactorization ],m“' liers

o lmportant Propertics

_ ) A} b
Gaussian Elimination Method for solving M¥ = b . ' ht
* A“Direet” Method Y2 Yz |=(m
Finite Termination for exact result (ignoring roundoff error) ¥ 3 In
= Produces accurate results for a broad range of matrices Second loon
*  Computationally expensive "” l\l' lie ¥
o Reminder by Example WLERPEEL
3% 3 Example
My My M|y | | b My Xy + Myaxy + M)3x3 = by Mi=h
My Mz Myfx|=h Mapxy + My + Mazxy = by
My My M3 v b Myyx) + Myaxa + Myxy=by
Use equation | 1o eliminate x; from equation 2 and 3
My x)+ Myaxs + M) b -
/ |
| My =21 Ay, .\|+l u,,—f T2 MpJ\'«q-‘ May o=
\ My |
f My 1 Iu 3 4
| My My [y | A5 - 1 12 e | gy
A ] M . -
N LTI ’ # N l(mu\‘s::m Elimui mn;“«
x| = |v vl o= |b
Putting it all back together
Pivat should NOTBE = 0. | = b
Simplity the notation
(M My M [h -~ d
0 My May|x|=h M
Lo M 12 M 13 X3 I;] Fitting the pieces together

(5]

NT - SWa)sAg Jeaul| F°'¢



I My, My My
My _ )
My, Moy Ay

Ma My :
Wy B | Ms

L U

My Mp M

My 1y, it

"”‘1 3 s R Lo

My My &

My My 7
b Store all the data in one matrix — no extra memory needed.
—_
o

Sesnmaa:

-

L =
final . M

C

[[5==:
|5
|
|
H
{
il
aas s
azasd
Factoring

An “in place”

" implementation

My, M3
My My

My Mas |

My M;

The L matrix will
contain all subdiagonal
clements with a
diagonal of all 1's

My My M

My, - i

- Try Mo
My, = =
My - .

= M, ;W:
M 3
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Example ~ Heat Flow

2 -l
Temperature analogous to Voltage 3 |
Heat Flow analogous to Current -
=& & =f
= 33
R=1 R=1 R=1 =3 £ =
a Vi » a
[T X _4 6
2 5
In place LU decomposition
1 2 -1
a1 37
= = w b - 2 2
Nodal Matrix 5 4
f2 M=L-U= -= 1 - -1
- 8
-2 3 5
1 4 4
< Computational Complexity
o Three Steps to Solving a System
Solve My = »
Step 1 Decomposition
2 -1
2 2 M=L-U
- & _— .
' " HS
' Step 2 Forward Climination
Solve Ly =5
Step 3 Backward Substitution
L Solve Ux =
o Step 2: Solving Lower Triangular Systems !
' ¥ b v "H-h
L L v br
y L
multiphier § é
[ v, by

Number of multiplications:

a-l
14243+4+..+{n-1)= ZI: (”;1”?:()(»!]
i=l =



o Step 3: Solving Upper Triangular Systems o Algorithm

Fori=ltwon-11 “For each Row™
Forj=i+1ton { “For each target Row below the source™
M .. n-1 n

M= : (n=i)= multipliers
TS T A

Fork=i+1ton{ “Forcach Row clement beyond Pivot”

v Mg — My — iy w
Number of multiplications: . 4k ik ik ZI(” —if = 2,
mel el i Multinlier : 3
Z: 0 1”." JJL:A] ! Multiplier i1 Multiply-adds

o Step |: Decompaosition
My My My My “Target Oriented”

';';I:(u_ My My M“ M‘Z M” Mia
My M3z My My Mz] ‘,;‘M?_z M23 M24

L1¢

M\ My : I
My §My My Ay |

My My My

..
LR

mesee®ssmasne
I3 .

ceaMypenes
-

eseeas

---.-_\g'

fori=lwN-1
forj=itltoN

_ M
i JA.
'1fll

fork=itl o N
M g = My = M 5 My

What is the order? Oln) Ont) ()(H':] .

My, |
My,

My s M3z
My *My;

M3y
My

fori=2wN

forj=1t0i-1

ti;{-‘ e —&
N M,
P

rarget  source

fork =)+l to N
Mg < My

“for cach target™

“for each source™

M

"



o Summary

¢ Solve Mx = b
Source Orlentedﬁ Step | Decomposition
A . Sonern M=L-U
modified owy
2 Step2  Forward Elimination
entries Solve Ly =b
FHHEHE O(n*)
S Step3  Backward Substitution
Sulvc\li_\'—,v
On)
active % Pivoting for Growth Control

o Zero Pivots

At Step i

set

Factored Portion

Target Oriented,
E — 4 71 M| +— Rowi
ks N Multipliers -
EIE:‘ modified (L)
: : .
cA s entries i M, == Row
multipliers 8 N
active What if My =07 5,
set Cannot form ~ 7'
Simple Fix (Partial Pivoting)
L g 1A =0

Find M; #0, j>i
Swap Row j with Row /
Pick row  whose Mj; value is large
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Swap rows 2 and 4
My My My My 4]
My My My My|xz| |

< My My My Mag | x| | by
My My My My | x4] | by

(M My My Mg x| [
My My My My x| | by
My My My Mg |xs| |bs
LMy My My My x| [b2]

Two Important Theorems

1. Partial pivoting (swapping rows) always succeeds if M is
nonsingular.

Creating U

0

i-1 L

(N - 1) Linearly Independent Columns

Linearly Dependent

2. LU factorization applied to a strictly diagonally dominant matrix
will never produce a zero pivol.

o Small Pivots

Example [Singular Matrix]
I -1 0 1 -1 0
~1 1 0llo 0 0 Singular matrix produces a

row of zeros
0 0 1 0 0 1

If M is singular, will not be able 1o solve for some unknowns.
Contrived Example

S RN

1 0 —17
L=| 4y U= 10 1 .
10 1 0 2-1-10
Can we represent this?
An Aside on Floating Point Arithmetic '

Double Precision Number
XXXXX...X - 1ot

64 bits
] |
/ H_}K —
i '
sign 11 bits 52 bits
size of exponent mantissa

How large a number can we represent with 52 bits? How many decimal
digits is it?
Ibits — 2°=8 =10 — | digit
Tbits — 27=128 =100 — 2 digits
10bits — 2"=1024 =1000 — 3 digits
[Remember cubits «» 3 decimal digits]

52bits  — 52 bils‘ld'g‘“s

10 bits

52 bits is the precision used in MATLAB, for example

=15~ 16 decimal digits!

Basic Problem
AL 10000001 = 0.000000000000001 = 1.0

B) [z-1077 )+ 1-1.0000001 =7
Look at order of procedure:
Ex#1)  —1.0000001+1=—-1x10""
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~1x1077 4 11077 = 2,141592653589793- 107
B s
correct?
All 15 decimal digits are correct in this case
Ex#2.) .
I+ 71077 = 1.0000003 14159263
lost 7 digitsof
= 1.000000T +1.0000003 14159265
=2.141592652105118-1077
e
junk
Only the first & decimal digits are correct in this
case, the remainder are garbage. Lose digits of
pil.i.l‘ 10on

Key Issue
Avoid additions and subtractions between large and small numbers!
EVEN BETTER: AVOID GENERATING LARGE NUMBERS AT
ALL IF POSSIBLE!!!

Back to the contrived Example

1077 1 x] [
1 2% 13
) 1 0] 1 x] [l
Lbﬁ\‘(u‘r=|:l0|7 I] 17 ] =
0 2-10" ]y [3
1o a1 [w] [N
LU pounded = =
Rounded {l DI 7 | } 0 B “-)I',’ X3 3

".I:| 77” |:xt} 71:0}
{\'2 Exact LIJ X2 I Roundled ! x

Original Problem:

1 fAH

Swap the rows

w1

Partial Pivoting for Roundoff Reduction

IF[M; <max Af ; swap row 7 with nrg[ max|M;; ]
i Ji

o~ 1 o1 2
«Ureordered = Io_l'j ilo ]72_”.)_1';

This multiplier This term still gets rounded,
is small but this time the multiplier

does not “overpower” the row.
7 1 0 o I 2
Tl 1] T o

Let's solve LUy = h.
First, solve Ly = b:

el L]
oa Y

Next, solve {ix -

Ty LU L R W O STILL

T 0 x| 1377 |kl |3 WRONG
PROBLEM: Need to swap the elements of b as well!

Solve Ly = h

w=p=[ ot 2 ][]
s<P ) <[]

Next, solve Ux = y:

Ur=y— ] [k = % :,\-::“71 = : Correct Answer.
7o 1w ] [x2] 711




12¢

= Example

[t 0o 0 - 0 11 .
| ¥y fy
[lo 1 0 - 0 0
b
0 10 1 - 0 0 =
5 3 @ 1 "‘_‘.
(00 10 1D
‘ b,
00 0101 g i
00 1T [
10 10 0] x2 | |bs
= 101 0 | x5 |=|5;
I 10 1__\‘\‘J b,
(100 1 ]r_\-, b
1w 1 o -10 | *2 by
=0 10 1 =100 x3 |=| M
3 |
10 1 Jxx] [b0]

10 0 . 1 Tx b
10 1 0 10 | x2| |
== 0 10 1 =100 | x3 |=|8

i |
10 —10%" xp | Lbw
The last entry is very large! Use partial pivoting - swap first and second
rows...

* I the matnx is strictly diagonally dominant
» oriluse partial pivoting for round-ofT reduction:

. The muliipliers will always be smaller than one in magnitude.
. The maximum magnitude entry in the LU factors will never be
larger than 2 times the maximum magnitude entry in the

original matrix.

=

For 1000 nodes. what is 2'**"

Know that 2'" = 10",

So, 2" = (2% = 10™™ > Very large number!
Might not be a very useful theorem = generally not this
large.

Factored Portion

+—— Rowi

M;| ) N
ultiplier:
(L)
Mz

Find largest
multiplier entry,
max, s.l.
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INTRODUCTION TO NUMERICAL SIMULATION

LECTURE S.
Linear Systems — Conditioning

TopAY'S OUTLINE:
+  Solution of Dense Linear Systems
~ Hard 10 Solve Problems
- Perturbation Analysis and Conditioning
+  Solution of Sparse Linear §

ystems
LU Factorization Reminder.
Example of Problems with Sparse Matrices

+  Struts and joints, resistor grids, 3-D heat tlow
Tridiagonal Matrix Factorization
General Sparse Factorization

Fill-in and Reordering

+  Graph Based Approach
Sparse Matrix Data Structures

+  Scattering

SOLUTION OF DENSE LINEAR SYSTEMS
Hard to Solve Problems
< Fitting example
Polynomial Interpolation

l'able of Data

fo Sliy)

no Sy Y

v Sy >
I

Problem: fit data with an A" arder polynomial
g 2 k' N
fl)=op+ap+oar” + oy + . +oyl
Matrix Form

[ i iy 2 W lao] [ fleo)
[T & 7 W e L)
| I |
| \
| D ity g s ,\\ oy flen)]

M,

8 =fl0)

4 :
ag+ oyt +aatf ++ayt = f(n)

2
Ol + Oyl + Cally +-+ Oy

g Foyty +agty +o oyt = )

puo)) - SwalsAg Jeaul| ¢'¢g

o =10 ]
=) =
Oy = .

suruor
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Fitting f(t) = t

Since we are looking at the coefficients, a
values, for the linear plot f{r) = 1, we
05 expect that ay = | and all other values ol @
2 will he zero — this is accurately

Coefficient represented in this graph for 10 a values.
Value
0
-0.5
0 5 10
Coefficient number
Fitting f(t) = t
1
For 20 u values one begins to see some
peculiar nonzero values for a = 11, they
are very close to zero
0.5
Coefficient
Value
0
-0.5

0 5 10 15 20

Coefficient number

Fitting f(t) = t

Coefficient
Value Of s,

-1

3 10 20 30 40
Coefficient number
Fitting f(t) = t
40

Coefficient -
Value -

-20 ) 1 )
For 100 a values it only gets worse.
4 50 100

Coefficient number
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For 100 « values, even
though there are many
higher order cocllicient
values that are non-zero, the

os
’ graph still produces a linear
. result

“* Geomerric Approach is clearer
M = | A1, 81, ] Solving, My = b is finding x W)+ x2 8y = b

——

Columns nearly aligned

Columns orthogonal

When vectors are nearly aligned. difficult to determine how much of M,
versus how much of AU:

[
0 107"

orthogonal columns

1 1-107%

L1-107° |
columns nearly aligned

M=

Example.

Orthogonal vectors - exactly one solution.

o 1]

Physical meaning of above problem in the form of a circuit.
X =1V

) =2Y

Example.

[

+1
1

I
s
— &
[—}
=
E—

Al

Physical meaning of above problem
in the form of a circuit,

M,

No possible
solution.




Example

X
Physical meaning of above problem in the form of a circuil.
= |
" Solution(s):
Xy X2 = =
==l xp=1 —1-M+1-M,y
(= -2 = = Dle WA
s i=2 Xy 2 x3=0 2. M,

=0 x;=2 2-M,

Infinite number of solutions

¥ s s

r ox, T X 2
Node 1: S, =€l =y, )=0 [7” = }[”‘.1 {7 I:’- |
— i *—'("r‘ —u,)=0 e —eju | | =T,

either infinite number of solutions or none

Same problem as circuit with two current sources (above)

Linearly dependent vectors.

Infinite number of solutions

1 =2-M> = M+ M, =elc.

Columns are very close to being linearly dependent (closely aligned) — have
a larger condition number / columns are not close to orthogonal
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Example. R

b=

Example,

Py

X, L=

s
T =48, 4685
06 =

Same circuit as above, with the resistor value changed from 100

10 1000
g R=l

IV\AI X2

R = 1000

P |
h=|_" |=58 M +60-M,
2.06 | =

38

i

d

2 Palynomal Interpolation

The power series
polynomials are nearly
linearly dependent.

(i.e. if viewed as vectors
they are almost aligned)

Perturbation Analysis and Conditioning
% Induced Norms
o Matrix Magnification Question
Suppose y = My
How much larger is v than x? OR How much does M magnily x?

10
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o Vector Norm Review
* Ly norm:
n
Il = | N
Hx|1] =
i=|
* L» (Euclidean) norm:

L

{ 12
!Z‘xii

i=1

Ixl, = !

= L, norm:

Mx\d = m?x x;|

If |+, <1
2
‘F |
Try x=| ‘:}2
| Z

/ - |'x‘i1 < ]
"
. Hx’ig <l
N
=, <1
T
I, <t
yes
"
Hxnl Zj =
no
‘\‘7j-\.‘l ‘l§ﬁ+ I§7 ~
M‘ - \Iz N Jg =v2>1
1

Which 21 |, <[x], <

Example.) Try x:l:
|, =1+1=2

Jal, =117 =42
¥, = max(L1)=1

Is there an x such that HX}L, =

Example.) Two heat conducting bars.

] -
Given:

X5 :
x=[ 7 Bar A: [x|,_ <100

XN Bar B: x|, <100°

. -
Vector of Which ane do you touch?
tempersiyres Bar B will likely be cooler to the

touch since all nodes on bar B
will sum to 100", whereas on bar
A, the maximum node value is
1007,

Worst-case-scenario, bar A will be 100° everywhere

and bar B will be 100° on one node and 0° elsewhere

o Matrix Norms [Standard Induced /-norms]
= Definition:

|M], = max— f = max| My,
s -

J xi; =l

|3M\
|«
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v
" M|, = max 3|M; = max abs column sum
i=1
N
"M, = maxz M;; = max abs row sum
/=l
for symmetric,
[M], = max \,"}»,-[;'l/.f"",-w) =maxA, (M) = real matrices
= i . i a
= max eigenvalue

"
M, = m'z‘l.\‘ Z!Mu = max abs column sum
i=l

- 0]
1 iy - | mys
0 |my | Mya
Mo =™ [ m fo]=|™
5 : | 1 . :
| :
0] [my = . “J [

Which unit vector input will produce the largest output?

n
M|, = m;ﬁx Z M,,| = max abs row sum
i=l

A is a linear map between
___, two lincar vector spaces

i ] 7 |-t

*2

Ax

= r,fi+ X2/

4,

A is a measure of the largest gain or magnification power

. |4

P, =1 |

A”x

minimum box that
encloses the mapping

Example.)  Given the following A4, find -AH,_

2 7 -4
A=[5 -2 3
1 -2 4
2+47+4
|4], =max 5+2+3 |=max{1310.7}=13
1+2+4

o0
—

l
I
|
il
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<+ Hard to Solve Systems
o Perturbation Analysis
|8 - lam] [M +8M] [x+8x]
- .
‘.\’4—6.\’} M :i M X = b
Perturbation Equation

Il
-

(M+8M) (x+8x) = My+dMy+ Max + dMox = b
models LU models solution unperterbed
roundofl  perturbation right hand side
Since My -b=0
Mox = —3M (x + 8x) = dx = — M 3M (x + 8x)
Taking Norms

& < M

|M|
Relative Error Relation

< tf"|||!.‘w‘iM|
L L

"Condition
Number"

Mi=h
aM ‘
Assume llt— =107 What is

1
o e

Mg =100 P <qp0.10710 <o
x+ ox

e.g

Mmi =101

= ‘m_ 210" 107" 21073 = 0.1% error
v +dx

eg M7V im|=10
‘iﬁ"_ <10%.

5+ &y

Large condition number = Big error

10716 = 10% = 10%9% error!!

o Geometric Analysis / Polynomial Interpolation

log(cond(M))

TR
1 b

The power series polynomials are

s 1 Iy f:\fz I\’L
nearly linearly dependent.

SOLUTION OF SPARSE LINEAR SYSTEMS
Examples of Problems with Sparse Matrices

1 1 | 1
2 -l
Nodal
-2 -l Equation

=f 2 4 Matrix M

number of nonzeros = 3N =2 =0(N)
£h) = 30?, =0.003 = 0.3% of the entries are nonzero for a
10 1000 1000 matrix

16



%+ Space Frame % Resistor Grid

Nodal Matrix L AR

o
w
TS

"x . ]
X X
X \
d : mo+ | m+ 2 m+3 Im
X X X X
XX X X
x 1
L] X X |
X (m=D(m+1)
- Unknowns : Node Voltages

Unknowns : Joint positions X = {' '} Equations :  ’ currents = 0
Equations: ¥ forces=0 -

—— =
2x2 block Matrix no
100 X
bo 2 3 r .
< [x X x X
X X X X
[X X X X
X X X X

Matrix with all non-zero entries.

Struts connect all every joint in the frame.
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m n=m

m” X matrix

Nonzeros: max 3
entries/row

m =100
n=10*

#non-zeros _ 5n

#of entries 2

4
:5 10 =5.10_4
03

=0.05%

Largest entry = 4 (because there are at most 4 resistors at

one node)

Smallest entry = 2 (there are at least 2 resistors at each

node)

Temperature in a cube

Temperature known on surface, determine interior temperature

19

m+1 m+2

Circuit

Model

FEEE |
m+1 m+2
® @
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R

& \
| | | \i\&

m =100 .
! max 7 entries/row

n=m’=10°

#non-zeros 7o _ 7-10° -6
non-zeros_ 71 L 11107 _7.107 = 0.0007%

#ofentries  »2 10

Largest entry = 6
Smallest entry = 3

Tridiagonal Matrix Factorization
<+ Matrix Form

Tridiagonal Matrix
1 -l

< GE Algorithm for tridiagonal matrix

m

Fori=1tony “For each Row”
Forj=i+1 !{ ‘For each target Row below the source”

M, = — Pivot
L

For k = i+1
™

M_ﬂc 5= Mjir jiM,,;M,;.
Multiplier =

) Order N Operations!

22

M { “For each Row element beyond Pivot”



General Sparse Factorization
< Fill-in and Reordering
o Example 1.)

0 —
e ol ) I sl % 0
Ry Ry Ry Ry Ry 1 Symmetric
| i [ = Diagonally
Ry iy e Re W= Dominant
=l L 1LIK i
Ry By Bgl o= =
Matrix Non Zero Structure Matrix after one LU step
g X X X
S X X 0
X 0 X
X= Non zero
o Example 2.)
Fill-ins Propagate
X X X X [X X X X
xx 00 4@
0o X X 0 0
0 X 0 0 0 O
Fill-ins from Step 1 result in Fill-ins in step 2
23

Use 1o 64 bits ~ 8 bytes represent each coeflicient
Store all numbers (even zeros). ..

1000x1000 - 8MB 10 min
10.000x10,000 — 800MB 10,000 min
100,000x100,000 - 80GB  "forever"

o Reordering

Reordering
X X X
X X ——Fill-ins
RS X
X x 0
X X X No
Fill-ins
0 x x
Node Reordering Can Reduce Fill-In
e Preserves Properties (symmetry, diagonal dominance)
+ Equivalent to swapping rows and columns
= Numeric Example
Wnh
Kcn [2 -1 -1
KCL, |-1 3 0
KCLy |-1 0 1
— Swap KCL, and KCL, — Swap variable order V, and V
ho B h K
KCL, [-1 3 0 KCl, 3 -1 0]
KCL, 2 =1 =1 KCcy |-1 2 =1
KCly -1 0 1 KCly 0 -1 1

Where can fill-in occur?



ree

Already Factored Possible
Fill-in

= .
£ x x x | Locations
3 o
= X X

X

(Non zeros in unfactored part of Row — 1)+ (Non zeros in
unfactored part of Col - 1) = Markowilz product

Fill-ins propagate down and to the right
i+l

% Non-zero
values
:ﬁ:ﬂﬁn&ﬂ*ﬂk}:
ook %Wy
% dokk Wk
’6 ET T locations
‘55 dokk koAb

Fori=1ltwn
Find diagonal ; = ; with min Markowitz Product
Swap rows j #  and columns j # i
Factor the new row i and determine fill-ins
End
Greedy Algorithm!
Why only try diagonals?
e Corresponds to node reordering in Nodal formulation

»  Reduces search cost
*  Preserves Matrix Properties
o Diagonal Dominance
¢ Symmetry
o Pattern of a Filled-in Matrix

Dense




G

G

G

200

400
600
800

1
OG%

O’y = 0(n'?)

500

1000

Dense after
" —m steps

XLIRIA
WOpURY PAIOIBIUN

200
400
600

1000

XIBJA
Wwopuey paloloe]
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INTRODUCTION TO NUMERICAL SIMULATION

LECTURE 6.A.
Solution of Sparse Linear Systems

TopaY’s OUTLIN
<+ Solution of Sparse Linear Systems
— General Sparse Factorization
*  Graph Based Approach
«  Sparse Matrix Data Structures
= Scattering

SOLUTION OF SPARSE LINEAR SYSTEMS
General Sparse Factorization
*+ Graph Based Approach
o Construction
Structurally Symmetric Matrices and Graphs
Note that serucrurally symmetric does not imply that the values of the
Malrix are symmetri C,a;rFan)
p— —

X X X

X X
X X X

X
— —
= One Node Per Matrix Row

= One Edge Per Off-Diagonal Pair

Can one apply these graph-based techniques to the following matrix?

M 300
%nlzn
0215
0051

L

This marrix is not “structurally symmetric™ in that there is a zero in as
and a non-zero value in aps.

Can still use this approach, just treat it as if there is a nonzero in the
@ place and use the graphs to do the analysis; there will be some
clliciency loss. but the methods will still work.

Thus. this technique may be applied to “mildly™ structurally symmetric

matrices by assuming there is structural symmetry with some loss
ol clliciency in treating some ol the zeros as il they are non-zeros.

o Markowitz Products

X (X

S

X X
X) X

e

Markowitz Products = (Node Deg_ree_]2
M, 2 3x3=0 (degree 1)
2=4 (degree 2y
9 (degree 3y =3 =9

4 (de
o Factorization
One Step of LU Factorization
p—

X X X

X X X
X X X
X X X

= Delete the node associated with pivot row

= “Tie together™ the graph edges
When node 1 is removed, in the matrix, the non-zero entries in the first
row create fill-ins that connect up the other nodes that can be seen in the
graph.

[}

swalsAg asredg 10J N - SWOJSAG JeoUIT 9°¢
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Example - M\.\\
X X X

(X X X] ,ﬁfpmmw'\\\

X
X X X
X

X l"'""""‘2"'”'”'”3\""""4""’""‘5
| X X Graph \\—"/
[X X X X Col Row
Markowitz Products m 3 3 =9
(= node degree) 2y 2 2 = 4
@ 3 3 =9 [* = |
@ 3 3 =9 ks Nodal
B0 B =B e
Swap (row & column) 2 with | I T ' J‘
X X X ] @dfjﬂw-wwm "‘-\
X X X X X ”~ -, ~
x@zx x x|W W Wy ot
X X X % Graph S L
{ X X R W H

Matrix structure that will
produce no fill-ins if
factored from the base up

b Nl 2




Tree Structure

7

RET

o Resistor Grid Example

1 2 3 4 m—1 m
m+l w42 m+3 Zm
(m-1) (m+1) a

Unknowns : Node Voltages
Equations : 2 currents = 0

o Grid Example
How long does it take to factor an m X m grid?
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SOH

Suppose the center column is eliminated last
Factoring an m>m grid.
Dense LU cost is (™)’ = O(m®)
Sparse LU: each row has approximately 5 nonzeros

matrix has approximately Sm® nonzeros
cost is at least Otm")

Separator is of size 2m
Factoring: cost is O(2m) = O(8m’) {dense matrix}
Subgraph: size is m2
Create 4 separators:  sizc is 2Xm/2 = m
Cost is O(m’) per separator = O’y

As one continues to subdivide, the cost keeps halving. .
Adding Logether these costs, the final cost will be roughly O(m’)

3-D Example.

3% 3%3 grid - 27 nodes
in general: mX m X m grid = m* nodes

‘What does the separator look like for this grid?
m X m nodes
m’ nodes

Factoring cost = O(m")

Structure & Dimension

IDRow n=m tridiagonal
MW W— W22+ 0@ =0(m)

2D Grid n=n S—diagonals

0(n"%) = O(nr')

o(n’) = O(m®)
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o What should you pivot for?

Growth control?
or to Avoid Fill-ins?

A.) LU factorization applied to a strictly diagonally dominant matrix will
never produce @ zero pivol.

B.)  The matrix entries produced by LU factorization applied to a strictly
diagonally dominant matrix will never increase by more than a factor of’
201 [which is the best you can do by pivoting for growth control]

Bottom Line:
IF your matrix is strictly diagonally dominant no need for num
rowth control so just pivot for sparsity control!
torization Approach
matrix requires NO numerical pivoting
agonally dominant or symmetric positive delinite.
2. Use graphs to determine matrix ordering.
Man; ph manipulation tricks used.

3. Fo a structures for storing filled-in matrix.
Lots ol additional nonzeros added.

4. Put numerical values in data structure and factor
Computation must be organized carefully!

% Sparse Matrix Data Structures

Example 1.

N

Example 2.
2305
0070
2003
3000

Eiarﬁple 3.

* * %
*
*
*
*
|
LR
!
[ * *

o D o o

1000 > 1000 matrix

store it all: 1000 1000 2> SMB
L]
* *
«| 3000 nonzero entries to store
5 3000X2X 8B + 8B X 3000
. =2 S0KB
*
&

10



Vector of row Arrays of Data in a Row

pointers

1 Val 11 Val 12 val 1k +Matrix entries

: | GCol 11 Col 12 cel 1k +Column index

; Val 21 Val 22 val 2L

; Col 21 Col 22 Col 2L

: Val N1 Val N2 Val Nj

N = cont conz Col Nj

ayy | ayt—>  nodal vatue
333 matrix: ] 3 1=+ colimm number

o
=
s

X 0 X
0 X 0|2
0 X X

siood ¢ jo Keae :aamanng med

Why store sparse matrix information in a data structure array?
+ Too much storage space storing all the zero eniries
« Avoid floating point computation on all the zeros (minimal in
comparison Lo the memory cost)
+  Memory reterence cost

Eliminating Source Row i from Target Row j:
Miin |} Miir Mijas
+1 i+7 i+15 |

Row

Mo | Mg,

- B
i+9 i+12 1 i+15

Row j

Must read in all ||IL row j entries to find the three that match row /.

Rows Ops Misses
Res 300 904,387 248,967
RAM 2,806 1.017,289 3,817.5877 Morc misses
Grid 4356 3,180,726 3.597.746} i, GpeTations!

Every miss is an unneeded memary reference!

Scattering

Rowj (Mim Mie M

i+1  i+4  i+5 i+7 i+9 i+12 i+15

s
EITFF[FIFIITI1T]

1) Read all the elements in Row j, and scatter them in an n-length vector
2) Access only the needed elements using array indexing!

M M

ii+S ii+T i,i+9

ii+d M:'A'Alz "Mm.rs
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Source Row Approach

X X X X
X X X X{—sates Update = Unscatier
N X X X X -+ Scatter =» Update <> Unscatter
P X X X - Scatter = Update = Unscatter
Target Row Approach
;X X X X:_... Scatter = Multiply = Unseatter
X X X X

‘X X X X| . ‘
Scattering approach only is
M X X X eftective for the target row

= oriented approach.

Summary of Sparse Systems.
o Sparse Matrices

*  Struts, resistor grids. 3-D heat flow = O(N) nonzeros
o Tridiagonal Matrix Factorization

= Factor in O(N) operations
o General Sparse Factorization

= Markowitz Reordering to minimize fill
o Graph Based Approach

*  Factorization and Fill-in

= Useful for estimating Sparse GE complexity
o Sparse Data Structures

= Scattering
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LECTURE 6.B.
QR Factorization

ToDpAY'S OUTLINE:
#+ Singular Problems
# Projection Formulas
% Modiflicd Gram-Schmidt Algorithm

QR FACTORIZATION
Singular Problems - LU Factorization Fails
< Struts Example
vy

fo + 11, =0
strut — f\ '—’G. =0

. = 4
Jjoint < load

force f; ={(0.~3)

b € spamM, . M {= infinite solutions

The resulting nodal matrix is SINGULAR:
= LU decomposition tails
= But asolution exists! Actually, many....

b

+1 =1
-1 +1
0 0
My My

b e spam\My, My, My t= solution exists
plane

M, and M- are L.D. = infinite solutions

e.g. b=0-My+ 1 -My-1 My

Y X3 vy

b==1-M+0-My-]-
Y “
LU will fail

+o-1 0 [ -1 0] No pivots

-1 +1 0 |—|-1 . available
0 0 +1] |0 1]

b & span .’li’, " .ffg . .‘Vf_;}

=]
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[ = R
1
(=

3
[ =« " 1
Il 2 wl ||
. G ‘ 0
G o2 ey |o
wl -1
10 0 vy 1|
- = |
atier 1 LUsten 1 =1fw =ili]

-1 2]y 0]

Recall weighted sum of columns view of systems ol equations

o1 Rk
M M |2 ]2 Ch0 M, + a8 Wiy =h
iy Mg o= IR s X A5 “* N5 TR =0
Lo +
Xy by,

M s singular but & 15 in the span of the columns of M so there is a solution,
actually lots of them
How do we find them?
«* Systems of Linear Equations — Summary Table
b e range{M | be range M}

Solution exists and is No solutions

L.I. columns unigue | Find the
Use LU | “closest”

Infinite solutions | Na solutions

L‘ﬂll-lilg'l'nh ™ Fst Flnd the

i Find one ... or all | “closest”

2

yjection Formulas — Orthogonal Projection

3-D Orthogonal Vectors

Example of orthogonal vectors

+» Orthonormal Q Picture

0,-0,=070,=[ o o,

=i
[

Dcﬁr!iliulj of orthonormal matrix Q", )
0;-0;=0 if i#j and 0;-0; =1
Picture for the two-dimensional case

M is NOT orthonormal Q is orthonormal



Gve

[ -~ T — N, e, p—
) W 6 i AT A AT 5 AT A
0-lg, 6| @G:-070: v =075 QO OO Ui
" - v =07k 7 010, 010, 0105
L 7=Q"h QTQ= T _1,_1 T =il
. : =T =
< Projection Formula QNQN
Qy = | solving an orthonormal system is casy... h‘lf_'
O+ v2Ds 4ot yyOy = b Q0= Q"Q i e Q,'.. _ Q_]
Example. . < QR Algorithm Key ldea
. Ry by » By
Qv=h= x| 0 [+1 (.)“‘ = ""I :r j‘ _T Xs T T ‘T Vs by
L J L) | My My o Myl S =l T2 (G0 G o On T =S
Multiplying the weighted columns equation by i column: :;_ 4 + 4 ‘_' b. L4 1 ._‘ b
j A A 3 5 o'k e e 0 N =~ VN N
o ("IOI 2l +tyyQy ): gib original matrix i & matrix with
L‘mmph. &r]:r:;:u::mul
- o = - ot je I" we have a set ol orthonormal columns that span the same subspace as the
Ql ‘ | Ul J F ) U-: - " l =M [Ql -0 ]* 2 (Ql Qz]: O, -h columns of M, then solving the system is very easy:
\ l) ! b Qi=h=73=Q7%
0, [HIU] e G| =B | = (0201« v2 (02 02)=0s -5 - =
[ e P 1
i J L J/ 9 ! [4 = 1% = O =5
Simplifying u orthogonormality we get the projection formula: QI Ql 5 = lel +x 2Q2 =0
=0, 5 2
Ex 1 A . A
\dT:D ‘Q = Q Ty Ql ) Qi =1
=P | P i AT =
o (4] 1= & - 0y-0y =
R I A 0i-By =0y By =0
Q-‘F*Q:fh i |=|le aF =])5] 1°0 =050y =

2 . o [ i ) i ” S _?-5
w0y b0l Ll [l of Sl ) { ']=[Q' }[b]= o ;

Know Q7 = b: have shown that ¥ = QT:';



lie

+ « QIT > ” =;|’—’-i ~» projection of b onto
« 0f > | |07
7= hl=l |
| |
| |
L ! |
vi=0lb

Result is the projection of h onto the columns of O

b

V2L
=07k

But how do we perform the conversion from M 10 Q?
Example.

] [+1 07
11
M=| M, Myl=|-1 0
el
- - : \l! i}
=P+ (-1) =42
[ &
o V2
0 - A .
m | 2
0 |

ny == 81y =y

Getting the first orthonormal vector is very easy:
< M _ M,
o =

i M |

Given My, M». find 05 = M> — 115 M, so that

.‘\7!1 —Q‘: = .1:1| (‘;!3 7f'|1.‘:!|):liét'|2

Using the Projection formula

My =m0

My =120y +mbh = J}{jz

Now find 0y = My — 1120,
Finally 0, =

Ay = mQy M= m@ o+ 00
My =20y + s My = mQ + mb

Another way to write this is: M is factored into Q and R

Oy-la 0+ 1320 )= 020y -0y + a0y - 05
g Ty X2

o
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T A J{} gs | A2

| L0 ml
Pl Moot R
M
Since M should equal Qv, we can relate v oy

(I o o

= ER . . SN | i = =
M, M, [ 'J:.\', My +xoMy=|Q) O [ iw_- VO + a0
\ Xa | L2

~ v = v b=

V) =n,0 [4

My =mQ = Lk

k()

220, 4120 [0

Three Step Solve Procedure
1. Factor M = QR, Q orthonormal, R upper triangular
Mi=h XM+ Ma =h
Decompose Q-Ri =5

i
2. Solve Qv = b, (Very casy: v=Q'h)
3. Backsolve the triangular system: Ry = 1.
< The 3% 3 QR Factorization
Use previously orthonormalized vectors

* T 2l T 7 1

[N, My My = M My -0 My -ns0) -
EEEERIRE ! !
To ensure the third column is orthogonal
Oy (M= Q3= 0uny)=0 = 13=0y- 413
Oy (83~ Oiris = Oar3 )= 0 = 1y =0 My

My My = nadl -t )=0 Vi My My M s [ A At
W (M5 - na My - )= 0 = iy, \‘rﬂ_g-‘J_[.ﬂ:-_ﬂg}
To Orthogonalize the N Vector:
[ #y-#, -~ M-8y T aw YT
i ;s | |=
|7y 30y Myl My | rvan | |8y -dy

N inner products or A work

M3 =130, +1230 +13305
My = ity - (@) ¥13)0, - (02 - 13)0
= M3 = M3 -n30, - 30,

0=

My

My

L]
£

¥

s My =

o

1
=S TST

=

b
I

i

M
s

S,
— r
2] DAL [
My My - (0 - M5 )5,
i

iy

Wy« 815 -0y - 51500, - (0, - 113 )0,

My My (0 M40, - (O - M4 )0, (03 M4 )0,

N y ry

Oyt - My W0xe

1T n "2
M2 M:}, = ﬁ—i i—') M

1T nr h2
M, Mi|=|0 3 33

h3

10
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Modified Gram-Schmidt Algorithm
"By Picture™

i, it -,

,{ ENS JT 1M "2 f3
= = o = I ny My Iy
O 0 Oy Q4I e

13 134

R R .

44
g.=1 g =y MM,
=i e [
L

H2 N3

Ry I3 M, «
33 M; «

M3
My «

13, ny As
@301 1 ) )
PO e LU
A
T I
2" step
t o 7% A ons oM
[N e
rd o,
3" step
< Basic Algorithm
o Source Row Approach
Fori=1ltoN | “For each Source Column™
i = M- M; X .
= i v SNormalize 2% =2V aperations
g;= - M, =
tii 4
Forj=i+lwoN{ “For each target column right ol source™
Ay W, 5 _
g Xl YN 2N = ¥ operations

;‘;fil—M,—l}’Q, i=1



GFe

Target Row Approach

Fori=ltwo N} “lor each Target Column™
‘l_;lr «— Mé, “matrix-vector product™
Forj=1ltoi-1} “For each source column left of target”
- “
Fpp = 0 aMy | A

> < S Z[:\ —i2N = N operations
M Mp—ryQ; | o
= MG M

.
§ . S p—
SNormalize 22N =287 operations

Source Target

Row Row

Approach Approach

;'////ﬂ\l \/—\X 9 /\h W

T 1 I If? A A

My, M, M: My | My My My My |

I Lv N
- * .

“ Three Step Solve Procedure

Step 1) Factor M = QR

(Q orthonormal. R upper triangular)
Step 2) Solve Qv = b.

(Vcry easy: V= QTE)
Step 3) Backsolve the triangular system RY = ¥

M5 = h
Step 1) Factor M = QR
Mi=b < QRi=h
¥
Step 2) Solve for 7: Qi =46

Step 3)

Computational
Complexity

ONY)

O3

O

4
lV::ryeasy: \'EQ:'F}
« 0 -
— Q: =TT
\'ﬁQTb= — Q‘ i
: 4

L o Qr! -
b=w0) + y30s + v305 + 9,0,
b=x\M| +x3 My +x3M3+--x,M,
Backsolve the triangular system R¥ = v

=




INTRODUCTION TO NUMERICAL SI:\]lEl.A'I'Ith

LECTURES 7 & 8.
QR and Krylov-Subspace Matrix Solution Methods

Topay’s OUTLINE:
% Minimization View of QR
- Singular Matrix
—  Basic Minimization Approach
Orthogonalized Search Directions
QR and Length Minimization Produce Identical Results
* Arbitrary Subspace Algorithm
Orthogonalization of Search Directions
< Generalized Conjugate Residual Algorithm
Krylov-subspace
Simplification in the symmetric case
— Leaky and insulating ex:

QR FACTORIZATION

Example. 2 -1 0

0se

o o

[-0.89 -035 027][-22 1.8
044 -072 033| 0 -17

0 0.60  0.80 0 0
Q R

Matrix is Singular, column of Q is zero
w Zero Column

If'a column is zero
i+l

Ar:fI = Zu";;l-.f’.
j=1
{.\'7,.‘... M’; }nut linearly independent

What if a column becomes zero?

) Moz A3t Ny
Tt 0 0 0 - 0
g, 0 A Myl0 0 0 - 0
A . iP5 o g

' 00 0 0|

B v 12 13 N
T T W THo o o - o0
QI 0 QJ o @N 0 0 B3y 0 By
i & e 1 d % 3

' 0 0 0 - ry
Matrix MUST be Singular!!
1. Do not try to normalize the column.

2. Do not use the column as a source for orthogonalization.

3. Perform backward substitution as well as possible.

QRi=h=Ri=Q"h

Hrof2 A3 L IR « O
0 0 0 - 0 |x 0
= ny o oy | v =l Oy
NN LN = Q-\'
QR Factorization B
Problem Mx =5 :
() QRi=h
.‘.
(2) SolveQy =5 :>,1":Q"h
(3) SolveR¥=y% —X¥

—

—

&= I

(=]

POYIOIN PAITRIDIT YD - SWOPSAG TeoUl]  §'¢
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< Singular Example

1 =1 0]x] [-1
-1 1 Ofxsf=] 1
0 0 1] =1
A N A
[ 1
(1 Column 1"1‘] ‘ ] }
Hy =M My =2 QI:?‘I"_’!i}’i
Ha =0y My =~ '»’\L”*"Z 0 J
ny=0-M3;=0 o -
[-1] [-1] [0
My e Myl =| 1 |- 1 |=]0
Lo] Lo 0
0]
My — ﬁ;—;n@, =(0
1

Column M

Mave on to the next step

Column A7

ry =AMy My=1 Oy = LM,
4 0. 0, '

] 0 0f.)> 200

5 V2 -2

-Loojo o o0

o oafo 0 4
s ok

Since M is zero,don' t need to do anything.

vi=0Tb=[0 0 1|1 |=-1
-1

vis the projection of A onto Q

hespan{M}—

The resulting nodal matrix is SINGULAR, but a solution exists!
-> infinite number of solutions.



If b & spanfM| = therc is noselution

i
1 -1 0Ty 0
[
00
(1) Step(l)staysthes
2) #=Q’%
,"\:LJI'B 2
vz =0
=ofb=fo o 1o 2 ~1]=-1

¥

R

the same as the above example
P

(3)

Since y is the same as the example above, the solution is the same,
This solution will give us the solution l;‘ but not b (we know this because we

choose this & outside of span|{M | knowing that we cannot get a solution).
What is going on?

Example.

00

L8+ 3 -My+3-00

5 Xy ¥y

XN = X)8) + X262 + X363

Mé;
b

MX = x|, M|+ xa Ma+ x3 M,

M =, M& + xaMé, + x3
il g i

We find that 5 is the projection of A onto thesubspace of the columns of M.

Sup
One.

¢4ce

Minimization View of QR
<+ Alternative Formulations
Definition of the residual, R:

R(¥)=h-Mx
[Find ¥ which satisfies| Minimize over all #
| M = |R(z)?

If b e rangeiM |

Then N

= < min R[?H: =0
7

Minimization extends o singular or non-square case!

One-dimensional Minimization

dx

pose ¥ = x¢) and theretore
-dimensional minimization:

= Mg = M,

Note:
5 Mey = (v,Mé, )" 5
vl g ST e g

R(2)? = R()R(2) =6 —xymg, ) (5 - \ﬂ«hﬂ])
=bTH - 235" Mé, + x2(ME ) (M&)) =

sealar

4R R(2)= 25T ME, +2x,(M&, )T (M&)=0

o (M) (Me, )= M an

Normalization
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fe=m)

Example.  Mi=h [0 0 0Tx]

1
[=1 1 0fxs|=|2
{o 0 1| |3

Let's look for the best solution using only M| = Mé&

[ I
rw;z

0 3 2

M = 00,

o Me
Wy =Méy " e
(1) Nommalize Mé; - ¢
1 v| M - Normalize
” 2 I
0, My | T 1
g, (\z% o
| 0
(2)  Projection
|
T'he Closest is g , 5
- o = = (53,00, = v Mp, =
o =h-(Mpy)=h -0 = - S ill_t M7

3

Best Approximation

P =npy =

1
0

minh - xMé|

4
@ = b B Vd
B _E,_} 5 »=b-Mp
Ma|)Ma] o s Me
W =01 =i
Compare to the result ) 4

from minimization:

=

#Im mg

5 Mg,

inimizes the residual!

I'he orthogenal projection n

Search &
mininize

in one
direction
first
Orthogonal Projection: -
A T
xMy=vQ = b= =
A )1y

5™z,

oM, = o M,
&M Mg

One-dimensional minimization yiclds same result as orthogonal projection on
the column!
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% Two-dimensional Minimization

=]
0
My =My (M2 -0y )0, p1%]
S re [ LT 4 1 ! ri
U. 2 3-} v 1
=[1 L licd |
0 0 |
\ { |
0= 2 a1
Pr=éy
1}
=[1]-
0
5 P2
27 gy
Now ¥ = x|&) + x2¢> and MY = x| M¢| + v,Mé,

Residual Minimization

R(F)? = RV RUF)= (5 - 1, M&, - v,M&, | (B M@ - 5sM5, )

Minimization is difficult because of the coupling term.
More general search directions

X = ¥ Py + 1> such that:

Mx = v Mp, + yaMpy  spanip|, p | = span{é,,é- |

R(EY R(Z) =575 — 20,5 Mpy + v (Mp, ) (Mf,)
258 ps - MU )r{w:zp
If i M Mp, = 0 Minimizations Decouple!!!

If search dircctions are M-orthonormal

N [0 =
Mp; - 'P,-j :
—— 1 #=j
& o

Decoupled minimizations can be done individually
Minimize: — 21, (57 Mz, J+ v2(Mp, ) (M5,)
= Sy
~21,(6-0,)+ ¥ (0,-0,)
=

Differentiating: ~ 2(5-@,')*3 p=0=y;=b-0;
Minimization yields same result as orthogonal projection!

10
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%+ Picture ol arbitrary subspace method

1 e éy = (Mp) -Méy )y

0y =Mp, = MQI =
- <M,y (a,
My My (0 21,)0, ‘

Mps  Méy — (M) - Mé&y )Mp,

o, 0

ey p——

M}, Mps..... Mp,
.. ’ ]

2= (5 -Mp )y + .k (B-Mp, )p, Orthonormal
P o)

i Vi

2= (B Mpy )y vt (B MB )P+ (B M )P

x'

Forming M-orthonormal minimization directions
The 1" search direction equals M-orthonormalized unit vector

x-space I M-space
I
i-1 1 " i-l
P& =2 rub; | MPi Mg - 3 riMp;
i=1 =l =
1 Q;
1 =Mp,)-(Mg)
——
I 0,
] ~
o Mp;
O
Tl T
| ¥
<+ Minimization Algorithm
Fori=1toN “For each Target Column™
Pi &
Forj=1t0i-1 “For each Source Column left of target™

ri e @) - M;
—
Mp, Mp,
Pi < Pi—1jib

M - Orthogonalize

Search Direction

i< |0 ||
=] .
M, }M - Normalize Search Direction
B
P f.r |
,H J B
N Calculate projection on new direction
v b-(0;)
—
Mp,
X X4y Update the solution



i directions § : e !—bl i
{3, ; ! H | |
€]+€25000n €y g . : - H 5 - : b—v i
i - {Mp.Mp,,... . Mp; | i 1 Y= |-
V-P2eees fl,-} orthonormal X ¥ | )
r, - . i n |
® = (5-Mpy )py .+ (5-Mp, ), | _ ) o Lba
—— e I Solve this - choose the first search direction to be: exacl
0] vy g Vbl solution
¥
. I 0
i+1 directions i .6 2l " sac [0]
o & 6 81} 1 X =x8 =hé : |
{LIJE ----- CisCiv i 0 7
_ = = IMB, M5B S MB ) L [
{P]._ﬁzpu\p,.ji;H: th’I'Mf)J"'"Nlpf*]“p.'-—ll | first step 0 L
orthonormal i &8 | |
R I T R S : 12 X =x8p =b3épp by |
# = (5 Mp Jpy o+ (6 M )p; + (5 MpL )iy | ;
—_— e e i - 0|
i Vi Yisl | b |
| 3 |
¥ *h = |'|1'_J/\ by 0 j
< Comparison - Minimization and QR T \ . first slep
) ) . y | search
Ut [ O, sescccvcene )y Orthonormal | direction b,,_
= i first siep
% Search Direction -
M M M Orthogonalized unit vectors = scarch directions
s iy o =
...y} oo {5\.5>... by}
[ . . L . it ve MM oh directions
. g _ ((’2 - 126 ) - ey — Zf-l.‘\" ¢ } MM unit veetors Orthogonalization scarch directions
11 ¥ NN Orthonormal
L ; -
7 P2 Py



Example. Simple Problem.

1 X Iy
1 Xs by
1 xn by
Step 1. [y Step 2. [y Step N, [ ]
|0 B by
\\ =|lo \:J =lo es e V‘;N = b}
0| 0] by

If 1 am searching along Mp; = ¢ the best Tean doisb-Mp, = i

i > M =
€1,€3,..8 —>€,02,..CxN

14¢

Mp Mpy
Already M-orthonormal

OR needs NV steps! )
What about using other sets of starting vectors?

{b,Mh M v P12 P2 By |
Krylov-Subspace  Orthagonalization search directions

Example. |1 0 0/ x 1
01 0fxy[=]2
00 1|x; 3
g Mg [1] &GeMe ||
=] B
. . x=|0 X 2
Pi=g 0 0
What if this is the problem:
10 0 [x 1

01 0 |x|=|2
0 0 300 x5 |3

1
1
1
1
[7 iz i
|
0 123 | 23
3 ) =)
=0 ¥ =10 X'=|3
o 0 0
0 L0 ]
M =0 =p OR takes n steps
0] 0
0 0
Whatif 6= 0 tl=|0] sesunee
0 lo
23 |Vu

Solution: take ' =5

In general, for 1¥ =5
it will take vV
iterations to get to
the solution using
this method

If &y is chosen as the first search direction, what is the result?

7
23
i
-2
0
o
0
=lo

0
0

huge error

-

2
e}



Example.
1o oTx] [
01 Ofxy[=(2 {/g
0 0 1 x3] |3
What is the best initial search direction?
Mp,
1
b=|2
3
| M is the identity. so
Pr=|2; ].] : Mb=b
2 }M 2 .: =p s
[} B [ E
L]
x-space = b -Mp, = E‘
[}
ot "
e v -Mp =B|- = =5
Try {/:}
b LMI; =h .
Narmalize ;”
ho b owm Mh b /

b =7 = = a7 =7 = 7=
P Ims| | ™5 [f]
v =b-Mp, = b
Pr=yMp ) =
= lh‘l il-u;-fi =b One Step
"lb

Use QR 1o solve
My=5h Mis singular

b
Mp, =&
/ 2Tl

x minimizes (b-Mx) (b-Mx)
Mz=0

z nonzero exists if M is singular

ARBITRARY SUBSPACE ALGORITHM

1 00
01 0
00 1
000
000

QR Algorithm Search Directions

Approach to Approximately Solving My = b

Picka wy, [ we,
k - dimensional Emgp | ! 3 = {iig.e iy
subspace I W, Lu-ﬂ._‘ .
k-1
Approximate * asa weighted sum of {iiy..... v _y | = it = Zu,ﬂ‘,
i=0

The residual is defined as #* = 5 - Mx*

k=1 k-1
Ir # = Zot,n", = i =b-Me = b Z(x,;\'ln",
i=0 i=0
Residual Minimizing Idca:
Pick i,"s 1o minimize

Ef_k z = [F.{- }T(f_k ):[b‘ 7%3&,[\]@ ]I [H J:):_Iu,m

i=0 i=0

Computational Approach
R P
=llb - Z(L;Mll"‘;! iseasy il M, were orthonormal!
| =0 |2
Create a set of vectors { iy, py..... px_, tsuch that
SPAN Py By | = SPATTgars Ty |
o o 0 i#j
Mp; -Mp; = ;
Il =5

Minimizing #*




Gram -Schimidi on Mi,"s
Wo —* P
Wy iy want (Mg, )-(Mp,)=0
fiy =W - @iy = - apy
= (Miy - Mg ) (M) =0

iy ) (Mg ) = (M7 ) (Mpy )
1

=

if iy L fig=20)
Tie this back to the QR algorithm.
[a7, - My ]=[Me Méy |
columns orthogonal

=101~ OvIR]

M-space e \
= (e = -
Mp; « Mii; - 3| Mp; - Mt FI_{) ;
,—.nL ——
) Yy
] 5
ot
o iy
X-8pace  §o i - 3 (Mp ;M ),
j=0
Arbitrarv Subspace Solution Algorithm
Given M b and a set of 1 directions |y, 5wy, 0y |

1) orthogonalize the Miv;'s
5 ) ()
= ()T ()
2) compute the 7 minimizing solution it
S [v "]’ (Mp,)
Sova ) (M)

fori=lok py =iy

Orthogonalization of Search Directions
M - orthonormalizing w;

W

Po Wy

Po P

| SE—

Po P W

4 I3 ] = -
’ | Pj Vr
Po D 2

4 14 ]

t |

Po P P2 P
4 1% 1t ]

t t |

t _

1
B wi- Y, Mw)B, B

J=0

Compute the 7 minimizing solution e

Mp,

20



The Picture

# by =

Py = iy~ (Mpy, - My )y, Mp, =

My = My - (Mg - Miy M,
i i o ,

MM My =My +uyMp
vy M+ M p

- ralion
o I span iy, oo | = span MM |
~ B = SaMiF s g (my°
0 =

4™ order polyiumial

P e P 3 MR (1 Mz M
par
Note: forany ag = 0

spanfO 7! = 79 - oM’ }= ‘,m.u:f“_mﬁ“{
¥ = b o+ asMb -« asM7h
[0+ aaM+asm?
=h
. : y v
(2) Make scarch direction M'M orthogonal p’ =7
(3) Update x (minimize residual) =gy p”

(4) Update residual

First Pass

Algorithm
Fork=0toN-1

The afgorithm is the same even if
wse random scarch divections.

By
Forj=1tok-1

Py pr —{Mp i -Mpy },'i, H M - Orthogonalize Search Direction

p g o
Pr e £t M - Normalize search direction
| My

=R+l &

i — b -(Mj_)k ) Calculate projection on new direction
5 < X" + y; pp  Update the solution

After /" iteration:

b= ygMpig + ...+ ¥, Mp;
Since they are all orthogonal to
Alter i + | iterations:

residual

N -

(Mp, )= v; = b-(Mp;) = ' - (Mp,)

B = ygMpy + ..+ ¥, Mp,_ + y,Mp; + 7!

Residual Formula.
- jHl _ = 5
X =% +a;p;

P =My

=5-M/ +a;p;)=t

Mp,)

E ol B
D j J_N,l_\, ]\‘Iq_lpt
M)

4
(v}
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A Small Modilication

twp Bp= b

Yalo

Ms' = voMjig

Mpy

W
|| My

Py iy~ (Mg« Miiy ) f M3, < Miiy, — (M, « Mity ) Mp,
Algorithm
Fori=1lrtoAN
P
Forj=1lwi-1
Pi & pi - i“.':", -Mp; )_['J, t M - Orthogonalize Search Direction

Pi Li M - Normalize search direction
Imp, ||

v, < F (M) Calculate projection on new direction
| i

M e ¥+ vp; Update the solution

i+1

F'7 e P — v Mp;  Update the residual
Vector Span.

H\[f} seafgloa]|

Span the same space!

Any weighted combination you can get with one set, you can
et with the other set and a different set of weights.

GENERALIZED CONJUGATE RESIDUAL ALGORITHM

Solve M = 5 Too expensive!

B Best sel
=0 gWo____, Wy

Selection of the Search Dires
Criteria for selecting ¥y ||

All that matters is the span {iwg ... 5w |

-~

Ja;'ssuch that b - M&* = 5 - 3 a, My, is small
i=0

M6 = in the span{ig,.... 4 _; Hor k < N

One choice, unit vectors, ¥ € span{é, ....é; |
Generates the QR algorithm if k = N/
Can be terrible if & < ¥

24
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Example, |-i 0
B ol . [1]
_ x o1
1 [l 0 W=+ L0}
| o ; || :
0 17" |0 |
L d R . U,J 0
Only need (1) W toselve this problem — the first one
M 0] 5 [o
Xy
i 0
Xy
Lo [ R )

1f you start from the first search direction, this will take
all N search directions to find the correct answer.
Only need (1) tosolve this problem — the last one

= ,\',

P

Need all N 's to solve this problem
Could also solve this problem with ONE search direction

if that search direction isall ones.

Historical Development
AssumeM =M7 (symmetric) and M > 0 (positivedefinite)
Then the solutionof M = 4 corresponds to the location of the

minimumof f(5)= L& "My -"p

V () =Mi—6 = 5=M"'h minimizes /

Gradient of /(x)= Residualat x

Idea: search along the gradient i.c. the steepest descent directions for f(x) 1.c. along
the current residual direction.

Pick spaniiy Wy b= i'p:m{v,fl.\’“ l A \_fl\'i 'J}:-\‘p:mla"’.

Does not extend to non-symmetric, non positive definite case.

Krylov Subspace
Naote : mf)rlll{?". f(,\'“l,,,v‘ f(,\:‘ ; ):‘: \,nmi;r'"_”,_r" A :

I span{i,

1
Then 7% =7~ ¥ a, M7
=0

and .u_nan{f'" ....,F"'_I }: .\‘pmr%u, MF",.

The Picture

= M+, Mj,
= 1My + 1y Mpy

Mj) = —
= o | M, |
Py 77 = (Mpg » MA) py My My — (M, » My ) Mpy,
Computational Approach
P =h-Me¥ =5
REPEAT
Pr « F’(
Forj=Tltok=1
P i~ (M -MPe )7

Pick next Search Direction

M-Orthogonalize Search Direction

P ; g
Pr & ff = M - Normalize search direction
M5, |
Vi e P (Mpy) Optimal step size in new direction
e %t oy, p,  Update the solution
al

7k vy Mp,  Update the residual

Computational Cost
Algorithm Cost for the & iteration of GCR:

P = b - My

=h

26
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REPEAT
pr 7
Forj=1ltwk-1 (k) inner products: O(nk) mult.

P Py - (M, le,

P, Matrix veetor product: Oy if sparse

Py e 2

My,
Vo #* (Mpy) Vector inner products: O(n) mult.
k4l T o
AT e AT P () multiplications
=k+1 =k = ot
PR BN+ v My O(ny multiplications

P

total cost = O(n)+ 0(2n)+ ...+ Olkn) = ()(kzn
1f' M is sparse, as k (number of iterations) approaches n: o'
Better Converge Fast!!

Recall for a tridiagonal matrix

Gaussian Elimination cost = O(n)

Algorithm Cost for iteration k
Forj=1l1ok-1 Ofh) inner products: O(kn) mult.
Py = B~ Mp ) (M7 P,
If M is sparse the inner products arc the dominant cost:
total cost = O(n)+O(2n )+ ...+ Olkn) = O{R :HJ
As k (% of iters) approaches N. total cost = Ofn’)
Better Converge Fast!!
Symmetric Case — An amazing fact that will not be derived
IrM = M7 then MF¥ LMp, for j <k -2
I"oer k-1 Only ONL inner products: (1) mult.
By i = (Mg ) (M gy )
If k (# ol iters) = n, then symmetric, sparse, GCR is worst case O(n7)
Better Converge Fast!!

DENSE |

Matrix-Vector

2
ok 2
M7 Product Ol ) ‘

HONDADN] A2 f
150

Z[Mr-‘]’ (M5,) | M-Orthogonalize o) s
e Optimal Step : T
[") (M7, ) Size Update Oln)

Syr
UK Kn
Total olkn) +olKn olgs
e [ ——
productcost  products | producteost pranducts
cont cont
} 4
1 . r p
Worst Case ole?) + ol ofr’) + _0_&5_‘]

o'} Oipy

AsK>n oly’)i Need to reduce &
Need to reduce &!! ANP mmr:_x-
vector cost
Best Case g
For small K Ofn)+ Ofn) aln? )+ 0t
(5-10 iterations) Ol oln?) 1

Note:  Tr*fast™ {=C(n)} matrix-
vector product then O(n)
total also for dense case.

Comparison - GCR & LU

[ Sparse Sparse

| . . Dense
Symmetric | Asymmetric

GCR | O(Kn) olk2a)  olkn’
LU ‘0(”I.2~l.8)i O{"I.Efl.EJ ()[n3

Making GCR converge fast can be very problem specific
If the number of iterations & is about constant and small GCR is much faster than
LU for dense problems.

Sparse  Dense |
GCR| O(n)  oln?
LU | O(nl'lfl's) ol?




Convergence Examples
< “No-le amples
o Insulated Bar and Matrix

Incoming Heat

Oﬂ TR
7(0) )'n_n

Near knd Far End
lemperature | Temperature
L\H\L:.-!lxﬂ on
-
Nodal Eguation Matris M
o Circuit and Matrix
| 2 3 m—1 1t
" e
[yl = 7 =
(=] l, =I
— | 5 Nodal
=t 2 | kquaton

-1 Matrix M

< “Leaky”™ Examples
o Conducting Bar and Matrix

nn
Near End Far End
Temperature & Discretization Temperature
L 4

o Circuit and Matrix

f 2

1.01
=1

2.01

-1

-1 |
101

Nodal
Equation
Matrix M

30
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: r % GCR Performance
Example. Heat conducting bar. ; ’
Rampes RE confueting tes Example with 100 nodes (102 resistors)

= | 3 | o Random RHS
[2 1 W s - . :
-1 2 -1 -1 3 -1 R ] No Leak
-1 2 -1 3 g [ " =
4 B I 5 m"f k
12 -1 3 | ! Leaky "*v., %
= z D b i ]
v ‘.'% . ]
sulating ha
lnsulating bar Conduction to outside A E 7
1
wi= d - ' .
2oy W)= I
Suppose d =2 Ei0p= L=l | |
= Suppose =3 J . . ) 1
2 . 8 By i D w0 50 6
1 4 W@ =i=g=s Tteration .
3y =2- = == -I i Plot of log(residual) versus lteration
= 433 = =3 o
i+l — i
liy S'e=s P -
') pattern is not so obvious R
B 1 .
Recurrence tormula: u;, = d E w 3
Wy iy S t
1 |
2d i ! 0. i
d- ] D} o i
g ] u "ty
d= & ™ - Insulating
B L Ha
10y L 4
Let the asymptotic value be v @ wy, = v &u; ;= x for lim I Leaky S
I i ol ‘ . . ; s
Sy=d--=x -dvil=0 Ford=2: x— 1 We 8w m s s, % 4 & m
x . [teration
Ford =3: x =" _,‘ Plot of log(residual) versus Iteration

Continued Fraction..
2] & o fi=1]- 1l -2])
o

S 7 PR

simple linear difference equations

32
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INTRODUCTION TO NUMERICAL SIMULATION

LECTURE9.

GCR Convergence Example. Lower Triangular Matrix
le | 0 0 LLE 0
TOoDAY'S OUTLINE:
“ Review - Eigenvalues M2| M22 0 LRI 0
- Norms and Spectral Radius . . . .

—  Spectral Mapping Theorem
< GCR Convergence Analysis
Polynomial Ervor Bound
—  Chebychev Bounds
My,

Gershgorin Circle Theorem

tM}l
My n2 My gy 0
Myya Myyoa Myyw

EIGENVALUES Eigenvalues are the diagonal elements.

MIT’_,; = )\._,'ﬁf =0 Eigenvalues and eigenvectors of a matrix M satisfy
cigenvalue

- Ir's
= (M-x]1)i; =0 M;-{,. =A@i;

eigenvector
Example | Or, &; 18 an value of Mt
AR [N =7 M-2,1 issingular
10 o = 1i; isan eigenvector of Ml
-1 1.1 (M =216, =0
= = 0

Circuit is symmetric — expect the node voltages might be the same

i X-space M-space
I L1 =111} expected cigenvalue (0 I)‘ 1 ‘ P! ™ P
e [N
ELf 1 111 » ‘ 1 corresponds to
= 10€) resistor
Suppose the voltages are ditferent at the nodes... ~——" L0 reRIsor
M. 17 w _expeeted cigenvalue (2.1 =i
(=1 L1 1] 1

Example. Block Diagonal Matrix

I -1 0 0

9OUBBIDAUO0 ) H¥) - SWIISAG IeoUlT §°¢

~
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x-space

Mx=2 lﬁl +]}\.2i_12 +37L3l—.'3
—— —_—— ot

2 1

tai—

Mz = 2(~ L, + 1(2)iis +3(1)iis

Easy to do - the M space uses the same vectors as the y-space.
they are just stretched by multiplier 2.

A Simplifving Assumption
~

7T i ) T
My iy iy e diy | =| kgl hatia  Asliy o Aoyl ‘
bE & LilE & & '

Miiy = by |

|
= Mify = Lyiiy t = MU = AU
= = |

The set of all eigenvalues of M is known as the Spectrum of M.
3 1
Ay
MU=U - 1:U"'MU=.’\ or M=UAU"

Ay

Almost all ¥ N matrices have N linearly independent eigenvectors (i.e. U non-

singular)
Does NOT imply distinet eigenvalues, 1.¢. &, can equal &,
Does NOT imply M is nonsingular

i

Example.) U nomingular7‘“ Distinct Eigenvalues

1 e Allcigenvalues are equal, &, =1 i
1 « Eigenvectors are distinct, i7; = é;

Example.) U nnnsingulurf’ M nonsingular

7{1 i)] has L.l eigenvectors: ¥ =p, ¥, =f,
“loop T
bo L
eigenvalue 0 U_?_ )t.,o
M singular (A e 0
01

U nonsingular

Example.) Real Matrices — Real or Complex Conjugate Eigenvalues
M =UAU -1 Real Matrix

keigenvalue <> (M -2l)issingular
vAu ! —auu! -» singular

|'l; -2

u Wli ! singular
| b &

@h)=nlk; -2)=0 — characteristic polynomial

eigenvalues —» real or complex conjugate pairs

from the Fundamental Theorenof Algehra

Symmetric Matrices — UTU =1 Orthonormal Ei

enveclors
oo
mouau M7= {u!) au?
Symmetric—» M=M"
([ T
=Y avT s U =07

— U orthonormal
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Spectral Radius
Im(k)

(' .
. Re(h)
\.

The spectral Radius of M is the radius of the smallest circle. centered at the origin,

which encloses all of M’s eigenvalues.

Suppose ' = My

How much larger is v than ¥!  OR How much does M magnify ¥?

)= Lo Lo

01 J\;"l 0 0To hn This vector will get
4 = * the most
' 0 1)1 1 magnification from
L matrix M
»

Look ar the divection corresponding 1o the
largest eigenvalue

Any induced norm is a bound on the spectral radius
I Mis symmetrie then [M|, = spectral radius
Example. |- 1 0j|

AT T
L1oo _ “lioo 1))
1o
T
100 1)

M=uau~' =uauT M=mT

IM], = [uau”| =

|u) ;.-\\,il;7| =|A], = max|a;
) = 2 = i

“ostretch
rotation rotation

Induced Matrix Norms — standard induced /-norms

Definition:
M o o
M|, = max ———* = max |Mx|,
x ey =
for symmetric real
M, = max (:\i"’.\l]=mu.v.\;l.,uw)|=I k )
CET i | matrices = max eigenvalue
Heat Flow Example

T(0

Incoming Heat
£

v

FIVWWVYV Y v ¥

Unit Leﬁglh Rod

(1)

G
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= Distribution of temperatures

X
Mi = Distribution of incoming/outgoing heat
The "shape"” of the temperature distribution

is the same as the incoming/outgoing heat

7. small  means that for that eigenvector distribution of

temperatures the resulting heat flow issmall.

4

heat flow (I )oc T, = T},

Four Eigenvectors — Which ones?

0
0z . small
N cigenvalues
o 5 I 15 2
0.5 ;
[
0.5 . -
(] 3 10 5 20
05 . :
0
3 f‘u 5 10 15 20
i large
eigenvalues
5 .
% 5 i 03 2

GCR CONVERGENCE ANALYSIS
The lterative Algorithm
x =0
J"“ = b
REPEAT
Compute Mi*
M’M Orthonormalize search directions
Update solution »*'!
Update residue "'
UNTIL residue small “enough™
Problem Statement

Let's estimate an upper bound for how much we have reduced the residual after &

iterations
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P2 =5 + 1

Tl o
=Vl

W= 7!

Mx! = vMp,

0 5
vg =71 e My, 4
=0

| MF?
¢ Mp =

Mpg =

M ||

Krylov Subspace

Nolce : x',nu.u{\/A ,f(,r"l_,, o Vg of (Ak ‘)}: span 'y‘r".....ri J|

3 | |
T spaniivg ..y, ::.\.mm}ru.....rk lj
k-1
then #F =0 Zu,-,t.'r’
i=0

Krylov Subspace

iy =7'=bh

= h

;;f oMy

Mi? = M+ Mp,

M

ity = v My,

k=1

Step 1. g

= r oo Lol

Bo ﬂMFUH € 5pan{l §

T

vg <7 Mpy scalar

e+ YoPo e spanipy }= sp.:m{/“ﬂ }

il 70 voMp, € a,'um{i"u_Mﬁ"}: .\‘pa.’r{‘u.l\ﬁ‘u}
=2
Step 2. scalar

E| 7 - (Mp, }T M B0 E.\'pnn{l:l.,'frn}:A\'p.:m{l:n..\'lf'}}

. P . {,;0 i
Bt =i espany’” Mr
IMp|
=
vy« F Mpy scalar
‘ {AI e Il 0 ax0 ]
€ spanit  Mpy = spany” ,Mi

¥ H,Tlf\-lj‘)l
L P § L1l s 0 yg0 nr2-0
F°«F -y Mpy € spany Mpy {= spany’ MFT M-F
e aglf? +aMFY + oy MATTEY =g (M)RO

P B + BMEY B MEEO = o (MOFY

Polynomial View

Pra e (Mp Y (':'( ')ﬁ.uz

Bi-1 e.rpan{?n.Mr

k 1

et e

ke ‘ﬁuli{:U.Mf‘AU.....M& lfu}

=& (M)F" = (k= 1)™ order polynomialin M

¥
LAl Ve Mpyy
7 € span ‘“.Ml“'",...,Mk'IFG.M;‘F"}

= o (MFY 5 k™ order polynomialin M

10
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o) M=0 0% = h it =h
02 (0)= Bt + AT = foM7 4t AT =)

b=i* = (0" = 0)=1

Residual Minimization

It ¥ E_\Jl(lu{f“,"\r’ll"“......\’“ 'f’“} minimizing | #

1) & =g (M)

£ 1 (M)is the k™ arder poly minimizing # . )

2y o= (M)
= b -Mz* = (1- Mz, (M)FF°

A

where ¢ (M) is the k" order poly minimizing 7 : subject to g (0)=1T

and residual minimization

Pol ynomial Property only a function of solution sp

Explicitly construct Krylov subspace:

Mt =M
Orthogonalize & Project

Residual Minimizing Optimality Property:
= e (MR Sifﬂk“"l)"'“ <oy (V)7

. th -
{2, isany ™ order poly such that ¢4 (0)=1
Therefore
Any polynomial which satisfies the constraint can be used to get

|.'

"c G
r~|

13

an upper bound on

Bound on quantity of residual reduction
|

< — MEFt 2h

‘?)2(\'):3+2.\'—4.\'2

P2 (M) =31+2M -4M? = 30U +2UAU ™" —4uA?U !
~uB+2A-aA2)u!

&
M=U 2 u!
3
w2 (g)
[3+42n, -423
@ (M)=U 3420, —403 v’
34205 — 403
Spectral Mapping Theorem.
Givena polynomial &, (x) = aq +ayx +...+a,x”
Apply the polynomial toa matrix ¢ ,(M)=ay/ +aM+...+ a,M”
Then spectrum(( , (M )= p(spectrim(M )
Proof.
Note a property of matrix powers
MM=u'UAU T U = MP =ue!
Apply to the polynomial of the matrix
Pp(M)=ayUU " +a)UrU '+ w0, UL
Factoring ,(M)= U("ufir"Ll bt ul,i”dﬁ]"

diagonal

]
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spectrum ({: p(M ]) = .s_ﬂz'c'.'rn'm(u[.t‘ +ah+ o+ aph }— @ lspectrum (M ))

ap+aphp +...+a

S
PN

3 . p
agtahy +osa il
Norm of matrix polynomials.

It i [
(6 (M) Viiy o iy
kg )J L 1

il 'i| Py () I
|

condition number
of M's eigenspace

< cond(U)ymax &g (1, )

@i (x)
1 &)

2 iterations

K%
1 2

Symmetric positive semidefinite case
IFM =M then
1. M has orthonormal eigenvectors
| -1
T T T
i
cond(U) = & - &y ‘\ oo Wy

v | —
=@ (M) = m}ﬂx@ (%)

2. M has real eigenvalues
It Mis positivedefinite, then 2(M) > 0
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Bound on quantity of residual reduction
ey ——» MEF 25

gk |<e

\
¥ =M"h

i kel _ =kl
b - M =F | + . %
b h;-n i ?M(}AI ¢ ); kel
h-Mx"" =0 |

= |§ - #| = vt < | =jm'le

Polynomial Error Bound
Upper hound on residual afier £ itcrations

o, (M) 5 (M)is the GCR polynomial of order &

Oy (M)isany & * order polynomial

such that 0, (0)=1
U are the cigenveetors ol M

< ;J}‘(.\'l)'

< cond(U)-max|ery () )
i 124 (2 %, are the cigenvalues of M

< max () if M is symmetric then cond(U) =1
I

Residual Poly Picture for Heat Conducting Bar Matrix
No loss to air (n — 10)
1 T

¥ = evals(M)
- = 5th orde
05H ."'S
N T =
3 £ 3y Wl
: - :
: - .
i ‘:1 LR L s o)
W
‘\. 7 i
050 l).ﬁ ‘1 1‘.‘) 2
1
* = evals(M)
- = 5th order poly ;
|
- ]
t" \ % |
/ 5 / |
. / \ o—— | \
4 s/ A . /2 I
4 / £\ 8 /z |
opmt %5 ‘)L/ % s N\ e B /e Wk
Vo N et H
\ \ |
\ / \ / \
L9 L |
024 05 1 5 2

16
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REXY
4 5 6 78
Important Observations

A residual minimizing Krylov subspace algorithm converges to the exact
solution in at most n sieps
Proof:

ke

b=y Lo - ) where 1., e A(M)
Iy E

Then, max @, ;=0 = |p,(M)|=0 . |r" =0

Let @, (v}

M3 =h
M e R"

v.C

(x =2 fx=2y) e (x=2,)

{7}'~| ](7 }\2),,_(,}\”)

m W ' )"Ji A

,lx)=

2. If M has only ¢ distinet eigenvalues. the residual minimizing Krylov subspace
algorithm converges in at most g steps
Proof:

N (x-R Yx-2a)lx -2, )
Let P, (x)=
PR )

M e R
E

= max|{y (%)
i

Repeated roots — converges much faster!! Only need to use
a third order polynomial



I

0 H
I

I

After 3 iterations, the residual
drops significantly.

900 ¢

1
01 2 3

CLC

4 56 7 8

k

19

Chebyshev Bounds

How many iterations to converge?

* = evals(M)

What if you don’t know how many and where the ei
What if you can only estimate their rz
1 T

genvalues are?

ange A, GT/”-.“_"_.,{",_H
" = evals(M)
7 [‘ma§ s () - : Sth order pOLy
05h
l’ \\ 7 .‘
Fk /f /
] \M Mo s \ ke R/ hg
/ \
\ / \ /
\ \ /
% R
fa%;% U‘{' 1 — 15 7

20
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* = evals(M)
| - = 5th order poly
- max log () n =
'R [k nas -
05k .
‘.\
/N
\ A\
gt o»mmm;l
af ¥ > ' % |
f
\ 5 |
.05 . -
) ®min ns 158 ;‘um B

Palynomial Min-Max Problem
[Convergence for M =M']
Consider (M) € [ pmin-*max + Fmin >0

Then a good polynomial (i.c. |2 (M) is small}can be found by

solving the min - max problem

min max [ (x)
A" order Y[R pin R

polyss.t.
Del0)=1

The min-max problem is exactly solved by Chebyshev Polynomials

Find the polynomial that minimizes the value within the
range [huin, Anae] and is equal to 1 at 2=0

| [k (x)

}me

Range of eigenvalues

=y
Cpl 142 Amin =X |
- N =k
m max  |P(x)= max |—————max —ming :
k™ order ¥R iy A max | LS (I C.l 142 Amin
polyss.t. -k “a %
w(ﬂ):l ‘max ~ “min

The Chebyshev Polynomial C (x)= cus{i’ cos '(:)] xe[-11]

12
[N
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o

hebyshev Polynomials minimizing over [1,10]

\ o
02
04
06k B
\“
x 2 4 6 &
"'I“ll\
Chebyshev Bounds
Cil1+ 5 }'min ]
i 2 ;~|u;n - }‘min /
min max _gi(x)=  max #u—;- 8
& order XX pin A max RI= [ A — el 142 Fmin
polyss.t. k i -
v (0)=1 \ Amax ~ Mmin J
B 1
C‘k [l -9 Amax ]‘
A'm:m = )'mm
ror k
w?“mz_u =
i
fA max 4 |
\' A min i

2

Example.

Given the rati

= 4, what is the residual afier & iterations?

Flefim) 17l = 1=

Given the ratio —™ = 100, what is the residual after & iterations?

A min 7661 3 o

Wr‘k\ =2 }‘,‘ﬂ - Ur[}' = ||1"H- <2 [y

AT T JT00+1 =)
0,000, what is the residual after & iterations?

o . A
Given the ratio —™% = |
min

o S0 0f o 2]
\J10,000+1) | ! 101

‘Which case converges faster?

If the ratio of eigenvalues is large, than the bound on the
convergence will be slower.

Chebyshev Result
If A(M)e [?\-mim?"mzlx]' Amin >0
I &
I max _ |
o Vemin | o
| [y |V
‘\‘ J"'min

cond(M)= MM =2 5 -
min

M = UAU_I = UAUT X max :“M )
M =uauTt = oAU min =7

1 [ U IO | T'
M Hl—m?)\h[—;\min lem_[!!\l la

Amax -

_“M = I“’ =cond(M)

?"IIIII'I
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Examples.

cond(M) =100 & & W ALEIEh
(M) < _-)jrm, I] = ;l( 9 iteration,
0 10+1 11 improves
Worst Case by ~10%
cond (M) = 10,000 I I/ 100 — 1V L
<2 i
100+1)

Ateach iteration,
improves by a
very, very small
amount.

cond(M)=10"2

Heat Conducting Bar example

Sometimes GCR can do much better than Chebyshev
bound
1
Residual
Minimizing
l Krylov-subspace
. 1 Sy N oy oh e . Algorithm can
eliminate
1 1 ‘ outlying
i cigenvalues by
| placing
polynomial zeros
direetly on them.
-5 Note: | am not evaluating
1 the GCR polynomial here
£ 05 : 15 2

=]
b

GCR

Chebyshev Polynomial

Gershgorin Circle Theorem

2 heorem Statement

B3

[myy o

Givenamatrix M =]

Lmag e My N
For each eigenvalue of M there exists an i, 1 </ < N such that

A- ;= Z
J#
We say that the eigenvalues are contained in the union of the Gershgorin circles

% |

26
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M= i
= my| < Zlmh.f‘
J#
o Picture
i circle Im(2) Eigenvalues are in the
radius

Z'mf-fl

J#i

i circle
center

union of all the disks

27

» Grounded Resistor Line - Nodal Matrix

G=l

1

)

2 -

|
sy
w2

X
P | ¥i
kR

about one digit every two iterations
about 0.1% error after 6 iterations
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4

/W g—Wig-A
s £ 3

i:lx"i'
1 : ]
Imii! Nodal Equation Formf 1.0 <
-1 2.1
: -1
1 Reiz]
-1 2.1
0.1 Apmin < hmax S 4.1 M
i41
about one digit every 6 iterations " - \ 0.1 - ol I i
about 0.1% error after I8 iterations [ .0~ 7 4] _"I | "Lia
FT
Vo™

Im A}

, 4 Reln)

0< Ain < Amax < 4

This does not mean that

GCR cannot converge in this case
but it is a good hint that we
might expect slow convergence

Nodal Equation Form ‘ 1 -

NI =1 2
-1
-1 2.1
L

|_rlc J'4 -
L lcof¥0 | o5

I 4

Vo©
30



INTRODUCTION TO NUMERICAL SIMULATION |

LECTURE 10.
Preconditioners

TODAY’S QUTLINE:
< Preconditioners
Diagonal Preconditioner
Blockdiagonal Preconditioner
Incomplete Factorization Preconditioner
<+ GOCR for different Right Hand Sides
-~ Recycling the Krylov subspace

PRECONDITIONERS

Diagonal Preconditioner
< Diagonal Example

1 0 0 - 0 1 0 07
o1 0 - 0 0o 2 0 0
0 B "< " B 0 0 . g 3l
# g 1 0 L, N=1 0
0 -« 0 0 1 |0 - 0 0 N

For which problem will GCR cnn-\'erge faster?
o (x )
I |

| ieration

i iterations

Suppose MX = h convergesslowly
Try PMX = Pb for some P (lefi pre - conditioner matrix)
.. How many iterations for this diagonal M to converge?

I 0 O sw= 6 10
0 2 0 - 0 0 3
M=D={0 0 3 . ! P=/0 0
’ 0 y
0o - 0 0 N 0
Can we find a preconditioner P that does better? .
f
| |
35
M=
35 ‘
84

[¥]

SIOUOIIPUO0IAILJ YOO - SWOISAS aeaul T (OT'€
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%+ Diagonally Dominant Example

How many iterations for this diagonally dominant M 1o “get very close™ Lo the
N

exac SWer
[7 + * * * % & % %7
B * o ® % S
LI * oF %
L T A
M=D+8=|* * * * . % = = 2

L )
*isa very small entry compared to diagonals
Im{4}
a

r

; = small ’

Refr}
7 35

Can we fin

a preconditioner that does even better?
i

| ‘TT?f’._,
0N 2 4

3

* Diagonal Preconditioner
Try as preconditioner the inverse of the diagonal

~small
0
’

D'I(I)+5]= LA I T

= General Idea
Suppose M¥

Try PM¥ for some P (left pre - conditioner matrix)
If PM = [ then convergence happens in one step

b convergesslowly

hawever P =M™ is VERY hard to compute
I PM =/ then we hope convergence happens in " lew"” steps
Any general idea for picking P?
Pick M such that : e.g. il M is diaonally dominant
a) M=M its diagonal M = diag(M )is :
#) M iseasy toinverlor factor -a good approximation of M

Preconditioner: P =M -and easy to invert

LetA=D+A.
N\

Apply GCR to
N 1 e
D AK=U+D A ,;K=D"b
* The inverse of a diagonal is cheap to compute
= Usually improves convergence
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s

For the heat conducting bar, which convergence curve is GCR?
“Large™ condition number = 10,000 .
1T So. slow converzence? P e
¥ —10,000)
(M (\-) = e \'Ju—l(-\-) .
- 10,000 Y
;.* k]
ol|*t |
I
»
w0 i
0|
*a 3 w0 s n S
Example. Heat conducting bar lteration
Ax - -
S One small Ax
Heat Conducting Bar example continued...
Preconditioned Matrix Eigenvalues
'
Pﬂ 1 '|| il [ S)] | Residual
| =i 2<% I 051 Minimizing
i 1| Krylov-subspace
g ) ‘ . o 000 & 9.8 6 @ Algorithmcan
-1 l4+y+100 =100 S E eliminate outlying
SO0 1ey+100 -1 | l o eigenvalues by
-1 “w =1l | . placing_polynnmial
1 24 ,',JL-,” | £(x,)) zeros directly on
! 15 them.
Fmas 100
f‘nlm 2
1] 05 1 18 2
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Heat Flow Comparison

1-D I

3-D Cube

ni unknowns O{m) nonzeros

assRIn e s -

SSesss vas m~ unknowns
sescsennese

tescecns
v

ves
se e s ae |
se SO B OO e |
sesressane |

)
O(m”) nonzeros

m

AR e
LI by
cessesnene

(RN

3
m” unknowns

m
o] m") nonzeros
m
Dimension Dense GE Sparse GE GCR
1 olm? O(m) oln?
2 olm® ol olm*
3 olm? olm® olm*

Blockdiagonal Preconditioner

< Line Schemes

Tridiagonal Matrices factor quickly

Incomplete Factorization Preconditioner
%+ Fill-Ins Example
Fill-ins Propagate

X X
{

0

0

Fill-ins from Step 1 results in Fill-ins in step 2.



i

OR do NOT calculate M~'m 11!
Mimz= M7 M=LU
‘_\f_'A
B=M"'s
solveforb: LUb =h

‘\p = ; At each iteration of GCR weneed: M™'M/* = #
k. ¢

Then solvetor 7 : LU =M+

< Factoring 2D Finite- nce Matrices

M=k
| M=LU Mb =5 SolveLy=h - §
: iUk =5 SolveUh = 7 — b
= 1
v

GRC

Generated Fill-in Makes Factorization Expensive

% Key Idea
o Throw away fill-ins
Throw away all fill-ins
Throw away only fill-ins with small values
Throw away fill-ins produced by other fill-ins
Throw away fill-ins produced by fill-ins of other fill-ins, etc,

o Key ldea
Pick M such that :
a) PickM=M
b) Miseasy tofactor: M = LU

Use as preconditioner : P = M-
Mi =h
Mg =M
But do NOT caleulate P = M~

10
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o Complete Algorithm

Pick M such that :

a) PickM=M

by Miseasy tofactor: M = LU
Factor M = LU . \
Calculate new RHS solving for b - LUA =5
At the £ step of GCR:

Calculate M/

solve for 71 LU = M

% GCR Summary
o Comparison CGR & GE
= Making GCR converge fast can be very problem specific: pre-
conditioning
= Assume we have a good pre-conditioner (e.g. # iterations & < 10,20)

Sparse ‘ Dense

GCR  0(n) | o)

>1%)] ol

Same condition number for both.
Taop converges faster - clustered eigenvalues.

When would one use GCR?
* Need to have fast convergence rate:
1. cond (M) is not large
2. oreigenvalues of M are clustered in few groups
3. orwe have a good “pre-conditioner”
= And one of the following:
1. need fewer than 16 digits ol precision
2 or M is dense
3. or have a fast matrix-vector product algorithm
And what about if you need to re-solve a system with different RHS?

o

GCR FOR DIFFERENT RIGHT HAND SIDES
the Krylov Subspace

STOP: close enough after 2 iterations

Mx' = yoMpy -

0 4
e yo=F eMpy. ¢
r ad 4

fﬁk z YoPo

P
4
Mpy £

I

i —— =
=X NP = VoPy P

M-space | =
Sk e o b

= My! + Vi Mpy
=2Mpy + MMp

- |
.
. m,-,,a:.wnmfm

= ¥y Mpy + B Mp,



L8e

-I\fl—space

X« Span{ﬁnaﬁlvﬁz} /

» Vi / ff b
mp o T
/p(l P r{/ . -~
Mp, Yoy

Mpy ~

b < span{Mpy. M. Mp, |
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IN'I'R()I).!J(T'I‘I()N TO NUMERICAL SIMULATION

LECTURE 11.
1-D) Nonlinear Solution Methods

TopAY’s OUTLINE:
< Nonlinear Praoblems
~ Struts and Circuit Example

« Richardson and Lincar Convergence

%+ Newton's Method
Derivation of the basic algorithm
Convergence Analysis
Multidimensional Newton’s Method

NONLINEAR PROBLEMS

Strut Example
i ‘; ‘3:, N NN ‘:

(Xo2 o) ia (x. 1) Given: xq, vy, X1, 1. fi
%‘{%& i Find: x>, v,

Need to Solve:

Gow)  TaetShetfie=0

Ly Lga+ 11, =0

ROV
(¥, 10) % i

(X, 1,) s
‘fl Load San= 2 2', I}” €y (f-ll.rl -L ‘1)

Ly= \"(“'2 =Xy ): +( *.\‘nf

-+ Xy — X
fax= 1] " £4 (L,n,n *L,-a]
-A

+

=+ F —-F ) - X5 =
It (L,, -IF —z-|] Soae="2"M ey (Lpo-Ly)
7 _,.‘ Lig
L ][
Tpy =" (Lpo—Lg)
& B
F o=(x,y) — 5
F=(x,») Ly= \f(x: =X + (-

Why Nonlinear?
Pull Hard on the Struts

v The strut forces change in both
magnitude and direction

Load force

Ji=(0.-10)

fay*Say+ /iy =0

[}

POYISIN UOIMON] - SLIIO‘.}S,/(S JegUITTUON TT°¢
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g

Va
identical
Solve Iterativel
Hard to find analytical solution for /(x) = 0
Salve iteratively
guess a solution " =
2 strut problem 1 strut problem repeat for k=0, 1,2, ...
B o ok
S s <tretel ate "y =gl - = g (" ]
Struts streteh & rotate i =elly - L) until f( ) =0
AL Ask
AL = /1 » Does the iteration converge Lo correct solution?
£ » How fast does the itcration converge?
linear f(x)

One method to find where f{x) = 0:

(8¢

Cruess a LOT

Circuit Example |
Need to Solve I,+1 =0 ’

a T, | |

i [ '
Vi «&. V2 I, -1.=0 \Non-Linear

System of
) 4 + o y

ulill

[
I
quations Equations !
s Vi L-Lv -0 g /@=0 |
_L - (VI ’ | 1-D: 1000 poins
- o l"‘i-‘ | 2-D: lﬂ: points Guessing may be an alright strategy for 1-D case, but
- f,—{{e""=1)=0 . 3-D: 107 points not so when there are more dimensions.

RICHARDSON AND LINEAR CONVERGENCE
Richardson Iteration
+* Definition
Richardson lteration Definition
o ot + 1 .\"']
An iteration stationary point is a solution
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\_i.vl =

= ,"{.\'k ]'—’- 0
=¥ =" (Solution)
“ Example |
Slx)==0Tx+10
Start with 2 =0
© =2+ r)=0+10=10

Hext e 104 74100213
)= 134 -0703410) 2130

ot ()=1394(-07-139 4 10) = 1417

X =1425
O =14.27
¥ =1428

14.28 «——Converged!

Ff(x)=-0.7x + 10

Richardson Iteration

€ » u " " "

f 5
Iteration k



<+ Example 2
Slx)=2x+10
Start with v =0
A =2y fl)=0+10=10
xe=xts f(.\-'):loe (2:10410)=40
He=xls ,l"(.t:]— 40+(2-40+10)=130

162

ot oot flv?)=1304(2130410) = 400

No Convergence!!

)

N
X
1) |
_________ = X“ +‘f(x())
|<——Ax—>4—Ax_>xl %

=
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%+ Convergence

= xk g f{.\"‘]

. . *
X =x +Jflx
—

=0

f(-"): f[r\"]-* L;{ {.\'.X.\' - I.)+ ; (i-:;’ (-\'.X.\'A.\")I & s

At ooty f[.\")+%[.\'. x.\"{ —.\'*]+

+%%(\'3ka —,\")2 .

3 2 I
Yyt =l +df (,\"]+ ld {(,x"x,rk —,\“]Jr,,,‘,rk —x|
dy 2 &
Kl
Find a bound: k% < k° P
AL (O T S | o
= L = = K S||+f‘-{.f )-H:'.’
=% +j'(.\' ):.\‘ +h-Ax | o
T PT UL BT N S (Re
0 0 ‘,\ —x =K x"—x| forlargek
kel ep [_A—_ ,*]
X xo=(I-AN" - If K < 1 then Richardson converges linearly.
v * *
okt =(1-A) (.\‘“ -x )
I K *_
i -if(lfA){-“, _,,) ‘.\ X ‘SZ|.\ X ‘ |.\ X 10
X -x = X —x kel S
|.\' —‘\'}Sz-lll;i
Bl ® * q
x-x =(I- A){x' —x ): (1 —A)'(xn —.\“‘) |r'”m . s(;)m-l()
: 3
lim (I—A) -0 o Setup
Aﬁnspeplral <1 Iteration Equation .\-’:*' :;rk+_,';.\‘~:|
radius Exact Solution X =x + (_r
(1-n(A)) <1

0
Computing Differences

PR L, B ,f'[x*JA_f{.\"

Need 10 Estimate

10



£6C

Example . f(x)=-0.7x+10
K" =[1+(=0.7)+0+¢/=]0.3+ ¢
Example 2 flx)=2x+10

K =142+0+¢ =[3+¢

No con vergence

o Mean Value Theorem

fow-fin =L

/

(w=v) ze[v.w]

= Use Mean Value Theorem

lteration Equation +**! = x* 4 ¢ ,\j‘)
Exact Solution J‘ = x’ + f (\'.

=0
Computing DifTerences

ek oyt ,f'{:\“')— f‘(.\"): [1 + '?IV('?)J(.\"‘ —,\"]

.
¥ el.\‘"..t |

o Richardson Theorem

IF 1<y <1 forall FsL¥-x"|<8

i ¥y
ax

AND x"-x" <3

THEN Ix'“l B Py

. +| . .
OR Tim A% =" = lim £ - 17| =

ks ks
(™ 0
aof (7 R x-x =
|]+-J—r(i)<0.l\‘\a .
o - X" =% [< 1
1= > X
=11 -0.% ' =x" <001

| digit/iteration = lincar convergence



Example | Slx)==07x+10
o

7=|14 =l1+(-0.7)=03<1

Example 2. flx)=2x+10

< Problems
o Convergence is only lincar
v, f{x) not in the same units:
= visavoltage, f{x) a current in circuits
= xisa displacement, f(x) a foree
= adding two different physical quantities

Rl ok " I‘(r‘ ]
P volage ! current
r temperature ot flow
% ¥ asilion F force
e Advantage

o Simple — only need to calculate /() and update

el e +q,f'(.\"‘}

Example 1. Example 2. Example 3.
L (¥)=-0Tx+10
Sx)=2x+10 fle}=0Tc+10
a=] a=1 a=-]
107103 s No convergence!! el =0
a=-l
y=ll-21=1

—= Still no convergence!!

a=?

NEWTON'S METHOD

Derivation of the Basic Algorithm
# 1-D Reminder
o Newton Idea

Problem : Find x  such that _f'(x*): 0
Approximate f(x)with its Taylor series about Xk
flx)= f(x;‘ )+ Zf (.r" Xx - .r“) a straight line
x

Find the solution of the approximation i

e )

2] )

ox



o Graphically

Problem.
S

fo' arle")

£(@0) + 7@ ( — a°)

= Resistance
v R Current

7y
(Z) (=R
\6v —
Voltage
&
@ Newton Algorithm

+” = Initial Guess, k =0

Repeat |

K 7[@(}_;—

X

)| )

k=k+1
+ Until ?

‘|_\"+I — % < threshold

‘|,/‘[Xk . L)| < threshold

16
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Convergence Analysis
% Convergence Checks
o flx)
Need an “f(x)" check to avoid false convergence.

J&)

o Ax

z
o
@
a
)
£
I
=
&
s
5
=)
=
<
c
a
=
z
~
o
=
=
&
o
e
=]
=
I

f

Ax)

<+ Convergence Example

Slx)= -2 ={s
k xk E,\" =%
0] 100 | 8740
16673333 | 5413
sl = I &

1261665 | 1.74d¢ - 03|
1259924 | 2.410¢ - 06 |
1259921 | 4.609- 12 |

S

kel _ k| L.
“x x| <ey,

| A+l k|
|lx =X !i
f i 7( 3
| ——T
X
X ‘X‘H-Il r
1259921
Asymptotically,
. .ga
L P

C=0.7951
o =2.000
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Jix)

10

Newton's method

gained 1.5 digits’

gained 3 digits

Double # of gained

digits at each iterations

B

Iteration k

fix) = x°-2

gained 6 digits

19

%+ Taylor Expansion

Taylor Series I"xpansmn

7=l )e 2
1;_.1'_’
n
;‘{.\:);,’[.\' )7;%

18" (A" A]u
+ I X=X
/[ ”.ll)lnl

o

[/ Cep)=flxa)

=[f(xg)= flx4)

2/

( l\—\ )+1 o’ ]{r I\ x }2+
*r‘+()[

{.w)[_mﬂ),u;,( e ]

uA-I \

25
qlf‘vl f( )(J B ‘,A :ml

Telnat|

Exact Taylor expansion about the iteration +* evaluated al the solution x*
* I
e

some

f\:El:lZ

I

*

Mean Value Theorem
truncates Taylor Scries

ApFrommalL Taylor expansion aboul the solution x” evaluated at the next iteration

0e ) 9 ()

Subtracting (1) nom 2

)

dx

g(xk Xx""l - x‘]= . 5 [1‘][\'a - .\-"‘}3

Dividing through

(XA-H _“,*]:{

df
dx

=1 52 & 5
W) Lk Y

0=,I'(x')=f(»\""')+§£(xkxx*—xk) {xg ¥l

20



Suppose

o 1.2
| ] (.\')J g { (x) =L forall x
| o A=

lx

&
[N
O
oe]
7y )
F2%l=0 2L=0 fx) Verv Good
T . .
?ll ) small (_\-) Good

large ; f (x) Bad

3 ~
—(x)=0
ox

Y ~
=—x) small
ox

&)
_ e
PN large

<+ Example 1

‘['(.\'):.\‘3 1=0. findx [.\'- =
df (k\_ 5ok
J.\'(J ) =

convergence is quadratic

fx)

Very Bad

\& Bad

/ j( x) good

)

=11 =1

("= “_-)

L 0.0045
220

% Example 2
f(x)= x2=0,x" =0

Zi{.\'kx.\'k'[ —.\'.): (::_: (‘f)(.\" - r'}:

dfr
i
= ack (s Zg)=

o= %{.z—‘ —~0) for *

or lr£A| --\')1 ;(“A = “‘]

—{.\" ]- 2.4
‘ > / ; AR
[(" _())* Note: ( not bounded

\dv ) away from zero

2x =0



662

CONvErgence is linear
% Graph - convergence of examples 1 & 2

f(x)=x* -1 FG)=x*

f(x) = %° -1

M Lﬂesiduark{

¥ " i = " "
lteration k

< Theorem

Suppose

. . .
Proof. |x|—— .r| L‘ Xg —x ‘.\'0 x
. .
=X X |S'Y,\'(]’,I'|

ol o .
= X9 ~x |SLyxg-x x1-x

.« 2 o3 .
or Xy —x Sy°lx-x |57 Xg—X

< I_‘,'l.\'o —.\'"ylxn - .\"‘

< '{L%x" —X'M,\‘" - .\”l

1

S’Y]:IO —.\"
i ke *-f‘iSYz(h”']ix“ s
- =] 52
7 ) .
y:[i(_\')} £ f(x] 0= |<I
ax |
% Theorem

. \
If L is bounded [ :f—” bounded away from zero, bounded J then Newton's method is
\ AN

guaranteed to converge given a " close enough”guess
Always converges?
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<+ 1D Pictoral Example
fix) Convergence Depends on a Good Initial Guess

Aside on Global Convergence
" What if your initial guess does not converge?

Take a sampling of guesses and determine where the sign

changes

Sign changes between o

these two points \\c o
1

o

° o
Run Newton's Method again using one of the two points
surrounding the sign change as your initial guess.

If it still does not converge? Sample points within the
range of those two points and refine the area of the sign
change — repeat.
New
points

1D 10 points

2D 100 points

3D 1000 points

Easier to do in 1D — becomes more
taxing in larger dimensions.

Example: Heat Conducting Bar — Insulating

ho h,
\ Pure Neumann Problem:
Boundary conditions — heat flow only
leads to a singular matrix
If hy = h, there are multiple solutions,
if hy # h, then there is NO solution

\ Partially Dirichlct Problem:
Boundary conditions — fixed temperature on one
end & heat flow on the other

EEEEEEEEEER]

Known "l"empf:r:;tturt:—’A
Krylov Subspace Methods converge more rapidly
(small ratio of eigenvalues)
] -Tn h(; Ty hn
™M dl=] =M
T, h

n

Example: Heat Conducting Bar — Lossy
Tol e

n

A = eigenvalue of M m}% is an eigenvalue of M~

26
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Multidimensional Newton's Method

ixamples
o Strut and Joint

e » _\ fi+F, =0
37-*-\;\ F(%)= P

OR
I= <t +y® x
A X E(lg-1)+F, =0

Fsgd, == E(—1) / .

- “ -‘; -
k= 2B =1 ',E(IO*")*FL\.*O

! !

P o

=2p=LEi-y

f, ; / (r=1,)

= ‘ Nodal Analysis
bt e e AtNode 15 i +i, =0
=g(v)+g(v-n)=0
E \ /E AtNode 2: i; =i, =0
Nonlinear ~&ll-a0i-n)=0

Resistors Two coupled

i=g(v) nonlinear equations
in two unknowns

Example. Nonlinear circuit element: MOSFET

H : b
! i=kv



c0g

fx)

Hlv.x)
Fla)=| falar)|

o
A
| X
) .
¥’ (x;. 1) X2
'y '.\’, -
X1 Algrav.a +an)= ity 1 (xx Ay +
any
Sl + Avpoxs + Avs )= frlvars )+ ';f: (xp.x0y JAY + {_"f: (¥p.x0 JAvs
Ay &y
Flx+Ax)= Flx)+ J(x)ar
29

¢ Jacobian Matrix
Jp(x)Ax = F(x + Ax) - F{x)

Flx)  AR(x)
ax) axy Axy
J e (x)Ax = ; ; }
eF y (x
(ﬁ,\ (‘) Axy
vy

< General Setting

Problem : Find x” such that F(r-): 0, 2 eV and Fom¥ SV
Approximate F(x) with its Taylor Series about :
(x)= I-'lr" )+ Jp {,r'l l\" H_ ek )

Jacobian
Matrix

Find the solution of the approximation: x*"'
F[.\'* )-+ Jp (.\'k I.\' .\'"]: 0= xk*! = b - [.I,. (.\" )]_I F(.\';‘)

=+ Newton Algorithm
x" = initial guess, & =0
Repeat |

Compute I“(tl'l Jl'(""

Solve J,.-(x* l.\""‘ -x)= —F(.\'") for x* !
k=k+1

puntit 4% -3 (4} smatl enough
3

% Nodal Analysis
o Strutand Joint

x eM? and FiMZ >R
F

%s(!(, ~I)+F, =0
§e(1071)+ F

Singular Jacobian

. Jp(®)= E E’J
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o Nonlinear Resistor

¥ e and FiRZ SR

v  AtNodel:i+i,=0

3]
Bl ] o il o Sl i OSRY
2| 2ety-trn, ) i A = E(7)=(w)+gfn-w)=0
ayl! lo=y X3 +¥2 3
=0 o .
' . AtNode 2: i, —i, =0
= legw/.')*ra +w£;“,/f) 0{1] E F(ﬁ)- )=0
=17 T 4 & N | (V)= r)=glvy—-v, )=
! 1 av) a1 1= =R FI=E0) g%
0 0 [l ’ .
i S B e
Ry Ry
Je(x 7/
X+ Ax x) oF oF ? 4
F, =F +$A(+"—l.ﬁ_\‘ = a e
scalar v+Ay v X oy ol |
ks v g
functions Ax) - 7 2 ) new : -,-I R
X+4x X ) 3 i |E S i
¥ “lep + 2 Ac o_\ 2 Ay B * R,
“\y+ay \y) éx ov
o, af & < Computing the Jacobian and the Function
= = Y A || AX - . . . e o o B
= F(x+AR)= F(R)+| & 2 Consider the contribution of one nonlinear resistor Connected
af  oF | Ay between nodes », and n,
ax o :

- E—
m i

Summingcurrentsat Nodeny @ F, (v}:g(lv"l =v,, JEe.
Summingcurrentsat Noden, = F,) (v)=-g Vi = B

Differentiating at Node n, :

0 5)_Oslon —vay) O () el —vr)
a"’n| a"u, 'a"uz B\',,:
2 R
D &

32
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Stamping a

Resistor m—g
1 -
ity n
: o v 3[".», - "u:) a
o b)) ||l
o v 3
FAM] #iv)
e

More Complete Newton Algorithm
0
x =

= initial guess, & =0
Repeat |

Zero Jpand 7
for each element
Compute element currents and derivatves

Sum currents to /., sum derivatives to./ .

Solve Jr‘:.\" l\‘ ik }: -F(.\" ) for x* !

k=k+1
+ Until Eix”" _— ‘_,)“(.\‘k'ﬂ }‘L:-'maﬂl enough

<+ Example: Heat Flow in Immersed Bar

N AAALLAS BB B &>

r 4

P

4
!
P

- s
- =

What is the Jacobian?

33

1 —
R R h
w2 L
R R R T
=1L 2 %|n
R R

R AAALAALL BB B RE
vYIVVYYY Y VOV

iy =kT?

(%740

jh
T'"") I"'""" Tia

i =k(T; =T, )

What is the Jacobian?
LAKO -1 3k(T -T2

=31 -T2
=37 =T,

T+ =T +3k(Ty - T3
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INTRODUCTION TO NUMERICAL SIMULATION

LECTURE 12.
Multi-Dimensional Newton Method

ToDAY’S OUTLINE:
% Multi-Dimensional Newton Method
— Convergence Analysis
% Damped Newton Schemes
Global Convergence
Difficulty with Singular Jacobians
+ Continuation Schemes (Homotopy Methods)
—  Source/Load Stepping
— Improving Continuation Efficiency

MULTI-DIMENSIONAL NEWTON METHOD

Convergence Analysis
#+ Theorem Statement

it oa) ') <p

b) [Wp(x)-Jp(y) tlx-y| (Derivativeis Lipschitz Cont)
Then Newton’s method converges given a sufficiently close initial
guess.

(Inverse is bounded)

Not Lipschitz Continuous

Not Lipschitz Continuous

++ Key Lemma
If | p(x)=Jp(v)| < élx—y| (Derivative is Lipschitz Continuous)

Then |F(x)=-F(y)=Jp(¥)x-y)= ; Jr - J"||1

There is no multidimensional mean value theorem

%+ Theorem Proof
By definition of the Newton Iteration and the assumed bound on the inverse of the
Jacobian

|k _xk” - HJ;_] (x# )F(xk}[s BIP‘“(X" ]

Again applying the Newton iteration definition

k1 _Xk"S&l,Ltk )_F(Xk-l)_JF(ti-llxk _Xk;li‘
Finally using the Lemma °
.|rk+1 B xk" < %l%xk 7xk-l||2

< Implications
If the function is not very steep in some direction, or not very smooth. ..
Then Newton's method can be used to find the zero of the function but only if you
all ready know the answer. ..
Need a way to develop Newton methods which converge regardless of initial
guess!
+ Non-converging Case: 1-D Picture

Limiting the changes in X might improve convergence

uoj

-MON] [RUOISUSWIPI}MNIA] - SWOISAS ITeaul'JUON ZI'E



T Until AFA 'Y, ':l-'(x'" i '] small enough
Diode problem < Limiting Methads
o Direction Corrupting
e+l

; v, y il iley 1 A
1= 1_\- et -1 |1|T|ilt:l.|{.-l?""')j :{ i M ¥ /

',f:'.xgn(A.\'f it ) otherwise

& o NonCorrupting
limited(Ag* *

= aAv !

w= n1in~i 1, i.:’\.\'?:”H} M

Heuristics. No Guarantee of Global Convergence

@)1 :
Local e o

Minimum

90¢

NonCorrupting 05

<+ Damped Newton Scheme with Limiting

. '
fxy
Atalocal minimum, > =0
Ox
Multidimensional Case: J ;- (x)is singular
DAMPED NEWTON SCHEMES ! g
™
Global Convergence | !
<+ Newton Algorithm for Solving F(x) = 0 1
= 1
&V = initial guess, k =0
Repeat |
i o[k _§ nEd] Darac 4 =
Compute F (,\ 1 J,‘{\ ) General Damping Scheme
. A . : k+ K Ak () for Ak
Solve J, (f‘ l\\" o —r."[-“') for AtF*! Sul\c.l;-(\ LI\‘ V=—F (J )Im axk!
) b e ekl kal _ ko ko k4l
FE K limited (a1 ) 5t = ¥ At
k=k+] Key Idea: Line Search
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. k . 7| +
Pick a* to minimize Ei- (\‘k +afack

LExample.
1 2 2
a=1 :F(xi ~C1"Ar‘*')|1 >> J"(,\'"}

F"(\"‘ + ok arke! hi << ;H"(\‘k]

Tars

2

fty
Damped Newlon
converges in one step

1
[ —
1
X 1
! :
A '
. ' |
|
f )
Damped Newton will ot

converge in one step because Ax'

is not large enough to reach x
and o[ £ 1.

o Nested Iteration

#" = initial guess, k=0
Repeat |

Compute F[.?‘) Jp ¥
Salve J (.\:A )\I:Il o —-"'(rJz l for Ac* !

Find «* e (0.1] such that .'-'[,n‘ +af Ayt IJ is minimized
kel _ ok

P+l = 7 o avh!
k=k+l

{ Until HM" 2 HF(.?* ) ]| small enough

Method Performs a one-dimensional search in Newton Direction.

)

o I
» Solution to the 1 easi i
original problem  hoeon

F (o +ot A
X ek

X3



80¢

Lixample

g
5

vy

1

—y =0
10 "
“'_L V. L

_|_

Nodal Equations with Numerical Values

S )~( )+10 e o 1) =0
10

25

20

v, —0)

15 _/'(113}:(v:_l)+10’”'(e‘ Y0 [y =0

-5

=
¥
I
|
—

-1
0716 pous '
=1- 1 +.|. 21 10 “‘((‘u.ﬂl.‘ = |]
10 0.025

=1-0.025=0.975

=0.1
Lots of steps to converge with the regular Newton method.

Nested Iteration
¥ = initial guess, k=0
Repeat |
Compute Flf" l Jr l,l"' )
Solve /(7% J7#*! = —F(z%) for Azt
Finda! & (0.1] such that IF(:"' +afaxt? 'h is minimized
=l =.fk +ofapf!
k=k+!
} Uniil Agt!

F(.fAL £l ], small enough

How can one find the damping coefficients?

Convergence Theorem
If a) J;-I(,\"' ]} <pB {Inverse is bounded )
by Wplx)=Jp(y)<tx—» (Derivativeis Lipschitz Cont)

Then There exists a set of o* se(0,1] 5unhlhat
I"( “') HF(\‘ +a Ar“']<yHF withy <1
J
Every Step reduces F—Global Convergence!
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Example.

o 2
.""(,\k + u‘_‘\\'“'li =09 F{,\'* }15
-

F[\“' +atact ): <09 "Flr“')i <0.9? r{\")‘

F{XA 100 100 4 k101 }i . (]_9‘:F(_‘_;+|lzll:!f 2 Q’iil HF[_\_A }f e
= - ) =

= Proof.
By definition of the Newton lteration

Yl A
PaRLE T Jp (,\"‘ ) F[,\" )
e ol e 1ol
Newton Direetion
Multidimensional Mean Value Lemma
I3 2
IF(x)=Flp)=dp iy - r) < =l =
Combining

AN A PR B

Combining terms and moving scalars out of norms

I = e o P £l )

Using the Jacobian Bound and splitting the norm
ii.F(JALH ) < [(l L ]1{\* ) + (ﬂk )2 B%| .’"(,rk )2}

Yields a quadratic in the damping coefficient.
Simplilymg quadratic

)<t e Pl e
i1t datfel e=Plple)

o) e

=

I

—1+2afC=0
-
afsa—
C

Two Cases:

& ‘F(xk )i Ca pick o =1 (Standard Newton)
T

k1) < {. B )Wp:(.a]\ <L Irlet)

I
- —_=
Case 1. ke
—_— ! =1
B .
2{-2 \‘f(..»*ﬂ oy

2

2 Take the full Ncwtonksliep.
pick a* =1(Standard Newton)

2)

Pl > Bli.f pick af = :&3_.'511_(\*]} (Damped Newton)

w{ i) Pl

f
|

p21
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1
If Bsmall fsmall———large Alwaystake the
B¢

full Newton
le 1D
) 3
f_"l large ¢ { small
ax e

1
I flarge  /large — —- small

of o\

i 2 =l af o f
0< 1% Ay q 2 ?: small ;‘J; large
- l r N> 1
W) 2 ‘ ‘
1 | ; i‘n"'(.\'k . 1]! < ‘;'k ‘F{.\'*] not good enough. need y independent from &
<= v < |
2 ZISJF;U'-(I s ] The above result does imply
) x |F(x“]]l|$‘f‘[.rn “ not vet a convergence theorem
1 1 0
=>1- <l— <y
Fefie ) )= 22 (x4 )‘ 252"
L ok+1)
w U Yook i 1) ;
Flet ] <(1- h“;‘f-(,\* < ‘1]|\| L M(;—“') 50.9|F(x"j
- N ~ #(x42) <009l (4 1)
I===t=1-1) Ao y I
Ak . “F(x" ”]i < 0.999||F[x"”]
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Difficulty with Singular Jacobians

| Regular Newton
|

Damped Newlon

Damped Newton Methods “push™ iterates to local
minimums
Finds the points where Jacobian is Singular

Damped Newton
with hall-step
(a* = %)

77@151‘}'.1’

expensive

©

more fast
convenient
multidim,
SAME# | (©)
STEPS
more steps
more than
ek | expensive Newton
|
i
|
| I STEP
© ©iser | ©
‘ - minimization Fast
o | Sf"':VF'RM' cosls Cheap
} STEPS
—=|

CONTINUATION SCHEMES (HOMOTOPY METHODS)

Method: start with smaller loads & bui

to linal value
3 1

7 =] - X =X

. ‘fn:lrf | 7

Jioad =2 — =X é
- fioad =3 Z
f!nud :

Source/Load Stepping
# Basic Concepts
o Newton converges given a close initial guess
= Generate a sequence of problems
= Make sure previous problem generates guess for next problem

Struts Example.

Id up

prOT/22IN0S
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Heat-conducting bar example

Start with heat off, 7= 0 is a very closc initial guess
Increase the heat slightly, 7=0 is a good initial guess.

Increase heat again...

i

% General Setting
Solve F(x(x).n) = 0where :
a) F(x(0)0)=0is easy tosolve  Starts the continuation

by Flx(1))= F(x) Ends the continuation

¢) x(%) issufficiently smooth Hard toensure!

s Dissallowed
A

<+ Template Algorithm

Solve F(x(2)4) = 0, (R e )= x(0)

S =001, L=8r

Whiled < 1{
2 1)= 10t )
Try tosolve F(x(%),4) = 0 with Newton
1 Newton Converged

Ak )= (0L 2= k4 B0, 8 = 280

Else

Bh= LBk, A=y + B0
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a(n)

A (561

- fail
o (T62)
Vil 7 v bi) :
\}.&Uaa Serk=Tai. Pk
#» [Examples
% 1
4 F(A(2).2) =i (V) v=2) =0
/ Diode -, . :
Ve O Fnd) () 1
= ==~ 4— « Not A dependent!
o o R

A oAy f:\-(x,y)=0
— lf ()= Fo(xy)+a =0

Source/Load Stepping Does Not Alter Jacobian

Improving Continuation Efficiency

Nonlinear Circuit

Fa=10

FaV Vo V=gl - 7) - gl - W)

AFAV Vs ) (1 =R)Fa = hg(Fa = Vi) = A gtV = Fa) = (1 =3V = (1 = W)is

T = !
Vo=10 ¥ ¥ ¥ o

expensive

Ji

(I-Wx+3=0
(1 =Wy +Af+Afi,=0

/s
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< Jacobian Altering Scheme - Description

f=2ell-1o)

F(x(3).2) = RE(x()) + (1 =2 )x () 7
Observations ‘“—.
=0 F(x(0£.0)=x(0)=0 _
2F(x(0),0) 2 Pmbl:jm i,s easy to salve ﬂll}l K (] - ?L)x + 7Lf:‘. (—\',,V) =0
ox Jacobian 1s definitely nonsingular. . .
=1 Flx(1)1)= F(x(1) (1=2)y+0f,(x, p)+ 0/ =0
EF(\'[I).I)_ 8F(x(1)) Back to the original problem and R
o A original Jacobian * Basic Algorithm
! ‘ & Solve F(x(112.)= 0, (0 )= x(0)
82 =001, =32
R o While . <11
? B — ¥ 3 . S
> Flv)= A iy(v)=0 OQ) =ty )2
_ Try tosolve F(x{i),) = 0 with Newton
V. Diode I Newton Converged
XA )= X(0), A= 04 82, 80 =280
Else
Bho= 180 k=R + B
v H
T - Y ¥ 1 .
R Flv(r).n) =1 Sakig(v)+(1-2p=0
i R
. v
x (i) —
V. i I ;
Ji- —
" “,'L'xmf\): (0 + % &
vov, . v HOET00 Gy = () i
= + rig(v)  + = =0 ! i
% == - 7S 3k Soh Toh 1
(O A Remove non- linear l_:ﬁ
Remove Resistors components then Ingert redisiorsto
then seale them  bring them back ground in cach mode

slowly slowly
R,=

1-4
then remove them slowly

19



% Initial Guess for each Step
x(2)

X(AAORY - oeenes

Lty Liless prror

4
{ 3
>
§

| Tp— N
) ,A.;"“(‘.‘,N.]_ﬂ“
"‘—_——‘"‘dr

0 A A+64 1’1

% Update Improvement

KO(h+50)= ,r:;k)-[‘”—T"M
L Ox

x(h)

g

P+ 8000+ 82 » Fshi)+ ECI o)y M)
ox (&

G ({-(")"‘) OA+81) —x(1) __oF ("’(_")')')m
ox ——— oA
‘————— Beuter guess for

have from last | next step's Newton
slep's Newton

Fe, )= hF(x)+(1-2)x
= = Ox + OA
Set 8F =0
Have From last  Have From

step’s Newton  last step’s
what is it 7 Newlon

Solve for & ; Jjgr}&r:—[!-'(x(h pren )= X0 e )57

= Initial guess for next Newton : xo(l)= x(lj,,.,_,\,)+ Sx

o
[~
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INTRODUCTION TO NlJ.\!I-]RI('VAVILSI}Hfli{\']'ION

LECTURE 13.
y \ 4 . Array of photo diodes or photo transistors that provide some voltage
Newton-Method Case Study — Simulating an Image Smother Ty O TPINO CIOCEs oo Ll s S

propartional to the light in that particular spot of the chip

Pixel
TODAY'S OUTLIN
% Image segmentation example desenption Intensity
% Formulation: node-branch or nodal? \«’ul;lr'
% What Solver for Newton step: sparse LU or GCR?
Convergence of Newton GCR
Matrix-free idea
% Continuation?
Jacobian altering scheme (for singular Jacobians)
— Jacobian altering with update improvement
Arc-Length Continuation (for multiple solutions)
ik EXAamPLE
mple Smoother
<+ Circuit Diagram
> AL - AAN . 660
. r ’ ) Ny Image
Smoothedff . b 1 1 /!npul
Output : « A 4 =
- Fidelity Resistor
. . Re If Rpis small — V., = Vi
3 & Voltage is output . ¢
g L, Ly pixel value : s 2 5
B Re: Coupling (Smoothing) Resistor
7 R R; 1f Re-is small — Vi, = Vi,
-
= = y We can make
[ . 4 oo 2ol ch_l VAl images sharp or
., : oltage smooth by
T | N changing R¢

Apnjg ase)) Yy - SWo)SAQ JeoulJuoN €1°¢
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< Input Image

8v)
— 5
R ”
edge
detection
e

Nonlinear Smoother

< Circuit Diagram

(_J
smooth windows &
building details
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« Constitutive Equation

i(v)= ——7—
14 o-Blr-ev?)

f+]

Varying Beta

Ju1

©oglv)=

Current «

o1

Vol laé,e

av
1+ Plo?)

Q»mall B

Voltage

g g e
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Vi

VM

For nonlinear resistors;
5 non-zero entries per row Mx — b
Diagonally dominant
Symmetric positive definite

_Av i 4] ——F l(vk)_
AT =R

FORMULATION — NODE-BRANCH OR NODAL?
The nodal matrix is smaller and diagonally dominant in the linear case. It is also very
sparse: 5 NON-ZET0s per row.

ssee
ssee

AVt [FFu0Y)

Same structure as linear — 5 nonzero entries per row
Diagonally dominant?

Jr || A== [F(
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av
glv)= ]

- y-ar?)

5 Ty 3
ag o 20°fvTe

ov | _':e—ﬁ(y—m'zl [:] +€—[5(~,~—u|'2]:|2

Linear Case
* sparse
 strictly

diagonally
donuinant

NEWTON SOLVER = SPARSE LU OR GCR?

gt

v small

SIly same as
linear

« strict diag. dom
only if Av's are
small

fincar

LU GCR
Computation Time 1.5 O(ng)
O s CC
E | g=#GCRsteps
Memory
O(n)
Just store vectors
Cense Mp
O(n)
How accurately should 16 digits — Can stop
we solve the system? no choice after | digit!
Jacobian needed? YES NO

Basic Algorithm
i+ Nested Iteration

+" = Initial Guess. k = 0

Repeat |
Compute F(\‘k l.i, (l‘" ]
Solve(Using GCR)

Tt k! = et ) for axt*!

v = ok g Ak
k=k+1

¢ Until “A\*""|. i}"{_\"”] small enough

—  How Accurately Should We Solve with GCR?

And do we REALLY need to assemble the Jacobian?

Matrix-free Idea

Consider Applying GCR to the Newton lterate Equation
0 L I
At cach iteration GCR forms a matrix-vector product

Y e o) £l4)

It is possible to use Newton-GCR without Jacobians!!
Need toselect a good &

" step of GCR B
P [ A+ ) = B

even il r o Ax

(If SAY = f(x+Ax)- f(x) '\.' .
o ;
How to choosc &7
S of )-A\' = Fx+Ax)-F(x) If too Iarg?, nota good
approximation
Ax small If too small,
choose Av = & esmall ,l-‘(,\-" el ):: F[,\-" }
JF(-\J( };,_I = ',_-{x& P ur")— F(xﬁ ) numerical problems/

machine precision

<+ Basic Algorithm — Nested lteration

¥ = Initial Guess. k = 0

Repeat |

Compute .l'[.\" }.IX]
0= 1'-'(\"i J
Repeat |
Cateutate (e b = (et 4 ) ()]
2

M - Orthonormalize that vector

Update solution and residual o
b Unil |4 smalt
PLAER LY.L
k=k+1
1+ Until H.\,\"'Ii, Iif-'(u-"‘} small enough
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Convergence of Newton R
< Basic Algorithm - §

Accuracy Required

Afer [ steps of GCR

st et o A)

Newton GOR
delts from Residual
FGCRsteps
iy
a.) .I,‘(\"J <p (Inverse is bounded )
b elx)-de(v)€ix—»  (Derivatve is Lipschitz Cont.)
ey I sdelet ) (MorcaseoemeaeEn convergees)
Then

The Newton-lierative Method Converges Quadratically
Count the number of iterations
= F(r') At ““!’i )

Number of digits - doubles with every Newton siep (quadratic convergence)
1 2 4 8 16
Number of digits - linear convergence

1 2 3 4 5

3 steps GCR - 1 digit

Accuracy: 8 digits

Quadratic 4% (3%8) X 2=192
Newton GCR eval
Lincar 8 X3 N 2=48

Newton  GCR eval

Just make sure
— IPM) = CllFGhIP

solution
tial guess of GCR the previous Newton
iterate which is very close to the solution!

How accurately should we solve GCR?
First idea: so accurate that it does not interfere with the
quadratic convergence of the Newton.
For sure we don’t want to solve it more accurately than || Fad|
because this 1s an approximation, but maybe we can do even
Jess...
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THEOREM

PRACTICALLY

Use as many GCR as needed for

'OT'I\'L‘[gL’lIL'L'
€| F(x") |7 so that only
need a lew Newton steps

Stop GCR when residual is down by
one order of magnitude
(might need more Newton steps)
What we really want to count is
not the number of Newton steps
but rather the total number of
system evaluations (2 per each
GCR)

Newton Quadratic
12 4 8 16 32 digits
NANA \ANANA
GCR 3 steps per digit
2 evaluations per GCR step
e.g. want 8 digits:
Anewton sieps X (3 X 8)aemsteps X 2eval
192 evaluations
c.g. want 16 digits:
Snewton sieps X (3% 10)GeR steps X Zeval

= 480 evaluations

Proof:

Newton Linear

L2 .3 4 5 edigits
A A \A\A A
GCR 3 steps per digit
2 evaluations per GCR step

¢.g. want 8 digits:

Bxewton sieps % IGCR seps X Leval

= 48 evaluations

e.g. want 16 digits:

16Newtonsieps X 3cickseps X Zeval

= 96 evaluations

By definition of the Newton-Iterative Method
[ | .
.r“' =xt- Jr l\"' ) (f"(.\" )4 r‘"‘)
pult e sl S 5, ' SRR

Approximate Newton Direction
Multidimensional Mean Value Lemma

IF(x)-Fly)=Jp(vXx-y) < %|\ -y 2
Combining B

Pt )t o L) ) )]

’,{.‘.MI)_F[_‘A )_ F(x"]»» Al o

Using the triangle inequality

H""{"""‘1 ] S;' {JF(X*F [,,(_‘,:: )”,k.ﬂ)]z s

Using the Jacobian Bound

( a2d<iN
)P o 1)

Using the bound on the iterative solver error

[l < Bif‘ #let) al

y

1+

Combining Terms

#)

Easily Bounded

k.l k k k1
ool == F(x*)- g (% Jax
b Mo

“* Gershgorin & Chebyshev

I -l -1
ST TR | i
=l 4 =l =1
-1 4 =1
=1 -1
-1 -1 5 -1
=1 =1 & =I
-1 =i B
=i
=i
=0
-1

= C!I.‘(xk ]iz
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For linear case . - 5
Im{i}
s 4 vas
J el o 4 4
9 Re{r}
w
9 I‘k
- I posd
3 Vi 27 1L
1€ A min € Amax $9 <2 5 | =1(4] =5
+1]
Y1)
about one digit every 3 iterations:
For nonlinear case: about 0.1% error after 3 iterations
Could be bad.
Could be singular.

Need continuation scheme that fixes it.

DAMPING?
CONTINUATION?
Basic Concepts

Solve Flx(i).A) =0 where :

a.) f(,r(ﬂ)ﬂ): 0 iseasy tosolve  Starts the continuation
by Flx())= F(x) Ends the continuation

ey xl2) issufficiently smoath Hard toensure!

x(/l)§

< Initial Guess for cach Step
Convergence of Newton-GCR
Basic Algorithm - Nested Iteration

x(4)

x(k+5}\)

Initial Guess Error

.................. e xo(}\,+8k):x(}\.]

0 A A+SA 1
<+ Template Algorithm
Solve F(x(0)0), x(2 5 )= x(0)
84 =001, L=8x
Whiler <1{
)= ‘r{h prey )
Try toSolve F(x(1),%)=0 with Newton
1f Newton Converged
X[ prey )= (1), 2= 2+ B2, Bh=28R
Else
Bh= L6k h= e + 8
)
)
% Practical Answer
Look for another continuation scheme
Flx(2).4)= 2 (x(i))+ (1 = 2)xld)
Observations:
L=0 Flx(0)0)=x(0})=0
F (x(0).0) _ . Problem is easy tosolve and
v a Jacobian definitely nonsingular
=1 Fle())= F(x(1))
8F(x(101) _ @F(x(1)) Back to the original problem
& o and original Jacobian
« Source/Load Stepping Examples
14
e _f(v().]..l):(,m.‘(v)-v%(‘v-)y_):(]
7 Diode e
Vi tj(v‘/l] ""uue("] 1

——Lt=— t4— «Not A dependent!
o o R
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Source/Load Stepping Does Not Alter Jacobian

[

v

.
Flr)=i,(v
Bigde U=l

Singular Jacobian might
give problems to Regular
Newton or Damped
Newton ’

Vi)

v(0.2)

T 02 04 05 06 08 1 X
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Must switch back to
increasing lambda

| yd
i -
{
\,

‘ Must switch from
Arc-length i " increasing to
decreasing lambda

steps

ot

< Arc-length steps?

Monotonically Increasing Curve
vi{k)

x(1y

x(Ore—= -~

Avoid snaking curves

4
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o Pictorially o By Newton

X( /1) il L% kel _
i o o 5 k(”“ Vlkﬁ\_;-,\_k =
2o x| 20 <2000
'; Fz{.\'k‘?‘kJ
i = - 2
= l& o 22
; [)v ’)v_p.ﬁ‘c\‘)z HFT X (kprwl’ ~arc?
é <+ Arc-length Turning point
i
i i - x(A
arc-length = \J(Av) +(52)° (
i - rd
| Arc-length ] & What happens here?
H steps P
i - /
0

0
(r-3 =0
a i -
o i i T X
2(#-x(4)) 2(2-4)
Jacobian Altering Scheme (for singular Jacobians
%+ Practical Answer
Look for another continuation scheme
Flx(i)4)= AF(x(2) + (1 - Ax(2)
s 2 Observations:
A n=0 F(x(0)0)=x(0)=0
&l .\[O).OL' Problem is easy tosolveand
See literature on probability one homotopy methods . ax o Jacobian definitely nonsingular
=1 Fle(n) = #(x(1)
— (Detect it close to singular) GF(x{1)) ) Back o the original problem
in this case change arc length and hope to jump across the ox - and original Jacobian

singularity

— (or start decreasing X but keep moving Av in the same direction as
previous step) ele...

— Better idea: Look for another continuation method
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% Examples

v
[ ]

L v=F,
V. Diode A~ +hgy(W)+(1-Ap=0

Try Fv,a) =2 (v i)+ (1= v = hi(v) + }h% = ;_"F‘ +(1=2)

o
E=0234 - gsu=075

e
d

Si

My (6, 0)+ Mg +(1=2)x =0
?Lf_:(x,y)-f- Myp +(1-2)y =0

)

hFx) (=X

F(x(2).0)= {

m‘.\&k
When 2—0 l F(x(0),0) = {_\- =
i J

Jacobian Altering with Update Improvement
“+ Basic Algorithm

Solve F(x(0)0). .\’(;l‘,,,‘.. )= x(0)
54 =001, k=8
While 2 < 1

0 () = 20 e )+

Try toSolve F(x(),2.)=0 with Newton
I Newton Converged

¥ e )= X (AL R =R+ 80, A= 282
Else

Bi=18, A=k

prev + 01

Fle()un) = {J;‘”‘EXV;:?L i g
Jy Xy v =



2 Graphically

x(X)
,,,,, _-“____,,,_-un—-"""
#
y
/ x(A;)+ox
x(n i) / dx
.ﬂ'n__..,m.“..r"""-”‘"
0 A Aj+oL ]

4 Update Improvement

Flx,n)=1F(x)+(1-2)x

oF = .aﬂ.ax

(Y]
(W] e
co Set dF =0 Have From last  Have From
step’s Newton  laststep’s
what is it ? Newton

The Jacobian [ used to solve the
last Newton probem.

Solve for &x : [Sﬁ }Sx = F O e )= (e S
ox
= Initial guess for next Newton :
xo(l) = x(?L,,,.ﬂ, )+ ox
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INTRODUCTION TO NUMERICAL SIMULATION

LECTURE 14.
Methods for Ordinary Differential Equations

ToDAY’S OUTLINE:
< Initial Value Problem Examples
— Signal Propagation (circuits with capacitors)
—  Space Frame Dynamics (struts and masses)
Chemical Reaction Dynamics
< Eigenvalue Analysis for Dynamical Systems
<+ Investigate the Simple Finite-Difference Methods
Forward-Euler, Backward-Euler, Trapezoidal Rule
— Examine Properties Experimentally

APPLICATION PROBLEMS
Signal Transmission in an Integrated Circuit

Signal Wire

Logic Ground Plane

Gate Wire and ground plane form a capacitor
g p p

» Metal Wires carry signals from gate to gate,

* How long is the signal delayed?

— A ——

FFF¥ FEFFF

h P OSL 81495 S wire

R '

o

le— - -

Capacitor
EAS
Charge is q:CVﬁﬁ.—)j‘z—:
proportional to differentiate "¢ gy dt
voltage

% Circuit Model
resistor

capacitor

Constructing the Model
« Cut the wire into sections.
o Model wire resistance with resistors.
e Model wire-plane capacitance with capacitors.

Oscillations in a Space Frame

What is the oscillation amplitude?

dq c dv,

o[ny [eproz

-odedqy, ‘ro[ny premaoq ‘as[ny premyoeyqg - 4O FI°E
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< Simplilied Structure

y ¥
Example Simplified for lllustration
e
Bolts
A R
E | Ta
Struts L ! L
S |
S l
A
v A
. A ° a

Load
CGrround ‘

<+ Modeling with Struts, Joints, and Point Mg

Constructing the Model
* Replace Metal Beams with Struts.
¢ Replace cargo with point mass.

Constitutive Equations

Capacitor Point Mass

. dv,. 2
i,=C—= f=M g e
dt ) dt,,

capacitance

4

Resistor Strut
1 f = 8("'(» - 'I)

N
Independent of 7

mass

Involve ¢

Chemical Reaction Dvnamics
*** W
* T o

p

Reagent

Strange green
e How fast is product produced? aiEt 5i

« Does it explode? stufl
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Signal Transmission in an Integrated Circuit
A 2X2 Example
Constitutive Conservation

Vi k2 ]
. - > i 4 = Equations Laws
v iny Wigy Wil dvg:
ic =( & i, +ig +ip, =0
ip :'I"‘R Iy ®ig, =ig, =0
Nodal Equations Yields 2> 2 System
v, LWL 1
C 0| g Ry R R, v,
0 Cldv. | 1 11w
| Pk el
dr R, R, R,

Stamping Procedure for Nodal Formulation in Circuits
Capacitor P53 dg Cd
({!tf(’l'(’l?f.'df(’ fﬁ “’,

qocv
Charge is
proponional to - .
vollage Vi e e
C ion LL o7 -]
onservation Laws: 1% iV g, iy Wi
i, Tig g, =0

i, +ig —ig, =0

Use Nodal Analysis (substitute branch equations)

i y
‘C 2l gl L(|] -vy)=0
Ry R

|

dvs 4
‘a L2, p 2 (\_\,)-
3
cvy ! s
¢ 0 7“:_ R, 1,(.'
0 C,y|dn - J vl ,n)
Capacitance dr | Ry
Matrix
Conductance

Matrix

Stamping for Capacitors is like Stamping for Resistors

v ko Vs
e> o B
Wigy Wi

iV v

Try adding C’
v (,;[
dt

)1 0200

<) =
dt dr |

«f dv dv
e
3 2
1

dt dt Todt
dv Lo _
o+¢ - ol & R Ry [wl)
-C" Cy+CT|dva - LRI 7100)
dt Ry Ry Ry
EIGENVALUE ANALYSIS FOR DYNAMICAL SYSTEMS
Signal Transmission in an Integrated Circuit
% A 2X2 Example
Let C\=Ca= 1, R =Ry=10,R:= |
V) vy
) —: 5] A
vi(h=1 IOV IRV i Wiy Wi
6 o1zl [E4d % [ d _[-11 107
0 Cfdvy|T Aetlv, ar 1o —naff
i . S
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Iigenvalues and Figenvectors

L) U 17!
Tl oo —2afn 1

cigenvectors  eigenvalues

Aside: Eigenanalysis
Change of Variables <Ep=X

VI Ep |+ 33| Ey |4+ yxEy [=[ X

S 7 7

Columns of E (eigenvectors) are new basis

o] (L)

#0)="7

" (0)[:}- ,.'z{o){_‘]} . m 2]

Consider an ODE : d';(f) =Ax(r). x(0)=x,
"

T T T,
Eigendecomposition: A=|£E, E, - E,
{4 1 .,
T T

Change of variables :  Ey(r)= x(1) < v(:)= E""x(r)

Substituting : "'E;('):AEJ'(.']. Exy{0)=x,
1

Equations!

1
Multiply by E*! - dl(f) = IAE)’(I):{ j|)_(i) Decoupled
o

el
Decoupling : ‘Tm

= =hnil)= ()= M (o)
Steps for Solving 4:5{)=-‘\1(-'}, x(0)=xg

1.) Determine E, A
2) Compute p(0)=E 'x,

u"’"’
3.) Compute y(t)= »(0)
ot
4y x{t)=Evl(r)
s /_"'
A,
(0 _
| A is real

Tor
E E,
Lo

"
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e N 1 17 M. 17 .
F(t)=Ed(r)= .\u(!)[]]*r vf(r{_ l] = He ” “_v.(u){_ Jc’ 1y, (0)

xf)= E _ E"x(0)
T e [n=n el
)= (1))

gnal Transmission in an Integrated Circuit

% A 2X2 Example

Vi Vo for small times va(1) is .
o> @ very active (Rast for large times the
IS TIh 4 i Wipy Wi miode) nd decreaies difference = 0 (fast mode
o disappears) they both

rapidly (the difference
gets smaller)

-1.1 1 ol =0.1 0 1

A= B A= ;
1 -1.1 1 -1 0 -2.1

0.8

follow the slow mode
f) = vl = xa(1)

vi(0)=1

M 1/
¥0)=| | #0)=|"’ 0.6\

Ln ,""

- 0.4
dy‘tfr): Bt e 02/ =0

[

ni)=1eV = y (0)eM % 10 20 30

Notice two time scale behavior
* vy and v, come together quickly (fast eigenmode).
e v, and vy decay to zero slowly (slow eigenmode).
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Struts, Joints and Point Mass Example

1
0 A 2%2 Lxample v(0)=1
Constitutive Conservation 1
Equations Laws w(0)=10
L . ., Y=vo _Ed. . ] ]
fi=E4, 202200y faf =0
L 0 . H0 r Y
d-u
A
2 o H ] 1
Define v as velocity (du/dr) to yield a 22 System Note the system has imaginary eigenvalues
( > . [ e £ s Persistent Oscillation
M d :,' + 2% u()=0 M e \ <ulr) *  Velocity, v, peaks when displacement, u, is zero.
1oodi” ¢ 0
du L (i) Chemical Reaction Example
vlr)= & ldr % A 2X2 Example
M0 dv 0 E/]‘_ ‘_-' Amount of reactant = R, the temperature = 7
: dr | S dT More reactant causes the temperature to rise. higher
= " P g
0 | d 20 ”J d =-T+R temperatures increase heat dissipation causing
i | 0 ! temperature to fall.
CEL dR R4 Higher temperature raises reaction rates, increased
Vo i =—R+47 reactant interferes with reaction and slows rate
o =E2e d [0 =10] [dr
= Vi | g = I |
[ 0 Lo dr 10 0 | et
L J —— | dr
Figenvalues and Figenvectors Ldt
T 0Tt -1 1) = ¢ v, (0) = v, (0)eoss + ising) Eigenvalues and Eigenvectors
1= Il
i k= i_!_ 0%-i]) # = t']

vdr)y=e "v.(0)= v (0)}cosr —isint) _4:[1 —l][| “"flrl -I]_I .“'|(")=¢")’|(0)
2

2 2408 -3]2 () =e "y, (0)
cigenvectors  cigenvalues
: . cigenvectors eigenvalues
A E = % E
re:

slcomplex  complex
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10} &
P
&
s 4
e
6F
al R(0)=0 1
S| T0)=1 ]
0
0 0.5 1 1.5 2 2.5
Note the system has a positive eigenvalue
Solutions grow exponentially with time.
FINITE DIFFERENCE METHODS
Basic Concepts
FirsT: discretize time
AN At

Gee

Approximate Exact
solution solution

dx o
THIRD: Approximate i using the discrete X

gl

b x(y )=

Example: ——
P dt Aty

Td
=4 i)

-"("I 1 )7“'(9_.) =
Ar -

o

% Forward Euler

A
xl‘
A
xl' 1
| |
I I
dx
F.E.
(fl("')
dx
—{r B:E.
d’( 1)

é[d" 1)+ (0.0)| TRAP

©  Approximation

d
slope