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Abstract

Numerical methods and algorithms have developed and matured vastly over the past

three decades now that computational analysis can be performed on almost any per-

sonal computer. There is a need to be able to teach and present this material in

a manner that is easy for the reader to understand and be able to go forward and

use. Three popular course at MIT were without lecture notes; in this thesis the

lecture notes are presented. The first chapter covers material taught in Numerical

Methods for Partial Differential Equations (2.097/6.339/16.920) specifically the In-

tegral Equation Methods section of this course, chapter two shows the notes for the

course Introduction to Numerical Simulation (2.096/6.336/16.910), and chapter three

contains the notes for the class Foundations of Algorithms and Computational Tech-

niques in Systems Biology (6.581/20.482). These course notes give a broad overview

of many algorithms and numerical methods that one can use to solve many problems

that span many fields - from biology to aerospace to electronics to mechanics.

Thesis Supervisor: Jacob K. White
Title: Cecil H. Green Professor





Acknowledgments

I would like to express my unending gratitude to Professor Jacob White for guiding

me through this time. He has shown me a compassion that I can only hope to emulate,

a patience that is rare, and a massive knowledge for numerical methods and integral

equation methods. All of this, and a great sense of humor that puts one at ease.

A great thanks to the other professors with whom I've had the opportunity to

work - notedly Professor Luca Daniel for whom I was a teaching assistant in the

Introduction to Numerical Simulation course. He is a great teacher, very enthusiastic,

and easy to approach. Also, Professor Jaime Peraire, for whom I was a teaching

assistant in the Numerical Methods for Partial Differential Equations course. He is

also a great teacher, an understanding person, straightforward, and respectable.

I also want to thank my colleagues who have been wonderful in their own rite, and

always willing to lend a hand: Bo Kim, JungHoon Lee, Brad Bond, Tarek Moselhy,

Lei Zhang, Kin Sou, Dima Vasilyev, Jay Bardhan, Homer Reid, David Joe Willis,

and Carlos Pinto Coelho.

In addition, I want to thank my wonderful fiance, Kevin Flaherty, who has been

there for me throughout my long graduate student career.





Contents

1 Integral Equation Methods

1.1 Discretization of Boundary Integral Equations . . . . .

1.2 Numerical Quadrature . . . .................

1.3 First and Second Kind Equations . ...........

1.4 Radiation Conditions and Formulations . . . . . . ...

1.5 First and Second Kind Theory, part 2 . .........

1.6 Fast Algorithms for Integral Equation Methods . . . .

2 Foundations of Algorithms and Computational Techniques in Sys-

Motivation/Overview . . . ..................

Models of Proteins . . . . ...................

Discrete Conformational Search . ............

Binding and Docking . . . ..................

Binding and Docking - Molecular Dynamics Simulation

Molecular Dynamics and Electrostatics . ........

Continuum Electrostatic Modeling I . ..........

Continuum Electrostatic Modeling II ..........

Electrostatic Contributions to Binding and Design . . .

Electrostatics Modeling . . . .................

Statistical 1Mechanics . . . ..................

Statistical Mechanics . . . ..................

Formulating Models . . . . ...................

139

.. . . . 140

.. . . . 142

. . . . . 145

.. . . . 147

. . . . . . 148

. . . . 150

. . . . . 152

.. . . . 154

. . . . . 156

. . . . . 158

.. . . . 160

. . . . . 162

.. . . . 163

13

.. . . 13

.. . . 42

. . . 63

. . . . . 85

. . . . . 105

. . . . . 115

tems Biology

21'

2.2

2.3

2.4

2.5

2.6

2.7

2.8

2.9

2.10

2.11

2.12

2.13



2.14

2.15

2.16

2.17

2.18

2.19

2.20

2.21

2.22

2.23

2.24

Nonlinear Dynamics and Stability . ..........

Steady-State Problems . . ................

Parameter Fitting and Estimation ...........

Parameter Estimation; Robustness, Fragility, Control

2-D and 3-D Light Microscopy; Image Reconstruction

Deconvolution . . . . .....................

Deconvolution II . . . ...................

Blind Deconvolution . . . .................

Optical Flow . . . . .....................

High-Throughput Data and Analysis . ........

Inference and Statistics . . . ................

3 Introduction to Numerical Simulation

3.1 Example Problems and Basic Equations ..........

3.2 Equation Formulation - Node Branch Stamping . . . . . .

3.3 Equation Formulation - Nodal Analysis ...........

3.4 Linear Systems - LU . . . . ....................

3.5 Linear Systems - Conditioning . . ...............

3.6 Linear Systems - LU for Sparse Systems ..........

3.7 Linear Systems - QR Factorization . ............

3.8 Linear Systems - GCR Iterative Method . .........

3.9 Linear Systems - GCR Convergence . ............

3.10 Linear Systems - GCR Preconditioners ...........

3.11 NonLinear Systems - Newton 1\Iethod ............

3.12 NonLinear Systems - Multidimensional Newton . .....

3.13 NonLinear Systems - A Case Study . ............

3.14 ODE - Backward Euler, Forward Euler, Trapezoidal Rule .

3.15 ODE - Multistep Methods I . . ................

3.16 ODE - Multistep Methods II . . . ................

3.17 ODE - Periodic Steady State Analysis . . . . .

.. . . . 165

.. . . 167

.. . . . 169

. . . . . . 171

. . . . . . 172

.. . . . 173

.. . . . 175

.. . . . 177

.. . . . 178

.. . . . 179

.. . . . 180

183

184

194

204

214

222

236

243

250

266

281

288

305

316

329

341

354

362



PDE - Finite Difference Methods 1D ...........

PDE - Finite Difference Methods 3D ...........

PDE - Finite Element Methods & GCR Preconditioners

PDE - BEM Integral Equation Method I ... ..... .

PDE - BEM Integral Equation Method II. .... .....

PDE - Fast Methods for Integral Equation Solvers . ...

Model Order Reduction I . .. ...... .........

Model Order Reduction II . ................

Model Order Reduction III ......... . .... . ...

. . . . . 384

. . . . . 396

. . . . . 407

. . . . . 429

. . . . . 444

. . . . . 456

. . . . . 465

. . . . . 474

. . . . . 487

3.18

3.19

3.20

3.21

3.22

3.23

3.24

3.25

3.26



10



Introduction

Numerical methods and algorithms have developed and matured vastly over the past

three decades now that computational analysis can be performed on almost any per-

sonal computer. There is a need to be able to teach and present this material in

a manner that is easy for the reader to understand and be able to go forward and

use. Three popular course at MIT were without lecture notes; in this thesis the

lecture notes are presented. The first chapter covers material taught in Numerical

Methods for Partial Differential Equations (2.097/6.339/16.920) specifically the In-

tegral Equation Methods section of this course, chapter two shows the notes for the

course Introduction to Numerical Simulation (2.096/6.336/16.910), and chapter three

contains the notes for the class Foundations of Algorithms and Computational Tech-

niques in Systems Biology (6.581/20.482). These course notes give a broad overview

of many algorithms and numerical methods that one can use to solve many problems

that span many fields - from biology to aerospace to electronics to mechanics.
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Chapter 1

Integral Equation Methods

Numerical Methods for Partial Differential Equation is a course that covers several

techniques for discretizing partial differential equations in order to solve them. Very

often partial differential equations do not have analytic solutions and one needs to

apply an appropriate method to solve them. In this thesis, the Integral Equation

Methods used for solving Partial Differential Equations is covered.

1.1 Discretization of Boundary Integral Equations

Numerical Methods for PDEs

Boundary Element Methods, Lecture 1

Introduction to Discretization of Boundary Integral Equations

L. Proctor, S. De, C. Coelho, D. Willis, X. Wang, & J. White

November 23, 2008



1 Module Outline - 6 Lectures

Overview Integral Equation Methods
Applications: Aero, MEMS, IC Design
Informal Overview:

Formulation & Discretization
Quadrature and Cubature for computing integrals

1-D, 2-D, and dealing with Singularities

1st and 2 nd Kind Theory - Part 1
Discretization

Formulating 3-D Integral Equations
Radiation Conditions, Ansatz & Green's Formulations

1st and 2 nd Kind Theory - Part 2
Convergence theory

Fast Multipole and FFT-based methods

2 Outline for Today

Background
Exterior versus interior problems
Point source approach

Test Function Selection
Collocation Method
Galerkin Method

Some issues in 3D
Singular integrals

3 Background

3.1 Interior vs Exterior Problems
Interior Exterior

Temperature in a tank Ice cube in a bath

What is the heat distribution?
Heat flow - Thermal conductivity .Jsurface On



3.1.1 The Interior Problem

Example: Heat Distribution in a Tank

How does one determine the heat distribution using the finite difference method?

Use the above example of heat distribution in a tank, to see what is meant by

an interior problem. This is a Dirichlet problem because T(Y), the temperature,
is defined on the surface £ E F. The steady state two dimensional heat flow

equation is defined using the Laplace Equation, V 2T(i) = 0. The domain of

this problem is clearly the interior of the tank, Y c Q.

3.1.2 The Exterior Problem

Up until this time, all problems that have been studied using finite-element and

finite-difference methods have been interior problems, but now, we begin to

wonder how to form an exterior problem. This poses some problems for these

other methods such as generating the grid as well as mesh truncation.

Example: Ice Cube in a Bath

Needed

Above is a problem showing an ice cube in a bath which is used to indicate an

exterior problem. Again, this is a Dirichlet problem because T(£) is defined

on the surface cE r and described by the steady state two dimensional heat

flow equation defined using Laplace's Equation, V 2T(Y) = 0. The problem

domain is the infinitely extending region exterior to the ice cube. A point that

we will expand in a later lecture is that with exterior problems, an additional

boundary condition is needed to specify what happens at a large distance away

from our point source. Assuming there are no heat sources exterior to the cube

will impose the following radiation boundary condition

lim T(Y) - 0.



Suppose that for this specific problem, we are only interested in what occurs at
the surface of the cube. It seems inefficient to use the finite-difference or finite-
element methods where one needs to compute the temperature everywhere in Q.

T=O at oo Surface
For FDM/FEM -

one must
truncate
the mesh

3.2 Examples

3.2.1 Computation of Capacitance

What is the capacitance?

potential

V2 = 0 Outside

T is given on Surface

Capacitance - Dielectric Permittivity an

In the example in the slide, the yellow plates form a parallel-plate capacitor
with an applied voltage V. In this 3-D electrostatics problem, the electrostatic
potential T satisfies Laplace's equation V2 'I(x) = 0 in the region exterior to
the plates, and the potential is known on the surface of the plates (Dirichlet
boundary condition). Furthermore, far from the plates,

lim (Y) -4 0.

(Exterior Radiation Boundary Condition to be studied further in a future lec-
ture). The value of interest is the capacitance, C, which satisfies

q =CV

where q, the net charge on one of the plates, is given by the surface normal of
the potential integrated over one plate and scaled by a dielectric permittivity.



This is a typical application example, determining the charge density on the

surface of conducting plates given an applied voltage. In this particular example,
the top plate potential is I = 0.5V and the bottom plate potential is I =

-0.5V, where V is the voltage noted in the figure.
For this exterior Dirichlet problem, one can write an integral equation that re-

lates the surface charge density on the plates o to the potential on the plates.

This integral equation, i(Y) = Jil o.(f')dS' , is often referred to by physi-

cists as the superposition integral. In the integral equation, x is any point on

the plate surfaces and the surface being integrated over is the union of the top

and bottom plate surfaces. Note that the integration surface is not a connected

domain, but this presents no difficulties.

3.2.2 Drag Force in a Microresonator

Resonator Discreti2cd Structure

Computed Forces Computed Forces
S Bottom View iew

Note 2 Example 2: Drag force in a MEMS device

The example in the slide is a microresonator, it is a structure that can be made

to vibrate using electrostatic forces. The changing character of those vibra-

tions can be used to sense rotation. The particulars of how the microresonator

operates is not directly relevant to our discussion of integral equations, except

for one point. In order to determine how much energy is needed to keep the
microresonator vibrating, it is necessary to determine the fluid drag force on

comb structures shown in the bottom part of the slide. The fluid is the air

surrounding the structure, and at the micron-scale of these devices, air satisfies

the incompressible Stokes equation,

V2 u(x) = Vp() (1)

V -u(x) = 0

where u is the fluid velocity and p is the pressure. By specifying the comb

velocity, and then computing the surface pressure and the normal derivative

of velocities tangent to the surface, one can determine the net drag force on

the comb. Once again, this is a problem in which the known quantities (the

Example 1: Capacitance problemNote 1



comb velocity) and the quantities of interest (the derivative of the tangential
components of fluid velocity) are on the surface.

3.2.3 Aircraft Drag

Discretization for F-18 pressure simulation (no lift)
Inviscid, Irrotational, Steady Flow
Potential flow: V 2 u(x) = 0 Vu = velocity

Note 3 Example 3: Aircraft Drag

The potential flow model for aircraft drag computation will be discussed in more
detail in subsequent lectures, so we only give a brief description here. In order to
compute the drag on the wing of an aircraft, one must determine the difference
between the wing velocity and the velocity of the air very close to the wing. If
the air can be assumed inviscid, irrotational, and incompressible, the velocity
is given by the gradient of a scalar potential which satisfies Laplace's equation.
The boundary conditions for the Laplace's equation are given as a velocity
boundary condition on the aircraft surface, equivalently a Neumann condition
on the potential, and it is usually assumed that the potential approaches zero
at infinity. The boundary condition at infinity is more subtle than it may seem,
as we shall see in later lectures. Finally, it is common to introduce an artificial
boundary in the domain, and specify a condition on that boundary to introduce
rotational effects.

3.2.4 Capacitance of Microprocessor Signal Lines



Example 4: Capacitance of microprocessor signal lines

This last example in the above slide is a picture of the wiring on a microprocessor
integrated circuit. A typical microprocessor has millions of wires, so we are only

looking at a small piece of a processor. The critical problem in this example

is determining how long signals take to get from the output of a logical gate

to the input of the next gate. To compute that delay, one must determine the

capacitance on each of the wires given in the slide picture. To do so requires

computing charges given electrostatic potentials as noted above.

3.3 Advantages of Integral Equation Method

3.3.1 What is common about these examples?

Exterior Problems
MEMS device - fluid (air) creates drag
Aircraft Design - exterior air flow

Signal Line - Exterior fields.

Quantities of interest are on surface
MEMS device - Just want surface traction force

Aircraft Design - Just want surface tangent velocities

Signal Line - Just want surface charge.

Exterior problem is linear and space-invariant
MEMS device - Exterior Stoke's flow equation (linear)

Aircraft Design - Laplace's equation, plus wakes.
Signal line - Laplace's equation in free spce (linear)

But problems are geometrically very complex

3.3.2 Why not use FDM / FEM?

2-D Heat Flow Example

T =Oat-

But, must
truncate the

mesh

Only need a on the surface, but T is computed everywhere.
Must truncate the mesh, - T(oo) = 0 becomes T(R) = 0.

Consider the two dimensional exterior heat conduction problem in the above

figure in which the temperature is known on the surface of the square. Suppose

the quantity of interest is the total heat flow out of the square.

The temperature T satisfies

V 2T(x) = 0 x GE

Note 4



T(x) given x E F (2)

lim T(x) = 0
11X I-*to

where Q is the infinite domain outside the square and F is the region formed by
the edges of the square.
Using finite-element or finite-difference methods to solve this problem requires
introducing an additional approximation beyond discretization error. It is not
possible to discretize all of Q, as it is infinite, and therefore the domain must be
truncated with an artificial finite boundary. In tile slide,the artificial boundary
is a large ellipse oin which we assume the temperature is zero. Clearly, as the
radius of the ellipse increases, the truncated problem more accurately represents
the domain problem, but the number of unknowns in the discretization increases.

3.4 Point Source Approach

3.4.1 Green's Function

Heat Distribution in 2-D

"point charge"

.(x_ )2 + (yx( - y)

(xy)

Green's Function: T log ( - o + ( o)2

From basic electrostatics, one knows that in 3-D, the potential field produced
by a point charge decays inversely with the distance to the point charge. Since,
roughly, one can represent any charge distribution using a sum of point charges,
one can express the potential due to a charge density as a sum of point charge
potentials. Therefore, point charge potentials play a special role, and are often
referred to as Greens' functions for the problem.

In 2-D The potential due to a point charge is:

= log (V - x) 2 + (y- yo)2) (3)

V(X. y) # (xo, yo)

In 3D The potential due to a point charge is:

1
U = (4)

/( - xo) 2 + (y- yo)2 + (z- 2zo) (

V(x, y, z) 7 (Xo, yo, z0 )



In 2D If U = log (xX - o)2 (y yo)2

then + = 0 V (x, y) (xo, o)

In 3D If u = - 1o) O2nx3U -xo)2+(y-yo)2+(z-Zo)2

then + -2 + z = 0 V (x, y, z) Z (x, yo, zo)

Proof: Just differentiate and see!

In the next few slides, we will use an informal semi-numerical approach to de-

rive the integral form of Laplace's equation. We do this in part because such a

derivation lends insight to the subsequent numerical procedures.

To start, recall from basic physics that the potential due to a point charge is

related only to the distance between the point charge and the evaluation point.

In 2-D the potential is given by the log of the distance, equation (3), and in

3-D the potential is inversely proportional to the distance, equation (4). These

functions are sometimes referred to as Green's functions for Laplace's equation,
but have the physical interpretation as the potential due to a point charge. We

will be studying Green's functions in more depth later on.

> Exercise 1 Show by direct differentiation that the functions in equations (3)

and (4) satisfy V 2u = 0, in the appropriate dimension almost everywhere. .

3.4.2 Scaling Green's Function

u is given on surface

-Surface - + = 0 outside
l, Yo y

2

Let u= log (x-x)2 + )2

- + = 0 outside

Boundary conditions are not satisfied!

A simple idea for computing the solution of Laplace's equation outside the

square is to let
u(x, y) = a log V(x- xo)2  o)

where (xo, yo) is a point inside the square. Clearly u will always satisfy V 2u = 0

outside the square, but u may not match the boundary conditions. By adjusting



a, it is possible to make sure to match the boundary conditions at at least one
point.
This concept is applied to a circle as a simple example of how to match the
boundary conditions.

T=log( X+ )

T(i E r)= log R =1 ?

Multiply by a constant:

T=calog( xT+y)

charge strength

S "; 0; circle

S .... /

> Exercise 2 Suppose the potential on the surface of the square is a constant.
Can you match that constant potential everywhere on the perimeter of the
square by judiciously selecting a ? m

u is given on surface

* Og
I -v, )

a2u a2u+ = 0 outsideac2 ~y

u= ai log ( X - )2 (y y)2) aiG(x -Xi,y-yi)
i=l 1 i-i1

Pick the ai's to match the boundary conditions!

To construct a potential that satisfies Laplace's equation and matches the
boundary conditions at more points, let u be represented by the potential due
to a sum of n weighted point charges in the square's interior. As shown in the
slide, we can think of the potential due to a sum of charges as a sum of Green's
functions. Of course, we have to determine the weights on the n point charges,
and the weight on the ith charge is denoted hereby ai.

, Source Strengths selected
SY to give correct potential at

... .- .. --test points.

G(xt, - X,Yt, - yi) ... G(xt, - Xn, Yt, - Yn)SG(xt,,7 - xi )Yt,, - YI) ... G(xt,, x, ~nYt. - Yn.)

,( t, )yt,

V(Xts, yt)



To determine a system of n equations for the n cai's,consider selecting a set of
n test points, as shown in the slide above. Then, by superposition, for each test
point (xt , Yt),

U(Xt 2 , Yt,) = ai log .(Xt - o) 2 + )2 => aG(xt, - xo, it - yo).
i=1 . i=l1

(5)
Writing an equation like (5) for each test point yields the matrix equation

G(xtl - x1, ytl - yl) G(tl x- nytl - Yn) al I(XtlY)

SG(Xt, - Xl,YtL Y) . G(xt,,- n Yt- Yn) I L t.(Xtn ) I

(6)

The matrix A in equation (6) has some properties worth noting:

* A is dense, that is Aij never equals zero. This is because every charge
contributes to every potential.

* If the test points and the charge points are ordered so that the ith test
point is nearest the ith charge, then Ajj will be larger than Ai,j for all j.

The 2 nd item above seems to suggest that A is diagonally dominant, but this

is not the case. Diagonal dominance requires that the absolute sum of the off-
diagonal entries is smaller than the magnitude of the diagonal. The matrix
above easily violates that condition.

P> Exercise 3 Determine a set of test points and charge locations for the 2-D
square problem that generates an A matrix where the magnitude of the diagonals
are bigger than the absolute value of the off-diagonals, but the magnitude of
the diagonal is smaller than the absolute sum of the off-diagonals. n

3.4.3 Source Point Locations

Where should the sources be located?

'hA i

Close to the boundary Clustered in the center



Problems with these placements:

More singular
weight matrix

S= log R

Close to the boundary Clustered in the center

3.4.4 Computational Results

Circle with Charges r=9.5 ,

R=1
Potentials on the Circle *

n=20 n=40

It is possible to construct a numerical scheme for solving exterior Laplace prob-
lems by adding progressively more point charges so as to match more boundary
conditions. In the above graph, we show an example of using such a method
to compute the potential exterior to a circle of radius 10, where the potential
on the circle is given to be unity. In the example, charges are placed uniformly
on a circle of radius 9.5, and test points are placed uniformly on the radius 10
circle. If 20 point charges are placed in a circle of radius 9.5, then the potential
produced will be exactly one only at the 20 test points on the radius 10 circle.
The potential produced by the twenty point charges on the radius 10 circle is
plotted in the lower left corner of the slide above. As might be expected, the
potential produced on the radius 10 circle is exactly one at the 20 test points,
but then oscillates between 1 and 1.2 on the radius 10 circle. If 40 charges and
test points are used, the situation improves. The potential on the circle still
oscillates, as shown in the lower right hand corner, but now the amplitude is
only between 1 and 1.004.

3.5 Charge Density

Want to smear point charges to the surface



Results in an integral equation

T() = jr G( , ')o()dS' (7)

How do we solve the integral equation?

In equation (7) for which variable are we trying to solve?

C(x',y')

Charge
density
defined
on the
surface

I (x, y)= or (x', y') log (x - x')2 -y')2dx'dy'

Single Layer Potential
The oscillating potential produced by the point charge method is due to the

rapid change in potential as the separation between evaluation point and point

charge shrinks. If the point charges could be smeared out, so that the produced

potential did not rise to infinity with decreasing separation, then the resulting

computed potential would not have the oscillation noted on the previous slide.

In addition, it makes the most sense to smear the point charges onto the surface,
as then the charge density and the known potential have the same associated

geometry. The result is the integral equation (7), where now the unknown is

a charge density on the surface and the potential due to that charge density

is given by the well-known superposition integral. In the case of two or three

dimensional Laplace problems, G(,~ i) can be written as G(i - :), as the

potential is only a function of distance to the charge density and not a function

of absolute position. For such a Green's function, this equation is,

jr G (i - ?)(V))dS', (8)

which one may recognize from system theory as a convolution integral. This

connection is quite precise. A space-invariant system has an impulse response,
which is usually referred to as a Green's function. The output, in this case, the

potential, is a convolution of the impulse response with the input, in this case,
the charge density. Such an integral form of the potential is referred to as a

single layer potential.



Note 5 
Types of integral equations

The single layer potential is an example of a class of integral equations known as
"Fredholm integral equation of the First Kind". A Fredholm integral equation
of the Second Kind results when the unknown charge density exists not only
under the integral sign but also outside it. An example of such an equation is

IP() ) = _( + K(- )dS. (9)

Fredholm integral equations, in which the domain of integration is fixed, usu-
ally arise out of boundary value problems. Initial value problems typically give
rise to the so-called Volterra integral equations, where the domain of integra-
tion depends on the output of interest. For example, consider the initial value
problem

dx(t)
- = tzx(t); t [0, T], T > 0.

x(t = 0) = xo

The "solution" of this equation is the following Volterra integral equation:

x(t) = xo + x()d.

4 Basis Functions

4.1 Basic Idea

Represent o(x)=Za, p,(x)

Example Basis
Represent circle with straight lines
Assume cr is constant along each line

The basis functions are "on" the surface

Basis Functions can be used to approximate the surface charge density in a similar
way in which they approximate geometry for finite elements.

Numerical solution of the single layer potential
As we have studied extensively in the finite-element section of the course, one
approach to numerically computing solutions to partial differential equations is
to represent the solution approximately as a weighted sum of basis functions.
Then, the original problem is replaced with the problem of determining the
basis fmnction weights. In finite-element methods, the basis functions exist in
a volume, for integral equations they typically exist on a surface. For 2-D
problems that means the basis functions are restricted to curves and in 3-D the

Note 5 Types of integral equations



basic functions are on physical surfaces.
As an example, consider the circle in the above figure. One could try to represent

the charge density on the circle by breaking the circle into n sub-arcs, and then

assume the charge density is a constant on each sub-are. Such an approach is

not commonly used. Instead the geometry is usually approximated along with

the charge density. In this example case, shown in the center right of the slide,
the sub-arcs of the circle are replaced with straight sections, thus forming a

polygon. The charge density is assumed constant on each edge of the polygon.

The result is a piecewise constant representation of the charge density on a

polygon.

4.2 Geometric Approximation

Piecewise Straight surface basis Triangles for 2-D FEM
Functions approximate the circle approximate the circle too!

SW() J G(x, x') ap (')dS'

The idea that both the geometry and the unknown charge density has been

approximated is not actually a new issue. As shown in the figure in the above

slide, if FEM methods are used to solve an interior problem, and triangular

elements are used, then the circle is approximated to exactly the same degree

as when straight sections replace the sub-arcs for the surface integral equation.

As shown at the bottom of the above slide, we can substitute the basis function

representation into the integral equation, but then we should also note that

the integral is now over the approximated geometry. It is common, but not

mathematically justified, to ignore the errors generated by the geometry ap-

proximnation. We will also ignore the error in the geometric approximation in

our analyses, just for simplicity. In the case of polygonal geometries, there is no
geometric approximation, so there is at least one case where the assumption is

precise. It should be noted, however, that there are often analytic results only

for smooth geometries, and then before making comparisons to such analytic

results, it is necessary to examine the effect of the approximated geometry.

If the original problem is a polygon
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there is no geometric approximation

4.2.1 Piecewise Constant Straight Sections

x,

1, 1) Pick a set of n Points on the
surface
2) Define a new surface by
connecting points with n lines.
3) Define vi (x) = I ifx is on line 1,
otherwise, (i (x) = 0

(2) = approx G(x ') f ii(V )dS' S i ne i
surface

How do we determine the (i's?

G(ZI YI)dS'

We complete the description of using constant charge densities on straight sec-
tions as the basis. If we substitute this example basis function into the integral
equation, as is done above, the result is to replace the original integration of
the product of the Green's function and the density with a weighted sum of
integrals over straight lines of just the Green's function. The next step is then
to develop an approach for determining the weights, denoted here by ai's.



5 Test Points

5.1 Residuals

5.1.1 Definition and Minimization

R( ) = (x) -/approx G(, ') ZaiCpi(')dS' (10)

surface

Pick the ai's to minimize R(Y)
General Approach: Pick a set of test functions ¢1,..., n and force R() to be

orthogonal to the set:

Si() R()dS= 0 Vi (11)

One way of assessing the accuracy of the basis function based approximation

of the charge density is to examine how well the approximation satisfies the

integral equation. To be more precise, we define the residual associated with

the integral equation and an approximate solution, equation (10). Note that

R(Y) is just the difference between the given potential on the surface and the

potential produced by the approximated charge density. Note also that the

equation is now over the approximate geometry and therefore i and :' are both

on the approximated surface.
If the representation satisfies the integral equation exactly, then the residual

R(5) will be zero for all S and the approximate solution is equal to the exact

solution (provided the integral equation has a unique exact solution ... more

on this later). In general, though, this is not possible, and instead we will try

to pick the basis function weights, the ai's, to somehow minimize R(5). One

approach to minimizing R(5) is to make it orthogonal to a collection of test

functions, which may or may not be related to the basis functions, equation

(11). Enforcing orthogonality in this case means ensuring that the integral of

the product of R(i) and O(5) over the surface is zero.

5.1.2 Residual Minimization Using Test Functions

f i()R()dS = 0 -

/ i( )I()dS - Jjapprox =i(Y)G(, ) aj (:)dS'dS = 0 (12)

surface j=1

We will generate different methods by choosing the q1,..., n

Collocation : f4i (Y) = 6(- t,) (point matching)

Galerkin Method : 4i(Y) = i(Y) (basis = test)
Weighted Residual Method : 0i(Y) = 1 if oi(g) : 0 (averages)



As noted in the equation (12), by substituting the definition of the residual into
the equation (11), it is possible to generate rn equations, one for each test func-
tion. The generated equation has two integrals. The first is a surface integral of
the product of the given potential with the test function. The second integral
is a double integral over the surface. The integrand of the double integral is
a product of the test function, the Green's function, and the charge density
representation.
Three different numerical techniques can be derived by altering the test func-
tions.

5.2 Collocation

Collocation: Oi (') = 6(x- Iti) (point matching)

Aij

a approx G(£ti, £')(£')dS' =W(X-t,) ->
j=1 surface

L A 1 ,, An 1 Fn ''(tn)1

The collocation method, described in the above slide, uses shifted impulse func-
tions as test functions, Oi(x) = 6(x- i). Impulse functions, also called "delta"
functions, have a sifting property when integrated with a smooth function f(Y),

/ f()6(5 -X,)dx = f( ).

Imnpulse functions are also referred to as generalized functions, and they are
specified only by their behavior when integrated with a smooth function. In the
case of the impulse function, one can think of the function as being zero except
for a very narrow interval around Yi, and then being so large in that narrow
interval that f 6(X - i)dx = 1.
As the summation equation in the middle of the above slide indicates, testing
with impulse functions is equivalent to insisting that R(i) = 0, or in words,
that the potential produced by the approximated charge density should match
the given potential at n test points. That the potentials match at the test
points gives rise to the method's name, the point where the potential is exactly
matched is "co-located" with a set of test points.
The n x n matrix equation at the bottom of the above slide has as its right-
hand side the potentials at the test points. The unknowns are the basis function
weights. The jth matrix element for the i"h row is the potential produced at
test point xi by a charge density equal to basis function Wj.



5.2.1 Centroid Collocation for Piecewise Constant Bases

Collocation point in
line center

[ ,, :u : I F 2 I P[ 1i ] n( J
An',1 ... An,n O~n JL T(Xtl) j=-

In the above slide, a specific collocation algorithm is described. First, the basis

being used is the constant charge density on n straight sections or lines, as de-

scribed above. Note that therefore the geometry is being approximated. Second,
the collocation points being selected are the centroids of the basis functions, in

this case just the center of each straight line. Note that the collocation point is

on the approximated geometry, not the original geometry. So, one can think of

the problem as having been restated to be on a polygon instead of the original

circle. One could also have selected the collocation points on the original circle,
but then the replacement interpretation does not hold.
In collocation, or point-matching, the charge densities on each of the straight

lines are selected so that the resulting potential at the line centers matches the

given potential. As the equations on this slide make clear, the matrix element

Ai, is the potential at the center of line i due to a unit charge density along

line j.
It should be noted that the matrix A is dense, the charge on line j contributes

to the potential everywhere. Also note that if line j is far away from line i, then

AiJ length(linej) x G(i, , tj) (13)

> Exercise 4 Suppose we are using piecewise constant centroid collocation

to solve a 2-D Laplace problem, so G(x, y, x', y') = log (x - x') 2 + (y - y)2

Roughly how far apart do line sections i and j have to be for equation (13)

to be accurate to within one percent? Assume line j has length of one. Does
your answer depend on the orientation of line j? Does your answer depend on

the orientation of line i? (You should answer yes to one of these and no to the

other, do you see why?) a

5.2.2 Centroid Collocation Generates Nonsymmetric A

j1 Ai I

j=l



A 1,2  i 2 G(t ,)dS 5 ne 1 G(Yt 2 , )dS' = A 2 ,1  (14)

Consider the two line sections, 11 and 12 given in the above figure. For Laplace
problems, G(, .) = G('., £), which suggests a symmetry in the underlying
integral equation that is not represented in the collocation discretization. This
asymmetry is shown in equation (14) by noting that A1,2 #' A 2,1 . That is, the
potential at the center of 12 due to a unit charge density on 11 is not equal to
the potential at the center of 11 due to a unit charge on 12.
It is possible to scale the variables to improve the symmetry, consider a change
of variables

&i = ai x length(lined).

In this change of variables, the unknowns &i are now the net line charges rather
than the line charge densities. In this new system, A& = T, where the elements
of the matrix A are given by

A1 G(xti, x)dS p.

length(linej) in, j

Under the change of variables, if line j is far away from line i, then

Aij G(t,, Xt) A 4j,. (15)

In other words, the elements of A corresponding to distant terms are approxi-
mately symmetric.

Is T(£) due to cr( ) the same as T(.F) due to ua(o)?

R - ----

Green's Function is due to log R

> Exercise 5 Give an example which shows that the scaled entries of A can be
far from symmetric. Assume we are using piecewise constant straight sections
with centroid collocation and the 2-D Laplace's equation Green's function. .



5.3 Galerkin
Galerkin: Oi(x) = oi(x) (test=basis)

J, (X) R(.)dS- Jo (x) T(x)dS-f f p,(x)G (x')aS9dS(= O

A171  Ar] ai b1

AnL .-.. An,n aJ bI

If G(, ') = G(~', Y) then Ai,j = Aj,i = A is symmetric

In the Galerkin method, the test functions are equal to the basis functions. In
particular, one generates n equations for the basis function weights by insisting
that R(Y) is orthogonal to each of the basis functions. Enforcing orthogonality
corresponds to setting

J p()R(Y)dS = 0

and substituting the definition of R(Z) into the orthogonality condition yields
the equation in the center of the above slide.
Note that the Galerkin method yields a system of n equations, one for each
orthogonality condition, and n unknowns, one for each basis function weight.
Also, the system does not have the potential explicitly as the right hand side. In-
stead, the ith right-hand side entry is the average of the product of the potential
and the ith basis function.

5.3.1 Galerkin for Piecewise Constant Bases

f I( )dS=ja, f fG(X,x')dfS''dS

Aj ,b

An,1 . Ann an bn

In the Galerkin method, the basis has constant charge density on n straight

sections or lines. We will think of the problem as having been restated to be

on a polygon instead of the original circle. The charge densities on each of the

straight lines are selected so that the resulting line averaged potential matches

the line averaged given potential. As the equations on the above slide make

clear, the matrix element Ai,j is the average potential over line i, scaled by the

length of line i, due to a unit charge density along line j.



As with the collocation method, the matrix A is dense because the the charge
on line j contributes to the averaged potentials everywhere. Also note that if
line j is far away from line i, then

Aij m length(iine.) x length(lin ) x G(l,, ) (16)

> Exercise 6 Suppose we are using piecewise constant centroid collocation
to solve a 2-D Laplace problem, so G(x, y, x', y') = log /(X - x') 2 + (y - y)2.
Roughly how far apart do line sections i and j have to be for equation (16) to
be accurate to within one percent? Assume line j has length of one. Does your
answer depend on the orientation of line j? Does your answer depend on the
orientation of line i? (Your answer should be different than the answer you gave
for the collocation method. Do you see why?) *

5.4 Summary

Compare the Collocation and Galerkin methods on a two-dimensional circle.

What do the test functions look like?
What do the R,esiduals look like?

Test Functions

Collocation Galerkin

6i ( F .F,) 0 r) - G F)



Collocation Method
4, ') ,y K "

/ /-
Residual
is zero

Galerkin Method

R (x)

Integral
is zero

6 Issues in 3D

6.1 Geometric Representation

6.1.1 Introduction

Example: Ship's Hull

More errors are introduced with expansion of dimensions

In 2-D In 3-D

Note 6 "Leaky Panels"

Many papers in the literature on solving integral equations refer to "panel meth-

ods". The name is derived from the idea of breaking a surface into flat panels.

In the application area of analyzing ocean wave forces on ship hulls, panel meth-

ods are commonly used. However, it is not possible to represent a curved hull

with quadrilateral flat panels. Researchers in the area often create a best fit

panelled surface in which there are gaps between the edges of the panels. Such

a discretization technique is often referred to as using "leaky panels", a very

compelling image.



Integral Equation : l(x) = Jsrfac Ix- ')dS'
Discretize Surface into

Represent a (x)= a p(x)
i Basis Functions

1j (x)= ifx is on panelj
Panelqj (x)=O 0 otherwise

Consider solving the integral equation where the surface is the surface of the
cube shown. The first step, as we have mentioned in previous lectures, is to
develop a basis in which to represent the surface charge density a.
The cube pictured in the slide has had its surface divided into panels, and
a basis is derived from the panels. In particular, one can associate a basis
function co.J with each panel j by assigning oj (£) the value one when ' is a
point on panel j, and setting oj (Y) = 0 otherwise. If ac is approximated by
a weighted combination of these basis functions, then the approximation is a
piecewise constant representation of the charge density on the surface of the
cube.
A few aspects of this basis set should be noted.

* The basis functions are orthogonal, that is if i 0 j,

I pj(Y) Vi(Y)dx 
= 0.

* These basis functions are normalized with respect to I, not 12. That is,
opl = 1 but

Pj12 = i (£);;oi (Z)dx = panel area.

6.2 Centroid Collocation

Put collocation points at panel centroids

Collocation
,. point



After one has decided on a basis with which to approximately represent the
surface charge density, the next step is to develop a system of equations from
which to determine the basis weights, denoted as the ai's. The most commonly
used approach to forming such a system is to use collocation, though Galerkin
methods are also quite widely used. Recall that in collocation, the basis function
weights are determined by ensuring the the integral equation is exactly satisfied
at a collection of "collocation" points. For panel methods, the most common
choice for the position of the collocation points are the panel centroids, as shown
in the cube diagram above.
The equation in the top of the above slide relates the potential at collocation
point xci to the weights for the panel-based basis functions. To see how the
equation was derived, consider evaluting the potential at the ith collocation
point using the original integral equation

(rface 1 ()dS', (17)

where 4 is the know potential on the problem surface and a is the unknown
charge density. Substituting the approximate representation for a,

j=1

into the integral equation results in

(C, surf aceG(c., ') (j1 j( ')dS', (18)

where G(£, :') - TV is used to simplify the formula. Exploiting the fact

that pj (Y) = 1 if - is on panel j, and zero otherwise, results in the formula at

the top of the above slide.
The system of equations from which to determine the basis function weights is
given in the lower corner of the slide. The right hand side of the system is the
vector of known potentials at the collocation points. The i, th element of the
matrix A is the potential produced at, collocation point i due to a unit charge

density on panel j. The vector of a's are the unknown panel charge densities.

> Exercise 7 Determine a scaling of the a's (&i = ciai) such that the scaled
matrix A has the property

1

when cs - Ec is much larger than a panel diameter. u



6.2.1 Calculating Matrix Elements

ZY

panelj Y

collocation point i

Z 4 -X- Collocation

zpoint

SA, = J dS'

Panel j lj K xi

One point _ . Panel Area
quadrature A|

Approximation Il : -X 1 x 1,

Four point e O.25*Area
quadrature A,, -

Approximation x J 1"X, I,

In order to calculate the matrix entries for the system of equations described in
the previous slide, recall that Aij is the potential produced at collocation point
i due to a unit charge density on panel j. The formula for Aij, is given on the
top right of the above slide.
The figure on the left of the above slide is a diagram of how one typically
computes the panel integral given on the top right. First, consider a shift and
rotation of the coordinate system so that the panel lies in the x-y plane at z = 0,
with the panel's center at x = 0, y = 0. The figure in the top left shows the
panel in the shifted and rotated coordinate system. Note that the collocation
point must also be placed in the new coordinate system.
If panel j is reasonably well separated from collocation point i, it is possible to
approximate the integral given in the top right by a single point quadrature.
More specifically, one could approximates the integral of 1 by a product

of 1 and the panel area. As show in the middle figure, a single

point quadrature is like treating the panel as if it were a point charge at the
panel's centroid, where the point charge's strength is equal to the panel area.
If the collocation point is close to the panel, then a single point quadrature
will be insufficiently accurate. Instead, a more accurate four point quadrature
scheme would be to break the panel into four subpanels, and then treat each of
the subpanels as point charges at their respective centers. This simple idea is
shown in the figure at the bottom of the above slide. This four point scheme is



equivalent to
1 4 0.25 * Area

p -i S I1 Ci - Xpoint 1 1

If the panel is a unit square in the x-y plane whose center is at the coordinate
system origin, then the four Ypointj's are (x, y, z) = (0.25, 0.25, 0), (x, y, z)
(-0.25, 0.25, 0), (x, y, z) = (-0.25, -0.25, 0), and (x, y, z) = (0.25, -0.25, 0).

6.2.2 Calculating "Self Term"

Z X Collocation
1i point

?Yi
A i= f dS'

Panelli - xA

One point A anel Area

quadrature
Approximation 0

= dS' is an integrable singularity

The diagonal terms Aj,i can not be computed using the quadrature approxima-
tion given on the previous slide. To see this, consider the figure at the top left of
the above slide, where a panel has been shifted and rotated into the x-y plane,
and the collocation point is the center of the panel. The integral that must be
computed is given on the right side of the top of the above slide.
As shown in the middle of the slide, using a single point quadrature scheme will
fail, because the distance between the point charge approximation to the panel
and the collocation point will be zero. Therefore, the single point formula will
require computing the reciprocal of zero, which is infinite. The problem is that
the integrand in

dS' (19)

is singular. That is, the integrand approaches infinity at a point x' which is in
the domain of integration. What is not so obvious is that (19) is an integrable
singularity. Therefore, even though the integrand approaches infinity at some
point, the "area under the curve" is finite.



Z
x t Collocationpoint

Panel i 4.i = I dS'

Disk of radius R p,,li x

surrounding
collocation point

Integrate in two = 1dS'+ dS
pieces ,V ' - x' . ,,,,,, x, - dS'

Disk Integral has 1 2 1 d
singularity but has I - dS'= -rdrd6 2R

analytic formula , - Xfl r

In the above slide, we both show that

-1 dS'

is integrable, and also give an idea about how to compute the integral.
As shown in the slide, first rotate and shift the coordinate system so that the
panel is in the x-y plane at z = 0, and so that the collocation point (or equiv-
alently the panel centroid) is at the origin. In this new coordinate system, the
integral can be written as

Ajj = dS'
panel(rs) 111 d S '

where the notation panel(rs) is used to indicate that the integral is over the
rotated and shifted panel.
On the top left of the above slide, a circular disk of radius R and center at the
collocation point is inscribed in the rotated panel. In the equations that follow
the figure, it is noted that the panel integral can be recast as the sum of an
integral over the disk plus an integral over the rest of the panel. The integrand
in the integral over the rest of the panel is no longer singular, but the integrand
in the integral over the disk is still singular.
The integral over the disk can be computed analytically by using a change of
variables. After rotating and shifting the panel, the disk is in the x-y plane and
its center, equal to the collocation point, is at zero. Therefore,

SI - dS'l : ldi 'lsk dS'

Apply a change of variables as transformations of two-dimensional regions. Re-
call this mapping from an earlier lecture in the finite difference method. Suppose
that a region Q in the r-O plane is transformed one-to-one into the region Q by
differentiable equations of the form

x = rcosO, y = rsi'nO.

Any function f(x, y) defined on Q can be thought of as a function f(x(r, 0), y(r, 0))
on Q. The integrals of these functions are related by

/ f(x, y)dxdy = Jl f(x(r, 0), y(r, 6)) IJ(r, 0) drdO



where J(r. 0) is the Jacobian determinant of the coordinate transformation

where

cosO -'rsin8
sinO rcos0 r(cos2 0-+ si,"8 ) = r

So, now the integral mray be put into the transformed coordinates using this

transformation

The integral over the disk is easily seen to be 27rR.

-rdOdr

. Collocation
y point A = dS'

- x Paneli , ,,

1. If panel is a flat polygon, analytical formulas exist.

2. Curved panels can be handled with projection.

7 Summary

Integral Equation Methods
Exterior versus interior problenis
Start with using point sources
Standard Solution Methods
Collocation Method
Galerkin M\ethod
Integrals for 3D Problems
Singular Integrals

J(,. 0)
OX OX

Or 00



1.2 Numerical Quadrature

Numerical Methods for PDEs
Methods, Lecture 2

Numerical Quadrature

Notes by L. Proctor, S. De and J. White

November 26, 2008



1 Outline

Gaussian Quadrature
Convergence properties
Essential role of orthogonal polynomials
Multidimensional Integrals

Techniques for singular kernels
Adaptation and variable transformation
Singular quadrature.

2 Introduction

Numerical Quadrature is employed as an approximation used to evaluate in-

tegrals. We seek an appropriate numerical procedure applied to a definite in-

tegral, I{f} = f f(x)dx, where the approximation is essentially of the form
n

I,{f} ci f(xi). The n distinct points, xi are the quadrature nodes we
i=1

have chosen and the quadrature coefficients, or weights, are the aj terms. In
general,we would like to have the smallest possible quadrature error, En{f} -

I{f} - In{f}.

2.1 Simple Quadrature Example

f (x)dx - f()

fArea under the
curve is

approximated by
a rectangle

0 2

To simplify notation, consider the more generic problem of developing a good

numerical technique for evaluating the integral of a function f(x) on the domain

[0, 1]. We assume that the integrand is a "smooth" function, though we will ex-

amine this assumption later. First we have developed a naive approach for

obtaining a good approximation of the integral, one we call a simple quadra-

ture scheme.
The simplest approach is to replace the integral with the the product of the

interval (in this case one) and the integrand evaluated at a point inside the

interval. If the selected evaluation point is the center of the interval, x = 0.5,
we call the scheme midpoint quadrature.
A midpoint quadrature scheme replaces the area under the curve f(x) by a



rectangle whose height is the function f(x) evaluated at the midpoint x = 0.5.
The scheme is exact when f(x) is a constant. However, what is less obvious is
that the scheme is exact when f(x) is a line (an affine funcion of x) as well. The
most obvious way of seeing this is by realizing that when f(x) is a straight line,
the area under it is a trapezoid. This trapezoid has exactly the same area as
the rectangle which this scheme uses to approximate the integral (can you see
why?).

f(x)

f(0) = bo

Midpoint Quadrature
Exact for:

f (x)ao

S// "/

> Exercise 1 Suppose endpoint quadrature (in which the area under the curve
is replaced by a rectangle whose height is f(x) evaluated at x = 0 or x = 1) is
used instead of midpoint quadrature. For what class of functions is endpoint
quadrature exact? n

2.2 Improving the Accuracy

f1 (x) dx -f + f

S(x) Area under the
curve is

approximated by
two rectangles

1 1 3 x
0 4 2 4

One way of improving the midpoint quadrature scheme is to divide the interval
[0, 1] into subintervals [0, 0.5] and [0.5, 1], then write the integral

1

f (x)dx = fI f(x)dx + f(x)dx,
0.5

and finally apply a midpoint rule to the integral in each subinterval. We obtain
the scheme shown in the slide. The factor 1 appearing in front of f (1) and f ( 3 )

are just the domain lengths.

S2 1 x



> Exercise 1 Can you come up with an expression for the error in this case?
How much does the accuracy improve? n

Dividing the interval into two reduces the error, now consider using n subinter-
vals and repeating the midpoint quadrature rule on each subinterval. We obtain
the scheme

f1
0

n

f (x)dx =
i=l

subinterval
length

f(xc )

where the centroid of the i th subinterval is x, = ( + ) = . There is no

doubt that the accuracy improves, but the key question is by how much? How

does this error decrease with the number of subintervals used? And finally, are

there clever ways of obtaining better accuracy with less effort?

2.3 General n-point formula

01
f(x)dx -

i= 1
wi f(xi)

weight test point
1 -

77, Z - -

Key questions about the method:
How fast do the errors decay with n?
Are there better methods?

2.4 Different Geometric Approximations

Which geometry is the most accurate?

Endpoint Midpoint Trapezoid

X



3 General Quadrature Formula

3.1 General 1-D Formula

f (x)dxZ ~ w f (xi)

Weight Evaluation
Point

Free to pick the evaluation points.
Free to pick the weights for each point.

An n-point formula has 2n degrees of freedom!

After all the hard work we did dividing the domain into subintervals, we realize
that we cannot even integTate a quadratic function exactly on the domain. There
must be something that we can do to improve this scheme. We go back and look
at the general form of the quadrature approximation scheme. All we are doing is
approximating an integral by a weighted sum of function evaluations. So far we
have been choosing these weights as the subinterval lengths. We have also been
choosing the evaluation points as the center of the interval, in the midpoint
quadrature scheme. The weights are just some normalizing factors which we
have taken to be the fraction of the domain over which we are evaluating. The
equality of areas of trapezoids and rectangles that we previously discussed gives
us the extra polynomial accuracy of being able to obtain the area under a
straight line exactly. So, what would happen if we were to choose both the
integration points and the weights intelligently? For an n-point formula we
have n weights and n evaluation points to choose. That gives us 2n degrees of
freedom. Hence we must be able to exactly integrate a polynomial of degree at
most (2n - 1). This idea gives rise to the Gaussian quadrature scheme.

3.2 Evaluation Points & Weights Selection

Can make the result exact if f(x) is a polynomial

f(x) = ao + ax + a22  + atx = pl(x)

Select xi's and wi's such that

i i=1

for ANY polynomial up to (and including) Ith order
With 2n degrees of freedom, 1 = 2n - 1



Let p (x) denote a polynomial of degree 1 in the variable x (at 0). We want
to select the weights and integration points such that the formula

01
f (x)dx - p (x)dx - wip(xi)

0

is exact for all polynomials of degree up to (and including) 1. Obviously, with
2n degrees of freedom, the best we can do is 1 = 2n - 1.

Note 1 Example: Third Order Polynomial

As an example, consider integratin the function f(x) = x - x3 . from x = 0 to

x - 1. The exact solution is, I(f } = fo(x - x3)dx = 1. It is stated above
that since we have a polynomial of degree three (1 = 3), then we will be able
to find an exact solution using two point quadrature (n = 2). But, one must
note, that finding the exact solution is not simply a matter of applying midpoint
quadrature, as we have done previously. The solution using midpoint quadra-
ture is 0.2813, not very close to 0.25. Using Gaussian Quadrature, the method
of which will be studied in further detail later on, will provide the exact solution.

y
f (x) x- x

xl- W

Assuming the weights,
bounded on [0, 1],

wi, remain bounded, and the derivatives of f(x) are

I l
f (x)dx - wif (xi)

i=l

K
-(2n)!

Gaussian quadrature converges very quickly!!

;r;70



4 Error Analysis

4.1 Taylor Series Expansion

To derive the error of the midpoint quadrature scheme analytically, consider the
interval [0, h], h > 0 and Taylor expand f(x) about the center of this interval,

h

df() A(x) 2 d2 f()
f(x) = f(2) + A(x) 2! d for soe [0, h],dx 2! dX2

where A(x) = x - 2. The last term in the expansion is the
remainder. Integrating this expansion over the interval [0, h]

h

Taylor series

h3 d2 f(Q)
f (x)dxz = hf (2) + d 2

24 dx2

Hence the error in the midpoint quadrature approximation is

E =j f(x)dx - hf(2) = 24 d2 f

A function that is first-order polynomial in x would have zero as the second
derivative, and therefore the above expression tells us that the error of mid-
point quadrature for such functions is identically zero. In addition, the above
expression tells us that the error scales as the cube of the domain length.

> Exercise 2 If the midpoint quadrature scheme uses rectangular geometry to
approximate the area under the curve, then why is the first derivative needed
in the Taylor Series expansion? How does one represent the expansion of the
trapezoidal approximation? n

4.2 Example - Error vs. n

Ssin(x)dx - -sin
i=1

100

10-2

10

10-6

10

10 ......... ...

10 101 10
2

10
3

10
4

10
5



Note 2

Above is the example of integrating f(x) = sin(x) on the domain [0, 1]. We

obtain progressively better answers to the integration by increasing the number

of subintervals n. The error in evaluating the integral is plotted as a function

of the number of subintervals (n) above. The error appears to be going down

as o ().
From what we have just seen, the error inside the i th subinterval (of length

h = 1) is h df() for some (i E [i1, ]. Hence, for the entire interval [0, 1]

we can sum these errors and obtain the error, En for an approximation using n

subintervals as
nh 3  

1n 2f

24 n dx2

M

It is easy to see that if f(x) is a continuous function, M (being the mean) must

be bounded by the maximum and the minimum of f(x) on the interval [0, 1]

and hence, there must exist some ( E [0, 1] such that M = d2 f( )/dx2 . Hence

we obtain the estimate

nh3 d2 f() 1 d2 f( )
En

24 dx2  24n 2 dx 2

since h = 1/n. This error estimate tells us that the scheme is again exact for

constants and linear functions on the domain (no higher order polynomials!)

and, for a smooth function, the error decays algebraically.

4.3 The Exactness Criteria

Consider the Taylor series for f(x) expanded about x = 0

f(0) 1 8 f(0) + R
f(x) = f(O) + x + -+ l! x + R+1

Ox 1! x +T x'

R1+l is the remainder

R1 ol+ f() x+1
+ -(1 + 1)! OX+1

where r E [0, x]

Note 3

Of all functions, why are we interested in integrating polynomials? The reason

comes from the structure of Taylor's series expansion. The Taylor expansion

of a function in a local neighborhood of a point (here this point is chosen as 0

without loss of generality) is nothing but a power series expansion. The higher



the order of polynomials that our scheme can integrate means a higher order of
the remainder term in the expansion. The integral of the remainder over the
domain is precisely the error in numerical integration.

The exactness condition requires

I 
I = f 

1  

n

pl(x)dx = (ao + x + + a2x
2 + aix')dx E iP(xi)

i=1for any set of I + 1 coefficients ao, al,..., at

Equivalently

Saodx + axdx + xdx a2
2 dx + + axdx = wipl(xi)

i=1

This slide needs little clarification. Our exactness criterion is

pg(x)dx = (ao + alx + a2x + a 1)dx = wipl(i)
0 0i=

which is the same as

ao dx+al xdx+ +at xidx = ao wi+al wixi+ - -+at wixi'

i=1 i=1 i=1

For this to be an identity for the (1 + 1) arbitrary coefficients ai, we must have
the (1 + 1) conditions

wixiJ = xdx for j = 0, 1,...,1
i=1 0

Using the Taylor series results, the exactness criteria, and the innate linearity
of the quadrature scheme

/f (x)dx - wif (xi)

f 01+lx pwix)
(1 + 1)! Oxz+  (1 i- =

Remainder

Exactness condition will be satisfied if and only if



d0i = 1
' i=l

*0 i= 1

Reorganizing exactness equations

XI  " •• X _

I/ 'I

x, x ---' x/dx

Nonlinear, since xi's and wi,'s are unknowns

What is a practical way of computing the evaluation points and weights? The

system of equations is not easy to solve since xi's and wi's are unknowns.

5 Computing the Points & Weights

5.1 Newton's Method

Could use Newton's Method

F(y) = 0 =7 J (y:) (y' - yk) = -F (yk)

The nonlinear function for Newton is then

x"K ---' x', W, Jx' -dx

Note 4

Newton's method is an iterative technique for finding a value y such that F(y) =

0. The method is based on linearizing the problem about a guess at y, and then



updating the value of y by solving the linearized problem. In particular, the
iterate yk+1 is determined from yk by solving the linear system of equations

F(yk) + F(yk) (yk+l _ yk) = 0

where JF (y k ) is the Jacobian (multidimensional derivative) of the nonlinear
function F(y). The iteration is continued until the updated y is sufficiently
close to the exact solution, a criterion that can be difficult to verify. Newton's
method does not always converge, a phenomenon that is more likely when JF(y)
is nearly singular. For more about Newton's method, see the 6.336/16.910/2.096
course notes (available under open courseware).

starting point

Newton Method Jacobian reveals the problem

2n
. 1 0 0 --- 0

W x, - I -x , w t, .)- w1

Columns become
linearly dependent for

high order

Looking at the Jacobian of the problem, we realize that the first n columns
become increasingly linearly dependent for large 1. This is bound to happen
since we are looking into the space span{1, x,..., x'}. This basis always becomes
ill-conditioned with increasing 1. The solution is to obtain a polynomial basis
that is "normalized" in some sense so that it is properly conditioned.



5.2 Orthogonal Polynomials

5.2.1 Introduction

0

Exactness criteria will be satisfied if and only if

1 x

jc. (x)dx= ; c (x,) BUT

Each c, polynomial must

S i I(i) Contain an x' term

Be linearly independent

I (x)jd , (. )

The only difference from the previous set of criteria is that these polynomials
have better properties than the ones we chose before.

5.2.2 Orthogonality

For the normalized integral, two polynomials are said to be orthogonal if

cj ()c (,)dx , 0 for j 4 i

The above integral is often referred to as an inner product and ascribed the

notation
(ci. ) = .1

The connection between polynomial inner products al(nd vector inner products

can be seen by sampling.

/fI

(x) (-.j:. (.x) dh,



5.2.3 Exactness Criteria

Consider rewriting the exactness criteria

Jco (x) , = w, co (x,)
o : i=l

fc,,_, (x) dx Z w,,, (x,)

Low order terms

fc, (x) ix wc,, (x )

fc,,, (x) dt wc., (x,)
0 ii

High Order Terms

Recall that = 27n - 1
where I = degree of polynomial & n - number of coefficients

Call the first (n - 1) conditions the "lower order terms" and the last n conditions
the "higher order terms."

5.2.4 Higher Order Terms Contain Lower Order Terms

Write the higher order terms differently

C n(x)dx = n(x)

i=1

I IC2, I (r) d _
z . (x,
i= 1

i' c,, (x)co(x)d x = tu c,, (x, )co (xI )

i=1

CI,, (x)C,, I(X)clxI

z ,(

I (ci )

The products c,,(x)ci (x) are linearly independent.

In this slide we express the "higher order terms" as conditions involving "lower
order terms."

5.2.5 Using Orthogonality and Roots

Use orthogonal polynomials



w ~ 4dx= CWC o (XTi)
0

F -_1(x)dx= w icl tx

Pick the xi's to be n roots of c,(x)
The higher order constraints are exactly satisfied!

This elegant step relies on polynomial orthogonality. If we choose the poly-

nomial c,(x) such that it is orthogonal to all polynomials of inferior degree

(i.e. co(x),cl(x),... , cn-(x)) and the xi's are roots of this polynomial, then

the higher order n conditions are automatically satisfied. Note that for this

derivation we used polynomials which are orthogonal on the interval [0, 1]. Such

polynomials are shifted and scaled versions of the classical Legendre polynomi-

als, which are orthogonal on the interval [-1, 1].

5.2.6 Satisfying Lower Order Constraints

An abbreviated exactness equation

CO(X) . -co(x) Wi f o co(x)d x

Cn-(Xl) J - l(xn) LWn fo cnl(x)dx

Now linear, xi's are known
Rows are sampled orthogonal polynomials.

By using the roots of ca(x) for the xi's, the higher order constraints are au-

tomatically satisfied. Since the xi's are now known, only the weights are still

unknown. The lower n constraints can be used to determine the weights, gen-

erating a linear system.

6 Gaussian Quadrature Algorithm

1. Construct n + 1 orthogonal polynomials

o ci(x) cj(x) dx = 0 for j z i

2. Compute n roots, xi, i = 1..., n of the nth order orthogonal polynomial

such that cn(xi) = 0

3. Solve a linear system for the weights wi



4. Approximate the integral as a sum

Sf(x)dx wif(xj)

i=1

6.1 Example

Note 5 Example: Third Order Polynomial

Recall the example of the third-order polynomial, f(x) = x - x 3 . We would like
to determine wl, w2, x 1, and x 2 so that the integration formula,

I2{f} = wif(xi) + c2f(x2)

gives the exact result.
Generalize this problem to any third-order polynomial of the form

f(x) = ao + ax + a 2x
2  a3x3 .

Given the exactness condition, the integral can be written:

S(ao+ax+a2 2 a 3x
3 )dx = wl (ao-lxl+ax+2 +axa3 )2 (ao0a 1X2 ±a2 X2 ±a3X

Gather the like terms:
ao  + W2= 0 dx =

al : wll + w2X2 f1 xdx =

a2  W1 x 2 -wx 2  J x 2 dx =-
a3  : wlx 3 +w 2 x3 = x 3dx= -1

There are four equations above and four unknowns, so the system can be easily
1 1 =3-v3 3+ V3solved to give, wl - 2 W2 1= 2 6 6

Plugging in these values, for the equation above, gives the exact solution of 0.25.

S f(x) = x- - x3

0 "x



6.2 Summary

This slide sunimmarizes the technique of finding weights and integration points

for Gauss quadrature.

6.2.1 Accuracy Result

f(x)dx _, w f (xi)

Key properties of the method

a An n-point Gauss quadrature rule is exact for polynomials of order 2n

* Error is proportional to ' (like >)

6.2.2 Simple vs. Gauss Quadrature

' i

S() f the eth

Key prot)erty of the method

* Error is proportional to -

> Exercise 3 Do you see that the simple quadrature scheme is a special case

of Gauss quadrature? m

Simple Quad
10

.2

r Gauss-QuadApproximately
r io Integrating

cos 2cdx G s
r

10 o -1

Number of Points 10'

Notice that for a smooth function f(x) = cos(27rx), which is infinitely differen-

tiable, Gauss quadrature far outperforms the simple quadrature scheme



6.2.3 Evaluation Point Placement

Simple-Quadrature Points

-1 0 1
Gauss-Quadrature Points

-1 0 1

Notice the clustering at interval ends

In the Gauss quadrature scheme the evaluation points are roots of Legendre
polynomials which are clustered at the ends of the interval.

7 The Singular Kernel Problem

7.1 Calculating the "Self-Term"

Now lets go back to our problem of solving Laplace's equation on a 3D domain
using boundary integral representation. We realize that we now have some
sophisticated tools to handle integrals of functions that are smooth. But what
about the integral on the panel where the centroid x2, is located? The Green's
function blows up at the centroid. However, the function is integrable because
the integrand blows up at a rate that is slower than the rate at which the
surface measure goes to zero in the vicinity of the singularity. So we know that
the integral exists and is finite, but is Gauss quadrature capable of performing
well in the presence of this singularity?

Z X,. Collocation
point

y =J d
x Ai = ,I , dS'

Panel i

One point A el Area

quadrature
Approximation

A = dS' is an integrable singularity
pand i XII

7.2 Symmetric 1-D Example

In 1D we look at a function f(x) = 1 which is integrable on [-1, 1] but has

a singularity at x = 0.



dx 1

4

3.5 Quad Point
Note no x 0

2

1.5

-0.5 0 X 0.5

7.2.1 Integrable and Nonintegrable Singularities

f(x) = 1 f(x) =

Area - finite Area --

7.2.2 Comparing Quadrature Schemes

16

1 Approximately 1
E Integrating
12!

r Gauss-Quad

r 1 Large errors
0 even with many
oa points!

0 6 Simple Quad

2 4 6 8 10 12 14 16

Number of Points

We observe that Gauss quadrature is not very good at integrating this function.
The convergence is rather poor. As a mnatter of fact, it is mrore inaccurate than

the silmple quadrature scherme. In the next few slides we presenlt several tech-

niques of handling integrals with singularities (which are integrable, of course)

* Subinterval (adaptive) quadrature

* Change of variables of integration

* Singular (Gaussian) quadrature



7.3 Improved Techniques

7.3.1 Subinterval (Adaptive) Quadrature

\,_d4

Subdivide the integration intervalI dx = dx + dx

Use Gauss quadrature in each subinterval
Polynomials fit subintervals better

0.1 1dx
+ dX

JO 01-XI
+ f dx

,10. Vf 71r

Expensive if many subintervals used.

7.3.2 Change of Variables - for Simple Cases

Change variables to eliminate singularity

/1

y2 =x

dx 2

2ydy = dx

I l0O

1
2ydy = 2/--

V 1,yi

Apply Gauss quadrature on desingularized integrand.

7.3.3 Singular Quadrature - Complicated Cases

Basic Concept

Integrand has known singularity s(x)

/ f(x)s(x)dx where f(.:) is smooth

Develop a quadrature formula exact for/1 1pl(x)s(x)dur where pl(x) is polynomial of order 1

Calculate weights like Gauss quadrature

' 2dy



It is possible to generate Gaussian quadrature schemes of the form

=n
s(x)f (x)dx = wif (xi)

for functions which have a known singularity s(x) > 0. The quadrature formula
needs to be exact when f(x) is a polynomial of order at most 1. Not surprisingly,
it turns out that the integration points are the n roots of a polynomial cn (x)
of degree n = (1 + 1)/2 which is orthogonal to all polynomials of inferior degree
with respect to the weight s(x), i.e.

Is(X)n(X)c(X) = 0 for j = 0,,..., (n - 1).
-1

An example is the singular integral

I= 1  f(x)

I 1- x 2

Here, s(x) = 1/1 - x2 and the corresponding orthogonal polynomials turn out
to be the Chebyshev polynomials. The integration points are given in closed
form by

2i - 1
xi = cos (2i2 1)

and the corresponding weights are wi = x/n.

Singular Quadrature Weights

Co(xi) C - (Xn) W1 1 co(x)s(x)dx:

cn-I(xI) ... C,n-I(x) U wn 'n - 1(x)s (x)dx

Need (analytic) formulas for integrals of c(x)s(x)

The lower order constraints can be used to compute the integration weights.

8 Summary

Easy technique for computing integrals
Piecewise constant approach
Gaussian quadrature

61

Chebyshev PolynomialsNote 6



Faster convergence
Essential role of orthogonal polynomials
Techniques for singular kernels
Adaptation and Variable Transformation
Singular quadrature
What about multiple dimensions?
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1 Outline

Convergence issues in 1D
First and second kind integral equations
Develop some intuition about the difficulties

Convergence for second kind equations
Consistency and stability issues

Nystrom Methods
High order convergence

2 Example Problems in 1D

2.1 First Kind Equation

1'IQ(x) j JIx - x'j(x')dS' X E [-1, 1]

The potential is given The density must be computed
T(x)= .r' - x or(x) is unknown

In the next several slides we will investigate the convergence properties of in-
tegral equation discretization methods. How these methods converge depends
on what kind of integral equation is being solving. Examining this issue will
introduce one of the subtle points about integral equations.
To begin, consider the example one-dimensional first-kind integral equation on
the above slide. For this equation, we assume that the potential, P(x), is known
and that the charge density a(x) is unknown. Here, x is in the interval [-1, 1],
and the integration is over that same interval. Note that for this example, the
Green's function is given by G(x, x') = Ix - x'I.
In the left plot below the equation, an example potential, x 3 - x, is given and
plotted as a function of x. On the right is a plot of charge density as a function
of x which is a possible solution to the integral equation. As we will see shortly,
the solution for the charge density is not so easy to find.

2.1.1 Collocation Discretization

1Pieewise-Constant 
Centroid-Collocation

Piecewise-Constant Centroid-Collocation



Z(x,) =I I - x'l dS' (2)

To compute the numerical solution to this one-dimensional problem, consider

solving integral equation (1) using a piecewise-constant collocation scheme. In

such a scheme, we first select n + 1 points on the interval, in this case [-1, 1].

We denote those points as {x0,, . , n}, as shown in the above figure. For

this example, x0o = -1 and xz = 1. Over the subintervals define a set of basis

functions, {01 (X), 02 (),.., n (x)}, where

0 otherwise (3)

The charge density a can then be represented approximately as

or(x) - on(x) - ni i (X), (4)
i=1

where uni is the weight associated with the ith basis function. It may seem odd

that we used the same letter to represent the density and the basis function

weights, but there is a reason. The above basis set is such that only one basis

function is nonzero for a given x, and basis functions only take on the value zero

or one. Therefore, ani will be equal to the approximate charge density when

x [xi-1, Xi].
Charge Density Representation

1=1

Basis unctions
-1 1

Plugging the basis function representation of the charge density, equation (4),
into equation (1) yields

i
-1 i=1



which can be simplified by exploiting equation (3). Recall that the residual,
R(x), is defined as how well the weighted combination of basis functions satisfies
the integral equation. In this centroid collocation case,

R (x) = I (x) - n j-
j=1 j-1

ix - x'1dS'.

If collocation is used to solve this equation, then R(x,,) = 0 for all i, where xj
is the ith collocation point. The collocation points shown in the figure are the
subinterval center points, x, = 1(xi-1 + xi). Note that there are other choices
for collocation points, such as z , = xi.
Using the fact that R(xj,) = 0 leads to

R(xc,) = FI(xc) - O .'nj
j=1 J-1

Ixci - x'ldS' = 0

which can be reorganized into equation (2).

The Matrix

We can now generate a system of equations that can be used to solve for the

0ni's, the piecewise constant charge densities for each of the subintervals.

'TP(x

One row for each collocation point

The right-hand side of this system of equations is a vector of known poten-
tials at the interval centers (the collocation points). The i t" row of the matrix
corresponds to unfolding the sum in the collocation equation

=
j l-

IZ(i - X'IdS',

and the entries in the jeh column correspond to how much the charge on the
jth interval contributes to the i t h potential.
Note that the matrix is square and dense.

> Exercise 1 Is the above matrix symmetric? If we used x, = xi, would the
matrix still be symmetric? m



2.1.2 Numerical Results with Increasing n

One usually believes that a discretization scheme should produce progressively

more accurate answers as the discretization is refined. In this case, as we divide

the interval into progressively finer subintervals, one might expect that the piece-
n

wise constant representation of the charge density given by an(x) ani V(x)
i= 1

would become more accurate as n increases.

25j

20 n- = 40
15-

10 n

0

-lo n = 20
-1

5
r

-20 Answers Are Getting Worsel!
-25 . .......

-1 -0.5 X 0 0.5 1

As is clear from the above plot, the piecewise-constant centroid-collocation dis-

cretization of (1) is not converging. In the plot, which is hard to decipher

without looking at a color version, the ai's produced using n = 10, n = 20 and

n = 40 subintervals are shown. For each discretization, a point is plotted at ani,
zi for i =1, .., n, so there are ten points plotted for the coarsest discretization

and forty points plotted for the finest discretization, but all sets of points span

the interval x E [-1, 1].
What is clear from comparing the blue points (n - 10) to the red points (n = 20)

and to the green points (n = 40), is that the charge density seems to be ap-

proaching infinity as the discretization is refined. The results are certainly not

converging.
Why is this happening? Is the numerical technique at fault, or is the integral

equation a problem?

2.2 Second Kind Equation

We are going to postpone examining what went wrong with the discretization

the first-kind integral equation, and instead examine a Second Kind integral

equation example. As in the first-kind case, we are assuming the potential,
'V(x), is known and that the charge density a(x) is unknown. Also, x is in the

interval [-1, 1], and the integration is over that same interval. Once again, the

Green's function is given by G(x, x') = Ix - x'l.

P(x) = (x) + x - x'|a(x')dS' x E [-1, 1]
1-1



The potential is given The density must be computed

T (x)= x3 -x a(x) is unknown

The above equation is second-kind instead of first-kind because the unknown
charge density appears both inside and outside of the integral. In the first-kind
equation, the density appeared only inside the integral. This seemingly small
difference has enormous numerical ramifications.
In the left plot above, an example given potential, I(x) = x3 - x is plotted as a
function of x. On the right is a plot of a charge density as a function of x which
satisfies this second kind integral equation. As we will see below, this equation
is easily solved numerically.

2.2.1 Collocation Discretization

F(x) = U(x) + Ix - x'la(x')dS' x E [-1,1] (5)

Centroid Collocated Piecewise Constant Scheme

41

(xc,) = o-, + E anj /r Ixc, - x'IdS' (6)

To compute the numerical solution to the one-dimensional second-kind equation
(5), once again consider using a piecewise-constant collocation scheme. Again,
we select n+ +1 points on the interval and denote those points as {xo, X, ... , XrI,
as shown in the figure above. For this example, x0o = -1 and x2 = 1. The corre-
sponding basis functions, {(1 (x), 2(x),--, ,n(x)}, are the same as in equation
(3):

P W ( =E [Zi-1 , i (7)
0 otherwise

The charge density a is approximately represented by

a() - an(X) - Vi , (8)
i---



where ac is the weight associated with the i th basis function.
Plugging the basis function representation of the charge density, equation (8)

into the second kind integral equation (5) gives:

n 1 n

T (x)= EUnjaj(x) + x- xI' a 1 ii(x')dS',
j=1 i=1

which can be simplified by exploiting the specific basis functions, equation (7)
to

'I(X) Zanj j(X) + >Z c j - x'IdS'. (9)

j=1 j=l j-1

As shown in the above figure, the collocation points are the subinterval center

points, xc, = 1(xs1 xi). When collocation is used, equation (9) must be

satisfied exactly at the collocation points and therefore

cxi) = Z:Oni(pj (xci + Zcrnj /'- Ixc - X/jdS'. (10)
i=1 j=1 Jxj1

Note that pj(xc,) = 0 when i j j, and oi(x,) = 1. Using this fact yields

equation (6).

The Matrix

Just as in the discretized first-kind equation, we generate a system of equations

that can be used to solve for the 'ni's, the piecewise constant charge densities

for each of the subintervals.

S x -x' dS' f x -x' dS' T

fx -x SJ x -x dS, Yx

The right-hand side of this system of equations is a vector of known potentials at

interval centers (the collocation points). The i th row of the matrix corresponds

to unfolding the sum in the collocation equation

'1(Xj )= ci+ + o,,j I x,, - x'IdS'
j=l 1

and the entries in the jth column corresponds to how much the charge on the

jth interval contributes to the it h potential.



The major difference between the matrix in this discretized second-kind example
and the first-kind example is circled on the above slide. There is an additional
one on the diagonal of the discretized second-kind equation that did not appear
in the first-kind equation. In other words,

Asecond kind - I + Afirst kind.

2.2.2 Numerical Results with Increasing n

Unlike the results from discretizing the first kind equation, progressively refining
the discretization of the second kind equation produces more accurate answers.

2

1.5 n = 40
1 .

0.5

o n= 10
-0.5

n = 20
-1.5

-2- -0.5 0 051

Answers Are Improving iL

Once again, the plot is a little hard to decipher without looking at the color
version. It shows the ani's produced using n = 10, n = 20 and n = 40 subinter-
vals. For each discretization, a point is plotted at ai, xi for i = 1, .., n, so there
are ten points plotted for the coarsest discretization and forty points plotted for
the finest discretization, but all sets of points span the interval x E [-1, 1].
What is clear from comparing the blue points (n = 10) to the red points (n = 20)
and to the green points (n = 40), is that the charge density seems to be ap-
proaching a smooth solution.
What is the essential difference between first and second kind equations?
Is it some aspect of the numerical technique or are these two equations really
that different? In the next slides, we will try to answer this question.

2.3 Difficulty with the First Kind Equation

We will make use of operator-function notation for much of the next sections,
both for clarity and brevity. For example, the charge density,a, and the po-
tential, T, are functions of the independent variable x. When we mean the
function, we use just use the function name, such as a or I. When we give an
explicit formula in terms of x for the function, or are denoting the function's
value for a. particular 2, we use follow the function name by the value of the



independent variable in parentheses. For example, aU) is the value of function

a when evaluated at x = -.

The operator-function notation is a little less obvious in the case of operators

that map functions to functions, like the integral operator. The integral operator

takes a function, in this case a, and produces another function that we might

refer to as the potential. If we denote the integral operator from (5) as K, then

Ka is a function. If we wish to evaluate the function generated by applying

K to a at some 5, then we write (Ko)(x). Note that Ku(x) would NOT BE

CORRECT. The operator K takes functions and u(x) is a value.

2.3.1 Singular Integral Operator

Denote the integral operator as K

(Ka) (x) x - xz'l(x')dS' = T(x) Ku = I (11)

The integral operator is singular : K has a null space

._W 0cio(x)=O,x , Oo(0)=1
-1 0 1

(Kuo) (x) = ix - ' Io(x')dS' = 0 for all x (12)

-> Kro = 0 (13)

If Ka a = A' then K(oa + a0 ) = '

In equation (11), we introduce the abstract notion that

_ x - x' Io(x')dS'

is an operator on the function a, which we denote with the symbol K. As shown

on the top of the slide, this notation makes writing the integral equation look

just like writing a matrix equation.
The key problem is that the operator K is singular. And if

Ka =

were a matrix equation with a singular K, one would not be surprised to discover

the system of equations is hard, or impossible, to solve.

We will not try, in this lecture, to be formal about the concept of a singular

operator. To do so, we would necessarily be examining details about certain

types of function spaces. Instead, we will try to develop some intuition. In

particular, we will draw an analogy to matrices and note that if an operator is



singular, it must have a null space.
To see that K does have a null space, consider the spike function uo(x) depicted
in equation (13). This spike function is one at x = 0 and zero otherwise. Note,
this function is not an impulse function. Unlike the impulse function, the spike's
value at x - 0 is finite and the area under its curve is obviously zero.
As noted in equation (13), Kao = 0. To see this consider that since ao is nonzero
only at x = 0, and therefore

Ix - x'|ao(x')dS' = IxI ao(x')dS'.

Since f , ao(x')dS' = 0, as the area under ao's curve is zero, then Kao = 0.
The statement "If Ka' = I then K(a + o0 ) = I" says that if K has a null
space, and there exists a solution, then there exist infinitely many solutions.
One last comment should be made. The spike function we generated is not
unique. Simply shifting the nonzero point would generate and infinite number
of spike functions which would all be in the null space of K. That is, K has an
incredibly rich null space.

2.3.2 Eigenvalues

Difficulty from the Matrix

Collocation generates a discrete form of K

K: functions to functions, K,,:: vectors to vectors!

As shown above, discretizing the integral equation by combining a piecewise
constant charge density representation with collocation at subinterval centers
results in a system of equations which relates the subinterval ai's to the colloca-
tion point potentials. From this perspective, the matrix above can be thought
of as a discrete representation of the operator K. We denote the matrix with
K, with an underline to indicate that it is a matrix, and was generated using
a discretization with n basis functions. We also denoted the vectors 5 and '
with arrows to avoid confusing vectors with functions. Later, we will need an
operator version of the discretized representation of the operator K, but for the
moment, the matrix is sufficient.

Numerical Results with Increasing n



If the operator K is singular, one might expect to see that reflected in the

eigenvalues of a matrix generated by discretizing K. In particular, one would

expect the matrix to have eigenvalues that are near zero.

n=10

n 40

n = 20

Eigenvalues accumulating at zero.

In the figure above, the eigenvalues of matrices generated by discretizing K

for the 1-D problem are plotted. Discretizing using 10 subintervals generates

a matrix with 10 eigenvalues plotted in blue. The blue eigenvalue closest to

zero is w 0.01. As the discretization is refined to 20 subintervals, the mini-

mum eigenvalue (plotted in red) drops to w 0.003, and with 40 subintervals

the minimum eigenvalue (plotted in green) drops to 0.0009. Examining this

data suggests that as the discretization is refined, the generated matrix more

accurately reflects the operator K, and therefore the matrix is becoming closer

to being singular.
As the discretization is refined, the matrix is larger and has more eigenvalues.

Notice that as the discretization is refined from n = 10 to n - 20 to n = 40, all

the additional eigenvalues are closer to zero.

Intuition About Eigenvalues

As the discretization is refined, ao(x) becomes better approximated

= ,, =1

As the discretization is refined, K's null space can be more accurately

represented.

As an alternative view of why refining the discretization for the first kind equa-

tion produces a matrix with more and more smaller eigenvalues, consider the

figures above. In the top plot, one of the basis functions is plotted for a coarse

discretization. In the bottom plot, one of the basis functions is plotted for

a finer discretization. Notice that as the discretization is refined, these basis

functions look progressively more like the spike function mentioned previously.

And since the spike function is in the null space of K, one would expect that



finer discretizations would generate "spikier" basis functions whose associated
eigenvalues would be near zero.

2.4 Second Kind Equation Has Fewer Problems

Second Kind equation

((I + K)a) (xi) - a(,) + x - X' r(x')dS' = 4(r)
J-1

=> (I + K)o = T (14)

(I + K)((To + Tu) = (I + K)T

As shown in equation (14), the abstract operator for the second-kind equation
is denoted by I + K, where I here is just the identity operator and K is the
integral operator.
To see why the spike function, uo, is not in the null space of the operator I + K,
or equivalently that

(I +- K)(uo -I+ ) # (1 + K)()

consider the figures above. If a spike is added to a, smooth a, the (I + K)
operator will preserve the spike. Another way to see this is to consider that
since uo is in the null space of K,

(I + K)uo = ) I)(o + KTo = (o u 0.

2.4.1 Eigenvalues

Numerical Results with Increasing n



n = 10

n = 20 n 40

Eigenvalues do not get closer to zero.

As we noted before, the matrix associated with discretizing the operator I + K

is identical to the sum of the identity matrix and the matrix associated with

discretizing K alone. In the plot above, we once again present the eigenvalues
generated by discretizing the 1-D example problem. Discretizing using 10 subin-

tervals generates a matrix with 10 eigenvalues plotted in blue. The blue eigen-

value closest to zero is r 0.2. As the discretization is refined to 20 subintervals,

the minimum eigenvalue (plotted in red) is still a 0.2, and with 40 subintervals
the minimum eigenvalue (plotted in green) is still - 0.2. Examining this data

suggests that as the discretization is refined, and the generated matrix more ac-

curately reflects the operator I + K, the matrix is not becoming more singular.

In fact, the eigenvalues are accumulating near one, an unsurprising result given

that the eigenvalues of the discretized K operator were accumulating at zero.

> Exercise 2 Estimate how many iterations will be needed for a Krylov-

subspace based algorithm to converge for the I-D discretized second-kind ex-

ample. Will the number of iterations increase as the discretization is refined?

> Exercise 3 Suppose the integral equation were changed to

I(x) -= o() + I ix - x'o(x')dS'.

For what value of A would the solution no longer be unique. (you can answer
this just by looking at the eigenplot above). m

As the above exercise makes clear, a second-kind integral equation does not

always have a unique solution. However, a first-kind equation almost never has

a unique solution, the exception being when the Green's function is singular, as

we will investigate in a subsequent lecture.

3 Theory of 2 nd Kind Equations

The convergence theory for discretization methods applied to second-kind inte-

gral equations has an elegant simplicity, but only when examined using a care-



fully chosen abstraction. The theory is also surprisingly practical; the insights
gained can be used to construct very high-order discretization schemes.

3.1 Comparison problem

General Second kind integral equation

P(x) = U(x) + G(x, ')a(x)dx' => = (I + K)a (15)

Discrete matrix equivalent

Fn = (I + K,) n (16)

How to compare function a to vector Un?
How to compare operator K to matrix K,?

One approach to overcoming the comparison problems is to construct repre-
sentations of the discretization that are functions and operators on functions.
The most obvious approach to generating the functions associated with a dis-
cretization is by interpolation, but generating the operators associated with the
discretization is a little more subtle.

3.1.1 Operator-Function Notation

General Second kind integral equation

T(x) = a(x) + G(x, x')a (x')dx' = > = (I + K)a (17)

Discretized operator-function equivalent

n = (I + Kn) n (18)

aU, ,,. are functions of x (e.g. by interpolation)
K, maps functions to functions like K (How constructed)?

3.1.2 Orthogonal Galerkin

n /

Representation n()= aii(x) ,(x)l(x) = 6(i- j)

Projection an = (Pa) (2)

n

(Pa) (x) - >. (x)JX i(x)dx) i()
i21



i=i

If the density sigma is to be approximated by a weighted combination of n

orthogonal basis functions, then the functional representation ~n associated with
the vector of weights ' is given. If the basis functions are orthonormal, then
the au associated with an arbitrary a can be constructed by simple projection.
It is worth noting that the projection operator, denoted P, has no effect on O.n
That is Pa, = an.

> Exercise 4 Why does the formula for the projection operator above require
orthogonality of the basis functions? .

If a Galerkin method is used to discretized the integral equation, then the as-
sociated operator is easy to construct, as shown below.

3.1.3 Ortho Galerkin Operator

i=-1

(PKPo) (x)= p(x)KPa(x)d) y (X)
j=1

j=1 i=1

P(I + KP)~, = (I i PKP)na = PT

(I + Kn)71 = 'D a

The last equation on the above slide contains a subtle point. P(I+KP)an really
equals (P + PKP)a,,. However, P is equivalent to the identity operator when
applied to an, as projecting an reproduces an. So, we are free to conveniently
chose to interpret (P + PKP) as (I + PKP) as a difference appears only when
applying the operator to functions that are not weighted combinations of the n
Galerkin basis functions.

For second-kind integral equations, one can prove a convergence theory for al-

most any reasonable discretization scheme, assuming that the equation has a



unique solution. As noted above, second-kind integral equations do not neces-
sarily have unique solutions, but we will restrict ourselves to the unique solution
case in analyzing convergence. In particular, we will assume that the second-
kind integral equation operator has a bounded inverse.
Before beginning the derivation, let's readdress the notation definitions.
Let K denote the integral operator, and therefore the general form is

Koa = G(x,x')(x')dx'

Let a, denote a numerical approximation to a on x based on using n basis
functions. Note here that a, is a function of x and would typically be given by

aU(X) - Z ni i(X).
i=1

Let K be the discrete representation of the integral operator. Note that Kn
is not the matrix Kn, but an operator that maps a function of x into another
function of x. For example, if the discretization scheme uses a basis to approx-
imate a, and the basis weights were determined by a collocation scheme, a not
necessarily unique associated Kn could be given by

(Kno) (X) = V G(x, ')Pa(x')dxl)

where in the orthonormal basis set case

(P) (x) ( (x')p(x')dx') P(x), (19)

and
n

(VU) (X) U -Zr. (Pi (X (20)
i-=1

where u is a arbitrary function used to define the action of operator V.
Equations (19) and (20) deserve some explanation. The piecewise constant basis
is orthonormal, so the formula in equation (19) is a simple projection of a onto
the basis. If centroid collocation is used, then the discrete potentials computed
by evaluating the integral operator at the collocation points must be converted
to a function of x by interpolation. In equation (20), the pi(x)'s act as interpo-
lation functions.
With the examples of how Galerkin and centroid-collocation discretization schemes
lead to function and operator representations, the second-kind integral equation
convergence theory can be presented in a very transparent fashion, as will be
show below. What the theorem demonstrates is that if a discretization scheme
generates progressively more accurate representations of the integral operator
as n increases, then the discretization method converges. That is,

li IIo -a7n -- 0,8000



where the comparison between a and a,, is unambigious as both are functions

of x.

> Exercise 5 Suppose a nonorthogonal basis is used to represent a. How would

the projection operator in equation (19) change? m

3.2 Main Theorem

Given (I + K) = & II(I + K)-lll < C
Means Equation uniquely solvable

(I + Kn)a c= Pn
Reminder of Discrete Equivalent

Consistency:
If lim max II(K - K,)oall - 0 and lim 1I - n -+ 0

n- Ioo 1o11=1 -+o00
Then lim Ila -ao11 -- 0

-- oo00

3.3 Rough Proof

To derive a relationship between the errors in the computed solution and the

errors in the operator representation, we write the exact equation alongside the

discrete equation.

Exact Equation Discretized Equation

S= (I + K)a X, = (I + Kn)a,

T W - T. = (I + K)a - (I + K,)an
# (T - '.) = (a - a.) + Ka - K C.

S(P - ,) = (a -Un) + K - K,,u + Knu - Knen

S(Q - T n) = (I + Kn) (a - on) + (K - K.,)a

# (T - n,) - (K - Kn)o = (I+ K, )(u - rn)

The results on the slide below skip many of these intermediate steps but present

the essential results.

Operator Form for Discretized Integral Equation
the integral equation (

(I+K)o= 1+ K cn = crn

in denvtx " Ignore

Subtractinq "", ) for simplicity

(I +K)( - ) + (K -K)a+(Yn - =0

>(o-c)=(I+Kn)-l(K-K )o+(T-%)



The equation for the solution error (previous slide)

(an - a = (I + Kn)-(K - Kn)a

solution error

Taking norms 11I(n - 9||

Error which
should go to

zero as n
increases

< I (I+ Kn) - |

Needs a
bound, that is

stability

I (K - Kn)a I

Goes to
zero

by consistency

We complete deriving a relationship between the errors in the computed solu-
tion and the errors in the operator representation. In order to establish that
consistency implies convergence, the inverse of the discretized operator must be
bounded.

3.3.1 Stability Bound

Norm of solution error

I(an - a) < II(I + Kn)-I II1(K - Kn)all

Deriving the stability bound

(I + Kn) - 1 = [I + K - (K - Kn)]-1 = [(I - (I + K)-I(K - Kn)]-l(I + K) - 1

Taking norms

I(I + K)-1 i < (I+ K)-1|1

Bounded by C
by Assumption

Repeating

II(I + Kn)

from last slide

-1< (I+K)- |

Bounded by C
by Assumption

Bounding terms
1(1 + Kn)-l| <S>1-

n- L no

< 2C for
JI(I + K)-'(K - K) |

Will be less than 0.5 for n larger
than some no by consistency and solvability

Final result:

lim I(K - Kn)all = 0
n o

II -((I + K)-1(K - K)) -

11 (I - (I + K)- (K - Kn)) - 1



IMPLIES

lil I(r,, - ()I = 0
71 OC

What does this niean?

The discretization convergence of a second kind integral equation solver only

depends on how well the integral is approximated.

The final result, noted on the above slide, is that the solution error is bounded

by a constant multiplying the error in the integral operator representation. This

suggests that any method which can accurately represent the integral operator

can be used to discretize a second-kind integral equation.

4 Nystrom Method

4.1 1-D Second Kind Example

4.1.1 Collocation Discretization

Integral Equation

4(x) = (x) - G(.x, x')T(x')dS' x [-1. 1]

Apply quadrature to Collocation equation

{(,x.) - u(3:) + G (, . x-')0(X)dS'

After applying quadrature to Collocation:

j=1

x is a. collocation point

x.j's are quaidrature points

Now set quadrature points - collocation points



In Gaussian quadrature, described in the previous lecture, an integral is ap-
proximated using weighted combinations of the integrand. As a reminder, the
Gaussian quadrature formula for integrating a function on the unit interval is

f (x)dx - 'wif (xi)
i= 1

where the xi's are the evaluation points given by the zeros of an nth-order
orthogonal polynoml polynomial on the unit interval, and the wi's are the weights deter-
mined by solving exactness equations.
The key idea behind a Nystrom method for discretizing an integral equation is
to use the Gaussian quadrature evaluation points as the test points in a collo-
cation method for solving an integral equation. Then, the collocation method
integrals can be approximated using the Gaussian quadrature scheme, resulting
in a system of equations which only require evaluations of the integrand at the
test=quadrature points. The second kind theory predicts that the error in such
a scheme is proportional to the error in the quadrature scheme for computing
the collocation integrals.

Set quadrature points = collocation points

IQ (xl) = a,, I + - wUjG((x, Xj) Ornj

j=1

'1(Xc) = Unn + Z j wG(xXn,Xj)unj
j=l

System of n equations in n unknowns
Collocation equation per quad/colloc point
Unknown density per quad/colloc point

4.1.2 Discretization-Matrix Comparison

Nystrom Matrix
1+wG(x,,x,) v,,G(x ,, ) (-V)

IG, (x,,- ,) I +w,G(x,,,x,) w,, (x,,)

Piecewise Constant Collocation Matrix

fG(- .r. ,,S' 1+ fo .,.-')'1,



Nystrom Matrix
Just Green's function evaluations - No integrals
Entries each have a quadrature weight

Collocation points are quadrature points
High order quadrature=faster convergence?

Piecewise Constant Collocation Matrix

Integrals of Green's function over line sections

Distant terms equal Green's function

Collocation points are basis function centroids

Low order method always

4.2 Kh and I,, for Nystrom Method

i=1 j=1

i= 1

4.3 Convergence

4.3.1 Theorem

In the limit as n --+ o (number of quad points oc)

The discretization error minax (K - K,,) o 0
1117 11

AT THE SAME RATE as the underlying quadrature!!

Gauss Quadrature + Exponential Convergence!

4.3.2 Comparison

cos 2 x, = a() + (x:
, 1

E 1,o
r o
r

10'0
r 10 i

v') o(x')dS'

Gauss-QOuad
Nystfoin

83

a 9 10 11



4.3.3 Caveat

If Nystrorn method can have exponential convergence, why use anything else?

Gaussian quadrature has exponential convergence for nonsingular kernels

iMost physical problems of interest have singular kernels (, ex , etc)

5 Summary

Convergence Issues in 1D

1st and 2nd kind integral equations, null spaces

Convergence for second kind equations

Show consistency and stability issues

Nystrom methods

High order convergence

Did not address singular integrands



1.4 Radiation Conditions and Formulations

Numerical Methods for PDEs

Integral Equ'tation Methods, Lecture 4
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1 Outline

Laplace Problems
Exterior Radiation Condition

Potential Representations
Monopole and Dipole Densities
Principle Value

Ansantz and Green's Theorem
Dirichlet and Neumann problems

2 3D Problems

2.1 3D Laplace Equation

Laplace's equation in 3-D

v2U() aX 2u()
V2u(-) = - +

82
+ = 0

Oy 2 Oz 2

where
i=( (x,y,z) 

and Q is bounded by F.

The exterior problem is simply the region R - 0 of the interior problem.

Exted or.1Tb lerm



One feature of using integral equation methods is that exterior problems can

be solved using the same surface discretization required to solve an interior

problem (assuming a linear space-invariant problem like Laplace's equation).
This is true even though the exterior domain is infinite and the interior domain

is finite. Exterior problems do introduce an additional complication, one must

consider the boundary condition "at infinity" (later).

2.2 Boundary Conditions

2.2.1 Dirichlet

Dirichlet Condition
u(i) =ur(Y) G F

Interior Problem

A,,,&e of p=
eh _ '~2'1

Dirichlet
Boundary Condition

T (x)= 1 xEF

Can you determine the solution to Laplace's equation inside the sphere?

The solution of the interior Dirichlet problem is unique.

2.2.2 Neumann

Interior Problem
V 2W= 0

e sp h Neumann
0 Boundary Condition

-0 xer6n

S(x) = ? any co.tant
Nonunique Solution

The solution of the interior Neumann problem is not unique.

For the solution of the exterior Neumann problem to be unique, it is sufficient

to impose a radiation condition. In this case, a radiation condition would be a

specification of how u(i) approaches zero as x -0 c0.

2.2.3 Exterior

Dirichlet Boundary Condition

u(-) = Ur(X-) Y C

B~g.



Neumann Boundary Condition

au(Y) aur(X) 9
any any

PLUS

A Radiation Condition

3 Radiation Condition

3.1 Condition at "Infinity"

3.2 Types of Conditions

A radiation condition of the form

lin u() --> 0
1III-oo

is not specific enough!
Need

lim u() (£1 - )
11411 0 O

OR,

lim u(1 ) - I(- )

3.3 Examples

The criteria for chosing a, radiation condition are best understood by considering
several physical examples.



3.3.1 Radiated Heat

Problem Set-Up

V2u(-) = 0

U(X') = U0(X')

Radiated Heat =

Xc E

Bu0 UdS

forx E

Limit of Expanding Domain

* Infinite Problem
Limit as R -- oc

* Heat Leaving Sphere

pher dS is Constant!
3.3.2 Rad Heat Case 1

3.3.2 Rad Heat Case 1

lim u(:Y) - O( I I
1141--'0

1) limr
lII-1o00

Since the surface of a sphere increases as R :

lim
R---oc Spherea 0

dS - Constant

Radiation condition models net heat loss.

o n() ( -)On



3.3.3 Rad Heat Case 2

2) - alin

'r -*.o DC

AND

__dS - 0

Can NOT model heat loss!

3.3.4 Heat Transfer

V 2 Un() = 0 S 2 u(5) = 'Uo( )

Heat flows from higher temperature object to lower temperature object, but
no heat radiates out.

If
limll

ilZII .

Then

And

lilll (') (1,I :3)
I i) -', ,)

(dS1 -1 0
Do

This condition ensures all heat transferred.

lim
I I fVCc

-o ( I 1 )')

ISpheire

xEF

u(Y) - o( 1 11

- Sphere n

1(. ) - O(l1 )



3.3.5 Electrostatics

will have
some radiation

1 1
u O(c-- U Oc

R2 R

The above image is supposed to represent two scenarios, each senario has two
conducting bodies.
In the first senario, on the left, there are two conductors that are treated as
if there is a voltage source across them. There is a positive charge on one

conductor, a negative charge on the other conductor, and the net charge should

be zero. If the net charge on the two conductors is zero, then the integral of

the normal electric field, & ) over a bounding sphere, one that contains both
spherical conductors, should be zero. This is just a statement of the well-known
Gauss's theorem in electrostatics. In particular

ou( dS = 0
Spheren 9?

for any SphereR containing the two conductors. In order for this integral to be
zero regardless as the radius of SphereR approaches oc,

lim Ou()

must decay at least as fast as O(11 11-3). Therefore, u(x) must decay like

O(11| 11-2)
For the senario on the right, the two spherical conductors are set to two different
potentials with respect to the point at infinity. In such a. case, it is unlikely that
the sum of the charge on the two spheres will be zero,

u() dS € 0
phand therefore should not be forced to d y faster than 11-2.

and therefore u(7) should not be forced to decay any faster than O(lfi|-2).



3.3.6 Potential Flow

wing wing
wing

Assumptions
Irrotational flow (velocity = potential gradient):

v(£) = Vu(V)

Air is incompressible (velocity divergence free):

V -v(s) = V 2U(X) = 0.

Nonpenetrating wing boundary condition:

Vu(') -n(Y) = v (ing(y) n(').

What is the right radiation condition?

4 Formulations - Problem Types

4.1 Single Domain

4.2 Coupled Domain

Example: Bimetallic Electrical
mmmmep s

Conductivity



Potential and Electric Current Continuity:

u(Y) = ,1,(X-) X G F

0 

(a-

An example of a coupled domain problem would be a conductivity problem

involving multiple materials. To determine the electrical conductivity between

two terminals of an object made of multiple materials, one would determine the

ratio of the voltage across the object's terminals and the current flowing through

the object. Electrical current density in an ideal linear conductor is a vector

quantity given by the gradient of the potential, Vu, scaled by a factor known

as the conductivity of the material. In an ideal linear conductor there is no

accumulation of charge at any interior point, implying that the current density

has zero divergence. Therefore, the potential in an ideal linear conductor satifies

Laplace's equation, V2u = 0. If an object is made of multiple materials with

different electrical conductivities, then the boundary between materials satisfies

interface conditions. At the boundary between materials, both the potential and

the current density in the surface-normal direction are continuous. Since the

conductivities of the two materials are different, continuity of the current density

implies a jump in the gradient of the potential across the material boundary.

4.3 Normals

Normals usually point from Interior to Exterior.

NORMAL DIRECTIONS
exterior problem

Typically, the surface normal is assumed to point in the direction from the

interior domain to the exterior domain. There are many situations where this

typical practice is confusing or ambigious, so it is often necessary to be explicit

about the direction of the normal.



5 Surface Density Integrals

5.1 Monopole & Dipole

Potential due to a monopole density (a):

u(V) = - '1 d

Potential due to a dipole density (Ap):

OF (9ny, J'-' (: )d r '

where the normal points out of the domain Q bounded by F.

MONOPOLE: DIPOLE:
+++++++ +++++++

+ + +-
+ + V2u -0:+

+ +) u= + - ++ u(x)s j i satisfied t -+

+ r + - -+

+ + -- - =
+ + + + ++ + + .-.--

Monopole or dipole densities can be used to generate potentials that satisfy
V2u() = 0 for all . E Q. The monopole and dipole potentials differ in the
radiation condition they satisfy. If the surface, ', is finite in extent, then in the
limit as I J| -- oo, the monopole potential decays like JI F-1, and the dipole
potential decays like I 'l - 1
Either representation can be used to derive surface integral equations, but care
must be used when evaluating the associated potentials when a E F.

5.2 Surface Potentials

The monopole potential is continuous as x passes through F, so

Ur (X- 01 (i)dr/ X E F

The dipole potential "jumps" as x passes through F, so the limit as Y~ F of

u(~I a 1

depends on how F is approached.



MONOPOLE:

a = constant

-- V-
disk

Don't be put-off by the graph above. Th

does not go off to infinity, as it may seer

continuously differentiable, there will be

(+)

e monopole potential is continuous (it

r to in the above figure), but it is not

a discontinuity in the derivative at x0 .

5.2.1 Principle Value Integral

If f(y) is singular
integral is

for some y = xo, where xo C F, then the priniciple value

.iPv

/ v
f(,)dF I= lim

'0- . - ( . H )ni-
f(fj)dF

when B(xo, E) is the E radius ball about x 0 .

The P.V. is a special kind of limit

Limit of deleting and ever shrinking portion of the integration domain.

NOT EQUIVALENT TO limiting processes on f!

A

I i



5.2.2 Monopole Derivative (MD)

Consider a cube geometry:

Our(X)
Ong

- lim I (')dF'
:-r+ any f - P (1 ) d

GE F

The plus (+) in F+ indicates exterior approach.

In the above slide, we consider computing the normal derivative of the monopole
potential just outside the boundary y. As will be shown in the next few slides,
the derivative can be represented as the sum of a principle value integral and
an extra term.

5.2.3 MD Disk Removal

ur(X)
0971Y

S(i') dr'
dn$/,,,,., F- F'iI + (x,) I - I d '

utl Oto

Consider the entire side panel on the right of the cube in the above slide, and con-
sider evaluating the normal derivative of the potential generated by a monopole
distribution on the suface of the cube's right side. Specifically, assume that we
wish to evaluate the derivative at a point Z in the center of the green disk on
the cube's right side. The matter is complicated by the fact that the integrand
goes to infinity when F = '. Thus, we need to break up the integral into two
pieces. One piece is the entire panel minus the green disk, and the other piece
is just the green disk.

5.2.4 MD Disk Picture

aur(x)
any- [r+,Eo J-B(x,) - a ny B(x,E) X2- F-,

lim
i---F+ ,E--+O



Srectaen -gular pi iwm

The first integral is the Principle Value Integral and the second integral is the

integral of just the disk.
Given that the disk was extracted from right the surface of a cube, the disk is

flat, and the normal is in the z-axis direction.

5.2.5 MD Disk Eval

lim a f 1 (')dF'
-+r+ an (X, ) I - ll

Slim f ~ rdrd
z + r 2  z 2

lim - 27o(i) 2 z--E Z
z---+O+ 

.z

= -2o(F).

Note 1 Disk Evaluation Math

For this problem, it is quite straightforward to see how one changes from carte-

sian to cylindrical coordinates. But, the algebra and calculus involved in solving

this integral may not be as straightforward, herein is presented one method,

broken-down into bite-size pieces:

lim 2 ) rdrdO.
z-o+ o 0 0  r2 + 2

Use trigonometric substitution to solve the integral with respect to r. Substi-

tute r = z tan a and dr z= sec 2 ada and simplify to get the following integral:

Sf27 () ()Z sin a
= lim - I sindadO.

z--+O+ az . o 0  COS2 a

This integral is easily solved using direct substitution of a = cos a:

- im u.2 r 9 z() (
-lim - z dudO = lim z - dO.
z-O+ -Z 0 0 2 z-o+ Oz J

Plug back in for u = cos a =

z-o+ z dO
= liIn t lfat() [VF 2 -+ z 2 - z2] dO.

Integrating the last part is quite simple,



= lim ( Z2
Z-o+ O Z

27

0
2 zro() + l2 2 ).

Finally, take the derivatives with respect to z, the normnal,

2 (5) lim (
z-o+ (VP + z 2

V 2)

It can now be seen that, since lirn = 0 and lir = sign z that
z-0o+ E - z-0o + Nz

lim ,
z-0+ Dz

) rdrdO =
/0 /r2 + z 2 -27ro(x).

= lim
-- F

+ On3 .
LT5Hcr5)V

S limF lii[ F B (

/ P + 0 1

dT(.1-'HfFV nyI Y I I

( ') dV' -I n I(x, E)
27r(')

5.2.7 Dipole Potentials (DP)

If F is a flat surface

0 F.

Why? Rewrite using explicit formn of integrand

7 _ ,i dF'

Integrand is zero when Z - Y' orthogonal to surface normal

5.2.8 DP Flat Surface

Flat result applies locally on smooth surfaces.

~-+

i " _

5.2.6 MD Final

uOr(i)

Buy 5

0(:') dV'

PV 1 I
(IF'

'p f ly *U X:



5.2.9 DP General Surface

If F is a general surface

hPV ( - a')pmy,
ur(x) = 27-(Y) + (11- (11 ) p(')dF'

when F approaches r from outside Q, and

JrPV ( )Tr'(1 n)ur(F) = -2'wy(Y) +

when i approaches F from inside.

Note 1 Derivation of the Dipole Surface Potential

The following derivation goes through the step-by-step process of deriving the

dipole surface potential when X approaches F from inside.

'L(v) =j 1dUM1- '11
XCF

= lim a 1 p(d)dF' + li
E-O r-B(xo,c) (ny, lI - +' 'Ii

=- PV a 1 p(i)d, + rlim
Ony, il-el I (XO,

PV - y I)T7-/: 3 p()dF' + lim

S+ lim () '2 sin do dO
r--O r2 sin

lim 7r r2 sin 0 do dO
"---0 0 1

[ sin do dO = Sf0

= [-2,O0 = -2ry

p cos o dO

SB(xo,)

a
8 n-f

11- ()dF'
li - el I

1
ft, -V p(V')dF'

If . V- pr2s in d dO

1 - 2p dO
00

6 Ansatz Formulations

6.1 Dirichlet Problem

6.1.1 Monopole Potential

For an interior or exterior problem:

Uxr(>) = r
1

Hix-pl

m
+I

t



T'(x) 1 (x) = ?
XEF

''(x) 4 (x') dE'
IIx -x'III

a = 4n

What radiation condition?

The point of the above slide is to show that when using monopole potentials to
solve Dirichlet problems on a single domain bounded by -y, the equations are
the same for either the interior or the exterior problem.

6.1.2 Dipole Potential

For an exterior problem:

ur(s) -= 2 rp(') +± (PVi (,/()d

and for an interior problem:

Jr (- ')II,

Normal points from interior to exterior.

INTERIOR PROBLEM

Su(x) = u(x) x ET

ur(x) - 2npt(x) +

x |x - x') |-,1,

Note that the radiation condition satisfied by the monopole potential is different
than the radiation condition satisfied by the dipole potential, even when used
to solve the same Dirichlet problem.

6.2 Neumann Problem

6.2.1 Monopole Potential (MP)

Derivative of the monopole potential "jumps" as x passes through F, so

(f 1 (:')dF'
Onyo (F ) df '
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takes different values just inside and just outside F.

6.2.2 MP Int/Ext

For an exterior problem

Our(X) 1, , PV ( _ ,)'

and for an interior problem

&ur(i) =-+f ((15 - (g))T
any (IlX -'

Normal points from interior to exterior.

Note that the signs for the Neumann monopole potential integral equation are

different than the signs for the integral equation in the Dirichlet Dipole case.

The sign changes are due to the location of the derivative evaluation. In the

Neumann Monopole potential case, the derivative is taken with respect to ni

whereas for the Dirichlet Dipole potential case, the derivative is taken with

respect to n.,.

6.3 Kinds of Equations

First Kind Equations

* Dirichlet Monopole potential integral equation.

Second Kind Equations

* Dirichlet Dipole potential integral equation.

* Neumann Monopole potential integral equation.

Dipole potential for Neumann?

7 Green's Theorem

Laplace's Equation Green's Function

V2G(:) = 47r6(£)

6(1) impulse in 3-D
Defined by its behavior in an integral

I 6(')f(:')dQ' = f(0)



Not too hard to show

1

Note 1 4r

Just as an aside, Green's Function may be defined using a different scaling vari-
able depending upon which source one is using. Sometimes Laplace's equation
will be written:

V2G( = ().
Where you can see that the value of 4r has been left off. This will simply mean
that the Green's Function is now written:

47
G(i)- I_

For our purposes, we will be using the notation in the above slide, and not the
notation given in this note.

7.1 Normal Directions

A note here about normal directions is essential. In the above section, the
"normal points from interior to exterior" whereas, in the image below, the normal
points from inside the domain to outside the domain. How would this impact
the solution?

NORMAL DIRECTIONS

When we go through Green's Theorem in the following section, remember that
the normal always points "out" of Q, as it does in the above figure.

7.2 Divergence Thm

The general Divergence Theorem:
For any sufficiently smooth F

/V F(x)dV -F.i idS

where F is the surface which encloses Q.
Green's theorem follows from the divergence theorem.
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7.3 Volume Theorem

If u satisfies Laplace's equation in Q, then

1an) dF' E

where the normal points out of Q.

7.3.1 Surface

Using the Principle Value Integral:

2 u(Y r I) aIZn dF' u dF1 X I
2_ -= j 1 u(i') dF' a

where the normal points out of Q.

This is one of the cases where it is generally easier to define the normal as

pointing out of Q rather than having the normal point from the interior to the

exterior.

7.3.2 Boundary Conditions

The boundary conditions, Dirichlet or Neumann, can be determined by using

the surface form of Green's Theorem. For Dirichlet Problems, u = ur when

X E P. So, put the known values for u into Green's Theorem for the surface,

and put these known terms on the right hand side, leaving the unknown on the

left hand side. Likewise, for Neumann problems, 2- -=_ denotes that the

derivative of u is known on the boundary when cE F. Again, put the known

term on the right hand side, so that the unknown value, u is on the left hand

side.

For Dirichlet Problems

J u(P') P V  ur(
0) dF'= 2r'(Y) + J & ( dF'

For Neuman Problems

v8 1ur ( ')
2 Pu() + u ( ') dr' an dr'

where normal points out of Q (interior or exterior!)
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7.4 Overview

8 Summary

Laplace Problems
Exterior Radiation Condition

Potential Representations
Monopole and Dipole potentials
Principle Value

Ansatz and Green's Theorem
Dirichlet and Neumann problems
First and Second Kind Equations.
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1.5 First and Second Kind Theory, part 2

Numerical Methods for PDEs
Boundary Element Methods, Lecture 5

First and Second Kind Theory, part 2

Notes by L. Proctor, C. Coelho and J. White

December 8, 2008
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1 Outline

Interior Neumann
Use Nystrom to Solve
Look at 2-D Problems

Fredholm Alternative
Connection to Linear Algebra

First Kind Convergence Theory

2 Exterior Formulations

2.1 Dirichlet Problem

2.1.1 Monopole Potential

For an 3D exterior problem:

r (:) =./

For an 2D exterior problem:

UP(X) -

2.1.2 Dipole Potential

For a 3-D exterior problem:

Ur'(Y) = 2w1(5) +

For a 2-D exterior problem:

'U (J") = 7 / (Y.) +

.PIV

SPV

( )3 (i ')dF'

(5- ./)]; .F'(11 -:'11 p(5')dFr '

Normal points from interior to exterior.

2.2 Neumann Problem

2.2.1 Monopole

For an exterior 3D problem

(ALp(S)
O'n7:

Jyt

2 -, Ff. 
5 1)Tj;j;.

(Hi? F'fl)
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For an exterior 2D problem

Jtl(1? .fPX ( - ITr' ,,F

01- J (F! (11 1'1 2  V '

Normal points from interior to exterior.

3 Interior Example

3.1 3D Case

3.1.1 Monopole Potential

Surface Potential

U ( 1ur( )~~a~ = S(ZdC

Surface Normal Derivative

n (r ( 0- ) 1 '
any 0n F K- 5'f

Normal points to exterior.

3.1.2 Interior Neumann

Monopole Potential Using the P.V. Integral

liu(t1 2) - T 2r(.) +

looks 2 d"' Kind Equation, Try Nystromn.

1

6n an
on F

3.1.3 Nystrom Method

Set quadrature points = collocation points

w) o n 08 1

10=1

xEF

. F



n, equations in in unknowns

" 0 1
27a,, + o: 411j 0-nj

=I case (self-term)?

j -- i case (self-term)?

3.1.4 i = j

For the monopole 3-D Neumann Formulation,

& 1
G(, ') - a I - 'l (7 - ')Tn1)

( I 7- ~'3

PROBLEM: G(:,7 ') blows up as i--+ '.

3.2 2-D Case

Monopole Neumann Formulation

Oup() - ()
i = 7r(() +t

Simplifying the Green's function,

G(7. :') = loo II7

log li. r Buy x' lc(I')dF'

(7- y')T)

(H 11 -Sl)2

3.2.1 Smooth F

G(., 7') finite as Y -- 7' if F smooth.
lor11

/

k

3.2.2 Nonsmooth F

G(7, ') not finite as 7 -- 7' if .r' is on a corner.

outdard ol nIL Is
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3.2.3 Disk Example

h~t&

)iQuad
Po(illi

O r (:i)
OnX i a (X

Note uniform quadrature weights on the circle.

Resulting matrix is singular! Why?

4 Second Kind Theorem

4.1 Theorem

Given

(I + K)o = (Integral Eqn.)
(I + K,)ou = T, (Discretized Eqn.)

AND
|1 (I+ K)-'I < C Unique solvability

lIm'1n-,, I (K - K,) | - 0 and 11'

Then
lil II o - o,, - 0

fl- 9

4.1.1 Scaled Example

Define Scaled Variables
1 J~iir(F)

7 i,

K -1 - log HF

The 2-D Neumnann problem becomes

(I + K)a
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2, X i -(x - xj)
N 11Xj 1il T oj)

£'||a(:')dF'



4.1.2 Key Property

Main assumption of second kind theory:
(I + K)-' is bounded.

Is (I + K) - 1 bounded for Interior Neurnann Problenm?

4.2 Linear Algebra

Given Ax = b, A E I?,fXL x bE r -
A - 1 exists and is bounded iff

Ay = 0 implies y =
If Ay = 0 for y 7 0 then either

Ax = b has an infinite # of solution
Ax = b then A(x +

OR

0 (no null space)

s

ay) = b

Ax = b does not have a solution
b is not in the column space of A

4.3 3-D Null Space

Consider 7 defined by

1 ( )d '
uT(i) =1 =

Then
OLr (i ) (Y PV

=.2 ) ±

i F

0)

( is in the Null space of I + K

(I + K) is not bounded!!

4.4 Fredholm Alternative

General Theorem
For I + K either

(I + K)o- = 4i has an infinite # of solutions
OR

(I + K)c '1 ha.s no solution
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4.4.1 2D Example

Scaled Equations:

1 - ((x) :)+ _ _ log Y- Xflcr(X')dF'

For a solution to exist

/ rD ( ) dF 0

2D Neumann Second Kind Integral equation
has a one-dimensional Null space.

4.4.2 Fixes

Add a point constraint
Fix u at some point

Force a orthogonal to null space
Need the null space
May need to solve 1st kind equation

Use SVD to solve singular system
Can be coniputationally expensive

5 1st Kind Convergence

Three-dimensional Laplace's equation

* Unknowns might be physically meaningful.

u(x) 3, / 1 -' (IS

charge
densit y

* Might match boundary conditions

- Dirichlet and - radiation condition

5.1 Nonsingular Green's Function

Denote the integral operator as K

.JE f .r' (:'r)dS' Ka '
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The integral operator is singular : K has a null space

ac (x)= 0, x , o,, () = 1

Kao J= x -/1- x'Iao(x')dS' = 0

If Kaca = then K( a + ao) =

5.2 The Singular Kernel

5.3 Convergence Analysis

Partial Differential Equation form:
V 2 u = f in Q Q is the volume domain
, = 0 on F F is the problem surface

"Nearly" Equivalent weak form

J VuVvdx = fuvdx

a( l.v) l(v)

Vv E H(Q)

Introduced an abstract notation for the equation, a must satisfy:

a(Qu, v) = 1(?,) V vE H1 (Q)

Introduce an approximate solution un = S ipi
i=1

t u~ is a weighted sum of basis functions
The basis functions define a space

Xn = {V Xn 1v = >! 3 i for some .'s
i=1
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Example

Key Idea
a(u,u) defines a norm on H (QD) a(u, u) - u j1

u is restricted to be 0 at 0 & 1!
Using the norm properties, it is possible to show

If a(u'", pi) -= 1(Pi)
Then l u - u 11 =

Solution
Error

Vtpi E { 1P2, 2, -

min HIu - w'III

Projection
Error

, n}

5.3.1 Optimality Result

How well can you fit the exact solution with a member of X,,?

You must measure the error in the | |l norm

5.3.2 Sobolov Space

"Weak" Form for the integral equation
1

v() -X (x')dS'dS = v(x)(x)dS Vv c H(F)

a(a,v) (v)

The difficulty is defining H(F) with right properties

Must exclude u(x)'s where I - (x')dS' = 0

H(F) is a fractional Sobolev Space
We won't say more about this!
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5.3.3 Use FEM Key Idea

a(cr, a) defines a norm on H(F)

i= 1

Basis
Functions

a( . cr ) - | l|

X -2 {) G X71J I >i= i for some ;'s

5.3.4 FEM Idea Cont.

Using the norm properties, it is possible to show
If

V p E {p01, p2,. •p,}

Then ll - u"11

Solution
Error

Min I1a, - W"11

Projection
Error

6 Summary

Interior Neumann
Use Nystrom to Solve
Look at 2-D Problems

Fredholm Alternative
Connection to Linear Algebra

First Kind Convergence Theory M\ostly Waved hands.
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1.6 Fast Algorithms for Integral Equation Meth-

ods

Numerical Methods for PDEs
Boundary E1lemc1nt AlMthods. Lccl.ur 6

Fast Algorithms ,for Integal Equatio n.s

L. Proctor, S. De, K. Nabors. J. Phillips, B. Buchlmann, & .J. White

December 10. 2008



1 Outline

Reasons for Fast Solvers
Collocation System Reminder
Fast Solver General Approach
Using Iterative methods
Fast matrix-vector products
Fast Multipole Algorithms
Precorrected-FFT Algorithms

2 Background

2.1 Discretize Surface Into Panels

2.1.1 Piecewise Constant Basis

Integral Equation : 11(x) = s ic ( dS'

Discretize Surface into

Represent oa(x) a, , (x)
Bausis IFunction'

,i (x) = I if x is on panel j
,.Panel jp (x) = 0 otherwise

2.1.2 Centroid Collocation

Put collocation points at panel centroids

Collocation
X point

hi .. I .P(
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2.2 Dense Matrix

2.2.1 Resultant Dense Matrix

Matrix Entries Are Never Zero

an - 1 1 dS'

Distant Elements Decay Slowly

1
oc IIx - x'I

Too Slow To Ignore.

2.2.2 Complicated Examples

Need More than 100,000 unknowns!!

Need 100 Gigabytes to Store Matrix.

2.2.3 Gaussian Elimination

For i = 1 to n-1 { "For each Row"
For j = i+1 to n { "For each Row below pivot"

For k = i+1 to n { "For each element beyond Pivot"

Aj = A pi Form n-1 reciprocals (pivots)
Multiplier A ,p , /

Form (,-il= -multipliers

P ot Perform -' "
} Multiply-adds

n 3 - Too Expensive!

3 Iterative Methods

3.1 Electrostatics Application

General Iterative "Algorithm"

0 : Guess at panel charges (

1 : Compute the centroid potentials from the charges
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2 : Compare the computed to known potentials
R = 1 - Aa

3 : Fix the panel charges, go to Step 1.

3.2 Conjugate Gradient (CG)

Conjugate Gradient (CG) Methods are iterative methods useful for solving sys-
tems of equations involving symmetric matrices A = AT. The rate of iteration
convergence for CG can be related to the ratio of the maximum to the minimum
eigenvalue of A.

3.2.1 CG for 2nd Kind

Eigenvalues for 2nd Kind Integral Equation

n = 10

Notice
Eigenvalue
Cluster at 1

n 20

3.2.2 CG for 2nd Kind Cont.

Conjugate-Gradient convergence rate

Aminrk < 2 ( - 1 xA- / lin
+ 1) r

For discretized Second Kind equations

Arax is bouInded inhdepcindcnt of r

Number of CG iterations independent of n!!
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3.2.3 Steps of CG

The kth step of the Conjugate Gradient Algorithm

For discretized Integral
compute Ap, equations, A is dense

(r)r (Ap) Determine optimal step size
(Api )" (Api) in kth search direction

Sx + ~ .p Update the solution

r= r a k and the residual

+ Ar) (Ap) Compute the new
pA = rk 7 PA orthogonalized

(Ap ) (Apk) search direction

3.2.4 Cost of CG

Complexity of the Conjugate Gradient Method

Dense Matrix-vector
compute p, .product costsO(n.)
(, (r)'(AP,)

a (Ap,) (Ap,) Vector inner products, O(n)

t, = . - , ..e..tor Adds, -- . _

(Arj(Ap Innerproducts, total

- (A= ... )-- (ApJ cost 0(n) _.__ i

Algorithm is O(n2 ) for integral equations even though # of iterations, k, is small!

3.2.5 Accelerate CG?

Accelerate the Conjugate Gradient Method
Exactly compute Apk

Dense matrix-vector (M-V) product costs O(n2)
Approximately compute Apk

Reduces M-V product costs to O(n) or O(n log n)

Need a fast approximation for matrix-vector products

4 Fast Solvers

4.1 Direct Computation
d evaluation points .

d panels '

* Physical interpretation:
Ap = N "potentials" due to N charges.
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* O(N 2 ) if done naively

4.2 1D Strip of Charge in 3D Space

4.2.1 Simplification of the A Matrix

I-D Strip of Charge in 3-D Space

A11  A12 ... Als 18. I
A 2 1 A 22  A 2 8s 2 2

A 81  A 82  ' A 88  (8

What can one say about the A matrix?

4.2.2 Properties of A.

The A matrix is:

* Symmetric
Panel i exerts the exact same charge on j that j exerts on i

* All the Diagonal Values are the Same

* Each Superdiagonal &- Subdiagonal Element is Equal along Its Own Di-
agonal as Well

4.2.3 More Properties of A.

How many unique entry values are there in A?

21 A_ .3 . A, a,

A A ,, A a, T
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The above matrix is one of a class of matrices called Toeplitz Matrices. In a

Toeplitz matrix, the matrix entries along any diagonal have the same value,
but the different diagonals can have different values. For this reason, an n x

n Toeplitz matrix has only 2n - 1 distinct values. A particular important

special case of Toeplitz matrices are Circulant Matrices. Circulant matrices

are "periodized" Toeplitz matrices in that the first super-diagonal has the same

values as the n - 1 sub-diagonal, the second super-diagonal has the same values

as the n - 2 sub-diagonal, etc. Circulatant matrices are diagonalized by the

discrete Fourier transform, a property we will use in the section covering the

Precorrected-FFT methods.

4.2.4 Geometric Simplification

Approximate (by grouping) the elements that are a "reasonable distance" away from

the element which you are evaluating

I Would like to find the
potential on this element

0 0 0 0 0 0

0 0

.0 . ,[;;. (

4.3 Fast Potential Concept
d evaluation points

d panels

* Decompose potential into short- and long- range.

* Approximate long-range part of potential.

* Sum short-range part in normal manner

* Multilevel decomposition for "O(N)" algorithm

Toeplitz MatrixNote 1



Computational Costs

DEC 21164-333
N Gaussian Elim "Fast" O(N)

300 MFLOPS 30 MFLOPS
5e4 3 days,20GB 80sec, 130M
1c5 25 days,80GB 2.5min, 300M
5e5 8.8yrs,2TB 15min, 1.5GB

* Gaussian Elimination: O(n :1) time, 0(n 2 ) memory

* Iterative with direct M-V: O(,,2) timne, O(12) memory

* Fast Methods: 0(n) time, O(n) metmory

5 Multipole Algorithms

5.1 Direct Potential Evaluation
d evaluation points

d(I panels

0 Potential at point i:
j i

* Complete evaluation at d points costs (d operations.
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5.2 Multipole Representation

5.2.1 1D Strip in 3D Space

How many operations are needed to form the clusters?

O(n) *

O(n/2) N*

The cost of forming clusters is, in general, O(n + + + + ... ) O(n)

What is the cost of estimating the evaluation point potential?

\\ h\ ," , NZ

The cost of gathering clusters is O(n log n)

5.2.2 Computational Example

A few multipoles (monopoles, dipoles, quadrapoles, etc) can accurately repre-

sent the potential due to a cluster of charges, with the accuracy improving with

increasing distance from the cluster increases. For example, if one is very far

from the cluster, the potential due to the cluster will be nearly identical to the

potential of a point charge whose location is at the center of the cluster and

whose value is the sum of the cluster charges. The accuracy of such a monopole

representation can be improved by adding dipole, quadrapole and higher order

multipoles. Note, however, that higher order multipoles generate potentials that

depend on the multipole's orientation, and that must be considered.

Monopole Dipole Quadrapole
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5.2.3 General Case

d evaluation points

* Approximate potential at point i:

order

j=O

3 k

k=-j i

* Multipole coefficients function of panel charges:

d

M I= /

panel i
p Y- (, 3)dA.

* Computing Multipole expansions costs order d operations.

* Each approximate potential evaluation costs order 1 operations.

d potential evaluation due to d panels in order d operations

5.3 Error Scale Invariance

Error < K (R)o' ) Error < K ( )orderi

5.4 Multipole Algorithm Hierarchy

D,,
_, I _-__ >___

....... .... ../ ...._

> t \l

&9. G
'~0 j "r

Hierarchy guarantees:
* Bounded error:

Error K () order+1

order= 2 yields one percent accuracy.
* Order n ops for n potentials.
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5.5 Local Representations

5.5.1 Cost Reduction

D ) ®0 0
1 0

0
VC th 0

7 P1.~l t- l~c i

* Construct a local expansion to represent distant charge potentials.
* Evaluate a single local expansion, rather than many multipole ex-

pansions, at each evaluation point.

5.5.2 Clustered Evaluations

d charge panels

d evaluation points

* Local expansion summarizes the influence of distant charge for clusters of

evaluation points.

* Gives 0(n) potential evaluation when combined with coalescing of charge
done by multipole expansions.

oider j

* Approximate potential at point i: ,i (ri, Oi, 0i) z LY (i. 0i )Ir

j 0 k=-j

5.5.3 Summary of Operations

2m I

I 2

e Multipole an local expansions are built using comIlementary hierarchies.
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* Complete calculation consists of:

1. Build multipoles (Upward Pass).

2. Build locals (Downward Pass).

3. Evaluate local expansions and nearby charge potential (Evaluation
Pass).

5.5.4 Hierarchy Construction

* First build the rnultipole expansions moving upward from child to
parent.

* Then build the local expansions by moving downward from parent
to child.

* Computation has a tree structure.

5.5.5 Construction Details

* Conversion of multipole expansions to local expansions.
A child's local expansion is its parents local expansion plus conver-

-- • sions of rnultipole expansions in child's interaction range.
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5.6 Adaptive Algorithm

5.6.1 Multipole Inefficiency

Direct Evaluation

(V.,z)

v4 (x, y, z) = q1P41 + q2 P4 2 + q3 P43

Multipole Evaluation

2

(xv,z)
4.4 3

1
v4 (x.Y, Z) - 111o-

'F + i 0 ' 2 11-1 P-3 - 2r3 - 2,13

Using Multipole MORE ex)pensive than Direct.

5.6.2 Simple Adaptive Scheme

If there are fewer panels than mnultilpole coefficients, calculate the panels: influ-

ence directly.

* Similarly, local expansions are not usedI if there are fewer evaluation points

than local expansion coefficients.

* Retains O(rnn) comiplexity for nonuniform panel distributions.
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5.7

5.7.1

Computational Examples

Sphere Potential Distribution

* Potential given by O(x) = - 23

* Charge given by o(x) = -38- x3.
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tolerance 0'00 I order 2
tolerance = 0.001, order = 3

0.0150 tolerance -= 0.0001, order = 4

tolerance = 0.0001, order = up to 6

4- 0.0100

a,

0.0050

0.0000
0.0000 0.0010 0.0020 0.0030 0.0040 0.0050

1 / (Number of Panels)

* Error should decay like 1

* Multipole approximations eventually interfere.

* Higher-order inultipole expansions needed for higher accuracy.
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5.7.2 Two Sphere Example

Y

Z X

* Potential on each sphere: '(x) -~2i.

* Does not correspond to a simple physical problem.
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I I I

Order 1

Order 2

Order 3

Order 5
7  

D Direct
C 107

C)O

O0-

6o 10
6

10

105 I I, I I , 1 1 1 1 I , ,

102 103 10 4  10
Number of Panels

* Direct matrix-vector product cost increases like n2".

* Multipole matrix-vector product cost increases like n.

* The slope for the multipole algorithm depends on accuracy.

* For order 2 expansions, breakpoint is aboult 'n = 400.

5.8 Complexity Summary

For an integral equation discretized with n panels:

* Gaussian elimination: O(na ).

* Iterative Matrix Solution. direct M-V O(n2).

* Multipole accelerated Iterative Imethod O(n).
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6 Precorrected-FFT

6.1 Introduction

Strip of Charge in Space

Bring the ends of the strip of charge together to form a ring.

Flattening the ring leads to the figure shown below on the left. Forming a ring
from the strip of charges results in a system of equations with even more struc-
ture that the Toeplitz matrix system described above. The matrix in the ring
case will be circulent.

Produces a "Circulant Matrix"
* 20

0 39 a, -,

AilAj a ,

The above circulant matrix is the matrix representation of periodic convolution.
This convolutional structure is partly due to the homogenity of the geometry,
and partly because the Green's function is translation invariant. The Green's
function for Laplace's equation, G(x,x'), is translationally invariant because
G(x, x') only depends on the difference, x - x'. As mentioned above, the dis-
crete Fourier transform diagonalizes circulent matrices, and therefore circulent
matrices can be inverted in n log n time using the fast Fourier transform.
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6.2 Algorithm Outline

1. Project panel charges on grid

2. Calculate grid-charge potentials c

3. Interpolate grid potentials onto p

4. Local corrections
[compute nearby interactions dire

6.2.1 PFFT Grid Balances Costs

0 S S S S

* Grid Selected So Direct Cost equals FFT Cost.

* Finer Discretizations Usually Yield Finer Grids.
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6.3 Algorithm Analysis

6.3.1 Interpolation and Projection

X

00

.. . - g(,,y)
- -

Approximate potential T at x due to charge at y by interpolating potential using
points and weights xi, wi

Interpolate: potential at x due to unit charge at y

TWO:x y) T(xy) Y3 wug(i, Y)
Anterpolate: potential at y due to unit charge at x

T(Y r) TI'(y1X) - > Zwig(y, Xi)

So

Same as representing charge at x with wi and evaluating at y

II
II9-----.---1

6 *
II
II
II

an-- .----

ande ini cell

p interp. nodes

Equivalent conditions:

* Approx Potential in cell due to charge at large R.

* Approx Potential at large R due to charge in cell.

* Cost is O(N)
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6.3.2 Grid Potentials

H

* *

i- -0--4-

* Let H be grid charge-potential mapping

H: q, --

* H is Toeplitz

* Embed H in circulant matrix

m: ]

* Use FFT for matrix multiply
Must Have Translation Invariance

* Cost O(11 log 2 l) 1 = clls
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6.3.3 Nearby Interactions

Direct interactions
Cost O(N [,t1l)
[n ] max # panels /cell

*-.-~-----------------

I
I I

0------4 4i--~

Local corrections
Cost 0(1) - O(N)- o(No )

*---;c----,--$

* *

0--4--~--*--~---........ .....I
0 ...... 'i ,:, • •I

.I: : ..

6.3.4 Inhomogeneity Problem

* Empty Grid due to FFT - Inefficient

6.4 Examples
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bus3x8

sram

via

6.5 PFFT vs. Multipole

* Comparisons: PFFT p

Example

via
woven5x5

3 to Multi 1 = 2 cube
bus3x8
SRAM

mean

* Faster with 10x better accuracy !
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CPU

0.61
0.45
0.38
0.27
0.39

0.42

Memory

0.37
0.48
0.32
0.27
0.43

0.37

SLIDE
Product

0.23
0.22
0.12
0.07
0.17

0.16

49
Error

0.18
0.09
0.12
0.01
0.07

0.09

I

|I

woven



6.6 PFFT vs. direct

6.6.1 Memory

Example Memory Usage
Name Panels[conductors] P/FFT Direct
via 6120[4 ]  21 Mb (286 Mb)
woven5x5 93601101 50 Mb (668 Mb)
wovenl5 82080[30] 246 Mb (50.2 Gb)
cube 126150[1] 225 Mb (119 Gb)

6.6.2 Time

Example CPU Usage
Name P/FFT Dir. Iter. Gauss. Elim.
via 1.1 min (5.6 min) (1.9 hrs)
woven5x5 5.2 min (42 min) (6.9 hrs)
wovenl5 1.7 hrs (11.5 days) (194 days)
cube 3.3 min (8.4hrs) (2.7 yrs)

7 Summary

Reasons for Fast Solvers
Collocation System Reminder
Fast Solver General Approach
Using Iterative methods
Fast matrix-vector products
Two Fast Methods
Fast M1ultipole - Multiresolution
Precorrected-FFT - Translation Invariance
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Chapter 2

Foundations of Algorithms and

Computational Techniques in

Systems Biology

Engineering has always played a role in biology, sp)ecifically in the past couple of

decades the field of computational biology has emerged and contributed greatly. Foun-

dations of Algorithlns and Comnput ational Techniques in Systems Biology is a course

that gives an overview of topics of interest to a conmpl)utational biologist. The course

covers protein modeling. modeling networks, and image processing. These are the top

three areas in com)putational biology. and this course shows how one inay use com-

putational techniques to solve various problemns with a biological app)lication. This is

very interesting to both the biologist and the computer scientist.
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2.1 Motivation/Overview

MIT 6.581/BE.482 7 February 2006
FOUNDATIONS OF ALGORITHMS AND COMPUTATIONAL Tuesday

TECHNIQUES IN SYSTEMS BIOLOGY

Spring 2006

MOTIVATION/OVERVIEW

There is a disconnect between biology and
computer science.

The biologist will pose the problem statement,
but it may not be amenable for the computer
scientist to solve it.

There is a need for scientists who posses the a
breadth of knowledge to marry the two
realms.

time

PROBLEM > FORMULATION >SOLUTION
* assumptions a algorithms
* set up * computer techniques

* numerical methods

ecologies

populations

individuals
It

organ systems
IT

organs
IT

tissues

Ja cellular c experiment
focus of this cowrse IT

T molecular f physics

MOLECULAR LEVEL CELLULAR LEVEL IMAGING

(atoms) (concentration of
biomolecules)

" / Fast Fourier Transform
/ $" Combinatorial Search

$ Model Reduction
I S / Singular Value

Decomposition
" _Multipole Algorithm

S" ¢/ Numerical Differentiation
S.../ Optimization

/ / Newton Methods
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PHYSICAL, CHEMICAL, & BIOLOGICAL MODELING OF PROTEINS

Proteins:
. biological polymers of about 20 amino acids

polymers are any kind of large molecules made of repeating identical or similar subunits called
monomers

* "perfect" homogeneous, pure synthesis

* around 10k copies in a cell
* linear, unbranched chains of a unique sequence
. generally fold to characteristic structure with no additional information

sequence folding structure chemical biological network

(D) - (3D) - functions - functions --- functions

protein x-ray binding synthesis/ control points-

1 crystallography catalysis degradation decision

mRNA NMR energy storage/ "robustness"

T utilization time keepers

genome (DNA) gene expression oscillators
development important area
immune of growth

surveillance

Why Model?
. Understanding : model facilitates development of understanding reason for

properties
mechanistic basis for function
disease

. Prediction
experiment planning
validate a model or select among models

* Design
perturbation : improve properties
intervention : repair

2



2.2 Models of Proteins

MIT 6.581/BE.482
FOUNDATIONS OF ALGORITHMS AND COMPUTATIONAL

TECHNIQUES IN SYSTEMS BIOLOGY

Spring 2006

9 February 2006
Thursday

selection of
problems &
phrasings

BIOLOGY

Fundamental role of models:
Understanding
Prediction
Design

side chain

backbone

selection of
methods,
algorithms, &
techniques

COMPUTATION

DNA
(genome)

- mRNA - Protein

i-1 i i+1

N C

C

Ri H

The "Ri" groups are chosen from the common 20 amino acid side chains - chemical
diversity
(1) size: small - large

(2) polarity:

R(iy: -H o R,-p

hydrophobic

- RAs :

(3) uniformity of character

(4) local backbone flexibility
Gly

(flexible)

polar - charged

NH: - RAr, " NNIIII

Pro
(rigidity)
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Coordinate systems:
1) Absolute Cartesian Coordinates

x2 cartesian coo

x 3

X= x 5

x 6

X3- }Nh atom

2) Relative Coordinates - Internal

rdinates of 1 't atom

Think of the molecules as graphs where
- atoms are vertices bond lengths & bond angles - rigid
- bonds are edges torsions - soft

19 atoms 57 cartesian
degrees of freedom

I 

( 
H

X1 CU N C

H3N CIV

0 X H

0 0
O O

0
700

10 torsional
degrees of freedom

Desire: Mapping X ->E(X")

scalar v\alue
= Bias toward mechanistic basis for model

Chemistry - Physics (Quantum Mechanics) .. 1 Iea- &S'ct!on..

Schr6dinger Equation: ih _ V + V(x)W(x, t) - (x, t)
at 2m

Linus Pauling
Observations:

. bond lengths, angles - fixed

. torsions - "soft" & sinusoidal

. atoms appear to have a fixed spherical size & approach to contact neighbors
* complementary electrostatics

143



MIT 6.581/BE.482
FOUNDATIONS OF ALGORITHMS AND COMPUTATIONAL

TECHNIQUES IN SYSTEMS BIOLOGY

Spring 2006

6 O . H- N
hydrogen bond

SO H3N

salt bridge

Molecular Mechanics Potential:

9 February 2006
Thursday

E (XV)= UCOVALENT +UNON-COVALENT

honded - through space

UCOVAILENT = k,,i (bi -b,+i)
2 

+ - 0' + 2

i :bonds i:angles i:impropers

+ ,jk,.,[1+cos(n,-(,)]
i: torsions

NON-C()VAIIN T (B,, C,2 16

m1 (Ir Waii s
--4 cannard-Joncs

Elcerostatics
-- Coulomhic
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2.3 Discrete Conformationlal Search
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2.4 Binding and Docking
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2.5 Binding and Docking - Molecular Dynamics

Simulation
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2.6 Molecular Dynamics and Electrostatics
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2.7 Continuum Electrostatic Modeling I
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2.8 Continuum Electrostatic Modeling 11
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2.9 Electrostatic Contributions to Binding and De-
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2.10 Electrostatics Modeling
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2.11 Statistical Mechanics
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2.12 Statistical Mechanics
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2.13 Formulating Models
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2.14 Nonlinear Dynamics and Stability

lY~jlg AESrPI9iT

SVX1Tf

M ~e~

tl

I'=o) (%Or)

1.3 TOfG JT6AtY- 6TATE 4TAeI?

don~ Lwt,

When 611,11 n ~
Nor4 meus i ale

CF$ M khy~ruy 1um *

ALMVA:

Z, !,= sb

MV"(%:O

FOK~ Ve$Trpr~$E

in rdr jjak St"bi,

A 4amw

h. IS]~C]~t

4)

(4or Scaast

SrI4 Aoi-j gb

af

165



(V) (-Let +
0 WD . &vi. oia a

RsEW '1oN 16 l to MaW

f f (X-04 H-OT
0

RbxA ~x~ton- i j -

5(hFOK FCYJO To KAP HMATU' WOL4

;~~d.=0 rw ~bXtw Ugs,

If IS, 1MNQ~jUW FOR. UIL -1

st. Fti*)-O

(if) F 01
'T

F(r)=A"'r+rVe)C+&'A
'TP (14) + 0 (-1 O'A

W wws Llv A14 
0V-V)--FCX*)

I

166



2.15 Steady-State Problems
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2.16 Parameter Fitting and Estimation
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2.17 Parameter Estimation; Robustness, Fragility,

Control
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2.18 2-D and 3-D Light Microscopy; Image Recon-

struction
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2.19 Deconvolution
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2.20 Deconvolution 11
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2.21 Blind Deconvolution

LvCZ: Dc~D-KI~

M- krk -T) -rC4- +

~1I~~I

Ckst~) V mV4sO

LE (& -

"ok &~eL. 7*OGAm

iVito= C :5C4 CV

?IU.Ioi

ole o in T
"it v~rwi4K ~ iV

3)"4*rt o arro Th sin 4~&e

+ -t.uwe~t K(,)- fr.

177

r-I AOISCAI
JOWW 06



2.22 Optical Flow
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2.23 High-Throughput Data and Analysis
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2.24 Inference and Statistics
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Chapter 3

Introduction to Numerical

Simulation

Introduction to Numerical Simulation teaches an immense amount of material, it's a

general overview for graduate level numerical analysis and covers everything from how

to formulate equations based on a miodel to procedures one should use when solving

linear equations. This chapter offers in depth analysis as to why these procedures work

and allows the reader to look at problems from several different perspectives. The

material is presented in an easy to follow manner with several examples to elucidate

each point.

183



INTRODUCTION TO NUMERICAL SIMULATION

LECTruE 1. Example Problems and Basic Equations

COURSE OUTLINE:
* Assembling system of equations automatically
* Steady state solution

- Linear Problems: Ax=b
- Non-Linear Problems: F(x)=0)

* Dynamics (ODE solvers)
- Time domain integration
- Periodic steady state

* PDE solvers
- Integral Equation Methods
- Finite Element Methods (FEM)
- Finite Difference Methods (FD)

Preconditioners for PDE solvers
* Model Order Reduction

[3 lee]

17 lec]
[3 lec]

13 leel
[2 lec]

[2 lec]
I1 lc
[2 lec]

[I lec]
[2 lec]

RELATION TO OlTHER COU RSI:S

TODAY'S OUTLINE:
* Uses For Simulation

Engineering Design
-Virtual Environments
- Model Verification

* Course Philosophy
* Example Problems

Power distribution on an Integrated Circuit [Electrical]
Load bearing on a space frame [Structural]

- Temperature distribution in an engine [Thermal]

USES FOR SIMULATION
* Circuit Analysis (e.g. cell phone)

From www.maxiln.comi

o Equations
* Current-voltage relations for circuit elements (resistors, capacitors.

transistors, inductors), current balance equations
o Recent Developments

* Matrix-Implicit Krylov Subspace methods.
* Electromagnetic Analysis of Packages

o Equations Thanks i
* Maxwell's Partial Differential Miw Coventor

Equations
o Recent Developments

* Fast Solvers for Integral -,, -
Formulations

* Structural Analysis of Automobiles
o Equations

* Force-displacement relationships for
mechanical elements (plates, beams,
shells) and sum of forces = 0.

* Partial Differential Equations of
Continuum Mechanics

o Recent Developments
* Meshless Methods, Iterative Methods.

Automatic Error Control

S×
Cd

QCD

C
O,,©b



* Drag Force Analysis ofAircralt
a l-quations

* Navier-Stokes Partial
Differential Equations

o Recent Developments
" Multigrid Methods fotr

Unstructured Grids
* Analysis of Cell Traps for Sorting

Cvtometry
o Equations

* Navier-Stokes Partial
Differential Equations

r Recent Developments
* Multigrid Methods for

Unstructured Grids
* Engine Thermal Analysis

Equations
SPoisson Partial

Differential Equations
o Recent Developments

* Fast Integral Equation

Methods
* Micromachined Device Perfoarmance Analysis

o Equations
* Elastoimechanics, Electrostatics,

Stokes Flow
o Recent Developments

* Fast Integral Equation Solvers,
Matrix-Implicit Multi-level Newton
Methods for coupled domain
problems

* Stock Option 'ricing for Hedge Funds
o Equations

* Black-Scholes Partial Differential Equation
a Recent Developments

* Financial Service

engineers,
mathematicians, and
physicists

o Equations
* Multibody

Dynamics, Elastic
Collision
Equations

o Recent Developments
* Multirate

integration
methods, parallel
simulation

* Virtual Surgery
o Equations

* Partial Differential Equations of
Elastomechanics

o Recent Developments
* Parallel Computing, Fast

Methods
" Biomolecule Electrostatic Optimization

o Equations
* The Poisson Partial Differential Equation

o Recent Developments
* Matrix-Implicit Iterative Methods, Fast Integral Equation Solvers

Ligand Receptor
(drug molecule) (protein molecule)



THE COMPUTER SIMULATION SCENARIO

Problem too coamplicated foIbr hand anal. s

Toss out some
Terms

"Macromodel"

Sl',,c a

Simnplified
Problemn

Make
Sense?

y,,

Sitllulate using a caned routine, a frieClld'
advice. or a recipe hook

De\ elop [)evelop
tUnderslanding of Understanding of

SI Computational Convergence
complexity Issue,

Fa cr Mc lhod, RohLum Mtelhtli

Fame!

COURSE PHILOSOPHY
Examine Several Modern Techniques

Understand, practically and theoretically, how the techniques performn on
representative, but real, applications

Why Prove Theorems?
Guarantees, given assumptions, that the method will always work.
Can help debug programs.
The theorem proof can tell you what to do in practice.

EXAMPLE PROBLEMS
* Power Distribution on an Integrated Circuit

a) Voltage across every function block > 3V
b) Minimize the area used for the metal wires

o First Step- Analysis Tools
Given the topology and metal widths and lengths determine the voltage across

the ALU, Cache and Decoder.
o Who uses VLSI Tools?

* Several big companies
IBM, Motorola, TI, Intel, Compaq, Sony, Hitachi
Nonfunctional prototype costs:

* Increases time to market
* Design rework costs millions

* 1000's of small companies
* Small companies make application circuits disk drives, graphics

accelerators, CD players, cell phones
* What is the cost of nonfunctional prototypes?

o Out of business
o Who makes VLSI Tools?

Cadence 4,000 1.3 billion 3.8 billion
Sno sis/Avanti 5,000 1.5 billion 6.9 billion

Mentor Graphics 2,600 0.6 billion 1.4 billion
(Data from 2003)

Companies compete by improving analysis efficiency.
o Modeling VLSI Circuit Power Distribution

" Power Supply provide current at a certain voltage
o Functional blocks draw current
= The wire resistance generates losses

* Modeling the Circuit
* Supply becomes a Voltage Source

Power Supply

Voltge CI I V,

VoltaConstitutive EquationEqato

Physical Symbol Circuit Element

Power Supply

Is there at least 3V across the ALU?
o Design Objectives tbfor the VLSI Problem

Select topology and metal widths and lengths so that



SI:unctional Blocks become (urrent Sources

ALU-

'hvysical Symbol
Ciicuit Element

* Metal Lines become Resistors

+ V -

Physical Symbol

Circuit Element

R = length resistivity
area

Element current is related to voltage across the element
* Two Types of Equations

Sumr of currents at each node - 0
* Conservation/Balance Law Equations

(i -i2 + 3 = 
0 )

I= J

Constitutive EIquation

(-i + i2 -i 3 = O)

IR - V= O
Note: here ii - -3 means it goes to the right i.e. opposite to the anrow

Load Bearing on a Space Frame
al"

Constitutive Equation

(Ohm's Law)

Joint

*0

A
* Putting it all together

* . Droop

Beam , Cargo

ttachment to - Vehicle
the ground

Does the Space Frame droop too much under the load'?
o Design Objectives for the Space Frame

Select topology and strut widths and lengths so that
a) Droop is small enough
b) Minimize the metal used

o First Step - Analysis Tools
Given the topology and metal widths and lengths determine the droop of the

space frame under load

0 Poer Supply - Voltage Source
Functional Blocks CliTent Sources
Wires - Resistors

Result is a schematic
Formulating Equations from Schematics
* Two Types of Unknowns

Node voltages, element currents
* Constitutive Equations

Ic IALUI



Modeling the Space Frale

Bolts

Struts *

Example is simplified for illustral

* ILoad becones Force Source

JIM

Schemiatic S,

Physical Symbol
* Bearm becomes Strut

q '

Physical
Symbol

Ground Load

y

Consttutive Equationt

Conslitutive Equation

=(x , I-
Strut

. = ... .

., = Unstretched I.ength
.4 = Cross-Sectional Area

E Young's Modulus } Matenal Prope!ty
Abstraction -- leads to simplifications, such as:

No hending/buckling
No twisting
No breaking

B
Strut

A
Only solve for the force, f*. on one side

The force on the other side is f = -f

If f = (3,-2) it means B *

thus the strut is turned around

B =(3,-2)

7 (-3,2)

A

I =(-3,0)

/ is the restoring force of the strut
A B (internal lorce)

Is this strut compressed or stretched?

The force of the strut is pulling the end in this means that the
strut is being stretched.

Think of what happens when you pull on the ends of a spring.
Is the force from the spring pushing your hands away from one
another or pulling them towards one another?

f = EA
LO



(0.0)

1(wo) / AL =( L - Lo

- ( L Lo)= 1 Lo -x 0)

EA. Constitutive Equation

stretched, the internal Lo (Hooke's Law)

fotrce will pull to the left,
and thus be negative

Example.

c=10, Lo 3. x =5

* = 10(3-15-01) = -20 1 = - 20, il

(0,0) 0 f-5 X

In this case =

Strut r- (x )

- - ff =-I

- (1it ector along direction ostrutii)

r x -x y -y- L ' L

Example.

(3,6)
Strut (3,6)

,1,3)

55
L= -: = [3-(-1)] +(6-3)2 = 5 stretched strut

f - E (L-L)= 10 (3-5)=-16

(Lo-L)= 6-3 10 (3-5)=-12
Y L 5

L= ,(x -x +lG -y)2

c= 10, Lo = 3



Example. L = 10, L, = 3
5 54 3 )

Strut4

= ( -
16+12)

Putting It all Together

I -- Load

L -P :(3-(-1))- +(0-3) = 5 trche

x -. 3 (-I)
J , ,= ( L, - L) = 10 (3-5)=-16

5

S( i-/ L) = - 10 (3-5) =+12
L

Example. = 10, LO 8

I. = -: ,(3-(- ))- +(0-3) =5

(-1,3) \,4= ( :

S(+24.,18)

Strut "
(3,0)

How much does the load droop?

Formulating Equations fioom Schematics
* Two Types of Unknowns

Joint Positions, Strut Forces
* Constitutive Equations

Element Force is related to the change in Element Length
* Two Types of Equations

Sum of Forces at each joint 0
* Conservation/Balance Law Equations

r/compressed strut

S= c (LO L)= ( 10 (8 5)=+24

(I, - )= 10 (8-5)=-18
L 5 because it is

the Ibrce
here. ite f

opposite of

i +f2 0

\tc: .y =
(- 3,0) tt.ans i tc foc: th i c th i ft..

12, + i = o



* Temperature Distribution in an Engine

Does the engine get too hot'?

o Design Objectives for the Engine
Select the shape so that

a) The temperature does not get too high
b) Minimize the metal used

o Heat Flow I-D Example
• Conservation Laws and Constitutive Equations

Incoming Heat

'4~H~ 4 44444444
T(0) 1

Near End Far End
Temperature Temperature

Question: What is the temperature distribution along the bar?

T

T(O)

Discrete Representation
I. Cut the bar into short sections
2. Assign each cut a temperature

T( T(1)

T, T, T T, , T.v., Tv

* Constitutive Relation
Heat Flow through one section

4-Ar -*

T, T 1 hi+, i = heat flow = K +

thermal comnductivlit

RthermaI A-

Conservation Law
Net Heat Flow into Control Volume = 0

Incoming Heat h

hi+,i - hii_ -hs &

heat in heat out incoming heat
from right friom left per unit length

T(0)

T, T2T T- Tv

Control Volumes,
fill the space (Ar)

Limit as the sections become vanishingly small:
h i +l i 

-
h i i -

-
lim

A Circuit- A

Circuit Analogy

vj+ -v
R

hi4i-TiTi
h;1 j

n ng

U it e h e



ITemperature analogous to Voltage
Heat Flow analogous to (Current

1 1 T11,

T, T,

* Conducting Bar - Temperature, Section Heat Flows

Two Types olEquations
Conscrvation/Balancc Laws

* Circuit Sum of Currents at each node = 0

1 K

=T(O) Ai,=N/T, Ax= T()

SUI1MARY OF KEY POINTS:
Many Applications of simulation

Picked Three Representative Examples
Circuits, Struts and .Ioints, eat Flo\\ in Bar

o\ Types of lUnknowns
SCir cuit Node Voltages. Element Currents

* Struts .loint Positions, Strut Forces

=* Y
A,

R F , R V,,

i ii

F 1 "

* Struts Sum of Forces at each joint - 0

J' -fB + = 0

SBar - Sum of heat flows into control volume= 0

Incoming Heat ,

*-- Ay -0.

Constitutive Equation
* Circuit current-voltage relationship

R,

* Struts force-displacement relationship

(x I'v ) (r2. y'2)

i A - iB +i s = 0

hii- i+, i -- i Av = 0

RAi
A = Vi - Vi

1

- - - L, - ,
vl (J, L)



S Bar - temperature drop-heat flow relationship

--- Ax---

]li I,

hi+,,l = K I - T
AV



INTRODUCTION TO NUMERICAL SIMULATION

LECTURE 2. Equation Formulation & Node-Branch Stamping

TODAY'S OUTLINE:
* Formulating Equations

- Circuit Example
- Struts and Joints Example

* Matrix Construction From Schematics
Node-Branch "Stamping Procedure"

* Circuits
* Struts and Joints

FORMULATING EQUATIONS FROM SCHEMATICS
Circuit Example

e Step 1: Identifying Unknowns

* Step 2: Conservation Laws
Sum of currents 0 (Kirchhoff's Current Law)

0 2
i R s in

4,ic3

* Step 3: Constitutive Equations
Use Constitutive Equations to relate branch currents to node voltages
(Currents flow from plus node to minus node)

RE

R A i 0 V - ac1 1,A --R[ il RC iC 3
RaiD = V4 - C= V3 -V4

0I,--I©:

O-i

©

©l

I

Struts Example

Assign each node a voltage,
with one node as 0. Assign each element a current.

* = (x-
f r -

K* -_ F1 "- i



J . * x

(x_, y_) (x. v')

Fl,,,.iF lF/oa

Will the solultions bc the saUC?

Will the set of conservation la\\ equations be different'?

Conservation laws lor the twno examples sill he exactly the same. The

perceived force "direction" is inconsequential. it is the adjacent forces

that matter.

Two struls aligned with the x axis

Conservation Law

At node I: ,

At node 2: .

Colnstitutive Equations

I L, : k; (L,, - - -O)

\1 
X2 

I

Reduced (Nodal) Equations

o - VI - I

I , + ,= 0

/1 

YI = 0 Y2 0
Example.) I )= 10 (force in positive direction)

Solution ofNodal Equations

S
= L + = + L

o 
+

Notice the signs of the forces

S= I force in positive x direction

I/6 i = -I0 force in negative x direction

SStep I: Identifying Unknowns

(0,0) ( position, with o) e jont as er

Assign each joint an x,tv position, with one.joint as zero.

1- i,s)

r r c L

,



Comparing Conservation Laws
* Circuit

V _1 R RB i,

* Heat Flow

Incoming Heat S

" Struts

A it~

A -iB +is = 0

hi,i-1 - hi+,i - 5 Ax = 0

.fA- +ft =O

Force Equilibrium
Sum of x-directed forces at ajoint 0
Sum of v-directed forces at a joint - 0

Step 3: Constitutive Equations

f* - -OdLo-La
tIi. -

0
c(Le-L)

f;, = 51 I 01 , -LnI

0 ) 2 A - 0 )

d(x2,y)

Summary of Key Points
* Two Types of Unknowns

o Circuit: Node Voltages, Element Currents
o Struts: Joint Positions, Strut Forces
o Bar: Node Temperatures, Heat Flows

* Two Types of Equations
o Conservation/Balance Laws

* Circuit: Sum of Currents at each node = 0
* Struts: Sum of Forces at each joint = 0
* Bar: Sum of heat flows into control volume= 0

o Constitutive Equation
* Circuit: current-voltage relationship

VrRY i vo)Yh

* Struts: force-displacement relationship

Use Constitutive Equations to relate strut forces to joint positions.
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S=. x,, --l,,+ A |x,, - (X/, + A]
0 - (xIh, + AO)

/f is a positivc number - thrce is to the right, this

makes sense for a strctchcd strut.

Bar: iempctraturc drop-heatl losw rclationship
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Circuit Example
Assume linear constitutive equations...

B N
branch node
currents voltages

N KCL Eqns

B Constitutive Eqns

One matrix column for each unknown
N columns for the Node voltage
SB columns for the Branch cunrrents

iFb
N

One matrix rosw for each equation
N rows for KCL
B rows for element constitutive equations

(linear and square system!)
Conservation Equation

+ I
-inGEINERATING; MATRICES FROM SCHEMATICS

Numbel r Of Co(lunS

Number of Unkno\\ n

Number ofRows . I b
Number of AiL I
Equa~tions

I / x,, I b,, 1

-i F sB -s

i(, i = i,

Matrix Form for the Equations

KCL
equation I I . i

one column for each right hand Sidc
branch current for source

currents



Four Nodes
Do we know how mnany rows the .1

.2 atrix will have?

3 because there are 3
nonzero nodes

Do we kno ho\\ many columns tihe A niatrix will hate?

Could have any number, depends on the number of
clencllets 0IVI'Wil i le i

Input file 0iva cirlcuit sitnulation has one line per resistor:
Ioose tnodel nodie2 alue 0e

Spice - circuit simulator -

code...
R narieA itl n2 I
Rrnaime nI n3

Iname n2 n3

Nodel* KCL V, +1 + 1

Node2 KCL V, -1 +1

Node3. KCL V3 -

.4 has no more
R than ro non-

nz zeros per column k

KCL at...

Itow does each current source contribute to the Conservation Law
Equation?

Aftects the Right Hand Side

i @- i -

KCL at...
. i. .. -Y,' = Zi . + 'A

,t,2: E i, Z ....... pi,

RHIS

(onservation Matrix Equation Generation Algorithm
R4

For each resiston AAAk)

if (ni, o 0) then .4(ntk) - -1

Set 1, - zero vector
For each current source

if (ni O0) then I,(ni) - I,(n1i) -i i
if(n_, O) then I,(n,) +- &(n.) i,

How does each resistor contribute to the matrix

I A
i-
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R
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'h 

resistor contributes 1 to a (k,k)
Rk

The matrix ( relates branch voltages to branch currents.
- One row for each unknown current.

One column for each associated branch voltage.

The matrix a is square and diagonal.

Relationship between branch voltages and node voltages:

V,= 0= V 4 - 1

= vi-v2 Examine -1 -
I/ = V3-V Matrix Vc  I -
V) = V4 -0 Construction VD
Vv =~ 0 ' - 1 - 1

First relate branch currents to branch voltages
Second determine voltages across resistors ( Branch Voltages)

- I I

@ -I@ 1 1 -L1

Constitutive Iquation



The node-to-Branch matrix is the transpose of the K(I Matrix.

KCL Equations Node to Branch Relation

S V,

I I: .....I I't -
t !i i_____=__.,__ -I IIv/ "

R R

i i I

0o3o,

i" V

A T ,- 0

ii
iB
i(-
ill

iLE

Node-Branch Form
I, - A' Vv = 0 Constitutive Relation
A I,= 1, Conservation Law

B$[ I - A Ib] 0]
B N

N = number of Nodes with unknown voltages
B = number of Branches with unknown currents

Struts Example
o In 2-D

" One pair of columns Ibr each unknown
* J pairs of columns for the joint positions
SS pairs of columns lbr the strut iforces

* One pair ofmatrix rows for each equation
* .1 pairs of rows for the force equilibrium equations
* S pairs of rows fbr the linearized constitutive relations

o Follow Approach Parallel to Circuits
(I ) Form an "Incidence Matrix." A. fi-om Conservation Law.
(2) Determine strut defonnrmation using A

r.

(3) Use linearized constitutive equations to relate strut delfomation.
(4) Combine (I). (2), and (3) to generate a node-branch form.

o Conservation Laws

A '2

"'4

The node voltages can be related to branch currents
A. t relates node oltlages to branch voltages.
u relates branch voltages to branch currents.

t is square and diagonal

.

reB-

X ,

&ad

Itt ,, tI

It.. 'a 4.

Note that struts A & B only contribute one pair of entries into the A matrix
and strut C contributes two pairs of entries into the A imatrix. This is because
struts A & B are connected to the \\ all (ground) and strut C Ihas two fice enrds.



Stamping Approach

Matrix load I column at a time

I 

. -

r-1

Ii I pair
for each
end of

the strut

1 ./

L lij-

Load pair of columns pei strutl

Load right side for load

(Conservation Matrix Generation Algorithm
Foir each strut

If(ji is not ixed) A(/j, ) - 1
If(2 is not fixed) A , -1

A(/ j i, , 1
.4 (121 J ) - -I

For each load
if(ii is not fixed) F'(i ) - Fid ) I,<,,

FU, ) - F(i,) -,fi,
A has at most 2 non-zeros per columnl

o Constitutive Laws

Vertical strut
f = c(Lo - L)

------

S f -E(LO - L)
L L

Linear with respect to displacement (u,.)
a.k.a. incrementally linear

(l(If it, is doubled,
f')u, = y -Lo then fdoubles)la'°

Linearize the Constitutive Equations.
S= ,, L . c(Lo - L)
L L o L

S
=  

EA,. " e(L- 1 I00 -
L L I L

Determine the first derivatives of the non-lincar constitutive equations as a first
step to linearize the equations.

Fr7 2 2 2 + 2Y2

1O F- -L s $" x-+.12  2 1.-.2

2 i + 2 ++ 2 2

Evaluate these first derivatives about the point (x, Y.
Linearization becomes

f ' (x-.)+ (. -. )

(s, .,o)+ i ' i-.(o )

I fIV
xt )



Linearization is only a valid estimate if the strut is verC close to its original
contigurationl . and r are rery close to .\, and Y,

What if the strut is roiated, is this linearization still valid?
It seems like it should be because the strut is not stretched (only rotated), but it
isn't. Because the non-linearity is not in the relationship between how much
the strut is stretched and the force going throughl tile strut but the non-linearity
is in the projection of that force onto the x and y axis.
Referred to as the 'geometric" nonlinearity in finite element literature.

Example.

Vertical strut

(x'" j ,, r
Yit

Clf,

I lorizontal strut

0 0

0

(=o
0 I! I

F, iL -

Note: NO)N I NI AR L

LINI'ARIZI: the constitutive relation
IfI' . '" are close to some .),, , ii 0 I

! $J i 'F " " -U = (x- .,- , -,.)

Jacohbian Marix

We will learn more about linearizing equations later on when we study
Newton's Method.

Thie nr(sy) block

Initial position nitial position

,r0 2lo - l.1 2' 
-  

-

Note that the arguments in the a matrix are the difference in the original
posiition between node I and node 2 This is because thle force of the strut is
dependent upon the relative position of the two joints on either side.

-,

0-00

/n"

'n1111j

/5'



o Node-Branch Form
A1.- /' 

T

A .t; =./*

2-S I I
2-.J I A

Constitutive Equation
Conservation ILaw

-0 A ol
0 ]LuPL/fI

2-S 2-J

S = Number of Struts
J - Number of Unfixed Joints

Comparison

2-S I I - LA uO
struts

2J A 0 u i fL
< ------

2-S 2J

circuit BT I - aA rIh 0O

NtLA 0 ViN I
B N

Summary of Key points...
o Developed algorithms for automatically constructing matrix equations from

schematics using
* Conservation law
* Constitutive equations

o Looked at one ln-nnulation: node-branch
o Next time: nodal formulation



INTRODUCTION TO NUMERICAL SIMULATION

LECTURE 3. Equation Formulation - Nodal Analysis

TODAY'S OUTLINE:
* Matrix Construction from Schematics

- Nodal "Stamping Procedure"
* Struts and Joints
* Circuits

- Comparing Node-Branch vs. Nodal
* Solution of Linear Systems

Existence and Uniqueness

MATRIX CONSTRUCTION FROM SCHEMATICS
Nodal "Stamping Procedure"

-- Struts and Joints
Two struts aligned with the Xaxis

If2 X L

.1 = 0

Conservation Law
At node 1: oIL + f . =

At node 2: _ + -o

Constitutive Equations

X1 - 0I V()0 -X, -0 1)

X1 -x2

Reduced (Nodal) Equations

.i.. + . = 0

Two struts aligned with the X axis

xl X2

y, = 0 y2 = 0
Example.) jf = 10l (force in positive x direction)

Solution of Nodal Equations
10 10

x = L+ -.. x2 = x + Lo + -

Notice the signs of the forces:

f2., 
= 

10 force in positive x direction

fi~x = -10 force in negative x direction

+ Circuits

y2 = 0

S l.et- r - .

.(L. -xi )+ X Xi- e(L -x - x )= 0
xi XI - x

f , + .L =
X1 - x e(Lg l - X2 ) . : 0
xi -r21

(1) Number the nodes with one node as 0.
(2) Write a conservation law at each node except (0) in terms of the node

voltages!

0

z
0=

cj

cj



KCL equations

ait 12.: il, I (l lll i)= i~"dl .E "'..." '1 ~ i

Onle row per node,
One column per node

For each re,;istoir

Ri, R RD

Notice that the contributions are positive oin the diagonal and ncgativc on the
off-diagonal.

; is square.

Node-Branch Matrix Nodal Matris

N Ft~-3IA-VON+R

Circuit Example.)

What does the nodal fonnr Ibor the equations look like'

I a-onaly
• .. = 1 dominant11

What does the nodal form for the equations look like?

1+1+1

-1 1+1+1 -1

-1 1+1+1
1±..

Strictly
Diagonally
Dominant

R4

R. 1 R R1,

RB R, R L

1L

-I l+ +1 -1 i,

-1 1+1+1



Nodal Matrix Generation Alorithin
if n1  0) & (0: 0)

G( I)= G(ni.I )+ 111 ((17 -"

(;ni7.ng)= G(nn )-) R  G(.. )= Gi(,?., )+R R

else it (n > 01

CISCI

ResistorG V,
Networks s : ~ V,, = F,

Struts and

Joints 2.J , G ui = F,

(. ,F, , , , ,':
S)

S Nodal formnulation for struts and joints
not have nodal lorces... replace them
cxpressions in terms ol'nodal position.

(. l; I,t; , f'2 .

Comparing Node-Branch vs. Nodal
o Comparing Matrix Sparsity

Lxample.) Resistor Grid

'101 1 11, 1103 1 o4 "I",

C~,~ 11 ~ 00 1
V I 

Irii

Nodal lorm

- 1

will
with

F (x-2 - ,.l 2 I )+/y ( 2 - 3 , '2 V3)= 0

Matrix non-zero locations for 100 x 10 Resistor Grid.

- 1 - 4

i



Node-Branch Matrix

Constitutive [I T 4 0

Conservation Law LA 0 VN Is

Nodal Matrix

Conservation Law [G][VN]= [ ]

(constitutive pre-substituted)

o G matrix properties
o Smaller NxN << (N+B)x(N+B)

2Jx2J << (2J+2S)x(2J+2S)

o Symmetric Gi = Gj i
o Diagonally Dominant

° Node-Branch Form

-.1- -- A
T  

[, AT] b 01

M x h
A 0 o Not Symmetric, nor Diagonally Dominant

o Matrix is (n+b)x(n+b)
. Deriving Formulation from Node-Branch

constitutive equations

Ib - ATVN = 0 b = AT v
substitute into conservation equations:

AIb =Is V AcLrV = Is

* Problem Element
o Voltage Source

Constitutive Equation Vn2

0 i + V," - Vn, = K,



Formi Node-Branch Constitutive Equation with Voltage Source

KC : ...+

Ri,

KCL I + -' ( I' :) + ... RHS

KC L2: ...+ R (V, - IS

1 0

I L -- 0

II ij.

Cannot Derive Nodal Formulation

reI tr ctrrent r c, = ](Constitutive Equation)

A I, = I (Conservation Law)

Cannot Eliminate I, since It, ; )

Nodal Formulation requires Constitutive relations in the form:
Conserved Quantity = F(Node Voltages)!

Rigid Rod

r ( x , )

(x,y),*. +(- ,
=L red constitutive

equation

The constitutive equation does not contain forces!!
+ Summary of Equation Formulation

n Developed algorithms for automatically constructing matrix equations from
schematics

* Used conservation laws + constitutive equations
* Node-branch

* General constitutive equations
* Large sparser system
* No diagonal dominance

* Nodal
* Conserved quantity must be a function of tnode variables
* Smaller denser system
* Diagonally dominant & symmetric



SOLUTION OF LINIAIR SysTIEMS

, N x.. tl - ...+ x N 

Find a set of weights,x, so that tile weighted sum of the columns of trie matrix M is equal

to the right hand side b.

0

( x 1  4

xi 1 + .x2 M2 = i

11 M-1 1)[4

Key Questions
* Given Mx = b

a is there a solution?
I s the solution unique?'.'

2- I -

2 1 2  -

M2 1 2 3 4

lI r

i M= 0 1 Can h=

No - so change M so that b can be a solution A 01 I

i 1 21 Note that the third column is tihe sum of thet
What if M = 0 1 l first two columns in this case. The

] columns of I are not linearly independent.

Can b= ? x=

Can h = 1 x =r or x =

Existence and Uniqueness
• Is there a solution?

There exist weights xi .... xx, such that

xiMi+ xM +... + x\Mv =I
A solution exists when b is in the span of the columns of M

span{ ,iI ... I g}. . I 1 1A +a 2 2 +... +evMNA ,"i Et)

2 21 =espani ,M }= c iLl+ 2 =

1 2 3
1234

[]



M =b
M = 0

M(. + y)=
b K] I oI 1

sNo Solution

234

-is a solution
linearly dependent columns in M

2- + i isa solution

If M = 0 then ctMY = 0) => NI(_ + a.')= i) : intinite solutions

2-

-2 -1

M[-[2]-3 -D

I 1 0o1

M o be Ispa , S uI
mNo Solution

S[- 1 -42] ]= [0]

MI M,
1 2-I

-2 2M , + 
AM42 = 0

-4 ]

= span 1, + , X M 2/2
= a1 M +axM 2

o Is the solution unique?'
Suppose there exist weights. , . ..,. v. not all zero

Y All 
+

2 M/1, 
+

... + .yIN I = 0 -[nullspace]

Then if MV = b, then M(S + .)=

A solution is unique only if the columns of M arc lincearly independent.
Linearly independent columns means: ai l[i f M k

ik

--1

M2
-4



Physical Circuit Example.)

3 4

44

0 - M =

1234

Infinite number of
solutions,. arc of the L)ll:

I- [ ] ,]

I -2 Y" =[2]
S41x-, [4]

4 b = [
2- +0

1 23 4

1 V [ ,,

I (V - v)= (
R,

Let R =l, is there a right hand side where the system can be solved?

Physically this means that the current
values must be equal and opposite. This

A4, makes sense as there is only one path foi
the current. Any k volt difference, where
Vi = V, + k will give the solution.

A .I no solution
L.D. Infinite solns

e.g. 2 0 +2 2 = / =0 , =2

+ or - 2 = - V = 1  V2=I

or 8'1 + 10 2 = b -> FI= 8 V= 10

or - 2M + 0 -, = V, = -2 V,= 0

>or -103A 1 +105 2 =b - V =-103 I = 105

, etc...
Physically we can shift VI and V, by the same amount!

R V,

e.g. b no solution

=1i s2=0

Where does this
current (from i,j) go?

Makes no sense.

i,, + I (I -1 )
R,



Struts and Joints Example.)

Strut is on the .v-axis

S2Forc

it, = " -A (II It\ = 2 - \)02 equal and opposite

.l = -. f [(x 2 - x ) (X - X1)]= u l )
it I,

/l + c ,i - ,- )= 0

Heat Conducting Bar Example.)

heat in heat out
T T Ti I, T, . Tv

Boundary conditions

if heat in = heat out - no unique solution

Could displace solution by a factor
of 100, and it would still solve the
system

if heat in f heat out - no solution
Summary Table

i he so ution is in the span of tihe
- t i niatris colti nstil f I

Solution is not unique because for 

L.I. columns

L.D. columns

2

1.] J L J
Singular System.

N I [ ] I K
N I

N

If the solution
plhysically exists,
need t -/2
there will be an infinite

A/TI number of solutions

he rangeM b e range({M
Solution exists No solution
and is unique
Infinite solutions No solution

Llunderdetcrmincd

N<M

imust he

os son
solns soln

There exists a h for w hich
thereC is no solution

N>M

; -1

, ci h

+ c



M

SN=M L.I. -Solution exists & uniqueN L.D-*There exists/ for which there
' is no solution

All other values of 'will have
Square infinite solutions

x
2  Al

1 1 2

Square Matrices
Given Mx = h, where M is square

If a solution exists for all b, then the solution for a specific b is unique.
For a solution to exist for any I), the columns of M must span all N-length vectors.
Since there are only N columns of the matrix M to span this space, these vectors must
be linearly independent.

A square matrix with linearly independent columns is said to bc nonsingular.



INTRODUCTION TO NUMERICAL SIMULATION

LECTURE 4. Linear Systems LU Decomposition

TODAY'S OUTLINE:
Solution of Linear Systems

- Gaussian Elimination Basics
* LU factorization
* Computational Complexity
* Pivoting for Growth Control

SOLUTION OF LINEAR SYSTEMS
Gaussian Elimination Basics

o LU Factorization
o Important Properties

Gaussian Elimination Method for solving NM = b
* A "Direct" Method

Finite Termnination for exact result (ignoring roundofferror)
" Produces accurate results for a broad range of matrices
* Computationally expensive

o Reminder by Example
3 x 3 Example

Mil 11M1 M 3 F Mi i+ MI 2x1+M b3x3=bl
M, r2  M23./2/ M xA,5  + M., 2 + M3x.3 = b2

M3I M13 M3 3 x3 L13j M 3 1x1 + M 32 x2 + M 33 3 = b3
Use equation I to eliminate x. from equation 2 and 3

MA Mi xl + v 22 -= I  1 b

I  MI I  MI I  M I I

44 A4 A4 1 b,

- 4-'13 X1 b2

3 M, Al
Pivot should NO E = 0.

Simplify the notation

1M, M 2 13 F b
0 f322 M3233 -

0 4132 A 33 13 I

Use updated equation 2 to eliminate x2 from the updated equation 3

Mil MA2 M13 1 b

0 0 & 33 3 32

Right-hand side Fi rst loop
S iialbiliel,

, 1  b, / 0 0 b,
Y2- Mb, - b, 1 0 b,

" uMl L i lir
V3 1 (Ad31 '_ 32 )[l M'3l M32  j

3 bM b - i I - Second loop
M 22 - Multiplier

M
M~=b oLU.-b M <-> LU

= LU. = h {U =

-~tusial lhrnirationx *=  ,y] =b

Putting it all back together

M
Fitting the pieces together

eC



A -I I ,,

M3I i
L U

L U- L -

The L matrix will
contain all subdiagonal
elements with a
diagonal of all I's

Factoring
An "in place" implementation

M 1 I M 1 2 M 1 3  M

M-,1 M22 M 23

'M31 M3 2 M33  M

1 
ML MMi

MMl

M31 M 3 2 33
MI 22 33

Store all the data in one matrix - no extra memory needed.

M2 M 1

2 Mj23

,'32 M33



Example - Heat Flow
Temperature analogous to Voltage
lHeat Flow analogous to Current

R=I R= I R=1
T T

aat wiko 4i~

Nodal Matri

"2

2,

I T

-1 2 -1 F3

2 1 T

2 -
S- I

-1 2 -iF 2IC It " "

2 -l

2
3

4 -I
3
3 s
4 4

In place LlU decomposition

1 I 1
2

M=L-U =
3

4

SComputational Complexity
c Three Steps to Solving a System

Solve MNIX h
Step Decomposition

M=L.U

S Forward Elimination
Solve LU b

St B 3 Backward Substitution
Solve U;x .

o Step 2: Solving Lower Triangular Systems

l, ....................... b,,

1 + 2 + 3 + 4 + (n i -)(,i2

-I

4

5
4

13;

I = IN 1 A i; i;'
It;-

- 1

6
5



o Algorithm
For i I to n - 1 I "For each Row"

For /- i i 1 ton "For each target Row below the source"

i, Z (n-i)_ multipliers
ivot i-

For k - i + 1 to n{ "For each Row clement beyond Pivot"

M ik -- M/k - i (n- 2

Multiply-adds

Step 3: Solving Upper Triangular Systems

In -)n

ll I2 w22(

' A
141 J,4 "4, !pMy~ ~ii 3 Ms

; s

"Target Oriented"

M 11

M41 A

M13

M23

M33

M43

M14
M24

M34

M44
[or i = 2 to N "lbr each target"

forj - I to i- I "for each sourcec

for k = j+l to N

Mf -4, ik M M '- A ik

Ior i = to ' 1I

fori il to N

l ii 
"

li

f 1,

lor k i I to V
.'i -jk <- 11 fjk p Aflik

What is the order'.' O(n) O(n!)On
2 )



o Summnary

Source Oriented Solve M = h,Source Oriented Decomposition

M=L'U

IH modified o0(
WSt c2 Forward Elimination

entries Solve Li= h

Solve Ur -
O(n')

active . Pivoting for Growth Control
SZero Pivots

: set

Factored Portion

Target Orientedk

rnultip ultiplis* **dified

set Cannot bem
Mi

Simple Fix (Partial Pivoting)
IfMi 0
Find Mf, , 0, j> i
Swap Row] with Row i

Pick ros i whose 1, value is large



Swap rows 2 and 4

M11 M12 1WI3 M14 X b I
M21 M'22 M23 M24 X2 2
M3 1  M32 M 3 3  M34 X3 b3

M 4 1  42 M 4 3  M 4 4 L 4  b4

Mul Mi2 M 1 3  MI4 ]1 Xl b

E M41 M42 M43 M44 X2 b4

M31 M 3 2  M 3 3  M 34  3 X3 b

M 2 1  M22 M 2 3  MI24 iX4 i b2 i

Two Important Theorems
I. Partial pivoting (swapping rows) always succeeds if M is

nonsingular.

Creating U

0

i - I Linearly Dependent

(N -- 1) Linearly Independent Columns

2. LU hctorization applied to a strictly diagonally dominant matrix
will never produce a zero pivot.

o Small Pivots
. Example [Singular Matrix]

1 -1 0 1 -1 0
-1 1 - 0 0 Singular matrix produces a] row of zeros

0 0 1 0  0 1
If M is singular, will not be able to solve for some unknowns.

* Contrived Example

1 0 - 1 7 I x i _

[U ][ =[I -17 1]
L 117 U1=

1017 1 0 2-1107

Can we represent this?
* An Aside on Floating Point Arithmetic

Double Precision Number
X.XXXX...X 10

1 pon" t
64 bits

sign 11 bits 52 bits
size ofjexponent mantisso

How large a number can we represent with 52 bits?' How many decimal
digits is if?

3 bits - 2 =8 10 - I digit
7 bits -* 27 = 128 - 100 - 2 digits
10 bits - 2 = 1024 1000 - 3digits

[Remember cubits - 3 decimal digits]
52 bits 52 bits 3digits 15-16 decimal digits!

10 bits
52 bits is the precision used in MATLAB, for example

Basic Problem
A.) 1.0000001 -0.000000000000001= 1.0

B.) (l-()1 )+ 1 - 1.00000 I ='?
Look at order of procedure:

Ex #1.) -1.0000001+ 1=-1x 0
-7



-Il10
. 

+x 10 =2.141592653589793. 10-

All 15 idecimal digits are correct in this case

1 + 10
-7 

= 1.000100314159265
lS 7digils of t

- 1.0000001 + .(0000()03 14159265

=2.141592652105118-10 
7

Only the first N decimal digits are correct in this
case, the remainder are garbage. Lose digits of
precision

Key Issue
Avoid additions and subtractions between large and small numbers!
EVEN BETTER: AVOID GENERATING LARGE NUMBERS AT

ALL IF POSSIBLE!!!

Backto to the contried Example

107 th 0Y]

LUr = 1017 [lo-7 1 0 17 j 2J110c 1 0 2-10 X,) 31 17 ][X, [,]
R 7 1 o - 10 x

,Eva Rode [: 
Original Problem:

Swap the rows

17o 2
Partial Pivoting for Roundoll Reduction

if , < iax /,/ swaprcii \itharg .a i ,l

117 1[ 2 1LUreo"dered= 117 ?JK 1-2 1710 1 0 1-2-10-

This multiplier This term still gets rounded,
is small hut this time the multiplier

does not 'overpower' the row.

Let's solve LUr = h.
First, solve Lv b:

1 = 0 1 jLv 1- [ 0 J ]1
_[3 0 

- 17 
]3

Next, solve Ut v:

U [I 2Ft K- 5] STILL
L 1jL2 2 3 WRONG

PROBLEM: Need to swap the elements of b as well!
Solve y - b:

ty "1 7 [3]

Next, solve ]Ur v:

Ue - -, 2][ x, [3l r x, [] C t Ansre r.



-, 1 I-,Sxa I p e.I ...

10 , i " F Factored Portion0 10 1 .. 0 0 P- '_
.. 10 1 0 .9-i- Row i

o n a.. 10 lj " Multiplier) K (I I . V /)I
n 1 x , bI (L)

10 1 0 -10 V, 7 t i Find largest
10 1 ) = .. . . . multiplier entry.

Smax, s.t.
Mji <

10 -h,, max

0 1 0 I10 .x b1

0 I0 1 -10() - = b

10 1 x , b,,

> 0 10 (1 - 100 b

1 0 - 1 *0 ,,

The last entry is very large! Use partial pivoting swap first and second
rows...

* Ifthe matrix is striclly diagonally dominant
* or if use partial pi voting ior round-olff reduction:

1. The multipliers w ill always be smaller than one in magnitude.
2. The maximum mriagnitude entry in the LU lactors Nr ill never be

larger than 2'" '' limes the maxitmum magnitude entry in the
original mlatrix.

For 1000 nodes. w hat is 2"'?
Know that 2":: 10'.
So, 2

o' "
' - (2"')'"

0 - 
I
( ""

- Very large number!
Might nlot be a very usulill theorem - gtenerally not this
large.



INTRODUCTION TO NUMERICAL SIMULATION

LEc IL RE 5.
Linear Systems Conditioning

TODAY'S OUTLINE:
Solution of Dense Linear Systems

- tard to Solve Problems
- ierturbation Analysis and Conditioning

Solution of Sparse Iinear Systems
LU Factorization Reminder.
-Example of Problems with Sparse Matrices

* Struts and joints, resistor grids, 3-D heat flow
Tridiagonal Matrix Factorization
-General Sparse Factorization

* Fill-in and Reordering
* Graph Based Approach

Sparse Matrix Data Structures
* Scattering

SOLUTION of DENSE LINEAR SYSTEIMS
Hard to Solve Problems
SFitting example

Polynomial Interpolation

Fable of Data
to /(to)

(X, + ClYl0 + ct2t 0 +' + tO

aX + eltl + a2t
2
+'"+ at N= .f(t )

2 N
Xo() + (ltN + Ct 2tN + .+ CJLNIA

'

4- --

c0 + cl; + cI2/ + .... -I = t

ao =1

0 =

UN -0

tx .f(i) -

Problem: fit data \vith an N'V order polynomial

f(t) o u 
+ 

u1 + U,/2 + c 3 
3 

+ ... + r:l
Matrix Form

I o ' t t a -

I I -- c ~ .(t
,IN .1 

,

(lf( (/ C (.3 (kl4 I

C.

O

5 .e-

.f(to )

.f(t, )



Fitting f(t) = t

Since we are looking at the coefficients, t
values, for the linear plotlt) = r, we

0.5 expect that al - I and all other values olfu
0.5 will he zero this is accurately

Coefficient presented in this graph for I0 a values.

Value

Coefficient number
Fitting f(t) = t

10 20 30
Coefficient number

Fitting f(t) = t

-or 20 ( \ alues one begins to see some
peculiar nonzero values for a 2 11, they
are ery close to zero.

Coefficient
Value

Coefficient
Value 0-

-20
For 100 (t values it only gets worse.

-40005 10 15 20

Coefficient number
50 100 150

Coefficient number

-0.5
0

Coefficient
Value

-0.50*0

Fitting f(t) = t



Example.

x,

For 10O0 values, CvCn
though there are many
higher order cocllicicnt

values that are non-/ero, the
graph still produces a linear

, result.

Orthogonal vectors - exactly one solution.

L 0]Lx]2][4 2 . -

I 1'X. IX V

PhYosical meatin of above problem in the form of a circuit.

Al = 2V V - 1V

i=4 i

Example.

so ution

t
( eometric Approach is clearer

Al = [, .Q I Solving. I = h is finding

Columns orthogonal Columns nearly aligned

When vectors are nearly aligned, difficult to determine how much of l
I

versus how niuch of lf ,

I= -I0- 60orthooa couns cons I rly alined
ortitogona[ colttitttts colinns nearly aligned

Ph'sical meating of ahoe problem

in the form qfa circuit

R -
-~$VAvs

.v , I X 2Ql = 1)



Linearly dependent vectors.

I+ ] [ 2,-1

Physical neanin g oahove problem in the fiorim o/ a circuit 

R Solution(s):

x = -I x = - l +I. V2

i ( i-2 x =-2 x, = 0 -2 /I

2l=0 X, 2 2-M 1

Infinite number of solutions

Example.

I I X2

Node I: -i i, ) = IJ i

Node 2: .L, + 0(, - , = 0[

either infinite numi hber of'solu ions or nonlle

2 2 ][x [ 4 ]

In lnite number oflsolutions

b = 2 - l = 2 - i, = l 1 + M = etc'.

Example.

Columns are very close to being linearly dependent (closely aligned)- have
a larger condition number / columns are not close to orthogonal

Same problem as circuit w\\ith two current sources (above)

Example.



Polynomial Interpolation

The power series
polynomials are nearly
linearly dependent.
(i.e. if viewed as vectors
they are almost aligned)

Example.

Same circuit as aboc. a ith the resistor value chanced frtom 100
to 1000.

1, -)) 1 o 1.001

2 58 . 1 + 6

12.061 -o (

Perturbation Analysis and Conditioning
+ Induced Nornms

o Matrix Magnification Question
Suppose r= Mx
How much larger is v than x? OR How much does M magnify x?

Exampl. = I

M11 ;1 M

= 12. +61

ft 1, /



Vector Norm Rct ie

1 i 101111:

17x = xSL (Euclidean) norm:

42 ii xi

* L, nor",:

I i=11 ;

1x1 <1

x 2 <

Which llxl l 2 x
one?

Example.) Iry x =

Ix = 1 2

I1 = max(,l)= I

Is there an x such that L = 2 =X,

S= [ - = lx = I =

Example.) Two heat conducting bars.

I I i I S

If X2 <1 XL

yes
"<

I1
x

=

Vector of

temperatures

I -, + L 2 > I

Given:

Bar A: i < 100

Bar B: xi <100

Which one do you touch'?

Bar B will likely be cooler to the
touch since all nodes on bar B
will sum to 100 , whereas on bar
A, the maximumn node value is
I 00t

Worst-case-scenario, bar A will be 100 everywhere

and bar B will be 100 on rone node and 0 elsewhere

Matrix Nomls [Standard Induced 1-nonns]
SDefinition:

M = max = max Mfv,x I ,=

Try =v



M* = max Al, 1= maxabs column sumII
i =I

SI a = max , Mi : max abs row slim
! i=i

for symmetric,

M 2 = max M(l M = max),i (A = real matrices

= max cigenvalue

iM max , max abs column sum
./ i=1

0 I I I

0 i _
M 0=

177,

Which unit \cctor input s will produce the laMrest output'

M = max , I = max abs row siIum

+1 Z

M -I i

-+1

z+m

A is a linear map beteen x +
two linear vector spaces

A is a measure of the largest gain or magnification power

IXKc

I

-J
encloses the mapping

Example.) Given the following ,A, find All,

2 7 -4
A= 5 -2 3

1 -2 4

2+7+41
AI max 5+2+3 max.l 3,10,71 = 13

1+2+4



* Hard to Solve Systenms
Perturbation Analysis

S lM1 [,Ml 6A] [x+,'] = h

Ixt + a+l l2 M l
Perturbation Equation

Geometric Analysis i Polynomial Interpolation

AM = /I

log(cond(M))
1)

unperierbed
rlit hiand side

(M1+6AM) (x+r ) = Ml.r+ 6rv + , i'r+ 6iiA.rv
nlodelr IL model sol utioR

moundot prl-turbation

Since Mx - = 0

M11x = -6M(x+ax) ~+ 6 -, 61(x + &v)
Taking Norms

Relative Error Relation

x+ 6
"Condition
N umbehr"

M =

Assume M 10t What is i. +
4/ 5jl s+cs

S 100-10 = 10-14
.+ r l

l 10 130 = 10 3 =- 0.1% error
x + &Yl -

e.g. W 1 M i 10 
-

10 1( = 10I =( 10 6% error!!
ditin number i error

Large condition number 4 Big error

4 8 16 32

The power series polynomials are
nearly linearly dependent.

SOLUTION OF SPARSE LINEAR SYSTEMS
Examples of Problems with Sparse Matrices

1 I

AA AA AA AA

2 -I
1 2

-I

Nodal
Equation
Matrix M

number of nonzeros 3N - 2 = O(N)
3N 3000N = 0.003= 0.3% of the entries are nonzero lth a
N- 100 1000 X 10)0 matrix

e.g. A,, M = 100



Nodal Matrix
X X

X
x

x;

3 5 7 9

X2 14 6 8

Unknowns : Joint positions
Equations : Y forces = 0

X
x

x X
XX X
XX

X

X

x
i X

'% X

x =[: :]
2x2 block

° Resistor Grid

m+l m+2 m+3 2m

(m-1)(m+1) Unknowns : Node Voltages
Equations: currents = 0

M

2 3 -XXXX

4 XXX

XXXX

Matrix with all non-zero entries.

Struts connect all every joint in the frame.

- Space Frame



n /7 nl 
2

nl
2
Xn matrix

- - - -- 4 - Nonzeros: max 5

entries/row

---- m= 100

# non-zeros 5n

- of entries n

S-10 =510
- 4

I 10
8

s I ,= 0.05%

Largest entry = 4 (because there are at most 4 resistors at
one node)

Smallest entry = 2 (there are at least 2 resistors at each
node)

Tensmperature in a cube
Temperature known on surface, detennine interior temperature

0?

m +1,,, m2 +2

m+l m+2

a 0



- 177:

l =100

n = m
3 

= 10
6

#non-zeros 7n 7.10
# of entries n 2  10 12

Largest entlry = 6
Smallest entry = 3

n = m
Tridiagonal Matrix Factorization

• Matrix Form

1 2 r 3 4r 171 1 11

X XXxx

XXX

XXXSXXX x X

Tridiagonal Matrix updated emries

-1 2 -1-1 2 -1 ,-

+ GE Algorithm lor tridiagonal matrix

For i = 1 to n- "For each Row"
For j = i+1 t { "For each target Row below the source

MA, - Pivot

For k = i+1 tX { "For each Row element beyond Pivot"

M/k < Mjk - i k

Multip lieF

inax 7 entries/row

- 7-10 - 6
= 0.0007%

Order N Operations!



General Sparse Factorization
F ill-in and Reordering
L Example 1.)

Ro V

VI- R
RA ,.

R I +R , R,

R+ R
R, R(,

Matrix Non Zero Structure Mat

X Non zero
Example 2.1
Fill-ins Propagate

X X X X

X X 0 0

0 X X 0

0 X (0

Fili-ins trom Step 1 result in Fill-ins in step 2

Resistor Example

Nodal Matrix

ID r V1 
0  

Symmetric

Dominant
I 1 isF

R . . ..1,1

rix after one LU step

Fx x x x

0

0

Use to 64 bits - 8 bytes represent each coefflicient
Store all numbers (even zeros)...

1000x1000 -o 8MB 10 min

10,000 x 10,000 -o 800 MB 10,000 rmin

100.000 x 100,000 -. 80 GB "forever"

o Reordering

Reordering

x x Fill-ins

x 0VNo

x X x Fill-ins

0
Node Reordering Can Reduce Fill-In

* Preserves Properties (symmetry, diagonal dominance)
* Equivalent to swapping rows and columns

Numeric Exa ple

KCL, 2 -1 -1
KCL, -1 3
KCL3 -L 0 1

Swap KCLI and KCL, - Swap variable order V, and V,

KC , , U, I, V 
1

KCL 2 -I -I KC L -1 2 -1
K0,3 - 10 1 K(-13 0 - I

Where can fill-in occur?



Already Factored Possible
Fill-in

x x . Locations

I 
.

I ill-in E:stimate = (Non zeros in untactored part of o\\ - 1) - (Non zeros in
unactored part off ol I) - Markow itz product

X Possible

X

Fill-ins propagate down and to lhe right

o***o*0**

i+4

Markowitz Reordering
For i - I to n

Find diagonal I i with iin Markowitz Product
Swap rows j and columns j T i
Factor the new row i and deternnile fill-ins

* Non-zero
\alucs

lull ini

1 2

0 3 0

* Reduces search cost
* Preserves Matrix Properties

o Diagonal Dominance

o Symmetry
a Pattern of a Filled-in Matrix

Very
Sparse

Very
Sparse

End

Greedy Algorithm!
Why only try diagonals?

* (orresponds to node reordering in Nodal fornulation

. 1

Dense



O(m 3 ) 
= O(n.5)

0

200

400

600

800

1000
0 500 1000

0\

200

400

600

800

10000
0

Dense after
I- /m steps

41

500 1000

=m

C



INTRODUCTION TO NUMERICAL SIMULATION

LECTURE 6.A.
Solution of Sparse Linear Systems

TODAY'S OUTLINE:
- Solution of Sparse Linear Systems

- General Sparse Factorization
* Graph Based Approach
* Sparse Matrix Data Structures

. Scattering

SOLUTION OF SPARSE LINEAR SYSTEMS
General Sparse Factorization

+ Graph Based Approach
o Construction

Structurally Symmetric Matrices and Graphs
Note that strucLurally symmetric does not imply that the values of the
matrix arc symmetric (i.e., a12 # azl)

X X X X

2
X X X 3

XX 4

X X 5

* One Node Per Matrix Row
* One Edge Per Off-Diagonal Pair

Can one apply these graph-based techniques to the following matrix?
300

0 0 5 1
This matrix is not "structurally symmetric" in that there is a zero in a2 1

and a non-zero value in a1.

Can still use this approach, just treat it as if there is a nonzero in the
121I place and use the graphs to do the analysis; there will be some
efliciency loss, but the methods will still work.

Thus, this technique may be applied to "mildly" structurally symmetric
matrices by assuming there is structural symmetry with some loss
olclliciency in treating some of the zeros as if they arc non-zeros.

o Markowitz Products

X X X X

X

V X X

Markowitz Products= (Node Degree)
2

M11  3x3=9 (degrec 1) = 3
2  

9
4- 2/ x2= 4 (degree2) 2 :4
:13, 33 =9 (degree3)2= 3= 9

.. 2 / 2 ' Lc . 2
Is :: 2x2 4 (degree 5) 2' 4

o Factorization
One Step of LU Factorization

3
: X X X

XX X

" Delete the node associated with pivot row
" "Tie together" the graph edges

When node 1 is removed, in the matrix, the non-zero entries in the lirst
row create fill-ins that connect up the other nodes that can be seen in the
graph.

0tCC
0j1

CI



c Example

X X

X X

X X

X X

Markowitz Pro
(= node degree

X 1 2 2 -' 3 4 - 5X G

X X Graph
X X Col Row

ducts (1) 3 3 9

(2) 2 2 = 4

(3) 3 3 9

(4) 3 3 9

(5) 3 3 9

Swap (row & columnl) 2 with I

X X X X

ID Resistor Chain

Nodal

S* * Equation
* u Matrix M

Clock Tree-- 3 - 4 - 5

Graph

Matrix struture that will
produce no till-ins if
tuetored trom the base up

2 3

4 5 6 7



o Resistor Grid Example
Tree Structure I

m+] m+2 m+3 2m

(i- * (m+) i
(m-1) (mr+l) Unknowns: Node Voltages

Equations : E currents (

o Grid Example
How long does it take to factor an i x m grid?

2m
o00

M)
1"1



3-D Example. ]

3 x3 x 3 grid 4 27 nodes

in general: mX m X m grid 4 ml nodes

What does the separator look like bfor this grid?
m x m nodes
m nodes

Factoring cost = O(m)j~~~m
2

nodesnodes~

Structure & Dimension

D Row n= m tridiagonal

* "A O(n) = O (m)

Suppose the center column is eliminated last

Factoring an mx mn grid.

Dense LU: cost is O(m ') O( 
6)

Sparse LU: each row has approximately 5 nonzeros
matrix has approximately 5m2 nonzeros
cost is at least O(m )

Separator is of size 2m

Factoring: cost is O(2m) = O(8m
3
) (dense matrix}

Subgraph: size is m/2
Create 4 separators: size is 2 x tt/2 = m

Cost is O(1m ) per separator 4 O(4m
3
)

As one continues to subdivide, the cost keeps halving.
Adding together these costs, the final cost will be roughly O(m')

2D Grid n = m
2  5-diagonals

~tt~** *
O

0(3
3D Grid n = m

SAAA _ A,

(n.5) = O(m3
)

(n2) O(m6)



, What should you pivot lior?
Growth control?
or to Avoid Fill-ins?

A.) LU factorization applied to a strictly diagonally dominant matrix will
nevrc produce a zero pivolt.

B.) The matrix entries produced by Ili lfactorization applied to a strictly
diagonally dominant matrix will nctver increase by more than a hactor of
2(" ". [which is the best you can do by pivoting lor growth control]

Bottom Line:
ll' your matrix is strictly diagonally dominant no need for numerical pivot
for rowth control so just pivot tor sparsity control!

c Sparse Factorization Approach
I. Assume matrix requires NO numerical pivoting.

Diagonally dominant or symmetric positive definite.
2. Use graphs to determine matrix ordering.

Many graph manipulation tricks used.
3. I orm data structures thor storing filled-in matrix.

Lots ofadditional nonzeros added.
4. Put numerical Values in data Structure and t ctor

Computation must be organized carelctly!

v Sparse Matrix Data Structures

Example I.

1 0 () 0 0 27 3 0 ...

2 0 3 - I 0 4 7 ...

2 4 7 13
- 1 7- 5 3

Example 2. 2 3 5

2 3 0 5 0- L j2 1
00 7 0 0

L3 0 0 0 9

Example 3. 1000 x 1000 matrix

store it all: 1000 x 1000 8MB

a 3000 nonzero entries to store
3000 x28B i 8B x3000

- 50 KB



Vector of row Arrays of Data in a Row
pointers

Val 11 Val 12 Val 1K *-Matrix entries
Col 11 Col 12 Col 1K 4-Column index

Val 21 Val 22 Val 2L

Col 21 Col 22 Col 2L

Val N1 Val N2

.N Col N1 Col N2

Val Nj

Col Nj

3 3 matrix:

OXO LIZB

Why store sparse matrix information in a data structure array?

* Too much storage space storing all the zero entries
* Avoid floating point cormputatioD on on all the zeros (minimal in

comparison to the nmemory cost)
* Menory reference cst

Eliminating Source Row i from Target Row.i:

o t+ i+7 i+15Row i i+l i+7 i+15

+5 +7 i+9 i+--1 15

Must read in all the row.i entries to find the three that match row i.

Rows Ops Misses

Res 300 904,387 248,967

RAM 2,806 1,017,289 3,817,5871 More misses

Grid 4,356 3,180,726 3,597,746 than operations!

Scattering

Row ji 11-1 j
i+1 i+4 i+5 i+7 i+9 i+12 i+15

1) Read all the elements in Row j, and scatter them in an n-length vector
2) Access only the needed elements using array indexing!



Source Row Approach

XXXX
X X X X Scatter * Update Unscantter

X X X X Scatter t Update * Unsenater

X X X X Scatter 4 1Update * Uinscatte

Target Row Approach

IX X X X- Scatter 4 Multiply 4 Ltnscatteri

X Scattering approach only is

X X X X effective for the target row
oriented approach.

+ Summary of Sparse Systems
[o Sparse Matrices

* Struts, resistor grids. 3-D heat flow - O(N) nonzeros
a Tridiagonal Matrix Factorization

* Factor in O(N) operations
o General Sparse Factorization

* Marko itz Reordering to minimize fill
o Graph Based Approach

* Factorization and Fill-in
* Usefuil for estimating Sparse GE complexity

o Sparse Data Structures
. Scattering



INTRODUCTION TO NUNIERICAL SIMULLATION

LEC-TiUIRE 6.B.

QR Factorization

TODAY'S OUTLINE:
o Singular Problems

Projection [Formulas
O Modified Gram-Schmidt Algorithm

QR FACTORIZATION
Singular Problems - LU Factorization Fails

°*o Strus Lxamnle

sr.1tll -

oin lod
force .L

, -..f, o

+1 -1 0

i 1 1I +1 0 v =

) 0 + 1Lv

S- 2 , I;

'M3
A32

bi--
Iti V - V

0

AI Af b

(0-3)

h .span 1\l1 ,1 2 ' a> infinite solutions

The resulting nodal matrix is SINGULAR:
" LU decomposition fails
" But a solution exists! Actually, many....

I E span{1 A, A 13) k solution exists

plane

:.11 and M, are LD. infinite solutions

e.g. 1) = 0. , + I ", - I - W

-=-l .fi, + o -A - 1II3
I1 \, \;

LU will fail

0 I 0 pivo
- 0 1 1 available+ 1

MM3

'projection of fonto spanl 1 ,J 2, A13

I Ii ont,

©

NI *b
O



It i I

i- 14 R

Let R - I

1( I1 2

atr I Lt Jsc/L

Projection Formulas- Orthogonal Projection

3-D Orthogonal Vectors

Example of orthogonal vectors

" Orthonormal Q PictureQ Q1 OT Q I' ~

1 -I V 1

1 2 0

Recall I eighted sum oLII co luns N ie\ of' systems of equations

1t vi, - : .4 1LZ IA I + V2 A + ''' + VAi " =- /7

NI is singular but h is ill the span ofI the coluIIIIIS of NI so there is a solution,
actuall Ilots of them
Ho do c find lthem?

Systenis of Lincar Equations -Summalr Table
h C rie, A'! h r iangei Al

Solution exists anid is No solutions
L.I. columnis unique Find the

Use LU "closest"
Infinite solutions No solutions

L, D. exist Find the
Find one ... or all "closest"

2 1

1 0

I 1O0
0LoI0oI-1-

' = = = I- I +

Definition of orthonormnal matrix Q:

0i i=O if i j and Qi , i =
Picture for the two-dimensional case

b orthoorm

NI is NOT orthotormal

b 

b

Q is orthonornal



Q /ji (A),
1']

i y~l

., ) ,rr,
. -. i = I'

TQ Qi

QTQ 2 0i

ProecLion Formula

Q solving an orthonormal system is easy...

.1  , + ... + . IO= -

Example.

Multplying the weighted columns equation by i" collmn:

, (.lO -., 0 V 2 + Y . ,N ) )i /;
Example.

ti o,=>i ( K .- ) (i .v l ),)L =612) 1

0 , Vt 01  +.,. 2, j j Z i 7 6 2 )= , T.

Simpliling using orlhoonormality vse get the projection Ibnmual:

Example.

".1 = Q , 0 ,1

V3 = 63 Y

Know Qf = I: have show% n that f = Q TI

Ii Q2-T?
-- TTQ2

IT -

Q-1Q=QTQ=I = Q= Q-1
° QR Algorithm Key Idea

._,__ ... MIN '[ - 2 N j [

oiginal matrix manri with
ortlhonommal
columns

If we have a set of orthononnal columns that span the same subspace as the

columns ofM, then solving the system is very easy:

QT _ T-iQ~ =A ~ i = Q I

xi =-Q 1

--- X 2 b Q2

l • Q ]m

Q2 2  = I

QI Q2 =2 1 =0

LX2Q2I L2 bi



( 2 t 7 -4 projc tIon o onto (

Resutr is the pnrjection of iott trthe colutins of Q

2 y = b- projection of ) onto Q

Y2 . I

But how do te pe rfolm the comersion from i to Q?
Example.

S= I =

The lc 2 x 2 QR Factorization

J-i -0 2 = fI- - 1 =2

Usin th t rjecti r mo I

,Mi = n i

(24 = q 29z1 =

At

= 1 . _ O 2 0 + , . , +"22 01 0+o _0

Formulas simpfy if w e normalize

Now fitd 2, = , -t2)I so that 2,. = ( i = i 1 A,

Finally Q = I 2 (2
\0( 2

, . . - . . i .
i=11 = I101 + 00,

A7 r,0 + 202 = i2Q, + 22Q2

Another way to write this is: M is factored into Q and R
Getting the first orthonormal vector is veri easy:

Given Al-, t. find Q = M, - .1 so that



Since MA should equal Qv, we can relate x to

4a JL cI5_2 + 11201 [_ - 1 +22J Y1

Three Step Solve Procedure:
1. Factor M - QR, Q orthonormal, R uipper triangular

Mh.'= i; X 1  /I + 2 ii2=

Decompose Q-x =i

2. Sole Q - b. (Very easy: y=Q'h)
3. Backsolve the trianuular system: Rv -

The 3 x 3 OR Factorization
Use previously orthonormnalized vectors

,T , T T

Q, Al, 1 I'l-"3 1-"1

To ensure the third ccllunn is orlhoigonal

0" (AS3 - Q'i3- 02'_3)
=  

> 113 = 0 l 4 3

Q2 .(A 3-( 1113-,2'23) = > 12
3 

= 2 .A13

ll (. i = t 1 3 1t ]

To Othogonalize thie A' Vector:

NV inner products oir N' work.

AV/3 = '-1i + '23Q2 + 'Pf303

A4 3 = , 3 - -3 01 - (012 3)_

=> MW3  I3 Q -1 Q )'23Q2

- M 3

I, < , 1 rui elt A.1,

'i3 = Q1 M 3

'*23 = 
2
'

3 r, 3 3

o. 7/131

A, (C), • i, (0 _. i, 14 - ,1 (.4 ,(-u 4

Ai W4C

rl2 13

MI,

,0t A,3
M2 3 fl 1



M 1  M2 M3 = QI Q2

Modified Gram-Schmid! Algorithin
P "y Picture"

1 'll 113 114

L' 144r -t 4 0

l'I /M,-Q

1 I
r33J

r3 3
2 -

4 4

1" step

QI 4 R3

(i .M 2( , M3

2< ,

43

2 (0 . 2 (03 ' 4 )03

2' 
step

step

v Basic Algorithmn
o Source Row Approach

For i= 1 to N "For each Source Column"

Normnnalize Y2A 2
\ ' 

operations

i 14'='

For/ - i I to N ( "For each targel column right of source"

" -" ---.....

I

2,



Target Ro,, Approach
or i I to A' "or each Target Column"

? , M,; matrix-vector product"

Forj = I to i I ' "or each source column left of target"

Q, li,_ r ,

,-,M.0,,, "

Source
Row
Approach

LI I
Target
Row
Approach

Three Step Solve Procedure

Step I) Factor M = QR
(Q orthonormnal. R upper triangular)

Step 2) Solve Q =h .

(Very easy: .' = Q )
Step 3) Backsolve the triangular system R.F = T

Yi ( i -1 = 0 kT /
(Very easy: 1 Q';)

*- t + -

S=v.l 1 + '22 + .v3Q3 

+  
' ,,

b = xl + x2 M2 + x4 3 + '. x,, M,,
Step 3) Backsolve the triangular system RI = f

LIL _
Computational

Complexity

0 (N

o (N

Step I) Factor M = QR
M.f = <=> QR =

Step 2) Solve for i: QP = I/



INTRODUCTION TO NuIM ERICAI, SIMULAT I ION

LEcit I iEs 7 & 8.

QR and Krylov-Subspace Matrix Solution Methods

TODAY'S OUTLINE:
O Minimization View of OR

- Singular Matrix
- Basic Minimization Approach

Orthogonalized Search Directions
QR and Length Minimization I'roduce Identical Results

+ Arbitrary Subspace Algorithm
Orthogonalization of Search Directions

v Generalized Coniugale Residual Algorithm
-Krylov-subspacc
Simplification in the symmetric case

- Leaky and insulating examples

QR FACTORIZATION

Example. 2
A= -1

0

1 0

1 1i
3

L

-0.89
0.44

0

-1 0

2 -1

-1 2_

0 2

0 0

l 0I

Matrix is Singular, column of Q is zero
SZero Column

If a column is zero
i+l

({II..... Afi }not linearly independent

What it'a column becomes zero?

t" Io I "12 1 0Lj" o o .. °j  o 0 o
Q1 0 M3  . 0 0 0 ... 0

0 0 0 ... 0

" I I " 1 o o ... %o

Cjl 0 0 0 ... 0O a o 3Q'1 I Q3 ... 01 0 r1 3  . 1'3N

0 0 0 ... v,
Matrix MUST be Singular!!

I. Do not try to normalize the column.
2. Do not use the column as a source for orthogonalization.
3. Perform backward substitution as well as possible.

QR =6>1= 
QT[

o4
3

-0.35 0.27 - 2.2 1.8 -0.45

-0.72 0.53 0 -1.7 1.9

0.60 0.80 L 0 0 1.1

ri, rol 2o3 N , o
0 0 0 ... 0 x, 0

r5 3  11k\ X3 x

OR Factorization

Problem MY- = :
(1) Q -wy=

(2) Solve Q = > f '=Q T

(3) SolveRv =. -+-X

C

C

tC

03

cD-

CD

C

0 1



Singular Example
I

1 0

I 1 Colun111 At 'f I

l ,. ,',7l = ,2

A, = Q , = - -

,'2 -- ,i ( f. 
=K

(2) C = QT/

,, = , , -1 - 1 1

Y2= o -03

Y is the projection of b onto Q

(3) R- s

0 0 , = 0

X -0 I I

A3

M - b I

Colunn fl

Since -M2 is zero, don't need to do anything.

MOve on to the next step

0 0V-t 2 2 0
0 0 0 0 0

0 0 1 0 0 j
0 02

hE span{M } --

The resulting nodal matrix is SINGULAR, but a solution exists!
-> infinite number of solutions.

,,2 0

0

, 2 (

" 3 ' 3 = 1 ti3 n

S 0 1 0 0 1



If i span IM N there is no solution

I I // i= 2 T73

I l S te pl l vs a th e s ai e ...............
(2) Q' L

' 3= , = 
0  

0 l.[0 2 i]=- I
.is the sameia;ns the above example

(3) RI = v

Since y is tile same as the example above. tl e soution is the satme

This solution W\sill give us the solution I, but not I (we know this because we

choose this b outside of span M N i knowing that ie cannot get a soluotion).

What is going ol'

We find that , is the projection of /) onto the subspace of the colunns of M.

.Minimization View o' QR
Alternative Fornulations
Delnition of the residual, R:

R(.) - - PN
Find i which satisfies Minimize over all Y

M,: =h R( /
If i rgc M I

Then M = t rmin R(.)r i 0

Minimization extends to singular or non-sqIare case!

Example. MI= b

-1 0 X

0 0 1 3 -Space

-p / /c + 'I MO

IE E ---------- +j11

i: = X.l S+ x202 + vl3e3
Mi= x

'
i 
,
t
j
i + -N it + .x3Mli

M I = xv Ai + 
2 1

2 + x3 1q3

+ One-dimensional Minimization
Supposc. = x.ii

t
i and therefore MV = .r i M I =, -VM I

One-dimensional minimization:

R( )
2  
= R(x) R(I}= ; i-.rM bT( - MM ) Note:

i R T (i :rM x M 1 l M t (iM'
St1 -2x l'M + x(Mdi ) {(M, ) alar scala,

d R()' R(l)= -21; I Me + 2x(M )'(Mi )= 0
b MI (M ) 1 (M'1 = , il 01

i - '

\or*mlizamt, n

- -- -- -- --- ---



Example. MX. = [

) L o L i

Let's look for the best solution using only .01 I 
= 

Mi

[ [i M -space

A-space

QiM X,Ii Nut 1w,l/ N' O i

e3

P11 C,

N IMe,
=

. iM 1

X101  YI P1
. M= bI Me =b

1  
M

b1 M=l

'I::4

(1) Nonali/eNIl -) I1

S  M -Normalize > 5,

Mo, w _ 1 2j

0 

o

(2) Projection

Ihc Closest is

(3) Best Approximation

M ._ ( 5 2_--

dir .l

Orthogonal Projection:

] T My -

bITMex l M N '

One-dimensional minimization yields same result as orthogonal prqjection on
the column!

\-spacc

I I



T, .o-dimensional Minimization

1 0 i

A,

t , )(

1 2

0 0

I" 2 I1= !. 5 (1=
,,,. Z

M-space

0_ / U-, 'T Np
I 1

.. I- + 3 .1I 0N \saeI '-M
+pc 2Q

It

I!R( ) 2 = R()" R(x)= (f -x M
I 
- k2 NU, )M 7 (f, - V I N , - .v2 E)

= 2.i; 2xi'MI + x (1 ) (MTl;I) 2x; NiM I X ( N )T (N ,M, )

Minimization is difficult because of the coupling term.

More general search directions
x = yl]fl + .'2 2 s.uch that:

M = Y1IM1 + Y2Mj, .Wsptan p, P I= ainF I2

R(.) RC( ) /,, 21 ;7 Nlj +., (MAi (MP)

-21; 7 +. tI2Mij )T (NIMp,2)+1 
2
1, v (M V) ( / i,

If irTM N Mp, = 0 Minimizations Decotuple!!!
If search directions are M-orthonornmal

N .5i -NP_ i i j

Decoupled minimizations can be done individually

Minimize: - 2 P (M (jNl i,)

-2, i ) + .,2 Ci-

Differentiating: - 2( .Qi)+ 2 .i = 0 t i =I i
Minimization yields same result as orthogonal projection!

A

i
iii

. + y2 [

!2

+ 3,22
6o I

No i= .\ + i,2 and NMI= I 1 4 'lIv2V,'
Residual Minimnization



Picture ol arbitrary subspacc method

i~Ii

wl 1
1,1 ,2

uX

Forming M-orthonormal minimization directions
The i" search direction equals M-orthonormalized unit vector

x-space M-space

l - MNp

Pi

PI Mi
1"Mi),,

Mpi - M, - 2 (ii MfI i/=MP ( i)
=i M L

r]i M

I ,

Mi 2 M1

MI 2__ + -_ .- Ia,) M
m2, +- M&2 -(Mil • M 2 }MI5l

+ Minimization Algorithm
For i = I to N "For each Target Column"

lit <-4 i

Forj = 1 to i - 1 "For each Source Column left of target"

rii 
-  

M - Orthogonalize
NIP M Search Direction

i 
-

- i -

| |M M- Normalize Search Direction

rii t

I - i
, () ..... j + +(i . S1t, M]

2 ,..., M
Ortlhonoral

- (0)

X <-x + .Yii

Calculate projection on new direction

Update the solution

. I (.M 1,)f +.. +Qt nM,)i+ + I+ VI,+) I+,

12 + b2 - (Mh~ l ' M 2 )lj

i- i

.j=l



i directions

1 , :..... m /j}, ...

' (I; .N l , ) f + .. ( . N i , 1

.......... .. .. . .

i+I directions

]{ ,j .... pi13+ + M. Mp2..... M, M+

iP . I li.

SComparison tinimization and OR

6 . . .. . . .. ... 0 orthonormal I

I

-l

I'l

L =b
Solve this - choose the first search direction to be:

* ' = = bo o

Il-stsep 0
• 1- I =xl12 =b 2b,1

00

* V = XI 2 hi_2 o

Sfirst step

lirst step

" Search Direction
Orthogonalizcd unit vectors - scarch directions

l , C - N I .. P,,V
Munit vectors Ohogonaliation search directions

nit vectors Otogaati search directions

1M

# .12 C.N
Orthononnal

b,), 1

exact
solution



Example. Simple Problem.

1 i b-,
x b.

I x _ ,

Step 1. hI

.x
i

v(2-= (1

)

Step 2. h)

b
0

(2

Example. I 0

j, W1 1 Z2 <-- W ']L 0 M /

)5 1 0 Mp1  E,\

What if this is the roblem: In general, for IU = h1 0 0 it will take N
0 1 0 x - 2 iterations to get to

0 = '3 the solution using
0 300 3 this method

If e3 is chosen as the first search direction, what is the result'?

Step N. bi

X N= h3I)

If I am scarchingulong MI
I  I 

tic host I can do is M/ = \
1

i;t , d...e~v ~ O1 O2,i... N

Already M-orthonormal

OR needs .' stcos!
What about using other sets of startin vectors?

Mb, {3,P )2.--- PNMMh dirtis
Krylov-Subspace Orthogonalization search directions

Example. I
Li

A73rcl

'7 7 7 7

23 23 23 23

3 3 3
, o 5 , -i 2 

0i 0 iO -t

., = , = ' QR takes n steps

t t

23 t L 23

Solution: take = l
huge error

0 000



Example.

0 1 0 X, = 2
0 1 x 3

What is the best initial search direction?

1NI is the dentity, so

3 J b

V-space

/ Mp

b, p, / ; i17 1=i

-, i s~

Try {) ....

b Mb =
Normalize

M]"Y.i = b If /,o -My) =

b - One Step
I

UIse QR to solvec
1.\ = b Ni is singulal

x minimizes (b - Mx)" (b - M)
Mz = 0

z nonzero exists if M is singular

ARBITRARY SUBSPACE ALGORITHM

1 0 0

0 1 0

() 0 1
0 0

000

QR Algorithm Search Directions

Aproach to A ipro natelySolvin Mv = b

Pick a 1 A I
k-dimensional ....

subspace L" j 9

Approximate as a weighted sum of i..... I . = Oii
-0c

The residual is defined as I / M.i
k 

- i', : k i W' yu = i N1w,

Residual Minimizing Idea:
Pick r,'s to minimize

pA 2 p T pk u Ni= /

Computational Approach
Ii

Minimizing i' hk r CMi, iscasy if i were ortihonormal

Create a set of vectors Iso, Pl ... /,A- such that
spanpo....- = span liO. I

0 i I=



Grialn -Schlmidt oiln NI,
'*
s

1 -1 Pi want (Mj, ).(Mi,,)= 0

(M I  
Ma 1 )' (MNp,) 0

if(M i) (M ) R(MP (M )

Tie this back to the QR algorithm.

[M - - NI,] M -.. M&N]
columns orthogonal

=[0 ... ON IR]

M-space
ip -M M , ( Mv", p

i-i
x-space / -i - ( i.M , )/

I=0

Arbitrary Subspace Solution Algorithm

Given M. ih and a set of search directions Iji, i ..., ,
I) orthogonali/c the Nfii's

2) compute the P minimiziing solution ,

S (Np,)

Orthogonalization of Search Directions
M - orthonormalizing i

Po Pl

t I

./=o

P0 0 3 P2

t I

' I

+I
opt- th *:,nmz.i,), p -i 1 ,

Compule the i: miniioizing solution x 1

.......



The Picture

M M li-

;p <- i (M "hi)P =,ou A,

Mip - Mi 
% i -{%11) Mi 1 )Nip

Nip

Arbitrary Suhspace Generation

It , ll ..... "

, " Z ,, Z, M l\l

po1llnol W

Krvlov Subspace Stes:
(1) Pick a Search Direction
(2) Make scarch direction M'Ni

1 
orthoonal

(3) Update x (miniuize residual)
(4) Update residual

Algorithn 77a it, t i, - ., I
For k = 0 to N'- I

Fori tok- 1

P pk - ( ,if Mpkp )15 M - Orthogonalize Search Direction

15k i<- A M -Normalize search direction

I t b - (Mj,) Calcu ate projection on new direction
X , - + tA Update the solution

After i" iteration: c

b =tMpj0 + ... + .,-IM/?i-l p

Since they are all orthogonal to (Mii ) ~i = h (M i )= 
i

, . (MT )
Aftler i + I iterations:

=o1N!f0 + ... +.Y. I MA iM - +.-i F"

r r

Residual Formula.
Pl" + l i

'+' M j+ b - M + ,j - M ,- - M u ,

N I I1  N I I i 1 1l,
Ni. VI

T" - /,
fl (I).0 .)'

[ 'lP tI



A Small Modification
2 - Vi

Nix

= \o
I 

=/ l

S IM II o/ ,-" 'M ,
'./ i i i 3 . .

NI r 1Nix IMT

NI Mii

/I 'I ( WO N At1) M1t I, INIpt0  N RIO,) NIP(),-(M,*hp .  Mil - MR'i -(M o*IM T )Mp
Algorithm

For i - I to N

For I to i I

ii  (M/i - M Ji ) M - Orthogonalize Search Direction

i M -Nonialie search direction

S' (Mfii) Calculate projection on nes, direction

\ -- i' + v, , Update the solution

s , F-
i 
yiMni Update the residual

Vector Span.

A cx['] ] tx[] I l]+ a, 0It

Span the same space!

Any seightetl combination you can get with one set, you can
get with the other set and a dilferent set of seights.

GENERALIZED CONJUGATE RESIDUAL ALGORITIHM

Solve M = b Too expensi\c!

Best sel
x = Xot0 . t0  -1

Selection of the Search Directions
oCriteria tbr selecting i' ..... -'k- j]

All that matters is the sp)un i,(....ik- i

3 ai's such that - M 
k 
= b- ZuiMW, is small

M -1= in the span/io,.... k-Ifor k < N

One choice, unit vectors, - .pan ( ....5k )
Generates the QR algorithm if k = N
Can be terrible if k < N



O (, t i

Only need (I) i- to sole this problem -a the tirst one

If span - .. -I=' IA k 1 I

k-Il

Then Tk = _ 0 CiMr,'

and 0[nt A- p ,4 k- 1 i

Krylov Subspace

The Picture

] _

If you start from the first search direction, this will take

all N search directions to find the correct answer.

Only need ( 1 ) i to solve this problem -- the last one

I
I Lx

Need all N i's to solve this problern

Could also solve this problem with ON E search direction

if that search direction is all ones.

Historical Devclopimcnt

AssumeM Ni M I (symnmetric) and r MNi > (I(positi\edefinite)

Then the solutionof i I - i corrcsponds to the location olf the

mtini tilof [(tI) I .i-£

V !(R) - M ) - l> x - rM Ihl minimizes /
Giradient it' f/(x = Residual at x
Idea: search alon t he l radient i.c. the steepest descent directions for /(. ) i.e. along

the current residual direction.

Pick ..,. .\ i . . o . I .= "a F . .... I

Does not extend to non-symmetric, ion positive definite case.

Krvl hi Subspace

.Note: sp., iv , I Sp ...V .1 ,,,V....., I I'

-.2 = 1 -+

, 
2 i M

So =

P5 cT-, NI, )M P Nil, M- Ni (
Computational Approach

1I; = f _ MA =

REPEAT

For;i I to k- 1

Pa <- k (M ,.i • M/a )P,

-vt A Mlori ost the M -Normalize searc: <- i: (M k ) Optimal step size inV V.A + I'kT71 Update the solution
a I ik .Mk Update the residual

Computational Cost
Algorithm Cost tor the k

i' 
iteration of'GCR:

F0 = 6 _ M- = /

M; M-space l

... "' = l _NIP
0

l , -

P I Mti
r Mip 

l 
Nip

N ip NIli1

Pick next Search Direction

M-Orthogonalize Search Direction

Idirection

new direction

Example.

NU NU I +yjli 1
M I )t ± +'N]

N7



REPEAT

For I to k- I O(k) inner products: O(nlk) mIult.

/A - & - ((M I) )

Pk

A k
-  

(MI/j ) Vector inner products: O(n) mult.

k 5-+1 k / O(1i) multiplications

k-1 k 1, t + y~ Ik 0(n) multiplications

total cost= O(,n)+ 0(2n)+ ... + 0(k)= O= n)
If M is sparse, as k (number of iterations) approaches n: O(ni

)

Better Converge Fast!!

Recall fthor a tridiagonal matrix

-it'

Gaussian Elimination cost O(n)

Algorithm Cost or iteration k
Forj I to k I () I inner products: O(A) iulut.l

tA <- Ik - (MpI,)-(M]-k )p /
If M is sparse the inner products are the dominant cost:

total cost = O(n)+ O(2ni) .. + O(kn )= )(k 2)

As A (# of iters) approaches N. total cost - O(nl)
Better Converge Fast!!

Symulnctric Case An amazing fact that will not be derived

f11M=M then MF 
k 

I M lborj< k 2

ForX to k - I Only ONE inner products: 001i) mult.

/' < Pk -(M/-k-I )(MA )/)A- I
If k (# of itcrs) - n, then symmetric, sparse. GCR is si orst case O(n

2)

Better Converge Fast!!

SPARSE DENSE
Matrix-Vector O(n) O(n )

Product
(t
:
Y (, ,) M-Orthogonalize 0(ktn) Of'n)

SnOptimal Step 0(n) ()
( Size Update O) ()

Tota iur~l cl iJ r p ,,2 15,

Worst Case o(,') ') f("s) 'O a;

As K ni Need to reduce k

Need to reduce k!! vector coixvector cost

Best Case
For small K

(5-10 iterations)
( )+ (,, )
0(,tI

O( ll I,)
v 'o(" i

Note: If"fast" :=0(n), matrix-
vector product then O(n)
total also for dense case.

Comparison - GCR & LU

Sparse Sparse Dense
Symmetric Asymmetric

LU 12 1.- T 1.8 3GCR iK,) OK2,n Kn
* Making GCR converge fast can be very problem specific
* If the number of iterations k is about constant and small GCR is much faster than

LU for dense problems.

Sparse Dense

GCR 0(n) 01'!

LU O(,,.2-. 8) 0on,,



Convergence Examples
S"No-leak" Examples

lnsulated Bar mid Matrix

Incoming Heat

II7( : ))
N ar li

I -'miilmei -iitoc

o Circuit and Maltrix

I & 2
/n I 1
kv * 10

7 1)
I Tr lud

Tti i)I l-ai iF

Circuit and Matrix

1 - I11 3 m
Nodula

-1 2 .quation

I Matrix M

+. "Leaky'" I-xamples
Conducting Bar and Matrix

Il ip r ua-' .- T lpi.>mp alUrC

Nodal
Equation

Mitrix M'I
1.01)



Example. Illeat conducting bar.

1 2 1
2 - 1

Insulating bar C

SuplpOSe d - 2 2r
1 3 1
2 -

tRecurencc formtula: lo,, = I/
tt l.i

v GCR Perlbrnnance
Example with 100 nodes (102 resistors)
o Random RHS

. . .......

Leaky

I 3 1

1 3 ".

nduction t outside

ppose d - 3

3 -
I 8

3 3

pattern is niot so obvious

Iteration
Plot of log(residual) versus itertion

o RHS (-1I,- .-1, 1- ..)

E 10

po

v =d I d I= For d -2 : 1

Ford - 3: v- -
to/ 3 2-

Leaky "i -Insulating ,

0 0 15 20 2S J0 35 4 D 45 SO
Iteration

Plot of log(residual ) \ersus Iteration

Continued Fraction...
e 

l * 

d. ei- 

t]-.i -] 

t

... ] . i i- 2 
s

tilpl e littear difiterce . .qUatiOt.
11 - y i i - 2 1 -']

No Leak



INTRODUCTION TO NUMERICAI SIVMUIATION

LECTURE 9.
GCR Convergence

TODAY'S OUTLINE:
+ Review Eigenvalues

- Norms and Spectral Radius
- Spectral Mapping Theorerm

- GCR Convergence Analysis
Polynomial Error Bound
Chebychev Bounds
Gershgorin Circle Theorem

EIENVALUES

Mui -2;ii = 0O

(M- k I) Ii = 0

Example. Lower Triangular Matrix

M1 1  0

M 2 1  M 2 2

M3 1

MN, 1
...

Eigenvalues are the diagonal elements.

Eigenvalues and eigenvectors of a matrix MN satisfy

(eigenvalue

M i = Xi i

eigenvector

Example.

Circuit is sVymmetric - expect tile lde vxolta ges might be the samell

Sulppose the \ oltages are different at the nodes.. "

Example. Block Diagonal Matrix

-1

0

0

Or, Xi is an eitenvalue of M if
M-) ,I issingular

iii is an eigenvectr of M if

(M - xil)i, 
= 
0

x-space

9Ir

M= b
M-space

1 0 0

0 1 -

0 -1 2

0 ... 0

0 0

MN-1,N-2 MN-,N- 1  0

MNN-2 MN,N-1 MN,N

S.
C

cDct-q

0

C

CD

CD
(D



Example.) U nonsingular74 Distinct Eigenvalues

* All eigenvalues are equal, ki = 1 Vi

* Eigenvectors are distinct.ii = i

Example.) U nonsingular 71
-

M nonsingular

M ) ]
rero

eigCnvaluc
M singular

has L.l.eigenvectors: I =a l s i' v

I, 

011

~ U nonsingular
0 Ioi'-[

MI = 2 1 i71 + 1 2 i + 3k 3 ' 3

M = 2( - 7i +1 (2)fi2 + 3(1)/ 3

Fasy to do - the NM space uses the same vectors as the x-space.
they are just stretched by multiplier .,.

A Simplifyine Assumption

M ti 2 i 3  - tli I i
1

MK k 1)

M 1 MUA

Example.) Real Matrices -- Real or Complex Conjugate Eigenvalucs

M = UAU Real Matrix

,.eigenvalue s (C Al-l)issigular

UAU -XUIU I lsingular

u . l i --> singular

.(),= n( - .)= 0 -> characteristic polynominal

eigenvalues -> real or complex conjugate pairs
lrinom tile Fulnaiental Theorem /. Aligei a

Symmetric Matrices U U = 1 Orthonormal Eigenvectors

M =UAU' M
T 
-(U = )TAUT

Symmetric - M = M

UAU
-  

(U-L )AUT oj 1
U orthonormal

. P

The set of all cigenvaluces of M is known as the Spcctrum of N1.

MU = U ". - U- MU = A or M = UAU
-

Almost all Nx N matrices have N linearly independent eigenvectors (i.e. U non-
singular)

Does NOT imply distinct ecigcnvalues, i.e. ; can equal ?,

Does NOT imply NM is nonsingular

x-space
MV = b

M-space

S3

i=l

1

3{3

U 1 =I

-2

!2 2

2i + 1 2 , + 3i73



Spectral Radius

Im(X)

0 ,

M = UALI UAUT M = M
7

NM,= UAU'- U I, TA 1, A i.axlk

rot stretch otrotation rotation

Re(k)

The spectral Radius olf M is the radius ofl the smallest circle. centered at the origin,
iwhich encloses all of'M's eigenv alues.

Suppose i - MI.

Ilow much larger is i than 7i OR owi much does M inagnil ft ?

][ 1 10 This sector i ill et[ ]]the most
S1i 1 agification from

matrix N

/i.ok icl the decir tioti crrespowidig, tio t
large'st eigiiedue

/

I -~ ~

1-

7 4V

S
Induced Matrix Nonns - standard induced I-norms

Definition:

|MI - mIaxs
Ni

nmax 'MX, I

Il ma, = mi x mIxi(M= to rsymmetric eal
mnatrices= maxeigenv'alue

Heat Flow Example

iti'ItiL I i

Any induced norm is a bound oni the spectral radius
If M is sy1mmetric then N L = spectral radius

Example. I,0 2]
[100 1 0]1,

Cii

T(1)

Unit Length Rod

O



heat flow (hi)c T - Tit I

Four Eigenvectors

5 15
v =T(I)

Which ones'?

small
eigenvalues

15 50

S - Distribution of temperatures

Mi = Distribution of incoming/outgoing heat

The "shape" of the temperature distribution

is the same as the incoming/outgoing heat

, small means that for that eigenvector distribution of

temperatures the resulting heat flow issmall.

1 2

4

3 Eigenvalues N=20

O0 5 10 15 20

to is

05 .-.....--- s... . ..-----

u.

05 J is 5

large
eigenvalues

GCR CONVERGENCE ANALYSIS
The Iterative Aluorithmi

x -0
ro= h

REPEAT
Compute Mr
MI 'M Orthonormalize search directions
Update solution x A

Update residue r.

UNTIL residue small "enough"
Problem Statement

Let's estimate an upper bound for how much we have reduced the residual after k
iterations

S= T(O)



xspace = 0

x 2 Il 151

' = P

r =M1

Ni,, x,,M,,

C)M
. k" lp--4INl~

@.

rr .M Po,

I. P1 M l

NIX, = MI I iM1I

k=I
Step 1.

PO cspaniio}

.y + VM()o scalar p( spa

i- Jo
T I <- yF vioMf,) .spanI ,M1ipo,, .an Mi 

'

k=2
Step 2. scalar

T P: 1 5 pan 1- 0n = o l

Mj3
V .o A', I

Yl -- r M[o scalar

- FI I__ 1 p1a -M Ispan I

.k 4_ I 1F 0 +(MP N+...+ k. (M)rTli
IjI

Krylov Subspace

Note: span , r ... V, ( xI I= .
r ir 

....

II" . n l o ( .... I s=.1pan ' . . r I
k-l

then r.k Il

and span
(  

,-- 0
and ~1.....7 = sun ,'i. .. ..

Kr31um tlhpilCe

Polynomial View

P 1 1 r - (11])4 k_ ) 134jPA -I , (M/ - )' (,: ')
PAi -, M,..., M

k+ ._1A I Y4y i I

- ,a, , M A:o..., . -k I -

k = p.(M)
F  

-(k - I)
tl 

order polynomialin M

I k :A " I yk-IM/5kl

= p(M)i/A ->k
h
' orderpolynomialin M



(o) = 0 MO NI i A

i.(0) =pol t i 0) = i

Residual Minimization

I t~ N .Ai .... .o i hni zin i

(M is tihe order poh IinimiiIing I

- I (i-M , (W))0

where . (Ni)r
i 

is the k ll order poly miniiizing 
/

i subject to (0) 1

Pol Ilnomiial Properly only a Itilnction o l s tiotin space andt residual Ininin izationl

Explicitly construct Krylov subspace:

i"= / -M.
NI

NI2" \ M. I

NMl = M 
- 

M iu-

Orthogonalize & Project

Residual M inimizing Optimality Propert:

, ) = ,,(M k ("7' ,( l k (\ I

iA is any k 
i' 

order poly such thati k (0)= 1

Therefore
An, polvnonmial vhich satisties the constraint can be used to get

ant upper bound oil 1 (MNia.r"

Bound on quantity of residual reduction

F k+I
1  .i k1o , rf

k+
X = M-il

.v Mk 
i

-0 Ji V!

2(x)= 3 + 2x -4x
2

~,2 (M)- 3I+ 2M -4M =3UU
- I 

+2UAU
- 1 

-4UA
2

U
-
1

=U(3+2 A -4A)- '

, , '< +-u

2 (M)= ur
3+ 2 + - 1Z

3+23 -42k U

3+ 2k3 -4)1

Spectral Mapping Theorem.

Given a polynomial jp,,(x) = a + aix +... + ax
'

Apply the polynomial to a matrix I (M) = ao I + a 1 iM ... + apti '

Then spectrum () (M))= 0 , (spectrum M))

Proof.
Note a property of matrix powers

MM = ULU-I UXU I = U2U - p = U) 'U
Apply to the polynomial of the matrix

p,(M)=aoUU i+aUlU- l+...+ai,UkPL UA I

Factoring pI,(M) = U( + a i++... a
tiustlla



vs ,C (t m ,(Mi)) - ,.se ,m (CCu / + -, (s)pC cr d1,1i (NI))

+o + l I +...+ p p l

Norm of matrix polynomials.

c ntdition Illlml
ot N's eigcnspacc

Ok (x)T

Pk (X)

S2

it tcrtions

CC) Cd

Ca 0 1 1

A. (P %)1
I 3 \

Symmetric positive semidefinite case
If M = MI then

1. M has orthonortmal eigenvectors

cond(U)= u ... 1 u n j

k(M l = max k ( i )
2. M has real eigenvalues

If M is positivedefinite, then ,(M) > 0

n x

,, (.x- , )(.- ) ..(-- ),,)

(- hi >( a. ( ,



Bound on quantity of residual reduction

i: <:

.*=M -S/

s -I(.A1 
'  ) ,.A I

i AOl I 'A=i N

Polynomial Error Bound
Upper hound on residual after k iterations

A Oa (I)

Smaxi\ (,A )i

O
1 

(M)is the GCR polynomial of order k

A (M) is any k Itl order polynomial

such that )A (0)= I
UI are the eienvectors of M

Li are the cigenvalucs ofI M

if NM is symmetric then cond(U)= 1

Residual Poly Picture for Heat Conducting Bar Matrix
No loss to air (n 10)

= evalsM)

112
:/7
,

I:

i47:

- = 5th order poly

,< 1 7 )
r Oi

F )7 / 0 at4

* A

1 1 5

* =evals(M)

5th order poly

-X1 / 4 x/ *lAr< 7 i /

' 5 6 1 Y )1

.

\
\\.

0 1F 15



M=UIIITT T t
0 1 2 3 4 5 6 7 8 k

Important Obscrvations
I. A -csidual aminimizing Krylo subspacc algorithill convirgics to the exact

Sol11)tiO)n il a most ll StepC
Proof:

Let ,,(x) here ()

Then. mnax ( i= : ,, ,(M)=IO .. " = 0

5- 2
o

=0

( 5-

adL

XtI~ X-n

1-

M. = bi
me C !xlI

Repeated roots - converges much faster!! Only need to use
a third order polynomial

iii

2.If M has only q distinct eigenvalues. the residual miimizinsg Krylov subspace
algorithm converges in at most q steps

Proo f:

r k

.
0
1

Let )q(x)=

M n
-3

max Pk (i

A k)(- )---(x- ,,)I )( - , ) ... (.,- , )



Chebyshev Bounds
How many iterations to converge?

* = evals(M)

r" - = 5th order p
O 0

After 3 iterations, the residual
drops signi icantly.

12345678 k

What if you don't know how many and where the eienvalues are?

What if you can only estimate their range 2i EIA,.

S* = evals(M)
, - = 5th order poly
'< max I(.,s )

5C 65
CC /-,-,,

kl (x)



* = evals(M)
-= 5th order poly

Find the polynomial that minimizes the value within the
range [k,,, ,,, ],,,,] and is equal to I at X=O

Range of eigenvalues

Polynomial Min-Max Problem
[Con crgcnce tr N = M I

Consider () ( I E [,,,in , I .] i > 0

Then a good polynomial (i.c. -M, (N is small)can be tound by

solving the min - max prohlem

in max ()
A , order A k i. m a]
polyss.t.
he min-ma problem is exactly sol

The min-max problem is exactly solved by Chebyshev Polynomials

m in 1 ( m ax+c ,m1

k ordcrxV [L+m,,A, 
1  

[A( i,,mn Ck l+2
poly ss.t. o c a
'k,, (0)=1 mnax - n

The Chebyshev Polynomial C, (x) -cos( .cos (x)) x [- 1.1]



Chebyshev Bounds

mmi max ()
k" order. [,,,l i.,,
polss.l.

, t7m M I

A-miax

max
,,,,, ,,, + 2

/" max -/1nhi1

Example.
Given the ratio '"- - 4. what is the residual after k iterations?

in A

, V,4+ 
' "
.0 ,.k ,.

, 3

Given the ratio "max = 100, what is the residual after k iterations?

Given the ratio [
a 

= 10.000. what is the residual alter k iterations?

0 Ir- i ( 1 1i

Which case converges faster?
If the ratio of eigenvalues is large, than the bound on the

convergence will be slower.

Chebyshev Result

If ,(M)E [ .1 .in mal , IXmin > 0

< -min

cond(M) IM M ' = ax? mnax

M = UAU
-
' = UAU

T

M
-1
= A-I U

-
I = UA-I UTC, 1 - 2 Ia""

Zmax - >min

Ilax 
k

2 /my! +

+ +Jmi hll

IM-' = max 
-

i
= ~-

2 H i -min

Amin =

11= -[M ]



Examples.
cond(MI) 100 k A At each

O <
- "

I iteration.
( 10+1) I) improves

Worst Case by --10%

cond(M ) 10.000 ' 1 hiound

1 100 + I.

M)
i., 521 + 1hi

At each iteration,
improvcs by a
very, very snIall
amlolln.

Heat Conducting Bar example
Sometimes GCR can do much better than Chebyshev
bound

-0 5
r

SNotc: I n 110ot eval.luatine

t the GCsR piol 1 nonial here

2o a 5 1

Residual
Minimizing
Krylov-subspace
Algorithm can
eliminate
outlying
cigcnvalucs by
placing
polynomial zeros
directly on them.

GCR

Clhebyshev Polynomtial

Gershgorin Circle Theorem
° Theorem Statement

Given a matrix M =

For each eigenvalue of M there exists an i, I < i < N such that

We say that eigenalue ae contained in the union o the Gerhgo circl
We say that the eigenvalues are contained in the union ot the Gershgorin circles



v Grounded Resistor Line - Nodal Matrix

1 2 3 4 N-I

.
- in1i < 2Ci, G=- 1

I 111 }Nodal Equatol F t1"1 2 -1

T -1 3

SPicture M

ih circle Im(2) Eigenvalues are in the I < min kmax 
5  k -1 

radius union of all the disks 2 1 
=

_.. sabout one digit every two iterations
S:e(2) about 0. 1% error after 6 iterations

i circle
center

i i



2 3 4

Im { 2}

Nodal Equation Form

ReK1 f,2.1

-1 2.1

0.1 kmin <Xmax <4.1

about one digit every 6 iterations
about 0. 1 % error after 18 iterations

I - I a, N

Nodal Equation Form 4 -1

4 Re) N 2 -

4 Re fX -1 2.1

0 _ kmin - kmax - 4

This does not mean that
GCR cannot converge in this case
but it is a good hint that we
might expect slow convergence

I I

S214
;,k l

A 14.1 -1 - '
0.1 -

1

I7 nd

Imo.

N- I , N
1 2 3
0 a*- 40-



INTRODIUCTION 1TO NUMERICAL, SIMULATION

LE(I RE 10.
Preconditioners

TODAY'S OUTINE:
" Preconditionicrs

Diagonal Preconditioner
-Blockdiagonal Preconditioner
Incomplete Factorization Prcconditioner

- (GCR tfr different Right Hand Sides
- Recycling the Krylov subspace

PRECONDITION ERS
Diagonal Preconditioner

+o Diagonal Example1 0 0 "" 0 1 0 0100 0 100

00 0 0

o 1 0o ,

0 ... 0 0 1 0 0
Fo which prohblem ill GCR colt erge laster

N-1

0

Pk (x)

I iteration

1 2 3

Suppose Ml = h convergesslowly

Try PM_ = Ph for some P (left pre - conditioner matrix)

e.g, How many iterations for this diagonal M to con erge?

0
M = D 0

0

0 0 ... 0

2 0 0

0 3 .

0 0. 0
-- 0 0 N

0

0L

Can we find a preconditioner P that does better?
7

7

35

35

84

Im {2}

Re {k

n A

C

U1

tC

0CD
I,

0

CD
Cr



fDiagonall IDominant Example

Ho" many iterations ifor this diagonall donminan M to "gel very close to [lithe
exact answis er?

7"7* *

* 7* * *
., ,! D + 8- * *

• • ,

S small

* 35 * *

S 84 * ** * 8* *

• * * * 84

is a very small entry compared to diagonals

S coditi Res n

Can we ind a preconditioner that does ecn better?

1 2 3 4 5 6 ........

+ Diagonal Preconditioner
Try as preconditioner the inverse of the diagonal

* * * * * * * *-

S******

D-l( 6)= * * * * * * * *

******* *

• General Idea

i small

lm{ x
m

(0

SupposeM t1 = h converges slowly

Try PMF = P/ for some P (left pre - conditioner matrix)
If PM = I then convergence happens in one step

however P = M-I is VERY hard to compute
If PM a / then we hope convergence happens in " I1ew" steps

Any general idea for picking P?
Pick M1 such that: e.g. if M is diaonally dominant

a) M M its diagonal N1 = diag(M) is:

t) M is easy to invert or factor - a good approximation of M

Preconditioner: P= -V
1  

-and easy to invert

Let A = D A,,,

Apply GCR to

(D IA) = (I+D-IA,,) = -1) I
The inverse of a diagonal is cheap to compute
Usually improves convergence

: Reh ,



For the heat conducting bar, which convergence curve is GCR?

l targ condition number 
=  

10,000(

So slo conv-er 0,00ce0

W X- 10,000) O

Oooo h

Example. Heat conducting bar

, L One small Av

Heat Conducting Bar example continued...

Preconditioned Matrix Eigenvalues

I1 1+ 100 100 =

S 1+ 00 i-

I 2 y , f(x, )

> 100

,1 so

Iteration

Residual
Minimizing
Krylov-subspace

9 Algorithm can
eliminate outlying
eigenvalues by
placing polynomial
zeros directly on
them.

2 ++"' 2
or,

"1 0 5



Heat Flow Comparison

1-D 1 I I

in unknowns O(m) nonzeros

2-D PLat .

3-D Ctuhe

i * 
l  

,*
,

I---e ** **, em **********

m eoeoeeee •
n? , l

Blockdiagonal Preconditioner
SLine Schemes

C Tric

m2 unknowns

O(m 2) nonzeros

Tridiagonal Matrices factor quickly

m
3 

unknowns

O(m3 ) nonzeros

Incomplete Factorization Preconditioner
v Fill-Ins Example

Fill-ins Propagate

X 11

0
Fill-ins from Step I results in Fill-ins in step 2.

Dimension Dense GE Sparse GE GCR

2 O(m
6  

O(m 6 O(m
4 3

3 0 m ) rn 6) On 4



OR do NOT calculate MIiM !!!!!!!!!!!!!!!!!

solve for b: ELb =
At each iteration of GCR we need : lM-iMr

k =pk

Then solve for ,k : pUPk = Mrk

= Eii ME. SolveL=b - y

La1 = b Solve = b -

LU b Slv i

+ Key Idea
o Throw away fill-ins

Throw away all fill-ins
Throw away only fill-ins with small values
Throw away fill-ins produced by other fill-ins
Throw away fill-ins produced by fill-ins of other fill-ins, etc.

o Key Idea
Pick M such that:

a.) Pick I M

b.) M is easy to factor: M= LU

Use as preconditioner : P = 
-

Butdo NOT calculate P = M- !!!!!!!!!!!!!!!!!

I- M -? using GCR

/' 0 = 0

i-1 lk k - .Pk

I-1M = pk _= = k

LD

. Fac



Complete Algorithm

Pick MI such that :

a.) Pick I a NM

s.) is casy to factor : l =i

Factor l= IA!
Calculate new RHSsolving fori : LUh =
At the k' step of GCR:

Calculate Mr 
k

solve for Fk : U k = Mr
k

SGCR Summary
r Comparison C(R & GEI

* Making GCR conerge tast can be vcry problemi specific: pre-
conditioning

* Assume \ce have a good pre-conditioner (e.g. # iterations k 10,20)

Sparse Dense

GCR O(n) On2

GE o1.21.8) O3

S Re(X) =10
Same condition number for both.
Top converges faster -clustered c igenvalues.

When would one use GCR?
* Need to have fast convergence rate:

I. conl(M) is not large
2. or eigenvalucs ofMNI are clustered in ifew groups
3. or we have a good "pre-conditioner"

* And one of the following:
I. need Iet er than 16 digits of precision
2. or M is dense
3. or have a fhst matrix-vector product algorithm

And what about if you need to re-solve a system with different RHS?

GCR FOR DIFFERENT RIG(;T HAND SIDES
Recycling the Krylov Subspace

Sspae : C enou h tr 2 ii-raace

, 2 1t - I= V + YFI P I t YoPO 
+

.1 1uP+ I

x = 0

M .1 -1i 5 6

AlldrI= rotA/0 T"i:

lgo-
Vo o Al \2 = Y + l l

_ .Yo / + Ys , +. 1 i1-)

2 1 + f' ,j = r'O/p +.fiil +.l/

P 2

t PO

=O

= ioo7

i pace
I)pac

Pe
. 4

0 
=

h 
0  

.
, =.h r, fl



x--Mspace-space

S-span{Po, Pl, P 2

spanM --,M -,M2

b - spanIMPDO MA5 ,M 2 }



INTRODUCTION TO NUMNERICAL SIMUILATION

LECTI URE 11.
I-D Nonlinear Solution Methods

TODAY'S OUTLINE:
+ Nonlinear Problems

Struts and Circuit Example
+ Richardson and Linear Comnecrgnce
+ Newton's Method

Derivation of the basic algorithm
Convergence Analysis
Multidimensional Newton's Method

NONLINEAR PROBLEMS
Strut Example

I~~8ff:h
(x,. v )

Given: xs, .vu. x , '1,.i;

Find: .,, y2

Need to Solve:
1r, =

: e(LO i

h Nonlnar

Why Nonlinear?

./ "7
2 

- v
l

LR= (., s ) + ( , -y' )

j 2 y I (L.0- LB )

.LB LB L
S .; 2 + (Y2 Y1n
L = (xy2- x. )2 +(yg-y 1i )Z

[Pull Hard on the Struts

The strut forces change in both
magnitude and direction

J. f.t. J,.+/ + .,. 
=
0

f,= (0,-1o) . .

.- , 11) E(Lo-L 4 ) + Y2-Yl E (L-LB ) + f =0
L. LB

( ) o ) ( , ) . +:.,+ + =.,.

+ ] + 0

/ , - t E (L., - L 4)
1L

S.IO
CD

cb

CD

O

z

cb

0

0,



X,= 0 ' 0 X 0 =O

identical

2 strut problem

Struts stretch & rotate

Circuit Example

Need to Solve

10V VV

1 strut problem

.1 = iLo - L)
AL

linear

Ir + I, =0

I' -I, = 0 Non-Linear

System of
Equations

1 - 10 x (.V)

(c -I) =0

S I d

Solve Iteratively
Hard to find analytical solution for f(x) 0
Solve iteratively

guess a solution x" = xo
repeat lbr k i0, 1, 2....

until./(x4' ) 0
Ask
* Does the iteration converge to correct solution?
* I-ow lst does the iteratton converge'

One method to find where f(r) - 0:

I-D: 1000 points
2-D: 10

6 
points Guessing may be an alright strategy for I-) case, but

3-D: 10
9

points not so when there are more dimensions.

RICHARDSON AND LINEAR CONVERGENCE
Richardson Iteration

+ Definition
Richardson Iteration Definition

An iteration stationary point is a solution



A A

~(,fi)=o (x)
xa e v= .* (Solution)

{ Example I
f(x) = -0 .7x+ 10

Start tith xt= 0

.I =xf+ o.1j=0+1O=

= v + 10 +(-7 + 10)= 13
=.v 

2 
+. v = 13 +(-0.7.13+10) 13.9

v = C + r
( )  

13.9+( 0.7-13.9+10) 14.17

X = 14.25

v = 14.27

v = 14.28

S= 14.28 - (Converged!

oto

(x) = -0.7x+ 10 X -X

, ..,

Richardson Iteration

Iteration k



• Example 2 
; i
'

f(.r)= 2x+ 10

Start with x' 0o

ri =.v()+ o )=0+1= l
2 + [v = 0+ 10 + 1 0) =40

x x x



+ Convergence

A-1 =xA + f

.1 = x +

f lx)= f - + x x+ . , v )r-)+
d - dv

AI A -x + (x + x x A - +

+ 2

X+ --xt=1+ 6 d k +.. -+ .
A- 2 2

Find a hound: K < K - x

l - =K h- Ibr large k

If K < 1 then Richardson converges linearly.

0 oA +( = v 1(- As k -
.¥ -.* (I-- ) ( )

. *= _ A= (,.) -x*

x x _(IA)(,-x* =(I- A)(o -)

lim (I -A)
k 
-+0

k _-----spectral <
radius

(1 - k(A)) < 1

2 Xr

IX(

0 Setup
Iteration Equation .r = r + 

I. 5

Exact Solution x = x + fx

Computing Differences
X '+ -. ,- -. + .(.,-') (

Need to Estimate

t I 12
X , X X ........

f(x)= b - A-

A _-x* = 10

k+1 _, ' 10= 5

I -I _.. i .(



K + )+ l -X + )

Example I. f(x)=-0.7x+ 10

Kh = 1l + (-0.7)+ 0+ : = 10.3+ i

Example 2. f(x)= 2x+ 10

K* = 1 + 2+0+ .3+

No cotnvergence

o Mean Value Theoreml

6fz w]
f~w) f~v= - (w- ) zE[v: ]

Use Mean Value Theorem

Itcration Equation x 
' 

= . + x

Exact Solution = + J
o

Computing Di fferences

xk k-x = k- + + k-

TE x k,x-I

v1+ v -x

. C. - _,'
_C T,,.

o Richardson Theorem

IF 1 <7<
1  

forall s.t.

AND . ' -x* <

THEN k
t+ l - 

x*-< 
- 

1

OR lim x+1 -x =lin x -
k-- k-,

x =0

1+ x <0.1

-1.1 -0.9 - < .01Sdigi ration < linear conv .01

I digit/iteration -- linear convergence

W (z) f(w)- f(')



Example 1. (x)= -0.7x + 10

= += +(-0.7)0.3 < I

Comergence

Ixample 2. f(.v) = 2x + 10

=
1+ 1+2 =3>I

No conllvcrgllec

Pr Ioblems

o Convcrgence is onlly lincar
r, f(.v) not in the same units:
* is a voltage, f(x) a currlent in circuits
* x is a displacerenc t, (x) a liorce in struts
* adding two different pihysical quantities

.
+

1 
k

'\tlagae

SIclnperatur

.vposition

(X) f( k)+ e xk+Ax-a

I currentl

]Ileal i,

/' th~rce

Advantage
j Simple - only need to calculate f(x) and update

.a a -I ( . - + q (,k )

Example I . Example 2.

( .t I !a !

Example 3.

10, l

a 1 t a- 1
I 3 0 No convergence!! I Q 7 I.3

Still no convergence!!

'Still ao conaergence
¢1-'

NEWTON'S METHOD

Derivation of the Basic Algorithm
I -D Reminder

o Newton Idea

Problem: Find x such that f(x = 0

Approximate f(x) with its Taylor series about x :

(x) fxk ) k - k) a straight line
6X+

Find the solution of the approximation x 
\
-
+

(Xk))+ 6f (Ik Xxk+ xk)=

->xk+1=x k (_,k )]- fxk

x
k

)=

Xk+ I = xk _ )= o



D Graphically

f (") + f'( )( - I

f()

. . . . .. ... .. . . ... ... n

1c z :

Problem.

f (x)

Example.
R

Ii

if ") o
Ey

Resistance
Ov R j ,Current

Voltage

Newton Algorithm

x = Initial Guess, k = 0

Repeat (

k =k+

} Until ?
x.k+1 k < threshold

f(k+l ) < threshold



Convergence Analysis
Convergence Checks

a /(V)

Need an 'f(x)" check to avoid false convergence.

ik+ .' <6X - <8

c As

Need a "Av" check to avoid false convergence.

f(x) xk+ 
k 

< , + xk+

< EA+1l

+ Convergence Example

f(x)= . 2 l2 1.259921

0 100 8 740 Asymnptoicall,

6.673333 5.413 .kl -x. C

S1.261665 1.744e- 03 C=0.7951
9 1.259924 2.410 -06 u=2.000
10 1.259921 4.60

9
e 12

Jx /

.f(xk+) <

xk+1 -
x k 

< 
S x

,,

x
k + l 

-
k

S x k+ .,



' Taylor Expansion

J ,(xB)- f(XA
i iI

- - -X , f(x f(x

Taylor Series Expansion

23 4.5 6.7 10 2.r t- 2 x k

+ 0(x -k)" +r((,

Newton's method I I It( . ) _, ),, , . .

f(x) X3a-2 E ly T rA. I

gained 1.5 digits Exact Taylor expansion about the iteration x' evaluated at the solution sX

X -
d

some LEL '

gained 6 digits Mean Value Theoren
gained 6 digits ttruncates Taylor Series

Double # of gained Approximate Taylor expansion about tht solution x. evaluated at [lie next iteration
digits at each iterations xk

,

Iteration I x ) (2)

Subtracting (1) from (2)

qf(k± k x - dlX()(0 k)2
A (X Xdx 2

Dividing through

( [ dxY



Suppose q( ] 1 (2,( L for all x

then Vk- I _* </ LI k _V
2

Convergence is quadratic i 'L is hounded.

....

Xs - X

~ 2

0-vi) ii L i 0)

. small

I _ r

V) rCiLv-

-f -(x) = 0M.\

- (x) small

(x) large

*f 

T.5 k 

VervG ood

(x)

f(x) Very Bad

(x) good

S Example I

f(s) = . I = 0. find V ( = 1)

(,A )= 2x i

2 i k(VkI- + ) 2 V [(. A [ k or )2k I- A .A )2

convergence is qadrlatic

x"= 1.1 x
=

Example 2

/(X) ,2 0. k ( k( xi = ,- fAA x
dJ(k )- 2 xA A ' d"

-k (k+1 k 0)2 Notc -notbhounded2 ) 1 f ('V away from zeroA I 0 = ( 0) for x 0

r I -t x' (v - i2



conlvel r'lnc i% hlincel
Graph - convergence of exanples I & 2

Residual I

x <y\-* i-.v

Proof .x -. r L 
0  

,x -

, 2x -, -A

.rk + -x ; _ k I 
2 ( 

x
k 

- ,

k=0: + - Lo x x<L

k=1: x'-x LIx- x* x-x*

()x -( x -V

k: k+ _x* r 2(k +)l i x" .V*

= 2 -

Iteration k

STheoirei

Suppose[- (l ' ( L for all

it' Lxo - 3 < / < 1 then .k converges to x

+ Theorem

If L is bu.,ded bounded away from zero; f bounded then Newton's nethod is

guaranteed to converge given a "close enough"guess
Always converges?

I:



1D Pictoral Example

Convrgence Depends on a Good Initial Guess

Aside on Global Convergence
What if your initial guess does not converge?

Take a sampling of guesses and determine where the sign
changes

Sign changes between
these two points

Run Newton's Method again using one of the two points
surrounding the sign change as your initial guess.

If it still does not converge? Sample points within the
range of those two points and refine the area of the sign
change - repeat.

1D 10 points
New 2D 100 points

pointspoints 3D 1000 points
o Easier to do in 1D - becomes more

taxing in larger dimensions.

Example: Heat Conducting Bar - Insulating

\ Pure Neumann Problem:
Boundary conditions - heat flow only

leads to a singular matrix
If ho -= h there are multiple solutions,
if ho # h, then there is NO solution

h,

Partially Dirichlet Problem:
Boundary conditions - fixed temperature on one

end & heat flow on the other

Example: Heat Conducting Bar - Lossy

Known Temperature
Krylov Subspace Methods converge more rapidly
(small ratio of eigenvalues)

- og
X.= eigenvalue of M is an eigenvalue of M

-

h~eignvalu ofM X

a 0 Oa

0



Multidimensional Newton's Method
" Examples

o Strut and Joint

F 1 E(1 -

/ I
IF E(/- )

] =/F= EU,-,)

Nonlinear Resisiors

vI  i, 1

Nonlinear
Resistors

i= g(v)

Example. Nonlinear circuit element: MOSFET

i = kv
2

F + F, = 0

, f,+F =0

OR

E(I) -1)+ FL, =0

SE( -/)+F,, =0

Nodal Analysis

At Node 1: i +i, = 0

->g( ,,)+g(v,-v,)=0
At Node 2: i - i, = 0

g(v,~)- g(v - v,)= O

Two coupled
nonlinear equations

in two unknowns

i



.t 7 • A.)

+ Jacobian Matrix
Jip (x)A r F(x + k)-

ax

( 1 , (x)

F(x)

F , () -

Oiy (s)
aXiVA V

+ General Setting

Problem : Find xt such that F(v*)= 0, * a ill and F : ' 1 - 'i"

Approximate F(x) with its Taylor Series about x:

1 ,( ) (,n )+ J ., (-,- 5  I
- -  

-
Jacobiani
Matrix

Find the solution of the approximation: x
k
'

F(xk) jl. x X- xk )=O0 xk-I s Xk _ [. k (k)- F(.k

+ Newton Aleorithm

o = initial guess, = 0
Repeat :

Compute FY ) JF(,'

Solve JFi v
k  

I - x = -F(,' ) for .i
A

k =k+l

JUntil xik+1 - x ii small ienouigh

+ Nodal Analysis
o Strut and Joint

S x* G9i
2 and F: 93

2 2

.
1 

(xi +A 'iV2 1v2 =1.2)+ (I,.2 )tvt + (. A. )Avi

-'(.xv A )= F(. ) i J(.x)Av

X (lo -I)+ F, 0

S(1o-)+ FL, = 0
Singular lacobian

f(x)

.f(x)
SI (. i )/"h, 0- / (.(, )



* )

*IF=,r) Li 0

0(=0

o Nonlinear Resistor

x* e9
2

and F:932 
-

9
112

At Node 1: i +i = 0

At Node 2: i3 - i 0

scala L +A ) a a,
functions"

) + v Fx F, + F,

OF OF)

S F(v + AF) z (.r)+ , OF, '
I[ (:AY]j

F 9 9 
R R, 

R

I I

R,, R R, ;

o Computing the Jacobian and the Function

Consider the contribution of one nonlinear resistor Connected
between nodes n, and n2

+ -

Summingcurrentsat Noden : F,,I (v)= g(v,,

Summingcurrentsat Noden2 : F,,, (v)=-g(, - n -)+...

Differentiating at Node n
OF,, (v) _g(,,, -v,,,) OF,,, (v)

' vllI O'rI r'
gt'- ,,)+...

( l

.1 i v2

i i3



Stamping a
Resistor

ig-

2
R

R

i:IK
T=O

1
R

2
R

R

7lT2
T3

t... t tttt .

More Complete Newton Algorithml

initial uess, A = 0
Repeat I

Zero Jr. and I

Ior each element
Compute clement currents and dcriativc

Sum currents to F, sul derivatives to.
1
/

Soltc .Jrv A x , ) ,-F ) Inr II
k k + 1

U Until i
x

k1 k r 
k + small enough

Example: Heat Flow in limersed Bar

T=0
T = 0

• T, Tv, i~I°°°° "

iTi 1- Ti+

ih = k(Ti - i+l) 3

What is the Jacobian?

. + 3k(0 T)
2 

+3k(T -T')2

- 3k(TI - T)
2

What is the Jacobian?

-3k(Ti - T2 )
2

+3k(T T)
2

+3k(T, _ T3 )
2

T = 0

ih =kT
3

17

i (, ,



INTRODUCTION TO NUMERICAL SIMULATION

LECTURE 12.
Multi-Dimensional Newton Method

TODAY'S OUTLINE:
, Multi-Dimensional Newton Method

- Convergence Analysis
. Damped Newton Schemes

G- lobal Convergence
- Difficulty with Singular Jacobians

- Continuation Schemes (Homotopy Methods)
- Source/Load Stepping
- Improving Continuation Efficiency

MULTI-DIMENSIONAL NEWTON METHOD

Convergence Analysis
+ Theorem Statement

If a.) JlG 
k  p (Inverse is bounded)

b.) IJF(x)-JF(y)I - llx-viI (Derivative is Lipschitz Cont)

Then Newton's method converges given a sufficiently close initial

guess.

Not Lipschitz Continuous

Not Lipschitz Continuous
near

fl.~ )

4 Key Lemma

If IIJ (x)- JF (y)[I < Ix 
- Y (Derivative is Lipschitz Continuous)

Then |F(x)-F(y)-JF(y)(x- y <jll
x - 

y1
2

There is no multidimensional mean value theorem
+ Theorem Proof

By definition of the Newton Iteration and the assumed bound on the inverse of the
Jacobian

k+1 -xk I=i J1-F txni k k F k

Again applying the Newton iteration definition

xk+1 _xk s p - (xk-,) jF (k-I Xx k _ k-1

Finally using the Lemma

xk+1 -x k < xk xk-1 2

o Implications
If the function is not very steep in some direction, or not very smooth...
Then Newton's method can be used to find the zero of the function but only if you

all ready know the answer...
Need a way to develop Newton methods which converge regardless of initial

guess!
4 Non-converging Case: I-D Picture

Ax)

X
x~

Limiting the changes in X might improve convergence

z

CD

U)

cD



Diode problem

Sr,,, - I)

f(x)
Local

Minimum

* 2 I 0

At a local minimum. = 0

Multidimensional Case: Ji (.r) is singular

DANIPED NEWTON SCIEMES

Global Convergence
• Newton Algorithm for Solving F(x- = 0

l  
initial guess, k 0

IRepeat

Compute /:(,:' .(i/k)
Solve ,i( ) , 1= _ \-- , a r Av)- I

-k =I . + limiled( At I )

k k +

SUntil IA
k  

, F( I small enough

+ Limiting Methods

o Direction Corrupting

limited( A
k + 

)i -
A

7ysign (At ) otherwise

o NonCorrupting

limited(iAfk4 1)= +1

ta = min 1

Heuristics, No Guarantee of Global Convergence

Y 0.5
f(.r)

tirction ( orruptigh, Original \ectlor
0.2 - - -

NonCorrupting 0.5 I x

v Damped Newton Scheme with Limiting

General Dampin Scheme
Solve k 

k +t 
=-F(,k) fr ,

- k+
)

xk+l = vk + (yk k k+l

Key Idea: Line Search

.0.2



Pick k to mninimize F k i k k i + kc i k+ I )

Examp)le.

2 1kEcyisip/e.
cc 2 st t )

}Until Ahi' 
.

k+
'  

smallenough

Method Performs a one-dimensional search in Newton Direction.

f(x)

i:... '-

/ f(x)
Dampcd Newton
converges in one step

Damped Newton will not
converge in one step because 

&
i'

is not large enough to reach x

and l I .

f (x, l

/ 
rl

., I
As:

Nested Iteration

(= initial guess, k = 0
Repeat I

Compute F (V k)J,. (T I

Solve j,. (VA )cs t I (s k) for*.-V'

Find ut (0,1] such that 1I( + AV ) is mtinimized

-k+1 k - ksk k
k - k + I

'- iIF (x)II
Solution to tle

0Iisiiai prohlem



I xample

v 1010

10 

0

Iv oI, - I (e -1) = 0

Nodal Equations with Numerical Values

f(+0' " -1)= 0
10

25

20

f(.+10"( e - 1)= 0
1010

= 0 _L- I o =0- , (0. 1)= I

[10 0.025

=1 - 0.025= 0.975

Lots of steps to converge with the regular Newton method.

o Nested Iteration
0

O = initial guess, k = 0
Repeat (

Compute F( ) J W
Solve JF (o )Ak i I = -F(V) or Ail-

Find aC c (0.1] suchl that F(V + iX i A I is inimized

A+I A k k+

k =k+

i Until Vk' ,F
k l  

small enoi.gh

How can one find the damping coefficients?

0 Convergence Theorem

If a.) [j I k< [1 (Inverse is bounded)

b.) IJ.(.(x)- J,..(Y)j - i s.-, (Derivative is Lipschitz Cont)

Then There exists a set of u. 's e (0,1] such that

F( = F + kAr' )<yF ( withy<l

Every Step reduces F--Global Convergence!

0.2 0.4 0.6 0.8



Example.

.F ' . 2 0.91

F( 1<0I 
+ 

u I + fo i ) [()' ( +F li) )2 !. 9  F( I 0

P'roof.

By definition of the Newton Iteration

N cwu,, t n Direction
Multidiniensional Mean Value Lemma

iF() - F(y ,)-JJ/(.v- x!. .-

Combinine

Combining terms and moving scalars out of norms

Using the Jacobian Bound and splitting the norm

IF(vk I+ L -k )(k ( ,k ( )2  2

Yields a quadratic in the damping coefficient

Simplifying quadratic

t (, 
'  

, k ( ,'ck k , (0 k

, n 1- a + C = -A

Two Cases:

1 F(.xr < pick c = I (Standard Newton)

F + 1 r F( F

2 2

Case . 12C

i -x 1 Take the full Newton step.

pick o = 1 (Standard Newton)

2. pick cX 1
2 x ) ') pic = I  (Damped Newton)

l ), , F l i bl i--

1+2ci( =0

2C
k
2C



Case2. < I

I I

-[/" = 1 -1 @x2CC!1 + F r, - ,I ( - -} ) -

(2 -'3 -'/I- 1 I- ( )( - I,
k(+<~,1 ( Jj4 I

If small A small - large Always take the

IDI ID\ p2( full Newton

large small

If Plarge large- 2 small

IDI ID \ p
2

af2f
small , largeax ax-

FA I) 1 k k not good enough. need independent from k

The aboxe result does imply

F < FrO not vet a convergence theorem

.I -1- -I £ y< o
F _ 2+ k .

JF(xk+2: 0.991 Fx/+) 12

F(k'+')! 0.999Fxk+2

12



Difficulty with Sineular Jacobians

f(x)

Damped Newton Methods "push" iterates to local
minimums

Finds the points where Jacobian is Singular

Regular Newton Damped Newton

1 STEP

texpensiec

more

convenient
multidiml.,

0
SEVERAL.

STEPS

Damped Newto
\sith half-step

( ' i ,)

SAM E C
STEPS

more steps
liore than

expensive Newton

O I STEP

I-nissli ZatiOn
c oS TS

0
Fast
Cheap

CONTINUATION SCHEMES (HOMOTOPY METHODS)

Vertical strut
-0 - V

fioad =1000 -Vi

S fioa 2 1

f load o

Source/Load Steppin
SBasic Concepts

o Newton converges given a close initial guess
* Generate a sequence of problems
* Make sure previous problem generates guess for next problem

Struts Example.

7 s

1X

ii.-.-

1
I

r

X



Heat-conducting bar example

- - - - -

h=l = xAh,

I. Start with heat otf T- 0 is a vcr close initial uess
2. Increase the heat slightly, T-0 is a good initial guess.
3. Increase heat again.,.

F I i t

x(_)

. Dissallowed

* General Setting
Solve F(.(). )) 0) where:
a) i'(((),0)= 0 iseasy tosolve Startsthecontinuation

h) P(x(l)l)= F(-)

+ Template Algorithm
Solve ((,),)= 0, (,,,,)= (o)
Rt =0.0l1, %6?
WhileX < 1

Try to solve F(xr(),.)= 0 with Newton
If Newton Converged

x(irJ= x(), 2, = N + 1. 61= 261
Else

8k= a
?,
h=prel 8

Ends the continuation

c) x.:() is sufficiently smooth I lard to ensure!

• i£; :ii7 T:



S0)

lfil

. )-' ( dj -

v(36 6 i -
\3 s 

-
7

Examples

Improving Continuation Efficiency

Nonlinear Circuit

- , -g(v)

..

/ (v( ), , )= (,)+ (, 2V )=O

Diod
-+-- Not 2 dependent!

( /. R

Strut(xly)= 0
urcd Sppn DX, y)ot+ =r

Source/Load Stepping Does Not Alter .acobian

expensive

(1 -)x + 0)f= 0

(1 - X)y + X/. + f,. 0

.-LzII±



" Jacobian Altering Scheme Description

.-(x), ) = F(x( )) + (I -) )
Observations

= ! ((O).0)= -(O)= 0
OF((O),l) = Problem is easy to solve and

a'. Jacobian is definitely nonsingular.
)= fF(x(i).i)= F(x(i))

F(.(I ).) F( x(l)) Back to the original problem and

C original Jacobian

F(v + i,/(
= 0

l)or ic

J, J I= -E(/ - o)

(1- )x + f (x, 1) = 0
(1 - )y + kf',,(x, y)+ fL = 0

SBasic Algorithm
Solve F(i(k).k)= O, .( ... )= .(I0)

6i. = 0.01, .= 6k
While k < 1

.,"i)= .(E.,,.,, )+.:
Try to solve F(Ax(), .)= Owith Nesuton

If INewton Converged

x(?p,,,re= X(k), k = + 6,. 6 = 2)

Else

6, = . A= )pre+ 6k

() )= -", + il(v)+(1-) = o
R

iX t (Md) =x t)+ i,: H. . + i" ... ..- . .... . .
-R - +. 36i 56k 76k

" Remove ion -linear I k
Remove Resistors components thell Insert resistors to
thcn scale them bring them back ground in each mode
slowly slowly I

R,

then remove them slowlyx



SF(x,) = F(x)+(1 -).
Set SF = 0

A. 6) ()

Update IA pr nt
+ Update Impro\emcnt

k '?..r / c ,

x()
x(K i ) + 6v

X(i,) .v

. Zi ± 6+

aF= ix + l a
Hlave From last lave From
step's Newton last step's

what is it ? Newton

Solve for x: F x = - F

Initial guess for next Newton: xO(xX)= x(pe,,)+ r

. -

+ r I(eX(X - X),c' ) t(? +(IV.

-------- Better guess i'or
hate fronm last next step's Newton
step's Newton

P~~=i~rh)g

+ Initial Guess lor each Step

x(2)
x(A rV4 . ....



INTRO)LUCTION TO NUMERICAL SIMULATION

LECTURE 13.
Newton-Method Case SttLdy-- Simutlating an Image Smother Array ofy photo diodes or photo transistors that provide some \oltage

Method Case Stdy Silatingproportional to the light in that particular spot of the chip

Pixcl

TODAY'S OUTLINE:
+ Image segmentation example description IntZnsitv

Formulation: node-branch or nodal? ValueI
" What Solver for Newton step: sparse LU or GCR?

Converence of Newton GCR
Matrix-free idea

+ Continuation? .
Jacobian alterinig scheme (ftbr singular Jacobians)
Jacobian altering with update improvement

- Arc-Length Continuation (for multiple solutions)

IMAGE EXAMPLE
Simple Smoother

-e Circuit Diagram

So thed .Input

RI I.: Fidelity Resistor

... Voltage is output If R is small - ,,,, : ,,,

pixel ale Re: Coupling (Smoothing) Resistor
RF If R is small t K, V

Rr
• "We can make

+ Input Pixel Value images sharp or
SVoltage smooth bv

changing Rc



I InpLut mage
g(v)

det

smooth windows &
building details

Nonlinear Smoother
v Circuit Diagram

-Y-----
edge
ection

000



Constitutive Equation

1+ e- -(-

Current ,

Voltage

o Varying Beta

CLV

Current a
Ssmnall 

[i

Voltage



For nonlinear resistors:
5 non-zero entries per row
Diagonally dominant
Symmetric positive definite

V 1

V 2

VM L=b
Mx=b

FORMULATION - NODE-BRANCH OR NODAL?
The nodal matrix is smaller and diagonally dominant in the linear case. It is also very
sparse: 5 non-zeros per row.

Same structure as linear
Diagonally dominant?

kN-

Ak+1Av
k+1

Av2
- 5 nonzero entries per row

JF Xk+ 1 =

-F2(Vk)

-FM(Vk)

F(xk)



et '

l + e-3(yo,,

' I +e lyror
2c 3 v2 e

I 1+ e-_(y- , 2)]2
v small

licar

And do we REALLY need to assemble the Jacobian?

Matrix-free Idea
Consider Applying GCR to the Newton Iterate Equation

, (,,.)+- =_,,k)
At each iteration GCR forms a matrix-vector product

It is possible to use Newton-GCR without Jacobians!!
Need to select a good 

Linear Case

* sparse

* strictly
diagonally
dolinllant

NEWTON SOLVER - SPARSE LU ORi GCR?

Nonlinear Case

* sparsity same as
linear

* strict diau. dorm

only if A 's are
smnall

LU GCR
Computation Time (1' O(nq)l

q = # GCR steps
Memory

0(n)
Just store vectors

Mp

How accurately should 16 digits - Can stop
we solve the system? no choice after I di it!
Jacobian needed? YES NO

Basic Aluorithm
+ Nested Iteration

S Initial Guess.k = 0
Repeal ;

Compule F(Xk ). ()
Solve ( Using GCR )

.1/ (.,t, = - (,a )for Av
kA l k ,I- = , + AV

UI ntil iA 1., F( k') sm.allenouIgh

I low Accurately Should We Solve kwith G(CR'

i
' step of GCR

r. -- [J/.] r =/F(x + J)

CvCIF -a+ .Av

-F

-AV- /f(x + A )- f(x)

S( .). - _ r(x + A)- /-F(,)

AV small

choose Av = cr esmall

JF (,k,
.i 

- F(. 
k 
+ V') F(., A

* Basic Algorithm - Nested Iteration
r = Initial Guess, k= 0
Repeat I

Repeat f

IHlow to choose c?

If too large, not a good
approximation

If too small.

F (Ik + 61" F) ,-k
numerical problems/
machine precision

Calculate Jr.- ' F' [ + i')- F(,)

M -Orthonormalize that vector

Update solution and residual r'

l Until I,
"
. small

xk-
[ 
= 

k 
+NY

k + l

k =k+l

L'ntil I+', ' (,.ij.) smalleniii

_j I (, 1_, 2 '

-f



Convergence of Newton-GCR
+ Basic Algorithm Solve Accuracy Required

After I steps of GCR

II

a ) x. i < (Inverse is bounded)
b) IJ (.v) J.(y)_ A I (Derivat\'eisLipschitz Cont.)

S t, Ci ) (Mor accuratc Ltar co rgulence))

Then
The Newton-lterative Method Converges Quadratically

Count the number ot iterations

/F(x.
V 

) F(.r tcp'l)

Number of digits doubles with every Newton step (quadratic convergence)

1 2 4 8 16

Numnber of digits linear convergence

I \ 2 3 4 5

3 steps G(JCR - it I V

Accuracy: 8 digits
Quadratic

Linear

Just make sure
S C |I F(x) 

2

I. Need more accuracy near solution
2. But can use as initial guess oftGCR the previous New ton

iterate which is very close to the solution!

How accurately should we solve GCR?
First idea: so accurate that it does not interfere with the
quadratic convergence of the Newton.

For sure we don't want to solve it more accurately than I[ r'
because this is an approximation, but maybe we can do even
less...

4 x (3 x 8) x 2- 192
Nc\tlm GCR oval

8 x 3 x 2-48
N\wton (ACR cval



THEOREM PRACTICALLY

Use as many GCR as needed tor Stap GCR when residual is down by
q uadratic convergence one order 'i magnilude
i.e. r , ! so that only might need more Newton steps)
need a few Newton steps What we really want to count is

not the number of New ton steps
but rather the total number of
system ealuations (2 per each
GCR)

Newton Ouadratic Newton Linear

I 2 4 8 16 32 digits

GCR 3 steps per digit
2 caluations per GCR step

e.g. want 8 digits:
4Nt-.np, x (3 x 8)icR ,es~ x 2vl ,

S192 evaluations

i*xk+~ ,3 iF , )2 r P 1 )k.j
Ulsing the bound on the iterative solver errorF k+ k + k )2
Combining Terms

Fr) <!C ++ F

Easily Bounded

Sk,l k k (X k .U

b I x
i Gershgorin & Chebyshev3 - I

1 4 -

-1 4 -1-
-1 4

I 2 3 4 5 6 digits

GCR 3 steps per digit

2 evaluations per GCR step

c.g. want 8 digits:

8emo X stXeps X 3jc steu, X 2,,

-48 evaluations

e.g. want 16 digits: c.g. want 16 digits:

5N-M-1n ,1eP, X (3x xl6)(.( sep, x 2_1as l6N,_, an I p, x 3 ai( K-1, x 2,_1

- 480 evalutations 96 evaluations

Proof:
By definition of lthe Newton-lterative Method

Xk+ = ik F (,k ) (F(,k)+.k./ )

Approximnate Newton Direction

tMultidimensional Mean Value Lenmmai

iF(x)-F(.) -Jl.(i)(x-. - -'! 2

Comibining

F(Yk'' )- F(YA )- F (r ,k) rt ) '(k Y ( k )±)] 2

Using the triangle inequality

Ithe Ja (i k J n Bud k +

Using the Jacobian Bound

1 5 -1

-1 5



For linear case

Im {2}

9 ReX

1r - I 9 l 2,I<kni
n  nlax _ < 9 4

about one digit every 3 iterations:
For nonlinear case: about 0. 1%0/ error after 3 iterations

Could be bad.
Could be singular.
Need continuation scheme that fixes it.

DAMPING?

CONTINUATION?

Basic Concepts
Solve P(x(;).)= 0 where:

a.) i (.x(0).0)=0 iseasytosolve Starts the continuation

h.) FP(().l) F(.) Endsthe continuation

c) r(;) issufficientlv smooth Ilard toensure!

x(2)

* Initial Guess for each Step
Convergence of Newton-GCR
Basic Algorithm Nested Iteration

Initial (iucSs I:rror

0 ,2 2±32 1

+ Template Algorithm
Solve (.x(0),0), x(;p,.,)= x()
a = 0.01, X OX5)
While X<l {

Try to Solve F(.r(),?.)= 0 with Newton
If Newton Converged

(X, .)= (X), ),+ , o = 28X

Else

ix .X=,, Xr,. + X

p Practical Answer
Look for another continuation scheme

FP(x(2),;)= 2F(x(a))+ (I - A)x(a)

Observations:
1,=o P(0(o),o)= x()=

f(x(0) 0,0) Problem iseasy tosolveand

isv Jacobian oerinitely nonsingul
?,= 1 P(x(1),I)= F(.(-))

if(x(l),) _F(x(l)) Back to the original problem

Ci ex and original Jacobian

o Source/Load Stepping Examples

i (v(),0) i...,v)v ( , ) =0

iode + - Not A dependent!
cv ej, R

lar

............... j
1



k; is;. {.,. (-x, ')+  = o
v, Ibt(x )+1 0

Source"Load SLepping Does Not Alter . lacobial

F(v)= id '

R R - Newton or Damped
Newton

v(0.2)

0 0.2 0.4 0.5 0.6 0.8 1



Arc-Length Continuation (for multiple solutions)
+ Still can have problems

x(A)

v Arc-length steps?

Monotonically Increasing Curve

Must switch back to
increasing lambda

Arc-length
steps

Must switch fiom
increasing to

decreasing lambda

Avoid snaking curves

I A
lambda steps

0

k1=



o Pictorially

x(2)

Arc-length

steps

Must Solve For Lambda
F(.-.X)= 0

Ssinmgular
PI?

See literature on probability one homotopy methods

- (Detect if close to singular)
in this case change arc lerngth and hope to jump across the

singularity
(or start decreasing bhut keep moving A-k in the same direction as
previous step) etc...

- Better idea: Look for another continuation method

o By Newton

)l & , k+ 1_ k

k-xpre 2 1 -Ape +1X 2

' Arc-length Turning point

Wihat happens here

0

F (xt)

2 , -x( ,,,,
Jacobian Altering Scheme (for singular Jacobians)

0 Practical Answer
Look lbr another continuation scheme

F (x( .15) (2))+ (I - )r()
Observations:
k.=o ((0).0)= -(0) o

FF(r(0 0) _ Problem is easy to solve and

dr Jacobian definitely nonsingular

ciS(x(1).) i (x()) Back to theoriginal problem

Cx v and original .lacobian

2-2 (A' - ,.,)
it .,. )

I



Examples

Dide + , (v)+ (1 - X)v = 0

Try (, X)= .F(v,.) + (1 - ),'= X2)++ (1- ),'
R R

,.5 . 0.75

x() (x, y)+ h,L +- (1 - 2)x = 0

F( ) , >x (x, y)+ 1 L + ( -)y= 0

, f(x) I ) .' l

F(x(),) -= 
x = 0
[y=0

f

0 0.25 0.5 0.75 1

Jacobian Altering with Update Improvement
- Basic Algorithm

Solve P(x(0),0), x( ,,, )= (0)

While.< I

Try to Solve F(x(X),),)= 0 wilh Newton
If Newton Converged

x .= x(k)., k +8 6. = 2N.
Else

8= x .,, =pe, +62 ll

, *(x,.,,)+ f,:.(--oo [. (,,:'+/,:



Graphically

xQh)

Xi i + &

Update Improvement

(x, ) = kF(x)+(1 )x

6F

Set 6F = 0 Ilave From Iasit la\Ce I roi

Lstep' Nei on as stcpih

New\Iofl

The J.lacobian I used to solve the
lasI Nc t(lon probcnl

Solvefor x: Sx F r, - p'

> Initial guess for next Newton:

xo(k)= X(pr,)+6X

xv

e.g. ( )03+ +4 g

g()=
!+e



INTRODUCTION TO NUMERICAL SIMULATION

LECTURE 14.

Methods for Ordinary Differential Equations

TODAY'S OUTLINE:
o Initial Value Problem Examples

- Signal Propagation (circuits with capacitors)
- Space Frame Dynamics (struts and masses)

Chemical Reaction Dynamics
o Eigenvalue Analysis for Dynamical Systems
o Investigate the Simple Finite-Difference Methods

Forward-Euler, Backward-Euler, Trapezoidal Rule
- Examine Properties Experimentally

APPLICATION PROBLEMS
Signal Transmission in an Integrated Circuit

Signal Wire

Capacitor
qoc v

Charge is
proportional to

voltage

. Circuit Model

resistor

q = Cv dfferentate dq = C dv
c

ene t dt

capacitor

Logic
Gate

Uroun t'lane
Wire and ground plane form a capacitor

* Metal Wires carry signals from gate to gate.
* How long is the signal delayed?

- AL -

h wire
+++++ ++ ,

d

ground plane

aLw
Zv7v vg/Q Z

Constructing the Model
* Cut the wire into sections.
* Model wire resistance with resistors.
* Model wire-plane capacitance with capacitors.

Logic
Gate

Oscillations in a Space Frame

Wa i

S, What is the oscillation amplitude?

0

P1

(D

ICDCD



SSimplilfied Strucure

Constitutive Equations

Capacitor Point Mass

Example Simplified for Illustration
d 2xC d vc  =M dt

S --- -- In e dt)+ v -- nvmlvet

Bolts

Struts

( IO tl l(

f = EI - 1)
I 

ndependent of
indpendent ofr

L ;.ca

v Modeling with Struts, .oints, and Point Masses

Constructing the Model
* Replace Metal Beams with Struts.
* Replace cargo with point mass.

* How fast is product produced?
* Does it explode'?

Resistor

,

VR

Chemical Reaction Dynamics

lot%

-- i

"91~ w



Signal Transmission in an Integrated Circuit
S A2x2xanplc

S( Constitutive Conservation
S ' Equations Laws

i t C=R + JiR + R, = 0

IR= R iC' - R, - R, = 0

Nodal Equations Yields 2 \ 2 Systei

' I RI

(dt R, R, R,

Stamping Procedure for Nodal Formulation in Circuits
Canacitor dcl dv,.
q, q Cv ..= C1 . C -C
Sieniaar itd

prooional IO
\oilr 1' '

Conservation Laws: i iV i

C+ i + R, = 0i

i', +IR -i, 
=

0

Use Nodal Analysis (substitute branch equations)

C , + ( -" , ) 0
d I R, R,

dl, R , (
R + + ( -+,R)

[0  / /  , ,i,
i R R R -

Matrix G

Stamping for Capacitors is like Stamping for Resistors

ic iV iR,'i Vif?. Vi(

Try adding C*

d dv, I d (_[,(1)+ 1

c- - = L -R3 R (v (t) - vl (1))dt dt dt R3 R,
'(1 dv

C, + C C dt I=-R, R, R 1 (i)-C* C, + C dv- _I ,)
S d i R, R, R3

EIGENVALUE ANALYSIS FOR DYNAMICAL SYSTEMS
Signal Transmission in an Integrated Circuit

A 2x2 Example

Let CI = I Ri = R3 = 1(, R - I

v)(0)= 1n

v'(0)= 0
Fdi', 7

IV i,,iV iR

rd,,I dx - R,0 C j 7- + 
7  

d i I. -I. I j
11 lii;

V,

V0.. V..



I igcnvalues and Icigenectors

1 1 ] 0 -.1 I L
cigenvectors eigenalues

Aside: Eieenanalvsis

Change of Variables < El' = x

E, +-E- +-+Y E.N

Coluns ot E (cigenvectors) are new basis

e.g. [( ] E = 11 -

3(0)=? c L

.,, (0 ) + ...

(O)= I Y2I -(O)= E-'V(0)

Eigendecomposition: A= E E, .. E,,

Changeof variables: Ey()= x(i) y(t) = E (i)t)
dEY(I )

Substituting : " = AEy(t), Ey(O)= xodi

Multiply byE: '()= E iAEy(/)= . y(t

Decoupling: ~= ii) i()= .)

. E E, . E

I)ecoupled
Fiquations!

Steps for Solving d=() Ax(), x(0)= xo

1.) I)etermine E, ,

2.) Compute y(0)= E ixc

3.) Compute j(t)= '. )

4.) x()= E'(r)

Y'(O)
? is real

is rea

Consider an ODE: ( = A(t)) x(0) = .O
di



E 'x(O)

e "'

(4)= E , v (t= I + -i'1[ = ie v (o)+ J e 'vY (0)

'x, (t)= y ()+ y=, (t)

Xi x,(t) y() - Y (t

x2MtSignal Transmission in an Integrated Circuit
SA 2 x 2 Example

iiv 1' vi ',

A= E=

1 - 1.1 1

I ( II)= O 1 /y ()e'

(It

.,'2() : .l i 
' (o(0) "

SlOss

for larec times the
di lerence f 0 (last mode
disappears) they both
tollow the slow mode
xi(1) 1(1t W ( i)

0.8 vI(O) = 1

0.6

0.4

0-2 v,(l) =)

0 10 20
Notice two time scale behavior

* vl and v, come together quickly (fast eigenmode).
* vI and v 2decay to zero slowly (slow eigenmode).

tad

x(t) E

-1 0 -2.1

for small times y(t) is
very active (last
mode) andt tdecreases
rapidly (the difference
gets smaller)



Struts, Joints and Point Mass Example
+ A 2 x2 Lxample

(' Constitutive Conservation

Equations Laws

.VO=LI .VO~ ~=
iE.4),, :,

'I -i
fit 

o
i/i-

Define v as velocity (duodt) to yield a 2 x 2 System

Kid 2  
YLI i'r El

iM i + -)-- ' 1
t,, o , oi

Mt0 I , Yo

Let l = = 1

I i '

,1 1 tL (/t
i/i1

Lk I ""o

0:]

( I/ 0 o -

Fieniasalues and Eien\ ector

I - I1 i oil- I -1 1(/) c'1(0)= .1;(0 cost + isin I

i 0 -I j[ i Y.(r)= e "y ,(0)= .(0)(cost isintr)

igens ectorrs cioenValtucs

el COlnple ComXlex

Note the system has imaginary eigenvalues
* Persistent Oscillation
* Velocity, v, peaks when displacement, u, is zero.

Chemical Reaction Example
SA 2x2 Example

Amount of reactant - R, the temperature - T

dT More reactant causes the tempcrature to rise. higher
dt + temperaures increase heat dissipation causing

temperature to Ihll.

dR I ligher temperature raises reaction rates, increased
dt -R+4T reactant interferes A ith reaction and slows rate.

'L I 1 [4

Eigenvales and Eigenvectors

A 2 -]Lt  3 2 21]-

eigenvectors eigenvalues

v,(t)= e'y (0)

Y, () = e '" (0)

v(0)= 1

u(O) 0
V - l", - I/



Note the system has a positive cigenvalue
Solutions grow exponentially with time.

FINITE DIFFERENCE MET:'HOI)S

Basic Concepts

FIRST: discretize time

-x(t, )
dt

x x(t)

/
1 X (1

I I
i , I tj

(It) F.E.

At (tt,,) B.E.
d tit d

, [ (i , )) TRAP
\1 AS

X(t , )- .x(
At) (x(,,, )- x(
At

.(,,_ )- x(

At

- K[Ax

SECONn): Represent x(t) using values at t,

X 7

x L

+ Forward Euler
o Approximation

slope = x(t')
- ~ di

1 =_ X(t,)
Approximate Exact

SOlutioll Solution

THIRD: Approximate dt using the discrete

Example: dl (ti/ /r( )di A-I d

d Xx(t , ) -x(t11 )
x (

,)
= A x (

, 
)  

At
or

s x(t i) x(t,) + At Ax(ft)

slope - x(ti) x(11)
At

(tl fl+ I t

A = x(l,,)-(x(t,) + A Ax(t,))

.' -X

(I - tp

ii )

rI )

(i)+ A -(l,, )



o Algorithm

x(ti) )i = x(0)+ AtAx(0)

x(t2)z 2 = 
i + A t A i

x(tcj)__ =j
-I

+AtAL-1

o Algorithm

,,Solve with LU 0ir iterative methods x

x(1 )=.1= x(o)+AtA.0
S [I - AtA]I = x(0) AtA.;

x(,).. = [I + AtA '.l
* AtAi'

x(tL) L = [I + AtA] L

i t 2 ;I t

-' Backward Euler
0 App oximnation

dislope = x(t;l )

=I .,x(/ ) [x(t, ) AtAx( )]

slope -

A Atifi l t+1 t

J t V(1 ) = A X (
1141 At

or

x(1,) x( 1 ) + At Ax(t,,i)

o Trapezoidal Rule
d

(I slope d t, )
d  

d lope - x(,)

d
x t +

i
) + x ( t )  

di .
= (A/\'+ I )+ Ax(t ))

x(t+1) -. (ri)
At slope -

toA

t
.(r1  ) x(t/ )+ AtA(x(t/,+1 )+ .(t, ))

A (r(t, )- AtAx(i )) (.r(t, ) + ArAx(it, ))

o Algorithm

Solve with LU or iterative methods

.x(t ) - (= x(O)+ (Ax(0)+ A ) X

[I - A =[I + A ,)

x(t )-2 = [ -\ At'[ + A' Alt 2 2

r(t ) = 1- A[ A[+ AAJtL 'It I t.



Numerical Integration Viem

dx()= AxY(/)- .,t/+1)= x( )+ A-(T)d

SAx(t)d A'[Nr(tIj)+ Av(t1,)] Trap

AIAX(l,+ 1) BE

. AtAx(lt) FE

it, t

dt

(t,. )= x(t, ff(r)d

Forward Euler (F.E.)

d- x(,- , xt ,  !: Area At.f( t,

dt At

x(t,. ) x(t, )+ At .ft,

Underestimates exact result for growing curves At -

Backward Euler (B.E.)

dx x(t,.,)- x(, ) Area At.f

dt At

x(t,) -x(t, )+ At -f(,,
ti t l. ,

Overestimates exact result gaowi cuin ves At _.'

Trapezoidal Rule (T.R.) Area At[f t)+ f(t, 4]

dx dx,,l x(11 x(t f(t

x( x(t tf
S--At --

I+

V At -1



Growingf(t)

Decaying f(t)

FE
uses the
ltrw ard box

BE
uses the
backw ardt

TR

° Summary
Trap Rule, Forward-Euler, Backward-Euler

All are one-step methods

i is computed using only -
/ 

1. not i- 2, 3 etc.
Forward-Euler is simplest

No equation solution * explicit method
Boxcar approximation to integral

Backward-Euler is more expensive
Equation solution each step : implicit method

Trapezoidal Rule might be more accurate
Equation solution each step * implicit method
Trapezoidal approximation to integral

Properties - Numerical Experiments
o Unstable Reaction

At = 0.1

Backs ard- .
Iuler

I rap rule

Forward-Euler

0 0.5 I 1.5 2

FE and BE results have larger errors than Trap Rule, and the errors
grow with time.

box



-*.. .. Backward* Trap "
. Euler Rule

4).. 1

Forward o

Euler '

- 2 I "I " I1

All methods have errors which grow exponentially

i0 11) Timestep t' o

For FE and BE, error oc At For Trap, error oc (At) 2

+ Oscillating Strut and Mass

4,

At = 0.1 Irward-uter \

-2-

Backvard-Eul le

S 5 10 15 20 25 30
Why does FE result grow, BE result decay and the Trap rule preserves

oscillations?

o Two timescale RC Circuit

1
small At

o.8"
Backward-Euler

0.6 Computed Solution

0.4 , large At

0.2 - .

0 5 10 15 20 25

With Backward-Euler it is easy to use small timesteps for the fast
dynamics and then switch to large timesteps for the slow decay



11

0.5 ,

Forward-Euler Computed
-0.5 Solution

-1
0 5 10 15 20 25

The Forward-Euler is accurate for small timesteps. but goes
unstable when the timestep is enlarged

F.E. B.E. Trap
explicit implicit implicit

COST cheap expensive expensive
ACCURACY ok ok great
CONVERGENCE linear linear quadratic
OSCILLATION generates dissipates conserves
ADJUST At unstable ok ok

o Summary
o Convergence

* Did the computed solution approach the exact solution?
* Why did the trap rule approach faster than BE or FE?

o Energy Preservation
* Why did BE produce a decaying oscillation?
* Why did FE produce a growing oscillation?
* Why did trap rule maintain oscillation amplitude?

o Two timeconstant (stiff) problems
* Why did FE go unstable when the timestep increased'?



INTRODUCTION TO NUMERICAL SIMULATION

LECTURE 15.

Multistep Methods I

TODAY'S OUTLINE:
o Multistep Methods

- e.g. FE, BE, TR
- Convergence Definitions
- Local Truncation Error (LTE) and Global Error (GE)

Example: LTE and GE for F.E.
Minimizing LTE (consistency)
Minimizing the accumulation of errors (stability)

BASIC EQUATIONS

x(t) 2
xL

h
At timestep

General Notation

Nonlinear Differential Equation: x(t)= f(x(l), u(t))
dt

k-Step Multistep Approach:

Vt-2
-- t I

I-1 = f (x,u)

d
= f(x,u)

dt

tt I tt t+1
Forward Euler Backward Euler

I+l = + At (/lAt)

=1' +At .( W')

Trapezoidal Rule

Common Algorithms

Multistep Equation:

./ AIt 8,j..1f' ,,(,))
i i =

S \i i: .- i

tl-k t3 t-2 ti- t - Time discretization

CA3

Cn

O
tr
M
I

E:

CI
V1

(D
Cd

Cb
c)-

Oem
n

1+1 = + + At (lAt)

1', + At -f( +)

1+1 =:, +I L(A: ')+,f( ,+,')1

0k0;R = k filG-,( tpk

Ezxj'-- =A 1p, z(i A '-A(,k



x(t)

il I -

cLoX + ,-'- £,X,,sOJ7 J ,!([ '-'A

Forward 1 -1
Euler
Backward
Euler 1 -1
Trapezoidal
Rule 1 --1

1/-2x(t) x c_X(I) /-I
x

x

ti 1 1 Ii I

/ _ 1I-1

0 1

1 0

'/2 1/2

Forward Euler

.' -.- _ dx((l- 1)At) = )) (')
At dt

Backward Euler

' - " dx(IAt) s(s)

At dt

Trapezoidal Rule

At



Definitions and Observations

x(t) (t) 
O

(t
2

)

S-2 /+1 Solution is very smooth
X (described well by a

)^loower order polynomial)

/ X
x(t) No help fiom multistep

-2

x-,-

Multistep Equation
. k

f j. = At

i=0 .=0
I. If11 0 the multistcp method is implicit
2. A k-step multistep method uses k preious . 's and tl's
3. A normalization is needed, Ut I is collinlon
4. A k-step method has 2k I free coefltcients

I lotw does one pick good coefficients?

x(t)

- 2

/ .W -2

-= x(0)= x,
k = 1 Multistep Method

C,,. +cL ' = A 0 u,, +P,.")

Forward +At = I po = 0
Euler U =-1 P =1

When does x(t) grow?

? > 0 x(t)= x0e
What about F.E.?

= ( + AtX) /-

.i groisif (I+At ))>I

Simplified Problems for Analysis

Scalar ODE: d :()= Xv(), v(0)= v'o C
(t

Why such a simple Test Problem?
* Nonlinear Analysis has many unerealing subtleties
* Scalar is equivalent to vector for multistep methods

multistepd/) = Ax() discreti'alion ys(') A() -----
di

Let Ev(i)= x(i)

Decoupled

Equations

jIo
=iiO

k k

: A = Alit t 1.ui i- o

> Z ,," ' A' > ,,:, " '-,k k
Scalar Multistepformula: ai / = AlZPi,3i

Must consider ALL A e C

i-i



Reaction Equation Example

Is-

10
. 2

to

i0
-

I0
i° Timestep

CONVERGENCE ANALYSIS
Convereence Definition
Definition: A multistep method for solving initial value problems on [0,T7 is said to be

convergent if given any initial condition

max -v(Atj-> 0 as At -> 0

jY computed with At

A .

Vex

For FE and BE, error oc At For Trap, error oc (At)2

LOCAL TRUNCATION ERROR (LTE) AND GLOBAL ERROR (GE)

Convergence Analysis
- Two Conditions for Convergence

1. Local Condition: "One step" errors are small (consistency)
Typically verified using Taylor Series

2. Global Condition: The single step errors do not grow too quickly (stability)
All one-step (k = 1) methods are stable in this sense.
Ml -step (k> 1) methods require carefulu analysis

t  
-1+ At - t-I b>i = (1 + At -X)I-1

x(lAt)= x((l - )At) + At x((l - 1)At) + O(At2)

Forward Euler Global Error

E' = E'
-

' + At -E'-' +e'

E' - (1+ At. -)E'-' = et

eu wll -
2

act

Order-p Convergence
Definition: A multistep method for solving initial value problems on [0,T] is said to be

convergent if given any initial condition

max - v(At i C(At)P

for all At less than a given Ato
Forward- and Backward-Euler are order 1 convergent;
Trapezoidal Rule is order 2 convergent

Re(A)

Backward-Euler

Trap rnle *
1

,E-'

0** 4 Forward-Euler

Im(n)

NN

i-



5
.4 o

At
At

x(t) . Y ')
x.0- o

, At
Global Error Equation

k k
Multistep formula: / At -I = 0

/ 0 ./=I
Exact solution Amost k
satisfies Multistep Formula: 

- 
t )-At / t

Global Error: F v(t ) -
Diflerence equation relates LTE to Global error
(ao - At3 o, )E/ + (a - At4l )E' +. + (uc - At3 )E

I-
= e

x(f) for te [0, kAt]

x(t) a, + at + +,,a Io
t 

+

x(,) x(o) + (O)t + I.(0),2 +.2

i1 t  
d

vvt, P/b' - t - f,' = o
(t, - v(t, )- At .v(t,) = e

1/ t l + t

q' = v(o)+ at. f(v(o))
v,(t) v,(o)+ at f 1(v(o))

0 x(/At)
i



~I =f- ~brI-'l-l)(- e~l'

x(A

X( 0)

11 tri

Taylor Series Expansion

[(( ) v(tj Al)- (- v(1 ) - )
+5 , - I

( At,)' +k = eA

(u,) - Aijl(,, ;)
E ! + ((ul - 'AtI}, )E c'

x(t} x(2A/)

72
x(Ai~

-(2At) -X(Af) -/(x(. )) : c,
Pl ti l , exact -lunon it

Forward Eul.c

EXAMPLE: LTE AND GE FOR FORWARD-EULER

Convereence Analysis
+ One Step Methods

D)efinition: A one-step method for solving initial value problems on an interval
IO,Tj is said to be consistent if Ior any A and any initial condition

-A 0 as At -> 0
At

dv At d 2
v((l + 1)A) = v(lAt)+ At (/At)+ (At)+

dv At2 d'
(( )= t 2 dt/

rE [At,( + 1)a,]

Consistency tbr Forward Eulcr
Forward-Euler definition

1 _ p I _ [-I +.. = 0I [V (II + ])AI]
Substituting the exact v (wi and expanding

v((l + )At) - v(/A i)-A, ) (A) Att )

V= ,/N

d,
where e' is the LTE and is hounded by

S< C(A) , where C = 0.5 maxl
t2

x=x x(t)= e'
x(O) = I t(t)= e'



E' =

E =(1+ At,)E' + =(1 +At)e + e

E' = (1 + Ak) e' + (1 + at )e + e'

E e'

If El roughly ' , < C(AI)2

T 2 2 .. /
E C(Al)'

At

Global EIror EqUttion
FIrward-Euler definition

Using the LTE definition

v((I+ I)At)= v(IAt- ) ( ,,) h . (/A. ) + el
Subtracting yields global error equation

E+1 = (I + At,)I + c
Using magnitudes and the bound on e

'+' = 1 F atEI -t e' (i (Atl ,)E' -C(At)2

A helpful bound on difference equations
A lemma bounding dill'rence cquation solutions

If //'l]_
< 

(I + ,1 / +h, uo =00, V> 0

Then u /l t i

, < (1 + )(u)+ h = b

u (1 + )b + b

S (I +c) + (I +.)hb +

x(IAt)

One-Step Methods
. Hints for the Proof

To prove, first write tt as a power series and sum

ti= l-(l+c)

To finish, note (I + ) e (I + t:)/ < e

SI (I+ c) (I + ) -hlC e

I -(l+c) c c
it =0 b=l =0.1

u <b=l

u2< 1.1.1+1

u _1 U 6 51.1 + = 1..1.1(.lu4

iu
/  (I + c)'b + (1 + )'-lb +...+ b

- Back to Forward Euler Convergcnce Analysis
Applying the lemma and canceling terms

E1 l+Ai I Etpi CI(At)2

Finally noting that IAt < T,

max E < e
r
CAt



Convergence Analysis
n Ohservastions ahout the Ibrsard-Euler analysis

max E/ < eI  
7 At

* I:orward-Eulcr is order I convergent
* Bound grows exponentially with time interal
* C related to exact solution's sectond derinati\e

S.Exact and Forwsard-Euler (FF) Plots for Unstable Reactions

L xact and forward-Euler ( IT) plots for circuit.

VI I"
'W 0R R ,, 1

0.8

vlFE
0.6

10 /
Rexact -. --- RFE

6"
TecmpExact

2 ,--TFE -

0
0 0.5 1 1.5 2 2.5

Forward-Euler I-rrors appear to grow with time

•e Forward-Euler Errors for Solving Reaction Equation

1.2

0.8

r 0.6

S (.4
r

Rexact-RFEI -

Texact - TFE

0.5 I 1.5 2

Note error grows exponentially wvith time. as bound predicts

0 0.5 I 1.5 2 2.5 3 3.5 4
Forward-Euler Errors don't always grow with time

+ Forward-Euler (FE) errors for solving circuit equation.

0.03

(0 0.5 1 1.Time2 2.5 3 3

Error does not always grow exponentially with time!

.5 4

v iexact

v 2exact

vlexact -vlFE

% x ...2e ::act-2FF

"... . v~exact-v2F E

nrr 1



MINIMIZING LTE (CONSISTENCY)
Exactness Constraints

v(t)

At At A tlj = (k -. j)A

V(t)= v(,) ,= AtXv(t +h) e'( +h)
v(t + h)- v(t) Atv(t + h)

k k d
LocalTruncation Error: cAiv(

i )- AI d v(t_ )- e
1=odi=i -

dt
If v(t)= t d v(t)=pt

k k
Si((k- j)At)" - At p((k - j)A)- = e

> (A) A (1- j)" pp( i)p ... = eA

If iaj(k -j/)" - p(k - j)- 0 then e
k 

= 0 for v(t)= t'

As any smooth v(t) has a locally accurate Taylor series in A:

if yo,(k -j)"- YZp(k -j)-' = 0 for all p < Po
jTO j=o

Then oi' (t _ j) _
./=0 .=o

X (I)

t
(l-1)At /At

(t - v(ti Atkv(t = e

II I

J

/-3

v(t+h

S (,+h - t

A/

t t+h t



- + At 1 )= 0

1-1+0=0

Plots for the FE, Trap, and "Best" Explicit (BESTE)
o Local Truncation Error

1
I
d

X(t)= I
/At - ( -I)At+ At.1 =0

ElrrIr iS / l ) li 1 t Ctill Llll[

and [illear ['uIClion

L 10

10
6

ok
SExample - Exactness ('onstraint k = 2

A k

Exactness Constraints: Ica (k - j
' -  p

p(k - j
)  

= 0

For k 2, yields a 5 x 6 system ot'equations for Coefficients

p = 0 -1 1 1 0 0 0 -
U
. 0

,/,., Note
I=1 2 1 0 -1 o Note

p=2 4 I 0 -4 2 0 I 0 x
ti 

= 0

p=3 8 0 -12 -3 0 0 Always

p=4 16 I 0 -32 -4 0 0-LO - 0
Forward-Eulcr t- 1,, . 1. u -I. 0. [l 1 . I.) - 0.

FE satisfies p -0 and I hut not p 2 L[.'TI (I/t)

Backward-Euler ua,- I. ai -, Iu - 0 I,I , 1, 0 - .0 - 0,
Ill: satisfiesp - 0 andt p I but not p 2 * LI 1 C(At)

2

Trapezoidal Rule no= I, - = I, u- 0, 13,= 0.5 [. -0.5, [ - 0,
Trapezoidal satisfies p = 0,1, or bu not notp 3 LT - ('(At)

First introduce a normalization, for example u - I
SolVc Fior the 2-step method with lowest LTE

to - 1. aI- 0, u -1,, - 1/3, lt I -4/3, i,- 1 /3
Satislies all live exactness constraints ' LTE - C(At)

Solve for the 2-step explicit method with lowest LTEI
t l 1, is - 4, t, - -5, aj,, - 0, [0 , - 4, f I( -2
Satisfies all tive exactness constraints 0o I - C(At)

4

10
- 15

L

o Global Error

10
0

M d

10x

E
r 10,
r

O 10
-
6

r

10
10

4

10i
3  

10 2
Timestep

v(t)= v(t)

-tlod

step

10 ... 10
10-t II0

t [0,1]

Where's BFSTF?

10
3  

10-2 10
-
1 100

Timestep

d
dtV()= v(t) F
dt I

iest Lxplicit N1
has highest one

S Best
e



) 0

I I  o

ooo

ot0 0

0 1 2 3 4 1

d
a ()= Bcs() 1l Explicit Mcthod la:
X los esl one-step error )u
E 10 global error increases as

Beste - timestep decreases
r

r II

r FE

10 10 10 10 10

Timestep

For a "good" method
T

E' ak e' I c

E' < k/ maxle'

MINIMIZING TIHE ACCUMULATION OF ERRORS (STABILITY)
Difference Equation
Why did the "best" 2-step explicit method fail to converge'?

Multistep Method Difference Equation

(ao - Atf3 EI +(o, -Xatl3 )E'
-
l +- +(k -,Ak )l )E' = e

v(l t)-

We made the LTE so small, how come the Global error is so large?
c(0 = I P, = 0 ( r!, l)

E' =-(a, -,Ati1, )E' (c - At[i )E' - .- (t , -?Atp, )E' + e

E -( I +,Ji ) -(Cc , -(ut + -(CI, + 1 ) ( h
E''

E1
- +1  

0 E
1  L

Stability Definition
Multistep Method Difference Equation

(cO - 0Atlo )E/ + (al -kA PI )E- + + (a - kAi )E/-k  I
Definition: A multistep method is stable if as At - 0

max E C(T) max e

0. ineral AtF 0.
F A dependent L A

Stability means: Global error is bounded by a constant times the sum of the L.T.'.'s



Solving Difference Equations
+ Convolution

Consider a general k' order dillfference equatiton

ax
I 

+ al.-
/  

+- -+ak
x -k 

=

Which must have A initial conditions

X =x
o ,  = x , . x =

As is clear s' hen the equation is in update Ibn

.XI -- - a O + . .k+a v.
- k +

1 -l
1
)

It can be shown that the solution ol'a difference equation is simply a convolution
sum:

x can be related to it by x = h
/ 

iti
/ i-

" Calculating h

If a + - +... +a = 0 has distinct roots 12 ...

Then x' Z/ ,ihere h' )

To understand ho, hi is derived, first a simple case

Suppose = I + it and x = I

./ = c + I i 2 +i2 I + i2

" . time intdcx

lime index xpO ntiI

a Three Important Observations

If ]c, < I tor all i. then vi < Cm a
x 
t where C does not depend on /

If > i for any i. then there exists a bounded i
t

' such thait / c

If I | I tor all i, and if ci = I, i is distinct then i r
l

CI/ mx ii'

X 1-1 ±U
x = -1 +

X
1 

=T
0 

-+U

0

0x =0

X
2 

= I + it
2 

= ;III + 112
x + =9u+tC-q l2 +

X = /-I I +1 -22 +q31 33 +. .. L

Convolution Sum
, When roots are not distinct

4 Root multiplicity

tsq=l m=0 ,,Roots of tj
z

k +(,I _k
- 1

+

I
X/ = Yhi-in

t

* =0

Bounding Terms

x r ,-( '

q=l m=0 k i=O

If i < , then R,I,,,i C rnax II
..i - Independent olf /

If ql <(l±+), then R 5 ,0  Ce max t

Lemnta: bounIds distinct roots

Stability Theorem
Theorem: A multistep method is stable if'and only it
Roots ofruta

k  
U1Z

k
i + ... 1k = 0 either:

I. Have magnitude less than one
2. Have magnitude equal to one and are distinct
Note: ornom the previous slides it is easy to see that a muhistep miethod is stable if the same
conditions hold for:

(nt i lo- In ..) - At i +(a -t3 )tI l )- 0
But the theoremn says: forget about the P's...



"Proor"
Given the Multstep Method l)ifference Equation
(co -kAro30 )E' + (u, - -A13 i )

E /  
+-.. +(uc - 21 k )E = e

If, as At - 0. rootsof (co0 - kAtpfr )z/ + +(a -<Alp )= 0() less than one in magnitude or
D are distinct and hounded by I - At, K-0

Then from the aside on difference equations

max < C max C < tax e

S Picture

As At - I0, roots move
inwrard to match a
polynomnial

BESTE Method
Best explicit 2-step method

= - 1, tl - 4, az= 5, (o= 0, [ = 4, [1= 2

roots of z + 4z -5 = 0

Method is Wildly unstable!

Dahlquist's First Stability Barrier
I-or a stable, explicit k-steps method, the maximum degree of a polynomial t" that can beintegrated exactly is less than or equal to k: p/, < k(note there are 2k coefficients).
For a stable, implicit k-steps method, (with 2k - I coef)

po < k + 2 ifk is even
po < k + I iflk is odd

STABLE: EXPLICIT
k I step p, I (FE)
k = 2 steps po 2
k= 3 steps p, < 3

roots of (a, AA, )c Z 0 for a nonzero At
iii

IMPLICIT
po 2 (TR)

Conditions for Convereence. Stability, and Consistency1. Local Condition: One step errors are small (consistency)
Exactness Constraints up to po (p must he > 0)

Smax el <CI (At)
P
''
1+ 

for At <Ato

2. Global Condition: One step errors grow slowly (stability)



INTRODUCTION TO NUMERICAL SIMULATION

LECT.RE 16.

Multistep Methods 11: Small and Large Time-Steps Stability

TODAY'S OUTLINE:
+ SMAI.L Tinestep Issues for Multistep Methods

- Stability
* Difterence Equations

Stability & Consistency implies Convergence
o IARGE Timnestep Issues

- Absolute Stability lor two time-scale examples.
Oscillators

Exact
X

STABILITY FOR SMALL TIMENL TEPS

Difference Equation
Why did the "best" two-step explicit method fail to converge?

Multistep Method Difference Equation:

(o -XAt3 0 )E' +(uc0 -kXA31)E' +.---+(ck - kXA )E/- =e

Global TE

We made the LTE so small, how come the Global error is so large?c

Stability Definition
Multistep Method Difference Equation

(ao ti -A3)E +(l - .AI )El +. + ( -_l )El = el

Definition: A multistep method is stable if as it - 0

max E< C(T) max
it

T .ta, At t s 7"' tinterval en e .
dependent t

Stability means: Global Error is bounded by a constant times the sum of the LTE's

Solving Difference Equations
• Convolution

Consider a general k"' order diflcrence equation

agxl + -al xl- +... + akl-k =I /

Which must have k initial conditions

x
0 

= x, X
- 1 

- X1, --. x = Xk
as is clear when the equation is in update torm

x =- (aiX +---+a.x
-  

-t)

it can be shown that the solution of a difference equation is simply a convolution

sum:

x can be related to a by xs = hi
- 
Ju

~i (

t 0

v(A)- v((1- l)A/)- AtX(Ai )= e

(1- At ) E' E - = e

El I E" I el

E - A 1 - Atk e

E -E+ - e e +2  
- At I - At I - AtJ 1 - Ate

E = et +( e +---+ e

AzXJ <Fl-t) 6 ± e
S 1 

El=
;=1 1 - AIX

O

OICj0I

©b

)e'\I - AtX)



SCalculating h

If g +al- ++ = 0 hasdistinct roots q .2...

Then V = h' wh cre hit= h Z Y

To understand how I is derived, tirst a simple case

Suppose 7/= s-1 + iY and x .= 0

x I= + I 2 = I t? +...

x = / Ir L i tes
/=0 \ index

time exponent

index

- Three Important Observations

If < I for all i, then x/ C max i' where C does not depend on i

If /ci > 1 for all i. then there exists a bounded u 7 such that x. -, c

If i, 1 for all i, and i = 1. is distinct then x /< Cl max i
.

XI a -, + 

x = 0

X 11

X =k + Ui =hu + I

2 = 
1 

+ /2 = 232 + hI + 12

X I it
i=0

C lonvolution Sum

o When roots are not distinct

/Root Multiplicity

Q ,I x/ = Zh-1
hl I Y,.,,, .)"' (q Y

q=l i=0

Roots of i ar-

o Bounding Terms

= Z Y YiZ q,,o'-.,)'(Y iq
q=l 111=0 [./=0

If ;i <I .then Rq,,, < Cmax i

Independent of I/

If q <( + ), then R1  <C, max i

Lemma: bounds distinct roots

Stability Theorem
Theorem: A multistep method is stable if and only if
Rootsof rto

0
z + ozr

' -
i ++u = 0 either:

* Have magnitude less than one
* Have magnitude equal to one and are distinct

Note: from the previous slides it is easy to see that a multistep method is stable if the
same conditions hold for:

(o - kAia,,)zA + (, - kA"i,)zk-' v ±+ /v - ,7l ): 0
But the theorem says: forget about the betas...

• "Prooft
Given the Multistep Method Difference Lquation

( 0o - Atpo0 )E' + (a - kAt h )E- + -- +(ak - Alpk )E'-k =

If, as At - 0, roots of (o - kA/,P)' + ... + ( LAA/ P) = 0

o Less than one in magnitude or
o Are distinct and bounded by I + KAt, K > 0

Then from the aside on difference equations

m < Cc' TmaxE
l  

max Ce' " - -T max e
E. A 0, T] T Al ler0



Picture BESTE Method
Best explicit 2-step method

AsA/ - 0, ao=1, =4 a =-5 P. =0, P=4, 3-2
roots move
inward to roots of z: + 4: - 5 = 0
match ta

.roots of a = polynomial

- - Re
-1 1

+

roots of , ( At( i ' = 0 for a nonzero At Method is Wildly unstablc!

- + I - Dahlquist's First Stability Barrier/ F:or a stable, explicit k-steps method. the maximum degree of a polynomial ' tat can bc
integrated exactly is less than or equal to k: po < k (note there are 2k coeficients).

1c x+1 _ x/ / i + 1 / For a stable, implicit k-steps method, (with 2k+ I coell

x 2x -x +1 x = 2x +1 pok 2ifkis even
p,, <_ k - 1 if'k is odd

I 0 STABLE: EXPLICIT: IMPLICIT:
k
= 
1 step p I< I (FE) p < 2 (FR)

S
1 
I= ] k = 2 steps po 2 po <4

32 k=3 steps po < 3 po < 4

X =3
Conditions for Convergence, Stability, and Consistency

3 = Local Condition: One step errors are small (consistency)
/I = Exactness Constraints up to po (pA must be > 0)

4 
= 10 -> max E I < C (At)

p + 
for At < Ato

X = 1 5 Global Condition: One step errors grow slowly (stability)

roo i Inside the unit circle or

/ rootsf j on the unit circle and distinct

x I =l5 C i
or> ax E

! _
" max e



Convergence Result : max E' i CT(A,\i)
'

i o.

converging

exact

LARGE TIMES'TEP ISSUES FOR MULTISTEP' METHODS
Absolute Stability for two time-scale examples

. Backward-Euler

i. V i /VI'! I lV j VI ,

Small At

1Backward-Eule
S Comlputed Solution

2

+ Forward-Euler

0.5 .

0

Forward-Euler Compued

-1-
0 5 10 15 20 25

The Forward-Euler is accurate for small timesteps, but goes unstable when the
timestep is enlarged.

SIFE BE, and Trap on the scalar ODE problem

Scalar ODE : dv(t) ( sv(), v(0) =

Forward- Eulcr : =, + AtXi ( (I +A
If I + At, > I the solution grows even if ). < 0

Backward - Euler: '/+ = 0 + ti, . -

If I + 1 the solution decays even if X < 0

Trapezoidal Rule: 9 = ,+ t(l + l + ( )

v(t)= ) Rt))> 0, Re( )>0

Re()< 0

VVVV

Circuit Example

di
igA) = -2.1, -0.1

, Large At

u0
0 5 10 15 20 25

With Backward-Fuler it is easy to use small timesteps for the fast dynamics and
then switch to large timestcps flo the slo decay.

'



Formarld-Eulcr large imnestcp region ol absolute stabililty

Forward Euler: z = (I + At X)Il(zt

Difference
q Eqni

StabiitN
region

Circuit Example
SAt - 0.1

k = -2. I -I0.1

1i oz)

Difference
Eqi

Stabilitv+
region

SAr= 1.0

;.= 2.1, 0. IODE stability Im()
region

R on of\
Absolute

R -2 Stbilit R(
At

ODE stability

region

ReI/
R -2 Region of R

t Absolut
Stabit

S Diffetence

region

At small

(1f

ODE stability Io(,)

region

ASOBt e

tI arge



0 Backward-Euler large timestep region of absolute stability

Backward Euler: z = (1 + At )-' I

(z) ODE stabilitA
Region

o Circuit Example
SAtr=0.1,=-2.1-0.1

s -"afiit/ .5~

net'

m(,)

4n

• -" -

Ai I iA : wI jp'; y X ,"-, / Y

4-7

+ Stability Definitions
Region of Absolute Stability for a Multistep method:

k
Values of adt where roots of (.(a - XA/

i  
= 0 are inside the unit circle

i=0

A-Stable:
A method is A-stable if its region of absolute stability includes the entire left-
half of the complex plane

Dahlquist's Second Stability Barrier:
There are no A-stable multistep methods of convergence order greater than 2,
and the trap rule is the most accurate.

Oscillators

SAt= 1.0, X
=

-2.1, )-0.1

: (<::<::':: "::5,5 ? 6<;-

%~d~~i



° Numerical Experiments - oscillating strut and mass

At 0.1 Forwvard-Euli I er

- T'rap rle

-2

Backxward-'uler
-6'2'

0 5 10 15 2 25 30

Why does FE result grow, BE result decay and the Trap rule preserve oscillations
SFE Large Timestep Oscillator Example

fi Etreise. Eqs

ODE stabilitv
region

/ !oa
-Absohoe I1

0 Trap Large Timestep Oscillator Example

©tabitty pg

I bit

u;wl zeinoAhw-, ide : 3ii tad ity8/.

v Large Timestep Issues
o Two Time-Constant Stable Problem (Circuit)

* FE: stability, not accuracy, limited timestep size
* BE: was A-stable, any timestep could be used.
* Trap Rule most accurate A-stable m-step method

o Oscillator Problem
* Forward-Euler generated an unstable dilTerence equation regardless olF

timestep size.

° BE Large Timestep Oscillator Example

- ~



* Backward-Euler generated a stable (decaying) dillerence equation
regardless of timestep size.

* Trapezoidal rule mapped the imaginary axis to the unit circle, regardless of
timestep size:

* Decaying ODE are mapped to stable dillerence equations
* Unstable ODE are mapped to unstable difference equations
* Osciallating ODE are mapped to oscillating difference equations

SUMMARY
, Small Timcstcp Issues for Multistep Methods

o Local truncation error and exactness
o Difference equation stability
o Stability + consistency implies convergence

o Large Timestep issues
o Absolute stability for two time-scale examples
o Oscillators



INTRODUCTION TO NUMERICAL SIMUIILATION

LECTRE 17.
Methods for Computing Periodic Steady-State

TODA'S OUTLINE:
• Periodic Steady-State Problems

Application examples and simple cases
+ Review Full Time Integration Methodss
v Finite-Dillerence Methods Ibr Periodic Steady-State
° Shooting Methods

State Transition Function
Sensitivity Matrix
Matrix Free Approach

° Spectral Methods (Harmonic Balance)
Galcrkin Methods
Collocation Methods

PEIO IC STEAD)Y-STATE PIROBIEMLI
Basics

- Definition

= F x(t) + u(t)
dr

c Suppose the system has a periodic input

1 T T

Many systems eventually respond periodically

x( + T)= (r) lor >>0
Interesting Property

i = F ().()) x(0) -V,, = .(r) is unique

Assuming F is "'ice"

smlooth enough

" I'x satisfies a ditferential equation which has a unique solution lfor any initial
condition

dx(t)

c Then ifu is periodic with period Tand x (t - T) x() obr some iu
: x(t + T)= x(t) for all t > to

x(t+T) = x(t)

Cjn

CIt
(D

CD

Om-



+ Automobile Vibration
o Periodic Input

* Regularly Spaced
Road Bumps

o Response
* Car Shakes

o Desired nfto
. Shake amplitude

Application Examples
SSowaying Bridge

c Periodic Inputl
* Wind

o Response
* Oscillating Platbrmn

o Desired Intfo
. Oscillation Amplitude

o Cottmmunication Integrated Circuit
Periodic Input

* Received signal at 900M lz
c Response

* Filtered Demodulated Signal
o Desired Inlb

* Distortion

x(t) X 1(1)

to,

J~
Vto+ T

7i

-- VV 

I



e =COS(DI isinot

Re(e'')

= -jX,e"

x(t)= ke'" for linear systems

Simple Example I RLC Filter, Sprin+Mass+Dashpotj

x(r) = (jIol - A)-' be'"" = X,,,e'

A lightly damped system oscillates many times before settling to a steady-state

NI

Spring-Mass-)ashpot

Force

~ kvFor-ru ComputinE Steady-State

* Both described by second-order ODE

M d 2v + D-t + x = 1(t)dr dt
inputl

* u(t) = 0 lightly damped (D<'<M) response

x(t) Ke - 2 ' cos +
(vim

0 lAt t

B.E. formula
dr x(IAt)- x((I - )I)A)

dt l~.(l )

X. - ,

jmX,,e'"' =AX,e '"' + he'"" Vt

(j)ml- A)X,, =-

X,, ((jl - A) 'h

RLC Circuit



° Frequency Domain Approach
* Sinusoidally excited linear time-invariant system

d = Ax(t)+ bu(t) input u(t)= eJtl
'

dt

* Steady-state solution simple to determine

x(t) = (.fl -A) -I 
be'

i '

Not usefil for nonlinear or time-varying systems

Phaser Analysis
input e

'
u( - complex constant

= Ax + bu(l) J°
Jumping to periodic

Assume (l) e steady state

joiHei = AHe iw +bei,
Works well for linear problems

Brut Force
x()= O u(t)= sin t

Forwar i = x(0)+ At(Ax(0)+ u(0))

1 =.j' +At~A~I + u(At))
x(t) periodic steady state

REVIEW FULL TIME LNTEGRATION METHODS
Computing Steady State

t _ - = F( t)+ u(It) Solvefor using Newton
At

0a=l ae=-l lio=1

+ Time-Integrate Until Steady-State Achieved

dx(t) = F(x()) + u(t) >1 = il + At[F( )+ u(lst)]
dt Nee ints for

+ Need many timepoints for lightly damped case!

Solve with Backward-Euler
* Nonlinear System

dxQ) = F x) + u) x() =x

ta input Initial

Condition
+ Backward Euler Equation for timestep I

S - = At[F(Ri)+ u(lAt)]
How do we solve the backward-Euler Equation?

1t - At FX )+ u(IA) 1- 0

Newton
H(.t)= 1 I - At[F(. )+ u(lAt)]- Iteration

I
- A t  

]It 1 
- t'

,k+
] = - H (t'k )

axlc



x(t) x) L large

T t

Forward Euler i Backward Euler
, -- + --,,t, -,) x= --, +A/ ,-"(+L , ,( L)

Requires just function evaluations onear equation
solution at each step

Stepwise Nonlinear equation solution needed whenever P3, t 0
+ Multi-Step Methods

d
Nonlinear Differential Equation: x(t) f(x(t),u())

(it
k k

k - Step Multistep Approach: La = At "/ i

Solution at discrete points

.i .(o) + At[F(x(o))+ (0o)]

/ =.' [F . )+ ti(A)] IF.E.

- A xi(')+ ulIA/)] = 0

I I i + -

- k  t/ 3t/- 2 1-1 ti
° Solution with Newton

S 
l/i -I

_ ' ' I At u(lAt)= (

A = -H -

Implicit Methods
+ Backward-Euler Example

lorward - Euler Baickward - Euler

,(t,)n = x(.)+ f(.(o),,(0)) .x(t ) i - A (o)+ At .,(It )

*- Time discretization

Jacohin

Rewrite the multistep equation

0o
1 

- A, (io ,u(t, ))+ -c i - At3 . -f(i ,( t ) i- i 0
i=1 i=l

i,
Independent of 2

Solve with Newton

unI- Atof, Ic Iu. i,/ ) [x uci At .f ,,) u(t, +

Here i is the Newton iteration index

Newton Iteration: uOl-e -Al- A (A' k._)ll) -F i0



f F(xs)=
Ne ton

I;F(.x) +( -. ).-()= O

F(x)= A' i lf (Al(.,(l,( ))+ h

i/

Solution with Newton is vcrv etlicicnt

(on ctrgd Easy to generate a good initial

/ /lut guess using polynomial fitting
.......... . Jacobian becomes very diagonally

, s , t Polynom ial dominant for small timesteps
Predicto sy to actor

S A// as At -4 0 * or easy to solve iterativcl,

I=0 xo
= x( = O)

/ 4--I+1

REPEAT (Multistep Integration Loop: time)

-U .. i OR F.E. .1I't - A (._'.,,(t,))

REPEAT (Newton Loop)

'li IAo ,u(i ', Ai -' -[cx, i~o.fi u(t ))+ b]

Solvefor &.
t
' ' with LU orGCR

until A '"' , i"'x -1 a t1,f(4 ' )+ bI small

I= + At

tuntil I >

LU or GCR?

In GCR: at each step need matrix vector product

o (t)--- X01,' - r . + , U ,,,(,, -s - ,,, )

GCR
MFA = CA,,P - At, /(, + & ))

e-j,0j



Usinga GCR for

At each step of GCR need matrix Vector product

titV A-rexidual

Fori small c

( small( t ' + ACV,(t,- '.,(tj

forsmall A = b
:
A

FINITE-DIFFERENCE METHODS FOR PERIODIC STEADY-STATE
Boundary-Value Problem

+ Basic Formulation

N Differential Equations: -i(t)= .s(())

N Periodicity Constraints : xi (T) xi(0)

T -= I Isc

Total numberol time steps = 10' steps
0. nsec

Each step solve Newton (very last e.g. 5 iterations)

Each Newton iteration solve system (c.g.. N= 1000, sparse O(N)

500 
u,0Fsay 

1O.000 FLOPS)

say 1 GFLOP/sec t  
50,OOOF S =50 .Se

st tI x 10 t LOPS pr . ..C p

50p secx 10 50,000sec - 14h i day!!!

= F(x(i))+ u(t)
(- - x

t+T

o Finite Difference Methods
o Linear Example Problem

t (t)= Ax(,)+ u(t) [O0, T] x(T)= x(t)
(it

input periodicity

constraint
Discretize e.g. with Backward-Euler

A= .,(o)+At A. (aI + (At))

- = +At-.(A + ,(2A,)) At =T

.' = i +(A.ft' +,u(LA))

Periodicity implies 1, fo

I:)- 

v



< x L - >I -I A I. 0 I 1 Ij -

-I I - AtA 0 0 .2 tu(2At)

V L 0 -I I-AA . 0 = A/ (3AI)

0 0 ... I -AtA_ u(LAIt)

Matrix is almost lower triangular

ft = . .

Problem: Heat Conducting Bar ,N- 1000
II 1 I II II I I 1 1 1 I I I I I I I II I I I I I

XI X X100

T T T I I

S= i' + AI(A-' + i((A,))

(I AIA)-' ' = Ai(At)

S
= + AtA

2 
+(2At))

= + I(At +u(At) )

=.i + At A" + u(2A))

S-

-I AtA I

I - AtA

i 00

1 2 on"

iiL5 0L
5'ii

Back\ ard Euler

t' (2At)

- A/A R u(LAt)_

Forward Euler

I =At

location

along the bar

It is difficult to guess all these wavelforls

Problem: Huge matrix to solve with Nx L unknowns

o Nonlinear Problem

dx(t)= F(x(t))+ u(t) E [0, T] x(T)= x(t)
di

input periodicity

constraint

Discretize e.g. with Backward-Euler

I i I - _L _ 1 + u()A)

II L - _ - AtF )+ ,(2At)]

L Le t i -uI -At i F( 'L +s (LAt)
Solve the huge system using Newton's Method



B.E. at each step

easy to get initial guess

iI v

F.D. method

I -At
lr- ,

hard to get initial guess

II.

-1

!/~. bf'

Jacohian -i t . ) ,( r

L. .. Af[F(.-" )+ ,/ ( t]

Size N x L - 1,000 x 10 10.000

Sparse - 0(10,000) for each solve - 100.)000 FLOPS

Say 10 iterations - 10x 100,000 FLOPS = 10" FLOPS

10"

How many Newton operations?< At small - converges faster
Trade Off -but large matrix to solve

At large - converges sloswer
but smaller matrix to solve

Full Time DIomain Integration
(e.g. 10' Time Steps 5 Newton Iterations | N-1,000 Sparse

-* V1 day)

Finite Difference Method
(e.g. 10 Newton Iterations I L=10 Time Steps per Period

N= 1,000 | - I msec)

Problem: 1. Initial Condition
2. Need internal access to simulator equations

PF : _



SHOOTING METHODS

State Transition Function
o Basic Definitions

Start with d = F(x(t))+ u()
(t

And assume x(t) is unique given x(0).
The O.D.E. defines a State-Transition Function

(xf, to,0 )= x(t )
Where x(ti) is the O.D.E. solution at time ti when starting from state x,,, -. (/) at

time to

--V

Can pick any t,, in periodic steady state

F.). Method

il

dt
x(t) = Ae '

.r, = Ae'" - A= ', e . k,

° State Transition Function Example
dr(t) = 2(t)d(t)

ttot l= - ltro) x$l).t,/, =, .(

x(ti )= x, e
-
4,)

to( ti /

Your ODE Integrator
Your Friend's ODE

't o  10 1 Integrator x(f/I )
A Commercial ODE

Integrator

x(-",, to )- x((j ) The state transition funcition
is a good minodel for

4xf.,to J )-4 V( I,)= x,,,e )'f -,

x(t) = x,eM-t.,



where JH ()= 0() I.,
OXt

Note this is not so different to guess anymore:
it is just one distribution of temperatures.

Assunme wec are already in periodic steady state

Abstract Formulation
Solve v(t0 + T) =x,, for a t, o1f your choice

e.g.pickt1 =0 H(.o)=-ltcP(..,T) s, =0

Evaluate 1(.\ )

Inteurate .(t)= F(x(t))+s(t)

V(O) = .'

Over the interval [0. T]

s,, unknowsn

H(s,)= 0

REPEAT

o1 0 = -[(' .0. T)- .x'

UNTIL A',
' 

H(sx) small

Solve I(.v0 )= for xo using Newton's method

,,(.b X, ) -- H(, )

c x k =_[O x , T)- x ]
x ,<- xk + Ax'
kT+-k+l

UNTIL A4 44 1 T) 4 small

T 
Tft 

A" 7T)

Not Converged Not Converged Converged

"" "+ T 0, T) (T)
Sx (T) =x (T)

xI(I) rit1 ri)

k<-REPEAT0

REPEAT



" F(, + E)- F(x ,) Ar small

(A.,. T )/ (x, + v,0, T)- ( ,,.0, T)

x(t)

Computing Newton
In order to calculate Ht(.x)= (i(xo,0, 7')- s

Integrate = F(x(t))+ u(i) on [0.r]

But what is
(xo,0 .T)

7F)

O" (xoO,T) indicatcs the sensitivity

l ofsx(T) to changes in x,

0

If we choose= E=, = 0 we get the first column of (xo,0O,T)
OOx0

x , (T)-x, (T)

Firstcolumn of - .V (T)- x,(T)

x, (T)- x(T)

Y' (T)l Difference is

-2"d column

X(T) of

x(T) Difference is
I" colun

axxo x 5Reo
XO X, + El

I

This is not efficient we need to do a lot of integrations to get
the entire matrix (e.g. M = 1000 columns)

,-( )-.x,, (o ) / ,(T) -v,(T)

.(0) 4 (0) x T)x (T)



v,, (. O, T) (. ,O, T)- (x,,,O, T)= x. (T)- x(T)

First Colu n use LSC = k:c1

1- ( ,, T)
1  
:,, -4(s + :L .O,T)- I(x..O.T)= x:(T)- x(T)

Second Columlnn use L: = I;
,

(. o , J)] + c , - ( r e ,T) -_( ,,.T) = 2 (T) -xV( (I)

Sensitivity Matrix
+ Perturbation

x i _(T ) 

x (T)-x£ (T)

Is " (xo,O,T) DENSE or SPARSE?
ax

v(t) T
periodic T T T T

Try x =K Integrate over one period get

(x,0, T) = x(T)

7-(T) Try perturbing initial condition xo + El =

V(T) x' L0

Integrate over one period get

all nonzero
Not Efficient
Need N simulations
of one period (one So the matrix is DENSE.

for each column) x

x (T)-x I(T)

;' (T)-.x(T)

1-;.,\

For i= toN Integrate x = F(x)

x = xo, + (0)= x on [0, T]
Compute x(T)= (xo' ,O,T)

Column of

N Columns-* N Integrations



Is the sensitivity matrix dense or sparse?

1 I 1 1 1
I T T T

1 2
d ~- I

dt

i'Lis

- t] In general the
" ". sensitivity matrix

.-1 will be dense
-1 2 V,

A by perturbation

For i - 1 to N

Perturb x,0) cst)

Compute .rx (T

Etficient Sensitivity Evaluation
Difterentiate the first step of Backward -Euler8 --.Y(0)- A((0 ) ,(A/))=,0)

jx() a s() at ax(o)

-x aV(0) ay(O)
Applying the same trick on the P step

l- (x(0) 
= 
)Y(o)

Oqf(x,oT)
i=, :-" : -

B.E. i' -r()- At(F( )+ u(At))= 0

Aolv Newton - =K k I

X(t Ax (t) .x(t) e "x(O)
dt

d = (I - AtA)
-

dr(O)
d4 ) AT = A(/At)

d -e (

I - - At OF (1

= I - At O 1

1-1

(0)
O F ] -2
I iT

Ox ax0

In practice we solve / systems (each with size N)

+ Observations on Sensitivity Matrix
Newton at each timestep uses same matrices

D(x,O, T) - At

Tintestep

Newton

Jacobian

Formula simplilies in the linear case

a(x,0,T) = (/ - AIA)-.
a-



[ ,. T) p , t( +6 '.oT)- ,(,.T)]

XL
= A-i)+u(i) ((

) ) 
= Ax(t)

x(t) = ex(O) T= AI-

I.xr(0) [ ((0)+ Arv(O).O.T)- (v(O).O.T)

A' (0)+As]

[e A N"J,-(o)

[I - AA]'/ First Order Expansion (B.E.)

Matrix-Free Approach
+ Basic Setup

REPEAT

A - k0+

UNTIL X . T)--x, small

o Matrix-Vector Product
Solve Newton equation with Krylov-subspacc method

Matrix-Vector Product Computation

at , 0,( _) x +( , p J,T) ) ,0.T)

KrvIlov method searchl direction

Ap=[ I p ? p-
'" I P

Start with = F(x(t )+u(t)
dit

H1(x )= (xo 0 , T)- 0  0
Solve H(x,)= 0 for l,, using Newton's imethod

where .,11, ( = -A o U



Newton

Iteration

L2 ijv (5] /1s())

Use Krylov

I'Mtj +( (0))

Product

.) C(omputing P.S.S.

2.) Use Shooting

3.) Use Neswtosn

4.) Use Krylov to Solve Newtonl

.v(T)= .v(O)

(x(O),O, T) x(O)= 0

(( - I A. "(0) -(g( ,0. T)- t)
Ka j"+? ]l

- Convergence for GCR
Example

as. = 0 eig(A) real and negative

Shooting-Newton Jacobian
(,o. T I = e' I
• AT

eig(e - i) versus eig(A)

e 
T 

-1U'

Many Fast Modes cluster at -1I

Few Slow Modes larger than - I

Use Spectral Mapping Theorem

eig eA -1)

if A, iseigenvalueof A -> e
;
' -1 is eigenvalue of e

A T 
-

eXT - I

Fast Modes Slow Modes

tmodes
Iall fast modes are
in one cluster

Typically there are many fast modes (each strut)
and few slow modes (the whole frame)



F.D. represents one period using L points

Maybe we can use other ways to represent the shape

Periodic -+ use Fourier Coefficients

X(/) + + T +.X0 +AIE I +- T +

trcttcscx lutndtt cmantiiI'es-ucy T tundamental
H tam onic etc..

Works well (need few coefficients) if function smooth
harmonics

Let's solve for x1

SI'ECTRAL METHODS (HARIMONIC BALANCE)
Fourier Representation

+ Truncation Approximation
o Periodic Function - Fourier Series

Approximate a function witlh truncated cserics

x() Ye T

1=IL



. Square Wave Example

1 1 fV sin(ur/2) cos(2n )+ n cos(21rnt/T).2 =1 X ,o/2

N 0 N I N1 N:::-5

. 7N 9 N I 1 13

1997 by Alan V. Oppenheim & Alan S. Willsky
°e Annoyance for Real Funclions

o Real. -Fourier Coclicicnts complex contugate

A_/ = X,
0 :an rewrite series with fexer unkllowlnS

Xs() Xe c T +X

i=1 Real 10

f(t)g(t) = Jg( /(rt )dt

,'(t) = ,f(t).g(t)
r

2(r)' i2xx r
A(t)=...+Xe '+ +X, l+ e X +-.-

h,, Q,

y, = ',Q 

orthonormal vectors

Y,02 +-. + y,, ,,

Orthogonal
Projection

f{v , , ..... ,, } orthogonal vectors 0i

h = av, + v, +", + aV

a v Ortlogonal
1  1 ,' 1 - _ -2 P r o j e c t io n

Iiyl2 r

Compare 
2

x() ... +x +x 
e  

o + e +,e +.

h =...+U ,vi +u . _l +c o +(XII '+(1 + ...

/, + x(t)

v,,,+x,,

x(t)= X, e +Xe T+.

i 7 T 2X,= i e 1 , (,),, , '1
x l, fe 7 x(t)dt

T ,



+ OrLhogonality
Terms in Fourier Series are orthogonal

"/ 'i ' i27m I

Je r T I I I

c Simple formula fo computing coefficients

0 0(i)di J= T CXe dr =
T

d T", 0

* Advantagcs
c :or smooth finctions (infinitely cont. difi)

lim X .()dt= lir = 11

Automatically satisfies periodicity
( iX T L 7, t

si ( +T)= ,X ~ X . e 7 x(t)

i-I /-

Computing Coefficients

s= F( O())+t(l) x(/)

v() = .e \ "'

u nko\ns!kt

1(1)= /(x(I)) + 1(t)

It

o Simplify by differentiating representation

L i2 -i2 ' -i2 I
R(X,I) - X,e T Xl -u(I)

-L T-LResidual L

- Collocation & Galerkin
o Collocation: residual 0 at test points

R(X,I)=O 1=1 .... +2L1)
-

Residual

L k
T T
211 complex

x(t)= Xe T
I=-L
1--L

o Galerkin: residual rtho l to FourinerT'enns

i R(X,r)dt =0 m= L..,.L
I Residual

Collocationl
R,?:= 0 (Galerkin : R, v,,, =O m ...

Actually also collocation can be written as an
orthogonality condition with different vectors

7

R -
6 ( - t, )d

t = 
I

R . 0= i

R(X,t, ) = 0 1= 0.1,2... 2L + I fR(x,t)(t- t )di = R(x,t o ) 0
imlpt,t

t6(,-,,)= {f(,t
o Residual

c Plug representation in differential equation
(.2 / . / -i21 I

Residual-

hnpulsc
FuI nction

0 t ti

t )dt = I = t,

L /



Galerkin Methods
Computing Coefticients
o Linear Galerkin F(x)= Ax

T i j -L a/ -i2n

T i2mn i 2ni
Ii2nmX + fF Xe 'Jdt + 2, 7 (t)dt =

=-L 0
m {-L ....0..., L}

Solve the system using Newton

Ti2nmX+ ,;? - / jdt + Te Tu(t)dt = 0

--o7
i2nL

+A
T

i2x(L - I)A
T

iX,- ii J(
X U,

A' L 1) U (L I/2L.+ AJL Xz L UL

j27n(- L)x, + Ax_,T + TU_L 0

i2n (- (L- I))XL I+ Ax TI + TU (L =0

j2x(- (L - I))x,+Ax + , =

Collocation Methods
S Computing Coefficients

SC(ollocation residual enro at test times

i2/ / t/2 i2n/R(wt)=0=: ' ' n", -"(1,)
Rel .ual / L - .

I= 1,....2L+I

11

a , in r , jrtL

T .T

What is this?
DDFT Matrix

(Converts to time)

dx

-(tcL)
dit

F((( )) 1(; (I
F1x(tL il) U LO

+ Discrete Fourier Transform

2- I, i2n ri Xt x)
e Te -1 i 1(2+)

e 7' ... e T .

I)iscretc Fourier ransibrm (IDFT)

L -i2n7T
x(r) YX e

/=-L

If t; = T then DFTMatrix has orthogonal columns2L+1



v Spectral Dillerentiation Example

Collocation using l'imepoints

i2xL

i2n(L - 1)
DT T

(" ) -
F ( x ( t 

I))

i2 L 2(L , ) F(- , ))

1 5 9 13 17
Time Step Index

Coef of row 9 of the spectral differentiation matrix. T- 17 and 2L 1-1 7

Conerting timep oint into Fourier (oelfis.
Dillerentiatin. and thcn returning to time

i i

(, ) =u FT

d)
\I~' L )L

Backward Euler
dV
di

dr(

di
(iti

S. -(t, ) di

- lt )
17p,

"(12)

((0 , ))
u(, )



o Spectral Collocation versus F-D
Spectral Differentiation:

i2nL

DT L ' T) I .. ))

specurR Ii rialon

Backward Euler Differentiation:

I i - 2

_A./2 At F((z+)) L(t2
tAt 

A/ A

Backward Euler -

/dr t(r )rdi

di

1-I 0 1 - I (/1 )

x(1 ,)
F c(i7

I 11!l(i)I)

(It. . ( )- x(t) +x (,) x ,)
dt ,1



INTRODUCTION TO NUMERICAL SIMRILATION

LECTiRF. 18.

Finite Difference Methods for Boundary Value Problems

TODAY'S OUTLINE:
SInformal Finite Dillerence Methods

Heat Conducting Bar
+ Comparing FI1M and FD) in I-D
+ C(onvergence Analysis for Heat Equation

- Local Truncation Irror and Consistency
Global Error and Stability

+ Formal Generalization to any 'DE
Consistency + Stability yields Convergence

INFORMAl FINITE DIFFERENCE METHODS
+ Heat Conducting Bar

1. Cut the bar into short sections
2. Assign each cut a temperature

T, T, T, T\

Ton, oT( 

Control Volume1s

Incomi n Il eat (h)T -T
1 hs , = heat flow = Kh

Av

h IJ - hi I = -h ,Ax

lim - h, (x) Oh()_ I K T( x)
Ax 0 11 x Ox (7".

Normalized Equation

- = ,(x) f( ay 
2



Initial Value Problem (IVP)

approximate solution (I ). B1, Tr ap),

good
initial Mi ' csacl Solttion

conditioil %

Errors keep accumulating liom step to step forever.

Boundary Value Problem (BVP)
approxilmat FD sol utLaon fixed

fixed / - - boun
hond a - exact s-) io n cond

condition

tar)
ition

Convergence?

Initial Value Problem (IVP)

O.D.E. (rt)=f(x) x(O)= x

er exact ioeor

max I' v(-At) 0
I n 0. 1

Boundary Value Problem (BVP)

I =. (x)lirrors acctmlulate but they need to decrease back to zero on the
other side thanks to boundary conditions (B.C.)
( This i., prohabhv tl easvir problem! )

,I--- -.

, -- . t - -
rexact solutio -

errorerror error

° Numerical Solution

Subdivide interval (0,1) into n +1 equal subintervals: Ax = 1
n+l

O a 1 Xj Xn Xn+1
xj =jAx, it, ju- =u(x,) for0j /<n+l



At

t (xi, )- (Ilk
Ax

X, I i , I

For example..

Av
= zkv

-,, = / suggests...

A 21i+ ul1= f) loj<n

1A , 1U
0

D

LIIfi, - 2 +, -"=('
A2

(X2 -,2+ Dt 2,+,I'2 x

for AV small

I -2
2 - 1

_ - , - " 2 ", 4 .. = f (x .0 2
Ax

J---

V, X'i \

Initial Value Problem - Backward Euler

- I - At 4f1 + I] .4-- - test problem

solve dillerence equation

no end point to match

Boundary Value Problem Finite Difference Method

- j, + 2, -,? = A' f( I

solve difference equation
an end point to match

I .f(- )

2 ,, - /(- )0



Backkward Euler

I- -, ,+ , a , x + ,,- -i1 I (t, )5- 1AtA - 1  - At/t .= + 1(t, )
SI .A' '(t )

1l,, r Trianlariih iMiput

1 -1

-1 2 1 f( )

A 1 21 2 1 , J( ,, )

(Symmetric)

A E Wl." ifj '13"
Is A nonsingular?'
For any V, = ......

' A = , + (vt, -- , +I-,

Hence i, A >(), lor any 0 (A isSPD)
A = [ : i exists and is unique

1.) flow to visualize that A is non-singular.

I I /I I I I I I I I~I I z = o-(0)) = o Z T(I) =0

If I put in some current (-heat) into the network of resistors
(=bar) I get a unique set of voltages (-temperatures).

2.) Gershgorin Circle Theorem

Im (1)
- not useful in this case

We know

cI(A)> I0
Re)) not

S,(A) > 0

If I had some leakage .
Im ( kg

Re ()

for sure non-singular

Notei A)>0 VX k(A)O0 VX
Noteif

positive delinite non -singular

Check VTAv = sun of squares always positive unless: v 1 = v, Vi 0 v =O

v1, = 0



COMPARINc FEM AND FD IN I-D
" Residual Lquation

Partial Diflirential Equation Form

= 11(0)= 0 1(])- 0

Step 1: Choose Basis Functions to represent the solution

,,(.) Z ,(x)= o pi(A-)

Step 2: Generate equations for the basis tunctions weights setting residual
orthogonal to some test tlinctions

Ip,(x)R(x t=O R()= io ) +/.r)

O FEM Basis Weightsl
c Galerkin Scheme

Force the residual to be "orthogonal" to the basis functions

(pi (x)R(x)d = 0

Generates n equati lls itt i ilikllo\ ns

l Ip,(x) , x)d = 0 / (01....n.
0 dx

SI.inear Systein

o f dx f (p, f(x)dv

2 - 1

-1 2 - . F

-I 2

" Comparing --- FD & FEM (hat basis) ID problem

FEM
1-1

FEM

-1 2 LJ

-1 2 nLf,

2 -1

FD

F.D. F.E.M.

a .f(y ,) ,(- )(x)d

If/ A.) is constant:

IfP2(X)(X) d'

f(x)f

f(x,)f x

I , I A , (, )

' >

fip, ()f(x)r= 2 2.,. f(,)
same as F .D.

Ilf(x) is not constant the RHS is still an approximation

itp,() ()dix =2 Ar i(x )

F. E.M. 2- ( I 1 )

-1 2

Same as F.D. system for ID hat basis
However F.E.M. gives more flexibility (can choose other basis)



soluti

SF.M.

(I o

soluti

F.D. Iwo

0 ; "

CONVERGENCE ANALYSIS FOR HEAT EQUATION
° Local Truncation Error and Consistency

o Example

-u,, = (3 + x 
2' , 

x E (0,1) with
Take n= 5, A= ..

o

05 06 07
X

on vectro o Convergence?
1. Does the discrete solution u retain the qualitative properties of the

continuous solution u(x)?
2. Does the solution become more accurate when At -. 0?
3. Can we make iu( ) - i| for 0 _j< ii + 1 arbitrarily small?

fii for Ar = 0.2

io vector

t,(0)= u(1)= 0

a t it' forAx = 0.1

0 0 n

0 o 0

I(xi) exact

o Truncation Error

Forany v = C
4 

we can show that

v(xiJ)-2v(x,)+v(x) =V"(ri)-+&V124)(i + OAr) -1<0<1

Ax
2  

12
Take u = v. (- ," =)
u(x ,)-2u(x, )+,x, I)AT = x-- 2 X, +0&r 12

e', e(x, )= (x,) a,

iu(x )exact solution solves - "'= exact equation

ii, F.D. solution solves - + =f, F.D.equation

Local truncation error (LTE) tells me how well the exact solution
solves the F.D. equation.

[(X )- 
2

u(x )u(x i )] f. r,

How do we calculate the L.T.E. T,?

LTE
hopefully

small!!

0

fi I.

l 01 02 0 04



Use: Taylor Series

(.V,) u(x,)+ X1 (x( ,) +( ) ( )+ (

2 3! 4!

2u(.,) = 2 (.%,)

u{.v, v = (x, )- u, )+ u"(v I - IV" 4 1)+ 11)(V
3! 4!

)- )+ )= "( 12 )+ (

Hence ,"(.V,) + V V,

Substitute back and get r, L.T.E.

t"ilt,)- At: '(il~)
12

Since /I"- I

['. ' / , -

iApprosimation
cl-rol,

'mH (I?

" Global Error and Stability
S I)iscretization Irror Analysis- iError lIqulationl

Let e, = tu(x i )-t be the discretization error

,,(x,., )-,2u(x. )+u(-, I (-j+ T

ti i - 21^1 1

Subtracting

S, I - 2e +eiN

and e = j l n
and eo, = e,,+l = 0

What we really want is the global error

ei (.,)-,,

u(x, )- 2u(x )+u(,,,) Exact Solution

AV into F.D. Equation

ti -2i n+ f(x,) 1 .D. Solution

A
"  

solves F.D. Equation

Si - 2ei + e, Subtract and get a F.). Equation

A2 - for the Global Irror

e,, = u(.)- i =0 BC This .encratesa ,

linear system that call
be solved lbr

Ae=

Ax 
2 

i (4) + 0,AV)

12
C e 1 l4) (XN + A.vs)

o Properties of A

Let A = tl
* Non-negativity a, 0, for l ij <n

* Boundedne% 0 <_ a,, for 1 <i<n
i=l 8'

- 1



e=A IT

A I = ci arc arll positive... WHY?

How do \e i isutlize the inverse ofa matrix?
7, h,I It, 7*

Sh, ,

HIow do wie get column olf A 

Just pick an appropriate set of heat sources.

C I [o]

I t I I I t I I I

T(x) a a

(I \5

[A'

T(x T(x)

[A ' [A'
T(x

h
= 

1I

o Qualitative Properties of 0
f 0-> > 0

0= A-'f
If fi,=f(xJ)>O, for lij<n

Then 0 i =  o f, 0, for 1 <i<n

0 is just a linear combination of columns of A-'

The columns are all positive if the coefficients are positive
the combination is positive.

T(O) = 0 h T(1) = 0

iT, 1, 1 ,

Discrete Stability

i = A
-

f



l -, nax, [ = tmaxY (4 11 C ux x , miax, -<
(on el-cn e ce

Using the discretesabil ityeslinate on Ac =

ei t<

Ax-
maxu(x, )-u, x - mixu t( )

96
A- priori Error Estimate

At, - i

A 1e A 1" Local I1 5 u" -

runcation ht

A ix
A max = axA .,- = a , max row SUM

AV-1

We know A- has all posilive entries

What . should we pick to maximize A-lx l,

Can look at max column sum since A, A syvnmntric

4h, 0-,

T( = A 7)0

2 T,

1 -T 2 = 1 h,

2 1 ti2
-= A, columln Ar

0 of
T", 1 2

0j

Lossy

LTE same

lA smaller

Insulated

same

larger

2 1 1 2i 2

A=

1 2

A =n
+ 1

) 1 2 -1

-2
S - 1-1 2

A = a max Z, max row sUim

I



Maxillmulll sun of temperatures ill oCCur \len halt iS put into the
Celell el temellt

0 "

T, .-;

T- = 7 '
=2 1 + 22 +..". " (" +1) "

2 2 8

2 - I

1 2

A' 2

A =( ) <

-1 
2

bound on A

(1) 

1

2
d 
column 

of A

1 Central Column of A-I
4 Sum them up

h I

1
A X' )(



o Numerical Example

SSummary
For a simple model problem we can produce numerical approximations of
arbitrary accuracy.
An a-priori error estimate gives the asymptotic dependence of the
solution error on the discretization size \.

FORMAL GENERALIZATION TO ANY PDE

O Definitions
Considera linearellipticdifferential equation lf= f
anda differencescheme i = f'
e.g. Dilferent PDE

Lt= - + u(x)= f'(x) Helnholtz

sout io n i +ut =fi F.D. eq on F.D. solution t

" Consistency + Stability yields Convergence
o Consistency

The difference scheme is consistent with the differential equation if:
For all smooth functions v

(.- -t) 0, for j=l ... ,n when Ax -0.

v- -0, for j= 1,...,n whenA-+ 0.

(v- j') = (Ar") for allj p is order of accuracy

Consistency LTE -- 0 if AX -- 0

.u -'? = t Exact solution u into F.D. equation

u(xij)- 2(xj )+u(x +aux - f(x

Ar
2

In this case note Axu (x
j 12 -,[ • ]

As for Poisson Eq., p = 2

o Truncation Error

(.u- T) =t. for j= 1,...,n or, u- = r.
The truncation error results from inserting the exact solution into the
difference scheme.

Consistency :> IT- = (hA")

a Error Equation

OriginalScheme Li)=

Consistency u = f +

Theerror e= u - i satisfies e =

.fe= " e= a u-

u(x, i)- 2u(x, )+ (x l) Exact Solution

Ar
2  

"ai(x) fx i into F.D. Equation

- 2i , i- , t F.D. Solution i
Ar into F.D. Equation

ei - 2e +ei,
Ar + e = Subtract



o Stabililtv

Mvy|
Matrix Norm M I, = sup

The differencescheme is stable if < C (independent of Ar)

1 +* -I A <

1 +*2+* -1 -1 2+* 2
-l +*

M S = sup M = sup imnax Zmu /
-1 iii

= ax sup nt, max , (max row sum)

Con ergence

Error Equation e= if

Taking Norms ell = 1, <i , if < I e = C =C' CA '

No Leakage Poisson

r(Ix)

h=1

a Summary
Consistency + Stability Convergence

Convergence Stability Consistency

I.V.P. B.V.P.

Consistency L.T.E. = O(Ax') Consistency L.T.E. = O(Ax')

fp S>l p>
0

Stability Stability .- < c

jel K(AY)"
Global i
Error

We do not loose one order

Problem easier!

£
1

irti KuI
/;= C

-[Vi '

,1 = sign(,i; )



INTRODUCTION TO NUMERICAL SIMULATION

LECTURE 19.
Boundary Value Problems - Solving 3-D Finite-Difference Problems Engine Thermal Analysis

TODAY'S OUTLINE:
Finite Difference Matrices in I-D. 2-D, and 3-D

+ Gaussian Elimination Cost:
- Bandlimited GI

Sparse GE
• Krylov Method Cost

Counting iterations: Communication Lower Bound

FINITE DIFFERENCE MATRICES IN 1-D, 2-D, AND 3-D
• Structural Anal sis of Automobiles

o Equations
The Poisson Partial DilTerential Equation

FD Matrix Properties
o 2-D Discretized Problem

- Discretized Poisson

1 2 m

o Equations X
Force-displacement relationships for mechanical elements (beams, plates, m+l 2m
shells) and sum of forces= 0. M

- Partial Difltrential Equations ofConinuum Mechanics
+ )rag Force Analysis of Aircraft

u, 2u +ui u 2i+u
SAx Aj

N Equations Pa
- Navier-Stokes Partial Differential Equations.



1. Perfectly Matching Layer (PML) - matching
impedence

2. Absorbing Boundary Condition
3. Changing loss & PML properties gradually

# nonzero entries = O(5n) = O(5m )

2 
2
u a u

2D: 2 f(x) Ax = Av = 1

Um+
2

I
m

b=m

_\_N

- 11+1 + 4fii -l.i-? i, .... - f. .= . '"

10'0



a-u u.02U- 'j
Red - Black Ordering

versus "Natural" Ordering

I* 330 20 34o 30 350 40 360

370 50 380 60 390 70 400 80

04 410 100 420 110 430 120 440

450 130 460 140 479 150 480 16*

17 490 18 500 190 510 2(0* 520

530 210 540 220 550 23' 560 240

025 570 260 580 277 590 280 600

610 2-* 620 300 63* 310 640 32o

ax-y
a, 2 uycaxO>

+ - ,, -

o 3-D Discretized Problem
- Discretized Poisson

Red Black Ordering

X, , ,,

i,,x-2(t, + 6,, ,,-2A +z, U , +
-A 

2
- Av- A-'

2



FD 3D Domain Grid

3D: 2, _ =f(x)
8x- a ~ ?Z. 2 _

/2
iI

0-0,1

Ui 2*

n m

-Ui,+ +62.
i - ,, -i - . - .1f1 i

# nonzero entries = O(7n) = O(7m 3)

ID: b=l n =m
2D: b = m n = m

3D: b= m
2

n
=

m
3



- Matrix GAUSSIAN ELIMINATION COST
SBandlimited GE

o Dense GE
- Picture

Al A 12  A 13  A 14

0 A22  A23  A 2 4

0 0 A33  A 3 4

o0 0 A 4 4
o Summary

- Numerical Properties
Matrix is irreducibly diagonally dominant

Matrix is symmetric positive definite
Assuming uniform discretization, diagonal is

I-D ->2 , 2-D- -> , 3-D 6

- Structural Properties
Matrices in 3D are LARGE

l-D->mxm, 2-D---m xm
2
, 3-D--em xm

3
10

Ox 100x 100 grid in 3D = I million x 1 million matrix
Matrices are very sparse

Nonzeros per row l-D: 3, 2-D: 5, 3-D: 7
Matrices are banded

1-D Ai =-0 i-j>l=b
2-D Ai =0 i-.>m=b

3-D Ai =0 i-j>m =b

- Algorithm
For i= I to n - I (

Forj = i+1 to n

"For each row"
"For each row below pivot"

Al' F. .kn F
Ai i  

Form (n - i) multipliers

For k - i+1 to n [ "For each element beyond Pivot"

Perform I(n - W n multiply- adds
i=1 3



k + --

to00

0
Complexity b i +b-

I-D 0(17) =0(in) -- 100 pt grid 0O(106) ops 10 rnsec
2-D 0(n) O(n) - 1) 10100 grid O(10) ops 2h 46min
3-D O(n = O(mn) 1- 0lx> 100 100 grid 0(10 ") ops 317 years
e.g. on a I GFlops computer using m = 100 and a constant c = 10
For 2-D and 3-D problems need a faster solver! i

Banded GE
- Triangularizing Algorithm i+b-i

For i - I to n I I
Forj = i I to i - I b- 1

Fork=i+ 1 toI b
-
1 {

A ,,
A,

Perform Z[min(b-l.n-i)]- -=O(b',) Multiply-Adds

- Complexity
matrix size band

I-D n-=m b-=
domain size = m

2-D n=m b=m

3-D n = m3 b = m
2

I-D 0(h O(O(m) - 100 pt grid 0(100) ops I psec
2-D O(bn)- O(m

4
). 100x 100 grid O(10") ops I see



3-D O(hb'n) = O(m1)- O1x 100x 100 grid O( 10
) 

ops IId 13h
e.g. on a I GFlops computer using II = 100 and a constant c = I0
I or 3-D problmcns - still need a laster solver!

1n X in-

c Fill-In
Pattern of a Filled-in Matrix

Very
Sparse

O(mi )
to factor

Very Sparse

v Sparse (iG
o Matrix Graphs - Grid Example

Hosw long does it take to factor an IIIx n grid

Suppose the center column is eliminated last?

2-D: d = mi
3-D: d= m

i2m

1.



G.E. Complexity
O(n) + O(d)

o Complexity of Sparse GE
matrix size dense block

1-D n =m d=1

2-D n = m 
2

d = in

KRivlov METHOD COST
° The Generalized Conjugate Residual Algorithm

o Algorithm Complexity

ComIIpute At., I Sparse Matrix-vector
k .product costs ((n)

Pk-I r -rt - I (AP )'(Ar ')p

Pk P -1

tApk-

k - 1 -1
Xk - + k-IPk-I

inner product: 0(7n)

inner product: O(n)

multinlications: O(n
r + r

k - 
_ Yk- APk-I

Algorithm is O(kn) where k = number of iterations
o Complexity of sparse GCR (general worst case iterations)

matrix size worst case iterations (k = n)

1-D n=m

2-D n =m

k =m

k in=
domain size = m

3 - D n = n3 k = 13

I-D O(kn) = O(m) -- 100 pt grid O(104) ops 0.1 ms
2-D O(kn) - O(m

4
) - 100x 100 grid O(108) ops I see

3-D O(kn) = O(mn) -- 100 x 100 100 grid O(1012) ops 2h 46m
e.g. on a 1 GFlops computer using m = 100 and a constant c = 10
But how many iterations k does it really take'?

domain size = m

3-D n1 = m' d = m
1-D O(n)+ O(d) = O(n) - 100 pt grid 0(100) ops I psec
2-D O(n) O(d

i ) 
- O(mn) - 100 x 100 grid 0(10,) ops 10 Insec

3-D O()+ O(d) = O(n") - 100 X 100 100 grid 0(1012) ops 2h 46m
e.g. on a I GFlops computer usintg i 100 and a constant c- 10
For 3-D problems - can we do any better with GCR?

........ \'-i



Let's estimate k # of iterations

12 M /I

° Counting iterations
c I-DCase

I-D Discretized PDLE

h r'

-I I I ]L25]

1 .2500



Maximum sum of temperatures will occur when heat is put into the
center element

Ax= h

(x)
leit h = 0 " =

straighi

sahact Solution

n Communication Lower Bound

b=rO

Ak Ar is nonzero in mn
't 
entry after k = m iterations

Need at least Im iterations for ("), =x + ~aOL 0

c 2-D Case

o Eigenanalysis

3D Conditionnumber: - = os -cos

Number of Iterations Ibor GCR to achieve converttence

S< < y (convergence tolerance)
ro:

First Iterat

Seconl ie

ion of GCR

ration of GCR

For an n7 X n7 Grid

if roK

Takes v 2m = O(m) iters

for (., ',,2 ~0



log7
k - 2 (m)

lo + 1)

GCR achieves communication lower bound O(m)!
* Complexity of sparse GCR (no precond) for 3D FD methods

matrix size iterations (k = n)

1-D n= m k=m

2 - D n = m k = m
domain size = rn

3-D n = m
3  

k=m

I-D O(kn)= O(m) - 100ptgrid 0(104) ops
2-D O(kn) = O(m

3
) 100x 100 grid O(10) ops

3-D O(kn)=O(m
4
) - 100XI00x 100grid O(108) ops

e.g. on a I GFlops computer using m = 100 and a constantc = 10
But how many iterations k does it really take?

0.1 ms
10 ms
1 sec

Work for Banded Gaussian Elimination, Relaxation and GCR
Dimension Banded GE Sparse GE GCR

SO(m) O(m) O(m)

2 0(m) (m
3
) O(n

3
)

3 O(m') O(mn) O(m 
4)

GCR faster than banded in GE in 2 and 3 dimensions
Could be faster, 3-D matrix only m

3 
nonzeros.

Must defeat the communication lower bound!

m= 100
3-D SPG - 0( 10

2
)ops - 10,000 sec

GCR - 0(1 0) ops - 1 see

Dimension Banded GE Sparse GE GCR (no preconditioner)
1 ps I ps 0. I ms

2 1 sec 10 ms 10 ms
3 1 Idays 6h 2h 46m 1 sec

e.g. on a I GFlops computer using m = 100, and constant c= 10
GCR faster than banded GE in 2 and 3 dimensions
Could be faster, 3-D matrix only m

3 
nonzeros.

Must defeat the communication lower bound!
Dimension Banded GE Sparse GE GCR (no preconditioner)

I 0 s 10 ps 10ms
2 2h 46m 10 sec 10 see
3 317,000 years 317 years 2h 46m

e.g. on a 1 GFlops computer using in = 1000, and constant c = 10

Dimension Banded GE Sparse GE GCR GCR + preconditioner
1 O(m) O(m) O(m') 0(km)
2 O(m

4
) O(m ) O(m

3
) O(km

2
)

3 O(m
7
) 0(m

6
) O(m

4
) O(km')

GCR+good preconditioner (i.e. k = 5-10) is always the best choice for 2D & 3D
problems!
Dimension Banded GE Sparse GE GCR GCR + preconditioner

1 10 Rs 10 Ip 10 ms 0.1 ms
2 2h 46m 10 sec 10 see 0.1 sec
3 317,000 years 317 years 2h 46m lm 20s

e.g. on a 1 GFlops computer using m = 1000, k=-10, and constant c=10
+ Cube Example, Interior Problem - Memory Usage

Cube example, Interior Problem - Memory usage
10
4

finite difference method
integral equation fastmethod

o10

E

10
2

10
8  

109 1010
Memory [bytes]

10" 1012



INTRODUCTION TO NUMERICAL SIMULATION

LECTURE 21.

Finite Element Methods & GCR Preconditioners

TODAY'S OUTLINE:
4 Finite Element Methods

- The FEM Basis Functions
- The Galerkin scheme
- The FEM linear system

An FEM Example
Energy minimization view of FEM

" GCR Preconditioners for FD and FEM
Diagonal Preconditioners

- Block Diagonal Preconditioners
- Incomplete Factorization Preconditioners
- Communication Improving Preconditioners: Gauss-Seidel
- Examples of GCR + Preconditioners for 3D FD

Finite Element Methods
HEAT FLOW I-D EXAMPLE

T(O)

Near End
Temperature Unit Length Rod

Far End
Temperature

Question: What is the temperature distribution along the bar

T(O) 
9 wT(I)

4 Normalized Poisson Equation

SK aT(x)= -h, 2

ax ax a x
2

)

THE FEM BASIS FUNCTIONS
SResidual Equation

Partial Differential Equation Form

2u- f u(0)=0 u(I)=0
aX

2

Step 1: Choose Basis Functions to represent the solution

u(x)-Uh(x)= (,i Pi()
i=1 i

-2u = f(x) u(x)-= zwi (x)

What are good basis functions?
1.) tp(x) = ao + aI x -* No, second derivative is always zero

2.) p(x)=a + ax +ax
2 -+ Couldwork

3.) I can try to build into the basis function the boundary conditions

e.g. cp (x) = sin 2nix [and second derivative is nonzero]

Good choice. This is the same used by Spectral Methods. Fourier Series.

4.) Piecewise Constant.
Good. This leads to Finite Difference Methods

u(r)

h 2h 3h 4h 1 ih (i+i)h x

5.) Piecewise Linear.

t 91(x)
Xp~r

h 2h 3h 4h

Step 2: Generate equations for the basis functions weights setting residual
orthogonal to some test functions

~r~

1,(0)= 0 1(l)=0



ip()R()sl/, 0 R d(.2)= li, f)+ r()

Test Functions ,Iwi(x)I- f(x)= R(x) 0

1.) Collocation R(.rl 0 i ...,n '() (x -x,

2.) (alerkin p R(.1) ip,( /)R(v 0 -= 0 'P,(x)= p,(.)

3.) Othcr Test Functions T, i R(v) J'f (v)R(.r dv= 0

t 6(x -x _, )R(x) R(s,)

X,

Rayleigh-Ritz Approach Approximation
i Mesh

x = --- h x

S T,.k=l... K= n+ : elements

S i=0...i.. +l : nodes

.Space X. .V

i, = X I, EX l t o(T k .. IK

S XI piecewise linear

v (0) 0 1)= o

v continuous

3.5 34 32 ()
2.5

1.9

I 2i h 3h 4/ 5 6 -

3.5 p,(s) 3.
5

4

3.4. P2(.s)

/7 3i 4/i 5 h6/i

3.4

/ A

t \

f, -h If 4i, Sil 6/,

S h \4
/ A

5/s 6h

p (x)

(i l)h ih (i+ I )h



Adding two basis functions

Sum o' buasi Ilnet ins

c Basis
Nodal basis flr X,,: (p,.i- ..... - diil(X,)

1------------------------

x= Xi X, T=1

pi nonzero only on Ti U 7/ 1

Example Basis Functions

Introduce basis representation u(x) n i(x)= i) (,x)

=u ;,(x) is a weighted sum of basis functions

The basis functions deline a space

X l,= eII= piP orsp
Fxanlple

"'Hat" basis functions

I
0 1 1 f)

(PI (P2 (P3

0 / 0 (x3. 3.4 3.2 vi s p2.8

S/ / 1.9

/ I 1 3i 4h 5h /ih

THE COLLOCATION SCHEME
Assume the initial condition is satisifed

o/Pi,(0)= -No
i=1

Define the Residual

R(I)= (o. dcpi(t) _AYO;<pi(I)-u,(1)
dt

Select weights to "minimize" the residual
Force the residual to be zero at n test points

R(t )- ACoip (t )- (t, )= 0
i= dt i=

Generates n equations in n unknowns

THE GALERKIN SCHEME
Force the residual to be "orthogonal" to the basis functions

Jqp (x)R(x)d = 0

Piecewise linear Space

000*\

l {l....,n



ip(/ )
" L : R(r,)

'1Iti)i

Ax = b

I a
2

A 1 = f (rp- (p,(x)ld
5 ( A

MI

w, ftp, (x)f (x)dx

-0

Integrate by parts to avoid having to deal with second derivatives of
hat basis functions.

2 h I
(i/ 1)h i+ I)h

d<p'T d] Yw ,1 dipd 0,(-[ w; d 0> cp-,c/ v - J ()f(
1=

We don't want
nE- to work with

these!!!

x)dv = 0

{1,2,... n}

S dcp, ,,(-)Zw,- /

Impose the Boundary Condiiolls

pi ,i dcP dr + fpI (x) f(x)dx = 0

Note: Do NOT need 2 deriatives / 1,2...

" li( ' [-< -+ "i 2 2
pi (x -- wj<p (x)+ /x 0( 9 (xd =<; :-f <p, ( ,.f (x )dV

.1=1 " LOY
j-1 0 ,

Generates n equtations in unknowns

S i(xi 1 ) + f()i =0 l I1 .....

ax2
JIXi_,



Integration by Parts

f ; p, 2 ( ()
d=, 

-  (X) j x - " x).,- O ,- VI

0- , V 0,Ox---'j I L
: i 1 ,

itIf( p (x)& (

Ax = r

A,, = - d i W

Only first derivatives of basis ftinctions

P - . d-- (p,(-)/(x)d = / c......

0 0

o>, f .d' dx= f ,(x)f (x)dy
o dx o

oi  . (2- r)+ o, - r)= J (x)J(x)d
A 2 [ 2 ,,1Ax Ax

2

( 1, . -Ax)+w, I (2.A/-)-('3 1 (_ AV)= (x)f(x)dV

AV I A I A.

2 - 1 _0 f (x)dv

-1 2 o , x

TIlE FEM LINEAR SYSTEM

o dip/ CAP dy = i( x)1 (x)dy0 dx d

Al =

l w iO 0 _E~ lF

If p,(x) f(x)dx

f p (x) /(x)dv



AY =1 &i f , - dv
Icx cx

ofr

Ii I

h
S(i-I)th i " )

T do not overlap unless i-. i i

They do not overlap unless /= i-1. i, i+1

Aii-I  =(- 
h )h =-

ax . . lii 7-h

h h

h1 F

A i, , 
) .) , = h

i ' l ih(i .)h
Ox _. (i l)h X

2

-I

A=
h

.0
1 2 1

-1 2
-12



DISCRETE EQUATIONS
S(c, A (- h(h)

+ Boundary Rows

2 A 1
h I

h h

I

h h14TO

1

h -

,,

1

ha

d i-2
des

dc

2
All = = A

),g

A, =(- -i h= =
o Typical Row

-A f IC d d ( d + fd( dPy
rdV dh d. d - d, dv

is nonzero only for i =-l, j.j+ 1

A I =il)+I h

A( , = tI

hK h) 17

2 -1

-1

h'i

ax

2

A=

A1



2 -1

-1 2 -2

0

0

1 2 -1

-1 2

(p, (x)R(x)dt = 0

Generates n equations in n unknowns

i (x )d 2c,() +f(x) dx=0 / {l,..., n
o inaSytem 1 dx

o Linear System

di ip, d x
i=l oX dx

2 -1

A), is SPD [Symmetric Positive Detinite] and
diagonally dominant: and
sparse: and
tridiagonal.

n "Load" Vector Elements: I:',
-1 -

Ax

2 -1

1 2

F,,, Jfn,dx,

v Comparing - FD & FEM (hat basiT T- f i pid + fWtxd, i
I'; I7

fp,S(x)ds

o F1

F,

-1 2 l
s) ! problem

COMPARING FEM AND FD IN 1-D
t Residual Equation

Partial Differiential Itquation 1:io111
-)2

- =, . u(0)= 0 u(1= 0

Step 1: Choose Basis Functions to represent the solution

Iu(x) z II,(X)= toi  (p i(.V)

Step 2: Generate equLations for the basis flitctions weights setting residual
ortihogonal to some test functions

f<p,(.)R(-)di = 0 R()= ,i + f()
o , ,- iI el-

SFEM - Basis Weights
Gu alerkin Scheme

Force the residual to he "orthogonal" to the basis Itinctions

FEM 1 -I

FD Ax

f (p (x) f(x)dy

2 2. J J / ,x)f( )ds

-1 2 1
-J 2, (x)f(x)c

2 2 f(x)

Properties of' A,,

-1

A1, '

---f

I
] ..... y 17



F.I). F.E.M.

If/Al.) is constant:

,(,)f(x-d,.= 2 - r(.,)

Vi I , V I 

salme as DI)

If /(x) is not constant the RHS is still an approximation

Ip (.s)f(.-),/- 2 At f( ),

I.EM. d 2 2 21 )

- I J-, .

Same as F.D. system tor I D hat basis

However F.E.M. gi\ es more llexibility (can choose other basis)

.. .

I\ i:

i,

F. I )
v (pi

AN FEM EXAMPLE

(1 1)ih ih (i+1)h

1-D

, , +]o , i (, y)AI i /+1 /+

2-D

solution vector

solutionll ector



Top View Heat Transfer Problem
Non-dimemoional form

k): thermal conductivity for ,, i= 0,1,...,4
Bi: heat transfer coefficient
1, L: geometric parameters

s,x): Nodal basis functions
- m- first order elements dim(Xh)= n

Possible Solutions

Alit - s ..
CONVERGENCE ANALYSIS OF FEM

m+O Convergence Analysis

The question is

A

How does Ilu - u decrease with refinement?



* Review of FEM

Introduce basis representation u(x) it,, (x) = ), p, (x)

i,, (x) is a weighted sum of basis fliunctions

The basis functions define a space

A', veX = Afor inrsmeiis

Lxannlc

"Hat" basis functions Pie

Partial Differential Equation Forin
2 1)0isi

cewise linear Space

-

"Nearly" Equivalent Weak Forll

f dr = id for all v

,,(,.') 1(I )
Introduced an abstract notation for the equation I1 must satisfy

a(uv) = /() for all v

a(u, u)defines a norm a(u,u) = 2,1

i is restricted to be 0 at 0 and 1!!!
Key Idea:
Using the norm properties, it is possible to show

If a(u,,.p, )= /(tp,)forall p, e {pl .2 p ...
Note: this is basically Galerkin

Then u -u, = nin Iu- i,
Solution Projection

Frh r Error

Or in other words: given some basics. Galerkin finds the best coefficients

u(x) e 91' Here u(x) e 91 for visualization

k .U(X) Pick some basis functions
e.g. (ip(x). (P2(x)

II,' x) I I
P 

Iu)(x ) X h
; t p1) Thesface of all their

.. / inear combinations
/ x,, = span(l, 1(x),(p,(.-)}

, is a plane

Here, for visualization, assume
the ,.1 }plane

The key idea says that the error
ihx)-u"IW1 = ||e;, =a = a-,i(i(x i x , X - U

in ID example
is minimized by choosing uh(x) such that

a(u ,p,)- F(< p,) = 0

a(u,, .p,)- [(p )= 0 the solution is obtained by projection

* for a given set of basis, Galerkin gives the projection and
hence gives the smallest possible error (best coefficients)

* Note: to do better than that I need to change X, the set of
basis

For instance hat basis

As I decrease h = the error decreases linearly

=0 (



° Error Analysis Energy Norm
In words: even if you knew it,

you could not lnd a iw, in .',
more accurate than i/;,

" FEM Convergence Analysis

Choosing the basis functions space X,
L, specilies the error: I lI = Ilu-ut,||

77 1

Question: How does that error change when I change basis?

For piecewise linear: [It n,,| = 0

ENERGY MINIMIZATION VIEW OF FEM
tiProblem of Interest

Helmholtz Equation in ]D
Boundary Value Problem (BVP)- Strong Form

- t"(x)+ ,au(x)= f(x) C _ 0o
x C (0.1) tu(0)= -t(1)= 0
Describes many physical plleonomtila (c.g.):

Temperature distribLttiOl in a bar
Deformation of an elastic bar

- Deformation ofa string under tension
o Solution Propertics

Fhe solution i(x) alit\\ avs exists
u(.) is always smoother than the data .(t)
givent/(i) the solution u(t) is unique

h(x)

T(x)

+ Minimization Principle Statement
Find

u = arg min J(w)
where

X = {v sufficiently smooth v(0)= v(l)= 0)
and

iJ(w) f( , W, + yww)d -J/ivdx

I I) 
I

J,, R() pdv. = fja J/(pdv

J(u "- f(x))v = 'Vv
0

in the energy norm.

T(0) = 0 T(1) = 0



In words:
Over all functions a in X.

l that satislics
- ,, - in fl
u( ) = (I) 0

makes /(w) as small as possihle
Prool

et i, = i t i
Then

. ,. = j(t t ') ( i + "), f (( ' )( u )

+ (vn v, +at')d f > h, (it)

I

6i+aO,=t (a,)= Ju , vdv - ffnd
I 0

If v, = np, then Galerkin

-", '(0),) (0) ()t. , (1 n, d f id /i.t/n,-

J(, + .)= J(i)+ I(. , ,+ .1) W , v .

J ,>.Ji V Xuik ; i

+ Rayleigh-Ritz Approach "Projection"
Let

u(e X,,) = Eu-hp.j (x)

Set I,, - li that minimize

J|x,
f /f(u + V)dv
0

x- X(minimizer over X

(minimizer over XJ )
(minimizer over X)

Wi 1 j) ) = oi ip= i wi- +

.. i- ii I(w0 )jr,
2 oi=1 i=l o ji=l

Si=i n d(pi dp
2i=i= dx dx

a is THEminimizer of J(w)

+ (f(P dx - "w, JAp idx

By bilinearity and linearity.



,,(-,)= w,'p, ( )
-u, + c -.f(x) = 0

( ,, 9, (x))+ U (p,,i ().f(.v) ,

IA

J,(.x)R(x) = 0 v I

p,() (-p( -/v+ f(pi(x)a wp,(-x/ - J<(, (x)f(x) 0

j' , e - i i; 'i i ;
/T IT

A;, c r' : Aij p' + xup da d ,, ,dr
A,, E9li"~-: A,,, , -d)+cp Cp, ,jdx

For Poisson

J(w)= 1 ww d -_ fti 2 dx
2

2
V,/J(oi)= 0 to minimize

As- 1, = 0

If A is SPD min T Ai, 
- 

i TF p,
1- 2

vi, satisfies Af,i = F,

S2 
= 

arg min ' (w)

Expand.l(w = u;, + v);

require,(w)> .(u, )
S unless v = O.



1 7 - 1 7 & T v1( , + ')I *,(u;, + ) -( ,, + )' F;,

J"(, +,,+ ) J(u)
+ ( i, -F,,)' 1iJ, (u,,) SPD

+ ,SPD

If(and only if)
&J, (u,,)= 0. V E' "

V.l"(u,, )= A,, F,, =0
then

,( = ,u, +V)>J(u,,). V o 0

Poisson - min J(u)-- > riln J(-')

Hope u =C IP

Find u,, e dRl" such that

==

SPD , existence and uniqueness
Error Analysis - Energy Norm

J(u,)<J(w, ), Vw l ', EX,, w,., Iu/,

i :< -Iv,,

I = inf u-w ,

wheretheenergynormisdefinedas: ell = J (ee, + ee)d
0

- Geometric Picture

Jlxh

A' (minimizer over Xh)

(minimizer over X)

GCR Preconditioners

Ax = b

PAx = Pb preconditioner

P A Choose A s.t.

1.) A;A e.g. A=diag(A)= D
2.) P = X-' e.g. A= ridiag(A)

easy to solve

A Ax-A'h b,Ax =7
A Ar, = r Solve Ar = Aqr_

P =A A- AsA 'b I x = A-i' q GCR converges
in I iteration



DIAGONAL PRECONDITIONERS
Let A = D i A,,a

\ 53
Apply GCR to

(D- A)= (I+ID A,,dj D '
The inverse of a diagonal is cheap to compute
Usually improves convergence

Krvlov Methods -Convergence Analvsis
GCR Optimality Property:

o(i: NI(r
t 

I t !o, cw(m ,V
5  

CA, (Mt/li o

5
k 

is any k
th 

order poly such that 9 (0)= I
Therelfore

Any polynomial which satisies the constraini can be used to get

all upper bound on 0

Low Order Poly

\ustered Eigenalue

BLOCK DIAGONAL PRECONDITIONERS

T G Mi f!

Tridiagonal Matrices factor quickly



Throw away fill-ins produced by other fill-ins
Throw away fill-ins produced by fill-ins of other fill-ins. etc.Block Diagonal Preconditioners

A, =A (blocks)

A isa different problem
(no vertical interaction)

A, is easy tosolve(tridiagonal)
P = XA,,

INCOMPLETE FACTORIZATION PRECONI)ITIONERS
- Sparse Matrices- Fill-in

Fill-ins Propagate

Fill-ins from Step I results in

o Fill-ins in Step 2

. Factoring 2D Finite Difference Matrices

Generated Fill-in
Makes
Factorization

Expensive

4 -1 -L

m - 1 4

-1 4 -1

-1 4

A, =L+D
Lower triangular plus diagonal

, is easy tosolve (Forward Elimination

p= , =(L + D)-'

2 - 1 ++

= L +D+U

[2 1 Eliminate the upper A

- L+D = -1 2 triangular part of the matrix

l Incomplete Factorization Schemes - Key Ide-
Throw away all fill-ins
Throw away only fill-ins with small values



(, tiiii , (i

7' 0 bar T

Exact Solutioll

(2
(I \

COMMUNICATION IMPROVING PRECONDITIONERS: GAUSS-SEIDEL
• Lower Bound

b=

AA r
t 

is nonzero in m" entry after k = m iterations

Need at least m iterations lfor (k, = + aii i 0

t

Formard Elimination

(L + D)
_ 

Ar" = r'

Back Solve

(L i D)' = Ar"

(L+D)r' = Ar"



i, span 
h

Ab
A 2

b,A 
3h ... Ah ,

T ( bar 7

Ar

(1, D D) Ar" Ai

r (U +D ',L f D) Ar"

Sasler (oniver-ing GCR
CGCR already achicieves C(ommunication Lo wer boundt
Preconditioner u t laccelerate coMlImunication

Multiplying by Proconditionler must move values by more than one grid point.

° Gauss-Seidel Preconditioning
a Krylov Vectors

I-D Discretized PDE

h= ir

Xx- = b

(L + D) 'Ax =(L + D) '

A = L

1.) X A= L+D+U L

2

A=L+I) A 2

2.) Easy to solve tfor A = L + D
Forward Elimination



o Physical View

Ar"

(I.+ D) 'Ar -" r

'
(U + D) D(L+D) Ar"

o(new)
j01

U,

U,

Ar= [L+ D +U].= LoMwcr Triangular

(L iD) 'A LD' Apply with back soi\c
(L+D) 'Av=(L+D) lb

A = b

a21 a2 1N L]

31 6132 C' 3 1 h3

Lai" ,'+ a, uLlJ + , bj

,"
' 
+ a_, + a," =

a , u " + a z '.u + a u.; = b5

Lower Triangular
Apply with back solve

= ( + D)ii"' "+ Un"' =h

(L + D)-' -=(L + D)'b



Krylo\ Vectors

I-D Discrelizcd PD).

h "I

(L+ I))- Axv = (, + ))1h

(U+D) 'D(L+D) Ax (U+D) D(L +D) 'h

Symllntric (Gauss-Seidel,.

lli flln

;-2 ' .

Decrivation of the SGS Itcration Equations

Forward Sweep(half step) : (D) + L).x + U.' = /

Backward Swiceep ihalf stp): (I)+ U ).x + L =

- x = (D+ U) L(D+ L) Ux +(D+ I) h...

-(D U)- 'L(D + L)-Ib

-> =.'- (D+ U)- D(D+L)-'Arv +(D+ U)- DI)(D+L)-lh

S Pick A s.t.

a.) A~A

b.) A easy to factor (or solve) A = U

:> P:
e g. incomplete

lactorization

Step2) As =h becomes A 'A. ib

Solve A = b use L O= b

Do not calculate A -iA
Step 3.)

Instead at each iteration of GCR method

Set-up system Ar, = At, Use LUrtk, = At,

get ki

EXAMPLES OF GCR + PRECONDITIONERS FOR 3D FD
+ Complexity of Sparse GCR I Preconditioner for 3D FD Methods

ratrix size dense block

I-D n= k=5-10
domain size = in

2 -D n m k=5-10

3 D n=nr k=5-10

I-D O(kn) = 10 O(m) - 100 pt grid O(10
3
) ops I ts

2-D O(kn)= 10 O(m') +- 100 x 100 grid 0( 10
5
) ops 0.1 ms

3-D O(kn)= 10 O(in') f 100 x100x 100 grid O(10) ops 10 ms
e.g. on a I GFlops computer using m - 100 and a constant c = 10

o Krylov Work (ir Banded Gaussian Elimination. Relaxation, and GCR
Dimension Banded GE Sparse GE GCR GCR I preconditioner

O(m) O(m) O(n 
)  

O(knm)
2 O(nm 

)  
O(nm) O(m/) O(km

2)

3 0(m7)  
(00m) O(m

4
) O(kn

')

GCR+good preconditioner is always the best choice for 2D & 3D problems!



Dimension Banded GE Sparse GE GCR GCR + preconditioner
1 ps I ps 0.1 ms I ps

2 I sec 10 Is lms 0.1 sec
3 Id 6bh 2h 46m 1 sec 10 ms

e.g. on a 1 GFlops computer using m = 1000, k-10, and constant c=10
GCRigood preconditioner is always the best choice for 2D & 3D problems!

Dimension Banded GE Sparse GE GCR GCR + preconditioner
S 10 ps 10lls I 0 ms 0.1 ms

2 2h 46m 10 sec 10 sec 0.1 sec
3 317,000 years 317 years 2h 46m I m 20s

e.g. on a 1 GFlops computer using m - 1000, k-10, and constant c
= 1 0

GCR+good preconditioner (i.e. k = 5-10) is always the best choice for 21) & 3D
problems!

Cube Example, Interior Problem Memory Usage

Cube example, Interior Problem - Memory usage
10

. 103
~i
E

finite difference method
integral equation fastmethod

102
108 109 1010

Memory [bytes]
10 102



INTRODUCTION TO NUMERICAL SIMULATION

L BEM Ingral quion Method 22

PDE BEM Integral Equation Method I

TODAY's OUTINE:
S:" Poisson and Laplace EquatiIos: examples

F: Extecriol Vet'els interior Problems
• C. Green's Function
+ Basis Functions
+ Collocation Mcthod

" Galcrkin Method

OvERVIEW OF COURSI

Direct Methods L.U. (Sparse)

Linear Systems: . Dense)

Sliative Slvers (I.C.R. (D)ense)

POISSON AND LAPLACE EQUATIONS: EXAMPLES
:. Thermal Conduction Equations

www.adilla.com
o Thermal Conduction Equations

The Poisson Partial Differential Equation.

= =0 Poisson
v'(x)= V V(x) =-f(r) f(x)= 1=0 Laplace

Non-Linear Systems:

r ,)amped

'(x) 0 Newton Continuation

Matrix Implicit

- = + (-Shooling
Dynamics (ODE): = F(x(i Periodic ( - hotint

af * tnite)
- HIlarmoic

Ba lance

(trcq ICC)y)

PI)E: V ' = 0 Lapllace

\ " -/(.V) Poissoll

V + K - 1 Ichilholtz

MOR: I M cqns

SBEM
- I:EM

F)

10 eqns

V -- "l - - ""'-'+. Asq)+ u(t)- - Ail()+t)(0ki)

ID

- f(x)
dx

3D

/?.\- K- + i -

Heat Flow (conduction)
IF (x) <-4 temperature

Vq'(x) o heat flow

V -h = V - VT = 0 +-+ Conservation Law

equal r

<7> h =0

fV.hdV= fh- i/dS
I S K

-/(x, y,-)

CDc

0l



* Poisson Partial Dillerential Equations

Potential Flow
VT = air velocity

EXTERIOR VERSUS INTERIOR PROBLEMS

Interior

-e Capacitance on a microprocessor signal line

o Electrostatic Analysis
- The Laplace Partial Differential Equation.

Electrostatic Analysis
4(x) -> electrostatic potential

VTY(x)cr electric field I t, I l Latu Z

known on surface
" I " ii r,

l -.

Temperature
known on surface

What is the heat flow?

Heat Flow = 
:

T

parallel plate
capacitor Finite Difference/Finite Element Method Meshing Problem

o Drag Force Analysis ol Aircrall N7T =0

Interi or

> Potential Flow Equations



Drae Force in a Microresonator

iI C5

What is the capacitance

What is the capacitance?

potential

/
V2 

= 0 Outside

Tis given on Surface

Capacitance = Dielectric
Permitivity an

Comb Drive
Exterior Problem

Complicated fluid flow problem
interested in Quality Factor at Resonance

Used as - sensors (e.g. gyroscope)
- RF resonator

Stokes Equation - Linear
- High viscosity
- Size of structure

Y(x) -+ electrostatic potential

Vq(x) = +- electric field o charge on surface *- Q
(n

capacitance = charge = f dS
V voltage surace

C =

rT klno!n'
h,, -dS

Surface

TT

ax Ax

V2 T=O

...Ax.....-~.~-. -~--- --*- AX

Exterior Problem in



Ir age Thanks to C(onventor

Full Wave
V2f + K = 0 Helmholtz Equation

V2W = 0 Laplace (or Poisson) MQS or EMQS

T = magnetic vector potential

Capacitance on a Microprocessor Signal Line

l 1~~f

SWt:k &

What is common about these problems
* Exterior Problems

o Drag Force in MEMs device - fluid (air) creates drag.
o Coupling in a Package - Field sin exterior create coupling
o Capacitance of a Signal Line - Fields in exterior.

+: Quantities of Interest are on the Surface
o MEMs device -just want surface traction force
o Package -just want coupling between conductors
o Signal Line -just want surface charge

* Exterior Problem is Linear and Space-Invariant
o MEMs - Exterior Stokes Flow equation (linear)
o Package - Maxwell's equation in free space (linear)
o Signal Line - Laplace's equation in free space (linear)

But problems are geometrically very complex!!
Exterior Problems

o Why not use Finite-Difference or FEM methods?
2D Heat Flow Example

Surface

zL1:t T

/1 N

4-41:111:1 III T~

= 0 at oo

But, must
t truncate the

mesh

Only need " on the surface, but T is computed everywhere
on

Must truncate the mesh =: T(oo) = 0 becomes T(R) = 0

GREEN'S FUNCTION
Laplace's Equation

+ Green's Function
Definition: Green's Function G(xr.') is the solution at test location x produced

by a unit point source at location x'
e.g. for Laplace operator:
V

2
G(x,x') = 5(x -x')

o 2-D

OMNI=',

i
I

i



i(x, y)= log \;(- xo ) + (y -o )2

S + -
= 0  

for ll (x, ) (xo,. )

(x.x C) 2n og - x .

o 3-D

(j- - -" ) + )- + (-

1 I

G(,x')= -
4 T i - x

Pm ol' Just differentiate und see!

q I

G( 6v') -')
WV G= 8(x -x')

, I 1

4 -(.x - x')

o'=_ 4 x)

v2"' = 6(x)

V
2  

=0 x0

Green Function

logix| 2D
'V(x)= { 3DTh( c 31)

Think Electrostatics

V
2

= (x)

'P(x) log x-x.Y

iC(') .,-X, I

V
2 
= (x - x,,)

i(x)=
4nx- x,,I 4X E( \,)(x + ( -o) +( -)

:e Simple Idea (in 2-D)
o One Point

(x,.v) is given on surface

0 outside Surface

-- = outsid (x

Let Y(xy) =log(x- xo)2 +(, 30)

+ 2 = 0 outside
Cr2+ (

2



o "More Points"
T(x,y) is given on surface

,2 2u8u( 1 it C 11
+-- + = 0

_ o,2 8>2

Let (x . )= 1 log\( .i)- (-. = miG(.x- ,y.-YJ

Pick the (i 's to match the boundary conditions!

( )

ith just one point source?

Outside:

V
2 

t = ()

Ox2 O 2

S= A4log (X _ X 0 ( ,,,)

Source Strengths selected
1APiye correct potential at

points.

G(x, -x,,y, -y,) .. G(. x,, y -Y.,),] (,,,

G(x,-r ,, v -y,) ... ... G ,-x,,, y, - y,,),

y(x,,y, )= v, G(x, - . - y, )+ w,G(X, . 2 1 , -,, 1 ) +-

1A =A- Weighted
log R point source

Note: with one point source I can match only one B.C. For more
complicated B.C. I could use more point sources. how many
point sources do I need?'. What do 1 put them?

SPHERE

Point

.\;x
2

+ V1 +

CIRCLE
Can you thi

2 - 0
+ = 0

0x ov~
outside



SOURCE POINT LOCATIONS

I 'Cluster of Charges in C enter:

Smaller oscillations
Less change to BC.
Matrix is ill conditioned

'**** (it all on top of one another- singula matrix)

* Push Charges to SurlicC:

I o void ill conditioning

* Use many points to reduce oscillation

amplitude

o Compututional Results using Points Approach

Circle with Charges r =9.5

Potentials on It ( Circie

n=40

SoURCE P)INT LOCATIONS

(.)= w ((xx, )

SV
2

,fP = 0 + B._
q,( t,

Mlore singolar \\eight matrix.

+ Charge Density
Want to smear point charges to the surface

"1
Results in an Integral Equation

,(x)= IG(x.,x'),(x,')dS'
surtfae

How do we solve the integral equation'?



) ...... = G(s.,.s')a(x')d '
boundary

Ilou do we solve the integl-al equation?

o D

* * i

" Iv.i , I I 3D5 il
~ i~r i ,,r,-in

PDE Problem IE Problem

V2 j=0 (V) I G(x. ') ')dnx

'(x-V =Given - hnn1 Gei-

i nd(.) G(x. ') - in3D

BASIS FUNCTIONS

Basic Idea :

Represent o(x)= coi p(x)

i~unci uno

I'xanmple Basis
Represent a circle with straight lines *
Assume T is constant along each line

The basis Iunctions are "on" the surlec
Can be used to approximate the density
May also approximate the geometly

SI sI 0V;(.vK ')-

4ia I-

+ Integral Forl ulalionll



Basis Functions for a Circle -- unwrapped circle geometry

H

/

A D I

B

A R ( I F A

C , I (' I) i: 1 A

A B ' F : A

(T( I I-_- v



Vie Replesent o(.v) = O)i (p (x)

1.) Pick a set of t points on the surface

2.) Definea new surface by connecting

* points with n lines

3.) Definep ,(.)= I if x is on line,

otherw ise, (p /(x) = 0

Q = c(.i)l- = J i,,p, ( )

(.)= JG( . ') , op , (.')d,'

v(X)b,,ounar = fG(x,x')o(x')d'
boundary

J G(x,x')to,, 1p,(x)x'
approximate /

boundary

= o IC fG(x,x')(p,(x')dA'
/i b hlo d:lla'

=)o, fG(x,x')dv'
/11 line/,

How do we determine the to 's?

v = = 0+ P(.),,

Basis Functions o(.) i rip ,()

Integral Equation y'(x) , 
=  fG(.,x')(x')c'

Substitute F(x) . ..
Basis Functions , J G(.')

_ , JG(-,.,')q,(.,)aS'

If basis functions i (x)I - i IfG(t. v') S'
are piecewise ,,

constant
II gIi -y an
,I0\ are going to ty ant

find tihe weight" iI

Geometric Approximation
0 Not a New Idea

T t G(-t--v) ili e, (x') i 1 S'

Piecc\ ise Constant Straighit Sections F-xample

0 1,



p(x)= (x-x,) )= R(x,)=O

R(x ) = 0,-

01. l ow\ do I findv a

0)2. Given i,, what i the charge oi the surtace?

a(.v)= ,p (.)

(0. Given ,. t hat is ithe potential anywhVCre Outside?

p(.)= Z JG(x. .')a/S'

Ca'i e aluate thiis all i li hiclce OutsideI il C C\ aaluatC in the
surt'ac e obtain the gicen B.C.

Residuals
Residual DeLt ition

R(,)_ (.) ....... - G(xx') p(x')dS'
upproa
airlii

tV Residual Minimiation
We will pick the ),'s to make R( ) small.
General Approach : Pick a set of test functions 0d2 ,..... ,, and

Iorce R(x) to he orthogonal to the set i (x)R(.v)/S = 0 for all i.

J(p, ()R(x) = 0- R(.,, )= i= 1 .....'

C(.-.x, )R(x)= R(,,

Residual Minimiation Ui sina g Iest Functions

J, (x)R( ad = a (x)4( ia/S , ) G(x a a , a d S

We will generate the different metlhods by choosing the at,le ... ,,,
Collocation : ,(x)= '(x -. , ) (point - matching)

Galerkin Method: a(x) =p,(x) (basis =test)

X
1 X, X3

(x)= 0 a a 1
()= x= Area= I

6(d

S (.) 6 i )

R)(. a 0i (aa)

R(3) = 0

JKR(x)(x /x = R(O) fR(x)6 (.v - .,,, )A = R(x,, )



COLLOCATION METIIOD
..- ,

[A][,,] [, {(,,
Collocation: (~( = (,) (poin -ma ching)

(x )R i(, ) Y(,, )- (y .0 )/ / P (dI

(x),,c = fG(x,x')c(x')dS'
... Basis Fun

p(x0) 1  = If G(x,x')a,(x')dS'

J-1 Collocation

( =x, I f Gx

b.

ctions

Piecewise constant basis functions

x )= w G x x /SI

4'1

S , test source

,, fG(X,. '
)d

' '(., ) i

i[:.~, ~2'
F A

) C
t)

R( ,) - 2 ......

.2,.... A'

A,i fG(ss')dxj



Where do I put the test points'?

solution

Collocation
A

F B

0 C
E

D

Where else can one put the test points?

I I I I I I I
A B C D E F A

Also ill-conditioned

center'? .

i(. f

Clustered in one area?
Test points should be

e spread out because you
are solving the integral
equation exactly at the
test points - so

Sclustered test points
will solve the integral

* equation exactly at that
location but nowhere
else.

On the original geometry?

line/

Aii



Centroid Collocation
+ Pieccwise Constant Bases

fX •

(p,(v) = I X-
10 xe

OX,

i( ) Ei';i J c;f .G )9,(Ai dYS

A, = G(xA,,x')p,(x')dS'

S i,, I (x,, )
' (x, t f G(, x,') dS'

A
metric A

AF

GALERKIN METHOD
Galerkin: <p,(x)= pi(x) (test= basis)

qi,(x)R(x)dS fp,(x)()dS- I i(x)G(.xV') , i(x')dS'dS

;p i ( ) ( . S = = oI G (
(

0 . ' if ('ap /(x ')dSdS
approv j=I approv approvx

A,,, . A,,,,]Lo ,,

If G(x,x') G(x',x)then Aii : A ji A is svmmetric

A1. 2 I G(x, ,x') dS' J G(x, ,x') dS'= A,2

Galcrkin sets the weighted average
F A I of the residual (error) to zero

JR(x)p,(.s)d= 0 i 1.2,..., N

D

1'~,
if,,tlIta Nons- .m

v Generates a NoinsVmF

.....1



Basis Functions

I Galerkin

,( G(I x')dSS " Piecewise
constant basis

imctions

Piecewise Constant Bases

x f I P(x)dS - o, J G(x x') dS'dS

x , ,,,
2 ,.i

Al0 Ani l' "

* nAI n An,, o hJ



INTRODUCTION TO NUMIERICAL SIMULATION

LrECTURE 23.
PDE - BEM Integral Equation Method II1

TODAY'S OLITINE:
Collocation Method

+ Galerkin Method
3D Panel Integration

o Sol ing Discrctizcd Integral Equations

EXTEIIOR PROBLEM IN EL,ECTIIROSTATICS

V2 J =0 Outside

I-P is given on Surface
"Dirichelet Problem"

So First Kind Integral liquation for Charge:

potential

First Kind Integral Equation for Charge

V2y = 0 = '(-)= ,o(t')dS' in 3[)

one way to view this is as a superposition integral

source point . . )
charge test point

potential
o

small source ,
charge

surlace with charge density oy(x)

0point

= G(n unction')

Green Function

F(sx) -- f t(v')ds'
, x _V

ullkl iI

known

I,, ,
©

©

Cb



Problem.
V-1 - 0

every% xhere
outiside

(r) ven

Find o(x) on S

Solve , ( v')L

Use Basis Functions (.x') w p (.')

e.g. piecewise constant has i (panliels)

'V Ixv( xxxxxii f dS
xi )ll/i , .- :

Collocation.

V ( SI

I = I V,,

Picccwise Constant Basis Functions - Collocation.

Basis FunctionS'

Basis Functions

/ ,, ,/,/ // ,,/ / /

10 othervise

BASIS FL NCrION APPROACH
S Piecexise C( onsl ant Bais Flunchi, on

Integral Equation: (x)= I
,mr-i,,

Discretize Surface into Panels

Represent o(x) zcojq/(x)

PanIel 7
p, (x)= I if is on panelj

9, (x)=0 oCthcrwisc



Collocation.

q, I S

c,,,. ' Il ......, VShip Hull

I.) Discretie Unkno\ ns c(,) A unkno .n
using basis tiuneions

2.) Discetize LEq uations - Collocation or Galerkin

S Residual Dclinition

R(.,v) '(.V)- j G( a. ,') o,, (x')ds

Residual Minimization
We will pick the a,'s to make R(x) small.

General Approach: Pick a sct of test Iunctions 1)l . .....(,, and

lorce R(.v) to be orthogonal to the set f()i(- )R(x)dS = 0 for all i.

c: Residual Minimization Using l est Functions

u(x)R(idx)t= Jl()l flS- f ai()G(x upi(x cdSd

We will generate the different methods by choosing the ,q), . f,,

Collocation: 4, (x)= (. - x, ) (point - matching)

i r1,2...

A L Jb LPG4;, 2
Galerkin Method: ,i(x)= p (x) (basis=test)

COLLOCATION METHOD
+ Basis Function Approach

Collocation : 4, (x)= 8(x) (point - matching)

So(.,- ) ( )S R(a, )= ,, ) G= ),, f G (V )dS = 0

1 = 1, fG , ( )ds
app ".,iil

A A ,, U , A,,



Collocation.
fl'(x )= ko J/ I

S / a,,c ', .

klil
IX"

I (, ) Z1 " I,

Collocation. Piecewise constant basis.

test source s
point panel test

panel i

source

panel j

0 0
Use centroids (as
opposed to vertices) in

O 3-[) because you have as
many unknowns as you

S have test noints.

O
O O

pai ci /

A,., A,, -col P -I

Al, ... A1.11 ( o, (

Centroid Collocation

Put collocation points at

, Collocation

point



Nonsymmetric A

T (x,, f c G (x,,, x') dS'/ I

e/ 2 /a 1 

A1 , nel
.1 J ,

GALERKIN METHOD
o Piecewise Constant Basis Function

Galerkin: , (x) = p (x) (test = basis)

(v)R(-x)dS = fP(.)T()dS - f py~ )G~ ) f>sdS=

Pi(x) (x), s = , T, ( .') ,(p x) ,p (.),ld (

1 appro x ppr

f ....,,- IF c s 1 2 ti constant basis

S I x - x functions

h. Aj
r 1/

1S, Source
A ,,i I

5,s



wp, Vep (' '1v fr f
c f

F-
1 L1ancl i

soi]-cc
Gilcrkin icqirtes tit fic S tearv cornditons

Liliexuaixd "on aerage- use r each test patiel i

Gen~eral (ixicikiiv 4, = ffi (.v p ,(x )( 'Ide dc/
S

fip, V )y(x f ZcS , fi, )(i~x. )( /(. '/N' (S

HY, fIl /5 Z f V,. P
0)

'55

Ii S~5~ i

nSvnijei ic A

f T -v) a f AS'

A

Gc) (Af A' (thenA I. A is symmnetic



3D PANEL INTEGRATION
. Collocation Approach - Calculating Matrix Elements

1rF-
panel test

source

Cialcrkin requires llhat the hboundary conditions
are satisfied "on a\verages" over each test panel i

, f J ss
)"I""// 11- 10 if

S- -I -

rcciproc it

A svmimelnt lc

panel /SOrcLT.

V x, collocation
point

Panel /
A,, f

One point

approximation

Four point
quadrature

approximation

ScEven if size panel n- size pacI /



Example: Thin Metal Strip
I I. ' I 'I- M I I i'i'i' " i' Piecewise Constant

2 3 4 5 6 7 R 1) 1 121 1415 16 Basis Functi

tUnknowns: wi charges on each panel Pi (-' I ' G panel j

Assume 'F(.x) - I given on the metal strip panel j

1 Known

w I 'otential
Toeplitz Matrix

Collocation
I Area Panel 6 I

' pa', X, - X x - ." 5

A (~IS, Area Panel6 1

t x- 4

f I as' Area Panel 1 I

-e1 1- ,, v x 5

A4, A , Why? Collocation in general gives .4,,. .41.,

But if Arca Area;,,,,.it then A,, A I,,

Self term
What about Ai.,'?

I Area Panel 1 1
= I dS= NA,, ,.i xf, c/.

No.

Four Point Quadrature

0 0 0 I O I O 0

1 2 3 4 5 6 7

AI , 16 f S'

Area 6A Area 6B Area 6C Area 6D

, -x1 ,, -, +x - X, x x

Does A6.1 i AI with four point quadrature?

In general, yes, if shape panelj - shape panel i

+ Basis Function Approach - Calculating "Sellf-Term"

Z x, collocation

point
X X

Panel i

One point ,

quadrature --L2 "
Approximation

A; = dS' is an integrable singularity
/ /nel I



I,

.x,, collocation
point

A,, 
f

pAn. '

Panel i

Integrate in A =
two pieces

Disk Integral has
singularity but has J
analytic formula ,ds

Self-Term

: ,: ----------'= I S'= I rrf Ird = 2niR
S di I 2

2,1 - f - dS' = dS'- -dS'

rk 3.8 1ar ege '

Toeplitz Matrix

3 1 L 1

-'-

* Not diagonally dominant
* Dense
* All positive entries

dS' + J

S= jlrdrdO = 2rR

IX - V,-'1 f I l- V
.. -Xp



x ,i collocation

point

x ' = J
Panel i

I. If panel is a flat polygon, analytical formulas exist.
2. Cur Ve panels can be handled with projiection.

SOLVING DISCRETIZED INTEGRAL EQUATIONS
+ Basis Function - problem with dense matrices

Integral Lquation Method Generates Huge Dense Matrices

Gaussian Elimination Much Too Smo

n= 100.000= 10
Storage for an n x n matrix = bytesx 10 80 gigabytes

double I

precision

+ The Generalized Conjugate Residual Algorithm
o The k"' step of GCR

compute Art
k -

i
For discretized integral

equations. A is dense
k2

Pk- I 
r k -  

(Ap (Ar
k - 

)p
A - Orthonormalize

Pk-l - 1
1A& -1 

I

k 
-  k-l

Yk-1 < k
-

1 APk-I

xk +- xk- +V k-Pk-I

r
k

- r
k - 1

_ k-lAPk-l

search direction

Determine optimal stepsize

in k
t h 

search direction

Update the solution

and the residual

o Complexity of symmetric GCR (e.g. for Galerkin)
Dense matrix - vectork t

compute At

Pk-1 -
rk
-I TAp .Ar5- )
Pk-1

- I < Pk-I

k k-l
r <- - +k-IAPk-l

3D Finite Difference Method

product costs O(n
2
)

inner product: O(n)

inner product:O(n)

O(n)mult.

100 x 100 x 100 grid
Number of unknowns = 10"

Number of nonzeros 7-10'- 7 million O(n)

3D Integral Equation Method

Number of unknowns - 106
Number of nonzeros = 10"

-
- 8,000 gigabytes O(n)



Fast Matrix Vector Products
o Computing exactly Ar 

'-

Dense matrix-vector product costs 0(n-)
o Computing approximately Ark

-

Reduces matrix-vector product costs to O(n) or O(n logn)

unknown charge
densities

Given a P.D.E. e.g. V
2
' = 0O V

2
LP +K2' = 0

1.) Find a Green Function e.g. G(x,x') ! G(x, x') e

X - x'
2.) Discretize Surface Boundary Conditions Using Basis Functions

a(x)= Y,,(x) ---I- o-s 'F,(x)= w, G(x,x')d.'
S Piecewise Constant /I S

(l I X.c

3.) Impose Boundary

.A =b

rk  Magic Ark- 1
Block

Integral Equation
Discretization

Conditions A
e.g. Collocation ) i fG(x, x')dS'

e.g. Galerkin f T(x, )
d
S Eu, f !G(

x x '
.
)d
SdS

'

S. .i= s,s

b, .i

4.) Solve system using Krylov iterative methods
at each step need A

- 
'

5.) Use Fast Matrix Vector Product for Ar I '
(e.g. Fast Multipole or PFFT)

Cost O(NlogN)
O(N) memory



* Cube Example, Interior Problem -- Memory Usage

Solving a cube
interior problem

80's 2005

I.E. (BEM)

80's [2005 0()

panels m 100 800 100 800
onedge m 38x8

# unknowns 1M O(m) 60,000 O(6m
2
)

n x 512 x 64

# nonzero 7M 0(7n)= 3.6 G

entries x 512 0(7m
3

) x4096 0(36m
4

)

memory 56 x 512 O(56n)= x 0(8n
2
)=

MB 30 GB 0(56m ) l P9(290m
4
)

102
fnite difference method
integral equation fastmethod

10

te1o l 101 o o
1  

10
12

Memory [bytes]

128 3-turn spiral RF inductors array

x64
o(8000n)

SGCR + ast Meds30 GB

GCR + Fast Methods

(48000m 2
)

V2 = 0 = Y(x)= fG(x,x')a(x)dS ::, A. = 6
(1) Choice of basis functions
(2) Choice of evaluation - Collocation or Galerkin



INTRODUCTION TO NUMERICAL SIMULATION

LECTURE 24.A.
PDE - BEM Integral Equation Method III
Fast Methods for Integral Equation Solvers

TODAY'S OUTLINE:
+ Fast Matrix-Vector Product

Multipole Algorithm (for Laplace Green Function)
Precorrected FFT (Green Function Independent)

FAST MATRIX-VECTOR PRODUCT

Example: Thin Metal Strip - Piecewise Constant
SI I Basis Function

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 1 X' S

Assumne 'I(x) = I given everywhere on the metal strip q(x') 0 x' Si
Find o(x) on strip a Find weights w l, ... wl16

(charge on each panel) A 1i = f S'

3. 1 1 1 . .I P el
2 3 4 5 6 16 I i

I 3.8 1
2 3 4 Area Panel6 1

Structure: Diagonals (Toeplitz) it A.1 < A,, -3.8

* I fId= 16
'I 1 W2 l9 04 W W

5  
W 060 1 8 I W 1) 0 't11 112 Wl3 1 14 11; 14'16

Matrix Vector Product A =

S(x,)=3.8w +1, t :;+ w1 + ...+iq4(x )= 3.80: + + +. + s + S+, + +Is wI9 + "bs + wt +..-+

1 2.5 5.5 11.5 4 products

4 sums
= log2d

In order to do all the others d log2 d ~- cost of the entire matrix vector product
providedj can get the clusters cheaply.

If I f I f I f fI4 fIt1 196', W1V 4 95 1' 1 W7 V W9V) WIO Wi '12 S'13 W1
4 

11 IS I
16

'1+ '2 W3+W
4  

"WS+ + W7  I + W+ Win I +I I)2 HW.I ' W) s+V16 8sums

V V V V
Wl + Vv2 + . + It4 W + 6 n + w + - w

4 
+ i +w w + ,l'S v 4sums

V V
I + Il + W4 + ' +4 6 + "? + W wY+ l i w + I: + WO + + 1+ w +IIa , 2 sums

14 sums

log2d - I sums O(d) sums

How do we use those suns?

21c-
WI1 W2 1413 

4  
W1's W

6  
W7 14' Wy Win Wil W12 W13 14 1l5 W16

2(.2) 1v, + 3.8w, + s1'1 + W4 + 
5 
+ + W

7 
+ W

9 
+ W + W+ 16

I I 2 3.5 5.5 10.5

W1 W
2 
1W W4 V5 "'6 W7 1 9W W9 W 

1 3 
il W

12 
W

1  
14 W1S '16

w( ) I+ .. +W 
5  

+ 3.8w, 1 w +w
1
, W1

13 
+...+

1 6

5.5 2.5 ' 2 3.5 6.5

All are O(log2d) -- total cost O(d log2d)

0

-3

C



Multipole Algorithm (for Laplace Green Function)
" Basic Multipole Concepts - Multipole Representation

Monopole
j.= 1

Single charge in center of Potential
cluster with sum of all charges R

Dipole' 2 0 Two Charges Potential' 12

Quadrapole
j= 4

0

0 0
Four Charges Potential R1

o Direct Potential Evaluation

- a vmlnatin poaint

b / md

* Potential at point i:

* Approximate potential at point i:
rrder j Mk

j=o k=-j ri,.
* Multipole coefficients funimction of panel charges:

i=l i paneli

* Computing Multipole expansions costs order d operations.
* Each approximate potential evaluation costs order I operations.
d potential evaluation due to d panels in order d operations

Scale Invariance of Error

Error K r Error order+1R

e.g. assumej = 2

R I
assume -

r 2d

i=1
* Complete evaluation at d points costs d operations

o Multipole Potential Evaluation

d evaluation points

dpanels

monopole, dipole

soul'ce

cluster

Error k =( k

10% error bound

Key Point: If test is much further away (r larger) then the clusters
can be larger (R larger by same amount)



o Multipole Algorithm iHieraichy

Hierarchy guarantees:
Bounded error:

Error < K (R)

<KW
order = 2 yields one

percent accuracy.

i... I

A ..
zdt

o Multipole Optimizations - Local Expansions
o Cost Reduction

ith local expansion use instead-

o Clustered Evaluations

* Construct a local
expansion to represent

distant charge potentials.
* Evaluate a single local

expansion, rather than
many mulitpole
expansions, at each
evaluations point.

dd argg pmik

* Local expansion summarizes the inlluence of distance charge or
clusters of evaluation points.

* Gives O(,) potential evaluation i hen combined with coalescing of
charge done by multipole expansions.

* Approximate potential at point i:

, i(,;, *,,i) I ) L, Y (O,, 6;)r/
o, k

A , it



t Discretization Convergence

cube 2

,i n

cube L

0 005ra

Q = local expansion

L2P = multipote expansion

* Multipole and local expansions arc buill using complementary hierarchies.
* Complete calculation consists of:

I. Build multipoles (Upward Pass).
2. Build locals (Downward Pass).
3. Evaluation local expansions and nearby charge potential (Evaluation

Pass).

SComputational Examples
Translating Sphere
* Potential Distribution

ix
o anonr: cnnn n aun use nan.: a oro

* Error should decay like I/n
* Multipole approximations eventually interfere
* Higher-order multipole expansions needed for higher accuracy

o Two Sphere Example
. Potential Distribution

* Potential on each sphere : i(x)= V3

2xs'
* Does not correspond to a simple physical problem.

* Potential given by y(x)=-
2 x

3
* Charge given by r(x) -= 

3

o Summary of Operations

~j~
--R- 1tl A_ . 0 go, CO .

1, 1 h-'- 0 Ann 1. - = ,,

In-.- 0 Ono 1. A.OI I

1. I - 0 AN 1, low . IP 11 ct



* Matrix-Vcctor Product Cost

. .... . .... .... .

Number of Panels
* Direct mnatrix-,cctor product cost increases like t.
* Multipole malrix -vector product cost increases like it.
* The slope for tie multipole algorithm dipcnds on accuracy.
* For order 2 expansions, breakpoint is abou t n 400

Complexity Summary
For an integral equation discretized with ni panels:

* Gaussian elimination: O(ni')
* GCR, direct M-V (n ).
* Multipole accelerated GCR (mnt).

,, translation invariant

(xu, )- .(i - ), +- Discrete Convolution Computed in nit log n using FFT

V' + n = 0 Helmholtz Equation (Full Wave Equation)

Canr still use nultipole expansions but every time I
G(.x')- e change the Grccn function I need to come up with

S-. -: multipole expansions.
Fast Multipole is Green Function dependent!

Example: Thin Metal Strip

1 2 3 4 5 6 d

a Area I
rf(xi )= ZWyAi Ai =-

i(x)= EwA, i = w®h
.i=l

Recognize Discrete Convolution Sumr
h is the unit sample response.

h[ h

FFT FFT

W(c' ) -
V(e
e"

'' )
H(e

Hl(c "")

= Ai
i

hr
Toeplitz

i i4
14 5

a 1

I can calculate the convolution
elliciently using 2 FFT [O(d loged)]

This works only if G((xr') G(x -x'l) translation invariant

Precorrected FFT (Green Function Independent)
+ P-FFT Matrix Vector Product

o Problem: Solve iteratively Aw' = 
5

o At each iteration evaluate matrix-vector products Ai: using the lillowing steps:
* Grid Generation



* Pre-correction

o FFT Grid - Selected to Balance Costs

Calculate potentials on grid points
due to charges on grid points with FFT

[()(n
2
r O(n 

lo g 
n) 0

* Grid selected so direct cost equals FFT cost.
* Finer problem discretizations usually yield finer grids.

+ Inhomogeneity Problem

Emes Grid P ont



lnhomogeneity Empty Grid due to FFT -Ineffliciency
Refining Cube Discretization - Worscning Inhomogenity

4 --KYxr -

o Computational Complexity of PFFT+ + is nearly O(N)
PFFT++ is available at www.rle.mit.edu/cpg

10
(,

-o_c,10E

10
o

Trade off for a gisven discretization

Coarse Grid
* FFT cheap
* Direct Comnputation

and Preconditioner-
expensive

Fine Grid
* FIT expensive
* Direct Computation

and Preconditioner-
cheap

--

explicitly forming matrix
pFFT (direct stencil = 3)
pFFT (direct stencil = 4)
pFFT (direct stencil = 5)
pFFT (direct stencil = 6)

Break even point

Number of Panels

EQS FASTCAP p '=O Capacitance

MQS FASTHENRY L, R

Fullwave (ciUIUC
Fast Multipole

pl--lT++

FASTIMP EMQS + Fullwave impedance extraction

FASTMAXWELL EMQS - Fullwave impedance extraction

Balance
Typically produces
panels - # grid points

J

"i'
.I

u



Example Maxwell Integral Equation Solver
Kernel Not I/R Green Functions

dH

Vx H =dE
dt

V * rE = 0

V * pH = 0 I
J(r) ek .r'

+ .jo I J(r') - r' = -V

1 r ek
l  drs' = (rs

47 ( rs 
rs

Preconditioner for Maxwell Integral Equation Solver
dH

VxE = -p
di

dEVxH=E-d

V E =0

M LO1M x=h

ver dense,: sm :pSetri

diagonally dominant

° Preconditioning
o Krylov Methods - Diagonal Preconditioners

Let A = D + And

Apply GCR to (D- A) = (1 + D-'A,)x = D-h
* The inverse of a diagonal is cheap to compute
* Usually improves convergence

o Integral Equation Preconditioning
Diagonal Preconditioner (Jacobi)

P =( dag(M[L :]MT ))j

Extremely easy to invert
However not very effective

. No preconditi oner

S ------ Diagonal Precondit ioner (Jacobi)

A better preconditioner

o 20 W so so 1oo *20 14o 16

Diagonal Preconditioner (Jacobi)

P=(diag(M[ P]MT)'

Extremely easy to invert
However not very effective

A Better Preconditioner:

P = M diag[L ]MTjl'

oB;



A bit more difficult to factor (but still duable since M is sparse)
However much more effective

- No preconditioner

0 ------ Diagonal Preconditioner (Jacobi)

P= M diag M

0 20 40 . a 100 M. 140 160
fterat ,I



INTRODUCTION TO NUMERICAl. SIMULATION

LECTURE 24.ri.
Model-Order Reduction

TODAY'S OUTLINE:
+ Motivations and Examples
+ From PDE to a State Space Model

- leat Conducting Bar

MOTIVATION AND EXAMPLES
" Analysis Example: Power Micro-Inductor

WO

ii.

Q1©



O Example: Micro-Inductor in a DC/DC Power Converter

Spattered laminated NiFe core,
electroplated windings [Daniel961

frequency

I
How is the frequency dependency of the power loss in the inductor
affecting the dynamics of the power converter and its overall
efficiency?

* Motivation: Analysis Produces Impedance vs. Frequency Curves

* How are parasitic and the PC , paB c. , I C
resonances of the power interconnects
distribution grid affecting the
impedance?

* jnalvsis tols can produce fir
instatice iimpedulce vs.• '
frequency curves

,r . .. ..ih ,-

r 'f



- Example: Power Grid used Feeding Circuit Blocks

.PCB, piackae.
IC intrcolects

+ Example: Accelerometer and RF Resonator
* What is the Drag force on the fingers of a resonator or accelerometer'?
* How does it affect the quality factor?

Motivation. Example: RF Micro-Inductor
* How are the substrate eddy currents

affecting the quality factor of the
inductor'?

* How are the displacement currents
affecting the resonance of the
inductor?

* liMi tos can producc Sir
ilnci 2 impledalle -. irequencIc

CU 'l Iz

"i /w~

-I 1 -

i*m- th's 'ka'to Unni. Of PIa

ricrres generatea y lasmitoes( Inanso Am wang)
• Example: Micro-Inductor and Resonator in a Wireless Transceiver

RF Receiver..

frequency



" Examole: Micro-Mirror

- direction drag forces

What are the forces applied on the mirror, how do they affect
the dynamic response of the mirror?

Example: Microirror Switch in a Dense Wavelength l)ivision Multiplexing
Optical Communication System

Problem: Want to simulate the blood transport system and find
out if the heart is under stress

* Important to account for distributed nature of the arteries and veins
* But the final quantities we want to observe are only input/output

e.g. pressure and fluid velocity

o Application Examples Traditional Approach to Generating Models

X\ 
a

uN1"6 F E

0-6 ,

x,(t) =F(x,(t))+ bu(t)
di

y(t)= c, x,(t)

Model for the
System Simulator



* The Numerical Macromodeling or Model Reduction Paradigm

Generate a Reduced-Order Model Directly
from 3-D Geometry and Physics

Signal propagation along a wire

Wire

Complicated Geom
Coupled Electrost

Fluids, Elastics

dr)= F(x(t)) + bu(t)
dt I

v(t) = c, x,(t)

Cheap to evaluate model
etry, which captures
atics, input (u)/output(y)

behavior

o From 3D geometry to small state space systems (MOR)

dH
VxE=-p

dt
Vx dE Field solvers discretie

dtVx =d geometry and produce large
' r -state space (ODE) systems

Logic I Logic
Gate

-= Ax + bu(t)

Examples of simpler models

R that capture the 1/O0 behavior

TC CT
d
dx

x(t) + B u(t)

I M equations

MOR produces a dynamical model: 1
automatically

- with field solver accuracy
- small (10-15 ODEs)

dti

10 equations

(f) + f u(t)

s



FROM PDE TO A STATE SPACE MODEL
• Compare PDE Solvers and Model Order Reduction

SPDE Solvers:
- Accurate
- Relatively fast (minutes to hours)
- Challenges:

* very large matrices: sparse (FD or FEM), or dense (BEM)
- Application: verification and characterivation of component properties

* Model Order Reduction
- Preserve PDE solver accuracy
- Model construction relatively fast (same as PDE solvers minutes to hours)
- Challenges: same as PDE solvers but only in model construction

Only capture inputioutput behavior (don't show field distributions)
But model evaluation in msec (e.g. get dynamical response fom any
input)
Application: analysis of' linctiortality and interaction with other
collepn nts

Model Order Reduction State of the Art

Model Order Reduction for simple linear systems is well
understood (e.g. interconnect, heat diffusion)

= A x(t)+B u(t)
dt

y(t) = Cx(t)

Not many techniques yet for NON-LINEAR systems

= F[x(t)]+ B u(t)
dt

y(t)= Cx(t)
+ Heat Conducting Bar

lamp power = u (t) il ,i

o =0

u(1)

u(t) Tend (t)

o Basic Equations

To = 0 Heat In Tend

Temperature Differential Equation
T(x,t) a

2
T(x,t)Y r = h(x)u(i)

s ndntavi,helYt • inpul

Spatial Discretization (except at end)
dt

S(x) u(t)

T(x)

In steady-state Yh = 0 Conservation Law - - - ()=

What if h # 0? e.g. h(x)u(t) increases suddenly
2
T T)

fi t
then the temperature will
take some time to readiust

"-,



T,-, 7 -; T+'-- + t --

A , = net heat flow

T, 7 -,

PDE in time and space

T 1
- - h(i)s(i)

d T.
I - I 2

o State-Space Description

t) A x(t)+ bu (t)
dt tV

Given the riuht scaling

A

d iL 2

S2

- I

- -I

v(,) [i, 2~ ,{ Xni

/i 1
di ip ) s ii.

Input-Output Discrete Equations

S
'  -  -2 + ,)=h(,,-1(it) i[ 1,....VN-]

d (( ):

CA I

lxi

I. Small amount of information to give the user
2. Does not give access to interior infionation
3. But yet accounts for it and produces conrrect 1/O behavior

Note: it someone gives me a different u input I do not need to
rediscretize the bar and solve.

(i )

21 I h(x,

hi)

i, r,,J il.



Dvttscs Lssai

I/ \\

I I
T,, - ICA '/hI 3

I
I I

u(l/)__

I I
1

7 ,,

u(t) T,,(t)

What is this
'
?

1. 1 could discretize the PDE using F.D). Get an O.D.E. and

dr ) solve using O.D.E.

l x() integrators

But A is huge!! Very slow

2. 1 can take that ODE d try to produce a smaller one.

,= A , (r)+h,u()

t(1)

small

[Steady State - Lina ." I
u 3 - calt 7



Dynamic Linear Case -State-Space Description

Original Dynamical System - Single Input/Output
- x(i)+ 1 (t)

Reduced Dynamical System
! ( - x( u(d - A .x(t )+ ,. u(t)

q << N, but input/output behavior preserved

bA

II
/ ! \\ li

1) j . . . .

/ ,,(,')

LransicnL error-ru



INTRODUCTION TO NUMERICAL SIMULATION

LECTURE 25.
Model-Order Reduction II

TODAY'S OUTLINE:
* Problem Setup: from PDE to large ODE
o Reduction via eigenmode truncation method
° Reduction via transfer function fitting

Point Matching
Least Square
Quasi-convex Optimization Method

* Reduction via Projection Framework

FROM PDE TO LARGE ODE
l From 3D geometry to small state space systems (MOR)

VxE= -pdi

dE JFild solvers discrctize
Vx H = d r geometry and produce large

1 m state space (ODE) systems

INTRODUCTION TO NUMERICAL SIMULATION

LECTURE 25.
Model-Order Reduction II

o Reduced Dynamical System

di/ -d 1q qx -ha -at qxl

o q << N, but input/output behavior preserved

REDUCTION VIA EIGENMODE TRUNCATION METHOD
° Reminder about Eigenanalysis

Consider an ODE: 
d x ) 

= Ax(t)+ bu(t), x(O)=O
dt

Eigendecomposition:

Change of Variables: Ew(t) = x(t) <> w(t) = E x(t)

Substituting: dEw(t) =AEw(t)+bu(i), Ew(O)= 0
di

Multiply by E: dw(t) E-AEw(t)+ E bu(t).

u ,w, (t) + E (t) +...+ , (t)= x(t)
x(t) + B n(t)

Decoupled Equations

d w: =
I M equations

MOR produces a dynamical model:
- automatically

with field solver accuracy
small (10-15 ODEs)

I1) equations

0 Dynamic Linear Case - State-Space Description
a Original Dynamical System - Single Input/Output

d(t)= A xr()+ b t) y()= (C1, . . i

1F ] + ( E 'h ) t 1 U 1
Xsw j L(E 'b),N I E bb

- L -

Ft
A= EE, .E,

E

E, E2 .. E,

xhll 1 3



INTRODUCTION TO NUMERICAL SIMULATION

LECTURE 25.
Model-Order Reduction II

d. = i (r)+hi) (i

t-how much the input excites mode i
how fast il'h, 0-' that mode is not controllable

mode eliminate it!
responds

how much the mode i is seen at the ouLnut
ilci (I the mode is not observable

-eliminate it!

Output Equation

Y(I)= c'.-()= .' E() ( ,)T I(/)

Solving Decoupied I quaions

Output Equation

,,, = h,, w + ,,(t)
di

INTRODUCTION TO NUMERICAL SIMULATION

LECTURE 25.
Model-Order Reduction II

vy()= ,,w(l) Output Equation

o Certain modes are not affected by the input
....... 

areallsmall

o Certain modes do not affect the output
k+I . are all small

o Keep least negative eigenvalues (slowest modes)
- Look at response to a constant input

, (,)= fe , Iu(t)dt = (i , u

SmalI i arg

ws,(i -. least negative

" alue

wi(t) -+ most negative
eigenvalue

t.n) wI;,.(i)

S= 0 ii' node unobservable!

i = ( i
'
' node uncontrollable!

SI)ynamic Linear Case - Reduced Models sia Mode Truncation

= . ±, ,.1)

,i ,, +

a~ hw,

_L_



INTRODUCTION TO NUMERICAL SIMULATION

LECTURE 25.
Model-Order Reduction II

Impulse Responseit..I"
tI)

X
Fast Mode
Quickly Disappears
Eliminate

Step Response

u(1)
yrt

X
Slow Mode
KEEl'

hn (X,)

Re 0(,)

Im (x)

ui
Y(1)

yX
x

INTRODUCTION TO NUMERICAL SIMULATION

LECTURE 25.
Model-Order Reduction II

N
=

100

Exact

Keep q slowest modes

Final Value Theorem

For accuracy at steady state of step response need good accuracy
for s - 0:

limH(s)= limy 
Y

eliminate terms where ' is small

H (s) +,-,..+ ,' ...
S- k s -

+ Transfer Functions
o Laplace Transform

d(t)Consider an ODE : -tt = Ah(t)+ hu(r )

Bilateral Laplace Transform: X(s) = fx(i)e "'di

Key Transform Property: sX(s)= 
d r ( t )

e "ct
Sdi



INTRODUCTION TO NUMERICAL SIMUATION

LECTURE 25.
Model-Order Reduction II

Rewrite the ODE in transformed variables

s.X(s) AX(s)+ hbU(.s) Y(s)= cX(s)

> Y(s)= c (s - A) 'bU(s)

sX(s)= Ax(s)+b U(s)

(sI - A)X(s) hU(s)

o Meaning of It(s)
For Stable Systems. H(ji) is the frequency response

If 1()0=e" ' -smhiov ,

then y(t)- H (fo)e . -inusil,.isai,. li e .

INTRODUCTION TO NUMERICAL SIMULATION

LECTURE 25.
Model-Order Reduction II

H(s)= b + b +...+ b
s.-A S S -?,

leave out iv, (t) or leave out 1c from H(s)
S - ,

A = EAE

H(s) =C'(I-EAE ')

= C'(sEE
- ' 
-EAE-') 'b

=C'E(s.-A)E ' =[ (EC)'

Ec'E[E hi
s -i Pole-Residue Form

A=E !

C I '
o EigenAnalysis

Transfer Function

H(s)= cT(sl -A) 'h
Apply figendecomposition A = ELE

-

H//(s) E(l /- A) 'E 'h

c/bS H()= 7 .....

V - /,

+--- E - Assume A diagonalizable

S 2.

• Model Order Reduction via Eigamode Analysis
Pole - Residue Form Pole - Zero Form (SISO)

H(s)= ~ H(s - )
,s-X, H(s) 

=
=

h,(t) = , ..e F (s- ,)

Ideas for reducing order:

- Drop terms with small residues c,h,
- Drop terms with large negative Re (k,) ("fast" modes)
- Remove pole/zero near-cancellations
- Cluster poles that are "together"

(I: lhl~1

nd lol 'Ax 0,,~hl

"11



INTRODUCTION TO NUMERICAL SIMULATION

LECTURE 25.
Model-Order Reduction II

REDUCTION VIA TRANSFER FUNCTION FITTING
o Counting Degrees of Freedom

Dynamical System Degrees of Freedom

d = As()+ u(t) 2+

,(t)= 'i(t) effice
Transfer Function Degrees of Freedom

H(s) = r .+ r,
(S -?,) (s -,,)

(s -,) .( s ,) 2q

(s- )-...(s-,,) coefficints
o+ bts-- + "+ b
I + ,s + + ar,,S

o Fully Invertible Change ofCoordinates
Reduced Model Transfer Function

__= A(t)+bu(t)
dt - H(s)=T(sT-A 'I
.'()= e a(/ )

Apply any invertible change of coordinates to the state (t)= U.(t)

L
&
_ U= AUy(t)+ U-'bu(t)

dt - ,(s)r (sIA) '- =H(s)

y(t)= eUF(t)
Many Dynamical System have the same transfer function!!!

I (s) = Cru(sI- U AU Ub

=C UU (s I-A) U b U' '=CT (sl_ -A)-'b U= U "" uq x

o Model Order Reduction via Rational Transfer Function Fitting
Original System Transfer Function:

H(s)= +bs+. .+b s rational function

I +as +--- +a ;s
'

INTRODUCTION TO NUMERICAL SIMULATION

LECTURE 25.
Model-Order Reduction II

Model Reduction =Find a low order (q << N) rational function matching
b 

+ 
b

s 
+ 

+ 
b

q- ls reduced order

r (s) .. - / rational function

(sl - A)X(s)= bU(s)

X(s)= (sl - A)bU(s)

Y(s) = C(sl - A)-'bU(s)

O Point Matching
o Rational Transfer Function Fitting: via Point Matching

b, + bsl + b ,2+...+ _,s;H( i)=q
I + a's + -+ a'sqoriginal

H,(s)

(0
b ) +b) s, +-+l s,

* Can match 2q points 9 (si) =

* cross multiplying generates a linear system

For i= 1 to 2q

(I + tsi+--.- +qs,)H(s -( +,s6+ + +. si++ =



INTRODUCTION TO NUMERICAL SIMULATION

LECTURE 25.

Model-Order Reduction 11

-, Point Matching can be ill-conditioned

.,H(s,) .s H(.,) -

n,i (A,,, n (,,(n ) -I

cii,

' I Ia7;: H(n1)

Columns contain progressive ly higher powers of the test frequencies:

problemn is numnerically ill-conditioned
Also... missing data can cause severe accuracy problenms

,IH(,c, )a+... +.s'H(, ) -(h,, +,. +...+ b, Sq-')=

s, E , lI]

graphs of
columns

o Hard to Solve Systems - Fitting Example

Polynomial Interpolation
Table of Data
to /(to)
I f(i)

11 .l)
(to) *.- ,

INTRODUCTION TO NUMERICAL SIMULATION

LECTURE 25.
Model-Order Reduction II

Matrix Forn
t t,- ( a , '( I)
I, 1, 11

1 Fitting f(t)= t

0.5

o

< 0

-0.50 5 10

Coefficient number

Fitting f(t)= t

0
S0.5

<0

-0.50
5 10 15 20

Coefficient number

to tl t2

Problem fit data with an NM ' order polynomial
f(t)= ao +,t+a, t2 +...+at v



INTRODUCTION TO NUMERICAL SIMULATION

LECTURE 25.
Model-Order Reduction II

Fitting f(t)= t
2

0

S-1

10 20 30 40

Coefficient number

40 Fitting f(t)= t

20

0~-

50 100
Coefficient number

INTRODUCTION TO NUMERICAL SIMULATION

LECTURE 25.
Model-Order Reduction II

• Least Square

U s much lower
H (s) order than

available poitis

H (s) t,"-<

- Cross-multiplying generates a linear I AL. SKINNY system

L'c, fr im, m1cc, 6R t( i o it or -Nc % it

+ Quasi-Convex Optimization Method
o Optimization Based Rational Fit Model Order Reduction Setup

minimize H(s) p(s)
p(s),q(s) | q(s)

from field solver
OR measurements

all stable and passive
duced order model

Least Square Method
* Cast as nonlinear least squares

(solved by e.g. Gauss-Newton)
* Do not consider stability or

passivity while finding poles
(need post-processing)

Quasi Convex Method
* Cast as quasi-convex program

(solved by convex optimization
algorithm)

* Explicitly take care ofstability and
passivity while linding poles

st
re

I - . . .I 11(s )
- -s= - _ H(s, )

i,, ,
1 -s -s H,, )

s H(,, ) . H(s, )
s I(s ) .s H(s )

.,,,H (s.,, ) ,H(s,,,)



INTRODUCTION TO NUMERICAL SIMULATION

LECTURE 25.
Model-Order Reduction II

o Relaxation of the H-inf norm MOR setup [Sou, Megretski, Daniel]

minimize H(-) Anti-stable
p qxq(z) q termns

subject to

INTRODUCTION TO NUMERICAL SIMULATION

LECTURE 25.
Model-Order Reduction II

This is a quasi-conver program, because

a(e"') = 2cos(rm))+ 2cos((m- I ),+ - ... +a, > 0

defines an intersection ofhalfspaces

deg(q) =n, deg(p,) <ti,

deg (r)< m

Stability: q(z) Schur polynomial (-oos inside unit circle)

Passivity. and possibly other constraints
Benefit: Relaxation equivalent to a quasi-convex program
Drawback: May obtain suboptimal solutions

c How\ bad is our relaxation?

Let. r ( =ar-linH()
-

S ,/.,.! (/(Z) k

Such that deg(q) m,in q(z) is Schur polynnial

Then H( ')- P') < tt, Hankel singular value

q(z) ,
o Equivalent Quasi-Convex Setup

minimize -(e")- quasi-convex ifunction
aA,, a(e")

deg(o)= m, deg(b)< m

deg (c) m,,

subject to
Stability: a(e" )> 0,Vwe [0,7r]

- convex set

Passivity: b(e"') > 0, Vco e [0,r]

I 1I 0 II

This is a quasi-convex program, because

2cos(rno, (m-1)), .. 0])[L a,,.
2cos ([tio, (-I ) ... O])[ a, i

2cos([ma, (m.-l1)w, ... O])[1 a

2cos(,,,o, (,,- l)m, ... ])[1 ,,
defines an intersection of halfspaces

a Solving the Quasi-Convex Program

deg(a)=m, deg(b)<m

deg (c) < m,
subject to

Stability: a (e'" )> 0, [0, r]

Passivity: b(e'"') > 0, V9 [0,tr]

Standard problem.
Iise for example by the ellipsoid aligorithm

an, I >0

a o,]' > 0

a, ]' > 0

minimize H(e'")- b("- quasi-convex set
(.c a(e" )

- convex set



INTRODUCTION TO NUMERICAL SIMULATION

LECTURr 25.
Model-Order Reduction II

SIAxample 2: RF Inductor with Suhstrate (from field solver)

* RF inductor with substrate effect captured by layered
Green's linction [Hu Dac 05]

" System matrices are frequency dependent

* Full model has infinite order

" Reduced model has order 6

.

INTRODUCTION TO NUMERICAL SIMULATION

LECTURE 25.
Model-Order Reduction II

o Example 4: Model of graphic card package (from measurement)

* Industry example of a multi-port device (390 frequency samples)
* 12'h order SISO reduced models are constructed
* Bounded realness constraint is imposed
* Frequency weight is employed

S11 S13

Solid: ROM
Dot: nmeasuremlent

Solid: ROM
Dot: mneasuremen'

frequency (GHz)

frequency (Hz)
o Example 3: RF Inductor Model (Iliro measurement)l

Fabricated 7 turn spiral inductor
inn d: n oasl Ircrllsll[

frequency (GHz)

Example 5: Large IC power distribution grid (from field solver)

* Power distribution grid (dimension size 7mm, wire width = 2 pm)

* Blue: full model (order 2046)

* Red: QCO 4 0
'
order reduced model (positive real)

2 curves on
top of each
other

3 curves on
top ofeach
otfrequenfrequency (her

frequency (GHz) frequency (GHz)frequency (Hz)frequency (Hz)



INTRODUCTION TO NUMERICAL SIMULATION

LECTU RI 25.
Model-Order Reduction II

REDUCTION VIA PROJECTION FRAMEWORK
4 Counting Degrees of Freedom

Dynamical System Degrees of Freedom

di =A(i) +bu(t)

Transfer Function Degrees of Freedom

H(s) =(s 1  ... + ( , )

( -, ). (s-,,) coefficients
bh + s+... + b,,_ I

I + aI + -+ U,,n."

+ Fully Insertible Changc of Coordinates
Reduced Model Transfer Function

-= Ax(t)+ h(i)
dt s li(s)=cT( -A)- '

Apply any invertible change of coordinates to the state x(l)= V.(t)

V i V 'AV.T(i)+N ',,,(t)=~ V iAVit+ ib(t) A(s)= (.,'(s-A) h= H(s)

1 v,(r) = c 7W(t)
Many I)ynamical System have the same transfer function!!!

(sl - V 'AV(s) V 'bU(s)

X(s)= (,I V AV)-' V'bU(s)

(s)= (,v-'V - V-'AV) V-hU(.)

k(s)= V (sI - A) VV 'hU(s)

Y(.s) C'VV' '(s/-A)-' VV-'hU(s)

INTRODUCTION TO NUMERICAL SIMULATION

LECTURE 25.
Model-Order Reduction II

Eigenanalysis

Consider an ODE: d
t  

(t()+Ou(), x()= 0
dt

Eigendecomposition :

A = E , E, E EJL E .

Change of Variables: Ew(t)= x(tr) w(t)= E 'x(t)

Substituting: dEw(=i) AEw(t)+hu(t), Ew(0)= 0
dt

Multiply by E-' : dw(t) = E'AE()+ E u(),

o Eigenvalue Method Reduced Models via Mode Truncation

[2] K' ' JL W],[2]+L

, u, L M: (t)

O Projection Framework: Noninvertible Change of Coordinates
Note: q <<N

*xi

x. " Note: q < N

. )itreduced state

original state



INTRODUCTION TO NUMERICAl. SIMULATION

LECTURE 25.
Model-Order Reduction II

x - A x + b i(t)

x+ 11,

* Original System

Ax(i)+ bu(r)
di

A, A (i ) + /)

V, i =AVi.(t)+hu(i)

* Notes mm !eN rm . (i e - m [he Itel. buill 1 th s s
0,11l,1 1oli,- (\

INTRODUCTION TO NUMERICAL SIMULATION

LECTURE 25.
Model-Order Reduction II

SIUT A V
X V A, x N V N X

q IJTV = I

d(t)

Y(1) cTVJ, (t)

Reduction ofni umbcr o i eqcnua i,
test bN mIultiplI ing b 1W V_

/1 /(t) = UqA V,(t) + Ub u(t)

U,V, =I

If U,' and V,' are
chosen biorthogonal di(t)

= 42(t) + u(t)
dt

y t)r(t



INTRODUCTION TO NUMERICAL SIMULATION

LECTURE 25.
Model-Order Reduction II

INTRODUCTION TO NUMERICAL SIMULATION

LECTURE 25.
Model-Order Reduction II

0 eliminate all the equations
except for the first three and last

o three

1

Add groups of three

1Il j
S= -(t)+ u(t)

d = A x(t) + b u(t)dt

Non-invertible change
of coordinates (Projection)

x=Uqxc 
Uqq

x +bu

+ U bu

nxq

it
= A a(l) + bu(t)

Equation Testing
(Projection)

A Vi=U Ax= fi

A

+bu

-=TA - U spaceq AV,

1
0

dx

dt

0

0

S0
0

I 1 1

d2dt

nxn

nxn

q
nxq

di

dt

nxn nxq



INTRODUCTION TO NUMERICAL SIMULATION

LECTIJRE 25.
Model-Order Reduction II

o Approaches for picking Vand U
o Use Eigenvectors of the system matrix (modal analysis)

Eigenmode Analysis

A A F t

A = EAE E, ... E E, ... Ei,

x(t)=E.=E, E, ... E,1 E,,I E.1% Y

3 -1 ,1 -1 4, Invertible change
of coordinates

x =El E ... E Non-invertible change of coordinates

Sq eigenvecto rs -
V = E E E,3  " EV = ? VrV= /

INTRODUCTION TO NUMERICAL SIMULATION

LECTURE 25.
Model-Order Reduction II

H(ito)

Wt
1  

(02 (0
31  

Olq ()

V, V, 1 " Sil ..
la

. . r [I I

aV O.

A-(t)+ bu(t)

u(I)- .x(t)

o Use Singular Vectors of System Grammians Product (Truncated Balance
Realizations)

o Use Krylov Subspace Vectors (Moment Matching)

,= t) ) x(t ) .(t ,, x ) . x(t ),,

I)ccmpnsion

lt)Ft- x( ) (2
x~tl) II.~ z l Isl

X(fl)



INTRODUCTION TO NUMERICAL SIMULATION

LECTURE 26.
Model-Order Reduction Ill

TODAY'S OUTLINE:
+ Truncated Balance Realizations
° Krylov Subspace Moment Matching

- Preserving passivity
Need mbr orthogonalization (Amoldi process)

- Overall computational complexity
Compari ng Truncated Balance Realizations and Krylov Subspace Moment
Matclling

TRUNCATED BALANCE REALIZATIONS
+ Approaches for picking Vand U'

o Use Eigenvectors of the system matrix (modal analysis)
c Use Frequency Domain Data

- Compute x(si ), X(s2), .... X(S)
-Use the SVD to pick r/, k important vectors

O Use Time Series Data
Conmpute. x(l ), x(1I) ..... (i)

x se the SVD to picky - k important vectors
I se Singular Vectors of System Grmians £0rodu (Timucted laiance
Reaizations Al

c Use Krylov Subspace Vectors (Moment Matching)
- Observability Gramian

(0 
l ) = C', -( )

Hence: eigenvectors of fo corresponding to small eigenvalues do NOT
produce much energy at the output (i.e. they are not very
observable):

Idea: let's get rid oflthem!

"'o =X, xi x, X \

cigcnvcctors

Note C = wJ; x . .- x

Unitary Orthonormal Matrix

=-1 -x

r(0) = . xl

=) e)
A
'C

x

X1 x,

? $ ]n-cl ,

0 ... 0 0 ...

a, X, -

.i = .0 1 f
0

Energy of the output. (t) starting from state .r with no input:

(t) = it I(1/i =(C A,)' Cc 1dr Cc aJ1t If

Note: it is also the solution oft A'i, oA 
= 

-'C
\ote: I I h . -x, 

th
e i cigcnvector of It',:

I( I T r'o , ,

A v) I-
vt(t) y (t ) 2

I EA 1)

Xr[ ...... I I



r Controllability Granmian
Minimum amount input energy required to drive the system to a specific
state x:

min fu(1), u(t)dt = .1 e'BB e^"di x

IniiitI Ju aI ' lso Ih'e Soltion (ita

Il h A li, , I A.' - lift'

Note: Ifx -- x, the ti
0 

eigenector of I,V:

Ilence: eigenvectors of It, corresponding to slnall eigenvalues do NOT
produce much cncrgy at the output (i.e. they are not very
controllable):

Idea: iet' uct lid .0 fdhcnl

S) it) 10) )

(C

i atminimum energy

eigenvectors

T T

=X, X cAcX .x,
= x Xc A Xx.a

K1 0
i0

Native ControllabilityiObservability MOR
o Suppose I could compute a basis foIr the strongly observable andor

strongly controllable spaces. Projection-based MOR can give a reduced
model that deletes weakly observable and/or weakly controllable modes.

o Problem:
What if the same mode is strongly controllable, but weakly
observable?

Are the cignvalues of the respective Gramians even unique?
. Changing Coordinate System

o Consider an invertible change of coordinates: x(i) Uir(t)
o We know that the input/output relationship will be unchanged.
o But what about the Gramians, and their eigenvalues?

" Gramians and their eigenvalues change! Hence the relative degrees of
observability and controllability are properties of the coordinate system

o A bad choice of coordinates will lead to bad reduced models if we look at
controllability and observability separately.

o What coordinate system should we use then?



Wo =eA "'C
'
CeAdt x= U

= U 'AUx(i)+ U 'bu(l)

y(t)= CU(Rt)

Wo = '': 
' A )

i i(CU) (CU)el 'AUt'd

= IU'eA'U-' U'C'CUU-leA'Udt

= Ur oU

U invertible

Wo = UIXAxr U

these are not the new Xr 'U (UTX -
eigenvectors in general UrXrU = U'U 1 1 only ifU is

orthonormal

;6 Balancing
Fortunately the eigenvalues of the product of the Gramians (Hankel singular
values) do not change when changing coordinates:

Diagonal matrix with eigenvalues of the product

W, = S S
- 1 The eigenvectors change

S )Ux(t) But not the eigenvalues

U WU
' 

U WoU= U 'WWoU= (U zw (U 's)

And since 4,, and I ,are symneLric a chalnge o
"'I- coordinatc mntraix i can he ibund that diagonaliz: both

Z - - In Balanced Coordinates the Gramians are equal and diagonal
> Selection of Vectors for the Columns of the Reduced Order Projection Matrix.

In balanced coordinates it is easy to select the best vectors for the reduced
model: we want the subspace of vectors that are at the same time most
controllable and observable:

U
-
1 WcU

-
T uTWou - Y2 Simply pick the eigenvecors

-'-corresponding to the largest entries on
the diagonal (Hankel singular vaules)

In other words the ones corresponding to the largest eigenvalues of the
controllability and observability Gramians product.

Truncated Balance Realization Summary
o Thegoodnews: H(joa)-H(jo) (X +,+.q+ + .,,)

- We even have bounds for the error
- Can do even a bit better with the optimal Hankel Reduction

o Thebadnews: ATW +WA= _CTC
It is expensive:

" Need to compute the Gramians (solve Lyapunov equation)
" Need to compute eigenvalues of the product: O(N )

o The bottom line:
- If the size of your system allows O(N

3
) computation, Truncation

Balance Realization or Hankel Reduction are a much better choice
than the any other reduction method.

- But if you cannot afford O(N
3
) computation (e.g. dense matrix with N

> 5000) then PRIMA or PVL or Quasi-Convex-Optimization are better
choices.

4 Approaches for picking Vand U
o Use Eigenvectors of the system matrix (modal analysis)
o Use Frequency Domain Data

Compute x(s), x(s2), ..., x(sk)
- Use the SVD to pick q < k important vectors

o Use Time Series Data
- Compute x(t), x(t2) ..., x(t )
- Use the SVD to pick q < k important vectors

o Use Singular Vectors of System Grammians Product (Truncated Balance
Realizations)

Original System Transfer Function Moments

H(s)= C
T
(s - A)-'b

= - (I - sA-')-' Ab
Taylorexpand

with respect to s

I =I+x+X
2 

+X
3

+...

l-x

1-sA =I+sA
- 

+s2A
- 

+
3
A 

-3 
+...

= ycA -(k+lbsk
k=O

moments

wo = X



S111 + 1110 + ... + IIr is + ..
x = b+sEb+s

2 
E'b

DH 4 I

* c jb, EbE'b,...N ' 2&"
N'

c A-'h c'A b2/ ' Ah c'A A-

Seigenvectors

A b= A +I[a-,, +-+(, ]

0= , 4 -i iQ

A h= c t 0 1 +

Cross-Multiplying and Matching Temis

7L -I .. 1712 112 , ( i LL

• A Canonical Form for Model Order Reduction

sx = Ax + b i

E 4
- 1 

A=A linun .- is uon-inagular \,e can cast lhe
d(ilamical linear system into a canonical fnrmn

b = A b L r momcnt nmatein, model order reluction

"I , c: Iis otp Is IL ncccts,,ar , Il LISt ltlakcs

0%, mition I mimLple tL reducational purposes

V=C X

- The Mom Matching Idea [Grinmme PhD97]

sEv=x+bu x* -(I-sE) 'bt,

Taylor series expansion:

X. =- s Eb u . eM span {),Eb, E'hb,
. }

it;lml imS Ls, llA Iort q " F , I O

dciIt c' a lwtO )l matct '-AI L cl l q

+s 3
E3

b +...
Moment

E_1, ].,

s'=C 

sEY = x + b UI Eb

b,' +b +...+ +
+H, +...+ '
+ a; s .. + ti,



Point Matching:
can be very inaccurate
in between points

Moment (derivatives) Matching:
accurate around expansion point, but
inaccurate on wide frequency band

\AH(s)

SKr) lov Suhspaces - Delinition

The order k Krv lo subspacc generated friomn matrix E and vector b is dclincd as

k,(E.,)- spannE,,.El, ....E. Ib
r Moment Matching around iNon-zero Frequencies

Instead of cxpanding around only s 0 we can expand around other points

sx = Ax + bu ( + s,,)x =Ax +bu

' = C s = +s , ' = cTx

N s(s;)

.0

rx = (Ax -s.,x)+ bit

R(A-.s I) x= x+(A - s,I)-' bit

x= b El E
2

b b,, E,,, b E,, E,

For each expansion point the problem canl then be put again in the
canonical formn

E,, = (A - s,, I)

E h x = x + b u

y = CTX

> Projection Framework: Moment Matching Theorem [E. Grimme 971

If Rage(u,,); U (E(,,.,,)

and Rainge(,) K (E , ,c,
)

'H I 'I I=0,.... k,,+k'-I
Then = for . .

s' h ....

Total of 2q moment of the transfer functieon will match



If spani) , 1 .A 
.

It ...... UIt" U K,,, ((A - i (A .I )'h)

and scln t .... ' m U ,, (A -j) (A s I )

hen i for/=0 ... ,k +k -1

spn,.. ,= spc , ....t ,,t A -'bA 'b.A 'b ...

II, (s)= 1 tm . + IS , +...

Example.

AC I-,) (F ,Il- F ( -,,-'C (F- 1) C (F.-,,/) Cj

4 moments 6 moments 4 moments

at DC (dcriatiscs) at .si at s

If U and V are such that

U = V= a ... , i }and UU = I

span ,( .... l,j= spanA -'b.A 
2
b,...,A 'b

Then the first q moments of reduced system match

HI(s)= -c' (i-.A-)1 A 'h= c'A s'bs

H,. (s)=-c,(I-sA )-l A,. = ' cA hbrs
k-0

c'a b+' b= cU,(U AU,) l ,'

A, = U AU,

c,. = uc

k = (0....q -1

Combine Point and Moment Matching: Multipoint Moment Matching
* Multipole expansion points give larger band
* Moment (derivates) matching gives more accurate behavior in

between expansion points

* * (s)

KRYLOV SUBSPACE MOMENT MATCHING
+ Preserving Passivity

o Interconnected Systems
In reality, reduced models are only uscifl when connected together with
models of other components in a composite simulation

- Consider a state-space model connected to external circuitry (possibly
with feedback)



ROM

- Can we assure that the simulation of the composite system will be well-
behaved? At least preclude non-physical behavior of the reduced model?

o Need to Preserve Passivity for Models of Passive Interconnect

PC% package, IC
Analoa or diaital IP blocks interconects

o Sufficient Conditions for Passivity
sEx = x + B
y = Cx

Sufficient conditions for passivity
1. C=Br
2. xrEx O,forallx

i.e. E is negative semidefinite
Note that these are NOT necessary conditions (common misconceptions)

o Example Finite Difference on Poisson Equation

To = 0 J eat
end

dxt) A x(t)+ bu(t)

21

-A
A=-

2 -1

1 2

0

-1 - 0
1 2

0

C=

0

We already know the Finite Difference matrices is positive
semidefinite. Hence E=-A ' is negative semidefinite.

connecting Passive Systems
The interconnection of stable models is not necessarily stable
But the interconnection of assive models is a assive model:



Congruence Translonnation Preserves Negative Deliniteness olf E (hence
passivity and stability)

qxn u L

nx

If we use V = Ut

n n

AZ

o Need lor Orthogonalization (Arnoldi process)
o Need for Orthonomalization of U

Vectors /b.Eb...., 'l b/cannot be computed directly

rrTL_
X q Ux q

xq nxq

* Then we loose haltfof the degrees of freedom
i.e. tie match onl y moments insted of l Q

* But if the original matrix E is negative semidefinite
so is the reduced hincc the Sste ii passi ve and stable

A Er < o VV

x U" ElUx 0 V.x

lPick N
. U'EU, <0 use .vEv 0

Vectors will quickly line up with dominant eigenspace!

E= VAU
r

b = (,I' + Cu, , ... + , I

Eb =otEi' + uoEv, 4 ... + a, Ev,
=u l~'I +U, 2 1, ' +... . . + i \V.:\

E t= a5 ,v, + u,fi, + ... + , -,,

1 - >. .. > x

E' b= , 1v 'v, + (...+ u~ c, Iv,
STI .... IT k

I a econ l clll earlll lly

dependent and parallel
to the eigen, ector with
the largest eigenvalue

U = ,Eh, E b, E h...

... ..... I;

very large



° Overall Computational Complexity
o Ortlonorimalization of Li: The Arnoldi Algorithm Computational Complexity

i7 = b / b Normalizec fist vector
i 0(n)

For i = 1 to k

II, = El, <, e n, K,

Forj = 1 to i

• What about comnputing the reduced matrix E= I

E up -- uIt

i = iii

I iij\,:: "r.

5i . '; '1'

E fiil1 , - ( r-, -), Oli'thlio,1,lize ne, Vectorii
F.. 11

o~ Ij l

U' ,EU,?

Orthonormalization of
the i"' column of UQ,,

Orthonormalization of
all columns of U,,

F EU, = UqF

UEU, = F

FiI.,
Normalize nc tw 5 ctcor

()(n)

SGenerating Vccors lor the KryoIv Suihspace
Most ol the compttalion CO;t is spent ill calculating:

1i, = E0 , = (A -

,., =(A -l s ',7, (A- s,[ji),, =, 0(n)

Set uLp and solve a linear system using GCR

(A -.s,1) -,, " = ii,
I- f we have a good preconditioner and a flist matrix vector product each new
vector is calculated 0(n))
-he total complexity 1ir calculating the projection matrix U,, is O(qln)

COMPARING(; TRUNCATED BALANCE REALIZATIONS AND KRYLOV
SUBSPACE MOMENT MATCHING

UEU di = -()+ Ur i() Reduced Model

f(,) = CTU,'()

So we don't need to compute
the reduced matrix. We have it already:

-'e Two Complementary Approaches

Moment Matching Approaches Truncated Balance

- Accurate over a narrow band. Hankel Reduction

Matching timction values and - Optimal (best
derivatives. size q, and apt

- Cheap: O(qn) - Expensive: O(

- Use it as a FIRST STAGE - USE IT AS A
REDUCTION REDUCTION

I - MIM - u

E=F

.d Realization and

accuracy tfor given
riori error bound.

1)

SECOND STAGE

,sus , ren

I i1o /!,, "n

%.' ,,,,tO



Model Order Reduction Computational Complexity (time and memory)

1 z ,-] BI-(,) A iS D EN S E !
MOR technique Computational Complexity

Bottleneck: SVD
TBR ('81) Hankel ('84) O(NV)

(have error bounds) e.. I0monthl SOGHI. f-or N-100,000

Moment matching ('97) Bottleneck: matrix-vector product
(no error bounds) O( qN-)

c.g. ( 0ays, IGB1, for N (100,000l q- 10

Moment Matching + O(qN log N)
pFFT matrix-vector e. Shour, 0.3G B for \- 100I.00 q- 1

QuasiConvex Optimization O(mN log N)

pFFT field solver smli a above. but Ithave error bound!

And Remember, No Matter What...


