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Abstract

We study the problem of optimal execution within a dynamic programming framework.
Given an exponential objective function, system variables which are normally distributed,
and linear market dynamics, we derive a closed form solution for optimal trading trajec-
tories. We show that a trader lacking private information has trajectories which are static
in nature, whilst a trader with private information requires real time observations to exe-
cute optimally. We further show that Bellman's equations become increasingly complex to
solve if either the market dynamics are nonlinear, or if additional constraints are added to
the problem. As such, we propose an approximate dynamic program using linear program-
ming which achieves near-optimality. The algorithm approximates the exponential objec-
tive function within a class of linear architectures, and takes advantage of a probabilistic
constraint sampling scheme in order to terminate. The performance of the algorithm re-
lies on the quality of the approximation, and as such we propose a set of heuristics for its
efficient implementation.
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Chapter 1

Introduction

The problem of balancing risk and reward is one that is inherent to the stock market, and

one that investors must understand well if they wish to outperform their peers. The basic

premise behind portfolio theory states that, at every point in time, the portfolio manager

must allocate a limited set of resources across stocks with diferring risk and return profiles,

always with the goal of maximizing returns and minimizing risk. Markowitz, in 1952,

formalized this thought process mathematically and introduced the notion of an efficient

frontier: a curve over which a portfolio maximizes return given a certain level of risk. This

concept is perhaps the most fundamental cornerstone of Modem Portfolio Theory. The

original framework, however, overlooks a significant player in market dynamics, and one

that has triggered much academic interest in the last decade: transaction costs. Transaction

costs refer to the various costs of implementing a portfolio, and which derive mainly from

the demand of liquidity. The majority of these costs can be traced back to comissions,

bid/ask spreads, opportunity costs and price impact.

In 1988, Andre Perold studied the effects of these transaction costs on portfolio se-

lection. He noticed that a hypothetical or "paper" portfolio consistently outperforms its

actual portfolio. In one such example, he realizes that a hypothetical portfolio constructed

according to the Value line rankings outperforms the Value Line Fund (the actual portfo-

lio) by over 15%. Perold calls the difference in performance between the "paper" and the

real portfolio its "implementation shortfall". The implementation costs, as he notes, can

significantly offset returns if they are not managed appropiately, suggesting that a portfo-



lio manager not only wants to maximize return and minimize risk, he also wishes for his

portfolio's shortfall to be minimized - that is, he wishes for the trades that will take him

from a "paper" to a real portfolio to be optimally executed. Optimal execution, however, is

a game of balance - if you execute too fast, your impact on liquidity will be large and your

impact costs will increase, if you execute too slow, the inherent randomness of the mar-

kets can cause unfavorable price movements. Almgren and Chriss (2000), using the same

framework that Markowitz had devised 50 years before, elegantly model the intricacies of

the inherent tradeoff between impact cost and timing risk that a trader faces when trying to

achieve optimal execution. They introduce as well the notion of an efficient trading fron-

tier, that is, the set of all trading trajectories that minimize cost for a given level of risk.

Even though the analytical framework derived by Almgren and Chriss is still widely used,

its underlying assumptions are no longer valid.

Almgren and Chriss develop their framework within a market that behaves linearly, that

is, one in which impact costs are linear in the size of the executed order. This oversimplifies

the highly complex market dynamics, thus producing trajectories which are suboptimal.

Recent academic work strongly favors market dynamics which are nonlinear in nature,

more specifically they favor a square-root model. Additionally, the Almgren and Chriss

framework does not scale easily when there exist trading constraints. These constraints

constitute any additional restrictions the trader might have when executing: a trader track-

ing short-term capital gains might be restricted to executing only within a certain price

range, or a trader executing on behalf of a mutual fund might be restricted from short

selling. In either case, the exclusion of these constraints from the optimization process

significantly alters the shape of the resulting trading trajectories. The last point to be made

regarding the Almgren and Chriss framework refers to the nature of their solutions: their

chosen optimization method produces static trading trajectories. That is, it produces trad-

ing curves that do not react to changes in market conditions. It is clear that an execution

strategy which adapts dynamically to unforeseeable market conditions will, on average,

outperform its static counterpart. As such, we wish to approach the problem of optimal ex-

ecution within a framework that is both dynamic, and that is easily extendible to nonlinear

and constrained systems.



In the following chapters, we provide an in-depth study of the problem of optimal exe-

cution within a dynamic programming framework. This, however, is not a new approach:

Bertsimas and Lo (1998) and Huberman and Stanzl (2005) both study optimal execution

through dynamic programming. In Chapter 2, we replicate the results of Bertsimas and

Lo (1998) and Huberman and Stanzl (2005) using an exponential objective function that

allows for risk control. We show that, in a market with linear dynamics, a trader without

private information does not benefit from the adaptive nature of the dynamic algorithm. On

the other hand, however, we show that a trader with some prior information regarding the

price dynamics, which we choose to model as an exponentially decaying stochastic pro-

cess, only executes optimally when he does so in response to these real-time observations

of the private information variable. We further show that once we add short sale constraints

to the problem, or once we choose to model market dynamics with a nonlinear function,

the algorithm ceases to give us a closed form solution for the optimal trajectories. Instead,

the problem becomes exponentially hard to solve, and we are thus forced to approximating

the optimal value function in the hope of finding a suboptimal solution that fits our needs.

In Chapter 3 we introduce the notion of Approximate Dynamic Programming via Lin-

ear Programming. We show that the dynamic programming equations from Chapter 2

can be solvable via a nonlinear program. We further show that the exponential objective

function is suitable for linearization, and we can thus solve an approximate version of our

original problem using linear programming algorithms. The main advantage of the linear

programming algorithm is that it the underlying model can easily incorporate nonlinear

impact functions and shortsale constraints. However, the performance of the algorithm is

highly dependent on a number of user input parameters. As such, we introduce each of

these parameters and propose heuristics for each of them that are based on the results from

Chapter 2.
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Chapter 2

The Trader's Problem

Suppose a trader wishes to purchase S units of a security over a fixed time horizon [0, T].

For every unit length interval k E [0, T], the trader must determine the optimal number

of units that he wishes to buy, st. When making such a decision, the trader seeks to find

a balance between his immediate and his future costs, whilst maintaining his exposure to

risk within a desired level. Risk, in our framework, refers to the uncertainty associated with

the forecasted execution cost of any trading strategy. It mainly derives from the volatility

of price and market volume. Costs, on the other hand, are associated with the market im-

balances produced by trading. When liquidity is finite, there is an impact on the price of

the security that comes from the associated increase in demand due to st. This impact on

price has both a short-lived and a long-lived effect, and as expected, moves in a direction

opposite to that which benefits the execution. These effects, commonly referred to as mar-

ket impact, can be thought of as the difference between a price trajectory in which an order

for st units was placed, and one in which it was not. Since both of these scenarios can-

not be reproduced simultaneously, market impact has come to be known as the Heisenberg

Uncertainty Principle of finance (Kissell and Glantz (2003)).

Bertsimas and Lo (1998) show that a trader seeking to minimize market impact will

choose to trade evenly throughout the entire horizon. Nonetheless, this strategy ignores the

underlying volatility of price and the opportunity cost that might arise from unfavorable

price movements throughout the trading horizon. As such, we will assume that the objective

function of the trader not only accounts for the expected cost of purchasing S units over the



trading horizon, but also accounts for the variance of such an execution strategy. If we let

st be the number of shares executed at price Pt, and we let V* be some variance associated

with the trader's degree of risk aversion, then the trader's problem can be summarized as:

mm E [t st

s.t. var ftstl < V*

t = f(Pt-lSt, t,Et) (2.1)

Xt = V(Xt-I, V't)
T

E1st = S
t=1

St > 0

where xt is a variable that predicts price, Et and vt are gaussian noise, and f(.) and g(.) are

functions that model the dynamics of pt and xt respectively. Such dynamics will be further

explored in the next section.

The problem formulated above can be approached using both dynamic and static opti-

mization techniques. A static solution to Eq. (2.1) results in strategies that are determined

a-priori, that is, st can be fully characterized using only information available at time t = 0.

On the other hand, dynamic solutions will use information available up to time t - 1 to de-

termine st. The nonnegativity constraint in Eq. (2.1), st > 0, is commonly referred to as

a shortsale constraint. Bertsimas and Lo (1998) show that a dynamic solution to the risk-

neutral (i.e., V* - oc) trader's problem with such a constraint is exponential in time. As

such, they propose a static nonlinear optimization problem that, even though does not have

a closed form solution, is indeed computationally feasible. Almgren and Chriss (1999)

study the trader's problem in the case where shortsale constraints are ignored. Using a

static optimization approach, they derive optimal trajectories, and introduce the concept of

the Efficient Trading Frontier (ETF). The ETF is the curve in the mean-variance space that

results from solving Eq. (2.1) across different values of V*:



(V*) = minE [ tstj :var [ ptst < V* (2.2)
st t=1 t=1

More recently, Huberman and Stanzl (2005) solve a dynamic version of Eq. (2.1) us-

ing an additive-separable version of Bellman's equation with both expectation and variance

terms. Assuming a linear price impact function with constant and positive slope, and ig-

noring shortsale constraints, the authors arrive at a closed form solution for the traders

problem. Using the same technique, they propose a recursive solution for the problem in

which the price impact slope is time-dependent. Such a scenario derives from empirical

evidence: Chan, Chun and Johnson (1995) find that the spread of NYSE stocks follows a

U-shape pattern, thus suggesting that the slope of the price impact function should behave

similarly.

2.1 Market Impact and Price Dynamics

As was suggested previously, the market impact associated with the order of st units has

both a temporary and a permanent component. The temporary market impact represents

the cost from demanding liquidity, and possibly exhausting liquidity at various price levels.

Such imbalances lead to price movements away from the equilibrium. However, once liq-

uidity is reset, the price goes back to its equilibrium value. The permanent market impact,

on the other hand, represents changes in the equilibrium price of the security, and as such,

affects the cost of all subsequent trades.

We will define the temporary and permanent impact to be functions of the trade imbal-

ance. From the trader's perspective, the trade imbalance at time t is given by st + Tt, where

rqt represents the residual trades in the market. We will further assume that {T }[t= are

i.i.d. random variables, with zero mean and finite variances cr ,. Additionally, we assume

knowledge of some variable xt that influences price. Such a variable can represent, for ex-

ample, an expectation of liquidity for the particular asset of interest, or the expected return

on an index that the asset might follow closely. Suppose that at time t, the equilibrium price



of the security is pt. The execution price, pt, is then given by:

pt = Pt + Tt (st + rt) (2.3)

Here, Tt (st + it) is the temporary impact function. Note that our model, as recent

empirical studies suggest (Chordia et al. (2001)), allows for the temporary impact function

to vary with time. Similarly, the equilibrium price at time t + 1 will be given by the discrete

arithmetic random walk:

Pt+l = Pt + Pt (St + t) + It (xt) + Et (2.4)

The Et are random variables with zero mean and finite variance, o ,t , which represent

the volatility of the security at time t, Pt (st + rt) is the permanent impact function, and

It (xt) is a function that predicts price based on the information variable xt.

2.2 An Exponential Utility Function

The traders problem, as stated in Eq. (2.1), is to minimize execution costs while maintain-

ing exposure to risk within a certain desired level. We can rewrite Eq. (2.1) as:

min E piStv f(*))
s.t. pt = Pt + Tt (st + rt)

pt+I = pt + Pt (st + t) + I (xt) +t Et(2.5)
(2.5)

xt = g(xt it)

T

ZSt = S
t=1

st > 0

where u (0, A) represents a utility function that captures the desired trade-off between cost

and risk preference. Let u (0, A) = exp (AO), where 0 is a random variable representing the

cost distribution of the execution strategy, and A represents the risk aversion coefficient of



the trader. If 0 is normally distributed, we have that:

E [u (0, A)] = E [exp (AO)]

= exp AE [0] + r)

We can readily see that with an exponential utility function, (2.5) is equivalent to a

mean-variance optimization:

minE [exp (AO)] min {xp (AE [0] + 2(X) }
= min E [0]+ 0

Alternatively, we can think of this problem in terms of the certainty equivalent cost.

The certainty equivalent cost is defined as the fixed cost, 0c, whose utility is equal to the

expected utility of the cost distribution, 0. An equivalent problem to (2.5) would be one in

which we seek to minimize the certainty equivalent cost. If the cost distribution is normally

distributed, we can solve for 0c:

exp (AO0) = E [exp (AO)]

= exp AhE [0] + -A01

And we conclude that 0, = E [0] + -2. We can again see the equivalence between (2.5)

and a mean-variance optimization:

min E [exp (AO)] - min 0,

= min E [0] + }

The above equivalence, along with the multiplicative properties of the exponential func-

tion, will make such a utility function of particular interest when formulating the trader's

problem in a dynamic framework.



2.3 A Dynamic Program

Suppose that in the price dynamics equation (2.4), Et is normally distributed, such that

Pt also follows this distribution. We can now take advantage of the exponential utility

function, as was shown in the previous section, and we can restate the trader's problem as:

min E exp A ptst
St

t=1

s.t. t= + T (st + t)

Pt+1 = Pt + Pt (st + Ut) + I (Xt) + Et

T

E St = S
t=l

st > 0

At any time t, the state of the above system can be fully described by the equilibrium

price at time t, pt, the information variable xt, and the number of units that remain to be

sold, Wt = Wt-1 - st-1. These variables represent the information that is available to the

trader before he decides the number of units he plans to purchase at time t, st. Additionally,

we have the boundary conditions W 1 = S and WT+1 = 0.

The dynamic programming algorithm relies on the fact that a sequence of trades that is

optimal in the interval [0, T] will necessarily be optimal in the interval [t, T], for all t > 0.

If we let Vt (Pt, xt, Wt) be the optimal cost-to-go function when our state is (Pt, Xt, Wt), we

can translate the above condition into the following recursion:

Vt (ptt, Wt) = min E [exp (Aptst) Vt+l (pt+l, xt+, Wt+l)] (2.6)
st>O

Additionally, because of the boundary condition we require that

VT (PT, ZT, WT) = E [exp (APTWT)] (2.7)

since the optimal trade size at time t = T is s* = WT.



Thus, the expected utility for the optimal trajectory st, ..., s will be given by:

V (pl,Xl, WO) min E exp A ktst plXlW 1  (2.8)
si,...ST>O 

E t 0
t=1

2.4 The Unconstrained Trader's Problem

As an initial approach to the constrained trader's problem, and in order to gain some insight

about how solutions to it might behave, we will first consider the unconstrained version of

the DP recursion presented in the previous section:

Vt (pt, t, Wt) = minE [exp (Aptst) Vt+ 1 (pt+, t+l, Wt+1)] (2.9)
St

Since we require Pt to be normally distributed, the above equation can be simplified to:

Vt (Pt, Xt, W) = min exp (AE [p] st + s2var (Pt) E [Vt+1 (Pt+l, Xt+1, Wt+i)l

(2.10)

Similarly, the boundary condition in Eq. (2.7) can be rewritten as:

VT (pT, X, WT) = exp AE [fT] WT + W2var (PiT) (2.11)

To solve the above system of equations, it will be necessary to fully characterize both

the market impact functions as well as the dynamics of the information variable and the

function lt (xt). In what follows, we solve the Trader's Problem when the dynamics of the

system are linear, both with and without access to the information variable xt. The solu-

tions will thus give us an understanding of the value of both information and its dynamic

incorporation during execution.

2.4.1 Linear Dynamics without Information

We will quote a result by Huberman and Stanzl (2000), which states that when price impact

is time stationary, only linear impact functions rule out arbitrage. This, in our framework,



refers solely to permanent impact, as temporary impact functions do not introduce arbi-

trage. However, for simplicity, suppose that both the temporary and permanent impact

functions are linear, and their slopes are time-dependent. In the absence of information, the

price dynamics then become:

Pt = Pt + 71,t (St + 7]t) (2.12)

Pt+1 = Pt + '72,t (St + 't) + Et (2.13)

Under the above dynamics, the unconstrained trader's problem has a unique closed-

form solution. The following theorem characterizes such a result.

Theorem 1. Suppose the price dynamics of the system follow Eqns. (2.12 - 2.13). Then,

the recursion given by Eq. (2.10), with Eq. (2.11) as the boundary condition, has a unique

solution given by.

ST-k O= kWT-k (2.14)

VT-k (PT-k, WT-k) = exp (A - f (pT-k, WT-k)) (2.15)

f (pT-k, WT-k) = PT-kWT-k + akWT-k (2.16)

for k = 0, 1,..., T - 1, where.

(2ak-1 - 72,k) + A ( + 2,2k) (2.17)
Ok = 2,k n k E k) (2.17)

2 (ak-1 + 71,k - 72,k) + / (,k r,k 2,k,k + ,k)

ak = (1 ) k-1 + 2 (- 72,k%, +k + ,k) +k k - 2,k , + + 0
kY2,k

(2.18)

with 0o = 1.

Somewhat against intuition, we realize that the optimal execution trajectory in the ab-

sence of information is only a function of the size of the unexecuted order, Wt, and is
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independent of the prevailing equilibrium price, pt. That is, the optimal strategy does not

take advantage of intraday price observations. Instead, all the information needed to derive

the sequence of optimal trades is known a-priori. Such a strategy is commonly referred to

as being static, and provides a useful benchmark when assesing the real value of dynamic

execution algorithms.

The question still remains, however: why is the optimal execution trajectory indepen-

dent of price? The answer lies in the structure of the price dynamics. As can be seen, an

observation of the equilibrium price at time t in no way helps us predict future values of

the equilibrium price - the only variable which does so is our control variable, st. That is

to say:

E [Pt+k - Pt+k-j Pt] = E [Pt+k - Pt+k-jl = 72,t+k-iSt+k-i
i=1

In other words, Pt gives no additional information as to whether it is preferable to execute

at time t + k - j, or wait an additional j periods and execute at time t + k.

Figure 2-1 shows sample execution trajectories for different values of the risk-aversion

parameter A. We readily recognize, for example, that a risk-neutral trader (A = 0) divides

the order evenly throughout the trading horizon, as Bertsimas and Lo (1998) had previously



shown. Similarly, we also recognize that the optimal execution trajectory of a risk-averse

trader (A > 0) will be decreasing in time, as shown in both Almgren and Chriss (2001) and

Huberman and Stanzl (2005).

2.4.2 Linear Dynamics with Information

We will now explore the effect of information on the optimal execution strategy. Following

Bertsimas and Lo (1998), suppose that the information variable follows a stationary AR(1)

process:

xt = azt-1 + 6t (2.19)

where ca > 0 and 6t is a zero-mean gaussian variable with variance o t2

Additonally, suppose that the function It (xt) is linear with a time-dependent slope. The

price dynamics are then given by:

pt = Pt + 71,t (st + t) (2.20)

Pt+1 = Pt + 72,t (St + nt) + P2,txt + Et (2.21)

As in the previous section, given the above dynamics, the unconstrained trader's prob-

lem has a unique closed-form solution. The following theorem characterizes such a result.

Theorem 2. Suppose the price dynamics of the system follow Eqns. (2.20 - 2.21), and the

information variable follows Eqn. (2.19). Then, the recursion given by Eq. (2.10), with Eq.

(2.11) as the boundary condition, has a unique solution given by:

~_k = kXT-k + OkWT-k (2.22)

VT-k (PT-k,XT-k, WT-k)= exp (A - f (pT-k, T-k, WT-k)) (2.23)

f (PT-k, XT-k, W PT-k) = T-kWT-k+ akT-k+ bkT-kT-k + C _k + dk

(2.24)



for k = O, 1,..., T - 1, where:

ak abk-1 + P2,k
Zk

2 2, 2 [p222 2

k (2ak-1 - 2,k) - A 2,krk +E,k [2,k + b_] 0.,k)
Zk

Zk = 2 (ak-1 + l71,k - '72,k) + A (0,k [k ,2 k ,k + bk ~ 2, k ] 2 ,k)

ak = (1 - k) ak-1 + 2 (,,k o,k + 2,k + bl 1 ] (

S71,k - 72,k + A k,k, + k2,k

bk = OkOk [2 (ak-1 + '1,k - ,) + A (,k [A7 + ,k +72k] + ,k + [,k + bk ] ,k] +

/k ['2,k - 2 ak-1 - A ('2,k0,k + 0.,k+ k + [P 2,k + b ] 6,k2  +

Ok [-P2,k - abk-1] + P2,k + abk-1

Ck = k[_1 - 72,k + k7, [ + 72,k] 2,k + [Pi,k + b ] O6,k +
2 277 1Ek

Ok [-P2,k - abk-1] + aCk-1 + 2Aa 2 ,kC l-

dk = dk-1 ,kCk-1

(2.25)

with bo = co = do = 0, Oo = 0 and Oo = 1.

The first difference to be noted between Eq. 2.14 and Eq. 2.22 is that the latter incor-

porates observations of the information variable when determining the optimal execution

trajectory. As such, the resulting strategy will be truly dynamic, since at time t, the opti-

mal allocation of shares to be traded, st, depends on the observed value of the information

variable, zt. This dependence, however, produces a somewhat counter-intuitive result, as

is noted in Bertsimas and Lo (1998).

Bertsimas and Lo show that, given a risk-neutral trader with knowledge of a positively

correlated information variable (i.e., A = 0, a > 0 and p > 0), the coefficient multiplying

the information variable in Eq. 2.22 is positive - that is, Ok > 0. In our model, numerical

simulations using empirically plausible parameters verify that this holds for risk-averse
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traders as well. The apparent contradiction, then, is that positive observations of xt increase

both the number of shares to be traded at time t and the equilibrium price to be seen at

time t + 1. This result is particularly counter-intuitive when 0 < a < 1, since in this

case we expect xt to decay exponentially to zero, and consequently, its contribution to

the equilibrium price to decay to zero as well. This common misperception is solved by

noting that the contribution of xt to the equilibrium price Pt is permanent. That is, a unit

observation of xt not only implies an expected increase of p2,t on Pt+l, but also an expected

increase of P2,t + aP2,t+1 on Pt+2, and so on. From this we note that:

E [pt+k - Pt+k-jlPt,Xt] = (%,t+k-iSt+k-i + ak-ip 2 ,t+k-it)
i= 1

In other words, given an observation of xt, it is less costly to execute at time t + k -j, than

it is to wait j periods and execute at time t + k. The opposite is true when our observation

of xt is negative.

This translates into trajectories that favor execution in the early periods, or that "front-



load" with respect to their static benchmarks. This phenomenon is best seen in figure 2-2,

which shows a sample trajectory of xt and the resulting optimal trajectories for different

values of risk-aversion.

2.5 The Curse of Dimensionality

2.5.1 Nonlinear Dynamics

So far, the assumption of linear dynamics has proved to be a convenient framework for

our problem: we have been able to derive closed form solutions for the Trader's Problem

both in the absence and presence of information. However, markets do not behave linearly,

and modelling both price and information dynamics as such is usually a poor design deci-

sion. Incorporating nonlinear dynamics into our system will usually deter us from finding

closed-form solutions. Nonetheless, certain dynamics might allow for numerical solutions

to be available. The process behind finding such solutions is the same as that which we pre-

sented earlier, in other words, the solutions is constructed using a set of recursive equations.

Suppose the dynamics of our system are given by:

Pt = f(p (PSt-1, t- t-1, xt-1, Et-1) (2.26)

pt = g(t, st, rt) (2.27)

xt = h(xt-l, 6t-1) (2.28)

The boundary condition at time T is maintained, and given by:

VT (pT,XT, WT)= E [exp (A.(pT, WT, rl)WT)] (2.29)

Similarly, at time t < T, the recursion is given by:

Vt (pt, xt, Wt) = min E [exp (Ag(pt, Wt, 'rt)st) Vt+l (f(pt, st, t), xt, Et), h(Wx, 6t), t - st)]
St

(2.30)
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The optimal number of shares to be executed, s*, is then given as a function of the state

variables:

s t = arg min E [exp (Ag(pt, Wt, i7t)st) Vt+l (f (Pt, st, 77t, xt, Et), h(xt, 6t), Wt - st)]
St

= zt (ptXt, Wt)

(2.31)

Once V (-) has been found, initial conditions allow us to obtain s*. In the next time period,

observations of the state variables allow us to obtain s*, and so on until we reach the end

of the trading horizon. This process, in practice, is computationally expensive and often

times intractable. As was suggested previously, closed form expressions for Vt (.) and s; (.)

are usually not available. Instead, common practice is to store these functions using lookup

tables: that is, for each possible combination of the state variables, we store the value which

this functions maps to. It is easy to see that this practice becomes intractable quite easily,

since the amount of space needed to store these lookup tables increases exponentially with

the cardinality of our state-space and with the magnitude of our trading horizon.
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2.5.2 Adding Shortsale Constraints

The non-negativity constraint of Eqn. 2.6 is commonly known as a short-sale constraint.

It arises from the prohibition that certain financial institutions, such as mutual funds, have

from short-selling. As such, optimally accounting for such a constraint becomes of impor-

tance. The solution to the unconstrained problem from equation 2.14 suggests that such

constraints are not binding unless Ok < 0. This, in turn, translates to conditions in the dy-

namics of both the price-impact slopes and variance terms. For example, Figure 2-3 shows

the optimal trajectories associated with a system in which the price-impact slopes of the

first period is larger than that of the remainding periods. The trajectories suggest that a

trader with a low risk-aversion will want to short a number of stocks in the first period,

a result which certain institutional investors might be prohibited from implementing. Im-

posing such a constraint in a dynamic optimization framework, however, adds a level of

complexity to the problem which renders it unfeasible.

The added complexity from short-sale constraints is a result of the recursive nature

of dynamic programming. Suppose, as was done in Section 2.4.1, that the price-impact

functions are linear. Equation 2.15 of Theorem 1 states that the optimal cost-to-go function

of the unconstrained problem, V(.), is of the form exp(f(.)), where f(.) is quadratic in

the state variables of the system. We will refer to this functional form as an exponential-



quadratic composite function. Consider now what happens once non-negativity constraints

are added.

At time T the optimal control is given by s = WT, and the optimal cost-to-go function,

VT(.), will be an exponential-quadratic composite function, as can be easily verified. As

such, in the T - 1st period we will want to minimize an exponential-quadratic composite

function subject to a non-negativity constraint of the form 0 < s*_ < WT-1. Since

the exponential function is monotonic, we are only concerned with the minimization of the

quadratic function. Given the nature of the constraint, however, the value of the constrained

optimal control, sT-1, will be a piecewise function of the value of the unconstrained optimal

control, sT_ :

0 if s*-1 < 0 < WT- 1

T-1= if 0 < ST_ < WT-1 (2.32)

WT-1 if 0<WT-1 < S*1

The piecewise nature of the solution, in turn, causes VT-1 (.) to be piecewise as well. As

such, VT- I(-) will be represented by a different exponential-quadratic composite function

in each of these intervals. In the T - 2nd period, a similar process will occur, and each of

the three intervals over which VT- 1 (-) is defined, will have to be subdivided into another

three intervals. Thus, both ST-k and VT-k(') will be piecewise functions defined over

3k different intervals. The complexity of such a problem becomes problematic when the

number of periods T becomes large, and as such, devising approximation methods that deal

with the added complexity becomes of importance.

Bertsimas, Hummel and Lo (1999), recognizing the complexity of a constrained-optimization

problem in a dynamic setting, propose a static approximation method as a mean of extract-

ing a near-optimal execution strategy. Such a technique, however, sacrifices the value of

intraday information...



Chapter 3

On Linear Programming

Approximations

As was seen in the previous section, the recursive nature of dynamic programming ren-

ders it an unfeasible technique for systems with either a large state space or an extensive

time horizon. Such is the case in the constrained Trader's Problem, and for this reason, ap-

proximation algorithms become of importance. The classical papers in the field opt towards

static optimization techniques as the chosen means for reducing complexity. This, however,

comes at the cost of sacrificing real-time information, and the value that such observations

might add to the resulting execution strategies. Because of this, we desire an approximation

algorithm that reduces complexity whilst maintaining its dynamic adaptability. Many such

algorithms exist - the field of approximate dynamic programming is one of great interest in

the academic world - however, none have been applied to the problem being studied in this

paper. One such technique, the one we will be concerned with, involves approximating the

optimal value function within a class of linear architectures. Such linearization not only

reduces complexity, but allows us to take advantage of well-known linear programming

techniques for the generation of near-optimal solutions.

In what follows, we will introduce the theory behind linear programming approxima-

tions, always within the framework of the Trader's Problem that was introduced in the

previous chapter.



3.1 Dynamic Programming via Linear Programming

Recall the dynamic program that was introduced in §2.3:

Vt (pt, zt, Wt) = min E [exp (Aptst) Vt+l (Pt+l, xt+l, Wt+)
st>O

VT (pT, XT, WT) = E [exp (AT WT)]

We notice that, if Pt is normally distributed for all t, the above DP can be simplified to:

V (Pt, zXt, W) = min exp AE [ft] + S2vr (P) E [V+l (pt+, xt+,, W +1)

VT (PT, XT, WT) = exp AE [PTr] WT + 2W 2var (PT)

For simplicity, let i- = (Pt, Xt, Wt), and suppose that the system dynamics are given by:

rt+l = f(M, t, ,Ect)

Define the cost function c(r, st, rTt) as:

C(Vt St, t) = exp (AE [g(t, st, rt)] st + 2tvar (g(Ft, st, it)) (3.1)

Also, define the operator T such that:

TVt+l(Tt+1) = min {c(rt, st,rjt) E [Vt (t+l ) Ftj]} (3.2)
stESt

where St = {st : 0 < st < Wt }. The DP recursion can now be written as:

Vt(t) = TVt+ 1(f(T, st, Et))
(3.3)VT (r) = c(, WT, TI)

The next proposition presents a nonlinear program that solves the above set of recursive

equations:



Proposition 1. Consider the problem:

maxv,(,) V(T1)
s.t. Vt(t) < TVt+l(t+,),

VT(:) = C(7T, WT, TIT),

Vt, t E Rt

V(T E R T

(3.4)

where 7 is the set of all possible values attained by the state variables, rt. If Vt* (-) is the

unique solution to (3.3), then Vt* (.) is also the unique solution to (3.4).

Before the proof of this proposition, we present a lemma that leads to the result, and

that introduces an important and well-known property of the DP operator:

Lemma 1. The operator T is monotonic, that is:

V < V = TV < TV

The monotonic property of T, in turn, leads to the result presented in the following

corollary:

Corollary 1. A feasible solution Vt (.) to (3.4) is a lower bound to the optimal value func-

tion, Vt* ) .

Given that T is montonic, we are now ready to prove Proposition 1:

Proof Suppose Vt* (.) solves the optimality equations given in (3.3) such that Vt (.) -

TV,;*(.) for all t. Additionally, let t(-) be any feasible solution to (3.4). From the con-

straint set, we have that:

VT-I,(.) TVT(.)

- TV (.)

where the first equality follows from the boundary condition of the DP. Now, given that



VT- 1 (.) < Vl (-), we proceed similarly for VT- 2 (.), and conclude that:

VT-2 () < TVT_1()

< TV_ (), by monotonicity

= V- 2 (.), by optimality

Proceeding similarly, we conclude that V(') < V*(.) for all t (Corollary 1).

From Corollary 1 we know that V (.) < V*(). It follows that the unique feasible

solution which maximizes this constraint is that which achieves equality, that is, VI(-) =

V*(.). It remains to be shown that V V() = V*(.) for all 1 < t < T. Consider the following

inequalities:

< T V2 (.), by feasibility

< TV 2*(.), by monotonicity

We also know from the optimality condition that V1 () = V* (.) = TV* (.). Thus, we have

that TV 2* () < TV 2 (.) < TV2* (.), and conclude that V2 (.) = V2*(.). Proceeding similarly

for t = 3, ...T, we conclude that V (-) = Vt*(.) for all t (Proposition 1). O

As was suggested previously, we want to take advantage of linear programming algo-

rithms for the generation of near-optimal solutions. However, since T is nonlinear, the

constraint set of (3.4) is nonlinear as well. We get around this by realizing that, given t,

the constraint Vt (K-) < TVt+ 1 (T+1 ) is equivalent to the set of constraints given by:

Vt (,t) < c(T, st, lt) - E [Vt+l(+1)], Vst (E St (3.5)

The above statement is important not only because it allows us to set up the DP recursion as

an LP, but it also allows us to get rid of the minimization implicit in the T operator. As was

mentioned previously, this operation can become computationally expensive with certain



nonlinear cost functions. We now formulate (3.3) as a linear program:

maxvt,) V(Fi)

s.t. Vt(r-) c (t, st, Tt) - E [Vt+l('t+l)] ,

V (C) c(,T, rl, ),

Vt, Kt E t, st E St

VT E RT

With respect to the structure of the LP, we readily recognize that the complexity of the

problem still renders it unfeasible: the LP presented in (3.6) has as many variables as it has

states, and as many constraints as there are state-action pairs. In the upcoming section, we

will present an approximation algorithm that drastically reduces the number of variables,

and that deals efficiently with the constraint set.

3.2 Approximating the Value Function

Consider approximating the optimal cost-to-go function by a linear combination of basis

functions. That is, given a set of preselected basis functions k : t H R, k = 1,..., K,

we wish to generate weights Wt,k such that:

K

Vt(7) Vt) E CWt,kk(ik=,
kI

Vt, r E Rt (3.7)

Substituting the above approximation into (3.6) effectively reduces the problem into an

optimization over the weighting parameters, wt,k, thus decreasing the number of variables

to only T x K. The linear program that solves for these is given by:

K

max,,k Wl,k k(1)
k=l

K K

s.t. Wt,kJk( <t) C(', St, 't) E Wt+l,kE [k( T+1)t1 ,
k=l k=l

K

0 WT~(bkT) C= (i, WT, IT),
k=1

Vt, t E R t,St E St

(3.8)

(3.6)



From Corollary 1, we know that the solution to (3.8) is a lower bound to the optimal value

function. More precisely, it is the tightest lowest bound among approximations of the

form given in (3.7). This, however, does not mean much if the set of basis functions are a

poor approximation to Vt(.). The implicit assumption behind the selection of the k (.) is

that they are selected such that a few of them can approximate the optimal value function

accurately. In other words, the solution given to us by (3.8) will only be as good as the

choice of basis functions we make. Unfortunately, the preferred method for selecting such

basis functions is one based mostly on heuristics, as we will explore in the case study at the

end of the chapter.

3.3 Constraint Sampling

The exact LP in (3.6) is unfeasible both for its number of variables as well as its constraints.

As was seen in the previous section, the number of variables can be effectively reduced by

approximating the value function within a class of linear architectures. However, finding

an optimal solution to the approximate LP in (3.8) still requires an unmanageable number

of constraints - more specifically, one constraint per state-action pair. We thus require a

method to reduce the number of constraints whilst maintaining the accuracy of our approx-

imation. De Farias and Van Roy (2004) show that, under certain assumptions, constraint

sampling is an effective method to reduce the complexity of the ALP. More explicitly, they

show that given a set Q with k state-action pairs sampled from a distribution 0, the solution

to the reduced linear program (RLP) is probabilistically close to that of the ALP. That is, if

i is the solution to the RLP and ? is the solution to the ALP, we have that:

Pr(IIV* - 4Il - IV* - I II <_ CV*D) > 1 - 6

where c and 6, representing error tolerance and level of confidence respectively, are in-

versely related to the number of constraints k. Although the work by de Farias and Van

Roy focuses on infinite-horizon Markov Decision Processes (MDP's), their framework is

also applicable for the finite-horizon problem being studied.



3.4 A Numerical Simulation with Linear Dynamics

In what follows, we study the implementation of the algorithm in (3.8), more particularly

we will look at it in terms of the system which was studied in §2.4.2. That is, we will study

the execution of a risk-averse trader who posseses private information in a market with

linear dynamics. As was mentioned previously, choosing linear dynamics to model price

evolution and impact is usually a poor choice. However, the closed-form solutions that we

found for the Unconstrained Trader's Problem gives us a good benchmark with which to

compare the performance of the approximate linear program. Recall the dynamics of the

system's variables:

At = Pt + Yit (st + t)

Pt+l = Pt + '2,t (St + rlt) f P2,tXt + Et

Xt+1 = aOXt + t+1i

Wt+ 1 = W t - s t

The cost function from (3.1) can be rewritten as:

c(pt, St) = exp (APtst + A Y7,t + 2 0 t

3.4.1 Choosing Basis Functions

As was mentioned previously, the process for selecting basis functions is mainly an em-

pirical one. As such, we will use the results obtained in §2.4.2 as the foundation for our

choice of basis functions. Recall, from Theorem 2, that the optimal value function for the

Unconstrained Trader's Problem was given by:

VT-k (T-k) = exp (A . f ('T -k))

f (-k) = PT-kWT-k +ak T-k + bkT-kWT-k + CkX k + dk



A first choice of basis functions comes from the series expansion of the exponential func-

tion when higher order terms are ignored, that is:

E [VT-k (T-k)] = E [exp (A. f ((T-k))] (3.9)

= exp Af (Tk) + var ((T-k)) (3.10)

A2
1 + Af (T-k) + -var (f (T-k)) (3.11)

Since var(ptWt)= (7,t-1 1 + 1 ,t-1) t2 , and var(xtWt) = o, t-1T 2, it suffices with

a single basis function that accounts for Wt2 such that the variance of the value function

gets effectively incorporated into the set of constraints. In other words, a possible set of

basis functions to approximate the optimal value function would be:

01(-) = 1

P2 () = pt Wt

03(') = W 2  (3.12)

The above selection has its shortcomings, however. As was seen in Chapter 2, the in-

clusion of nonnegativity constraints in the Trader's Problem resulted in VT-k(') being an

exponential-quadratic piecewise function over 3 k different intervals. We can deal with the

piecewise nature of VT-k() by defining a partition over the state space, and we can take

advantage of the approximation in (3.11) to arrive at a set of basis functions that are both

compact and accurate. We can thus approximate the value function with an improved set

of basis functions given by:

1(q, iEIT

1 2(ri), r 2

(i), r E z



where n, represents the set of states in partition n. Since partitioning the state space in-

creases the number of variables of the linear program, it is necessary that the partition be

as compact as possible. For this purpose, we can look back at our results from the non-

constrained problem and use those to make an educated guess for an efficient partition.

Recall from equation (2.22) that the optimal trade size in a system with linear dynamics

with private information is a function of the information variable, xt, and the remaining

trade size, Wt. This suggests that an effective state space partition would be one that incor-

porates these two variables and excludes the price variable, Pt.

3.4.2 Choosing a Sampling Distribution

As was discussed previously, the number of constraints, one per state-action pair, is restrict-

ing in the evaluation of the ALP. The constraint sampling scheme studied by de Farias and

Van Roy (2004), and introduced in a previous section, is one of the means through which

the cardinality of the constraint set can be reduced. To implement this scheme effectively,

and to guarantee that the solution to the RLP is not far'from that of the ALP, it is necessary

to choose a sampling distribution such that the subset of constraints that are not satisfied

have a minor impact on the feasible region of the RLP.

Recall the dynamics of the system in hand: both the price variable, pt, and the informa-

tion variable, xt, are normally distributed around mean values pl and xl respectively. Also,

the remaining state variable Wt is a function of st-1. These particular dynamics suggest

that an appropriate sampling scheme would be one that generates state-action pairs where

pt and xt are normally distributed, while Wt and the action variable st belong to integer

sets. That is, we define sets Pt, Xt and Nt such that:

2 2 2
t = (Pt : Pt N(pt-1,72,t-1o,t--1 + P2,t-10'tt-1 + t-

Xt = {xt : N(xt-1 2t t

Ht = (Wt : Wt ( [O, Wt-1 - St-1] C Z}

St = st : st E [0, W] C Z}



and we define the subset of sampled states as:

Qt = {(pt, xt, 1t) : Pt E Pt, t E Xt, Wt E Ht, andPtI = IXt Nt| = k}

where |A is the cardinality of set A, and k is the number of constraints in Qt. Finally, the

RLP is then:

K

maxk E Wl,kk(rl)

k=l
K K

s.t. E Wt,kOk (t) < C(t, St, It) E Wt+l,kE[Ok(t+l)l t ,
k=1 k=1

K

E Tkk(T) = l, TT),

k=1

Vt, Tit E t, St C St

VI'T E QT

(3.13)



Chapter 4

Conclusions

The last 20 years have seen dramatic changes in the stock market. The vast technological

advances have prompted an era in which the computer is the center of the trading process.

This, together with a number of other factors (the decimalization of the New York Stock

Exchange, for example) have resulted in a drastic change of maker dynamics: liquidity has

increased, spreads have narrowed, and competition among portfolio managers has signif-

icantly reduced profit margins. As such, the need to maximize returns optimally at every

point of the investment process has become key. In one such point, much effort has been

placed on the optimal control of execution costs. The problem of executing optimally is

stochastic and dynamic by nature, and as such, adapts quite well within the framework of

dynamic programming. The complexities behind modelling market dynamics, however,

many times render a recursive DP algorithm unfeasible. As such, there is indeed a need for

an algorithm that will be able to have the adaptive nature of DP, while not oversimplifying

the dynamics that control our system.

In this thesis we introduce the problem of optimal execution. We examine it within

a dynamic programming framework: first, using simple linear dynamics, then adding an

information variable, and lastly including shortsale constraints. As can be seen, the increase

in complexity leads us to a point where a simple DP recursion is an unfeasible method for

solving the problem in hand. As such, we introduce the notion of approximate dynamic

programming via linear programming. The algorithm introduced allows for the inclusion of

complex market dynamics and additional trading constraints, and even though its solution



might be suboptimal, there is value added due to the accurateness of the underlying model.

The implementation of the algorithm is key to its performance. The linearization of the

objective function, and the constraint sampling scheme are only two of the inputs that de-

termine the quality of the algorithm's output. As such, the detailed analysis done in Chapter

2 gives us a good starting point for the selection of these varied inputs. However, further

analysis is necessary in order to accurately evaluate the performance of the algorithm's so-

lution. Increased complexity always comes at the cost of performance, and as such there

exists the need to find a balance between these two.



Appendix A

Proofs

A.1 Theorem 1

Proof The proof will follow a simple induction argument. The base case, for k = 0, is

trivial, and is given by:

s* = WT

VT (PT, xY, WT) = exp (A [pTWT + P1,TXTWT + (7)1,T +

Assume now that Eqns.(2.14-2.15) are valid for T - k + 1. We will now show that they

are true for T - k. We then have that:

VT-k (PT-k, XT-k, WT-k) = min
ST-k

exp (AE [PT-k ST-k + kvar (+ 2 T ))

XE [VT-k+1 (PT-k+1 XT-k+l, WT-k+1)]

From the induction assumption we know that:

E [VT-k+1 (')] = exp (A [(E [PT-k+1 + aT-k+1E [XT-k+1]) WT-k+1J) X

exp (A ( bT-k+ + [var (PT-k+) + a2k+1ar (XT -k+1)]) T_

Taking the first-order condition for VT-k (.) yields (2.14) to be the unique minimum. O

A 2 2

2 'Y' T17 T
W]T

-k+1)
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