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Abstract

It is often impossible to obtain a one-size-fits-all solution for high performance algorithms when
considering different choices for data distributions, parallelism, transformations, and blocking. The
best solution to these choices is often tightly coupled to different architectures, problem sizes, data,
and available system resources. In some cases, completely different algorithms may provide the best
performance. Current compiler and programming language techniques are able to change some of
these parameters, but today there is no simple way for the programmer to express or the compiler
to choose different algorithms to handle different parts of the data. Existing solutions normally
can handle only coarse-grained, library level selections or hand coded cutoffs between base cases
and recursive cases.

We present PetaBricks, a new implicitly parallel language and compiler where having multiple
implementations of multiple algorithms to solve a problem is the natural way of programming. We
make algorithmic choice a first class construct of the language. Choices are provided in a way
that also allows our compiler to tune at a finer granularity. The PetaBricks compiler autotunes
programs by making both fine-grained as well as algorithmic choices. Choices also include different
automatic parallelization techniques, data distributions, algorithmic parameters, transformations,
and blocking.
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Chapter 1

Introduction

While traditional compiler optimizations can be successful at optimizing a single algorithm, when

an algorithmic change is required to boost performance, the burden is put on the programmer

to incorporate the new algorithm. If a composition of multiple algorithms is needed for the best

performance, the programmer must write both algorithms, the glue code to connect them together,

and figure out the best switch over points. Today's compilers are unable to change the nature of

this composition because it is constructed with traditional control logic such as loops and switches.

In this work, we propose new language constructs that allow the programmer to specify a menu of

algorithmic choices and new compiler techniques to exploit these choices to generate high perfor-

mance yet portable code.

Hand-coded algorithmic compositions are commonplace. A typical example of such a compo-

sition can be found in the C++ Standard Template Library (STL) 1 routine std: :sort, which

uses merge sort until the list is smaller than 15 elements and then switches to insertion sort. Our

tests have shown that higher cutoffs (around 60-150) perform much better on current architectures.

However, because the optimal cutoff is dependent on architecture, cost of the comparison routine,

element size, and parallelism, no single hard-coded value will suffice.

This problem has been addressed for certain specific algorithms by autotuning software, such

as ATLAS [33] and FFTW [11, 12], which have training phases where optimal algorithms and

1From the version of the libstdc++ included with GCC 4.3.



cutoffs are automatically selected. Unfortunately, systems like this only work on the few algorithms

provided by the library designer. In these systems, algorithmic choice is made by the application

without the help of the compiler.

In this work, we present PetaBricks, a new implicitly parallel programming language for high

performance computing. Programs written in PetaBricks can naturally describe multiple algorithms

for solving a problem and how they can be fit together. This information is used by the PetaBricks

compiler and runtime to create and autotune an optimized hybrid algorithm. The PetaBricks sys-

tem also optimizes and autotunes parameters relating to data distribution, parallelization, iteration,

and accuracy. The knowledge of algorithmic choice allows the PetaBricks compiler to automatically

parallelize programs using the algorithms with the most parallelism.

We have also developed a benchmark suite of PetaBricks programs. These benchmarks demon-

strate the importance of making algorithmic choices available to the compiler. In all cases, hybrid

algorithms, consisting of a non-trivial composition of user-provided algorithms, perform signifi-

cantly better than any one algorithm alone.

In one of our benchmark programs, a multigrid solver for the Poisson equation, we demonstrate

how to incorporate algorithms with variable convergence criteria in the autotuning process. This

capability is vital when composing direct (exact) and iterative (approximate) methods in a recursive

structure in such a way that guarantees a specified target accuracy for the output while ensuring

near-optimal efficiency.

1.1 Motivating Example

As a motivation example, consider the problem of sorting. There are a huge number of ways to sort

a list. For example: insertion sort, quick sort, merge sort, bubble sort, heap sort, radix sort, and

bucket sort. Most of these sorting algorithms are recursive, thus, one can switch between algorithms

at any recursive level. This leads to an exponential number of possible algorithmic compositions

that make use of more than one primitive sorting algorithm.

Since sorting is a well known problem, most readers will have some intuition about the optimal

algorithm: for very small inputs, insertion sort is faster; for medium sized inputs, quick sort is



faster (in the average case); and for very large inputs radix sort becomes fastest. Thus, the optimal

algorithm might be a composition of the three, using quick sort and radix sort to recursively

decompose the problem until the subproblem is small enough for insertion sort to take over. Once

parallelism is introduced, the optimal algorithm might get more complicated. It often makes sense

to use merge sort at large sizes because it contains more parallelism than quick sort (the merging

performed at each recursive level can also be parallelized).

Even with this detailed intuition (which one may not have for other algorithms), the problem

of writing an optimized sorting algorithm is nontrivial. Using popular languages today, the pro-

grammer would still need to find the right cutoffs between algorithms. This has to be done through

manually tuning or using existing autotuning techniques that would require additional code to

integrate. If the programmer puts too much control flow in the inner loop for choosing between

a wide set of choices, the cost of control flow may become prohibitive. The original simple code

for sorting will be completely obscured by this glue, thus making the code hard to comprehend,

extend, debug, port and maintain.

PetaBricks solves this problem by automating both algorithm selection and autotuning in the

compiler. The programmer specifies the different sorting algorithms in PetaBricks and how they

fit together, but does not specify when each one should be used. The compiler and autotuner

will experimentally determine the best composition of algorithms to use and the respective cutoffs

between algorithms. This has added benefits in portability. On a different architecture, the optimal

cutoffs and algorithms may change. The PetaBricks program can adapt to this by merely retuning.

1.2 Outline

Section 2 describes the PetaBricks language. Section 3 describes the implementation of the compiler

and autotuning system. Section 4 describes our benchmark suite. Section 5 presents experimen-

tal results. Section 6 covers related work. Finally, Sections 7 and 8 describe future work and

conclusions.



1.3 Contributions

We make the following contributions:

* We present the PetaBricks programming language, which, to best of our knowledge, is the

first language that enables programmers to express algorithmic choice at the language level.

* While autotuners have exploited coarse-grained algorithmic choice at a programmatic level,

to best of our knowledge this is the first compiler that incorporates fine-grained algorithmic

choices in program optimization.

* We show how our compiler utilizes fine-grained algorithmic choice to get significant speedup

over conventional algorithms.

* We show that PetaBricks programs adapt algorithmically to different architectures to create

truly portable programs. We demonstrate that a PetaBricks program autotuned locally on

an 8-way x86_64 performs 2.35x faster when compared to a configuration trained on a 8-way

Sun Niagara 1 processor.

* We show that PetaBricks programs are scalable because they can adapt to expose increasing

parallelism as the number of cores increases. We demonstrate that a configuration autotuned

on 8 cores performs 2.14x faster than a configuration tuned on a single core, but executed on

8 cores.

* We present a compiler that can autotune programs with complex trade-offs such that we

ensure the best performance for all required levels of accuracy.



Chapter 2

PetaBricks Language

In designing the language we had the following major goals:

* Expose algorithmic choices to the compiler

* Allow choices to specify different granularities and corner cases

* Expose all valid execution orders, to allow parallel execution

* Automate consistency checks between different choices

* Provide flexible data structures, including n-dimensional arrays, trees, and sparse represen-

tations

The language is built around two major constructs, transforms and rules. The transform,

analogous to a function, defines an algorithm that can be called from other transforms, code written

in other languages, or invoked from the command line. The header for a transform defines to, from,

and through arguments, which represent inputs, outputs, and intermediate data used within the

transform. The size in each dimension of these arguments is expressed symbolically in terms of free

variables, the values of which must be determined by the PetaBricks runtime.

The user encodes choice by defining multiple rules in each transform. Each rule defines how

to compute a region of data in order to make progress towards a final goal state. Rules have

explicit dependencies parametrized by free variables set by the compiler. Rules can have different



granularities and intermediate state. The compiler is required to find a sequence of rule applications

that will compute all outputs of the program. The explicit rule dependencies allow automatic

parallelization and automatic detection and handling of corner cases by the compiler. The rule

header references to and from regions which are the inputs and outputs for the rule. The compiler

may apply rules repeatedly, with different bindings to free variables, in order to compute larger

data regions. Additionally, the header of a rule can specify a where clause to limit where a rule can

be applied. The body of a rule consists of C++-like code to perform the actual work.

PetaBricks does not contain an outer sequential control flow. The user specifies which transform

to apply, but not how to apply it. The decision of when and which rules to apply is left up

the compiler and runtime system to determine. This has the dual advantages of both exposing

algorithmic choices to the compiler and enabling automatic parallelization. It also gives the compiler

a large degree of freedom to autotune iteration order and storage.

Figure 2.1 shows an example PetaBricks transform, that performs a matrix multiplication. The

transform header is on lines 1 to 3. The first rule (line 6 to 9) is the straightforward way of

computing a single matrix element. With the first rule alone the transform would be correct, the

remaining rules add choices. Rules two, three, and four (line 12 to 39) represent three ways of

recursively decomposing matrix multiply into smaller matrix multiplies. The compiler must pick

when to apply these recursive decompositions. The last two rules are actually not needed because

they are automatically inferred by the compiler as it explores blocking strategies for iteration.

The autotuner discovers that the last two rules provide no advantage over the compiler's intrinsic

strategies and correctly chooses not to use them.

In addition to choices between different algorithms, many algorithms have configurable param-

eters that change their behavior. A common example of this is the branching factor in recursively

algorithms such as merge sort or radix sort. To support this PetaBricks has a tunable keyword

that allows the user to export custom parameters to the autotuner. PetaBricks analyzes where

these tunable values are used, and autotunes them at an appropriate time in the learning process.

PetaBricks contains the following additional language features that will not be discussed here

in detail:

i



* %{ ... }% escapes used to embed raw C++ in the output file. This is primarily used for

calling external libraries. External libraries must be thread safe.

* A generator keyword for specifing a transform to be used to supply input data during

training.

* Matrix versions, with a A<0..n> syntax, useful when defining iterative algorithms. This

construct is syntactic sugar for adding an extra dimension to the matrix, which may then be

collapsed by analysis.

* Rule priorities and where clauses are used to handle corner cases gracefully.

* Template transforms, similar to templates in C++, where each template instance is autotuned

separately.





transform MatrixMultiply
from A[c,h], B[w,c]
to AB[w,h]

{
// Base case,

to(AB. cell (x,
from (A. row(y)

out = dot (a

compute a single element

y) out)
a, B.column(x) b) {

,b);

// Recursively decompose in c
to (AB ab)
from(A. region(0, 0, c/2, h

A.region(c/2, 0, c, h
B.region(0, 0, w, c/2)
B.region(0, c/2, w, c

ab = MatrixAdd(MatrixMultiply
MatrixMultiply

}

// Recursively de
to (AB. region (0,

AB. region (w/2,
from( A a,

compose
0, w/2
0, W,

B.region(0, 0,
B.region(w/2, 0,

abI = MatrixMultiply
ab2 = MatrixMultiply

// Recursively decompose
to(AB.region(0, 0, w,

AB.region(0, h/2, w,
from(A.region(0, 0, c,

A.region(0, h/2, c,
B b) {

abl=MatrixMultiply (al ,
ab2=MatrixMultiply (a2,

w/2, c
w, C

(a, bl)

(a, b2)

in h
h/2)
h )

h/
h

al,
a2,
bl,
b2)

(al,
(a2,

abl,
ab2)

bl,
b2)

abl,
ab2)
2) al,
) a2,

Figure 2.1: PetaBricks source code for MatrixMultiply

{
bl),

b2));





Chapter 3

Implementation

The PetaBricks implementation consists of three components:

* a source-to-source compiler from the PetaBricks language to C++;

* an autotuning system and choice framework to find optimal choices and set parameters; and

* a runtime library used by the generated code.

The relationship between these components is depicted in Figure 3.1. First, the source-to-

source compiler executes and performs static analysis. The compiler encodes choices and tunable

parameters in the output code so that autotuning can be performed. When autotuning is performed

(either at compile time or at installation time), it outputs an application configuration file that

controls when different choices are made. This configuration file can be tweaked by hand to force

specific choices. Optionally, this configuration file can be fed back into the compiler and applied

statically to eliminate unused choices and allow additional optimizations.

3.1 PetaBricks Compiler

To help illustrate the compilation process we will use the example transform RollingSum, shown

in Figure 3.2. RollingSum computes an incremental (sometimes known as a cumulative) sum of

an input list. It includes two rules: rule 0 computes an output directly, by iterating all input
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Figure 3.1: Interactions between the compiler and output binaries. First, in Steps 1 and 2, the
compiler reads the source code and generates an autotuning binary. Next, in Step 3, autotuning is
run to generate a choice configuration file. Finally, either the autotuning binary is used with the
configuration file (Step 4a), or the configuration file is fed back into a new run of the compiler to
generate a statically chosen binary (Step 4b).

elements to the left; and rule 1 computes a value using a previously computed value to the left.

An algorithm using only rule 0 is slower (e(n 2 ) operations), but can be executed in a data parallel

way. An algorithm using only rule 1 is faster (6(n) operations), but has no parallelism and must

be run sequentially.

Compilation consists of the following main phases. The intermediate representation is built

up as the phases proceed. It starts as an abstract syntax tree and ends as a dependency graph.

All compilation is done on symbolic regions of an unknown size and is general to any number of

dimensions. The compilation steps are as follows:

Parsing and normalization. First, the input language is parsed into an abstract syntax tree.

Rule dependencies are normalized by converting all dependencies into region syntax, assigning

I - I



1 transform RollingSum
2 from A[n]
3 to B[n]

4{
5 //rule0: sum all elements to the left
6 to(B.cell(i) b) from(A.region(0, i) in) {
7 b-sum(in );
8 }
9

10 /rulel : use the previously computed value
11 to(B.cell(i) b) from(A.cell(i) a,
12 B.cell(i-1) leftSum) {
13 b=a+leftSum;
14 }
15 }

Figure 3.2: PetaBricks source code for RollingSum. A simple example used to demonstrate the
compilation process. The output element Bx is the sum of the input elements Ao..Ax.

each rule a symbolic center, and rewriting all dependencies to be relative to this center. (This

is done using the Maxima symbolic algebra library [25].) In our RollingSum example, the center

of both rules is equal to i, and the dependency normalization does not do anything other than

replace variable names. For other inputs, this transformation would simplify the dependencies.

For example, if 1 were added to every coordinate containing i in the input to rule 0 (leaving the

meaning of the rule unchanged), the compiler would then assign the center to be i + 1 and the

dependencies would be been automatically rewritten to remove the added 1.

Applicable regions. Next, the region where each rule can legally be applied, called an applicable,

is calculated. These are first calculated for each dependency and then propagated upwards with

intersections (this is again done by the linear equations solver and inference system). In rule 0 of

our RollingSum example, both b and in (and thus the entire rule) have an applicable region of

[0, n). In rule 1 a and b have applicable regions of [0, n) and leftSum has an applicable region of

[1, n) because it would read off the array for i = 0. These applicable regions are intersected to

get an applicable region for rule 1 of [1, n). Applicable regions can also be constrained with user

defined where clauses, which are handled similarly.



Choice grid analysis. Next, we construct a choice grid for each matrix type. The choice grid

divides each matrix into rectilinear regions where a uniform set of rules are applicable. It does this

using an inference system to sort the applicable regions and divide them into smaller, simplified

regions. In our RollingSum example, the choice grid for B is:

[0, 1) = {rule 0}

[1,n) = {rule 0, rule 1}

and A is not assigned a choice grid because it is an input. For analysis and scheduling these two

regions are treated independently.

It is in the choice grid phase that rule priorities are applied. In each region, all rules of non-

minimal priority are removed. This feature is not used in our example code, but if the user had

only provided rule 1, he could have added special handler for [0, 1) by specifying a secondary rule.

This mechanism becomes especially useful in higher dimensions where there are more corner cases.

Non-rectilinear regions can also be created using where clauses on rules. In applicable regions

and choice grids the bounding box for these regions is computed and used. An analysis pass of the

choice grid handles these regions. For each rectilinear region in the choice grid, if some rules are

restricted by where clauses, these restricted rules are replaced by meta-rules that are unrestricted.

These meta-rules are constructed by finding sets of rules that cover the entire region, and packaging

them up into a single meta-rule. Multiple meta-rules are added to encode any choice.

(rl,=,-1)

r<)r,=) B.region(1, n)
A.region(O, n) ro ,<=),(r,=) rl,=,-1 Choices: rO, rl

B.region(0, 1)
Choices: rO

Figure 3.3: Choice dependency graph for RollingSum (in Figure 3.2). Arrows point the opposite
direction of dependency (the direction data flows). Edges are annotated with rules and directions,
offsets of 0 are not shown.
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Choice dependency graph analysis. A data dependency graph is constructed using the sim-

plified regions from the choice grid. The data dependency graph consists of edges between these

symbolic regions. Each edge is annotated with the set of choices that require that edge, a direction

of the data dependency, and an offset between rule centers for that dependency. The direction and

offset information are especially useful for parallel scheduling; in many cases, they eliminate the

need for a barrier before beginning the computation of a dependant matrix.

Figure 3.3 shows the choice dependency graph for our example RollingSum. The three nodes

correspond to the input matrix and the two regions in the choice grid. Each edge is annotated with

the rules that require it along with the associated directions and offsets. These annotations allow

matrices to be computed in parallel when the rules chosen allow. This high level coarse graph is

passed to the dynamic scheduler to execute in parallel at runtime. The dependency edges tell the

scheduler when it can split regions to compute them in parallel. The cost of the dynamic scheduler

is negligible because scheduling is done from the top down on large regions of the matrix.

The graph for RollingSum does not require simplification, however if the graph were more com-

plicated analysis would be required to simplify it. This simplification process is primarily focused

around removing cycles. The input graph can contain cycles (provided union of the directions

along the cycle points in towards a single hyper-quadrant), but the output schedule must be a

topologically sorted directed acyclic graph. Cycles are eliminated by merging strongly connected

components, into meta-nodes. The scheduler then finds an axis and direction for iterating this

larger node where the cycle is gone, it then recursively schedules the components making up this

larger node using the remaining edges.

The choice dependency graph is encoded in the output program for use by the autotuner and

parallel runtime. It contains all information needed to explore choices and execute the program in

parallel. These processes are explained in further detail in Sections 3.3 and 3.4.

Code generation. Code generation has two modes. In the default mode choices and information

for autotuning are embedded in the output code. This binary can be dynamically tuned, which

generates a configuration file, and later run using this configuration file. In the second mode for

code generation, a previously tuned configuration file is applied statically during code generation.



The second mode is included since the C++ compiler can make the final code incrementally more

efficient when the choices are eliminated.

3.2 Parallelism in Output Code

The PetaBricks runtime includes a parallel work stealing dynamic scheduler. The scheduler works

on tasks with a known interface. The generated output code will recursively create these tasks and

feed them to the dynamic scheduler to be executed. Dependency edges between tasks are detected at

compile time and encoded in the tasks as they are created. A task may not be executed until all the

tasks that it depends on have completed. These dependency edges expose all available parallelism

to the dynamic scheduler and allow it to change its behavior based on autotuned parameters.

To expose parallelism and to help the dynamic scheduler schedule tasks in a depth-first search

manner (see Section 3.4), the generated code is constructed such that functions suspended due to

a call to a spawned task, can be migrated and executed on a different processor. This is difficult

to achieve as the function's stack frame and registers need to be migrated. We support this by

generating continuation points, points at which a partially executed function may be converted

back into a task so that it can be rescheduled to a different processor. The continuation points are

inserted after any code that spawns a task. This is implemented by storing all needed state to the

heap.

The code generated for dynamic scheduling incurs some overhead, despite being heavily opti-

mized. In order to amortize this overhead, the output code that makes use of dynamic scheduling

is not used at the leaves of the execution tree where most work is done. The PetaBricks compiler

generates two versions of every output function. The first version is the dynamically scheduled

task-based code described above, while the second version is entirely sequential and does not use

the dynamic scheduler. Each output transform includes a tunable parameter (set during auto-

tuning) to decide when to switch from the dynamically scheduled to the sequential version of the

code.

___I_ 1___



3.3 Autotuning System and Choice Framework

Autotuning is performed on the target system so that optimal choices and cutoffs can be found for

that architecture. We have found that the best solution varies both by architecture and number

of processors, these results are discussed in Section 5. The autotuning library is embedded in the

output program whenever choices are not statically compiled in. Autotuning outputs an application

configuration file containing choices. This file can either be used to run the application, or it can

be used by the compiler to build a binary with hard-coded choices.

The autotuner uses the choice dependency graph encoded in the compiled application. This

choice dependency graph is also used by the parallel scheduler discussed in Section 3.4. This choice

dependency graph contains the choices for computing each region and also encodes the implications

of different choices on dependencies.

The intuition of the autotuning algorithm is that we take a bottom-up approach to tuning. To

simplify autotuning, we assume that the optimal solution to smaller sub-problems is independent

of the larger problem. In this way we build algorithms incrementally, starting on small inputs and

working up to larger inputs.

The autotuner builds a multi-level algorithm. Each level consists of a range of input sizes and a

corresponding algorithm and set of parameters. Rules that recursively invoke themselves result in

algorithmic compositions. In the spirit of a genetic tuner, a population of candidate algorithms is

maintained. This population is seeded with all single-algorithm implementations. The autotuner

starts with a small training input and on each iteration doubles the size of the input. At each step,

each algorithm in the population is tested. New algorithm candidates are generated by adding

levels to the fastest members of the population. Finally, slower candidates in the population are

dropped until the population is below a maximum size threshold. Since the best algorithms from

the previous input size are used to generate candidates for the next input size, optimal algorithms

are iteratively built from the bottom up.

In addition to tuning algorithm selection, PetaBricks uses an n-ary search tuning algorithm to

optimize additional parameters such as parallel-sequential cutoff points for individual algorithms,

iteration orders, block sizes (for data data parallel rules), data layout, as well as user specified



tunable parameters.

All choices are represented in a flat configuration space. Dependencies between these config-

urable parameters are exported to the autotuner so that the autotuner can choose a sensible order

to tune different parameters. The autotuner starts by tuning the leaves of the graph and works its

way up. In the case of cycles, it tunes all parameters in the cycle in parallel, with progressively

larger input sizes. Finally, it repeats the entire training process, using the previous iteration as a

starting point, a small number of times to better optimize the result.

3.4 Runtime Library

The runtime library is primarily responsible for managing parallelism, data, and configuration. It

includes a runtime scheduler as well as code responsible for reading, writing, and managing inputs,

outputs, and configurations.

The runtime scheduler dynamically schedules tasks (that have their input dependencies satisfied)

across processors to distribute work. When tasks reach a certain tunable cutoff size, they stop

calling the scheduler and continue executing sequentially. Conversely, large data parallel tasks are

divided up into smaller tasks, to increase the amount of parallelism available to the scheduler.

The scheduler attempts to maximize locality using a greedy algorithm that schedules tasks in

a depth-first search order. Following the approach taken by Cilk [13], we distribute work with

thread-private deques and a task stealing protocol. A thread operates on the top of its deque as if

it were a stack, pushing tasks as their inputs become ready and popping them when a thread needs

more work. When a thread runs out of work, it randomly selects a victim and steals a task from the

bottom of the victim's deque. This strategy allows a thread to steal another thread's most nested

continuation, which preserves locality in the recursive algorithms we observed. We use Cilk's THE

protocol to allow the victim to pop items of work from its deque without needing to acquire a lock

in the common case.

.......... .........



3.5 Automated Consistency Checking

A side benefit of having multiple implementations of algorithms for solving the same problem is that

the compiler can check these algorithms against each other to make sure they produce consistent

results. This helps the user to automatically detect bugs and increase confidence in code correctness.

This automated checking makes it advisable to include a slow reference implementation as a choice

so that faster choices can be checked against it.

This consistency checking happens during autotuning when a special flag is set. The autotuner,

by design, is already exploring the space of possible algorithms to find one that performs the best.

The consistency checking merely uses a fixed input during each autotuning round and ensures

that the same output is produced by every candidate algorithm. While not provably correct, this

technique provides good testing coverage. Notably, this technique also focuses more testing on the

candidate algorithms that are actually used as the autotuner hones in on an optimal choice. Some

of our benchmarks use iterative approaches that do not produce exact answers. To support such

code, our automated checker takes a threshold argument where differences below that threshold

are ignored.

3.6 Deadlocks and Race Conditions

Another typical problem in hand written parallel code is deadlocks. Deadlocks cannot occur in

PetaBricks because the program's dependency graph is fully analyzed at compile time. Potential

deadlocks manifest themselves as a cycle in the graph, and the PetaBricks compiler detects this

cycle and reports an error to user. This deadlock freedom guarantee, when using only the core

PetaBricks language, is a great advantage. When external code, written in other languages, is

called from PetaBricks, it is the programmers responsibility to ensure that the program executes

without deadlocks.

Similar to deadlocks, race conditions cannot exist in PetaBricks, except when caused by exter-

nally called code written in other languages. Since PetaBricks is implicitly parallel, the programmer

cannot manually specify that two operations should run in parallel. Instead, analysis is performed



by the compiler and tasks that do not depend on each other are automatically parallelized. If a

race condition were to exist, then the compiler would see that dependency edge and not run the

two tasks in parallel.
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Chapter 4

Benchmarks

In this section, we describe a set of benchmarks we implemented to illustrate the capabilities of

the PetaBricks compiler. The benchmarks were chosen to be relevant, widely applicable scientific

and computing kernels: solving Poisson's equation, the symmetric tridiagonal eigenvalue problem,

sorting, and dense matrix multiply.

4.1 Poisson's Equation

Poisson's equation is a partial differential equation that describes many processes in physics, elec-

trostatics, fluid dynamics, and various other engineering disciplines. The continuous and discrete

versions are

V2 = f  and Tx=b, (4.1)

where T, x, and b are the finite difference discretizations of the Laplace operator, 0, and f, respec-

tively.

To solve Poisson's equation on a 2D grid, we explore the use of four methods: one direct (band

Cholesky factorization through LAPACK's DPBSV routine) and three iterative (Jacobi Iteration,

Red-Black Successive Over Relaxation (SOR), and Multigrid). From top to bottom, each of the

iterative methods has a larger overhead, but yields a better asymptotic serial complexity [8]. The

table below lists the complexity of each algorithm, n is the number of cells in the grid.
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(a) Dependencies for the red cells

Figure 4.1: Checkerboard dependency pattern for
for clarity.

(b) Dependencies for the black cells

Red-Black SOR. Black cells are shown in white

Dependencies for SOR

There are different implementations of data dependencies for SOR, and we implement Red-Black

ordering. Figure 4.1 shows the classification of cells into red and black (shown in white for clarity)

depending on whether they are updated using neighboring values from the previous or current

iteration. Each cell depends on its neighbors, as indicated by the arrows in the figure.

During the first half of an iteration, the red cells are updated using the black cells' values from

the previous iteration. During the second half of the iteration, the black cells are updated using

the red cells' values from the current iteration.

PetaBricks supports this complex dependency pattern by splitting the matrix into two tempo-

rary matrices each half the size of the input. One temporary matrix contains only red cells, the

other only black cells. Each iteration of SOR then involves updating each matrix in turn. Arrang-

ing the data in such a manner leads to better cache behavior since memory is accessed in a dense

fashion.

.......... ...
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Figure 4.2: Choices in the multigrid algorithm. The diagonal arrows represent the recursive case,
while the dotted horizontal arrows represent the shortcut case where a direct or iterative solution
may be substituted. Depending on the desired level of accuracy a different choice may be optimal
at each decision point

Multigrid

Multigrid is a recursive and iterative algorithm that uses the solution to a coarser grid resolution

(by a factor of two) as part of the algorithm. For simplicity, we assume all inputs are of size

N = 2 k + 1 for some positive integer k. Let x be the initial state of the grid, and b be the right

hand side of Equation (4.1).

MULTIGRID-SIMPLE(x, b)

1: if N = 3 then
2: Solve directly
3: else
4: Iterate using some iterative method
5: Compute the residual and restrict to half resolution
6: Recursively call MULTIGRID-SIMPLE on coarser grid
7: Interpolate result and add correction term to current solution
8: Iterate using some iterative method
9: end if

Figure 4.3: Pseudo code for MULTIGRID-SIMPLE.

The full multigrid algorithm requires the use of a sequence of k V-cycles of increasing refinement

run in succession. In this section, we will focus on tuning a single V-cycle; the methods employed

can be extended to tune a full multigrid algorithm. The pseudo code for this is shown in Figure 4.3.

At the recursive call on line 6, the PetaBricks compiler can make a choice of whether to continue

making recursive calls to multigrid (shown as the solid diagonal arrows) or take a shortcut by

---------------------------------------------------------------------------------



using the direct solver or one of the iterative solvers at the current resolution (shown as the dotted

horizontal arrows). Figure 4.2 shows these possible paths of the multigrid algorithm.

The idea of choice can be implemented by defining a top level function POISSON, which makes

calls to either the direct, iterative, or recursive solution, and having MULTIGRID call POISSON. The

pseudo code for this is shown in Figure 4.4.

POISSON(x, b)

1: either
2: Solve directly
3: Use an iterative method
4: Call MULTIGRID for some number of iterations
5: end either

MULTIGRID(x, b)
1: if N = 3 then
2: Solve directly
3: else
4: Iterate using some iterative method
5: Compute the residual and restrict to half resolution
6: On the coarser grid, call POISSON
7: Interpolate result and add correction term to current solution
8: Iterate using some iterative method
9: end if

Figure 4.4: General pseudo code for choices in POISSON and MULTIGRID.

Making the choice in line 1 of POISSON has two implications. First, the time to complete the

algorithm is choice dependent. Second, the accuracy of the result is also dependent on choice

since the various methods have different abilities to reduce error (depending on parameters such

as number of iterations or weights). To make a fair comparison between the choices, we must take

the accuracy of each choice into account.

In the other algorithms we have examined thus far, the compiler determines which choices to

make based solely on some parameters of the input (such as the input size). In autotuning our

Poisson solver, we also use the desired accuracy level to make that determination. To that end, the

autotuner keeps track of not just a single optimal algorithm at every recursion level, but a set of

such optimal algorithms for varying levels of desired accuracy. In the following sections, we assume

we have access to representative training data so that the accuracy of our algorithms during tuning
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closely reflects their accuracy during use.

Full Dynamic Programming Solution

We will first describe a full dynamic programming solution to handling variable accuracy, then

restrict it to a discrete set of accuracies. We define an algorithm's accuracy to be the ratio between

the RMS error of its input versus the RMS error of the output compared to optimal. Thus, a higher

accuracy algorithm is better.

Let level k refer to an input size of N = 2k + 1. Suppose that for level k - 1, we have solved for

some set Ak-1 of optimal algorithms, where optimality is defined such that no optimal algorithm

is dominated by any other algorithm in both accuracy and compute time.

In order to construct the optimal set Ak, we try substituting all algorithms in Ak-1 for step

6 of MULTIGRID. We also try varying the parameters in the other steps of the algorithm (e.g. the

choice of iterative method and the number of iterations in steps 3 and 4 of POISSON and steps 4

and 8 of MULTIGRID).

Trying all of these possibilities will yield many algorithms that can be plotted as in Figure

4.5(a) according to their accuracy and compute time. The optimal algorithms we add to Ak are

the dominant ones designated by square markers.

The reason to remember algorithms of multiple accuracies for use in step 6 of MULTIGRID is

that it may be better to use a less accurate, fast algorithm and then iterate multiple times, rather

than use a more accurate, slow algorithm. Note that even if we use a direct solver in step 6, the

interpolation in step 7 will invariably introduce error at the higher resolution.

The PetaBricks Solution

The PetaBricks compiler offers an approximate version of the above solution. Instead of remem-

bering the full optimal set Ak, the compiler remembers the fastest algorithm yielding an accuracy

of at least pi for each pi in some set {pl, p2., ,Pm}. The vertical lines in Figure 4.5(a) indicate the

discrete accuracy levels pi, and the optimal algorithms (designated by solid squares) are the ones

remembered by PetaBricks. Each highlighted algorithm is associated with a function POISSONi,
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Figure 4.5: (a) Possible algorithmic choices with optimal set designated by squares (both hollow
and solid). The choices designated by solid squares are the ones remembered by the PetaBricks
compiler, being the fastest algorithms better than each accuracy cutoff line. (b) Choices across
different accuracies in multigrid. At each level, the autotuner picks the best algorithm one level
down to make a recursive call. The path highlighted in red is an example of a possible path for
accuracy level P2

which achieves accuracy pi on all input sizes.

To further narrow the search space, we only use SOR as the iteration function since it performs

much better than Jacobi for similar computation cost per iteration. In POISSONi, we fix the weight

parameter of SOR to wdopt, the optimal value for the 2D discrete Poisson's equation with fixed

boundaries [8]. In MULTIGRIDi, we fix SOR's weight parameter to 1.15 (chosen by experimentation

to be a good parameter when used in multigrid). We also fix the number of iterations of SOR in

steps 4 and 8 in MULTIGRIDi to one. The resulting accuracy-aware Poisson solver is a family of

functions, where i is the accuracy parameter. This family of functions is described in the pseudo

code in Figure 4.6

The autotuning process must now determine what choices to make in POISSONi for each i and

for each size input. Since the optimal choice for any single accuracy for an input of size 2 k + 1

depends on the optimal algorithms for all accuracies for inputs of size 2 k- 1 + 1, the PetaBricks

autotuner tunes all accuracies at a given level before moving to a higher level.

--



POISSONi(x, b)

1: either
2: Solve directly
3: Iterate using SO,,opt until accuracy pi is achieved
4: For some j, iterate with MULTIGRIDj until accuracy pi is achieved
5: end either

MULTIGRIDi(x, b)

1: if N - 3 then
2: Solve directly
3: else
4: Compute one iteration of SOR1.15
5: Compute the residual and restrict to half resolution
6: On the coarser grid, call POISSONi
7: Interpolate result and add correction term to current solution
8: Compute one iteration of SOR1 .15
9: end if

Figure 4.6: Pseudo code for family of functions POISSONi and MULTIGRIDi where i is the
required accuracy, as used in the benchmark.

Performance

The final set of multigrid algorithms produced by the autotuner can be visualized as in Figure

4.5(b). Each of the versions can call any of the other versions during its recursive calls to the lower

level, and the optimal path may switch many times between accuracies as we recurse down towards

either the base case or a shortcut case.

Figure 4.7 shows the performance of our autotuned multigrid algorithm for accuracy 109 . The

autotuned algorithm uses accuracy levels of {10, 103 , 105 , 107 , 109} during its recursive calls. The

figure compares the autotuned algorithm with the direct solver and iterated calls to Jacobi, SOR,

and MULTIGRID-SIMPLE (labeled Multigrid). Each of the iterative methods is run until an accuracy

of at least 109 is achieved.

The autotuned algorithm shown calls the direct algorithm for small cases up to size N = 129,

at which point it starts making recursive calls to MULTIGRID. The number of iterations computed

at each level of recursion is determined by the autotuner to be optimal given the desired level of

accuracy.
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Figure 4.7: Performance for algorithms to solve Poisson's equation up to an accuracy of 109 using
8 cores. The iterated SOR algorithm uses the corresponding optimal weight wopt for each of the
different input sizes

4.2 Symmetric Eigenproblem

The symmetric eigenproblem is another problem with broad applications in areas such as mechanics,

quantum physics and structural engineering. Given a symmetric n x n matrix, we want to find

its eigenvalues and/or eigenvectors. Deciding on which algorithms to use depends on how many

eigenvalues to find and whether eigenvectors are needed. Here we study the problem in which all

the eigenvalues and eigenvectors are computed.

Algorithms and Choices

To find all the eigenvalues and eigenvectors of a symmetric matrix, we examine the use of three pri-

mary algorithms, QR iteration, Bisection and inverse iteration, and Divide-and-conquer. The input

matrix A is first reduced to A = QTQT, where Q is orthogonal and T is symmetric tridiagonal. All

the eigenvalues and eigenvectors of T are then computed by the algorithm chosen. The eigenvalues

of A and T are equal. The eigenvectors of A are obtained by multiplying Q by the eigenvectors

of T. The total work needed is O(n3 ) for reduction of the input matrix and transforming the
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Figure 4.8: Performance for Eigenproblem on 8 cores. "Cutoff 25" corresponds to the hard-coded
hybrid algorithm found in LAPACK.

eigenvectors, and the cost associated with each algorithm [8].

The QR iteration applies the QR decomposition iteratively until T converges to a diagonal

matrix. It computes all the eigenvalues and eigenvectors in O(n3 ) operations.

Bisection, followed by inverse iteration, finds k eigenvalues and the corresponding eigenvectors

in O(nk2 ) operations, resulting in a complexity of O(n3 ) for finding all eigenvalues and eigenvectors.

This algorithm is based on a simple formula to count the number of eigenvalues less than a given

value. Each eigenvalue and eigenvector thus can be computed independently, making the algorithm

"embarrassingly parallel".

The eigenproblem of tridiagonal T can also be solved by a divide-and-conquer approach. The

eigenvalues and eigenvectors of T can be computed using the eigenvalues and eigenvectors of two

smaller tridiagonal matrices, and this can be done recursively. Divide-and-conquer requires O(n3 )

work in the worst case.

The PetaBricks transforms for these three primary algorithms are implemented using LAPACK

routines, as is MATLAB polyalgorithm eig. Our optimized hybrid PetaBricks algorithm computes

the eigenvalues A and eigenvectors X by automating choices of these three basic algorithms. The

- - ~~-~ -~t



EIG(T)

1: either
2: Use QR to find A and X
3: Use BISECTION to find A and X
4: Recursively call EIG on submatrices T and T 2 to get A1 , X1, A2 and X2. Use results to

compute A and X.
5: end either

Figure 4.9: Pseudo code for eigenvector solve.

pseudo code for this is shown in Figure 4.9. There are three algorithmic choices, two non-recursive

and one recursive. The two non-recursive choices are QR iterations, or bisection followed by inverse

iteration. Alternatively, recursive calls can be made. At the recursive call, the PetaBricks compiler

will decide the next choices, i.e. whether to continue making recursive calls or switch to one of the

non-recursive algorithms. Thus the PetaBricks compiler chooses the optimal cutoff for the base

case if the recursive choice is made. After autotuning, the best algorithm choice was found to be

divide-and-conquer for matrices larger than 48, and switching to QR iterations when the size of

matrix n < 48.

Performance

We implemented and compared the performance of five algorithms in PetaBricks: QR iterations,

bisection and inverse iteration, divide-and-conquer with base case n = 1, divide-and-conquer algo-

rithm with hard-coded cutoff at n = 25, and our autotuned hybrid algorithm. In figure 4.8, these

are labelled QR, Bisection, DC, Cutoff 25 and Autotuned respectively. The input matrices tested

were random symmetric tridiagonal. Our autotuned algorithm runs faster than any of the three

primary algorithms alone (QR, Bisection and DC). It is also faster than the divide-and-conquer

strategy which switches to QR iteration for n < 25, which is the underlying algorithm of the

LAPACK routine dstevd [2].
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Figure 4.10: Performance for sort on 8 cores.

4.3 Sort

For the problem of sorting, we implemented the following algorithms in PetaBricks: insertion sort;

quick sort; n-way merge sort (when n equals 2, merge sort employs a recursive merge routine that

can also be parallelized), where the compiler can select n; and a 16 bucket radix sort (a MSD

variant that can recursively call any sorting algorithm). The concepts behind the choices in sort

are discussed in Section 1.1. All of the algorithms are recursive except for insertion sort. . Each of

these algorithms recursively calls a generalized sort transform, which allows the compiler to switch

algorithms at any level.

Figure 4.10 shows the performance for sort on 8 cores. Our autotuner was able to achieve signif-

icant performance improvements over any single algorithm. Surprisingly, the autotuned composite

algorithm did not utilize radix sort, despite it being the second fastest algorithm. Instead, it built a

hybrid algorithm using first 2-way merge sort, followed by quicksort, followed by a call to insertion

sort for smaller inputs. The sharp bend in performance for merge sort occurs at 1024 where the

binary tree of merges grows from 10 to 11 levels. If the graph is extended to larger inputs, merge

sort's performance forms a step ladder. When merge sort is used in a autotuned hybrid algorithm
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Figure 4.11: Performance for Matrix Multiply on an 8 cores. "Strassen 256" uses strassen algorithm
to decompose until n=256 when it switches to basic matrix multiply.

this step ladder performance pattern disappears.

4.4 Matrix Multiply

The full PetaBricks code for the basic version of matrix multiply can be found in the introduction

(Figure 2.1). In addition to that example code we also implemented Strassen algorithm (fast

matrix multiply). This results in four recursive decompositions and one base case, for a total of five

algorithmic choices. The compiler also considers non-algorithmic choices including: transposing

each of the inputs; various blocking strategies; and various parallelization strategies. For matrix

multiply, these non algorithmic choices make a huge impact.

Figure 4.11 shows performance for various versions of matrix multiply. Since the non-algorithmic

optimizations (blocking and transposing) made a large difference performance of those optimizations

are also shown. The series labeled "Recursive" is the recursive decomposition in the "c" dimension

shown in Figure 2.1. The other two recursive decompositions are equivalent to blocking and thus

are not shown. The autotuned algorithm uses a mixture of blocking, transpose, and the recursive

decomposition.



Chapter 5

Results

Figures 4.7, 4.8, 4.10, and 4.11 compare the performance of our autotuned algorithms to imple-

mentation that only utilize a single algorithmic choice. In all cases the autotuned algorithm has

significant speedup. These results were gathered on a 8-way (dual socket, quad core) Intel Xeon

E7340 system running at 2.4 GHz. The system was running 64 bit CSAIL Debian 4.0 with Linux

kernel 2.6.18 and GCC 4.1.2.

5.1 Autotuning Parallel Performance and Scalability

A great advantage of PetaBricks is that it allows a single program to be optimized for both sequential

performance and parallel performance. We have observed our autotuner make different choices when

training in parallel. As a general trend we noticed much lower cutoffs to bases cases in sequential

programs. In many cases entirely different algorithms are chosen. Of particular note is the fact

that algorithms tuned on 8 cores scale much better than algorithms tuned on 1 core.

As an example, when tuning sort on 1 core our autotuner picks radix sort with a cutoff of 98

where it switches to 4-way merge sort after which it finishes with insertion sort at a cutoff of 75.

When tuned using 8 cores the autotuner decides to use the 2-way-merge sort (with a parallelizable

recursive merge) function until the input is smaller than 1420, after which it switches to quick sort.

Finally, at inputs smaller than 600, it switches to insertion sort. When both algorithms are run

using 8 cores, the algorithm tuned on 8 cores performs 2.14x faster than the algorithms tuned on
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Figure 5.1: Parallel scalability. Speedup as more worker threads are added. Run on an 8-way
(2 processor x 4 core) x86-64 Intel Xeon System.

1 core (as seen in Table 5.1).

5.2 Effect of Architecture on Autotuning

Multicore architectures have drastically increased the processor design space resulting in a large

variety of processor designs currently on the market. Such variance significantly hinders porting

efforts of performance critical code. In this section, we present the results of PetaBricks autotuner

when optimizing our sort benchmark on three parallel architectures designed for a variety of pur-

poses: Intel Core 2 Due mobile processor, Intel Xeon E7340 server processor, and the Sun Fire

T200 Niagara low power high throughput server processor.

Table 5.1 illustrates the necessity of tuning your program for the architecture that you plan to

run on. When autotuning our sort benchmark, we found that configurations trained on a different

setup than they are run on exhibit significant slowdowns. For example, even though they have the

same number of cores, the autotuned configuration file from the Niagara machine results in a 2.35x

loss of performance when used on the Xeon processor. On average we observed a slowdown of 1.68x

across all of the systems we tested.
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Trained on
Mobile Xeon 1-way Xeon 8-way Niagara

Mobile - 1.09x 1.67x 1.47x
o Xeon 1-way 1.61x - 2.08x 2.50x

Xeon 8-way 1.59x 2.14x - 2.35x
Niagara 1.12x 1.51x 1.08x

Table 5.1: Slowdown when trained on a setup different than the one run on. Benchmark is sort on
an input size of 100,000. Slowdowns are relative to training natively. Descriptions of abbreviated
system names can be found in Table 5.2.

Abbreviation System Frequency Cores used Scalability Algorithm Choices (w/ switching points)

Mobile Core 2 Duo Mobile 1.6 GHz 2 of 2 1.92 IS(150) 8MS(600) 4MS(1295) 2MS(38400) QS(oo)
Xeon 1-way Xeon E7340 (2 x 4 core) 2.4 GHz 1 of 8 - IS(75) 4MS(98) RS(oc)
Xeon 8-way Xeon E7340 (2 x 4 core) 2.4 GHz 8 of 8 5.69 IS(600) QS(1420) 2MS(oo)
Niagara Sun Fire T200 Niagara 1.2 GHz 8 of 8 7.79 16MS(75) 8MS(1461) 4MS(2400) 2MS(oo)

Table 5.2: Automatically tuned configuration settings for the sort benchmark on various architec-
tures. We use the following abbreviations for algorithm choices: IS = insertion sort; QS = quick
sort; RS = radix sort; 16MS = 16-way merge sort; 8MS = 8-way merge sort; 4MS = 4-way merge
sort; and 2MS = 2-way merge sort, with recursive merge that can be parallelized.

Table 5.2 displays the optimal configurations for the sort benchmark after running the same

autotuning process on the three architectures. It is interesting to note the dramatic differences

between the choice of algorithms, composition switching points, and scalability. The Intel architec-

tures (with larger computation to communication ratios) appear to perform better when PetaBricks

produces code with less parallelism, suggesting that the cost of communication often outweighs any

benefits from running code containing fine-grained parallelism. On the other hand, the Sun Niagara

processor performs best when executing code with lots of parallelism as shown by the exclusive use

of recursive algorithms.





Chapter 6

Related Work

A number of empirical autotuning frameworks have been developed for building efficient, portable

libraries in specific domains. PHiPAC [5] is an autotuning system for dense matrix multiply, gen-

erating portable C code and search scripts to tune for specific systems. ATLAS [33, 34] utilizes

empirical autotuning to produce a cache-contained matrix multiply, which is then used in larger

matrix computations in BLAS and LAPACK. FFTW [11, 12] uses empirical autotuning to combine

solvers for FFTs. Other autotuning systems include SPARSITY [16] for sparse matrix computa-

tions, SPIRAL [24, 28, 10] for digital signal processing, UHFFT [1] for FFT on multicore systems,

OSKI [32] for sparse matrix kernels, and autotuning frameworks for optimizing sequential [19, 20]

and parallel [22] sorting algorithms.

In addition to these systems, various performance models and tuning techniques [35, 31, 6, 38,

18, 39] have been proposed to evaluate and guide automatic performance tuning.

There are a number of systems that provide high-level abstractions to ease the burden of pro-

gramming adaptive applications. STAPL [27] is an C++ template library that support adaptive

algorithms and autotuning. Paluska et al. propose a programming framework [23] that allows

programmers to specify goals of application behavior and techniques to satisfy those goals. The

application hierarchically decomposes different situations and adapts to them dynamically. An-

dersson et al. [3] and Kessler et al. [17] provide a framework for composing parallel algorithmic

components.



There is a body of research into applying machine learning to more traditional optimizations

such as loop unrolling and instruction ordering. MILEPOST [14] is an extension to GCC that uses

machine learning to optimize programs for specific processors. Moss and Page [21] introduce tech-

niques for exploring many different fine grained instruction orderings. Donadio et al. [9] introduced

a language for expressing families of loop transformations with different parameters.

ADAPT [29, 30] augments compile-time optimizations with run-time optimizations based on

dynamic information about architecture, inputs, and performance. It does not support making

algorithmic changes, but instead focuses on lower level compiler optimizations.

Atune-IL [26] allows programmers to annotate their parallel programs with different parameters.

Their system then uses autotuning techniques to set these parameters and improve performance.

FLAME [15] is a domain-specific tuning system, providing a formal approach to the design

of linear algebra methods. The system produces C and Fortran implementations from high-level

specifications via code generation.

Yi and Whaley proposed a framework [37] to automate the production of optimized general-

purpose library kernels. An embedded scripting language, POET, is used to describe custom

optimizations for an algorithm. Specification files written in POET are fed into a transformation

engine, which then generates and tunes different implementations. The POET system requires

programmers to describe specific algorithmic optimizations, rather than allowing the compiler to

explore choices automatically.

SPL [36] is a domain-specific language and compiler system targeted to digital signal processing.

The compiler takes signal processing transforms represented by SPL formulas and explores different

transformations and optimizations to produce efficient C and Fortran code. However, the SPL

system was designed only for tuning sequential machines.
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Chapter 7

Future Work

We are continuing to improve the PetaBricks language, expand our benchmark suite, and improve

performance. An interesting additional future direction is adding a distributed memory backend to

our compiler so that we can run unmodified PetaBricks programs on clusters. Moving to clusters

will add even more choices for the compiler to analyze, as it must decide both what algorithm to

use and where to run it. A key challenge in this area is autotuning the management of data. Since

distributed systems are often heterogeneous, autotuning can offer greater benefits since the trade

offs become more complex. Finally, we are also exploring compiler backends for less traditional

architectures such as graphics cards and embedded systems.





Chapter 8

Conclusions

Getting consistent, scalable, and portable performance is difficult. The compiler has the daunting

task of selecting an effective optimization configuration from possibilities with drastically different

impacts on the performance. No single choice of parameters can yield the best possible result as

different algorithms may be required under different circumstances. The high performance com-

puting community has always known that in many problem domains, the best sequential algorithm

is different from the best parallel algorithm. Varying problem size and data sets will also require

different algorithms. Currently there is no viable way for incorporating all these algorithmic choices

into a single program to produce portable programs with consistently high performance.

In this paper we introduced the first language that allows programmers to naturally express

algorithmic choice explicitly so as to empower the compiler to perform deeper optimization. We

have created a compiler and an autotuner that is not only able to compose a complex program

using fine-grained algorithmic choices but also find the right choice for many other parameters. We

have shown the efficacy of this system by developing a non-trivial suite of benchmark applications.

One of these benchmarks also exposes the accuracy of different choices to the compiler. Our results

show that the autotuned hybrid programs are always better than any of the individual algorithms.

Trends show us that programs have a lifetime running into decades while architectures are

much shorter lived. With the advent of multicore processors, architectures are experiencing drastic

changes at an even faster rate. Under these circumstances, it is a daunting task to write a program



that will perform well not only on today's architectures but also those of the future. We believe that

PetaBricks can give programs the portable performance needed to increase their effective lifetimes.
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