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ABSTRACT

Building Information Modeling (BIM) is an emerging software technology that is revolutionizing
the architecture, engineering, and construction (A/E/C) industry. BIM technology employs
"object-based 3D models-containing the physical and functional characteristics of a facility-
that serve as a repository for lifecycle information in an open, interoperable format" [1]. The
major difference between BIM and Computer-Aided Design/Drafting (CADD) is that the former
includes geometry and a plethora of building information while the latter includes only geometry.
BIM utilization in the AEC industry has increased due to 1) BIM tools increasing productivity in
design tasks; 2) the increasing number of private and government agencies that have instituted
BIM requirements; 3) the pervasive use of computer analysis and simulations models; 4) the
benefits of BIM as lifecycle management tool. Current literature shows trends of a transition from
a "passive"-static model-based-approach to an "active"-dynamic model-based-approach.
The active approach requires the integration of BIM with sensors to create "self-updating"
building models.

Previous research introduces the concept of a self-updating building model ([2], [31, [41).
These systems involve complex software architecture and may perpetuate the problem of software
interoperability. This thesis explores the following question: May a similar system be created to
synthesize dynamic sensor data while improving upon previous research and simplifying the
software architecture? The author describes a prototype system, called LiveBuild, which
integrates commercial BIM software with other off-the-shelf software components to create a self-
updating building model.

LiveBuild is the first self-updating building model that operates as an extension to existing
commercial BIM software. Therefore, the transition from static to active building models is as
simple as installing a plug-in. LiveBuild may serve as the basis for future research in self-updating
building by providing simplified system that is well integrated with state-of-the art commercial
design software. Likewise, the prototype is applicable for professional practice by allowing firms
to use their existing BIM software to perform "pilot projects" with self-updating technology. The
current prototype supports an interface with single commercial BIM software (Autodesk Revit
2009) product however future prototypes may extend both the functions and interfaces for other
BIM software.

Thesis Supervisor: Jerome J. Connor
Title: Professor of Civil and Environmental Engineering
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Chapter 1: Introduction

1.1 What is BIM?

Building Information Modeling (BIM) is an emerging software technology that is

revolutionizing the architecture, engineering, and construction (AEC) industry. BIM, and

similar technology, has been successfully used in many fields however, the scope of this

document is limited to BIM use in the AEC industry. BIM technology employs "object-

based three-dimensional (3 D) models-containing the physical and functional

characteristics of a facility-that serve as a repository for lifecycle information in an open,

interoperable format" [1]. The major advantage of BIM over typical Computer-Aided

Design/Drafting (CADD) is that the former includes geometry and semantic building

information while the latter includes only geometry (Figure 1). Semantic building

information supplements the 3D model by describing the attributes and properties (e.g.

material composition, mechanical properties, manufacturer, part/serial number, etc.) of

each building component.

- RValue

- Stiffness
- Manufacturer

3D Geometry Semantics 3D Geometry

BIM CADD
Figure i: BIM vs. CADD

BIM also facilitates a level of electronic communication and collaboration that was not

previously achieved in practice. The most successful implementation of BIM technology

requires the involvement of project stakeholders (designers, contractors, owners, etc)

early in the design process. Individual designers' BIM models (architect, structural

engineer, mechanical engineers) may be leveraged as tools to communicate design

decisions that impact other designers' decisions. Working in with BIM technology
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incentivizes the early creation of a building model to initiate interdisciplinary

collaboration earlier in the process where design decisions have the greatest potential

impact on the final project.

1.2 BIM Growth Factors

Several major factors have accelerated the growth of BIM within the AEC Industry: 1)

BIM tools increase productivity in common design tasks; 2) the large, and increasing,

number of private organizations and governmental agencies that have formally instituted

BIM requirements and standards; 3) the pervasive use of sophisticated analysis and

simulations models and 4) the demonstrated and expected benefits of BIM as lifecycle

management tool. A discussion of each contributing factor follows.

1.2.1 Increased productivity in design tasks

Building information modeling software, regardless of the specific developer, has features

that may immediately improve productivity for designers. These features include

coordination and collaboration tools, parametric design capabilities and the automated

creating of two-dimensional (2D) design drawings. BIM offers improved tools for

collaboration between designers. For example, a team of various design professionals all

working in BIM technology may combine their individual models to identify

"interferences" or "clashes" between building components, a task not easily achieved with

CADD. Parametric tools establish relationships between model components. With these

relationships in place, a change in one parameter may automatically modify many model

components based on the predefined relationships. For example, if the spacing between

structural joists were parametrically related to the span of the joists, a change in the span

would result in an automatic change in the spacing between joists. Parametric tools

improve flexibility especially in early design phases where many options may be explored.

BIM software also automatically extracts 2D drawings from the 3 D model. Many design

firms have invested in BIM technology to take advantage of improved interdisciplinary

coordination, design productivity and document consistency.
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1.2.2 Institution of BIM requirements and standards

There are an increasing number of private organizations and governmental agencies that

have formally instituted BIM requirements and standards. Many large design firms are

making drastic transitions from CADD to BIM. Furthermore, many governmental

agencies are requiring the use of BIM on all future projects.

Design firms are investing significant money, time, and effort in BIM technology. Many

companies maintain one license for each individual on the design staff. A single license

of BIM software can range from io - 6o% the annual salary of the average design

personnel and the time required for software training drives the cost even higher. Many

firms have made drastic shifts across their entire company from a CAD-based to a BIM-

based design process, making BIM their primary design and documentation tool. Many

companies have set formal deadlines, after which they will complete nearly loo% of their

work in BIM software [51-

Governmental organizations, who are also large clients to design firms, have also

benefited from proven costs savings on project budgets. Virtual collaboration and clash

detection in BIM, results in fewer unexpected problems on-site which, in turn, results in

fewer change orders, reduced overall cost, and more reliable construction schedules.

Many owners now require the use of BIM software in project design and delivery. The US

General Services Administration (GSA) is responsible for providing building and space for

all federal agencies. They are responsible for the developing and administering design

standards for new projects and management of existing facilities. The GSA states that

...all major projects that receive design funding in [the 2007 financial year] and

beyond are required to submit a spatial program [building information model] to

GSA prior to final concept presentation. GSA design teams use BIM to validate

spatial program requirements (e.g., area, efficiency ratios) more accurately and

quickly than traditional 2D approaches. [6]
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Other large facility owners like the US Coast Guard, Texas Facilities Commission [71,

State of Wisconsin Department of State Facilities [8], General Motors, Department of

Veterans Affairs [9] have all embraced BIM technology. Owners have clearly shown their

confidence in and commitment to the use of BIM technology and as a result BIM has seen

rapid growth throughout the building industry [io]. From the top down, the AEC

industry is invested in BIM.

1.2.3 Pervasive use of analysis and simulations models

Analysis and simulations models may cover a variety of mechanical or passive (airflow,

fire, natural light, etc.) building systems. The performance of each building system may

be simulated to help owners determine the most efficient and effective systems. BIM

models can serve as the basis for simulation models. Information from BIM may be

"imported" into simulation software instead of recreating the entire model. Designing for

sustainability often requires computational models to simulate the expected performance

of a system and optimize its performance to reduce financial and environmental costs

during operation. Sustainable design is loosely defined as "[avoiding] resource depletion

of energy, water, and raw materials; [preventing] environmental degradation caused by

facilities and infrastructure throughout their life cycle; and [creating] built environments

that are livable, comfortable, safe and productive" [n]. The United States Green Building

Council's (USGBC) has championed much of the industry-accepted standards for

sustainable design. The LEED green building rating system developed by USGBS, is

intended to provide "building owners and operators a concise framework for identifying

and implementing practical and measurable green building design, construction,

operations and maintenance solutions" [12]. USGBS also verifies and certifies buildings

that meet LEED standards. It is important to note that the current LEED standards are

focused on checking the "design" performance and do not verify the "actual" performance

after the facility is in operation. The adoption of LEED by Federal, State and local

government has helped it to become the leading standard for sustainable design in the

US. Moreover, the influence of sustainability has increased awareness of lifecycle cost
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analysis. Now, many owners are found that the lifecycle costing is a more accurate than

traditional estimation methods (e.g. initial cost only).

1.2.4 BIM in lifecycle management

By definition, BIM is a "repository of lifecycle information" and should therefore provide

benefits throughout the building lifecycle (design to demolition). Currently, the benefits

of BIM are only seen in the design and construction phases. A 2007 survey conducted by

Stanford's Center for Integrated Facilities Engineering (CIFE) found that though 50 to 60

percent of the respondents offered pre-project planning and construction management

services, they were less likely to use BIM (called VDC or Virtual Design and Construction

in the CIFE report) in these phases than they were in the design and documentation

phases [io]. Furthermore, BIM use in planning and construction management phases

shows little growth between 2o006 and 2007 while the areas of conceptual design, design

development and design documentation have seen large growth.

With such a large industry commitment to BIM technology there will undoubtedly be

future use in other lifecycle phases. Building operation requires the largest financial

investment of all other building phases and therefore offers the largest potential cost

savings. In the future, architects and engineers may find ways to offer BIM-based

operations and maintenance support to extend their services (and fees) throughout the

building's lifecycle. The under serviced phases (pre-planning, construction management,

operations & managements) will continue to grow not only in total number but will also

grow relative to the design phase because: 1) Owners will be better informed of building

technology and 2) Research will continue to advance the technology operations and

management; 3) the aforementioned growth factors will continue to influence BIM

adoption throughout the industry.

1.3 Limitations

BIM technology has several technical, legal and practical limitations. The largest

technical challenge is the lack of interoperability standards for BIM file formats. The
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complete exchange of information between BIM software has eluded the AEC industry.

Legal challenges include concerns over design liability and BIM model ownership (e.g.

Who is responsible for integrating the final model from all designers?). The practical

limitations include the ability to manage an appropriate level BIM model detail, general

lack of knowledge and uncertainty about the future of BIM technology, and prohibitive

cost.

1.4 Future of BIM

Future BIM systems must not only support the existing functions of BIM but must

also facilitate integration with other technology and new data types. The nature of the

information currently contained in building models is static. However, when objects

have dynamic attributes (e.g. varying temperature) it is not longer appropriate to

maintain only static information. Future BIM models must support not only static

information but also dynamic information. Sensors may supply real-time information

about building components to the model. Current computer-aided facilities management

(CAFM) software contains drawings (floor plans, details, etc.) and spatial management

tools (management and allocation of space to various functions). While extremely useful

to owners of large facilities, this is a relative low-level use of building information. Future

BIM systems will continue to support aspects of the current CAFM software but will also

develop a framework to support the current trend automated and sustainable systems.

Spatial management and building maintenance activities will benefit from continued

support of static information while future systems will require benefit from real-time

functionality.

1.5 Sensor Technology

The research presented in this study is not limited to any single type or group of sensors.

The major difference between various sensors is the type and amount of data produced

(e.g. sample rate, size of the data, and the type of data) but at a high-level that are all data

producers. The prototype system proposed in this document (see chapter 3 LiveBuild
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Prototype), is designed to capture sensor data regardless of the sensor type. Therefore,

this study does not provide a review of sensor technology.
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Chapter 2: Computing in the Building process

2.1 Introduction

This document investigates the current and future use of computing in each of the design

phases. Therefore it is appropriate to first describe each of the design phases with and

without the influence of BIM. Each building project is unique and may include several

phases of development. The phases may differ depending on the team in charge of

developing the project, or the project delivery method (design-bid-build, design-build,

etc). However, it is common for capital building projects in the United States to include

the following four phases: planning, design, construction and operation. Most of the

"building phases" are made up of sub-phases.

The following description of building phases represents the process for capital building

projects designed and built within the United States. This assumes that the client has, of

course, made the decision to construct a new building. The determination of the need for

a new building may be regarded as a design phase but is not included here because it has

little relevance to the use of BIM modeling. The decision to undertake a new project is

made by the owner with limited input from design professionals; it is not an appropriate

phase for the utilization of BIM.

2.2 Building Phases (without BIM)

2.2.1 Pre-design planning/programming

The planning process is dependent upon the needs of the client. In the preplanning

phase, the client/owner has already determined the need for a building project and has

hired at least one design professional-usually an Architect-to begin the process.

Project requirements and specifications are defined during pre-design and will later

facilitate the design phase. Most clients do not have advanced knowledge of the building

process and lack the expertise to articulate detailed, technical requirements of the

building. Therefore the designers must establish, through systematic interrogation, the
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specifications of the building to satisfy the clients' needs. This results in the enumeration

of all spaces that should be included in the final design; the type and size (area) and

nature of use for each.

2.2.2 Design

In conceptual design, designers generate many design ideas that satisfy the client's

requirements, as determined in pre-planning. Designers may generate several

significantly different building "concepts." At this time, designers brainstorm ideas,

determine feasible approaches and may eliminate design concepts that are not feasible.

Conceptual designs are presented and discussed with the building owner. The designs

have a sufficient level of detail to provide a sense of what the designers would like to

achieve in the final design but does not represent the level of detail that would be present

in a complete design. "Back-of-the-envelope" approximations are made to maintain a

level of reality but the specifics are not well articulated at this point. This process may be

iterated until the client and the designers are satisfied with the conceptual design.

Eventually, the owner with the counsel of the design team will approve a design concept

[13].

Design development commences upon the selection of a single concept design for the

building. Designers focus on the detailed design of all project components. "Back-of-the-

envelope" calculations are replaced by specific design parameters from design codes.

Design documentation or document development includes preparing all the drawings

that convey the designer's intent. Detailed drawings with dimensions, specifications and

performance requirements are also completed during this phase.

This design procedure, from concept to document production, is typical of many design

professionals. Architects, structural engineers, mechanical engineers, and other designers

will each perform a similar process on their portion of the design.
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2.2.3 Construction

For bidding, the nearly finalized construction documents (often called the bid

documents) are "released" for contractors to bid on them. "Bids" are an estimate of the

cost that a contractor- the general contractor or GC-will charge the owner to construct

a building. The owner may offer a public or private bid. The former is open to the public;

the latter is only open to a preselected list of contractors. The contractors create a bid by

identifying the materials and equipment needed to construct the building as shown on

the bid documents. Contractors use a variety of methods to construct detailed estimates

that account not only for what is shown on the bid documents but also other parts

needed for construction. Construction cost references, estimating software and detailed

spreadsheets are several estimation methods used. Regardless of the estimation method,

the estimate is usually overseen by an experienced estimator to verify the accuracy and

completeness of the bid. Contractors may also collect bids from various subcontractors,

who performed specialized construction, for inclusion in their final bid to the owner. In

the US the contractor with the lowest bid, or nearly the lowest bid, is often awarded the

construction contract.

The construction activities include all activities necessary to construct a facility and turn

it over to the owner. The tasks include all phases of construction from site preparation,

earthwork & excavation and the actual building construction. Contractors are responsible

for constructing the foundation, main structure, building enclosure, interior wall

partitions, mechanical systems, permanent equipment and finishes. The completion of

these tasks are performed by contractors skilled in various areas including, steel erection,

concrete, masonry, plumbing, electrical, etc.

The construction site requires the coordination of construction equipment and building

materials. These onsite logistics are often loosely included in the construction

documents; however the detailed onsite logistics is determined by the general contractor

or construction manager. Most management methods use 2D drawings to plan the use of

space and equipment onsite. Material storage areas or "lay-down" areas may initially be
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organized but quickly deteriorates into an unorganized area. For very large projects (with

many parts requiring onsite storage) attempts are made to create a plan for material

placement to facilitate easy retrieval later.

2.2.4 Building Operation & Maintenance

Operation and maintenance (O&M) begins when the building is handed over to the

owner. The owner is responsible for maintaining all the physical building (structure,

facade, foundation) and the building systems (mechanical, electrical, plumbing, etc.).

Some owners use computer aided facilities management (CAFM) tools to help coordinate

building maintenance.

2.3 "Over-the-wall" design paradigm

The AEC industry is undergoing a dramatic shift from fragmented design teams to

integrated design teams that innovate through collaboration. Traditionally, AEC design

projects are delivered in a workflow called design-bid-build (DBB). In DBB the owner

secures separate contracts with individual designers and contractors. In contrast, in

another workflow called Design-Build the contracts for each are combined; the designers

and contractors usually work as a predetermined team [14]. DBB segments the design

and construction processes into discrete phases where the design is often be completed or

near completion before contractors are involved. Furthermore, design professionals

have traditionally worked independently to complete their work scope before involving

the next design professional. The result is a so called "Over-the-wall" design approach

where each designer completes their design and then passes it over the wall to the next

designer; the work of each designer is completed independently from all others (Figure

2).
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Figure 2: Traditional over-the-wall workflow (or design silos)

After each has been completed, a final check is performed to identify and resolve

interferences between design components. The use of simple CAD tools would facilitate

more collaboration that that illustrated in this model. With the increased in popularity of

Design-Build, many owners and designers have recognized the benefit early interaction

between various designers and have abandoned the over-the-wall approach. If one end of

the workflow spectrum is "over-the-wall" then the opposite end is a BIM workflow:

collaborative from the beginning and to end.

2.4 Building Phases (BIM integrated)

2.4.1 Pre-design planning/programming

BIM modeling generally does not occur when defining the requirements. However, once

the requirements are defined they may be maintained in a database or verification

software to facilitate model checking later (See Sec. 2.4.2 Design; Subsection "Design

Checking").

2.4.2 Design

Conceptual design
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Visualization. Visualization is an important aspect of the conceptual design process

because it conveys the design idea to the client. BIM models may be fully rendered to for

the presentation of static snapshots or a real-time "walk-through" of a design concept.

Parametric Design. The parametric features reduce the time and effort to create

variations of design concepts. This allows designers to easily create options to present to

clients to get feedback. For example, a single design concept with several parametric

variations may be presented to a client. Each variation would help the client to

understand the tradeoff of between design options, function, aesthetic and cost.

Cost analysis. Conceptual design cost analysis is approximated by "rule-of-thumb" or

estimates based on the building type and unit cost (dollars per square foot) [15]. This

estimation method does not precisely represent the cost of the final project; however it

does present a rational means of comparing the relative cost of one design concept to

another. Using the BIM model as the basis of the conceptual estimate will reduce the

time and manual effort for early estimation. Finally, as conceptual design culminates in

the selection of a single design concept, the conceptual BIM model may, at least in part,

serve as the basis for the design model used in design development.

Design Development

Collaboration. BIM facilitates collaboration by the design team early in the process so

that input from other design consultants can be considered and included at a time when

it may still be able to influence the initial design [15]. Design models are also exchanged

between design consultants and combined to check for interferences (commonly referred

to interference checking called clash detection). For example, HVAC ducts commonly

have to be placed to avoid structural components. Integrating the various models may

reveal an HVAC duct that unintentionally clashes with a structural beam. These

interferences can be detected and remediated before construction begins, reducing the

number of unexpected modifications and ultimately reducing construction costs.
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Analysis and simulation. Analysis is an integral part of the design process for many

engineers and design professionals. Moreover, energy modeling and building system

simulations are often used to predict a building's energy consumption. BIM models may

serve as the basis for analysis and simulation models. Using BIM models reduces the

amount of additional modeling required to generate an analysis or simulation model.

Several software developers have established "links" to third-party software. Other

developers have included analysis and simulation tools in the BIM software. Regardless

of the avenue, the BIM model may eliminate redundant modeling for various design,

analysis, and simulation tasks.

Design Checking. BIM models also may be used for automated code checking or

requirements verification. As cited in Section 1.2.2 of this document, the General Services

Administration (GSA) uses BIM to verify that the final design concept meets their spatial

requirements for the project. The BIM-based approach allows validation "more

accurately and quickly than traditional 2D approaches" [6].

Document development

Automated drawing production. The primary benefit of BIM in document

development is automated document production and coordination. In BIM software,

buildings are "modeled" using 3 D components instead of drafted line-by-line as in CADD

systems. As a result of having a 3 D model, all 2D drawings (plans, elevations, sections,

etc.) are automatically generated by the BIM software. The largest fraction of time in the

design process is typically spent on document production. BIM will help to shift time and

effort from document production to design which could ultimately improve the quality of

the final building design.

2.4.3 Construction

Bidding

Estimating. Much of the cost estimating may be automated by the BIM model but an

experienced estimator should still manage the entire process. Estimators may then be
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able to focus on more detailed estimating (i.e. at a level of detail that is not included in

the BIM model).

Construction activities

Constructability. BIM models may be used to perform constructability studies. These

studies may include large construction equipment or temporary construction elements in

the BIM model to investigate the spatial limitations that will be encountered onsite. The

investigation may be as broad as determining site accessibility for construction

equipment or may be as detailed as identifying challenging construction tasks for

construction workers. BIM models may provide information directly to the construction

crews responsible for completing work in challenging areas [15]. Crews that understand

the onsite challenges can better pre-plan their work to accommodate the challenges.

Scheduling. If information is known about the rate of construction for different

components, construction crews can be managed on a detailed level to optimize their

work efforts using what is called 'lines of balance schedule analysis' [15]. Also,

visualization is also useful during construction. The BIM models may be used to visualize

the construction schedule and to communicate the expected building progression to

clients.

2.4.4 Operations & Maintenance

Controls. A detailed BIM model may be combined with other tools (simulations,

sophisticated algorithms, analysis) to automatically control building systems. For

operations control and process controls in building operation, "object model-based

management is still quite new, and there will undoubtedly be vast improvements in the

next few years"[15]. This quote by Kymmell (2008) highlights the need for continued

research in the area model-based building control. The prototype system presented in

this document addresses this need by improving upon the current self-updating building

model research and making the technology accessible to more project stakeholders

(designers, contractors, and eventually owners).
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Chapter 3: LiveBuild Prototype

3.1 Research Question

The goal of the study is to build on recent developments in commercial software

development to create a system that integrates building information modeling and real-

time (or pseudo real-time) sensor data acquisition. Previous research seeks a similar goal

of integrating BIM with sensors but involves complex software architecture (See [2], [31],

[4]). This thesis explores the following question: May a similar system be created to

synthesize dynamic sensor data while improving upon previous research and simplifying

the software architecture?

3.2 Background

Building Information Modeling has only recently been adopted by building design

practitioners (professional engineers, architects, etc). However, BIM technology draws

from over 30 years of "building product model" research that defined a conceptual

framework for a data schema-ways to represent BIM data-that would describe a

building's physical components and functional attributes [16], [17], [18], [19], [20]. The

building product model concept is well-research and established.

To date, several domain-specific data schemas have been developed including the CIS/2

data schema for Structural Steel and gbXML for energy/sustainability analysis, to name a

few. Moreover, there are developer-specific schemas for each commercially available BIM

software package. In addition, BuildSmart (formerly International Alliance for

Interoperability, IAI) has also led efforts to define a general data-schema-called the

Industry Foundation Class or IFC-that allows communication among all other schemas

[21]. The fragmented nature of the building design and data schemas lead the National

Institute of Building Sciences to introduce standards for BIM, called the National BIM

Standard [1]. The standardization focuses on two general areas: Information and Process.
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* Information: The BIM Standard establishes preliminary standards toward

achieving interoperability, consistent information storing/sharing and information

assurance.

* Process: Provides standards for authoring, reviewing and publishing BIM models

in a collaborative process.

BIM models are intended to be an information repository throughout the lifecycle of a

building including the concept, design, construction, operation and deconstruction

phases. Standardization is needed to allow information to be exchanged between the

phases of a building's lifecycle.

In construction, sensors have been used to track equipment on construction sites,

providing simplified location tracking and retrieval of building materials on crowded,

often unorganized construction sites [22], [23]. Song et al propose a system using off-the-

shelf RFID technology for construction tracking with an expected cost that is less than

other existing location sensing approaches [22]. The authors show that the research area

of materials management has great potential for improvement and cost savings. To

address this potential, the authors propose a construction tracking system that uses a

roving RFID tag reader equipped with GPS. The position of the RFID tag reader is

determined by the GPS and the tag reader in turn determines the relative distance to

tagged objects (e.g. building materials). Field tests were performed to verify the

operation of the system and to determine performance measures to compare the system

to other real-time location systems. The GPS equipped RFID reader calculates the tag

location with an error of (+/- 3.7m (+/- 3.6m for the RFID tag reader w/o GPS) 68% of the

time and +/- 4.9m (+/- 4.8m for the RFID tag reader w/o GPS) 94% of the time. This

study shows the use of sensing and computing extended beyond the design phase and is

now being applied in construction. This is indicative of a trend to increase the use of

computing throughout the building lifecycle.

Current BIM research also investigates integrating building models with real-time data-

collected from sensors-to automate building systems. The concept of context aware
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computing was introduced earlier in other fields of computing research [241, [25] and was

later applied in the building industry [2].

Icolglu et al. (2004) proposes a distributed location sensing platform using the visual

TRIP tag system developed by Ipina et al (2002) [26], [27]. The proposed system uses off-

the-shelf camera and inexpensive, printed TRIP tags to locate objects. The system

implements the Distributed Component Object Model (DCOM) protocol to allow

distributed communication over a network. The four basic system components are: the

Application Sever which manages the use of all system resources, including cameras; the

Database Server which stores data on all the system's components in XML format; a web-

based User Interface Server which allows human visualization, retrieval and modification

of the system data; and TRIP clients which process the images with an algorithm to

extract the presence, orientation, relative distance and identity of tags. Images captured

by the cameras are sent via HTTP to TRIP Clients for processing. Data extracted by

individual TRIP Clients is sent to the application server where it is aggregated with data

from other clients and supplemental information regarding camera position. The

Application Sever sends data to the Database Server for persistent storage. This research

presents well structured software architecture for a real-time building system. The

primary drawback of the system is that the TRIP based system requires line-of-sight to

recognize objects; it is best suited to an environment with few visual obstructions.

Brunner and Mahdavi (2005) propose a software architecture for a self-updating life-cycle

building model [3], [4]. The basis of the model is what the authors call the Shared Object

Model (SOM) (Figure 3). The SOM Objects combine static information about an object

with data from one or several sensors. The description of a building space or domain may

require the aggregation of several SOM Objects in parent-child relationships.

26 Page



pHretS,
hilidren

Figure 3: Shared Object Model (SOM)
Image Source: [41

The Model Service combines an SOM-based building description with software interfaces

for database storage, human visualization, sensor data collection and building

simulations (Figure 4). The interfaces for sensor data collection and building simulations

are facilitated by JavaSpaces, an implementation of Tuplespaces (Figure 5). JavaSpaces

allows values to be passed into an intermediate "space" in tuples-a sequence of numbers

with known data types-and are recognized upon retrieval by their signature.
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Figure 4: Overview of building model service
Image Source: [4]
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Figure 5: Software Communication via JavaSpaces (labeled Data space and Service Space)

Image Source: [3]

Brunner and Mahadavi's self-aware building model also utilizes simulations that

determine the control regime of several passive and active lighting devices to maintain

specified indoor light levels. The building model gathers information from sensors about

ambient light level and the state of lighting devices. The model information is used to
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simulate possible changes to the configuration of lighting devices. The simulation results

of several possible configurations are used to select the most appropriate device

configuration to maintain the light level.

Sharples et al. proposes a non-deterministic intelligent building control scheme [28].

Instead of using simulations, this system uses machine learning to "observe" occupants'

and then tailor the automatic control of the system to predict a users' preferences.

Sensors collect information on building spaces and the configuration of building controls.

Using these as inputs, machine-learning may "train" itself to respond and modify building

system controls in a similar fashion to the typical user. Predefined (deterministic)

building control strategies are only used in case of emergency.

Research into the integration of BIM and sensors has been ongoing before the widespread

availability of commercial BIM software. Therefore, existing research-based prototype

systems are largely custom software architecture that is implemented in upon a

"standard" file format [26], [3]. These systems are robust and allow domain-specific

flexibility but have complex system architecture. The complexities include software-

agents and intermediate programming languages to allow asynchronous communication

between components. However, commercially available BIM software now provides a

platform for a simplified integration of BIM and real-time sensing. This research asserts

that commercial BIM software may be extended to include real-time sensor information

and real-time decision-making.

3.2.1 Requirements for self-updating model

A prototype system designed to explore the integration of BIM and real-time sensor

information should meet the functional and practical requirements listed below. The

requirements were determined after a review of the current literature. Some

requirements listed below are comparable to the requirements proposed in previous

literature [3] but also include several new requirements that are unique to this study that

improve upon previous research.
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Support Sensor Data & Relationships. This is the basic function required to support a

real-time building model. The prototype system should allow building components to be

linked to sensors that collect physical data about the components (Figure 6). All BIM

technology shares a common attribute, namely an underlying database of building

information. The prototype system should supplement the content of this database with

sensor data (and maintain the relationship of BIM-Objects to sensors).

N101

Physical wall tagged Virtual relationship
with sensor established between

sensor and wall

Figure 6: Establish link between sensors and objects

Support User/Data Interaction. Building data is stored in database tables that are

arranged in a manner well-suited to computer interpretation; however, large database

tables are not always easily understood by humans. Building data should be presented in

a human understandable format which not only allows retrieval of existing data but also

allow the addition of new data. The interface should support the functions (discussed

below) for managing a self-updating building model. It should also be accessible to a

wide range of users. The interface should be easily understood by individuals of varying

technical backgrounds.

Operate in the Native Environment. The "native" environment is the software

environment in which the building model is authored. It is important to operate within

the native environment because moving out of the native environment is commonly

achieved by using intermediate or common file formats like the IFC file format.

Information exchange formats are often unreliable because various software vendors may
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classify the same information in different ways within the same file type; this is the

common problem of interoperability. The systems proposed in previous research first

translate the building model into a new data schema, via an intermediate file format,

before including sensor information. Sensor data integration should occur within the

native environment to avoid the problem of information exchange. Maintaining the

building model's original data schema does not solve the longstanding problem of

interoperability however, unlike other systems it does not exacerbate the problem by

introducing a new data schema. For example, Brunner and Mahdavi's proposed system

first translate the building model into the SOM schema. An alternative system, like the

one proposed by the author, preserves the informational structure of the original building

model and supplements it with the information needed for real time sensing.

Support Various Building System Control. Another fundamental control that the

prototype self-aware system should have is the ability to automatically actuate building

controls. This allows the building to not only be self-aware but also self-regulating.

Modern buildings contain many mechanical and electrical systems. The prototype

system should provide an interface capable of actuating current building systems and

provide the flexibility to incorporate future building systems.

Maintain central persistent storage. Persistent data storage (or non-volatile storage)

refers to devices where data is maintained even when the power is lost. Central storage,

as opposed to distributed, maintains a single location to store data. Persistent storage

will accomplish two primary goals 1) maintain consistent building model representation

2) ensure the stability of the system in the event of power loss. A single, central data

source will manage information consistency throughout a network of users. If the

information is distributed among several individual machines then all these machines

must remain "online" for the data to be accessible by others clients in the network. A

central storage location allows individuals to remotely modify the building model while

maintaining consistent information to all other users in the network.
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Manage Concurrency. The prototype system should properly handle concurrent read

and write functions on an individual object (Figure 7). For example, a sensor in the

process of sending data to the building model at the same time a sensor reading is

requested by another client should not compromise the behavior of the system.

write @
time = t

LiveBuild
Database

Figure 7: Example concurrency management

Limit Latency. Latency is the time it takes for a sensor reading sent to the database to

become available within the model. High latency is problematic for systems that must

dynamically respond to "real-time" or near real-time changes. The latency should not be

prohibitively high and minimizing latency is ideal.

3.3 LiveBuild Prototype System

The author developed a prototype self-updating system, called LiveBuild short for "Live

Building" that improves upon previous research and simplifies the software architecture.

It uses off-the-shelf BIM software-with no real-time functionality-and modifies it to

respond to real-time data in its native environment and dynamically control building

systems. This tool will later be used as a platform on which to build real-time decision-

making systems.

Several software developers offer commercial BIM software for the AEC industry

including Autodesk, Bentley Systems, Ghery Technologies, Graphisoft and Tekla to name

a few. An overview of the strengths and weakness of each is covered in [29]. The

LiveBuild prototype is designed to interface with Autodesk Revit 2009. Autodesk Revit is

a suite of BIM software solutions with unique implementations for each Architects,
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Structural Engineers, and Mechanical Engineers. LiveBuild is implemented in the

Structural Engineering package, Revit Structures 2009. Autodesk Revit was selected

because of its "open" (i.e. freely-available) Application Programming Interface (API) and

software development kit (SDK). An API is a collection of methods that allow third-party

software developers to write custom software for the parent application. The API and

SDK are both available to download on Autodesk's Development Center website [30].

The Revit API allows software to be programmed in Visual Basic, C#, and c++

programming languages [31]. The author chose the C# language for LiveBuild because of

prior programming experience with the language. LiveBuild was developed using

Microsoft Visual C# 2008 Express Edition to take advantage of its timesaving tools for

software development. The LiveBuild prototype uses Microsoft SQL Server database

management system, implemented in Microsoft SQL Server 2oo8 Express. Standard SQL

statements are used to post and retrieve data from the database. Both Visual C# 2008

Express Edition and SQL Server 2008 Express are available free of charge on Microsoft's

website [32].

3.3.1 Requirements met

Support Sensor Data & Relationship. Within the BIM, the building data is stored in an

internal database. As previously mentioned, all BIM software has this database of

information which this study refers to as the "implicit database." Revit does not allow

direct access to the implicit database through the user interface. In most BIM systems

the implicit database may only be modified indirectly by manipulating the building

model or by modifying the parameters that are presented in the user interface. Users are

never given full access to the database but this is not a drawback for the BIM system. In

fact, this is prudent decision made by the Revit developers. Most users do not require

access to the database and may disrupt the performance of the building model if given

access. Restricted access to the implicit database posed a technical challenge in

developing the LiveBuild prototype. The data in the implicit database was not accessible

but was needed to extend the database to include sensors. The author overcame the

accessibility limits of the implicit database by linking it to an external SQL Server
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database. A copy of Revit's implicit database was placed in an external source that was

accessibly to LiveBuild (Figure 8).

LiveBuild UI

J* -- -- -- ---- %

I IUserInterface
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Semantics
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Pressure Sensor
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Explicit------------3

Figure 8: LiveBuild interaction with Revit

Like Revit, the LiveBuild prototype does not fully expose its database to the user. It only

allows limited information access through the LiveBuild user interface but keeps system-

level information hidden from the user.

Support User/Data Interaction. The LiveBuild user interface (UI) is designed to

facilitate easy human interpretation of the information contained in the building model.

It supports functions including: relating sensors to building objects, defining constraints

on sensor readings and defining the actions taken if the constraint is met. The first

prototype, presented in this document, is intended for exploratory use by researchers and

design professionals. Though the current user interface is designed to be easily

understood by the aforementioned audience, the ultimate goal of this research is to

create a system that can be used by building managers and maintenance staff. Future

user interfaces will improve accessibility for a broad range of individuals.
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Operate in the Native Environment. LiveBuild is implemented within Autodesk Revit

2009 native environment and takes advantage of the Revit user interface. LiveBuild does

not require users to learn a new interface. Anyone familiar with the Revit UI can easily

operate LiveBuild. Furthermore, LiveBuild does not introduce a new data schema which

may perpetuate the problem of interoperability between BIM software. LiveBuild is also

the first self-updating building model that operates as an extension to an existing

commercial BIM system. This unique feature makes LiveBuild an attractive option for the

growing number of professional design firms investing in BIM technology. Stand-alone

self-updating modeling software would require additional training which may discourage

its use. Therefore, the transition from static to active building models is as simple as

installing a LiveBuild plug-in.

Developing real-time functions in the Revit environment present several challenges. The

Revit API has a limited number of prescribed methods available to software developers.

In some cases, the LiveBuild development worked well within the available API functions.

In other cases, the API presented constraints that required the development of an indirect

problem solution. For example, the Revit API does not allow the capture of all user

actions. The API allows the capture of events involving Revit objects (e.g. a user selects a

column or beam) but does not allow the capture of high-level events (e.g. mouse clicks or

when the "Enter" button is pressed). This limitation presented problems when

developing tools that required a back-and-forth interaction between the user and the

LiveBuild software. Also, the API has no programmatic link to the underlying Revit

database. Consequently, users must manually establish the connection between Revit

and the LiveBuild database. This could easily be solved by expanding the API to include a

method to access the Revit database. Finally, the API does not allow continuity between

software tools. Each function developed through the API is an individual entity.

Therefore, variables defined within a tool only exist as long as the tool is active; variables

do not persist in memory for future reference. After the function is complete, all local

variables are lost. Passing user input data from one function to another required

additional effort to handle this complication.
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Support Various Building System Control. LiveBuild is designed to control a wide

range of systems by allowing generic connection to building systems. The only

requirement is that can be programmatically actuated; this allows automatic actuation by

LiveBuild. Current state-of-the-art building automation systems have similar

requirements for building system. It presents a platform for building optimal package for

each building system.

Maintain central persistent storage. LiveBuild uses a central SQL Server database as

the single source for persistent storage. Information is never stored locally on client

computers and is never stored random access memory (RAM). Each user connects to the

database and works from one persistent source. This prevents data loss from a user that

is unexpectedly disconnected from the database.

A central data source is used in LiveBuild prototype for simplicity. It does not preclude

the use of a distributed network. Even a distributed network may still work as a central

database. It would be similar to taking the central database from the LiveBuild and

placing portions of the on a different computer. The data would be exactly the same but

the distributed network would provide the benefit of using the computational power of

several machines instead of just one.

Manage Concurrency. Concurrency conflicts in the model are managed by the Revit

environment and concurrency conflicts in the database are managed by Microsoft SQL

Server. Revit uses "locking" to manage concurrency in the building model. Once a

component within the model is modified by a user it is "locked" to prevent editing by

other users. The component is only "unlocked" after the original editor has saved to

his/her modifications the central model and has relinquished control of the model

component(s).

Revit's "locking" approach seems to have directly grown from the approach of database

concurrency management. SQL Server also manages concurrent using a type of "locking."

The Transaction Isolation Level (TIL) determines the level of protection from

concurrency conflicts. LiveBuild uses a TIL setting of"Read Committed" which prevents
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(or locks) information from being read before an operation (transaction) is completed

(committed). The challenge is setting proper level of "locking" without unnecessarily

reducing the database performance. Increased concurrency protection reduces the

performance of the system by increasing latency.

Limit Latency. Latency has not proven to be a problem in LiveBuild prototype. The

model performs at latency level that is unnoticeable to a user. This would be more

critical in a true "real-time" but LiveBuild is more accurately classified as pseudo-real-

time.

3.3.2 Software Functions

The LiveBuild user interface (UI) and the overall model operation are illustrated in Figure

9-

UI iDatabase

Figure 9: Communication of LiveBuild software components

The two major software components developed for LiveBuild allow communication

between the BIM environment-in this case Autodesk Revit-and LiveBuild database.

These components, the user interface (UI) and the Database Link, provide all of

LiveBuild's functions. The Database Link functions as the data manager while the UI

provides the user with access to the data. The following functions are supported either by

the Database Link, by the UI, or by both.

3.3.2.1 Maintain Database.

LiveBuild's database is, of course, managed by the Database Link software component. As

mentioned in section 3.3.1, (subsection "Operate in native environment") the Revit

database must first be manually exported to the LiveBuild database before operation.

With the Revit database accessible, the Database Link adds the tables and relationships
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shown in Figure to to the database. These tables provide the framework to define the

relationships between BIM model components (BIM objects) and the data provided by

sensors. These virtual relationships mirror the relationship between the physical

components and the actual sensors.

2 6

®'-
Figure lo: LiveBuild Database Tables Diagram

Figure io (above) is a diagram that describes the relationship between the database tables

added by the Database Link component. Starting from the left side of the diagram, the

tables are as follows:

1) "Physical Objects" contains a list of all objects in the building (and building model)

2) "Data Sources" table contains a list of all the data sources. Data sources may be a

single sensor or a collection of sensors in a single node.

3) "All Objects_Data Sources" relates physical objects to data sources.

4) The "Sensors" table lists all the sensors in each data source. As mentioned above, a

data source may be made up of several sensors.

5) "Sensor Type" defines all type of information provided by each sensor

(acceleration, temperature, pressure, etc.);

6) The "Sensor Data" table holds the data from all the sensors. All sensors post their

information to this single table.

38 Page

~ I -CIII)



7) Each individual sensor has a "View"-or a virtual table extracted from the parent

"Sensor Data" table-to represent its data.

Each "View" is extracted from the 'Sensor Data' table by an SQL statement that selects

only items with the intended 'Sensor ID' and 'DataSource ID' and then sorts the results by

the timestamp. This produces a time history of the data from any Data Source using the

"view" but allows a single table to contain the data from every sensor in the system. This

method-using a single table for all sensor data with "Views" for each individual sensor-

allows simple data posts and read functions. All sensors post data to a single source

('Sensor Data') while all data retrievals come from a table with the same name as the

sensor.

3-3.2.2 Manage Database access and BIM Object/Sensor relationships

The UI provides access to the database and to the tables to define relationships.

LiveBuild displays a series of windows for user input into database. All windows are

launched from within the Revit User Interface (Figure 1i). The first window (Figure 12)

allows a user to provide the information to connect to the existing database; this

information includes the URL where the database is located (for remote access) and login

credentials. The next window (Figure 13) shows a list of the data sources (or sensors) that

are currently "online." Next, the user is asked to select the Objects in the model to relate

to the data sources (Figure 14). Finally, the user is presented a side-by-side list of the data

sources and Objects that were selected in the process (Figure 15). This allows a user to

make a final selection of the data sources and BIM Objects to relate; their relationship is

then stored in the database tables. Figure 16 illustrates the communication between the

major software components when a user defines a BIM Object to sensor relationship.

39 1Page

;



Figure in: Autodesk Revit User Interface

Figure 12: LiveBuild Login

Figure 13: Sensor List
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Figure 14: User Selected Objects

Figure 15: Selects Sensor and Revit Objects
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the sensor's host object. For example, a temperature sensor may be physically attached tothe entire room, not just the wall.

3323 User-defined event criteria.

The event criterion is manimportant to note that these relationships and the intended to def Link. Event criteria aretionship

thfor entirxample ro, constraints placed on the value of the sensor readings (
3.3.2.3 User-defined event criteria.
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Figure 17). An event occurs when a sensor reading crosses the threshold defined by the

criteria.

Sensor Data (upper)

Constraint
(lower)

Time

Figure 17: Example LiveBuild Event Criteria

The event criteria must be met to trigger an action (see Section 3.3.2-4). The current

LiveBuild prototype includes only simple "greater than" and "less than" criteria (i.e. upper

and lower bounds). These "skeleton" functions are hard-coded into LiveBuild but lack a

specific numerical value; numerical input from a user is used to define the specific limit.

SQL "triggers" are used to implement the criterion. When an event occurs, LiveBuild

adds a row to a special table called the Event Table. The Event Table acts as a queue for

LiveBuild events. If an event-action relationship exists, the "Actions" are invoked by

LiveBuild.

3.3.2.4 Manage LiveBuild "Actions"

Like events, LiveBuild "Actions" are also facilitated by both the UI and Database Link.

The "Actions" are literally the action that is initiated when an event occurs. Figure 18

illustrates the communication between the major software components when a user

defines event criteria and actions.
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Figure 18: Sequence Diagram: Defining Event Criteria and Actions

Sensors provide LiveBuild with an accurate, up-to-date representation of the building,

however "Actions" give the system the power to dynamically respond and modify itself

(Figure 18 above). The actions may be simple message/notifications to the user or may be

automated modification of building system controls (Figure 19). The default Action in

LiveBuild is to send a message to the user. The message may be a pop-up window with

information about an event or may appear as a persistent tag near an Object in the

building model. The message type used to display the information is dependent upon the

nature information being presented. For example, a message regarding a dramatic

temperature change in an area of the building may appear as a pop-up message.

Conversely, a message regarding a specific sudden drop in pressure in a water pipe may

show up as a persistent tag in the building model. The message delivery method suits the

scope of the event.
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The next and most powerful level of LiveBuild "action" is using the information contained

in the BIM to automate building systems control (Figure 19).

Data

Stored in
Database

esFigure : Flowchart: LiveBuild Actionvoke

can be actuated programmatically (by a machine) can be added as a LiveBuild "action."Mee3.4 Future Applicationst Action: on Defi Aion

The LiveBuild prototype developed for this investigation is immediately applicable for

emergency response systems and construction inspection/verification. LiveBuildeinformation may be used to presented optimal egress routes to occupants in emergencyLiveBuild uses a delegate that users may later define with the appropriate action for theirunique building system (e.g. turn off light; increase temperature by io). Any system thatcan be actuated programmatically (by a machine) can be added as a LiveBuild "action."
3.4 Future Applications

The LiveBuild prototype developed for this investigation is immediately applicable for

emergency response systems and construction inspection/verification. LiveBuild

information may be used to presented optimal egress routes to occupants in emergency

response situations. Likewise, emergency response teams may be given real-time
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information regarding a building and an optimal means of entering in an emergency

situation.

Engineering firms that currently use BIM software in the design process can employ

location sensors on major building components for tracking during the construction

process. LiveBuild can track the location of building components on the actual site and

virtually present a mirror of the site. This would allow remote construction management

and verification of the construction is as designed.

3.5 Other Challenges

This investigation allows off-the-shelf BIM software to respond to real-time data by

building upon the existing software platform. The simplicity of LiveBuild's

implementation is achieved through the use of an API, however the API also present

limitations. The API limits the BIM-client functions accessible for use in LiveBuild and

requires a unique mapping for each BIM software that LiveBuild will support.

API functions. An API is a collection of methods that an original software developer

makes available for third-party programmers to use in software development. Therefore,

a third-developer is limited to use the functions that the original developer allows access

to. For example, in Autodesk Revit there are several export functions (to various file

formats) that are available in the user interface but are not accessible through the API.

Limited access to the BIM-client's functions complicates the development of some

desirable LiveBuild functions and makes other functions nearly impossible develop.

Unique implementation. LiveBuild should to be compatible with BIM software from

several commercial developers to be useful within the building industry. API's are

intrinsically tied to the specific software that they support; LiveBuild's API-based

implementation would require a mapping to a unique API for each supported BIM

software.
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3.6 Future Work

Domain-specific data synthesis. Many research-based BIM/sensor systems are presented

as a "general" solution but then use domain-specific test cases for proof-of-concept.

Herein lies the problem, a domain-specific proof-of-concept usually involves developing

software components for specific use cases that are not generally applicable. However,

assuming that a generally acceptable software architecture does exists for integrating real-

time sensor information, domain-specific problems will still require some additional

software development. Sensor-driven systems are not useful unless they are "intelligent"

enough to synthesize the large amounts of data into something useful for humans to

understand or can automatically take action without human intervention. Future work

may include selecting one specific domain and developing systems to synthesize data and

present the results in a manner appropriate to that domain.

Latency. Latency is the time it takes for a sensor reading sent to the database to

become available within the model. Real-time systems must be able to respond to

changes quickly; requiring low latency. LiveBuild has shown that it can respond to

changes in the system but its latency has not been determined. Appropriate latency

levels can only be determined when a specific implementation is needed; unique systems

have unique latency requirements. Future work may include 1) determining the existing

latency of LiveBuild and 2) finding ways to maintain a latency level appropriate to a

domain-specific implementation.

More complex action/event criteria. The default logical event criteria currently

contained in LiveBuild is very basic (Section 3.3.2-3). A more robust system should not

only include specific upper and lower bounds but also should be able to interpret user

defined equations and recognize patterns in the data. Future work may include more

sophisticated criteria to trigger an action.

Accessibility of LiveBuild user interface. The LiveBuild prototype presented in this

document is for researched and professional. The ultimate goal is to make it accessible to

building owners and maintenance crews. To accomplish this goal, future prototypes
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should focus on developing tools and presentation styles that specifically suited for

building managers and maintenance crews.

Mobile Device Interface. Modern mobile communication devices are ubiquitous.

Future research may explore the opportunity for occupants to "communicate" with a

building via mobile devices. This may initially provide support for occupant to "register"

their mobile device with the building and allow two-way text-based communication. For

example, an occupant may send text-message requests to change the temperature in a

specific room. The model may then poll other room occupants and modify the control

scheme based on the collective comfort of occupants. Furthermore, emergency response

schemes may be communicated to occupants' mobile devices to expedite safe evacuation.

3.7 Conclusions

This paper presents a simplified software architecture for self-updating building

information model has been shown to be feasible and advantageous. The experimental

software setup presented in this document, using off-the-shelf software components

(building information modeling, database) suggest that self-updating models may be

improved by simplifying the architecture and implementation. The simplifications

include:

* Reducing the number of custom components. The LiveBuild prototype uses

only off-the-shelf components and can achieve similar results to other more

custom systems. This approach keeps the architecture "open" and accessible to

many users.

* Avoiding complicating interoperability. The addition of custom file types may

allow easy data manipulation within a self-updating model but may later

complication interoperability with other software. LiveBuild works within the

native BIM environment. This may prove to be an advantageous approach for

other self-updating building models.
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C:\Documents and Settings\Pierre\My Documents\Visual Studio 2008\Projects\LiveBuild\LiveBuild\Messages.cs

using System;
using System.Collections.Generic;
using System.Windows.Forms;
using System.Text;
using Autodesk.Revit;
using Autodesk.Revit.Elements;
using Autodesk.Revit.Enums;

namespace LiveBuild

class Messages

public Messages()

public static Boolean DialogIsCancelled()

DialogResult dr = MessageBox.Show("The process is not complete.\n" +

"Are you sure you want to cancel the LiveBuild Database Connection?",

"LiveBuild", MessageBoxButtons.YesNo, MessageBoxIcon.Question);
if (dr == DialogResult.Yes)

return true;
else

return false;

public void TagSelected(Document activeDoc, ref string messg)

try

//Document doc = commandData.Application.ActiveDocument;
ElementSet sel = activeDoc.Selection.Elements;
ElementSetIterator se = activeDoc.Selection.Elements.ForwardIterator();
while (se.MoveNext())

Element el = se.Current as Element;

foreach (Element el in sel)

LocationCurve loc = el.Location as LocationCurve;
Autodesk.Revit.Geometry.XYZ start = loc.Curve.get_EndPoint(O);
Autodesk.Revit.Geometry.XYZ end = loc.Curve.get_EndPoint(l);
Autodesk.Revit.Geometry.XYZ mid = start.Add(end).Divide(2);
Autodesk.Revit.Elements.View activeView = activeDoc.ActiveView;

if (activeView.ViewType != ViewType.ThreeD II activeView.ViewType != ViewType.Undefined)

Autodesk.Revit.Elements.View view = activeView;

TagMode tgMode = TagMode.TM_ADDBY CATEGORY;
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using System;
using System.Collections.Generic;
using System.Windows.Forms;
using System.Data;
using System.Data.Sql;
using System.Data.SqlClient;
using System.Text;
using Autodesk.Revit;

namespace LiveBuild

class DataBaseLink

private SqlConnection connx;
private DataSet dataSet;

public DataBaseLink(){}

public DataBaseLink(String dbURL, String dbName, string userID, string pass){
connx = GetConnection(dbURL, dbName, userID, pass);

}

public DataBaseLink(String connectionString)

connx = GetConnection(connectionString);

public Boolean IsValidConnection()

if (connx.ConnectionString == null)

return false;

else

try

connx.Open();
if (connx.State.ToString() == "Open")

connx.Close();
return true;

else

connx.Close();
return false;
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catch (Exception ex)

DataBaseLink.DBLinkErrorMessage(ex);

return false;

public void BuildDataSet(String newDataSetTableName, String selectedColumns, String fromTables)

//call static method
dataSet = DataBaseLink.GetDataSet(this.connx, newDataSetTableName, selectedColumns, fromTables);

public DataSet DataSet

get { return dataSet;

public SqlConnection Connection

{
get { return connx;
set { connx = value;

}

public static string GetConnectionString(String dbURL, String dbName, string userID, string pass)

SqlConnectionStringBuilder builder = new SqlConnectionStringBuilder ();

builder.DataSource = dbURL;
builder.InitialCatalog = dbName;
builder.UserID = userID;
builder.Password = pass;
builder.ConnectTimeout = 20; //time in seconds
return builder.ConnectionString;

public static SqlConnection GetConnection(String dbURL, String dbName, string userID, string pass)

{
String connectionString = GetConnectionString(dbURL, dbName, userID, pass);

SqlConnection con = new SqlConnection(connectionString);
return con;

p

public static SqlConnection GetConnection(String connectionString)
{
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SqlConnection con = new SqlConnection(connectionString);
return con;

public static void TestSQLConnection(SqlConnection connection)

try

connection.Open();
if (connection.State.ToString() == "Open")

MessageBox.Show("Connection Successful", "SQL Connection State", MessageBoxButtons.OK, MessageBoxIcon. V

Information);

else

{
MessageBox.Show("Connection Failed\nConnection state:\t" + connection.State.ToString() +

"Please try again", "SQL Connection State", MessageBoxButtons.OK, MessageBoxIcon.
Error);

connection.Close();

catch (Exception ex)

DataBaseLink.DBLinkErrorMessage(ex);

public static void TestSQLConnection(String dbURL, String dbName, string userID, string pass)

TestSQLConnection( GetConnection(dbURL, dbName, userID, pass) );

public static DataSet GetDataSet(SqlConnection connection, String newDataSetTableName, String
selectDataBaseColumns, String fromDataBaseTables)

//create adapter; will eventually use it to fill DataSet
SqlDataAdapter sensorTableAdapter = new SqlDataAdapter();

//Create a DataSet Table and name it
sensorTableAdapter.TableMappings.Add("Table", newDataSetTableName);

//create a query string to selects rows from database
String query = SelectStatementString(selectDataBaseColumns, fromDataBaseTables);

DataSet dSet = new DataSet();
try
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//connection must be open when it is passed into the SqlCommend
connection.Open();

//create the SqlCommand object from query string and connection
SqlCommand command = new SqlCommand(query, connection);
command.CommandType = CommandType.Text;

sensorTableAdapter.SelectCommand = command;

//can create another adapter here to add other tables to the Dataset

sensorTableAdapter.Fill(dSet);
//close connection
connection.Close();

catch (Exception ex)

DataBaseLink.DBLinkErrorMessage(ex);

return dSet;

public static void DBLinkErrorMessage (Exception ex)

Sq .Exception sqlEx = ex as SqlException;
if (sqlEx != null)

String errorMessages = ""
for (int i = 0; i < sqlEx.Errors.Count; i++)

errorMessages += "Index #" + i + "\n" +
"Message: " + sqlEx.Errors[i].Message + "\n" +
"LineNumber: " + sqlEx.Errors[i] .LineNumber + "\n" +
"Source: " + sqlEx.Errors[i].Source + "\n" +
"Procedure: " + sqlEx.Errors[i].Procedure + "\n";

MessageBox.Show(errorMessages + "\n" + ex.ToString(), "Error", MessageBoxButtons.OK, MessageBoxIcon.Error) i

else
MessageBox.Show(ex.ToString() , "Error", MessageBoxButtons.OK, MessageBoxIcon.Error);

public static String SelectStatementString(String columnNames, String tableNames)

String s = "SELECT " + columnNames + " FROM " + tableNames;
return s;
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public static void GetObjectData(int ObjectId, SqlConnection connx){

String dataString="";
//get list of data sources associated with this object
int[] dataSources = DataBaseLink.GetDataSources(ObjectId, connx);
if (dataSources == null I dataSources.Length == 0)

MessageBox.Show("No sensor data available for Object " + ObjectId, "Error", MessageBoxButtons.OK,
MessageBoxIcon.Error);

}
else

//for each data source, find all sensors
for (int i = 0; i < dataSources.Length; i++)

dataString += "Data Source ID: " + dataSources[i] + "\n";

//get list of sensors
int[] sensors = DataBaseLink.GetSensors(dataSources[i], connx);
if (sensors == null I sensors.Length == 0)

dataString += "(No Sensors Online)";
else

//for each sensor, get current data
for (int j = 0; j < sensors.Length; j++)

dataString += "\tSensor ID: " + sensors[j] + ", ";
dataString += DataBaseLink.GetCurrentSensorDataAsString(dataSources[i], sensors[j], connx) +

"\n";

MessageBox.Show(dataString, "Current Sensor Information", MessageBoxButtons.OK, MessageBoxIcon.
Information);

public static int[] GetDataSources(int ObjectId, SqlConnection connx)

//create adapter; will eventually use it to fill DataSet
Sqi.DataAdapter sensorTableAdapter = new SqlDataAdapter();

//Create a DataSet Table and name it
sensorTableAdapter.TableMappings.Add("AllObjects DataSource", "DataSource_Sensors");

//create a query string to selects rows from database
String query = "SELECT DataSourceId FROM AllObjects DataSource WHERE ObjectId=" + ObjectId;
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DataSet dSet = new DataSet();

//connection must be open when it is passed into the SqlCommend

connx.Open();

//create the SqlCommand object from query string and connection

SqlCommand command = new SqlCommand(query, connx);
command.CommandType = CommandType.Text;

sensorTableAdapter.SelectCommand = command;

//can create another adapter here to add other tables to the Dataset
sensorTableAdapter.Fill(dSet);
//close connection
connx.Close();

int count = dSet.Tables[O].Rows.Count;
int[] dataSourceList = new int[count];
for (int i = 0; i < count; i++)

String dataSourceIdAsString = dSet.Tables[Ol .Rows[i][0] .ToString();

dataSourceList[i] = int.Parse(dataSourceIdAsString);

return dataSourceList;

public static int[] GetSensors(int dataSourceId, SqlConnection connx)

//create adapter; will eventually use it to fill DataSet

SqlDataAdapter sensorTableAdapter = new SqlDataAdapter();

//Create a DataSet Table and name it
sensorTableAdapter.TableMappings.Add("Sensors", "SensorList");

//create a query string to selects rows from database

String query = "SELECT DISTINCT SensorId FROM Sensor WHERE DataSourceId=" + dataSourceId;

DataSet dSet = new DataSet();

//connection must be open when it is passed into the SqlCommend

connx.Open();

//create the SqlCommand object from query string and connection

SqlCommand command = new SqlCommand(query, connx);
command.CommandType = CommandType.Text;

sensorTableAdapter.SelectCommand = command;
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//can create another adapter here to add other tables to the Dataset
sensorTableAdapter.Fill(dSet);
//close connection
connx.Close();

int count = dSet.Tables[O].Rows.Count;
int[] sensorList = new int[count];
for (int i = 0; i < count; i++)

String sensorIdAsString = dSet.Tables[0].Rows[i][0].ToString();
sensorList[i] = int.Parse(sensorIdAsString);

return sensorList;

public static String GetCurrentSensorDataAsString(int dataSourceId, int sensorId, SqlConnection connx)

String sensorData="";
//create adapter; will eventually use it to fill DataSet
SqlDataAdapter sensorTableAdapter = new SqlDataAdapter();

//Create a DataSet Table and name it
sensorTableAdapter.TableMappings.Add("Table", "SensorData");

//create a query string to selects rows from view in the database
String query = "SELECT TOP 1 * FROM ["+ dataSourceId + " " + sensorId + "] ORDER BY TimeStamp DESC";

DataSet dSet = new DataSet();

//connection must be open when it is passed into the SqlCommend
connx. Open();

//create the SqlCommand object from query string and connection
SqlCommand command = new SqlCommand(query, connx);
command.CommandType = CommandType.Text;

sensorTableAdapter.SelectCommand = command;

//can create another adapter here to add other tables to the Dataset
sensorTableAdapter.Fill(dSet);
//close connection
connx.Close();

//column[0] = timestamp
//column[l] = sensor reading/data
//column[2] = sensor type (acceleration, temprature, etc)
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int count = dSet.Tables["SensorData"].Rows.Count;
int[] sensorList = new int[count];
if (count == 0)

return "(No current data available)";
else

for (int i = 0; i < count; i++)

String s = dSet.Tables["SensorData"] .Rows[i] [2].ToString();
s = s.Trim();
sensorData += s + " Value = " + dSet.Tables["SensorData"] .Rows[i][1] .ToString() +

" ( at time = " + dSet.Tables["SensorData"] .Rows[i][0].ToString() + ")";

return sensorData;
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using System;
using System.Collections.Generic;
using System.Data.SqlClient;
using System.Windows.Forms;
using Autodesk.Revit;
using Autodesk.Revit.Elements;
using Autodesk.Revit.Structural.Enums;

namespace LiveBuild

class LBApplication : IExternalCommand

DBConnxForm connectionForm;
public LBApplication() { I

public LBApplication(ExternalCommandData comdData, ref string mesg, ElementSet elems)

try

Document activeDoc = comdData.Application.ActiveDocument;
connectionForm = new DBConnxForm(activeDoc);
connectionForm.Show();

catch (Exception ex)

DataBaseLink.DBLinkErrorMessage(ex);

public IExternalCommand.Result Execute(ExternalCommandData commandData, ref string message, ElementSet elements)

LBApplication app = new LBApplication(commandData, ref message, elements);
return IExternalCommand. Result. Succeeded;

}
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TagOrientation tgOrientation = TagOrientation.TAG_HORIZONTAL;
IndependentTag newTag = activeDoc.Create.NewTag(view, el, true, tgMode, tgOrientation, mid);

catch (Exception e)

messg = "Exception thrown in LiveBuild.TestCommand: \n" + "Source:\t\t" + e.Source + "\n\nCalling Method:\k
t" + e.TargetSite.ToString() + "\n\nStack Trace:\n" + e.ToString() + "\n\nHelp:\t\t" + e.HelpLink;

/// <surmmnary>
/// This method iterates over a ParameterSet and builds a list (string)
/// of all the Parameters and their values in the following form
/// ParameterName: ParameterValue
/// </summary>
/// <param name="pCet"></paran>
/// <param name="dc"></param>
/// <returns></returns>
public static string GetParamListAsString(Element elem, Document dc)

ParameterSet pSet= elem.Parameters;
System.Text.StringBuilder strng = new System.Text.StringBuilder();
foreach (Parameter p in pSet)

String defName = p.Definition.Name;
switch (p.StorageType)

case Autodesk.Revit.Parameters.StorageType.Double:
strng.Append(defName + " : " + p.AsDouble() + " (Double)\t");
break;

case Autodesk.Revit.Parameters.StorageType.ElementId:
ElementId id = p.AsElementId();
if (id.Value >= 0)

strng.Append(defName + " : " + dc.get_Element(ref id).Name + " (Element ID)\t");

else
(

strng.Append(defName + " : " + id.Value.ToString() + " (Element ID)\t");

break;
case Autodesk. Revit. Parameters. StorageType. Integer:

if (p.Definition.ParameterType == Autodesk.Revit.Parameters.ParameterType.YesNo)

if (p.AsInteger() == 0)
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strng.Append(defName + " : False (Integer-Yes/No)\t");

else
strng.Append(defName + " : True (Integer-Yes/No)\t");

else

strng.Append(defName + " : " + p.AsInteger() + " (Integer)\t");

break;
case Autodesk.Revit.Parameters.StorageType.String:

strng.Append(defName + " : " + p.AsString() + " (String)\t");
break;

default:
strng.Append(defName + " : Undefined Parameter\t");
break;

return strng.ToString();
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