
Photovoltaic Systems, The Experience Curve, And Learning By
Doing: Who Is Learning And What Are They Doing?

by

PHECH C COLATAT

Bachelor of Science in Civil and Environmental Engineering
Cornell University, 2001

Master of Engineering in Civil and Environmental Engineering
Cornell University, 2002

Submitted to the Engineering Systems Division in
Partial Fulfillment of the Requirements for the Degree of

Master of Science in Engineering Systems

at the

Massachusetts Institute of Technology
September 2009

© 2009 Massachusetts Institute of Technology
All rights reserved

,# /7 I.

Signature of Author .. ................. ........... ......... ....................
Engineering Systems Division

/ i 1. u g u s t 3 12 0 0I / ! , // ,/A..

C ertified by ............................................................. .. . .
Skichardk. Lester

Professor of N ear Science and Engineering
Thesis Supervisor

Accepted by .........................................................
Nancy Leveson

Professor of Aeronautics and Astronautics and Engineering Systems Division
Chair, Engineering Systems Division Education Committee

ARCHIVES

MASSAoCHUSETS N7 SmTrn-T
OF TECHNOLOGY

NOV 0 5 2009

LIBRARIES



[This page left intentionally blank]



Photovoltaic Systems, The Experience Curve, And Learning By
Doing: Who Is Learning And What Are They Doing?

By

PHECH C COLATAT
Submitted to the Engineering Systems Division on August 31, 2009 in Partial Fulfillment of

Requirements for the Degree of Master of Science in Engineering Systems

Abstract:

The photovoltaics industry has been growing at extraordinary rates over the past ten years as a
result of increased government support for the technology. Yet supporting the technology is
expensive and there is uncertainty over the future rate of technological progress for
photovoltaics. Experience curves have been an important part of the argument to justify
continued government support of as well as private investment in solar technologies. In this
thesis, I argue that a more sophisticated understanding of experience curves and their underlying
mechanisms will be important if we are to preempt a renewable energy "bubble." I begin by
providing a brief history of photovoltaic technology and policies that have supported end
photovoltaic end markets. Next, I examine the use of experience curves for photovoltaic
technology, finding numerous conceptual inconsistencies. Finally, based on an economic
analysis of almost 55,000 photovoltaic systems in the United States, I attempt to disaggregate the
dynamics of cost-reduction in photovoltaic systems, with a particular focus on the behavior of
the systems integrators/installers. My analysis includes measures for experience, competition,
and installer characteristics. This thesis contributes a better understanding of cost dynamics in
photovoltaics and calls for a more sober and more sophisticated discussion about cost dynamics
when considering renewable energy policy.
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Section I - Introduction

Solar photovoltaics is in many ways an ideal energy source: it is abundant, it does not produce carbon

dioxide, every nation has access to it and the fuel is free. It would seem to be a good candidate for

solving the suite of energy challenges that are currently being faced: climate change, energy

independence, and economic development. To meet the climate change challenge we will need to replace

current carbon emitting generation with non-carbon emitting generation and do so at a rate fast enough to

slow climate change. President Obama's goal for the United States is to reduce carbon emissions to 20%

of 1990 levels by 2050. This is an immense task that means the decommissioning otherwise valuable

generation assets and the deployment of more expensive renewable energy technologies. Adding to the

difficulty of the task, energy demand is expected to increase in the future, doubling by 2050 and tripling

by 2100 (Nocera and Lewis 2006). The energy independence challenge has been a concern since the

Arab oil embargo in 1973 and has not yet been solved. Recent high oil prices and instability in Russian

oil supplies have highlighted the continued relevance of this problem. In the long term, changes to the

global economy in which developing nations like India and China are rapidly increasing their energy

demand will likely lead to increased energy prices in the future unless more energy supply is added. The

economic development challenge of developing globally competitive industries and providing jobs for

citizens is a constant concern for all nations. As the need for a new energy infrastructure is becoming

apparent, so is the economic opportunity in industries that can provide new energy technologies.

Countries like Germany have supported renewable energy and energy efficiency as part of their industrial

policies for more than 10 years. In the United States, where manufacturing continues to move off shore,

renewable energy industries hold out the prospect of "green jobs" that could reinvigorate the country's

manufacturing base, especially in the Midwest.

Despite the many attractive features of solar technology, deployment of the technology faces several

challenges - not the least of which is the fact that it is simply too expensive. Although solar "fuel" (i.e.

light from the sun) is free, the device required to convert light into electricity is not. Considering the cost

of the device and amount of electricity generated over its expected lifetime, the cost of solar electricity is

about five to ten times more expensive than electricity generated from non-renewable energy sources like

coal and natural gas. Further complicating this problem is the fact that the cost must be paid up front.

Once the system is purchased, it will produce valuable electricity for the next 20 to 30 years over the

system's life. Thus, even if the value of the electricity outweighed the up-front cost of the system on a net

present value basis, financing would still be required. The availability of capital to finance installations

becomes another constraint to wide-scale deployment of solar.



Managing the intermittent power generated by solar is a second broad challenge. Because the amount of

electricity generated depends on the amount of light striking the photovoltaic device, no solar energy is

produced at night and the most is produced at around noon. Although the profile of generation

approximates the profile of electricity demand throughout the day, solar power output would ideally be

shifted about two hours. Solar energy is also not dispatchable, meaning that it complicates the

management of the grid and coordination of other power generation. Denholm and Margolis (2007)

estimate that solar power can only supply up to 15 to 20% of total generation because of this constraint'1 .

This issue has so far not been critical because the deployment of solar is so small (0.0125% of electricity

generated in 2007 according to the Energy Information Administration, 2008) but as more photovoltaic

generating capacity is installed it will no longer be possible to ignore this cost. Although the simplest

solution to the intermittency and non-dispatchability of solar generation is energy storage, energy storage

technology is also currently too expensive.

Regardless of these challenges, the photovoltaic industry has been growing at extraordinary rates over the

past 10 years. Since 2000, annual production has increased at a rate of 45% per year through 2008

(Maycock, Solarbuzz). Venture capital investment in energy now matches investment in biotechnology,

and venture capitalists are creating practices around energy and sustainability-related technologies

(Pernick and Wilder 2007). The number of manufacturer in commercial production active in the United

States has doubled (Energy Information Administration 2009).

This extreme growth has led many countries and cities to question how they can become involved in

some part of the industry - be it research and innovation, manufacturing, or deployment. Germany has so

far been the most successful in creating a strong national photovoltaic industry. Abu Dhabi, in the United

Arab Emirates, is attempting to create a research and production center in Masdar City. Ohio seeks to

leverage its glass industry to tap into jobs being created by the photovoltaics industry.

However, caution is advised for policymakers considering joining the bandwagon because the industry

growth has been generated artificially through government intervention. In 1994, Japan was the first

country to have a national incentive program for the installation of photovoltaic systems. Germany

followed shortly after, offering an incentive in 2000 that has become the primary model around which

countries develop support programs. By introducing a "feed-in tariff' whereby a utility company was

legally bound to buy electricity from photovoltaic systems at a fixed price over 20 years, two problems

1 The fundamental limitation is that the amount of electricity generated must equal the amount of electricity
consumed at all times. Because the power output of solar system cannot be known precisely beforehand, other
generation must be turned off and on so that supply equals demand. These other forms of generation must either be
sufficiently nimble or the energy must be stored.
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were solved. First, the price received by the system owner was much higher than the price of

conventionally-generated electricity; it was a categorically attractive financial investment. Second, by

guaranteeing that the payment would last for 20 years, the uncertainty around the quantity and value of

electricity produced was eliminated. Financing was much easier because the 20 year price guarantee

eliminated a major source of risk. Today, many developed countries have some kind of incentive

program to support solar, though they vary in design and in size2. It has been the growth of these

incentive programs worldwide that has driven the growth of the photovoltaics industry.

Government incentive programs entail a significant commitment of resources. California has committed

more than $3 billion to support the technology through its California Solar Initiative (California Public

Utilities Commission 2009). Germany committed about 6 billion in ratepayer surcharges in 2008

through its feed in tariff3. One of the primary reasons governments are willing to support solar is the

expectation that costs will decline in the future, which means that the government commitment in time

and money will be limited. Government is not alone; universities and private industry are also

committing resources to photovoltaics.

The concept of the experience curve has served as justification for this expectation (e.g. Algoso et al

2005, Ingersoll et al 1998). Massive production growth, the result of government support, is expected to

create a virtuous cycle whereby increased production will drive down the cost of photovoltaics and in turn

generate greater demand. If the historical trend of photovoltaics costs continues into the future, then

every doubling of cumulative output will entail a 20% reduction in cost. Many are optimistic that the cost

of photovolatics will continue to decline through a multitude of avenues for technology advancement

(higher efficiency cells, new device design, new materials, new deposition techniques) and larger

investments going into production capacity (Greenpeace 2004, European Commission 2005). The

ultimate goal for photovoltaics cost is grid parity - the retail cost of electricity drawn from the grid.

While the cost of traditionally generated electricity varies from state to state and country to country,

2 Why countries are adopting incentive programs for photovoltiacs now is not exactly clear. One reason might be
the growing awareness of climate change and the need to reduce carbon emissions. Support for renewable energy
technologies like solar are one way of moving towards existing commitments from Kyoto and anticipated future
commitments from the Copenhagen Climate Summit. Other reasons may be the goal of energy independence and
economic development. Motivations may be more complex. For some countries, a concern may be the prospect of
falling behind other countries in terms of industry strength and technology deployment. Another possibility is that
politicians start programs since renewables have appeal to voters. Depending on the mix of motives, we might
expect different levels of perseverance when the solar industry faces challenges.

3 In 2008, 1.5 gigawatts was installed in Germany. Given Germany's insolation, this capacity produces about 1.1
terawatt hours per year (using the rate of 730 kwh per kw of capacity in Jahn and Nasse (2004)). Assuming it is
roof-mounted, the feed-in tariff is 0O.465 per kilowatt hour or E 511 million for an entire year of generation. The
feed-in tariff is good for 20 years and the net present value of 20 annual payments of E511 million (at a discount rate
of 5%) is C6.38 billion.



reaching grid parity will require that the photovoltaics cost must come down by a factor of anywhere from

two to five. The most optimistic estimates contend that grid parity will be attained by 2012 (BSW-Solar

2009).

The unknown question for industry is whether the technology can be developed to grid parity before

government support runs out. The major risk for an industry built on government support is that support

can be taken away as fast as it was given. The 45% annual production growth rate could grind to a halt if

government support ends. If support does end, then we would repeat the problem of start-and-stop

support for energy technologies (Margolis 2002). The many resources invested in solar - financial

capital, labor, business investments, scientific attention - would have to be redeployed. Some may argue

that anything that advances the technology is good (Friedman 2008). But that begs the question, at what

cost? If the technology fails to live up to high expectations, it may lose the widespread support that has

so far been vital in bolstering the industry.

Although it is likely that the cost of solar electricity will eventually reach grid parity, the key question is

whether estimates for the length of time and level of cumulative output are at all accurate. The market for

photovoltaic systems currently hinges on the level of government support. Large feed-in tariffs, up-front

rebates, tax credits and other incentives are currently used to generate demand for the more expensive

energy source. But these policies come with a cost and if the cumulative output to reach grid parity is

high, then the government support required to bolster photovoltaics demand will also be high. For

policy-makers interested in environmentally friendly energy sources, in energy independence, in

strengthening the local economy, there are options other than photovoltaics (McKinsey 2009). Policy-

makers must consider whether an investment in supporting photovoltaics is the most cost-effective

relative to other approaches such as energy efficiency, wind, or nuclear.

Lost in the recent excitement over photovoltaic technology is the degree of uncertainty in predictions of

future cost. Photovoltaics experience curves have been used to predict a cost reduction - a learning rate -

of 20% for every doubling in cumulative production output (IEA 2000). Despite other estimates of 17%

(Strategies Unlimited) and 26% (Maycock), no reliable measure of uncertainty has been provided. Such a

measure is critically important since the cost of supporting photovoltaic technology is highly sensitive to

the learning rate. Compared to a learning rate of 25%, a learning rate of 15% requires an order of

magnitude higher cost to support PV technology to the point where it reaches grid parity (van der Zwaan

and Rabl, 2003). Learning rate uncertainty also has implications for the total production volume and the

total number of years required to reach grid parity.
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Industry commentators and policy discussions have given much weight to advances in module prices and

module technology. Yet although the module is the core component of the photovoltaic system and

accounts for approximately half the system cost, it is also important to examine price dynamics at the

system level. Ultimately, it is the system cost that determines the cost of electricity generated and we

cannot assume that the price dynamics of photovoltaic modules also apply to non-module components.

This thesis is intended to contribute to the policy debate by examining the dynamics of photovoltaic

system costs.

The goal of this work is not to argue against optimistic predictions that solar electricity will not reach

grid-parity in the next 5-10 years. Such prognostications are inherently difficult to make. Instead, the

intent is to examine in detail that widely-held belief, and to stress the need for a better theoretical

understanding of the photovoltaics experience curve. The current conventional wisdom suggests that the

future cost of photovoltaics is predetermined, and that all that is necessary is to increase cumulative

output in order to "ride" the experience curve downwards. In reality, the eventual cost of solar electricity

is unknown as are the mechanisms that will decrease its cost in the future. Experience curves (in general

and for photovoltaics specifically) do not address those mechanisms. They do not explain how the cost

will actually decrease and instead take it as a matter of faith that the costs will decrease through one

mechanism or another.

In this thesis, I explore the cost dynamics of installed photovoltaic system installations in California,

Massachusetts and New Jersey. These dynamics are examples of mechanisms glossed over by the

experience curve but that provide important insights into the industry and policy. I begin by introducing

the photovoltaic technology and industry. Then I describe the government measures being used to

encourage industry growth and technology deployment. Next, I critically review the rationale for

continued investment in the technology which often hinges on the experience curve. I include a brief

discussion of the potential avenues for cost-reduction in photovoltaic systems. Finally, I use the dataset

of photovoltaic system installations to explore and conduct a regression analysis of the systems

installation stage of the value chain. This provides a richer understanding of the systems installations

business that can be used to design more precise policy interventions.

An Introduction to Photovoltaic Technology

What are photovoltaic systems?

Photovoltaic systems convert energy in the form of light into electricity and are comprised of several

components. At the core of a photovoltaic system is a series of photovoltaic modules. Each module is



approximately one square meter in area and contains a number (usually 36) of photovoltaic cells. When

light strikes the photovoltaic cells, they generate electricity which is sent through and out the module.

Modules are wired together in series and parallel and generate electrical current. The cells are made of

semiconducting materials - typically silicon - which are ensconced in the module, typically sandwiched

in between a layer of glass and a layer of plastic and framed in aluminum. Light striking the

semiconducting materials energizes electrons which can be directed by an electrical field to generate

current.

The second most important component of the photovoltaic system is the inverter. Because photovoltaic

modules produce electricity in direct current, it is of little use for powering most electrical devices which

operate on alternating current. The inverter converts the electricity in the form of direct current to

electricity in the form of alternating current.

The third necessary component is mounting structure. Modules can be mounted on the roof of a building

or on the ground. A mounting structure allows the modules to be tilted at the optimal angle to the sun

(which varies depending on the latitude) and also allows for air circulation to cool the module (standard

modules experience reduced output at higher temperatures). In addition to these three components, there

are also miscellaneous components generic to electrical work, e.g., wires, disconnects, and junction

boxes.

Two other components that are sometimes found on photovoltaic systems are batteries and a tracking

system. Batteries are typically lead acid. While the vast majority of systems installed today are

connected to the electrical grid and do not use batteries, some do and batteries are necessary if the

photovoltaic system is not connected to the electrical grid. This would be the case for applications such

as boats or buildings in remote locations. Because the photovoltaic system will generate electricity only

when the sun is shining, batteries provide some buffer and allow electricity to be used even when the

system is not generating electricity.

The other optional component is a tracking system. Tracking systems are typically used on larger

installations where there are few space constraints. Ideally, light shines onto the photovoltaic modules at

a normal 90 degree angle and for every square meter of area normal to the sun's rays, sunlight provides

one kilowatt of energy. If the modules are not ideally angled, then the effective area of the module

(relative to the direction of sunlight) is reduced and the photovoltaic system will produce less electricity.

Tracking systems change the angle of the photovoltaic modules throughout the day to ensure that they are

receiving the maximum amount of light possible. They are also typically found in areas with few space



constraints because module arrays (several modules grouped together) on a tracking device must be

spaced far apart enough so as to not shade other adjacent arrays.

Basic trends of the photovoltaic industry

The photovoltaic industry has been growing at a tremendous rate. Annual module production has been

growing by 28.4% year on year from 1976 to 2008, and by 45.7% year on year between 1999 and 2008.

Figure 1 shows the cumulative global production of photovoltaic modules since 1976.

In the US, cumulative photovoltaic installations exceeded 1 gigawatt in 2008 (see Figure 2). A significant

minority is in off grid applications, which was the dominant type of application in the 1970s and 1980s.

The U.S. currently has the world's fourth largest installed capacity base, but had the world's largest PV

capacity through 1996. As shown in Figure 3, Japan overtook the US in 1997. As a result of its national

incentive program for solar, Japan's annual installation rate began to exceed that in the US in 1994. Japan

was later overtaken by Germany in 2004; the annual market for photovoltaics in Germany exceeded

Japan's in 2004 and cumulative capacity in Germany exceeded Japan's the following year. Germany's

rapid growth was the result of a new substantial incentive program put in place in 2000.

Spain has the second highest cumulative solar installations, a result of high levels of installation in 2008.

Although Spain began supporting solar photovoltaics through a feed-in tariff starting in 1998, it was a

revision in 2007 that made the Spain a very attractive location for new installations. High feed-in tariff

rates combined with good solar insolation led Spain to a point where it would meet its 2010 capacity

installation target of 400 megawatts prematurely (Barron 2007). While the government was considering a

revision to the feed-in tariff to slow the rate of installations, it froze the existing feed-in tariff rates for

systems installed by September 2008 leading to a rush of installations. Spain's new policy will cap

installed capacity at 500 MW per year (Wang 2009).



Figure 1. Annual Production of Photovoltaic Modules, 1976-2008
(Source: Maycock, SolarBuzz)
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Figure 2. Cumulative Photovoltaic Installation in the US, 1995-2008
(Source: IEA-PVPS)
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Figure 3. Cumulative Installed Photovoltaics in the Four Leading Countries, 1992-2008
(Source: IEA-PVPS, EPIA)
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Declining module prices have been an important part of the history of photovoltaics ever since the first

photovoltaic device was developed in 1954. The dramatic historical decline has encouraged hopes of

lower solar energy costs in the future. Figure 4 shows data from Paul Maycock, one of the key sources

for the historical module price data (data presented in Henderson et al 2007). The real module price is

deflated using the producer price index for domestic manufacturing in the US. It shows that module

prices have decreased substantially since 1975, and that the bulk of the cost decreases occurred between

1975 and 1990.

1992 1993 1994 1995 1996 1997 1998 19991200012001 2002 2003 420054 200200620072008

,CME-1

W

i -- ---- ---- --- --- --- ----- ---



Figure 4. Average Photovoltaic Module Price, 1975-2005
(Source: Maycock)
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The cost of solar energy

Solar energy is currently not competitive with traditional non-renewable energy sources. Only with

government subsidies is investment in a photovoltaic system worthwhile. The size and form of the

subsidies varies from country to country and, within the US, from state to state. Thus, the attractiveness

of a solar investment varies by county and state. The cost of electricity can be calculated be determined

by assessing the net present value of cash flows associated with buying a solar system. The primary cost

is incurred up-front in the purchase of the system. The benefits are received over the lifetime of the

system while it produces electricity, and through the receipt of subsidy payments from government.

Below I show the calculation for a prototypical four kilowatt photovoltaic system installed in

Massachusetts for someone of average income and on an average home value:

Costs

The costs considered here are the cost to purchase and install the photovoltaic system, the cost to replace

the inverter which has a lifetime of about 10 years, and miscellaneous operations and maintenance costs.

The average installed system cost per watt in Massachusetts for 2008 is $8.84 per watt (Massachusetts
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Technology Collaborative 2009). For a four kilowatt system, the installed cost is $8.84 x 4000 watts =

$35360.

Although photovoltaic modules have an expected lifetime of 20 to 30 years, inverters have a shorter

lifetime, typically 10 years. According to the Solarbuzz inverter price index (May 2009), the average

inverter price is $0.721 per watt. I will assume that any future inflation will be offset by technical

improvements and will use $0.721 per watt as the price for replacement inverters.

The final costs to consider are operation and maintenance costs. Low operating and maintenance costs

are considered one of the attractive features of photovoltaics; without moving parts, there is simply less to

maintain. Nonetheless, it would be unrealistic to assume there are no operation and maintenance. Thus,

the analysis will make an allowance for miscellaneous operation and maintenance costs. For this cost, I

will assume 0.5% each year with adjusted each year for inflation at a rate of 3%.

Benefits

The direct benefit of installed a photovoltaic system is the value of the electricity that it produces. To

estimate this value, begin with the estimated annual electricity output which, according to the PVWatts

program at the National Renewable Energy Lab4 is 4975 kilowatt hours. This number incorporates

various losses in system output and assumes that the system will produce only 77% of its nameplate

capacity (NREL 2009). These losses include: inverter losses in converting AC to DC, operating at higher

temperatures, voltage mismatch (i.e. modules wired in series operate at the voltage of the lowest voltage

module), voltage losses across diodes and connections, wiring, soiling (i.e. accumulation of dirt), module

output lower than nameplate output (from uncertainty in testing), and system downtime (e.g. when it is

receiving maintenance). It also assumes that the panels are optimally oriented for a system without a

tracking system (i.e. fixed-tilt) - southwards and oriented at an angle equal to the latitude of Boston,

Massachusetts - 42 degrees. The higher power output is attained when the modules are oriented normal

to the incident light. Thus, systems installed in the northern hemisphere should be oriented south and

should be at an angle equal to latitude. Although the tilt of Earth's axis changes throughout the year (and

thus the optimal angle changes throughout the year), tilting the panels at the number of degrees latitude

provides the highest average over the entire year. For example, a system installed at the equator should

be tilted at zero degrees - completely flat.

Massachusetts, like most states, offers 'net metering' which means that excess electricity generated at any

point in time is supplied back to the grid and credited to the system owner, helping to defray costs

4 http://rredc.nrel.gov/solar/codes algs/PVWATTS/version 1 /



incurred when electricity is being drawn from the utility. The system owner is charged for the "net"

consumption. This means that the electricity generated can be valued at the retail price of electricity,

which in 2008 averaged 17.5 cents per kilowatt-hour for residential customers in Massachusetts, i.e.,

4975 x $0.175 = $870.625 per year. We also assume in this calculation that the electricity rate increases

by 3% each year, and that the system output degrades over time at an annual rate of 1%.

The system owner receives several other cash streams from subsidy programs at the state and federal

levels. The most salient is the state rebate. While rebate levels and requirements vary from state to state,

Massachusetts offers a base rate of $1 per watt (Massachusetts Technology Collaborative 2009). If the

income of system owner is of "moderate income" (i.e. less than 120% of the median state income), the

rebate increases by $1.25 per watt. If the home on which the photovotaics system will be installed is of

"moderate home value," the rebate increases by $2 per watt. Thus, the total rebate is $4.25 per watt for a

system owner of "moderate income" and with "moderate home value." However, because the rebate is

considered taxable, the after-tax rebate would be a bit less'. A system owner of average income would

fall into the 25% marginal federal income tax bracket (IRS 2008). Thus, the after-tax rebate value is

$4.25 per watt x (1-0.25) x 4000 watts = $12750.

The next most important incentive is the federal investment tax credit that was established as part of the

Energy Policy Act of 2005. Because the Massachusetts rebate is considered taxable income, then the full

value of the system cost counts towards the 30% federal tax credit. The value of the investment tax credit

is 30% x $35360 = $10608

Other incentives for the installation of solar systems in Massachusetts are the state tax credit, property tax

waiver, and sale of renewable energy certificates (DSIRE 2009). Although the policy on state tax credits

varies from state to state, Massachusetts offers a tax credit of 15% with a cap of $1000. This credit is

claimed after paying federal income tax, so the state tax credit is effectively taxed by the federal

government. Thus, its value is $1000 x (1-25%) = $750. Also in Massachusetts, although the

photovoltaic system increases the value of the property, and the increase in property value is not assessed

for the purpose of property taxes.

5 There is still no consensus on whether the state rebate is considered taxable. At first glance, this would seem to be
an important consideration affecting the size of the incentive. And while it does make a difference, it is smaller than
one would expect. The difference comes down to the owner's marginal income tax rate.

If the state rebate is considered taxable, then the owner can consider the full value of the system as the basis on
which the 30% federal tax credit applies. If the state rebate is not considered taxable, then the owner must deduct
the value of the state rebate when calculating the tax basis on which the 30% federal tax credit applies. Thus, if the
system owner's marginal tax rate is greater than 30%, then she is better off if the state rebate is not considered
taxable income. If the system owner's marginal tax rate is less than 30%, then she is better off if the state rebate is
considered taxable income.
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Renewable energy certificates provide another source of value for solar electricity. A renewable energy

certificate is essentially the credit for generating carbon-free electricity. It is a credit that some are willing

to pay for and its actual value is determined on the market for buying and selling certificates. The market

for renewable energy certificates varies from state to state. In a voluntary market, renewable energy

certificates are sold to entities as a pseudo donation to renewable energy. This price in voluntary markets

is small but non-trivial: - $0.02 per kilowatt hour in (Wiser et al 2009: 23). At the opposite end of the

spectrum are states where utilities are mandated by the government to acquire a certain percentage of their

generation from solar (e.g. New Jersey and other states that have Renewable Portfolio Standards with

solar "carve-outs"). In New Jersey, the average renewable energy certificate in May 2009 was sold for

$0.50 per kilowatt hour (New Jersey Clean Energy Program 2009). In Massachusetts, a system owner

would have the option of selling on the voluntary market or selling through a program called ECANE

(Energy Consumer Alliance of New England) at a rate of $0.03 per kilowatt hour. The contract is for

three years and renewable. This analysis will assume it is renewed for the life of the system.

Table 1 summarizes the costs and benefits of installing a photovoltaic system. Using a discount rate of

5%, the rate of return on a photovoltaic system is a modest 3.79%. This value already incorporates a 3%

inflation rate in maintenance and electricity costs. This also assumes that the project is financed with

100% equity6.

6 If the system owner could receive a loan for less than the rate of return for the photovoltaic project, he could
realize a higher project rate of return by taking a loan and using the positive future cash flows to pay off the debt
(Deutch and Lester 2004)
In addition, the rate of return could be affected by any tax advantages of debt. Interest payments on debt may be tax
deductible (e.g. for a residential customer, in the case of a home equity loan; for a commercial customer, it would be
considered a business expense). I do not consider the impact of financing on the rate of return because my primary
interest is in assessing the value of the photovoltaic project.



Table 1. Cash Flows for the Purchase of Photovoltaic System

Year System Inverter State Federal State Electricity Renewable Total

Cost Maintenance Replacement Rebate Tax Credit Tax Value Energy Csh
Credit Certificates

0 -$35,360.00 -$35,360.00

1 -$176.80 $12,750.00 $10,608.00 $750.00 $870.62 $149.25 $24,951.07

2 -$182.10 $887.78 $147.76 $853.43

3 -$187.57 $905.27 $146.28 $863.98

4 -$193.19 $923.10 $144.82 $874.72

5 -$198.99 $941.28 $143.37 $885.66

6 -$204.96 $959.83 $141.94 $896.80

7 -$211.11 $978.74 $140.52 $908.14

8 -$217.44 $998.02 $139.11 $919.69

9 -$223.96 $1,017.68 $137.72 $931.43

10 -$230.68 -$2,884.00 $1,037.73 $136.34 -$1,940.61

11 -$237.60 $1,058.17 $134.98 $955.54

12 -$244.73 $1,079.02 $133.63 $967.91

13 -$252.07 $1,100.27 $132.29 $980.49

14 -$259.64 $1,121.95 $130.97 $993.28

15 -$267.43 $1,144.05 $129.66 $1,006.28

16 -$275.45 $1,166.59 $128.36 $1,019.50

17 -$283.71 $1,189.57 $127.08 $1,032.94

18 -$292.22 $1,213.00 $125.81 $1,046.59

19 -$300.99 $1,236.90 $124.55 $1,060.46

20 -$310.02 -$2,884.00 $1,261.27 $123.31 -$1,809.45

21 -$319.32 $1,286.11 $122.07 $1,088.87

22 -$328.90 $1,311.45 $120.85 $1,103.40

23 -$338.77 $1,337.29 $119.64 $1,118.16

24 -$348.93 $1,363.63 $118.45 $1,133.15

25 -$359.40 $1,390.49 $117.26 $1,148.36

Rate
of

Return

3.71%
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For a policy-maker, a useful way to quantify the value of solar energy is the cost per kilowatt hour,

excluding the subsidies offered by government. This provides a convenient benchmark that can easily be

compared to the current price of electricity (in Massachusetts, $0.175 per kilowatt hour for residential

customers).

Table 2 illustrates the calculation for cost per kilowatt hour, considering the same costs as the previous

calculation and excluding all benefits with the exception of the value of electricity. The value of the

electricity is equal to the annual system output multiplied by the value per kilowatt hour. The value per

kilowatt hour is considered an unknown in the analysis and is solved for by equating the net present value

of system costs and the net present value of electricity generated. For the analysis, I assume that

electricity prices increase at a rate of 3% each year and a discount rate of 5%. Thus, the electricity value

in year n is given by: annual electricity production x electricity value x (1+3%)An.

The cost of solar energy is calculated at $0.474 per kilowatt hour. This number changes depending on

the assumptions made. If operations and maintenance and inverter replacement costs were not

considered, the cost of solar energy would be less, $0.403. If a 30 year lifetime was considered, the cost

of solar energy would be $0.421. Considering both a 30 year lifetime and no inverter replacement or

operations and maintenance costs, solar electricity would cost $0.3587. The cost of solar energy is also

sensitive to the discount rate used. Using a discount rate of 8% in the base case scenario, the cost of solar

energy increases from $0.474 to $0.614 per kilowatt hour.

The cost of solar energy is expensive even compared to the price of residential electricity in

Massachusetts. In 2008, the average retail price for electricity in Massachusetts was $0.175 per kilowatt

hour while the national average was $0.113 (See Figure 5).

7By comparison, in California (San Francisco), assuming inverter replacement, operations and maintenance, and a
25 year life, the cost would be $0.408 per kilowatt hour. Considering both a 30 year lifetime and no inverter
replacement or operations and maintenance costs, solar electricity would cost $0.308. per kilowatt hour.



Table 2. Cash Flows and Cost of Solar Electricity

Costs E ec tricity

it T

-$35,360.00
-$176.80
-$182.10
-$187.57
-$193.19
-$198.99
-$204.96
-$211.11
-$217.44
-$223.96
-$230.68
-$237.60
-$244.73
-$252.07
-$259.64
-$267.43
-$275.45
-$283.71
-$292.22
-$300.99
-$310.02
-$319.32
-$328.90
-$338.77
-$348.93
-$359.40

otal Costs
Net Present
Value of
Costs (5%/) Production

Electricity
value @
$0.474 /
kwh

-$41,591.72 i-$35,360.00
-$176.80
-$182.10
-$187.57
-$193.19
-$198.99
-$204.96
-$211.11
-$217.44
-$223.96

-$2,884.00 -$3,114.68
-$237.60
-$244.73
-$252.07
-$259.64
-$267.43
-$275.45
-$283.71
-$292.22
-$300.99

-$2,884.00 -$3,194.02
-$319.32
-$328.90
-$338.77
-$348.93
-$359.40

Net Present
Value of
Electricity
(5%)

$41,591.72
$2,427.84
$2,475.67
$2,524.44
$2,574.17
$2,624.88
$2,676.59
$2,729.32
$2,783.09
$2,837.91
$2,893.82
$2,950.83
$3,008.96
$3,068.24
$3,128.68
$3,190.32
$3,253.17
$3,317.25
$3,382.60
$3,449.24
$3,517.19
$3,586.48
$3,657.13
$3,729.18
$3,802.64
$3,877.56

4975
4925
4876
4827
4779
4731
4684
4637
4591
4545
4499
4454
4410
4366
4322
4279
4236
4194
4152
4110
4069
4028
3988
3948
3909

$41,591.72

I ,,



Figure 5. Price of Retail Residential Electricity in MA and US, 1990-2008
(Source: Energy Information Administration EIA-826)
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The Case for Investment in Solar: A History of Falling Prices

The high cost of generating solar electricity calls into question the high levels government support and

private investment going into solar photovoltaics. A key part of the argument for government support is

the downward trend of system prices observed in other counties. In Germany, nominal system prices

(without incentives) have declined from 8.39 euro per watt to 4.2 euro per kilowatt - almost a 50%

decrease between 1995 to 2008 (see Figure 6). Adjusting these numbers for inflation using the producer

price index for domestic manufacturing, system prices have decreased by 57%.

Figure 6. Installed Photovoltaic Systems Price in Germany, 1995-2008
(Source: IEA-PVPS)
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Japan has also experienced similar price decreases. The average price (before any incentives) has

declined from 3500 Yen in 1993 to 696 Yen in 2007 - a decrease of more than 80%. Adjusting these

number for inflation, the decrease in system price is slightly larger, 81% (recall Japan's economic

conditions at the time led to an equal amount of deflation as inflation).

A particularly powerful part of the narrative for government support is based on the observation that

system prices have declined in parallel with government incentive levels. Japan was the first country to

subsidize solar through a rebate program at the national level starting in 1994. As reflected in a series of

revisions to the incentive program, the government pursued a policy of decreasing the size of the
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incentives. This was intended to encourage cost improvements and price reductions while maintaining a

steady rate of installation growth. As shown Figure 7, it seemed successful and the Japanese model was

seen as one to be emulated.

Figure 7. Installed Costs and Subsidy Levels in Japan, Residential Systems, 1993-2007

(Source: IEA-PVPS)
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The reasoning that developed was that the technology held promise and the problem was the lack of

sufficient incentive for firms to further develop the technology and make investments in advanced

manufacturing facilities. If the government could subsidize a portion of the overall system cost, it would

create a market large enough to encourage market entry and investment by private firms. Prices would

decline.

Another piece of evidence that seemed to support this view was the photovoltaic module experience

curve. The experience curve is a generalization of the learning curve and both essentially posit that

experience (measured in cumulative units produced) leads to decreases in cost. With experience,

producers become more efficient in their operations, further develop the technology, and sell their goods

at a lower price.

A more thorough and critical review of the learning curve will be given later, but this section will provide

an introduction to the learning curve. Constructing a learning curve is straightforward; cumulative

experience is plotted along the x-axis using a logarithmic scale and the good's cost is plotted along the y-

axis, also using a logarithmic scale. Data points including the cost and cumulative experience at various

I



points in time are plotted in the log-log space, and a best-fit line is drawn. The slope of the line is the key

parameter, since it defines the progress ratio and learning ratio of the technology. The progress ratio and

learning ratio are derived from the line's slope and have a simple interpretation. The progress ratio is

equal to 2(line lope). Conceptually, with every doubling of experience, the good's cost will decrease by a

factor equal to the progress ratio. Thus, for a technology with a cost of $10 and progress ratio of 0.9, the

cost after doubling cumulative experience will be $10 x 0.9 = $9. The learning rate offers an alternative

measure of the rate of cost reduction and is equal to 1 - (progress ratio). Thus a technology with a

progress ratio of 0.9 can also be said to have a learning rate of 0.1.

Historical price and production data for photovoltaic modules show an impressive progress ratio. Figure

8 shows the price and cumulative production data as well as a best-fit line. The prices are adjusted for

inflation using the producer price index for domestic manufacturing in the United States (OECD). While

not all production took place in the United States, the US producer price index closely follows the

producer price index for G7 countries available from the OECD only after 1982. This provides greater

confidence in using the US producer price index8.

Prices have declined substantially since 1975 from a price of almost $100 to a price of less than $10. The

learning curve suggests it is possible to "buy down" the cost of the technology, committing to purchases

while it is in its early and expensive form so that it can be purchased later at a lower cost (i.e. "riding" the

learning curve). The slope of the best-fit line corresponds to a progress ratio of 0.75. To put this in

perspective, progress ratios between 0.80 and 0.85 are considered typical, progress ratios greater than

0.90 are poor, and progress ratios below 0.80 are good (see McDonald and Schrattenholzer 2001). With

the photovoltaic module production is increasing at a rate of 40% year over year, the industry is

accelerating down the learning curve 9

8 Comparing the US and G7 producer price indices, it does appear that inflation was probably higher in the US than
in the G7 throughout this time period. Thus, the use of the US producer price index may overestimate the real prices
in earlier years, leading to an estimate of a lower (better) progress ratio.

It is more technically correct to say that the industry the production growth is helping to mitigate the "slow down"
from moving in log-transformed space.
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Figure 8. Experience
(Source: Maycock)
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The size of the "buy down" cost depends on the progress ratio of the technology. In fact, the buy down

cost is highly sensitive to small changes in the progress ratio. The difference is illustrated in
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Table 3, which estimates the size of the buy down cost based on different progress ratios. The three

progress ratios are drawn from prior experience curve calculations. The first, by the International Energy

Agency (2000), presents an often-cited progress ratio for photovoltaic modules. The second estimate is

based on the Maycock data is cited in Nemet (2006). Although Nemet (2006) also uses data from

Maycock, the progress ratio differs slightly from the progress ratio calculated in Figure 8 because Figure

8 includes several more years of data. However, for the purposes of illustration, I will use the Maycock

progress ratio cited in Nemet (2006). The third progress ratio is also calculated by Nemet (2006) but is

based on a dataset from Strategies Unlimited.



Table 3. Cost and Experience to Reach Grid Parity Using Learning Curve

International MStrategies
Energy Agency (mec 2Unlimited

(2000) (Nemet 2006)

Progress Ratio 0.80 0.74 0.83

Required Cumulative Capacity to Reach Grid 299 GW 109 GW 645 GW
Parity ($1/Wp modules)

Module Cost to Reach Breakeven $409 billion $155 billion $852 billion

System Cost to Reach Breakeven $818 billion $310 billion $1704 billion
(System cost is about 2x module cost)

Total Government Buydown Cost $220 billion $92 billion $415 billion

Ct = CO0 nt
\no/

oc is the slope of experience curve

progress ratio = 2"

ct is the cost at time t; use value equivalent to grid parity = $1 per watt

co is the cost at time 0; use Maycock's value for 2005 = $3.5 per watt

no is the cumulative production at time 0; use Maycock's value for 2005 = 6.1 gigawatts

nt is the cumulative production at time t; unknown

The total cost required is calculated by taking the integral of the experience curve from time 0 to the time

when grid parity is attained. As shown in Van der Zwaan and Rabl (2004):

fnt Co n +1 - nOc+ 1

Total cost = ndn = +1 n 0
no



The total buydown cost for photovoltaics can be considered the cost required to "ride the learning curve"

until photovoltaics can produce electricity equal to the cost of electricity generated by the utility using

non-renewable energy sources. The installed cost equivalent to grid parity will depend on the level of

insolation and the price of electricity available from the grid but for this calculation, we will assume that

to reach grid parity, the installed system cost must be $2 per watt and cost of the modules must be $1 of

the $2 totalo. In calculating the total government buydown cost, assume that people will buy a

photovoltaic system if the installed price is $2 per watt, the cost which is assumed equivalent to grid

parity.

As shown in Table 3, the government buydown cost using the International Energy Agency progress ratio

is $220 billion, more than two times greater than the buydown cost based on the Maycock progress ratio

and one half the buydown cost based on the Strategies Unlimited progress ratio. The difference in the

buydown costs based on the Strategies Unlimited data and based on the Maycock data is $323 billion, a

factor of four.

The progress ratio can also be used to estimate the year in which grid parity will occur, assuming a rate of

production. The European Photovoltaic Industry Association (EPIA 2008) estimates cumulative

production capacity for 2008 of 13 gigawatts. Assuming full utilization of capacity but no new capacity

added, it would take a little over eight years to reach grid parity in the Maycock scenario, 23 years to

reach grid parity in the IEA scenario, and almost 50 years in the Strategies Unlimited scenario.

This simplified analysis is meant to highlight the sensitivity of the buydown cost to differences in

progress ratios. It is not meant to determine the true cost of reaching grid-parity with solar photovoltaics.

Such an analysis might include the variation in electricity cost by state and customer type and the cost of

grid upgrades and energy storage required to manage the intermittent solar generation. This is beyond the

scope of this paper.

Because the total buydown cost is sensitive to differences in progress ratios, any uncertainty in progress

ratios will magnify the uncertainty in the total buydown cost. It turns out that any estimate of the

progress ratio has at least two sources of uncertainty. First, there is unexplained variance when the best-

fit line does not align perfectly with the data points. Some measure of this error is quantified in the

standard error of the slope. Second, there are measurement errors in the data points themselves, errors

along the y-axis (i.e. price) and errors along the x-axis (i.e. cumulative capacity). This second source is

much more difficult to quantify. Since there have been so few data points collected (30 - one per year for

10 These figures are reasonable and need not be exceedingly precise since the purpose of this calculation is to show
how sensitive the total buydown cost is to the estimated progress ratio.
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30 years), we cannot estimate the uncertainty of those data points. However, the level of uncertainty is

suggested by the very existence of three progress ratios - from the IEA, Maycock and Strategies

Unlimited. The difference in progress ratios can be attributed to different underlying estimates of module

price and cumulative production at several points in time. These errors matter for government

policymakers and private investors. A world with a low progress ratio may be one where the buydown

cost is politically feasible and the return on investment attractive, while a world with a high progress ratio

may be just the opposite.

This thesis will point out a number of empirical inconsistencies with the experience curve - a

generalization of the learning curve - and offer a critical review of its theoretical premises of. Although it

is tempting to place faith in the experience curve, its theoretical underpinnings do not warrant that faith.

While the learning curve may suffice for "back of the envelope" calculations, for the purposes of drafting

serious policy that will come at significant cost to taxpayers or ratepayers, a more thorough rationale

should be pursued. Policymakers can only use the tools provided by research and this thesis provides a

richer understanding of the learning curve in general and of the dynamics of the photovoltaic industry in

particular.



Section II - The Evolution of the Solar Industry

An understanding of both past and present policies is critical for designing future policy. This section

will provide an overview of the solar photovoltaics industry and the market policies that have supported

it.

The organization of the solar industry

The photovoltaics value chain consists of multiple stages and several separate "branches." Along the

main branch are silicon producers, cell manufacturers, module manufacturers, wholesalers and

distributors, systems integrators and installers. The other branches of the value chain include inverter

manufacturers, the manufacturers of mounting hardware and tracking systems, and financiers that help to

coordinate the sales of large systems.

Describing the main part of the solar value chain, the process begins with the production of high-purity

silicon. Although silicon is the second most abundant element on the Earth's crust, it must be of high

purity to be used in a solar cell. As a raw material, silicon is used in numerous applications, the most

salient being semiconductors. Silicon has typically been sold at two different levels of purity:

metallurgical grade and semiconductor grade. Semiconductor grade silicon, the higher of the two purity

levels, is required for solar cells. Recently, some silicon producers have begun selling "solar grade"

silicon, which has a purity level just below that of semiconductor grade.

Cell manufacturers begin with high-purity silicon already doped with boron and produce solar cells. The

silicon is shaped into an ingot and then sliced into thin square wafers of silicon, typically 125 millimeters

across and 200 microns thick. The wafer is then processed to remove damage from the slicing process,

texturized to better trap light, and doped with phosphorous. An anti-reflective coating is applied, and

metal contacts are printed on the cell by first depositing a paste containing silver powder and then heating

the cell to transform the paste into a solid semiconductor. The metal contacts will collect and channel

electrons excited by the photoelectric effect.

As a general rule, cell manufacturers also package the cells in modules. In the manufacture of the solar

module, solar cells are wired together in series - usually 36 in a single module. The cells are sandwiched

two layers of encapsulant (usually ethylene-vinyl-acetate) and then sandwiched between a layer of glass

and plastic. Then, the module is heated under vacuum so that the encapsulant melts and cures, thus

embedding the solar cells in the module. The edges of the module are sealed with silicone and then the

module is framed in aluminum. A junction box is added to each module so that multiple modules can be
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wired together. Figure 9, taken from Tobias et al (2003), shows the components of a typical

photovoltaic module.

Figure 9. Layers of a crystalline photovoltaic module
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In selling the product, module manufacturers deal directly with wholesalers and large system integrators.

Wholesalers manage the transportation and distribution of the solar modules and are the main point of

contact for many smaller system integrators. Systems integrators in turn deal directly with the person or

organization that will use the photovoltaic system. Systems integrators acquire all the necessary system

components, handle administrative tasks such as interconnection with the electrical grid, and manage the

installation process. Sometimes the installation labor is sub-contracted out to an electrician or general

contractor and sometimes it is done in-house by the system integrator.

Historical Development of the Industry

The history of the industry will focus the cell and module manufacturers. The reason for this is that it is

the most distinctive step in the solar value chain. Many of the other stages exist in one form or another

but serve other industries. For instance, silicon producers existed well before solar developed as a major

industry, supplying the large semiconductor industry. While I focus on the cell and module

manufacturers, the other related industries that have a part in the overall solar value chain have also

developed throughout this timeframe.

The development of the solar industry can best be understood by considering the primary applications and

the primary motivations for pursuing those applications. The solar industry began in the US in the mid

1950s when solar cells were used as a power source for space satellites. In the 1970s the primary
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application shifted to producing bulk terrestrial power, the motivation for which was the Arab oil

embargo. When the concern over energy independence faded in the 1980s, the interest in the industry

declined. Around 2000, growing concern over environmental issues led to government support of

photovoltaic end-markets and in turn has resulted in the emergence of a global industry.

The First Generation of Photovoltaic Firms

The first modern photovoltaic device was developed in 1954 at Bell Laboratories in New Jersey. Made

from silicon, the solar cells had an efficiency of 6% while the solar module had an efficiency of 2%

(Chapin, Fuller and Pearson 1954, Green 2005) The technology was licensed to National Fabricated

Products and the first intended application was terrestrial, but the cost was too high (Perlin 1999). The

cost at that time was $286 per watt, which in 1954 dollars was extraordinarily expensive. At the time,

the only applications in which photovoltaics made any sense were in novelty devices like toys.

The first significant application was in providing power for space satellites. In 1955, President Dwight

Eisenhower announced plans for the US to launch a satellite in celebration of the international

geophysical year. Each branch of the United States military - the Army, Navy and Air Force - began

formulating design proposals for the launch rocket and satellite. Engineers found themselves confronted

with the challenge of finding a reliable power source, ideally one with a high power-to-weight ratio. It

was estimated that the cost to launch an additional pound of mass into space was $4000 and, against this

metric, even photovoltaic electricity was worth the high price when compared to the cost of using

chemical batteries (National Research Council 1972). Although the very first satellites were powered by

batteries, photovoltaic technology quickly established itself as the standard technology for powering

satellites and remains so today.

How solar photovoltaic technology found its way from Bell Labs and into the US space program begins

with two men associated with the US Army Signal Corps (Perlin 1999). General James O'Connell had

heard of the invention of the first silicon solar cell at Bell Labs in 1954 and sent Hans Ziegler, a scientist

in charge of power devices, to visit. Ziegler was enamored by the technology and set out to find as many

useful Army applications as possible. However, given the cost, the only feasible application was the US

space satellite proposal that was currently in the works.

Unfortunately for Ziegler, the Navy proposal ended up winning the competition over the Army. Ziegler,

committed to see photovoltaics used in space, sought to convince the Navy to replace its proposed power

source, chemical batteries, with photovoltaics. With persistence, Ziegler won. He had made an appeal to

the civilian panel overseeing the program, the Technical Panel on the Earth Satellite Program. The panel,
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convinced that photovoltaics was the superior choice, pressed the Navy into altering their design to use

solar cells.

Interestingly, despite these efforts, the first three satellites were launched without photovoltaic cells. The

first two were launched by the Soviet Union in 1957, Sputnik I and Sputnik II. The launching of the

Sputnik satellites created a crisis of confidence for the United States and increased the urgency of a

successful US space launch. The first planned launch took place in December 1957 using the Navy's

Vanguard TV3 but it failed to launch. In a panic, the Army proposal which had been developed as a

backup in October 1957 after Sputnik I was launched in October 1957, was to be launched as soon as

possible. The Explorer I was launched successfully in January 1958.

The Explorer I, however, was not powered with photovoltaics. It was the Navy's second attempt, the

Vanguard I, launched in March 1958 that definitively demonstrated the utility of solar cells on space

satellites. Small photovoltaic cells powered one of its two radio transmitters, and continued to transmit

data for eight years. In contrast, the first Sputnik was powered by silver-zinc batteries that weighed 51

kilograms, out of a total satellite weight of 83.6 kilograms. After three weeks, the satellite stopped

transmitting data. The second Sputnik, launched in November 1957 with a small dog on board, required

even more power and its chemical batteries only lasted only six days. The Explorer I was powered by

nickel cadmium batteries, accounting for 40% of the 30.66 pound total weight. One of its transmitters

lasted 31 days and the other lasted 105 days. (NASA 2009).

By the mid 1960s, photovoltaics had taken over as the power source of choice for space satellites, though

after a short delay. The delay was partially attributable to the predominant view at the time of nuclear

power as the ideal power source. To some, solar was seen as a stopgap while "nuclear batteries" were

being developed. When atomic energy did not develop at the pace and with the capabilities that many

people had expected, photovoltaics assumed the dominant spot.

The solar industry at the time consisted of only a handful of firms and demand was driven entirely by the

needs of the US government. The main reason the industry was so small at the time was that the small

and unpredictable market generally did not warrant investment by startups or established firms. Between

1958 and 1969, the US government purchased about 10 million" small solar cells which powered 600

11 Although this seems like a large number, two other pieces of information should be considered. First, this is the
number of solar cells, not solar modules. Multiple cells are wired together in a single module. Second, these cells
were very small. According to the National Research Council (1972) each had a capacity of approximately 0.05
watts and,at 10% efficiency, had an area of only 3.5 square centimeters! By comparison, solar cells manufactured
today have an area of 225 square centimeters (15 centimeters square) and a capacity rating of four watts.



satellites and other spacecraft (National Research Council 1972). The annual market for solar cells was

worth about $5 million, $15 million if the costs of producing a module and installation are included.

Hoffman Electronics, located in the Los Angeles area, was the firm that produced the solar cells for the

Vanguard I. In 1956, Hoffman Electronics 2 had acquired National Fabricated Products along with the

patent license to the original photovoltaic technology invented at Bell Labs. Originally, the company had

planned to produce solar cells for off-grid terrestrial applications but found customers unwilling to pay

the high price.

One of the earliest competitors to Hoffman Electronics was a company named Heliotek. Heliotek was

founded by Alfred Mann, a spinoff from an earlier company founded by Mann, Spectrolab'3. Mann

served in World War II as a bomber navigator and later studied at UCLA where he obtained Bachelors

and Masters degrees in physics. He had an interest in studying light and his first job upon graduating was

for Technicolor, a Los Angeles firm whose color film processes had been dominant in the motion picture

industry since 1922. The Army approached Technicolor for help in light filtering for a missile guidance

system but, when Technicolor did not pursue the work, Mann left to found Spectrolab in 1956 with an

Army contract in-hand worth $11,200. Also located in Los Angeles, Heliotek applied Spectrolab's light

filtering expertise for use in solar cells. Its solar cells were used in the Pioneer 1, which was launched in

October 1958.

Other than Hoffman Electronics and Heliotek, only three firms entered the market for solar cells at the

time - RCA, International Rectifier, Texas Instruments- and all three had left the market by the end of the

1960s (Wolf 1972). For these companies, unlike Hoffinan Electronics and Heliotek, solar cells were only

a small part of their overall business. RCA was a major radio company while International Rectifier and

Texas Instruments were semiconductor companies.

The Second Generation of Photovoltaic Firms

After 1970, a second generation of solar photovoltaic firms began to emerge. Unlike the first generation,

which was focused on space applications, the second focused on terrestrial applications supplying bulk

electricity. Interest in space exploration had begun to decline after Apollo 11 landed on the Moon. Yet

several firms believed that the advanced technologies that had been developed in the space race could

12 Hoffman Electronics later became Centralab and even later Optical Coatings Laboratory Inc.
13 The two companies were united in 1960 when both were acquired by Textron. Spectrolab still exists today and is
the leader is super high efficiency solar cells.
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have economically attractive applications elsewhere. Two firms began developing the technology for

terrestrial applications by 1972.

The two firms that had entered the solar business before the oil embargo were the Solar Power

Corporation and Solarex. Solar Power Corporation was a subsidiary of Exxon. Exxon's view was that

energy prices would only increase over time, and they were interested in a technology that would keep

them atop the energy business when the demand for oil declined. Solarex was a new company formed by

Joseph Lindmayer, a scientist who had worked for COMSAT in Washington, DC. COMSAT was an

organization tasked by the Communications Satellite Act of 1962 to manage the placement of

communications satellites into space. Solarex pioneered the use of multicrystalline silicon.

The work of the Solar Power Corporation was instrumental in opening up the terrestrial market (Perlin

1999). In the early 1970s, the cost of a solar module was about $100 per watt. Over the previous ten

years, there had not been much change in this cost because the small and uncertain market made it

difficult for firms even to stay in business let alone invest in technical improvements. Solar Power

Corporation's market research had indicated that to find a terrestrial market, the cost would have to

decrease from $100 to $20 per watt. Although the eventual goal was to supply solar electricity for bulk

use, the first markets the company targeted were off-grid terrestrial markets - in particular navigational

aids managed by the Coast Guard which were powered by batteries.

The founders of Solarex came from COMSAT, an organization in Washington DC tasked by Congress to

form a commercial satellite communication system. Powering these satellites were solar cells; given the

intended long life of the satellites, chemical batteries would not suffice. Through his experience with solar

cells Joseph Lindmayer, the founder of Solarex, came to believe they had promising terrestrial

applications.

Much of the early efforts of Solar Power Corporation and Solarex came to be overshadowed by the single

most influential event in the history of the solar energy industry, the Arab Oil Embargo. With the

embargo came higher energy prices and recognition of the risks of relying on foreign energy sources.

Solar energy was perhaps the ultimate panacea for the latter concern, since sunlight is available to all

nations.

To many firms, solar technology's experience in the space program suggested that it was not only an

advanced technology feasible in the lab and the most exotic of applications, but might be ready for

commercial production after only a few additional years of development. New companies entered the

market for solar cells and large established firms also began lines of business in solar photovoltaics. Oil



companies were probably the highest profile of these new entrants with all major oil companies getting

involved to some degree. They were receiving bad press for high oil prices, had a lot of cash, and had a

lot to lose should oil be replaced with another energy source.

The beachhead of terrestrial markets was off-grid applications where competing energy sources were

already expensive. Oil platforms abandoned the use of batteries as the standard power source for oil

platforms by the end of the 1970s. Oil and gas companies used photovoltaics to provide cathodic

protection for their remote wells; a small current running through the metal well would provide resistance

to corrosion. The US Coast Guard also began to use solar cells to power lighthouses and buoys. Off-grid

photovoltaic systems were installed in developing countries where the cost a photovoltaic system would

be less than the cost of building transmission and distribution infrastructure.

A Serious Government-Sponsored Research Program Emerges

Pushing towards the ultimate market of bulk electricity to supply the power grid, the young industry

received substantial support from the US government. As the industry grew between 1954 and 1980,

silicon-based photovoltaic technology was well past the development stage. In the 1960s, more than $50

million had been spent on research and development for space solar cells. For many of the firms founded

in the 1970s, the main challenges were twofold: (1) "downgrading" the cell design of space cells with the

goal of making terrestrial cells much less expensive while sacrificing only a little cell efficiency, and (2)

setting up cost-effective commercial scale production.

From the government perspective, the primary challenge was seen as encouraging industry to make

adequate investments in the technology (DOE 1982, Margolis 2002). The perceived solution to this

problem was government purchases that would ensure adequate demand until commercial markets

developed - first in remote applications and later in grid-connected applications (Hart 1983). This

approach had apparently worked for the semiconductor industry that got its start in the 1950s and 1960s

with Department of Defense purchases (Saxenian 1994). In addition, a focused research and

development program would help to improve the technology. It was believed that it would "cost $500

million to achieve its goals of a $500-per-kilowatt manufacturing price by 198614" (Herman et al 1977:

87).

t4 For reference, the Department of Energy (and its predecessor the Energy Research and Development
Administration) had spent this much on research by 1981. According to Paul Maycock, the average module price
was $30 / Watt, or $30,000 per kw in 1975. And in 1986, the average module price was $5 / Watt or $5,000 per kw.
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Even before the Arab Oil Embargo, the National Science Foundation has been looking for ways to

leverage scientific knowledge to further national interests and solar energy was one area where there

seemed to be potential. The program the NSF was running at the time was called Research Applied to

National Needs (RANN) and had been organized to help develop applied research and transfer basic

research out of research institutions and into industry. As part of the effort, the NSF organized a series of

workshops in 1972 and 1973, one of which was the well-known Cherry Hill conference in October 1973.

The Cherry Hill conference is notable for bringing together representatives from industry, academia and

government who had an interest in advancing the technology. Those attending the conference outlined a

10-year research plan that was later included in President Ford's (originally President Nixon's) Project

Independence Blueprint (US Solar Energy Task Force 1974) and shaped the national research program for

the next ten years.

Based on recommendations from the Cherry Hill Conference, the Jet Propulsion Laboratory proposed and

received funding for the first major effort coordinated by the US government - the Flat Plate Solar Array

Project (also known as the Low Cost Solar Array Project and the Low Cost Silicon Solar Array Project).

Its goal was to coordinate with industry to reduce the cost of modules, increase cell efficiency, and

increase module lifetime. By the end the research project, the technology would be handed over to

industry where it was believed the technology would be commercially viable. For solar cells, this meant

achieving a conversion efficiency of 10%, 20 year module lifetimes, and a manufacturing cost of $0.50

per watt. If the technology could be developed to this level, it was believed that industry could

profitably manufacture solar cells.

The Flat Plate Solar Array Project involved many other research organizations such as MIT's Lincoln

Lab, the MIT Energy Lab, Brookhaven National Lab, the NASA Lewis-Research Center, the Army's

MERADCOM, and the newly formed Solar Energy Research Institute (which would evolve into the

National Renewable Energy Lab). Administering the Flat Plate Solar Array Project was the Energy

Research and Development Association (ERDA) which had taken over as the lead government agency for

photovoltaics research after it was formed in 1974. The ERDA evolved into the modern US Department

of Energy in 1977.

The research plan outlined at the Cherry Hill conference laid out a ten year research program for

photovoltaics. It called for $250 million to be spent to improve monocrystalline silicon technology, and

$45 million to be spent on polycrystalline silicon. It was important to involve industry as much as

possible so that what was learned from the project could be directly brought to commercial production.



There was a set of clear milestones which included not only efficiency and cost targets but also

production targets.

The Flat Plate Solar Array Project was a qualified success and it notably helped to establish quality

standards for the incipient industry (Jet Propulsion Laboratory 1986). The Jet Propulsion Laboratory

conducted several rounds of solar cell purchases from US manufacturers. For manufacturers to qualify

for the government purchase, they had to meet certain performance requirements dictated by the Jet

Propulsion Laboratory. Five rounds of purchases over a six year period, each with a higher standard than

the previous one, led to a uniform performance standard. In between purchases, the modules were

extensively tested - outdoors, for humidity and temperature extremes. Twenty-six Project Integration

Meetings drew together hundreds from industry, academia and government to discuss outstanding issues

and ongoing research.

On the demand side, the federal government also established two purchase programs to support

photovoltaic manufacturers in their early stages. The Federal Photovoltaics Utilization Program

authorized $98 million to support installation of photovoltaics systems in remote off-grid applications.

The Program Research and Development Announcement allowed firms to competitively bid to install

medium to large PV systems as demonstration projects. By 1982, the former program funded the

cumulative installation of 660 kilowatts of photovoltaics and the latter program supported 729 kilowatts

(Margolis 2002).

The Photovoltaics Industry During and After the Energy Crisis

Two of the best known PV firms emerging shortly after the Arab Oil Embargo were founded in California

by former employees of Spectrolab. Spectrolab had been founded by Alfred Mann shortly after he

founded Heliotek, one of the original solar cell suppliers for the US space program. Eventually the

companies were both sold to Textron and were merged and Heliotek's legacy in photovoltaics continued

through Spectrolab. In 1975, Bill Yerkes, President and CEO of Spectrolab, left the company to found a

new firm named Solar Technology International. Ishaq Shahryar, a scientist at Spectrolab, also left the

company in 1976 to found a new firm named Solec International.

Solar Technology International would eventually come to have perhaps the most storied history of any

solar photovoltaic company in the United States. It was acquired by the Atlantic Richfield Company

(ARCO) in 1977. ARCO Solar became the dominant solar cell company in California and one of a few

large solar companies across the United States. Going into commercial production in 1980, ARCO built

the first production facility of greater than 1 MW (annual) capacity. ARCO was involved in several high



profile photovoltaics projects including the first utility-scale plants, all in California: a 1MW plant in

Hesperia serving the Southern California Edison utility, a 6 MW plant in Carrisa Plains serving the

Pacific Gas and Electric utility, and two 1 MW plants in Rancho Seco serving the Sacramento Municipal

Utility District. Internationally, ARCO developed partners and sold photovoltaics for off-grid

applications in over 80 countries. By the time the company was sold to Siemens in 1990, ARCO Solar

was the largest photovoltaics manufacturer in the world.

Outside of the California, one of the other major companies was Mobil Tyco, located in the Boston area.

Tyco had been operating a research and development lab in Waltham, Massachusetts. In 1965, the lab

developed a technology for forming aluminum oxide - also known as sapphire - through a process called

Edge-defined Film-fed Growth or EFG. NASA supported EFG research in 1971 for the growth of silicon

crystals for space satellites. When it became apparent that EFG silicon could not match the efficiencies of

monocrystalline silicon, NASA lost interest. However, when interest in terrestrial solar applications grew

after 1973, JPL quickly identified EFG as a lower cost alternative that did not have to meet the same

performance standards as space solar photovoltaics.

The standard process for forming the silicon wafers of solar cells involves the casting of a large silicon

crystal which is then sliced into wafers approximately 200 microns thick. Slicing such thin wafers

generates a high percentage of waste - about 50% - increasing the cost of the silicon per wafer. Because

EFG circumvents the slicing process, it offered the possibility of fabricating wafers in a less costly way.

Tyco began fabricating silicon using EFG in 1974 and acquired Mobil as a partner. By 1976, Mobil-Tyco

began formulating plans to manufacture and license the technology.

Despite the progress and optimism of the 1970s, the 1980s was not a good decade for solar photovoltaic

technology and industry. With the election of Ronald Reagan in 1980, there was a philosophical shift

over the role of government in industry. The new thinking was that government should stay out of

industry and allow the free market to drive economic growth. Instead of seeking to handoff a

commercially-viable technology to industry, federal research was to be oriented towards higher-risk

research that industry was unlikely to pursue on its own. Demonstration and commercialization

activities, which had been important parts of the national photovoltaics program under President Carter -

were now considered as best done by private industry.

Government support came to follow a "collaborative paradigm" in which government serves to encourage

and coordinate industry development (Bozeman 2000). Japanese industrial success in the 1980s seemed

premised on the Japanese government's involvement in coordinating industry. To remain competitive



against Japanese firms, the US government sought to work closer with industry, through cost-sharing

partnerships. At the same time, firms were beginning to look to external parties to develop collaborative

research relationships. With the decline of basic research conducted by industry, a greater share of basic

research was being carried out by universities. Firms looking to tap into that research began collaborative

relationships with research organizations. Mowery and Rosenberg (1993) summarizes this:

"Increasing pressure to reduce R&D costs, to monitor a wider range of merging areas of
scientific research, and to speed the commercialization of scientific research has driven many
firms to attempt to develop relationships with an array of external institutions... to complement
and enhance the payoff from their in-house activities. " (Mowery and Rosenberg 1993 p 54)

Research and development in photovoltaics fit the collaborative pattern. The original national

photovoltaics program - in which industry would be handed a commercially viable technology by

research scientists and engineers - was dismantled over Reagan's first term. The photovoltaic research

budget was cut from $151.6 million in 1981 to $74 million in 1982 to $50 million in 1984 (see Figure

10). The staff of the Solar Energy Research Institute was cut by over 50% from 1000 to 500 and the

four regional solar energy centers (in Minneapolis, Boston, Atlanta and Portland) were eliminated. The

Reagan administration also sought to eliminate completely the $3.025 billion budget of the Solar Energy

and Energy Conservation Bank, an organization originally intended to provide financing to encourage

commercialization of renewable technologies. It was only through Congress that it received $150 million.

Reagan even proposed eliminating altogether the Department of Energy.

As with the solar research budget, market support declined significantly, through less precipitously, after

Reagan took office. When the business and residential tax credits expired in 1985, the residential tax

credit was not renewed and the business tax credit was renewed in a much weaker form. The tax credit

for business was set at 15% in 1986, 12% in 1987 and 10% in 1988. After 1988, the business tax credit

was extended one year at a time making medium to long term project planning all but impossible. It was

only in 1992 when the Energy Policy Act established the 10% business tax credit indefinitely.

Any resistance to budget cuts was blunted by decreasing energy prices and slower-than-expected

technical progress. The halt of energy price increases and later energy price declines undermined the

interest of government as well as industry (see Figure 11, Figure 12, Figure 13). After oil demand fell in

the early 1980s and Saudi Arabia broke OPEC's ranks by increasing oil production in 1985, the energy

crisis seemed to be at an end. The belief in the 1970s that energy prices would only increase in the future

had fed the burning desire to develop alternative energy sources like solar photovoltaics. It no longer

seemed true. Decreasing costs in other fossil fuels also hurt the solar industry in a very concrete way.

Under PURPA, producers of solar energy were able to sell their electricity to the utility at a rate tied to



the cost of fossil fuels (i.e. the "avoided cost"). Lower oil, gas, and coal prices meant solar had to compete

against lower priced competition. Finally, technical progress had proved slower than initially expected.

One of the original goals set in 1975 for the Flat Plate Solar Array Project was to be able to manufacture

solar cells at a cost of $0.50 per watt. In real terms, the solar industry has met this cost only now (in

2009), more than 30 years after the start of the national photovoltaics research program.

Figure 10. United States Federal Budget for Solar Research, 1972-2009
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Figure 13. US Natural gas Wellhead Price, 1976-1990
(Source: EIA)
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Modest Support and More Modest Growth through the 1990s

In the late 1980s and early 1990s renewable energy was sidelined as the primary focus of the policy

agenda shifted to the restructuring of the utility industry. Previously, electric utilities had operated as

regulated monopolies, but the goal of the new policy was to introduce competitive forces. Generation of

electricity was to be separated from the transmission and distribution of electricity. With drastic changes

expected in the near future, many firms and individuals were not prepared to invest until the new rules

became clear. In 1992 the Energy Policy Act was passed. The legislation called for the deregulation of

electric utilities but left the implementation of the policy up to the individual states. (As of May 2009, 14

states and the District of Columbia had restructured while nine states were in progress.)

During this time period, there were major changes to the organization of research and development and

the way new firms were founded. Government helped to encourage industry research and development,

often through collaborative arrangements. New firms were founded around more advanced technologies

and, as a result, had closer ties to research organizations.

These changes were the result of a newer understanding of the innovation process. Before the 1980s, the

view of technological innovation had been strongly influenced by the linear model of the process of

technological development described by Vannevar Bush in Science, The Endless Frontier. In this view,



basic research preceded applied research which in turn preceded development. Based on the success of

university-based research in World War II, the belief was that an investment in basic research in

universities would lead to technological advances downstream in industry. This was the predominant

view of research in the aftermath of World War II. It was also the view implicit in President Nixon's

Project Independence. In the same way that university research assisted the World War II effort,

university research could be used to assist the US in attaining energy independence.

After 1980, the linear view of innovation held little sway. The experience of separating research from

product development, as reflected in the role of central corporate R&D labs in the 1950s and 1960s, was

no longer seen as sufficient. Industry stopped doing basic research, creating a division of research labor

between universities and firms. Throughout the 1970s, industry was more willing to invest in R&D

because they were better able to capture returns from research. But as other countries began to catch up

with the US, foreign firms were able to benefit from the research of US firms. In addition increases in

the real cost of capital and a slowdown in the growth rate led to a decline in the returns from R&D

(Mowery and Rosenberg 1993). The belief that a firm could invest in basic research and eventually

produce breakthrough commercial products no longer seemed credible (Hounshell 1996). Ongoing

collaboration between universities and industry was seen as the key to technological innovation.

The passage of the Bayh-Dole Act in 1980, shortly followed by an increase in patent and licensing

activity, drew attention to intellectual property as a key mechanism for technology transfer. In addition,

the success of Silicon Valley and Route 128 led to an interest in studying how regions could develop into

entrepreneurial centers. Universities were considered an important element because of the local character

of knowledge spillovers and the geographically-constrained behavior of star scientists. Another

important element was the emergence an organized institution for investing in innovation - venture

capital - which had been developing throughout the 1970s and was validated with the IPO of Genentech

in 1980.

Research programs coordinated by the Department of Energy have continued, though none were at the

same scale as the Flat Plate Solar Array Project. Three of the best known programs coordinated by the

DOE after 1986 are PVUSA, PVMaT, and the Thin Film Partnership and. These programs were funded

through a cost-sharing arrangement between industry and the Department of Energy.

PVUSA (Photovoltaics for Utility Scale Applications) started in 1986 as a continuation of a grid-

integration project funded during the Energy Crisis". It was a demonstration program that allowed

15 The program was called the Solar Photovoltaics Residential Project and was run out of MIT's Lincoln Lab.



utilities to develop more experience with photovoltaic systems. Utilities could get hand-on experience

with photovoltaic systems, manufacturers could test new products, and both could gain experience on

how systems behaved and were maintained. Systems were installed starting in 1989 and the PVUSA

continued through 1998.

The success of PVUSA led to the Renewable Energy and Energy Efficiency Technology Competitiveness

Act in 1989 (Taylor et al 2007). It directed the DOE to solicit joint venture proposals as the primary

vehicle for renewable energy research and development. PVMaT and the Thin Film Partnership were

designed in this model. Beginning in 1992, PVMaT's goal was to reduce manufacturing costs. The

program solicited research proposals from industry over five rounds in the areas of "problem

identification," "process specific manufacturing" and "product-driven module, components and systems

technology." Participating manufacturers achieved production cost decreases of 38%, and the program

was considered a success.

The Thin Film Partnership began in 1992 and continues today. It built on this film research that had been

going on at SERI throughout the 1980s. It was the first coordinated research effort that covered the

primary three thin-film technologies - amorphous silicon, cadmium telluride, and copper indium

diselenide. For each technology, teams were formed between industry, universities and the National

Renewable Energy Lab. The general goal for each team was to develop the technology far enough so

that industry could continue research and development, moving the technology form the pilot plant stage

to commercial production.

Only a handful of firms were founded in this time period. The paucity of new firms reflected the

stagnant market for photovoltaics. While the off-grid market continued to grow, it was a small market;

the technology had not advanced to the point where it would be competitive with other technologies

feeding into the utility grid. The new companies, as well as the existing solar firms, had to subsist on the

off-grid market, on government research programs, and on niche applications.

Two of the highest profile companies founded in this time frame were UniSolar and Sunpower. UniSolar

had benefitted quite directly from participation in the Thin Film Partnership. Founded in 1990 as a joint-

venture between Energy Conversion Devices and Canon, it is the oldest company to produce and sell

thin-film solar modules. Sunpower was initially founded around a concentrated solar photovoltaic

technology but eventually came to focus on high-efficiency crystalline silicon. It is currently one of the

industry's leading firms.



Sunpower was founded by a former Stanford professor, Richard Swanson, in 1985. In 1989, Swanson

took a sabbatical to develop the company using Series A venture funding and, in 1991, left Stanford to

pursue Sunpower full time. Throughout the 1990s, Sunpower sought out niche applications with

customers requiring very high efficiency cells and willing to pay the high costs, notably, Honda and

NASA. As a small startup subsisting on a small amount of funding from two venture capital firms in the

Bay Area, Sunpower could not compete in the bulk terrestrial market against large firms such as Sharp,

BP, Shell, Kyocera, Siemens that had diversified into the area and that could endure years of losses before

finally turning a profit. Sunpower was a small, high tech firm that was strongly research oriented.

Without a clear, large end-market, Swanson had difficulty of obtaining the type of large investments

required to ramp up production capacity, describing his efforts as talking to venture capitalists and banks

"until he was blue in the face." In 2000, he found a strategic investor, Cypress Semiconductor, whose

CEO, TJ Rodgers, felt comfortable enough with the basic technology to see the potential for growth. In

2001, Cypress Semiconductor invested $150 million in Sunpower and provided its expertise in

semiconductor manufacturing. Sunpower began full commercial production in 2004 and went public in

200516

The Current Industry Boom

Around the turn of the century, solar end-markets did begin to materialize and, along with this, more

photovoltaic manufacturers (see Figure 14). While the technology was making steady advances, progress

was still slow. Solar energy still could not compete directly against other forms of generation, but

international government support began to change the economics of solar from the perspective of a

potential buyer. Japan, Germany and to a lesser extent the United States had begun to create end markets

for the technology by providing subsidies of various forms. This led to a rush of demand that existing

and new firms sought to fill.

16 The successful public offering of Sunpower demonstrated investor interest in photovoltaic technology. Shortly
after, in 2006, another successful photovoltaics company - First Solar -went public. Venture capitalists have
become more interested in photovoltaics, investing in high profile companies like Nanosolar and Miasole, along
with over a hundred starts in the Bay Area.
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Figure 14. Active Companies and Shipments in the US, 1986-2007
(Source: EIA, Taylor et al 2007)
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*From 1982 to 1985, shipments were not identified as imports, exports or domestic. Thus the "total shipped" from

1982 to 1985 includes imports, exports and domestic. After 1985, the total quantity shipped is the sum of imports,

exports and domestic.

In general, the photovoltaics industry can be divided between firms backed by a large oil or electronics

company and "pure play" firms that are pursuing only solar photovoltaics technology. Firms like BP

Solar, Sharp and Sanyo belong to the former category while firms like Sunpower, Q-Cells and Nanosolar

fit into the latter. Prior to the current industry boom that began at the turn of the century, there were only

a handful of pure play solar firms. Without the support of a large backing company, the small firms had

difficulty weathering the ups and downs of the market. With the rapid expansion of demand, more room

opened up for new firms to be created and to expand. The first category of firms are companies that have

significant financial and human capital developed from other lines of business and are diversifying into

the solar market. They tend to focus on more established technologies that can be commercially produced

with little development time, a strategy that cannot be imitated by many potential competitors.

New, pure play firms can be further divided into two general types. Some of the new firms focus on

producing the standard photovoltaic technology that is essentially available "off the shelf." These firms

are competitive because of lower manufacturing costs, often owed to temporary cost advantages of

locating in eastern Germany shortly after German Reunification. Q-cells was one of several firms

founded in Germany that produced photovoltaic cells and modules using standard crystalline technology.

Their competitive advantage was in low manufacturing cost and easy access to the growing German end-



market. Set up in a part of the country that had once been part of East Germany, the company had access

to abundant skilled labor and large subsidies from the European Union and federal and state Germany

governments. The same phenomenon of using "off the shelf' technologies while also being globally

competitive can now be found in China, a place whose competitive advantage is low cost.

Other new pure play startup firms pursue competitive advantage through technology. They hope to

develop a more advanced technology that, if produced commercially, has a chance of defeating the

traditional technologies in the marketplace. These firms have been developed by entrepreneurs following

the Silicon Valley model of innovation. Before 2001, the interest of the investment community in Silicon

Valley was focused on the life sciences and information and computer technology, which had attracted

significant capital and scientific and entrepreneurial talent to the region. After the Internet bubble burst

in 2001, investors and entrepreneurs sought out new types of technology to invest in. "Clean

technologies" have emerged as an important class of high technology investments alongside information

technology and life sciences vying for the attention of entrepreneurs and venture capital. One example of

this type of firm is Nanosolar, a company that plans to produce copper indium gallium diselenide (CIGS)

photovoltaic cells in the form of a printable ink. Another is Nanogram, a firm using its proprietary

deposition processes to produce cost-effective thin crystalline cells". Figure 15 illustrates the growing

investment in energy technologies.

17 Thin crystalline silicon is a fairly recent approach to solar cells. It begins by depositing a thin layer of silicon on
a substrate and then heating it until the silicon crystallizes. The appeal of thin crystalline silicon is to have the low
materials cost of thin film technologies, while also having the high efficiency of crystalline silicon.
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Figure 15. Venture Capital Investment in Energy, 1995-2008
(Source: PWC Money Tree)
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The History of Incentive Programs and Policies Supporting Solar

Although the ultimate goal remains to reduce the cost of solar so that it can compete against and replace

other forms of generation, several countries have considered solar such an attractive proposition that they

sought to accelerate its development and deployment. It was the policies Germany and to a lesser extent

Japan and the United States that set off the recent phase of rapid industry growth.

Germany

Although part of Germany's response to the energy crises of the 1970s was to begin solar research (which

started in 1974), its overall strategy was to focus on coal and nuclear energy. Interest in photovoltaic

technology did not take off until nuclear fell out of favor. Throughout the 1970s and early 1980s, there

had always been strong but not overwhelming opposition to nuclear power. It was the Chernobyl

accident, however, that took place nearby in the Soviet Union in 1986 that turned the tide strongly against

nuclear energy. Fear of radioactive fallout led people to remain indoors as much as possible and even

slaughter cattle thought to be exposed to radiation. Until 1985, public opinion was split over the nuclear

energy question but after Chernobyl, public opposition to nuclear increased to 90% (Jahn 1992).

Chernobyl also had an effect on the Germany research budget for solar energy. Solar research increased
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every year from 1974 until 1982 when it started to decline. It was because of Chernobyl that this

downward trend reversed.

Amongst people and firms alike, there was a growing recognition that alternative energy sources would

be necessary. Large German firms vested in nuclear technology, such as Siemens, began looking for

alternative lines of business. Siemens was perhaps the first major German company to start a solar line of

business. They were the primary participant in a research program funded almost entirely by the

Germany government in the late 1980s. Siemens eventually bought ARCO Solar in 1990, the largest

solar company at the time, and renamed it Siemens Solar.

While the United States is most notable in the history of photovoltaics for being the birthplace of the

technology and its many variants, Germany is most notable for developing a large and stable end market.

Incentives for renewable energy started at a national level in 1991 and were revised in 2000, 2004 and

2008.

In 1991, the German government established the first feed-in tariff through the Feed-In Law of 1990. It

required utilities to buy electricity from third parties at 90% of the retail electricity rate. This meant that

non-utility actors could build generation capacity and that renewables would not have to compete directly

against traditional generation (rather, renewables would compete against traditional generation plus

transmission plus distribution). Although the rate offered by the 1991 feed-in tariff was still too low to

encourage the installation of photovoltaic systems, it did encourage significant wind installations and set

the precedent for later feed-in laws.

Although the feed-in tariff was proposed as early as 1988, the first concrete step in supporting

photovoltaics was a demonstration program called the 1000 Roofs Program 18 . Between 1990 and 1995,

the 1000 Roofs Program had supported the installation of over 2000 photovoltaic systems with a total

capacity of 5 megawatts. The incentive it offered was substantial - 70% of the total system cost. "New"

states in the recently reunited Germany paid 10% of this while the federal government paid 60%. For

states that were part of West Germany, the federal government paid 50% of the subsidy and the state

government paid the remaining 20% (Margolis 2002, Lauber and Mez 2004). With the end of the 1000

Roofs Program, the Germany solar market maintained some stability through state and local incentive

programs such as the enhanced feed-in tariff offered in Aachen.

18 Incidentally, it was also the first salvo in an international competition of "Roofs Programs." Japan later organized
what is called the 10,000 Roofs Program. Germany, not to be outdone, set up a 100,000 Roofs program a few years
later. Though a late entrant in the competition, the United States boldly proposed a Million Solar Roofs Program.



However, the next major period of growth came with the rise of the Red-Green Coalition to national

power in 1998. A key part of their platform was job creation and economic development through

environmentally-friendly energy policy (Lauber and Mez 2004). Under the Red-Green coalition,

construction of future nuclear plants was halted with the Nuclear Energy Phase-Out Act. The government

embraced the Kyoto Protocol and reaffirmed carbon-dioxide reduction targets with the Climate Change

Policy Action Program. The government also set a target for 12.5% of electricity supplies to come from

renewables by 2010 and 50% by 205019.

Its first major action to support solar photovoltaics came in 1999 with the start of the 100,000 Roofs

Program. Although the initial goal had been to revise the feed-in tariff set in 1991 to be more amenable

to solar, there was concern that working out the details of the new feed-in tariff would slow down

industry growth. The 100,000 Roofs Program was designed as a stop-gap measure. It was a subsidized,

guaranteed loan program with 0% interest. The loan would be paid back annually over ten years with no

payments required for the first two years. If the borrower successfully made the first seven payments,

then the last payment would be waived. This amounted to a 35% subsidy (Stryi-Hipp 2004). The

government budget for the program was E460 million and its goal was the installation of a cumulative 300

megawatts by 2004 when the program was scheduled to end. While the 100,000 Roofs Program did

encourage the installation of photovoltaic systems, it was not initially as successful as hoped. The

installation goal for 1999 was 18 megawatts, but only nine megawatts were installed that year.

In 2000, the Renewable Energy Sources Act was passed establishing a new feed-in tariff with a rate of 1

Deutsche Mark per kilowatt hour (about $0.50 per kilowatt hour). Unlike the 1991 feed-in tariff, the 2000

feed-in tariff was cost based, that is, the designers of the tariff calculated the cost to install a photovoltaic

system with a modest return on investment and set the feed-in tariff rate to that level. To encourage cost

reduction by industry, the level of the feed-in tariff was to decrease by 5% every year. Also, unlike the

1991 feed-in tariff, the rates were set for 20 years. Between the 100,000 Roofs Program and the new

feed-in tariff, the government set an installation goal of 350 megawatts by 2003. As originally designed,

the feed-in tariff was capped at 350 megawatts of capacity. With the addition of the new feed-in tariff,

the terms of the 100,000 Roofs Program were adjusted downwards. The last payment was no longer

waived and the interest rate was increased from 0% to 1.9%.

The combination of the feed-in tariff and subsidized loans created overwhelming demand for solar

systems. In fact, it strained the annual budgets for the subsidized loan program. The feed-in tariff cap of

350 megawatts was raised to one gigawatt in 2002 and eliminated altogether in 2003. By the time the

19 Germany has already met the first target. In 2007, 14.2% of electricity was provided by renewable energy sources
(German Federal Ministry for Environment, March 2008).



100,000 Roofs Program ended in 2002, it had given out E1.72 billion in loans, almost four times the

original budget. Germany had exceeded its 350 megawatt goal with 431 megawatts of solar installations.

The German experience over the past few years suggested that a subsidized loan program would only

encumber growth. Planning the 100,000 Roofs Program required the government to set a budget and

when that budget was exceeded, government action was required to increase the budget. The revision to

the feed-in tariff made the rates slightly more attractive and differentiated between types of systems.

Small rooftop systems would receive E 0.574 per kilowatt hour and ground-mounted systems would

receive E 0.457 per kilowatt hour. These rates were designed to give investors a 6.5% return on their

investment and, like the 2000 feed-in tariff, these rates would also be decreased each year - by 5% for

roof-mounted systems and 6.5% for ground mounted systems.

Table 4. Past and Future German Feed-in Tariff Rates

Baseline feed-n tariff
Feed in tariff reduction rate for Lower Upper

Year (for roof-mounted following year bound bound

systems) (for roof-mounted (MW) (MW)
systems)

-o 2001 50.6 5%

W 2002 48.1 6%

-$ 2003 45.3 N/A (law revised)

------------------------------------------------------------------------------------ --
2004 57.4 5%

2005 54.5 5%

2006 51.8 5%

2007 49.2 5%

2008 46.8 5%

2009 43.01 8% 1000 1500

- 42010 8% 1100 1700

> 5 2011 9% 1200 1900
.9

b



The dramatic success of the feed-in tariff in encouraging installations from 2004 to 2008 prompted

another revision in 2008. The main change was to accelerate the rate of decline in the feed-in tariff from

5% for roof-mounted systems to 8%. (The new rate for ground-mounted systems is 10%). A means to

adjust the rate decrease was also put into place. If annual installation volume stays within a certain range,

then the decline of the feed-in tariff will remain at 8%. If volume falls below the range, then the feed-in

tariff will only decline by 7% and if the volume falls above the range, then the feed-in tariff will decline

by 9%. Table 4 list the upper and lower bounds that would trigger an adjustment to the rate of decline.

Note that cumulative installation in 2008 was 1500 megawatts. If system costs can keep up with the feed-

in tariff rate decrease schedule and electricity prices continue to increase at 3% annually, the German

government expects to reach grid parity between 2012 and 2015.

Japan

Although Germany's policies have been critical in spurring industry growth since 2000, Japan should be

recognized for being the first country to subsidize the installation of photovoltaic systems at a national

level. Like Germany, Japan first showed interest in solar energy after the Arab Oil Embargo. It began a

broad research program - the Sunshine Project - in 1974 that set a research budget for solar energy along

with funding for coal gasification, geothermal energy and hydrogen fuel cells. Japan's interest in solar

stems from its lack of natural energy resources (e.g. oil) and resulting dependence on foreign imports. It

was calculated that if solar systems were installed on 22% of single family homes and 50% of multifamily

homes, that 5% of Japan's total electricity consumption could be supplied by photovoltaics.

Japan's support for the technology initially focused on materials research but by 1983, it shifted support

to focus on deployment of the technology - developing photovoltaic systems and manufacturing

techniques. It oriented research towards the mass production of small system. Given Japan's

mountainous geography and high population density, flat land is scarce and expensive. Large, utility-

scale solar plants were ruled out as a cost competitive option and economies were sought out through

mass production instead.

In 1986, Japan field tested one of the earliest distributed generation systems on Rokko Island (Green

2000). Photovoltaic systems were installed on 180 "dummy" houses which ran many of the typical

electronic appliances found in Japanese homes. The field test allowed scientists and engineers to study

the technical issues associated with distributed generation in a systematic way under well-controlled

conditions.



Starting in 1993, Japan's New Sunshine Program sought to pursue the commercialization and deployment

of solar technology. The following year, its flagship incentive program, the Residential PV System

Monitoring Program, was started. Initially the government paid two-thirds of the total system cost, but

this was quickly scaled back to pay one-half of the total system cost. The government also issued the

Basic Guideline for New Energy Introduction in 1994, calling for the installation of 400 megawatts of

photovoltaic capacity by 2000 and 4.6 gigawatts by 201020,21. This was believed to have sent a signal to

industry that the government saw its support to solar energy as a long term commitment. Japan also ran

several "Field Test" programs which also supported the installation of medium sized photovoltaic

systems. However, these programs were relatively small in scale and intended more as a demonstration

program for solar installations in new operating conditions.

Adding to the value of the photovoltaic systems, the utilities had agreed to buy back any excess power

generated by the system owner at the full retail rate. No law was required and the utilities volunteered to

do this as far back at 1992. Even excluding the Japanese subsidy program, the incentives for solar

energy in Japan (electricity sold the retail rate) was greater than incentives in Germany (electricity sold at

90% retail rate).

The residential incentive program was revised in 1997 and renamed the Residential PV System

Dissemination Program. The subsidy level was decreased from one-half to one-third and a schedule put

in place for further reductions in the subsidy level. In 2000, the subsidy decreased to 24%; in 2001 it was

16%; in 2002, it was 14%; and 2003 it was 13%. The decreasing subsidy level was an innovation

photovoltaic support and was later imitated by Germany and California.

In 2003, the program was revised again and set to be phased out completely after 2005. The same year,

Japan announced a national renewable portfolio standard with solar expected to generate 1.35% of total

electricity demand by 2010. One of the unexpected observations about system installations in Japan is

that the market continued to expand even as subsidy levels decreased. Observers abroad in the United

States and Germany hailed this as a great success to be followed, interpreting the decreased installation

prices and market expansion as the result of industry learning.

Recent developments in Japan have cast some of these observations in a new light. After the incentive

program was phased out in 2005, it was expected that local incentive programs would keep the

photovoltaic markets growing. While installation levels did not drop off entirely afterwards, they did

20 The 4.6 gigawatt target was adjusted upwards to 5 gigawatts in 1998 under the revised Long-term Energy Supply
and Demand Outlook (Ikki 2003).
21 Japan will probably fall short of this target. Through 2008, Japan had about 2.2 gigawatts of installed capacity
and a steady annual installation rate of 200-300 megawatts since 2001 (see Figure 3).



level off. Some have argued that it was not the lack of incentives per se, but rather the perceived lack of

public support coupled with a declining housing market, shortages in polysilicon supply and large

photovoltaic demand in Europe (Jiger-Waldau 2009). Hoping to reverse this trend, the government has

reinitiated the subsidy program in 2009. With a budget of 29 billion yen, it will offer an incentive level of

70 yen per watt.

One mystery that emerges from this is how the Japanese managed to continue installations at a modest

rate without subsidies to bridge the cost - benefit gap. Wiser et al (2009) estimate the cost of

photovoltaic systems in Japan at $5.9 per watt. Using that cost, along with the PVWatts insolation value

for Matsumoto, Japan, the cost of solar energy is still $0.357 per kilowatt hour. In contrast, the average

cost of residential electricity in Japan for 2006 was $0.178 per kilowatt hour (International Energy

Agency 2008). This begs the question as to whether there are other incentives that are not understood (at

least by international commentators) or whether system buyers do not make the same cost-benefit

calculation as is made in the United States and Germany.

The United States

The history of market support for solar in the United States parallels its support for solar research: bold

possibly brash early steps followed by steep cuts in support then followed by more sophisticated but

modest support.

During the Energy Crisis, solar photovoltaics were supported in three ways by the government. The first

was direct federal purchases of photovoltaics - enabled by the Department of Energy Act of 1977, the

National Energy Conservation Act of 1978 and the Solar Photovoltaic Energy Research Development and

Demonstration Act). The Federal Photovoltaics Utilization Program, established by the Energy

Conservation Act, authorized $98 million to support installation of photovoltaics systems in remote off-

gird applications. The Program Research and Development Announcement (PRDA) allowed firms to

competitively bid to install medium to large PV systems as demonstration projects. By 1982, the FPUP

funded the installation of 660 kilowatts of photovoltaics and the PDRA supported 729 kilowatts

(Margolis 2002). Government purchases were also made for research purposes, as part of the Flat Plate

Solar Array Project.

The second approach was to encourage purchases by private companies. The key mechanism was tax

cuts. The Energy Tax Act of 1978 set a 10% tax credit for businesses installing photovoltaic systems.

This was enhanced in 1980 by the Crude Oil Windfall Profit Tax Act of 1980 which increased the tax

credit for business to 15% and introduced the first residential tax credit at a rate of 40% applicable for up



to $10000 (essentially capped at $4000). In addition to the tax credits, the 1981 Economic Recovery Act

established a five year tax depreciation schedule for photovoltaic systems instead of a 15-year schedule,

increasing the net present value of tax benefits from the purchase. It also set up a 10% general equipment

investment tax credit which could be combined with the 15% tax credit from the Crude Oil Windfall

Profit Act; this amounted to a 25% tax credit.

The third was to create space in the electricity generation industry for producers of solar energy.

Congress passed the Public Utilities Regulatory Policies Act (PURPA) in 1978 which opened the door for

distributed generation. It was at first intended to encourage cogeneration - using the heat in generation

for electricity generation as well as industrial processes (at a chemical plant for instance). It mandated

that utilities purchase electricity from non-utility power producers at utilities' avoided cost; this

established a clear economic value. Prior to PURPA, utilities had no obligation to buy electricity

generated by third-party power producers. PURPA sowed the seeds for deregulation of the utility

industry by recognizing the right of non-utilities to generate power and, when some non-utilities turned a

profit, raising questions of whether the natural monopoly model of utilities was most efficient.

As with the solar research budget, market support declined significantly, through less precipitously, after

Reagan took office. When the business and residential tax credits expired in 1985, the residential tax

credit was not renewed and the business tax credit was renewed in a much weaker form. The tax credit

for business was set at 15% in 1986, 12% in 1987 and 10% in 1988. After 1988, the business tax credit

was extended one year at a time making medium to long term project planning all but impossible. It was

only in 1992 when the Energy Policy Act established the 10% business tax credit indefinitely.

The restructuring of the utility industry, starting in the 1990s, helped create room for solar generation.

The Energy Policy Act of 1992 established a class of power producers known as exempt wholesaler

generators. Though exempt wholesalers were not assured a price for electricity generated as cogeneration

facilities under PURPA, they were assured access to transmission infrastructure and were exempt from

certain requirements for generation facilities under PURPA. This made it easier to directly compete for

generation against utilities.

In the current system of photovoltaic market support, solar is supported by a combination of incentives at

the federal and the state levels that encourage the purchases from private entities. The federal

government offers tax credits for business and individuals. Tax credits for solar increased with the

passing of the Energy Policy Act of 2005. It increased the business tax credit to 30% and reinstated the

residential tax credit also at 30% but capped at a $2000 total. While generous, one drawback was that the

tax credit had only been established for only two years, making long term project planning difficult. It



was extended through the Tax Relief and Health Care Act of 2006 extended it for one more year (for

2008). This problem was solved in October 2008 when the Emergency Economic Stabilization Act was

passed, extending the tax credit for an eight year period in October 2008, removing the $2000 cap for

residential systems and allowing utilities to take the tax credit (they had been barred previously).

The tax credit was augmented in February 2009 as part of the American Recovery and Reinvestment Act.

It addressed the problem of a weak market for tax equity - a requirement for monetizing the tax credit.

For commercial photovoltaic systems, the act allowed owners to apply for grants equal to the amount of

the investment tax credit as an alternative to the credit. While this will only last for 2 years and does not

apply to residential systems, it is helpful in a low capital economic environment.

The depreciation benefit established in 1981 continues to the present and has been temporarily enhanced

with the Economic Stimulus Act of 2008 and the Recovery and Reinvestment Act of 2009. This allowed

for "bonus" depreciation for systems acquired and placed in service in 2008 or 2009. Half of the property

value can be deducted the first year with the remaining 50% of the value is depreciated over the standard

5 year schedule.

State governments also encourage the solar energy markets by providing financial incentives and setting

up market conditions that encourage solar generation. Many state governments offer direct rebates to

businesses and individuals installing a photovoltaic system and some even offer state tax credits. The

majority of states also allow net metering, which allows electricity consumers to sell their electricity back

to the utility at retail rates and pay for only the net electricity consumption. Also, state public utility

commissions can influence the rate structure for utility customers. Tiered electricity rates and time-of-use

pricing can make solar generated electricity more valuable than under flat electricity rates. Finally, many

states are implementing renewable portfolio standards which can help to establish a value of energy

generated from renewable sources.

At the state level, 16 states had offered incentive programs for solar as of 2007 and California's has been

the largest by far. Several features of the California electricity market make it an attractive market for

photovoltaics. Most salient are the direct rebates that reduce the net cost of a PV system. The first

statewide rebate program was the Emerging Renewables Program which started in 1998 as one

component of the deregulation of the California energy market. In 2001, it was enhanced by the Self-

Generation Incentive Program which was targeted towards large PV systems. Both these programs ended

and were replaced by a larger incentive program as part of the California Solar Initiative (CSI) starting in

2007. The goal is to support the goal set out by the Million Roof Solar Initiative, which called for the



installation of 3000 MW of solar capacity by 2017. Of the $3.3 billion total, $2.1 billion is administered

by the Public Utility Commission to support incentive programs for the large investor owned utilities -

Pacific Gas and Electric, Southern California Edison and San Diego Gas and Electric. About $800

million is set aside to support incentive programs for municipal utilities like the Los Angeles Department

of Water and Power. In addition, $400 million is set aside to support the New Solar Homes Partnership

which encourages photovoltaics and energy efficiency in new construction. Up to $50 million is set aside

for research, development and demonstration. The program is funded by ratepayers.

The incentives provided by CSI in the area served by the three large investor owned utilities are guided by

the principle that the level of incentive should decrease as more photovoltaic capacity is installed. For

each territory, potential capacity is divided into a series of "steps." Each step is associated with a certain

amount of PV capacity and a certain rebate rate. After the capacity of one step is accounted for, new

system installers would move on to the next step, which has a smaller rebate level.

Step 1 was 50 MW in capacity and had a rebate level of $2.80 per watt. Step 2 had 70 MW in capacity

and a rebate level of $2.50 per watt. Residential systems in the PGE area are currently (as of July 2009)

on Step 5, which has 160 MW and a rebate level of $1.55. The numbers provided here are for residential

system owners; for government or non-profit organizations, the rebate level is about 30% higher.

An important feature of the California incentive system is the way the system size is determined. Many

other states measure size in terms of DC capacity, that is, they simply add up the ratings of solar modules

(20 x 200 watt modules = 4000 watts). While system size is correlated to the amount of electricity

generated, it is often not an accurate predictor of the electricity that will be generated. DC capacity does

not consider environmental conditions (like temperature), angle of installation, inverter losses, shading,

and so on. California uses a more sophisticated method for calculating effective system size, which is

approximately 85% of the DC capacity. This difference in calculation is significant because the incentive

amount applies to this smaller system size, leading to a smaller incentive than if it were calculated using

DC capacity. California's term for the rebate reflects the adjustment based upon expected performance:

the Expected Performance Based Buydown.

CSI also makes a distinction between small and large systems. Owners of systems larger than 50 kw

cannot receive an up-front rebate and instead they receive 60 monthly payments based on the amount of

electricity that is generated. The expectation is that, by rewarding electricity output, system owners will

be encouraged to maximize output through design and maintenance decisions. Like the rebates, the size

of the incentive decreases over a series of steps. Step 1 had 50 MW and offered an incentive of $0.43 per

kwh. Step 2 had 70 MW with an incentive of $0.39 per kwh. The PGE area is currently in step 6,
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offering $0.15 per kwh. As with the rebate level, the incentive for government or non-profit

organizations is about 30% higher. California calls this a Performance Based Incentive.

Another important feature of the California market is its electricity rate structure. The standard rate

structure is has five price tiers and the more electricity that is consumed, the higher the tier (like the US

federal income tax). After the California energy crisis in 2001, more revenue was required to repay the

debts that had been incurred and the then-two-tier pricing structure was changed into a five tier structure.

The difference between tiers is significant; Compared to a "baseline" level of use, marginal electricity in

the fifth tier (for electricity consumed beyond 300% of the baseline quantity) is charged at approximately

twice the baseline price. Depending on the energy use of a PV system-owner, solar electricity may only

have to compete against the high marginal cost of utility-generated electricity. Another alternative for

ratepayers is to select a time-of-use rate plan. Electricity rates differ for "peak" and "off-peak"

consumption and by the season of the year (there is no real-time pricing). Since solar electricity

production peaks at around midday, it only needs to compete against the "peak" rate rather than the

average or "off peak" rate.

California's Renewable Portfolio Standard (RPS) mandates that 20% of all electricity generated must

come from renewable sources by 2010. The RPS was originally established in 2002 and called for a 20%

target by 2017. In 2006, however, a more aggressive goal was established: 20% by 2010. As of 2007,

California's three large investor-owned utilities supplied 12.7% of their power from renewable sources.

An unofficial goal of 33% has been set for 2020, and there is interest in passing legislation to bind the

state to the new target. However, the RPS will only encourage some types of photovoltaic installations.

Large photovoltaic plants - either owned by the utility or whose output is sold directly to utilities - counts

towards the RPS target. However, distributed solar generation that is net metered cannot be used by a

utility to fulfill its RPS requirement. Thus the RPS will not incentivize utilities to encourage their

customers to install photovoltaic systems.

Other features that enhance the attractiveness of the California market for solar PV include the state

income tax credit, the market-based feed-in tariff and the property tax exemption. California offered

residential and commercial tax credits starting in 1976 at a rate of 10% capped at $1000. The tax credits

were modified many times - 1977, 1978, 1979, 1980, 1983, and 1985 - before expiring in 1986. At one

time, California's commercial tax credits were an extraordinary 50% (Margolis 2002). More recently, a

state income tax credit of 15% was put in place in 2001, supplementing the federal tax credit which was

only 10% at the time. It applied to the cost of the PV system net of other incentives at the federal, state or

municipal level. In 2003 and 2004, the tax credit was reduced to 7.5% and by 2005 the credit was



eliminated. Despite attempts to continue the tax credit, the 30% federal tax credit that was passed in 2005

rendered the state tax credit unnecessary. The feed-in tariff, known by the bill number in which it was

passed (AB 1969), allows solar power producers to sell their electricity to the utility in lieu of receiving a

rebate from the state at a price based on the market price of comparable electricity. Since it is based on

the market price (unlike the German feed-in tariff which is cost-based), it offers a much lower rate than

feed-in tariffs in Europe and elsewhere and has failed to create a large stir in the California PV industry.

The property tax exemption started in 1999 and was recently extended to 2016, making the additional

property value from the solar system excludable for purposes of assessing property tax.

Interconnection and net metering allow system owners to connect their PV system to the grid. It obviates

the need for a battery and charge controller which would increase the overall system cost. So long as

solar energy makes up only a small proportion of the total energy on the grid, the feeding of electricity

from decentralized intermittent sources will not be a problem. Net metering, along with simplified rules

for grid connection, was allowed for systems in California up to 10kw starting in 1996. Starting in 2000,

time of use net metering was allowed, meaning that system owners could sell their electricity at "peak"

rates during the middle of the day. Today, systems of up to 1 MW in size can be net metered, though

there is a cap on net metered electricity of 2.5% of the system's aggregate peak capacity (thus the utility

does not have to deal with the intermittent nature of the energy source). California's own interconnection

standard, Rule 21, was established in 2000 before the national technical standard, IEEE 154722. It

contains details for a broader set of issues than Rule 21, though the portions that overlapped were updated

to be consistent with IEEE1547.

Closing Remarks on Incentive Programs

Incentives for solar energy have been important not only for deployment and reducing carbon emissions,

but for the development of local industry. Having easy access to a reliable source of demand is an

important factor for the development of a new regional cluster (Bresnahan, Gambardella and Saxenian

2001). Thus far, the presence of strong domestic demand has helped to develop local industry. For

Germany, the feed-in tariff is part of an industrial policy. The policy considers photovoltaic solar energy

as an inevitable part of future generation and when the technology progresses to the point where it is

directly competitive with traditional forms of generation, then German firms with German workers will

be at the forefront of industry.

22 In 1998, standards for interconnection varied from utility to utility and the DOE began an effort to standardize
interconnection nationally. The result was IEEE 1547 approved in 2003.



There are exciting prospects for the future of photovoltaic technology and industry. Yet as we saw in

Table 1, buying down the cost of solar energy can be an expensive proposition. There is inherent

uncertainty in terms of total cost and time required to reach grid parity. Considering the magnitude of the

climate change problem, are resources best spent on photovoltaics? Another concern is the implicit

assumption that reaching grid parity for photovoltaics is a resource-constrained problem. Regardless of

the resources committed, how soon can grid parity be attained? And will this be soon enough to play a

significant role in meeting carbon emission reduction goals for 2050? There may be a natural "elbow

point" in the tradeoff between the level of resources committed and the value derived from investment in

photovoltaics. Policymakers should think carefully before going beyond this point.



Section III - Why Will the Cost of Solar Decrease?

Many have made the argument for why the cost of solar energy will decline in the future. Some of these

arguments are engineering-based, looking at specific technical changes to features of photovoltaic

systems to estimate future costs. Other arguments are made on the basis of the experience curve. In this

section, I will provide an overview of both types of arguments.

To understand the technical reasons why the cost of photovoltaic systems might decline, it is necessary to

understand what exactly comprises the cost of these systems in the first place. Figure 16 shows the

breakdown of system costs per watt according to Pacific Gas & Electric. Built into these figures are the

direct costs as well as overhead and profit.

A system integrator will design the system, conduct administrative tasks, coordinate the system

installation and purchase the system's physical components - the photovoltaic modules, inverter, and

mounting hardware. The costs, overhead and profit of the system integrator fall into the two rightmost

blocks of Figure 16, each block accounting for $1.35 of the total system cost Mounting hardware and

miscellaneous electrical components like wire and junction boxes fall within the $0.45 "other

components" block of costs. The inverter manufacturer's cost, overhead and profit is $0.45 per system.

The remaining four components - totaling $4.30 show the breakdown of module manufacturing costs,

which also include overhead and profit of the module manufacturer 23.

Table 5 shows a comparison of the Pacific Gas & Electric cost breakdown with other estimates. Where

possible, the table splits out the direct cost of the component from overhead and profit. Although the

exact numbers vary from estimate to estimate, there is some consistency of general trends. Module costs

per watt range from $3.75 to $4.50, about 50% of total system costs. Installation costs range from $2.00

to $3.25 per watt, about 35% of total system costs. Costs for the inverter and other hardware range from

$0.90 to $1.41 per watt, about 15% of total system costs. This suggests that to reduce system costs, the

two general areas to target in module manufacturing and in system integration and installation.

23 The distinction between "cost" and "profit" depends on whose point of view is taken. The direct costs of
manufacturing the module (e.g. labor required to wire cells together) is pooled together with indirect costs (e.g.
maintenance of machinery), overhead (e.g. renting the land for the plant), and profit into the price that the
manufacturer charges the customer. From the perspective of the module manufacturer, the cost would only include
the direct costs. From the perspective of the system integrator, the module cost includes all related costs as reflected
in the manufacturers sales price.
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Figure 16. Breakdown of Grid-Connected PV System Costs
(Source: Henderson et al 2007 citing PG&E)
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Table 5. Comparison of Several Estimates of PV
All values are price per watt (DC)

Systems Costs

Wafer $1.12 $1.12 $0.75

-8 $3.94 $4.50
SCell $1.35 $1.30 $0.75

I ilicon $0.78 $0.78 $1.50
Ovafer $1.12 $1.12 $0.75

$3.94 $4.50

CoInstallation labor $0.74 $1.25 $0.5

Inverter $0.45 $0.57

Overhead & Profit $0.15 $0.13

Other hardware $0.45 $0.57 $0.75 $0.75

Installation labor $0.74 $1.25 $0.50

Overhead & Profit on $1.35
$3.05 $0.75 $0.50

installation labor

Design/sales/permitting cost $0.50

Design/sales/permitting $0.50

profit

TOTAL $7.90 $8.20 $7.75 $8.25 $7.90

*Module production cost is estimated at about $2 per watt.

*These figures are expressed in terms of cost per DC watts. Estimates mentioned later in this document refer to cost

per AC watt. Although the precise conversion rate from DC to AC depends on the equipment being used, a

representative conversation would be to multiply by (1 / 0.85).



Learning Curve Based Arguments for Cost Reduction

The standard justification for investing in and supporting solar technology is based on the learning or

experience curve24 (Ingersoll et al 1998, IEA 2000, Algoso et al 2005, BSW-Solar 2009). The argument

goes as follows:

Today, electricity generated using photovoltaics is too expensive. However, if we look over the

50 year history of the technology, we can see that cost has declined significantly. A measure of

the rate of cost reduction can be given by the experience curve. The experience curve seems like

a reasonable methodology because it was developed more than 70 years ago, has been used by

high status firms like the Boston Consulting Group, and has been written about in the Harvard

Business Review. All that is required to construct an experience curve is past record of

cumulative production levels and the cost of modules.

The role of the government is to provide incentives that will buy down the cost ofphotovoltaics.

This will cost money, of course, but it will be worth it to "ride the learning curve. " Once solar is

economically competitive with traditional generation, photovoltaic installation will increase

significantly, displacing carbon-dioxide emitting forms of generation.

Calculating the total buy-down cost and time when grid parity will be achieved is fairly

straightforward with the experience curve. Once you establish a target cost for solar energy -

say grid parity - it is possible to predict the amount of experience necessary to go from today's

cost to the cost target. Then, ifyou assume a certain rate at which experience is gained, you can

predict the year of grid parity. Looking over the past ten years of the industry, production has

been growing at a 45% rate year over year. If that rate ofproduction growth continues, then the

industry will reach grid parity in the next 10 years.

Government can design an incentive program that offers decreasing subsidy levels over time.

This will encourage industry to learn to decrease their cost of sales and pass on those savings to

the photovoltaic system owners. Japan offers an important example of how this works. Incentive

levels in Japan started high, 50%. But as they decreased, photovoltaic market did not dry up and

instead the market continued to grow.

24 It is sometimes useful to draw a distinction between the experience curve and the learning

curve. I will use the terms interchangeably here.



A Review of the Experience Curve

Because the experience curve forms an important part of the argument to support solar, it is worthwhile to

review the history of the experience curve and to develop a sober assessment of its application to

photovoltaics.

The learning curve first appeared in a 1936 issue of the Journal ofAeronautical Sciences. The topic was

"Factors Affecting the Cost of Airplanes" and among a number of other factors, it was noted that the

quantity of planes produced affected the cost of the next plane. Greater production quantities helped to

spread the costs of fixed assets such as production machinery but also created an "economy of labor"

(Wright 1936: 124) in which labor cost decreased with production quantity. Wright plotted the

relationship between labor cost and quantity and on log-log paper formed a straight line with a slope of

0.322. Translated into meaningful terms, this meant that with every doubling of production capacity,

labor cost would decrease to eighty percent of its previous value. Support for the learning curve was

found in other industries as well. Searle (1954) tracks the labor required in the wartime production of

Liberty ships.

A 1954 article in the Harvard Business Review argued that the learning curve could be applied as a

general "production tool." The 80% rate that Wright had identified seemed to hold in several other

industries like railroad cars and gun barrels. Application of the learning curve could help in various

business decisions - in long term planning, in make-or-buy decisions, in evaluating supplier contract

proposals. It was suggested that there was a general theory underlying the learning curve. "A worker

learns as he works and the more often he repeats the operation, the more efficient he becomes, with the

result that the direct labor per input unit declines." (Andress 1954: 87).

An article published in the same journal ten years later (Hirschmann 1964) began to wrestle with the

question: was the learning curve and the 80% rate of cost reduction a law of nature that could be

discovered and used to make smarter business decisions, or was the learning curve an epiphenomenon of

other actions inside the organization? If the latter possibility is true, then efforts at cost reduction should

go beyond simply increasing cumulative experience and should instead focus on the actions of managers,

engineers and labor. Hirschmann walks a fine line between these two possibilities. After observing the

many apparent successes of the learning curve in predicting future costs, he considers factors that affect

learning and concludes that it is the "inherent susceptibility of an operation to improvement" and "the

degree to which that susceptibility is exploited." Inherent susceptibility depended on the labor content of

the process. The degree to which susceptibility was exploited depended on factors such as "effect of

faith" in the learning curve, "open-ended expectations" that future improvement was possible, diligent



effort by managers and workers to learn and improve operations, and external pressure on the

organization that pushed it to learn or go out of business. Despite these non-technical factors, the rate of

learning ought to be regular enough to be predictable.

Hirschmann's article also reflects an evolution in thinking about the learning curve: it is not only the

learning by direct laborers that drives the learning curve. Changes in the organization of operations and

other indirect processes also have an impact on cost reduction independent of direct labor learning.

Maintaining the learning curve depends on the actions of a wider set of players.

The third Harvard Business Review article (Abernathy and Wayne 1974) discussing the learning curve

was much more critical. Its authors, Abernathy and Wayne, argued that there was a "dark side" to

progressing down the learning curve. The company becomes more and more specialized, and loses its

flexibility to react to changing market conditions and exogenous shocks. It then becomes more

vulnerable to attack by other companies that either take advantage of the changing market or even change

the nature of the market itself. The authors point out the experience of Ford when it relinquished its

position as the top US auto manufacturer in the 1930s. Throughout the 1920s, the company had been

extremely successful with its Model T and was the paragon of increasing the scale of operations to

achieve lower unit costs. However, General Motors was able to alter the nature of the market so that

consumers began to care not only about price but about design characteristics 25. The famously

homogenous Model T did not fare well in this new market and, while Ford eventually adapted, it was

never able to reclaim its number one position.

A major change in the way the learning curve was used was brought about by the Boston Consulting

Group (1968), the first to write about the experience curve, a bold generalization of the learning curve.

While the learning curve applied only to human labor in production operations, the experience curve

conceptualized of learning in a broad sense. Cost inputs that were susceptible to learning included "all

costs of every kind required to deliver the product to the ultimate user." This included direct labor,

research and development, sales and marketing, and other overhead.

The experience curve could be applied not only to cost data but to price data and not only to single firms

but to entire industries. Abrupt shifts in the experience curve plotted with price data could be explained

by changes to the industry structure. During periods of stable market structure, profit margins remain

relatively constant and decreases in prices reflect commensurate decreases in costs. However, during

periods of structural change in the industry (e.g. an industry shakeout), profit margins may increase or

25 General Motors famously introduced the concept of annual model revisions.



decrease. Thus a careful application of the experience curve required the user to view the slope of the

curve in light of industry dynamics. The authors also added that experience curves could capture changes

to the nature of the technology. Drastic changes would result in an abrupt downward shift in the curve,

after which a more moderate cost reduction rate would resume.

There were many other analysts, mostly academics, who were much more conservative about the

applicability of the learning curve. Nadler and Smith (1961) found extensive variation in the progress

ratios at the level of the individual production processes of several manufacturing plants. Alchian (1963)

found that predictions made using learning curves were not very reliable and could be costly. Based on

RAND manufacturing data of 22 aircraft models, he found an average margin of error of 20 to 25%. This

was calculated by creating a learning curve based on the first 20% (approx) of total production for each

model and then attempting to predict the labor required for the remaining 80%. The difference between

the predicted and actual labor hours was as high as +116% (i.e. labor hours were overestimated) and as

low as -31% (i.e. labor hours underestimated). With the average of 45 million labor hours per aircraft

model, the 20 to 25% margin of error translates into millions of direct-labor hours.

The widespread acceptance of an "80%" experience curve may partly have been the result of the use of

the experience curve as a control device, leading to a self-fulfilling prophecy. Conway and Schultz

(1959) write about the learning curve in the Journal of Industrial Engineering (Conway and Schultz 1959:

41), "Industrial engineers have long known that once a control of quantitative objective is imposed upon

an organization there are strong forces created to make the performance fit the objective." The US

Department of Defense also began requiring that defense contractors incorporate learning curve price

reductions in their proposals (Air Force 1970).

Overall, there was a divergence of learning curve studies into two paths (Dutton, Thomas and Butler

1984). One path was led by academics who sought to develop the theory of the learning curve and who

applied it rigorously in empirical studies. Several economists took the general principle and incorporated

it into economic theory (e.g. Arrow, Alchian, Hirshleifer). The other path was travelled by industrial

engineers, marketing, and management consultants offering prescriptive advice. These writings tended

not to cite many past learning curve articles and, when they did, they mainly cited other practitioner

articles.

Interpretation of a later review of the experience curve illustrates this divergence. Dutton and Thomas

(1984) compiled an authoritative sample of progress ratios based on a possibly comprehensive review of

learning curve studies up to that point. They present a distribution of progress ratios, shown in Figure 17,

to highlight the variation of rates that has been found across processes and even across time in the same
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plant. The authors write, "For policymakers these findings are highly suggestive, but they do not

illuminate which factors in the underlying process are subject to control; nor do they show how the

process can be influenced. Progress curves are aggregate empirical descriptions of a process and they

mask its underlying dynamics" (Dutton and Thomas 1984: 237). Interestingly, this distribution has been

interpreted as evidence supporting an "average progress ratio of 80%" (IEA 2000), discounting the

problem of variation in progress ratios.

Figure 17. Distribution of Progress Ratios as shown in Dutton and Thomas (1984)

Distribution of Progress Ratios
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PROGRESS RATIO

The experience curve was first applied to photovoltaics in 1976 by Robert Moore, a scientist at RCA

Labs, in one of the early attempts to assess the future of the technology (Moore 1976). Using the

experience curve, he estimated that a $1 per watt module price was possible by 1985 given a certain set of

assumptions. These assumptions were largely consistent with the strong national push towards solar

energy and vision of a transformed energy system - a 100% annual growth rate. This growth rate over a

relatively short period of time (10 years) also reflects the belief that it would take only a little

development work and a lot of production process scale-up and development to reach this cost goal.



Perhaps most importantly, the prediction is wrong. Figure 18 is taken from Moore (1976). Two stars

have been added to highlight the error. The five-pointed star is Moore's prediction for 1985: a $1 price

per watt after cumulative production of 109 watts. The four-pointed star is the actual value for 2009: a $3

to $4 price per watt after cumulative production of 1010 watts. This is indicative of the types of errors

possible when using the experience curve. A price-reduction model based on the experience curve and

several other assumptions can lead to predictions with superficial validity. However, in the hypothetical

world of using simple mathematical models to make predictions in a social and technical system, it can be

difficult to separate the good models from the bad. The poor assumptions of bad models are hidden by

quantitative data, graphs and equations.

Figure 18. First Application of Experience Curve to Photovoltaics
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The International Energy Agency published a report in 2000 describing the experience curve as a useful

tool for making energy policy (IEA 2000). Experience curves could be used to quantify the size of the

"learning investment" necessary to deploy technologies that reduce carbon emissions. The IEA uses 0.80

as the progress ratio for photovoltaics, after supplementing data from Williams and Terzian (1993) with

their own data. The report also made a distinction in the level of analysis where the learning curve should
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apply. For global markets like photovoltaic modules, the appropriate way to measure cumulative

production is to examine worldwide global production. However, for activities like systems installation

where knowledge generated in distant markets may not be applied in the local market, cumulative

experience should be measured using local production.

Issues with the Experience Curve

Despite the long history of the experience curve and its application to photovoltaics, there are a number of

empirical and conceptual issues that have not been addressed head on. Examining these issues is

important because the experience curve is being used to predict future cost decreases and is used as the

basis for public policy. These issues introduce a degree of uncertainty to any prediction made with the

experience curve approach and raise concerns over the robustness of policy decisions. Understanding

what may be missing - the sources of this uncertainty - can be useful in assessing the robustness of policy

decisions.

On the empirical front, the first problem is that the estimate of the progress ratio is not presented with any

measure of uncertainty. For instance, are the three progress ratios presented earlier in section II (83%,

80%, 74%) consistent with one another? It is worrisome that three different progress ratios should have

been estimated to describe what should be the same underlying phenomena. The discrepancy also

suggests the presence of sources of uncertainty that are not reflected in any one dataset used to estimate

the progress ratio. A commonly made argument is to cite the R-squared statistic to support the

appropriateness of the experience curve. The problem with this is that the data used are yearly averages,

and averaged for the entire industry. In compiling these averages, variation in costs across manufacturers,

across factories, and across time is removed. For example, if the data were compiled monthly by firm, the

data would exhibit much more variation and the fitted experience curve would have a lower r-squared..

Not only would this change the goodness-of-fit measure, but it would also help to provide an estimate of

the standard error of the statistical parameter used to estimate the progress ratio. From the multiple

measures of the progress ratio that have been used by various sources, it would appear that the standard

error may be too large for comfort (i.e. a world with a 74% progress ratio is very different from a world

with an 83% progress ratio.) Without a measure of uncertainty, it is difficult to tell whether policy

decisions will be robust.

Another challenge in estimating that uncertainty is the nature of the experience as the key independent

variable. The progress ratio is estimated by taking the log transformation of the unit cost and regressing it

against the log transformation of cumulative experience. Ordinary least squares regression is used to

estimate the regression coefficient, which graphically represents the slope of the line showing the



relationship between the two variables. The slope is then converted into a progress ratio by

exponentiating it with a base of 2.

The problem is that estimation by ordinary least squares regression assumes that the observations are

completely independent. This allows the errors to also be considered independent and assumed to fit the

normal distribution, allowing inferences of statistical significance to be drawn from the coefficient, the

standard error and the z statistic. In the case of the experience curve, the data does not meet this

assumption. The cumulative nature of experience means that the value of experience can only increase

and the observations are thus not independent.

Third, experience curves are often plotted using price data instead of cost data, mainly because the latter

are much more difficult to collect. The problem is that this increases the possibility of unobserved factors

affecting the progress ratio. To make inferences on the cost dynamics of a technology using price data,

one must make the assumption of a constant industry profit margin over time. This assumption can be

problematic when data is collected over a long time period since it is likely that the structure and

organization of the market will have changed over that time.

Fourth, experience curves have been used almost exclusively with photovoltaic modules, ignoring the

dynamics of photovoltaic systems. This is unfortunate because it is the cost of the photovoltaic system

that directly translates into the cost of electricity. Less data is available for non-module system costs

since it was only in 1994 that photovoltaic systems began to be installed on a large scale. Nonetheless,

non-module costs account for approximately 50% (35% for installation, 15% for inverter and other

hardware) of total system costs and attempts should be made to understand progress in this area. Many of

the mechanisms that drive cost reduction of modules are different for non-module costs. For example,

reducing the thickness of a solar cell would reduce the quantity of silicon used and thus the module

materials cost but would have no effect on non-module costs. While cost reduction for photovoltaic

modules is likely to be dependent upon advances in manufacturing and product design, cost reduction for

non-module costs is more likely to result from changes in financing and interconnection procedures, for

example.

On the theoretical front, one of the biggest problems is that the mechanisms for cost reduction are not

understood. It is an oft-cited adage that correlation does not equal causation. Extrapolation of a curve

drawn from past data is an intrinsically tricky proposition. However, the argument is strengthened if, in

addition to a statistical relationship, one can also invoke a theory of the processes at work. Concern over

the lack of theory underlying the experience curve has long been a concern amongst academics (Baloff

1966).

i -;;;- ; -:----;- ---------- ;-; --------- -- I---~-ii-iu; i -c-~~~~ ;;-- r=I;: ; ; :



Theory is precisely where the experience curve is at its weakest. It asserts that costs decrease as

experience is gained. This is an intuitive argument that, upon first blush, seems difficult to argue with.

But because it makes no claims about the processes driving cost reduction, it is hard to tell at what rate

the costs will decrease. Abell and Hammond (1979) argue that a firm's progress ratio is a predetermined

constant that can be achieved by exploiting and controlling various sources of progress.

At the industry level, many mechanisms may be at work simultaneously. Dutton and Thomas (1984) note

that cost reduction may be the result of technological change, labor-learning effects, and scale effects in

addition to miscellaneous local effects. By technological change, Dutton and Thomas refer to an

increased investment in capital goods which changes the production environment and contributes to

progress (Arrow 1962). The labor-learning effect refers to direct labor learning as well as tooling and

process adaptations by staff and managers. Scale effects refer to improvements made when there is a

higher expected production volume that allows fixed costs to be distributed over a greater number of units

as well as the use of more advanced production techniques requiring greater fixed investment but

delivering lower unit costs. Woerlen (2004) makes a distinction between economies of scale in

production and economies of scale in input factors. An example of economies of scale in input factors

may be a large module manufacturer paying less per unit of silicon if it commits to purchasing in large

quantities.

Another possibility is "learning-by-research" in which technological progress stems from investments in

research and development (Kouvaritakis et al. 2000). New photovoltaic technologies may increase the

efficiency - in terms of percent of incident solar energy converted to electricity - of solar cells, thus

reducing the cost per unit of electricity generated. Alternatively, research and development may permit

the use of new, less-expensive materials, which will also reduce the unit cost of generated electricity

ceteris paribus. Economies of scale may also play an important role in cost reduction. Increased end-use

demand may make increased investment in production technology more feasible.

Second, experience curves conceptualize experience - operationalized as cumulative output - as the only

predictor of unit cost. The experience curve does not consider (i.e. control for) other factors that might be

relevant such as cumulative level of government R&D or total investment in capital. The learning curve

was an analytical technique developed before the invention of computers and before the widespread use

of statistical methods. While one of its benefits has been the relatively small amount of data required to

construct it (Woerlen 2004), this also speaks to a limitation of the method. Because it uses small amounts

of information, there are inherent limitations to the conclusions that can be drawn. Modern statistical



methods tend to use much more data with the challenge being drawing the correct inferences from that

data. Sophisticated statistical methods can help draw conclusions from larger, more complex data.

Third, the functional form of the experience curve is appealing, but potentially misleading. The log-log

curve is imposed upon the data on the premise that the rate of learning is independent of the starting point

and that there is always room for further cost reduction. This mathematical form suggests that the

progress ratio should be constant over time. It fixes the ratio of improvement with every doubling of

production, so allows greater absolute improvement early in a technology's history. However, because

this mathematical form is imposed on the data, it is not surprising that extrapolations of the curve show a

continuous decrease in cost long into the future. One risk of using the experience curve model is that

while the model may be wrong, it still holds an air of authority. We must be careful to make sure that the

very model we use to understand the data does not lead us to biased conclusions.

Issues with the Photovoltaics Experience Curve

There are several specific issues in using the experience curve to analyze cost reductions in photovoltaics.

One inconsistency arises when examining the module prices from 1975 to 2005. Historically, the

progress ratio for photovoltaic modules has been 0.73, but estimating a progress ratio for a more recent

time period results in a very difference progress ratio of 0.88. Compare Figure 19 with Figure 20. Given

the functional form of the experience curve, such deviations should not occur since the potential for

greater cost reductions has already been accounted for. And while one might expect small variations

based on noise in the data, the difference between 0.73 and 0.88 is highly significant and suggests two

different processes of learning at work.

This difference can only start to be explained by exploring the factors that have contributed to the cost

reductions. Nemet (2006) offers a nice analysis of the factors that have affected module costs between

1976 and 2001. He quantifies the portion of module cost reduction resulting from seven factors: increases

in module efficiency, increases in plant size, decreases in silicon consumption, decreases in unit prices for

silicon, increases in production yield, increases in silicon wafer size and increases in the proportion of

multicrystalline silicon use. Of the seven, he finds that module efficiency accounted for the greatest

proportion of reduced module cost, followed by plant size and silicon cost.

Nemet also notes additional factors contributing to cost reductions in the 1970s. The transition from an

industry oriented towards space satellites to one oriented towards terrestrial applications led to three

changes that may have accelerated cost reduction over and above the other seven factors he considers.
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Figure 19. Experience
(Source: Maycock)
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First, the downgrading of solar cells designed for space - where high power output and low weight are at

a premium - to solar cells for terrestrial applications allowed manufacturers to reduce cost per watt by

eliminating design features that have a high marginal cost per watt. Second, as more companies were

entering the market, greater competition reduced the profit margins module manufacturers could earn.

Third, since the primary customer was no longer the government running space programs where the cost

of photovoltaics was a tiny portion of the overall program budget, customers in the terrestrial market

would likely have a lower willingness to pay. This also reduced the premium that module manufacturers

could charge. To these factors, I add another. Improvements to module efficiency were enabled by the

vast body of research and production experiences that the computer/semiconductor industry had

accumulated for silicon.

Prospects for Cost Reduction in Photovoltaic Modules

Popular belief in the photovoltaic learning curve is likely the joint product of a simple and compelling

mathematical relationship and the numerous ways that costs can decrease. There are two general

arguments for continued cost reduction in photovoltaic modules. The first points to the many incremental

changes possible to the product design and to production processes, and the second points to the many

emerging technologies still in research and development.

In the first category are the factors identified by Nemet (2006). Increases to silicon module efficiency can

decrease the cost per kilowatt hour generated. Although the laboratory efficiency of silicon has not

increased since 1999 (Kazmerski 2005, Green et al 2009), the average module efficiency in industry has

been continually increasing. It may be an open question how far module efficiency can decrease costs

since there is a theoretical limit of about 29% (Swanson 2004), but average module efficiencies range

from 12% to 18% and the top companies are producing cell efficiencies greater than 22% (Sunpower's

Pegasus line is 22%, Sanyo's HIT is 23%). Increased plant size allows manufacturers to exploit

economies of scale, investing in fixed costs to realize lower unit costs. Plants in 1976 had a capacity of

about 76 kilowatts per year while plants in 2001 had a capacity of 14 megawatts per years and new plants

in 2007 have capacities of over 100 megawatts (Nemet 2006, DOE 2008 Wafer Roadmap). Reduced

silicon consumption and silicon cost also hold the promise of lower costs in the futurt Lower silicon

consumption has been achieved primarily by reducing kerf (i.e. "sawdust" made when slicing the ingot

into wafers) losses and using thinner wafers. Increased use of string-ribbon technology can also reduce

the silicon consumption. Lower silicon costs are the product of economies of scale by silicon producers

who have increased capacity in response to the growth of the photovoltaic market.



Improved module lifetime can also change the cost of solar electricity. One of the goals of the Flat Plate

Solar Array Project was a 20 year module lifetime. Today manufacturers typically offer 25 year

warranties and 30 year lifetimes are the new goal (Hulstrom 2005). Progress on this front would change

the cost of solar electricity by increasing the total generation of the system. Although the value of

electricity generated in these additional five years is discounted more heavily by time value of money, an

additional five years of generation would still reduce the cost of solar electricity from $0.474 per kilowatt

hour to $0.421 per kilowatt hour (See discussion of Table 2 on page 15).

How far these mechanisms can reduce the cost of photovoltaics is unclear. There is clearly a limit to the

efficiency of solar cells, and as solar cell efficiency reaches that limit, further improvements will likely be

more difficult to make. Increases to plant size also likely have a limit before diseconomies of scale in

managing a large and complex operation begin to set in. Wafer thickness can only be reduced to about 50

microns in order for the silicon to absorb as much of incident light as possible (Chopra et al 2004).

The second argument is that the cost of solar energy will decrease when a new photovoltaic technology

replaces crystalline silicon modules, creating a discontinuity in the experience curve. Silicon modules

have been in use ever since 1954, but there are several possible alternatives to silicon. In the 1980s,

research into thin film technologies began and continued into the 1990s. While thin film technologies are

less efficient than crystalline silicon, thin film technologies hold out the promise of lower material and

manufacturing costs. Other technologies currently being researched by university scientists may end up

in commercial production further into the future, perhaps 20 years or more. These can broadly be

described as approaches exploiting localized electronic states and would include quantum dots, organic

photovoltaics and nanostructured devices (Buonassisi, T. Class lecture, Fundamentals of Photovoltaics,

Fall 2008). Furthermore, there are also a wide range of possible semiconductors that could be use to

create a photovoltaic device and the ones tried so far have only scratched the surface of the possibilities

(Wadia, Alivisatos and Kammen 2009).

Prospects for Cost Reduction in Non-Module System Costs

Most discussions of the lower future cost of solar electricity focus only on module costs. Much less is

known about the cost dynamics of non-module costs. Although there seem to be many opportunities to

improve the technologically complex design and production of photovoltaic modules, the opportunities

for cost reduction for non module costs are less clear. Intuitively, the simpler the activity, the less room

there will be for improvement over time, suggesting that the potential for learning will be much less. Van

der Zwaan and Rabl (2003: 28) pose the rhetorical question, "Is there indeed still so much to learn in

construction the balance-of-system?"



The one study that does examine non-module costs is the Photex Project (Schaeffer et al 2004).

Collecting data on 3600 systems installed between 1983 and 2001 in several countries in Europe, the

authors estimate a progress ratio of 0.78 for non-module costs of systems installed in Germany and a

progress ratio of 0.81 for non-module costs of systems in the Netherlands.

Separating non-module costs into different components provides further illumination. The price of

inverters has come down only marginally. Schaeffer et al (2004) estimate the progress ratio for inverters

to range from 0.91 to 0.96. A Navigant Consulting report to the National Renewable Energy Lab is

slightly more optimistic, estimating a progress ratio of 0.90 for inverters (Navigant Consulting 2006). It

says that inverter costs have been reduced by about 5-10% a year since 1999. Although this is a modest

gain, the report also argues that progress has been made in terms of reliability, size, weight, ease of

installation, and ease of use.

For mounting hardware, it is difficult to imagine vast improvements in cost. Mounting hardware already

accounts for a small portion of the system cost and it is already commoditized. Tracking systems add

about 30% to the power output of a photovoltaic system (depending on latitude and season) but cost about

$1 per watt. Currently, the additional power output gained when using a tracking system is generally

offset by the increased up-front and maintenance costs (they also require more space), but the exact

economics can vary by location. Since the technology in a tracking system is also fairly mature (sensors

detect the location of the sun, motors reposition the modules), it is not clear how much technical potential

lies in tracking systems, though certainly more than in fixed-tile mounting hardware.

The potential areas of improvement for installers and system integrators are in system design and project

management. Shum and Wanatabe (2008) argue that cost reduction comes from economies of scope.

While the components may be standardized, their combination must be customized for the individual

customer. Photovoltaic systems are customized for the customer not only in terms of the system size and

preferred manufacturers, but also in terms of orientation of the building, type of roofing materials, and

potential sources of shading. When systems integrators develop broad experience in combining the

modular system components, costs will decline. Nonetheless, these types of cost reduction opportunities

do not seem especially promising. At least in the United States, systems are installed by general

contractors and electricians. From their perspective, the installation of a photovoltaic system is not much

different from that of any other construction project they might undertake. Based on their general

experience, they are likely to automatically find ways of reducing time and cost.

Other factors that may matter in systems integration are the organization of the installation industry and

the nature of the housing stock. In Japan, single-family homes tend to be modular, and are made by a
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handful of large construction companies. This would seem to make system installation easier. In

Germany, installation is carried out in a franchise-type model where individual contractors partner with

large installation companies and receive assistance in system design, in acquiring system components and

in marketing.

In addition to the greater inherent difficulty of reducing non-module costs, less attention has been paid to

understanding and reducing non-module costs. Other avenues for cost reduction in systems integration

may lie in areas outside the direct control of system installers - uniform incentive application procedures

across states and municipalities, uniform permitting across municipalities, and uniform interconnection

procedures across utilities. Since these require the participation of many actors, the political challenge of

inducing many to make relatively minor changes may be large. More likely, these standards will emerge

in a bottom-up manner over time.

Summary of Cost Reduction Arguments

The basic shortcomings of the photovoltaics experience curve are that the data is uncertain, interpretations

drawn from the data are fuzzy, and policy decisions are not robust to different progress ratio estimates.

The experience curve has been an important part of the argument for increased investment by industry

and government, but it has a weak theoretical basis and an uneven empirical track record. While plotting

price against experience can be provide a useful measure of the price changes, one must be careful of the

causal logic that may be implied, namely that increasing output leads to price reductions at a rate specific

to the technology.

A closer examination of the mechanism that may bring about cost reduction in modules reveals a number

of possibilities. Yet it is unclear whether incremental improvement will be enough to reduce the costs to

grid parity. What encourages many observers to be optimistic are the numerous technological avenues

that are being explored and that might be explored in the future. There is obviously no guarantee that

further research will uncover a game-changing technology, but the potential remains.

Much less attention has been paid to non-module costs and the potential there is somewhat of a mystery.

The arguments that have been made for continued reduction of non-module costs are ultimately

unconvincing. Several other factors would seem to matter but have not been adequately addressed.

More research is required in this area and a better understanding the dynamics of non-module system

costs would provide great leverage in predicting system costs.



Section IV - The Photovoltaic Systems Dataset & Introduction to the
Installation Industry

As shown in Figure 21, California has by far the greatest number of photovoltaic system installations of

any state, with 69% of all photovoltaic capacity in the US installed there by the end of 2008 (IREC

2008). New Jersey runs a clear second with 9% of all PV capacity. While having significantly less,

Massachusetts still rounds out the top 10 states with 1% of total installed capacity.

Data

In collecting data, my intention was to develop a better understanding of the systems installation part of

the value chain and the dynamics that might affect non-module system costs. I assembled a dataset of

installed photovoltaic systems in the United States: from California, New Jersey and Massachusetts.

Combined, the data set represents approximately 80% of total photovoltaic capacity installed in the

United States. The other 20% includes the systems of several other states also with incentive programs

for solar - Arizona, Connecticut, Illinois, Maryland, Minnesota, New York, Oregon, Pennsylvania,

Wisconsin, Nevada, Colorado, Hawaii, and Texas.

The data are available from the organizations administering the state incentive programs. For California,

this is the California Energy Commission and the California Public Utilities Commission. The New

Jersey Clean Energy Program maintains the New Jersey dataset and the Massachusetts Technology

Collaborative collects systems data for Massachusetts. These organizations collect and make public some

data from the incentive applications filled out by the system owner.

To provide some background about the incentive application process, after a would-be system owner

decides to purchase a photovoltaic system, she submits an application along with the system installer to

the state. The application includes information about the system - cost, capacity, equipment models - in

addition to basic information about the system owner and the system installer. The application is

reviewed by the state organization administering the program. Once the application is approved and the

system owner knows she will receive the incentive, construction begins. After construction is completed

it is inspected by the town and connected to the electrical grid.

While details of the dataset vary from program to program, the data generally includes: the town and zip

code of the installation, the size of the installation, the total cost, size of the incentive received, name of

the system installer, brand of the photovoltaic modules, and brand of the inverter.
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Figure 21. Cumulative Grid-Connected Capacity by States, 2008
(Source: IREC)
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The data is drawn from several different programs from each of the three states. California, with the

longest history of supporting solar energy, has run several incentive programs since 1998. The Emerging

Renewables Program ran from 1998-2006 and the Self-Generation Incentive Program ran from 2001-

2006. For solar photovoltaics, the California Solar Initiative replaced both programs in 2007 and is

planned to run until 2016. Massachusetts has also had a few incentive programs, though over a shorter

time period. The first program dedicated to solar photovoltaics was the Small Renewables Initiative,

running from 2005-2007. Currently, Massachusetts's program to support photovoltaic installations is

Commonwealth Solar. This began in 2008 and is intended to be a four year program. Prior to 2005,

Massachusetts subsidized the purchase of a number of photovoltaic systems as part of a broader initiative

to support affordable "green" housing. Data through 2008 are included in a dataset obtained directly from

a contact at the Massachusetts Technology Collaborative. Although the Commonwealth Solar data for

2009 is publicly available for download at the Massachusetts Technology Collaborative website, it

provides less information (i.e. data fields) than the dataset obtained from contacting the Massachusetts

organizations directly. For that reason, the data does not include any Massachusetts systems for 2009.

New Jersey's primary solar incentive program is known as CORE (Customer On-Site Renewable Energy)

which ran from 2003 to 2008. As of 2008, it was replaced by an initiative to support solar installations

using solar renewable energy certificates (SRECS). The data is drawn from a spreadsheet publicly

available for download from the New Jersey Office of Clean Energy that was updated on February 9,

2009. Although this data was updated again in May 2009 and included about 200 systems that had not
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been completed by February 2009, these systems were not included in the final dataset used for this

analysis. Table 6 lists the original data sources used to compile the dataset.

The total number of systems included in the overall dataset is 57,148, a larger number than any other solar

dataset known to the author. Wiser et al's 2006 study, performed at Lawrence Berkeley National Lab,

includes 18,942 systems. A later study, published by Wiser et al in 2009, covers the largest number of

states of any analysis but includes only 36,992 systems. Wang's (2009) thesis conducted at the

Massachusetts Institute of Technology's Industrial Performance Center covers 17,957 systems from the

California Solar Initiative.

Of the 57148 total, some data points were removed because they were not considered to be part of the

population of interest. 1909 systems were removed because they had been cancelled, were suspended or

were facing some delays that made completion less likely. Because of the possibility that characteristics

of proposed but uncompleted photovoltaic systems might be correlated with their delayed status, they

were eliminated from the final dataset.

271 systems were dropped because their price per watt was over $150. After running preliminary

regression models, many of these systems appeared as influential outliers based on Cook's Distance.

Cook's Distance (or Cook's D) is a measure of the outlying system's impact on the regression results.

Data points with the highest Cook's D values were inspected to understand why they were outliers and

whether they should be included in the analysis. Systems with a high Cook's D had extremely high cost

per watt but were also small - less than 1 kilowatt. The conclusion drawn was that these systems were

customized, high-performance systems possibly including a battery and/or a tracking system. Because

the data provides no information about these system "extras," the analysis cannot control for them. While

the vast majority of systems are believed not to include these features, these extras will introduce some

noise into the dependent variable. Thus, if possible, these systems should be eliminated so that the

analysis can focus on standard grid-connected fixed-tilt systems. The 271 small and expensive systems

were inferred to be outside the norm and were removed from the dataset.

Twenty observations were deleted where the incentive per watt was prohibitively small - less than $0.10

per watt. In most cases, the total incentive was exactly $1. Since it is unlikely that the system installer,

system owner, or the state would carry out the application rebate process to obtain a rebate of $1 (the

value of time required for the clerical work almost certainly exceeds $1), this was considered to be a data

entry error. After removing these data points, 54948 remained and were used for the final analysis.
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Table 6. Source Data Used for Final Dataset

Source Dataset Years Covered Number of Systems

California Emerging Renewables Program 1998-2006 28813

California Self Generation Incentive Program 2001-2006 983

California Solar Initiative 2007-2009 20782

Massachusetts (Green Affordable Housing
Program, Small Renewables Initiative, 2002-2008 1102
Commonwealth Solar)

New Jersey CORE 2003-2008 3268

Total 54,948

Description of data

Table 7 shows the distribution of systems by state and lists the average price in each state. California has

the largest number of systems in the data set and covers the longest time span. Massachusetts has the

most expensive systems per watt, though it should be noted that this is with other cost factors

uncontrolled. New Jersey falls in between California and Massachusetts in terms of number of systems

and price per watt.

Table 7. Distribution of Systems by States

California

Massachusetts

New Jersey

TOTAL

AVERAGE

Years Covered Number of Systems Average Price ($/AC
watt, 2008$, excluding
subsidies)

1998-2009 50578 $11.10

2002-2008 1102 $12.09

2003-2008 3268 $11.57

57147

$11.15



Table 8 shows the distribution of systems and the average system size over time. The general trend is

acceleration in the number of systems installed each year and an increasing average system size. Note

that Massachusetts and New Jersey have continued to support the installation of photovoltaic systems, but

data for 2009 was not included in the dataset..

The trends in New Jersey are not straightforward to interpret because it is not clear if they are artifacts of

the switch of incentive programs. According to the table, the number of installations has been decreasing

as has the average system size. It is unclear whether the trend of decreased system size in New Jersey is

the result of the migration to an SREC based incentive program. (Residential systems, which tend to be

smaller, may have remained in queue for the CORE rebate while larger commercial systems were

encouraged to pursue the SREC incentive).

Table 8. Average Size and Distribution of Systems by State, By year

Number of Systems Average Size (AC Watts)
Yearly

Year CA MA NJ Total I CA MA NJ Average
1998 94 94 5588 5588

1999 193 193 3348 3348
2000 221 221 4540 4540

2001 2,111 2,111 5521 5521
2002 2,537 6 2,543 1 9218 4610 9207
2003 4,611 108 176 4,895 i 7860 3426 17784 8119
2004 4,881 108 386 5,375 i 12208 4750 14432 12218
2005 4,385 139 983 5,507 11981 5647 14897 12342
2006 7,225 255 680 8,160 1 12243 7626 22108 12921

2007 9,639 255 782 10,676 12449 4113 8781 11981
2008 11,128 231 261 11,620 12572 9713 7213 12395
2009 3,553 3,553 i 18149 18149

Total 50,578 1,102 3,268 54,948 1
Average 1 11832 6291 14421 11875

Figure 22 shows the average system price per watt over time. The data is compiled quarterly and is

adjusted for inflation using the Producer Price Index for Inputs to Construction Industries (available from

the Bureau of Labor Statistics.)

Examining the price trend over time, we see that it decreased sharply in the first few years, but has

leveled off after 2001 and has remained more or less constant at $10 per AC Watt in constant terms. It is

not clear whether this amount of cost reduction has been significant. On the one hand, a reduction of a

factor of approximately two (from a high of $23.9 in the second quarter of 1998 to $10.23 in the second



quarter of 2009) sounds significant. However, a different picture emerges when the data is plotted in

terms of an experience curve.

Figure 22. Average System Price per Watt (AC), excluding subsidies, 1998-2009
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Figure 23 plots the same price data but uses the cumulative number of systems as a measure of

experience. The progress ratio for installed photovoltaic systems is 0.944 (calculated as 2A-0.0826); this

means that with every doubling of cumulative installations, the price declines by a factor 0.944.

Compared to progress ratios in other industries, this is very low and, considering the historical progress

ratio for modules of 0.73 (Figure 19), begs the question as to what is going on with systems installation in

the United States. This poor progress ratio is robust to the specification of experience. An alternative

measure of experience is the cumulative number of watts but it makes little difference in terms of the

progress ratio. The progress ratio using number of watts is 0.952.

This poor progress ratio suggests some questionable implications. Using the cost and cumulative

installation from the last quarter of 2009 ($10.01 per watt and 833 megawatts) and following the same

learning curve methodology as in Section II, the capacity required to reach grid parity (approximated as

$2 per watt peak or $2.35 per watt AC) is 30.9 petawatts. This far exceeds the total power demand of the

entire world - 15.5 terawatts in 2005 (Energy Information Administration, 2008).



Figure 23. Experience Curve for Photovoltaics Installations
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One explanation for the poor progress ratio might be the slow price declines in module prices. As shown

in Figure 24 and earlier in Figure 20, the price of modules has remained roughly constant over the past

few years. Industry commentators have explained this as the result of a shortage of silicon refining

capacity which has lead to a price increase of the raw material.

Figure 24. Retail Module Price Index, January 2003-July 2009
(Source: Solarbuzz)
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This possibility can be explored by backing out the module costs from the total system costs to obtain an

estimate of non-module system costs by subtracting an average module price for each year. The

methodology used to calculate the module prices estimate is described in the next section. In Figure 25,

the natural log of the non-module costs are plotted against the natural log of cumulative installed systems.

The progress ratio for non-module costs is only marginally better at 0.941.

Figure 25. Experience Curve for Non-Module Costs
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From these data, the conclusion is that costs are coming down but not at the rate suggested by the

historical module price experience curve which is cited as having an average value of 0.80. By

comparison, the progress ratio of 0.944 (total system cost) or 0.941 (non-module costs) is extremely poor.

If photovoltaic systems are to progress at a rate of 0.80, then the learning rate for non-module costs must

equal or even be below than 0.80.

Comparison of the US experience curves with those from Germany and Japan presents a more

complicated picture and raises several hard questions. The prices are adjusted for inflation using the

producer price index for domestic manufacturing available from the OECD. Figure 26 shows the

experience curve for systems installed in Germany between 1995 and 2008. While the reduction in

system costs has been hailed as a success, the progress ratio is a modest 0.926 ( 2^-0. 11)

_ _ __ __ __ _ __



Figure 26. Experience Curve for Photovoltaic System Installations in Germany, 1995-2008
(Source: IEA-PVPS)
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Scheaffer et al (2004), in a report of the Photex Project, argue that Germany's poor progress ratio results

from the mixing of two learning systems - a global learning system for modules and a local learning

system for systems integration. The authors suggest that the combination of low market growth outside

of Germany, which would contribute to cost reductions in modules, and the high market growth inside

Germany leads to "erroneous results." As written, this argument is difficult to understand since

experience gained in other countries should provide "bonus" experience not considered within the

national system. Ignoring experience gained outside of Germany should lead to an underestimate of

cumulative experience and thus an overestimate of the rate of cost reduction. Instead, the problem is that

cost reduction appears to be occurring too slowly (i.e. too high a progress ratio).

Perhaps what Scheaffer et al (2004) mean to say is that the lack of progress in module costs offsets the

progress made in non-module costs over this time period. Anecdotal evidence does suggest that module

costs have declined at a low rate (IEA Germany National Report 2007) meaning that most of the cost

reduction at the system level can be attributed to improved costs in non-module costs. Unfortunately, this

could not be confirmed since average module prices in Germany over this time period were not available

and the non-module cost experience curve could not be constructed.

Better data is available for Japan. Figure 27 shows the experience curve for residential systems in Japan

from 1994 to 2007. The prices are adjusted for inflation using the producer price index for domestic

manufacturing available from the OECD. It shows a modest progress ratio of 0.831. Backing out the
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average module cost in Japan over this time period, it is possible to construct the learning curve for non-

module costs, as shown in Figure 28. The progress ratio is a quite impressive 0.766.

Nonetheless, the robustness of these progress ratios is questionable. The first two years of data seem

particularly high. The average system price in 1993 was 3500 yen per watt, or about $30 per watt (using

a conversion of 107 yen per watt for 1993); the average system price in 1994 was 1920 yen per watt or

about $19.6 per watt (using a conversion of 98 yen per watt for 1994). It is hard to imagine how the cost

of installing the system could be so high since, other than the buying the system components, the task of

installing the system is not much more sophisticated than standard electrical work. One possibility is a

price premium for the additional risk and uncertainty of installing these early systems 26.

If we believe in the mathematical form of the experience curve, the omission of these two points should

not affect the progress ratio drastically. Recall that the form of the curve already makes allowance for

larger absolute cost decreases early in the life of a technology when costs are higher, because it is the

improvement ratio that is fixed. Figure 29 shows the experience curve for residential systems between

1996 and 2007. The progress ratio is dramatically lower, 0.895. Figure 30 shows the experience curve

for non-module costs between 1996 and 2007 and reveals a progress ratio of 0.845. Given such

inconsistent progress ratios, it is unclear which (if any) best describe the current cost reduction dynamics

of photovoltaic systems and non-module costs.

This inconsistency is a problem for protagonists of the experience curve. By committing to using the

experience curve, one is implicitly saying that there is a multitude of factors that drive costs downwards,

and it is their combined effects that are evident in the observed progress ratio. While some factors may

drop off, they will be replaced by other factors. It is inconsistent to advocate the use of the experience

curve on the one hand while on the other hand explaining away what are perceived as deviations from it.

For the remainder of this thesis, we take the view that the experience curve provides one way to describe

the cost dynamics of a technology without affirming the role of specific causal mechanisms that are

frequently inferred from the experience curve. Reliable explanations of observed cost reductions and

predictions of future cost reductions require disentangling the individual causal factors and assessing the

likelihood of their continued effect in the future.

In particular, understanding what drives the non-module cost progress ratio requires a closer examination

of the actual process of designing and installing an photovoltaic system, the administrative process

26 If this is true, then should reduction of the risk premium really count as "learning?"



associated with interconnection and incentive acquisition, and the competitive dynamics of the systems

integrators who install photovoltaic systems.

Figure 27. Experience Curve For Residential Systems In Japan, 1994-2007
(Source: IEA-PVPS)
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Figure 28. Experience Curve for Non-Module Costs in Japan, 1994-2007
(Source: IEA-PVPS)
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Figure 29. Experience Curve for Residential Systems in Japan, 1996-2007
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Figure 30. Experience Curve for Non-Module Costs in Japan, 1996-2007
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Observations of System Installers

Little is known about the firms that install photovoltaic systems. This section will provide some

descriptive data about installers that appear in the California-Massachusetts-New Jersey photovoltaic

system dataset. It is intended to sharpen the questions we will ask of the more sophisticated regression

analysis. Examining the installers listed in the dataset, there are 1836 installers that have installed at least

one system in the dataset (Figure 31)27. Approximately 600 are still active in the final year of the dataset

(2008 for New Jersey, 2008 for Massachusetts, 2008 and 2009 for California), meaning that about 1200

firms stopped installing systems at some point in the past.

Figure 31. Number of Current and Past Firms by Operating Area, n = 1835
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27 The list of installers started with 2256 installers and with 2283 unique installer-state pairs (a few installers operate
in more than one state). This list was reduced to 1836, with 1868 unique installer-state pairs, by merging installers
with very similar names. In many cases, it was obvious that two firms names referred to a single firm. For instance,
"ABC Inc" and "ABC, Inc." In some cases, similar firm names had alternate spellings. In these cases, names were
data was merged if the firm name was unique (e.g. "Talbott Solar & Radiant Homes" and "Talbott Solar Homes"
with "Talbott" not appearing in any other names), or an alternate spelling appeared a few times while the other
appeared dozens (e.g. "Roger" installed 157 systems and "Roger The Little House" installed 7 systems), and the
firms operated in the same geographical area. I refrained from merging if the names were a permutation of
common terms (e.g. "Solar Power Inc" and "Solar Power Systems Inc.") or if they operated in distinct geographical
areas. Some of the California data listed a seller as well as an installer. This likely means that the work was
subcontracted out by the systems integrator to an electrician or general contractor. Conceptually, this distinction is
not important because the system integrator and its contractors can be considered a single unit of analysis for the
purposes of learning in industry. Thus, in cases where both a seller and an installer was listed, the firm in listed in
the seller field was used.
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Figure 32 shows the distribution of firms by the number of years they have been active in system

installation. The majority of firms have only been active for 3 years or less. This dispels the image of an

installer base with little turnover and that improves by gradually gaining experience. Instead, this view

must be revised by considering the effects of firm entry into and exit from the system installation market.

Installers, on average, have had only a short period of time to learn. Compared with early market

entrants, later market entrants may come in with a better understanding of the industry.

Figure 32. Number of Firms by Firm Lifetime
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This right-skewed distribution of firm "age" is driven by two processes. First, firms that have entered the

industry in only the past few years and are still operating account for the many of the data points to the

left of the distribution. Second, firms that entered the industry in the late 1990s and early 2000s stopped

installing photovoltaic systems. Thus to be one of the few firms to be active for ten years or more (on the

right side of the distribution), one must have entered the industry early and then remained in continuous

operation since.
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Figure 33 below shows the pattern of firm entries to and exits from the industry from 1998 to 200828. It

reveals that the installation industry remained small, at least in terms of number of active firms, until 2001

when the number of firm entries increased. This may be due to the introduction of time-of-use net

metering in April 2001 and from California's introduction of a 15% state tax credit also in 2001.

The similarity of Figure 33 with Figure 34 reflects California's dominance of the market. From 2001 to

2006, the California industry grew at a steady rate. And in this timeframe, installers begin operations in

Massachusetts and New Jersey shortly after the two states introduced their own incentive programs (see

Figure 35 and Figure 36).

In 2006, the rate of entry in California and Massachusetts probably increased because of the introduction

of the federal tax credit that increased its value for commercial system owners and introduced the first

residential tax credit for the past 20 years.

28 Note on the methodology: A firm was considered to have entered the industry in the first year that it installed a

system: more precisely, the first year when a rebate application was approved, which occurs before the physical
installation of the system. A firm was considered to have exited the industry in the final year it completed the
physical installation of a system. This, of course, does not count the final year of the dataset; firms that installed in
the final year of the dataset (2008 and 2009 for California, 2008 for Massachusetts and 2008 for New Jersey) were
considered to be still active. Because I only know if a firm has exited the industry if it goes an entire year without

an installation, my knowledge of firm exits lags the dataset by one year. This is why most of the data series go only

until 2007. The number of active firms was calculated for each year by subtracting the cumulative number of exits

up to that year from the cumulative number of entries up to that year.

One concern for the estimated number of exits is that even with a one year lag is right censoring. It may be possible

that a firm goes on a one year hiatus from installing photovoltaic systems and returns to the business the following

year. To assess the magnitude of the potential bias, I examined all 1836 firms to see how many firms operated
continuously before exiting or until the present time period and how often a firm went on a one year hiatus. Firms
operated continuously 89.3% of the time. Firms took a one year hiatus 7.8% of the time and took a hiatus of more
than a year 2.9% of the time. This means that I may overestimate firm exits in 2007 by about 10.7% and may
overestimate firm exits in 2006 by about 2.9%.
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Figure 33. Installer Firm Entries and Exits in Complete Dataset, 1998-2008
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The patterns of exit and entry in Massachusetts reflect the timing of its incentive programs (See Figure

35). Massachusetts' first dedicated incentive program for solar began in 2005, explaining the small

increase in entries in 2005. Yet it is interesting that there has not been a noticeable increase in 2008 with

the start of the Commonwealth Solar program. Perhaps this will only be revealed once the 2009 data is

examined.

New Jersey shows a very different pattern from California and Massachusetts (see Figure 36). There is a

notable decline in the number of entries and a gradual increase in the number of exits over time. This

may be explained by the history of the NJ CORE program. When it first started, the CORE program

offered very large rebates which led to long queues and some concern over whether the money was being

well-spent since it was paid for by the state budget (Hart 2009). New Jersey changed their incentive

program from a rebate-based model to a SREC-based model, reportedly causing some consternation

amongst installers. This may have reduced the interest in acquiring photovoltaic systems and/or meant

that the data was not being collected in the CORE dataset used to construct the figure.



Figure 34. Installer Firm Entries and Exits in CA, 1998-2008
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Figure 35. Installer Firm entries and Exits in MA, 1998-2008
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Figure 36. Installer Firm Entries and Exits in NJ, 1998-2008
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Going beyond a direct description of the data and trying to understand the competitive dynamics of the

industry, Figure 37 shows the hazard rate for installers exiting the industry. The hazard rate is the risk of

a firm exiting the industry conditional upon the firm operating in the previous year. It is different from

Figure 32 in that it considers the appropriate risk set. For instance, according to Figure 32, a firm active

for 1 year may have entered the industry and exited after one year or may have only recently entered the

industry and is still in operation. Figure 37 does not consider firms that are still active when calculating

the appropriate risk set and the rate of exiting the industry. Thus, the hazard rate reflects the risk of a firm

exiting the industry at any firm age.

The figure shows that firms have a slightly greater risk of exit in the first three years of operations, with a

peak of 25.5% in year two. Beyond year seven, the risk of exiting declines slightly (despite the peak at

year ten). The decreasing risk of exit likely reflects, at least in part, heterogeneity in firm capability and

fitness; with each year that passes, less capable firms leave the industry and leave more capable firms in

operation. The decline in the hazard rate in subsequent years reflects the greater capabilities of the

remaining firms.
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Figure 37. System Installer Hazard Rate
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Examining the activities of firms, Figure 38 shows the distribution of firms by the number of systems

installed. Following the X-axis from left to right, the figure shows that more than 1000 installers have

installed at least one photovoltaic system, about 100 firms have installed 100 systems, and less than ten

firms have installed more than 1000 systems. The figure shows that the vast majority of firms install only

a few photovoltaic systems each while a small minority of firms install the majority of systems. The

figure also shows what the curve would look like if each of the firms installed an equal number of

systems (a little over 30 systems each). Deviation from the "square" curve reveals the extent of

unevenness in the cumulative number of systems installed.

Figure 39 shows the number of systems installed by the top firms. Reading the x-axis from right to left,

the figure shows that the top 1836 installers (i.e. all of them) have installed all 54,948 systems. The top

1801 installers have installed almost 54, 948 systems, the top 201 installers have installed about 45,000

systems (actual number is 46,980), and the top 101 installers have installed about 40,000 systems (actual

number is 39, 479). The diagonal shows what the curve would look like if each firm installed an equal

number of systems. Deviation from the "triangular" curve reveals the extent of unevenness in the

cumulative number of systems installed.

This distribution also leads to further questions of how the experience curve is supposed to work. If the

story is that as firms gain experience their cost of sales decrease, this should hold true for the top installers
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but not hold true for the other installers. Other installers presumably do not install enough systems to

gain enough experience and reduce their cost of sales.

Figure 38. Distribution of Cumulative Installation Across Firms
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Another question this distribution raises is: how many installers are pure play solar installers? That is,

how many firms do nothing but install photovoltaic systems? We can imagine at least three categories of

system installers. First are the pure play solar installers, which can perhaps be identified in the data if

they have a solar-specific name (e.g. Borrego Solar or Akeena Solar) and install enough photovoltaic

capacity to support a full-time staff. Second might be firms that pursue solar installations

opportunistically. Although solar is not their main business, they will do it if they are approached by a

customer. It may be possible to identify these firms by a non-solar-specific name (e.g. David ACE

Hardware, Skelley Electric) and low levels of system installations. The third type falls somewhere in

between the first two. For this third category of firm, solar is one of several formal lines of business.

They may have solar-specific names but be part of a general contractor. Or they may offer a wider range

of renewable energy technologies (e.g. small wind turbines), of which photovoltaics is just one. It may

also be possible to switch from one category to another, for instance, by beginning to pursue solar

installations opportunistically but, upon gaining some experience, decide to pursue solar as an official line

of business.

While the exact number of pure play firms cannot be known without distributing a questionnaire, a basic

analysis suggests that only a small percentage of firms install solar photovoltaic systems exclusively. Let

us begin with some prototypical numbers. Let us imagine a firm that installs systems with an average size

of 10 kilowatts, has been in operation for 3.3 years and employs five people. Ten kilowatts is slightly

below the average of 11.875 kilowatts AC (or 14 kilowatts DC), but would be considered large for

residential systems and small for commercial systems. 3.3 years is the average number of years a firm

has been in operation, (shown graphically in Figure 32). Five people would be fairly small for a single

firm, considering the variety of work tasks required to run the business - sales, system design,

installation, accounting and general management.

The Renewable Energy Policy Project (REPP 2001) estimates that 22.25 labor hours are required for

systems integration and installation per kilowatt of photovoltaic system. Thus for each 10 kilowatt

system, 222.5 labor hours are required, enough work for five individuals for one week. To be fully

employed, this firm of five people must install one 10 kilowatt system per week. Since the average firm

has been in operation for 3.3 years, over this time period at a rate of one system per week, the firm would

have installed 171.6 systems throughout its lifetime. Returning to the numbers observed in the dataset

(Figure 38), only 65 firms have installed more than 171 systems. Thus, it is likely that the vast majority

of firms are not pure play solar installers and carry out other lines of business.
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Table 9. Labor Requirements Per Megawatt of Photovoltaics

(Source: REPP 2001)

.able 3. Labor Reqirements Per Mega-vatt of Photovoltaicsa
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Turning to the geographic area in which installer operates, Figure 40 shows the distribution of number of

counties in which firms operate. Nearly 1000 (the exact number is 964) have operated in only one county

and the number of firms operating in more counties decreases. The average number of counties in which

a firm has operated is 3.2 in California, 2.1 in Massachusetts, and 4.4 in New Jersey.

Few installers operate in large geographical areas, and even the largest installers are not represented in

every county in the state. The firm that operated in the most counties in California operated in 41. To

compare, California has 58 counties in total and 55 where at least one photovoltaics system was installed

in the dataset. The firm that operated in the most counties in Massachusetts operated in 11. To compare,

Massachusetts has 14 counties in total and at least one photovoltaic system was installed in all 14. The



firm that operated in the most counties in New Jersey operated in 20. To compare, New Jersey has 21

counties in total and at least one photovoltaic system was installed in all 20. This suggests that system

installation is a geographically constrained industry. New Jersey is the smallest state by land area and it

has the highest average number of counties in a firm's operating area and the most geographically diverse

installer operates in 20 of 21 total counties.

There are several reasons why this might be possible. Travel time should be a consideration. Driving to a

customer site 30 miles away would added a half hour drive each way and one hour of work per person.

Travel time may shift the economics such that an installer may be economically competitive only within

constrained geographical boundaries.

Another possibility might be the way that interested individuals and businesses identify candidate system

installers. While this requires further investigation, one may speculate that advertising may be done

through word of mouth. Although firms may be listed in a directory that is distributed broadly, that

information may only be enough to enter the customer's consideration set. It may not necessarily be

enough for the customer to commit. For many people, the process of purchasing, owning and operating a

photovoltaic system seems fairly opaque. An interested customer must educate themselves or be

educated by someone in the industry. Thus connection through local social networks may matter in

getting new business. In other words, a customer will probably be more likely to use a solar installer that

has installed a system for someone the customer knows than an installer about which the customer has no

other information. This dynamic gives local firms an advantage over distant firms because local firms are

more likely to be connected into the local social and economic networks.



Figure 40. Operating Areas of Photovoltaic System Installers
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One other feature of the dataset also seemed worth examination: the number of module manufacturers

and inverter manufacturers used by each installer. The use of multiple brands might suggest some

latitude by installers in choosing suppliers, which might be useful in diversifying supply chain risks and,

if the installer is large enough, might provide some leverage in price negotiation. However, some firms

may commit to using one or a few manufacturers in order to receive lower prices from the manufacturer

or wholesaler.

The data reveal that most firms only used a small number of module manufacturers and inverter

manufacturers, as shown in Figure 41 and Figure 42. Using only a few brands, of course, would not be

surprising for firms that installed only a handful of systems. Looking at the top 25% of firms (in terms of

total capacity installed), there is a fairly even distribution among number of manufacturers used. One

might expect that firms that install many systems would have ample opportunity to use many equipment

brands and might also encounter a broad range of end-customer preferences requiring the use of a diverse

set of equipment. However, firms that were in the top 25 percentile and used only one or two brands

likely did so as part of a supply arrangement, that provided some discount on the module and inverter

prices in exchange for brand loyalty.
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Figure 41. Number of Module Brands Used By Installers
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Figure 42. Number of Inverter Brands Used By Installers
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Research Approach and Hypotheses

Based on the review of the photovoltaics industry, experience curves, alternate mechanisms of cost

reduction, and descriptive measures of system installers, we can now lay out a set of predictions we

would expect to see in the data.

The observed price of the photovoltaic system should depend on supply and demand characteristics.

Based on standard models of consumer demand, we can expect consumers to maximize their utility.

Consumer's willingness to pay = f(consumer income, system price, financial value of system,

utility from supporting renewable energy)

where, Financial value of system =

value of tax credits + value of state rebate + value from REC sales +

quantity of electricity produced X retail electricity rate

We would expect demand to increase as system price decreases, as financial return from the system

increases and as the utility of supporting renewable energy increases.

Based on standard models of production, we can expect producers to maximize profit.

Profit = f(cost ofsales, system price)

Where, cost of sales =

cost of components + installation labor + design/interconnection/permit labor +

indirect labor + overhead

We would expect supply to increase as system price increases and cost of sales decrease.

Basic Hypotheses

A basic set of hypotheses relates to factors that influence the installers' cost of sales and the systems'

financial value to consumers.

To quantify cost of sales, measures were obtained for labor costs, cost of photovoltaic modules, system

size, whether the system was installed as part of a multisystem project, whether the system used building-

integrated photovoltaics, whether the system used thin film photovoltaics.

H I: Systems that are more costly to install will have higher prices.



To quantify financial value to the consumer, measures were obtained for the retail electricity rate, solar

insolation (which affects the amount of electricity generated), the size of the rebate received by the state,

and the type of federal tax credit received. Consumer income was quantified using median household

value, and adjusted gross income.

H2: Systems that are of greater value to the system owner will have higher prices.

H3: Systems sold to consumers with greater income will have higher prices.

Hypotheses Relating to Experience

The primary mechanism hypothesized by the experience curve is that experience will provide a firm or

industry the opportunity to learn and reduce their costs. Under stable market conditions, this will also

translate into reduced market prices.

H4: Systems installed by firms with greater experience will have lower prices.

Hypotheses Relating to Competitiveness

While experience may help firms to reduce their own cost of sales, competitiveness may force firms to

reduce their profit margins. In order to compete and acquire business, firms must be able to offer prices

comparable to their peers. In markets where there are low levels of competition, firms may tacitly collude

and receive larger profit margins than would be possible in areas with high levels of competition.

H5: Systems installed in areas with high levels of competition will have lower prices.

Nonetheless, over the long run, high levels of competitiveness may help to decrease cost of sales. In

order to survive, firms will be forced to continually adapt in an effort to increase their profit margins

while offering similar prices as competitors. As all firms in the population adapt, the industry as a whole

improves.

H6: The price of systems installed in areas with high levels of competition will decrease over time.

Hypotheses Relating to Industry Turnover & Firm Heterogeneity

A look at the firms in the system installation industry uncovered greater detail about their patterns of

behavior.

Of the 1836 system installers that appear in the dataset, a relative small number install a large proportion

of total systems. One might expect these top installers to have lower system prices than other installers,

since the ability to install at lower costs may allow a new entrant to stay in business and become a top

installer.
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H7: Systems installed by top installers will have lower prices.

Because the vast majority of firms have only installed a small number of systems, those firms may be less

able to benefit from their experience than system installers who have installed many more systems.

H8: The effect of experience will be greater for systems installed by top installers.

Firms who have just entered the industry pose an interesting case. On one hand, it would be expected that

since they have the least experience, they will have the higher cost of sales on average and must thus

charge higher prices. Yet on the other hand, one might expect that because they are an unknown entity,

they must charge lower prices in order to compete against better known firms. I suspect the latter will

outweigh the former.

H9: Systems installed by new entrants to the industry will have lower prices.

Firms who have special committed relationships with suppliers may have lower components costs. Thus,

these firms are likely to offer lower prices to potential customers.

H10: Systems installed by firms with committed relationship with suppliers will have lower prices.

Generating variables and cleaning the data

Table 10 lists the variables used in the final regression analysis.

log of system price per watt - dependent variable. The price per watt was calculated by taking the total

system price and dividing by the size in AC watts. The number were then adjusted for inflation using the

Producer Price Index for inputs to construction industries (Series Id: PCUBCON-BCON). A log

transformation was useful for improving the distribution of the dependent variable. The untransformed

variable was right skewed (i.e. several systems were extremely expensive on a per watt basis) and the

transformation results in a distribution that better approximates the normal. This will change the

interpretation of any regression coefficient such that a one unit increase in the independent variable will

be associated with a one percent increase in the dependent variable.

Electricity rate - From the Energy Information Administration EIA-826 database which includes monthly

sales information for all utilities in the United States. The figures used in the final dataset vary by utility

and by year. Each major utility had its own rate while small utilities were assigned the average rate for all

non-major utilities. Residential retail rates were used if the system was smaller than 10 kilowatts (AC).

If the system was larger, then it is unlikely that it was installed by a private individual. Thus for systems



larger than 10 kilowatts (AC), commercial retail rates were used. The numbers are then adjusted for

inflation using the Consumer Price Index from the Bureau of Labor Statistics.

Population density - Population density was calculated based on data from the 2000 US Census which

provides data by zip code tabulation area (ZCTA). Zip code tabulation areas generally correlate to postal

zip codes. When conducting the census, the US Census Bureau defines a geographical area by the

predominant postal zip code in the area. However, in the ten years between any two censuses, postal

codes may change according to the internal operations of the US Postal Service. For this reason, only the

first three digits of the ZCTA were used because it produces a better match between data from the Census

and zip code information of the photovoltaic system when compared to using all five digits. The

population of each ZCTA was divided by the land area of the ZCTA.

Log of household value - Household value was also available from the US Census in the "Summary File

3 (SF 3) - Sample Data" which provides a range of housing statistics by ZCTA. This variable is the log

of the median household value.

Construction Wage - Data on wages was taken from the Bureau of Labor Statistics' quarterly Census of

Employment and Wages. The data is expressed in terms of annual income and was converted into an

hourly wage by dividing by 2000. The average construction wage varies by county. However, data for

only 2005 was used since it was complete for all counties in the three states (Other years had some

missing data). This was considered reasonable since, a priori, most of the variation in wages would seem

to be across geography rather than across time.

Insolation - The value for insolation is the average of amount of sunlight incident on horizontal ground,

measured in kilowatt hours per square meter per day. The original data is maintained by NASA and

includes the average insolation - based on observations from July 1983 to June 2005 - for each degree of

latitude and longitude. The coordinates were matched up to the coordinates for each zip code tabulation

area provided by the US Census Bureau.

Log of System size - System size is a basic field in the system data provided by each state. Size was

measured in terms of AC watts because California's Emerging Renewables Program based its rebates

based on size in AC terms. Other programs differ in the size used to calculate the incentive, but all

measures can be converted into AC watts. The main alternative to AC watts is the nameplate rating

which is used by Massachusetts and New Jersey. The nameplate rating is the same as "peak Watts" or

"DC" system size which is calculated as the simple sum of the individual ratings of each module in the

system. The difference between capacity measured in DC watts and capacity measured in AC watts is
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that AC watts considers electricity losses from the modules performing in PVUSA Test Conditions

(PTC) instead of Standard Test Conditions (STC), and from efficiency losses in the inverter. In short, the

difference between PTC and STC is that modules operate in a higher temperature in PTC29 and crystalline

silicon modules lose about 0.5% of efficiency per degree Celsius. Inverters, converting DC to AC, have

an efficiency of 90-95%. To convert DC size to AC size, I multiplied by a factor 0.85 which was the

average ratio of DC capacity to AC capacity in the California dataset (which includes nameplate capacity

and AC capacity)30. Incentives from the California Solar Initiative are based on an effective system size,

which apply a "design factor" to the AC system size. However, the data from CSI also includes the AC

system size.

BIPV - BIPV is a dummy variable indicating that the system used building integrated photovoltaics. A

system was classified as using BIPV by comparing the module type used in the system to a list of

modules eligible for rebate for the California Solar Initiative which indicates BIPV models.

Thin Film - Thin film is a dummy variable indicating that the system used thin film modules. A system

was classified as using thin film by comparing the module type used in the system to a list of modules

eligible for rebate for the California Solar Initiative which indicates thin film models.

Self install - Self-install is a dummy variable indicating that the system was installed by the system-

owner. Although there was not an explicit field for this, any references in the data record to "owner"

"self" "owner installed", or "self installed" led to the system as being coded as owner installed. While

these data would not include off-grid systems that were built by highly self-reliant individuals because

these people were unlikely to have applied for a rebate, it is more likely that the photovoltaic system

equipment was sold by a company that typically installs the system but did not in certain circumstances.

Ind Large Project - Photovoltaic systems are sometimes installed in multisystem projects. The data does

not indicate which systems were part of multisystem projects. However, it is possible to infer this from

patterns in the data. Going through the data, I looked for projects installed in the same month, in the same

town, of the same size by the same installer. Because it is hard to imagine many unrelated systems

sharing these characteristics, if three or more did share these characteristics, then I concluded that they

were part of a larger multisystem project.

29 STC measures efficiency when the cell has a temperature of 25 degrees Celsius. PTC measures efficiency at
ambient temperatures of 20 degrees Celsius, which leads to an actual operating cell temperature of about 50 degrees
Celsius.
30 In estimating system output based on nameplate capacity, NREL's PVwatts uses a "derate" factor of 0.77. This
takes into consideration more sources of efficiency loss than the AC watts measure used by California.
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Table 10. Univariate Statistics of Variables Used In Final Analysis
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Variable

log price per watt

electrateby_util

popdensityby3 digit

log_householdvalue

constructionwage2005

insolation3dig

log_size

bipv

thinfilm

self install

ind_large_project

Yr1998

Yr1999

Yr2000

Yr2001

Yr2002

Yr2003

Yr2004

Yr2005

Yr2006

Yr2007

Yr2008

Yr2009

state ma

state_nj

state ca

module cost index

year_approved

Description

AC, 2008$, adjusted by PPI for construction inputs, log

average utility rate by utility & customer type;adjusted by CPI; cents/kwh

1000s per square mi (land area), by county according to 2000 Census

log of median household value by county according to 2000 Census

average hourly construction wage by county in 2005, $

insolation incident on horizontal surface, 22 yr avg, by 3 digit zip, kwh/m2/day

log of system size in AC watts

1 if module is BIPV

1 if module is thin film

1 if any mention of owner install

1 if system was part of a multisystem project

1 if system was approved in 1998

1 if system was approved in 1999

1 if system was approved in 2000

1 if system was approved in 2001

1 if system was approved in 2002

1 if system was approved in 2003

1 if system was approved in 2004

1 if system was approved in 2005

1 if system was approved in 2006

1 if system was approved in 2007

1 if system was approved in 2008

1 if system was approved in 2009

1 if system was installed in Massachusetts

1 if system was installed in New Jersey

1 if system was installed in California

average module price each year, 2008$

number of years after 1997 when system was approved

Mean

2.473

15.105

0.1801

12.398

23.123

5.0485

8.341

0.0274

0.0156

0.017

0.0516

0.0017

0.0035

0.004

0.0384

0.0467

0.0891

0.0978

0.1002

0.1485

0.1943

0.2115

0.0647

0.0201

0.0595

0.9205

3.483

8.808

Min

0.336

9.79

.00118

11.308

13.505

3.596

4.025

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

2.884

1

Max

4.936

18.159

15.629

13.496

37.083

5.398

13.921

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

3.927

12

Std Dev N, if dummy

0.2097

1.1514

3.136

0.5224

3.544

0.396

0.927

1503

875

934

2834

94

193

221

2111

2543

4895

5375

5507

8160

10676

11620

3553

1102

3268

50578

0.318

2.237



log_incentive log of state rebate

fedtaxcred

residential ftc cap

exp_county

inst_years_active

expinstaller

Instlr_per_Hshld

InstlHsdXyear

herf_cty_year

herfXyear

top_100

installer rookie

survivor

supply_arrangement

experienceXTop

experienceXsurvivor

survivorXrookie

1 if eligible for federal tax credit

1 if federal tax credit capped at $2k

Experience in 100s of systems, calculated each quarter, pooled at county level

years experience at time of system installation

Experience in 100s of systems, calculated each quarter, for each installer

Number of active installers divided by the number of households

Interaction between Instlr_per_Hshld and year_approved

Herfindahl index by county, by year

Interaction between herfindahl index and year_approved

1 if system installed by a top seller

1 if the system was installed by an installer in their first year

1 if the system was installed by an installer over 3 years old

1 if the system was installed by a firm that has a preferred supplier arrangement

interaction between exp_installer and top_100

interaction between exp_installer and survivor

interaction between survivor and installer rookie
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0.6919

0.5217

11.137

4.819

3.187

1.788

16.52

0.129

1.089

0.6715

0.0747

0.9505

0.0522

3.093

3.179

0.049

0

0

0

1

0.01

0.0173

0.0183

0.0388

0.16

0

0

0

0

0

0

0

1

1

54.59

12

28.62

14.632

160.96

1

12

1

1

1

1

28.62

28.62

1

38016

28664

11.288

2.472

4.95

1.705

17.244

0.0988

0.777

36798

4107

52226

2863

5.012

4.954

0.216

1.095 -1.841 3.68 0.411



Year approved, Yr1999-Yr2009 -The primary measure for when the system was installed is the year that

the rebate application was approved. The typical process for receiving a rebate begins with the owner

submitting an application after he has decided to purchase a system but before the system is physically

installed. Only after the application is approved will construction commence. The time when the

application was approved was chosen because it is the closest point in time available to the time when the

decision was made to purchase a system. Factors that influence the final price of the system will have

played themselves out while the prospective owner evaluates the system installer's offer, ultimately

shaping the final details of the system.

State ma - This is a dummy variable indicating that the system is located in Massachusetts.

State ni - This is a dummy variable indicating that the system is located in New Jersey.

State ca - This is a dummy variable indicating that the system is located in California. Although

California serves as the reference state in the final analysis, the California dummy variable is included for

completeness.

Module cost index - This variable provides an average value for photovoltaic modules for each calendar

year and is meant to control for changes that affect worldwide module production, such as the silicon

shortage that ended in 2008. It is calculated using a similar methodology as Wiser et al (2006). The

baseline values are taken from Paul Maycock's average module price which runs until 2005. Values for

2006 through 2009 are estimated by extrapolating from Maycock's 2005 value but using the price trend

from Solarbuzz's module cost index which was available for 2003 to 2009. The numbers are then

adjusted for inflation using the Producer Price Index from the Bureau of Labor Statistics.

Log of incentive per watt - Incentive per watt was calculated by dividing the total size of the incentive

and dividing it by the size in AC watts. Whereas previous studies calculated the incentive amount based

on system characteristics (Wiser et al 2006) and the guidelines of the program, I use the actual incentive

amount which was included in the dataset. This is a simpler approach because it obviates calculating the

incentive based on the programs of three different states that are revised (in terms of rebate levels and

requirements periodically.

Some systems installed under the California Solar Initiative received a "Performance Based Incentive"

which is paid out over five years through 60 monthly payments. The value entered in the incentive field

of the CSI data is the undiscounted sum of the payments based on the CSI design rating of the system. I

adjust these numbers by taking the net present value of the payments, using a 5% discount rate.

Effectively, this means reducing the size of the incentive for system receiving the PBI by a factor of
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0.883. The numbers are then adjusted for inflation using the Producer Price Index from the Bureau of

Labor Statistics.

Federal tax credit - This is a dummy variable indicating that the system was eligible to receive the federal

tax credit. The federal tax credit was reestablished for residential system owners (and enhanced for

commercial system owners) by the Energy Policy Act of 2005. Essentially, this means that the system

was installed in 2006 or later. Year of completion, rather than year of approved application, was used to

determine eligibility.

Note: I also created a dummy variable for a state tax credit but ultimately did not use it because of

multicollinearity. Massachusetts has had a tax credit available since 1979. California had a 15% tax

credit from 2001 to 2003 and a 7.5% tax credit in 2004 and 2005. Whatever effects these tax credits have

had will show up in the analysis through the state dummy variables.

Residential FTC cap - This is a dummy variable indicating that the system received the capped federal

tax credit. Year of completion and system size were used to determine eligibility. Only systems

completed between 2006 and 2008 were considered since the 2008 Recovery and Reinvestment Act

removed the $2000 cap for residential customers starting in 2009. Then within the subset of systems

completed between 2006 and 2008, only systems smaller than 8.5 kilowatts AC (or 10 kilowatts DC)

were considered since these were likely residential systems.

Experience county - Experience is measured by the cumulative number of systems (in hundreds)

installed in the same county as the system in question. It is calculated for each quarter and lagged by a

quarter. It is lagged based on the assumption that a firm could not apply learning from one project to

another project running concurrently. In this image of learning, the project must be completed and the

project outcome known (e.g. went well or poorly) before it can be registered as "experience." Thus, for

a system installed in Middlesex County, Massachusetts in May 2007, the value of this variable would be

the cumulative number of systems installed in Middlesex County by the end of the first quarter of 2007.

Inst years active - This variable is an alternative way of measuring installer experience. While

exp_installer (below) measures experience in terms of number of systems completed, this variable

measures experience in terms of firm age. The value of this variable is the age in years of the installer at

the time the system was installed.

Experience installer - Experience is measured by the cumulative number of systems (in hundreds)

installed by the same installer as the system in question. It is calculated for each quarter and lagged by a

quarter. Thus, for a system installed by Borrego Solar in May 2007, this value of this variable would be
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the cumulative number of systems installed by Borrego Solar by the end of the first quarter of 2007.

Measures of experience at the national level and at the state level were also attempted, but ultimately

dismissed because of unacceptably high correlation with year approved.

Herf ctvy year - herfindahl index. This is the primary measure of competition. It is based on the number

of systems installed each year in each county. The Herfindahl index is calculated first by calculating the

market share held by each firm, expressed as a faction of the total market. The fraction represents each

firm's market share. The market share for each firm is squared, and the squared fractions are added

together. The sum is known as the herfindahl index.

The index measures the number of firms competitive in an area and the "evenness" of their market shares.

Equally distributed market shares suggest high levels of competition where no one or two firms dominate

the rest. To develop some intuition about the value of the Herfindahl index, a low number means that the

market is competitive and a higher number means that the market approaches a monopoly. If there is

only one firm that controls the entire market, then the Herfindahl index is equal to one. If there are an

infinite number of firms, each with a tiny fraction of the overall market, then the Herfindahl index will

approach zero. The Herfindahl index is used by the US Department of Justice to determine whether

mergers are equitable to society. Herfindahl indices between 0.1000 and 0.1800 are considered to be

moderately concentrated and indices above 0.1800 to be concentrated.

A key concern in calculating the Herfindahl index is how to define and bound a market. The data

presented earlier on the operating areas of system installers (see Figure 40) suggests that there are

geographic constraints on the activities of installers. Since no single installer operated throughout the

entire state, the state is considered too large a unit for use in defining the boundaries of the market. Yet,

since installers frequently operated in multiple counties, it would suggest that the county is too small a

unit for use in defining market boundaries. Acknowledging that the ideal measure would be somewhere

in between the level of a state and the level of a country, I use county since it provides a better sense of

competition heterogeneity throughout the state.

Installers per 10000 housing units - This is an alternative measure of competition meant to adjust for the

potential photovoltaic system market. While the Herfindahl index only considers the number of systems

actually installed, the intensity of competition may also depend on the size of the potential market in the

area. This measure is calculated by taking the number of installers active that year in each county and

dividing it by the total number of housing units in the county. The total number of housing units is taken



from the US Census. The number of housing units is meant as a proxy for the total number of systems

that could be installed in the county31. The data is taken from the US Census Bureau.

Installers per household x year - This variable is an interaction term between installers per 10000 housing

units and year approved.

Top 100 - This is a dummy variable indicating that the system was installed by a top 100 installer. Each

of the 1836 installers was ranked according to the number of systems installed per year that the installer

was active. Thus, a firm that installed 20 systems per year for two years (40 systems total) would be

ranked higher than a firm that installed five systems per year for 10 years (50 systems total). This

provides a better measure of the firm's level of activity.

Rookie - This is a dummy variable indicating that the system was installed by a firm in its first year of

operation. This distinction may be important because firms' pricing strategies and cost of sales may not

have stabilized in their first year.

Survivor - This is a dummy variable indicating that the system was installed by a firm that survived in the

industry for more than three years. Firms have a 46.7% chance of exiting within the first three years of

operation and firms that survive the first three years are inferred to have superior operating capabilities 32.

Supply Arrangement - This is a dummy variable indicating that the system was installed by an installer

that likely had a preferred supplier arrangement. With a supplier arrangement, the installer commits to

the almost exclusive use of certain equipment manufacturers and receives a discount in return. Although

there was no field indicating that a system installer used supplier arrangements, it was inferred by the

patterns of equipment use by each installer. Firms likely to have supplier arrangements were also likely

install large amounts of system capacity. Thus, I limited the field to the top 25% percentile of firms in

terms of cumulative capacity installed. From these top firms, I looked for firms that used only one or two

different module manufacturers of the 75 module manufacturers that appear in the dataset.

Experience x top - This in an interaction variable between experience_individual and Top 100.

31 Though it is not exactly right because not all buildings where a system could be installed are housing units and
the proportion of buildings that are housing units varies by county. Also, not all photovoltaic systems are mounted
on a building.
32 46.7% is calculated by adding the probability of exiting in the first year, plus the hazard rate of exiting the
second year times the probability of the firm not exiting the first year, plus the hazard rate of exiting the third year
times the probability of the firm not exiting in the first two years. These values are 15.5% in the first year, 25.5% x
(1-15.5%) in the second year, 15.4% x (1 - 15.5% - 25.5% + 15.5% x 25.5%) in the third year.



Experience x survivor - This is an interaction variable between experience_individual and Survivor.

Survivor x rookie - This is an interaction variable between survivor and rookie.

Results

To test the stated hypotheses, a series of regression models were applied to the data. Thirteen models are

included in the final analysis and are shown in Table 11.

The analysis was conducted using ordinary least squares regression. Robust standard errors were used

and errors were clustered at the installer level to minimize problems of heteroskedasticity. Ideally I

would have used county and year fixed effects but because many of the measures of interest were

calculated at a county level, their effects get aggregated into the county fixed effect. I begin using year

fixed effects in model 1 but switch to a linear time trend for subsequent models.

Models 1, 2 and 3 include factors that increase the cost of sales of the system installer but also increase

the value of the system to the consumer

Model 1 includes basic control variables and the dummy variables for each year. With a few exceptions,

the control variables behave largely as expected. Systems whose owners paid higher electricity rates

tended to pay less for a photovoltaic system33. Counties with higher population densities tended to pay

higher prices for their systems. Household value, a measure of wealth, is positively related with price per

watt; a one percent increase in household value corresponds to a 0.0163 percent increase in the price paid

per watt. Construction wage has a positive, though non-statistically significant, effect on installed system

prices. Solar insolation had a positive but non-statistically significant effect on system prices. System

size is negatively related to price per watt, meaning that larger systems cost less on a per watt basis. The

coefficient of -0.0525 means that a one percent increase in system size corresponds to a 0.0525 percent

decrease in price. Thus compared to a system of 4 kilowatts AC, a system of 8 kilowatts AC costs the

customer 0.0525% X 100% = 5.25% less per watt (or about $0.585 more per watt at the mean price).

33 This result is counter intuitive. However, in all subsequent models in which there are more controls, this variable
is not statistically significant.
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Table 11. OLS Regression Results

electrate_by_util

popdensityby3digit

log_householdvalue

constructionwage2005

insolation3dig

logsize

bipv

thinfilm

self install

ind_largeproject

Yr1998

Yr1999

Yr2000

Yr2001

Yr2002

Yr2003

Yr2004

Yr2005

Yr2006

Yr2007

Yr2009

state ma

state_nj

M1
-0.0118

(0.0039)**
0.003

(0.0010)**
0.0163

(0.0097)t
0.0018

(0.0013)
0.0326

(0.0313)
-0.0572

(0.0036)**
0.0843

(0.0325)**
0.0639

(0.0618)
-0.1778

(0.0172)**
-0.08

(0.0293)**
0.4423

(0.0537)**
0.421

(0.0379)**
0.3521

(0.0415)**
0.3608

(0.0312)**
0.4171

(0.0267)**
0.2915

(0.0249)**
0.1695

(0.0232)**
0.1148

(0.0221)**
0.0941

(0.0233)**
0.0754

(0.0275)**
0.0551

(0.0087)**
0.1373

(0.0483)**
0.1044

(0.0409)*

Table 11. OLS Regression Results
Variable: Log Of Price Per Watt

M2
0.0031

(0.0036)
0.0032

(0.0010)**
0.0138

(0.0096)
0.002

(0.0014)
0.0262

(0.0331)
-0.0541

(0.0038)**
0.0618

(0.0384) t
0.1039

(0.0790)
-0.1557

(0.0167)**
-0.0837

(0.0313)**

0.0998
(0.0491)*

0.0991
(0.0414)*
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M3
0.0013

(0.0029)
0.0025

(0.0010)**
0.0125

(0.0096)
0.0028

(0.0014) t
0.0007

(0.0325)
-0.0659

(0.0049)**
0.0673

(0.0349) t
0.0933

(0.0705)
-0.1614

(0.0165)**
-0.1008

(0.0310)**

-0.0336
(0.0530)
-0.0764

(0.0497)

M4
0.0023

(0.0027)
0.0023

(0.0010)*
0.0144

(0.0101)
0.003

(0.0014)*
0.0062

(0.0334)
-0.0666

(0.0050)**
0.0683

(0.0357) t
0.0912

(0.0689)
-0.1603

(0.0159)**
-0.0993

(0.0321)**

-0.0335
(0.0540)
-0.0657

(0.0506)

Dependent
M5

0.0024
(0.0027)

0.0026
(0.0011)*

0.014
(0.0102)

0.0025
(0.0014) t

-0.0008
(0.0333)
-0.0634

(0.0043)**
0.0786

(0.0355)*
0.0326

(0.0405)
-0.1472

(0.0143)**
-0.105

(0.0313)**

-0.044
(0.0546)
-0.0805

(0.0497) t

M6
0.0025

(0.0027)
0.0026

(0.0011)*
0.0139

(0.0102)
0.0025

(0.0016)
0.0005

(0.0415)
-0.0634

(0.0043)**
0.0785

(0.0355)*
0.0326

(0.0404)
-0.1473

(0.0143)**
-0.1051

(0.0312)**

-0.0419
(0.0679)
-0.0787

(0.0604)

M7
0.0019

(0.0026)
0.0026

(0.0011)*
0.015

(0.0102)
0.0021

(0.0017)
-0.0082

(0.0431)
-0.0635

(0.0043)**
0.0796

(0.0359)*
0.0327

(0.0406)
-0.1479

(0.0144)**
-0.1075

(0.0310)**

-0.0519
(0.0698)

-0.093
(0.0629)

-0.0432
(0.0550)
-0.0794

(0.0502)

M8
0.0024

(0.0027)
0.0025

(0.0011)*
0.0143

(0.0103)
0.0023

(0.0013) t
-0.0017

(0.0323)
-0.0636

(0.0043)**
0.0781

(0.0355)*
0.0326

(0.0404)
-0.1473

(0.0143)**
-0.1041

(0.0311)**

M9
0.0031

(0.0028)
0.0024

(0.0011)*
0.0157

(0.0102)
0.0024

(0.0013) t
0.0003

(0.0321)
-0.0633

(0.0043)**
0.0782

(0.0355)*
0.0319

(0.0400)
-0.1474

(0.0144)**
-0.1036

(0.0310)**

-0.0398
(0.0547)
-0.0756

(0.0499)

M10
0.0036

(0.0026)
0.0022

(0.0011)t
0.0188

(0.0098) t
0.0024

(0.0013) t
0.0086

(0.0319)
-0.0623

(0.0043)**
0.0795

(0.0280)**
0.0329

(0.0385)
-0.1495

(0.0141)**
-0.086

(0.0259)**

-0.0324
(0.0548)
-0.0635

(0.0496)

MI1
0.0036

(0.0026)
0.0022

(0.0011) t
0.0187

(0.0099) t
0.0024

(0.0013) t
0.0086

(0.0320)
-0.0624

(0.0042)**
0.0797

(0.0280)**
0.032

(0.0386)
-0.1517

(0.0148)**
-0.0873

(0.0262)**

-0.0329
(0.0549)
-0.0637

(0.0498)

M12
0.0036

(0.0026)
0.0021

(0.0011) t
0.019

(0.0098) t
0.0024

(0.0013) t
0.0082

(0.0319)
-0.0621

(0.0043)**
0.0798

(0.0279)**
0.033

(0.0385)
-0.1493

(0.0142)**
-0.0865

(0.0259)**

-0.0372
(0.0549)
-0.0639

(0.0496)



module cost index

year_approved

log_incentive

fed tax cred

residential ftc_cap

exp_county

instyears_active

exp_installer

Instlrper_Hshld

-0.0145
(0.0162)
-0.0486

(0.0038)**

0.0495
(0.0190)**

-0.0323
(0.0035)**

0.1998
(0.0213)**

0.0626
(0.0154)**

-0.0769
(0.0196)**

0.0503
(0.0198)*

-0.0313
(0.0039)**

0.1942
(0.0212)**

0.0637
(0.0152)**

-0.0773
(0.0178)**

-0.0004
(0.0004)
-0.0019

(0.0024)

0.0452
(0.0198)*

-0.0317
(0.0038)**

0.2118
(0.0188)**

0.0537
(0.0122)**

-0.0637
(0.0094)**

-0.0007
(0.0004) t

-0.004
(0.0024) t

0.0061
(0.0027)*

0.0453
(0.0198)*

-0.0317
(0.0039)**

0.2121
(0.0188)**

0.0538
(0.0122)**

-0.0638
(0.0094)**

-0.0007
(0.0004) t

-0.004
(0.0024) t

0.0061
(0.0027)*

0.0003
(0.0030)

InstlHsdXyear

herfcty_year

0.0348
(0.0204) t

-0.0333
(0.0040)**

0.2182
(0.0194)**

0.0541
(0.0120)**

-0.0629
(0.0093)**

-0.0005
(0.0004)
-0.0038

(0.0024)
0.0062

(0.0027)*
-0.0216

(0.0123) t
0.0023

(0.0012) t

herfXyear

supply_arrangement

top_100

survivor

installer rookie

experienceXTop

survivorXrookie

Constant

Observations

2.4962
(0.1994)**

47011

2.9053
(0.2134)**

47011
R-squared 0.35 0.3
Robust standard errors in parentheses
t Significant at 10% * significant at 5%; ** significant at 1%

2.5815
(0.2231)**

47011
0.352

2.5231
(0.2493)**

46320
0.35

2.5435
(0.2533)**

46320
0.36

2.5364
(0.2852)**

46309
0.36

2.6288
(0.2985)**

46309
0.36

0.0466 0.0376
(0.0198)* (0.0202) t

-0.032 -0.0273
(0.0039)** (0.0047)**

0.2111 0.212
(0.0190)** (0.0191)**

0.0539 0.0543
(0.0121)** (0.0122)**

-0.0639 -0.0633
(0.0094)** (0.0094)**

-0.0007 -0.001
(0.0004) t (0.0004)*

-0.004 -0.004
(0.0024) t (0.0024) t

0.0061 0.0062
(0.0027)* (0.0027)*

-0.0232 0.1435
(0.0407) (0.0885) t

-0.0225
(0.0102)*

2.552
(0.2462)**

46309
0.36

2.5027
(0.2449)**

46309
0.36
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0.0326
(0.0204)
-0.0283

(0.0046)**
0.2109

(0.0191)**
0.0563

(0.0115)**
-0.062

(0.0092)**
-0.001

(0.0004)**
-0.0041

(0.0024) t
0.0065

(0.0028)*

0.1557
(0.0879) t

-0.023
(0.0102)*

-0.0511
(0.0246)*

-0.006
(0.0119)

-0.035
(0.0170)*

-0.016
(0.0126)

2.4728
(0.2361)**

46309
0.36

0.0335
(0.0205) t

-0.0283
(0.0046)**

0.2109
(0.0192)**

0.0554
(0.0116)**

-0.0617
(0.0092)**

-0.0011
(0.0004)**

-0.0048
(0.0026) t

0.0395
(0.0212) t

0.1599
(0.0883) t

-0.0237
(0.0102)*

-0.0514
(0.0248)*

0.0061
(0.0119)
-0.0395

(0.0173)*
-0.0126

(0.0122)
-0.0329

(0.0205) t

2.4698
(0.2377)**

46309
0.36

0.0315
(0.0205)
-0.0283

(0.0046)**
0.2109

(0.0191)**
0.0554

(0.0115)**
-0.0609

(0.0091)**
-0.001

(0.0004)**
-0.0038

(0.0024)
0.0066

(0.0028)*

0.1509
(0.0886) t

-0.0225
(0.0103)*

-0.0519
(0.0246)*

-0.0063
(0.0119)
-0.0608

(0.0252)*
-0.0585

(0.0262)*

0.0549
(0.0287) t

2.4998
(0.2375)**

46309
0.36
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Systems using building-integrated photovoltaics cost 0.0843*100% more per watt ($0.94 per watt at the

mean price) 34. Photovoltaic systems that were installed as part of a multi-system project cost 0.08* 100%

less per watt ($0.89 per watt at the mean price). An examination of the coefficients of the year dummies

shows that systems installed earlier cost up to 0.44 percent more per watt (in 1998) but that the size of the

coefficients decreases over time. The decrease is approximately linear, with some exceptions for 2002

and 2009. Thus in subsequent models, a linear time trend will be used. The dummy variables, state_nj

and state_ma, are statistically significant, suggesting that systems installed in New Jersey and

Massachusetts cost 10 percent and 13 percent more respectively.

Model 2 includes the linear time trend and the module cost index. Module cost index could not be run in

Model 1 because of multicollinearity with the year dummies. This is the primary motivation for using the

linear time trend: it allows module cost to be controlled for in subsequent regression models.

Model 3 adds variables for the incentives received by the consumer. The coefficient of log_incentive

indicates that a one percent increase in the incentive corresponds to a 0.2 percent increase in the system

price per watt. Thus, compared to an incentive of $3 per watt, a $4 per watt incentive corresponds to a

0.2 x 33% = 6.6% increase in price per watt. At the mean system price of $11.15, this is equivalent to

$0.736 per watt.

The coefficient for the federal tax credit is 0.0626 indicating that in year when the tax credit was

available, system prices were 0.0626*100% or, using the mean system price, $0.70 per watt higher.

Putting this into perspective, commercial customers were able to receive the full value of the 30% tax

credit. Considering the average system price was $11.15 per AC Watt, this translates into $3.35 per watt.

Non-profits and government clearly cannot benefit from the tax credit since they do not pay taxes, so they

receive $0.00 per watt. Residential customers were not permitted to take the full 30% and were capped

at $2000. For a small residential system (1 kilowatt AC), this is about $2 per watt and for a large

residential system (10 kilowatt AC), this is $0.20 per watt.

However, examining the coefficient of the federal tax credit along with the coefficient of the residential

tax credit cap, a more nuanced story begins to emerge. The coefficient for the federal tax credit is 0.0626

and the coefficient for the residential federal tax credit cap is -0.0769. This means that for the years when

there was a federal tax credit and a residential cap, the tax credit has essentially no net effect on system

34 Interpreting the coefficients when the dependent variable is log transformed alters the interpretation of the
regression coefficients. If the independent variable is also log transformed, then the coefficient can be interpreted as
a one percent increase in the independent variable will result in a P percent increase in the dependent variable. If the
independent variable is not transformed, then the coefficient can be interpreted as a one unit increase in the
independent variable will result in a P x 100% increase in the dependent variable.



prices (compare 0.0626 - 0.0769 = 0.0143 to the standard errors of the coefficients). However, in 2009,

the residential cap on the federal tax credit was removed. The regression model then suggests the

interpretation offered in the previous paragraph - that the presence of the federal tax credit has had a

positive effect on system prices.

Models 4 and 5 introduce variables related to experience.

Model 4 introduces a term for experience measured at the county level. As expected, exp_county is

negative and while it is not significant in model 4, it is significant at the 10% level in model 5. For every

unit increase in exp_county, which is measured in hundreds of systems, system price decreases by

0.0007* 100%, or $0.008 based on the mean system price per watt. Model 5 also includes one measure of

installer experience - the age of the firm at the time the system was installed. Also as expected, the

coefficient of inst_years_active is -0.004 in model 5, suggesting that for every additional year of

experience, a firm will decrease its sales price by 0.004 * 100%, or $0.045 per watt at the mean price.

Unexpectedly, the coefficient for exp_installer is positive and significant. The coefficient of 0.0061

indicates that for every increase in installer experience of 100 systems, the price of the system was 0.61

percent higher.

Model 6 through Model 9 include coefficients for competition.

Models 6 and 7 measure competition in terms of the ratio of active installers to the number of housing

units. Although the main effect of Instlr_per Hshld is not significant in model 6, when an interaction

term is added in model 7, both the main and interaction effects become statistically significant at the 10%

level. The main effect is negative as expected, meaning that when the ratio of installers to housing units

is higher, the system price is lower. The direction of the interaction effect is unexpectedly positive and

suggests that, as the industry has matured, the effect of competition on system prices has decreased.

A substantively similar interpretation is suggested by models 8 and 9 which include the Herfindahl index

as a measure of competition. Again, the main effect of the competition measure - Herfindahl index - is

not significant as seen in model 8. However, when the interaction effect is added in model 9, both the

main and interaction effects become statistically significant. The main effect is positive with a coefficient

of 0.1435. To understand this effect more intuitively, a market with 100 equally sized installers compared

to a market with 2 equally sized installers will have a price that is [100*(1/100)^2-2*(1/2)A2] X 0.1435 =

0.07 * 100% lower. Applying this number to the average system price means this is a $0.78 lower price

for the market with 100 installers.



Similar to the interaction effect for the previous measure of competitiveness, the interaction effect of

Herfindahl index and year approved has the opposite sign as expected. This also suggests that the effect

of competition driving down system prices is lessening with time.

Models 10 through 12 include coefficients that explore firm heterogeneity, entry and exit35.

The coefficient of supplier arrangement is negative throughout models 10, 11 and 12; systems installed by

firms with committed supply relationship charge about 0.05*100% less on average than firms without

committed supply relationships.

The variable Top_100 is not statistically significant in any of the models suggesting that the firms who

have installed the greatest number of systems do not have significantly higher or lower prices when

controlling for other factors. When the interaction term between Top_100 and experience is added in

Model 11, the interaction becomes marginally significant and the coefficient of exp_installer increases.

This suggests that for firms who are not top installers, the effect of experience is 0.0395 - six times

greater than the main effect of exp_installer in model 5 (0.0061). For firms that are top installers, the net

effect of experience is 0.0395-0.0329 = 0.0066, which is likely not significant considering the standard

errors of both terms (0.0212 for exp_installer and 0.0205 for the interaction effect). Thus the trend for

price to increase with experience seems to exist only for firms not in the top 100.

The coefficient for survivor is -0.035 in model 10 meaning that systems installed by firms that survived

the first three years in industry were 0.035 * 100% less expensive. It should be noted that this includes

systems installed in the first three years of a surviving firm's lifetime, so represents an effect that varies

by installer.

Installerrookie is not statistically significant in models 10 and 11. However, when an interaction term is

added between survivor and rookie in model 12, both the main effect and interaction term become

significant. The combined effects of the survivor and rookie can be understood with the following table.

35 NOTE: The stories I have used to interpret the coefficients have evoked the imagery of firms who are
100% in the business of installing, and when they exit, go out of business. Although this image is likely
not true (earlier I argued that most of the system installers in the dataset were probably not pure play solar
installers), it does not change the basic interpretation. When a pure play firm "exits" it means that it goes
out of business. But when a non pure play installer "exits", then the firm chooses not to offer that line of
business anymore,likely because the firm did not find the solar installation business attractive.



Table 12. Combined Effects of Survivor and Rookie

Rookie year Non rookie year I A rookie - non-rookie

Survivor Firm -0.0608-0.0585+0.0549
-0.0608 -0.0038

= -0.0646

Non Survivor Firm -0.0585 0.00 (Base case) -0.0585

A survivor - non-survivor -0.0061 -0.0608

Reading the middle cells in the table, a non-survivor firm in its rookie year of operation will charge

0.0585 * 100% less than a non-survivor firm not in its rookie year. A survivor firm in its non-rookie year

of operation will charge 0.0608 * 100% less than a non-survivor firm in its non-rookie year. A survivor

firm in its rookie year of operation will change 0.0646 * 100% less than a non-survivor firm in their non-

rookie year.

Looking at the "A" column on the right, the differences suggest that the rookie effect holds primarily for

non-survivor firms (the A for survivor firms is essentially zero). In other words, non survivors tend to

charge lower prices and then raise their prices over time. Looking at the "A" row at the bottom, the

difference suggests that the survivor effect holds primarily in a firm's non- rookie years (the A for rookie

firms is essentially zero). In other words, survivors begin like any other firm but become relatively better

over time. Considering the previous conclusion that the rookie effect holds primarily for non-survivor

firms, we can further conclude that survivors begin like any other firm in charging low but do not increase

their prices over time (as non-survivors do).

What do the regression results say about the hypotheses?

With the basic findings of the regression models now explained, I next relate them to the ten hypotheses

laid out earlier in the section.

H1: Systems that are more costly to install will have higher prices.

Supported - System size was found to be negatively related to price. Larger systems which should have

scale economies and thus cost less to install were also less expensive to the end-consumer. Systems with

building integrated photovoltaics - which we expect to cost more on a per watt basis because extra

manufacturers must deal with the added constraint of creating photovoltaic modules in the form of

building materials - had higher prices than systems without BIPV. Self installed systems were less



expensive than systems installed by firms, which makes sense because the firms' cost of sales are lower.

Systems installed as part of multisystem developments are also expected to cost less because of scale

economies and, indeed, had lower prices.

Less impressive results were found for construction wage, thin film, and module cost index. Coefficients

for construction wage are significant at the 10% level in most of the models, including the later models

where numerous other effects are controlled for. Module cost index was significant in some models but

not all of them. No effect was found for thin film. This finding is not unreasonable; on one hand, thin

film systems are expected to be less expensive since lower cost is the fundamental motivation for selling

thin film, but on the other hand other studies have found that systems installed with thin film modules

were more expensive (e.g. Wiser et al 2009, Wang 2009).

H2: Systems that are of greater value to the system owner will have higher prices.

Supported - While the support was mixed across the variables meant to measure value to system owner,

the measures of the non-significant variables were not as good as the measures for the significant

variables. Several of the measures did not work, but I am less confident about them.

The strongest results were for the incentives offered by the government: Log_incentive, federal tax credit

and residential federal tax credit cap. They all behaved in the expected ways. Higher rebates and the

federal tax credit were positively related with higher system prices, while the federal tax credit cap was

negatively related.

The measures for which no statistical significance was found were: electricity rate and insolation. The

effect of electricity rate may not have been captured properly because of the availability of time-of-use

rates in California. The measure was constructed using average retail rates by utility area by year. If

most system owners switch to time-of-use rates once they buy a photovoltaic system (which is likely to be

true) then the average retail rates do not reflect the revenue opportunity for the system owner.

The effect of insolation may not have been significant because there was not enough variation in the data.

The dataset includes systems from only three states and the variation between states is greater than the

variation within states. State fixed effects were included in all regression models, meaning that the

insolation term would only pick up variation within state while the state dummies would pick up the

variation between states.

Ideally, this variable would be constructed using the insolation value assessed by the system installer and

used in the sales proposal given to the system owner. That would be the number most relevant to the

129



decision made by the customer to buy, and would almost certainly have more variation than the insolation

dataset provided by NASA.

H3: Systems sold to consumers with greater income will have higher prices.

Limited support -Customer income is measured using the log of household value. It is marginally

significant in only some of the models, though it was significant in the later models which controlled for

more factors.

H4: Systems installed by firms with greater experience will have lower prices.

Supported - This hypotheses is supported based on the interpretations of exp_county, inst_yearsactive

and exp_installer. The coefficient of exp_county indicates that counties with more installations had lower

system prices. Installers with more years of experience at the time the system was installed tended to

offer lower prices.

However, there was mixed evidence regarding exp_installer. The coefficient was generally positive,

suggesting that firms that had installed more systems in the past sold systems at higher prices. Yet, this

interpretation is altered after examining model 9 which adds an interaction between experience and top

100. Model 9 suggests that the positive effect of expinstaller holds only for firms not in the top 100.

H5: Systems installed in areas with high levels of competition will have lower prices.

Mixed support - In models with only the main effects of the competition measure (models 6 and 8),

there was no statistically significant effect. However, once interactions with time were added, both the

main and interaction effects did become significant. The main effects were in the expected direction,

revealing that higher levels of competition at the county level drove prices down. Yet the interaction

effects were in the opposite direction of the main effect, suggesting that the competition effect is

diminishing. I speculate that this is because as the market has become more mature, competition is

becoming less local and we should thus expect to see similar prices across counties despite the local,

county-level measures of competition.

H6: The price of systems installed in areas with high levels of competition will decrease over time.

No support. - The interaction terms between the competition measures and time were in the wrong

direction: positive for installers per housing unit and year, negative for Herfindahl index and year.

Whatever the effect of competition, it is lessening with time, at least when competition is measured at a

county-level.



H7: Systems installed by top installers will have lower prices.

No support - The prices of systems installed by top installers did not have significantly different prices

from the systems installed by non-top installers. This means either: if top installers have lower cost of

sales then they are earning a greater profit margin, or if top installers have the same cost of sales, then

they are earning the same profit margins but are committed to the solar installation business for other

reasons.

H8. The effect of experience will be greater for systems installed by top installers.

Supported but not in the way expected - The original expectation was that system prices would decrease

with increasing installer experience, and that the rate of decrease would be greater for top installers.

What the regression analysis reveals was that the effect of experience is to increase system prices.

However, the interaction term between experience and top 100 was of the same magnitude and the

opposite direction as the main effect (see Model 9) which suggests that the effect of experience increasing

prices does not exist for the top installers and exists only for non-top installers. Thus, consistent with the

original expectation, the effect of experience on top installers is more negative than the effect of

experience on non-top installers.

H9. Systems installed by new entrants to the industry will have lower prices.

Mixed support - The coefficient of rookie is not statistically significant until the interaction between

rookie and survivor is added in Model 12. Examining the combined effects of rookie and survivor (see

Table 12), this rookie effect is found to exist but only for non-survivor firms. Survivor firms did not

experience the rookie effect.

HIO: Systems installed by firms with committed relationship with suppliers will have lower prices.

Supported - The coefficient for supply_arrangement is negative and significant in all models in which it

appears.



Section V - Discussion

The results from the regression analysis are thought-provoking. This has been the first time that the

dynamics of experience, competition, and firm entry and exit have been systematically explored.

Abstracting further from the regression coefficients and their close interpretation, these results raise a

number of empirical mysteries which may be touching on important industry dynamics. This section will

further explore these mysteries and their implications for policy.

But before addressing these questions, it is useful to discuss some themes underlying these questions up

front. First is the added complexity in interpreting price data. The ideal dataset would include price as

well as cost data because it would allow analysis to predict not only the system cost per watt but also the

profit margin per watt. Mechanisms such as the experience effect should influence system cost, while

mechanism such as competition should influence profit margins. Because we only have price data, we

cannot separate the cost of sales to the system installer from the installer's profit margin. Thus if we

attempt to draw conclusions from the data about either profit margin or cost of sales, we must make a

logical argument to "control for" the other.

The second factor that complicates interpretation of the results is our ignorance of whether supply or

demand conditions are driving system price. It is probably the most intuitive is to think of supply

conditions affecting price: system installers incur certain costs when installing a system, they charge a

markup for overhead and profit, but this markup cannot be too high otherwise they cannot compete with

other installers.

However, dynamics on the demand side may also be affecting price. Deployment of solar has not been

particularly widespread. Putting the 55,000 systems in the dataset into broader perspective, the US

Census Bureau estimates there were 19.5 million housing units as of 2007 in California, Massachusetts

and New Jersey. This means that 0.28% or about 1 of 350 housing units have a photovoltaic system,

begging the question of whether this tiny fraction is different from the rest of the population. These

"early adopters" may not be very price sensitive and may see some non-financial value in owning a

photovoltaic system (e.g., they may be more environmentally aware). The data include little information

about the characteristics of the buyer, so this cannot be controlled for in the analysis 36 . Thus the prices

36 This second factor could perhaps have been mitigated if I had been able to use county fixed effects in the

regression analysis. Again, this was not possible because I had to use town and zip code data to generate measures
like insolation, household value, and competition. If these measures could be obtained in other ways, the use of
county fixed effects would be possible.



observed in the dataset may reflect the ability of system installers to locate and market to this segment of

people.

Questions Raised by Regression Analysis

Question 1. Why do survivor firms and non-survivor firms charge similar prices in their rookie year, but

non-survivors charge more after their rookie year?

To be competitive with existing firms, both survivors and non-survivors likely have below average

(unsustainable) profit margins in their rookie year when their operation costs are at their highest. Either

survivors have lower cost of sales than non-survivors in their rookie year or they are better able to

decrease their cost of sales after their rookie year. Although the prices the survivors charge do not change

over time, their profit margins may increase to a sustainable level (if they are not already at that level) and

they are able to stay in the solar installation business. Non-survivors may enter the industry with higher

cost of sales and/or are less able to decrease their cost of sales over time. In an attempt to earn sustainable

profit margins, they are forced to increase their prices after their rookie year. Since they are unable to

obtain enough business at the prices they would have to charge to earn a reasonable profit, they exit the

industry.

As far as policy considerations are concerned, the industry is clearly better off if it has more of the types

of firms that survive. However, we do not know much about what makes a firm a survivor and do not

know how to attract these types of firms to the industry. Subsequent analysis should understand what

makes a firm a survivor. Perhaps it was previous experience in the energy industry or a highly

experienced workforce?

One possibility that was investigated was whether rookies or survivors were affected differently by the

presence of local competition. A separate analysis, not included shown in Table 11, tried interactions:

herfindahl X rookie and herfindahl x survivor. Neither was statistically significant.

Question 2.: Why does experience affect top firms differently from non-top firms?

Firms not in the top 100 were found to sell systems at higher prices as their experience increased, while

experience did not have a positive effect for firms in the top 100. For Top 100 firms, this is not at all

surprising. Although they are highly active in the solar installation business and had many opportunities

to learn, they would not sell at a price lower then they have to. Presumably cost of sales stayed the same

or decreased with experience (controlling for the cost of inputs to the system installer like modules or

labor wages). However, just because the firm is can charge lower prices does not mean that it will.



Given some fixed demand that will be met by a number of system installers, an installer must only do

better than the worst installer who get business. System installers that can consistently perform better

than their peers can continue earn higher profit margins.

For firms not in the Top 100, it is hard to imagine why experience would be positively related with

system price. It is probably reasonable to assume that their cost of sales do not increase, after controlling

for the cost of the system components and the labor. One possibility is that the firm started off charging

too little for the systems in the first place and, only after gaining some familiarity with the task of solar

installation, did it develop a better estimate of true cost. Another possibility is that these firms pursue

solar installations opportunistically, not as an important line of business. These firms can be more

selective about the jobs they take and they end up choosing only projects where they can charge a high

price per watt.

Question 3: Why is experience measured in years (inst_years_active) negatively related to system prices

while experience measured in the number of systems (exp_installer) unrelated or positively related to

system prices?

The effect of experience measured in years is actually in the expected direction but seems inconsistent

with the effect of experience measured in number of systems. That prices decline with greater

experience is not entirely surprising; a firm gets better at installing photovoltaic systems at lower costs

and this is reflected in the price that is charged to the consumer. However, I had previously argued that

the good system installers with below average cost of sales would not necessarily pass that onto

customers in the form of lower prices. One way to resolve this apparent contradiction would be to focus

on the price offered by the worst installer that gets installation business. This price drives the market

price and is probably better related with time than with the number of systems installed by any particular

supplier. Thus the negative effect of experience measured in years on system prices exists because

although the system installer has gotten better, he will only pass on that value to the end consumer if he is

forced to do so by competition and competition has gotten better over time.

Exp_county probably picks up part of both these dynamics. As the installers who operate in the area gain

experience, their cost of sales decline. Yet because multiple installers are active in a county, they must

pass on some of the reduced cost onto the customers in the form of lower prices.

Question 4: Why is the competition effect going away?

The analysis showed that increased competition had the effect of reducing system prices, but that this

effect was diminishing over time. There are at least two possible interpretations of this. The first, more
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cynical interpretation is that firms are better able to tacitly collude and keep prices uniformly high

regardless of the level of competition in the area. It could be that they learn better to coordinate their

prices and that few installers are willing to charge below what has become the established market price.

This may be enabled by the increasing level of government support available; as government support

increases, commensurate reductions in price are slow to occur or are not happening at all.

The second, less cynical interpretation is that as the industry has grown, it has become more competitive

and the boundaries of the relevant market have expanded. If consumers are willing to do business with

installers outside the local area who have a broader market presence, then prices may be affected by

competition at a state or regional level. Therefore, although there may be differences in local measures of

competition, system prices may not vary accordingly. Whatever variation there had once been at the

county level is going away as the photovoltaic market has matured and local firms must compete against

more distant firms. I consider this second interpretation to be more likely.

If the first interpretation is true, then it is bad from a policy perspective. It would suggest that more

aggressive decreases in incentive levels are necessary to keep system installers honest. If the second is

true, then this is good from a policy perspective. The larger the relevant competitive area, the greater the

number of installers competing with one another and the greater the competitive pressure driving prices

down.

Question 5: Why are incentives being captured?

The coefficients of log_incentive and federal tax credit were positive, suggesting that as government

rebates and tax credits increase so does the system price. The direct interpretation of this may be

unsettling - that system installers are "capturing" part of the incentive intended by the government for the

end customer. This raises a series of question about the government incentives. One question is, why do

installers capture part of the government incentive? Another question is, if they are able to capture part of

the government incentive, then why don't they capture all of it? Finally, it is worth asking whether this

dynamic is good from a policy perspective.

A cynic might argue that the support of the photovoltaic industry is not a good idea because a portion of

that incentive is going to the installers, instead of into the pockets of the system-owner / buyer. This is

certainly possible because prices aren't easily observed and comparable. This is because of the

customized nature of the product. A system owner will have to contact a potential installer and ask that

they put in a bid for the work. Residential system owners might only approach one installer about putting

in a solar PV system and at best might ask two or three. The owners of larger systems - commercial



owners - might have a more sophisticated decision-making process, but they only account for a small

percentage of total systems.

The apparent positive effect of incentives on system prices is surprising for a number of reasons. The

most naive argument would be to believe that system installers would pass on any government incentives

onto the end customer. However, upon further thought, it would not make sense for installers to leave

money on the table, so one should actually expect that at least part of the government incentive be

captured. Yet one wrinkle in this more sophisticated story is that higher government incentives should

make the market more attractive and more attractive for firms to enter. This would then increase

competition which should drive down prices. Thus higher government incentives can be argued to have

two countervailing effects on system prices: to increase system prices by allowing firms to simply charge

more and to decrease system prices by increasing competition. This relationship is illustrated in Figure

43. Relationship Between Incentives, Competition and System Prices

Figure 43. Relationship Between Incentives, Competition and System Prices
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To reconcile this, we must begin with the reasonable assumption that there is some heterogeneity in

installer capabilities and thus cost of sales per watt installed (and the corollary that there are different

profit margins). If an installer is to survive, it must set its prices equal to or above its cost to install the

system. At a given market price, some installers are making zero profit and others are making a range of

positive profits. If any installers are making a net loss, then they will soon leave the industry. The

positive effect of the incentive on price per watt may reflect the average effect amongst installers, but this

may not hold true for all installers. Those installers with the lowest cost of sales may in fact be capturing

some of the government incentive. However, the government incentive allows firms with higher cost of

sales (i.e. worse firms) to enter the market.
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Thus the portion of the government incentive captured by system installers is the cost paid to attract more

firms to enter the industry and to reward those firms that have better than average cost of sales. The

magnitude of this cost is driven by the variation in installer capabilities relative to the capabilities of the

marginal installer (i.e. the worst installer that still gets business). If the distribution of installer cost of

sales is tight, then the cost is low. But if the distribution of installer cost of sales is wide, then the cost

will be high.

As for the negative effect of competition on prices, this was expected. Competition can only reduce the

cost so far because, unless a firm miscalculates or there are temporary extenuating circumstances, an

individual firm will not offer a price that is less than its cost. Thus, this effect represents the portion of

the firm's profit margin that the firm sacrifices in order to be competitive. The minority of firms that are

not able to offer a competitive price and earn a profit will exit the market. This answers the first question

and part of the third question that was posed earlier.

The second question was - why don't installers capture all of the government incentive? The answer

begins by considering the two general constraints installers face when setting prices. Installers cannot

charge too much without changing the economics of purchasing a photovoltaic system for the system

owner. The value of the system to the owner is the value of the electricity plus the value of RECs

generation plus the rebates and tax credits from the government. This sets an upper bound on what

installers can charge.

Competition between installers drives the market price down. There are relatively low barriers to entry

into the system installation business. General contractors and electricians have almost all of the technical

expertise necessary to install a photovoltaic system. Depending on the requirements set by the state to be

eligible for the rebate, all that may be necessary is a regular contractor or electrician's license (this is the

requirement in California). Other states may require that the installer be NABCEP (North American

Board of Certified Energy Practitioners) certified, but all that is required is a short course that includes

some information specific to wiring photovoltaic modules and inverters.

The other constraint is from the upstream part of the photovoltaic value chain. The fact that module prices

in the US have remained stable (see Figure 24. Retail Module Price Index, January 2003-July 2009)

while incentives have generally increased suggests that some of the surplus is being captured at the

module manufacturer or upstream. Industry analysts gleaning information from publicly-owned

companies have observed that the profit margins have been smaller the closer the firm is to the end of the

value chain (Chase 2009). That is, silicon producers had the largest profit margins, module manufacturers

had modest profit margins, and installers had the lowest profit margins. The difference is the relative



market power of firms in each part of value chain. During the silicon shortage, module manufacturers

were dependent on the limited number of silicon producers. Compared to the number of module

manufacturers, there are also many more installers, suggesting that module manufacturers have greater

market leverage over installers. Thus, if excess profits were available then silicon producers or module

manufacturers would price their products to capture the excess profit. In fact, there is some evidence of

this. Despite module production being a global industry, module prices are lower in the United States

than in Germany which offers attractive feed-in tariff rates. This capturing of the government incentive

by upstream firms may not necessarily be bad as long as the profits are being reinvested in the business.

Armed with a better sense of what the captured incentive is doing, we can begin to consider its policy

implications. The ideal policy would encourage more competition between installers. Competition

reduces price through two mechanisms. First, in a static sense, competition drives the sales price and

profit margins downwards towards the firm's cost to install. And if there are more competitors in the

market, then there will be greater pressure to offer a lower price. Competition keeps installers "honest"

and profit margins, on average, are kept low. Second, competition creates pressure for installers to

leverage their experience and reduce their cost of sales. This creates the potential for future price

reductions and that potential will be realized as the strength of the firm's competition increases. The

constant entry and exit of installers brings new competitors into the mix, some of which will become

strong competitors.

To maintain these two mechanisms, we need three things: high competition to push prices towards

installers' costs, opportunities for firms to learn and decrease their cost of sales, and a constant influx of

new firms to replace the [generally bad] firms that exit the industry.

Government incentives help to do all three of these. They keep competition high because incentives

allow initially weaker firms to enter the industry. By increasing the value of the system to the customer,

incentives increase the number of installations and give installers an opportunity to learn. They also

generate a constant influx of new firms because firms must believe there is profit to be gained from

entering the industry.

What incentives do not do however is force the bad installers to exit the industry. For this reason, very

high government incentives are not the answer. Without the risk of going out of business, firms are not

pressured to improve their own cost of sales. Bad firms are also allowed to stay in the industry and it is

the variance in firms' cost of sales that drives the proportion of the incentive that is captured as pure profit

(by stronger firms).



Setting incentive levels would seem to be a balancing act between these two extremes. Countries such as

Germany have chosen to provide high incentives, but arguably at the cost of allowing high profits for

system installers and other firms upstream in the value chain. Countries like Japan who are currently

offering smaller incentives are arguably using their money more efficiently by allowing smaller profits for

fewer system installers.

Question 6: What do the regression coefficients say about the cost of sales of system installers?

Although the observed data includes system prices, the regression coefficients can give us some insights

into installers' costs. The coefficient for self install is -0.149 in the final model. Thus systems that

were owner-installed were 14.9 percent less expensive than systems that were installed by firms. Using

the average price of $11.15 per watt, this equates to $1.66 per watt. This is consistent with the estimates

provided in Table 5.

A general sense of the range of the firms' cost of sales can be gleaned by inspecting the coefficient for

survivor. The survivor variable is a rough measure of firm's operational capabilities. In short, it is

"good" firms that end up as survivors. The rationale is that firms who have stayed in the industry for

more than three years should install photovoltaic systems more efficiently and effectively than firms who

exited the industry in the first three years (or firms who entered the industry within the past three years

and have not yet "revealed" their true colors). According to model 10, systems that were installed by

survivor firms cost on average 0.035 * 100% less than systems installed by non-survivor firms. If we

make the assumption that the operating margins of survivors are equal or greater than the operating

margins of non-survivors, then the 3.5% difference, or $0.39 per watt, reflects a difference in cost of sales

between survivors and non survivors.

The comparison between non-survivors in their non-rookie year and survivors in their rookie year may

offer a more aggressive estimate of the range of cost of sales. Recall from Table 12 that non-survivors in

their non-rookie years charged even higher prices than non-survivors in their rookie years. Thus, non-

survivors in their non-rookie years probably represent the worst firms in the population. Survivors -

whether in their rookie year or not - tend to offer lower prices. The coefficient difference between these

two groups is 0.0646. This translates into 0.0646 * 100% * $11.15 = $0.72 per watt3 7

37 A third way to estimate the spread in cost of sales is by estimating the value of the rebates by system installers.

This is possible based on the argument I made earlier that some installers are able to capture this amount or more

because there are less capable installers in the industry who need the incentives to stay in business. The coefficient
of incentive is 0.20 in model 3 meaning that a one percent increase in the incentive translates into a 0.20 percent
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It may also be possible to estimate the size of firms' profit margins by examining the coefficient of

Herfindahl index. If we assume that firms will reduce prices down to their cost of sales and not lower,

this represents the amount that firms must reduce their selling price to be competitive. The coefficient is

0.15 in model 12 which is equivalent to a price difference of 0.15 * 100% * $11.15 = $1.67 per watt.

This is of course an overestimate because we have not considered the interaction term which has a

coefficient of -0.022. For every year after 1997 (recall that year 1 = 1998), the price difference is reduced

by 0.022 * 100% * $11.15 = $0.245 per watt. Thus in 1998, the average firm's profit margin was as high

as $1.67 - $0.245 = $1.42 per watt.

increase in the system price. A 10% increase to the average incentive per watt is 10% * $2.99 = $0.29. A 2%
increase in system price is 2% * $11.15 is $0.22.



Section IV - Conclusion

Analysis of the photovoltaic systems dataset indicates that there are important dynamics within one stage

of the value chain that are more complicated than the conventional view of an experience effect uniformly

driving costs down. The dynamics discussed were an experience dynamic, a competition dynamic and an

industry turnover dynamic. Closer attention to these dynamics is warranted because it helps to focus our

attention on more surgical interventions and provides alternatives to a brute force intervention like

offering larger and larger incentives.

The overarching idea is not entirely surprising: system prices should decline when there are fewer bad

(i.e. high cost of sales) firms in the industry and a greater installation capacity of good firms. Creating a

greater installation capacity of good firms can be accomplished by having more "good" installers in the

industry or by having larger good installers. New firms entering industry test their abilities against

existing firms. If they can reduce the cost of sales over time, then they add to the overall installation

capacity of good firms. Large good firms are important because they set the standard in terms of price

and quality. They may also have some advantages in reducing cost of sales because knowledge and

learning travel more easily within a firm than between firms.

Relating Analysis Results to the Experience Curve

This thesis argues that the experience curve is an unreliable tool for predicting future cost reductions.

Plotting historical cost or price data against production up to that point may be a useful way to describe

the data, but to take the additional step of extrapolation is risky since it assumes that whatever has driven

down costs in the past will continue to do so into the future. In the total absence of any contextual

information, experience curve extrapolation is probably not unreasonable over a short time horizon. It

may also be useful because its simplicity makes it easy to communicate basic trends and garner support

for the technology. However, a better, more intellectually honest alternative is to develop an

understanding of the mechanisms underlying the experience curve.

To some extent, industry commentators have already begun looking at the mechanisms behind the

experience curve. They point out the past effects of the polysilicon shortage and, more recently, of

plummeting demand resulting from the economic crisis of 2008. However, they have tried to have their

cake and eat it too, arguing that continued support for the industry is worthwhile because the costs will

continue to fall at earlier historical rates and lead to payoffs after only a short period of investment. In

fact, if we think of experience curves as a descriptive tool (i.e. without any inference of causal logic), then

we see some unsettling trends. The progress ratio of systems in Germany is unimpressive and the



progress ratio in the US is even worse. Japan's progress ratio, while lower (better), is not robust and

hinges on the inclusion of two early data points. These high (bad) observed progress ratios should raise

questions about how and how much learning can continue to occur for module costs and for the

intrinsically less-promising non-module costs.

This thesis is an attempt to begin an examination of cost reduction trends in systems installation. It

begins by providing some background information about the technology, the industry and the history of

government support for photovoltaics. It then explores a dataset comprised of almost 55,000 photovoltaic

systems. One aspect that is highlighted is the population of system installers.

With the exploration of the photovoltaic system installations dataset, observations about system installers,

and regression analysis, I hope to leave the reader with a more sophisticated view of systems installation.

The installation industry is comprised of a modest number of firms, but a small minority install the

majority of the photovoltaic systems in the United States. In the results and discussion of the regression

analysis, I have argued that they must be given opportunities to learn, competitive pressure to motivate

them to learn, and competitive pressure to pass on their lower installation costs to the end customer.

Incentives play a role in accelerating this market, though the larger the incentives the greater the profits

for average and above average firms.

Although others have found some evidence of good progress ratios for non-module costs (Schaeffer et al

2004), this is not consistent with evidence from the dataset of photovoltaic system installations in the US.

Understanding the differences between these two findings might yield insights about how systems

installation should be organized as an industry.

One debate worth commenting on is whether the United States should increase its support for

photovoltaics, possibly in the form of a feed-in tariff. The feed-in tariff has seemed to work for Germany

and by decreasing the rate offered by the tariff, it has a "built-in self destruct mechanism" that is triggered

at the point of grid parity. On its face, this would seem difficult to argue against. It jumpstarts industry

growth, does not give the industry a free lunch and ends with a renewable energy source competitive with

traditional forms of generation. I would argue however that although the German feed-in tariff is a bold

and admirable measure for developing the photovoltaics industry and meeting carbon emissions targets, it

may be premature given the state of photovoltaic technology.

The assumption the German policy is that firms in the industry will be able to reduce their own costs at

the rate set out by the German government and that the industry will be structured such that these cost

decreases will be passed onto the end customer. Declining incentives provide the carrot for industry to



decrease prices - for improving their internal operations and for reducing their profit margins. However,

declining incentives work in driving industry's prices down when there is some slack in the profit

margins. It does not ensure that industry will reach those targets.

There are two reasons why this is a justified concern. First, the industry has not yet been strenuously

tested. Despite the decreasing feature of the feed-in tariff, the rates have always been high (recall Table

4). It may be the case that declining feed-in tariffs have successfully decreased profit margins but have

been less successful in decreasing firms' cost of sales at the same rate. It may also be possible that early

high prices included a risk premium that was necessary to entice firms to enter this new line of business.

As the photovoltaics industry has become more established, that risk premium may have gone away.

However, the risk premium is not a "real" cost necessary for the physical installation of the system.

With the accelerated rate of decrease put into place as part of the 2009 feed-in tariff revision, some firms

have become nervous about matching those rates. Some of this nervousness may be warranted because

cost reduction in the future will probably be more difficult than cost reduction has been in the past, even

allowing for the psychological phenomenon where cost reduction seems difficult ex ante but seems trivial

ex post with the benefit of hindsight. Technological evolution has been described by an S-curve (Sahal

1981, Foster 1986, Schilling and Esmundo forthcoming) which states that even after a period of rapid

improvement, a technology will begin to reach inherent limits and progress will slow. The key question

is whether the technological progress reaches the asymptote before or after photovoltaics reach grid

parity.

A worst case scenario would be if the cost of solar does not decrease at the expected rate and

governments discontinue their support for it. While the state of the technology may have improved,

momentum for continued research, investment and deployment of solar will be lost. This may mirror the

solar industry in the 1980s after US government support declined precipitously. Even if governments

continue to support the industry in light of slower technological progress, the policy will be much more

costly than would be necessary.

Areas for Future Research

This thesis has touched upon several directions for future research. Methodologically, there are several

options for strengthening the arguments made in this document. It is possible to find better measures

than those used for my regression analysis. There may be more creative ways of looking at the current

data, or it may be possible to work more closely with state agencies to add more fields to the data.



Another possibility would be to distribute a questionnaire asking installers about their practices and

business success. With less than 2000 installers in the US, this is not an impossible task.

Several new conceptual questions have also come up. One question is how the Japanese industry has

managed to continue installing new capacity without government incentives and without having attained

grid parity. The answer may be as simple as a misunderstanding or lack of awareness of the Japanese

incentive system for photovoltaics. But it is also possible that Japan has found a way to continue the sales

and installation of photovoltaic systems without directly influencing the costs and benefits to the system

owner. Valuing solar energy may have become a culturally institutionalized belief, i.e. one that is

followed not because it is the result of a rational cost-benefit calculation, but because it is seen as socially

appropriate (Tolbert and Zucker 1983). The good thus has a social value in addition to its instrumental

value that is worth paying extra for. Examples might include Starbucks Coffee, organic food, mid- to

high-end clothing. If this is true, it would suggest an alternative to larger and more sophisticated

incentive schemes.

Another research direction is to study the structure of the system installation industry in Germany and

Japan. This may help to explain the difference between progress ratios in the three countries. Little is

known or discussed about the Japanese and German industries, at least in the US. Japan's construction

industry is much more centralized than in the US. Thus if only a handful of these large firms also

installed photovoltaic systems, there would be no room for bad firms in the industry. Homes are

prefabricated and modular in design which should make retrofit and new home installations easier. In

Germany, solar installers also seem to be larger than in the US. The business model that has become

prevalent is a franchise model where large firms partner with local contractors. Barriers to entry are

reduced for local contractors and large firms can disseminate best practices and pass on their market

leverage to large swaths of individual installers. Japan and Germany may offer insights into how to

organize the installation industry for cost and price reduction.

A third question would be to look at how profits are distributed throughout the photovoltaics value chain.

Profits are collected at each stage of the value chain and profit margins may be higher in some stages than

in others. For instance, in the recent past, silicon producers had the highest profit margins on average,

module manufacturers had modest profits margins and system installers had the smallest margins. What

are the dynamics that lead to a shifting share of profits across the value chain? This is a relevant question

because different stages of the value chain compete with one another for a fixed amount of profits. There

may be interesting dynamics if one stage is better able than others to reduce its cost of sales / cost of

goods sold or if one stage with greater power can "hold up" the rest of the industry.
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To illustrate why this is relevant, I will describe how intra-value chain dynamics might play out in a worst

case scenario for Germany. Installation is a local industry, but silicon, module and inverter markets are

global. If other countries offer high incentives for solar as the German feed in tariff declines, firm in

upstream stages of the value chain may be unable or unwilling to match the decreasing feed-in tariff rate

because they have the option of selling their goods in other markets. Installations in Germany may fall

off while the price of the solar technology remains unchanged. The German government would be

forced into a situation in which it has two uncomfortable choices. First, it may consider slowing,

stopping or even reversing the decreasing level of the feed-in tariff in order to maintain a steady rate of

photovoltaic deployment. Or, it can allow the German market to shrink and force Germany

manufacturers to rely on foreign markets for revenue growth.

The fourth and final direction for research is to study the nature of demand for photovoltaic systems. The

preferences of the individuals and organizations who have already purchased photovoltaic systems are

probably unlike the preferences of those who have not purchased photovoltaic systems. Factors other

than those described in Table 1(government incentives, cost of system, value of electricity, value of REC

sales) have likely played into these decisions. It may be that purchasers strongly believe in sustainability

or in reducing carbon emissions and are willing to install a system almost as a donation. Or for firms,

there may be a marketing benefit in portraying themselves as an environmentally-conscious business.

Individuals may be motivated by the fashion aspect of solar, that can be used to signal a public identity to

others. In Rogers' (1995) terms, these are "innovators" and "early adopters."

However if solar deployment is to increase drastically, then it may require that the "majority" (Rogers

1995) also purchase and install photovoltaic systems. These consumers may be less predisposed to the

technology and may follow a highly analytical cost-benefit logic. They may also be less motivated to

educate themselves about how photovoltaic systems work and how to evaluate different system options.

Depending on the number of innovators and early adopters in the US, the solar industry's estimates of a

solar demand curve may underestimate price elasticity since previous estimates were based on more eager

consumers. Thus to maintain the same rate of deployment and the industry may have to decrease costs at

a higher rate.

Closing Notes

To close, I bring up two issues that I have not been able to fully address but warrant mentioning. First is

the role of the experience curve in building a social movement for solar. It is only recently that support

for renewable energy has built up momentum and for a long time solar energy was seen as "fringe"



technology. It is important that solar energy be regarded as a mainstream option; if it were not, there

would not be serious discussion about supporting research, development and deployment.

However, there should be limits to the enthusiasm over solar and it should be based on sound reasoning.

My fear is the development of a "solar bubble" where high expectations lead to a self-fulfilling prophecy,

but the realities of the technology make it impossible to meet those expectations indefinitely. If the

bubble bursts, the industry may be damaged by eradicating support and making people more cynical of

bold visions for a renewable energy future.

The second issue has to do with the role of photovoltaic technology in solving the climate change

problem. Implicit in my discussion has been the idea that government and industry resources should be

used efficiently and that there is an optimal rate of development and deployment. This idea is no longer

valid if we are confronted with the most troubling climate change scenarios. In this case, there may

simply be an unavoidable cost of accelerating deployment of solar to reduce the level of carbon dioxide in

the atmosphere. That cost may be of secondary importance compared to the problems of adapting to a

changed climate.
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