
Managing projects utilizing self-managed teams
and managerial toolkits

by
Praveen Mathur

M.B.A, Rutgers University
B.E., Bangalore University

-MASSACHUSTTS INSiTUTE=
OF TECHNOLOGY

SEP2 3 2009

LIBRARIES

Submitted to the System Design and Management Program
in Partial Fulfillment of the Requirements for the Degree of

Master of Science in Engineering and Management
at the

Massachusetts Institute of Technology

May 2009

© 2009 Praveen Mathur. All Rights reserved.

ARCHIVES

The author hereby grants to MIT permission to reproduce and to distribute publicly paper and electronic
copies of this thesis document in whole or in part in any medium not known or hereafter created.

Signature of Author _ __,,
PraveenMathur

System Design and Management Program

Certified by
Elic A . vonIippel, Thesis Supervisor

T Wilson (1953) Professor in Management
MIT Sloan School of Management

Accepted by
V A Parick Hale Director,

System Design and Management Program

Acknowledgements

I would like to thank Prof. Eric von Hippel, my advisor, for his guidance, support and encouragement
during the course of this thesis. His direction and valuable insights challenged me and gave me an
opportunity to learn during the entire process.

I would like to thank my wife Deepti for the great sacrifices she made during the past two years. Her
support and patience during this entire time gave me the opportunity to follow my dream and I feel very
fortunate to have her by my side. To my son, Arnav, without his endless love and understanding this
journey would have been impossible.

I would also like to acknowledge the SDM program and my fellow classmates for making this a throughly
enjoyable educational experience that I will cherish forever.

TABLE OF CONTENTS
A cknowledgem ents
Abstract 5
M otivation 6
PART I 7
W hy Is Project M anagem ent a Critical Issue? 7

W hy Is Project M anagem ent so Difficult?7
Role of Organization 11
Role of Project M anager 1
Responsibilities of a Project M anager.. 12
Skills required for Project M anager 13
Project Essentials ... 13
Project Team w ork .. 14
Project Plan 15
Leadership and m anagem ent elem ents.. ... 16
Com m unication and Inform ation sharing 17
Applying Fayol's m odel to Project M anagem ent ... 18
Project M anagem ent Toolkit... 18
W hy projects fail? 21

PART II 23
Self-Directed W ork Team s (SDW T) 23

Com m unication in Self Directed W ork Team s .. 24
Change M anagem ent... 24
Project Scope and control 24
Leadership in the Change Process... 25

Free and Open Source Software Developm ent M odel...26
Background: Free and Open Source Software 26
Introduction ... 26
Form ation and Growth of Open Source com m unities .. 27
Open source Beliefs, Values and N orm s... 28
M otivation to participate .. 29
Com m unication & Inform ation Flow 30
Com m on Vocabulary .. 31
Project Control ... 32
Project Team 33
Project Team work 35
Coordination..36
Mechanisms to Coordinate Massive Amount of Individual Efforts 37
Project Leadership... ... 40
Balancing Anarchy with Control 41
Quality..42
Comparing Traditional Project Development with Open Source Project Development 42
Application of an Project Management Toolkit in Open Source 44

PART III 49
Open Source Project M anagem ent at Enterprise Level 49

Introduction and Background.. ... 49
Analyzing M otivations on the Firm 's Level .. 51
IBM 's M otivation to Participate 52
Business M odels 52

3

IBM 's Business M odel................................. 54
Leadership 55
Licensing 56
Participation 56
Project V isibility 57
Building Com m unity.. 57
Autom ating Project M anagem ent 60

Case Study: Analysis of Linux based desktop client .. 62
Applying Fayol's principles and project management toolkit 63
Planning 63
Organizing .. 67
Controlling 69
Coordination ... 71
Com m anding .. 72

Conclusion .. 75
References ... 77

4

Abstract

Project Management is an essential function in most software companies today. With increasing

complexity and inter connectivity between software projects, it is not surprising that managing such large

scale development projects can be expensive and extremely time consuming for the sponsoring

organization. In large scale complex software projects the project manager has to ensure that enough

resources are allocated to the project and foster an environment of communication and teamwork, but

accomplish all this with little authority over the project team. This traditional approach to managing

project relies on the skills and experience of a project manager but is fraught with pitfalls that can lead the

project in the wrong direction if corrective action is not taken in a timely fashion. Any misstep during the

project lifecycle due to scope creep or miscommunication can ultimately push the project to miss

deadlines or be over budget.

Another alternative approach to software development is using self organizing teams. Free/Open Source

software development approach uses the concept of self organizing teams to collaborate at a global scale

using communities of developers. The F/OSS paradigm, based on cooperation and collaboration among

developers from all over the world, introduces methodologies and development models different from

those usually utilized within the proprietary software industry. In it, communities of developers and users

share a common interest in a project and interact regularly with one another to share knowledge

collaboratively solve a common problem. This approach reduces the overhead required in communication

and coordination by sharing information with all members of the project and relies on automating some of

the essential elements of the project. The thesis synthesizes the use of automated tools as it applies to the

project toolkit and uses case studies to understand how F/OSS development approach can be used in

organizations to reduce project's dependence on a project manager.

Thesis Supervisor: Eric A. von Hippel
Title: T Wilson Professor in Management, MIT Sloan School of Management

Motivation

I am a project manager for a large scale complex technical project at IBM and after having spent more

than three years managing multiple releases of the application I have come to realize that beyond

delivering the project on time and within budget, I am mainly the conduit of information between one

group and the other. The information related to the project is held at different levels in the hierarchy and

as the project manager my primary role is to assimilate all relevant information from the different levels

of hierarchy and allocate resources to act on it. This highly structured approach has helped IBM create

standardized processes and raise managerial talent. However this approach also leads to inefficient use of

information, resources and creates bottlenecks in the system. Using the working paper i and applying some

of the key finding from it to my project, I am convinced that much of the work project manager is

responsible can be done by self-organizing teams using the right managerial toolkit.

I would like to use my current project as a case for analyzing and understanding what are some of the key

responsibilities of a project manager and how can the role be substituted with alternative approach.

Looking at the traditional project management approach and using the working paper as viewing lens, I

would like to understand how project activities can replaced by managerial toolkit of some kind. My view

is that the technical aspect of the project management like coordination can be automated by using

automated tools. However, there are other issues such as project leadership, requirement gathering and

project control that require a deeper understanding. During the project lifecycle the demands of the project

are different and understanding what tools can be used under certain circumstances that reduce the project

overhead, will greatly improve management practices used in companies today.

Lastly, I would focus on issues such as company culture, reward and compensation that directly affect the

project externally and can have adverse effects on the project if it is not addressed appropriately. Utilizing

self organizing teams will also require complete shift from existing processes that impact employee

motivation, compensation and evaluation.

PART I

Why Is Project Management a Critical Issue?

It is best to do things systematically, since we are only human and disorder is our worst enemy.

Hesoid,
8th century B.C.

The future of most organizations depends on successful projects. Whether to survive or to sustain market

leadership; projects are the key in the new era of world competition. They are essential to the vital aspects

of any business for:

* Developing new products and services that meet customer needs.

* Shortening time-to-market for new developments

* Improving efficiency and productivity.

* Strengthening competitive positions in national or world markets.

Project management is the key and essential component through out the product cycle, from inception

through completion. Large scale projects are complex as they require high degree of collaboration and

planning. Complexity is further increased by limited resources and tight schedules. Internal and external

confusion leads to poorly implemented project leading typically to waste, inefficiency, and costly errors.

Many projects fail by repeating either the technical or business mistakes of others, or simply by not

implementing Lessons Learned from other projects. To succeed, the project team needs training and

support from upper management. Unfortunately, relatively few companies comprehend the full power of

project management.

Why Is Project Management so Difficult?

Several major challenges add to the difficulties in managing a project, mainly the inherent temporary

nature of a project, demanding business environment, misguided management, and role of projects in non-

traditional organizations. Managing projects becomes increasingly demanding due to uncertainty added to

the project due to changing business environment, resources in the organization and culture in an

organization.

External conditions like business cycle, general economic market conditions and globalization, forces

project managers to look outside of the organization to continuously adjust to rate of change. In addition,

Staffing challenges contribute significantly to the difficulty of project management.

Therefore, selecting the right project manager is critical to project success. The project manager must

fulfill the requirements of the customer or user, must answer to senior management by generating a fair

return on investment, and must provide a stimulating, positive work environment for the project team.

Project managers must be skilled in technical, business, legal, financial, and personnel matters. Above all,

project managers must have leadership qualities. They must be able to deal with all levels in the

organization, from stakeholders, to geographically distributed workforce.

Project management is made difficult by the urgent need for a newly formed project group to achieve

proficiency as a team. The temporary nature of project teams often brings together people who have little

or no experience working with one another. Furthermore, people who are attracted by project assignments

are generally motivated by intangible factors such as the work itself or the technical challenge, rather than

being part of the team. The newly formed group usually includes specialists who have excelled as

individual contributors. This independence--both managerial and technical-conflicts with the

interdependence required for teamwork.

The evolution of a typical project, such as a new product or new business development, usually follows

three steps

Proposal: Start of the project often in a functional organization with a proposal in response to a request

Development: A cross functional team formed in a Project Organization

Production: Standard production or operational support ,returned to functional organization

Traditional management approaches deal well with the proposal and production stages of the project.

These emphasize that the manager is responsible for a productive work environment and a consistent

climate including:

* Stable work environment.

* Minimum of conflict among employees.

* Ambitious employees driven to be their personal best by perks and personal competition.

* Simple, clear reporting structure and organization.

* Responsibility matched with authority.

* Maximum creative freedom.

By contrast, project management is more narrowly focused on the specific objectives of the project at

hand. Like task forces and other temporary groups, project teams are drawn from various long-term

permanent organizations. But unlike other temporary groups, projects are managed to a defined plan

including a budget, schedule, and specific output-usually a product or service.

Projects are requirements driven. The customer or user defines the requirements to be met by the project

team. Unlike the activities that occur wholly within traditional, functional organizations, project work

depends on lateral flow. Therefore, projects lend themselves to some form of matrix organization such as

shown in Figure 1. Horizontal dotted line interfaces need to be encouraged and strengthened rather than

used reluctantly as exceptions to the linear chain of command.

I........... •.........

crat - -- - - - - ------

Figure 1: Typical matrix organization

Henri Fayol's[ii] management principles are widely accepted views of what is necessary for effective

general management. His five elements can be viewed as viewing lens to model the nature of project

management.

* Planning

* Organizing

* Coordinating

* Commanding

* Controlling

These combined with Fayol's 5 elements, his 14 principles provide a structure for project management

direction. Most management models are based on Henri Fayol's 5 elements and 14 principles.

1. Division of work.

2. Responsibility matched to authority.

3. Discipline.

4. Unity of command.

5. Unity of direction.

6. Subordination of the individual's interests to the general interest.

7. Remuneration of personnel.

8. Centralization.

9. Scalar chain (line of authority).

10. Order.

11. Equity.

12. Stability of tenure of personnel.

13. Initiative.

14. Esprit de corps.

Project managers perform the traditional management functions of planning, organizing, coordinating,

directing, and controlling. Four principles among Fayol's principles, namely responsibility matched to

authority, unity of command, scalar chain of command, and stability are often omitted because some

believe they are not desirable or cannot be achieved in the project environment.

Project management is further complicated because of incorrect sequencing of project events. Some

elements of project management are sequence-driven and some are situation-driven management.

Viewing the project solely as a sequence of events paints a distorted and biased image of the overall

project management process.

Role of Organization

For a project to be successful the organization plays an import role, organizations that are project driven

are more likely to implement the right mechanism for a project to succeed. This may come in terms of the

creating right project environment, the project team or selecting an appropriate project manager. In

project-driven organization, such as construction or aerospace, all work is characterized through projects,

with each project as a separate cost center having its own profit-and-loss statement. In the non-project-

driven organization, such as low-technology manufacturing, profit and loss are measured on vertical or

functional lines. Project management in a non-project-driven organization is generally more difficult

because projects may be few and far between, not all projects have the same requirements and therefore

cannot be managed identically. A lack of proper training and understanding leads to mismanagement of

projects which in turn has an adverse effect on the project outcome.

Role of Project Manager

Given how critical projects are to organization, the project manager plays an important role in

implementing a project. The project manager's roles are broad--like those of general managers-going

from administration to technical to leadership. But the focus is shorter range than that of a line manager

who must manage the long-term strength of the organization. By contrast, the project manager should be

correctly focused on the relatively short-term results of the project. The project manager must convert the

inputs in the form of capital, material, equipment, personnel etc into output of products or services within

the allocated timeframe and produce a benefit to the organization. The project manager is responsible for

coordinating and integrating activities across multiple, functional lines. The integration activities

performed by the project manager include:

* Integrating the activities necessary to develop a project plan

* Integrating the activities necessary to execute the plan

* Integrating the activities necessary to make changes to the plan

In order to do this, the project manager needs strong communicative and interpersonal skills, must

become familiar with the operations of each line organization, and must have knowledge of the

technology being used. The project manager also plays the part of interface manager between the

traditional organization structure, the functional organization, senior management, customers and the

project team. The line manager interface is required for personnel allocation and senior management

involvement is required to provide guidance to the overall project. This requires the project manager to

report status of the project timely and accurately to stakeholders and sponsors for making effective project

decisions.

Manage the project to the Project Cycle. Meet an aggressive schedule.

Balance technical schedule, and cost Implement state-of-the-art technology
performance

Solve problems expeditiously as they arise. Perform within the budget by using limited funds
and resources.

Inspire and motivate the entire team. Optimize the mix of dedicated, shared, and contract
personnel.

Responsibilities of a Project Manager

In many organizations a project manager is viewed as the general manager for a project. To be effective

as a project manager, an individual must have management as well as technical skills. The project

manager has the overall responsible and accountable for the overall project but has little authority. Broad

responsibilities increase the need for information and collaboration, forcing the project manager to cut

cross organizational lines, just like a general manager.

The major responsibility of the project manager involves planning - considering trade-offs and resolving

conflicts. In most cases, the project manager provides overall or summary definitions of the work to be

accomplished, but the line managers (the true experts) do the detailed planning. Although project

managers cannot control or assign line resources, they must make sure that the resources are adequate and

scheduled to satisfy the needs of the project, not vice versa. As the architect of the project plan, the

project manager is responsible for

* Complete task definitions

* Resource requirement definitions

* Defining milestones

* Definition of end-item quality and reliability requirements

* Performance measurement

* Establishing the project vocabulary

* Pursuing opportunities and managing risk

* Ensuring project controls

* Ensuring visibility for the project

* Determining the content, frequency, and the detail of project status reviews

* Executing timely corrective action to correct variances from the plan

Project managers are responsible for project administration and, therefore, must establish the team

policies, procedures, rules, guidelines, and directives-to control the project. Establishing project

administrative requirements is also part of project planning.

Skills required for Project Manager

Peters and Waterman [iii] report a high correlation between project success and the leadership qualities

and/or authority level of the project manager. In many types of projects, leadership qualities are more

important than authority level. It is essential that the project manager operate as a manager/leader rather

than just as a coordinator/monitor. He or she must have well-defined, business inter-relationships with the

support managers participating in the project. The complex interpersonal relationships require that the

project manager be selected more on the basis of behavioral (e.g., negotiating and leadership) skills than

on technical skills. However, the project manager should be "conversant" in the project domain and

knowledgeable of the system engineering process. In addition to the skills identified, the project manager

should exhibit the following capabilities:

* Leadership and team building.

* Entrepreneurial and business acumen.

* Balance between technical and business capabilities (generalist).

* Planning, organizing, and administration abilities.

Project Essentials

All projects have a cycle. The cycle usually has Periods (such as Plan, Develop, and Production), and

Phases within the periods (such as Concept Definition and Verification). Project manager acts under

13

different capacity in each of these phases by decomposing the higher levels tasks and assigning them to

the team. There are proactive elements inherent in a project that requires planning as well as reactive

element of the project that requires control and adjustment. A project also depends on these four essential

elements that are interwoven during the entire project cycle

* Common vocabulary

* Teamwork.

* Project plan

* Leadership and management elements

Common vocabulary and teamwork are seen as perpetual properties of a project, while the project cycle

and management elements embody the sequential and situational properties.

Common Vocabulary: Describes the inherent norms and practices in a project. These form the basis of

the project work and helps resolve conflict between team members. It also provides a guideline of what is

acceptable practice during the course of the project. These are unspoken norms that are conspicuously

absent from the actual project plan but are very heavily impacted by the prevailing culture in the

organization.

Project Teamwork

Teamwork is often defined as working together to achieve a common goal and encompasses the following

fundamentals as well.

* Common goals: Building teamwork begins with clearly defining the group objectives and

outlining the various roles and responsibilities required to accomplish those objectives. Gaining

consensus at all levels of project is important to reveal and resolve conflicts. A common goal

therefore, is essential in planning, measuring and evaluating a project since all team members need

to be on the same page to perform effectively in the project environment.

* Acknowledged interdependency and mutual respect: In the team environment, mutual respect,

relationships, roles, and interdependencies are inextricable and need to be developed in concert

with other activities in order to resolve conflicts and remove ambiguity around roles and goals.

For interdependencies in the project environment to be recognized, there must be an acceptance

of, and respect for, the roles that must be filled by each team member
14

* A common code of conduct: The most obvious conduct issues are usually well-documented by

company or government policies. But they may not be well known to all team members. Adding

contractors and customers in the project requires the project manager to ensure there are no

potential problems and remove ambiguity around interdependency.

* Shared rewards: Shared recognition for all contributing team members on a successful project is

often far more important than a cash bonus. People are motivated to do a good job and to

cooperate with one another when they are confident that their individual, as well as team,

performance will be publicly recognized and appreciated by their peers and their management.

* Team spirit and energy: Independent thinking alone is not suited to the interdependent project

reality. Putting the team ahead of oneself, however, does not mean the elimination of strong

"pacesetters." A project manager's responsibility is to understand team members and extract the

collective energy of the team to achieve a common goal, at the same time channel assertive

personalities creatively as to not dominate the team. This sometimes involves subtle leadership

techniques.

Effective teams iv share several common characteristics. They can articulate their common goal which

they are committed to achieve. They acknowledge their interdependency coupled with mutual respect.

They have accepted a common set of boundaries on their actions-a common code of conduct for the

performance of the task. They have accepted the fact that there is one reward they will all share. Add team

spirit and a sense of enjoyment.

Project Plan

The project plan identifies the requirements, defines scope of work, identifies resources and presents a

schedule visually for team members and stakeholders. This is the phase where most of the planning and

scheduling work is done by the project manager. The essential items that go into a project plan are

* Requirements: Project requirements start with what the user really needs and end when those

needs are satisfied. In the end-to-end chain of specifications, there is an ongoing danger of

misunderstanding and ambiguity. The project customers control the definition of requirement,

and so, it is crucial for the project manager to correctly asses and educates users of what is

technically feasible in the scope of project.

* Risk: The project manager is also responsible for managing expectations of the users upfront and

responsible for communicating alternatives to mitigate risk inherent in the project. On an ongoing

basis the project manager's job is to proactively identify risk against the project baseline and

communicate the risk for corrective action by the stakeholders.

* Work Breakdown structure: The work breakdown structure depicts the subassemblies and

components of the high level requirements. It illustrates the way the project will be integrated,

assigned and statused. This forms the basis of project planning work including budgeting,

scheduling, cost allocation and reporting.

* Project Baseline: Given the set of requirements, allocated resources and time constrains the

project baseline serves as a benchmark for performance of the project. The project manager must

ensure that the plan is updated at all times, to communicate status to senior management and also

to seek additional resources if things fall behind.

* Project control: While monitoring the cost and project status is control; it is hardly project control

without proactive action. Controls can be in the form of funding, personnel conduct or quality. A

common technique used in software development used the gated approach to controlling a

project. With each successive step the project moves through different stages or gates satisfying

the appropriate standards.

* Status or Measurement: Project Statusing is the timely and comprehensive measurement of

project progress against the plan to determine the potential seriousness of any variances left

uncorrected. The main objective is to identify variances that require corrective action in order to

recover to plan. Cost, schedule and accuracy provide one set of discreet measurement. In addition,

reviews and checklists measure the non discreet elements of the project.

Leadership and management elements

Leadership and management elements are embedded in all stages of a project. In the context of project

management, leadership represents the ability to inspire--to ensure that project members are motivated-

on both the individual and the team level. Three primary aspects of project leadership:

* Situational leadership-the relationship of leadership to management.

* Techniques for inspiring and motivating individual and team performance.

* Style-determining and communicating your leadership style.

Other key elements of managing a project include

* Vision

* Creating a conducive project environment,

* Problem solving,

* Conflict resolution,

* Communication

* Interpersonal skills

* Motivating others

* Delegation

* Coaching

Communication and Information sharing

Beyond the elements described above, communication in a project team is an essential component to

successful implementation of a project. The project manager plays a central role in communicating with

all the participants of the project - from internal team members, management and external customers.

Communicating above and beyond the required status, the project manager is responsible to set

expectations with stakeholders in the form of project baseline, hold regular meetings and keep users

abreast with the changes in the project. Increased communication with all parties reduces scope creep and

creates one view of the expected outcome. Project manager is also the custodian of information within a

team and is responsible for sharing business and technical information with team members. A breakdown

in communication is one of key reasons why Brooks"'s law applies to project development.

Applying Favol's model to Project Management

Applying Fayol's model to the project management process gives us a better understanding of the process

in a project setting. These elements can be applied to every phase of the cycle and identify those

indispensable responsibilities of project management that are too often misunderstood, minimized, or

ignored in practice.

Fayol (1916) Project Environment setting

Project Team
Organizing

Project Teamwork

Project Planning

Planning Requirement

Opportunity and Risk Management

Controlling Project Control

Project Status
Coordinating

Project Communication

Commanding Corrective Action

Leadership

Table 2: Applying Fayol's elements to Project management

Project Control embodies those techniques that help ensure that events happen as planned, and that

unplanned events do not happen (proactive), whereas the three variance control elements define the means

for detecting and correcting unplanned results (reactive).

Project Management Toolkit

Drawing on the information above and using Fayol's principles as a guide, for a project to succeed the

following elements are necessary in any project management. Creating a toolkit that embodies all these

elements will ensure a smoother project management process. The toolkit does not take into account the

skill set of the team or the requirements for a project. Given that the requirement process is clearly

defined and the team members have the essential skills a project can be implemented with these elements

in a toolkit v .

- ~

Project Requirements covers both the creation and management of requirements. It includes requirement

identification, substantiation, concept selection, decomposition, definition, integration, verification, and

validation. Techniques and tools include decomposition analysis and resolution, requirements traceability,

accountability, modeling, and others. This element is situational rather than sequential since new

requirements are apt to be introduced at almost any point in the project to be managed concurrently with

the requirements driving development.

Project Teamwork considers the strengths and deficiencies of various project structures for example, how

each resolves accountabilities, responsibilities, and promotes teamwork and communications. There are

many options including matrix, integrated product teams, and integrated project teams. This element is

personnel-independent and provides the basis for selecting and changing the structure appropriately as the

project progresses through project cycle phases from concept to deactivation.

The Project Team element addresses staffing the organization. Selection criteria consider character traits,

qualifications, and the specific skills demanded by the challenges of each project phase. Competency

models that include necessary attributes and qualifications should form the basis of selection for key

positions such as the project manager. The best management approach may require that some key players

be changed as the project progresses through the cycle.

Project Planning starts with the team's conversion of project requirements into team task authorizations

including delivery schedules and resource requirements. Plans must be kept current, reflecting new

information and actual progress. The planning process should include both manual and computer tools

which support the development of the best tactical approach for accomplishing project objectives

consistent with the project cycle constraints.

Opportunity and Risk management is an important part of the overall planning process, yet it is often

ignored. This element encompasses the identification, evaluation, and management of both opportunities

and their associated risks. It includes techniques for determining and managing the planned actions to

enhance the opportunities and to mitigate the risks. Opportunities and risks may be identified at any point

in the project cycle, so the techniques and tools of this element must be applied perceptively as the project

progresses through the cycle

Project Control Controlling the project is necessary to ensure that planned events happen as planned and

that unplanned events don't happen at all. Controls must be proactive rather than reactive Categories of

controlled processes may include security, safety, requirements, manufacturing processes, software

development environment, schedule, cost, and so on. Reactive control consists of corrective action

initiated in response to unacceptable variances. Many projects fail when control systems are not

established or are circumvented.

Project Communication encompasses all of the techniques used by the project team and stakeholders to

gather data and disseminate information so as to ensure that the project team communicates effectively

and is informed as necessary about relevant project activity. It includes manual as well as electronic

techniques such as voice mail, e-mail, and video conferencing. The visibility system and associated

techniques must be designed to serve the active project phase, the organizational structure, and

geographic complexity.

Project status is not simply activity, but comprehensive measurements of performance against the plan to

detect unacceptable variances and determine the need for corrective action. Status should encompass

schedule, cost, technical, and business progress. The evaluation and measurement should also include the

rate of change of the variance if not corrected. Earned value and other systems are included in this

technique and tool set.

Corrective Action is the culmination of variance management and emphasizes that reactive management

is necessary and proper for effective project management. Corrective Actions are the actions taken to

return the project to plan and usually take place during Project Statusing, or shortly thereafter.

Project Leadership is the most important of the 10 project management elements. Leadership is the

mortar that holds together all other elements of project management and ensures that all the others are

properly implemented and effectively used. It represents the ability to inspire-to ensure that project

members are motivated on both the individual and team level to deliver as promised within the desired

project management culture. Leadership depends on the skillful application of techniques such as

handling different personalities and maturity levels, and team composition and rewards. If the team

members are fully trained in the worth of the elements and are believers in the process, then the need for

strong leadership is reduced.

Why projects fail?

Given the depth and breadth of research that has been conducted on the topic of project management, it is

still common place for projects to fail in an organization. From personal experience and from feedback

from project managers at IBMvii these are some of the most common reasons why projects fail in an

organization.

Project Failure due to Reality Applicable Toolkit

Element

Fictitious Project * Customers or executives typically dictate Project Planning

Schedule schedules

* Adjust scope or resource ($) to fit the

schedule

Changing * The Scope changed but the schedules did not Project Requirement

Requirements/scope creep * Code changes were made but were not Project Communication

communicated to the affected team members Project Control

* Changes were made on verbal request but Corrective action

were not reflected in documentation or

change request. This resulted in code out of

compliance with design document

* Balance stone walling (pretending nothing

can be changed) and approving all proposed

changes which causes major control

problems

Inaccurate Status Reports * Project status reports were written to please Opportunity and Risk

customers and executives and do not reflect Project Status

the actual state of the project Project Control

* Items submitted by perform resources are Project Leadership

changes to meaningless drivel by Project Project Teamwork

Managers who don't understand what has

been written

* The Project Managers appears to take credit

for activities completed in status reports

when the are actually performed by other

team members

Unrealistic expectations * Customers have unrealistic expectations on Project Planning

what will be delivered and its performance Project Status

Project Leadership

Lack of Communication * The PM does not encourage teamwork and Project Communication

and teamwork cooperation between the team members Project Leadership

* PM meets with the customer but doesn't Project Teamwork

communicate back to the perform team

* PM is in touch with what's really going on

* Does not call regular meetings for the team to

know what's going on

Lack of PM leadership * The PM understands the WWPMM but Project Leadership

skills does not have the necessary leadership

skills

* The PM does not have the business or

technical understanding needed to lead

the team

Wrong resources * The PM brought the wrong talent into the Project Team

project

* The PM does not address poorly

performing resources or those that are

detracting from the effectiveness of the

team

Table 3: Some common causes of why projects fail

These common problems suggest that a project is a complex and critical part for any product development

process. Ultimately a project manager bears the responsibility, even with limited authority, to manage all

aspects of the project to make it a success. Even in project driven industry and organizations, projects fail

and suggest that project management is still an art rather than science.

PART II
As discussed in PART I of the thesis, I have attempted to establish that the role of a project manager and

the project team is crucial to the project's success. However, recently with adoption of agile development

techniques using the concept of Self-Directed work teams has come into the lime light. Understanding

how Self Directed teams work and applying some of the best practices to project environment can help

organizations achieve the desired results without the overhead of managing. Reducing the overhead that

comes with managing project life cycle can greatly reduce cost and improve efficiency in bringing new

products to market sooner.

Self-Directed Work Teams (SDWT)

A self-directed work team is a small group of people empowered to manage themselves and their daily

work. Such teams are formal permanent organizational units. Team members typically not only handle

their current job responsibilities, but also plan and schedule their work, manage production, solve

problems, and share leadership responsibilities. A self-directed work team usually performs many

traditional support functions along with routine production or service.

SDWTs exhibit the following characteristics:

* The team performs specific tasks.

* Team members are multi-skilled.

* Team members are interdependent.

* Team members are in control of their daily, monthly, and yearly goals.

* The team's focus is on team results, not individual results.

* Team members rotate tasks because extensive cross-training enables them to perform many

different jobs.

* Management clearly defines the team's boundaries for task responsibilities and authority (for

example, hiring or firing members, or redefining work instructions, may be outside of the team's

authority).

* The team monitors and controls both its work quantity and quality.

* Each team understands the need for effective teaming behaviors.

Communication in Self Directed Work Teams

Information sharing is crucial in breaking paradigms that block effective employee-management

relationships and helps establish an open and honest communication environment which forms the

foundation for effective teamwork. The goal is a trust-based partnership with employees, and information

sharing that reinforces that trust. Sharing information openly with team enables team members to be open

to change and allow the team to adopt to change better. This also enhances the two-way communication

which is necessary to reap the benefits of the self-directed work team concept. Sharing information

openly results in

Common goals or Vision: When everyone has the same access to information, everyone in the team

understands the common goal.

Employee Empowerment: Employees better understand what is expected out of them and reduces

ambiguity around role and accountability. Clearly communicating responsibility and assigning

accountability, a team member is empowered and more involved in the project

Rewards and recognition: Recognizing and rewarding employees openly allows for healthy competition

in the team. Public recognition of a job well done goes a long way than simple remuneration, since it

builds confidence in the team adds to the reputation of an employee.

Change Management

Change should be something that people do, not something that is done to them. People are more

comfortable with change when they participate in planning for or implementing it. Since sufficient

investment in resources is required to implement change, by allowing employees to participate it gives the

employees a sense of control and reduces their fear of the coming change. Providing resources for

employees to coalesce around the change improves employee-employer relationship and reduces the

stress imposed by a limited resource environment. In addition, making training and development available

to team members ensures that effective change takes place - since team members now have the necessary

tools required to adapt to change.

Project Scope and control

With a common purpose and a clearly stated goal, self directed work teams can assess requirements better

and convert those into major milestones of the project. Open communication allows for better

participation from the team which in turn builds trust in the team and eventually reduces the overhead

associated with coordinating project tasks. This reduces the amount of control needed on the project

allowing for better project tracking and decision making.

Leadership in the Change Process

Management commitment and leadership are overwhelmingly the most critical factors in any cultural

change. Cultural change begins with the personal commitment and the active involvement of senior

management.

For self directed teams to function, management commitment and leadership are critical. Leadership in

the team is needed to set the right environment that fosters open dialogue and encourages knowledge

sharing. It sets a framework and an atmosphere for learning, open communication, trust building in the

team and promoting success through recognition.

Free and Open Source Software Development Model
The open source model has received increasing attention as an alternative to closed source development.

It is characterized by the transparency of development process and artifacts produced, as well as the

decentralized organizational structure through which a community of individuals coordinate their

activities. The decentralized team structure has all the characteristics of self directed work teams.

Background: Free and Open Source Software

The term open source as used by the Open Source Initiative (OSI) is defined using the Open Source

Definition"", which lists a number of rights which a license has to grant in order to constitute an open

source license. These include most notably, free redistribution, inclusion of source code to allow for

derived works which can be redistributed under the same license and integrity of author's source code.

GNU project, for example, is a copy-lefted software, which is free software whose distribution terms do

not let redistributors add any additional restrictions when they redistribute or modify the software. This

means that every copy of the software, even if it has been modified, must be free software, a prescription

embodied in the most well-known and important license, the GNU General Public License (GPL).

Introduction

Free and open source software (F/ OSS) is also intrinsically linked with the development of the Internet.

The relationship is symbiotic as much of the underlying software that makes up the Internet is F/OSS, and

yet F/OSS relies on the Internet for the dissemination of software, and communication between

developers and users. This is where these two concepts of virtual community and F/OSS meet. However,

F/OSS communities differ from other types of virtual communities because of their emphasis on software.

Likewise F/OSS development differs from traditional software development, largely due to the use of the

Internet as a development forum. F/OSS community is therefore a unique phenomenon, the details of

which can appear undefined and illusive.

The main ideas of this development model are described in the work of Eric Raymond's, The Cathedral

and the Bazaarx, in which he contrasts the traditional type of software development of a few people

planning a cathedral in splendid isolation with the new collaborative bazaar form of open source software

development. In this, a large number of developer-turned-users come together without monetary

compensation x to cooperate under a model of rigorous peer review and take advantage of parallel

debugging that leads to innovation and rapid advancement in developing and evolving software products.

26

The development models that evolved within the F/OSS community proved to be highly effective in

managing complex, highly distributed projects and facilitating communication and collaboration among

developers in a very diverse geographical and cultural environment ' .F/OSS development models were

based on the ideas of intensive communication between developers, large dependency on peer reviews,

and frequent release of source code. The F/OSS paradigm, based on cooperation and collaboration among

developers from all over the world, introduces methodologies and development models different from

those usually utilized within the proprietary software industry. A community of developers and users

share a common interest in a project and interact regularly with one another to share knowledge

collaboratively solve a common problemxii. Communities are at the core of what is described in as

collaborative innovation networksxi" (COINs), highly functional teams characterized by the principles of

meritocracy, consistency, and internal transparency. The progress of an open source project is

continuously tracked in a number of archives including code repositories, mailing lists, wikis, and bug

tracking lists.

Formation and Growth of Open Source communities

To gain a better understanding of the mechanisms underlying the growth of communities we need to look

at how communities form, grow and evolve Much insight in how developers participate in an open source

community can be gained by modeling them as social networks. A community is modeled as a network"'v,

in which nodes represent developers, and links or edges between nodes indicate that these developers

participate in the same project. A characteristic of many of these networks is that they are dominated by a

relatively small number of nodes linked to many other nodes. These nodes represent highly prolific

developers or "hubs." Such networks are also known as scale-free networks" . These networks give rise

to hubs due to preferential attachmentxv. Intuitively, as the network evolves, nodes will be more likely to

link to nodes that already have a large number of links, or a high degree in the network. The growth of an

open source community is explained in literature by a process of preferential attachment (Madey et al.,

2005), or selection through professional attentionv' (van Wendel de Joode, 2003). The conclusions drawn

about growth of communities are

* Larger communities will attract more new developers.

* Open source communities are dominated by a relatively small number of developers linked to

many other developers.

* New developers are more likely to link to well-connected developers. As a result, these well-

connected developers become even more connected.

* New communities (which have not yet established links with other communities) are more likely

to link to well-connected communities.

Tagging and copying mechanism (van Wendel de Joode, 2003) signal to other developers to join a

community. Reputation is an example of a Tag, which signals a certain level of knowledge or skill.

Members of an open source community are inclined to copy the behavior of members with a high

reputation. Thus, if a developer with a high reputation creates a project, other developers and users will be

attracted to participate in this project. The size of a community then itself becomes a tag and signals the

popularity of a project, in turn attracting further developers.

Open source Beliefs, Values and Norms

The Open source culture inherent in the development model is driven by a different set of beliefs and

values than traditional development model. The idea of openness and sharing has created a culture that

reduces conflict, power asymmetry and encourages participation.

Belief in Free Software :

The belief in free software appears to be a core motivator of free software developers. This belief is

manifested in electronic artifacts such as the Web pages, source code, GPL license, software design

diagrams, and accompanying articles on its website and elsewhere.

Belief in Freedom of Choice:

F/OSS developers are attracted to the occupation of F/OSS development for its freedom of choice in work

assignments. Participants to some degree can select the work they prefer. This belief is manifested in the

informal methods used to assign or select work in an F/OSS project.

Value in Community:

The beliefs in free software and freedom of choice foster a value in community. This value is evident, for

example, in the IRC archives when newcomers join GNUe offering suggestions or pointing out bugs, and

GNUe contributors quickly accept them as part of the community.

Value in Cooperative Work:

Open Source community's beliefs in free software and freedom of choice combined with the value in

community foster a value in cooperative work. Contributors work cooperatively to resolve conflicts

through the use of IRC and mailing lists.

Open Disclosure Norm

Open disclosure refers to the open content of the open source website including the software source code,

documentation, and archived records of IRC, Kernel Cousins, and mailing list interchanges.

Conversations between contributors is recorded on a daily basis and recorded for future reference.

Informal Management Norm

Except for large open source projects such as Linux or Apache foundations most other open source

projects have little alliance or sponsoring firms as a networked virtual organization. Most are some forms

of emergent organizations where participants work together contribute. Thus the participants self-organize

in a manner more like a meritocracy (Apache.org).

Immediate Acceptance of Outsider Critiques Norm

Openness and visibility to all aspects of the code means the community is more open to criticisms of the

code or procedures from outsiders.

Conflict Resolution

In most cases, conflicts are resolved without formal management techniques. At the same time, the beliefs

in free software are reinforced by people defending their positions and this, in turn, helps to perpetuate the

community.

Motivation to participate

In order to understand the success of Open source development model, it is essential to understand the

motivation to participate in an open source project. In general, community members perceive problem

solving as their primary reason for participating with F/OSS communitiesviii'. Another way is to view a

participant as a prosumer- a user who adapts and refines the software according to his or her needsxx. The

interaction of prosumers is determined by only low rivalry conditions and, therefore, by low opportunity
29

costs. Therefore, there must be a selective incentive for contributors-a benefit that only persons who

engage can reap. However, in low cost situations only a small selective advantage is needed and the free

revealing of the source code is favorable for the user-developer. Some of the key motivating factors are

compiled from literature can be split into three categories: technological, economical, and socio-political

using the framework" proposed by Feller and Fitzgeral (2000).

* Use : To fill a need for an application

* Reputation and signaling : A developer's status within the project depends on their performance

and, therefore, reputation reflects skills, talent, engagement, and all other important characteristics

from an employer 's point of view If a person's reputation is a valid indicator of his or her talent,

this reputation can act as a signal in the sense described above

* Community Identification: Identification with a group and its goals can explain an individual's

actions

* Learning: Open source projects have an appeal of programming at the edge of technological

innovation; promise to offer extraordinary learning opportunities. In addition, the peer review

system specific for the open source area provides timely feedback (e.g., identification of software

bugs or suggestions for code improvements) that increases the contributor's learning effect

* Altruism: Programmers sometimes engage in an open source project with motivations, for

example, because they use open source software and, thus, feel the obligation to reciprocate

* Fun: Open source developers program in their spare time because they consume "fun" with this

activity and, therefore, open source software is a by-product of this activity

While new participants to the community may sometimes be discouraged from participating due to a

feeling of inadequacy, it is the cycle of learning and sharing knowledge that allows them to become

experienced. Experience is what counts in these communities and as novices become experts, they can

then help others to increase their knowledge and make the same transition. In addition, sharing knowledge

and skills was also shown to be the prime expectation of community members. The use of F/OSS

communities as knowledge and skill sharing forums has been identified as an important reason for

participationxx .

Communication & Information Flow

In keeping with the Open norms, communication in Open source development model relies on frequent

interaction between the community members using mailing lists, forums, wikis and blogs. Automated

mailing lists range from development activities of projects and subprojects (Linux has about 81

Majordomo mailing lists for all flavors of open source projects currently undertakenx""). Using web as

the platform for development, by default, allows for easier reach and messaging on part of the

development community to attract new participants. This allows for more open and frequent

communication between the participants. Based on the research by Lakhani, K.R., & von Hippel, E.

(2003), the frequent interaction between the community lowers the opportunity cost and increases the

value of individual's participation thereby making development activity less costly than traditional

development models. The web provides a common medium to communicate with others in a uniform

manner. The community website provides a medium for all sorts of communication, from support

activities, documentation to project charter and mission statement. In this manner the website speaks in a

consistent manner and reaches out to the outside world with a clear message about the community of

developers. More recently the use of wikis and blogs allow for the developer community to reach out to

non technical community and raise awareness about the project.

Use of technology tools such as mailing lists, forums, wikis etc allow for information to flow openly and

with all participants having equal access to the information. There is no hoarding of information about the

development activities or status of projects, which empowers the participants to make decisions about

their involvement with the community. As more shared developers join new communities, they increase

the interaction between communities and facilitate inter-project communication flow.

Common Vocabulary

Open source communities consist of technical developers that are well versed in some of the most

common programming languages. C, C++, Java, Perl and PHP are widely used programming languages

and developers use a set of IDE (Integrated Development Environment) to code in these languages. The

significance of the IDE and common programming language is that it provides a common platform and a

template for users to understand the coding activity.

Coding Style Guides

Communities like Apache and Linux have coding style guides (Egyedi & van Wendel de Joode, 2004;

Kroah-Hartman, 2002). The coding style guides prescribe how a piece of source code should be styled.

Thus, the coding styles aim to achieve unified definitions and a single style of writing software among all

developers in a community. This uniformity or standardization reduces the time needed to understand

source code written by other participants and diminishes the need to communicate about a piece of

software. It thus increases independency in the communities and allows for a more decentralized

development effort.

Use of Comments

Adding comments to the code serves as a means to communicate the intent or functionality for the piece

of software code. Some of the IDE also provide boilerplate comments that enhance the code readability

and understanding. Adding comments to code works as a signaling function as well, as it enable the

author of the code to mark presence of inelegant code.

All these mechanisms provide a way in which participants understand the issues and communicate in a

uniform fashion with others. A common vocabulary encourages more involvement from the participant

and thereby reduces overhead required in development process.

Project Control

Large open source projects such as Linux or Apache comprise many subprojects which are associated

with an ecology of communities"' However, the communities have a common governance (Apache

Software Foundation for the Apache project), and often produce artifacts shared among all projects (such

as the Jakarta Commons in Apache).

User Participation

People spend little time to formally inform each other every time they start a new activity or continue on

someone else's work. Generally speaking, they ask no permission to start a project or consult others to

determine whether they believe a certain project is valuable. Instead, they simply do. Anyone with the

appropriate skills or the willingness to learn can be a software documentation writer, a developer, a tester,

and so forth. Participation requires a person to be technically oriented and a high level of requisite

knowledge for access, which renders the low entry boundaries effectively.

Contributions' Approval

Project maintainers within the F/OSS community rely on informal trust mechanisms and on their own

network of acquaintances and personal relations with contributors. These practices enable maintainers to

place some degree of trust in contributions from people they know. They may also initially start dealing

with a contributor's submissions skeptically, until this contributor establishes a reputation based on the

quality of his submissions. Afterwards, the project maintainer could increase his or her trust in this

contributor's submissions. Reputation may be transferable to other projects, although some projects might

require specialist skills and therefore would render the past reputation of the contributor useless.

Project Team

The fundamental difference is the role transformation of the people involved in a project. In proprietary

software projects, developers and users are clearly defined and strictly separated. In F/OSS projects, there

is no clear distinction between developers and users; all users are potential developers. Members of an

open source community play different roles, ranging from project leaders (maintainers) and core members

(contributors) to active and passive usersxxiv. Project leaders are often also the initiators of the project.

They oversee the direction of the project, and make the major development decisions. Core members

(contributors) are members who have made significant contributions to a project over time. Active users

comprise occasional developers and users who report bugs, but do not fix them. Passive users are all

remaining users who just use the system.

The distinct feature of role transformation in F/OSS projects leads to a different social structure. People

involved in a particular F/OSS project create a community around the project, bonded by their shared

interest in using and/or developing the system. Members of an F/OSS community assume certain roles by

themselves according to their individual ability and personal interest, rather than being assigned roles by

someone else. This elf selection of task is the distinctive advantage that F/OSS has over traditional

development method as claimed by Benkler'v (2002), because it enables the matching of the best

available person to a given job.

Project Leader

The project leader is often the person who has initiated the project. The project leader oversees the

direction of the whole project and makes most of the decisions about system development. Although all

other members in a project are free to contribute and provide feedback, it is up to the project leader to

decide which contribution should be included and which feedback should be addressed

Core Member

Core members are responsible for guiding and coordinating, collectively the development of an F/OSS

project. Core members are those people who have been involved with the project for a long time and have

made significant contributions to the development of the system. For example, PostgreSQL does not have

a single project leader. Instead, it has six core members who collectively decide the direction of the

system, and the inclusion of a new feature must be sponsored by one core member and approved by all

other core members.

Contributors

A contributor is simply someone who in some way has contributed to the project. You don't "resign" as

contributor, you simply stop contributing. As only committers have access rights to the repositories, a

committer must always approve the work of a contributor and perform the actual changes to the

repository. A contributor is free to choose the tasks (i.e., bugs) that seem most attractive to work on, and

websites and documentation in the two projects actively encourage people to do this.

Active Developer

Active developers regularly contribute new features and fix bugs; they are one of the major development

forces of F/OSS systems and work very closely with the project leader or core members Therefore, active

developers, whose capability is well regarded and trusted by the project leader and core members and

whose number is not very large, not only contribute their own code but also play an intermediary role.

Peripheral Developer

Peripheral developers occasionally contribute new functionality or fix bugs. Their contribution is

irregular, and the period of involvement is short and sporadic. The vast majority of developers make very

small contributions.

Committers

A committer is a developer with the right to add or change code in the repository. In both projects, you

have to demonstrate your competence first, typically by adding high-quality contributions for some time,

before being given CVS write access.

Bug Reporter

Bug reporters discover and report bugs. They do not fix the bugs themselves, nor do they necessarily read

source code. They assume the same role as testers of the traditional software development model.

Reader

Readers are active users of the system. They not only use the system, but also try to understand how the

system works by reading the source code. At the same time, readers are also acting as peer reviewers or

code inspectors who put implicit quality pressure on developers. Readers pay special attention to keeping

design simple, writing clear and high-quality code, following strict coding conventions, including

documentation, and adding examples to show how it should be run because they are all aware that

programmers worldwide will see their source code

Passive User

Passive users use the system in the same way as the users of proprietary software. They are attracted to

F/OSS mainly due to its high quality and its potential to be changed when needed. They are end-users

who use computing services whose implementation is based on F/OSS systems. Although they are not

members of an F/OSS community as they are not directly involved in using or developing the F/OSS

system, they have stakes in the F/OSS system because they depend on it.

Project Teamwork

Project initialization is done by the project or module owners, projects can also be viewed as modules (ex

Mozilla), where module owners are responsible for overall functioning of a module. In the project's

development phase, the application's core functionality is created. In this phase a core community is built

around the need of the project by members who have the same need for a solution. The community

members may be utilitarists as well as elite-contributors. Utilitarists contribute because they are interested

in the result and their engagement helps the project. Elite-contributors join for the fun of contributing or

learning.. In order for community building to occur, the project owner has to offer a credible project

vision and challenging tasks for the developers joining the project. The project establishes, more people

join to project to fill a specific user chosen role. These new set of participants are important to the project

and build the community's culture and identity. They also do the more tedious work essential to reach

project stability, for example, project documentation, usability tests, quality and release management, and

so on.

The "break-even" point in the project occurs when the project has gathered enough momentum to attract

reputation-motivated contributors. Once the project reaches stabilization project leaders only accept codes

that are unobjectionable and of outstanding quality. Thus, such projects indeed provide credible signals

for the outsiders and, therefore, are attractive for programmers who play the reputation game.

The ultimate proof that an open source project is both stable and successful is its inclusion into a

distribution or distro. A distributor selects an open source application only if it adds value to his

distribution on the one hand and if it is easy to install on the other. The first condition implies that the

distributor has enough clues that silent users demand this application. The latter condition means that the

project concerns not only about coding and architecture, but about documentation and packaging, too. To

avoid stagnation of project, the project continuously needs lead users so that it can evolve even in its

stable form. Whereas silent users only work with the stable releases of an application, lead users

download and install release candidates. Thus, they act as beta testers and provide helpful feedback to the

project if they find bugs or deficiencies. Lead users are elite-cooperators. They have fun using the newest

version of a slick tool long before others; at the same time they learn and build up valuable knowledge

about the application, its evolution, and hidden goodies and limitations.

In the later phase of the development stage, contributors enter the project who might be motivated rather

by fairness norms than by fun. The lead users' feedback drives the project to a considerable amount,

whereas a project without lead users will stagnate and decline within a short time. Lead users on the other

side are attracted by new features. Therefore, reputation-motivated contributors and lead users have a

reciprocal relationship: Reputation-motivated contributors implement the new features of an application,

which the lead users demand, whereas the latter provide the feedback and stimulate activity. Therefore,

lead users need a low-cost access to the source code or the application's installers as well as a credible

signal that the open source project in its actual form will persist. To conclude, as long as an open source

project succeeds in accomplishing heterogeneous needs, it can attract the differently motivated

contributors building a vibrant community required to make the project successful.

Coordination

Open source communities bring together a dispersed collection of people, sometimes a large number of

them, around the development of open source software. In the absence of enforceable formal structures,

like those found in corporate settings, understanding coordination between participates is essential for

success of the project. Most decisions are made on an individual basis by the participants and as software

becomes complex the interdependencies increases thereby increasing the need for collaboration and

coordination. However there are mechanisms in place that make coordination easier- notably modularity

and elegance.

Elegant Software code

Source code is either elegant or it is not. The more experienced and skilled software programmers are

claimed to be best judges of whether source code is elegant. Thus, although the number of lines of source

code is bound to increase when the functionality of software is enriched, an elegantly written piece of

software provides some counterforce to complexity and to a certain degree ensures that the code remains

relatively easy to understand and to change. This enables participants to make decisions without paying

36

more attention to reading and understanding source code than is strictly needed. It also allows people who

were not previously involved in the community to improve code without spending much time and effort

deciphering the source code.

Elegance also relieves the need for coordination and collaboration. Because the code is elegant, it is easy

to understand what the effects of a change in one part of the software will be for other parts. Elegance

allows developers to either adjust other parts of the software or to ask others to take a look at it.

Modular code

Modular software is divided into smaller pieces, building blocks, which together form a software

program. By clearly defining the module and its interface that connect to the module, the need for co-

ordination is reduced in development of project. Modularity reduces interdependency between developers

and allows them to work independently, thus reducing the costs of coordination.

Names Attached to Improvements

In every open source community, one or more mechanisms are adopted to relate participants to their

contributions. One such mechanism is the credits list, which contains the names of developers who have

contributed to the development of software. (Ex. Apache community). Connecting participants to their

contributions also fulfills a coordinative function. The contributor of the source code is known and thus

feels responsible for changes. He is also the most appropriate person to fix a problem with the code, if a

user of the source code discovers a bug.

Small and Incremental Patches

Another coordinative mechanism is the norm that developers should only contribute source code in small

and incremental patches. Keeping the patches small is important, as it makes it easier for others to

understand what the source code aims to achieve and how it intends to do so.

Mechanisms to Coordinate Massive Amount of Individual Efforts

F/OSS communities use a large and rather sophisticated infrastructure that supports their activities and, in

the process, coordinates their efforts with those being invested by hundreds if not thousands of other

developers. As communities start to grow and attract more and more participants, they tend to support

their activities with an increasingly sophisticated technical infrastructure. This infrastructure consists of

mechanisms that computerize coordination. Next to the technical infrastructure, participants have adopted

a number of devices that are related to a specific way of working. Many communities have further

adopted methodologies and standards to coordinate their individual efforts.
37

Versioning System

Most open source communities support their development and maintenance activities with a software

versioning system. Well-known examples of such systems are the concurrent versioning system (CVS),

subversion (SVN), and bit keeper. These systems are automated systems that allow remote access to the

source code and they enable multiple developers to work on the same version of the source code

simultaneously. Older versions of the source code are automatically stored in the system and can be used

as a backup. In these restricted communities, only participants with committer status can upload source

code. Basically, versioning systems support the decentralized development processxxvi in a number of

ways. First, participants can access the versioning system simultaneously. They do not have to wait until

another developer has finished working on the source code. Second, the presence of logs is important. The

log files provide participants with an explanation of how the source code works and what it intends to

accomplish. Third, the versioning systems allow participants to move back in the development line and

take an older version of the source code. This enables them to take out a commit that at a later stage of

development proves to be bad code. This last option effectively reduces the need for participants in the

community to monitor and analyze the value of every new commit. Versioning systems are systems that

support the development activities of individuals and allow multiple developers to simultaneously

improve a certain piece of source code. Adopting a versioning system thus reduces the need for

coordination among the participants in a community.

Automated mailing lists: One of the basic tools to support coordination in open source communities is

mailing lists. Every community has a number of mailing lists on which different issues are discussed.

These lists serve different purposes and target different audiences. Certain lists focus on users, providing

them with a forum to ask questions and receive answers. In short, the mailing lists provide the developers

with a forum to exchange and discuss their ideas, and they also give users a forum to ask questions and

receive answers.

Bug-Tracking Systems

Bugs are basically mistakes or flaws in a software program. Many software bugs are discovered while the

software is actually in use. Users of open source software often write a "bug report" when they come

across a mistake or when they find that something does not workxxii. More advanced bug-tracking

systems, for instance, have a format in which a bug report should be written. A report of the bug is then

stored in the system, where it awaits someone to fix the bug. Effectively, the more advanced systems

eliminate the need for people in the communities, first, to contact others and explain about the bug they

found and, second, to convince another developer to solve the bug.

To-Do Lists

Participants typically have many ideas about how a software program should work or what new features

should be added to a program. The only way these ideas are transformed into actual lines of source code

is by someone writing the source code.

The to-do list is a coordinative mechanism because it signals developers as to what others in the

community find important. Participants do not have to discuss and explain why they find the ideas

important. Instead, they just put the item on the to-do list. Others can take a look at the list and judge for

themselves what they find interesting and what they would like to work on. As such, the to-do list serves

as a marketplace in which demand, for example, for a certain feature, meets supply, namely participants

who have the knowledge, time, and motivation to develop the feature. To-do lists are another example of

a mechanism created and adopted with the goal of structuring the efforts of individuals in the

communities.

Tinderboxes

In order to be able to discover errors in newly committed code as fast as possible, some projects use

Tinderboxes to test build on different environments and hardware. Results from the process are

communicated to tinderbox websites automatically. This reduces the communication required to test a

system for different configurations.

Verification Machines

Supplementing the automatic and continuous tests performed by the tinderboxes, Mozilla follows a rather

strict procedure in which the source code in the trunk is tested on a daily basis. The tests follow this

scheme, according to Yeh (1999) and our own observations:

Website

A projects' websites has several important functions. It presents both the projects and the products (the

software) to the outside world, and it acts as a portal, making it possible for developers (and everyone

else) to locate and down- load all existing information (project documentation, manuals, and news)

related to the project.

Project Leadership

Generally, leadership is "given" to the person who makes the first lines of source code publicly available.

Other communities, like Apache, have leadership vested in a board of directors. The community members

periodically elect a new board of directors. Although the importance of project leaders is identified by

many, due to their limited influence over other participants, there is no universally accepted view of their

leadership ability. von Hippel and von Krogh (2003), argue that project leaders are different from most

managers in "traditional" companies, because they cannot enforce.

Project leadership is an important part in ensuring coordination among the contributors, as the project lead

performs many activities that benefit the joint development of the software. However, project owner's

actual influence over individual contributors is rather limited. In some F/OSS communities there are no

project sponsors or leaders but the community itself performs the leadership role collectively. This

characteristic-the fact that self-interested and individualistic behavior aggregates into collective

processes that benefit all.

Some projects employ several staff and management functions, i.e., people with more permanent

positions, including formal authority and obligations. A studyxxviii conducted on the FreeBSDxx"" shows

that there were 18 "official hats" covering everything from Public Relations to Standards.

Top-Level Management

In the case of Mozilla and FreeBSD the foundations are headed by groups comparable to the board of

directors found in traditional organizations. In Mozilla, this group is the Mozilla.org staff of 11 persons

(Mozilla Roles and Responsibilities, 2002)xxx:

" The Mozilla community is governed by a virtual management team made up of unpaid experts

and employees from a range of companies. Leadership roles are granted based on how active an

individual is within the community as well as the quality and nature of his or her contributions.

This meritocracy is a resilient and effective way to guide our global community. The different

community leadership roles include:

Module Owners and Peers

A module owner is someone who is responsible for leading the development of a module of code

or a community activity. This role requires a range of tasks, including approving patches to be

checked into the module or resolving conflicts among community members.

Release Drivers

Drivers provide project management for milestone releases. The drivers provide guidance to

developers as to which bug fixes are important for a given release and also make a range of tree

management decisions.

Super-Reviewers

Super-reviewers are a designated group of strong hackers who review code for its effects on the

overall state of the tree and adherence to Mozilla coding guidelines. Super-review generally

follows code review by the module owner, and the approval of a super-reviewer is generally

required to check in code.

Bugzilla Component Owners

A Bugzilla component owner is the default recipient of bugs filed against that component.

Component owners are expected to review bug reports regularly, reassign bugs to correct owners,

ensure test cases exist, track the progress toward resolving important fixes, and otherwise manage

the bugs in the component. The Bugzilla component owner and the related module owner may be

the same person, but in many cases they will be different."

Balancing Anarchy with Control

In keeping with the principle of openness, very little information seems to be kept secret with all

participants having equal access to project.

* Everyone can download every version of every file

* Everyone can monitor each file for who made which changes

* Test results are free for everyone to see

* Nearly all newsgroups and mailing lists can be read by everyone.

To address the risk related to the degrees of openness there are mechanisms in place that allow for quality

control and reduce risk, such as

* Every change to the repository is logged and reversible; and

* A considerable effort is put into detecting and correcting broken-build situations as quickly as

possible.

Quality

In OSS communities, the source code is treated as open that can be downloaded and modified by anyone.

This leads to a highly decentralized software development in which large numbers of people contribute

time and effort. Despite the highly decentralized and geographically-dispersed development process, the

software that is developed in some of the communities is of a high quality. Based on the research by

Lakhani and von Hippel (2003), the Apache and Linux software are said to be of a high quality. The

authors argue that the cost of participation in communities is relatively low and that the low level of

benefit may be enough for participants to contribute to the project.

In addition, automated test tools like tinderbox and verification machines are used in projects and the

results of the test are kept open and transparent as possible. This enables any user to validate the claims of

the maintainers and developers, by conducting these tests using the same mechanisms that were used in

producing them. Furthermore, users may customize the testing scenarios to match their own specific

requirements.

Comparing Traditional Project Development with Open Source Project Development

Projects developed using traditional or closed source approaches have well defined software processes.

Most follow some sort of development cycle such as waterfall model, prototyping model, spiral model

and more recently Rational Unified Process. These traditional models for managing the projects differ

with the development models in Open source

1. Unlike closed source projects, in F/OSS projects the number of contributors (programmers)

greatly varies in time, cannot be directly controlled, and cannot be predetermined by project

coordinators.

2. In any F/OSS project, any particular task at any particular instant can be performed either by a

new contributor or an old one who decides to contribute again. In addition, it has been shown that

almost all F/OSS projects have a dedicated team of programmers (core programmers) that perform

most of the contributions, especially in specific tasks (e.g., code writing), while their interest in the

project (judged by how often they contribute in the course of time) stays approximately the
xxxsame

3. In F/OSS projects, there is also no direct central control over the number of contributions per task

type or per project module. Anyone may choose any task (e.g., code writing, defect correction,

code testing/defect reporting, functional improving, etc.) and any project module to work on.

4. The allocation of contributions per task type and per project module depends on the following

sets of factors:

a. Factors pertaining to programmer profile or preference- some programmers may prefer

code testing to defect correcting. This also depends on the aptitude or preference of the

programmer to write code.

b. Project-specific factors - a contributor may wish to write code for a specific module

5. In F/OSS projects, because there is no strict plan or task assignment mechanism, the total number

of Lines of Code (LOC) written by each contributor varies significantly per contributor and per

time period, again in an uncontrolled manner. Therefore, project outputs such as LOC added,

number of defects, or number of reported defects is expected to have a much larger statistical

variance than in closed source projectsxxx"ii . This fact is not only due to the lack of strict planning,

but also to the much larger numbers and diverse profiles of contributors that participate in an

F/OSS project.

6. In most F/OSS projects there is no specific time plan or deadlines for project deliverables.

Therefore, the number of calendar days for the completion of a task varies greatly.

7. Submissions for changes or new code are sent by technically competent participants that

Application of an Project Management Toolkit in Open Source

Drawing on the information from Part I and using Fayol's principles as a guide, project management in

open source takes on a new meaning to managing project. Intemet serves as a visible and accessible

platform for project functions during the software development. With no individual i.e. project manager

responsible for the entire project, as in the case of traditional development model, but a number of people

contributing iteratively to the code, there is no central authority or role player in this model. In case of

Mozilla or Apache an organization governing body exists only as an overseer of the project that guides

the overall vision of the project. Developers contributing to the project also play different roles in the

development of the project and each member has access to the project information equally.

Project reviewer does not have the same level of responsibility as project manager in a traditional

development process. The project reviewer in open source model is responsible only for starting a project

but that does not guarantee that the work gets done. In addition, he/she has little influence over who

contributes to the project. Developers contribute to the project for reasons that are important to them like

solving a problem or have a need for the solution. A number of automated tools are used in

communicating, gathering requirements or statusing the project. The reliance on automated tool reduces

the need of communication and the open access of information reduces the amount of coordination

required, as compared to traditional project.. The toolkit presented here addresses the key elements that

ensure a smoother project management process in the open source community. In almost all the cases of

open source development the skill set of developers is at par or higher for what is needed to be

accomplished in the project.

Requirements are descriptions of the "desired features of the proposed system." They may be functional

(describing what the system should do) and non-functional (describing how a facility should be provided,

or how well, or to what level of quality). F/OSS projects usually lack an explicitly formulated

requirements specification (Bartkowiak, 2004), because most of the projects depend upon the

evolutionary development of requirements. Determining project requirements does not conflict with this

concept, and the recommendation simply suggests specifying the translated expectations in clearly

defined requirements that the project should meet. The initial formulation may capture only the essential

required functionality, and could develop through the same current evolutionary mechanisms. In order to

facilitate requirements approval, the maintainer may define an approval threshold for each document.

When the number of users who approved the requirements reaches the defined approval threshold, the

document status automatically changes into "Approved." This method of gathering requirements can be

thought of as a market based requirement gathering process. Since requirements that are approved by
44

members meet a threshold, it also means that the features included in the software are more aligned with

the needs of the market collectively rather than driven by individuals. Thus, comparing the requirement

gathering process in open source with traditional process, it is far more attuned to removing unwanted

functionality from the software since the requirements gets reviewed by members representing different

needs. If the need for a feature exists in the market it will be reflected in the number of approvals received

for the enhancement. In traditional development process, the needs of one person or group can

overshadow the actual need for an enhancement, because the person may have more control or authority

over the project.

Project Teamwork includes how teams resolve accountabilities, responsibilities, and promotes teamwork

and communications. In open source development the person who starts the project is ultimately

responsible for the success of the project. He/she however cannot assign developers to the project,

developers who contribute to the project do so only to "scratch an itch" or due to the altruistic reasons. A

number of signaling mechanisms are used to attract developers to contribute to the project, that include

reputation of the project leader, number of users already attached to a project, number of contributions

added to the project or recognition of code contributed to the project. Each of these factors contributes to

the success of the project. Each developer contributes a piece of the code that eventually gets committed

in a distro after it has been thoroughly tested by other community members. Communication between the

members is done using mailing lists, wikis and blogs that give users and developers enough information

about the project status. The members of the project team are in continuous state of flux, with new

members joining the project and making contributions on a small scale.

The Project Team in an open source development project is distributed across countries, regions and is

more flat in terms of organization structure. The project team itself is fluid over the course of the

development cycle, with members joining at different stages of the project. Additionally anyone can

become part of the team by contributing and subscribing to mailing lists. The project team consists of

members that are technically skilled at doing specific tasks. Team members perform different functions

required in release of code like contributor, developer, bug reporter, reviewer and tester. Sometime

multiple functions are performed by the same individual but in different capacity. In this setup no one

individual plays the role of project manager instead either a group of core contributors or the project

initiator influences the decision making. Influence is earned in the project by reputation of a developer,

based on his/her contribution in the past. Communication tools like wikis, blogs and mailing lists play an

important role between the members in the team. By allowing for more frequent interactions with team
45

members using these simple tools the cost associated with coordination reduces further and in turn

provides significant reward for team members to contribute more.

Project Planning The planning of the project revolves around the release management for software build.

Keeping with the motto of open source of 'release often, release early' the software goes through multiple

phases Alpha, Beta and production. Planning associated with release of the software requires planning in

distinct phases. Though no one person is responsible for the entire life cycle, the software is released after

review from users and core developers. Release planning can be time based driven or feature based

driven. A number of projects including Mozillaxxxiii , Ubuntu x"'x i and OpenOfficexxxv follow the time

based release model. In the case of Mozilla the typical release consists of six-week period, during which

the changes to the source code is allowed leading to an Alpha version of the coming release. A four week

period of code stabilization leads to Beta release. After that a three week period in which only "stop-ship"

bugs are found and fixed. From the start of this period, all changes must be accepted by drivers. After two

weeks, a release branch is made, separating final work on the coming release from work on the trunk, and

effectively marking the start of the next release project. If drivers don't think the release is of satisfactory

quality, this branch may be postponed.

It is possible to make changes to a release even after the release date, but this seldom happens. When it

does happen, it is most often when a bug-fix from the trunk leads to a similar bug-fix in the release branch

(called merging). These changes must still be accepted by drivers.

The project roadmap defines the list of requirements that are included in the release and the set of

activities that are needed to be performed for a release. The lists of requirements at the highest level are

defined in the project roadmap and the lower level project work was started by individuals looking to

contribute. Anyone can add a requirement to the project which is voted on by the members of the

community. Lower level planning around tasks such as resource allocation is not required in open source

model since no one person has the authority to allocate a task. The task only gets done if there are

members willing to contribute. An updated list of project level activity is maintained by members of the

project detailing what is included in the release branch.

Opportunity and Risk The most important artifact produced during the open source development is the

code that is combined into a build for a release. Since any member can participate and contribute to the

code, there is a risk in releasing buggy software. The project team minimizes this risk by using code

repository or versioning system and by thorough testing of the code by other members. The versioning

system allows for a change to be reverted or even removed from the code, thereby making sure that the

code that gets in has all the approval from the reviewers and tested thoroughly by testers. In addition, by

releasing patches or bug fixes often, the project ensures that the gap in functionality is covered. To

identify possible bugs or even opportunity the project relies on the participation from passive members or

users, once a bug is reported it is prioritized by project members.

Project Control Project control in open source is limited to guidelines for its members. No one person has

the authority or responsibility to control and report status of the project. Members of the community are

required to follow a set of guidelines but there is no control over how and when tasks associated with

projects get done. Log files are used in development and committing changes that clearly define the

change and the contributor. This information is available for all users to see which allows for little misuse

of the process of committing changes to a release

Project Communication include mailing lists, wikis and blogs associated with the project. The project

website is used heavily to communicate to users and project members on the status of the project. All

documentation created by the participants , rules and guideline , project roadmap, mission statement etc

are all shared openly and can be viewed by all through the project website. The use of mailing lists allows

for open communication between members in a cost effective manner. The website is also used as a

marketing tool by the project to enlist new members and to gather support for the project in the

community. Blogs and wikis allow for communication between the core developers with the other

members in the project. Projects also have automated mailing lists that are open for all to join and allow

for sharing of information amongst all members. Real time communication is done using Internet Relay

Chat IRC or through instant messaging that allows for frequent interactions that builds trust amongst

members and enables members to work independently.

Project status In open source development project website and color coded status of requirements and

bugs are used to communicate the status of the project. The overall release status of the project is

communicated by the project drivers and enhancement level status can be found in release document for

the current release. This includes the feature list, improvements and the criticality of an issue. Forums are

used in the case of Ubuntu development for details related to the status of individual items related to the

release. Measurements include the number of bugs identified, bugs fixed, project activity, number of users

participating, features requested etc.

Corrective Action Versioning systems such as CVS allow for corrective action to be taken on code that

has been committed. Since all changes are logged and reversible, versioning system allows for the code to

be corrected if a bug is found in a release. Though all members can contribute to the code, not all

members have the access to commit code in the repository. Members gain the privilege of a committer by

contributing quality submission to the project. By contributing bug free code to the project a member

gains the trust of the project owner and then given the privilege to commit to the repository. This process

insures that the right code is added to the repository and also allow for monitoring of the code checked-in

to the repository.

Project Leadership is often driven collectively by a group of core members and there is no single project

leader. Mozilla and Linux both have a governing council whose members are either selected by the group

members or have taken on the responsibility to lead the project. In most cases the project leadership

committee is not always fixed, membership to the committee changes frequently as new members win

support by majority by actively devoting their time and contribute to the project.

By applying the Project toolkit to open source development model it becomes clear that the role of a

project manager is greatly diminished. A project initiator or an owner can play the role of a project

manager in a traditional development model but the does not have the same amount of responsibility.

Internet serves as critical project environment that allows for some of the responsibilities associated with

a project manager to be performed by automated tools. The overarching concept of sharing information

leads to

* Decentralized development

* Integration with existing working methods

* Minimize administrative overheads

* "Light-touch" management

PART III

Open Source Project Management at Enterprise Level

Introduction and Background

Many companies face a problem in determining how to best adopt and deploy open source capabilities for

product development and e-business services. In the past few years, open source software has become a

viable solution for organizations, and is being increasingly adopted. This increased popularity has been of

Linux operating system and Apache web server has open source vendors (e.g., RedHat and SUSE) and

traditional software vendors (e.g., IBM and HP) to provide reliable support for open source solutions. The

increased popularity of these open source software can be attributed to impact the software has on the

business in terms of cost and its disruption to business users. Open source software has gained

prominence in the server-side application and projects in the horizontal domains such as Internet

applications, Internet applications developer tools and technical toolsxxxvi. These server-side applications

are best suited for technical community that has accepted the open source initiative with open arms as it

provides a low cost alternative to proprietary software. The reduced licensing fee also helps the IT

departments in organizations to reduce overall software expense in an organization. The maturity of these

open source software and the robustness of software to run enterprise application has enabled open source

software to make inroads into other enterprise software applications.

Since most of the cost associated with software development goes towards software development,

companies have started to look at open source development model as a sustainable model in the long run.

The benefit of collaborative development approach can greatly reduce overhead in large projects and

sharing source code through open source provides companies access to knowledge from the development

community. Another approach is to allow for collaboration within the company and keep the source code

internal. Both options reduce the size and scope of the potential community but can still provide

additional value.

A source license can be used to create a gated community: Anyone agreeing to it is in the community, and

anyone who does not is left outside the gate, unable to see and use the source code. This can be attractive

to the company that wrote the source code because it can still sell the software and retain all of its IP.

Whether this is attractive to outside developers depends on the other license terms.

49

The most restrictive source licenses only allow a licensee to look at the source code--a licensee does not

allow modifying or redistributing code. Even this little access can be useful if you are building other

software that must interoperate with the licensed software. The source code essentially provides

additional documentation and can aid debugging.

It can be to a company's benefit to open up the source code to everyone within the company. Access to a

product's source code provides documentation to those developing other products that must interoperate

with it. It can help in testing and fixing bugs. It can facilitate code reuse. In short, all of the same benefits

that outside companies can get by being able to see the source code are available with internal open

source. Even when sharing totally within a company, proposed changes must still be approved by the

project's core team or other people who have earned their trust. Sharing source code within a company is

much simpler than sharing it with those outside. One of the biggest benefits might be increased

communication between different parts of the company.

A deliberate attempt is needed to build an environment similar to open source community internally for

developers and users to collaborate. The attempt to participate in open source projects also conflicts with

a traditional company's existing work culture and structure. This focus on creating communities is a

major difference between enterprise open source and F/OSS. But if the attempt is successful one of the

key benefits is software reuse which creates a library of reusable software components maintained by a

code librarian. Once created for one project it can be reused in other unrelated projects and that results in

less costly development and reduced time to market for software products.

To understand if projects can be managed in companies without project managers, we need to look at the

open source development model in established traditional companies. To answer this need to investigate

under which circumstances and in which situations are open source development models a viable option?

What chances of survival of projects within companies pursuing a specific open source development

model? What role does technology play in enabling such project? How to create communities and build

products using open source model and so forth?

In order to understand some of these questions I looked at the open source initiative at IBM which has a

significant presence in open source projects. The two case studies look at projects on the server side and

on the desktop. Both these case studies address the core of the thesis around software development using

self directed teams and explain some of the key questions about the role of technology, project

management toolkit and the role of project manager in development of software applications. We first

look at the common factors that are embedded in both these case studies.

Analyzing Motivations on the Firm's Level

There are two main reasons for an employer to participate in open source project: The first reason is that

the firm needs a certain software solution for its own use. By opening the source code application or

joining an open source project, the firm can lower costs and spread risks. The second reason is that the

firm has a business model that builds on open source software. IBM made a strategic choice to adopt open

source development model internally after learning from Apache and Eclipse projects. Both these projects

gave IBM a say in building standards for Internet e-business and development tool for developing other

software products.

Use Value

Software developed in-house that has use value for the company and that does not represent any core

competency of the company, should not cause any losses if the source code is opened. Besides there is

possibility to lower costs, there is also the prospect of risk spreading by open sourcing code. By releasing

the application, the firm could spread the application's maintenance over various independent

contributors, thus minimizing the risk that the application goes out of date

A company will not succeed in building up a community around the application until the project reaches

stability. By committing to a project a company signals to the open source community that it has interests

in keeping the project viable. This support, even though with restrictive licensing, can attract reputation

seekers and lead users to participate. By implementing a dual licensing scheme for the project a company

can achieve its objective and still participate in open source. The commercial license makes the

application fit for commercial use whereas the open source license with a copy left clause guarantees the

continuous openness of the source code, thus making the contributions visible. The same consideration

holds for lead users.

Another strategy for companies planning to build up an open source community in the project's stable

stage could be to hand over the code ownership to a foundation. Even this ensures the source code's

continuous openness, thus making the project attractive for rent-seekers and lead users.

IBM's Motivation to Participate

IBM adopted the first approach with Apache web application server. After supporting the Apache

foundation, it attracted contributors who were looking to enhance functionality of the web server and used

key modules from the Apache web application server in its commercially available Websphere

Application server. The alliance benefited IBM and the Open source project mutually; Apache gained

over other web application servers by IBM's backing and IBM gained access to community of developers

at a relatively low cost. Eclipse is an example of the second approach, where IBM handed over control of

the development effort to Eclipse foundation. IBM gained by standardizing its Eclipse based development

tool and use it as the standard in developing other commercial products.

Business Models

The benefit of low cost and reduced overhead presents a viable alternative to proprietary software

development. Companies can succeed with the Open Source development approach by adopting some of

these prevent business models. These models are based on literature research made by Raymond (1999);

Hecker (1999)xxxvii; Leiteritz (2004)xxxviii; O'Mahony et al. (2005)xx""'; Weber (2004):

* Open source application provider: Application provider create software that they distribute

under the terms of an open source license. A company generates profit by giving away the

software for free and enlarges its application's user base thus increasing the market for the

complementary product.

* Loss leader: In the "Loss Leader" model, an application is given away as open source software to

improve the company's position in the software market. According to Hecker, the open source

product could increase the sales of the complementary software product "by helping build the

overall vendor brand and reputation, by making the traditional products more functional and

useful (in essence adding value to them), by increasing the overall base of developers and users

familiar with and loyal to the vendor's total product line" (Hecker, 1999).Ex. Netscape's open

source strategy with the Netscape/Mozilla Web browser is an example of this business model.

* Sell it, free it: The application is sold (i.e., distributed with a commercial license like any

commercial product) when it is ready for release. Later in the application's life cycle when a new

version is available the application source code of the older version is opened. Customers buying

the software pay a premium for the value of using the application earlier rather than later.

* Dual licensing: Application is available under commercial and open source license and the two

versions of the software address different target groups. The free version is intended for users that

get familiar with the software by installing and using it and thus preparing the market for it The

code base of the two versions is the same but the version with the commercial license delivers

additional support or product guarantees Ex. MySQL

* Widget frosting The complementary product is hardware. In a way, Linux represents the open

source software to sell Linux computers, that is, computers preconfigured with Linux, specially

designed for an optimal support of this operating system

* Service enabler: The complementary product is neither software nor hardware but a service that

generates the company's revenue stream. The company sells a service online and needs software

so that users can access the service. If the community enhances the client software and makes it

more user-friendly or ports it to new platforms, the market of this service will be expanded.

* Standard creation: If a company wants to create a technical standard it can safely use as a

foundation to build its proprietary applications, open source can play a crucial role. The company

that sponsored the code that builds the new standard can level the playing field for potential

competitors by open sourcing this code. Moreover, by making the code open source, the initiator

signals that contributors can participate in the negotiation about the future evolution of the

standard, thus providing incentives for other companies to join it. This strategy seems only

possible for big companies having a long-term policy and the perseverance to pursue it. An

example of this model from practice is IBM's sponsoring of the Eclipse open source project.

In other business models the company does not create software but profits as a free rider from open

source software and the open source movement. However, by selling their services, they popularize open

source software in many ways.

* Support sellers: Sell support for users of open source software. There are two versions known for

this business model: Distributors combine different open source applications to assorted and tested

distributions (i.e., media and hard copy documentation) that can be sold. Ex Red Hat. Another

variant of this business model, companies sell technical support for users of open source software.

This covers teaching, counseling, system integration, and system tuning, and so forth.

* Mediators: The strategy of an open source mediator is to operate a hardware and software (e.g.,

collaborative tools) platform where open source projects can be hosted. Gains can be obtained by

selling advertising space (banners). The more successful a platform is in terms of the amount of

participants, the more attractive it is for new participants. Having selected a certain platform, the

developer's willingness to change to another platform is very small, especially if the other

mediator hosts lesser projects and is frequented by lesser users. Ex. SourceForge.

Accessorizing: Companies pursuing this business model sell accessories associated with and

supportive of open source software. Ex. O'Reilly

IBM's Business Model

IBM's strategy in open source is a multifaceted approach that encompasses focuses on driving adoption of

open standards, extend open source products and create new market opportunities using open standards.

These broad strategic goals are driven by a desire for IBM to reduce cost in software development,

encourage adoption of Linux and create platform to attract developer community to contribute to projects.

Additionally, by using open source products in its software portfolio IBM plans to standardize software

development across its multiple product line and reduce overhead in developing its portfolio of software

product. By adopting open standards IBM hopes to attract larger participation from open source

community and drive adoption of its complementary products. IBM's go to market strategy using open

source software revolves around the Open source application provider, Dual licensing and service enable

business models.

IBM's participation in the Linux project is an example of Open source application provider strategy.

Since Linux offers the same robustness and reliability as a proprietary operating system, a large number

of IT departments in established companies view it as means to reduce overall IT cost. Some of these

large companies are also IBM clients, so it became necessary for IBM to follow its client and address

their need to implement Linux for them. By joining the Linux development effort, IBM could serve its

clients and address their need better. It also opened up a new avenue for IBM to distinguish itself from

other IT vendors, since there were few players in the market who could service this need of customers.

Eclipse is an example of service enable business model that IBM has adopted. By aligning with Eclipse

organization and opening its source code to developers, IBM gained by creating a standard Integrated

Development Environment (IDE) for its use in software development of its proprietary Lotus and

Rational products. Modules of Eclipse software are now used across its entire software product portfolio

which has led to reducing in cost developing, supporting and maintaining applications. Through code

reuse and modularization, it is much easier for IBM to integrate its different products better than its

competitors. In this manner IBM is not only able to reduce its cost but also offer an integrated solution to

its customers who are proactively looking for business solutions rather than piecemeal offerings from

vendors.

Apache is an example of Dual licensing business model. Apache is released under open source license

whereas websphere application server is released under commercial license. The dual licensing appeal to

the customers since it gives them a choice between getting software for free and getting a product with

commercial support and maintenance. With free software companies still have the overhead of applying

patches to the webserver.

IBM has identified a set of open source projects and standards that it wishes to participate in. These

projects have been chosen specifically to advance its growth through implementing the business models

mentioned above. Linux, Apache and Eclipse are some of the key external initiatives that it has

committed itself to apart from these IBM is involved in only those open source that either fill in a gap in

its product portfolio or increases its product adoption (ex. Sametime, Domino).

Having a business strategy specifically designed to address the open source software sends a clear signal

to competitors and developer community that IBM is serious in its effort to adopt open standards and

practices. This helps to build consensus internally and externally about IBM focus in open source

software development. This is critical for managers and executives that are looking at open source

development internally as it removes ambiguity around adoption of open source model.

Leadership

From a project management standpoint, project leadership is required to guide and sustain the effort

through the development life cycle. Commitment from senior executives ensures that open source project

will not be abandoned midway. In addition, leadership plays a critical role in getting the necessary buy-in

from different stakeholders. IBM's commitment to open source software is evident by creating an open

source software community whose members are responsible for driving the initiative internally and also

partner with developers externally. The role of the leadership committee is to provide

Clear goals: a set of guiding principles that govern the entire development process. These goals

clearly explain the use, participation and conduct of IBMers in open source development projects.

Unambiguous goals also help in creating policy that covers licensing, employee participation,

collaboration with third party and provides an environment of trust within the community of

developers.

Strict guidelines: The open source software committee has created strict guidelines around sharing

source, licensing of source code, approval process for participation and use of open source

software. By requiring its employees to adhere to these guidelines, IBM reduces its risk of

copyright violation or unauthorized participation of employees.

Processes: The leadership committee has created approval process required by employees and

reviewer of codes to reduce the risk of exposure to copyright violations. Each project is reviewed

by three levels of review committees before any open source code is shared externally or

internally. The open source committee has provided automated tools to ensure the controls added

to the process are followed and that exceptions are raised and reviewed. Automated workflow

tools allow the committee to be proactive rather than reactive to situations of conflict in the project

environment. Additionally projects submitted are reviewed for legal implication related to

licensing, scanned to remove unauthorized code and patent any new innovative solution. Project

owner also has access to a list of experts and authorities including legal to resolve any discrepancy

that may arise during or before the project. These processes are designed specifically to reduce any

risk of violation and at the same time to seek opportunities to improve IBM's patent portfolio.

Licensing

The different licensing schemes under which a product is created and released are clearly communicated

to participants of the internal open source community. The licensing schemes are color coded to highlight

the degree of control over source code. This does not prohibit users from participating in communities but

in a way it signals to management the exposure associated with a project. Some of the most critical

projects are controlled with restricted licensing to protect IP but at the same time controls are put in place

to encourage participation from contributors.

Participation: IBM employees can participate in open source project internally or externally, though

each requires a different process to participate. Within each IBM division there are groups that are

implementing IBM open source strategy and developers from those teams participate regularly with

external developers. Developers working exclusively on Linux and Eclipse projects are required to

participate with external developers and their business commitment for the year are aligned with the

division's objective to pursue open source code development. Training is provided to these developers to

ensure compliance with IBM's open source effort. Developers in this category frequently communicate

with outside developers as in the case of any open source project. A developer is assigned to an open

source project that meets a goal of the division and the developer is limited to participating only to that

project. A secondary e-mail address is provided to the developer to communicate with external developers

and the e-mail is granted access to mailing lists for the project. For all internal communication developer

has to use his primary internal e-mail id. These dual ids allow developers to collaborate with external

developers and reduce the risk of unauthorized leaks or access for IBM. Each developer's participation

internally or externally is approved by his/her manager for each project. The developer can still

participate externally in any other project but can do so using his/her personal id. Developers can initiate

new projects internally after it has been reviewed by local legal counsel and systems manager.

Employees, not assigned to open source projects mentioned above, can participate in internal projects on

their personal time after an approval from their managers. The projects are hosted internally and can have

licensing ranging from restrictive (IBM internal) to GNU (open source). This set of developers can

collaborate with others only internally though the IBM's Internal Open Source Bazaar (IIOSB). This

ensures that the exiting management is aware of employee participation and does not take away time from

employees main responsibility.

Project Visibility

Information about internal projects is available for all employees and does not require any approval. Any

employee in IBM can access documentation to learn more about opportunities to participate or read and

download code to learn more. The documentation available ensures sharing of knowledge in parts of the

organization and exposes employees to open source development process. This approach helps IBM to

transfer knowledge between different divisions and geographies and improves the skills of developers

across the organization. Documentation also includes information on acceptable norms and behavior in

open source for new comers to ease into the open source community.

Building Community

Communities play the critical role of driving a project in open source, but building communities of

developers internally is very different from building communities on internet. To aid in the process of

building communities and connect geographically distributed employees, IBM has created a task

brokering and volunteering system. The goal of the system is to allow employees to collaborate with

others internally similar to an open source community. The system enables users to post a task, volunteer

for a task, create a team and volunteer for a team. The main idea behind it is to build a social collaborative

space in the company to

* Aggregate volunteer opportunities

* Broker Tasks

Employees can volunteer to participate in tasks that interest him/her or work in teams to solve a problem

posed by others. Both these mechanisms address the key motivations for developers to participate in open

source communities i.e. contribute to community and solve problem. The system facilitates grass roots

collaboration out side of management hierarchy. The aim of the system is help employees make

connections with people, through volunteering, to get work done.

Signaling: Similar to open source communities signaling is used in the system to attract users to

participate. These include

* Tags that identify project

* Number of people enrolled in a project

* Color coded messages to highlight criticality

Task Detail: The website allows users to browse tasks, view projects of interest, enter profile information

and post tasks. Depending on individual's interest, he/she the system recommends tasks that match his/her

profile or recommend projects that others with similar interests are participating in.

Team Building: The system is intended to create relationship through volunteering - to get work done. It is

different from other collaborative approaches used internally like Jams -to hold, sort and discuss ideas.

The system is centered on the idea of users volunteering for work usually out side of the scope of their

day-to-day jobs. In this the system provides a vehicle for people to expand their job scope, network,

reputation, and skills.

Building Reputation

Collaborative approach in open source development relies on meritocracy based on reputation. IBM

developers participating in open source development are motivated to build their reputation in the online

external communities. This reputation translates internally to job role or job title in IBM. I have identified

IT architectsx" and technologistsxi who participate in IBM open source projects and are playing an

important role in the open source community. The IIOSB platform details information about the

developer including membership history and past projects.

For non developers or developers not involved with open source projects building reputation among the

internal community can be difficult. People need to work together to build trust and building trust then

translates into reputation of the person. To solve this issue IBM has created a Web 2.0 social networking

internal site that helps employees connect with each other. The system relies on a commonly used chat

tool plug-in to understand a user's team member by studying frequency of communication with others.

The web site has a profile page similar to that of any social networking site which lists a user's interest

and skills. These skills are identified by the user and can range from technical skills to interpersonal to

specific subject matter. The chat plug-in requests team members to rate a person's skill level based for the

skills entered by the user on the social website and annonomizes the results to come up with a score. This

score is then compared to other developer's score with similar skills and ranked as top 10%, top 20% and

so on. The ranked score translates to a developer's reputation. . It also request specific feedback related to

user's performance in the team. The reputation and specific feedback is displayed on the user's profile

page on the social networking site.

In this manner the chat plug-in carries over a user's reputation in all collaborative effort the user is

involved in. This system is also integrated with IIOSB and the task bartering system and carries the

developer's reputation to the open source development model. Team members look at this reputation to

gauge skill level of a new user.

Reward

All IBM employees are eligible for profit sharing and reward based on performance. At the beginning of

the year all employees commit to a set of goals to achieve for the year that align with the business

objective of the group or division. Employees participating in the open source development effort (Linux,

Eclipse) therefore commit to goals that are based on their performance in the development of open source

software. These goals are then approved by the developer's manager. Since participation in open source is

under the supervision of the manager and the manager is involved with the developer's project

undertaking, developer's performance is judged on the committed goals at the end of the year. This

method of appraisal is no different from ant traditional approach in traditional software development.

Employees that participate in open source projects in their personal free time do not gain any monetary

benefit in participating in open source project. They can add skills and build reputation to their profile

which can in turn help them advance their career, but they are only appraised on the goals that they

committed to on traditional projects.

If developer's join open source projects on their personal time they may or may not choose to work on a

task even after joining a team. Team members in these projects don't have any authority over what role

others play and no control over when the task is completed. This is similar to F/OSS model where no one

has any authority over others action, if team members choose to pick a task it gets done otherwise the task

does not get done. Therefore unsatisfactory performance by a team member can only result into lower

reputation of the developer but not lesser monetary compensation. The developer gets compensated based

on his/her performance on his primary responsibilities in the traditional model.

Automating Project Management

IBM uses automated tool to manage the project activities that are performed by project manager such as

communication, statusing, monitoring of tasks and gathering requirements. IBM's Internal Open Source

Software Bazaar (IIOSB) is used to host open source projects internally and is based on GForgexlii by

GForge Group tool that provides the collaborative development environment. The site supports hundreds

of projects and thousands of developers working on open-source projects that IBM doesn't want exposed

to outside parties. Case studies used in this thesis look at two examples of how IBM is using the Open

Source development process internally and supplement the role of a project manage using this

development tool in managing the projects.

The GForge AS is completely rebuilt to make a modem, extensible platform with an intuitive interface

that ties together a huge toolset, from Source Code Management (SCM) to extremely customizable

Trackers, Task Managers, Document Managers, Forums, and Mailing Lists. All of these are controlled by

a centralized permission system and maintained automatically by the system.

COLLABORATIOW
Among Dvken g

OUTPUT
Rae.aste v End Users

AUTENTCATION ACCESS
*i Cotpotei LAP F -t H int an' OAP

SOURCE CODE
CVS, S~b-Verson,

and Clear Case

U"~ 1*P* , W. - LC

Figure 3: G-Forge collaborative automated tool components

CONTROL
Fcr Managers

The collaboration tool automates a number of tasks that are performed in a project environment and

publishes information on the web for all participants of the community to view. The main features of the

tool are

* Create project

* Edit your trackers, or create new trackers, fields, and values in your fields

* Edit your 'roles' and 'Observer' settings to set permissions and access levels

* Add members to your project

* Plan releases

* Create tasks in your Task Manager and use MS Project to estimate ETA on completing them

* Start writing your code and commit code linked to your defined tasks

* Build and release code using the File Release System

* Log defects against the releases

* commit changes and link the changes to the defects

Both case studies attempt to understand automating project management function internally, focusing on

projects that are not directly involved with Linux, Apache or Eclipse development. The first case study

was chosen since it uses a mixed Open source licensing for developing internal application using code

from external source. The code with this licensing remains internal to IBM. The application uses Linux

code in the project to build an internal application using open source methodology of collaboration. This

is an active project (70%+ activity based on contributions and communication via mailing list) that is

driven by time based release of software builds on the client side in a client server architecture model.

The second case study was chosen since it uses an IBM Public License (IPL) or CPL (Common Public

License) and the code for it will be released externally to open source. This is a server side application

that is driven by functionality. This project has had little activity after the first release.

Case Study: Analysis of Linux based desktop client
Developing the desktop software occurs through the IIOSB portal that serves as a global information-

sharing workplace and collaborative software development environment.

Smanyi HorPe page Tracker LUsts ! Tasks I Docs i News i SCM : Milestones ! Guidelines

Identify/define the requirements for a standard client (Client for e-business) that will meet the needs of the IBM internal Linux development community.
Architect an Linux Install service to deliver the Linux C4eb image.

Project Map categorization:

" Development Status: 5 - Produciron/Stable
* Environment: Gnram, KDE

* Intended Audience:Dsaers, End Users(Desktdo, System Administrators

SLicense: IBM InternaVMixed OSS
* Operating System: Lim. j
" Topic: Desktop Environment. OfficeBusierss, Software Distribution

Registered: 2000-05-03 00:30
Activity Percentile: 71.07%
View project Statisti or Activty.
View list of gSS s available for this project

SScre enshot 1 inux deskn 5 toap client Home page on IIOSB ee WE anou er u a n pA colection of submitted feature requests

Project inibootiatorbe CD-ROM) bgs & ature requestsan individual or a team that are responsible for the project. The project owner

Te tt comprise the C4eB layer of applicetions Team has started devekopmpnt on an "Ope, Chientfor Lrwnx Fedora9 iton' are

deides the licensing for the project which then determines the of th e ode in the fture. More

Screenshot 1: Linux desk prtop client Homuses a less restrictive licensing it can include other open source code outsideSB

IBM and the code will be available externally. Contributors join the project directly by signing up at

IIOSB or through the task brokering system. The project team is an emergent one where team members

have in a sense discovered each other, and have brought together their individual competencies and

contributions. Corporate executive has little administrative authority to determine:

* Project scope

- L

* Project schedule

* Tasks and resource determination

* Task and resource assignment

* Evaluating project team performance

The project follows a time based release with input from project admin, core developers and the IBM

Open source Software committee. These release dates are used to create a project roadmap and shared

with all members of the project team. The project admin and core developers influence the team members

to deliver individual tasks and encourage user participation to meet the release date. Production ready

commits to the code on the release date are taken into the build and released to the user. Admin and core

developers divide the tasks into smaller tasks that can be picked up by developers, contributors and casual

volunteers. Keeping the tasks small and manageable reduces the administrative overhead required to

sustain ongoing software development and encourages participants to interact more frequently. Frequent

interactions lead to trust amongst the team members and helps build reputation of the participants.

Applying Fayol's principles and project management toolkit

Applying Fayol's 5 principles to IBM open source initiative and using the project management toolkit as

a viewing lens, it becomes clear that IBM's application of open source development approach is similar to

the F/OSS in some ways and a hybrid of traditional and F/OSS for some aspects of project management.

Planning

According to Fayol's five principles, Planning consists of Requirements and Opportunities and Risk

Management in IM's open source approach. Both Requirement and Opportunities and risks are proactive

components of project management. A project manager is responsible for crating a baseline plan by

understanding the requirements and determining scope according to the requirements.

Project manager is required to understand risks in the project and has to take proactive steps to mitigate

these risks through out the project lifecycle. In IBM's Open source projects, risks and opportunities are

constantly evaluated and acted upon by project team through out the project.

Both of these steps are performed in IBM open source projects similar to F/OSS.

Requirements

Requirements can be added to the project by any participating member of the IIOSB community. Each

requirement details the tasks and importance of the requirement to the project. Since members of the

project are technical developers, these requirements are generated by users of the code that have a need

for a better solution. Project team then votes on the requirement, if the requirement meets the threshold it

is then reviewed by group of core members and reviewers. The requirement is then assigned priority

based on the recommendation from project admin, core developers and reviewers. For time based release

projects the requirement can be added to the current release or postponed for the next release depending

on the need and criticality of the requirement. Once the requirement is accepted in the release and

participant can contribute to the code for the requirement.

In reviewing the requirements for the Linux desktop, it becomes clear that the requirements are more

technical and posted by technical developers since it includes references to the code. These technical

developers are interested in improving the functionality of the application to suit their needs. The fact that

these developers are technical is demonstrated by looking at their job title and a number of them belong to

the IBM global services organization, the group, which is using Linux in its data centers supporting

external clients running Linux. To submit the requirement a developer needs to sign in to the IIOSB web

site and add the details about the requirement. Information such as submitter's name, date submitted and a

brief description of the requirement is displayed in the IIOSB tool for others to vote on. An e-mail

message to all the project members is sent with the description of the problem with an action to vote on

the requirement. If the number of votes adds up to the threshold level set by the admin at the start of the

project, another system generated e-mail is sent to the admin and core developers to assign priority to the

requirement. The project admin and core developers then review the requirement an d assign priority to

the requirement. The priority is another way to highlight what is critical to the project or must have for the

application. A color coded priority mechanism developers signals to the developers where to direct their

effort and have the maximum impact on the application though it does not limit code contribution to non

critical requirements. A priority coded as a 1 is colored red and has the highest priority determined by the

admin.

This mechanism of assigning priority by users of the system ensures that the requirements are in line with

the project's scope. Voting and prioritizing of the requirement by application users also ensures that there

is a need for a particular requirement, a need that is more in line with the project's expectation. This is

different from traditional approach where a group of project stakeholders decide on the priority based on

factors such as submitter's position or submitter's relationship to funding organization. In my view
64

requirements that bubble up to the top by voting are based on the market needs rather than internal needs

of the project.

Cde by: lto i£2 AcQEi]

Screenshot 2 : Requirements gathering for Linux based Desktop

Project Planning

Linux desktop project follows a project roadmap that has been prepared with project admin and business

division executives that are responsible to drive the Linux adoption internal in IBM. This is an executive

committee that has the overall responsibility to lead the project to success. The roadmap offers a clear

view of how application will be adopted in the organization and reaches technical maturity to be

enterprise ready. This roadmap is used by developers to assign priority to the requirements added by users

of developers of the system. This approach differs greatly from the F/OSS development approach where

there is no to-do list maintained and whatever production ready code is committed is added to the release.

The executive committee plays the role of overseer of the project with the responsibility of reaching the

strategic goal for the company and also a guide responsible for charting a path for the application

internally.

__ _

Feb Mar Apr May Jun i Aug 'Sep Oct

Open Client
RHEL 1.x

Open Client OC 2.3
RHEL 2.x X

Open Client
Fedora

Open Client
RHEL 3 beta

OC Debian OCDC-Intreid OCDC
Community iBeta Intreid

i jc~GA

OC

OC
F10
Beta

GA

OC F11 Beta OC F11 OC
RC F1I

......................................

OCDC-launt ODC
Beta Jaut

GA

DCh6 !OCDCi iiKarmic Karrnic
Be 1 a

Screenshot 3 : Project Roadmap for Linux based Desktop

Screenshot 4 : Project milestone for Linux based Desktop

2009 Roadmap

Jan Nov Dec

IC

- -- -~...........~....~~~ .

Opportunity and Risk:

A buggy code present the biggest risk to any software development effort and in internal open source

project at IBM this risk is handled automatically using Code versioning system that track the changes

made to the code. Similar to F/OSS approach, users have to gain a reputation of producing bug free code

before they are granted a status to commit code in the archive. The CVS has the ability to reconcile the

code submitted by multiple users for the same module and highlight the differences and apply the patch to

the final code, thus limiting the need for co-ordination and at the same time giving users access to

information about the code changes. CVS system also allows for code to be revered back to the last

successful version of the code, which gives the admin the ability to undo a change in the software is a bug

is detected after a release of the code. Using the automated tool in this manner reduces the overall risk of

the project and at the same time provides visibility to the changes to all.

Code released and hosted on the IIOSB website is available for all users to download and is not restricted

to the project members. So anyone who wants to contribute to the project or understand the functionality

of the code has equal access to the code repository This mechanism allows for non-project members to

participate in the project give valuable feedback related to code performance, bugs or improvements to be

added. Using the IIOSB website in this manner reduces the risk associated with a buggy code and at the

same time opens the project to valuable input from new set of users of the code.

Organizing
The key component of the project is the project team. In IBM the approach to organizing is based on Self-

directed working teams in the project environment, but there are some elements of traditional approach to

managing and forming teams.

Project Team

Since the Linux desktop project is critical to IBM's long term open source strategy, a group of executives

play an important role in guiding the project. They are responsible for reviewing the project status and

creating a project roadmap for development and adoption across IBM. The executive team however does

not play a role in assigning a project admin or choosing core developers. It also does not restrict

participation of developers to the project. It does, however verify that the code generated is reviewed by

IBM's legal team since it uses outside open source code internally to build the application. Since the

desktop application is to be used internally it does not need as through a review as something that would

be released to open source community.

The project team is consists of project admin and core set of developers who have similar needs and are

familiar with Linux environment. As displayed in their position title, most of the project team members

are developers or server administrators that should have experience with Linux operating system. Project

community is based on skill meritocracy where members of the team follow few explicit rules about what

development tasks should be performed, who should perform, when, why, or how. As members contribute

to the system they gain the trust of the project admin and are given authority to become part of core

developers and have commit access to code repository. The project team is fairly stable throughout the

project lifecycle which is different from an open source project where the team is always fluid. Besides

the roles mentioned above project team consists of reviewers, testers, document editors and passive users.

Administration of the project also involves the systems manager of the division that intends to use the

application and an IBM legal counsel. Legal counsel ensures the licensing use for the project and the

systems managers ensure that the project meets the needs of the division.

If you would like to con ute to th project by becoming a developer, contact one of the project admin, designated in bold text below.

Andre Fenandes De Maedo a a tacSa eior Develope

Anton Piatek anta ak uk nn Ia r

Pitiel Fean-dos Berdee kmonoa dc

Dorl n dft4. *t4AMif1M 'Senior Oevelot

David Nooler sighr n2 M op-

Frank Bageh rn ach o Senior Developer

s tre r rr SIenus.aibacIo ssor Developer

cAY V w l ft .Ktbao m Senor Developer

Ctavo Yokoyame olib esS"o ribomseoeep

Aediael Uttle mt malusbmom Admin

Screenshot 5 : Project team members for Linux based Desktop

Project Teamwork

A project initiator or admin starts a project and completes a checklist to identify the suitable licensing

type, operating system, intended audience and the environment. The project admin is ultimately

responsible for the success of the project but cannot assign tasks to others - similar to open source

development. Participants nearer the project core have greater control and discretionary decision-making

68

___ __

authority, compared to those further from the core. However, realizing such authority comes at the price

of higher commitment of personal resources such as the ability to convince other participants to the

viability of a decision, take position on issues, communicate and create project content. Thus, developers

possessing and exercising such skill may be intrinsically motivated to sustain the evolutionary

development of their project so long as they are active participants in the project community.

Once the project is initiated the admin relies on core developers to contribute to the project and esters to

test for functionality. The contributors of the project have to adhere to the IBM's internal open source

guidelines but there are no rules to govern the collective action of the participants within the project.

Similar to an open source project, the Linux desktop project participants contribute iteratively to the code

and cannot be assigned a task. Depending on the task or based on previous performance of the project

admin, contributors join the project team. A number of signaling mechanisms are used to attract

developers to contribute to the project, that include reputation of the project leader, number of users

already attached to a project, number of contributions added to the project or recognition of code

contributed to the project. Project members contribute to the project and earn the right to add to a release

and get commit access to CVS repository. The project member has the ability to assign access to commit

code to CVS and in most cases only trusted members of the team get the commit access.

A task is accomplished when there are participants interested in coding the requirement and testers

willing to test the change. The IIOSB and the internal social networking website provide the project team

an assessment of a developer's contribution and a measure of his/her reputation in contributing to open

source projects in the past.

Before the release of the application project administrator reviews the high level changes to the code with

the systems manager to ensure that the project adheres to the project roadmap. The legal counsel ensures

that the code used in development meets the licensing requirements.

The team members resolve conflicts by continuously-negotiating with each other by communicating

frequently with others thereby encouraging cooperation and coming to a resolution. The IIOSB portal

allows for collaboration with team members using mailing lists, wikis, and blogs and allows for frequent

communication with the members of the project.

Controlling
The rules of governance and control in the IIOSB projects are clearly articulated and recognized by

project participants. These rules serve to control the rights and privileges that developers share or delegate
69

to one another in areas such as who can commit source code to the project's shared repository for release

and redistribution.

All projects internally developed using the open source model is controlled to some degree depending f

the licensing assigned to the project. Project with restrictive open source licensing that are intended for

internal IBM use only, are controlled to ensure they follow the project path for development internally.

Projects with less restrictive open source licensing are controlled and reviewed at different levels by

executives and legal team to ensure no IP is given away in releasing the code externally. These less

restrictive licensing also require participation from external developers and therefore controls are put in

place to reduce IBM's exposure to risk.

Project Control

Rules of control are also expressed and incorporated into the source code itself, in terms of how, where,

and when to access system-managed data via application program interfaces, end-user interfaces, or other

features or depictions of overall system architecture. Subsequently, project participants self-organize

around the expertise, reputation, and accomplishments of core developers, secondary contributors, and

tertiary reviewers and other volunteers. This, in turn, serves to help them create a logical basis for their

collective action in developing the software

Certain decisions like working on an application of strategic importance may still be taken by senior

executives at a very high level of the project but the inner working of the subprojects is handled by core

developers. Creating a project road map and requiring the project to adhere to the roadmap also creates a

mechanism to control the development of application.

To control the progress of the project and ensure the delivery of the release on time, the IIOSB system

uses the project tracking component that details the necessary information for the project team to act on.

This includes tracking patches applied, submitted requirements, bugs reports and to-do lists of items to be

completed.

:hoose a tracker and you can browse/edit/add items to it.

Patches A collection of submitted source patches 6 26

C4eb live (bootable CD-ROM) bugs & feature requests 1 1

SOen Cient Build System A TODO Tracker for the Open Client Build System 5 35

Screenshot coecton ofTracking opubttedtions for Lbug reinuxports 74 474

Screenshot 6: Tracking options for Linux based Desktop

Coordination

Coordination is key to success of a project, once the project is in the execution stage of the project

lifecycle. As in the case of F/OSS development approach, IBM uses automated tools for team members to

communication and coordinates project activities within the team. The frequent incremental

communication between the team members using automated tools such as mailing lists, wikis and blogs

provide a common low cost solution to coordinating activities in the team. This reduces the overall

administrative cost for managing the project and at the same time builds trust between team members by

requiring frequent communication.

Project Communication

In the Linux desktop application, communication between team members is done primarily through

mailing lists. These automated mailing lists cover topics such as commit to archive, contributions by team

members to archive, discussion topics, news related to the project etc. Any one the internal open source

community can subscribe to a mailing list and get updates as members add code or contribute to the

project. This ensures equally sharing of information about the project not just with immediate team but

also with anyone who is interested in project.

The use of automated tools to communicate with others is similar to the mechanism used in open source

communities. The GForge tool, used internally to host the projects, also provide as hub for all

documentation, status and project related material. The open access to information about the project

ensures a level playing field for all team members in the team and allows users to work independently in

virtual teams at the same time staying connected with the project.

Mailing Lists
Choose a ist to browse, search, and post messages.

tinux-4e- Arirves CVS con it messages

tinuxc4eb-devel Archivest Lux Clent for e-business developers discussion nsuribePreferenc

linuxc4eb-nana(ed-dev Archives Linux Managed Client for e-business developers discussion Subc Unsbsc /Preference

ftAi p ri v Aircve-5 Open Client for Unu Debian Cumrinunty Develersr lpscrriLinsubsenhefefrn=

lnuxc4eb-ocdc discuss Archives Open Client for Linux Debian Community Discussion Subscribe/UnsubscrnbePreferences

finuxr~eb-occ-newa Archives Opwen Client for Linux aebian Commnity Announchients Ascribet cribe/Prefereme5

liniuxc4eb-ackages Archives Linux Client for e-business package history Subscnbe/Unsubscribe/Preferences

Screenshot 7 : Mailingx ient forlists for inux bausness wesssed Decussion sktopf

Screenshot 7 Mailing lists for Linux based Desktop

- - - = 11

Project Status

This is an important administrative project management task that is automated using technology. The

open source development platform allows users to gather status automatically quickly using pre defined

reports in the system.

The project home page shows details related to licensing, the development environment, administrator of

the project, activity in the project, the level of release the code is in and so on. This information is needed

on a regular basis for people who monitor the project in traditional environments, but in the open source

project this information serves to put credibility to the work that is being done in the project.

Transparency in the project motivates the team members to perform at the same time reduces biases in the

team and ensures a suitable environment for the project. The IIOSB web site allows anyone in the internal

open source community to look at project activity and status of tasks performed by the project team with

the ability to create custom reports. The data behind the project activity can also be exported to popular

tools like Microsoft project, Excel or OpenWorkbench to do further reporting on the project.

project Ativity

Areas: Type: Start: Endl:
ITraer alJ 1 2007-06 1 2009-05

Screenshot 8 : Project activity for Linux desktop Screenshot 9 : Gantt chart for Linux desktop project

Commanding

Command over the project requires include corrective actions that can be taken when the project is behind

schedule or moves away from the end state desired by the users. In IBM's internal projects the corrective

action is applied to the project in two ways (i) to remove bugs (ii) revert changes to code.

105-1: Per1 SClor: t.oate
348-01: oJq4-s4e, ut update

562-01: krb rty0 0ud1te

64-01: etc1h0I securtg upite

582-01: httpd 4a8r6ty upate
2-; mailm aerit pdat1

376-0 : cpio 408oty update

472-01: kerel arity 4date
427-01: etherl *er-tt update

431-01: post4r l ultq update

627-01; p0ain 6c4 4 update

-02: 440-0m10- - r i8 update

706-01: rcup2 e-t upd08 a-
598-01: srep0rt secrity update

5O-01: .46a8 ikem-ity update

499-01: Vedit ait update

487-01: e 1 se 48 it update
750-01: A608 866 Re. n e 4 48T-t update
74-01: pep 44rit0 pdte

587-01: tll. 0 1r.t update

267-01: 0lut m 46 1 upudr ate

761-02: 6-e 406rt update

608-01: tMpd 88-44 4udate I

7%-01: cu 4 :tt 6update

523-02: 6alPlaer P u tt update I

769-0 : illa se it 1 update I

81l-01: 4p securtt update I

40-01: :406448ty update
4401 000 4488-41 064410C

Corrective Action

To report and submit bugs in the code users including non team members can report a bug in IIOSB. The

tool provides submission guidelines to users that ensure easy identification of the bug by developers.

Bugs can be monitored via mailing lists and any update to the bug fix is reported to all members of the

project team instantly. Bugs are also color coded with priority that communicates the urgency of the fix

required to developers.

11 ID sY:cs- AIJ ~ t&j k

Screenshot 10 : Bug report for Linux desktop project

Project Leadership

Project leadership plays an important role in internal IBM open source projects. At the highest level in

the company the open source initiative has an executive sponsor for all open source projects in the

company. The leadership is carried through from the business executive level to division level and down

to the project level. This ensures that open source projects like Linux desktop get the required oversight

and guidance from the executive level. The project leadership is needed to remove ambiguity from the

project and allow the team to focus on core development activities.

Linux desktop project is supported by a leadership team consisting of systems manager from software and

hardware divisions along with legal counsel from IBM corporate. This oversight committee is responsible

73

__

for reviewing the licensing agreement, understand IBM's risk exposure, allocate legal resources and align

the project initiatives with IBM's goal.

In another example of an open source project that uses open source code and carries the GPL licensing, a

project oversight committee guides the project through the rigorous review cycles before releasing the

code back to open source community. These reviews are meant to understand the implication of releasing

IBM developed code to open source and ensure IP protection.

Conclusion

The internal Linux development project in IBM using the open source methodology gives a better

understanding of limitations and benefits of using the open source approach internally in a company.

Project management literature review gives us the key elements that are needed for projects to succeed.

Applying the open source development technique to a project can reduce the amount of overhead required

in the project. In open source projects there is little or no need of project managers to actively manage the

projects but in applying the open source model there are some project management elements that cannot

be applied as is from the open source development model.

The role of the organization and the business strategy pursued by the organization is important in

applying the open source development models internally since it creates the right environment to

collaborate amongst the team members. It is clear that project managers are not needed in managing the

project, as demonstrated in the Linux desktop project but an oversight committee of sorts is needed for

smoother functioning of the project. This oversight committee is responsible for governing the project

including development road map, providing direction and aligning the project to company's goal. Without

the oversight committee, project team may not be able to jump through legal hurdles and get backing to

continue developing the project.

Technology and the use of automated tools ensure a smoother communication between the distributed

virtual teams. The tools also provide a mechanism to coordinate activities and ensure better

communication between the team. By using automated mailing lists, all participants of the project can

have access to project information to make the right and timely decisions. The project team can function

smoothly using the automated tools that provide information about team members including skill set and

reputation. Automated tools allow the project team to interact frequently and iteratively over the course of

project life cycle that builds trust amongst the members which eventually allows a user to build up his/her

reputation amongst the community. Participation by employees in the open source project does not result

in better remuneration but does allow the individual to learn new skills and apply these skills to project to

gain a reputation. This reputation can translate to a better position for the participating employee in the

future or give him the ability to become a subject matter expert in his/her organization.

The technical execution including planning, control, preventing bugs etc of the project life cycle can be

done using automated tools that reduce the risk of project overrun and at the same time reduce overhead

cost related to quality control.

The table below summarizes the Fayol's principles and applies the project management toolkit along with

automated tools that can be performed in managing a project without a project manager.

75

Fayol (1916) Project Management Toolkit Automated tool

Forming Self Directed team -

* using social networking,

* task brokering,
Project Team

* Individual participation

Organizing metrics measurement to build

reputation

Forge - ex G-Forge that provide all

Project Teamwork information about the project in one

place

Project Planning -None

Requirement gathering using G-

Forge,
Requirement

tracking requirements,

automated mailing lists
Planning

Code Versioning System

Bug Reporting system

Opportunity and Risk Management Subversion system

Open access to project via G-Forge

platform

Project tracker

Controlling Project Control Mailing lists

Bug tracker

Collaborative project website
Project Status

Mailing lists

Coordinating Mailing lists

Project Communication Project website

Wikis, blogs

Code versioning system
Commanding Corrective Action

Subersion system

Leadership -None

Table 3: Using automated tools to Fayol's five elements of management

II

References

i Karim Lakhani and Eric von Hippel ,No Managers Required: A case study of collaborative innovation using managerial
toolkits
ii Henri Fayol, General and Industrial Management (New York: IEEE Press, 1984).
iii Tom I. Peters and R.H. Waterman, Jr., In Search of Excellence (New York: Harper & Row, 1974).
iv R. Covey, The Seven Habits of Highly Effective People (New York: Simon & Schuster, 1989).

Frederick P. Brooks, Jr. "The Mythical Man Month". 1995. Addison-Wesley.
vi Kevin Forsberg, Ph.D, Hal Mooz, PMP and Howard Cotterman: Visualizing Project Management: A Model for Business and

Technical Success, Second Edition
vii Technical Leadership Exchange April 6-9 2008 Orlando FL Copyright IBM Corp
viii Perens, B. Open Source Definition from http://ldp.dvo.ru/LDP/LGNET/issue26/perens.html

ix Raymond, Eric S The Cathedral & the Bazaar: Musings on Linux and Open Source by an Accidental Revolutionary O'Riely
Press 1999

x Hertel, G., Niedner, S., & Herrmann, S. (2003). Motivation of software developers. Research Policy, 32(7) 1159-1177.

xi O'Reilly, T. (1999, April). Lessons from open source software development Communications of the ACM, 42(4), 33-37.

xii Ye, Y., Nakakoji, K., Yamamoto, Y, & Kishida, K. (2005). The co-evolution of systems and communities in free and open
source software development. In S.Koch (Ed.), Free/open source software development (pp. 59-82). Hershey, PA: Idea Group
Publishing.

xiii Gloor, P. (2006). Swarm creativity. Oxford University Press.

xiv Madey, G., Freeh, V., & Tynan, R. (2005). Modeling the F/OSS community: A quantitative investigation. In S.Koch (Ed.),
Free/open source software development (pp. 203-221). Hershey, PA: Idea Group Publishing.
xV Barabasi, A.L., & Bonabeau, E. (2003, May). Scale-free networks. Scientific American, 60-69.
xvi Barabasi, A., Jeong, H., Neda, Z., Ravasz, E., Schubert, A., & Vicsek, T. (2002). Evolution of the social network of
scientific collaborations. Physica A 311, 590-614.
xvii van Wendel de Joode, R., de Bruijn, J., & van Eeten, M. (2003). Protecting the virtual commons. In T.M.C.Asser (Ed.),
Information technology & law series, 44-50.
xviii Lakhani, K.R., & von Hippel, E. (2003). How open source software works: 'Free' user-to-user assistance. Research Policy

No. 32. Elsevier Science.
xiX von Hippel, E., & von Krogh, G. (2002). Exploring the open source software phenomenon: Issues for organization science

xx Feller, J., & Fitzgerald, B. (2000). A framework analysis of the open source software development paradigm, International
Conference of Information Systems, Brisbane, Australia.
xxi Scacchi, W., Feller, J., Fitzgerald, B., Hissam, S., & Lakhani, K. (2006). Understanding free/open source software
development processes.

xi" Based on http://www.linux.org/docs/lists.html

xxiii Healy, K., & Schussman, A. (2003). The ecology of open source development. Unpublished. Retrieved from www.
kieranhealy.org/files/drafts/oss-activity.pdf
xxiv van Wendel de Joode, R., de Bruijn, J., & van Eeten, M. (2003). Protecting the virtual commons. In T.M.C.Asser (Ed.),
Information technology & law series, 44-50.
xxv Benkler, Y. (2002). Coase's penguin, or, Linux and the nature of the firm. Yale Law Journal, 112(3), 369-446.

xxvi Himanen, P. (2001). The hacker ethic and the spirit of the information age. New York: Random House.

xxvii von Hippel, E. (2001). Innovation by user communities: Learning from open-source software. Sloan Management
Review, 42(4), 82.86.
xxviii Saers, N. (2003). A project model for the FreeBSD project. Retrieved May 5, 2003, from: http://niklas.saers.com/freebsd-

model/freebsd-model.html.
xxix FreeBSD Foundation Board of Directors, from http://www.freebsdfoundation.org/board.shtml

xxx Mozilla Roles and Leadership from http://www.mozilla.org/about/roles.html
xxxi Mockus, A., Fielding, R., & Herbsleb, J. (2000). A case study of open source software development: The Apache server.

Proceedings of 2000 International Conference on Software Engineering (ICSE2000), Limerick, Ireland, pp. 263-272.
xxxii Koch, S. & Schneider, G. (2002). Effort, co-operation and co-ordination in an open source software project: GNOME.
Information Systems Journal, 12(1), 27-42.
xxxiii Sourced from https://wiki.mozilla.org/ReleaseRoadmap
xxxiv Sourced from https://wiki.ubuntu.com/IntrepidReleaseSchedule

xxxv Sourced from http://wiki.services.openoffice.org/wiki/OOoRelease3 1
xxxvi Fitzgerald, B. (2005). Has open source software a future? In J.Feller, B.Fitzgerald, S.Hissam, & K.Lakhani (Eds.),
Perspectives on free and open source software (pp. 93.106). Cambridge, MA: MIT Press.
xxxv" Hecker, F. (1999). Setting up shop: The business of open-source software. IEEE Software, 16(1), 45.51.
xxxv... Leiteritz, R. (2004). Open Source-Geschiftsmodelle. In R.A.Gehring & B.Lutterbeck (Eds.), Open Source Jahrbuch 2004

(pp. 139.170). Berlin: Lehmanns Media
xxxix O'Mahony, S., Cela Diaz, F., & Mamas, E. (2005). IBM and Eclipse._ Harvard: Harvard Business School
x" From http://www.ratliff.net/blog/about/

xli http://gh-linux.blogspot.com/
x"ii http://gforge.org/gf/

