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Abstract

The objective of this project is to characterize the influence of individual nodes in
complex networks. The flux metric developed here achieves this goal by considering
the difference between the weighted outdegree and indegree of a node. This technique
differentiates among nodes that traditional centrality measures treat as identical units.
The behavior and proper interpretation of the flux metric are demonstrated on a
variety of weighted and directed networks. Simulations of fluid flow, opinion sharing,
epidemic dynamics, and resource allocation reveal the practical capabilities of the flux
metric. An engineering design challenge may also be framed as a network analysis
problem so that the the flux metric contributes to understanding the relationships
among the system's subcomponents and objectives. A case study that investigates
the design of autonomous underwater vehicles (AUVs) for use in the offshore oil and
gas industry demonstrates these insights. In all of the applications explored here, the
flux metric consistently emerges as a reliable indicator of the influence of a node.
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Chapter 1

Introduction

The behavior of a complex network arises from the intricate relationships that couple

together seeming discrete components, obscuring the relative influence of each node

in the larger system. For example, a shock propagating through a network may cause

richly complex effects that belie their comparatively simple inception. The conse-

quences of such perturbations vary greatly depending on their point of origin within

the network. The influence of a node can therefore be defined in terms of the effects

of a shock at that site. The quest to characterize network locations according to these

phenomena spans the disciplines of engineering, the physical sciences, mathematics,

and the social sciences. This type of network analysis can be applied to challenges

as diverse as routing electricity, halting the spread of disease, and designing a robot

to explore the ocean. The next sections establish the mathematical structure of the

problem, define terminology, and review relevant prior results.

1.1 Motivation: Dynamic Phenomena on Networks

The focus of this project is the influence of individual nodes in a network. This in-

vestigation includes ranking the influence of nodes and exploring what significance

the location of a perturbation has to the ensuing propagation of changes through the

system. The effect of a local shift on the immediate neighborhood may be readily

apparent, but the behavior of the system grows increasingly opaque as chain reac-



tions propagate and ripple outward from the initial disturbance. These cascades can

also produce feedback effects, which further complicate the system's behavior. Fur-

thermore, thresholds may exist such that a slight perturbation in one area causes

phase shifts across other regions of the network. These nonlinear behaviors together

produce the richly complex behavior of the system.

1.1.1 Mathematical Graphs

The qualitative concept of a network is modeled mathematically as a graph. A graph

is composed of nodes connected by edges, as shown in Figure 1-1. A graph G is a

pair of sets. The edges, E, represent the relationship between any two nodes, which

belong to V. Formally, G = (V, E) where E C [V] 2 [20]. If the connected nodes are

not distinct, the edge forms a loop. A directed edge is one in which the beginning

and ending nodes have been explicitly defined. Two or more edges that share the

same beginning and ending nodes are considered to be parallel, An undirected edge

is thus equivalent to a set of two antiparallel directed edges.

2 3227

Figure 1-1: A typical weighted, directed graph

Edges may have a weight as well as a direction. The weight of an edge is the

strength with which the two nodes are joined when traveling in the direction of

the edge. The physical interpretation of an edge's weight varies among particular

applications. For the purposes of this project, it is assumed that the weight of an

edge is limited to the positive real numbers. A weight of zero indicates that an edge



does not exist, and a negatively weighted edge would infer the existence of a positive

antiparallel edge. Edges with complex weights are outside the scope of this project.

A graph in which an edge may exist between any two nodes is called a unipartite

graph. A second important type of graph is a bipartite graph. The nodes of these

graphs are divided into two separate and distinct sets. Edges only join nodes of one

set to the other, rather than linking nodes of the same set. However, a bipartite

graph can always be decomposed to form a unipartite graph composed only of nodes

of either set. This transformation is shown in Figure 1-2. Since information is lost

during the decomposition, unipartite graphs cannot be converted to bipartite graphs

with the same one-to-one correlation.

The applicability of the mathematical construct of a graph to the networks ubiq-

uitous in science and society is readily apparent. Nodes represent self-contained units

of the larger system, and edges define how the nodes interact. The scope of this

project is limited to simple networks in which the state of a node at any point in time

can be described by a single variable. This variable is periodically updated according

to the values of any adjacent nodes and the weighting of the edges linking the node

to those neighbors. The nodes thus act as autonomous agents with a single state

variable.

1.2 Prior Relevant Work in Network Analysis

Common experience indicates that all nodes are not equally influential in a network;

every society has dynamic leaders and inconsequential followers. A proper analysis

technique should capture the influence conferred upon a node by its location within

the network architecture. One measure of the relative significance of a node is its

centrality score. The difficulty of formulating a universal definition of "influence"

impedes the creation of a network metric to analyze the importance of a node in all

possible scenarios. Therefore, several centrality metrics are used concurrently. Each

has its own instinctual appeal and appropriately models particular phenomena. In

general, many fewer studies have focused on weighted, directed networks than simpler



Figure 1-2: The decomposition of a bipartite graph to a unipartite graph. The nodes
a, P, and -y and bipartite edges A, B, C, and D are labeled for clarity.
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alternatives [51]. This project demonstrates a centrality metric developed for such

complex networks by extending the methods previously developed for more simplified,

contrived networks.

1.2.1 Degree

The simplest metric used to measure the importance of a node is its degree. In a

non-directed network, the degree of a node is simply the number of edges that have

that node is either of their terminal points. While rudimentary, degree has been

the foundation for some of the most profound discoveries in network science. For

example, Watts and Strogatz's description of small-world networks depends on the

probabilistic distribution of degree scores among the nodes in the network [75].

Advanced Use of Degree

If the network is weighted, the degree is the sum of the weight of each of those links.

The strict definition of degree is inapplicable to a directed network, but closely related

metrics have been devised as substitutes [9]. The indegree of a node is the number

of edges that end at that node, and the outdegree of the node is the number of edges

that emanate from it. Previous research has focused strictly either on indegree or

outdegree, failing to unify the two metrics in one form. Therefore, scientists regard

the concept of degree as being inapplicable to weighted, directed networks [42].

Secretary Paradox

The simplicity of the degree metric and its intuitive sensibility makes it appealing

to many audiences. However, its application can lead to very strange results. For

example, consider the corporation represented by the network in 1-3. The nodes of

the graph represent various employees, and the edges indicate direct communication

among them. The reclusive CEO has no direct contact with her engineers, and only

communicates through her secretary. Consequently, the secretary is the only employee

with a degree greater than one. This lopsided situation certainly would grant the



secretary a special role in the functioning of the corporation; he would, for example, be

aware of any messages passed among the other employees. However, being a conduit

for information does not necessarily make the secretary the most influential person

at the corporation. While Figure 1-3 depicts an extreme situation, it is typical for

network diagrams of more complex and horizontally-integrated corporations to still

show the support staff as being much more well-connected than executives. This

result is sometimes interpreted as suggesting that secretaries actually are the most

powerful individuals in the workplace. However, the apparent paradox could also be

used as evidence that a new metric is needed to more accurately measure where the

influence lies in a large organization.

CEO

Engineers

Figure 1-3: The communication structure of a hypothetical corporation.

1.2.2 Betweenness

Freeman [25] refined the betweenness centrality measure, a more sophisticated notion

than degree. Betweenness considers the structure of the entire network rather than

only a node's immediate neighborhood, the principle limitation of the degree metric.

__ _ ._ I
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The betweenness measure of a node is a reflection of how many paths between two

other nodes pass through that node.

A node is connected to all other nodes that share its edges and to all nodes that

are connected to these immediate neighbors. This recursive definition essentially

states that two nodes i and j are connected if and only if a path exists that connects

them, where a path is defined as a series of intermediate nodes and edges beginning

and terminating at the two nodes of interest. Clearly, many such paths may connect

the nodes. Suppose that one such path will be selected at random. There is a

finite probability that a particular third node, x, will lay along this path based on

the number of applicable paths that happen to pass through x. The betweenness

measure of x is the sum of these probabilities for all possible combinations of i and j

such that i,j, and x belong to the network and i - j - x.

The betweenness metric was conceived with the goal of gauging the relative signif-

icance of nodes in a communication network. A node with a high betweenness score is

likely to be used as an intermediary when two other nodes exchange messages. This

central node therefore has the ability to regulate the flow of information through the

network [25]. However, Borgatti [7] has emphasized that the Freeman's betweenness

measure assumes that the packet being passed from node to node is indivisible and

does not pass through the same node twice. However, these assumptions are not

valid descriptions of many real-world phenomena. For example, it is very likely that

a person would tell more than one of their acquaintances a new piece of gossip. The

message is therefore not indivisible. Borgatti and his colleague, White, were able to

resolve another original shortcoming of the betweenness tool, its inapplicability to

directed networks [77]. However, as Thomas [72] has illustrated, Borgatti has not

developed a sufficiently universal approach to account for weighted links between

nodes, variable behavior of nodes, and other complicating factors. Furthermore, it

should be noted that despite its strengths betweenness does not resolve the secretary

paradox illustrated in 1-3. The secretary has the only non-zero betweenness score,

again incorrectly indicating that he is the most powerful member of the corporation.



1.2.3 Eigenvector Centrality

The most sophisticated measures of centrality are a collection of very similar tech-

niques that depend on eigenvector calculations. Just as the betweenness metric re-

flects the presumption that a message is being relayed between intermediaries, eigen-

vector methods are derived from the qualitative notion of popularity in a social net-

work. This technique has been introduced by Phillip Bonacich [4], and is frequently

referred to by his name.

The premise underlaying the Bonacich metric is that when calculating power in a

social network not all relationships are equal. It is more valuable to be associated with

individuals who are popular than it is to be linked to individuals who are otherwise

isolated. This concepts is intuitive; in any society an individual who is popular with

popular people has disproportionate influence. However, this definition of centrality

depends on circular reasoning: a person's popularity is judged by the popularity of

his friends, but their popularity depends on the popularity of their own associates,

including him. If the popularity of each of n nodes in a network is a value in the

vector P of length n, then the influence structure can be stated mathematically as

cxP = AxP (1.1)

The nxn matrix A in Equation 1.1 is an adjacency matrix, a convenient mathematical

form for representing networks. Each value (i, j) of the matrix corresponds to the

weight of the link between nodes i and j. For a directed network the convention is

adopted that the value listed is the strength of the link from node j to node i. When

the network is undirected, the adjacency matrix would be symmetrical across the

diagonal.

Equation 1.1 is an eigenvector equation, where the constant c is a particular

eigenvalue and P is the corresponding eigenvector. Traditionally the eigenvector

corresponding to the largest eigenvalue is considered to be the Bonacich centrality

scores of the nodes of the network. For a symmetric adjacency matrix, i.e. an

undirected network, the centrality scores are guaranteed to be non-negative.



Bonacich's elegant solution to the challenge of self-defined popularity via network

connections has proven to be immensely popular. For example, it has been used

to analyze co-authorship networks and judged superior to other centrality measures

[42]. Recent research has also demonstrated that eigenvector centrality measures the

criticality of a node in a dynamic network, i.e. which nodes' removal would be most

disruptive to the structure of the network [54]. Even the famous PageRank algorithm

that drives the Google search engine is based on the same principle as eigenvector

centrality [8].

Eigenvector methods are more veisatile than degree and betweenness because

Bonacich's technique is applicable to weighted, directed networks [5]. However, as

Bonacich himself has emphasized [6], caution must be exercised when applying eigen-

vector techniques to these special graphs. For example, a directed relationship ex-

tended from an otherwise isolated member of a social network does not give any

increase to its recipient's eigenvector centrality score. However, in many real-world

networks members have an intrinsic value independent of their relationship to their

peers. To compensate for this specific disparity between reality and the network tool,

Bonacich has introduced further refinements to his algorithm [6]. Other researchers

have also tweaked Bonacich's approach to broaden its applicability. For example,

in order to compare eigenvector centrality scores across different graphs, it has been

demonstrated that normalization is necessary to compensate for the varying number

of nodes in each graph [57]. This constant modification demonstrates that no network

metric is universally applicable, and that each quantitative model must be coupled to

a qualitative understanding of the applicable scenario or else it risks becoming devoid

of meaning.



1.3 Problem Statement: Identifying Influential Nodes

and Their Role in Engineering Design

The goal of this project is to develop a novel network analysis metric that successfully

identifies influential nodes. This technique is meant to differentiate among nodes that

other methods regard as identical but whose behavior is distinct. Special attention

is paid to weighted, directed networks due to their applicability to many challenges.

Influence is the ability to exert one's will onto others. Therefore, the state value of

a more influential node should have a greater impact on the state of the entire system

than the value of a less influential node. This criterion will be the benchmark for a

series of experiments to test if the novel metric adequately predicts the influence of a

node. Networked systems at a state of equilibrium will be perturbed and the influence

of the site of the disturbance will be measured by the ensuing return to equilibrium.

The network architecture will remain constant during all of the experiments; the

focus of the study is the response of the system to changing state values rather than

network links.

The concept of influence within a network will then be expanded to the novel

application of engineering design. The use of a network model to represent a design

challenge is demonstrated through a case study, the design of autonomous underwater

vehicles for the offshore petrochemical industry. This project thus seeks to expand

both the capabilities and applications of network analysis measures.



Chapter 2

Introducing the Flux Metric

Introduction

The need exists for a technique to measure the influence of nodes in weighted, directed

networks. This new method should be independent of a specific model framework and

applicable to a wide variety of scenarios. Furthermore, it should serve as a comple-

ment to eigenvector centrality and other existing network metrics by registering nodal

characteristics that elude these measures. The solution to this challenge considered

in this project is the flux metric, a simple mathematical concept with profound im-

plications.

The flux metric is a novel measure of nodal influence inspired by fluid mechanics.

This method offers insight into networks that other centrality measures fail to provide

on a wide variety of network architectures. This chapter uses a Conserved Flow model

to demonstrate the significance and appropriate interpretation of the flux metric,

such as the proper comparison of two nodes' flux scores and the concept of flux

neighborhoods, through a series of experiments on abstract networks. Table 2.1 is an

overview of the network structures used in this chapter. These experiments provide

the basis for the application of the flux metric to a wide variety of real-world scenarios.



Network Number of Indegree of Flux Neighborhoods of
Geometry Flux Values Nodes Nodes with Equal Flux
Trigonal 2 Identical Identical
Trigonal 2 Different Identical
Trigonal 4 Identical N/A
Linear 2 Identical Identical
Rectangular 2 Identical Identical
Trigonal 2 Identical Different

Table 2.1: Network structures for the Conserved Flow model.

2.1 Concept of Flux

In a weighted, directed network each node may have edges directed from and toward

the node. Suppose that ¢ is a function of the sum of the weights of either the outgoing

or incoming edges. The flux of a node is defined as

flux = ¢(outdegree) - /(indegree) (2.1)

In the simplest and most common case considered in this project, ¢ is simply the

identity function and the flux is the difference between the weighted outdegreee and

indegree. Note that in this case the flux values of all the nodes in a network will

always sum to zero, because the outdegree of a node is accounted for by the indegrees

of its neighbors. If the edges represent the rate of flow through network conduits, the

flux is a measure of the rate at which a material accumulates or dissipates at each

node. The flux metric is thus consistent with the property of the same name from

the physical sciences, i.e. the net flow through a control surface. Surprisingly, the

transfer of this simple and ubiquitous concept from fluid mechanics, physics, and other

scientific disciplines to network analysis has almost never been considered previously.

Taylor has incorporated the net difference between incoming and outgoing edges in

unweighted, directed networks as part of a much more complicated algorithm designed

to identify influence clusters in networks [71]. However, this technique has not been

explored further by other researchers. It is possible that their lack of interest has been

due to the belief that Taylor's method is unnecessary in light of Bonacich's later work.



Alternatively, the overall complexity of Taylor's algorithm may have obscured the

utility of the simple, yet powerful, concept of considering the net difference between

the weighted outdegree and indegree of a node.

2.2 Comparison of Flux to Previous Metrics

The advantage of the flux metric is that it shares degree centrality's independence

from a particular paradigm or case study, but is applicable to weighted and directed

networks. The flux metric provides insight into the relative influence of nodes that is

distinct from the conclusions of the other network metrics. This project focuses on the

influence of a node in the context of dynamic shock propagation and static dominance

in a social or design network. This phenomenon and the manner in which the flux

metric registers the consequences of a perturbation at a node can be demonstrated

empirically.

2.2.1 Flux and the Secretary Paradox

The flux metric permits the analysis of more realistic models of complex systems than

are possible using other measures of centrality. For example, the flux metric resolves

the Secretary Paradox introduced in Section 1.2.1. This apparent paradox arose

because an overly simplified yet typical representation of a corporation's structure

used unweighted and undirected edges that made it appear as though the secretary

were more influential than the CEO. A more accurate depiction of the corporation

can be made using weighted and directed links as shown in Figure 2-1.

The strength of the edges represents the level of authority associated with a com-

mand issued by each actor in that particular relationship. The flux of the CEO is

4, the flux of each engineer is 1, and the flux of the secretary is -8. The ranking

of the nodes according to their flux is a much more reasonable result than the con-

clusion reached by simply examining the degree of each node. That approach yields

that the CEO and her engineers are peers and subordinate to their secretary. The

flux metric also provides a more accurate ranking than eigenvector centrality. While



CEO Secretary

I Eng in eers

Figure 2-1: The structure of a corporation where edge weight is assigned according
to the authority inherent in a given communication link.

Bonacich's method recognizes that the secretary is the least important member of

the corporation, it ranks the CEO and engineers as peers because they all have the

same weighted indegree. Thus, the Secretary Paradox demonstrates both the great

value inherent in a network analysis tool that acknowledges the variability among the

relationships comprising the same complex system and the ability of the flux metric

to provide a more refined measure of the influence of a node than existing centrality

measures.

The application of the flux metric to the Secretary Paradox also illustrates a

unique characteristic of this technique. It is possible for a node to have a negative

flux value, something that none of the traditional centrality measures permit. This

occurrence could be interpreted as stating that the node is a net follower rather than

a net leader in its relationships. The node is therefore more likely to be influenced

by its immediate neighbors than it is to affect their state.



A B C D Flux
A 0 3 3 3 -6
B 1 0 4 4 2
C 14 0 4 2
D 1 4 4 0 2

Table 2.2: An adjacency matrix for a network in which all nodes have the same
weighted indegree and eigenvector centrality but one node has a different flux score.

2.2.2 Network Models

The Secretary Paradox concisely demonstrates the ability of the flux metric to appro-

priately rank social influence in an organization. However, before flux can be applied

to engineering networks it is necessary to model and quantify the significance of a

node's flux value in dynamic processes. A special graph is used as the framework

for this process. The network is composed of 160 nodes arranged in a tiled trigonal

pattern, an example of which is shown in Figure 2-2. Note that each link shown

between the nodes in the figure is actually a set of two oppositely directed weighted

edges. The nodes are categorized into one of four types, and the nodes of each types

behave identically. The experiments are facilitated by the fact that each node and

its three neighbors are of separate types. Note that the nodes along the "top" and

"bottom" and along the "right" and "left" of the network are joined, giving the net-

work a toroidal shape. This structure eliminates the possibility of boundary effects

that could complicate the output of the experiments and confuse the interpretation

of the results.

2.2.3 Unique Information Revealed by the Flux Metric

The 160-node trigonal network is the framework for a Conserved Flow model. The

weightings of the edges between the four node types are assigned as shown in the

adjacency matrix in Table 2.2.

The table shows that each node has the same weighted indegree of 9. After forming

an adjacency matrix to represent the entire 160-node network and applying Equation

1.1, it can be shown that every node shares the same eigenvector centrality score of



Figure 2-2: The trigonal grid on which the experiments are conducted. There are
four node types arranged so that each node and its three neighbors are distinct.

30



0.0791. However, node type A has a flux value of -6 while the other nodes have a flux

value of 2.

The weighting of each directed edge represents the maximum flow per unit time

through that link. The state value of each node represents the amount of material

present at that location at a given time. This model is well-suited to modeling the

flow of a conserved entity such as electricity or water. To simulate the effect of a

perturbation on the system while it is at equilibrium, the state values of all but one

node initially are set to zero. A shock is then induced by setting the initial value of

the perturbation site to 250.

The Conserved Flow model simulates simultaneous exchanges between the nodes

by updating the state value of each node once per time step. If the state value of a

node is greater than the amount of material that can exit the node in one time step,

i.e. the node's weighted outdegree, then the maximum amount permissible passes out

of the node and through each conduit to the node's neighbors. If the node's current

state value is less than this maximum flow capacity, then the entire amount present

is transfered to its neighbors proportionately to the weighting of each outgoing edge.

The flow between nodes permits the network to reach a new equilibrium after the

initial perturbation. However, the path to this steady state depends on the type of

node at which the perturbation begins. In the Conserved Flow model a shock at

a node with a greater flux value is expected to lead to a state of equilibrium more

quickly because the node has greater influence over the system than other nodes

do. The level of consensus present in the system at any time is quantified by the

instantaneous standard deviation of the state values of all the nodes in the network.

This quantity at time t following a perturbation at a type A node is designated A (t).

The level of consensus at any point in time is inversely related to the value of a.

Note that as time approaches infinity the nodes do not reach uniform nor constant

values due to the structure of the graph. Therefore, a universal consensus at which a

would equal zero cannot be achieved. However, a does reach a steady state. Figure

2-3 shows the value of a for 250 time steps following a perturbation at one of the

four node types. The significant features of Figure 2-3 are the relative positions of



the a plots rather than the nuances of those functions. The abrupt shifts, dips, and

other nonlinear details are evidence of the complex behavior that can arise in network

functions but the overall influence of a node is reflected by the the value of a at a

given point in time following a perturbation at that site.
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Figure 2-3: The stabilization of a conserved flow network following a perturbation.
The nodes all have the same weighted indegree and eigenvector centrality score, but
node type A has a different flux value than the other nodes.

The key result depicted in Figure 2-3 is that after a perturbation at one of the

lower flux nodes the level of consensus in the system, as measured by the inverse of

a, is 10 times less than if the perturbation originates at a node with a greater flux

value. Thus nodes that both the eigenvector centrality and weighted indegree metrics

regard as identical have dramatically different properties in terms of their influence

on consensus formation.

It is clear that a surge would initially dissipate more quickly from a site with a

greater net outflow. However, the surprising result is that this initial advantage con-



A B C D Flux
A 0 1 1 6
B 3 0 4 4 -2
C 3 4 0 4 -2
D 3 4 4 0 -2

Table 2.3: An adjacency matrix in which all nodes share the same weighted outdegree
but one node has a different flux score.

tinues for nearly the entire duration of the simulation. Due to the regular architecture

of the network depicted in Figure 2-2, a perturbation at any location immediately

will encounter all of the other node types after exiting the site of origin. Thus, there is

no obvious reason why a perturbation would dissipate more quickly across the entire

network, rather than just the immediate site of the perturbation, after beginning at

a high-flux node.

Furthermore, consensus forms more quickly when the initial disturbance to equi-

librium occurs at a node with a lower flux value than at a node with a higher flux

value even if all the nodes have the same weighted outdegree. Such a network can be

constructed by reversing the direction of each edge in the adjacency matrix in Table

2.3 to form the adjacency matrix in Table 2.3. Note that it is impossible for nodes to

have the same eigenvector centrality unless they also have the same weighted indegree

or for two nodes to have the same indegree and outdegree but different flux values.

Each node type in Table 2.3 has the same weighted outdegree, 9, but node type

A has a flux value of 6 while every other node type has a flux value of -2. The values

of a over time following a perturbation at each node type are shown in Figure 2-4.

It is very clear that at any point in time the value of a is less if the perturbation

originates at a higher-flux node than at a node with a lower flux value.

A very significant result in Figure 2-3 and Figure 2-4 is that the behavior of a

is the same after perturbations at the three node types with identical flux scores.

Very slight deviations from this trend are due to rounding effects that occur when

the state values of the nodes are very small. The observation that the nodes with

identical flux values exhibit the same behavior supports the notion that the flux metric



1 \
10 -

10

0 50 100

Figure 2-4: The stabilization of a
have the same weighted outdegree.
other nodes.

150
Time

Conserved Flow network in which all the nodes
Node type A has a different flux value than the



can successfully categorize nodes according to their influence on consensus forming.

Therefore, the flux metric not only reveals information about the nodes that escapes

other centrality scores but also appears to fully capture the nodes' influence in this

scenario.

2.3 Exploring the Flux Metric

The ability of the flux metric to indicate patterns of consensus formation following

perturbations at different nodes is clear. However, to apply flux to a wide variety

of real-world situations it is necessary to understand the full extent of the metric's

meaning and significance. These properties can be demonstrated by variants of the

Conserved Flow experiment.

2.3.1 Comparing Flux Values

The original Conserved Flow experiment demonstrates that at any point in time a

will be less following a perturbation at a node with a greater flux value than at

another node. However, further experiments are required to better understand the

relationship between this gap the relative difference in the flux values of the nodes.

For example, simulations not shown here confirm that in a Conserved Flow scenario

multiplying the weighting of each edge by a constant has no effect on the behavior

of a. However, non-proportionate changes in the flux value of each node have more

interesting effects.

The adjacency matrix in Table 2.4 is deliberately arranged so that each node has

a different flux value. Note that each node in the trigonal network still has the same

eigenvector centrality score and a weighted indegree of 12. This structure enables an

analysis of the behavior of a as a function of the flux value. The result of a Conserved

Flow experiment in this scenario is shown in Figure 2-5.

It is clear that the rate of consensus formation shown in Figure 2-5 is not propor-

tional to the flux value of the node at which the perturbation began. For example, a

perturbation at node type C, which has a flux value of 4, causes consensus formation



A B C D Flux
A 0 4 4 4 -8
B 2 0 3 7 8
C 1 6 0 5 -4
D 1 10 1 0 4

Table 2.4: An adjacency matrix for
flux value.
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Figure 2-5: The stabilization of a network that is composed
the same weighted indegree but different flux values.

of four node types with



approximately intermediate to the behavior following a perturbation at the nodes

with flux scores of -8 and 8. However, the flux values of the nodes still predict the

ranking of the rate at which consensus is achieved following a perturbation at that

node type. Thus, flux is a strong indicator of relative influence in a network by means

of consensus forming but two flux scores can only be compared usefully in terms of

having a greater, lesser, or equal value rather than their actual arithmetic difference.

Correlating a to a particular flux value beyond this simple relationship is extremely

difficult because the flux value of every other node in the network, their arrangement,

and the specific nature of the dynamics between them can all potentially change the

effect of a perturbation occurring at the node.

2.3.2 Flux in Graphs of Varying Geometry

A major motivation for the development of the flux metric is the need for a measure

of nodal influence that is applicable to many different network structures. Therefore,

it is necessary to demonstrate that the properties of the metric do not vary when it

is applied to different graphs. This premise can be tested by modifying the network

on which the Conserved Flow simulation is conducted.

A simple modification to the trigonal grid introduced in Section 2.2.2 is to increase

the number of nodes in the graph from 160 to 6,400 while preserving the toroidal

structure. This alteration tests if the correlation between a and the relative flux

values of two nodes is a fluke occurrence on a 160-node graph or if it also applies to

relative large scale networks. The results of experiments not shown here indicate that

the declared properties of the flux metric are indeed independent of the size of the

network under investigation.

Flux in Linear Graphs

The flux value of a node also indicates its influence during Conserved Flow on non-

trigonal graphs. For example, consider the simple network formed by a linear chain

of three different node types. In a fashion similar to the architecture of the trigonal



A B C Flux
A 0 3 3 -4
B 1 0 5 2
C 1 5 0 2

Table 2.5: An adjacency matrix for a linear network in which one node type has a
different flux value than the other nodes.

network, the node types are assigned so that each node and its two neighbors are

separate types as shown in Figure 2-6. The ends of the graph link together to form

a loop to avoid boundary effects. The weighting of each directed edge is shown in

Table 2.5.

Figure 2-6: A linear grid composed of three node types.

The nodes all have the same weighted indegree and eigenvector centrality but

node type A has a flux value of -4 while node types B and C have flux values of 2. A

Conserved Flow experiment beginning with a perturbation of 100 is executed on this

300-node network, in which each node initially has an equilibrium value of zero. The

behavior of a for 750 iterations following a perturbation at each node type is shown

in Figure 2-7.

Figure 2-7 shows that a is smaller following a perturbation at a node with a lesser

flux value than after a change at a node with a greater flux value. Furthermore, per-

turbations at nodes with the same flux values result in identical displays of consensus

formation. Therefore, the flux metric is fully applicable to simple linear graphs.

Flux in Rectangular Graphs

The applicability of the flux metric to the analysis of more complex graphs than the

trigonal grid can be demonstrated using a rectangular graph. This graph is composed

_ __~_



2-

0 100 200 300 400 500 600 700 800
Time

Figure 2-7: The stabilization of a linear network after a perturbation at each node

type. The nodes all have the same weighted indegree but one node type has a different

flux value than the other two types.



ABCDE Flux
A 0 4 4 4 4 -12
B 1 0 5 55 3
C 1 5 0 55 3
D 1 5 5 0 5 3
E15550 3

Table 2.6: An adjacency matrix for a rectangular grid.

of a repeating

in Figure 2-8.

pattern of five different types of nodes, the structure of which is show

The adjacency matrix for the five node types is shown in Table 2.6.

Figure 2-8: A rectangular grid composed of a pattern of five node types.

In this scenario nodes of type A have flux values of -12 while all other nodes have

flux values of 3. A Conserved Flow begins with a perturbation of 500 on the 200-node

network, the members of which have an initial equilibrium state value of zero. The

ensuing consensus formation is shown in Figure 2-9.

The perturbation dissipates throughout the network more quickly if it begins at

a node with a lesser flux value than a node with a greater flux value. In addition,

a is identical following a disturbance at any of the equally-valued nodes. Therefore,

the principles of flux analysis hold true on more complex graphs than the linear or

trigonal networks.

_.._...._ ____; _ __~_ _
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Figure 2-9: The stabilization of a rectangular network following a perturbation. Node

type A has a different flux value than the other nodes.

2.3.3 Flux Neighborhoods

Flux, as defined thus far, is actually not the sole determinant of consensus-forming

behavior following a perturbation. It is possible for two nodes in a network to have

the same flux value yet for the change in network-wide standard deviation, a, to vary

following a perturbation at each node. However, flux remains the strongest metric

for ranking the overall influence of the nodes.

A variation of the Conserved Flow experiment on the 160-node network demon-

strates this phenomenon and justifies the claim that flux remains significant despite

this limitation. The adjacency matrix describing the relationships between the four

node types is shown in Table 2.7. Note that node type A has a flux value of -3 while

the other node types have flux values of 1. The result of perturbations occurring at

each node type are shown in Figure 2-10.

Figure 2-10 clearly demonstrates that perturbations at nodes with the same flux

values do not necessarily result in the same consensus-forming behavior, as has been



ABCD Flux
A 0 1 2 3 -3
B 1 0 3 2 1
C 1 3 0 2 1
D 1 3 2 0 1

Table 2.7: An adjacency matrix for a network with three nodes that have the same
flux value but varying flux neighborhoods.

150
Time

Figure 2-10: The stabilization of a trigonal network after a perturbation. Node types
B, C, and D have the same flux value but different flux neighborhoods.



true in all previous simulations. The cause of this discrepancy lies in each node's flux

neighborhood, the net flow between the node and its individual neighbors. The flux

neighborhood is the arrangement and value of q(outdegree) minus q(indegree) along

each collection of edges between a node and a particular neighbor. For example, the

flux neighborhoods for the scenario in Table 2.7 are illustrated in Figure 2-11.
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Figure 2-11: The flux neighborhoods of four nodes.
each link are shown in the dashed circles for clarity.

The nodes neighboring along

Flux neighborhoods are defined independently of orientation, i.e. two nodes have

the same flux neighborhoods if one node's neighborhood values are an axial rotation

of the other node's neighborhood values. Node types B and C in Figure 2-11 thus

have the same flux neighborhood. Node type D has a separate flux neighborhood

even though this node has the same flux value as node types B and C.

Experiments not shown here indicate that unless all nodes in a network that have



the same flux value also share the same flux neighborhood that a perturbation at any

of these nodes will not produce the same o behavior. Among nodes with the same

flux score, a may rise or fall as compared to the results of another node with the same

flux value. However, the network-wide standard deviation following a perturbation

at any node of a particular flux value is still bounded within the standard deviation

produced by a perturbation at nodes of greater or lesser flux scores. If two or more

nodes with the same flux value do have the same flux neighborhood, the difference

in u following a perturbation at each of these nodes is smaller than the difference

between either of their a values and that of a node with the same flux value but a

different flux neighborhood. These phenomena are all present in Figure 2-10 and are

also observed following similar scenarios using other network structures.

It is not clear how to meaningfully characterize flux neighborhoods but the flux

score is still a relevant metric despite this lack of knowledge. The influence of the

nodes can consistently and reliably be ranked according to the flux values of the nodes.

The only uncertainty is how to rank the outfall of perturbations at two nodes with the

same flux values. Furthermore, analysis based on weighted indegree or eigenvector

centrality would have concluded that all of the node types listed in Table 2-10 were

identical, so the flux metric still yields greater insight than any major centrality score

despite its limitations.

Conclusion

The flux metric, which is defined according to Equation 2.1, accurately indicates the

relative influence of nodes in the Conserved Flow network. Influence in this scenario

is defined as the ability for a perturbation of material to be dispersed through the

network and thereby establish a new steady state. The concept of flux neighborhoods

adds further detail to the interpretation of flux values. Flux is able to differentiate

among nodes that other network metrics regard as identical. These conclusions can

be demonstrated on trigonal, linear, and rectangular networks of various sizes.
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Chapter 3

Applications of the Flux Metric

Introduction

The interpretation of the flux metric as a measure of nodal influence has been explored

and verified on regular, tessellated network structures. These models may appear

overly abstract for the ensuing results to be readily applicable to real-world challenges.

However, three significant complex systems are described in detail in this chapter that

may be represented as dynamic agents operating on such networks.

The Conserved Flow model presented in Chapter 2 is directly applicable to the

passage of electricity through a power grid, water in a plumbing system, or supplies

through distribution centers. The key characteristics of these systems are the con-

served, material goods that they transport and the limited capacity of the conduits

involved. In this chapter three more models of network dynamics on the trigonal

network structure are discussed. The synchronization of data or opinions, the spread

of disease, and the allocation of resources in a community are all forms of network

stabilization following a perturbation. Each model presented here simulates one or

more such pertinent systems from engineering and the social sciences, and previous

research manifests the importance of these challenges to their respective disciplines.

The models are summarized in Table 3.1. Special attention is paid to those networks

on which nodes have uniform weighted indegree values, and hence equal eigenvector

centrality scores, because these cases represent the greatest opportunities for the flux



Model Conserved State Vari- State Value Update Method
Material able

Conserved Flow Yes Continuous Passed through limited-capacity
channels to neighbor

Synchronization No Continuous Weighted average of neighbors'
values

Infection No Discrete Weighted probability of contrac-
tion from neighbors

Resource Sharing Yes Continuous Proportionately distributed to
neighbors

Table 3.1: Four network systems from engineering and the social sciences.

metric to make a new contribution to network studies.

3.1 Synchronization

A distributed system may reach a shared opinion without the benefit of a central

authority. Consensus algorithms that govern the local behavior of agents to achieve

this global goal have been the focus of much previous work. DeGroot, for example,

has developed a model to represent a committee debate on a topic represented by a

continuous variable [18].

The correlation between the structure of a network and consensus-forming behav-

ior has also been studied [21]. For example, the rate at which values converge may be

characterized by the eigenvalues of the network's Laplacian [67]. The eigenvalues of

the Laplacian, a representation of a network similar to an adjacency matrix, may also

indicate the type of cooperation between robots distributed in a network [23] [65].

Recall from Section 1.2.3 that the first eigenvector of the adjacency matrix contains

the Bonacich centrality scores of the nodes. Eigenvector analysis can thus describe

the behavior of a network in rich detail. However, few studies have investigated the

influence of individual nodes in the network during Synchronization.

A novel idea that one individual introduces to a community may diffuse through

the entire network until it has affected the perspective of every member, despite

their distant location from the fad's point of origin. A Synchronization model can
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illustrate how this process depends on the properties of the node at which it begins.

This insight would be relevant to the study of not only social phenomena but also

engineered systems such as sensor networks.

Distributed sensor networks take advantage of a trend towards manufacturing

sensors that are more prolific but lower in cost and quality [79]. The task of sensing

is distributed across many units, and the community consensus value is reported

to the user via a designated gateway sensor. The advantage of such an array is

its resiliency to failure, particularly in hazardous environments such as the ocean

where each individual unit has a low probability of survival. Sparsely distributed

sensors may only have sufficient power to broadcast to a small number of neighbors.

Information may leave the network only when it is relayed to the gateway node. This

type of acoustic underwater network has been proposed by Akyildiz et al. [1]. It is

important to consider how an anomaly due to a malfunctioning sensor would affect

the final data report. Analogously to the effect of an innovation appearing in the

social network, a perturbation caused by a faulty sensor could ripple through the

system with a particular speed dependent on its point of origin.

3.1.1 Relevant Previous Work

The core concepts of the Synchronization model are cooperation and the flow of

information in a network. This phenomenon is an extraordinarily popular topic in

network science and a full review of the relevant previous work is beyond the scope

of this project. Communication and opinion formation are considered so important

because they lie at the heart of social interactions and the effort to quantify human

relationships.

It has been assumed that an individual's social associates affect their opinions, and

that stronger relationships correlate with a greater degree of trust and hence mutual

influence. Yardi and Bruckman have used the Facebook social networking website

to test whether trust, as measured by the exchange of videos and games, actually

correlates to the strength of a relationship as indicated by shared friends, groups,

and other Facebook parameters [78]. The web of relationships that define most social



systems are not as conveniently defined as Facebook profiles. Therefore, known formal

associations must be used as proxies for the more ethereal relationships that define

human communities. For example, in one popular case study, nodes represent families

in Renaissance-era Florence and edges represent alliances in the form of marriages

[74]. Studies of the United States Congress have used bill cosponsorships to map

the relationships among lawmakers [24]. Issues of trust and communication are also

prominent in studies of overlapping corporate boards of directors and the networks

that exist among national governments that govern international relations [41] [44].

After the network structure has been established the ability of a node to influ-

ence other members of the community or to establish a shared opinion may not be

clear. For example, Moreau recognizes a critical level of communication that permits

network-wide coordination [49]. While it is intuitive that too little communication

can impede coordination, he also demonstrates that a surplus of information can also

lead to chaos. Lorenz also finds shifting regions of consensus when studying contin-

uous opinion dynamics, the same system that is considered by the Synchronization

model [43].

3.1.2 Model Description

The Synchronization model simulates the formation of a consensus opinion following

a perturbation. The simulation is conducted on the 160-node trigonal network. An

interesting feature of the model is that the nodes represent identical agents and that

perturbations at different sites in the network have varying effects strictly because of

the architecture of the relative orientation of the nodes.

Each node type has three inbound edges, with weights of 20, 30, and 50 percent.

Since each node has the same inbound edges, the network can be interpreted as a

tiling of identical units. This concept is illustrated in Figure 3-1.

The different node types vary in their orientation with respect to their neighbors.

Each possible orientation gives a node different outbound edges. The flux is defined

as the sum of the outward weightings minus the sum of inward weightings, and each

node type therefore has a different flux value. The adjacency matrix for the node



Figure 3-1: The grid is composed of identical tiles, consisting of a node and its inbound
edges, oriented so as to produce varying flux scores for each node type.

types is shown in Table 3.2.

The edge weightings in the Synchronization model represent the credibility that

a node associates with information inbound along that edge. Note that every node

has a weighted indegree of 100% to completely account for the influence of the node's

neighbors upon its opinion. The nodes therefore also share the same eigenvector

centrality score. The flux values of node types A, B, C, and D are 50%, -30%, -20%,

and 0%, respectively.

The network is initially in equilibrium, and each node has a baseline state value

A B C D Flux
A 0 20% 30% 50% 50%
B 50% 0 20% 30% -30%
C 50% 30% 0 20% -20%
D 50% 20% 30% 0 0%

Table 3.2: An adjacency matrix for a network in which the edges represent the frac-
tional distribution of some behavior.
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of zero. A perturbation is then introduced to the network when the state value of

one node spontaneously increases to 500. This event represents the appearance of an

innovation in a social network or faulty data in a sensor network.

Each node in the network updates its opinion once per iteration. A node calculates

the average of its neighbors' state values, weighted according to the strength of the

edge leading from each neighbor to the node. The node's new state value is the mean

value of this peer opinion and its own previous state value. An important implication

of this algorithm is that the nodes' state values do not represent a quantity of a

conserved material, since the network-wide sum of the nodes' state values will vary

over time. The network eventually reaches a new equilibrium, at which every node

has the same steady state value. This steady state variable is always less than the

value of the original perturbation but greater than the initial equilibrium value.

3.1.3 Engineering Analysis

The Synchronization scenario models how a large community achieves consensus after

one member introduces a piece of information that differs from the community's

previously established shared opinion. This perturbation is invariably diminished as

it diffuses through the network, but its effect is evident in the altered steady-state

value of the nodes. The most influential nodes in the network are those sites at which

such a perturbation will cause the greatest change in the system's final steady state,

just as the most influential members of a human society are those people who have

the greatest impact on the attitude of the community. The flux metric is successfully

able to rank the influence of the nodes in a network according to this definition.

The relationship between the influence of a node and consensus formation during

Synchronization is the opposite of the effect observed in the Conserved Flow model.

The equilibrium state of the network in the Conserved Flow model does not depend on

the location at which a perturbation begins. Therefore, the impact of a node in that

system can be quantified by the rate at which the steady state is achieved following a

shock. As described in Section 2.2.2, a more influential node is expected to distribute

the unbalanced load more quickly than other nodes. However, the steady state of the
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Synchronization simulation will vary with the location of the perturbation because

the model does not obey a law of conservation. When a more influential node in the

Synchronization model experiences a perturbation, it is able to shift the final values of

the members of the network farther away from their original equilibrium values than

other nodes could. Therefore, in the Synchronization model a more influential node

is associated with prolonged discord rather than rapid consensus-forming because an

influential node will inhibit the dampening of the original innovation or shock. The

value of a is thus greater after a perturbation at a higher-flux node, as shown in

Figure 3-2.
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Figure 3-2: Consensus formation in a Synchronization model after a perturbation.

The mean state value of the nodes reflect the community's opinion. The evolution

of group opinion during the first 20 iterations following a perturbation at each node

type is shown in Figure 3-3.

It is clear in Figure 3-3 that a perturbation at a node with a greater flux value

causes the community opinion to be greater at all points in time. Since the initial

state value of the nodes is zero, the opinion of the community begins at a constant
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Figure 3-3: The average state value of Synchronizing nodes following a perturbation
at one of four locations.

equal to the size of the perturbation divided by the number of nodes. However, it is

very interesting that the average state value then decreases following a perturbation

at node types B and C, which have negative flux values, and increases following

a perturbation at the other sites. The declaration in Chapter 2 that nodes with

negative flux values are net "followers" while those nodes with positive flux value are

net "leaders" is thus upheld.

The average state value remains a constant for all future iterations past those

shown in Figure 3-3. Eventually every node in the network shares this average value.

Table 3.3 summarizes the correlation between each node's flux value and the steady-

state equilibrium value following a perturbation at that node type. The impact of

"leader" nodes is shown by the fact that the steady-state value is greater following

an innovation at a node with a greater flux value than at other nodes.



Node Type Flux Value Steady-State Equilibrium
A 50% 4.1667
B -30% 2.3089
C -20% 2.7070
D 0% 3.3174

Table 3.3: A perturbation at a node with a greater flux value leads to a greater
steady-state value.

3.2 Infection

Many important systems are described by a series of discrete states. Perhaps the most

prominent example is an Infection model of a population in the midst of an epidemic.

Individuals are categorized as infectious, healthy, or removed [34]. There is little

payoff from the tremendous increase in complexity of more nuanced descriptions such

as a continuous state from initial infection to the conclusion of the disease because

of the large size of the population. Despite the obvious influence of epidemics on the

human condition and the long legacy of scientific inquiry into their dynamics, they

are still imperfectly understood and new models are sought to better understand

how they evolve and the most effective means of defending against their potentially

devastating effects.

A biomimetic solution to the engineering challenge of database management is

an epidemic-like algorithm. If multiple copies of a database are distributed across a

network, it can be tedious to systematically update the relevant entry in each record

every time the source data changes. An alternative approach is to treat the updated

information as a pathogen that probabilistically infects the databases as it diffuses

through the network. Previous research has indicated that this method may be more

efficient than a traditional, systematic approach [19]. When implementing such a

solution it is important to parameterize how quickly the update will reach a certain

proportion of the network components, i.e. the rate at which the system transitions

from an unstable to a stable state of consensus following a perturbation.



3.2.1 Relevant Previous Work

The formal study of epidemics may have begun when Thucydides recorded the leg-

endary Plague of Athens in 430 BC [50]. However, the groundbreaking work in

mathematical epidemiology was published in 1927 by Kermack and McKendrick [38].

The classical model derived from their work divides the community into categories

depending on whether individuals are disease-free and susceptible, have the disease

and are capable of infecting others, or have been removed from the population. It

should be noted that "removed" in reality correlates to having recovered, died, or been

placed in quarantine; the key characteristic is that these individuals can no longer

infect others regardless of their own symptoms. The rates at which individuals trans-

fer between the populations traditionally is proportionate to constant probabilities of

infection and removal and the size of each population.

Kermack and McKendrick's model assumes that the subpopulations are homo-

geneous and continually interacting. However, more sophisticated versions of these

epidemiological models acknowledge that the members of a large community may

interact with only a small subset of the population. Consequently, the instantaneous

probability of a healthy person contracting the disease depends upon their social

context. In cases of such limited social interaction it is intuitive to represent the

transmission of the disease among individuals as a network-based phenomenon [76].

The nodes of the network may also represent families or other social organizations

within which the rate of disease transmission is orders of magnitude greatly than it

is between such groups.

Network analysis techniques are particularly appropriate when modeling the spread

of sexually transmitted diseases. It is possible to explicitly map and analyze a net-

work of sexual relationships, in contrast to the much more anonymous means by

which most other diseases are transmitted. Rothenberg and Narramore, for example,

have studied records of syphilis patients in Tennessee to identify relatively isolated

subpopulations of patients between which a small number of individuals act as critical

bridges. Their objective is to better allocate health care personnel to each population
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[55]. Computer simulations of gonorrhea transmission in a population capitalize on

network analysis techniques to determine necessary factors for the establishment of

a perpetual infection and the amount of sampling needed to gauge the spread of the

disease [28]. Network analysis techniques have been especially popular in studies of

human immunodeficiency virus (HIV). These methods have helped scientists to rec-

ognize the characteristics of acquired immune deficiency syndrome (AIDS) during the

original discovery of the disease [26].

The transmission networks of some non-sexual diseases may also be mapped ex-

plicitly because of the small scale of the outbreak. The severe acute respiratory

syndrome (SARS) outbreak that began in 2002 is one such example. It has been

observed that despite the high population density of the affected cities, such as Sin-

gapore and Hong Kong, a small number of so-called "superspreaders" that represent

at most 3% of the infected population have been responsible for 80% of new infections.

Masuda and Konno have investigated the characteristics of a superspreader and what

properties of the disease lead to this type of transmission network [47]. Their studies

highlight the need for measures of influence in transmission networks that do not rely

on a thorough understanding of the nature of the disease.

Scientists have investigated which centrality metric is most useful for epidemiolog-

ical research. Rothenberg et al. used eight different measurements to determine the

centrality of individuals at high-risk for HIV infection in one city [56]. Rothenberg

et al. noted that the actual value of centrality scores are likely to be very noisy and

therefore the data should be used only to rank the importance of particular nodes

rather than compare the relative magnitude of their influence. They also observe

that weighted networks are necessary to incorporate the varying levels of risk associ-

ated with a relationship between two individuals according to their shared activities.

Despite this limitation, Rothenberg et al. have found that the weighted and non-

weighted metrics produce very similar results. However, in a separate analysis of

a different community of high-risk individuals by Bell et al., weighted measures are

markedly more accurate than unweighted techniques [2].

Discrete-state network models are also relevant to non-medical disciplines. These



simulations are mathematically similar to epidemiological networks. For example,

Sznajd-Weron and her colleagues have conducted a series of network studies of the

Ising spin model, which describes the binary state of electrons [69][68]. The purpose

of these inquiries is to determine how the value of an electron will affect its neigh-

bors. Issues of centrality and influence are therefore at the core of their investigation.

Intriguingly, a key parameter that they consider is the "outflow" of a node [63]. Re-

call that the weighted outdegree of a node determines its flux value if the weighted

indegree, and hence eigenvector centrality, of all nodes are identical. Sznajd-Weron's

method is separate and distinct from the flux metric, but it is nonetheless intriguing

that the latest studies of influence in networks also concentrate on the outward edges

of a node when inward links traditionally have been the focus of such research.

A team at the Xerox Corporation working to update multiple copies of a database

located at the nodes of a network have transferred discrete-state models to engineer-

ing design [19]. The team, led by Demers, has discovered that the information at the

nodes may be most reliably updated by a disease-like algorithm if no central list exists

of the nodes to send an update to. The model used by Demers et al. that is most

relevant to this project is "rumor mongering". All nodes are initially "ignorant",

analogous to a healthy, susceptible population. After a site receives an update, it

randomly selects a neighbor to attempt to pass the "hot rumor" to. If after a certain

number of iterations the infected site continuously finds that its neighbors already

knew the update, then the update becomes "old news" and the node no longer at-

tempts to pass the update along. This process is similar to the recovery of infected

nodes in the disease model.

3.2.2 Model Description

An Infection model demonstrates the insight that flux metric could offer to studies of

epidemic networks. The simulation executes on the same 160-node trigonal network

of identical tiles as the Synchronization model. In the Infection model, inbound edge

weightings in Table 3.2 represent the amount of time that an individual is potentially

exposed to an infection due to a particular relationship. It is assumed that direct
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contact is not necessary for infection, but rather that the pathogen is associated with

an environment shared with a neighbor. For example, consider a married couple in

which one spouse spends only 20% of their day in their home but the other spouse

spends 60% of their time there. Recall that because the node types shown in Ta-

ble 3.2 all have the same weighted indegree and eigenvector centrality score. This

particular graph and adjacency matrix are admittedly abstract, and are meant only

to investigate the possibility of using the flux metric to gain insight into studies of

epidemics rather than to analyze a particular real-world scenario.

The nodes are always either susceptible, infectious, or removed. Initially, only

one node is infections and the remainder are susceptible. The behavior of a node at

each iteration depends on its state at that time. A susceptible node may be infected

by any of its infectious neighbors. The portion of time spent by an individual in

each environment shared with an infectious node is multiplied by the constant rate

of infection per unit time to determine the probability that the node will be infected

that iteration, and a random number generator determines if this event occurs. There

is a constant probability that an infected node will be removed. A removed node does

not change its state nor alter the state of its neighbors, but remains in the network.

Therefore, the network structure remains constant even though the state of each node

changes. A node's neighbors are predetermined and constant. This modification is a

simplification of the epidemic-like algorithm used to update simultaneous databases,

in which a node may randomly select any other connected node to infect. The change

is necessary for analytical purposes to ensure that the nodes each have a constant

flux value throughout the experiment

3.2.3 Engineering Analysis

The Infection model is probabilistic, a feature unique among the simulations presented

in this project. Adjusting either the probability of infection or removal will change

the simulation dynamics. Let a be the probability of removal and / represent the

probability of infection. Both a and / may be any real number equal to or greater

than zero and less than or equal to one. Note, however, that an infection rate of zero



is uninteresting because it prohibits the disease from spreading beyond the initial

perturbation.

A wide-spread outbreak would be expected to occur more frequently following

the spontaneous infection of an influential node than another node. The scale of the

outbreak at any point in time is measured by the size of the infectious population.

Note that a is not relevant to the Infection model due to the small number of discrete

state values permitted. Figure 3-4 shows the change in the size of the infectious

population after an outbreak begins at each node type when a is 0.05 and 3 equals

0.40. Each plot shown is the result of a single probabilistic simulation.
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Figure 3-4: The size of the infectious population
four node types in the Infection model.

following a spontaneous outbreak at

As can be seen in Figure 3-4, there is no clear correlation between the flux value

of the initially infected site and the ensuing outbreak. The flux value of the node at

which the outbreak begins does not appear to be an accurate indicator of the size of

the infectious population at a given time. It is possible that the flux value of a node

could have a more pronounced impact if the values of a and 3 were different.



Any consequence that flux has would be most obvious in a comparison of node

type A, which has the greatest flux value at 50%, and node type B, which has the

least flux value at -30%. Suppose that the maximum size of the infectious population

after node type X is infected is designated Ix and the time at which this peak value

occurs is Tx. The difference in the history of the infectious populations after an

outbreak begins at each node type can then be quantified by the distance between

these maxima,

distance = (IA - IB)2 (TA - TB) (3.1)

Figure 3-5 displays the effect of a and 3 on the distance between the maxima. To

increase the statistical significance of the results, the location of the maxima used to

calculate the distances shown in Figure 3-5 are actually the average values observed

after ten identical simulations.
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Figure 3-5: The effect of the flux value of the initial site of an epidemic as a function
of the infection and removal rates.

Further investigation reveals that the flat regions in Figure 3-5, where the effects

of an outbreak that begins at node types A and B are identical, are conditions in0- 01.......
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which no epidemic actually occurs. The initial node recovers before infecting any

of its neighbors. Kermack and McKendrick's differential equation model of disease

transmission also predicts threshold conditions that determine whether an epidemic

will grow or dissipate. Their conclusion is that the initial rate of growth of the pop-

ulation of infectious individuals will only be positive if the ratio of the probability of

removal to the probability of infection is greater than the initial size of the susceptible

population.

Kermack and McKendrick's threshold rule must be modified for application to a

network because the total population is not free to mix. It is logical to assume that

the initial size of the relevant susceptible population would only be three because the

initially infected node is in contact with its three neighbors. It can be seen in Figure

3-5 that the region in which a > 3,3 is perfectly flat and no true epidemic follows the

appearance of an infectious node. Therefore, Kermack and McKendrick's threshold

rule for the development of an epidemic holds true for the Infection model.

Unfortunately, Figure 3-5 reveals no other relationship between a, 0, and the

impact of the flux value of the epidemic's origin. Even in regions that are associated

with much volatility, such as where the probability of infection lies between zero

and 0.20, further investigation reveals that the relationship between epidemics that

originate at node type A and those that begin at node type B is not consistent. For

example, the results shown in Figure 3-4 were for an a of 0.05 and a P of 0.40.

The difficulty in gaging the effectiveness of the flux metric to predict the dynamics

of an epidemic is that models of disease propagation are probabilistic. The statistical

significance of any given set of results is somewhat unclear, and computing resource

limitations prevent the execution of very large numbers of simulations. Whatever

effect the flux value of the initial site of an outbreak might have on the ensuing

epidemic is nullified by probabilistic effects.
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3.3 Resource Sharing

Many intriguing network phenomena involve Resource Sharing within a community.

In these systems a physical good moves among nodes with identical structures. The

Resource Sharing model therefore obeys the same conservation laws as Conserved

Flow but is composed of nodes whose varying characteristics emerge as a result of

their orientation to their neighbors, an architecture similar to that of the Infection and

Synchronization models. The Resource Sharing model represents actual systems from

areas as diverse as robotics, finance, and decentralized computing. In engineering, the

importance of this structure is that the dispersal of a material through the network

can be engineered by altering the network's architecture without the need to create

custom units with varying connection weightings nor the need for some units to have

more connections than their peers.

The details of a particular implementation of the general Resource Sharing model

would be very intricate and specific to that scenario. However, the basic concept of

the system are explained by a simple allegory. Suppose that there is a community

of children, one of whom spontaneously receives a large quantity of candy. The child

wants to enjoy the candy, but also knows that he should share with his friends to

maintain his relationships with them. The child therefore keeps a certain percentage

of the candy for himself and doles out the remainder to his neighbors according to

the value that he places on that friendship. These secondary recipients in turn keep

a percentage of the candy and pass the remainder along to their friends, including

the original recipient, according to their social priorities. Since the network is fully

connected, eventually a steady state will be reached and the amount of candy that

each child has will not change despite the incessant flow of candy among them. The

path to this equilibrium depends on the influence of the child that received the original

gift.



A B C D Flux Eigenvector Centrality
A 0 50% 50% 50% -50% 0.1029
B 20% 0 30% 20% 30% 0.0570
C 30% 20% 0 30% 20% 0.0668
D 50% 30% 20% 0 0% 0.0819

Table 3.4: An adjacency matrix representing the fractional distribution of a conserved
good.

3.3.1 Model Description

The Resource Sharing model uses a network of 160 identical nodes on a trigonal grid,

similar to the structure of the Synchronization and Infection models. However, the

nodes of the Resource Sharing model have the same outbound edges rather than

identical inward edges. The nodes therefore may have varying eigenvector centrality

scores. Even if an existing centrality measure can rank the relative significance of

each node, this scenario is still pertinent to this study because the applicability of

the flux metric to such a ubiquitous situation must be verified before advocating the

widespread of the metric.

Table 3.4 contains the adjacency matrix describing the relationship between each

of the node types. Table 3.4 is the inverse of the adjacency matrix shown in Table 3.2

that is used for the Infection and Synchronization models. This relationship empha-

sizes that, in contrast to the structure of the other models, the weighted outdegrees

rather than the weighted indegrees of the Resource Sharing nodes are identical. How-

ever, there is no intrinsic limitation on the edge weightings other than that each node

has a weighted outdegree of 100%.

Table 3.4 also shows the eigenvector centrality score of each node type when it is

located in a 160-node trigonal network. Note that the ranking of the nodes according

to their eigenvector centrality is identical to the flux score ranking. However, the

node type with the greatest eigenvector centrality score and weighted indegree has

the least flux score. This contrast occurs because every node has the same outdegree

and each node's flux is calculated by subtracting its indegree from this constant.

The flux values of node types A, B, C, and D are respectively -50%, 30%, 20%,
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and 0%. During each iteration of the simulation, a node retains a set percentage, r',

of the material in its posession. The node then distributes the remaining material to

its neighbors according to the relationships in Table 3.4. Each node is modeled as

being equally selfish, i.e. the value of r is the same for each node type.

3.3.2 Engineering Analysis

In this model a conserved good is relayed among the nodes. Therefore, a is an

appropriate measure of the influence of a node per the discussion in Section 3.1.3. The

network-wide standard deviation for 250 iterations following an initial perturbation

of 250 units at each of the four node types is shown in Figure 3-6. In this scenario r

is set to 25%.
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Figure 3-6: The stabilization of a Resource Sharing network after one node receives
a perturbation of 250 units.

As can be seen in Figure 3-6, equilibrium is achieved slightly more quickly after a

perturbation at a node with a greater flux value than at a node with a lesser flux value.

Each node reaches the same steady-state value regardless of where the perturbation



Node Type Flux Value Steady-State Value
A -50% 2.0833
B 30% 1.1545
C 20% 1.3535
D 0% 1.6587

Table 3.5: The Shared Resource accumulates at nodes with the least flux values.

begins. Interestingly, not only is the steady-state value of a node dependent on its flux

type but the ranking of the equilibrium values also corresponds to the flux ranking of

the nodes. Therefore the node with whom relationships are most valued eventually

and hence has the least flux score receives the greatest amount of the resource. The

flux values and final state values for each node type are summarized in Table 3.5.

A key parameter in the Resource Sharing model is r,, the percentage of the ma-

terial that each node keeps for itself. This parameter can be tuned to elicit different

system behaviors on a predefined network. For example, suppose that an engineer is

interested in y, the difference in a at a given point in time if the network has been

perturbed at a node with the greatest or the least flux value. The behavior of -y

is therefore the maximum effect that the location of a perturbation can have on its

outcome.

Note that in this scenario y is the difference in a following a perturbation at node

types A and B from Table 3.4. The significance of 7 is relative to the magnitude of

the a values at that time. The maximum value of the ratio of 7 to UA throughout

time for each possible value of t, is shown in Figure 3-7.

The time at which the maximum value of y occurs also varies with r'. Results

not shown here indicate that these properties do not vary with the size of the per-

turbation, only the network architecture and the edge weighting between nodes. The

abrupt change in behavior observed in Figure 3-7 when n equals 35% is an example

of the complex behavior that can arise from even simple network dynamics. It is an

especially interesting phenomenon because no similar bimodal behavior can be ob-

served in a plot of the time at which the maximum gain in stabilization is achieved,

which is shown in Figure 3-8.
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Figure 3-7: The maximum decrease in a achieved in the Resource Sharing model
following a perturbation at a node with a flux value of 30% versus a node with a flux
value of -50%.
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Figure 3-8: The time at which the ratio of 7y to oA is the greatest.

An engineer may want to examine the gain in consensus formation throughout

time following a perturbation at the higher-flux node in comparison the the effect

of a perturbation at the lower-flux node. This value is the percent difference in the

integrals of orA and UB, and is shown as a function of r, in Figure 3-9.

Figure 3-9 shows that the effect of a perturbation's origin in the Resource Sharing

model is more pronounced the greater the value of , is. This is another insight that

the flux metric and the Resource Sharing model offer into the design of a potential

system.

Conclusion

The flux metric has been shown to be a useful tool for analyzing the scenarios rep-

resented by the Conserved Flow, Synchronization, Infection, and Resource Sharing

models. The flux metric is thus a valid method of ranking the influence of nodes

under a large variety of network dynamics with practical applications to real-world

engineering and social challenges. While the flux metric has noted shortcomings,
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Figure 3-9: The overall improvement in network-wide standard deviation following a
a perturbation at a node with a flux value of 30% versus a perturbation at a node
with a flux value of -50%.



such as its inability to be very useful in probabilistic settings, it has the noted advan-

tage of differentiating among nodes with constant weighted indegree and eigenvector

centrality scores.
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Chapter 4

Engineering Design through

Network Analysis

Introduction

Networks relationships need not be limited to the passing of an object or opinion

among nodes. Rather, almost any quantified relationship among a system of nodes

can be formalized as a mathematical graph. A novel challenge to which network

analysis techniques could be fruitfully applied is the design of complex systems. The

concept of system design as a network is evidently unique; the most similar published

work is Liu et al.'s very recent application of network techniques to data envelopment

analysis [42]. Their approach is to express the relationships between data management

units as a network and to then use the eigenvector centrality score of each unit

to determine which is the most efficient. Data envelope analysis is an operations

research method that relates the inputs and outputs of a system. This technique

is similar to engineering design, which seeks to relate the objectives of a design to

the subcomponents that comprise the system. The relationship between the missions

and subsystems of a product can be mapped as a graph. Measures of nodal influence,

particularly the flux metric, can then be used to prioritize design efforts or contribute

to cost studies. In this chapter these techniques are demonstrated by a case study, the

design of autonomous underwater vehicles (AUVs) for the offshore oil industry. This



study fulfills the goals of demonstrating the use of networks for design and verifying

the application of the flux metric to non-conventional networks.

4.1 The Design Problem as a Complex Network

Complex systems are composed of many subsystems. It is very important to un-

derstand which subsystems are more important than others when designing against

failure, prioritizing supply streams, allocating budgets, and scheduling research and

development. However, ranking the significance of each subsystem is very difficult

because only the relationships between coupled subsystems are known directly. This

problem is often exacerbated in a corporate setting by the presence of subcontractors,

reducing the level of communication between the design teams assigned to the various

subsystems.

The key to understanding the relative significance of each subsystem is to recognize

that the subsystems are related via the system objectives that they fulfill. It is much

simpler to determine the direct relationship between a subsystem and a mission than

the more abstract connection between two subsystems. Through the techniques and

theories of network analysis, this knowledge may then be used to better understand

how the system as a whole.

Recall from Section 1.1.1 that in a bipartite network relationships exist between

two classes of nodes, but that no edges connect the nodes of a single class. The

special significance of weighted, directed networks is due to their appearance during

the decomposition of a bipartite graph to a unipartite graph as shown in Figure 1-2.

Bipartite graphs are a natural representation of many complex systems because they

divide a large system of nodes into smaller units that may be better understood.

For example, large-scale social systems are often comprised of smaller, overlapping

organizations. Since many members may belong to more than one organization, it can

be difficult to determine their relative influence on the entire system even if their role

within each individual organization is well established. However, modeling these local

measures of importance as the edges linking the individuals to their organizations in
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a bipartite graph, decomposing this graph to its unipartite form, and applying the

flux metric would reveal the system-wide importance of each member.

A bipartite graph is therefore an appropriate representation of a complex system

in which the correlation between each subsystem and one or more missions are well-

known, but the relationships among subsystems and missions are more abstract.

This project focuses on one particular and practical interpretation of weights. The

weighting of the edge connecting a particular mission and subsystem corresponds

to the probability that the subsystem will reach peak capacity during that mission.

This peak behavior infers that the mission could achieve more if it were not limited

by the subsystem. If a subsystem is not used in a mission, then the probability of

peak performance occurring is zero and no relationship exists between the mission

and that subsystem.

All devices have some sort of quantified design limit, whether it is the maximum

thrust exerted by a propulsor or the peak pressure that a vessel can withstand. Al-

though a system can be described by many different characteristics, the appropriate

parameter to consider for this approach is the device trait that limits a subsystem's

contribution to the mission. For example, if the current mission is taking sports pho-

tographs then shutter speed may be the limiting trait of a camera. However, if the

objective is to photograph dangerous animals then the power of the telephoto lens

would be more appropriate.

Note that the probability of any particular mission type occurring is known and

that since all possible missions are identified, these probabilities sum to one. The

weightings of the edges between subsystems and missions in the bipartite graph are

the probability of the subsystem peaking, given that the relevant mission is underway,

multiplied by the probability of that mission occurring. Hence, the weighting is the

overall probability of that subcomponent peaking during that mission.

For example, suppose that Py is the probability that mission Y will occur and Xy

is the probability that subcomponent X will peak during mission Y. Furthermore,

there are two missions a and / and three subcomponents A, B, and C that are

utilized during every mission. The bipartite graph depicting this scenario is shown in



Figure 4-1. Only the weighting of one edge is labeled for clarity.

Figure 4-1: A bipartite graph modeling the relationships between the subsystems A,
B, and C and objectives a and 3 of a design.

4.1.1 Ranking Subsystems

After the bipartite network describing the system is defined, it can be decomposed

to form a unipartite graph representing the relationships among subsystems. Recall

from Section 1.1.1 that each edge between a subsystem and a mission in the bipartite

graph is expanded to become a set of edges leading from that subsystem to every other

subsystem that had been originally linked to the mission. The network of subsystems

produced can be analyzed to determine the relative influence of each subsystem.

The strict definition of the edge weightings in the design network permit a formal

interpretation of the flux metric as a measure of the influence of each node. Suppose

that a product utilizes three subsystems to achieve two different missions, as described

in Section 4.1. The flux of subcomponent A is defined as

flux(A) = outdegree - indegree (4.1)

f lux(A) = (2PA, + 2PAp,) - (PB, + P0 B 0 + PC, + PCp) (4.2)

flux(A) = Pa(2Aa - Ba - Ca) + P(2AO - B3 - Ca) (4.3)

The flux of a subcomponent is a measure of the node's influence because it indi-

cates how much more likely the subsystem is to peak than the other subcomponents

involved in the same mission. Nodes with positive flux scores are more likely to peak

dMILL



than the other subsystems utilized in the same missions, while nodes with negative

scores are less prone to peaking than other subsystems. Peaking is normally unde-

sirable because it infers that the design limits of the subsystem add constraints to

the potential achievements of a mission. Furthermore, the wear and tear on a device

dramatically increases when the subcomponent is operating at its maximum possible

performance level.

A sudden change in a subsystem's performance is a perturbation analogous to the

network shocks discussed in Chapters 2 and 3. The overall capabilities of the system

will be affected most by the capacity of an influential subsystem as measured by the

flux metric. A subsystem will tend to have a large flux value if it is very likely to

peak in any missions that depend on it, even if the subsystem relates to fewer missions

than other subcomponents. Allocating resources towards expanding the maximum

possible performance of such a subcomponent would significantly expand the range

of tasks that could be accomplished during the missions.

4.1.2 Ranking Missions

The bipartite graph depicting the missions and subsystems may also be decomposed

into a unipartite network of missions. The mathematics of this procedure are identical

to those used to form the unipartite network of subsystems, except that the flow of the

edges is reversed. When ranking missions the unipartite edges travel from a mission to

all other missions that are connected to a shared subsystem in the bipartite network.

Considering the same example from Section 4.1, the flux of mission a is thus

flux(a) = outdegree - indegree (4.4)

flux(a) = (PA, + PB, + PC,) - (POAp + POB, + PpC3) (4.5)

flux(a) = P,(A, + B, + C,) - P(Ap + B, + Cp) (4.6)

A mission with a positive flux score more frequently causes subsystems to peak

than do other missions that share the same subsystems. Peak-capacity behavior

tends to be correlated with fatigue and other damage, and therefore is indicative of



maintenance costs. However, when repairs are conducted all missions that share the

relevant subsystem benefit. Missions with positive flux values are partially responsible

for the operating costs of other missions while missions with negative flux scores

benefit from repairs directly associated with other missions. This insight is applicable

when choosing how much to charge customers if bills are itemized per mission or

checking that the profit associated with each mission type corresponds to its cost.

Since subsystems are shared between missions, garnering this financial insight without

a network-based approach would be extremely difficult.

4.2 Case Study: AUVs for the Offshore Industry

The application of the flux metric and other network techniques to a current engi-

neering design topic will be demonstrated by an analysis of the use of autonomous

underwater vehicles (AUVs) in the offshore oil industry. AUVs are evolving rapidly

from experimental concepts to commercial products. AUVs offer solutions for mar-

itime missions too deep, dangerous, or extensive in space or time for human divers

and at a lower cost than other robotic alternatives. The offshore industry in partic-

ular abounds with opportunities where the astute application of AUVs to perennial

challenges would increase both cost savings and human safety. However, AUVs are

truly complex systems whose various subsystems may interact to accomplish their

objectives while simultaneously competing for the scarce resources available aboard

the vehicle. The nonlinear relationships and indirect causalities that thus arise while

developing the vehicle's subsystems encourage the use of rigorous quantitative tech-

niques, such as this network-based approach, to augment the traditionally qualitative

design process. This case study includes a description of the AUV scenario, quanti-

tative results of a survey given to members of the oil and gas community, and the

interpretation of the data as flux values with a comparison to another ranking scheme.



4.2.1 Overview of Deep-Sea Technology

A thorough accounting of the needs of the offshore industry and the current ca-

pabilities of AUVs is necessary to explain the scientific and industrial basis of the

subsequent network-based study. The deep ocean offers great promise for discovery

and commercial opportunity, but also presents significant challenges that distinguish

this environment from other regions of exploration.

The density of sea water causes crushing pressures to quickly increase with depth.

For every ten meters of depth, the water pressure increases by approximately one

atmosphere [52]. The human body cannot tolerate more than four atmospheres of

pressure, and even such limited depths mandate careful attention to depressurization

rates to limit decompression sickness [48]. The challenge posed by the increasing

pressure escalates at greater depths, because conventional solid-state electronic com-

ponents begin to fail at high pressure. This phenomenon is the one of the most

significant reasons for the high cost of deep-sea exploration. Simple systems that

would cost hundreds of dollars to operate on the surface escalate in cost to tens of

thousands of dollars in order to be functional thousands of meters below the sea.

The single greatest challenge to developing deep-sea systems is posed by the

medium itself. Water attenuates electromagnetic radiation; therefore radio commu-

nication is unreliable at even moderate depths. Technologies developed to explore

other environments, such as space probes, unmanned aerial vehicles, and all manner

of terrestrial craft, are therefore rendered useless in the ocean. The Global Position-

ing System (GPS), which has become a mainstay of computer-assisted navigation, is

completely unavailable underwater. While acoustic solutions have been developed to

permit limited communication between surface craft and deep-sea vehicles, such sys-

tems lack the bandwidth and range to permit the persistent communication assumed

possible in other realms. Deep-diving underwater vehicles are classified according to

the degree of involvement of a human pilot during their operation. At one extreme,

a deep submersible vehicle (DSV) actually has a human crew onboard. The crew

typically consists of a pilot and one or two scientific observers. Although a DSV



is untethered and can navigate under its own power, the limitations of life-support

systems and operator endurance restrict the horizontal range of the vehicle. A DSV

therefore is typically deployed by a surface-based support vessel directly above the

region of interest, to which it descends and returns in approximately eight hours. The

main advantage of a DSV over a robotic system is the increase in situational awareness

and mission flexibility afforded by the presence of a human pilot onboard. However,

the cost associated with maintaining the life-support systems aboard a DSV and mit-

igating the significant safety risks incurred by each expedition to the deep make DSVs

much more costly than other exploration vehicles [14].

A remotely operated vehicle (ROV) is in principle very similar to a DSV, except

that the pilot has been removed from the confines of the vehicle and teleoperates it

from the support ship. The pilot therefore has approximately as much control over

vehicle manipulators and thrusters as he or she would aboard a DSV, since such

mechanisms are electronically coupled to human input devices in either vehicle, their

situational awareness of the vehicle's operating conditions and physical surroundings

is limited to video and sensor readings. The US Navy developed the first true ROV,

the Cable-Controlled Undersea Recovery Vehicle (CURV). Although this vehicle only

dived to a moderate 600 m, in 1966 it famously retrieved a nuclear weapon lost off

the coast of Spain [12]. By the 1970s, ROV development was evenly divided between

commercial and defense applications and by the end of the decade few DSVs remained

[14].

Signals travel along a tether linking the ROV directly to the support ship. While

the umbilical limits the range and maneuverability of a ROV, it also serves as a

conduit of energy from the ship's power plant. While these resources theoretically

grant a ROV unlimited operating time, the constant supervision required by the

surface-based pilot in practice limit the utilization of the vehicle [14].

AUVs replace the need for continuous human oversight with artificial intelligence.

This permits the vehicles to operate around the clock and eliminates the need for

a tether. The sophistication of the onboard programming can vary anywhere from

blindly executing a predefined series of navigational maneuvers to dynamic responses



to changing conditions underwater [16]. Initial AUV development was driven by

military needs, similarly to the early history of ROVs. The first deep-sea AUV,

Epaulard, was built in France during the 1970s and dove to 6,000 m. In the 1980s,

the US Navy pursued AUV technology in order to meet the demands of anti-submarine

warfare missions [14].

While the absence of an umbilical imposes power limitations on an AUV, this

feature also permits access to regions too constricted for ROVs and too dangerous for

DSVs. Furthermore, advanced power schemes may allow an AUV to automatically

refuel at either mobile or permanently moored solar-powered docking stations. Singh

et al. have demonstrated that an AUV is capable of homing to a docking station and

then communication by satellite with a scientific base station [62]. Since AUVs do

not require a support ship, they may explore regions inaccessible to surface craft such

as the water beneath the ice caps. The large capital investment but low operating

costs of AUVs also make them ideal for repetitive, routine missions, such as those

encountered in the offshore industry [14].

4.2.2 AUV Subsystems

An AUV is the compilation of many individual subcomponents integrated together

to serve a specific mission. Each AUV is custom built to meet its customer's speci-

fications, and even major AUV companies such as Bluefin Robotics still report sales

in the single digits [13]. Because of the young age of the AUV industry, many of

the devices found aboard an AUV are not primarily marketed as AUV components.

While this tendency means that engineers must be diligent to ensure that new parts

will function appropriately, it also indicates that there are many opportunities for

innovation and development in the AUV industry. Virtually any component conceiv-

able can be integrated into an AUV, so long as it can function underwater and at high

pressure, making the possibilities of future AUV design very promising. In order to

categorically analyze potential AUV subcomponents, they are grouped according to

their function aboard the vehicle, from pressure-resistant materials to manipulators

and other invasive tools.



Materials

AUVs require materials that can withstand the pressure changes, temperature varia-

tions, and corrosive effects of transiting the water column. Both the cost of materials

themselves and the difficulty of manufacturing with the stronger materials cause the

cost of materials to increase with the maximum depth of a vehicle. Metal compounds

with a high yield stress, such as high-strength steel, aluminum alloys, and titanium

alloys, are susceptible to stress corrosion cracking. While cathodic protection can

guard against such corrosion, this technique makes all metals except aluminum al-

loys susceptible to hydrogen embrittlement [46]. Furthermore, metals are typically

denser than alternative materials, which is undesirable because vehicles are designed

to be as light as possible to conserve onboard power supplies and reduce the need

for deep-rated flotation, which is quite expensive. However, metal compounds are

still incorporated into some AUV designs. For example, enhanced methods using

titanium alloys have been developed in Russia and Ukraine despite the six-fold cost

increase associated with machining and welding titanium in comparison to aluminum

[14]. Non-metallic alternatives include carbon fiber reinforced composite (CFRP) and

ceramic hull structures. A main disadvantage of CFRP is its anisotropy, requiring

an engineer to be very cognizant of the orientation of the fibers relative to the load

in a given component. While ceramic hulls have been under development since the

1960s, they are still associated with high manufacturing costs. Furthermore, ceramic

materials are very brittle so localized stresses as unremarkable as those present at an

O-ring groove must be avoided [64]. Acrylic plastics are used for viewports rather

than glass because acrylic is easier to machine, has more reproducible physical proper-

ties, and has a more predictable point of catastrophic failure. Windows are generally

conical, rather than the easier to manufacture flat shape, because the conical shape

adds greater strength. Acrylic is strongest when under compression, so primary struc-

tures made of acrylic are always spherical to ensure uniform hydrostatic loading [46].

Glass spheres may also be used when lives are not at risk. For example, MIT Sea

Grant AUV Lab's Odyssey IV has two 17" glass spheres at its core that house its



electronic systems to depths of 6,000 m [40]. A wide variety of materials are also

available for controlling the buoyancy of an AUV. An AUV is trimmed to be slightly

positively buoyant so that the vehicle can be recovered following propulsion system

failure. Since the density of sea water changes with depth, there is a degree of cost

effectiveness associated with designing an AUV to operate primarily at one depth

[64].

Propulsion

The majority of AUVs are driven by propeller assemblies [60]. Rather than rely on a

rudder or other control surfaces, an AUV frequently has multiple thrusters oriented to

provide force in each of the primary directions of motion for that particular AUV [27].

Some AUVs also have azimuth thrusters that can independently rotate [37]. DSVs

and ROVs use nozzles to enhance propeller efficiency, a trend not seen on early AUVs

because their propellers were not powerful enough for such hydrodynamic effects to

become significant [14]. However, the latest AUVs generate more thrust than their

predecessors and consequently are equipped with such nozzles.

In 1996, the National Research Council deemed AUV propulsion a mature tech-

nology that was unlikely to yield anything but marginal improvement. However, the

past decade has heralded several creative breakthroughs that capitalize on the advan-

tages of AUVs' diminutive size in relation to most other maritime vehicles. The first

of these innovations was the buoyancy-driven glider, an extremely energy-efficient ve-

hicle. Traveling at the relatively slow speed of 0.5 knots for up to one year, the winged

AUV automatically changes its buoyancy via a series of bilge pumps. As it rises and

falls in the ocean the wings of the AUV convert this vertical motion to forward thrust,

giving it a characteristic saw tooth trajectory [17]. The opposite extreme of this low-

energy glider is the ultrasonic thruster (UST) currently in development by Alfred Tan

at MIT. By tuning an off-the-shelf ultrasonic transducer to a resonance frequency, a

powerful jet can be obtained which can be used for propulsion. The revolutionary

characteristic of the UST is that it has virtually no moving parts, a characteristic

that lowers the maintenance cost and extends the lifespan of any machine [70].



Power

The capabilities and endurance of AUVs, like virtually all other vehicles without an

integrated nuclear plant, are fundamentally limited by the amount of power available

onboard. Both the total amount of energy available and the rate at which it can

be discharged, i.e. power, must be considered. A comparison of several potential

solutions is shown in Figure 4-2.
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Figure 4-2: Comparison of power systems [29]

Traditionally, most AUVs have used either primary batteries, which can be used

only once, or secondary batteries, which can be recharged [14]. The high cost of

disposable primary batteries becomes economical only when the cost of the overall

I I



AUV mission is particularly large, such as for scientific and defense applications [61].

Popular primary batteries include lithium-based cells, which are very powerful but

equally expensive, and the common manganese alkaline cell. Silver-zinc cells have

been used extensively as secondary batteries, but require careful monitoring and only

last a few charging cycles. Lithium-solid polymer cells are pressure independent, a

valuable characteristic in any AUV component [61]. Fuel cells can also be designed

to be pressure-independent. For example, the Norwegian-developed HUGIN 3000 is

equipped with an alkaline aluminum/hydrogen peroxide fuel cell. However, a draw-

back of this design is the necessity to reload the vehicle with potassium hydroxide

and other potentially dangerous chemicals aboard a support ship [32].

Combustible fuels offer extremely high specific energy, but require an oxidizer to

be carried onboard. Some batteries rely on oxygen dissolved in seawater, but the low

concentration of oxygen invariably results in low voltage and hence low power den-

sity [14]. At the opposite extreme, super capacitors deliver relatively small amounts

of energy very quickly. It is feasible that such technology could be used aboard an

AUV to enable intervention missions, while an alternative source would power the

thrusters. While flywheels are an extremely efficient method of storing energy, kine-

matic restrictions and the necessity for safety shielding limit their use aboard vehicles

and they tend to only retain their "charge" for a few hours. In 1989 Stommel envi-

sioned an AUV glider that derived its power directly from the sea. As the glider rises

in warm waters, an internal bladder melts and expands against an accumulator that

stores the energy for later use [17]. This technology would take full advantage of the

unique opportunities offered by the maritime environment. However, while current

gliders are extremely efficient, Stommel's device has not yet been realized.

Launch and Recovery

The means by which an AUV is launched and recovered influence how delicate the

payload may be, how easily actuators or other tools may be modified, how the vehicle

can be refueled, and how recorded data is transferred from the vehicle to permanent

databases. Most AUVs are currently both launched and deployed using a ship's



crane, a very labor-intensive and sometimes dangerous process [10]. Adverse weather

tends to affect recovery much more than launch, so there is greater opportunity to

improve the process by concentrating on AUV recovery [31]. An alternative method

of recovery is a stinger system in which the AUV drives into a cradle and catches a

wire with a tail hook, similar to how airplanes land on an aircraft carrier [10]. ROVs

are often lowered and hoisted in a garage, from which the ROV deploys underwater at

operating depth [27]. It is feasible that such a system could be developed for AUVs.

Many engineers have envisioned a system of AUVs that are not regularly recovered

by a ship, but rather dock to recharge their batteries and download mission data

autonomously at stations. If such stations were floating on the surface, they could

provide both solar power and GPS updates to the AUV's navigation systems [14].

Any such system would have to have an interface specially designed for the AUV in

question. Garages, stingers, articulated arms, and nose cones could all be used to slide

the AUV into place after it had successfully homed in on its base. However, careful

attention must be paid to the AUVs power system when selecting a base location.

Lead acid and certain other batteries give off dangerous, buoyant hydrogen gas when

being recharged. Furthermore, the time spent by the AUV at its base station should

be minimized to be economical in comparison to manually refueling the vehicle, but

quick recharging can generate high temperatures [10]. Thus, the launch and recovery

of the AUV is an important consideration when integrating together the vehicle's

various subsystems.

Communication

AUVs rely on communication systems to navigate, to receive updates to their in-

structions, and to send data packets quickly. While the high conductivity of seawater

attenuates all but the lowest-frequency radio waves, many AUVs are designed to par-

tially breach the water's surface and deploy antennas to acquire a GPS signal. These

vehicles normally communicate with the low-earth-orbit GPS satellites, which is more

energy efficient than relying on higher-orbit satellites [17].

When submerged, AUVs rely on acoustic modems to communicate with one an-



other and with surface-based installations. Acoustic transmission typically occurs

at 8.075 kHz and 27 kHz. The slow rate of acoustic transmissions creates a delay

between any operator input and vehicle actions, increasing the need for autonomous

processing aboard the AUV [14]. Solutions developed for terrestrial autonomous sys-

tems to mimic stigmergy in ant colonies by using the environment as a communication

medium are inapplicable in the dynamic ocean. Many nations produce a wide array

of acoustic communication systems for various applications. However, this profusion

of options also means that acoustic channels can become cluttered in certain envi-

ronments. For example, in Australia offshore platforms use acoustic beacons to warn

submarines of their presence [27]. Acoustic signals are also susceptible to distor-

tion and reflection off a shallow seabed or a group of ships, but remain the default

communication option for undersea systems [14].

Command and Control

AUVs by definition require less operator control than other robotic systems. Increased

artificial intelligence progresses a vehicle from simply being able to maintain position

to executing preprogrammed tasks, such as opening a valve, to abstract mission-level

assignments such as self-navigating to every valve in a platform and automatically

checking their status and adjusting them as necessary. These tasks can be more com-

plex than their terrestrial counterparts because moving manipulators and changing

ocean conditions rapidly change the vehicle's basic dynamics during the mission [80].

One solution to such evolving conditions is the use of a computer supervisor that

switches among multiple control schemes, depending on the situation [36]. In a lay-

ered control system, each level of task is handled separately [14]. When a layered

control system is coupled with decentralized computing, where each subcomponent

on board has the intelligence to handle its own particular tasks without much in-

tervention from the central computer, the resultant design is very flexible towards

future design changes and potentially produces much cost savings [3]. AUVs exhibit

much potential for use in large groups, which would permit the application of swarm

intelligence. The swarm would spontaneously coordinate activities to execute very



abstract missions with only the highest level of operator input.

Navigation

The navigation system aboard an AUV tracks the vehicle's position in space, typically

at scales of several meters in resolution. While GPS provides excellent navigational

data for other robots, many AUVs cannot surface frequently to receive a GPS signal.

Ice or other structures may block their path, or a deep-sea AUV may not have the

energy and time to expend resurfacing every time a new location update is desired.

The simplest means of navigation is dead reckoning, i.e. estimating a vehicle's current

location with knowledge of its starting position, velocity, and the time of travel. Since

velocity measurements are prone to inaccuracy, significant improvement can be gained

with the use of an inertial navigation system. These instruments use gyroscopes

to record the acceleration of the AUV, and are available at many different levels

of accuracy proportional to their cost. Such systems are often supplemented with

Doppler velocity logs to record the vehicle's relative velocity [66]. A Doppler velocity

log alone may be sufficient for navigation if it is able to lock onto the seafloor.

AUVs may also use acoustic networks to navigate. Long-baseline (LBL) networks

consist of multiple transmitters, sometimes placed on the seabed up to ten kilometers

apart. An AUV can determine its own location by recording how far it is from at least

four of these transmitters, each of which has a known position [35]. An ultra-short

baseline (USBL) system relies on an AUV's ability to determine the distance to a

single transmitter mounted on the hull of a support ship. However, USBL methods

require the use of a ship equipped with very accurate motion-sensing equipment [14]

[22].

Theoretically, AUVs could navigate by locating geophysical features underwater.

These features can either be naturally occurring or deliberately placed beforehand.

However, practical obstacles to implementing such a system include difficulty of per-

forming feature recognition from noisy sonar data. One solution to this challenge is

vision-based navigation, but such a system would require laser illumination every-

where but the shallowest seas [15]. Simultaneous localization and mapping (SLAM)



techniques may be able to assist in AUV navigation if the vehicle revisits an area

multiple times [66].

Positioning

Positioning is the capability of an AUV to locate and orient itself on a scale that

is less than one meter in resolution. This feature is particularly important for in-

tervention missions, on which an AUV interacts with relatively small systems such

as valves or pipelines. While the accuracy of low-cost fluid tilt and pendulum tilt

pitch and roll sensors degrades significantly in the presence of heave and sway, more

expensive sensors are available that incorporate gyroscopes. High-cost gyroscopes are

also available for use as angular velocity meters, but their cost and power demands

have previously limited their use to military applications [39].

There is much overlap in the techniques and sensors used for navigation and

positioning. Small-scale localization can be achieved by referencing known features

using sonar or visual systems. A wide array of imaging sonar arrays are produced

worldwide but an examination of their output shows that the resolution of these

systems is too poor to distinguish small objects, such as features on oil rigs [27].

Machine vision algorithms can distinguish among even relatively similar features, and

often can be retrofitted to systems originally deigned for human optical recognition

[30]. However, such systems require computer processing and illumination that can

be very power intensive, and would likely be very sensitive to biofouling.

Manipulators

Accurate positioning enables the use of manipulators on an AUV to interact with

objects underwater. ROVs typically have manipulator arms preinstalled, and larger

systems can lift hundreds of kilograms. While lower-cost manipulators have less

dexterity and strength than more expensive alternatives, it has been speculated that

the agility of the systems will eventually plateau and reach a cost constant but that

the strength of the systems will always be proportional to cost [14]. However, it

should be noted that each of the six degrees of freedom requires at least one actuator



and that sometimes more are used for redundancy or to increase the effectiveness

of the arm. Generally, such systems will always be more complex and hence more

expensive than their non-holonomic counterparts that are less agile.

While the most common manipulator is a simple gripper, many other tools can

be affixed to a robotic arm. In the offshore industry, devices such as torque tools,

gasket change-out tools, and pipe cutters have been used on ROVs [53]. The use of

such manipulators on untethered systems has been rare because of the timing delay

introduced by acoustic communication. However, as control algorithms improve it

will become possible for AUVs to use increasing complex manipulators on their own.

The feasibility of this scheme has already been demonstrated at the University of

Hawaii with the SAUVIM (Semi Autonomous Underwater Vehicle for Intervention

Missions), which can unplug, move, and reinstall a small part on an underwater frame

on its own [45]. The ALIVE (Autonomous Light Intervention VEhicle) is capable of

autonomously navigating to and docking at a work site before using a manipulator

to perform light tasks. The experimental vehicle has explicitly been developed as a

means to reduce the large costs associated with operating an ROV support ship [11].

Payload Sensors

An AUV may carry sensors unrelated to its actual motion or intervention missions.

The litany of possible options currently available on the market include magne-

tometers, chemical sensors, conductivity sensors salinity sensors, thermometers, non-

navigational pressure gauges, sediment profilers, radiation samplers, and plankton

samplers [27]. These sensors are used to gather oceanographic data, to survey the

seabed, or to conduct biological studies. Specialty forms of sonar, such as side-scan

and bottom profiling, are also very frequently installed on underwater vehicles. The

transceiver design is considered a mature technology in which only incremental im-

provements are possible, although research in onboard data compression and process-

ing is ongoing [14]. Cameras are also available for a wide spectrum of costs, ranges,

and lighting conditions [27]. However, the utility of any visual system is strongly

correlated to the amount of power available for lighting.



4.2.3 Subsea Missions in the Offshore Industry

The offshore oil and gas industry has rapidly expanded since the 1960s, and provides

up to a quarter of the natural gas in the United States and one-sixth of the nation's

domestic oil [14]. The first offshore structures were simply steel towers, called jackets,

that were fixed to the seafloor and supported the wellheads, pipes, and other fixtures

beneath the petrochemical processing equipment and living quarters above the sur-

face. As the offshore industry expanded into deeper waters tension-leg platforms

(TLPs) and the floating production system (FPS) were developed. These configu-

rations consist of the same topside facilities as a fixed structure, except that they

are linked by flexible cables, rather than a rigid jacket, to the wellheads below [48].

This vital economic sector relies on underwater vehicles because the depths of mod-

ern offshore operations preclude the use of divers. While 83% of offshore activities

occur at depths less than 300 m [16], the depth of drilling has increased with time

so that the deepest structures now lie up to 2,400 m below the surface [58]. A wide

variety of activities occur at these benthic depths, ranging in complexity from simple

surveillance to the repair of damaged equipment.

Observation

The simplest task performed beneath an offshore rig is the visual inspection of equip-

ment. Subsea installations can radiate out for up to 50 km beyond the oil rig seen

on the surface. These pipes must be routinely inspected for damage [14]. Insurance

regulators also sometimes mandate the visual inspection of equipment for cracks and

other flaws according to a regular schedule. If such an investigation reveals a site

in need of repair, an underwater vehicle can also be positioned to provide real-time

video feed of the area while repairs are conducted with other tools on an ROV. Some

observation tasks involve non-destructive testing, such as magnetic particle inspec-

tion to determine the structural integrity of a jacket node. Other observation tasks

are more complex, and may include the spot removal of biological growth with a wire

brush or other manipulative task before a measurement can be made [48].



Measurement

Measuring distances is a more complicated mission than simple observation because

measurements must be made with reference to two or more points. This task requires

a machine to briefly maintain a fixed position while establishing its position relative

to both of the targets. One such measurement is of scour, the drifting of sand dunes

along the seabed. The height of the sand is measured relative to a fixed point on the

jacket, and can vary by as much as 4.5 m among the legs of the same jacket. Scour

is important to monitor because it can expose the foundations of the jacket, posing

a safety hazard [48].

Exploration

Exploration is the most sophisticated non-intervention task because such data is only

useful if it is correlated to a specific geographical location. Deep-sea vehicles can

map the sea floor using various instruments, such as multibeam echo sounders, sub-

bottom profilers, side-scan sonar arrays, and magnetometers. It is significant that

sonar-based measurements require much less data storage and processing than visual

imagery. Such terrain data are critical when planning the installation of new subsea

oil structures and reduce costly over-design of platforms. Interestingly, one of the first

companies to invest largely in AUVs for exploration was the De Beers mining group,

which was searching for diamonds off the coast of South Africa. De Beers contracted

this work out to Maridan AS in Denmark [16].

Maintenance

After an offshore rig is built, adjustments must still be made in response to the

evolving nature of the drilling operation. One such task is the opening and closing of

valves on the " Christmas tree," the flow regulator which sits atop each wellhead on the

sea floor [48]. Another routine assignment is the changing out of gaskets at various

locations along the pipelines [53]. These tasks are not only simple and repetitive,

but have the advantage that they require a deep-diving vehicle only to interface with



components predesigned for such interactions. Therefore, thoughtful planning prior

to installation can make such maintenance much easier to perform onsite.

Construction

Engineers design offshore platforms so that as much of the structure as possible can be

assembled on land before the components are sunk and connected underwater. Real-

time monitoring is necessary to ensure that as parts are placed properly underwater.

Careful observation and response is especially critical when laying pipeline in deep

water, because the large loads frequently cause pipes to buckle and then rapidly

collapse due to the high water pressure. Simple tasks, such as wire cutting, are

also performed by underwater vehicles [16]. Technologically, it would be possible

for robots to perform welding and other labor-intensive, high cost tasks undersea.

However, regulators and insurance companies' strict standards require on-site human

supervision and visual inspection of such joints and have so far precluded the use

of robotic welders [59]. Although construction tasks are specialized one-time events

in the lifespan of a rig, they can be anticipated and coordinated with the design of

the component structures. Therefore, construction may be regarded as a hybrid task

lying between intervention and maintenance.

Unique Tasks

The lifespan of offshore subsea equipment can extend up to 25 years, during which

time any type of mechanical or electrical failure may occur. For example, a flaw

in a piece of ExxonMobil equipment caused crystallization in a pipeline. In order

to repair the damaged area, a custom ROV was designed and built to cut through

the pipes surrounding the affected area on the seafloor and then bring the damaged

segment to a surface vessel for further inspection [53]. The unpredictable nature of

such repair tasks require very sophisticated decision making, and therefore are the

most complicated assignments possible for a deep-diving vehicle.



Scientific Tasks

Offshore underwater missions are frequently encountering marine life by surprise. For

example, in November 2007 a Shell ROV videotaped an "elbowed" Magnapinna squid,

as shown in Figure 4-3. This was only one of a handful of sightings of the species in

history [33].

Figure 4-3: Magnapinna squid photographed by a Shell ROV.

While such photographs frequently only reach biologists by circumlocuitous routes

after offshore employees save them for their novelty, formal relationships are being

developed to match the technical capabilities of offshore deep-sea vehicles with the

needs of scientists. In the United Kingdom, the SERPENT (Scientific and Environ-

mental ROV Partnership using Existing iNdustrial Technology) Project focuses on

such unusual pairings [33]. While there is no technical need for offshore oil compa-

nies to participate in such projects, there may be large political and public-image

incentives for a petrochemical company able to portray itself as being environmen-

tally conscious and cognizant of and cooperative with cutting-edge scientific research.

I



Organization
Chevron

Chevron Energy Technology Company
International Submarine Engineering Ltd.

MIT Computer Science and Artificial Intelligence Laboratory
MIT Sea Grant

Monterrey Bay Aquarium Research Institute Engineering
Shell International Exploration and Production Inc.

Table 4.1: Organizations represented in the AUV design survey.

Therefore, since minimal additional capital investment may be necessary to accom-

modate biologists' needs, it would behoove an offshore company to consider scientific

missions when designing future deep-sea vehicles.

4.2.4 Correlation between AUV Subsystems and Offshore

Missions

Recall that the relationship between product subsystems and missions in the network-

based design analysis are defined by the probability that a component will be pushed

to peak capacity. This event infers that the mission could achieve more if the sub-

system had more advanced capabilities. Collecting peak-capacity data for a novel

system, such as an offshore AUV, is conjecture and limited by preconceptions. To

help mitigate this bias, a survey has been conducted to collect the necessary infor-

mation.

A questionnaire was written and distributed to a wide variety of specialists to

collect data describing a potential AUV for the offshore industry. A copy of the

survey has been included as Appendix A. An effort was made to contact members of

the offshore oil industry, AUV companies, offshore ROV companies, and academia to

create a robust data set. A list of participating organizations is given in Table 4.1.



General Survey Responses

One major limitation of the survey was the presumption that a single type of AUV

would conduct all of the missions considered. This simplification was made to avoid

assumptions with regards to the most efficient way of grouping the tasks assigned

to different types of AUVs. However, many of the survey respondents felt that it

was more efficient for a corporation to purchase multiple specially-built AUVs for

each mission type. The survey respondents also felt that it would be more practical

to design unique AUVs for separate geographical conditions rather than select a

single omnibus vehicle. For example, very different properties would be demanded

by operations underneath an ice shelf, in extraordinarily deep water, and in coastal

areas.

Several other general trends emerged from the survey results. The respondents

felt that the capabilities of any AUV would be severely limited by its power supply,

and that this component was inherently much more influential than any other sub-

system. Several respondents also noted their belief that AUVs would not have the

technical capabilities to conduct construction or unique intervention missions for at

least another ten years.

The information gathered in the survey and associated conversations is presented

in Table 4.2. This data does not represent the viewpoint of any one participant,

but rather is a compilation of the opinions expressed by all of the respondents. Note

that whether a subsystem reaches peak capacity in different missions are independent

events. Therefore, the probabilities of a given subsystem reaching peak capacity in the

various missions need not sum to 100%. The peaking of different subsystems during

the same mission are not mutually exlusive events, so the sum of the probabilities of

each subsystem peaking during the same mission is also unconstrained.

Explanation of Survey Results

The respondents' predicted division of AUV service time was very interesting. Their

enthusiasm towards an AUV performing observation tasks may have seemed surpris-
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0 P i C-

Significance 28% 17% 17% 114% 8% 7% 9%
Materials 0 0 25% 30% 35% 30% 16%
Propulsion 20% 15% 25% 30% 32% 25% 25%
Power 50% 60% 60% 75% 80% 65% 60%
Launch and Recovery 18% 20% 25% 25% 30% 25% 22%
Communication 23% 15% 38% 42% 50% 38% 24%
Command and Control 14% 25% 21% 50% 50% 46% 20%
Navigation 30% 21% 53% 35% 26% 30% 35%
Positioning 28% 32% 17% 36% 44% 33% 18%
Manipulators 0 0 0 55% 60% 55% 15%
Payload Sensors 22% 28% 28% 15% 15% 15% 70%

Table 4.2: The correlation between AUV subsystems and offshore oil missions.

ing, considering that in such a role the vehicle would be little more than a floating

camera and that significant operator time would still be required to perform the main

task at hand which the AUV was observing. However, such tasks can be complicated

by factors such as clutter, operating depth, noise, and currents. While AUVs have

frequently been cited as ideal exploration vehicles, one survey participant emphasized

that the task could be fulfilled sufficiently by a surface craft and towed array. Mul-

tiple respondents suggested that intervention tasks such as construction and unique

missions could perhaps be best performed by a hybrid ROV/AUV.

The materials comprising an AUV were the primary determinant of what regions

the vehicle could access safely. The strong correlation between a vehicle's materials

and exploration capabilities was therefore straightforward. Somewhat more surprising

was the opinion shared by many respondents that intervention missions, particularly

construction, would be limited by the quality of materials. However, as one partic-

ipant suggested, vehicles engaged in such heavy-duty tasks would need to be larger

and more robust than their counterparts that engaged strictly in passive observation.

Many of the respondents, particularly those from the offshore industry, felt the



maneuvering capabilities of propulsion subsystems would be taxed by construction

and maintenance work. Some other survey participants appeared to focus more on

the possibility that propulsion systems would limit the range of exploration missions.

In practice, however, it is possible that a vehicle's range would instead be limited

more by its power capabilities. In the case of exploration, sometimes the range of

the vehicle could be extended significantly by implementing innovative autonomous

recharging sites. The peak energy output rates in particular are especially critical

when performing intervention tasks.

There was a consensus among the survey participants that the launch and recovery

of a vehicle rarely limited mission capabilities. The exception to this general rule

was when subsea operations were conducted in especially remote locations. The

communication abilities of an AUV were inherently limited by the ocean environment,

and vehicles would be forced to surface to achieve large bandwidths. The intensity

of communication was believed to increase with the complexity of the AUV mission.

Command and control demands were also believed to scale with the complexity of

the mission.

The survey participants perceived navigation and positioning as cooperative sub-

systems that would reach peak performance in tandem. The only exception to this

trend is that navigation is more critical when the vehicle is very far from established

subsea structures, such as in exploration and construction missions. Manipulators

were also deemed to be most important in a small subset of missions, those in which

the AUV must interact with its environment. However, one respondent emphasized

that manipulators were very versatile because a single claw could grip a multitude of

tools. This adaptability limited the probability of manipulators limiting offshore mis-

sions. In contrast to manipulators, payload sensors were most important in missions

that focused more on observation than intervention. For example, the sensors that

happened to be aboard an AUV would limit the incidental scientific missions that

the vehicle could undertake. However, exploration, observation, and measurement

missions were deemed less likely to be limited by the sensors aboard. This conclusion

may have been because AUVs explicitly defined for such activities would have a high

--- -- ----------



Subsystem Flux Value
Power 2.686
Manipulators 0.354
Navigation 0.138
Communication -0.083
Command and Control -0.276
Positioning -0.282
Materials -0.476
Payload Sensors -0.486
Propulsion -0.743
Launch and Recovery -0.833

Table 4.3: Flux ranking of AUV subsystems.

degree of built-in redundancy and would not demand peak behavior from the sensor

systems.

4.2.5 Significance of Subsystems in AUV Design

Applying Equation 4.3 to the data in Table 4.2 yields the flux value of each subsystem.

These scores are shown in Table 4.3.

Recall from Section 4.1.1 that the flux value of a subsystem corresponds to the

probability that it reaches peak capacity and therefore limits mission capabilities. It

is logical that the power subsystem would have the greatest flux value; this was the

component most frequently cited by the panel of experts as a limiting factor in AUV

design. The subcomponents with the positive flux scores, i.e. power, manipulators,

and navigation, are more likely to peak than the other subsystems involve in the same

missions. Another interesting result is that the lower-ranked subsystems are those

components that seem to be very well developed, such as materials or launch and

recovery. A common trait of these components is that they are not being actively

developed in the marketplace. This lack of attention may reflect a desire to concen-

trate on projects that yield the greatest opportunity to increase profit by expanding

mission capabilities.



Mission Flux Value
Observation 1.490
Exploration 0.714
Maintenance 0.683
Measurement 0.042
Construction -0.690
Scientific -1.001
Unique -1.237

Table 4.4: Flux ranking of offshore missions.

4.2.6 Significance of Missions in AUV Design

Applying Equation 4.6 to the data in Table 4.2 yields the flux value of each mission,

which are shown in Table 4.4. The flux value of a mission corresponds to the likelihood

that it will drive subcomponents to their peak capacity as compared to other missions

that share those subcomponents. A large positive flux score may indicate that mission

requirements are too stringent for the current system configuration. As stated in

Section 4.1.2, a greater flux score for a mission is associated with a larger share

of maintenance costs due to increased wear and tear. It is interesting, therefore,

that according to Table 4.4 greater maintenance costs are associated with science

missions, which are ancillary activities to the operation of the offshore platform, than

are generated by unique missions, which normally occur during emergency repairs.

The non-intervention missions in Table 4.4 would rely on fewer technological advances

than the intervention missions to be conducted autonomously. The non-intervention

missions could therefore be expected to have a lower capital cost than the intervention

missions, such as construction. However, the study results indicate that this cost

savings will be counterbalanced by a greater share of the maintenance cost being

incurred by the non-intervention missions, which have positive flux scores. It should

be noted that the relative ranking of missions by flux value is not identical to the

ranking of the missions according to their significance. This phenomenon occurs

because missions that occupy less of an AUV's total operation time can still place

greater strain on AUV subsystems than more frequent tasks. This insight is one



reason that the flux metric is a valuable tool to a corporation analyzing the true costs

associated with AUV operations.

4.3 Advantage of Flux Metric in Design

The use and interpretation of the flux metric in a design setting has been demon-

strated, but it may not be clear what advantage this technique offers to an engineer.

Traditional quantitative design techniques, while not explicitly based on network the-

ory, already share similar properties. Furthermore, even if the application of network

methods to engineering design is deemed beneficial it may not be clear which net-

work metric is the most appropriate analysis tool. However, it can be shown that the

flux metric offers benefits distinct from those of alternative approaches to structured

design.

4.3.1 Comparison to House of Quality

Although the conceptualization of the design space as a network is apparently unique,

the calculations that result bear a strong resemblance in spirit to the construction of

a house of quality and other tools of the quality function deployment method (QFD)

described in Ullman and other design textbooks [73]. However, the insight gained

by the application of the flux metric is more robust than QFD, and thus advances

beyond those traditional techniques in certain situations.

The house of quality (HOQ) is the main tool of QFD. The principle of the house

of quality is to correlate the customers' desires with engineering specifications. For

example, in the example from Section 4.1, the HOQ score of subsystem A would be

HOQ(A) = PoA, + PpAp (4.7)

A comparison of Equation 4.3 and Equation 4.7 reveals that the HOQ score is

equivalent to the weighted outdegree of the subsystem, but does not account for the

number of other subsystems utilized in the same mission. In the case of the offshore



Subsystem House of Quality Score
Power 0.613
Navigation 0.332
Communication 0.302
Positioning 0.287
Command and Control 0.278
Payload Sensors 0.263
Propulsion 0.232
Launch and Recovery 0.223
Manipulators 0.177
Materials 0.148

Table 4.5: House of Quality ranking of AUV subsystems.

AUV case study, the house of quality calculation would be conducted by multiplying

the correlation between a subsystem and each mission in Table 4.2 with that mission's

significance and then summing the results for each subsystem. The resulting values

are shown in Table 4.5.

The drawback of the house of quality method in comparison to flux is that the

house of quality considers each subsystem independently of the existence of the other

subsystems. Therefore, the house of quality assigns a high score to those subsystems

that relate to a large number of missions even if the relationship between the compo-

nent and the task is relatively weak in comparison to the other subsystems associated

with that objective. For example, the house of quality methods ranks positioning as

an especially important subsystem even though the probability of that subcomponent

peaking during a mission is never greater than 45%. Note that if the matrix describing

the relationships between the subsystems and missions is fully connected, i.e. every

subsystem is utilized by every mission, then the ranking according to the house of

quality will be identical to the flux ranking. This special case occurs because when a

fully-connected bipartite graph is decomposed to its unipartite form every node has

the same indegree. In a fully-connected graph the outdegrees of the subsystems are

equal to their house of quality scores multiplied by the total number of subsystems.



4.3.2 Comparison to Other Network Metrics

The principles developed in this chapter establish the application of network meth-

ods to engineering design. This infers that theoretically any network metric could be

effectively applied to a design problem. This is technically true, but an engineering

network bears all of the complexity of more traditional networks and the precept

remains that there is no omnibus tool that may be applied without first carefully ex-

amining its conceptual assumptions and implications. Among the centrality measures

examined in this project, flux remains the most appropriate measure to be applied to

design networks.

It is clear that an unweighted design network would contain much less information

than its weighted counterpart. As Table 4.2 demonstrates, such a network may be

fully-connected or nearly so and thus would be meaningless without appropriate edge

weightings. If a model depicts components that support or influence one another,

as does the technique presented in this chapter, then directed edges should also be

used. These two conditions infer that degree and betweenness would be inappropriate

for use in this type of design network. However, it should be noted that if only the

correlation between two subsystems is known then an undirected graph may be more

appropriate and a greater variety of network metrics would be applicable.

The only network metric appropriate for weighted, directed networks discussed

in this project other than flux is eigenvector centrality. However, this tool is built

on the premise that a node gains importance by being linked to other important

nodes. In the case of a design network it is not clear if this premise would apply.

The only relevant relationship between subsystems is the relative likelihood that each

subcomponent will be driven to peak capacity during the same mission. There is no

intuitive significance to a subsystem reaching peak capacity in a mission that it shares

with a subcomponent that frequently peaks during another mission. Therefore, the

flux metric is the most appropriate network analysis tool for design metrics.



Conclusion

The interpretation of an engineering design challenge as a complex network permits

the application of network analysis methods to this class of problems. These tech-

niques allow corporations to better understand the costs associated with system tasks

and how various subsystems influence the capabilities of the overall product. The ap-

plication of these techniques to the design of AUVs for the offshore oil industry has

been demonstrated. Framing this design challenge as a network problem permits

the use of nodal analysis techniques to identify the AUV subcomponents whose de-

velopment should be prioritized to increase the quality of the total product. This

analysis has identified an AUV's power, manipulators, and navigation subsystems as

the components that are most likely to reach peak capacity and limit the success of a

mission. The advantage of the flux metric in comparison to other potential network

techniques for engineering design also has been explored.
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Chapter 5

Conclusion

This project has introduced the flux metric, a measure of influence in a network

that successfully differentiates among nodes that other centrality metrics regard as

identical. The flux metric offers insight into the relationships among the subsystems

and objectives of an engineered product and other complex systems.

5.1 Summary

Chapter 2 introduces the flux metric as a method to rank the influence of nodes in a

weighted, directed network. Flux resolves the limitations of earlier centrality metrics,

such as eigenvector centrality. The Secretary Paradox emphasizes the misleading

results that such methods may yield, especially if nodes have equal weighted indegree

values.

The Conserved Flow models demonstrates the applicability of flux to graphs of

varying architecture, such as trigonal and rectangular, and of different sizes. In every

situation, the flux of a perturbation site consistently indicates the rate at which the

system will reestablish an equilibrium. The concept of flux neighborhoods further

refine the interpretation and proper application of this novel metric.

In Chapter 3 the flux metric is used to analyze more networks from engineering and

the social sciences. The identical units of these networks gain their varying properties

from their orientation with respect to their neighbors. The Synchronization model

101



represents the spread of a shock through a network of opinions. The greater the flux

value of the perturbation site, the greater the impact of the shock on the state values

of the nodes throughout the network.

The Infection model simulates the life cycle of an epidemic on a network. This

probabilistic system is an extension of the differential equations that traditionally

are used to model an outbreak. The influence of a node in an Infection network is

diminished by probabilistic effects, which renders the flux metric less insightful than

it is in deterministic cases.

Resource Sharing simulates the distribution of a conserved good. The flux value

of a node influences both the speed at which material will be dispersed from that

site and the steady-state amount present there. The behavior of the network can be

influenced by adjusting the greediness of each node during their exchanges.

Chapter 4 presents the concept of an engineering design challenge as a network

problem. This premise is demonstrated by a case study analyzing the potential design

of autonomous underwater vehicles (AUVs) for the offshore oil and gas industry.

A review of developing technologies establishes the relevant AUV subsystems and

offshore missions, and an industry-wide survey determines the correlation among

these components. The flux metric offers insight into the design of a system that is

not provided by other quantitative design techniques.

5.2 Future Work

Network studies are a burgeoning area of science and engineering that offer many

opportunities for continued research and the potential discovery of valuable applica-

tions. Although the flux metric is capable of ranking the influence of nodes that other

centrality measures treat as identical entities, flux does not appear to perform well in

probabilistic settings and very likely has other limitations not exposed in this project.

Therefore, the quest continues for a single technique that systematically combines the

advantages of flux and the other centrality measures into a single algorithm.

Furthermore, the characteristics of the flux metric derived from computer sim-
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ulations must be verified in empirical studies. However, without an independent

definition of influence flux and all other centrality measures rely on intuition to val-

idate their output. One potential solution is to use a network method to rank the

influence of members of the United States House of Representatives using a bipartite

graph that describes their membership in committees and caucuses and to then com-

pare these results to influence measured by another technique, such as fundraising

dollars or successful votes.

Recall from Section 2.1 that flux is defined as the difference between 0(outdegree)

and /(indegree). In all of the examples presented in this project the function q is

simply the identity function. However, ¢ could be defined by other functions. For

example, if ¢ were a logarithm then the ratio of the outdegree to the indegree could

be analyzed. The definition of q should be carefully selected for a given application

to match qualitative models of the system or other available calibration data.

The concept of an engineering design challenge as a network problem presented in

this project could be developed further. For example, there are many valid interpre-

tations of edge weightings other than the probability of peak behavior. Some design

networks may be derived directly from a unipartite graph and lack directed edges.

Network techniques could be applied to other business and management decisions,

such as identifying the most critical steps in a flowchart.

The flux metric potentially can contribute to scientists' understanding of the many

complex networks encountered in engineering and the social sciences. Hopefully flux

itself will become an influential component in the network of techniques that we use

to study and improve our world.
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Appendix A

AUV Design Survey

The following survey was distributed to members of the offshore and AUV commu-

nities by email in June and July, 2009. A list of respondents has been included as

Table 4.1.

Instructions

The objective of this survey is to identify which AUV subsystems would

be pushed to their design capacity during various types of missions in
the offshore oil industry. Examples of subsystems reaching this limit
would be when Materials are at their rated depth or temperature limit,
or when Propulsion systems are exerting maximum thrust.

The subsystems are:

Materials: The structural components of the AUV, such as the hull and
supports.

Propulsion: The thrusters that drive and steer the AUV.

Power: The energy available onboard to power other subsystems, such as
thrusters and instruments.

Launch & Recovery: The means by which the AUV is deployed, retrieved,
or docked.

Communication: Data transfer between the AUV and any other database,
whether by radio, satellite, or physical media.
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Command & Control: The interface between operators and individual
AUVs or teams of AUVs.

Navigation: How the AUV determines its geographic location.

Positioning: How the AUV determines its position on a local scale.

Manipulators: Arms, grippers, and tools with which the AUV affects
its environment.

Payload Sensors: Instruments carried aboard an AUV that do not relate
to the motion of the vehicle.

The offshore oil missions are:

Observation: The visual inspection of underwater equipment.

Measurement: Determining the distance between two objects or
collecting other data.

Exploration: Searching unknown territory for new construction sites or
resources.

Maintenance: Adjusting valves and other simple, repetitive tasks
performed on preselected mechanical interfaces underwater.

Construction: The underwater assembly of predesigned structural
components.

Unique: Unpredictable tasks, such as repairs, that require the vehicle
to execute novel operations.

Scientific: Biological and geological research undertaken by offshore
oil companies to share resources and foster their relationship with
the scientific community.

Each subsystem is listed below, followed by seven sets of parentheses
labeled with mission types. Please type directly in the appropriate
parentheses the probability in percent that the subsystem reaches its
capacity during that mission. Please only consider whether or not a
subsystem reaches its limit during the mission, not how long
capacity-level operation is endured. For example, you may feel that
Propulsion subsystems would be pushed to capacity during only 25% of
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Observation missions. It may be helpful to consider which subsystems

capabilities would limit the performance of an AUV on a certain
mission. If you do not believe that a subsystem would be used at all

during the mission, then please type 0 in the parentheses.

Materials: Observation() Measurement() Exploration() Maintenance()

Construction() Unique() Scientific()

Propulsion: Observation() Measurement() Exploration() Maintenance()
Construction() Unique() Scientific()

Power: Observation() Measurement() Exploration() Maintenance()
Construction() Unique() Scientific()

Launch & Recovery: Observation() Measurement() Exploration()
Maintenance() Construction() Unique() Scientific()

Communication: Observation() Measurement() Exploration() Maintenance()

Construction() Unique() Scientific()

Command & Control: Observation() Measurement() Exploration()

Maintenance() Construction() Unique() Scientific()

Navigation: Observation() Measurement() Exploration() Maintenance()

Construction() Unique() Scientific()

Positioning: Observation() Measurement() Exploration() Maintenance()
Construction() Unique() Scientific()

Manipulators: Observation() Measurement() Exploration() Maintenance()

Construction() Unique() Scientific()

Payload Sensors: Observation() Measurement() Exploration()
Maintenance() Construction() Unique() Scientific()
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