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Abstract

The epidermal growth factor receptor (EGFR) signaling pathway is probably the best-studied receptor system in mammalian
cells, and it also has become a popular example for employing mathematical modeling to cellular signaling networks.
Dynamic models have the highest explanatory and predictive potential; however, the lack of kinetic information restricts
current models of EGFR signaling to smaller sub-networks. This work aims to provide a large-scale qualitative model that
comprises the main and also the side routes of EGFR/ErbB signaling and that still enables one to derive important functional
properties and predictions. Using a recently introduced logical modeling framework, we first examined general topological
properties and the qualitative stimulus-response behavior of the network. With species equivalence classes, we introduce a
new technique for logical networks that reveals sets of nodes strongly coupled in their behavior. We also analyzed a model
variant which explicitly accounts for uncertainties regarding the logical combination of signals in the model. The predictive
power of this model is still high, indicating highly redundant sub-structures in the network. Finally, one key advance of this
work is the introduction of new techniques for assessing high-throughput data with logical models (and their underlying
interaction graph). By employing these techniques for phospho-proteomic data from primary hepatocytes and the HepG2
cell line, we demonstrate that our approach enables one to uncover inconsistencies between experimental results and our
current qualitative knowledge and to generate new hypotheses and conclusions. Our results strongly suggest that the Rac/
Cdc42 induced p38 and JNK cascades are independent of PI3K in both primary hepatocytes and HepG2. Furthermore, we
detected that the activation of JNK in response to neuregulin follows a PI3K-dependent signaling pathway.
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Introduction

The epidermal growth factor receptor (EGFR) signaling

pathway is among the best studied receptor systems in mammalian

cells. Signaling through EGFR (ErbB1) and its family members

ErbB2 (Her2/Neu2) ErbB3 and ErbB4 regulates cellular processes

such as survival, proliferation, differentiation and motility and

ErbB receptors are important targets for new and existing anti-

cancer drugs [1,2].

Mathematical modeling of the EGFR system started more than

25 years ago with efforts to describe binding to and internalization

of the receptor [3] that was followed by a variety of dynamic

models that deal with different aspects of the system (reviewed in

[4,5]). Whereas the first EGFR models focused on the receptor

itself – internalization, ligand binding, and receptor homodimer-

ization [6] – later models included downstream signaling events

(e.g. [7–9]). More recent studies also address homo- and hetero-

dimerization among members of the ErbB receptor family and the

effects on downstream of binding to different ligands (of which 13

are known; e.g. [10–13]). All these models describe aspects of

EGFR/ErbB signaling with a set of stoichiometric reactions and

the dynamics of the involved species is described by a set of

ordinary differential equations (ODEs). In order to simulate the

model, the kinetic constants and initial concentrations of the

model have to be known or, more likely, they must be estimated.

Recently, a large-scale map was constructed by Kitano and

colleagues to capture the current state of knowledge about

interactions in the EGFR system as a stoichiometric network

[14]. This model contains no information on the reaction kinetics

and is thus static and cannot be used to perform dynamic

simulations. Nonetheless, the Kitano map provides a reasonably

comprehensive list of molecules and interactions involved in EGF

signaling and represents an excellent starting point for studying its

global architecture [14–16]. Existing ODE-based models cover

only limited parts of the map, and parametric uncertainty present

even in these smaller models suggests that it is not currently

practical to build an ODE model of the entire pathway having

high explanatory and predictive power. Instead, structural and

qualitative (parameter-free) modeling approaches is the tool of

choice. In fact, many important properties of a system rely solely
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on the often well-known network structure, including many that

govern dynamic behavior; feedback loops, for example, are

captured in the wiring diagram.

Whereas structural (stoichiometric) analysis of metabolic

networks is quite well established [17], relatively few efforts have

been made thus far to study qualitatively the propagation of

information in signaling networks. Efforts to date include statistical

analyses of interaction graphs of large-scale protein-protein

networks (e.g. [18]) and other approaches that rely on graph

theory (e.g. [15,19]). Petri net theory [20,21] and constraint-based

modeling [22] have also been used to unravel structural properties

of signal transduction networks.

Boolean (discrete logic) description of interaction networks has

quite a long tradition in theoretical biology. In the past, it has been

mainly applied to random networks [23] or gene regulatory

networks of moderate size (e.g. [24–27]). However, we have

recently developed a Boolean framework that is specifically

tailored to signaling networks. In contrast to gene regulatory

networks, signaling networks are usually structured into input,

processing and output layers. This approach has recently been

applied successfully to a large-scale model of T cell signaling [28],

and used in concert with high-throughput data to analyze cell-

specific network topologies (Saez-Rodriguez et al, in preparation).

Within this framework, we have set-up a logical model of the

main parts of the stoichiometric model of EGFR signaling [14]

and additionally of signaling through ErbB2, ErbB3 and ErbB4.

As mentioned above, the stoichiometric model of Oda et al [14]

does not allow for dynamic simulations. Also functional issues

related to network structure can be studied only to a minor extent

because the stoichiometric model is limited regarding the analysis

of signal flows relevant in signaling networks. By translating the

stoichiometric (mass-flow based) into a logical (signal-flow based)

representation, we obtain an executable model facilitating

functional predictions about input-output responses of a very

complex signaling cascade. Our model comprises 104 species and

204 interactions and is among the largest of a mammalian

signaling network but we have recently become aware of the

interesting work of Helikar et al [29] who also studied a large-scale

Boolean network containing parts of the EGFR/ErbB induced

signaling pathways. Their work focuses on a statistical analysis of

the possible (non-deterministic) discrete behaviors of their Boolean

model. In contrast, our model provides deterministic and testable

predictions about responses and we have verified many using

functional data. In the process, we have uncovered non-obvious

functional properties of the ErbB signaling pathway that are likely

to be biologically significant.

This paper is organized as follows: the first part describes how

we translated the stoichiometric EGFR/ErbB model of Oda et al

[14] into a logical model via a set of general rules. The second part

presents results from a theoretical analysis of the network

including, for example, a characterization of feedback structure

and identification of network components whose behavior is

strongly coupled. The final section describes application of the

logical model to interpret functional data in which primary human

hepatocytes and hepatocarcinoma cell line HepG2 were exposed

to different ErbB ligands in combination with inhibitors of

intracellular signaling kinases. We show that a Boolean model of

ErbB signaling can generate experimentally verifiable predictions

about input-output behavior in the face of perturbation and that

new hypotheses about biological function can be generated

Results

From a stoichiometric to a logical model for EGFR/ErbB
signaling

Based on a stoichiometric model of EGF receptor signaling [14]

and additional information from the literature, we built a logical

model that describes signaling induced by 13 members of the EGF

ligand family through ErbB1-4, leading to the activation of various

kinases and transcription factors that effect proliferation, growth

and survival (see Figure 1 and Table S1). Ligand binding causes

the formation of eight different ErbB-dimers that autophosphor-

ylate and then provide docking sites for adaptor proteins such as

Gab1, Grb2 and Shc, which transmit signals to the small G

proteins Ras and Rac, leading to the activation of MAPK

cascades. Among these, ERK1/2 is the best studied but our model

also comprises the JNK and p38 cascades. Highly interconnected

with the MAPKs and also downstream of the ErbB receptors is

PI3K/Akt signaling, another major branch of the model.

Furthermore, activation of different STATs and the PLCc/PKC

pathway are included.

Our model contains most parts of the stoichiometric model of

Oda et al [14]. However, endocytosis, the G1/S transition of the

cell cycle as well as the crosstalk with the G protein coupled

receptor signaling cascade are not considered in our model as we

focus here on early signaling events induced by external stimuli

(EGF-type ligands). In contrast, our model considers signaling

through all different ErbB dimers (in addition to EGFR

homodimers), which was not part of the stoichiometric model

(though a simplified diagram has been given in [14]). Finally, there

are some reactions and species that are only contained in the

logical model so as to use the data set (e.g. the mammalian target

of rapamycin (mTOR), p70S6 kinase). Differences between the

stoichiometric and the logical model regarding considered

components and interactions are also explained in the model

documentation (see Table S1).

Translating a stoichiometric model into a logical model is not a

trivial task and requires additional information. Whenever a species

is only influenced by one upstream molecule, the interpretation as a

Boolean function is straightforward: the downstream species is

Author Summary

The epidermal growth factor receptor (EGFR) signaling
pathway is arguably the best-characterized receptor
system in mammalian cells and has become a prime
example for mathematical modeling of cellular signal
transduction. Most of these models are constructed to
describe dynamic and quantitative events but, due to the
lack of precise kinetic information, focus only on certain
regions of the network. Qualitative modeling approaches
relying on the network structure provide a suitable way to
deal with large-scale networks as a whole. Here, we
constructed a comprehensive qualitative model of the
EGFR/ErbB signaling pathway with more than 200
interactions reflecting our current state of knowledge. A
theoretical analysis revealed important topological and
functional properties of the network such as qualitative
stimulus-response behavior and redundant sub-structures.
Subsequently, we demonstrate how this qualitative model
can be used to assess high-throughput data leading to
new biological insights: comparing qualitative predictions
(such as expected ‘‘ups’’ and ‘‘downs’’ of activation levels)
of our model with experimental data from primary human
hepatocytes and from the liver cancer cell line HepG2, we
uncovered inconsistencies between measurements and
model structure. These discrepancies lead to modifications
in the EGFR/ErbB signaling network relevant at least for
liver biology.
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active (state 1) if and only if the state of the upstream species is 1 (vice

versa if the influence is negative) (see Figure 2A). In some other cases

it is clear how to code the dependency in a logical function – for

example, the formation of a complex (e.g. the heterodimerization of

c-Jun and c-Fos to the transcription factor AP-1 (see Figure 2B) or

binding of a ligand to a receptor), where all involved proteins have

to be present to trigger downstream events and are thus connected

with an AND gate. Furthermore, we use an OR gate whenever a

protein can be recruited through different receptors or adapter

proteins (see Figure 2C).

However, in many cases the stoichiometric information is not

sufficient to approximate the activation level of a species as a

logical function of the states of its upstream effectors and one

requires additional (mainly qualitative) information, which can

often be obtained from the literature.

The two main cases that can arise are the following:

N A species is positively influenced by two (or more) upstream

molecules, for example a protein that can be phosphorylated

by different kinases (see Figure 2D). Here, the decision whether

both kinases are necessary or if one suffices, that is whether to

use an AND or an OR, cannot be made on the basis of the

information that is contained in a stoichiometric model.

However, the necessary information can often be obtained

from related literature (e.g. from knock-out studies where one

of both effectors has been removed, or if an inhibitor is

available for an upstream species).

N A species is positively influenced by one species (for example a

kinase) and negatively influenced by another (for example a

phosphatase). In this case, we cannot be sure what happens

Figure 1. Logical model of the EGF-/ErbB receptor signaling pathway represented in ProMoT. Blue circles symbolize AND connections.
Inputs with default value 0 are indicated with red diamonds, inputs with default value 1 by green diamonds. Yellow diamonds stand for the outputs
of the model. Gray hexagons represent the receptors (homodimers as well as heterodimers) and green hexagons stand for the 13 different ligands.
Green ellipses symbolize reservoirs. The remaining species (symbolized with rectangles) are colored according to their function: red: kinases; blue:
phosphatases; yellow: transcription factors; green: adaptor molecules; violet: small G proteins as well as GAPs and GEFs; black: other. The box in the
upper part of the network contains binding of the ligands to the receptor and receptor dimerization, showing the high combinatorial complexity.
Black arrows indicate activations, red blunt-ended lines stand for inhibitions. Dotted lines represent ‘‘late’’ interactions (with attribute t= 2) that are
excluded when studying the initial network response. Dashed lines indicate connections from reservoirs. Dummy species (see Methods) are not
displayed.
doi:10.1371/journal.pcbi.1000438.g001

The Logic of ErbB Signaling
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Figure 2. Examples illustrating the translation of the stoichiometric EGFR model into a logical description. The examples are taken
from the stoichiometric map of Oda et al [14]. A The activation level of MKK7 is only influenced by one upstream molecule (active MEKK1). B c-Jun
and c-Fos form the transcription factor AP-1. Accordingly, both species are combined with an AND gate (denoted by ‘‘?’’ in the logical equations). C
Gab1 can bind directly to EGFR homodimers or via receptor-bound Grb2. For the activation of downstream elements, the activation mechanism of
Gab2 does not make a difference what results in a logical OR connection represented by two (independent) activation arrows: Grb2RGab1 OR
EGFRRGab1. D In this example, we cannot immediately decide whether both Raf-1 and MEKK1 are necessary for the activation of MKK1 (in the
model description we use the synonym MEK1) or if the activation of one of these two kinases suffices. Further information is required or an ITT gate
can be used (in model M1 we used an OR based on facts published in the literature).
doi:10.1371/journal.pcbi.1000438.g002

The Logic of ErbB Signaling
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when both the kinase and the phosphatase are present; it will

depend on the respective strength (described as kinetic

parameters in a quantitative model) and may differ in different

cell types. However, the activation of phosphatases often

occurs as a temporarily secondary event upon stimulating a

signaling pathway (required for switching off the signal). They

may therefore be neglected when considering the early events,

i.e. the initial response of the network that follows upon

stimulation (see below).

We also have to keep in mind that, in all cases, the logical

description is only a discrete approximation of a quantitative

reaction. In those cases where neither an AND nor an OR is a

good approximation, we can use incomplete truth tables [30]. This

operator, herein after referred to as ‘‘ITT gate’’, returns 1 if and

only if all positive arguments are 1 and all negative arguments are

0, and returns 0 if and only if all positive arguments are 0 and all

negative arguments are 1. In all other cases, no decision can be

made and the response of the molecule remains undefined. Using

ITT gates may limit the determinacy of the model (when

performing stimulus-response simulations it can happen that some

states cannot be determined uniquely), but it allows for a safer

interpretation of the results. To illustrate this concept and to

discuss uncertainties in our reconstructed logical model (in the

following referred to as model M1) we consider a model variant

M2 where the activation mechanisms of 14 proteins are described

with ITT gates reflecting the uncertainties in the logical

description of M1 (see Table S2). In this way model M2 accounts

explicitly for the uncertainties in the logical concatenation of

different signals, however, it cannot account for uncertainties that

are captured in the wiring diagram itself.

Whenever we refer in the following to ‘‘the logical model’’ we

refer to M1 if not stated otherwise.

Once the network construction has been completed, one may

start to perform discrete simulations. We will not study the

transient behavior of the network; instead we propagate the signals

from the input to the output layer. Mathematically, we compute

the logical steady state that follows from exposing the network to a

certain input stimulus (possibly in combination with network

interventions; see Methods). In this way we can analyze the

qualitative input-output behavior of the network. Feedback loops,

which can be identified in the interaction graph underlying the

logical model, may hamper this kind of analysis of the discrete

behavior of logical networks (especially negative feedback loops

[30]). However, herein we will focus on the initial response of the

network nodes induced by external stimulations or perturbations.

Assuming that the system is in a pseudo-steady state at the

beginning, the initial response of a node is governed by the paths

connecting the inputs with this node whereas feedback loops are

secondary events that can only be activated at a later time point

when each node in the loop has exhibited its initial response.

Although path/cycle length is no precise measure for the velocity

of signal transduction, the comparable average length of input/

output paths (19) and feedback loops (17) supports the assumption

that the initial response of the network nodes is dominated by the

input/output paths whereas feedback loops may overwrite the

initial response of the network nodes only after a certain time

period with significant length (again, feedback loops can causally

not be activated before the initial response occurred). To decouple

the initial response from the activity of the feedback loops, we

proceed as follows: we assign to each reaction a time variable t
determining whether the reaction is active/available during the

initial response (i.e. is an early event; t= 1) or not (late event;

t= 2). In each negative feedback loop we identify the node Z that

has the shortest distance to the input layer. This node Z can be

considered as the initialization point of the feedback loop and we

then assign t= 2 to the ‘‘last’’ interaction of the feedback loop

closing the cycle in node Z (i.e. points into Z). For example, in a

causal chain

InputRARBRC--|DRB we would consider DRB as a late

event. In this way we interrupt the feedback loop and the logical

steady states computed in the network reflect the initial response of

the nodes. Strikingly, it is sufficient to consider only four interactions

as late event to break all feedback loops (see below) in the network.

With this acyclic network a unique logical steady state follows for

any set of input values in model M1. The assignment ‘‘late’’ was not

only reasonable for selected interactions in feedback loops, but also

for three interactions involved in negative feed-forward loops down-

regulating the signaling after a certain time. The time variables for

each reaction can be found in Table S1. Although ‘‘late’’

interactions are neglected when calculating the early signal

propagation, they are nevertheless important to describe structural

properties of the network that can be derived from the interaction

graph representation (see below). It is also important to mention that

the logical steady state computed for a given scenario (see Methods)

does not necessarily reflect the activation pattern in the cell at one

particular point of time. Instead, it reflects for each species the initial

response to the stimulus. The time range in which this initial

response takes place can differ for each molecule – typically, a

species situated in the upper part of the network (e.g. a receptor)

responses faster to the stimulus than a species of the output layer

(e.g. a transcription factor).

We set-up models M1 and M2 with ProMoT [31] and exported

the mathematical description as well as the graphical representa-

tion to the analysis tool CellNetAnalyzer (CNA) [32]. The results

obtained with CNA have been re-imported to and visualized in

ProMoT.

The logical model is represented as logical interaction

hypergraph (see Methods) and contains 104 nodes and 204

hyperarcs (interactions). Seven interactions are configured as late

events (see Table S1), so their time scale is set to 2. Two

interactions are only considered in the analysis of the interaction

graph but excluded in the logical analysis as they do not change

the logical function of their target node or as the exact mechanism

of the interaction is unknown (see Table S1). 28 nodes are inputs of

the model, i.e. their regulation is not explicitly considered in the

model but can be used to simulate different scenarios. Besides

ligands and receptors, these include for example some phospha-

tases with unknown activation mechanism. For all input nodes, a

default value is given in Table S1 (and is indicated in Figure 1) that

is used for the logical analyses unless otherwise specified.

Topological properties of the interaction graph
A logical model in hypergraph form has a unique underlying

interaction graph (see Methods) capturing merely positive and

negative effects between the elements (instead of deterministic

logic functions). Importantly, the usage of ITT gates in model M2

does not change the underlying interaction graph implying that all

results obtained in this section are valid for both M1 and M2. A

graph-theoretical analysis of the interaction graph enables us to

derive important topological properties of the network, indepen-

dently of the Boolean description. For example, the existence of

feedback loops is necessary for inducing multistationarity (positive

feedback loops) or oscillatory behavior (negative loops) of the

dynamic system [33,34]. In our model, the underlying interaction

graph has 236 feedback loops, thereof 139 negative. Strikingly, all

positive feedback loops are composed of a negative feed-forward

and a negative feedback, except one that describes the reciprocal

The Logic of ErbB Signaling
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activation of the adaptor protein Gab1 and PIP3, a lipid of the

membrane layer [35]. All negative feedback loops arise from five

mechanisms: (i) the kinases ERK1/2 and p90RSK downregulate

their own activation by phosphorylation of SOS1, a guanine

nucleotide exchange factor (GEF) for Ras, (ii) the phosphatase

SHP1 binds to the autophosphorylated ErbB1-homodimers and

dephosphorylates them, (iii) Ras positively influences its GTPase

activating protein RasGAP via PI3K, (iv) the ubiquitin ligase c-Cbl

binds to ErbB1, leading to degradation of the receptor in the

lysosome and (v) Ras potentiates the Rab5a-GEF activity of Rin1

and thus increases the formation of endocytic vesicles. Therefore,

removing the species Ras and ErbB1-homodimer breaks all

negative feedback loops. As described above, when considering the

early response in the model the ‘‘last’’ interaction closing a

feedback loop is considered as late event (see Table S1). It turned

out that assigning only four interactions the ‘‘late’’ attribute t= 2

suffices not only to break all negative feedback loops, but also the

positive ones, so that no feedback loop remains in the network

when considering the early events.

In terms of graph theory, a feedback loop is (per definition) a

strongly connected subgraph, i.e. if two species A and B are part of

a directed cycle it always holds that there exists a path from A to B

and from B to A. In our model, all feedback loops build up one

strongly connected component consisting of 34 species, meaning

that all feedbacks are coupled.

Figure 3 shows the participation of the different species in the

feedback loops. Remarkably, the small G protein Ras is included

in 98% of the loops, underlining its central role in the regulation of

this network. Ras is a key regulator of cell fate [36] and a known

oncogene in many human cancers [37]. However, the high

number of feedbacks containing Ras in our model can also reflect

the fact that Ras is one of the best studied proteins and therefore

the feedback mechanisms of Ras are possibly better known than

those of other proteins.

Also noteworthy, RN-tre, a GTPase activating protein (GAP)

for Rab5a, is only involved in positive loops, whereas the guanine

nucleotide exchange factor for Rab5a, Rin1, takes only part in

negative feedbacks.

The large size of the network gives rise to a high number of

possible signaling paths along which one node may affect another

one. There are, for instance, 6786 paths (thereof 52% negative)

leading from the input (ligand) EGF to the transcription factor AP-

Figure 3. Species participation in the feedback loops. The darker a species is colored, the more loops it participates in. Colorless species are
not part of feedback loops. All colored species build up one strongly connected component in the underlying interaction graph.
doi:10.1371/journal.pcbi.1000438.g003

The Logic of ErbB Signaling
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1 in the output layer. Considering only the early events, 1684

paths remain being 25% of them negative, where all these negative

paths include the node RasGAP.

The information whether a species acts positively (activating)

or/and negatively (inhibiting) on another species, i.e. whether

there is any positive or/and negative path linking the two species,

can be stored and visualized as dependency matrix [30]. The

dependency matrix for the early events contains ambivalent

dependencies (i.e. a node has positive and negative effects on other

nodes) that mainly rely on the negative influence of RasGAP: as it

inhibits Ras, it gives rise to a number of negative paths connecting

the activated receptors with proteins downstream of Ras – in

addition to the positive paths via SOS1, an activator for Ras. Not

considering RasGAP leads to a matrix where only a few

ambivalent interactions occur (see Figure 4): for example, the

receptor ErbB2 is an ambivalent factor for almost all downstream

elements as it is the preferred heterodimerization partner of the

other receptors and thus prevents signaling through various

different dimers (for example, ErbB1/ErbB3 formation is

repressed if ErbB2 is present). When all interactions are active,

Figure 4. Dependency matrix D for the early events (influence of RasGAP not considered). The color of matrix element Di j means the
following: green: species i is an activator of species j (there are only positive paths connecting i with j); red: i is an inhibitor of j (there are only negative
paths connecting i with j); yellow: i is an ambivalent factor for j (there are positive and negative paths connecting i with j); black: i has no influence on
j (there is no path connecting i with j). (See also [32]).
doi:10.1371/journal.pcbi.1000438.g004

The Logic of ErbB Signaling
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the dependency matrix contains more ambivalent interactions

than it does when considering only the early events.

Note that, except for ambivalent dependencies, the qualitative

effect (up/down) of perturbations can be unambiguously predicted

from the dependency matrix and we will make use of this

technique when analyzing experimental data (see below).

Theoretical analysis of the logical model
Implementing a Boolean function in each node of the

interaction graph enables us to calculate the qualitative network

response to a certain stimulus or perturbation and to predict the

effects of interventions. Given the binary states for the input

variables and optionally for species that have a fixed value (e.g.

simulating a knock-out or knock-in), one determines the resulting

logical steady state by propagating the signals according to the

logical function of the nodes (see Methods).

Using this technique, we determined the network response in

model M1 upon stimulation with the different ligands, again

focusing on the early events (i.e. the interactions with t= 2 were set

to zero). Due to the fact that the resulting network is acyclic (as

explained above), a unique logical steady state follows for any set

of input values in model M1.

We found that the outputs can be divided into two groups: the

majority of the output elements can be activated by all possible

dimers. However, PKC, STAT1, STAT3 and STAT5 can only be

activated through ErbB1-homodimers (PKC, STAT1, STAT3) or

ErbB1-homodimers and ErbB2/ErbB4-dimers (STAT5). Accord-

ingly, stimulation with neuregulins does not result in activation of

the protein kinase PKC and the transcription factors STAT1 and

STAT3, in contrast to stimulation with the other ligands that

activate all output molecules except the pro-apoptotic effect of

BAD which is repressed. This is due to the fact that the

neuregulins, unlike the other ligands, do not bind to ErbB1 and

thus cannot activate ErbB1-homodimers.

Strikingly, despite of the 14 ITT gates in model M2, the logical

steady state in response to ErbB1-homodimers can still be

determined in model M2 and does not differ from M1. This

observation reflects a high degree of redundancy in at least some

parts of the network. The state of each of the different kinases

phosphorylating p38 or MKK4 is for example only dependent on

the activity of Rac/Cdc42 so that these kinases are always

activated together (see below). Thus, the input–output behavior of

the network can be uniquely predicted for all ligands except

neuregulins. In contrast, model M2 fails to predict the response for

some nodes if other dimers (in absence of the ErbB1-homodimer)

are stimulated. This concerns in particular most of the output

nodes; the states of PKC, STAT1, STAT3 and STAT5 can be

determined (as in model M1, these proteins can only be activated

by ErbB1-homodimers, except STAT5 that is ‘‘on’’ in response to

ErbB2/ErbB4-dimers) whereas the state of the other output nodes

cannot be calculated. The indeterminacy of M2 with respect to

stimulations of dimers others than ErbB1-homodimers can be

explained by the uncertainty (ITT gate) in the activation of Rac/

Cdc42.

When performing simulations with M1, we realized that certain

species in the network show strongly coupled behavior. This

guided us to search systematically for equivalence classes of

network nodes whose activation pattern is completely coupled: for

species A and B being elements of the same equivalence class, it

either holds that their states are always the same (A = 0uB = 0,

A = 1uB = 1; positive coupling) or always the opposite

(A = 0uB = 1, A = 1uB = 0; negative coupling) irrespective of

the chosen inputs. In other words, the state of one species in the

equivalence class determines the states of all other species in this

class. Hence, whenever a species of a particular equivalence class is

active, we can conclude that all other species of the same

equivalence class must have been activated (deactivated in case of

negative coupling), at least transiently.

An algorithm to compute the equivalence classes efficiently is

given in the Methods section. In general, equivalence classes can

be computed for a given scenario (defined by a specific (possibly

empty) set of fixed states, typically from input nodes). For this

given scenario we test systematically for each species whether it is

completely coupled with other nodes or not.

This type of coupling analysis is very similar to enzyme (or

reaction) subsets known from metabolic networks [38,39] and it

helps to uncover functional couplings embedded in the network

structure. We anticipate that the concept of equivalence classes

also provides a basis for model reduction (e.g. when computing

logical steady states), similar as it has been employed in metabolic

networks (see e.g. [40]).

Figure 5 shows the equivalence classes in the EGFR/ErbB

model for early signal propagation where the states (presence) of all

ligands and receptors were left open (the states of the other inputs

were fixed to their default value as given in the model description

(see Table S1)). We found six equivalence classes, the largest

comprising 24 species. The latter includes parts of PI3K signaling

as well as the Rac induced parts of the MAPK cascades reflecting

the strong coupling of these two major pathways in model M1.

In model M2, this equivalence class splits into three smaller ones

because the ITT gates introduce uncertainties that may lead to a

decoupling of the two pathways. The other equivalence classes of

M2 hardly differ from the ones in M1 (see Figure S1) again

indicating that alternative pathways contribute rather to a higher

degree of redundancy than to a higher degree of freedom

regarding the potential input-output behavior.

Another concept relying on the logical description is the

computation of minimal intervention sets (MIS; [30,32]). An MIS

is a set of interventions that induces a certain response, whereas no

subset of the MIS does (i.e. an MIS is support-minimal). One

application of MIS is to determine failure modes in the network

that lead to an activation of elements of the output layer without

any external stimulation of the cell. In the EGFR/ErbB model we

are interested in failures that stimulate proliferation and growth of

the cell when no ligand is present. Regarding the early events,

constitutive activation of Ras, for example, leads to activation of

the transcription factors Elk1, CREB, AP-1 and c-Myc, the p70S6

kinase, the heat shock protein Hsp27 and represses apoptosis –

without any external stimulus. Besides Ras, it is sufficient to

permanently activate one of the species Gab1, Grb2, PI3K, PIP3

or Shc to activate/inhibit these outputs. In model M2, the minimal

intervention sets to provoke the above mentioned response contain

at least two elements, for example the activation of Grb2 and

Vav2.

These findings show that the network has fragile points where a

mutated protein (e.g. one that is constitutively active) may support

uncontrolled growth and proliferation. However, besides ErbB

signaling, various other pathways are important for the regulation

of growth and apoptosis and a failure in one pathway might be

compensated by another, what makes it important to include these

pathways step by step into our model. Additionally, when building

up the model we did not focus on one certain cell type, but

collected species and interactions that have been detected in

different kinds of cells leading to a kind of ‘‘master model’’. A

model that describes only one cell type would probably include less

interactions (Saez-Rodriguez et al, in preparation), so that a

(constitutive) signal has not such a global (network-wide) influence

as in the master model.
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Analyzing high-throughput experimental data
One of the strengths of our model lies in the broad range of

pathways it covers and in the easy simulation of the network wide

response to different stimulations and interventions. It is therefore

well-suited to analyze high-throughput data where various

readouts are measured in response to several stimuli and to

perturbations all over the network. Here we discuss the analysis of

two datasets collected in primary human hepatocytes and the

hepatocarcinoma cell line HepG2. In the first set of measurements

- a subset of the ‘‘CSR liver compendium’’ (Alexopoulos et al, in

preparation) - primary cells and HepG2 cells were stimulated with

transforming growth factor alpha (TGFa) and additionally treated

with seven different small-molecule drugs, whereof six inhibit the

activation of nodes considered in our model. For the second data

set, HepG2 cells were stimulated with different ligands of the EGF

family and treated with an inhibitor for PI3K. In both cases, the

phosphorylation state of 11 signaling proteins included in the ErbB

model were measured after 0, 30 and 180 minutes (see Methods

for a more detailed description of the experiments). Here, we only

focus on the early response of the network after 30 minutes

because we want to analyze which proteins become activated at

all. We assume that in hepatocytes only ErbB1 and ErbB3 are

expressed as it has been reported for adult rat liver [41]; thus, for

the analysis of the hepatocyte data, the state values of the other

two receptors (ErbB2 and ErbB4) were set to 0 in the model.

As discussed earlier, our modeling framework is based on two

concepts: (i) the Boolean (logical) description discretizing the

kinetic behavior, and (ii) the underlying interaction graph

reflecting the topology of interactions. This gives rise to two

different approaches for the analysis of the data. First, using the

dependency matrix of the interaction graph, we examined whether

the experimental results are in accordance to the causal

dependencies in our network. Second, using the logical model,

we predicted the binary network response to the different

experimental stimuli and compared these predictions with a

discretized version of the data.

Interaction graph-based data analysis
In the experiments, the phosphorylation state of the readouts is

measured in response to a particular set of stimuli by adding

Figure 5. Equivalence classes in the EGFR/ErbB model. Each color represents one equivalence class. Species with no color are not part of any
equivalence class. The states for the ligands and the four receptor monomers are left open, all other inputs are fixed to their default value (see Table
S1), which is indicated by the red (0) and green (1) diamonds. Late events are excluded and therefore shown as dotted lines (see also figure 1).
doi:10.1371/journal.pcbi.1000438.g005
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certain ligands and/or inhibitors and combinations thereof. For

each pair of treatments it can then be checked whether the ratio of

the measured responses is consistent with the causal dependencies

in the network topology (as captured in the dependency matrix;

Figure 4) or not.

By comparing the measured phosphorylation state of a protein p

under treatment A, Xp(A), with the measured value for p under

treatment B, Xp(B), we can characterize the effect of the difference

of both treatments on the activation level of p. We restrict

ourselves here to comparing treatments that differ only in adding

or removing one ligand or inhibitor, although, in principle, all

possible pairwise comparisons of treatments could be considered.

As an example, assume we compare the phosphorylation state

Xp(A) of protein p in response to a stimulation A, where a ligand l

and inhibitor i were added, with the state Xp(B) of p in response to

treatment B, where only the inhibitor i was added. An increase in

the phosphorylation state of protein p in response to the addition of

the ligand (i.e. Xp(A)/Xp(B).1) indicates that there must be at least

one positive path leading from this ligand to the protein and the

respective entry in the dependency matrix (row l, column p) of the

model should therefore show an activating or at least ambivalent

influence.

Analogously, for studying the influence of a certain inhibitor, a

decrease (increase) in the data in response to inhibiting a certain

protein indicates that there must be at least one positive (negative)

path leading from the inhibited species to the respective readout.

We decided to consider a change in the data as significant if

Xp(A)/Xp(B).1.5 or if Xp(A)/Xp(B),1/1.5. Figures 6 and 7 show

the comparison of the data with the dependency matrix of the

model where we considered only the early events and neglected

the influence of RasGAP (as discussed above).

All in all, the experimental network response to the different

treatments agrees reasonably well with the structure of the model,

in particular in primary cells. In HepG2 cells, 10% of the analyzed

dependencies are contradictory to our model: in 3% (7%) of the

cases we saw a significant increase (decrease) in the activation level,

although this was excluded by the model. 45% of the cases agreed

explicitly with the model: in 28% (5%) of the cases, treatments that

have a purely positive (negative) influence according to the

dependency matrix resulted in a significant increase (decrease) in

the measured activation levels and in 12% of the cases a ligand/

inhibitor causes no significant change in a measured readout as

predicted in the model. In the remaining 45% of the cases (gray

entries in Figure 7), the data show no significant change, although

the stimulus can affect the readout in our model (many of these

gray entries will be discussed below). In primary cells, 13% of the

predictions were false, 74% were fully correct and for 13% we

observed no significant changes, although the model contains

paths between the stimulus and the readout. A discussion of

specific findings is given below together with the result of the

logical model.

Data analysis with the logical model
Whereas the dependency analysis described above is based on

the raw data, a comparison of the data with the binary network

response of the logical model requires a discretization of the data,

the simplest being a binarization. To obtain the discretized values,

we used DataRail, a recently introduced MATLAB toolbox that

facilitates the linkage of experimental data to mathematical models

[42]. It provides a variety of methods for data processing,

including algorithms to convert continuous data into binary values

and to create convenient data structures for the analysis in

CellNetAnalyzer. The discretization depends on three thresholds (p1,

p2, p3) which all have to be exceeded in order to discretize the

measured signal to ‘‘on’’ [42]: the first threshold is for the relative

significance (the ratio between the value at time 1 (in our case after

30 minutes) and the value at time 0), the second threshold ensures

the absolute significance (ratio between the signal and the maximum

value for this signal from all measurements) and the third threshold

ascertains that the signal is above experimental noise. The choice

of the thresholds is quite difficult as no reference data exist that

define when a molecule is ‘‘on’’, that is when it is sufficiently

activated to induce its downstream events. Most likely, the

required level of activation differs from protein to protein and

from cell to cell. However, since no information on these

differences is available and to avoid unnecessary degrees of

freedom, we decided to define the same thresholds for all

molecules and both cell types (p1 = 1.5, p2 = 0.15, p3 = 100).

Figure S2 shows the sensitivities of the binarization with respect to

these three parameters.

For each measured scenario we computed the binary network

response of our model and compared it with the discretized data

(Figure 8). We note that the comparison of the measured ‘‘ups and

downs’’ with the dependency matrix (performed in the previous

section) and the comparison of the discretized data with the

predicted logical response are naturally correlated. However, they

do not lead necessarily to exactly the same results. An example:

assume you have an input stimulus (ligand L) which may activate a

target species S via two independent pathways, one of both leading

over an intermediate species A for which we have an inhibitor I. If

we compare the scenario ‘‘stimulation with L and adding inhibitor

I’’ against ‘‘stimulating with L’’ via dependency analysis we would

expect a decrease in the (non-discretized) activation level of S since

the inhibited species A is an activator for S. However, the

phosphorylation state of S might show no significant change in the

dependency analysis (i.e. leads to a ‘‘gray entry’’ as in Figures 6

and 7) due to the alternative pathway not affected by the inhibitor.

In contrast, if the two pathways from L to S are OR-connected in

the logical model, the latter would still predict S to be ‘‘on’’.

Another difference in the data analysis based on dependency

matrix vs. logical model is that the former compares species states

obtained from two different experiments (e.g. experiment with/

without inhibitor) whereas the logical model gives for each

experiment one (independent) prediction for each species.

As in the case of the dependency analysis, the measured data

agree reasonably well with the predictions of the model M1

(HepG2: 77% correct predictions; primary cells: 90% correct

predictions).

In Figure S3, the comparison of model M2 with the

experimental data is shown. For primary cells, only 7% of the

states cannot be determined due to the ITT gates, for HepG2

21%. 83% of the predictions for primary cells and 59% for HepG2

were correct. In all cases where a state can be predicted by M2 it

naturally coincides with the prediction from M1 since the latter is

only one special case of all possible behaviors in model M2.

In some cases where we used an ITT gate in model M2, the

logical function can be uniquely determined with the experimental

results confirming some of the deterministic logic gates used in

model M1: for example, the transcription factor CREB can be

activated through the MEK-dependent kinase p90RSK AND/OR

through the p38 dependent MK2. As CREB is still activated both

with MEK inhibitor and with p38 inhibitor, this points to an OR-

connection achieving a match between model predictions and data

in this node. In the same way, we can verify an AND connection

for the two negative modulators of Gsk3 and an OR for the

phosphorylation of the auto-inhibitory domain of p70S6 kinase.

Again, using ITT gates, we can only reflect uncertainties

regarding the logical combination of different paths and not
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whether a species influences another at all. This is why some of the

discrepancies between the predictions of model M1 and the data

also appear for model M2.

Interpreting inconsistencies between data and model
predictions

Most disagreements between model predictions and experi-

mental results concentrate on certain experimental conditions

(rows) and readouts (columns) - in the dependency analysis as well

as in the analysis with the logical model. Here we discuss such

systematic inconsistencies and – using our model – we seek to

provide explanations and conclusions:

N A significantly increased state of phosphorylation of STAT3 in

response to any of the ligands could not be found both in

HepG2 and primary hepatocytes. Whether this is due to the

fact that the activation of STAT3 is very transient, as it has

been reported for example for the human epithelial carcinoma

cell line A431 [43], or if the activation of this transcription

factor through ErbB receptors plays no role in hepatocytes, has

still to be clarified.

N Both analysis approaches show that stimulation of HepG2 cells

with amphiregulin (not measured in primary cells) did not

result in activation of the measured proteins (see Figure 7, lines

34–37 and Figure 8B, lines 23/24). This is in agreement with

Figure 6. Interaction graph-based comparison between experimental data and topological properties of the model (data from
primary hepatocytes). Shown is the comparison between the measured and predicted changes (‘‘ups’’ and ‘‘downs’’) in the activation levels of
network elements in response to ligands and inhibitors in primary human hepatocytes (data obtained from Alexopoulos et al, in preparation). Each
row compares two different scenarios A and B. A dot behind the species name in the row labels indicates that, in both scenario A and scenario B, this
species was added as ligand (green dot) or an inhibitor for this species was added (red dot). Species whose input values differ in both scenarios are
marked with an up or down arrow, respectively. For example, the comparison of scenario A (EGF ligand, TGFa ligand, PI3K inhibitor) and scenario B
(TGFa ligand, PI3K inhibitor) is labeled by TGFa N (green dot), PI3K N (red dot), EGF q, i.e. the influence of an increased level of EGF on the readouts is
analyzed (under the side constraints that TGFa and a PI3K inhibitor were added as well; for further explanations see text). The readouts are shown in
the columns. The color indicates whether the model predictions and the measurements are consistent or not (see color legend).
doi:10.1371/journal.pcbi.1000438.g006
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Figure 7. Interaction graph-based comparison between experimental data and topological properties of the model (data from
HepG2 cells). Shown is the comparison between the measured and predicted changes (‘‘ups’’ and ‘‘downs’’) in the activation levels of network
elements in response to ligands and inhibitors in HepG2 cells. The horizontal line separates the first (top) from the second (bottom) dataset for
HepG2 cells (see also text). For further explanations and color legend see Figure 6.
doi:10.1371/journal.pcbi.1000438.g007
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Figure 8. Comparison of the discretized data with predictions from the logical model. A Primary human hepatocytes (data from
Alexopoulos et al, in preparation). B HepG2 cells (the horizontal line separates the first (top) from the second (bottom) dataset for HepG2 cells; see
also text). Each row represents one treatment and the readouts are shown in the columns. Light green: predicted correctly, ‘‘on’’; dark green:
predicted correctly, ‘‘off’’; light red: predicted ‘‘on’’, measured ‘‘off’’; dark red: predicted ‘‘off’’, measured ‘‘on’’, black: data points where the measured
species is inhibited are not considered.
doi:10.1371/journal.pcbi.1000438.g008
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findings of amphiregulin being a much weaker growth

stimulator than EGF in some cell types [44].

N The systematic errors in the column of p38 in the dependency

analysis (for primary as well as HepG2 cells) might indicate

missing edges in the model requiring further experimental

studies to verify these findings. We cannot exclude that other

(e.g. stress-induced) pathways not captured in our model may

have caused these observations, also because some of the

effects on p38 are also present without ligand stimulation.

N Stimulating the HepG2 cells with both TGFa and EGF does

not result in a significantly higher activation level of the

readouts compared to adding only one of these ligands as can

be seen from the predominantly gray entries in lines 26/27 and

44/45 in Figure 7. This finding is in accordance with the fact

that both ligands are very similar and bind to the same

receptor dimers (see Table S1).

N One of the major differences in the behavior of the two cell

types is the activation of Hsp27: whereas this heat shock

protein becomes activated in response to cytokine stimulation

in primary cells, no significant increase in the state of

phosphorylation occurs in almost all studied scenarios in the

cancer cell line (leading to many false ‘‘on’’ predictions).

N Another remarkable discrepancy between the experimental

data and our model predictions is the influence of the mTOR

inhibitor rapamycin on phosphorylation of p70S6 kinase (see

lines 14/15 in Figures 6 and 7), which is not supported by our

model. Although mTOR mediates the phosphorylation of the

catalytic site T389 [45], it has to the best of our knowledge not

been implicated with the phosphorylation of T421 and S424,

those sites, whose state of phosphorylation were measured in

the analyzed data sets. However, an inhibitory effect of

rapamycin on these sites has been reported earlier [46], even if

the molecular mechanism that could explain this influence still

has to be uncovered.

N According to our model, PI3K should influence all measured

readouts except STAT3. However, the data show a clear effect

of the PI3K inhibitor only on the phosphorylation of Akt (see

Figure 6, lines 12/13 and Figure 7, lines 50–61). Additionally,

Figure 8 shows that JNK, p38 and, in primary cells also

Hsp27, could be activated in the experiments in presence of

PI3K inhibitor although our model predicted the phosphor-

ylation to be blocked (due to the AND connections of the

PI3K-dependent nodes PIP3 and PI(3,4)P2, respectively, with

Vav2 and SOS1_Eps8_E3b1). We therefore searched for

hypothetical changes in our model structure that could explain

these experimental findings. We observed that node Rac/

Cdc42 lies on all paths connecting the inputs (ligands) with the

aforementioned critical readouts (except Gsk3, see below), i.e.

activation of Rac/Cdc42 is necessary in our model for

phosphorylation of JNK, Hsp27 and p38. We may thus

hypothesize that - in contrast to the assumption in our model -

PI3K activity is not necessary for activation of the small G-

proteins Rac and Cdc42 in primary hepatocytes and in

HepG2 cells.

N A closer look on Figure 8B (lines 19/20) reveals that the

phosphorylation of JNK in response to neuregulin is – in

contrast to the response to any of the other ligands – sensitive

on PI3K inhibitor. This is also reflected in Figure 7 where an

increase of neuregulin only increases the phosphorylation of

JNK in absence of PI3K inhibitor (see lines 28–33) and

decreasing the level of PI3K (i.e. adding the inhibitor) after

neuregulin stimulation also leads to a decreased phosphoryla-

tion state of JNK (see lines 52 and 59). Therefore, neuregulin

must use a different, PI3K dependent signaling path for

activating JNK than the other ligands, probably due to the fact

that neuregulin only activates ErbB1/ErbB3-dimers whereas

EGF, TGFa, amphiregulin and epiregulin additionally

activate ErbB1-homodimers. Taking these findings together,

we propose the following alternative mechanism: Vav2 is the

major GEF for Rac/Cdc42 in hepatocytes and activates Rac/

Cdc42 in a PI3K-independent way. Neuregulin, which cannot

bind to ErbB1-homodimers and accordingly is not able to

activate Vav2 (see Table S1), provokes the activation of JNK

independently of the Rac/Cdc42 induced MAPK cascade

through a different, PI3K-dependent pathway.

N In the model, the inhibitory phosphorylation of Gsk3 can be

induced by a MEK1/2 dependent pathway (via p90RSK) and

by a PI3K dependent pathway (via Akt). Figures 6 and 7 (lines

9 and 13) show that the phosphorylation of Gsk3 in response to

TGFa is independent of the MEK inhibitor and the PI3K

inhibitor, both in HepG2 and in primary cells. As TGFa
stimulation leads to a strong phosphorylation of Gsk3 in both

cell types (see Figure 8), there must be another signaling route,

not involving MEK and PI3K. One possible candidate is PKC

which has already been reported to inhibit Gsk3, however not

in response to ligands of the EGF family [47].

N According to the data, both Gsk3 and p90RSK are influenced

by JNK inhibitor after TGFa stimulation in primary

hepatocytes (see Figure 6, line 18). This seems to support

another possible mechanism, where JNK activates p90RSK

which may then phosphorylate Gsk3. However, the JNK

inhibitor affects much more proteins than expected, both in

HepG2 and in primary cells. As these unexpected influences

also occur in absence of ligand stimulation, this strongly

suggests a minor specificity of the JNK inhibitor.

N Similar as for Gsk3 phosphorylation, data analysis with our

model provides useful insights into the activation mechanism

of CREB in response to TGFa: the proposed effect of the p38

dependent kinase MK2 on CREB cannot be observed both in

HepG2 and in primary cells (see Figures 6 and 7, line 11). The

positive effect of MEK on CREB phosphorylation after TGFa
stimulation can be seen in HepG2 (Figure 7, line 9), but not in

primary hepatocytes (Figure 6, line 9). Together with the

finding of the logical analysis that the MEK inhibitor cannot

block activation of CREB in HepG2 (Figure 8), this indicates

that there must be an alternative pathway for CREB activation

in primary hepatocytes that is probably involving p90RSK.

A summary of the above mentioned results is given in Table S3.

Changing the model accordingly, we can improve the agreement

of model predictions and data in the logical analysis from 90% to

97% for the primary cells and from 74% to 94% for HepG2. For

the dependency analysis, the number of comparisons that agree

explicitly increases from 74% to 82% for primary and from 45%

to 64% for HepG2 cells. Moreover, the number of entries where

we assumed a change in the data but could not detect a significant

increase or decrease reduces from 13% to 4% (primary) and from

45% to 24% (HepG2), albeit at the expense of a minor increase in

the number of contradictions (primary: increase from 13% to

14%, HepG2: 10% to 12%).

As described above, herein we deduced the proposed changes of

the model structure manually from the data analysis. More

systematic approaches for network identification from combina-

torial experiments are given in Saez-Rodriguez et al (in

preparation) and in [48].

In general, detecting such systematic inconsistencies of the data

both with respect to the dependency structure of the network and
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the logical model description is a great advantage of our approach

and could hardly be achieved with a model relying on differential

equations (where parameter uncertainty often hampers a falsifica-

tion of the model structure).

Discussion

In the present work, we developed a large-scale logical model of

signaling through the four ErbB receptors, including the ERK,

JNK and p38 MAPK cascades, Akt signaling, activation of STATs

and the PLCc pathway, based on the stoichiometric pathway map

of Oda et al [14]. We discussed technical problems that arise when

converting a stoichiometric model into a logical one and proposed

a general guideline how to deal with them.

We examined several properties of the logical model charac-

terizing its topology (feedback loops and network-wide interde-

pendencies as derived from the underlying interaction graph) and

its qualitative input-output behavior with respect to different

stimuli. We also introduced the new technique of species

equivalence classes revealing coupled activation patterns in the

logical model providing valuable insights into the correlated

behavior of network elements.

One possibility to deal with uncertainties concerning the correct

logical combination of different influences on a certain node is the

usage of gates with incomplete truth tables (ITT gates). We

replaced the (deterministic) logical gates for the activation of 14

species of our model with ITT gates and repeated all logical

analyses with this modified model. Surprisingly, the predictive

power of the ITT model is still high, highlighting the redundant

structure of major parts of the signaling pathway and showing that

many properties of the network do not rely on the assumptions we

made when choosing the logical functions.

Compared with a dynamic model based on differential

equations, our approach for describing signaling events is certainly

limited in reflecting kinetic aspects which are important to obtain a

complete understanding of these processes in the cell. However,

properties derived exclusively from the structure can provide

insights into the transfer of signals in the cell, as the result of this

and other studies have shown [28,29]. The simpler design of the

qualitative models also has some advantages over complex

dynamic models. First of all, the logical approach enables us to

model large-scale signaling networks allowing, for example, to

study the effects of crosstalk, for which a dynamic description is

currently often unimaginable. An expansion of the model can

easily be done, whereas adding a reaction to a model of differential

equations requires usually the elaborate re-estimation of param-

eters. The flexible architecture of the model also enables us to test

and generate hypotheses very quickly. Another advantage is that

the qualitative predictions derived with a logical model do not

depend on certain parameter values except the time scales and are

therefore more generally valid. There are also methods to study

ODE models without parameters (e.g. [49–51]). However, these

methods are currently limited to relatively small systems and study

different properties.

With the advances of experimental techniques, it becomes more

and more essential to provide tools that allow for the analysis and

exemplification of the huge amount of data that arise. We

developed new techniques for the analysis of large data sets that

are especially well-suited to analyze data that stem from

combinatorial experiments (systematic combination of different

ligands/inhibitors). The first approach, a method for comparing

experimental (high-throughput) data with predictions derived from

the logical model, requires a discretization of the data. Although

the ‘‘on/off’’ decision is sometimes hard to take as no reference

data exist and the ‘‘right’’ thresholds for the parameters are

unknown, assessing the sensitivities of the data with respect to the

discretization thresholds leads to a safer interpretation. Alterna-

tively, the data can be assigned a relative value between 0 and 1

which can be compared to the discrete (0/1) value of the model

(Saez-Rodriguez et al, in preparation). The second approach, the

comparison of the data with the topological dependency structure

of the model (captured in the interaction graph), requires only a

significance threshold and provides an even simpler method for

the falsification of qualitative knowledge as it relies on less

assumptions than the logical model (only the wiring diagram is

evaluated; logical combinations and discrete states are not

required).

Applying these new automatized techniques to analyze high-

throughput phospho-proteomic data revealed some important

insights into the structure of EGFR/ErbB signaling in primary

hepatocytes and the HepG2 cell line. Our results strongly suggest a

model where the Rac/Cdc42 induced p38 and JNK cascades are

independent of PI3K, both in primary hepatocytes and in HepG2.

Furthermore, we detected that the activation of JNK in response

to neuregulin follows a PI3K-dependent signaling pathway that

seems not to be important for activation of JNK through ErbB1-

binding ligands. Additional findings concern Gsk3 and CREB

where known signaling paths were excluded to provoke phos-

phorylation after TGFa stimulation and new routes could be

proposed. Finally, we observed no activation of STAT3 in both

cell types and no activation of Hsp27 in HepG2. Besides these

results on the topology of EGFR/ErbB signaling in hepatocytes,

the comparison of model predictions and data could also detect

side effects of the used JNK inhibitor.

With our software CellNetAnalyzer (CNA; [32]) we provide a

powerful tool to study structural networks. It facilitates the analysis

of interaction graphs as well as logical models and also provides

methods to compare model predictions with experimental data as

described herein. Furthermore, CNA is now highly coupled with

the tools ProMoT [31], DataRail [42] and CellNetOptimizer (Saez-

Rodriguez et al, in preparation), forming an integrated pipeline for

the construction, structural analysis and data interpretation of

signal transduction networks.

The presented model is to the best of our knowledge one of the

largest existing mathematical models of the EGFR/ErbB signaling

pathway. However, it is far from being complete and has to be

complemented, for example by including the endocytosis of the

receptors. Step by step, we want to expand the model by other

important mitogenic and pro- and anti-apoptotic pathways to

study crosstalk. We also think that the logical model can serve as a

useful basis for the development of dynamic models. A step

between both modeling frameworks could be to refine the current

binary description and use multilevel activation instead, a

promising approach yet it requires more detailed (semi-quantita-

tive) information on the reaction kinetics and leads to more

complex networks. Further refinements could be achieved by fuzzy

logic description or by considering more precise time delays for the

interactions.

Methods

Logical modeling of the EGFR/ErbB signaling network
For the reconstruction and qualitative analysis of the EGFR/

ErbB signaling network we employ a logical modeling framework

as introduced previously [30,32]. Signaling networks are usually

structured into input, intermediate and output layer and the input

signals govern the response of the network. For this characteristic

network topology we introduced logical interaction hypergraphs (LIHs)
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as a special representation of Boolean networks, which is well-

suited to formalize, visualize and analyze logical models of signal

transduction networks. As in all Boolean networks, nodes in the

network represent species (e.g. kinases, adaptor molecules or

transcription factors) each having an associated logical state (in the

binary case as used herein only ‘‘on’’ (1) or ‘‘off’’ (0)) determining

whether the species is active (or present) or not. Signaling events

are encoded as Boolean operations on the network nodes. For

example, the MAP kinase (MAPK) JNK can be activated (gets

‘‘on’’) if the MAPK kinase MKK7 AND the MAPK kinase MKK4

are active (see the AND connection in Figure 1). Usually, a node

can be activated by more than one signaling event; all these events

are then OR-connected, e.g. the MAPK p38 becomes active if

MKK3 OR MKK4 OR MKK6 is active (Figure 1).

In general, in LIHs we make only use of the Boolean operators

AND (?), OR (+), and NOT (!), which are sufficient to represent

any logical relationship. A signaling event (or interaction) in an

LIH is an AND connection of nodes (negation of node values using

the NOT operator are allowed) describing one opportunity how

the target species of this connection can be activated. Hence, for

the first example described above we would write

MKK7 AND MKK4?JNK

or shorter MKK7:MKK4?JNK

In a graphical representation of the network (see JNK node in

Figure 1), such an AND connection is displayed as a hyperarc. In

contrast to arcs in graphs, a hyperarc (in hypergraphs) may have

several start or end nodes. Clearly, in some cases, only one species

is required to activate another, as in the example

MKK3?p38:

In these cases, the hyperarc is a simple arc as occurring in graphs; we

will nevertheless refer to it as a hyperarc. As already mentioned, a

species may be activated via several distinct signaling events

(hyperarcs), i.e. all these signaling events are OR-connected. This

can again be illustrated by p38, which can be activated (indepen-

dently) via three different MAPKs and we therefore have three

different OR-connected hyperarcs:

MKK3?p38 OR MKK4?p38 OR MKK6?p38

Hence, all hyperarcs pointing into a species are OR connected. In this

way we can easily interpret Figure 1, which displays graphically the

interactions given in Table S1.

As described in the main part, the reconstruction of our logical

model of EGFR/ErbB is based on a stoichiometric model of EGF

receptor signaling [14] and additional information from the

literature. Some general remarks on how a stoichiometric network

can be translated into a logical one are given in the main part. The

logical model (for both version M1 and version M2; the latter

having 14 gates with incomplete truth tables; see main text)

comprises signaling of 13 members of the EGF ligand family

through the EGF receptor and its heterodimerization partners

ErbB2-4, leading to the activation of various transcription factors

and kinases that effect proliferation, growth and survival (Figure 1).

In addition to ligands and receptors, species whose regulation is

not known are herein considered as members of the input layer,

for example the phosphatases PTEN and SHIP2.

The differentiation between ‘‘early’’ and ‘‘late’’ events (see

below and main part) makes it sometimes necessary to introduce

auxiliary (‘‘dummy’’) nodes that have no biological correspon-

dents. Consider for example a species C that is activated by species

A during the early events (t= 1) and down-regulated by another

species B as a late event (t= 2). Assuming that both the presence of

A and the absence of B are necessary to activate C, we use an

AND connection in the LIH representation (A ? !BRC). As the

two influences are combined to one hyperarc in the LIH, we can

assign only one time variable to this interaction. In order to reflect

the time delay of the inhibitory activity of B, we introduce an

additional dummy node with t= 2. We now describe the original

interaction A ? !BRC with two interactions

B?B dummy t~2ð Þ

A:!B dummy?C t~1ð Þ:

An example in the ErbB model are the ErbB1-homodimers that

are activated by various ligands (e.g. EGF) and dephosphorylated

by SHP1 (see Table S1). To properly describe the timing of the

SHP1-mediated dephosphorylation of the receptor, we introduce a

dummy species shp1d that is activated by SHP1 and obtain thus

two hyperarcs:

shp1?shp1d t~2ð Þ

egf :erbb1:!shp1d?erbb11 t~1ð Þ:

Another type of node that is introduced for modeling purpose only

is what we refer to as reservoir. It is used whenever a molecule

causes different downstream events depending on how it is

activated. Here, we have to use more than one compound to

describe the molecule in the model. An example in our model is

mTOR: associated with Rictor, it is involved in the activation of

Akt, whereas the Raptor-bound form activates p70S6 kinase.

However, as all these compounds represent the same biological

species, we associate them with a reservoir, pointing out that they

share the same pool. Inactivation of the reservoir will then affect

the activation of all correspondents of this species.

A full description of the model M1 with all species and

interactions (hyperarcs) is given in Table S1. In model variant M2,

14 logical gates of model M1 have been configured as incomplete

truth tables (ITT gates). The differences between M1 and M2 are

described in Table S2.

Analysis of the logical model
Once an LIH has been set-up, we may start to analyze it. A

typical scenario is that we apply a pattern of inputs to the network

and we would like to know how the nodes in the network will

respond to this stimulation. As explained in [32], by propagating

input signals along the logical (hyperarc) connections (which is

equivalent to computing the logical steady state resulting from the

input stimuli) we obtain the qualitative response of the network.

Note that the logical steady state obtained by this propagation

technique is independent of the assumption of synchronous or

asynchronous switching which is required when analyzing the

discrete dynamics of Boolean networks [27]. It depends on the

functionality of positive or negative feedback loops in the network

whether we can resolve a complete and unique logical response of

all nodes for a given set of input stimuli (for example, negative

feedback loops may prevent the existence of a logical steady state).

Feedback loops are usually present in signaling networks, however,

as described in the main part, we identified one interaction in each

loop that can be considered as a late event (t= 2). When

considering the initial response of the network we set these late-
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event connections inactive leading to an acyclic network for which

always a unique network response for a given set of inputs can be

computed.

One can also easily perform in silico experiments, for example

check how a knock-out (or inhibition) alters the network response

by fixing the state of the respective species.

With the idea of minimal intervention sets (MIS) one may even

directly search for those interventions that enforce a desired

response (e.g. activation or inactivation of a transcription factor).

As described in [32], MISs can be computed by testing

systematically which combinations of knockouts and knockins

fulfill a specified intervention goal.

Species equivalence classes in logical networks
A new analysis technique for logical networks is introduced in this

work: we search for equivalence classes of network nodes whose

activation pattern is completely coupled in logical steady state:

species A and B are elements of the same equivalence class, if it

either holds that their values in steady state are always the same

(A = 0uB = 0, A = 1uB = 1; positive coupling) or always the

opposite (A = 0uB = 1, A = 1uB = 0; negative coupling) irrespec-

tive of the chosen inputs (e.g. ligands). In other words, the state of

one species in the equivalence class determines the states of all other

species in this class. Again, the relation given above holds for logical

steady states where both A and B are determined and where no

intervention was made in the network except for the inputs.

Whenever a species of a particular equivalence class is active, we

can conclude that all other species of the same equivalence class

must have been activated (deactivated in case of negative

coupling), at least transiently.

An efficient algorithm for computing the equivalence classes can

be constructed as follows:

1) Equivalence classes can be computed for a given scenario, so

we first define a specific (possibly empty) set of fixed states,

typically from (some) input nodes.

2) For this given scenario we test systematically for each species

whether it is strongly coupled with other nodes or not,

independently of external stimuli. For each species A we

compute (i) the logical steady states of all other species that

result when fixing the state of A to 1 and (ii) the logical steady

states of all other species that result when fixing the state of A

to 0. A node B whose logical steady state can be determined

in both cases and is 1 in one case and 0 in the other case is

known to be in one equivalence class with species A: B is

positively coupled with A if the two resulting logical steady

states of B are 1/0 (it then holds A = 1 = .B = 1,

A = 0 = .B = 0 and thus according to contraposition also

B = 0 = .A = 0, B = 1 = .A = 1) and negatively coupled if the

two logical steady states are 0/1 (it then holds A = 1 = .B = 0,

A = 1 = .B = 0 and thus according to contraposition also

B = 0 = .A = 1, B = 1 = .A = 0). The case that the logical

steady state of a species B is 0/0 or 1/1 (for fixing A = 1/

A = 0) indicates that this species B can never be activated or

never be inhibited, respectively, and would thus indicate a

semantic problem in the model.

If a species A is coupled with species B, and species B is coupled

with species C, we can subsume all three species in one equivalence

class (we do that systematically for all species until we reach finally

the equivalence classes). Composing the equivalence classes in this

way, it may also happen that species that cannot influence each

other (no directed path between both exists) are in one equivalence

class due to a common upstream regulator. Consider a network

that only contains the interactions A R B and A R C. Fixing the

state of B or C to 1/0 we cannot conclude any equivalence

relations as no further states can be determined. Fixing A to 1

and 0 we find that A is equivalent to B and A is equivalent to C,

thus – according to the rule given above – A, B and C form one

equivalence class.

Interaction graph analysis
Another advantage of LIHs is that we can easily derive the

(signed and directed) interaction graph underlying the logical

model: we only have to split all hyperarcs that have two or more

start nodes (i.e. the AND connections) into simple arcs. Interaction

graphs cannot be used to give on/off predictions; however, they

provide an appropriate formalism to search for signaling paths and

feedback loops. Another useful feature that can be extracted from

interaction graphs is the dependency matrix as introduced in [30,32]

which displays network-wide interdependencies between all pairs

of species. For example, a species A is an activator (inhibitor) of

another species B, if at least one path leads from A to B and if all

those paths are positive (negative). This kind of information can be

very useful for predicting effects of perturbations.

Model implementation and availability
We set-up the logical EGFR/ErbB model with ProMoT [31] and

exported the mathematical description as well as the graphical

representation to the analysis tool CellNetAnalyzer (CNA) [32]. The

results obtained with CellNetAnalyzer have been partially re-

imported to and visualized in ProMoT (Figures 1, 3, 5). Data

management and discretization was performed with DataRail

[42].

The tools are freely available (for academic use) from the

following web-sites:

DataRail: http://code.google.com/p/sbpipeline/wiki/DataRail

ProMoT: http://www.mpi-magdeburg.mpg.de/projects/promot/

CellNetAnalyzer: http://www.mpi-magdeburg.mpg.de/projects/

cna/cna.html

After acceptance, the model will be provided in formats for

ProMoT and CellNetAnalyzer.

Experimental set-up and measurement data
The data on primary human hepatocytes and the first part of

the HepG2 data were obtained from experiments conducted by

Alexopoulos et al (in preparation), while for the second part of the

HepG2 data, a cue-signal-response (CSR) compendium was

created for the EGFR pathway. The second dataset comprises

11 phosphoprotein measurements under 24 different perturbations

generated by the combinatorial co-treatments with a diverse set of

ErbB ligands and the PI3K inhibitor. For ligands we choose 5

ErbB related cytokines, namely epidermal growth factor (EGF),

neuregulin 1 (NRG1; also known as heregulin), amphiregulin

(AR), epiregulin (EPR), and transforming growth factor alpha

(TGFa). For each stimulus, the PI3K inhibitor ZSTK-474 was

added at 2 mM final concentration 30 minutes prior to any ligand

treatment. Optimal inhibitor concentration was obtained for

concentration-inhibition curve (data not shown) in order to

achieve 95% inhibition of the downstream pAkt signal on TGFa
stimulated HepG2. The dataset was created using a high-

throughput method of bead-based fluorescent readings (Luminex,

Austin, TX). Assays were optimized for multiplexability and

checked for passage-to-passage and preparation-to-preparation

variability (Alexopoulos et al, in preparation).

The full dataset (first and second part) and the resulting

discretization are graphically depicted in Figure S4.
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Supporting Information

Figure S1. Equivalence classes for model M2. Each color

represents one equivalence class. The equivalence classes of model

M1 are depicted by the species border color. Late interactions

(t= 2) are drawn as dotted lines. The value of fixed inputs is given

by the green (1) and red (0) diamonds.

Found at: doi:10.1371/journal.pcbi.1000438.s001 (0.33 MB PDF)

Figure S2. Sensitivities of the binarization to the chosen

parameters. 2.1 Primary human hepatocytes 2.2 HepG2 cells

(the horizontal line indicates the first (top) and the second (bottom)

measurement set for HepG2 cells); Parameter p1 (2.1a, 2.2a): the

ratio between the value at time 1 and the value at time 0 lies

beneath (red) or above (green) the fixed threshold p1 = 1.5;

Parameter p2 (2.1b, 2.2b): the ratio between the signal and the

maximum value for this signal from all measurements lies beneath

(red) or above (green) the fixed threshold p2 = 0.15; Parameter p3

(2.1c, 2.2c): the signal lies beneath (red) or above (green) the fixed

threshold for experimental noise (p3 = 100). For all parameters:

The darker a field is colored, the larger is the distance to the

chosen threshold, i.e. the binarization is less sensitive on the

parameter.

Found at: doi:10.1371/journal.pcbi.1000438.s002 (0.61 MB PDF)

Figure S3. Comparison of the discretized data with predictions

from model M2. A Primary human hepatocytes (data from

Alexopoulos et al, in preparation). B HepG2 cells (the horizontal

line separates the the first (top) from the second (bottom) dataset

for HepG2 cells; see also text). Each row represents one treatment

and the readouts are shown in the columns. Light green: predicted

correctly, ‘‘on’’; dark green: predicted correctly, ‘‘off’’; light red:

predicted ‘‘on’’, measured ‘‘off’’; dark red: predicted ‘‘off’’,

measured ‘‘on’’; yellow: state cannot be determined in logical

steady state analysis; black: data points where the measured species

is inhibited are not considered.

Found at: doi:10.1371/journal.pcbi.1000438.s003 (0.21 MB PDF)

Figure S4. Data plots generated with DataRail. Shown are the

phosphorylation states of the proteins after 0, 30 and 180 minutes.

Green: significant activation after 30 minutes (according to the

chosen parameters); gray: no significant activation (cf. also Saez-

Rodriguez et al, 2008). A Primary human hepatocytes (data

obtained from Alexopoulos et al (in preparation)) B HepG2 cells,

first set of experiments (data obtained from Alexopoulos et al (in

preparation)) C HepG2 cells, second set of experiments.

Found at: doi:10.1371/journal.pcbi.1000438.s004 (0.28 MB PDF)

Table S1. Logical EGFR/ErbB model: list of species and interactions.

Found at: doi:10.1371/journal.pcbi.1000438.s005 (0.16 MB PDF)

Table S2. Incomplete truth tables (ITTs) in the model variant M2.

Found at: doi:10.1371/journal.pcbi.1000438.s006 (0.01 MB PDF)

Table S3. Proposed model changes to improve the fit of the model to

the data.

Found at: doi:10.1371/journal.pcbi.1000438.s007 (0.01 MB PDF)
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