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Abstract  —Information fusion aims at a synergistic 
exploitation of multiple information sources, to enable 
decision-making or to enhance its performance.  The 
sources include sensors of various modalities and 
characteristics, as well as sources which are not sensors.  
We discuss the challenges of information fusion, technical 
directions and approaches that can cope with those 
challenges, and the opportunities those approaches enable.  
Several research and development efforts conducted at MIT 
Lincoln Laboratory over the recent years in the area of 
information fusion for chemical-biological defense serve as 
the backdrop for that discussion. 

 

1. INTRODUCTION 

Demanding decision-making tasks in chemical-biological 
defense (CBD) can benefit from, and some of them require, 
reliance on multiple information sources of diverse 
modalities.  Information fusion aims at a synergistic 
exploitation of multiple information sources, to enable 
decision-making or to enhance its performance.  The 
sources include sensors of various modalities and 
characteristics, as well as sources which are not sensors.   
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Detection and identification are fundamental among the 
CBD decision-making tasks.  Accordingly, a significant 
portion of our information-fusion efforts has been in those 
areas, in particular for biodefense.  However, the role of 
information fusion extends to other CBD decision-making 
tasks.  They include threat mapping, tracking, and 
propagation prediction.  Threat mapping aims to provide 
information about the agent cloud shape and structure, and 
the tracking about its motion.  The goal of propagation 
prediction is forecasting the cloud dispersion, its future 
position, shape and motion, based on past data such as 
sensor observations.  Other decision-making tasks include 
consequence prediction and course-of-action (CoA) 
guidance or response guidance, i.e., the determination of the 
effects of attack, and the discovery of response options and 
tradeoffs.[13] 

CBD information fusion presents significant challenges due 
to multisource data imperfections such as uncertainty, 
inconsistency, conflicts, incompleteness, ambiguity, a priori 
knowledge and model reliability limitations.  Different 
algorithmic techniques, ranging from conventional to 
advanced machine-intelligence based approaches, vary in 
their ability to cope with those challenges and consequently 
exhibit varying levels of performance robustness and 
adaptability.  For example, certain conventional approaches 
can be brittle due to their dependence on assumptions or 
models whose validity is problematic in a given application.  
Other approaches may not be able to accommodate 
information that is highly imperfect or uncertain.  Yet others 
may not be able to cope with multiple information sources 
that are sufficiently dissimilar in some aspects.  Some 
approaches can perform well when carefully tailored for a 
specific application but may not scale well or may not be 
feasibly transferrable to other applications.   

The trade-offs involving the above factors are complex.  
Moreover, the capabilities and limitations of various 
algorithmic approaches are complex, and often require a 
high level of expertise, experience, and understanding of 
difficult concepts underlying a given algorithm.  In addition, 
the performance of many algorithms cannot be 
predetermined on theoretical grounds but instead must be 
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determined by properly designed and conducted 
computational experiments. 

In this paper we discuss some of the information fusion 
challenges, we point out the limitations and advantages of 
some approaches, and we argue for those we consider 
particularly promising.  Our discussion starts with 
examining the essence of information fusion in section 2.  In 
section 3 we take a closer look at the challenges and 
fundamental issues in information fusion.  In the recent 
years, MIT Lincoln Laboratory conducted several research 
and development efforts focused on CBD information 
fusion, and in section 4 we briefly outline some of the 
approaches we have developed.  The three different 
approaches outlined in that section all involve to a varying 
degree the methods of machine-intelligence, i.e., machine 
learning or reasoning.  Our choice to outline those was 
motivated by our belief that the machine-intelligence based 
information fusion paradigm holds particular promise.  The 
discussion of the path to realizing the potential of 
information fusion for decision support and decision-
making systems is expanded in section 5. 

The treatment of topics in this paper reflects our intent to 
provide a broad overview for the science and technology 
professionals of the homeland-defense community and to 
make the paper accessible to a broad range of readers in that 
community.  Consequently, we focus on concepts while 
refraining from the detail and mathematical aspects 
underlying the topics discussed.  Those aspects can be found 
in our publications and other works listed in the references 
section. 

2. INFORMATION FUSION: 
NATURE AND SCOPE 

Informally, information fusion can be viewed as the process 
of synergistic combining of data from multiple sources.  
This definition, while correct, brings about the following 
fundamental questions.  What is the goal of such synergy?  
Under what circumstances does it make sense to combine 
information from different sources?   Are there instances in 
which such combining does not make sense?   This section 
helps to answer some of these questions. 

Information Fusion and Decision-Making.  At first glance 
it might appear that there is a wide range of possible goals 
of information fusion. However, in actuality, any use of data 
sources serves making decisions of various types.  In 
conceptually-simplest cases these decisions are merely 
solutions to specific constrained problems or performing 
relatively simple actions such as repetitive operations of a 
manufacturing robotic device on a factory floor.  Other 
applications, for instance those of an aircraft autopilot, 
combat-aircraft fire control system, or a flight system in a 
UAV, require a much more complex decision-making. 

In those instances where the role of automation is to assist a 
human – the role often referred to as decision support – 

decision-making involves generating the answers or 
guidance that is provided to the human who then makes 
decisions at the next, higher level.  Increasing automatic 
decision-making robustness allows decisions that previously 
required a human decision-maker to be made automatically.  
Those decisions then become decision support to the next 
level in a potentially long hierarchy of decision-making.  
For some applications autonomous systems can be built 
with the current technologies.  In other cases it is possible to 
at least envision such total autonomy with the existent or 
near-future technologies.  Finally, for those tasks that 
require human-like intelligence, it is possible to envision a 
cognitive machine-intelligence system based on conceivable 
future technologies (or to pronounce that such tasks will 
always be left to humans – dependent on one’s degree of 
skepticism).   

Therefore, information sources ultimately serve as inputs in 
a chain of progressively larger-scope decision-making tasks, 
including decisions that lead to actions.  Thus, the common 
underlying goal of information fusion is decision-making.   

Combining information sources outside the decision-making 
context is not a well-defined problem.  Within the decision-
making context the utility of combining can be defined as 
that of improving the decision-making quality which can be 
measured by relevant measures of performance (MoP) such 
as Receiver Operating Characteristics (ROC) curves.   

Could the fusion process be used independently of decision-
making just to improve the fidelity of one type of data by 
combining it with another?  While such improvement could 
be quantified by, say, some data-precision MoP, this would 
constitute an exceedingly narrow scope (and even then it is 
making decisions about the values of data).  More 
importantly, however, decision-making has an obvious 
intrinsic value as a crucial enabler of recognition or proper 
actions.  In contrast, improving the quality of data in itself 
does not serve any specific purpose.  If – for any given task, 
application, or activity, whether performed by human or by 
machine – proper decisions and actions can be determined 
with limited-quality data, improving the quality of those 
data serves no meaningful purpose and is unnecessary. 

Thus, defining information fusion as a concept outside the 
decision-making context is not meaningful.  Rather, 
information fusion is a form of decision-making, based on 
information from multiple sources which provide often-
imperfect data.  Essential decision-making aspects such as 
automatic learning, inference and reasoning are its 
inextricable components.  

Information fusion models.  Currently prevailing 
information-fusion models are in agreement with the above 
viewpoint.  Currently the most influential of those models – 
largely due to its acceptance in the DoD circles – is the so-
called JDL model.  The JDL model effort was initially 
started in the 1980s by the Joint Directors of Laboratories 
(JDL) organization, hence its name.  It has, since then, 
undergone significant revisions.  At the present time, the 
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JDL fusion model consists of five main entities, referred to 
as levels.  The sketch of the five levels provided below 
follows [15] and the details can be found there.   

The constituent levels of the JDL model delineate the types 
and the end-goals of tasks that comprise them.  All levels 
assume the use of information from multiple sources.  Level 
0 is devoted to the initial processing of the multisource data, 
and may include input standardization and conditioning, 
preliminary filtering, and the like.  Level 1, called object 
refinement or assessment, focuses on individual “objects” or 
entities of interest.  In the CBRN domain, an “object” might 
be a biological or chemical agent cloud.  The main 
outcomes of Level 1 are estimates of entities’ presence, 
identity, location, and other attributes. 

Level 2, called situation refinement or assessment, considers 
objects in context of other objects.  Namely, relationships 
among entities and their relationships to the environment are 
established, and the interpretation of the evolving situation 
that comprises multiple objects is developed.  In particular, 
Level 2 functionality includes not only spatial and temporal 
aspects, but also environmental ones such as weather.  It 
may involve multiple perspectives, such as those of friendly 
and adversary forces, and possibly the neutral perspective.  
Level 3, called threat refinement or assessment, extends the 
goals by projecting into the future to assess risks, threats 
and impacts.  This includes estimating force capabilities, 
predicting adversary’s intent, identifying opportunities and 
predicting implications – as in Level 2, possibly including 
multiple perspectives. 

The goals of Level 4, called process refinement, are 
essentially internal to the information fusion system itself.  
Its goals include monitoring the system to improve 
performance, modeling sensors, optimizing utilization of the 
information sources (sensor tasking for example), and 
optimizing algorithms.  Measures of performance are among 
the goals of this level.  Level 5, called cognitive refinement, 
is concerned with interaction between the system and its 
users.  Its goals include assessing and optimizing the quality 
of human/system interface facilities to improve the human-
machine interaction (HMI).  Its focus is the management of 
that interaction to enhance the user’s cognitive performance. 

JDL model interpretation.  We emphasize that the JDL 
model is not a computational architecture.  Neither is it a 
general design of a fusion system, nor is it a system or 
information flow.  Rather, the model attempts only to 
partition information fusion tasks, so as to facilitate 
understanding and communications among the various 
communities, from theoreticians, through developers and 
evaluators, to managers, sponsors, and users of the fusion 
techniques.[15]  This is envisioned, in turn, to result in more 
successful and cost-effective design, development, and 
operation of information fusion systems. 

3. FUNDAMENTAL ISSUES AND CHALLENGES 

To discuss the fundamental challenges of information fusion 
in certain demanding applications we return now to the 
CBD domain.  The challenges facing CBD information-
fusion and decision-making systems are significant.  They 
include high clutter of the ambient background (biological 
or chemical) and unknown and unexpected changes in that 
clutter.  Sensing for agent presence in such conditions can 
often result in low signal-to-noise ratios.  The information 
provided by the potentially relevant multiple sources can be 
uncertain, disparate, conflicting or incomplete.  In some 
cases the information can be inherently imprecise or vague, 
such as in case of descriptive data or human language 
statements (e.g., describing a threat level).  Given the 
present state of knowledge, some phenomena (certain 
biological phenomena for instance) are poorly understood, 
and the reliability of relevant models is limited.  In the 
remainder of this section we discuss some of these 
challenges. 

Uncertainty.  In biological and chemical sensing, and in 
many other applications, the data available from the sensors 
and other information sources exhibit various levels of 
uncertainty.  Numerical imprecision of sensor data is one 
example of information uncertainty.  Detection, 
identification, and other decision-making tasks listed in 
section 1 all must cope with uncertainty, to be able to make 
good decisions based on inferior-quality data.  Therefore, a 
suitable representation of uncertainty, and algorithmic 
provisions for recognition and reasoning under uncertainty, 
are among the key issues in information fusion. 

At the first glance, it may appear that all that is needed to 
represent and deal with uncertainty is conventional 
probability.  In fact, approaches based on Bayes’ theorem 
are amongst the most widely applied mechanisms.  Such 
approaches are not always sufficient.  One of the limiting 
factors is the problem of data scarcity, discussed in the next 
subsection.   

There are, however, much more fundamental problems that 
in some instances limit the applicability of probabilistic 
methods as the mechanism for dealing with uncertainty.  For 
sufficiently imprecise or vague information elements it may 
be difficult, or even impossible, to provide a valid 
probabilistic description of their uncertainty.   

CBD data scarcity.  Availability of ample amounts of data 
pertaining to the entities of interest in the context of a given 
decision-making task is paramount for many approaches to 
information fusion.  Some approaches place particularly 
high demands with regards to the amount of data they 
require.   

For example, traditional probabilistic approaches require 
sufficient amounts of data to construct probability 
distributions, both the priors and the conditionals.  In the 
CBD realm, some of these are not determinable in a 
frequentist manner at all.  The a priori probability of attack 
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belongs in that category because of the fortunate rare-event 
character of CB attacks.  Measurements involving simulants 
of agents and measurements of backgrounds, i.e., ambient 
aerosol levels, can in principle provide data needed for 
conditional (attack or no-attack given sensor indications) 
probability distributions.  However, a proper estimation of 
probability distributions requires sufficient statistics, i.e., 
availability of sufficient amounts of data for the distribution 
estimation process.   

In CBD realm, acquiring data is challenging.  Simulant 
release tests involve observing the simulant cloud with 
relevant sensors as it progresses during the release.  These 
tests are relatively difficult technically and logistically, and 
therefore are relatively expensive.  That constitutes a 
practical constraint on the amounts of release data that can 
be obtained.   

Technical and logistic difficulties and cost issues also exist 
in the case of background characterizations.  Background 
conditions are characteristic of a specific setting or locale.  
Therefore, separate background data collection experiments 
are needed for different settings.  Moreover, backgrounds 
are non-stationary and may exhibit short-term as well as 
long-term variability.  Therefore, a comprehensive 
characterization of background for a given setting requires a 
continuous sensing for extended time duration.  Deploying 
sensors of appropriate modalities for durations that would 
allow collecting sufficient quantities of background data can 
be costly and logistically difficult in practice.  

The foregoing implies that information fusion approaches 
and algorithms in the CBD realm must often face a 
challenge of the scarcity of data available for their 
development.  That limits the suitability of certain 
approaches in the CBD realm.  As mentioned above, a 
traditional approach involving probability distribution 
estimation as a precursor for a direct application of Bayes’ 
theorem is an example of directions that would be 
particularly challenged by such conditions.   The absence of 
sufficient data necessary for a valid estimation of 
distributions and for the verification of the assumptions 
underlying that approach may result in brittleness of 
performance or render the approach invalid.  Certain more 
advanced approaches are better equipped to cope with the 
data scarcity challenge. 

Models.  Reliable theoretical models of the phenomenology 
pertinent to a given information-fusion task have a twofold 
benefit. First, such models could constitute a solution to the 
decision-making process itself.  For instance data 
association and estimation methods such as Kalman filters 
excel when the process models are well known.  Second, 
good-quality models could be used to provide ample 
quantities of data needed for evaluating the probability 
distributions discussed in the previous subsection.   

However, modeling of the CBD-realm phenomena is 
particularly challenging.  For example, modeling of 
biological agent or pathogen properties, effects, gene 

expression responses, and the like, is limited by the current 
state of biological knowledge.  The physics of agent 
transport and dispersion of agent plumes involves complex 
nonlinear phenomena, making the modeling task much more 
challenging than in many other application domains where 
more straightforward models, e.g., based on classical 
mechanics may be sufficient. 

Furthermore, for CBD information fusion tasks the transport 
and dispersion model should be able to provide data on 
specific instances of the plumes, including their individual 
histories as they progress and meander.  In principle, such 
information can be obtained from computational fluid 
dynamics (CFD) models.  However, these models are 
extremely computationally-intensive, thus requiring 
formidable computing resources and time.  Finally, the 
validation of transport and dispersion models is also an 
issue.   

Disparity.  Difficult decision-making tasks typically require 
exploiting information sources of multiple modalities.  
However, sensing modality differences do not necessarily 
imply disparity.   

In [2] we investigated the essence of the disparity problem.  
We argued that disparity pertains to the information the 
source delivers in the context of a specific application, 
rather than to the modality or the physical characteristics of 
the sources.  We proposed three types of disparity we 
referred to as the data characteristics disparity, hypothesis 
space disparity, and information disparity.[2]  The latter two 
can be further decomposed into multiple categories.  The 
specifics of these types and categories are beyond the scope 
of this paper and can be found in [2].   

Therefore, from the information fusion viewpoint, dissimilar 
information sources should not always be considered 
disparate.  The disparity problem exists when the data they 
provide in context of a given task meet some of the 
conditions for disparity types we specified in [2].  Not all 
information-fusion approaches can cope adequately with 
those conditions.  Furthermore, certain approaches can cope 
with one type or category of disparity, but not with another.  
In [2] we have discussed the potential of one of the 
approaches we have developed (the FLASH approach we 
outline briefly in section 5) to deal with the various facets of 
disparity. 

Unstructured problems and vague information.  Even 
detection and identification information fusion tasks may 
require moving beyond the well-structured formulations 
such as probabilistic approaches.  For instance, to establish 
the a priori probability of an attack may require 
unstructured concepts, such as those related to social 
networks of actors that may underlie the likelihood of a 
given attack.  Furthermore, the exploitable information may 
require a less precise than probabilistic representation.   

In progressively more demanding CBD information-fusion 
tasks at JDL levels 2 and 3, these unstructured aspects 
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become increasingly more dominant.  For example, CoA 
guidance or intent prediction tasks require considering a 
complex and potentially large number of details related to 
things such as an expected behavior of actors or crowds.  
Here, the uncertainty aspects become even more acute.  
Information fusion requires methods suitable for recognition 
and reasoning with such highly imprecise and vague data. 

4. INFORMATION FUSION IN CBD:  SELECTED 
APPROACHES 

Approaches to information fusion range from conventional 
decision-theory techniques to advanced state-of-the-art 
machine-intelligence methods.  In the recent years, MIT 
Lincoln Laboratory conducted a number of research and 
development efforts focused on CBD information fusion.  
These efforts have been described in our publications, some 
of which are listed in the references section of this paper.   

In this section we provide a brief overview of some of those 
efforts.  The intent of that overview is to serve as a backdrop 
for the discussion of information fusion challenges and of 
some of the technical directions that could enable realizing 
the significant opportunity information fusion can offer to 
decision support and decision-making systems.  

The more conventional approaches can constitute valid 
solutions especially for relatively simple problems.  The 
higher-end, machine intelligence approaches can offer more 
robustness and versatility, and hold significant promise for 
the decision-support and decision-making systems of the 
future.  Consequently, in this section we focus our attention 
on machine-intelligence approaches, briefly outlining three 
such approaches we developed. 

Subway aerosol anomaly detection.  Anomalies in the 
aerosol content in an environment can be an indication of a 
biological attack.  Such anomalies include unexpected or 
inexplicable changes in particle concentrations.  Sensors for 
measuring air particulate concentration are commercially 
available and some of them are relatively inexpensive.  
Many of such sensors, commonly called particle counters, 
can provide concentration data as a function of particle size.  
Particle counters belong to a category of so-called point 
sensors, because their measurements reflect the value of the 
sensed phenomena only at the location of the sensor. 

Basic particle counters, especially the more economical 
commercial models, are non-specific in the sense that they 
do not offer information regarding the nature of the 
particles.  Thus they can neither determine bioagent particle 
identity, nor whether the particles are biological.  Given 
their limitations, one potential use of particle counters for 
bioattack detection is as a triggering mechanism for 
activation of more robust and specific means to confirm the 
bioattack prior to initiating response measures. 

However, if an aerosol anomaly could be determined with 
sufficiently high fidelity, such determination could be used 

to initiate preliminary “low regret” measures such as 
ventilation system activation in indoor environments.  
Moreover, theoretically such determination could even be 
used for taking more drastic measures if the detection and 
false-alarm performance reach appropriate levels.  This is 
problematic by means of a single particle counter, but might 
be achievable by the fusion of data from multiple such 
sensors and other information sources. 

In one of our early biodefense-related projects we developed 
a machine-intelligence based approach for aerosol anomaly 
detection in a subway environment.[3][4]  The sensing 
environment consisted of particle counter sensors placed at 
three different locations within a subway station, sonic 
anemometers for air velocity (wind) measurements, as well 
as rudimentary low-cost radars and simple optical beam 
type sensors for train traffic monitoring. 

The key challenges represented in this effort were as 
follows.  The background particulate concentrations in a 
subway setting are high and non-stationary.  This amounts 
to low SNR, or more precisely low signal-to-clutter.  Some 
of the variability is due to the effects of airflow induced by 
the train motion.  The computational approach had to 
accommodate sensors of multiple modalities.  Finally, 
aerosol phenomena in general, and for the dynamic settings 
such as a subway in particular, are too complex to be 
modeled adequately.   

The anomaly-detection machine intelligence approach 
involved a set of two feedforward neural networks (FNN).  
One of the networks was responsible for the detection in 
presence of train passage, the other for quiescent times.  The 
network selection process was automatic.  Supporting the 
above machine-learning component, were a multi-sensor 
feature extraction component and a feature-space 
dimensionality reduction component based on principal 
component analysis (PCA). 

 

Figure 1 – FNN fusion for anomaly detection [4][13] 
 
Computational experiments we have carried out with the 
developed approach and using the data collected in the 
subway showed the advantage of the approach we proposed. 
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This is illustrated in Figure 1, which summarizes the ROC 
curves we presented in [4].   

Pathogen identification.  Another of our prior efforts 
aimed at the identification rather than detection 
task.[5][6][7]  The overall approach involved gene 
expression, microarray-based sensing, and machine-
intelligence based information fusion.  In combination, that 
approach had a number of significant potential advantages.  
These included applicability to various types of pathogens 
(bacteria, viruses, toxins, etc.), operation without the 
knowledge of pathogen’s genome sequence, and the 
potential for identification of uncataloged, i.e., emerging 
pathogens.  The biological genomic aspects of this effort are 
beyond the scope of this paper and can be found in [6].  The 
brief sketch that follows touches only on the aspects 
pertinent to the information fusion topic. 

The key challenges in this effort were as follows.  The 
information sources in this case were the microscopic DNA 
probes that comprised a cDNA microarray.  Each 
microarray contained approximately 10,000 of such probes.  
Each probe conveys information about the level of 
expression of a particular gene, potentially indicative of the 
pathogen identity.  Thus, each probe acts as a separate 
sensor.  The fusion process, therefore, involves fusing a 
massive number of these sensors, while any single 
microarray, each containing thousands of the DNA probes, 
constitutes a single case or exemplar.  Therefore, the data 
for each exemplar form a vector whose cardinality is that of 
the number of microarray probes, leading to an extremely 
high dimensionality of the data space (on the order of 
10,000 in our case).  

It should be pointed out that the the microarray probes 
cannot be viewed simply as pixels in an image.  This is 
because pixels in a non-random image are presumably 
related via a higher level structure corresponding to the 
entities the image represents.  In contrast, for the microarray 
probes such underlying structure cannot be assumed in 
general.  The relationships between the probes are often 
unknown, because of the unknown nature of the gene 
expression aspects for the pathogens to be identified.  The 
same reason implies the unavailability of predictive models 
to aid the identification process.  Additionally, due to 
various biological and technical reasons, microarray probe 
data exhibit significant levels of noise and uncertainty. 

The only realistic approaches for pattern recognition in the 
microarray domain appear to be those of machine learning.  
However, supervised learning methods require an ample 
number of exemplars available for the classifier training 
process.  This however leads to the following difficult trade-
off.  Either most of the probe data for each sample are 
neglected as irrelevant, or the feature space dimensionality 
is much higher than the number of training exemplars 
(because collecting a very large number of microarray data 
is impractical for cost and effort reasons).   In absence of 
relevant biological models, the former involves the risk of 

discarding valuable information, while the latter poses a 
serious challenge for classifier training. 

The fusion and recognition architecture we developed in the 
context of this effort involved algorithmic mechanisms for 
partitioning of the high-dimensional feature space into 
smaller, though still high-dimensional subspaces.  The 
feature vectors from those subspaces constituted inputs to 
multiple Support Vector Machine (SVM) based recognizers, 
one per subspace.[8][19][18]  Our choice of SVMs was 
motivated in part by the advantages they can offer in terms 
of dealing with data scarcity and multi-dimensional spaces.  
The methods we introduced for characterizing the efficacy 
of the feature subspaces were used to further fuse the results 
of the multiple subspace SVM recognizers into the final 
identification outcome using techniques based on the 
Dempster-Shafer theory of evidence [17][20][12]. 

Performance studies for the above approach included 
identification of four pathogens including bacterial, viral, 
and toxin.  The results of the computational experiments 
with the approach we developed [5][6] indicated that, within 
the constraints of the data we had in that effort, high levels 
of identification accuracy can be obtained using that fusion 
approach. 

FLASH.  Each of the many possible machine learning and 
reasoning paradigms has its specific strengths and 
limitations.  The differences include such aspects as the 
ability to support feature-level vs. decision-level fusion, 
robustness to data uncertainty, disparity, suitability for 
processing time-series such as the sensor signals, and more.  
A key idea underlying the FLASH (Fusion Learning 
Adaptive Super-Hybrid) information fusion approach and 
architecture we developed in another one of our recent past 
efforts [1][2][8][9][10] was to combine multiple method 
types in a cohesive integrated hybrid structure.  This creates 
powerful synergies between the various constituent 
methods, and enables exploitation of their respective 
strengths and compensation for their respective weaknesses. 

Since some of the FLASH constituent parts are or can be 
hybrids themselves, FLASH constitutes a hybrid of hybrids.  
The methods that comprise FLASH are not simply a 
collection of multiple techniques.  They were selected 
judiciously, based on the specifics of their respective 
functionality and roles.  Their integration and collaboration 
within FLASH were among the significant aspects of that 
research. 

Cognitive processing orientation is another noteworthy 
aspect of FLASH.  This stems from the fact that its most 
essential constituents are machine-learning and reasoning 
components, and from the fact that some of its aspects are 
rooted in or inspired by certain advances in neuroscience 
and human cognition studies.[1]  The major constituents of 
FLASH range from low-level processing (signal processing, 
feature extraction and selection, to name just a few) to 
multiple progressively higher recognition and reasoning 
levels.  This structure is not, however, strictly hierarchical, 
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in principle forming a multiply-interconnected set of 
entities.  In particular, the recognition components – which 
may perform detection or identification of events, objects, 
assertions, or patterns of interest – operate at multiple levels 
of detail, from more specific or local to more general or 
global.  A more detailed discussion of the cognitive nature 
of FLASH can be found in [1]. 

FLASH has multi-purpose applicability.  However, its first 
embodiment, implemented in the effort outlined here was in 
the context of a bioattack detection task.  A multisensor 
testbed was constructed to serve as a source of input 
data.[14]  The testbed included aerosol particle sensors, 
biological point sensors, and airflow sensors.  Some 
additional contextual information inputs such as the threat-
level estimates were simulated. 

Briefly, FLASH-1 consisted of two principal recognition 
stages at progressively higher levels, referred to as the 
instance level recognition and the time-series recognition.  
The former aimed at recognizing events within a limited 
temporal scope, and involved Support Vector Machines 
(SVMs).  The latter aimed at considering a wider temporal 
scope; that level involved Hidden Markov Models (HMMs).  
The instance level recognition stage was preceded by lower-
level processes such as feature extraction and selection, and 
several other important auxiliary components.  One of those 
auxiliary components, referred to as background clustering 
was tasked with the mining of multisensor data to categorize 
possible types of backgrounds (ambient air content types).  
Adaptive Resonance Theory (ART) type neural network 
methods were used for that purpose.  Prior to its delivery to 
the time-series recognition stage, the outcomes of the 
instance-level recognition were fused using techniques 
based on the Dempster-Shafer theory formalism.  The 
outcomes of the time-series recognition stage were further 
fused with additional context information using fuzzy 
reasoning methods.   

The results of FLASH-1 performance experiments were 
presented in [1].  Those results, shown in Figure 2, indicated 
a steady performance increase as major stages of FLASH-1 
were progressively added.  This constituted the proof of 
concept for FLASH and its structure.[1][2] 

The key challenges in the FLASH effort included multiple 
information sources of various types, data uncertainty and 
disparity.  We have demonstrated in that effort the promise 
of addressing all of these challenges with an advanced 
cognitive-processing oriented machine-intelligence 
approach.  The adaptability potential, for instance to 
changes in the local conditions or system deployment 
settings, is another potential benefit of FLASH.  Finally, 
although FLASH-1 was developed in the context of 
bioattack detection, we believe that the FLASH concepts 
and architectural principles have a broad multi-purpose 
potential for variety of CB and other homeland defense 
decision-support tasks. 

 

Figure 2 – FLASH-1 computational experiments [1]  
 

5. REALIZING THE OPPORTUNITY 

Overcoming the challenges.  The efforts we briefly 
outlined in the preceding section 4 suggest strongly that the 
challenges involved in the exploitation of imperfect 
multisource data towards robust decision-making can be 
overcome with appropriate information-fusion algorithmic 
methods. 

When multi-purpose suitability and scalability are not a 
concern, the algorithmic approach choice and design can be 
driven by the nature and the requirements of the specific 
application.  For some applications, basic “cookbook”1 
probabilistic approaches might be sufficient, but in some 
cases a more careful examination might reveal that the 
application specifics stress or violate the assumptions 
needed for the operation of those techniques.  Their 
potential brittleness of performance is therefore a concern. 

For cases where the use of basic probabilistic methods is 
problematic, heuristic approaches can be amongst 
potentially viable alternatives, and they should not be 
viewed as universally less rigorous than their conventional 
probabilistic counterparts.  Heuristic approaches generally 
attempt to embody some aspects of human expert 
knowledge.  Such knowledge is often rich and complex.  A 
heuristic approach may subsume the information that could 
be represented in terms of probability distributions, and it 
can be less brittle especially if those distributions were 
constructed in a non-robust way, e.g., from insufficient data. 

Decision-making tasks include recognition of entities and 
events, and reasoning with the recognition results and other 
information.    Bayesian approaches, e.g., certain types of 
Bayesian belief networks, and a variety of probabilistic 
methods can be exploited in many cases.   For some 
problems involving high levels of uncertainty, certain non-
Bayesian theories are promising.  Some non-Bayesian 

                                                 
1 Term used by [16] in a related topic discussion. 
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reasoning formalisms can represent uncertainty in a more 
complex way than probabilistic constructs.  For example, 
the Dempster-Shafer theory formalism involves the 
concepts of belief and plausibility functions, both of which 
characterize the uncertainty of a given information element.  
Fuzzy sets theory and its many variants are among other 
examples of promising non-Bayesian paradigms.  Such 
approaches can also be useful in cases that require human 
expert knowledge since human experts find it often easier to 
provide their knowledge in terms less precise than 
probabilities.    

Certain advanced machine-learning paradigms are capable 
of dealing particularly robustly with the problems of data 
scarcity and a priori knowledge (modeling) limitations.  
Some of these were mentioned in section 4 in context of our 
information-fusion efforts. 

The next-generation decision-making and decision support 
systems – in CB defense, other homeland defense 
applications, and other application domains – will need to 
be highly adaptive and multi-purpose.  For systems such as 
bio-detection, the former includes such obvious aspects as 
changes in conditions during the system operation, or 
flexibility in deployment locations.  The multi-purpose 
functionality importance goes beyond economics in terms of 
meeting multiple needs with the same development 
investment.  This is because next-generation systems will 
need to interoperate and collaborate, and the feasibility of 
achieving that with disjoint “single application” system 
solutions is not clear.   

Machine-intelligence based approaches at sufficiently high 
level of sophistication can meet the challenges we discussed 
in this paper.  We believe that hybrid approaches such as 
FLASH are amongst those that hold particular promise. 

Developing machine intelligence systems.  Advanced 
machine learning and reasoning algorithms are in most 
cases technically complex.  The theoretical concepts and 
formalisms that underlie them are typically complex as well.  
Consequently, development of those algorithms requires a 
substantial level of expertise.  This is true even when 
working with one of the many commercially or publicly 
available algorithmic toolkits.  Proper setting of numerous 
algorithmic options and parameters requires a significant 
understanding of their underlying theoretical aspects.  An 
inappropriate reliance on the toolkit’s default settings can 
lead to disappointing performance or lack of robustness.  
The design and preparation of training datasets suitable for a 
given problem is also non-trivial. 

One of the major themes in machine learning is the notion 
of generalization, defined as the ability of the algorithm to 
operate reliably with data not seen in the training dataset.  
The factors that can impact generalization robustness 
include the choice of approach, options and parameters.  
The developer must have a thorough understanding of the 
aspects involved in machine-learning algorithm testing, the 
requirements a specific technique may impose on the 

training datasets and their content, and of the testing and 
validation procedures needed to ensure generalization 
robustness and superior performance.  When these 
desiderata are fulfilled, machine learning systems do not 
present insurmountable validation concerns. 

Thus, the development of machine intelligence systems 
requires significant expertise, some of which is acquired by 
experience with the relevant techniques.  However, it should 
be emphasized that, while machine-intelligence approaches 
place higher expertise demands on developers as the price 
for their power and promise, no such additional demands are 
placed on the end-users.  On the contrary, properly designed 
machine-intelligence systems can be easier to use than 
conventional information systems. 

Performance measures.  Measures of effectiveness (MoE) 
of information fusion systems are fundamentally 
application-dependent.  Furthermore, they depend on many 
operational aspects that may change from moment to 
moment.  For example, selection of the optimal CoA may 
depend on specific goals – the best CoA to minimize 
casualties may differ from the best CoA to maximize 
achieving certain objectives of a given mission.  Similarly, 
an alarm issuance following, say, a bioagent detection event 
may depend on the specific circumstances in which the 
system is used. 

However, the measures of performance (MoP) of 
information fusion systems can be determined in a more 
objective ways and their determination must be part of the 
development process.  This is done by establishing and 
evaluating MoPs appropriate for a given technique or 
system.  There are many potential MoP choices available to 
the developer.  Receiver Operating Characteristics (ROC) 
curves and Confusion Matrices are very useful.  The former 
is most suitable for detection tasks but in some cases can 
also be used for identification tasks.  Other useful MoPs 
include: cumulative match characteristics, cross-entropy, 
accuracy, sensitivity, precision, F-score, and more.   

Performance studies leading to MoP evaluation require the 
“ground truth”, that is the data for which the true values, 
such as the object or event identity, are known.  Sometimes 
the ground truth data are difficult or infeasible to acquire, 
such as the agent release data in biodefense.  In those cases 
appropriate simulations can be used as a reliable source of 
ground truth, and we have demonstrated this in our past 
work for the detection and identification tasks, e.g., 
[1][2][8][9][10].  However, as we argued in [11], the 
simulation-based approach can also be used in more 
unstructured tasks such as in JDL Level-3 impact 
assessment systems.  It should be pointed out that in some 
cases the ground truth data may have to be subjective.  For 
example, in some cases of the CoA guidance systems, the 
optimal CoA can only be available as a human expert 
opinion.   

Development datasets.  A necessary supporting element of 
a successful information-fusion system development effort 
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is a body of appropriate multisource data for development 
and testing of the fusion algorithms.  Generating such 
datasets often requires significant resources and 
expenditures that must be absorbed by a particular 
information fusion effort.  As we mentioned in section 4, in 
one of our efforts we were compelled to include a 
multisensor testbed construction to gain the needed sensor 
background data.  To obtain release data we developed 
appropriate release simulation capabilities.[3][4][1] 

If datasets pertaining to selected cardinal homeland-security 
application domains were available, these supporting 
activities could be avoided.  Collecting multisource data for 
information fusion efforts and the construction of 
appropriate datasets is non-trivial.  It can be resource-
intensive and costly.  Furthermore, the datasets must be 
designed in the way appropriate for information fusion 
studies – not every collection of sensor data meets those 
suitability conditions.  As mentioned earlier, information 
fusion work also places specific demands on the CB agent 
release simulation models.  Specifically, individual 
instances of releases, as opposed to average representations, 
are required.  Since the use of CFD models for generating 
the amounts of release simulations could be prohibitively 
expensive computationally, we developed a simpler and 
computationally efficient model for simulation of individual 
releases and we used that model in two of the efforts 
outlined in section 4.[3]][4][1]  Such approaches are among 
the potential alternatives to full CFD simulation models for 
use in information fusion efforts.   

Initiatives focused on collections of multisource data for 
information fusion efforts, appropriate simulation models, 
and on generation of standardized multisource information 
fusion datasets for relevant homeland-security sub-domains 
are clearly desirable.  In addition to the obvious benefits for 
the fusion algorithm developers, such common and standard 
datasets will facilitate a more objective validation and 
performance comparisons of different approaches and 
systems. 

Trade-offs and way forward.  The foregoing discussion 
suggests a number of significant trade-offs that must be 
considered in information-fusion development efforts.  
More elementary approaches can offer good solutions 
mostly for relatively short-term goals and well-constrained 
problems and requirements.  Within those confines, they 
require more moderate developer expertise and can be 
implemented with moderate effort.  However, their utility 
will generally be limited, as will their scalability beyond 
those confines.  Even for the short-term solutions, however, 
the basic “cookbook” approaches should be viewed with 
caution.  As we discussed earlier, the assumptions 
underlying such solutions should always be thoroughly 
examined, but unfortunately such deliberations are too often 
compromised to meet the short-term cost and schedule 
goals. 

Machine intelligence based information fusion appears to 
offer the best prospect in the long term and should be 

considered as the primary direction for the next-generation 
systems.  The advanced hybrid approaches are particularly 
promising.  They can alleviate the limitations of particular 
single-paradigm machine learning and reasoning methods.   

As exemplified by our efforts outlined in section 4, machine 
intelligence based information fusion can outperform its 
conventional counterparts in such tasks as bioattack 
detection.  As the machine intelligence approaches continue 
to evolve, they may start approximating human-level 
decision-making performance in a growing number of tasks 
and applications. 

6. CONCLUSION 

CBD information fusion poses significant challenges, 
ranging from prerequisites such as the ground-truth data 
generation to the foundational issues of information fusion 
algorithmic methods that could cope with CBD information 
characteristics, uncertainty and disparity.  In this paper we 
discussed some of these challenges.  We touched on 
limitations of some standard techniques.  Drawing on some 
of our past information-fusion efforts, we discussed how the 
challenges of information fusion can be overcome by certain 
algorithmic directions such as the machine-intelligence 
based information fusion.   

With appropriate algorithmic approaches and appropriately 
resolved tradeoffs, information fusion can offer to the CBD 
decision-making and decision support applications the 
potential of reaching performance that would be difficult, if 
not impossible, to attain otherwise.  Thus, information 
fusion represents a significant opportunity for the CB 
defense and homeland security realm. 
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